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ABSTRACT OF THE DISSERTATION 

Optimal Control, Investment and Utilization Schemes for Energy Storage 

under Uncertainty  

By NILOUFAR SADAT MIRHOSSEINI 

Dissertation Director: 

Professor Mohsen A. Jafari 

Energy storage has the potential to offer new means for added flexibility on the electricity 

systems. This flexibility can be used in a number of ways, including adding value 

towards asset management, power quality and reliability, integration of renewable 

resources and energy bill savings for the end users. However, uncertainty about system 

states and volatility in system dynamics can complicate the question of when to invest in 

energy storage and how best to manage and utilize it.  

This work proposes models to address different problems associated with energy storage 

within a microgrid, including optimal control, investment, and utilization. Electric load, 

renewable resources output, storage technology cost and electricity day-ahead and spot 

prices are the factors that bring uncertainty to the problem. A number of analytical 

methodologies have been adopted to develop the aforementioned models. Model 

Predictive Control and discretized dynamic programming, along with a new 

decomposition algorithm are used to develop optimal control schemes for energy storage 

for two different levels of renewable penetration. Real option theory and Monte Carlo 

simulation, coupled with an optimal control approach, are used to obtain optimal 

incremental investment decisions, considering multiple sources of uncertainty. Two stage 
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stochastic programming is used to develop a novel and holistic methodology, including 

utilization of energy storage within a microgrid, in order to optimally interact with energy 

market. Energy storage can contribute in terms of value generation and risk reduction for 

the microgrid. 

The integration of the models developed here are the basis for a framework which 

extends from long term investments in storage capacity to short term operational control 

(charge/discharge) of storage within a microgrid. In particular, the following practical 

goals are achieved: (i) optimal investment on storage capacity over time to maximize 

savings during normal and emergency operations; (ii) optimal market strategy of buy and 

sell over 24-hour periods; (iii) optimal storage charge and discharge in much shorter time 

intervals. 

  



iv 

 

ACKNOWLEDGEMENTS 

In the Name of God 

First and foremost I would like to thank my PhD co-advisors, Professor Mohsen Jafari 

and Dr. Ralph Masiello for their outstanding guidance and support during the process of 

writing this dissertation. Professor Jafari has been a great advisor, working with whom 

has been a constant learning experience. I am so grateful to Dr. Masiello for his support 

and encouragement, and for giving me the opportunity to be part of DNV KEMA and 

learning from so many brilliant people in an amazing environment. Working at DNV 

KEMA has been an invaluable experience for me. 

I am grateful to the members of my PhD committee, Professor Thomas Boucher, 

Professor Honggang Wang and Mr. Andrew Ott, for taking the time to review my thesis 

and for providing valuable and constructive suggestions. 

My colleagues at DNV KEMA, Jessica Harrison, Farnaz Farzan, Michael Kleinberg and 

Sudipta Lahiri, deserve a special credit for their help in all the discussions, and for their 

support and friendship. 

I can barely find words to express my deep gratitude to my beloved parents, sister and 

brother-in-law. With their unconditional love, inspiration and encouragemen, my parents 

have been selfless in giving me the best of everything. My dearest sister, Farkhondeh, has 

been my role model in life since my childhood. I would not be the person I am now 

without her endless support and compassion. My brother-in-law, Morteza, has been a 

great and reliable support for me during all these years. I am so blessed and fortunate to 

have such a wonderful family. 



v 

 

Last but not least, I want to say thank you to the most wonderful, supportive and 

understanding husband, Amir, without whose continuous love, support and motivation 

this thesis would not have been completed. 

 

  



vi 

 

DEDICATION 

 

 

 

 

 

To my beloved family, 

for their endless love and support  



vii 

 

TABLE OF CONTENTS 

 

ABSTRACT OF THE DISSERTATION ........................................................................................ ii 

ACKNOWLEDGEMENTS ............................................................................................................ iv 

DEDICATION ................................................................................................................................ vi 

LIST OF TABLES ........................................................................................................................... x 

TABLE OF ILLUSTRATIONS ..................................................................................................... xi 

1 INTRODUCTION ................................................................................................................... 1 

1.1 Objective .......................................................................................................................... 1 

1.2 Brief Overview of Thesis Accomplishments ................................................................... 2 

1.3 Synopsis of Contributions ................................................................................................ 3 

1.3.1 Chapter 2: Exact and Approximate Control Schemes for Energy Storage Systems 3 

1.3.2 Chapter 3: A Simulation-Based Real Option Model for Microgrid Investment in 

Energy Storage under Uncertainty ........................................................................................... 4 

1.3.3 Chapter 4: Energy Storage and Microgrid Market Strategy in an Uncertain and 

Distributed Energy Market ...................................................................................................... 5 

1.4 Motivation ........................................................................................................................ 5 

1.5 Brief Introduction on Microgrids ..................................................................................... 7 

1.6 Brief introduction to electricity Storage ........................................................................... 7 

2 EXACT AND APPROXIMATE CONTROL SCHEMES FOR ENERGY STORAGE 

SYSTEMS ....................................................................................................................................... 9 

2.1 Introduction .................................................................................................................... 10 

2.2 Background and Literature Review ............................................................................... 13 

2.2.1 Borrowing Ideas from Classical Inventory Control ............................................... 13 

2.2.2 Optimal Control of Energy Storage ....................................................................... 14 

2.2.3 Model Predictive Control for Energy Storage ....................................................... 15 

2.2.4 Rule-based and Aggregated Energy Storage Control ............................................ 17 



viii 

 

2.3 Problem statement and Preliminaries ............................................................................. 18 

2.3.1 Model I – Model Predictive Control for storage dispatch under demand and 

renewable output uncertainty ................................................................................................. 19 

2.3.2 Model II – Heuristic optimization technique for storage control with high 

penetration of renewables ...................................................................................................... 29 

2.4 Conclusion ..................................................................................................................... 43 

3 A REAL OPTION MODEL FOR MICROGRID INVESTMENT IN ENERGY STORAGE 

UNDER UNCERTAINTY ............................................................................................................ 45 

3.1 Introduction .................................................................................................................... 46 

3.2 Literature Review ........................................................................................................... 48 

3.2.1 Real Options ........................................................................................................... 48 

3.2.2 Investment in Energy Storage ................................................................................ 49 

3.3 Problem Statement and Preliminaries ............................................................................ 50 

3.4 Dynamics of Uncertainty ............................................................................................... 52 

3.4.1 Calculation of Savings ........................................................................................... 53 

3.4.2 Monte Carlo Simulation of Real Option ................................................................ 56 

3.5 Illustrative Example I ..................................................................................................... 61 

3.5.1 Input Assumptions ................................................................................................. 61 

3.5.2 Results from Sample Simulation Paths .................................................................. 62 

3.5.3 Storage cost thresholds for initial investment and capacity expansion .................. 65 

3.5.4 Impact of storage price decline rate ....................................................................... 66 

3.5.5 Sensitivity Analysis on Grid Outage Parameters ................................................... 67 

3.6 Illustrative Example II ................................................................................................... 68 

3.7 Conclusion ..................................................................................................................... 71 

4 ENERGY STORAGE AND MICROGRID MARKET STRATEGY IN AN UNCERTAIN 

AND DISTRIBUTED ENERGY MARKET ................................................................................. 73 

4.1 Introduction .................................................................................................................... 73 

4.2 Literature Review ........................................................................................................... 75 



ix 

 

4.3 Problem Formulation ..................................................................................................... 76 

4.3.1 Discussion on model Variables and Parameters .................................................... 79 

4.3.2 Optimization Model ............................................................................................... 82 

4.3.3 Microgrid Risk Aversion ....................................................................................... 86 

4.3.4 Determining Microgrid’s Bidding Price ................................................................ 89 

4.4 Validation and Numerical Experimentation .................................................................. 92 

4.4.1 Model Validation ................................................................................................... 92 

4.4.2 Sensitivity Analysis ............................................................................................... 94 

4.4.3 Illustrative Examples ............................................................................................. 95 

4.5 Conclusion ................................................................................................................... 101 

5 APPLICATIONS AND FUTURE WORK .......................................................................... 102 

5.1 Microgrid Characterization and Market Strategy ........................................................ 102 

5.2 Future Work ................................................................................................................. 105 

5.2.1 Enhancement of Investment Model ..................................................................... 105 

5.2.2 Enhancement of storage control algorithms ......................................................... 106 

5.2.3 Enhancement of decomposition algorithm (Model II in Chapter 2) .................... 106 

Appendix I – Parallels between Supply Chain and Power Concepts ........................................... 107 

6 BIBLIOGRAPHY ................................................................................................................ 108 

 

 

  



x 

 

LIST OF TABLES 

Table 2.1 Input data for MPC-based model ...................................................................... 25 

Table 2.2 Comparing MPC vs. Static Model and Perfect Information ............................. 26 

Table 2.3 Annual Saving with different models – Winter Week ...................................... 27 

Table 2.4 Comparing MPC vs. Static Model and Perfect Information ............................. 29 

Table 2.5 Annual Saving with Different Models – Summer Week .................................. 29 

Table 2.6 Input assumptions for zonal control of storage ................................................. 35 

Table 2.7 Aggregate Models Results Compared to Exact Model Results – 100 kW ....... 37 

Table 2.8 Aggregate model errors – 100kW ..................................................................... 38 

Table 2.9 Aggregate Models Results Compared to Exact Model Results – 150 kW ....... 39 

Table 2.10 Aggregate model errors – 150kW ................................................................... 40 

Table 2.11 Aggregate Models Results Compared to Exact Model Results – 200 kW ..... 41 

Table 2.12 Aggregate model errors – 200kW ................................................................... 42 

Table 3.1 Input Assumptions for Real Option Simulation Model - Example I ................ 61 

Table 3.2 Stochastic parameters of GMB ......................................................................... 62 

Table 3.3 Real option simulation results for 10 sample paths – Example I...................... 63 

Table 3.4 Storage cost thresholds for initial investment and expansion ........................... 65 

Table 3.5 Probability distribution of decisions for initial investment and expansion ...... 66 

Table 3.6 Grid outage parameters settings ........................................................................ 67 

Table 3.7 Input Assumptions for Real Option Simulation Model - Example II ............... 68 

Table 3.8 Real option simulation results for 10 sample paths – Example II .................... 69 

Table 4.1 Parameter levels for sensitivity analysis ........................................................... 94 

Table 4.2 Sensitivity analysis results ................................................................................ 95 

Table 4.3 Model parameter values .................................................................................... 96 

Table  5.1 Design of Experiment for three internal factors ............................................. 103 

Table  5.2 Profit ANOVA table ....................................................................................... 104 

Table 5.3 Sale commitment ANOVA table .................................................................... 104 

Table  5.4 Purchase commitment ANOVA table............................................................. 105 

Table  5.5 Actual purchase ANOVA table ...................................................................... 105 

Table A.1 Parallels between supply chain and power concepts ..................................... 107 



xi 

 

TABLE OF ILLUSTRATIONS 

Figure 2.1 A schematic presentation of proposed control strategy ................................... 21 

Figure 2.2 Real vs. forecasted electricity load for a winter week ..................................... 25 

Figure 2.3 Real vs. forecasted PV output for a winter week ............................................ 26 

Figure 2.4 Real vs. forecasted electricity demand for a summer week ............................ 28 

Figure 2.5 Real vs. forecasted PV output for a summer week .......................................... 28 

Figure 2.6 Dividing one sample day in zones ................................................................... 32 

Figure 2.7 Electricity price curve as % of peak price ....................................................... 32 

Figure 2.8 Energy demand and PV output for a sample week .......................................... 35 

Figure 3.1 Electricity price as % of peak price ................................................................. 53 

Figure 3.2 Impact of storage cost decline rate on investment decisions ........................... 67 

Figure 3.3 Impact of grid outage parameters of storage value ......................................... 68 

Figure 4.1 Different combinations for renewable and conventional excessive capacities 82 

Figure 4.2 VaR and CVaR illustration ............................................................................... 88 

Figure 4.3 Average daily profit by storage capacity levels .............................................. 97 

Figure 4.4 Average daily profitby storage capacity - increased storage cost and decreased 

excessive capacity ............................................................................................................. 97 

Figure 4.5 Average daily profit and average daily commitment for different Production 

cost/Storage cost ratios ..................................................................................................... 98 

Figure 4.6 Impact of storage capacity on internal demand reliability .............................. 99 

Figure 4.7 Impact of shortage penalty on market power reliability ................................ 100 



1 

 

1 INTRODUCTION 

1.1 Objective 

The proposed work intends to address and tackle the following problems: 

 Optimal control of energy storage for a privately-owned microgrid with low 

penetration of renewables, taking into account uncertainties from electric load and 

renewable resources, to minimize microgrid electric bill, including energy costs 

and demand charges paid to the utility. 

 Optimal control of energy storage in a utility-owned microgrid with high 

penetration of renewables, to minimize the damage to distribution grid when 

renewable output exceeds electric load, and to optimally use renewable output 

taking into account the electricity price. 

 Optimal incremental investment decisions (initial and expansions) in energy 

storage, using Monte Carlo simulation for compound options, considering 

stochasticity in storage technology cost. Microgrid savings from energy storage 

are estimated based on optimal control of storage with stochastic electric load and 

renewable output during normal operation and storage impact on power reliability 

during grid outages. 

 Optimal market strategy in terms of microgrid interactions with the power grid, 

including sales and purchase commitments, price bidding, and sales and purchases 

in the real-time market under uncertainties due to electric load, day-ahead and 

spot electricity prices, and renewable generation.  
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 Optimal utilization of microgrid storage capacity and valuating storage in terms of 

revenue generation and risk reduction.  

 Characterization of microgrid interactions with the power grid according to a set 

of internal and environmental parameters.  

1.2 Brief Overview of Thesis Accomplishments  

Chapter 2 proposes two control strategy models for two different use cases of energy 

storage. The first model is an optimal control strategy for a privately-owned microgrid 

with low penetration of renewables, taking into account uncertainties from electric load 

and renewable resources. The objective is to minimize microgrid electric bill, including 

energy costs and demand charges paid to the utility. 

The second model is a novel decomposition algorithm for sub-optimal control of energy 

storage in a utility-owned microgrid with high penetration on renewables, where the 

objective is to minimize the damage to power infrastructure when renewable output 

exceeds electric load, and to optimally use renewable output taking into account the 

electricity price. 

Chapter 3 extends the current state of art in compound real option approach to 

incremental investment in energy storage with two sources of random variations. In this 

model, it is assumed that microgrid is either operating in normal condition or in an 

islanding mode during grid outages. Savings from energy storage in normal condition are 

calculated using the first model proposed in Chapter 2, which takes into account the 

impact of stochastic parameter forecasts on energy storage benefit.  
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Chapter 4 strategizes microgrid interaction with the market taking into account different 

sources of uncertainty, i.e. day-ahead and spot electricity prices, renewable excessive 

capacity and electric load. A two-stage stochastic programming approach is used in this 

chapter.  

1.3 Synopsis of Contributions 

1.3.1 Chapter 2: Exact and Approximate Control Schemes for Energy Storage 

Systems 

In this chapter, we introduce two methodologies for control of energy storage, under 

different configurations of electricity load and renewable resources. The first model, 

deals with a microgrid with low renewable generation capacity, where the renewable 

output is used to supply electric load. The objective is to minimize microgrid electric bill 

paid for the remaining electric load, which includes energy costs and demand charges, 

through optimal charge and discharge of storage unit. In this model, we take into account 

the impact of stochastic parameters forecast errors, i.e. electric load and renewable output, 

on the effectiveness of control scheme. For this purpose, we use Model Predictive 

Control to dynamically update control decisions based on new observations on stochastic 

parameters. The amount of peak shaving with three methods, i.e. dynamic controls with 

MPC, static controls on forecasted values, and static controls on real values, are 

compared and levels of error or over-estimation of each model are assessed. The results 

from dynamic controls with MPC are then used as realistic estimate of storage benefit for 

the microgrid in an optimal investment approach proposed in Chapter 3. The existing 

models which use MPC for storage control are either focused on other applications or 

types of storage, or do not include a proper objective function composed of all 
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corresponding costs. Another contribution of this section is coupling the MPC model 

results with the investment model in Chapter 3. 

The second model introduced in Chapter 2 includes a new decomposition algorithm for a 

specific use case of energy storage, including high penetration of renewables. To the best 

of our knowledge, this is the first time that such a decomposition algorithm based on 

relative values of renewable generation and electricity load has been proposed. In this 

model, we adopt concepts from traditional inventory control problems, divide the 

solution space into distinct zones, and develop sub-optimal aggregate charge and 

discharge control commands. 

1.3.2 Chapter 3: A Simulation-Based Real Option Model for Microgrid 

Investment in Energy Storage under Uncertainty 

In this chapter we propose a methodology for optimal and incremental investment of 

microgrid in energy storage. Energy storage is assumed to be used to enhance renewable 

benefit for the microgrid through optimal charge and discharge scheme from Model I in 

Chapter 2. This work extends the current state of investment modeling in energy storage 

by considering: (i) multiple sources of uncertainties, (ii) using compound options theory 

to deal with incremental decisions, (iii) using more realistic saving functions for energy 

storage, and (iv) calculating storage benefit in two normal and islanding modes of 

microgrid.  
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1.3.3 Chapter 4: Energy Storage and Microgrid Market Strategy in an Uncertain 

and Distributed Energy Market 

In this chapter we propose a novel and holistic approach to strategize market interactions 

of a microgrid for day-ahead decisions, with the objective to maximize microgrid annual 

profit through optimal commitments in day-ahead market and optimal daily operation of 

generation resources and energy storage. The main contributions of this model are (i) 

taking into account different important aspects of market strategy, i.e. sales and purchase 

commitments and bidding prices, (ii) considering different sources of uncertainty in day-

ahead electricity price, renewable generation and electricity load and using two-stage 

stochastic programming to deal with stochasticity in parameters, and (iii) defining 

decision maker’s risk attributed by using Conditional Value at Risk. 

