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Today’s state of the art simulations generate high-resolution data at an ever-

increasing rate. Such simulations produce data with billions of mesh points (or 

voxels) for each timestep and thousands of such timesteps with multiple 

variables. Time-varying data can easily reach peta- and exa-byte scale. 

Visualizing these massive data sets is still an on-going problem. Even after 

visualizing this data, viewing each variable at each timestep is practically 

impossible when there are thousands of timesteps. Simulations become too 

complex for the scientist to analyze manually. In such time-varying data sets, 

scientists want to know “where and when events happen” or “how long an event 

lasts”. Finding these events in thousands of timesteps is not possible with 
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standard visualization tools. What scientists need are routines, procedures and 

visualizing techniques to help filter massive data and help focus on areas and 

events of interest automatically. 

The problems facing any attempt to localize complex events (activities) 

automatically in time-varying 3D scientific data can be summarized as: (1) 

provide an appropriate way for users to define an event of interest; (2) find an 

appropriate formalism to model this event; (3) apply the model to detect many 

instances of the event of interest in simulation data; and (4) present the detected 

events to users in an appropriate visual form. 

The contributions in this dissertation include introduction of the concept of 

activity detection for scientific visualization, the use of Petri Nets to model and 

detect activities in scientific visualization, an enhancement of Petri Nets to 

include the dynamics of scientific phenomena and demonstration of the use of 

activity detection on three different 3D time-varying data sets as case studies. In 

addition, a full 3D group-tracking model in which we extract and track groups as 

well as the individual features that form them is presented. 
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CHAPTER 1: 

INTRODUCTION 

Today’s state of the art simulations and data acquisition systems generate 

high resolution data at an ever increasing rate. These simulations are generally 

in 3D with many variables and many timesteps. They produce data with billions 

of mesh points (or voxels) for each timestep and thousands of such timesteps 

with multiple variables. Time-varying data can easily reach peta- and exa-byte 

scale. Visualizing these massive data sets is still an on-going problem. Even after 

visualizing this data, viewing each variable or each object “feature” at each 

timestep is practically impossible in thousands of timesteps. Simulations become 

too complex for the scientist to analyse manually for simulations with identifiable 

features. Scientists want to know “where and when events happen” or “how long 

an event lasts”. Finding these events in thousands of timesteps is not possible 

with today’s tools. What scientists need are routines, procedures and visualizing 

techniques to help filter massive data and help focus on areas and events of 

interest. Furthermore, in many simulations, scientists have hypothesis about 

events occurring in the data and would like to test and refine their assumption. 

Allowing a scientist to model an event and then search for that event over 

thousands of timesteps would both filter massive data and enable scientists to 

focus on regions of interests in space and time.   

Detection of events has been an active research area in video analysis and 

there have been a large number of techniques and tools have been proposed 
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(see Chapter 3). However, currently there is no tool available for scientists to 

define, model and automatically search for complex events, i.e., activities, in their 

time-varying 3D scientific data. Most visualization and analysis routines are still 

focused on a single timestep. Available visualization routines for time-varying 

data are mostly concerned with the correspondence problem which involves 

correlating objects from one timestep to the next. However, these routines do not 

provide the scientist with the ability to model complex spatio-temporal patterns or 

to answer the fundamental issue of where, when and how “interesting things” 

occur.  

Activity detection is an automated search process for finding a specific and 

complex pattern (activity) in a large data set containing many different types of 

patterns. Activity examples include formation of features (such as galaxies, 

halos, storms or blood clots), anomalous interaction or behaviour (anomaly 

detection), merge-split or ignition events. These events are distributed over a 

large number of timesteps. Different portions of the pattern happen at different 

timesteps. The duration of an activity changes from one instance to another, i.e., 

one instance of an activity may take 20 timesteps and another instance of the 

same activity could take four. Inputs and outputs of an activity detection 

framework are shown in Figure 1. Inputs to a typical activity detection system are 

the data set and the definition of the activity. The output of an activity detection 

framework is the list of detected activities including the answers to the “where, 

when and which” questions.  
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The problems facing any attempt to localize complex events (activities) 

automatically in time-varying 3D scientific data can be summarized as follows: (1) 

define an event of interest; (2) model this event; (3) detect all the instances of the 

model in simulation data; (4) visualize the results. 

In this dissertation, we introduce activity detection and discuss the 

applicability of activity detection for both data analysis and visualization 

purposes. The main goal is to develop a framework that a scientist can use 

to first model a spatio-temporal pattern and then search through massive 

data sets to find instances of such a pattern. The natural way of modeling 

events or activities is using a graphical and state based approach that can 

convert or translate the semantics of an event into a graph-based sequential 

model. Therefore, in this dissertation, Petri Nets are proposed to model and 

search events in scientific simulations. The focus primarily is the activities of 

observable features. However, the presented techniques can be used for 

detecting any type of activity. 

Inputs Outputs 

Activity 

Detection 

Framework 

Data 

Definition (template) 

of the activity 

A list of found activities including: 

1) where the activity happens, 

2) when it happens, 

3) which objects are involved in the 

activity. 

Figure 1: Inputs and outputs of a typical activity detection framework. In 
addition to the typical data, a form of the activity definition is also given to 
the framework. This form may be in the same format as the input data, in a 
form of a mathematical equation or can be a semantic description, etc. The 
output of the framework is the list of detected activities.  
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1.1. Motivation, problem statement 

Visualization routines for time-varying 3D data are heavily focused on the 

problems of feature tracking [71]. Feature tracking correlates the features 

(scientific objects) from one timestep to the next in time-varying scientific 

simulations. Examples of scientific data sets are shown in both Figure 2 and 

Figure 3. Figure 2a visualizes the first timestep of an ocean simulation where the 

region of interests are the ocean eddies and Figure 2b visualizes the first 

timestep of a 3D computational fluid dynamics simulation where the region of 

interests are the vortices. Figure 3 visualizes sample timesteps from the 

processed data (extracted and tracked vortices) by applying the feature tracking 

algorithm on the entire fluid dynamics simulation data (the data set has 100 

timesteps). While the available feature tracking techniques allow time-varying 

data analysis in 3D simulations, they do not provide the scientist flexibility to 

model different activities or hypothesis about the data to answer the fundamental 

issue of where and when “interesting things” occur. 

Scientists are usually interested in analysing specific patterns and studying 

local interactions, the origin of features, how they evolve, and how they interact. 

These patterns can span multiple timesteps and can occur frequently throughout 

the simulations. Many of the patterns include different types of feature states or 

their various types of interactions. In this dissertation, we call these time 

dependent patterns “events” or “activities”. 

Relating to Figure 3 and the vortex simulation dataset, sample questions a 

scientist may ask of the data include: 
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 Which features first merge and then split within a period of five timesteps 

(merge-split activity)? 

 How many features do further split among the features that already 

performed the “merge-split” activity defined above? 

 How long does it take for features to merge-split-split and then merge 

again? 

 Which features rotate around other objects and where do these events 

occur? 

 When does a feature type transform into another feature type and how 

long do these transformation events take? 

 

Answering similar questions in the computer vision community has been an 

active research area and is referred to as “activity detection” or “activity 

(a) (b) 

Figure 2: Scientific Data examples: (a) the visualization of the first timestep of an 
ocean simulation, (b) visualization of the first timestep of a computational fluid 
dynamics simulation.  
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recognition”. However, this is not an active topic of research in the 3D 

visualization community.  

 

1.2. What is activity detection in scientific visualization? 

Activity detection is an active research field in video analysis. For example 

consider a security surveillance system at an airport. There are hundreds of 

locations and thousands of hours of video that must be monitored. One situation 

of interest to security personal is a “leaving a bag unattended” activity where a 

person walks in with a bag, puts the bag down and then walks away without the 

Figure 3: Iso-surface visualization of vortices in a time-varying 3D computational 
fluid dynamics simulation. The extracted and tracked vortices in the first three 
timesteps and the last three timesteps of the simulation data are shown above. 
Each individual vortex has a unique color. The splitting vortices have the same 
parent vortex’s color. The data set is from [71].  

 

Timestep 1 Timestep 2 Timestep 3 

Timestep 98 Timestep 99 Timestep 100 

… 
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bag. In Figure 4, a model of this activity is shown as a sequence of key and 

atomic (primitive) events. This sequence is shown as a directed graph. Clearly, 

we can add complexity to this sequence, for example, by adding more than one 

person where there is a group of people holding a bag or where the person 

routinely picks up a bag and puts it down. In a video sequence, each step would 

occur at a specific point in time. An example of an activity sequence from a video 

is given in Figure 4. Underneath each activity state, a sample time step is given 

representing where in the dataset that event is detected. In another video 

sequence, the detection would occur in different time steps and the time 

difference between the states would vary.  

 

Many other activity examples have been searched in video data such as:  

 a person leaves his/her car to meet another person in another car as 

in [25], 

 a person robs a bank as in [3], 

 a person skips the checkpoint at an airport as in [41], 

All these activities involve actors performing the activity, contain a certain 

semantic description and span over multiple timesteps. Furthermore, they can all 

be categorized by a sequence of timesteps. 

Timestep 1 

Figure 4: A simple sequence of an activity. The activity is formed of four 
different atomic events (actions) over the course of 42 timesteps. 

A person 

appears 
Person 
walks  

Leaves the 
bag 

Disappears 
without the bag 

   

Timestep 15 Timestep 36 Timestep 42 
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Similar to Figure 4, there are many cases where the scientists are looking for 

complex interactions of features in 3D scientific simulations. Extraction of such 

events and their quantification is important for data analysis in scientific data 

sets.   

While detecting particular activities has been an active research area in video 

analysis, activity detection remains an open research problem in 3D scientific 

visualization. The problems facing any attempt to localize activities automatically 

in time-varying 3D scientific data are four-fold, namely, 

1. How to define and model a complex interaction that spans a limited time, 

2. How to detect simultaneous activities efficiently when there are multiple 

actors performing the same activity independently in the scene, 

3. How to use an activity model to automate and ease the querying and 

visualization processes, 

4. How to develop a generic method that can be used in many different 

domains in scientific visualization, i.e., a method that does not require 

adapting the available source code to each domain or to each application. 

The first problem is related to the inference problem in computer vision and 

has been an active research area under the “activity detection” name, (although 

the terms “activity recognition”, “action detection” and “action recognition” have 

also been used interchangeably). In this dissertation, we propose to use Petri 

Nets to model an activity in scientific visualization.  

The second problem is the detection of multiple activities simultaneously 

where different actors are performing the same activity independently. When 
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there are multiple objects in the scene, each object is likely to perform the same 

activity independent of the other possible activity performers (objects). Although 

there have been recent studies in video, surveillance and multimedia fields to 

detect activities with Petri Nets, the main goal has been the detection of a single 

activity performed by one or many people or a person’s interaction with the 

surrounding objects (mainly other humans or vehicles). In many scientific 

simulations the number of objects is greater than one, thereby increasing the 

likelihood of observing more than one activity happening in a scene over time. 

This problem is a common problem in both computer vision and scientific 

visualization communities. To handle this case, we enhance Petri Nets to detect 

simultaneous activities of scientific objects. 

The third problem in attempting to automatically localize events is related to 

the efficient integration of the activity detection with scientific visualization. 

Activity detection archives a list of participating features, their locations and 

associated timesteps. This information can be used to enhance scientific 

visualization by isolating features in each timestep or even designing observable 

feature based time-varying transfer functions. 

Any specific activity can always be implemented directly for a simulation. 

However, this approach is not scalable and does not easily allow scientists to re-

model or reuse these activity programs. With Petri Nets, we provide scientists a 

generic method to model and detect events in time-varying 3D data.  

In this dissertation, we present 3 different examples. The first data set is a 

toy data set. It contains a pseudo-spectral simulation of coherent turbulent vortex 
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structures. In this data set, features merge, split throughout the data set and we 

look for the features that perform a specific combination these events. The 

combination we seek is “merge-split” activity. The second data set is a collection 

of acoustic scans of a plume in the sea over time. In this data set, the scientists 

are interested in detecting the specific timesteps when unusual changes in 

direction or magnitude of the bending of the plume in response to local ocean 

currents occur. The third data set is a wall bounded turbulent Direct Numerical 

Simulation (DNS). In this data set, there are hundreds of hairpin vortices 

(features) interacting with each other in each timestep. One event, which 

interests scientists, in such simulations is finding when several “young” hairpins 

come together and eventually form a group of unconnected hairpins moving 

together.  These are the three examples we have chosen to explore. However, in 

many other domains, there are problems with similar need for methods of 

detection of events such as blood clot formation in blood flow simulations, 

extinction and re-ignition in turbulent flames in combustion simulations or 

magnetic storm formations in space weather simulations.  

These abovementioned scientific objects mimic the computer vision example 

in which actors perform activities: the actors are now features in the time-varying 

scientific data and the activities reflect interactions or changes in feature states. 

The ability to model and detect such activities where and when they take place 

would be helpful in these situations.  
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1.3. Enhancing scientific visualization 

Activity detection can be used as an analysis and visualization tool. These 

ideas are summarized below: 

 Activity detection to model or validate an hypothesis in scientific 

simulations: Many scientific simulations are generated to simulate a 

specific event or phenomena. Such phenomena are modeled by a set of 

hypothesis. Activity detection can be used to detect and thus validate, 

such phenomena happening within the data. For example, if there is no 

such event found in the data, then the original hypothesis may not be 

correct. 

While scientific simulations are the alternatives to the experimental 

setups for data gathering, there are specific issues in simulations. One of 

the fundamental problems in simulations, (as opposed to the physical and 

economical limitations in experimental studies) is establishing a successful 

model describing the phenomena. The model in many cases is not clearly 

known in advance, and therefore it usually requires several iterations to 

refine. The refinement process is done via an interactive and recursive 

process, in which first the simulation data is generated based on the 

model and then the generated simulation data is analysed, and then the 

model is tuned or restructured based on the analysis results. Activity 

detection can be used to help in hypothesis generation and validation. 
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Figure 5 shows the flow diagram for hypothesis testing. In scientific 

simulations, the scientist usually has an idea (hypothesis) about possible 

phenomena happening in the data and would like to analyse and check 

those phenomena. For that purpose, first the scientist creates the 

simulation data, extracts and tracks all the region of interests in the 

simulation and computes their attributes. These computes attributes help 

scientist to model his/her hypothesis first, and then the activity detection 

algorithm would extract all the instances of the model. The visual results 

would provide feedback to scientist to refine their model (i.e., hypothesis). 

The red loop (shown in Figure 5) would repeat itself for model refinement. 

 

 

 

 

 

 

 

Figure 5: Flow diagram of hypothesis testing. Once the attributes are 
computed, scientist can go through the loop the refine his/her hypothesis. 

 

 Activity detection for time-varying data analysis: Once the scientist is 

assured that the hypothesis is correct, then he/she can search for various 

types of events within the data. Searching for various types of events, the 

number of such events occuring and the duration of such events can help 
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the scientist in understanding their data and ultimately the phenomena of 

interest. Specifically, the statistics of the participated features, the 

numbers of partially completed activities and their percentage can be used 

to analyze the scientific data and scientific phenomena. 

 Activity detection for improving the visualization of time-varying 

data: Activity detection can help reduce clutter, and can focus on events 

rather than focusing on features. This is especially useful in data 

abstraction for visualization. While not the focus of this dissertation, 

activity detection can also help model and generate automated time-

varying transfer functions. Please see Chapter 7 for more about activity 

visualization. 

1.4. Summary of contributions 

The contributions of this dissertation are listed as follows: 

1) Introduction of the concept “activity detection” for scientific visualization,  

2) proposal of the use of Petri Nets to model and detect activities in scientific 

simulations, 

3) enhancement of the existing Petri Net formalism to handle simultaneous 

activity detection in time-varying 3D data with the introduction of token-

tracking Petri Nets, 

4) the use of a similarity based clustering algorithm to first define and then 

group features automatically in scientific datasets, 

5) proposal of an algorithm for tracking groups (besides the features) in 

scientific datasets,  
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6) description of how activity detection can be used to enhance scientific 

visualization, and 

7) demonstration of the use of activity detection on three different 3D time-

varying data sets.  

In Chapter 2, first a list of the descriptions of the commonly used terms in this 

dissertation is given and then an overview of the proposed activity detection 

framework and its parts including segmentation, tracking and activity detection 

are discussed. The related literature in activity detection is provided in Chapter 3. 

Chapter 4 presents an algorithm that enhances the feature tracking algorithm to 

group the features and track these groups as well as the features.  

 Chapter 5 provides the background for Petri Nets to model and detect 

activities with Petri Nets. Chapter 6 presents the enhancements in Petri Nets that 

were made as a part of this dissertation. These enhancements consider the 

dynamics of scientific simulations. Resulting Petri Net is called token-tracking 

Petri Nets and can be used for both activity modelling and detection in scientific 

visualization. Activity detection in scientific simulations also enhances 

visualization. Such activity visualization techniques are discussed in Chapter 7. 

Chapter 8 presents the details of the implementations of the proposed activity 

detection framework. Three case studies of activity detection in scientific 

visualization are provided in Chapter 9. In Chapter 10 we conclude this 

dissertation.  

Appendices include additional information that complements this dissertation. 

Appendix I discusses the importance of attribute computation by giving the 
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details of a specific attribute computation technique (SIFT). Appendix II includes 

the details of the format of both inputs and outputs in the presented activity 

detection framework. Appendix III provides background on the data that is used 

as the input for the proposed activity detection framework.  
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CHAPTER 2: 

THE PROPOSED ACTIVITY DETECTION FRAMEWORK 

In this chapter, we provide the definitions and background 

needed to understand the project and its context.  We start with a list 

of common terms and how we intend them to be understood, then 

introduce the activity detection framework, and finally review various 

aspects of activity detection.  

2.1.  Definitions 

Below is a set of commonly used terms. 

Data: In this dissertation, we will use the term data to describe a set of 

numbers (values) representing the entire set of measurements in a domain. The 

values at each node can be single (scalar) or can be vector (multiple values for 

each node). If these measurements come from different locations of a geometric 

space, then we will call the data spatial data. Therefore spatial data, besides the 

measurements (data values), also includes the location of these data values and 

typically includes the connectivity information. 

Region of interest (ROI): A region of interest (ROI) is the spatial area or the 

volume that covers a certain set of interest points (i.e., nodes) in the data. The 

definition of the “interest” depends on the application domain and in this 

dissertation we restrict it to a scientific object in an observable form. Therefore, in 

the data, all the nodes that are not a part of any region of interests form a new 

type of object: background. Generally speaking, the term background is usually 
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used to describe the unimportant part of the data and region of interest is used to 

describe the important part of the data. 

Object, feature: We will use the terms object and feature interchangeably 

referring to a region of interest that has a physical meaning or that is in an 

observable form. An object or a feature can be a connected set of regions or a 

group of unconnected regions. For example a human can be an object in one 

context in a video data, while in another data set a cluster (group) of humans can 

be defined as a single object. 

Group: A group is a set of related objects. The relation can be only logical 

(such as all the green objects, the set of voxels with a certain value, etc.) or can 

also have a physical meaning (such as a flock of bird, a school of fish, a galaxy, 

etc.). 

Meta-data, attributes: We will use the terms meta-data or attributes to 

describe a set of computed quantitative properties of the objects that are usually 

obtained by processing the data. Examples include the mean value of an object’s 

member points, volume, centroid or surface points of an object. 

Spatio-temporal Pattern: A spatial pattern is a pattern that can be defined by 

only the geometric (or spatial) properties of the data such as shape or length. 

Spatio-temporal pattern is a pattern that is a function of both space and time. 

That is, the pattern does not occur in a single timestep. Instead, it spans over 

multiple timesteps to occur. Detection (or recognition) of such patterns, typically 

require inspecting sets of timesteps. Therefore spatio-temporal patterns cannot 
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be detected by inspecting only the geometric structures in a single (each) 

timestep.  

Event: An event can be defined in many different ways including: 1) the 

cause of the change in an object’s state, 2) a spatio-temporal pattern, or 3) an 

entire eco-system including the cause, objects and the change in object states 

over the time. System approach is more generic and it allows us to model and 

analyse an event by using the available system based techniques and tools 

(such as Petri Nets). In such systems, an event can be considered as a spatio-

temporal pattern and can be modelled by considering various causes that result 

a change in objects’ state. An event happens over a course of timesteps and can 

include the interactions of different types of objects. Events can be further divided 

into two groups: atomic events (actions) and complex events (activities).  

Action: An atomic event or action is the primitive event that happens in a 

short time span. Actions usually occur between two consecutive timesteps. For 

example, an object may split from one timestep to the next [71]. Therefore, in 

many cases, an action can be inferred by comparing the current timestep to a 

specific (reference) timestep.  

Activity: A complex event or an activity is a set of actions that spans multiple 

timesteps and can include multiple object types, object states or object 

interactions. Complex events, i.e., activities, usually occur over more than 2 

timesteps.  
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Actor: An actor is an object that participates or is involved in an activity. We 

will use the terms actor, object or feature interchangeably to refer to a region of 

interest that performs the activity or is participating in the activity.  

Phenomenon: In this dissertation, we will use the term phenomenon 

specifically referring to a scientific spatio-temporal pattern.  

Segmentation, extraction: Segmentation (or extraction) is the process of 

defining a set of voxels as a region of interest. During segmentation, each voxel 

in a 3D data is labelled as part of a ROI or as part of the background. 

Object recognition: Recognition is the process of assigning a label to each 

segmented data point (node) from a given set of labels (such as flame, jet, 

bubble, vortex, hairpin, etc.). Object recognition is the process of specifying the 

labels for the regions of interests. In scientific simulations, usually a set of 

connected points (nodes) represent a single (scientifically meaningful) object, 

therefore such set of connected data points collectively  are assigned the same 

label or ID. 

Scientific visualization: Scientists study scientific phenomena through 

experiments to analyse and understand the underlying dynamics. These 

experiments yield large amounts of data. Data collection through physical 

experiments (setups) can be expensive in some domains. In others, it may be 

almost impossible due to the physical limitations. This is where the scientific 

simulations become useful and feasible to understand the scientific phenomena. 

Figure 6 illustrates the data collection and visualization schema in scientific 

domains. 
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Scientific data can be either simulation based or real (collected by means of 

various data acquisition tools). In this dissertation, we will use the both data types 

(i.e., simulation and real data). The type, the format and the properties of 

scientific data changes from field to field depending on the properties of the 

domain such as the topology of the domain, its shape or data dimensions. In this 

dissertation, we focus on 3-Dimensional (3D) time-varying data sets in which the 

data is collected and saved in 3 dimensional space (i.e., in a volume) over a 

course of timesteps. Each 3D volume consists of nodes (voxels). 

 

Each node can have a scalar or a vector measurements (or values); and 

each of these values is a function of time, i.e., these values may change over 

time. Moreover, in each 3D volume, the connectivity information of the nodes is 

known (given). A time-varying 2D data set can also be considered a 3D data set 
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Figure 6: A relational diagram illustrating the flow in scientific visualization. 
Two major parts of scientific visualization are separated: (a) scientific data 
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by considering the 2D data as a layer (a slice) and then by adding another layer 

(where all the values are either equal to the minimum or maximum value of the 

original 2D data) on top of the original 2D data.  

2.2.  An overview of the proposed activity detection framework 

A typical activity detection framework involves actors and the actors are 

separated from the background. In 3D scientific simulations, this process 

involves segmentation and tracking.  

Since an event, fundamentally, is the cause or the result of a change in an 

actor’s state, it is essential to extract the object (actor) first and then define its 

state in the data. This information can be computed after the segmentation step. 

Since an activity spans over multiple timesteps, it is also essential to track the 

objects over time. Therefore, before the activity detection step, one needs to 

segment and track the actors. The effect of segmentation (extraction) and 

tracking in visualization are illustrated in Figure 7. Segmentation (extraction) 

quantifies the features in the data. Thus only the voxels that are part of a feature 

can be visualized in the data. Tracking correlated the features from one timestep 

to the next and provides the correspondence information. By using the 

correspondence information we can assign the same color to the same 

segmented object (even if it moves or changes its shape) over time. 

Figure 8 shows the overall framework for activity detection with Petri Nets in 

scientific visualization. The input to the system is the time-varying data set and 

the Petri Net model defined by the scientist. The first step is processing the data 

in the framework. In this step, features, groups, variable changes or other types 
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of user interested entities are computed. The computed meta-data includes 

spatial properties of the objects and may include volume, mass, centroid, max 

and min locations, max and min positions, orientation, shape information, 

bounding box, etc. 

 

 

The next step in the framework is correlating the meta-data over time. 

Correlating the objects (thus their spatial attributes) is known as the 

correspondence problem.  

… 
  

… 
 

  

      
  

  
   

  

    
  

  

 
Time-varying 3D data 

  

Visualization of the extracted features 

Visualization of the extracted and tracked 
features over time 

… 
        

  

  
    

  

    
  

  

t1 t
2
 t

n
 

t
1
 t

2
 t

n
 

t
1
 t

2
 t

n
 

(after) feature 
extraction 

  

(a) 

(b) 

(c) 

Figure 7: An illustration of (a) time-varying data, (b) visualization of the 
extracted features in the data, (c) visualization of the extracted and tracked 
features in the data. 

(after) feature 
extraction and 

tracking 



23 
 

 
 

 

 

 

… 
  

… 
 

  

      
  

  
   

  

    
  

  

 

Time-varying 3D data 

 

Visualization of the extracted features 

Visualization of the extracted and tracked 

features over time 

… 
        

  

  
    

  

    
  

  

t1 t
2
 t

n
 

t
1
 t

2
 t

n
 

t
1
 t

2
 t

n
 

Figure 8: An Activity Detection Framework with Petri Nets. (a) the inputs are 
the data and the activity model. The activity or event of interest is defined by 
the scientist and it is the event that the scientist is interesting in searching for 
within the dataset. The way the scientist describes the event is through the 
use of a Petri Net. (b) the next step is processing the data. In this step 
features, groups, etc. are computed and stored as meta-data. (c) This meta-
data is used to correlate features/variables and their changes over time. 
These time-dependent attributes are added to the meta-data. (d) once this 
information (meta-data) is computed, it can be searched using the Petri Nets 
to find an activity of interest. The output of the Petri Net is a list of timesteps 
where the event occurs and a list of features that participate in the activity. 
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To solve this problem one of many available tracking algorithms using 

volume overlap, location estimation or shape matching can be used to correlate 

these objects; or the tracking information may be inherent in the simulation. 

Time-dependent attributes may include tracking history of the features (the 

correspondence list), position changes, and any other value/attribute that is a 

function of time (including time dependent derivatives). All these computed meta-

data (both the spatial attributes and the time dependent attributes) is fed into the 

final step for activity detection. Activity detection uses this meta-data along with 

the activity model as the inputs to search for the specified activity. 