1.4 Motivation 

The deregulation of energy environment has paved the way for a transition from 

centralized power systems to distributed systems. Microgrid is a concept characterized by 

low voltage distribution network, micro generators, loads and storage devices with 

locally coordinated functions [1]. A typical microgrid portfolio consists of renewable 

resources, fuel cells, co-generation units, natural gas turbines, and storage devices.  

The coordinated operation and control of generation sources together with storage 

devices and electricity load is central to the concept of microgrids. In a macro point of 

view, a microgrid can be regarded as a controlled entity within the power network that 

can be operated as a single aggregated load and, given attractive remuneration, as a 

generation node or provider of ancillary services. Also, being able to operate in isolation, 
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microgrids can play an important role in load alleviation and risk reduction in the power 

market. 

Energy storage has the potential to offer new means for added flexibility on the electricity 

distribution systems. This flexibility can be used in a number of ways, including adding 

value towards asset management, power quality and reliability, and energy bill savings 

for the end users. With the use of energy storage on distribution systems for multiple 

applications, however, comes the challenge of determining how best to control storage 

units. To maximize the value of a storage investment, the decisions on when to charge 

and discharge must account for the opportunity cost of using storage towards one 

application versus another. Furthermore, uncertainty about system states and volatility in 

system dynamics can complicate the question of how best to manage storage. 

With increasing penetration of renewable resources, energy storage is becoming more 

popular, as they are used to mitigate different reliability and power quality-related issues 

caused by intermittency of renewable resources. Energy storage can also be beneficial for 

its capabilities which do not exist in renewable resources, such as controllable charge and 

discharging. However, since the cost of technology for energy storage drops with 

technology innovations and market penetration, investment timing and sizing is still an 

issue for microgrid owners. Price of electricity is another source of uncertainty which 

should be considered.  

With this background in mind, we are motivated to build necessary tools to optimally 

control energy storage within microgrids, make investment decisions, and strategize 

microgrids interactions with the power grid, considering various sources of uncertainty 
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rising from the forecast of renewable energy resources, electricity demand and day-ahead 

and spot prices.  

1.5 Brief Introduction on Microgrids 

A microgrid is a localized grouping of electricity generation, energy storage, and loads 

that normally operate connected to a centralized grid.  

Generation and loads in a microgrid are usually connected at low to medium voltage. 

Microgrid generation resources include wind turbines, solar panels, fuel cells, natural gas 

turbines, or other generation resources. On a macro level, microgrid works as single point 

node in the network, which is capable of running on its own resources if necessary. 

With the introduction of microgrids, the dynamics of the electricity market is expected to 

change in the future. Microgrids act as dual purpose nodes in power systems. As a 

generatos, a microgrid can sell power in the wholesale electricity market. While as a 

customer, it can buy electricity from the power grid when its internal demand exceeds its 

supply capacity. While distributed generation in the power system can reduce volatility to 

high peak demands, microgrids add their own risks to the market as well. For this reason, 

new modeling tools are needed to capture the behaviors of microgrids with respect to the 

power grid, including dynamically changing economics, finance, and regulatory 

requirements. 

1.6 Brief introduction to electricity Storage 

Electricity Storage sets the path between electricity generation and delivery industry, and 

includes any non-immediate use of generated power. Storage has the capability to help 

manage the electricity generation and delivery, especially with the integration of 
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renewable generation, the addition of smart grid technologies, and greater interest in 

demand response and higher electric system efficiencies. Energy storage technologies 

include electro-chemical, electro-mechanical and electro-thermal. Benefits expected from 

electricity storage applications include but are not limited to: improved asset utilization 

and efficiency, increased penetration of renewable generation, enhanced reliability, 

availability and power quality, peak load management, flexibility in meeting customer 

demand.  
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2 EXACT AND APPROXIMATE CONTROL SCHEMES 

FOR ENERGY STORAGE SYSTEMS  

In this chapter, we tackle the problem of optimal control of energy storage in microgrids. 

Our purpose is to maximize energy storage benefits for the utility (when microgrid is 

owned by the utility) and end-users. Two models are presented - In the first model, we 

assume a residential microgrid, with low renewable penetration, and examine the impact 

of electric load and renewable output forecast errors on energy storage benefit and cost 

effectiveness. In the second model, we assume a system with high renewable penetration, 

where reverse flow of power is an issue when renewable output is high compared to 

electric load. In such a system, energy storage can be used to absorb the reverse power 

and use it during peak hours. For the first model, a mixed integer linear programming 

with Model Predictive Control (MPC) is used. Although similar approaches to this model 

already exist in the literature, the main contribution of our work here is to include 

exogenous sources of uncertainty, e.g. renewable output and electricity load, use a cost 

function composed of both energy cost and monthly demand charges, and combine the 

MPC results with an optimal investment model (proposed in Chapter 3) to make more 

reliable investment decisions. For the second model, we propose a heuristic 

approximation, based on a new decomposition algorithm, where the (time-power) space 

is divided into zones depending on the comparative levels of electricity load and 

renewable power output. Discrete dynamic programming is then used to find the 

aggregate charge or discharge levels of storage during each zone. This approach 

decreases the solution space intensively, hence can be applied to larger problems, with 

larger energy and power ratings for the energy storage unit, and for longer periods. The 
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results are examined against exact solutions of a mixed integer linear programming 

model with the same objective function and constraints, solved using GAMS.  

2.1 Introduction 

Energy storage has the potential to offer new means for added flexibility on the electricity 

distribution systems. This flexibility can be used in a number of ways, including adding 

value towards asset management, power quality and reliability, and energy bill savings 

for the end users. With the use of energy storage on distribution systems for multiple 

applications, however, comes the challenge of determining how best to control storage 

units. To maximize the value of a storage investment, the decisions on when to charge 

and discharge must account for the opportunity cost of using storage towards one 

application versus another. Furthermore, uncertainty about system states and volatility in 

system dynamics can complicate the question of how best to manage storage. We intend 

to present solutions for different configurations of renewable penetration and energy 

storage that are simple to implement and account for system characteristics and system 

state. Furthermore, we intend to explicitly assess how well such methodology 

approximates the optimal usage of storage. 

Storage systems can be used in various applications in electricity distribution systems. 

These applications include but are not limited to: renewable value enhancement, shift in 

time of use, and peak shaving. Systems with renewable generation can enhance their 

benefit using energy storage, especially when peak demand and renewable peak do not 

coincide. In such conditions, adding more renewable capacity cannot do much in terms of 

savings for the system. However, when coupled with energy storage, renewable 

generation value can be increased. Shift in time of use involves purchasing and storing 
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inexpensive electricity when electricity load and cost are low; and then using the stored 

energy to supply electricity load when the load and price are high. Utility customers can 

shave their peak consumption and avoid peak penalties or reduce demand charges by 

using their energy storage state of charge in peak periods. This is one of the main 

applications of distribution energy storage systems.  

In this chapter, we propose two optimization models which tackle two different use cases 

of energy storage, each including multiple applications. The first model is a Model 

Predictive Control (MPC) which finds the optimal charge and discharge of energy storage 

for the next time step, e.g., next hour, taking into account the forecast errors of electricity 

load and renewable output within the next 24-hour period. The basic idea of MPC is to 

form a model that is able to represent the future dynamics of the system and to provide 

optimal control actions for a specific time horizon [2]. A mixed integer optimization 

program is used at each time step to find the future charge and discharge control 

commands for the 24-hour period ahead such that microgrid energy bill, composed of 

energy cost and demand charge paid to the utility and/or retailers, is minimized. From the 

24 charge and discharge commands, only the ones corresponding to the next immediately 

hour are executed. As more information is obtained from stochastic variable realizations, 

forecast values for the next (new) 24-hour period are updated and the optimization is 

repeated. The results of this model are compared to the same model solved using a static 

approach, which finds optimal control commands of energy storage once every 24 hours, 

assuming no forecast errors. By comparing microgrid savings using these two 

approaches, we show the impact of MPC on energy storage benefit. This model is used to 

estimate microgrid’s savings in the investment model introduced in Chapter 3, where it 
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will be shown that realistic estimations are crucial for efficient investment decisions, and 

that investment decisions made on the basis of artificially inflated saving values (obtained 

from static models) can be misleading. In this Chapter, we also examine the inflated 

estimations of saving values if no random errors are assumed. MPC-based models for 

control problems and different storage applications have been traditionally used in the 

literature. However, as stated before, the main contribution of our work here is to include 

exogenous sources of uncertainty, e.g. renewable output and electricity load, use a cost 

function composed of both energy cost and monthly demand charges, and combine the 

MPC results with an optimal investment model (proposed in Chapter 3) to make more 

reliable investment decisions. 

In the second model, we introduce a new approximation algorithm for control of storage, 

which decomposes the optimization period according to loads and renewable forecast 

curves. By aggregating solutions over each zone, we reduce the feasible region of the 

problem significantly. The intention is to decrease the solution space and increase the 

computational efficiency of the methodology, especially when used in online optimal 

control of storage. Discretized dynamic programming is applied on the basis of these 

zones rather than hourly time steps; it yields the aggregate amounts of charge or 

discharge (in kWh) within each zone. For validation, results from this approximation 

model are compared to the results of an exact model solved by mixed integer linear 

programming. The level of error due to aggregation is assessed. It is observed that the 

model performance is higher for smaller storage units, where storage is primarily used for 

mitigating the reverse power flow from renewable resource, as well as arbitrage between 

different zones, and not within each zone. 
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2.2 Background and Literature Review  

2.2.1 Borrowing Ideas from Classical Inventory Control 

Inventory systems have been part of traditional supply chain systems for many years, 

with enormous volume of supporting research and practice. In supply chain applications, 

inventory system is part of the network backbone to deliver the velocity and reliability 

that is required by these systems. Furthermore, inventory systems are considered as 

hedging mechanism against random variations in lead time, demand and production. 

Work In Process (WIP) is also used for regulation between two consecutive processes 

which may run at different random speeds. Rarely, inventory system in traditional sense 

have been used for arbitrage. 

Traditional inventory control models fall into two main categories; single period models 

with immediate replenishment and gradual sales or discharge and mutli-period models. 

Single period models are used for one time ordering decision, so that the orders can be 

sold during a specific period. The objective of this model is to balance the impact of 

running out of stock with the impact of being left with stock that does not sell. The most 

famous model in this category is the newsvendor problem. 

A multi period inventory model can have two variations. Fixed order quantity systems are 

where orders are placed for a fixed amount each time they are placed. The placement of 

an order is done when an event occurs, such as reaching a minimum stock level. The 

second variation is fixed time period models where orders are placed at specific times, e.g.  

when there is a monthly review of stock levels. The amount of the order will depend on 

the amount of inventory that is needed. The objective in these two models is to minimize 
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total cost including cost of placing an order (setup cost), holding or storage cost, cost of 

units purchased, and in some cases, shortage cost. 

The problem of storage control in power systems falls into the category of multi-period 

inventory systems. Conceptually speaking, the formulation of cost functions and 

optimization schemes are quite similar, but some of the individual cost terms are 

fundamentally different. For instance, holding costs term does not make much sense in 

power systems, whereas in traditional inventory systems, it is a balancing factor between 

costs and benefits. Table 0.1 in Appendix I shows some of the parallels between the two 

systems. Without dwelling too long on this topic, it suffices to say that our knowledge of 

inventory systems has been a major driver behind our formulations here. In particular, we 

emphasize the decomposition approach, which takes advantage of multi-period inventory 

systems and breaks down the storage control problem into smaller problem domains of 

charge and/or discharge characterized by intersection points between supply and demand 

(closely connected to period inventory control, except that periodicity is random). 

2.2.2 Optimal Control of Energy Storage 

Optimal control of energy storage units has been an interesting topic for utilities and 

other storage owner and operators for the last few years. In [3] the optimal energy storage 

control problem is addressed from the utility point of view. The model is focused on 

arbitrage application of energy storage, and the authors show that it can be extended to 

account for a renewable source that feeds the storage device. The same problem is 

considered in [4], where the problem of minimizing the cost of energy storage purchase, 

subject to both user demands and prices, is formulated as a Markov Decision Process. 

Renewable resource integration is an important application of energy storage, and charge-
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discharge control policy of energy storage to serve this application is presented in [5]. 

Renewable energy sources are considered in [6] too, where an open-loop optimal control 

scheme is considered to incorporate the operating constraints of the battery energy 

storage systems. The goal of the control in [6] is to have the battery energy storage 

system to provide as much smoothing as possible, so that the wind farm can be 

dispatched on an hourly basis based on the forecasted wind conditions. The same 

problem is considered in [7], where sizing and control methodologies for a battery-based 

energy storage system are presented for wind farm applications. Authors in [8] consider a 

smart grid including renewable generation units and formulate a single-objective 

optimization problem whose objective function is power loss minimization while 

satisfying constraints on active and reactive power at the interconnection bus. This work 

is one of the rare works which combines internal and external applications of energy 

storage units to some extent. The application of renewable generation integration is also 

considered in [9], [10] and [11]. In [12], authors present a battery control policy, which 

minimizes the total discounted costs, taking into account arbitrage application of energy 

storage. In [13], energy storage power reliability application is considered, and the 

concept of using the central energy storage system is presented as the main source in 

micro-grid island mode. 

2.2.3 Model Predictive Control for Energy Storage 

Concept of Model Predictive Control has been used for control of energy storage within 

power systems. Khalid and Savkin [14] design a controller based on model predictive 

control (MPC), to smooth the wind power output, which is generated from a wind farm, 

and subject to a variety of constraints on the system. Their proposed controller is capable 
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of smoothing wind power by utilizing inputs from a prediction system, which is capable 

of predicting the wind power several steps ahead, and optimizes the maximum ramp rate 

requirement and also the state of the charge of the battery under system constraints. 

Xie et al. [15] address potential benefits of applying MPC to solving the energy dispatch 

problem in electric energy systems with many intermittent renewable resources. Based on 

predicting the output from the intermittent resources, they propose a look-ahead optimal 

control algorithm for dispatching the available generation with the objective of 

minimizing the total production cost. Nottrott et al. [16] implement a linear programming 

routine to optimize the energy storage dispatch schedule for demand charge management 

in a grid-connected and combined photovoltaic-battery storage system. Their model is 

supposed to leverage PV power output and load forecasts to minimize peak loads subject 

to elementary dynamical and electrical constraints of the system. Although the problem 

statement in their work is similar to one of the problems we tackle in this chapter, the 

solution approaches are different. They take into account demand charge and other 

system costs in their example to quantify the advantage of their model. However, these 

costs are not considered in their linear programming, which does not guarantee the 

answers to yield to minimum peak demand. This drawback is addressed in the way we set 

up the mixed integer linear programming in this chapter, which considers real demand 

charge and energy cost. van Staden et al. [17] define and simulate a closed-loop optimal 

control strategy for load shifting and demand charge management in a water pumping 

scheme. They use a model predictive control approach to implement the closed-loop 

optimal control model, and the optimization problem is solved with integer programming. 
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They do not consider any exogenous stochastic factor like renewables or electricity 

demand.  

2.2.4 Rule-based and Aggregated Energy Storage Control 

Teleke et al. [6] develop a control strategy for optimal use of the energy storage for 

making intermittent renewable energy sources more dispatchable. They consider a rule-

based control scheme, which is the solution of the optimal control problem defined to 

have the energy storage provide as much smoothing as possible so that the renewable 

resource can be dispatched on an hourly basis based on the forecasted solar/wind 

conditions. Armas et al. [18] introduce a heuristic technique for scheduling a residential 

Distributed Energy Resource (DER) installation containing photovoltaic arrays and local 

energy storage, which is also interfaced to the grid through a single phase voltage source 

inverter. The technique is based on the DER installation's ability to sell specified amounts 

of real and reactive power to the utility grid. The technique is implemented in an 

algorithm that determines the operating points for the inverter for the next 24 hours of 

operation based on forecasts of the residential demand, solar irradiance, and the price of 

real and reactive power. They divide. Operational rules are defined depending on levels 

of PV generation and storage state of charge, as well as the corresponding zone. 

The idea of dividing each day (24-hour period) into zones and finding aggregate control 

commands is common between the second model proposed in this chapter and the 

algorithm presented by Armas et al. [18]. However, the two works are dissimilar in a 

number of ways: in their work, the maximum number of zones in each day is fixed, while 

in our model, the number of zones depends on the relative amount of renewable output 

and electricity load. Also, in their model, control commands are pure rule-based controls, 
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while we propose a dynamic programming approach that guarantees higher levels of 

accuracy and computational efficiency. As stated by the authors, their model only covers 

specific load and PV profiles and cannot be applied to general cases, which is a major 

drawback addressed by the algorithm introduced in this chapter. 