The final step is searching throughout the input meta-data for the activity. 

The Petri Net is evaluated (run) over time by means of tokens (described in 

Chapter 5).  Tokens represent features undergoing activities and are updated as 

they move through the Petri Net. The tokens that complete the sequence are the 

ones that perform the activity.   

As a summary, a typical activity detection framework includes three 

fundamental processes: 1) segmentation and attribute computation, 2) tracking 

and 3) activity detection. 

2.2.1 Segmentation  

Segmentation, i.e., extraction or background removal, is the process of 

labelling the nodes (or voxels) as either being a region of interest or being part of 

the background in the data. If there are various types of regions-of-interests in 

the data, then the labelled region of interest points can be further classified. In 
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scientific simulations, usually, a group of connected region of interest points form 

a meaningful (observable) scientific object. Examples of scientific objects are 

vortices in computational fluid dynamics, halos in cosmology simulations, or cell 

structures in blood flow simulations. 

There are various techniques proposed to segment regions-of-interests 

including thresholding, region growing, clustering, machine learning algorithms, 

histogram based techniques, level-set techniques, model based, geometry and 

topology based techniques. A list of available techniques and their sample 

applications can be found in papers [1], [56], [36] and [86].  

Recognition is the process of assigning a label to the detected region of 

interest from a set of available labels. In other words, it is identifying the type of 

an object. The recognition process is usually operates on a set of distinctive 

attributes (properties) of the region of interest. These attributes help distinguish 

feature types from one another. Typically, deriving such attributes requires the 

information of the object’s boundaries (contours) so that by looking at the data 

values within the boundaries of an object various attributes such as the shape, 

volume and other attributes can be computed.  

Domain knowledge is essential to build successful segmentation techniques. 

There is (currently) no known segmentation technique that work wells in each 

and every domain or applications. In many domains, a thresholding process 

yields effective results for feature extraction. In such applications, domain 

knowledge is utilized to determine the threshold value. However, in many 

scientific domains the thresholding operation by itself is not sufficient enough 
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and, therefore, is combined with the node (or voxel) connectivity information for a 

better accuracy in segmentation. The domain knowledge in such applications is 

used in both defining the threshold value and the type of connectivity. Region 

growing is one such technique. For example, in sneak-based or level-set based 

techniques, the connectivity information expanded to include the “global” shape 

information of the object.     

As the structure and the definition of the objects gets complex, the utilization 

of the detailed domain knowledge in the segmentation technique gets more 

important. In such complex techniques a new set of data, i.e., meta-data, is 

generated prior to the segmentation process. For example, in some techniques 

the mean and variance values are computed and saved in a vector form. Such 

attribute vectors are used in machine learning techniques to segment the region 

of interests or to identify the type of a region of interest. Besides the mean and 

variance values, there are many types of attributes defined and used in computer 

vision field for both action recognition and object segmentation. Recently, the 

power of computing local attributes in various applications has shown promise in 

various segmentation, detection and tracking applications. Examples of such 

local attributes are SIFT [45], meshSIFT [48] or SURF [6] techniques. For a 

detailed description of the SIFT technique see Appendix I. 

In our proposed activity detection framework, any of the available 

segmentation and recognition techniques can be employed to extract features 

from scientific simulations. 
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2.2.2 Tracking  

Since an activity is a temporal process that causes a change in an object’s 

state, it is essential to detect the changes in each object’s state and in each 

timestep. While each object’s state can be computed from their spatial attributes 

in each timestep, as we start to process a new timestep, computers do not know 

which objects in new timestep respond to the ones from the previous timestep. 

(While correlating objects in time is a trivial task for the human brain and eye, this 

is a challenging task for the computers since the number of found objects, their 

location and shape information vary from one timestep to the next). The solution 

to this problem is widely known as tracking. In both computer vision and in 

scientific visualization fields there has been a considerable amount of work done 

for tracking regions-of-interests over time. Please refer to the surveys [91], [77] 

and [90] for a list of available tracking techniques and their applications in 

computer vision. 

In scientific simulations, extracting and tracking scientific objects are 

considered together in time-varying data applications. These applications are 

usually called under the name feature tracking. The term feature tracking from 

scientific visualization and the term object tracking from computer vision 

applications have similar descriptions. They both fundamentally first segment the 

objects (features) in the data and then track (correlate) these segmented objects 

over time. 

In scientific visualization, the first complete feature tracking framework was 

introduced by Samtaney et al. [1], as a solution to extract and track the 
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volumetric features within time-varying data sets. In their paper, they proposed 

the first feature tracking framework and used centroid position, volume, mass 

and 2D circulation information to track features. In the same group, Silver and 

Wang extended the feature tracking framework by introducing the volume 

tracking schema in [71], [72] and [73]. They observed that most features overlap 

between two consecutive time frames when the frame sampling rate is high 

enough. By incorporating this observation in their work, they also developed a 

more memory efficient algorithm which supports unstructured data sets. The next 

refinement, prompted by extending the feature tracking framework to a 

distributed Adaptive Mesh Refinement (AMR) data structures, allowed a viewer 

to isolate a multi-level isosurface and visualize its evolution spatiotemporally at 

different resolutions [1]. Next, the fitting of ellipsoids to the features was 

introduced for an efficient attribute computation and applied to the 

characterization and visualization of plumes [66]. Several studies use a predictive 

approach to tracking.  In [64], Reinders et al. proposed a method that estimates 

the locations of the features in the next frame to improve the tracking quality by 

assuming that the features evolve predictably. Similarly, Muelder and Ma in [50] 

proposed a tracking schema including a prediction method. However, instead of 

extracting all the features first, they propose using the information of the current 

and previous frames to estimate the location of the feature in the next frame and 

they use that information to perform both segmentation and tracking at the same 

time. Other studies address different ways of abstracting the correspondence. Ji 

et al. [33] proposed a method to track features by using higher dimensional 
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isosurfacing. Thus, instead of extracting the isosurfaces from each time frame 

and then performing an overlapping test, they propose using the higher 

dimensional geometry to track user selected features in time by performing an  

isosurfacing process  in 4D as opposed to doing it in 3D. In [79], Tzeng and Ma 

applied neural networks to find the region boundaries by estimating the transfer 

functions in the feature tracking framework. Sohn and Bajaj [74], proposed a 

method to compute the correspondence in time-varying contour trees. By 

applying the contour three on feature tracking, they tracked user selected 

contours.  In [38], Laney et al. propose to use Morse-Smale complex to segment 

bubbles in a hierarchical segmentation structure. Different attributes have also 

been used to correlate features. In [34], Ji and Shen proposed using earth 

mover’s distance metric to track objects as an alternative to the volume 

overlapping or attribute based matching methods. In [1], Caban et al. proposed to 

use first and second order statistics with run-length matrices to capture textures 

and to distinguish them. Thus, by generating a feature vector, they perform a 

similarity search to find the best matches. In [24] Gezahegne et al. proposed a 

method that allows objects to retain their original labels for a couple of frames, 

thus the algorithm can detect bubbles going through each other instead of being 

classified as merged and then split. Weber et. al. proposed a technique using 

Reeb graphs to track features in [83].  

Besides the individual objects (features), defining groups of objects and 

tracking them in many domains has also been the interest in many domains. 

Early studies of group tracking consider movement of features within radar data a 
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list of such papers can be found in [82]. Computer vision studies also address 

group tracking. McKenna et al. [49] proposed a computer vision based tracking 

system. The system utilized color to disambiguate occlusions and to qualitatively 

estimate the depth ordering and position during occlusion. The system tracks 

groups of people through mutual occlusions as they form groups and then 

separate. Gennari and Hager [23] introduced a general class of partitioning 

functions to define a group, and a set of rules to split and merge groups. Based 

on the group definition, they proposed a modified PDA estimator to track groups 

of objects. They reported that they can detect the groups of people that merge 

and split. Mucientes and Burgard integrated Multi-Hypothesis Tracking (MHT) 

with Murty’s algorithm to tack clusters of people [51]. Joo and Chellappa targeted 

on solving the data association problem in object tracking using the multi-

hypothesis approach [35]. Lau et al. extended the MHT method to hypothesize 

over both, the group formation process (models) and the association of 

observations to tracks (assignments) [39].  

While grouping and group tracking has long been studied in computer vision, 

it is relatively a new subject in scientific visualization. As part of this dissertation, 

a group tracking algorithm which is an extension of the feature tracking algorithm 

of Silver and Wang in [71] and [73] is described.  

Any of these above-mentioned techniques can be employed in our proposed 

activity detection framework to track region of interests. 
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2.2.3 Activity detection 

Activity detection is the process of searching for the existing instances of an 

activity in time-varying data sets. While there is a slight difference between 

activity detection and activity recognition, fundamentally, we will assume that 

they both serve the same purpose: extracting the instances of a certain activity or 

a set of activities. The subtle difference between activity detection and activity 

recognition lies in the definition of activity. If there are multiple activities are 

defined (modelled) in the data, then the process of finding and labelling the 

instances of any of these activities in the data is known as activity recognition. If 

there is only a single activity to detect (or if the purpose is finding “any” activity in 

the data regardless of its label), then the process of finding the instances of the 

activity is simply an activity detection process. Note that the terms “activity 

detection”, “activity recognition”, “action detection” and “action recognition” have 

also been used interchangeably, as discussed in the survey paper [78]. 

Activity detection is related to data mining. Data mining is the process of 

finding new and nontrivial information within a data set. This information can be 

in the form of a pattern, a model of the process that generated the data set or the 

correlation information between the available variables. Activity detection 

specifically deals with the complex patterns that are in the form of sequences (or 

combinations) of simpler patterns. A successful data mining technique requires 

domain knowledge [26]. This is also true for a generic activity detection 

framework. Inputs and outputs of a generic activity detection framework are 

shown in Figure 4. 
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While supervised and unsupervised techniques can also be used for activity 

detection, they do not provide an intuitive and easy way to express a hypothesis. 

Our focus in this paper is presenting a technique that allows a scientist to specify 

an event and search for it. Therefore, in this paper we propose to use Petri Nets 

to express and model an activity. A Petri Net model is a graph abstracting an 

activity. Therefore the same Petri Net model (graph) can be used in different 

simulations with different parameters. Compared to the learning based data 

mining techniques, their performance depends on the model description as 

opposed to forming new training data. Choosing between learning based 

algorithm and graph based algorithm balances a trade-off between needing 

additional data for training and needing to specify an accurate description. A 

graph based approach is more likely to meet our objective of enabling hypothesis 

testing. 

 

As a framework, activity detection involves numerous steps including 

segmentation, tracking and computing the feature attributes An illustration of 

Figure 9: A generic activity detection framework. This figure emphasizes on 
the inputs of the activity detection module. Activity detection module runs on 
meta-data. The content of the meta-data depends on the domain and on the 
description of the activity.  
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such individual steps and their connection to each other in a complete activity 

detection framework is given in Figure 9. In Figure 9, the entire data is processed 

only within the Feature & Group Extraction module. This step produces its own 

meta-data. Tracking modules use this meta-data as input and then create their 

own meta-data as output. Activity detection module operates on only the meta-

data that is computed in both extraction (segmentation) and in tracking steps. 

In the next chapter, we review the related activity detection work. 

 

 

 

 

 

 

 

 

 

 

 

 



34 
 

 
 

CHAPTER 3: 

BACKGROUND – RELATED WORK 

This chapter presents the related work from the computer vision 

field. 

Activity detection (or activity recognition) has been studied in many fields 

under the names event detection, event recognition, activity detection or activity 

recognition. Figure 10 classifies a list of various activity detection techniques. 

However, since computer vision applications are the most relevant applications 

that can be applied to scientific visualization, the focus in this chapter si on 

computer vision applications. 

3.1. Related work in computer vision  

In computer vision, the activity detection problem is treated with different 

approaches including clustering, machine learning or semantic based techniques 

using rules or graphs such as Petri Nets. All of these approaches require the 

domain knowledge in different forms. For example, in the case of machine 

learning, the domain knowledge is embedded within the training data. The 

learning process and the accuracy of the technique depend on the validation. 

Validation requires ground truth which is a set of expected or real outputs (labels) 

from the technique. Picking (or generating) the ground truth or the training data is 

equivalent to manually picking and labelling multiple instances of the activity 

within the data set. This is almost the same as exploring the data manually in 

each timestep and, therefore, is an extremely time consuming task [62]. 
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Semantic based activity detection approaches simply generate a model of 

the given activity from its description. These approaches do not require training 

data or a certain type of cost or similarity function to be derived. Instead, the 

domain expert defines the activity in a sequential form in a timely manner and 

this description is used to search for the event. The sequential form can be in the 

form of a set of rules (as in [75]) or a graph (as in [25], [40], [58], [42]). Both rule-

based and graph-based techniques are fundamentally logic based (if-then based) 

techniques. Among those, the graph-based techniques use a state based 

approach in which the various stages of an activity are described as the 

individual nodes (e.g., finite state machines, Petri Nets). Petri Nets encompasses 

both rule-based techniques and finite state machines (a finite state machine is a 

subclass of Petri Nets. See Chapter 5). Using the Petri Net formalism, a scientist 

models an activity in a graphical fashion where objects in the simulation pass 

through different stages on the way to being classified as an activity. Once the 

graphical model is available, a Petri Net algorithm evaluates the model to search 

for the instances of the activity automatically. (This is analogous to knowledge-

assisted visualization [16].) 