2.3 Problem statement and Preliminaries 

Nomenclature 

   Time index 

   Zone index 

   Maximum daily power demand 

  
    

  Charge from grid (kW) 

  
    

  Charge from renewable (kW) 

  
   Power discharge (kW) 

    Binary variable: {
                                    
                                                

 

    Binary variable: {
                                 
                                                

  

     Storage energy level at the end of time step   (kWh) 

   
   Utility price of electricity ($/kWh) 

   
   Wholesale price of electricity ($/kWh) 

    Demand charge ($/kW) 

 ̂   Forecast of electricity demand 

 ̂   Forecast of renewable output power 

    Total electricity load during zone   
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    Total renewable generation during zone   

  
    

  Total energy charged from grid during zone   (kWh) 

  
    

  Total energy charged from renewable during zone   (kWh) 

  
   Total energy discharged during zone   (kWh) 

       Storage energy capacity (kWh) 

      Energy storage power rating (kW) 

       Energy storage charge/discharge duration at power rating (hour) 

       Energy storage one-way efficiency 

       Percent of energy reserved in storage 

        Initial level of storage 

        Discretization interval 

       Penalty for damage to substation due to reverse flow of power 

     Duration of zone i 

2.3.1 Model I – Model Predictive Control for storage dispatch under demand and 

renewable output uncertainty 

The system we consider in this section is a microgrid consisting of stochastic energy 

demand, conventional generation units and renewable generation units with intermittent 

output. It is assumed that demand constantly exceeds conventional and renewable 

generation capacity of the microgrid. Hence, microgrid has to supply its remaining power 

from an electric utility. Microgrid bill includes energy cost, which is paid based on hourly 

energy consumption and hourly electricity prices, and demand charge, which is the cost 

paid for microgrid monthly peak demand. 
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2.3.1.1 Model Predictive Control 

The proposed approach is a control scheme, which uses MPC to update optimal solutions 

for charge and discharge commands for the next 24 hours, as soon as it receives a new 

actual data. Different modeling approaches can be used for implementing an MPC 

strategy. A common approach is to use a data-driven MPC by fitting a meta-model to the 

historical data. In this work, we assume that at each time step, t, times series forecasts of 

renewable output and electricity load are available for the next 24 hours, which provide 

both forecast mean and standard deviation. It is also assumed that forecast standard 

deviation increase as we move farther from  . Using MPC-based optimization models for 

reducing electric bills has already been studied, however, including exogenous stochastic 

parameter errors and coupling such a model with the investment model introduced in 

Chapter 3 are the main contributions of the work presented in this section.  

An MPC based optimal control of storage is applied as follows: At each time step t, the 

optimal control values for times                are found using optimization 

model. We formulate a multi-objective dynamic programing to search for optimal charge 

and discharge controls for the next 24 hours based on the available forecasts. The 

objective function includes total energy cost and demand charge on microgrid utility bill. 

When time     is reached, control commands for that time step are executed. Then 

optimal solutions for                are updated, when new information on the 

system and storage state of charge are received. A schematic view of the process is 

shown in Figure 2.1. 
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Figure 2.1 A schematic presentation of proposed control strategy 

 

2.3.1.2 Optimization Model 

Objective Function 

The objective function is the total monthly bill for microgrid, including energy costs and 

demand charges. The optimization runs for 24 hours at a time, but since in reality, 

demand charge is determined based on monthly peak demand, we assume the peak 

demand during each 24-hour period is a representative of monthly peak demand. This 

assumption is valid, because minimizing demand peak for each 24-hour period, 

eventually results in minimizing monthly demand peak. Since demand charges are 

defined based on monthly charges, the 24-hour period energy costs are extrapolated to a 

monthly value by multiplying by a factor of 30. The objective function, Equation ( 2.1), is 

then a representative of microgrid monthly costs: 

        ∑   
  [( ̂   ̂ )    

    
   

 ]

  

   

 ( 2.1) 
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Constraints 

The constraint presented in Equation (2.2), sets   as the maximum power consumption of 

microgrid during a 24-hour period. As mentioned before,   estimates monthly peak load. 

  ( ̂   ̂ )    
    

   
                ( 2.2) 

Energy storage level in each hour is updated based on Equation (2.3), which takes into 

account storage level at the end of previous hour, as well as power charged and 

discharged, and one-way efficiency of the battery. 

            
    

        
  
 

     
  ( 2.3) 

Equation (2.4) guarantees that battery is either charging or discharging in each time 

period. 

        ( 2.4) 

Equations (2.5) and (2.6) define the maximum allowable discharge and charge based on 

battery power rating and corresponding discharge and charge binary variables, 

respectively. 

  
                ( 2.5) 

  
    

               ( 2.6) 

Equations (2.5) and (2.6), respectively, define the maximum allowable discharge and 

charge based on storage level in the battery: 

  
              ( 2.7) 
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                   ( 2.8) 

And Equation (2.9) defines the boundaries for storage level based on reserve requirement 

and maximum energy capacity of the battery. 

                      ( 2.9) 

2.3.1.3 Electricity Load and Renewable Output Forecast 

There are numerous times series models already existing in the literature. In this work, 

we assume that required forecast models are readily available, and that the variations in 

each of load and renewable outputs can be explained by a seasonal Autoregressive 

Moving Average (ARMA) model. Using ARMA models for forecasting electricity load 

and renewable output has been proposed by Huang et al. [19] and Subbaya et al. [20]. An 

ARMA model can be written as a Moving Average (MA) model with infinite terms, 

called the MA representation of the ARMA model [21]. As a general discussion, suppose 

   is a variable with an infinite MA representation 

                        ( 2.10) 

Then the forecast error for the h-step-ahead forecast of   has the following distribution 

[21]: 

 ̂                                      ∑   
     

   

   

 ( 2.11) 

where    is the variance of model residuals. It can be clearly observed that forecast error 

of prediction increases as forecast term increases. We use the same concept in our model, 

assuming model coefficients, i.e.   ’s to be available. We consider two separate forecast 
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models for electricity load and renewable output, assuming that predictions are made at 

hour 24 of each day for the next 24 hours.  

2.3.1.4 Algorithm 

Below, is a summary of the algorithm we use for storage control using MPC: 

Step 1: Set current time to   

Step 2: Using forecast models for renewable generation and electricity load at time  , 

forecast these two variables for               . 

Step 3: Using the optimization model, find optimal charge and discharge commands for 

              . 

Step 4: Execute the control commands for    , and update state of charge. 

Step 5: Get realized values of renewable generation and electricity load for     

Step 6: Set the current time to     and go to Step 2. 

2.3.1.5 Model Validation 

Our objective is to show that MPC based hourly control of storage yields solution 

strategies that are more cost effective and lead to higher savings when compared to the 

static model based on forecasted values which is solved once every 24 hours. Results of 

this model are validated by comparing them to optimal control solutions of the same 

problem solved based on perfect information. Results are presented for different power 

ratings for the energy storage.  

2.3.1.6 Numerical Experiments  

Table 2.1 shows the input data used to validate MPC results against static models solved 

on realized values and 24-hour forecasted values. 
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Table 2.1 Input data for MPC-based model 

Parameter Unit Level 

Storage power rating kW 100, 150, 200, 250 

Storage duration Hour 2 

Storage minimum reserve % of energy capacity 20 

Storage one-way efficiency % 94 

PV maximum output kW 100 

Figure 2.2 and Figure 2.3 below illustrate the real and forecasted values of electricity load 

and renewable generation, for five consecutive weekdays in winter. Forecasts are made 

every 24 hours and at the beginning, i.e. hour 1, of each day. It can also be observed in 

the following two figures how forecast errors increase by moving farther from hour 1 of 

each day. Data for electricity load and PV output profiles are based on real data from an 

office building, and solar panels in California. The values are scaled to fit the specific use 

cases for each model. 

 

Figure 2.2 Real vs. forecasted electricity load for a winter week 
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Figure 2.3 Real vs. forecasted PV output for a winter week 

Next, we examine the performance of (i) static model, which is solved once every 24 

hours based on forecasted values and (ii) MPC model, the inputs and solutions of which 

are updated based on the proposed algorithm, by comparing the two models with results 

of an optimization model assuming no stochasticity in input data (solved based on real 

data). Results of this comparison are presented in Table 2.2 below. 

Table 2.2 Comparing MPC vs. Static Model and Perfect Information  

Storage Capacity 
(kWh) 

PV Capacity 
(kW) 

Original Peak 
(kW) 

Peak 

Perfect Info 
(kW) 

Peak 

MPC 
(kW) 

Peak 

Static 
(kW) 

100 100 1176.58 1082.59 1114.38 1176.58 

150 100 1176.58 1063.21 1114.38 1195.57 

200 100 1176.58 1055.42 1102.29 1221.78 

250 100 1176.58 1047.68 1075.35 1208.56 

As it can be observed in Table 2.2, the peak is lowest when assuming perfect information. 

However, as there are sources on uncertainty in the system, relying on the peak value 
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assuming deterministic perfect information, results in over-estimation of value of storage. 

This over-estimation of value is not desirable for investment purposes nor is it desirable 

for storage valuation. On the other hand, applying controls statically with forecasted 

values of stochastic variable makes the peak even higher than its original value (where 

there is no energy storage applied). This is because storage charge may take place at the 

real peak period, which leads to a load that is higher than its initial amount.  

Table 2.3 presents the annual savings in demand charge paid to the electric utility by 

considering uncertainty from stochastic parameters and applying MPC model. It also 

shows how applying static controls based on perfect information can over-estimate 

storage value, and also the negative impact of applying static model based on forecasted 

values. 

Table 2.3 Annual Saving with different models – Winter Week 

Storage 
Capacity 

(kWh) 

PV Capacity 
(kW) 

Annual Saving 
with Perfect Info 

($) 

Annual Saving 
with MPC Model 

($) 

Annual Saving with 
Static Model ($) 

100 100 28,197 18,661 0 

150 100 34,011 18,661 -5,697 

200 100 36,348 22,288 -13,560 

250 100 38,670 30,370 -9,594 

Figure 2.4 and Figure 2.5 below illustrate the forecast errors for 1-hour up to 24-hour-

ahead predictions for five consecutive summer weekdays, for electricity and renewable 

output, respectively. 
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Figure 2.4 Real vs. forecasted electricity demand for a summer week 

 

Figure 2.5 Real vs. forecasted PV output for a summer week 
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Results for this case are presented in Table 2.4 below. 

Table 2.4 Comparing MPC vs. Static Model and Perfect Information 

Storage Capacity 
(kWh) 

PV Capacity 
(kW) 

Original Peak 
(kW) 

Peak 

Perfect Info 
(kW) 

Peak 

MPC (kW) 

Peak 

Static (kW) 

100 100 1506.28 1449.94 1481.00 1490.92 

150 100 1506.28 1441.48 1472.91 1527.55 

200 100 1506.28 1433.01 1465.50 1585.20 

250 100 1506.28 1424.55 1465.50 1571.25 

 

Table 2.5 presents the annual savings in demand charge paid to the electric utility by 

considering uncertainty from stochastic parameters and applying MPC model. 

Table 2.5 Annual Saving with Different Models – Summer Week 

Storage 
Capacity 

(kWh) 

PV Capacity 
(kW) 

Annual Saving 
with Perfect Info 

($) 

Annual Saving 
with MPC Model 

($) 

Annual Saving with 
Static Model ($) 

100 100 16,902 7,584 4,608 

150 100 19,441 10,011 -6,379 

200 100 21,981 12,233 -23,674 

250 100 24,520 12,233 -19,489 

 

2.3.2 Model II – Heuristic optimization technique for storage control with high 

penetration of renewables  

In this section, we consider a utility-owned distribution system or microgrid with high 

penetration of renewable resources, such that renewable output may exceed system load 

from time to time. The reverse flow of power, resulting from high level of renewable 

output and load inability to absorb the excessive power, could cause damage to 

distribution system infrastructure. Energy storage can be deployed in such systems to 

absorb the excessive power from renewables and mitigate the damages. The energy 
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charged from excessive renewable output can be used to reduce energy purchase from the 

grid during peak hours, given that renewable peak and price peak do not coincide. 

Here we develop an approximate optimal control model that decomposes the 

optimization problem into local zones defined by the relative levels of renewable 

generation and electricity load. An optimization model is applied with total operation cost 

as objective function, and aggregate charge and discharge within each zone (in kWh) as 

decision variables. Below is the description of the algorithm and optimization model 

being used, as well as illustrative examples to examine the effectiveness of the approach 

by comparing the results with optimal results of the same model which is solved on an 

hourly basis (which is supposedly closer to actual optimal solution). 

The model can be seen as a multi-period inventory control problem, each zone 

representing a single period. The remaining inventory (energy in storage) at the end of 

each period defines the state of storage at the beginning of the next period. Similar to 

newsvendor model [22], overage cost can be defined as the damage to infrastructure due 

to reverse power flow from renewable generation. This happens if battery is over-charged 

in the previous or within the same period, which leads to insufficient charge capacity to 

absorb the excessive power from renewables. On the other hand, underage cost is the lost 

demand penalty when storage is not charged enough to supply the remaining load when 

load exceeds renewable output. 

The advantage of the aggregate model over mixed integer linear programming is that in 

the aggregate model, the time period is decomposed into several zones, and the only 

variable which is moved from one zone to the next is the state of charge at the end of the 

zone. By using this decomposition algorithm, solving the problem for longer periods, 
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means repeating the same problem over many times. While in the mixed integer 

programming, solving for longer periods, leads to higher dimensions of the problem with 

many variables, including integer variables. 

2.3.2.1 Algorithm 

Step 1: Set   as current time. 

Step 2: Based on the following criteria, divide the current day (time between   and 

    ) into distinct zones, and assign a mode to each zone: 

 Zone    is in mode 1, if       for every hour within zone   , and 

Zone    is in mode 2, if       for every hour within zone    

Figure 2.6 illustrates the zones and modes assigned to each zone for a sample day. 

Step 2: Calculate total electricity load and total renewable output within each zone. 

Step 3: Using the optimization model presented in sections 0 and 2.3.2.3, find aggregate 

charge and discharge controls within each zone. 

Step 4: Go to the next day and start from Step 1. 
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Figure 2.6 Dividing one sample day in zones 

 

Figure 2.7 Electricity price curve as % of peak price 

2.3.2.2 Objective function 

Cost for each mode is calculated separately, based on the objective functions presented 

below. 
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Mode 1:  

In this mode, demand exceeds renewable output. Hence, renewable output is used to 

supply a portion of electricity demand. The rest of the demand plus any amount to be 

stored in storage will be supplied by the purchase from grid, less the energy discharged 

from storage. 

         
    

    
     

  ( 2.12) 

Mode 2: 

In this mode, all demand is satisfied using renewable output. It is assumed that the 

remaining power from renewable creates a reverse flow of power at the substation if it is 

not absorbed by storage. Cost of damage to substation due to the reverse power is 

estimated by multiplying the remaining renewable output by a penalty factor. If the 

storage is charged from grid in this mode, cost of energy is added to the objective 

function. 

         
              

    
    

  ( 2.13) 

2.3.2.3 Constraints 

Equations (2.14) through (2.16) define the upper bound for energy discharged from 

storage at zone   based on amount of energy available in storage at the end of zone    , 

remaining demand, and storage power rating. 

  
              ( 2.14) 

  
        ( 2.15) 
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           ( 2.16) 

Equations (2.17) and (2.18) define the limit for energy obtained from grid based on 

empty storage capacity less the energy charged from renewable resources and storage 

battery rating. 

  
    

                       
    

 ( 2.17) 

  
    

          ( 2.18) 

Equations (2.19) through (2.21) define the limits for energy charged from renewable 

resources based on available empty capacity in storage, power rating and available 

renewable energy in period t. 

  
                         ( 2.19) 

  
              ( 2.20) 

  
           ( 2.21) 

Storage level is updated based on Equation (2.22). 

             
    

   
             

  
 

     
  ( 2.22) 

2.3.2.4 Model Validation and Illustrative Examples  

Table 2.6 presents the input assumptions for zonal control case studies. 
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Table 2.6 Input assumptions for zonal control of storage 

Parameter Unit Level 

Storage power rating kW 100, 150, 200 

Storage duration Hour 2 

Storage minimum reserve % of energy capacity 20 

Storage one-way efficiency % 94 

PV maximum output kW 157 

Data for electricity load and PV output profiles are based on real data from an office 

building and solar panels in California; however the values are scaled to fit the specific 

use cases for each model. In Figure 2.8, we show energy demand and PV output for a 

sample week. In this example, all days are divided into three periods, but with different 

durations.  

 

Figure 2.8 Energy demand and PV output for a sample week 

We solved the optimization problem introduced in this section using the decomposition 

model introduced in this section, by applying discretized dynamic programming where 
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discrete levels of storage, charge and discharge values are used as candidates for optimal 

solution.  

We validate the results of the aggregate model by comparing them to results of an exact 

model with the same objective function and constraints which us solved using mixed 

integer linear programming in GAMS. Results from the two models for a 100 kW storage 

unit, and errors of the aggregate model are presented in Table 2.7 and Table 2.8, 

respectively. 
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Table 2.7 Aggregate Models Results Compared to Exact Model Results – 100 kW 

Day Zone 
Discharge 

Agg. 

Charge Grid 

Agg. 

Charge Ren. 

Agg. 

Discharge 

Exact 

Charge Grid 

Exact 

Charge Ren 

Exact 

1 

1 160 0 0 317 157 0 

2 0 0 160 0 0 160 

3 120 0 0 128 0 0 

2 

1 40 0 0 192 160 0 

2 0 0 160 0 0 160 

3 130 0 0 132 0 0 

3 

1 0 120 0 115 230 0 

2 0 0 10 0 0 17 

3 160 0 0 175 15 0 

4 

1 0 130 0 109 233 0 

2 0 0 30 0 0 36 

3 160 0 0 184 24 0 

5 

1 0 160 0 80 234 0 

2 0 0 0 0 0 5 

3 160 0 0 250 90 0 

6 

1 0 150 0 89 236 0 

2 0 0 10 0 0 13 

3 160 0 0 206 46 0 

7 

1 0 110 0 123 228 0 

2 0 0 50 0 0 55 

3 160 0 0 160 0 0 
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Table 2.8 Aggregate model errors – 100kW 

Days Zone 
|Discharge –Charge Grid| 

Agg. Error 

Charge Ren. 

Agg. Error 

1 

1 0% - 

2 - 0% 

3 6% - 

2 

1 25% - 

2 - 0% 

3 1% - 

3 

1 4% - 

2 - 41% 

3 0% - 

4 

1 5% - 

2 - 17% 

3 0% - 

5 

1 3% - 

2 - 100% 

3 0% - 

6 

1 2% - 

2 - 23% 

3 0% - 

7 

1 5% - 

2 - 9% 

3 0% - 
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Results from the two models for a 150 kW storage unit, and errors of the aggregate model 

are presented in Table 2.9 and Table 2.10, respectively.  

Table 2.9 Aggregate Models Results Compared to Exact Model Results – 150 kW 

Days Zone 
Discharge 

Agg. 

Charge Grid 

Agg. 

Charge Ren. 

Agg. 

Discharge 

Exact 

Charge Grid 

Exact 

Charge Ren 

Exact 

1 

1 240 0 0 323 83 0 

2 0 0 240 0 0 240 

3 120 0 0 128 0 0 

2 

1 120 0 0 277 165 0 

2 0 0 240 0 0 240 

3 130 0 0 132 0 0 

3 

1 0 120 0 187 280 0 

2 0 0 10 0 0 17 

3 240 0 0 218 0 0 

4 

1 0 210 0 118 313 0 

2 0 0 30 0 0 36 

3 240 0 0 230 0 0 

5 

1 0 240 0 80 315 0 

2 0 0 0 0 0 5 

3 240 0 0 268 28 0 

6 

1 0 230 0 89 316 0 

2 0 0 10 0 0 13 

3 240 0 0 240 0 0 

7 

1 0 190 0 183 308 0 

2 0 0 50 0 0 55 

3 240 0 0 180 0 0 
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Table 2.10 Aggregate model errors – 150kW 

Days Zone 
|Discharge – Charge Grid| 

Agg. Error 

Charge Ren. 

Agg. Error 

1 

1 0% - 

2 - 0% 

3 6% - 

2 

1 7% - 

2 - 0% 

3 1% - 

3 

1 29% - 

2 - 41% 

3 10% - 

4 

1 8% - 

2 - 16% 

3 4% - 

5 

1 2% - 

2 - 100% 

3 0% - 

6 

1 1% - 

2 - 23% 

3 17% - 

7 

1 52% - 

2 - 9% 

3 33% - 
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Results for another case study with a storage unit with higher power rating (200 kW) are 

presented in Table 2.11 and Table 2.12. 

Table 2.11 Aggregate Models Results Compared to Exact Model Results – 200 kW 

Days Zone 
Discharge 

Agg. 

Charge Grid 

Agg. 

Charge Ren. 

Agg. 

Discharge 

Exact 

Charge Grid 

Exact 

Charge Ren 

Exact 

1 

1 320 0 0 403 83 0 

2 0 0 320 0 0 320 

3 120 0 0 128 0 0 

2 

1 200 0 0 301 117 0 

2 0 0 310 0 0 312 

3 130 0 0 132 0 0 

3 

1 0 130 0 267 280 0 

2 0 0 10 0 0 17 

3 320 0 0 218 0 0 

4 

1 0 290 0 198 394 0 

2 0 0 30 0 0 36 

3 320 0 0 230 0 0 

5 

1 0 320 0 80 395 0 

2 0 0 0 0 0 5 

3 320 0 0 320 0 0 

6 

1 0 310 0 136 396 0 

2 0 0 10 0 0 13 

3 320 0 0 274 0 0 

7 

1 0 270 0 220 387 0 

2 0 0 50 0 0 55 

3 320 0 0 220 0 0 
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Table 2.12 Aggregate model errors – 200kW 

Days Zone 
|Discharge – Charge Grid| 

Agg. Error 

Charge Ren. 

Agg. Error 

1 

1 0% - 

2 - 0% 

3 6% - 

2 

1 9% - 

2 - 0.6% 

3 1% - 

3 

1 900% - 

2 - 41% 

3 47% - 

4 

1 48% - 

2 - 16% 

3 39% - 

5 

1 2% - 

2 - 100% 

3 0% - 

6 

1 19% - 

2 - 23% 

3 17% - 

7 

1 62% - 

2 - 9% 

3 46% - 

 

As it is seen in Error! Reference source not found. through Table 2.12, aggregate 

model errors increase with the size of energy storage. The reason is that in the exact 

model, real electricity price values are observed, hence, as size of storage increase, it is 

more likely to be used for arbitrage within each zone. However, since average price in 

each zone is used for optimization in the aggregate model, storage is never used for 
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arbitrage within one zone. In other words, the approximation model performance is 

higher for smaller storage sizes, when storage is primarily used for mitigating reverse 

power from excessive renewable output, and arbitrage between zones. Also, when storage 

size is relatively large comparing to load and renewable output, storage is not totally 

utilized to mitigate reverse power damages, which leads to increase in approximation 

algorithm errors. In Chapter 5 we propose possible extension paths to overcome the 

drawbacks of this model for large storage units.  

2.4 Conclusion 

In this chapter, we proposed two energy storage control schemes, for two different use 

cases, in a microgrid. The first part is an MPC-based optimization model which 

minimizes microgrid electric bill, composed of energy and maximum demand charges. 

Uncertainties from renewable resources and electric load are taken into account. Based 

on a data-driven MPC approach, storage operations are optimized at every hour for the 

next 24 hours. As new observations are made on the stochastic variables, the 

corresponding forecasted values, and optimal solutions are updated. Proposed 

methodology results are assessed against two other solution approaches for the same 

model; static approach with forecasted values, and static approach with perfect 

information. It is shown that using static approach with forecasted values may result in 

increase in peak, due to wrong charge and discharge schedules due to large forecast 

errors. On the other hand, static approach with perfect information can wrongly over-

estimate minimum peak using energy storage. 

The second part is a decomposition approach for cases with high penetration of 

renewable, where renewable output results in high reverse power from its source to the 



44 

 

substation, and can harm the system. To increase the efficiency of the model, solution 

region is decomposed into distinct zones based on the relative values of renewable output 

and electric load. Optimal solution includes aggregate charge and discharge within each 

zone. Comparing the results with a model with exact optimal solutions show that while 

storage is small enough to serve primarily for renewable output mitigation, 

approximation model errors are acceptable. However, when storage is used for arbitrage 

within each zone, approximation errors are higher.   
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3 A REAL OPTION MODEL FOR MICROGRID 

INVESTMENT IN ENERGY STORAGE UNDER 

UNCERTAINTY 

In this section, we present a real option model for optimal investment in energy storage 

within a microgrid under technology cost and electricity price uncertainty. It is assumed 

that the microgrid owner is given the option of delaying investment decisions depending 

on price of electricity and cost of technology. Microgrid configuration includes 

distributed generation assets, such as solar PVs and energy storage. The objective is to 

find the optimal timing of initial investment in energy storage, as well as the expansion of 

existing energy storage capacity within a microgrid, such that total savings are 

maximized. Energy storage has two value streams for the microgrid, depending on the 

type of operation, e.g. normal or emergency. Under normal conditions, the model 

assumes optimal operation of energy storage under uncertainty adopted from Chapter  2 of 

this thesis. The value stream during normal operation includes demand charge and energy 

cost reduction. The microgrid has also the capability of islanding during grid outages, and 

energy storage is able to mitigate microgrid load loss fully or partially during these 

outages, and increase its reliability. It is assumed that the capacity configurations of 

initial investment and expansion of energy storage are parametrically fixed. This work 

extends the current state of investment modeling within the context of energy storage for 

microgrid by considering: (i) Modular or incremental investment, i.e. both initial 

investment and expansion of existing energy storage capacity; (ii) Multiple sources of 

uncertainties along with more realistic probability distributions, (iii) interdependencies 
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between savings from initial capacity and expanded capacity of storage are considered, 

(iv) Optimal operation of storage is considered, which results in more realistic saving 

estimations.  

3.1 Introduction 

Investment in a microgrid is subject to exogenous and endogenous sources of uncertainty, 

resulting in high risk exposures for both private and public investors, unless the 

uncertainties are taken into account for decision making. With increasing penetration of 

renewable resources, energy storage is becoming more popular, as they are used to 

mitigate different reliability and power quality-related issues caused by intermittency of 

renewable resources. Energy storage can also be beneficial for its capabilities which do 

not exist in renewable resources, such as controllable charge and discharging. However, 

since the cost of technology for energy storage drops with technology innovations and 

market penetration, investment timing and sizing is still an issue for microgrid owners. 

Price of electricity is another source of uncertainty which should be considered.  

The traditional Net Present Value (NPV) approach for investment does not consider 

different sources of uncertainty in fuel or electricity prices or cost of technology 

explicitly. The option to postpone the investment gives the decision maker the 

opportunity to wait for more information about the uncertain future, which is also ignored 

in NPV [23] and can adversely impact the investment decision. Using real options 

approach makes it possible to examine if there is positive value in postponing the 

investment to obtain more information about uncertain future. In that case the investor 

has the option to invest only if the stochastic parameters move in a favorable direction. In 



47 

 

this chapter, we use real option theory to derive optimal investment strategies in energy 

storage, taking into account a number of uncertainty sources.  

As stated in [24], the valuation and optimal exercise of American options is one of the 

most challenging problems especially when there is more than one source of uncertainty. 

This is primarily because finite difference and binomial techniques become impractical in 

situations where there are multiple factors. By its nature, simulation is a promising 

alternative to traditional finite difference and binomial techniques and has many 

advantages as a framework for valuing, risk managing, and optimally exercising 

American options. Unlike other methodologies, simulation is readily applied when the 

value of the option depends on multiple factors. Simulation can also be used to value 

derivatives with both path-dependent and American-exercise features. It allows state 

variables to follow general stochastic processes. Finally, simulation techniques are simple, 

transparent and flexible. 

To take into account realistic saving functions and other complexities in the proposed 

investment problem, Least Squares Monte Carlo simulation method (LSM) for compound 

options (proposed by Longstaff and Schwartz [25]) is used in this chapter to find optimal 

investment decisions. To demonstrate the impact of uncertainty in the form of 

opportunity cost, we compare the simulation results to the results from an NPV model. 

We also examine the impact of different model parameters on optimal investment 

thresholds and investment decisions. 
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3.2 Literature Review 

3.2.1 Real Options 

Monte Carlo simulation is a powerful and flexible tool for capital budgeting. It makes it 

possible to include a wide range of value drivers, it is flexible enough to cope with many 

realistic assumptions and it does not suffer the curse of dimensionality which affects 

other numerical methods. 

Mason and Merton [26] first described a capital budgeting problem as a collection of real 

options. The value of a portfolio of interacting options is not necessarily additive over its 

individual options, hence, the problem of decomposing a complex investment decisions 

into a set of individual options does not ususally have a straightforward solution. This 

observation prevents the use of valuation techniques that are normally developed for 

individual option analysis. Kulatilaka and Trigeorgis [27] proposed a valuation approach 

based on the idea of switching among different operating modes. In their work, decisions 

to be made are modeled as options to switch from the current mode to a different one. 

According to their approach, a flexible capital budgeting problem can be seen as a 

complex compound switch option among several modes. However, the main drawback of 

their work is its computational efficiency. Gamba and Trigeorgis [28] propose an 

approach to map a real options problem into a set of simple options, taking into account 

the hierarchical structure of the options. This approach always provides well defined 

problems with a finite solution, given that each individual option has a finite solution. 

Based on [25], real options embedded in a capital budgeting problem are usually 

American type claims, meaning that closed-form solutions are rarely available for them, 
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and hence some numerical methodologies should be used. Many methods have been 

proposed for real option pricing. These methods can be divided into three main categories; 

finite difference methods which directly deal with PDE’s (e.g. [29]), Monte Carlo 

simulation-based methods (e.g. [30]) and lattice methods (e.g. [31]). Below is a brief 

description for each category. 

Finite difference is a quite hard method to implement if the problem consists of multiple 

interacting options. On the other hand, although being very flexible for multiple options, 

lattice methods suffer the curse of dimensionality. For the above mentioned reasons, 

simulation seems to be the most suited numerical technique for valuing real options. A 

promising approach to apply Monte Carlo Simulation for real options valuation has been 

proposed by Longstaff and Schwartz [24]. This method, called Least Squares Monte 

Carlo (LSM) approach, uses least squares linear regression to determine the optimal 

exercise time of the option. Gamba [25] provide an extension of LSM algorithm to 

evaluate complex investment projects with many interacting options, called compound 

options, and also many state variables. This approach covers three types of multi-option 

problems, i.e. independent options, mutually exclusive options, and compound options. In 

our work, we adopted the methodology proposed for compound options in Gamba [25], 

and used it in our energy storage investment problem. 

3.2.2 Investment in Energy Storage 

Muche [32] provide a real option based simulation model to evaluate investments in 

pump storage plants. Two methods are applied for performing the investment appraisal. 

The first method is based on the classic investment appraisal, which takes expected cash 

flows from an investment as a basis for the valuation of it, and the second method 
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simulates different price paths for the future, and makes investment decisions based on 

the optimal unit commitment for that simulated price path for more realistic evaluation. 

Xiu and Li [33] investigate energy storage investment decisions based on real option, and 

use binary tree option pricing model for their analysis. Reuter et al. [34] formulate the 

investment problem in wind power and pumped storage using a real option model. The 

resulting problem is a stochastic optimal control problem in discrete time with all the 

underlying variables being discrete in each time step. This is solved by recursive dynamic 

programming. Farzan [35] used real option theory to find optimal investment strategies 

for microgrid assets, with parametrically fixed capacities. The model utilizes both finite 

difference and LSM, and considers uncertainty in electricity price and PV technology 

cost. 

3.3 Problem Statement and Preliminaries 

We consider investment in energy storage within a microgrid that has electricity load 

which is partially supplied by distribution generation assets, including PV renewable 

generation, and is also connected to the grid to supply its remaining load.  

Nomenclature 

     Investment cost of storage ($/kW) 

     Annual percentage growth rate of storage cost 

     Annual percentage volatility of storage cost 

   Risk-free rate of return 

   Risk-adjusted rate of return 

      Electricity price ($/kWh) 
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     Demand charge ($/kW) 

      Electricity price at peak ($/kWh) 

      Annual percentage growth rate of electricity price at peak 

      Annual percentage volatility of electricity price at peak 

   Standard Geometric Brownian Motion 

    Percentage of the year microgrid operates in mode   

     Penalty of lost load during outages ($/kW) 

        Capacity of initial investment 

        Capacity of expansion investment 

     Net Present Value 

     
   Storage technology price threshold for initial investment 

     
   Storage technology price threshold for expanded investment 

         
      Microgrid savings during energy storage lifetime 

        Microgrid total annual savings 

        Microgrid annual savings in normal mode 

           Microgrid annual saving in islanding mode 

     Microgrid annual energy and demand charges with no storage capacity 

     Microgrid annual energy and demand charges with storage capacity 

  
    Microgrid peak demand with no storage capacity 

  
    Microgrid peak demand with storage capacity 

  
    Microgrid hourly load with no storage capacity 

  
    Microgrid hourly load with storage capacity 

      Annual rate of grid outages 
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      Average restoration time for grid outages 

     Storage duration 

3.4 Dynamics of Uncertainty 

There is no stochastic process identified for storage investment cost, however, it is 

believed that storage technology price drops in the next few years will slow down, as 

storage technologies become more mature [36]. Following [23], uncertainty on the value 

of a new technology can be modeled as a Geometric Brownian Motion (GMB). By 

definition, a Brownian Motion is a Markov process, which implies that only current 

information is useful in forecasting the future path of the process. We assume a 

decreasing trend according to a Geometric Brownian Motion for energy storage 

technology cost.  

                         ( 3.1) 

where     is energy storage investment cost ($/kW),     is the investment cost annual 

percentage growth rate and     is the investment cost annual percentage volatility.     is 

standard Brownian Motion. 

Although using a Geometric Brownian Motion to model price dynamics ignores short 

term mean reversion, a storage unit must be regarded as a long term investment where the 

short term mean reversion barely influences values and investment decisions. Motivated 

by this, we assume the long term electricity prices also follow a Geometric Brownian 

Motion, as proposed in [37], where the change in price over a small time interval is 

written as 
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                               ( 3.2) 

where      is electricity price at peak ($/kWh),      is the electricity price annual 

percentage growth rate and      is the electricity price annual percentage volatility.      is 

standard Brownian Motion. 

The hourly profile for electricity price,      based on price at peak is shown in Figure 3.1. 