In computer vision, activity detection applications mainly focused on human 

related activities. These include interactions or relations between: humans and 

humans [54], humans and vehicles [31], humans and web sites [85] or certain 

human behaviours or their situations in certain environments as in [76]. Various 

techniques including Bayesian techniques, hidden Markov models and 

conditional random fields are used to “learn” and detect activities in such 
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examples. A detailed list of available activity examples and detection techniques 

can be found in the review papers [1], [61], [40] and [78]. Recently, Petri Nets 

gained the attention of researchers in both data mining and activity detection 

communities as in [3], [14], [25], [40], [58] and [42]. This is due to the fact that 

Petri Nets can be used as a natural way of modelling semantic descriptions of 

activities or events. 

While the activity detection related Petri Nets works aimed to work with video 

data, they do not incorporate the “dynamic” properties of the time-varying 

environment (e.g., split, merge, appear and disappear events) within the Petri 

Net formalism. Some of the above-mentioned Petri Net treatments such as timed 

Petri Nets or Stochastic Petri Nets still lack supporting the dynamics of a “time-

varying” system in the sense that the objects (with their attributes) change in 

time-varying systems. 

Figure 10, classifies various techniques based on their distinctive properties. 

Firstly, all the techniques are categorized according to their purpose: whether the 

technique is used for a search related purpose or for a knowledge discovery 

(data mining) purpose. Knowledge discovery techniques fundamentally rely on 

the anomaly detection principle, in which, typically, data is “clustered” first based 

on a predefined metric and then the objects that fall in different clusters are 

further investigated usually by analysing the relative frequency of the 

occurrences in each cluster. Example applications can be found in [18] or in [62]. 

Unless the domain knowledge is properly utilized, clustering based techniques 
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(with the use of commonly available metrics) do not guarantee finding what the 

user/scientist is interested.   

Search based techniques all include the domain knowledge in a certain form. 

The domain knowledge is the information of the activity being searched and of 

the environment in which the activity is performed. Search based techniques can 

be further classified based on how the domain knowledge is utilized. The activity 

being searched can be given as a part of the data (with labels attached to 

individual time steps). This is the most common form of presenting the template 

of the activity in activity detection applications. Example approaches of modelling 

the activity in data form can be found in [63] or in [89]. Alternatively, the definition 

of activity can be given semantically as in [3]. Semantic approaches typically 

express the entire activity as a graph in which the order of the nodes are drawn 

from the given semantic description. On the other hand, machine learning based 

techniques learn the order of states and their numbers typically from the given 

data. In some domains, the activity can be modelled with a mathematical function 

as well.  

While the goal of a typical activity detection framework is fundamentally 

extracting all the instances of the given activity, some of the available techniques 

(usually the early activity recognition works in computer vision) work on detecting 

a single instance (the first available instance or a random subset of all the 

available instances) of the activity in the given dataset.  

Modelling an activity is important. In the literature, while some work focused 

on modelling activities of a single agent (an activity performed by a single object, 
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such as a single human), other work focused on modelling activities performed 

by multi-agents (the activities of multiple agents, such as multiple humans) in the 

literature. Notice that multi-agent activity detection techniques do not necessarily 

work on detecting all the instances of the modelled activity in the data. For 

example, the model given in [58] focuses on detecting a single activity performed 

by multiple people. 

 

Figure 10: A classification schema for various activity detection techniques. 
Rather than listing specific techniques only, this classification schema also aims 
to give a sense of how the available techniques can be classified based on their 
input or outputs.  
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The modelling strategies also vary based on the spatial properties of the 

domain or the dimensions of the data. Some modelling techniques utilize the 

spatial or topological structure or the spatial/topological change that is inherent in 

the data.  

3.2. Related work in visualization  

In scientific simulations, there are many cases where the scientists are 

interested in analysing complex events of features. Examples are: formation of a 

packet [65], formation of a galaxy as in [9] and combustion events as in [84]. 

Three specific examples we use in this paper include “Anomalous Plume 

Bending”, “Packet formation” and “Merge-Split”. Many other domains have the 

need for detection of activities such as blood clot formation in blood flow 

simulations [30], magnetic storm formations in space-weather simulations [46] 

and extinction and re-ignition in turbulent flames in combustion simulations [47]. 

All these examples involve actors performing activities. Therefore all these 

activities can be modelled by using a common formalism. Activities occur over 

multiple timesteps in which feature attributes or their types may change over a 

course of an experiment / simulation. 

Activity detection techniques works on a set of computed attributes. This 

assumes that both the regions of interests are already segmented, tracked and 

their attributes are available. Therefore, in this section first we will briefly go over 

the available activity detection work in video visualization and then will go over 

the techniques that could help segment and track the objects in time-varying 3D 

scientific data sets.  
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Video Visualization: Event visualization in video data has been widely 

studied in the visualization community. For example, Botchen et al. presented a 

video visualization technique, VideoPerpetuoGram, for action visualization in 

video data [11]. In their method they treated the stacks of 2D time-varying video 

data as 3D volume data and visualized actions in such volume data. Parry et al. 

presented a hierarchical event selection algorithm for event visualization in video 

data and applied their method on snooker video [55]. A list of available 

applications and techniques can be found in the survey paper [10]. However 

none of these papers had a technique to model a scientific activity. 

Related work in scientific visualization includes extraction and tracking. 

Extracting atomic events and features from time-varying data has been widely 

studied in scientific visualization. This information is crucial to activity detection 

and provides the meta-data input to an activity detection framework.  

3.3. Activities as patterns and the use of machine learning   

Learning techniques requires labels attached to the data. In (machine) 

learning techniques, labels are formed first. This is usually done by isolating the 

time interval involving a sample activity in the data first.  Next step is isolating the 

objects that are part of the activity within the isolated time interval of the data. 

Then, each object’s certain and distinctive attributes are computed in each 

timestep within the isolated data. This process is repeated for multiple instances 

of the same activity, and also for other activities to create a library of activities. 

Each activity sample is assigned a label. This process can also be considered 

creating the training data for machine learning techniques.   
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The success of the pattern recognition techniques is highly correlated to 

whether the selected attributes sufficient enough to discriminate the activity to be 

detected from all the other activity types in the data. To ensure that, some 

techniques first compute N possible attributes and then selecting only the M of 

these N attributes where M< N (or preferably M<<N) by incorporating the domain 

knowledge. The other techniques compute only the “smart” (i.e. discriminative) 

features by using the domain knowledge. 

It is an active research field to compute and define the useful and 

discriminative attributes for activity detection. These attributes can be only spatial 

or spatio-temporal. Spatial attributes concern only the object’s current state and 

therefore they can summarize and characterize only the current state of an 

object. Spatio-temporal attributes summarize and characterize a series of an 

object’s state over a certain time interval. Current trend in computer vision is 

studying individual activities and summarizing these activities manually. 
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CHAPTER 4: 

GROUP TRACKING 

Group tracking is an integral part of activity detection. In this 

chapter, we extend feature tracking to extract, track and follow 

groups of features as they travel and interact in a time-varying data 

set*. 

 

In many scientific domains, physical groups exist besides the individual 

features. Understanding both the individual feature evolutions and the group 

evolutions is important to understanding the dynamics of scientific phenomena. 

For example, groups of cells and studying their collective behavior is of interest in 

biochemistry [57], groups of galaxies (halos) is of interest in cosmology [9] and 

groups of hairpin vortices (packets) is of interest in wall bounded turbulent  

simulations [53].  

Generally speaking, a group is a set of coherent structures (features) that are 

related to each other in certain ways or “act” together. (This is analogues to birds 

that both act individually and fly together in flocks). An example from scientific 

simulations is a pair of features where a feature rotates around the other feature. 

Therefore group extraction and group tracking is as important as feature tracking 

in many scientific simulations. All the above mentioned group examples have a 

hierarchical structure where a set of smaller structures (e.g., a set of voxels)  

forms a high level structure (e.g., a feature) and a set of these high level 

*
Some material presented in this chapter has been published in an LDAV 2012 paper: 

 S. Ozer, J. Wei, D. Silver, K.-L. Ma, P. Martin, "Group Dynamics in Scientific Visualization", Large Data 

Analysis and Visualization (LDAV), 2012 IEEE Symposium on, 2012. 
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structures (e.g., features) forms an even higher level structure (e.g., groups). 

This is illustrated in Figure 11. 

 

While feature tracking follows the interaction and evolution of individual 

features, the dynamics of groups of features has not been fully addressed in 

scientific visualization. Therefore one of our contributions in this dissertation is 

presenting a group tracking schema for time-varying 3D scientific simulations. 

Our focus is on unconnected or disambiguated features in this dissertation 

(although, our model can also be applied to groups of connected features). While 

many features in scientific simulations can be connected at very low thresholds, 

our goal in this work is to understand the dynamics of groups of individual 

features.  

In order to track groups, we first extract features, track them and then group 

them based on the domain specific grouping criteria. Once features are grouped 

at each timestep, the groups are tracked to see how they change and interact 

over time. A clustering algorithm is employed to cluster (group) the features. One 

Figure 11: An example of a hierarchical structure. A voxel is an atomic 
structure for a feature, and where a feature is the atomic structure for a group. 
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benefit of employing a clustering algorithm is the ability to isolate and map the 

group definitions from various domains to the computational domain via similarity 

functions. This property of clustering algorithms helps us to build a generic model 

for group tracking. We apply our group tracking model on a wall bounded 

turbulence-Direct Numerical Simulation (DNS) and demonstrate various 

visualizations in the following subsections.  

4.1. Overview of the group tracking algorithm  

The group tracking framework flow diagram is shown in Figure 12. In this 

diagram, the first step is feature extraction (Figure 12a). Feature extraction is 

discussed in Chapter 2 and Chapter 3. Once features are extracted, their spatial 

attributes can be computed. A spatial attribute is an attribute that can be 

computed by using only a feature’s segmentation information. Table 1 lists 

various examples of spatial attributes. 

Spatial feature attributes Time-dependent feature 
attributes 

Feature-to-feature 
attributes 

Centroid,  
Max/min,  
Volume,  
Shape,  
Total number of particles,  
Mass,  
Self-Orientation, Moments,  
Extends, Mean/variance over 
voxels, 
Surface information. 

Velocity,  
Acceleration,  
Self-rotation,  
Swirl, 
Extension, 
Expansion,  
Shrinkage, 
Change in a feature 
attribute,  
Mean/variance over 
time. 

Rotation around a feature, 
Distance,  
Relative orientation, 
Nearest-neighbour 
information, 
Variable difference/sum, 
Mean/variance over 
features. 

Table 1: Three different attribute categories and examples for each category 

Next step is feature tracking (Figure 12b). Feature tracking correlates the 

features from the previous timestep ti-1 to the next step ti [72] (See Chapter 2 and 

Chapter 3 for a list of available feature tracking techniques). This correlation 
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information is saved in a feature history. In this step, time-dependent feature 

attributes can also be computed (time-dependent attribute examples are given in 

Table 1). These are the attributes derived by jointly considering the current and 

previous spatial-feature attributes. They can also define the change in a feature 

attribute over a specified duration. Accessing a specific feature’s attribute in the 

previous timesteps requires tracking information, i.e., feature history. An example 

of this is the velocity. Other attributes are listed in the middle column of Table 1.  

     Concurrently with feature tracking, one can also compute feature-to-feature 

attributes. These are the attributes that are computed by comparing a feature to 

neighboring features in the same timestep. They can be derived from feature 

attributes or time dependent feature attributes. For example, the mean (or 

variance) of a feature attribute can be computed over the neighbor features.  

     In the next step groups are determined (Figure 12c). A group is a set of 

coherent features that are associated together based on some criteria. These 

criteria can be expressed in terms of all the feature attribute types. A list of 

sample attributes can be found in Table 1. 

      Grouping criteria can be geometry, distance, shape, rotation or orientation 

based. For a group, all these criteria can be combined and expressed within a 

single “similarity” function which is used by a clustering algorithm to determine 

the groups. Once groups are determined, spatial group attributes can also be 

computed in this step. Spatial group attributes are defined similar to the spatial 
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feature attributes. They summarize the spatial properties of the extracted group 

and its member features. 

 

Tracking groups is the next step (Figure 12d). Group tracking correlates the 

extracted groups in timestep ti to the groups in timestep ti-1. Once computed, this 

computed correlation information is saved as group history. Time-dependent 

group attributes are also computed in this step by using the group history. Time-

dependent group attributes are defined similar to the time-dependent feature 

attributes. These are the attributes derived by using the current and previous 

spatial-group attributes.  

Once groups are determined and tracked, Group-to-group attributes can be 

computed. These attributes are also defined similar to their feature counterpart, 
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Figure 12: Group tracking framework flow diagram. 
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i.e., feature-to-feature attributes. They are the attributes that are computed by 

comparing a group to one another or to a certain number of neighbour groups in 

the data. The last steps involve creating super-structures of groups (Figure 12e). 

If the domain has super-structures (groups of groups) that are defined with a 

different set of criteria, then similar to the group extraction step, super-structures 

can be extracted by using the related similarity function for the super-structures. 

At this step, each group is assigned to a super-structure by a clustering 

algorithm. Spatial super-structure attributes are also computed at this step. 

These attributes are also defined similar to the spatial-feature attributes. They 

summarize the properties of the super-structure and its member groups. 

Furthermore, time-dependent super-structure attributes can also be defined 

similar to the time-dependent feature attributes. These are the attributes derived 

by using the current and previous spatial- super-structure attributes.  