 

Figure 3.1 Electricity price as % of peak price 

3.4.1 Calculation of Savings 

Savings from energy storage are estimated based on two operational modes; normal mode 

and islanding mode. During normal mode, energy storage is assumed to contribute to 

microgrid bill savings in two ways, namely, peak shaving which results in demand charge 

reduction and change in time of use which results in energy cost reduction. During 

islanding mode, i.e. when there is a grid outage, storage benefit is estimated by monetized 

value of load loss reduction, using a penalty cost.  
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Calculation of Savings during Normal Mode 

One of the primary benefits of energy storage is microgrid electric utility bill reduction 

through removal or reduction of demand charges and shifting PV output to reduce energy 

related bill charges. In this chapter, we utilize the Model Predictive Control-based model 

presented in Chapter 2 of this thesis to estimate savings in microgrid bill by operating 

storage optimally, taking into account electricity load and renewable generation 

uncertainties for more realistic saving values. 

Annual savings from energy storage during normal operation is defined by Equation ( 3.3). 

                ( 3.3) 

where     is total demand charge and energy cost of microgrid with no storage capacity, 

and     is total demand charge and energy cost of microgrid with storage capacity. By 

definition, demand charge is a monthly payment to the utility for monthly peak load. 

Hence,     is calculated based on Equation ( 3.4). 

    ∑      
    ∑        

   

      

   

  

   

 ( 3.4) 

where    is demand charge,   
   is monthly peak load with no energy storage (Equation 

( 3.5)),     is electricity price at time  , and   
   is microgrid load at time   without energy 

storage. The first summation in Equation ( 3.4) sums the demand charges over the course 

of a year, and the second summation, calculates annual energy cost of microgrid.  

  
      

    
  
   ( 3.5) 

Total demand charge and energy cost of microgrid with storage capacity is calculated in a 

similar way. 
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    ∑      
    ∑        

   

      

   

  

   

 ( 3.6) 

where   
   is monthly peak load (Equation ( 3.7)), and   

   is microgrid load at time   

with energy storage. 

  
      

    
  
   ( 3.7) 

Hourly load can be controlled by storage charge and discharge, as shown in Equation 

( 3.8). Optimal values of     and   , charge and discharge at time t, are obtained from 

MPC- base optimization model proposed in Chapter 2. 

  
     

          ( 3.8) 

Calculation of Savings during Islanding Mode 

We assume that grid outages occur according to a random process with an annual rate of 

     and each time an outage occurs, restoration takes an average of      hours. Hence, 

during the course of a year, on the average, a total of           hours are spent in 

islanding mode. For simplicity, we also assume that battery is fully charged at the time of 

an outage. Then, annual savings of microgrid from energy storage during islanding mode 

can be calculated as: 

           {
                                

        

                                  
       

 ( 3.9) 

Total Annual Saving 

Total annual saving is a weighted sum of savings in normal and islanding modes, 

calculated based on Equation ( 3.10). 

       
              

    
                     ( 3.10) 
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Savings over Energy Storage Lifetime 

Energy storage lifetime is estimated to be 15 years, starting from the time of investment, 

and during each year, microgrid saves        by owning and operating energy storage. 

Hence, present value of total savings from energy storage during its lifetime (at the time 

of investment) is calculated by discounting the savings cash flow with a discount rate of r, 

as shown in Equation ( 3.11). 

         
      ∑

      

        
  
     ( 3.11) 

3.4.2 Monte Carlo Simulation of Real Option 

In this section, we use Monte Carlo simulation to solve real option investment in energy 

storage for consecutive and dependent options, i.e., option on an initial investment in 

energy storage and option on further expansions of the storage capacity. This section 

includes a short description of the methodology, followed by mathematical representation 

of the algorithm.  

The idea of using Monte Carlo simulation for real option problems is adopted from [24]. 

They provide a valuation algorithm based on simulation that implements backward 

dynamic programming. The algorithm provides a way to determine the optimal stopping 

time of an American-like option and to find the estimate of the option value. The problem 

of optimal timing in investment with option to postpone the investment is similar to 

financial American style option. At each exercise date, the option holder decides whether 

to immediately exercise the option or to keep the option alive until some later time. 

Therefore, the optimal exercise strategy is determined by comparing the immediate 

payoff obtained from investment in a storage unit and the conditional expectation of 
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payoffs from keeping the option alive. The conditional expectation is estimated from 

cross-sectional information in the simulation paths using least squares regression. The 

future realized payoffs from continuation are regressed on the values of state variables, 

i.e. electricity price and storage investment cost. This function is then used to calculate 

the conditional expectation of option continuation at each exercise date. The problem is 

solved as a backward dynamic programming, starting from the last time period in the 

investment horizon. The calculation procedure is applied over all generated simulation 

paths and conditional distributions of investment thresholds for storage investment cost 

are obtained.  Gamba [25] further extended the idea of individual option to compound 

options. The idea underlying their approach is that a capital budgeting problem can be 

decomposed into a hierarchical set of simple options. In this chapter, we consider a real 

option (for initial investment), which when exercised, can offer more opportunities (for 

expansion). 

3.4.2.1 Methodology 

Assume that there are two state variables defined by   (        )   Also, suppose that 

the decision maker has the option to invest in storage within the microgrid, with maturity 

date of   and payoff        . Let         be the value of the option at    , with 

               . For American option we have:  

           
        

{          
 [       ]} ( 3.12) 

where        is the set of stopping times and   
 [ ] is the expectation, conditional on the 

information available at  . Given the valuation problem for an American option on  , an 

approximation of the option value is obtained by dividing the time span [   ] into   
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intervals, with the length of each interval to be       . Then,   simulated paths of the 

stochastic process {  } are generated. We denote by       the value of the process at 

time   along the  -th simulation path and      the path-wise stopping time with respect 

to the information generated by { }.  

Our goal is to find the optimal exercise time restricted to the set of dates 

{                   }. 

The optimal policy is obtained by backward dynamic programming: if at time    and 

along the path  , the option is still alive, the optimal decision is made by comparing the 

payoff of immediate investment,              with option value,           .  In our 

model, payoff              is defined as the discounted savings of energy storage for 

microgrid over its lifetime period of 15 years, from which capital cost of investment is 

subtracted (Equation ( 3.13)). 

 (        )           
            ( 3.13) 

A detailed explanation of savings calculations is presented in section 0. If  (       )  

             then        , and the optimal stopping time along the  -th path is 

updated. In other words, the stopping time satisfies the following condition: 

     {                 } ( 3.14) 

A way to estimate        , is offered by the Bellman equation of the optimal stopping 

problem in discrete time: 

           {           
              

 [ (          
)] } ( 3.15) 
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Using this equation, the path-wise optimal policy, restricted to the given dates, can be 

determined by comparing the continuation value, 

 (      )                 
 [ (          

)    ] ( 3.16) 

with the payoff,          . In our context,  (      ), the expected continuation value of 

the investment option, is the benefit less the cost of investment in energy storage in future 

years along the planning horizon, expected over all generated paths.  

In other words,  (      ) is the expected value of savings less investment cost, if the 

decision maker decides to invest in one of the remaining years following    along the 

time horizon.  

The decision rule at time step    along the  -th path is then defined as:  

 (         )                    then              ( 3.17) 

At     , since the option is expiring,  (      )   , and the rule is to exercise the 

option if the payoff is positive. At any   , the optimal stopping time is found by 

recursively applying the decision rule in ( 3.17), from      back to   . If at some 

previous step of this procedure,        , and condition ( 3.17) holds at the current step, 

then the stopping time along path   is updated:        . At     , when the optimal 

stopping times along all paths are determined, the value of the option is estimated by 

averaging the path-wise values: 

       
 

 
∑                        

 

   

 ( 3.18) 
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In this work, we use Least Squares Monte Carlo (LSM) method to find the continuation 

value at       , in order to apply the decision rule in ( 3.17). The intuition behind LSM is 

the following: if at   the option is still available, the continuation value is the expectation, 

conditional on the information available at that date, of future optimal payoffs from the 

contingent claim. Let            be the cash flow from the option optimally exercised at 

time   (with respect to the stopping time     , conditional on not being exercised at 

   , along the  -th path. Hence, 

           {
                        

                                   
 ( 3.19) 

The continuation value at    is the present value of all future expected cash flows from 

the contingent claim 

 (      )     
 [ ∑                       

 

     

] ( 3.20) 

Longstaff and Shwartz [24] suggest the following methodology to estimate continuation 

value over all paths. To determine the expected conditional continuation values, future 

realized payoffs from continuation are regressed on state variable(s), e.g. storage 

investment cost. Hence, we can calculate the continuation value at time    as 

 (      )                    
      ( 3.21) 

 (      ) is then used to apply recursively the decision rule in ( 3.17). 

For the case with 2 interdependent options, i.e. initial investment and expansion, the 

algorithm is the following. We assume that the path-wise stopping time for the 2
nd

 option 

(expansion) has been already determined using the method described above for a single 
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option. We then compute the path-wise stopping time for the 1
st
 option (initial 

investment). The Bellman equation for this option is presented in Equation ( 3.22). 

  (      )      {  (      )    (      )  
              

 [             
 ]} ( 3.22) 

where    is the value of initial investment option,    is the payoff of initial investment 

option, and    is the value of the expansion option. Hence, to compute the stopping time 

      for initial investment option at    and on the  -th path, decision rule is: 

If     (         )    (      
   )    (      

   )     then              ( 3.23) 

where    is the continuation value from the Bellman equation, and    is the stopping time 

for the initial investment option. 

3.5 Illustrative Example I 

In this section, we present results for an example case and examine the impact of 

different model parameters on investor decision strategies for both initial investment and 

expansion options. 

3.5.1 Input Assumptions 

Table 3.1 Input Assumptions for Real Option Simulation Model - Example I 

Parameter Unit Value 

Storage technology - Lithium-Ion High Energy Battery 

Storage rated power for initial investment kW 50 

Storage rated power for expansion kW 50 

Discharge duration at rated power Hrs 2 

One-way storage efficiency - 0.94 

Installed cost of storage $/kW From a GBM process 

Engineering life of storage yrs 15 

Demand charge $/kW 45 
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It is assumed that GBM governs both electricity price and PV investment cost. The 

parameters of the two processes are listed in Table 3.2. 

Table 3.2 Stochastic parameters of GMB 

 α σ 

Electricity price 0.01 0.075 

Storage cost -0.06 0.06 

 

3.5.2 Results from Sample Simulation Paths 

Table 3.3 illustrates the results for 10 sample paths. Realized electricity peak prices and 

storage investment costs are obtained by Monte Carlo simulation. Based on these realized 

values and optimal operation of storage, annual and lifetime savings for the microgrid are 

calculated.  

We will take one path in the simulation and explain the solution. In path one, storage 

investment costs are shown as they realize over 4 years. In years 1 and 2, microgrid 

savings from storage are 6.02  10
4
 and 6.86  10

4
 dollars respectively. Immediate 

investment on those years would lead to values of 0 and 1.37 10
5
 dollars, respectively. 

However the conditional expectation of continuation (i.e., wait instead of immediate 

investment) is higher than its corresponding value for year 1 (1.29 10
4
 vs. 0) and lower 

for year 1 (1.36 10
5
 vs 1.37 10

5
). Therefore, the investor continues to wait and does not 

undertake the investment in year 1, and invests in year 2. Once the initial investment 

decision is made in year 2, the investor now has the option to either expand storage 

capacity in one of the years 3 or 4, or not to do any further investments. Value of 

expansion in year 3 is 7.29 10
4
 in year 1, while the continuation value is 7.22 10

4
. 

Hence, the investor decides to expand the storage capacity in year 3. 
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Table 3.3 Real option simulation results for 10 sample paths – Example I 

 Investment Cost (   )   Saving - Initial (  ) 

Path Year 1 Year 2 Year 3 Year 4  Path Year 1 Year 2 Year 3 Year 4 

1 1.60E+03 1.41E+03 1.35E+03 1.32E+03  1 6.02E+04 6.86E+04 7.29E+04 7.42E+04 

2 1.60E+03 1.54E+03 1.53E+03 1.54E+03  2 6.02E+04 6.31E+04 6.36E+04 6.32E+04 

3 1.60E+03 1.44E+03 1.32E+03 1.29E+03  3 6.02E+04 6.81E+04 7.42E+04 7.54E+04 

4 1.60E+03 1.49E+03 1.43E+03 1.30E+03  4 6.02E+04 6.55E+04 6.84E+04 7.51E+04 

5 1.60E+03 1.42E+03 1.37E+03 1.45E+03  5 6.02E+04 6.91E+04 7.17E+04 6.77E+04 

6 1.60E+03 1.52E+03 1.50E+03 1.40E+03  6 6.02E+04 6.43E+04 6.49E+04 7.00E+04 

7 1.60E+03 1.41E+03 1.20E+03 9.86E+02  7 6.02E+04 6.95E+04 7.99E+04 9.22E+04 

8 1.60E+03 1.46E+03 1.39E+03 1.36E+03  8 6.02E+04 6.73E+04 7.08E+04 7.22E+04 

9 1.60E+03 1.41E+03 1.26E+03 1.11E+03  9 6.02E+04 7.00E+04 7.27E+04 8.48E+04 

10 1.60E+03 1.58E+03 1.63E+03 1.45E+03  10 6.02E+04 6.13E+04 5.86E+04 6.74E+04 

  Value - Initial (  )   Expected Continuation – Initial (  ) 

Path Year 1 Year 2 Year 3 Year 4  Path Year 1 Year 2 Year 3 Year 4 

1 0 1.37E+05 1.43E+05 7.42E+04  1 1.29E+05 1.36E+05 7.22E+04 0 

2 0 0 1.23E+05 6.32E+04  2 0 1.29E+05 6.48E+04 0 

3 0 1.38E+05 1.45E+05 7.54E+04  3 1.29E+05 1.36E+05 7.34E+05 0 

4 0 1.32E+05 1.39E+05 7.51E+04  4 1.29E+05 1.32E+05 6.85E+05 0 

5 0 0 1.36E+05 6.77E+04  5 0 1.37E+05 7.12E+04 0 

6 0 0 1.31E+05 6.99E+04  6 0 1.30E+05 6.58E+04 0 

7 0 1.45E+05 1.70E+05 9.22E+04  7 1.29E+05 1.37E+05 7.87E+05 0 

8 0 0 1.39E+05 7.22E+04  8 0 1.35E+05 7.04E+04 0 

9 0 1.43E+05 1.57E+05 8.48E+04  9 1.29E+05 1.38E+05 7.62E+05 0 

10 0 0 1.22E+05 6.74E+04  10 0 1.26E+05 6.14E+04 0 

  Saving – Expansion (  )   Value - Expansion (  ) 

Path Year 1 Year 2 Year 3 Year 4  Path Year 1 Year 2 Year 3 Year 4 

1 6.02E+04 6.86E+04 7.29E+04 7.42E+04  1 0 6.86E+04 7.29E+04 7.42E+04 

2 6.02E+04 6.31E+04 6.36E+04 6.32E+04  2 0 6.31E+04 6.36E+04 6.32E+04 

3 6.02E+04 6.81E+04 7.42E+04 7.54E+04  3 0 6.81E+04 7.42E+04 7.54E+04 

4 6.02E+04 6.55E+04 6.84E+04 7.51E+04  4 0 6.55E+04 6.84E+04 7.51E+04 

5 6.02E+04 6.91E+04 7.17E+04 6.77E+04  5 0 6.91E+04 7.17E+04 6.77E+04 

6 6.02E+04 6.43E+04 6.49E+04 7.00E+04  6 0 6.43E+04 6.49E+04 7.00E+04 

7 6.02E+04 6.95E+04 7.99E+04 9.22E+04  7 0 6.95E+04 7.99E+04 9.22E+04 

8 6.02E+04 6.73E+04 7.08E+04 7.22E+04  8 0 6.73E+04 7.08E+04 7.22E+04 

9 6.02E+04 7.00E+04 7.27E+04 8.48E+04  9 0 7.00E+04 7.27E+04 8.48E+04 
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10 6.02E+04 6.13E+04 5.86E+04 6.74E+04  10 0 6.13E+04 5.86E+04 6.74E+04 

 
 Expected Continuation – 

Expansion|Initial @ 1 (  ) 

 
 

Expected Continuation – Expansion|Initial @ 

2 (  ) 

Path Year 1 Year 2 Year 3 Year 4  Path Year 1 Year 2 Year 3 Year 4 

1 0 6.83E+04 0 0  1 0 0 7.22E+04 0 

2 0 6.46E+04 0 0  2 0 0 6.48E+04 0 

3 0 6.80E+04 0 0  3 0 0 7.34E+04 0 

4 0 6.63E+04 0 0  4 0 0 6.85E+04 0 

5 0 6.87E+04 0 0  5 0 0 7.12E+04 0 

6 0 6.55E+04 0 0  6 0 0 6.58E+04 0 

7 0 6.89E+04 0 0  7 0 0 7.87E+04 0 

8 0 6.75E+04 0 0  8 0 0 7.04E+04 0 

9 0 6.91E+04 0 0  9 0 0 7.62E+04 0 

10 0 6.33E+04 0 0  10 0 0 6.14E+04 0 

  Initial Decision   Expansion Decision - year 2 

Path Year 1 Year 2 Year 3 Year 4  Path Year 1 Year 2 Year 3 Year 4 

1 0 1 0 0  1 0 1 0 0 

2 0 0 1 0  2 0 0 0 1 

3 0 1 0 0  3 0 1 0 0 

4 0 1 0 0  4 0 0 0 1 

5 0 0 1 0  5 0 1 0 0 

6 0 0 1 0  6 0 0 0 1 

7 0 1 0 0  7 0 1 0 0 

8 0 0 1 0  8 0 0 1 0 

9 0 1 0 0  9 0 1 0 0 

10 0 0 1 0  10 0 0 0 1 

  Expansion Decision - year 3   Expansion Decision - year 4 

Path Year 1 Year 2 Year 3 Year 4  Path Year 1 Year 2 Year 3 Year 4 

1 0 0 1 0  1 0 0 0 1 

2 0 0 0 1  2 0 0 0 1 

3 0 0 1 0  3 0 0 0 1 

4 0 0 0 1  4 0 0 0 1 

5 0 0 1 0  5 0 0 0 1 

6 0 0 0 1  6 0 0 0 1 

7 0 0 1 0  7 0 0 0 1 

8 0 0 1 0  8 0 0 0 1 
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9 0 1 1 0  9 0 0 0 1 

10 0 0 0 1  10 0 0 0 1 

 

3.5.3 Storage cost thresholds for initial investment and capacity expansion 

The expectation of optimal thresholds can be calculated from the conditional distribution 

function presented in Equation ( 3.24). 