Recursively, once defined, all the higher level structures can be extracted and 

tracked in a similar way to the super-structures. And their associated attributes 

can be computed. 

Time-varying visualization uses the tracking results at each structure level. 

Therefore once the tracking is performed and the related time-varying attributes 

are computed, the associated level structures can be visualized. In the following 

sections, we will focus on clustering, group tracking and group visualization in 

detail. 
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4.2. Group extraction via clustering  

Extracting groups, fundamentally, is a process in which each feature is 

assigned a group ID. Each feature in the same group would have the same 

group ID while each group would have its own unique group ID. Grouping can be 

considered as a clustering problem. Typically, a clustering algorithm runs in an 

attribute space in which a point would represent a scientific feature. In such an 

attribute space, a feature is represented with a vector formed of feature 

attributes. A list of different types of feature attributes is given in Table 1. 

Therefore it is essential to compute the feature attributes that would help 

describe a group before starting the clustering process. Clustering algorithms 

usually operate with the assumption that closer points in a feature space fall in 

the same cluster. Therefore it is essential to convert a scientific group definition 

in a metric such that the metric should give a closer value for the same features 

in a same group. If this metric is a similarity metric, than as the similarity value 

gets greater, the features become more similar in the attribute space. If Euclidian 

distance is used for the metric, then the smaller the distance value, the closer the 

features and as the features get closer, they start to fall into the same cluster. 

Once features are extracted and their feature-to-feature attributes are 

computed, they can be grouped using a clustering algorithm. The focus below is 

on simulations where features cluster together and then act in groups. 

Hierarchical and partitioning clustering algorithms are two main types of similarity 

based clustering methods [32], [88]. Hierarchical clustering seeks to build a 

hierarchy of clusters. It either starts from each individual data object as a cluster 
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and merges two most similar clusters every time until only one cluster is left 

(agglomerative clustering); or it starts from the whole collection of data as a 

cluster and split the data set recursively until reaching a pre-specified cluster 

number. Partitioning clustering, such as the K-means algorithm, divides data 

objects into a number (often specified by a priori K value) of clusters according to 

some optimization criterion. Hierarchical clustering yields a hierarchical structure 

besides the final cluster information. Hierarchical clustering does not require a 

pre-specified number of clusters as opposed to the partitioning clustering. 

Moreover, hierarchical clustering does not require any initialization parameters as 

opposed to K-means algorithm that require initial cluster centroids. However, 

there is a trade-off between these advantages of hierarchical clustering and its 

computational efficiency. For more information on the clustering algorithms 

please refer to the text books [4] and [27]. In this work, we use hierarchical 

clustering to extract groups in our group tracking model. At each timestep the 

clustering algorithm is run and groups are formed. 

In a clustering algorithm, the features with the highest similarity are grouped 

into the same cluster. Notice that within a cluster, all the features should be 

similar to each other, while each of them should be dissimilar for the inter-cluster 

features. The similarity function that is used in the clustering algorithm is defined 

and described in the next sub-section. 
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4.3. Similarity functions  

A similarity function is a function S: Rn x Rn  → R that provides a measure of 

the similarity between two given vectors in a similarity space. These two given 

(input) vectors represent two different features with their n attributes. For any two 

given vectors FA and FB, the similarity measure S(FA, FB) is the same as S(FB, 

FA), i.e., S(FB, FA) = S(FA, FB). Moreover, S(FB, FA) ≤  S(FA, FA) and S(FB, FA) ≥ 

0. Notice that if the vectors FA and FB are dissimilar, then the similarity measure 

should be low. While in some work, the similarity value can have negative values; 

it is assumed to be nonnegative in this dissertation.  

In our applications, we assume that if the vectors are dissimilar, then the 

similarity value between the two vectors is the minimum value (i.e., 0 in our 

applications), i.e., S(FB, FA) = 0. With these conditions in mind, a group can be 

defined in terms of a similarity function. This similarity function will have a 

nonzero similarity value for any two given features in a given group and will have 

a zero similarity value for any given two features from different groups. For 

example, distance based similarity functions yield a higher similarity value as the 

distance between two input vectors decreases; i.e., as the features get closer to 

each other, the similarity value increases. Another example can be a shape and 

distance based similarity function in which the features that are close to each 

other and look alike would give higher similarity values. A threshold can be set 

for the similarity function value to define the terms similar and dissimilar. A higher 

value of the similarity function implies a greater similarity between the given two 

features. Once the similarity function is defined or selected from an available 
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list/library, the clustering algorithm can group the features based on this provided 

similarity function. 

4.4. Group tracking & group events  

Identifying the dynamics of structures (e.g., features or groups) requires 

correlating these structures over time, which is generally known as the 

correspondence problem [72]. The tracking step addresses the correspondence 

problem in the group tracking framework (in Figure 12d). Once we have identified 

groups and features in the data, we can identify what happens to groups over 

time. Similar to features, groups can merge, split, appear (birth), disappear 

(death) or continue (see next section for details).   

In the framework, group level tracking (matching) from one timestep to the 

next can be performed by combining the feature tracking information of the 

current time with the extracted group information (as shown in Figure 12d). 

Clearly, if the features overlap in volume, then their groups also overlap in 

volume. Therefore, in this work we employ a volume overlapping schema to track 

groups. 

Even in the cases where the features do not overlap, their groups can 

overlap since groups are bigger structures. In our model, each group has a list of 

its individual features and each feature has its group_ID. For reference, each 

feature is represented by Fk,j
i, where k is a unique feature identifier, j is the group 

identifier that the feature belongs to and i is the timestep (ti) index. Similarly, each 
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group is represented by Gj
i, where j is a unique identifier in the timestep ti. A 

particular group is the union of its member features: 

  
  ⋃     

  
                                                        (1) 

where h is the number of total features within the group with the identifier j in 

timestep ti. We use the following definition for volume overlap for groups which is 

an extension of the one in [72]: 

Overlap: If the group GA
i corresponds (matches) to GB

i-1, then  GA
i overlaps GB

i-1. 

i.e., GB
i-1∩GA

i ≠ Ø. 

By using this overlap definition, an overlap table can be computed between the 

groups from one timestep to the next. The overlap table can be computed by 

using various criteria. These can include: 

Feature overlap criterion: This criterion uses the sum of overlapping feature 

volumes between the groups. Since we assume that a complete feature is a part 

of a group, a group’s volume can be computed by summing up the volumes of 

each member features. Figure 13 illustrates the tracking process with the feature 

overlapping criterion. The feature and group extraction steps (with attributes) are 

completed in the first timestep t1. When the framework starts processing the next 

timestep t2, the first step is extraction of the features and computing the feature 

attributes. Then features are matched to the ones in t1 by using the volume 

overlapping criterion [72]. Feature tracking relates features from t1 to the ones in 

t2. Assume that grouping is done based on the distance information only. In this 

case, groups can be extracted by using the spatial-feature attributes only. Group 

extraction yields GroupA, GroupB and GroupC in t2.  Group tracking step creates 
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the overlap table based on the feature overlapping criteria (instead of using the 

actual values computed in overlap table for feature tracking). For groups, overlap 

table is computed by using the entire volume of the joint member features 

between t1 and t2. This is shown in Table 2.  

 Group_1 Group_2 

GroupA FA 0 

GroupB FB FC ᴜ FD 

GroupC 0 FE 

Table 2: Overlap table by using the feature overlap criterion. 

Based on the overlap table, GroupA is matched to Group1 and GroupC is 

matched Group2 only. However GroupB is matched to both Group1 and Group2. 

The dominant group for Group B is Group1 since the volume of FB is greater than 

the sum of volumes of FC and FD.  

Feature number overlap criterion: This criterion uses the total number of 

overlapping features within each group. If the features are relatively 

homogeneous in volume and shape, then this kind of a simplification could work 

reasonably faster. However, matching/correspondence is a function of both time 

and spatial properties. Using only the number of matching features does not 

summarize the spatial attributes of groups properly since it ignores the volume or 

shape information and thus may not yield an accurate matching. Especially in 

cases where a threshold is used, the least matching groups with the least feature 

numbers can be ignored. However such groups might have bigger volume and 

might be the actual dominant matching groups. 
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Convex hull overlap criterion: This criterion first defines a convex hull for each 

group that comprise all the features within, and then perform a volume overlap 

test between the convex hulls for group matching. This criterion considers the 

spaces between the features as well. The volume of the containing envelope of 

all the features in a group is used. Thus, a convex hull of an oddly shaped group 

formed of 2 or 3 small features can contain a bigger volume and can overlap with 

other neighbour groups.   

In our case study, the features are not homogenous in volume or in shape. 

Therefore, the feature overlap criterion is used in our applications. A tolerance 

value can be used in an overlap table to ignore smaller overlaps [72]. This 
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Figure 13: An illustration of volume-overlap based group tracking. GroupB is 
formed of two features from Group_2 and one feature from Group_1 in t1.  

This is a partial split event. Groups in t1 and t2 can be correlated visually after 

the group tracking process. 
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process helps eliminating unwanted small amounts of overlaps (matches) or 

detecting false events. Groups GA
i and GB

i-1 are matched, if:  

   (  
    

      
    

      
 )

       
      

  
                                                   (2) 

Equation 2 defines the normalized volume difference test as in [72]. The domain 

dependent Tolerance value is a percentage value. Figure 18 shows an example 

visualization of both feature tracking and group tracking. 

4.5. Group & cross-level events 

Feature tracking can characterize the evolutionary events (dynamics) of 

features such as merge, split, continue, birth (appear) and death (disappear) [72]. 

Similar to features, the higher level structures (groups) can split, merge, continue 

or die. However, these group events are slightly different than the ones defined 

for features. The difference is due to the fact that the features are unconnected in 

groups. A list of defined group level events is illustrated in Figure 14. 

Birth: A new group of features is formed in the current timestep and is not 

correlated to any group in the previous timestep. i.e., if the group GA
i does not 

overlap any groups in ti-1 ( GB
i-1∩GA

i = Ø), then the group GA
i is considered as a 

new born group. 

Death: An existing group of features in the previous timestep disappears in the 

current timestep. If the group GB
i-1 does not overlap any groups in ti, then the 

group GB
i-1 is considered as a disappearing group and the event is called a death 

event. 
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Full Split: A single group GB
i-1 in ti-1 splits into a number of N groups (N>1) in ti. 

Each of these group in ti  overlaps GB
i-1, i.e., GB

i-1∩Gi
j ≠ Ø for each jєN. 

Full Merge: This is the event where a number of N groups merge to form a 

single group. i.e., if a number of N groups (N>1) in ti-1 merge to form a single 

group GB
i in ti, then GB

i overlaps each of N groups in ti-1, , i.e., GB
i∩ Gj

i-1
 ≠ Ø for 

each jєN. An illustration of full merge is shown in Figure 9b. 

 

Figure 14: Single Feature Track events vs. group tracking events. In group 
tracking, merge and split events are further divided into being full or partial 
events. Moreover, cross-level events can be defined within a group tracking 
schema. 

We define the following events for groups: 

Partial Merge: This is the event where some features from several groups 

(portions of several groups) leave their main groups and join other existing 

groups resulting in a lesser number of total groups. Different portions of a group 

in ti-1 can merge to several other groups in ti. Also note that different portions of 

different groups in ti-1 can merge to the same group in ti. Therefore the total 

number of N groups in ti-1 merge and form a number of M new groups (M<N) in ti, 
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where each of these N groups in ti-1 overlaps each of the M groups in in ti. At the 

end, the total number of groups M in ti will be less than the total number of groups 

N in ti-1. An illustration if partial merge is shown in Figure 9a.   

Partial Split: This is the event where the portions of a number of N groups split 

from their groups to “get together” and form a new group. i.e., only the portions of 

a total number of N groups (N>1) in ti-1 get together and form a total number of M 

new groups in ti. In this case, each of these N groups in ti-1, overlaps each of the 

M groups in in ti. At the end the total number of groups M in ti will be higher than 

the total number of groups N in ti-1.  

Continuation: If none of the above-mentioned events occurs, than this is a 

continuation event for the group. 

 

Figure 15 illustrates these events. As Figure 15a illustrates, if multiple groups 

(say N groups) in timestep ti partially correlate with multiple groups (Say M 

groups) in the timestep ti+1 and if the number of correlating groups N differs than 
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the number of the correlating groups (M) in the next timestep, then we say that 

there is a partial event happening between those two timesteps. Depending on 

the case whether M>N or N>M, we call the event Partial Merge or Partial Split 

respectively. If M is equal to N, then we will consider that there is no split or 

merge event happened at the group level, therefore this case (where M = N) is 

called continuation event.    

Figure 15b illustrates the full split and full merge events. If a single group in 

the timestep ti correlates with M groups in the timestep ti+1, or if N groups in the 

timestep ti correlates with a single group in the timestep ti+1,   then we say there 

is a full event occurred between the timesteps ti and ti+1. If the event is from 1 

group to M groups then we call the event as full split, and similarly if the event is 

happening between the N groups in ti and a single group in ti+1. Then we call the 

event as full merge. 

As it can be inferred from the above definitions, partial events are the ones 

happening between many groups and many groups; full events are the ones 

happening between a single group and many groups. In addition to these events, 

when hierarchical structures are considered, the cross-level events can also be 

defined and detected. Cross-level events are the events that happen between a 

structure and a higher level structure. For example, group tracking allows 

detecting a feature leaving its group to join another one (cross-group event).  