     
   ∑     

            

 

   

 ( 3.24) 

Using Equation ( 3.24), optimal thresholds for initial investment and expansion of existing 

capacity (for the example shown in Table 3.3) are presented below. Results in Table 3.4 

can be a guide for the investor to make decisions to invest (either for initial investment or 

expansion) once the technology cost of storage reaches the thresholds shown in the table. 

Table 3.4 Storage cost thresholds for initial investment and expansion 

 Expected Value Standard Deviation 

Initial 1489.4 146.1 

Expansion|initial @ 1 1393.3 144.80 

Expansion|initial @ 2 1369.0 144.87 

Expansion|initial @ 3 1318.7 145.64 

The probability of investment in each of the four years of planning, as well as probability 

distribution of expansion given initial investment takes place in either of the last three 

years, are presented in Table 3.5.  
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Table 3.5 Probability distribution of decisions for initial investment and expansion 

                                 

Initial 0.080 0.440 0.480 0 

Expansion|initial @ 1 0 0.340 0.295 0.365 

Expansion|initial @ 2 0 0 0.625 0.275 

Expansion|initial @ 3 0 0 0 1.000 

 

Results in Table 3.5 provide an overall investment perspective during the planning 

horizon. For example, from this table, the investor knows that with a probability of 92% 

(      ), it is not cost effective to invest before year 2, hence, he/she should deal with 

different risks and costs of the microgrid assuming no energy storage for the system. 

3.5.4 Impact of storage price decline rate 

Figure 3.2 presents triggering thresholds for initial investment and expansion for different 

levels of annual growth rate of storage cost, α. As α increases in absolute value, 

investment thresholds decrease, meaning that decision maker should wait for lower costs 

to invest. The results imply that with higher decline rates, the investor should wait for 

lower storage costs to take an investment decision, both for initial investment and 

expansion. 
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Figure 3.2 Impact of storage cost decline rate on investment decisions 

3.5.5 Sensitivity Analysis on Grid Outage Parameters 

In this section, we investigate the impact of grid outage frequency and duration, and 

penalty for lost demand on investment decisions and storage cost threshold for 

investment. Setting of parameters defining grid outage events are presented in Table 3.6. 

Figure 3.3 shows how the storage cost threshold for initial investment change with 

different grid outage parameters. This investment threshold can be an indication of 

storage value for the microgrid. The overall conclusion of this section is that storage 

value increases with higher outage frequencies and higher lost demand penalties. 

Table 3.6 Grid outage parameters settings 

Parameter L1 L2 L3 L4 L5 

Outage frequency (#/year) 0 50 100 150 200 

Lost demand penalty ($/kW) 100 250 500 750 1000 
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Figure 3.3 Impact of grid outage parameters of storage value 

 

3.6 Illustrative Example II 

Below, we show the results for an additional example with the input parameters shown in 

Table 3.7. Initial and expansion capacities are doubled in this example. 

Table 3.7 Input Assumptions for Real Option Simulation Model - Example II 

Parameter Unit Value 

Storage technology - Lithium-Ion High Energy Battery 

Storage rated power for initial investment kW 100 

Storage rated power for expansion kW 100 

Discharge duration at rated power Hrs 2 

One-way storage efficiency - 0.94 

Installed cost of storage $/kW From a GBM process 

Engineering life of storage yrs 15 

Demand charge $/kW 45 

 

In this example, initial and expansion capacities are assumed to be 100 kW each. Results 

for this example are shown in Table 3.8. From MPC model in Chapter 2, it can be seen 
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that investment in expanded capacity has only a small contribution in microgrid savings. 

Comparing that with capital cost of expansion, shows that it is not cost effective for the 

investor to take any expansion investment decisions. For this reason, investor will wait 

until the last two years of the planning horizon, for the lower costs of storage, to 

undertake initial investment decisions. 

Table 3.8 Real option simulation results for 10 sample paths – Example II 

 Investment Cost (   )   Saving - Initial (  ) 

Path Year 1 Year 2 Year 3 Year 4  Path Year 1 Year 2 Year 3 Year 4 

1 1.60E+03 1.60E+03 1.43E+03 1.35E+03  1 9.50E+04 9.46E+04 1.12E+05 1.20E+05 

2 1.60E+03 1.44E+03 1.42E+03 1.37E+03  2 9.50E+04 1.11E+05 1.13E+05 1.17E+05 

3 1.60E+03 1.39E+03 1.29E+03 1.33E+03  3 9.50E+04 1.16E+05 1.26E+05 1.22E+05 

4 1.60E+03 1.44E+03 1.33E+03 1.19E+03  4 9.50E+04 1.11E+05 1.22E+05 1.36E+05 

5 1.60E+03 1.41E+03 1.53E+03 1.50E+03  5 9.50E+04 1.14E+05 1.02E+05 1.05E+05 

6 1.60E+03 1.38E+03 1.31E+03 1.15E+03  6 9.50E+04 1.17E+05 1.24E+05 1.40E+05 

7 1.60E+03 1.59E+03 1.50E+03 1.37E+03  7 9.50E+04 9.55E+04 1.05E+05 1.18E+05 

8 1.60E+03 1.48E+03 1.40E+03 1.43E+03  8 9.50E+04 1.07E+05 1.15E+05 1.12E+05 

9 1.60E+03 1.50E+03 1.47E+03 1.48E+03  9 9.50E+04 1.05E+05 1.08E+05 1.07E+05 

10 1.60E+03 1.47E+03 1.29E+03 1.27E+03  10 9.50E+04 1.08E+05 1.26E+05 1.28E+05 

  Value - Initial (  )   Expected Continuation – Initial (  ) 

Path Year 1 Year 2 Year 3 Year 4  Path Year 1 Year 2 Year 3 Year 4 

1 0 0 1.13E+05 1.20E+05  1 0 0 1.15E+05 0 

2 0 0 1.11E+05 1.17E+05  2 0 0 1.16E+05 0 

3 0 0 1.26E+05 1.22E+05  3 0 0 1.25E+05 0 

4 0 0 1.29E+05 1.36E+05  4 0 0 1.22E+05 0 

5 0 0 9.92E+04 1.05E+05  5 0 0 1.06E+05 0 

6 0 0 1.24E+05 1.40E+05  6 0 0 1.23E+05 0 

7 0 0 1.11E+05 1.18E+05  7 0 0 1.09E+05 0 

8 0 0 1.06E+05 1.12E+05  8 0 0 1.17E+05 0 

9 0 0 1.00E+05 1.07E+05  9 0 0 1.12E+05 0 

10 0 0 1.26E+05 1.28E+05  10 0 0 1.25E+05 0 

  Saving – Expansion (  )   Value - Expansion (  ) 

Path Year 1 Year 2 Year 3 Year 4  Path Year 1 Year 2 Year 3 Year 4 

1 6.02E+04 6.86E+04 7.29E+04 7.42E+04  1 0 0 0 0 
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2 6.02E+04 6.31E+04 6.36E+04 6.32E+04  2 0 0 0 0 

3 6.02E+04 6.81E+04 7.42E+04 7.54E+04  3 0 0 0 0 

4 6.02E+04 6.55E+04 6.84E+04 7.51E+04  4 0 0 0 0 

5 6.02E+04 6.91E+04 7.17E+04 6.77E+04  5 0 0 0 0 

6 6.02E+04 6.43E+04 6.49E+04 7.00E+04  6 0 0 0 0 

7 6.02E+04 6.95E+04 7.99E+04 9.22E+04  7 0 0 0 0 

8 6.02E+04 6.73E+04 7.08E+04 7.22E+04  8 0 0 0 0 

9 6.02E+04 7.00E+04 7.27E+04 8.48E+04  9 0 0 0 0 

10 6.02E+04 6.13E+04 5.86E+04 6.74E+04  10 0 0 0 0 

 
 Expected Continuation – 

Expansion|Initial @ 1 (  ) 

 
 

Expected Continuation – Expansion|Initial @ 

2 (  ) 

Path Year 1 Year 2 Year 3 Year 4  Path Year 1 Year 2 Year 3 Year 4 

1 0 0 0 0  1 0 0 0 0 

2 0 0 0 0  2 0 0 0 0 

3 0 0 0 0  3 0 0 0 0 

4 0 0 0 0  4 0 0 0 0 

5 0 0 0 0  5 0 0 0 0 

6 0 0 0 0  6 0 0 0 0 

7 0 0 0 0  7 0 0 0 0 

8 0 0 0 0  8 0 0 0 0 

9 0 0 0 0  9 0 0 0 0 

10 0 0 0 0  10 0 0 0 0 

  Initial Decision   Expansion Decision - year 2 

Path Year 1 Year 2 Year 3 Year 4  Path Year 1 Year 2 Year 3 Year 4 

1 0 0 0 1  1 0 0 0 0 

2 0 0 0 1  2 0 0 0 0 

3 0 0 1 0  3 0 0 0 0 

4 0 0 0 1  4 0 0 0 0 

5 0 0 0 1  5 0 0 0 0 

6 0 0 1 0  6 0 0 0 0 

7 0 0 0 1  7 0 0 0 0 

8 0 0 0 1  8 0 0 1 0 

9 0 0 0 1  9 0 0 0 0 

10 0 0 1 0  10 0 0 0 0 

  Expansion Decision - year 3   Expansion Decision - year 4 

Path Year 1 Year 2 Year 3 Year 4  Path Year 1 Year 2 Year 3 Year 4 
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1 0 0 0 0  1 0 0 0 0 

2 0 0 0 0  2 0 0 0 0 

3 0 0 0 0  3 0 0 0 0 

4 0 0 0 0  4 0 0 0 0 

5 0 0 0 0  5 0 0 0 0 

6 0 0 0 0  6 0 0 0 0 

7 0 0 0 0  7 0 0 0 0 

8 0 0 0 0  8 0 0 0 0 

9 0 0 0 0  9 0 0 0 0 

10 0 0 0 0  10 0 0 0 0 

 

3.7 Conclusion 

The work presented in this chapter tackles the problem of optimal incremental investment 

in energy storage, with the objective of minimizing microgrid demand and energy 

charges. Treating the incremental option to invest in energy storage as an American-style 

compound option, makes it possible to find optimal timing of investment, taking into 

account market uncertainties. Also, by combining the real option investment model with 

optimal energy storage operation under uncertainty (from Chapter 2), internal sources of 

uncertainty within a microgrid, i.e. demand and renewable output, are also integrated in 

the model.  

To handle multiple stochastic variables, and to estimate microgrid savings more 

realistically, a simulation based approach along with least squares regression is used to 

address more generic assumptions. The impact of annual volatility and annual decline 

rate of energy storage capital cost are investigated, and the results show that delay in 

investment becomes more significant as the volatility and decline rate increase. Also, 

decision strategies based on LSM algorithm are compared to the ones from simple Net 
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Present Value methodology. Results show that using LSM, yield to more delays in 

investment for both initial and expansion options, to wait for lower investment costs in 

the future. 
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4 ENERGY STORAGE AND MICROGRID MARKET 

STRATEGY IN AN UNCERTAIN AND DISTRIBUTED 

ENERGY MARKET 

The progressive integration of microgrids into the power grid and their potential 

participation in the wholesale market makes it necessary for microgrid owners and 

decision makers to use new business models. In this chapter, we propose necessary tools 

to optimally strategize microgrids interactions with the power grid, including sale and 

purchase commitment and bidding price, considering various sources of uncertainty 

rising from the forecasts of renewable energy resources, electricity demand and day-

ahead and spot electricity prices. We treat renewable and conventional generation 

resources and storage capacity separately. We investigate the impact of energy storage 

capacity on microgrid market strategies and power reliability in case of power shortage 

for microgrid internal demand. In this chapter, besides traditional risk-neutral two stage 

stochastic model, we propose a new model taking into account decision maker’s risk 

attributes. For this purpose, we use Conditional Value at Risk (CVaR) as risk measure. 

We will investigate the impact of storage parameters, i.e. storage capacity and storage 

cost/production cost ratio, on different elements of microgrid market strategy. We also 

observe the impact of shortage penalty set by the market operator on microgrid owner’s 

sale commitment decisions and reliability of power provided to the grid.  

4.1 Introduction 

In this chapter, we present a market strategy model that takes into account the duality of 

microgrids and optimizes their two-way market interactions. The goal is to provide the 
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microgrid operator with appropriate tools to strategize on buy, sell or store electricity 

with the objective of maximizing its profit and power reliability across the network. We 

also consider maximizing microgrid internal demand reliability in case microgrid has 

unsatisfied demand and uses storage capacity to fulfill that. The planning and same day 

operational strategies are computed under both risk neutral and risk-averse conditions. 

The microgrid is able to participate in price bidding, and it has a portfolio consisting of 

renewable and conventional generation and storage. The model deals with inherent 

uncertainties that are commonly attributed to renewable power sources and the demand 

within the microgrid, as well as the uncertainty in day ahead and spot electricity prices. 

Per hour excessive capacity probability distribution for the next day is assumed to be 

given. The model is validated and used to study the following specific problems: 

 Economics of storage measured in terms of overall microgrid profit and power 

reliability 

 Microgrid characterization and its relationship to market strategy (presented in 

Chapter 5) 

Our motivation is twofold: (i) Microgrid market in the US is expected to grow rapidly in 

the near future, with many university campuses, military bases, large manufacturing 

complexes, and even residential communities and complexes adopting this technology as 

an alternative source of local, clean and secure energy; (ii) Compared to large macrogrids, 

microgrids are quite small in size with fewer numbers of generation sources, and are 

highly volatile due to renewables and unpredictable local demands.  Therefore, the 

traditional planning and operation models within the macrogrid space are far stretch in 

their assumption of determinism and no uncertainties, and can potentially expose 
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microgrids to highly volatile spot markets, especially at peak times.  This then defeats the 

whole purpose of microgrids in the first place, which is to provide secure and low 

emission energy to its owners, and alleviate brownout or blackout risks of the macrogrid, 

especially at peak times.  

4.2 Literature Review 

The share of renewable generation in the power systems is an increasingly growing 

concept due to environmental, economic and technical issues. In [38] the authors focus 

on the development of an energy management system using Neural Networks, to dispatch 

generators, on hourly basis, for the purpose of minimizing the global energy costs in a 

microgrid. The global cost includes the generation, the cost of the energy purchased by 

the microgrid to supply its loads, and profit from selling energy to the grid. In [39] the 

authors develop a multi-period optimization model for an interconnected microgrid with 

hierarchical control that participates in wholesale energy market to maximize its profit. 

They propose a deterministic model, which includes the operational and technical 

constraints of distributed energy resources. The authors in [40] address the bidding 

problem faced by a virtual power plant in a joint market of energy and spinning reserve 

services. The proposed bidding strategy is a nonlinear mixed-integer programming with 

inter-temporal constraints based on the deterministic price-based unit commitment. They 

take into account the supply-demand balancing constraints and also security constraints 

of virtual power plant. They use genetic algorithm to solve their problem. In [41], the 

authors present an energy management system for a microgrid optimizing its day-ahead 

operational plan based on profit maximization while abiding by system constraints and 

regulatory rules. The microgrid considered in this paper consists of different types of 
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renewable resources, hydrogen storage and electrical and thermal loads, with the 

possibility of power exchange with the local grid. Microgrid costs include the operational 

cost, thermal recovery, power trade with the local grid, and hydrogen production. They 

use Particle Swarm Optimization for solving the proposed optimization model. In [42], 

the authors describe the economic scheduling functions of microgrid central controller for 

the optimization of microgrid operations, i.e. optimizing production of the local resources 

and power exchanges with the main distribution grid. The authors propose their models 

based on the application of neural networks dynamic programming. By aggregating the 

power bids from generators, the proposed controller can participate in the energy market 

maximizing the revenues of the microgrid. They consider different types of customers 

with different types of demand. Storage Besides load leveling in the centralized market, 

energy storage offers additional benefits in utility settings because it can decouple demand 

from supply, thereby allowing increased asset utilization, facilitating penetration of 

renewables, and improving the flexibility, reliability, and efficiency of the electrical 

network [43]. Storage technologies and their applications and benefits in power market 

have been studied in details in [44]. The authors in [45] present an approximate dynamic 

programming model to solve storage capacity problems with continuous and convex 

decision sets.  