Cross-group: This is the event where a feature leaves its group to join another 

group. In this event, while at the group level, groups can remain the same 

(groups continue); at the feature level, a feature can move from one group to 
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another and therefore, this event is different than the partial merge or split 

events. An illustration of this event is shown in Figure 16. In the illustration, when 

we use the first level (feature) tracking, we only detect the split event that occurs 

within the Group_S. However, when the group tracking is used, we can detect 

that a feature moves from Group_R to Group_S (a cross-group event). 

 

4.6. Creating a domain specific similarity function 

A packet is defined geometrically and this definition is based on the distance 

and he angles (orientation) between the features. Here, we demonstrate how to 

derive a domain specific similarity function which defines a scientific group. Our 

specific scientific group example is packet which is a specific term used in wall 

bounded turbulent simulations and it defines a group of hairpin vortices that 

move coherently. 

Figure 16: An illustration of cross-group event. A feature in timestep ti-1 
moves from Group_R to Group_S in the next timestep ti, while the number 
of groups remains the same. 
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Specifically, we define a packet as a set of features meeting all of the 

following three criteria: 

I. The distance between a given set of two features should be less than a 

predefined distance (threshold). 

II. The angle between two given features should be equal or less than 45o. 

III. The packet should be elongated along the X axis such that the cross section 

(in y-z plane) increases along the X axis.  

Various distance measures can be computed and used for the first criterion, 

such as the nearest neighbour distance (on the feature surface), the centroid 

distance or the distance between the local extrema points. We notice that the 

local maximum point of each feature localizes around the top of the feature. 

Therefore we use the distance between the local maximum points to simplify the 

computations. We used different thresholds parallel to each axis for the distance 

criterion.  

The function should provide a positive value for a pair of features in the 

same packet and a zero value for a pair of features from different packets. In this 

example to simplify the computations, we use only the coordinates of the 

maximum node value of each feature and construct 3 dimensional attribute 

vectors for each feature. With the assumption where a ≠ b , for given any two 

features a and b, we define the distances along x, y and z coordinates as: ∆x = a1 

– b1; ∆y = a2 – b2; ∆z = a3 – b3, where ai and bi (i=1,2,3) are the ith element of the 

attribute vector. 
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Input: a1, b1, a2, b2, a3, b3, BoxLengthx, BoxLengthy, BoxLengthz  Output: S(b,a) 

Define the variables: 

∆x = a1 – b1;     ∆y = a2 – b2;       ∆z = a3 – b3, 

Dx =  BoxLengthx – abs(∆x);     Dy =  BoxLengthy – abs(∆y);     Dz =  BoxLengthz – abs(∆z); 

Define A, B and C variables as follows: 

A = ( sign(Dx) + 1) ( sign(Dy) + 1) (sign(Dz) + 1 )/8;          B = ( sign(∆x∆z) + 1)/2; 

C = ( sign((π/4) - atan(∆z/∆x) ) + 1)/2; 

The similarity measure is computed by the following equation (assuming that ∆x≠0): 

S(b,a) = S(a,b) = ABC/∆x 

Pseudo-algorithm: 

Dx = Thresh_x - fabs(delta_x); Dy = Thresh_y - fabs(delta_y); Dz = Thresh_z - fabs(delta_z); 

currentAngle= atan(delta_z/delta_x); 

Anglesign = sign(currentAngle); 

higher= (sign(delta_x*delta_z)+1)/2;  

WithinBox= (sign(Dx)+1)*(sign(Dy)+1)*(sign(Dz)+1)/8; 

if (Anglesign > 0) 

     AngleSmallerThanMax= (sign(MaxAngle - currentAngle)+1)/2; 

else 

      AngleSmallerThanMax = 0;    

alltheconditionsTrue = higher * WithinBox * AngleSmallerThanMax;     

 if (delta_x !=0) 

      S = alltheconditionsTrue/fabs(delta_x); 

else if (delta_z !=0) 

      S = alltheconditionsTrue/fabs(delta_z); 

else 

      S = 0;    return S; 

Table 3: Defining the similarity function S and the corresponding pseudo-
algorithm are shown. 
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Since packet identification has predefined box dimensions, we define a box 

with its length along x, y and z coordinates. Then define the distance varibles 

along each axis as Dx, Dy and Dz to check whether a given new feature (say b) 

falls within the 3D box distance of the original feature (say a). The A variable as 

defined in Table 3 checks for all these. Assuming that ∆x is a nonzero value, the 

similarity measure is computed by the following equation: S(b,a) = S(a,b) = 

ABC/∆x. This means that the closest features along the x axis will be more 

similar. (The complete pseudo-algorithm is given in Table 3). In the above 

equation, the variable A checks whether given two vectors fall within a predefined 

box of each other; B checks whether the features are elongated on the x-z plane 

in the ascending order, and C checks whether the angle between the given two 

vectors is less than 45o. If one of these conditions is not satisfied by the given 

two vectors, the final similarity value will become zero. 

4.7. Results 

We apply our group tracking algorithm on the wall bounded turbulent data 

set described in Appendix-III. We implemented and used two types of grouping 

techniques in the results presented in this section. The first grouping technique is 

called “packet identification” and is a similar implementation of the presented 

algorithms in [53] and [65]. The second grouping technique is the clustering 

technique.  

The described technique in [53] operates on each 2D plane in the 3D data 

individually to determine the groups. Our 3D implementation uses a node which 

has the maximum value within a feature. Thus, a feature is summarized with a 
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single node. This process uses the results of feature extraction and feature 

tracking. Therefore while the original algorithm is an O(N) operation, where N is 

the number of total voxels in the data, our packet identification algorithm is an 

O(M) algorithm where M is the number of the total features in the data. Therefore 

with the reasonable assumption where M<<N, our algorithm works faster than 

the original technique, while the results are reasonably similar to the original 

algorithm. 

The packet identification algorithm used in this dissertation can be 

summarized as: 

1) Extract each feature and compute their attributes. 

2) Represent each feature with its maximum swirling value and its location. 

3) Take an ungrouped feature as the starting feature and give it a new and 

unique group ID. 

4) Draw a bounding box around the maximum location of the starting feature 

and look for all the features that fall within the box. 

5)  For each feature within the box, 

6) Choose the closest unchecked feature (along the x axis) within 

the box and compute the angle between the maximum locations of 

these two features on (x,z) plane. 

7) If the angle is smaller than 45o, label the new feature with the 

same group ID and set it as the starting feature, then go to step 4.  

   8) Go to step 3. 
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Packet_A 

Packet_B 
  

Packet_C 

Feature_a 

(a)  Feature tracking at t
1
. In feature tracking each feature has a unique color. 

(b)  Group tracking at t
1
. In group tracking each group has a unique color. 

 
 

Figure 17: Visualization of feature tracking vs. group tracking in wall bounded turbulent flow simulation data. The 
original simulation data contains 46 timesteps. The variable being visualized is swirl magnitude; (a) Features 
extracted in t

1
 where each feature has an automatically generated unique color (total 262 features); (b) Packets in t

1
 

where a total of 177 packets are identified and 3 sample packets (Packet_A, Packet_B and Packet_C) are circled. 
Packets are groups of features that travel together.  
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Figure 17a visualizes the extracted features in the first timestep of the wall 

bounded turbulent simulation data set. The individual features are extracted and 

visualized by using the feature tracking algorithm. In the figure, each feature has 

a unique color. Figure 17b visualizes the identified packets in the same timestep. 

The packets are formed of the extracted features in Figure 17a. In Figure 17b, 

each group has a unique color and the features that are the members of the 

same group have the same group color. Figure 18a visualizes the evolution of a 

selected feature Feature_a over the first five timesteps. Figure 18b visualizes the 

evolution of the entire group Packet_A (i.e., the packet) of Feature_a over the 

first five timesteps. 

In the first timestep, the feature tracking algorithm extracted 262 features. 

These 262 features form total of 177 packets in the same timestep. Note that the 

total number of extracted features changes with the filtering parameters 

(thresholds). Similarly, the total number of identified packets changes with the 

group identification parameters. These parameters include the angle between the 

features and the bounding box size along x, y and z axis. The change in total 

number of extracted features versus the total number of identified packets in 

each timestep can be seen in Figure 19. The results shown in Figure 19 indicate 

that a packet is formed of two individual features on average.  
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Figure 18: The evolution of a selected feature and its group is visualized 
in the first five timesteps. (a) The evolution of a single feature (Feature_a 
from Figure 17) is visualized in the first five timesteps. All the features are 
extracted and then tracked by feature tracking algorithm. Except 
Feature_a, all the other features are visualized transparently. (b) The 
evolution of Feature_a’s group (Packet_A) is visualized in the first five 
timesteps. Groups are determined (i.e., extracted) and tracked by using 
group tracking algorithm. Except Packet_A, where Feature_a ϵ Packet_A, 
all the other groups are visualized transparently. Features join and leave 
packets throughout a packet evolution. 
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Group tracking algorithm is applied on the data set with the defined similarity 

function (see Table 3) and the clustering algorithm. The results are summarized 

in Figure 20 and Figure 21. Figure 20 visualises the sample time steps 1, 2 and 

time step 8. Figure 21 shows the results in time steps 21, 26 and 31. In the 

figures, each group has a unique color and the same packet gets the same color 
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350

time step

 

 

feature number

packet number

Figure 19: The total number of extracted features vs. the total number of 
identified packets in each timestep. The data set contains 46 timesteps. The 
blue color shows the total number of features in each timestep. The red line 
shows the total number of identified groups in each timestep.  
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in the next time step. These results were obtained with the parameters where 

Thresh_x =0.3, Thresh_y =0.08 and Thresh_z = 1. The features with a volume 

that is smaller than 25 are filtered out. Therefore, such small features do not 

show up in the figures. 

Notice that as the grouping parameters change, the size of a packet and the 

total number of features in each packet change. The number of features change 

based on the segmentation parameters (the threshold value used in the region 

growing case). For the grouping, if the segmentation parameters remain the 

same, then the grouping becomes allocating these segmented features into 

scientifically meaningful groups. Therefore, the total number of groups decreases 

as the grouping parameters increase in our results. 

Group extraction and tracking has also been applied on the larger simulation 

which is described in Appendix III. The resolution of this data is 2520x1120x110 

and it contains 250 timesteps. A sample result of applying the group tracking 

algorithm on this data set is shown in Figure 22. Figure 22a visualizes all the 

extracted features and their groups in the first timestep. In the figure, each group 

has a unique color. There are 3828 features visualized in this figure. These 3828 

features are grouped into 3244 packets. Figure 22b visualizes a selected area in 

Figure 22a to magnify the details. It would require magnifying the figure several 

times to see the features clearly. Figure 22c visualizes sample features in detail 

after many magnifying process.  
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Figure 20: Group tracking results are visualized in timesteps 1, 2 and in timestep 8. The visualized 
data is wall-bounded turbulence simulation. 
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Figure 21: Group tracking results are visualized in timesteps 21, 26 and in timestep 31. The visualized 
data is wall-bounded turbulence simulation. 
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Figure 22: Group extraction is shown on the large data set. (a) in this first timestep, there are 3828 features are 
extracted. All these 3828 features are grouped into 3244 packets and these packets are visualized. (b) A 
selected area is magnified. (c) an area within the selected area is further magnified to see individual features’ 
shape. 
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CHAPTER 5: 

PETRI NETS FOR ACTIVITY DETECTION 

The easiest way to model an activity is using a flowchart or a 

state graph. Petri Nets are one such formalism supporting parallel 

and distributed systems. Therefore, in this dissertation, Petri Nets 

are proposed to model and detect activities. This chapter, first 

describes the fundamental Petri Net formalisms and then discusses 

the existing and unaddressed problems in the existing activity 

detection (recognition) applications using Petri Nets.  

 

In this dissertation, we propose using Petri Nets for activity modeling, activity 

detection and for hypothesis validation.  In this chapter, we provide the essential 

background for Petri Nets. Then we will discuss the existing and unaddressed 

problems in the existing activity detection applications with Petri Nets.  

Petri Nets were introduced by Carl Adam Petri in [60]. Essentially, Petri Nets 

are graph based techniques that can model parallel and distributed systems and 

are used in many fields including software development, workflow management 

and manufacturing. Since their initial introduction, due to new requirements of 

various fields and domains, the capability of Petri Nets increased yielding various 

Petri Net formalisms such as Marked Petri Nets, where places need to include 

more than one token; Timed Petri Nets, where a token needs to wait a certain 

time (delay) to become available for enabling a transition; Probabilistic Petri Nets, 
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where the delay of Timed Petri Nets varies by including uncertainty and Coloured 

Petri Nets, where IDs are used to distinguish between tokens. The detailed 

information about these different Petri Net formalisms can be found in the books 

[59] and [20]. Petri Nets are also used in software engineering applications. As a 

result, there have been a significant amount of Petri Nets work has been 

proposed related to software development. An example of such work is Object 

Petri Nets support polymorphism, inheritance and dynamic binding [37]. Note 

that, later on the term “Object Petri Nets” is also used in activity detection 

applications indicating that the tokens are objects in a Petri Net [25], [40].  

Petri Nets can help modeling (describing) activities. In order to do that, an 

activity is analyzed semantically and then is decomposed it into its key points. 

These key points construct the nodes in the time sequence, i.e. the Petri Net 

model. Such key points include feature (actor) states, and atomic (primitive) 

events (i.e., actions). Petri Nets (PN) are one of many techniques that allow 

graphical modeling of discrete systems and complex temporal events [52]. 

5.1. Fundamental Petri Net concepts and components 

In general, all the Petri Net formalisms include four main components. These 

are: (1) the set of places P, (2) the set of transitions T, (3) the input function I that 

maps a transition to a set of places, (4) the output function O that maps a place 

to a set of transitions. Therefore a generic Petri Net structure is a four-tuple (P, T, 

I, O) where: 
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 P = {p1, p2, p3, …, pn} is the set of n places which are drawn as circles in 

the graph, 

 T = {T1, T2, T3, …, Tk} is the set of k transitions which are drawn as bars 

(rectangles) in the graph, 

 In x k: is the input transition relation matrix between the places and 

transitions where the relation is usually defined in terms of arcs such that 

I( j , i ) = k  is the arc weight from jth place to the ith transition. We will call 

this type of arcs (from a place to a transition) as incoming arcs. 

 On x k: is the output transition relation between the transitions and places 

where the relation is usually defined in terms of arcs such that O( j , i ) = k  

is the arc weight from ith transition to the jth place. We will refer to this type 

of arcs (from a transition to a place) as outgoing arcs. 

The arc weights are usually represented on each individual arc. The arcs 

without any specific weight number are assumed to have the arc weight 1. In a 

classical Petri Net graph, a transition cannot have an edge (connection) to 

another transition and similarly a place cannot have an edge to another place. In 

the literature, places can also be classified further as being preconditions or post-

conditions [59], [20]. 

An example of a Petri Net is shown in in Figure 23. The Petri Net models the 

left bag (unattended bag) activity that is previously described in Figure 4 in 

Chapter 1. 
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5.2. Marked Petri Nets  

Marked Petri Nets allow to include multiple “tokens” to be in each place. A 

token is the primitive structure that a Petri Net operates on and is represented by 

a solid dot in a graph (see Figure 23). A deterministic and marked Petri Net is 

formed of places, transitions, arcs and tokens, therefore is a 5-tuple (P, T, I, O, 

M) in which: 

 M = {m1, m2, m3, …, mn} is the current marking summarizing the 

configuration of the tokens in a given Petri Net where mi is the number of 

tokens at the place pi.  

The functions I and O represent the set of arcs between places and 

transitions. The state of a marked Petri Net is defined by the number of tokens in 

each place at a certain timestep. If it is not specified on the graph, then the 

weight of each arc is assumed to be 1. 

 

Person 

Person 

with bag 

Carries a bag 

Figure 23: Illustration of Petri Net components on the Petri Net model of the 
unattended bag example. 
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The dynamics of a marked Petri Net is defined by two operations: enabling 

and firing a transition. A transition Ti is enabled in T if and only if there are 

enough tokens in each input places for the consumptions to be possible: 

                                                                         (3) 

Firing a transition T consumes I(i,j) tokens from each of its input place i, and 

produces O(j,i) tokens in each of its output places j. As such, the final marking of 

a marked Petri Net can be computed with the following equation: 

                                                                          (4) 

where K = (O - I) and  Ek is the vector of the transitions that are fired. Therefore 

E(i) = 1 if Ti is fired, and 0 otherwise.  

Figure 24 shows an example Petri Net constructed with 4 places and 2 

transitions where P = {p1, p2, p3, p4}, T = {t1, t2}, M = {2,0,0,0}, 
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At the timestep t1 there are only 2 tokens in place p1. Therefore nothing happens 

in this case. Now, assume that a new token enters to p2 at timestep t2 (as shown 

in   Figure 24b). The new marking M becomes M = {2,1,0,0}. At this moment, the 

condition (1) is satisfied for T1 since M(1) = 2 and M(2) = 1. The firing process 

moves the tokens from p1 and p2 to p3. The final marking can be computed as: 
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]                                                       (5) 

However, notice that in this case, firing T1 enables the transition T2. Therefore in 

this case, the final marking in timestep t2 becomes:  
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] *
 
 
+  [

 
 
 
 

]                                                       (6) 

 Once T1 is fired, the new marking enables T2. Firing T2 gives the final marking of 

the Petri Net in timestep t2. 

5.3. Timed and stochastic Petri Nets 

Timed Petri Nets add time constraint to places (or transitions) by allowing 

time dependent operations in marked Petri Nets. Therefore it is a 6 tuple (P, T, I, 

O, M, D) where D ={D1, D2,.. ,Dn}. Di is the timing associated with place pi (or 

transition Ti). When a token falls into the place pi, it becomes unavailable for the 

duration Di. This token, therefore cannot be moved to another place before the 

time Di has elapsed. It becomes available after the duration Di passed again. 

This kind of schema is especially useful to limit the movement of tokens in a Petri 

Net by time. For example, consider Figure 24d. In timestep t2, the token does not 

stay in p3 since it immediately moves into the place p4. A time constraint in p3 

would avoid this case, by forcing the token to remain in this place for a pre-

specified D3 time duration. At any time, the final marking M is the sum of Ma and 
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Mu where the marking Ma is made up of the available tokens and the marking Mu 

is made up of the unavailable tokens. 

 

Figure 24: An example of enabling and firing a transition in a marked Petri Net. 
When a transition is fired, tokens move along the Petri Net. 

 

In timed Petri Nets, the time duration associated with each place (or each 

transition) is a fixed value. However, in some cases, this duration varies. To 

include such variance in durations in timed Petri Nets, stochastic Petri Nets have 
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been proposed. In stochastic Petri Nets, each token is assigned a probabilistic 

duration in each place [59], [20]. 

5.4. Coloured Petri Nets 

In a Marked Petri Net, all the tokens are considered identical. However, in 

some applications (as in activity detection applications), tokens need specific 

identifiers (ID) attached. To handle such situations Coloured Petri Nets have 

been proposed. In a Coloured Petri Net, a color (i.e., an ID) is attached to each 

token [20]. Coloured Petri Nets also allow attaching a function to each arc. Such 

an arc function can map a color (an ID) to another one or they can be 

conditioned based on the color. For instance, an arc can transform the color 

yellow into the color blue, and the color red to the color green. The tuple (P, T, 

Pre, Post, M0, C) represents a Coloured Petri Net where Pre is the set of 

functions associated with incoming arcs and Post is the set of functions 

associated with the outgoing arcs. C = {C1, C2, …} is the set of colors and the 

color Ck is the n tuple i.e. Ck=<ck1, ck2, ck3,…,ckn >. For example, in a typical 

activity detection application, ckn may represent an object’s attribute (such as 

volume, mass, shape, etc.). Therefore we can use colors to encode attributes. 

5.5. Earlier definitions of the enabling and firing processes  

The dynamics of typical Petri Nets are defined by two fundamental 

operations, namely enabling and firing a transition. Enabling a transition 

fundamentally indicates that the tokens “can” move from the input places to the 

output places of the transition. Firing is “the process” of moving the tokens from 
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those input places to the output places. The exact definitions of these two terms 

change slightly from application to application. For example, according to the 

work in [25], a transition is enabled if all the input places have at least one token. 

Firing a transition removes one token from every input place and inserts a token 

to every output place.  

A similar firing and enabling schema is defined by Lavee et. al. in [40]. In 

their work, they state that a transition is enabled when all the input places have 

tokens at least the number of arc weight. In their work, they also state that the 

enabling rule can be modified to contain conditions on the properties of tokens. 

Firing a transition removes a number of tokens from each of the transition’s input 

places equal to the arc weight and creates a number of new tokens in each of the 

output places equal to the arc weight [40]. Assigning a priority to each transition 

could solve the conflict problem. A timed transition fires only if its duration 

parameter is greater than the time condition of the place (or of the transition).  

Albenese et. al. in [3] state that a transition fires if and only if all its input 

places have a token and only if the transition condition is satisfied. When a 

transition fires, all enabling tokens are removed and a token is placed in each of 

the output places.  

Similar enabling and firing processes are also defined by Perse et. al [58]. In 

their work, a transition Tj is enabled if and only if M(pi)>=I(pi,Tj) where M(pi) is the 

number of tokens in the input place pi. 
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5.6. Unaddressed problems for activity detection 

As mentioned previously, most computer vision applications use objects as 

tokens, places as object states and transitions as actions or conditions. There 

are several problems associated with the existing Petri Net applications in activity 

detection for scientific visualization.  These problems are summarized below: 

 Handling the change in an object’s state or an object’s attributes: 

In earlier system applications of Petri Nets (examples can be found in [37] 

and [52]), tokens usually are expected to remain in a place and do not split, 

merge, disappear or change their shapes (or their states) in a place over the 

time. However this is not the case in computer vision or in scientific simulation, 

especially when a place represents an object’s state and a transition represents 

an object’s action. Objects dynamically change their state or their attributes from 

one timestep to the next and this change somehow has to be considered within a 

Petri Net formalism. For example, consider a case where a place represents 

“feature with volume>50”. In this example, a feature may fall into this place if its 

volume is greater than 50 nodes (voxels) in a timestep. Assume that this 

feature’s volume becomes 30 since it shrinks in the next timestep. In this case, it 

should no longer remain in the place in the next timestep even if there is no 

transition is designed to fire the token (i.e. the feature) for this case. Therefore, 

only the tokens that are currently still in the same object state should remain in 

the same place. The natural way of doing this is including the change, i.e., time 

variance in tokens, into the Petri Net formalism.  
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In recent activity detection applications with Petri Nets, a place represents an 

object’s state. An object’s state can be any set of quantitative attributes helping 

to describe the activity. For example, an object’s state can be “a person without 

the bag” while in another place, a state could just be “a person” as in Figure 23. 

In such situations (in the literature this type of Petri Nets also called Object Petri 

Nets as in [40]) the existing applications do not check whether a token still 

remains in the same place which represents  an object state. In cases where a 

token no longer satisfies a place’s definition, it still remains in the same place 

until it is fired. However, if the situation describing the state change is not 

modeled in the given Petri Net, then the token is simply “stuck” in its current 

place.  

 Handling the change in token numbers due to the merge and split 

events: 

In scientific simulations, the number of features may change from one 

timestep to the next. In Petri Nets, where a token represents a feature with its 

attributes, the existing tokens need to be updated to reflect this change. Scientific 

dynamics include merge, split, continue and disappear events [72] and these 

events model the change in the total number of features from one timestep to the 

next. The number of actors for split and merge events may change from one 

instance to another. For example, in one merge instance two features may 

merge to form one and in another merge instance five features may merge to 

form a single feature. Similarly, in one split instance, one feature may split into 

four features while in another split case one feature may split into two. This 
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variability in the number of merging and splitting features makes it harder for the 

scientist to model these events even with the arc functions in Coloured Petri 

Nets. Moreover, even if these events are not explicitly modeled in a given Petri 

Net, the Petri Net should still consider the fundamental dynamics of the scientific 

environment. Therefore, in the next chapter we propose a new Petri Net 

formalism that handles these above-mentioned problems.    
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CHAPTER 6: 

TOKEN-TRACKING PETRI NETS FOR ACTIVITY 

DETECTION 

Petri Nets do not consider the dynamics of scientific simulations. 

Therefore in this chapter, we present token-tracking Petri Nets to 

handle the problems discussed in the previous chapter. Token-

tracking Petri Nets can handle the time variance in tokens and 

support the dynamics of scientific environments by incorporating the 

tracking information.  

 

In all the earlier Petri Net applications of activity detection, the tokens are 

usually expected to remain in a place and do not split, merge, disappear or 

change their shapes, attributes or states in a place over the time until they are 

fired. However, this is not the case in many applications. Objects (thus the 

tokens) dynamically change their state or their attributes from one timestep to the 

next and this change somehow has to be included within a Petri Net formalism. , 

This change is considered and included by coupling the Petri Net with the 

tracking information in the proposed enhanced Petri Net. We enhance Petri Nets 

and call the enhanced version token-tracking Petri Nets. Token-tracking Petri 

Nets (TTPN) consider the feature dynamics by updating the tokens and their 

places automatically as the time changes. In TTPN, this change is considered 

and included by coupling the Petri Net with the tracking information.  
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A TTPN is a 10 tuple (P, T, I, O, CP, CT, S, E, Mk-1
+, F) where Mk-1

+ is the final 

marking (see Figure 25) obtained in the previous timestep tk-1 and F is the 

updating function that maps the existing tokens in a Petri Net from tk-1 to the 

tokens extracted in tk such that: 

                                  F(     
 ) =   

 .                                                            (7) 

The state of a TTPN (i.e., the configuration of tokens in places) is a function 

of time and is described by the tuple (Mk-1
+, F). in Petri Nets.     

  represents the 

final marking of the Petri Net in timestep k-1 and   
  represents the initial 

marking in timestep k. While the existing Petri Net applications assume that 

    
    

  (as illustrated in Figure 25-Case A), this assumption does not hold in 

scientific simulations (as illustrated in Case B, Case C and Case D) since tokens 

become time dependant. Therefore, in general we can say that     
    

 . 

TTPN is designed to handle such situations in scientific simulations. 

Similar to coloured Petri Nets, each token has an ID in TTPN. The marking 

M= {µ1, µ2, µ3, …, µn} summarizes the distribution of tokens in a given Petri Net. 

µn is the set of tokens in place Pn such that µn = {X1, X2, …}. A token Xa is n tuple 

such that Xa= (xa1(tk), xa2(tk), xa3(tk),…,xan(tk) ) where xan(tk) is the nth attribute of 

the token Xa at timestep tk. This means that the tokens in TTPN are time 

dependent. The initial marking Mk
- of a Petri Net is the marking that is mapped 

from the previous timestep tk-1 to the current timestep tk and the final marking Mk
+ 

is the marking where all the enabled transitions has fired such that no further 

enabled transition remains in the timestep tk. The mapping from previous 

timestep to the current one is done by use of a function. Tracking information is 
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used to update the object attributes in this dissertation. This process involves 

extracting new tokens in the data set and then assigning them to the existing 

tokens from the previous timestep in the Petri Net by use of tracking information. 