4.3 Problem Formulation 

We use the following vector      to define microgrid market strategy: 

                  
     

  
          

       
       

        
    (4.1) 
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Vector      includes all decision variables which connect the microgrid to the power 

market, i.e., microgrid’s sale and purchase commitment status, sale and purchase 

commitment levels, bidding price, actual sale from renewable and conventional resources, 

actual purchase used for storage or satisfying internal demand. Each day, the microgrid 

forecasts day-ahead and spot market prices for each hour of the next day. Based on these 

forecasts and also estimated excessive capacity and the corresponding shortage risks, 

microgrid operator determines optimal bidding price and sale and purchase commitment 

levels for the next day on an hourly basis. Reduction of shortage risk for all or a portion 

of its internal demand and alleviating the load are the grid’s motivations to buy electricity 

from the microgrid. The problem of interest here is to compute      day-ahead, and the 

recourse actions on the next day. 

We formulate this problem as a two-stage stochastic optimization model. By discretizing 

the continuous distributions of the underlying random variables, the problem can be 

reformulated as the deterministic equivalence of the stochastic model proposed in [46]. 

The following nomenclature will be used in the formulation of this model. Below, is the 

description of parameters and variables used in the rest of the paper, followed by problem 

formulation. 

Model Variables 

  
    microgrid day-ahead sale commitment 

  
  

  microgrid day-ahead purchase commitment 

    binary variable indicating purchase status in day-ahead market 

    binary variable indicating sale status in day-ahead market 

     microgrid bidding price 
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    microgrid purchase used for storage 

     
    microgrid purchase used to satisfy internal demand 

     
    

  production level from renewable resources used for sale 

     
    

  production level from conventional resources used for sale 

     
    

  production level from renewable resources used for storage 

     
    

  production level from conventional resources used for storage 

       microgrid storage level 

     
    stored energy used for sale  

     
    stored energy used for satisfying internal demand 

Model Parameters  

   scenario index 

   time index 

     number of scenarios generated for two stage stochastic programming 

      transmission/distribution capacity between microgrid and macrogrid 

      microgrid’s storage capacity 

     proportional cost of generation from conventional resources 

     proportional cost of generation from renewable resources 

     proportional cost of storage from renewable resources 

     proportional cost of storage from conventional resources 

    proportional cost of unsatisfied internal demand 

     
   realization of microgrid renewable excessive capacity distribution function 
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   realization of microgrid conventional excessive capacity distribution 

function 

         
  microgrid renewable excessive capacity (processed value) 

         
  microgrid conventional excessive capacity (processed value) 

       microgrid internal demand 

       day-ahead market price 

    electricity load 

 ̂   forecast of electricity day ahead price 

    constant used to obtain the upper bound of the confidence interval 

    constant used to obtain the lower bound of the confidence interval 

     
  

  penalty for purchase commitment cancellation 

     
    penalty for sale commitment cancellation 

       market spot price 

    short term process of the forecasting model 

α  worst case probability tail 

λ  risk coefficient 

  
  

  Average value of day-ahead price forecast 

  
  

  standard deviation of day-ahead price forecast 

    β-percentage point of the N(0,1) distribution 

4.3.1 Discussion on model Variables and Parameters 

In the two-stage stochastic programming model,   
  ,  

  
,   and    are first stage variables, 

which are determined independent of any scenario realization. All other decision 
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variables are second-stage variables which depend on the realization of random variables. 

Each day, microgrid determines how much electricity to commit to buy from the grid, 

  
  

, or sell to it,   
    at each time period of the next day. Since microgrid’s demand and 

resources are stochastic, the real sell or purchase levels at period t may be different from 

the variables committed on the previous day. In this model, we assume that the purchase 

from the grid is possible, and that the purchased power is either used for storage, or to 

satisfy internal demand. It is important to mention that in this model we differentiate 

between renewable and conventional power resources. Microgrid either uses its 

generation in time period t,      
     or      

    
, or its storage capacity,      

  , to satisfy its sale 

commitment or internal demand. At the end of each period, the storage level,       is 

updated using variables      
    

,      
    

 and      
  .     is the price which microgrid offers to 

the grid for its commitment. We assume that at each time period, the microgrid can be 

either a seller or a buyer. Hence, two binary variables    and    are used to control the 

microgrid’s status. In case microgrid has unsatisfied internal demand, it can use either the 

purchased power,      
   or storage capacity,      

   to satisfy that. 

There are internal and environmental parameters which microgrid has to deal with when 

optimizing its behavior. Microgrid’s proportional production cost of conventional power, 

    is assumed to be constant and averaged over all respective resources. It is assumed 

that renewable power can be produced at no cost.    is the proportional storage cost, and 

we do not differentiate between the stored energy from renewable resources and 

conventional resources. It is considered as estimation for storage wear and tear per kW 

usage plus the cost of power generated to be injected in storage. Probability density 

functions of microgrid’s excessive capacity of each type are assumed to be given, and are 
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controlled by microgrid’s internal planning and control system. We approximate the 

continuous distributions of renewable and conventional excessive capacity and 

distribution functions of day-ahead and spot price forecasts by a large number (    

   ) of discrete scenarios assuming the probability of each scenario to be     ⁄ . This 

assumption makes it possible to use the deterministic equivalence of the two-stage 

stochastic model as explained below. 

It is assumed that for each committed unit not sold to or purchased from the grid, the 

microgrid should pay a penalty. The penalty      
   for the sale commitment is assumed to 

be the electricity spot price,      ,  at the time period when the commitment was supposed 

to be realized. However, we would investigate the impact of other values for not 

satisfying sale commitment on microgrid behavior. The purchase commitment penalty, 

     
  

, is assumed to be constant.      is the maximum storage capacity of the microgrid, 

and      is the limit capacity of the distribution lines connecting the microgrid to the grid. 

Different possible combinations of renewable and conventional excessive capacity and 

their interpretations are displayed in Figure 4.1. A pre-processing procedure is applied on 

the values of      
  and      

  before using them in the program. 
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Figure 4.1 Different combinations for renewable and conventional excessive capacities 

If      
       

  is positive, it means that microgrid has a positive net excessive capacity to 

commit for sale. In that case,          
  and/or          

  get a positive value equal to      
  

and      
 , respectively, and internal demand, i.e.       is set to zero. On the other hand, 

when       
       

  is negative, it means that the net excessive capacity is negative, 

meaning that the microgrid has some internal demand. Hence,          
  and          

  

values are set to zero, and       gets a positive value equal to the absolute value of net 

excessive capacity. 

4.3.2 Optimization Model 

We start with risk-neutral two-stage stochastic formulation of the above problem. We 

then extend this model to include risk-averse attributes of the decision maker.  There are 

first stage decisions to be made, e.g. sale and purchase commitments. The recourse 

decisions depend on the realization of the stochastic elements. These recourse decisions 

exr and exc are 
realized 

exr + exc > 0 

exr > 0 and exc > 0 

excessr = exr 

excessc = exc 

dm = 0 

exr > 0 and exc < 0 

excessr = exr + exc 

excessc = 0 

dm = 0 

exr < 0 and exc > 0 

excessr = 0 

excessc = exr + exc 

dm = 0 

exr + exc < 0 

exr > 0 and exc < 0 

excessr = 0 

excessc = 0 

dm = |exr + exc | 

exr < 0 and exc > 0 

excessr = 0 

excessc = 0 

dm = |exr + exc | 

exr < 0 and exc < 0 

excessr = 0 

excessc = 0 

dm = |exr + exc | 
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include actual sale or purchase levels, renewable and conventional storage and excessive 

capacity or storage usage for satisfying sale commitment. The recourse decisions are 

intended to avoid constraints violation. To take into account microgrid power reliability 

over time, we define two types of situations; a) when microgrid excessive capacity is 

positive, i.e. it can sell the excessive amount to the grid, and b) when microgrid excessive 

capacity is negative, i.e. microgrid has unsatisfied internal demand and can use its storage 

capacity to satisfy the internal demand and increase its power reliability. In this case, 

microgrid can sell power to the grid only if it has excessive storage capacity after 

satisfying its internal demand. To satisfy the non-anticipativity constraint, these two cases 

should be formulated in a single problem. Model formulations are presented in the 

following sections. 

Objective function 

In case 1, where microgrid has excessive capacity and can bid it in the day-ahead market 

to generate revenue, the objective in this case is to maximize microgrid’s expected profit, 

which is composed of two main elements: expected revenue and expected cost, where 

cost includes various cost elements, i.e. production cost, shortage cost, cost of purchase 

cancelation and storage cost.  

Microgrid’s expected revenue in each scenario at each time period,       , is calculated in 

Equation (4.2). 

         
                  ( 4.2) 

And microgrid’s total revenue in scenario,     , is the sum of revenues over 24 hours; 

     ∑       
  
           ( 4.3) 
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Cost elements over 24 hours for each scenario are calculated as; 
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   and    
   represent microgrid conventional production 

cost, purchase cost, shortage cost for external commitment, purchase cancellation cost, 

storage cost, and cost from lost internal demand, respectively. 

Approximating continuous distribution functions with corresponding discrete distribution 

functions makes it possible to use the linear deterministic version of two-stage stochastic 

programming [47]. Hence, the final form of the objective function becomes: 

 [      ]  
 

   
∑[     (   

    
    

  
    

      
      

    
      

  )]

   

   

 ( 4.10) 

Constraints 

In this section, we describe model constraints. The following set of constraints guarantee 

the sale commitment level in each time period to be less than or equal to the microgrid’s 

available capacity. When the microgrid has positive excessive capacity, the limit is total 

excessive capacity plus storage level, during that time period. And when the excessive 
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capacity is negative, commitment limit is the remaining storage capacity after satisfying 

internal demand. 

  
        

       
               

             ( 4.11) 

The set of constraints in Equation (4.16) control the level of production and storage 

which is used for sale in each time period to be less than the commitment level for sale in 

that time period; 

     
          

          
     

            ( 4.12) 

The following set of constraints guarantee that the real purchase from the grid in each 

time period is less than or equal to the purchase commitment in that time period. 

     
        

     
  

          ( 4.13) 

The set of constraints in Equation (4.14) set the limit of production level used for storage, 

both from renewable and conventional resources, based on microgrid’s excessive 

capacity and the production used for satisfying the sale commitment; 

     
          

          
           ( 4.14) 

     
          

          
           ( 4.15) 

The following set of constraints assure that the storage level to be less than or equal to 

microgrid’s storage capacity; 

                    ( 4.16) 

The following sets of constraints are used to update the storage level; 

                   
          

          
        

        
             ( 4.17) 
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The two sets of constraints below assure that the amount of power that microgrid uses for 

satisfying its sale commitment or internal demand, is less than or equal to its actual 

storage level; 

     
        

                     ( 4.18) 

The following constraint guarantees that in each time period, microgrid is either a seller 

or a buyer of electricity; 

                 ( 4.19) 

The constraints below control the power distribution based on microgrid’s distribution 

capacity; 

  
                   (4.20) 

  
  

                 (4.21) 

4.3.3 Microgrid Risk Aversion 

Traditional two-stage stochastic programming is risk-neutral; that is, it takes expected 

value as the preference criterion while comparing the random variables to identify the 

best decisions. However, in the presence of uncertainty, risk measures should be 

incorporated into decision making process to account for its effects. The Value at Risk 

(VaR) and the Conditional Value at Risk (CVaR) are two commonly used risk measures. 

In the cost minimization context, VaRα is the α-quantile of the distribution of the cost and 

it provides an upper bound that is exceeded only with a small probability of 1- α. This 

risk measure suffers from being unstable and difficult to work with numerically when 

costs are not normally distributed-which in fact is often the case, because cost 

distributions tend to exhibit fat tails or empirical discreteness. Another shortcoming of 
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VaR, is that it provides no handle on the extent of the costs that might be suffered beyond 

the threshold amount indicated by this measure. It is incapable of distinguishing between 

situations where costs that are worse may be deemed only little bit worse and those where 

they could well be overwhelming. Indeed, it merely provides a highest bound for costs in 

the tail of the cost distribution and has a bias toward optimism instead of the 

conservatism that ought to prevail in risk management. 

An alternative measure that does quantify the losses that might be encountered in the tail 

is CVaR. CVaR, also called Mean Excess Loss or Tail VaR, at level α, is the conditional 

expected value exceeding the VaR at the confidence level α. CVaRα(Z) is a measure of 

severity of the cost if it is more than VaRα(Z).  CVaR, in a simple way, is defined as 

follows: 

                        ( 4.22) 

As a tool in optimization modeling, CVaR has superior properties in many respects. It 

maintains consistency with VaR by yielding the same results in the limited settings where 

VaR computations are tractable, i.e., for normal distributions. For portfolios blessed with 

such simple distributions, working with CVaR or VaR are equivalent. However, 

computational advantages of CVaR over VaR, and its capability of measuring cost 

severity, are turning into a major stimulus for the development of CVaR methodology. 

Figure 4.2 illustrates VaR and CVaR for a loss distribution. 
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Figure 4.2 VaR and CVaR illustration 

For the case of a finite probability space, where   {       } with corresponding 

probabilities        , we can equivalently reformulate the mean-risk problem  

   
   

{ [      ]        (      )} 

with the following linear programming problem 

              ∑    
        

 

   
∑     

 

   

 

   

 

Subject to                                  

     

                        

     
                         

                           

The variable   can be interpreted as a first-stage variable and the excess variables, 

          , as second-stage variables. 
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Using the methodology presented in [48], we rewrite our model to take into account the 

microgrid risk aversion effects. The objective function changes to: 
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( 4.23) 

The following constraint is also added to the set of constraints of original problem 

presented before. It ensures that the cost corresponding to second stage variables are 

controlled by variables   and   . 
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( 4.24) 

4.3.4 Determining Microgrid’s Bidding Price  

A number of electricity markets in the U.S. work based on single-round auction 

mechanisms. An auction is a market institution with an explicit set of rules determining 

resource allocation and prices on the basis of bids from the market participants. It is an 

economically efficient mechanism to allocate demand to suppliers. In a single-round 

auction, market participants submit supply and demand bid curves for the day-ahead and 

hour-ahead energy markets in sealed bid format. Then, aggregated hourly supply and 

demand bid curves (considering network and market constraints) are constructed to 

determine market clearing prices as well as the corresponding supply and demand 

schedules. A marginal clearing price is set at the intersection point between the 

aggregated demand and supply curves for each of the 24 scheduling hours. All generators 
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winning the auction are paid at the uniform clearing price. Those generators bidding 

above the clearing price are not paid, hence, it is important for generators to have a good 

forecast of the day-ahead clearing prices and bid strategically. In this paper, we assume 

that microgrid adopts rules similar to the wholesale market for clearing day-ahead prices.  

Microgrid’s strategy for setting its bidding prices was adopted from the method proposed 

in [49] for a price-taker generator in the power market where at the time of submitting 

bids, the values of total demand and day-ahead market price are stochastic to the 

generator.  

We assume that the day-ahead market price at hour t is a random variable, and its value 

has to be forecasted. From a statistical point of view, these random variables are 

conditioned on the actual price values of the time series used for forecasting. This time 

series spans from an arbitrary origin up to hour 24 of the day preceding the one whose 

prices have to be forecasted. There are many forecasting models already existing in the 

literature, e.g. [50] and [51]. Hence, in this work we do not focus on developing the 

forecast model for day-ahead market prices. Rather, we assume that the expected value 

  
    of random variable is the price prediction at hour t. The estimate of the standard 

deviation of the random variable is also available from the forecasting procedure, and it is 

denominated    
   

 [52]. It can be shown that the distribution of random variable      is 

approximately Lognormal [53], i.e.,                  
      

    . 

Upper and lower bounds of the confidence interval are computed respectively as 

  
   

     
   

 ( 4.25) 
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 ( 4.26) 

It should be noted that parameters    and    are obtained directly from any forecasting  

model used, and depend on the level of confidence, e.g., to cover 99% or 95% of the total 

area under the lognormal distribution. Using results from [49] we compute  
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( 4.28) 

where    depends on the desired level of confidence. 

In [49], thermal generators are assumed to be sources of power, hence the excessive 

capacity has a deterministic maximum level. Here, we have to modify the results from 

[49] to include stochastic case. Microgrid should submit a bidding curve for each hour of 

the market horizon to the market operator. Each one of hourly bidding curves consists of 

a set of blocks of power and their corresponding increasing prices. A convex bidding 

curve is required, i.e., prices have to be associated with the power blocks bid. The 

bidding rule formulated below determines the hourly bidding curve of the microgrid and 

requires up to two blocks of power and their corresponding prices. The bidding curve for 

hour t is formulated as a function of the optimal sale commitment production in that hour, 

  
   . Two cases are possible and are analyzed below. Remember that the stochasticity of 

excessive capacity was considered in our two stage stochastic program.  

Case 1) For   
     , microgrid owner should either not commit to the grid, or, in case 

there is an obligation to participate in the market due to regulations, commit the 
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minimum amount allowed by the regulations at price   
        

   
. This bidding price 

guarantees with a level of confidence of 99% that the power accepted in this situation is 0, 

which is the optimal self-scheduled power for this case. 

Case 2) For     
   , the bidding curve consists of a single block of power   

    at price 

  
        

   
. It should be noted that this bidding curve guarantees with a level of 

confidence of 99% that the power accepted in this situation is   
   , which is the optimal 

sale commitment for this case.  

It should be mentioned that the upper and lower bound of the confidence interval are 

computed according to the required level of confidence defined by the microgrid owner. 

4.4 Validation and Numerical Experimentation  

In this section, we investigate the impact of model parameters on different elements of 

microgrid market strategy. We focus on the impact of storage capacity and storage 

cost/production cost ratio on microgrid’s average daily profit and its average daily sale 

commitment level. We also observe the impact of shortage penalty set by the market 

operator as a ratio of day-ahead price on microgrid owner’s sale commitment decisions. 

We define three important elements defining microgrid portfolio and measure the impact 

of those parameters on microgrid market strategy.  

4.4.1 Model Validation 

To validate our optimization model, we compare our formulation with other similar 

works developed for similar objectives. However, since in the previous works, there are 

not any studies of the exact same objective as this paper, i.e. defining microgrid market 

strategies under price and resource uncertainty, we validate different parts of the model, 
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i.e. objective function elements and constraints, separately.  Models reviewed in [54] 

adopt a general form of the objective function used in this paper for generation units and 

power producers. More specifically, [55] and [56] use the same approach as the one used 

in this paper to calculate revenue and production cost (Equations ( 4.2) and ( 4.4)) for the 

microgrids. The purchase cost (Equation ( 4.5)) is also included in the model proposed in 

[55].  The objective function presented in [39], includes all profit and cost elements 

included in this paper (Equation ( 4.2), and Equations ( 4.4) through (4.9)) for distributed 

energy resources to bid into low voltage grid.  

In [39], the summation of energy storage levels for all electrochemical storage units 

during each hour is constrained by the installed capacity of electrochemical storage, 

which is similar to Equation ( 4.16) in our paper. Similar constraints for transient state 

variable, i.e. storage level update (Equations ( 4.17) and ( 4.18)), can be found in [57]. 

Transmission line capacity (Equations ( 4.20) and ( 4.21)) are modeled the same way as in 

[57]. The methodology proposed in [58] for applying upper limit to energy discharge 

from the storage unit is similar to Equations ( 4.18) and ( 4.19) of this paper.  

Equations ( 4.11) through ( 4.15) in this paper, define the limits of decision variables in the 

two stage stochastic programming, and rise from model assumptions. Equations ( 4.11) 

through ( 4.13) enforce microgrid sale commitment not to exceed the forecast of its 

excessive capacity, and microgrid real production and purchase to be limited by the 

corresponding committed amounts. Equations ( 4.14) and ( 4.15) refer to the assumption 

that satisfying sale commitment is preferred over storing. And finally, Equation ( 4.19) 

prevents storage unit to be charging and discharging at the same time, an assumption 

rising from energy storage technological constraints.  
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4.4.2 Sensitivity Analysis 

In this section, we test model validity through some intuitive analyses on model 

parameters. We do sensitivity analysis on conventional production costs, storage capacity, 

and excessive capacity. We would investigate the impact of changing these parameters on 

daily average profit and sale and purchase commitments. We will set two levels for each 

parameter and run the model for different combinations. Values assumed for each level 

and sensitivity analysis results are presented in Table 4.1 and Table 4.2. Electricity 

market price for this analysis follows a typical daily profile, similar to the one shown in 

Figure 2.7. 

Table 4.1 Parameter levels for sensitivity analysis 

Parameter Level Value 

Conventional production cost ($/kW) 1 0.02 

Conventional production cost ($/kW) 2 0.1 

Storage capacity (kW) 1 50 

Storage capacity (kW) 2 100 

Excessive capacity 1 base distribution 

Excessive capacity 2 base distribution doubled 
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Table 4.2 Sensitivity analysis results 

Case 

Conventional 
production 

cost level 

Storage 
capacity level 

Excessive 
capacity level 

Annual Profit 
($) 

1 1 1 1 6,748 

2 1 1 2 6,902 

3 1 2 1 16,242 

4 1 2 2 18,308 

5 2 1 1 6,304 

6 2 1 2 6,752 

7 2 2 1 11,789 

8 2 2 2 16,731 

Sensitivity results show that as excessive capacity and storage capacity increase, 

microgrid profit also increases, and as conventional production cost increase, microgrid 

profit decreases. It also shows that excessive capacity has a more significant impact on 

microgrid profit compared to storage capacity. 

4.4.3 Illustrative Examples 

In this section, we will present an illustrative example and investigate the impact of 

model parameters on economics of storage capacity, risk averseness of microgrid owner, 

and reliability corresponding to microgrid internal demand and sale commitment. We 

also design an experiment to examine the impact of portfolio of resources in terms of 

mean and standard deviation and also storage capacity on microgrid market strategy.  

Assumptions on parameter values and distributions 

Model parameters are presented in Table 4.3 with their corresponding values which are 

used in the following sections.  
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Table 4.3 Model parameter values 

Parameter Symbol Value 

Number of scenarios     100 

Transmission/distribution capacity      500 kW 

Storage capacity (base)      100 kW 

Cost of conventional generation     0.05 $/kWh 

Cost of renewable generation     0 $/kWh 

Cost of conventional storage     0.06 $/kWh 

Cost of renewable storage     0.01 $/kWh 

Cost of unsatisfied demand    1 $/kWh 

Purchase commitment cancellation penalty      
  

 0.02 $/kWh 

Sale commitment cancellation penalty      
   0.02 $/kWh 

 

Economics of Storage Capacity 

The impact of storage capacity on microgrid’s behavior and its market strategies are 

observed in this section. The storage capacity was changed from 0 to 250 kWh with the 

step size of 5 kWh. Microgrid uses storage as a resource to be able to commit for sale at 

higher levels and generate more revenue. The function shown in Figure 4.3 at any given 

point determines the increase in profit by adding one unit of storage capacity at the point. 

This analysis can give us a criteria, shown in Equation ( 4.29) for incremental investment 

in energy storage. It implies that investment in more storage capacity is cost-effective 

only when the marginal profit per unit of storage added to the system exceeds the 

marginal storage cost. 

                        

                   
                       ( 4.29) 
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Figure 4.3 Average daily profit by storage capacity levels 

The results for the same analysis are presented in Figure 4.4, increasing storage cost and 

decreasing excessive capacity by 50%. The same behavior can be seen for this 

configuration. 

 

Figure 4.4 Average daily profitby storage capacity - increased storage cost and decreased excessive 

capacity 
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The  
               

            
  ratio plays a significant role on the storage economics. Here, storage 

cost is considered as estimation for cost of battery wear and tear per kW usage plus the 

production cost of power to be stored. Note that ratio is aggregated over renewables and 

conventional sources. We change the ratio from 0 to 6 with a step size of 0.25. Figure 4.5 

clearly illustrates sensitivity to the ratio of average profit and optimal commitment. 

 

 

Figure 4.5 Average daily profit and average daily commitment for different Production cost/Storage 

cost ratios 

As it can be seen in Figure 4.5, for cases where ratio < 2, storage cost has a significant 

value on average daily profit and its impact decreases for values larger than 3. 

Power Reliability 

Reliability of power satisfying internal demand 

Internal demand reliability is defined as the percentage of internal demand which is 

satisfied. In this paper, microgrid has two sources to supply its internal demand; storage 
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seller or a buyer, and because sale and purchase commitments are first stage decision 

variables, which are made day-ahead, the use of grid power to satisfy internal demand 

significantly decreases microgrid’s profitability. Thus, in this section, we investigate the 

impact of storage capacity on internal demand reliability.  

The model was tested for different storage capacities ranging from 0 to 65 kWh, and their 

impact on average percentage of internal satisfied demand presented in Figure 4.6. It is 

important to notice that because of the relative values of lost demand penalty to microgrid 

revenue through selling back to the grid, and because the buy or sell status of microgrid 

are mutually exclusive, microgrid uses its storage capacity to satisfy the internal demand, 

and sells to the grid at the same time to generate revenue. 

 

Figure 4.6 Impact of storage capacity on internal demand reliability 

Reliability of power provided to market 
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operational cost. This behavior, when practiced by major players in the market, or by a 

significant number of microgrids, will have a negative impact on the grid reliability. One 

strategy to confront such a behavior by market players is to determine the penalty 

corresponding to failure to satisfy sale commitment independent of electricity spot price. 

In this section, we investigate the impact of shortage penalty as a fraction of day-ahead 

price on reliability of the power microgrid provides to the market. Results are shown in  

 

Figure 4.7 Impact of shortage penalty on market power reliability 

As shown in Figure 4.7, as shortage penalty increases, the ratio of satisfied day-ahead 

commitment increases significantly. Based on the parameters we assumed for day-ahead 

price and corresponding shortage penalty, it seems that when shortage penalty is set to 

1.4 times average day ahead price or higher, microgrid is committed to satisfy its sale 

commitment with a probability of 95% or more. If shortage penalty is set to lower values, 

then microgrid contribution in power market might result in worsening grid power 

reliability. 
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4.5 Conclusion 

In this chapter, we propose necessary tools to optimally strategize microgrids interactions 

with the power grid, including sale and purchase commitment and bidding price, 

considering various sources of uncertainty rising from the forecasts of renewable energy 

resources, electricity demand and day-ahead and spot electricity prices. We investigate 

the impact of energy storage capacity on microgrid market strategies and power 

reliability in case of power shortage for microgrid internal demand. We formulate and 

solve the problem as a two stage stochastic model. We investigate the impact of storage 

parameters, i.e. storage capacity and storage cost/production cost ratio, on microgrid 

average annual profit, and internal demand reliability. We also observe the impact of 

shortage penalty set by the market operator on microgrid owner’s sale commitment 

decisions and reliability of power provided to the grid.  
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5 APPLICATIONS AND FUTURE WORK 

The results from the previous three chapters can be integrated into a single framework for 

investment, market strategy and operational control optimization of storage within 

microgrids. Here we will only focus on market strategy and present an application where 

the model of Chapter 4 is used to better understand what factors are significant in 

microgrid characterization in terms of microgrid profit, sales and purchase commitments, 

with respect to microgrid renewable and conventional generation capacity, storage 

capacity and volatility of renewable resources. 

5.1 Microgrid Characterization and Market Strategy  

Each microgrid has its own internal and environmental characteristics. These 

characteristics can be defined in terms of specific parameters or functions, and can help 

the microgrid owner to set market strategies based on a high level understanding of how 

the microgrid and the market work. Here we will only focus on internal characteristics 

and examine the impact of the following ratios on market strategies: 

    
                                 

                                    ⁄   

    
                

                                                    ⁄  

    
                                               

                                                  ⁄  

For this purpose, we assign three values to each of the ratios and design the following 

experiment: 
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Table  5.1 Design of Experiment for three internal factors 

R1=0.5  R1=1  R1=2 

 R2=0.25 R2=0.5 R2=1   R2=0.25 R2=0.5 R2=1   R2=0.25 R2=0.5 R2=1 

R3=1 x111 x121 x131  R3=1 x211 x221 x231  R3=1 x311 x321 x331 

R3=2.5 x112 x122 x132  R3=2.5 x212 x222 x232  R3=2.5 x312 x322 x332 

R3=5 x113 x123 x133  R3=5 x213 x223 x233  R3=5 x313 x323 x333 

We recall that vector Τ was defined in Chapter 4 to characterize market strategy of a 

microgrid. Our goal is to characterize microgrids interactions with the power grid 

according to the internal parameters. Here, we examine the impact of the three indices, 

  ,    and    on the elements of Τ. The elements examined in this section are sale 

commitment, purchase commitment and microgrid profit.  

For each of the factors of the market strategy vector, a three-way ANOVA table is 

presented below. Results presented in Table  5.2 and Table  5.3 show that microgrid’s 

profit and purchase commitment can be characterized by the three factors used for this 

analysis. All three factors turn out to be significant in explaining the variability of daily 

average profit and sale commitment. As it can be seen in Table  5.2, the most important 

factor affecting average profit is renewable excessive capacity mean to conventional 

excessive capacity mean. One reason can be that this ratio is an indication of the total 

excessive capacity and hence it is significant. The next important factor is renewable 

excessive capacity standard deviation to conventional excessive capacity standard 

deviation ratio. This can be explained by the fact that if renewable excessive capacity has 

a high standard deviation comparing to conventional excessive capacity, then the part of 

the commitment planned to be satisfy from renewable resources will be lost with a high 

probability, and this has a negative impact on the profit. And finally the last significant 

factor is the ratio of storage capacity to total excessive capacity mean. Obviously when 
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there is more storage, the microgrid can offer larger sale commitments, and earn more 

profit.  

Table  5.2 Profit ANOVA table 

Source of 

Variation 

Degree of 

Freedom 

Sum of 

Squares 
Mean Square 

F 

F2,20,0.05= 3.493 
P-value 

R1 2 1.85E+09 9.26E+08 110.278 1.578E-11 

R2 2 70813374 35406687 4.218 0.030 

R3 2 3.29E+08 1.65E+08 19.601 1.936E-05 

Error 20 2.42E+09 8394456   

Total 26 4.67E+09 1.8E+08   

In explaining the variability of sale commitment, the same order of significance level of 

factors can also be seen in Table 5.3. The reasons mentioned for average daily profit are 

valid for this case also.  

Table 5.3 Sale commitment ANOVA table 

Source of 

Variation 

Degree of 

Freedom 

Sum of 

Squares 
Mean Square 

F 

F2,20,0.05= 3.493 
P-value 

R1 2 4869.634 2434.817 96.381 5.387E-11 

R2 2 360.721 180.360 7.139 0.004 

R3 2 1785.047 892.523 35.330 2.730E-07 

Error 20 7520.652 25.262   

Total 26 14536.054 559.079   

Results presented in Table 5.4 and Table 5.5 show that purchase commitment and actual 

purchase are highly correlated (in this illustrative example, purchase cancellation did not 

occur in any of the scenarios) and that R2 does not play an important role when making 

decision about buying from the grid. Although R1 and R3 are significant factors, but their 

level of significance is not very high (comparing F-values with F-critical). Hence, other 

factors should be defined and tested if one is interested in characterizing the behavior of 

these variables. R1 is significant, because it is an indication of microgrid’s excessive 

capacity and with higher values of excessive capacity mean, microgrid prefers to store 
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from its internal resources rather than its purchase from the grid. Dissimilarly, when 

renewable standard deviation is high comparing the conventional standard deviation, 

microgrid decides to store using its purchase from the grid, and that is the explanation 

why R3 is significant. 

Table  5.4 Purchase commitment ANOVA table 

Source of 

Variation 

Degree of 

Freedom 

Sum of 

Squares 
Mean Square 

F 

F2,20,0.05= 3.493 
P-value 

R1 2 5.164 2.582 4.999 0.017 

R2 2 9.421E-05 4.711E-05 9.121E-05 0.999 

R3 2 5.164 2.582 4.999 0.017 

Error 20 20.657 0.516   

Total 26 30.986 1.192   

Table  5.5 Actual purchase ANOVA table 

Source of 

Variation 

Degree of 

Freedom 
Sum of Squares Mean Square 

F 

F2,20,0.05= 3.493 
P-value 

R1 2 5.164 2.582 4.999 0.017 

R2 2 9.421E-05 4.711E-05 9.121E-05 0.999 

R3 2 5.164 2.582 4.999 0.017 

Error 20 20.657 0.5164   

Total 26 30.986 1.192   

 

5.2 Future Work 

5.2.1 Enhancement of Investment Model 

An extension for the investment model introduced in Chapter 3 is to relax the assumption 

for parametrically fixed initial and expansion capacities. This would enable investors to 

make investment decisions based more comprehensive set of investment candidates. 
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5.2.2 Enhancement of storage control algorithms  

Both optimization models introduced in Chapter 2 of this work can be extended to 

multiple storage units, load buses and generation resources distributed along larger 

systems. This would make the solution region larger, as charge and discharge controls 

should be specific for each pair of load-storage, and renewable-storage. Also, additional 

constraints would be imposed on the model based on locations of different units. 

5.2.3 Enhancement of decomposition algorithm (Model II in Chapter  2) 

The approximate model can be enhanced and extended in number of ways: 

1. Optimization within each zone is enhanced by taking into account price variance 

within each zone. This will allow us to benefit from arbitrage and also from both 

charging and discharging within each zone. However, to take advantage of 

solution space reduction of this model and avoid hourly solutions, a criteria 

should be defined to identify the zones which are potential candidates for 

arbitrage, and hourly analysis be done only on zones having the criteria. 

2. Model II for control of storage does not account for uncertainty in stochastic 

parameters. An MPC approach can be beneficial for this problem, so that every 

time that new observations are received on stochastic parameters, new zones for 

the remaining hours of the day are constructed and dynamic programming is 

applied to find new control commands. 

3. Considering market and interconnection requirements, excessive renewable 

output can be sold to the grid, either directly or through storage discharge to 

increase microgrid profit. 
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APPENDIX I – PARALLELS BETWEEN SUPPLY CHAIN 

AND POWER CONCEPTS 

Table 0.1 briefly presents some conceptual parallels between supply chain management 

and power engineering. 

Table 0.1 Parallels between supply chain and power concepts 

Area Supply Chain Power 

Demand 

Management 

Kanban Dispatching 

Line balancing Energy regulation 

Manufacturing execution system 

(MES) 
Wholesale market design 

Demand 

generation 
JIT, push or pull 

Used to be JIT, moving towards 

push+pull 

Business risks Retailer lost business Load curtailment 

Risk and 

mitigation 

Safety stock Spinning reserve 

Lead time 
Delays/lost load sue to wrong 

renewable forecast 

Inventory/Buffer Storage 

Dynamic rerouting Dynamic switching 
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