We call this process the update process of TTPN. 

Once all the tokens and their places are updated via the function F, the next 

step is evaluating the Petri Net by firing all the enabled transitions for each token. 

Similar to typical Petri Nets, firing is done by rewriting Equation (1) for a given 

token Xa such that 

                                    
      

                                                     (8) 

where   
    is the new location of the token Xa in the Petri Net. The same token 

needs to be in the all input places to enable a transition (along with the transition 

condition). In a given TTPN model, each arch weight is considered 1 to model a 

hypothesis or an activity. Furthermore, TTPN considers the dynamics of the 

system including merge, split, appear, disappear and continuation internally and 

therefore, a scientist does not need to model these events at each place 

explicitly. This process incorporates the time variance in Petri Nets and simplifies 

the modelling of an activity. An overview is given in Figure 26. Consider the given 

Petri Net model with its tokens in timestep tk-1 with its existing tokens in Figure 

26a. The green token (e.g., a feature) in P2 splits into three tokens (e.g., three 

features) in timestep tk (shown in Figure 26b). Traditional Petri Nets do not allow 

a token split while waiting in the same place. However, the TTPN can do this by 

using sub-nets. A sub-net is a Petri Net in which the time information is attached 

to both tokens and the arcs.  
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Figure 25: Various illustrations of different time dependent problems in Petri 

Nets. 𝑴𝒌 𝟏
  represents the final marking of the Petri Net in timestep k-1 and 

𝑴𝒌
  represents the initial marking in timestep k. While the existing Petri Net 

applications assume that 𝑴𝒌 𝟏
  𝑴𝒌

  (as illustrated in Case A), this 
assumption does not hold in scientific simulations (as illustrated in Case B, 
Case C and Case D) since tokens become time dependant therefore in 

general that 𝑴𝒌 𝟏
  𝑴𝒌

 . TTPN is designed to handle such situations in 
scientific simulations. 
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In TTPN, each place with its tokens (except the final place) is first isolated 

from the given Petri Net model and converted into a sub-net as shown in Figure 

26c. The main purpose of the sub-net is to correlate the existing tokens in a 

given Petri Net from tk-1 to the new tokens extracted in tk by using the tracking 

information. Therefore the sub-net is a time-dependent Petri Net. 

For each place Pi, the sub-net creates two additional (pseudo) places   
   and 

  
  (shown with black circles in Figure 26). Correlating the tokens from tk-1 to the 

extracted ones in tk is graphically represented by the combination of a black arc, 

a transition and a red arc. The red arcs are defined only for the tokens from tk 

and the black arcs are defined only for the tokens from tk-1. From one timestep to 

the next, a scientific feature will either merge, split, disappear or continue. The 

transitions merge, splits, disappears and continues are obtained from the 

tracking information. For the merge transition, the sub-net removes b merging 

tokens from tk-1 and puts the merged token from tk into   
  . Similarly, the splits 

transition moves the splitting token from tk-1 in Pi and puts a number of 

corresponding tokens from tk into   
  . The values of the variables a and b (along 

with the token IDs) are obtained from the tracking information. The continues 

transition removes a token from tk-1 in Pi and puts the corresponding token from tk 

into   
  . The disappears transition removes disappearing tokens from Pi to   

 .  

Once the sub-net reaches its final marking, the tokens remaining in   
   are 

the ones that changed their state during the transition from tk-1 to tk, and the 

tokens in   
  are the disappearing ones during the transition from tk-1 to tk. 
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Depending on the domain, the tokens in both places   
  and   

   can be 

moved back into the place Pi, can be discarded or can be moved back into one of 

the initial places. Figure 26d illustrates the update process for the Petri Net 

shown in Figure 26a. In Figure 26d, each place (except the final place) is 

converted into a sub-net, then each of these sub-nets is executed independently. 

The update process replaces the single token in Figure 26a with 3 tokens.  Once 

the update process is completed, the isolated places with their updated tokens 

  

  

Figure 26: The use of sub-nets in TTPN. (a) a scientist given Petri Net and 
its marking at the timestep tk-1 is shown, (b) the marking of the Petri Net 
(PN) changes in tk since the token splits into 3 objects. However since 
there is no transition is fired, the marking cannot change in traditional Petri 
Nets; (c) to solve this, each place is represented with a sub Petri Net (sub-
net) in TTPN. The sub-net can model and allow the change in the marking 
of PN during the transition from tk-1 to tk. (d) Each place (except the final 
place) in the PN is replaced with this sub-net and once the execution of the 
sub-net is completed for each place, the update process is completed and 
the initial marking is obtained in tk.   
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are put back into the given model. Therefore while the direct transition from 

Figure 26a to Figure 26b is not defined in typical Petri Nets, this transition 

becomes possible through the TTPN (by defining and using sub-nets). 

After running the update process, the new (updated) tokens can be used to 

execute the given model to obtain the final marking in tk. This is done by using 

Equation 8. 

6.1. Activity detection framework with TTPN 

   Figure 27 shows how the framework operates in each timestep. The input to 

the system is the time-varying data set  and the Petri Net model which is defined 

by the scientist (see next section). The first step is processing the data in the 

framework. In this step, features, groups, variable changes or other types of user 

interested entities are computed. Different types of features can be extracted by 

using appropriate tools for the respective domain. The computed meta-data may 

include volume, mass, centroid, max and min locations, max and min positions, 

orientation, shape information, etc. Once all the tokens are formed in t0, they are 

used to execute the Petri Net starting from the initial place. Both the meta-data 

and the final marking   
 

  is passed into the next timestep t1. 

   In timestep t1, first the data at t1 is processed to extract features and groups. 

Then their meta-data is computed. This meta-data is transformed into tokens. 

Next step is correlating the extracted features and groups to the extracted ones 

in t0. Any of the available tracking algorithms (such as volume overlap, prediction 

or time-varying contour based algorithms) can be used to correlate features and 

groups or it may be inherent in the simulation. The tracking step computes 
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various attributes including the tracking history of the features (correspondence 

list), position changes, and any other value/attribute that is a function of two 

consecutive timesteps. Both the newly formed (extracted) tokens and computed 

tracking information are fed into the Petri Net for activity detection. In the Petri 

Net, the first step is correlating the existing tokens from t0 to the tokens extracted 

in t1. Once the Petri Net is updated by using the tracking information, the marking 

  
  is obtained. Then, the Petri Net is executed to obtain the final marking   

 .  

   Both the computed meta-data at t1 and   
  are fed into the next step. This 

process repeats itself recursively for each timestep. The meta-data that comes 

from the previous timestep is updated with the new tokens extracted in the 

current timestep by using the tracking information in each new timestep. Tokens 

which fall into the final place are the ones performing the complete activity.  

   When the evaluation over time is completed, the list of tokens with their 

token histories in the final place can be used to generate an activity list. This list, 

can be used for visualization and further data analysis purposes. 

6.2. Modeling with Petri Nets 

The scientist can model an activity as a combination of feature states and 

actions. Table 2 provides examples to illustrate what a token, place and transition 

may represent in a Petri Net model. The activity model should be drawn by 

considering only one instance of an activity. (Many different Petri Nets could be 

drawn representing the same activity). That instance should start from an initial 

place where the activity starts and should end at a final place where the activity is 

completed. 
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Figure 27: Flow diagram of the proposed activity detection framework. Activity model is given by 
the scientist and is used to create the Petri Net data structure. Tokens are formed based on the 
extracted feature (or group) attributes. Once the final marking is obtained, the feature (or group) 

attributes and the final marking (𝑴𝟎
 ) are passed into the next timestep. In the next timestep, first 

the features are extracted; their attributes are computed and tokens of the current timestep are 

formed. Tracking information is combined with 𝑴𝟎
  to correlate these tokens to the ones in the 

Petri Net in the update process. This yields the initial marking 𝑴𝟏
   Once the Petri Net is updated, 

the execution process yields the final marking 𝑴𝟏
 . This process recursively continues in each 
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One important aspect of modelling an activity is that the scientist should 

consider the flow of tokens from one place to the next, when drawing the model. 

Since the purpose is detecting multiple events, a token should represent a 

portion of an instance of the activity in a Petri Net. For example, assume that a 

place represents “two-people hand-shaking” in computer vision. In that case, a 

token represents a group of two people who are hand-shaking. Similarly, while a 

token can represent a feature in one place, in the next place a token can 

represent a group of features. This is especially useful to simplify the modelling 

of formation type of activities where a feature eventually transforms into a super-

structure such as a packet (see [1] and [65]). Since the merge, split, disappear 

cases are implicitly handled by TTPN (via the sub-net shown in Figure 26c), the 

scientist does not need to consider these cases in his/her model explicitly for 

each place. This makes it simpler to define the overall flow.  

 

Deadlocks and conflicts: In an activity model, deadlocks and conflicts 

should be avoided. Figure 28 illustrates deadlock and conflict situations as 

described in [59] and in [20]. Figure 28a illustrates a conflict case where firing 

one of the transitions disables the other one. In such situations, our 
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T1 enabled 

  

  

  

T2 enabled 
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one transition 
disables the other 
one. Which to 
choose? 
  

 

(a) 
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Figure 28: Illustrative examples of (a) conflict and (b) deadlock. 
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implementation fires the first transition that is defined in the model. (i.e., the 

priority is always given to the transition with the lowest transition ID). Figure 28b 

illustrates a deadlock case where no firing is possible. In this illustration two input 

places are opposite of each other and it is impossible to be in both of them at 

once. Therefore, it is impossible to fire the transition. Similar situations should be 

avoided in a Petri Net model. 

Currently, the scientist provides the model along with all the place and 

transition conditions in a text based config file in our existing Petri Net 

implementation. This is described in detail in Appendix II. We are currently 

developing a better interface that will help scientist model an activity graphically. 

Preliminary results can be seen in [80]. 
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CHAPTER 7: 

ACTIVITY VISUALIZATION 

Activity detection enhances visualization. This chapter presents 

various visualization techniques that utilize activity detection.   

 

In general, activity detection adds functionality and flexibility to time-varying 

visualization and allows event based data abstraction. For example, it can 

identify the timesteps where the activity takes place and the features performing 

the activity. Moreover, activity detection allows different visualizations highlighting 

that activity. Different places of a Petri Net can be used to enhance visualization. 

For instance, the features (tokens) at the intermediate states, i.e., places, can be 

visualized separately at each timestep. If the scientist is interested in seeing what 

features from timestep 17 are at place 3 (P3), those features can be highlighted 

in an isosurface or volume rendering. Conversely, a scientist can ask at which 

timesteps features move into P3.  

Some examples of activity detection visualization are described below:  

Graph based activity visualization: In graph based visualization, tokens 

show the progress of the activity on a given Petri Net graph. An example of graph 

based activity visualization is shown in Figure 29. The visualized activity is an 

instance of 15 detected merge-split activities (see Chapter 9.1). The activity 

model contains three places and three transitions. The visualized instance of the 

activity starts in timestep 32 and completes in time step 34. In timestep 32, there 
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are two brown tokens (two brown features) shown below the final place (P3) 

indicating that these brown features completed the activity. Two blue tokens and 

a single red token are shown below the initial place (P1) indicating that these 

features are about to merge. The associated features are highlighted in the 

isosurface visualizations in each time step. The place of a token shows the 

progress of an activity over time. Therefore, token based visualization is useful to 

follow the progress of an activity visually.  

 

As the number of tokens increase in a place, visualizing many tokens in a 

place may become less informative since the token colors may not be 

distinguishable visually. In such situations, where the number of tokens is large 

enough, a histogram (bar-chart) can be attached to each place as an alternative 

graph based activity visualization as shown in Figure 30.    

Activity - Histogram (bar-chart): A histogram (bar-chart) is attached to 

each place in a Petri Net. The total number of features and how these numbers 

change over time can be seen in histograms. Example activity histograms are 

shown in Figure 30. Each histogram visualises the summary of the total number 

t32 t33 t34 

Figure 29: An example of graph based activity visualization. The visualized 

activity is an instance of the merge-split activity. Tokens are visualized below 

the places. Associated features are highlighted in isosurface visualization. 
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of features in a place from Figure 29. For example, the histograms under the 

label P1 show the total number of tokens in timesteps 32, 33 and 34 individually.  

 

In activity histograms, each bar (at each timestep) can be further segmented, 

where each segment can summarize the total number of features participating in 

the same activity. Each of these segments should be assigned a unique color 

(where the color of a segment may represent either a token or a detected 

activity). Alternatively, the total number of detected activities can be visualized 

over time (i.e., the total number of detected activities vs. timesteps) in an 

histogram. A user can further analyze a specific segment or timestep by selecting 

Figure 30: Illustrative example of activity-histogram. An histogram can be 

attached to each place and the histogram can be updated at each time step as 

shown. The visualized activity is an instance of the merge-split activity. The 

activity is previously visualized in Figure 29. The number above each histogram 

shows the total number of tokens in each place in each time step. 
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the interesting timestep (or the activity) in the histogram. Thus the selected 

features can be highlighted in the data and can be visualized.  

Activity summary visualization: Activity summary is the visualization of all 

the detected activities along with the entire data set (or a portion of the data set, 

if the data set is excessively huge) in a single visualization. Figure 40c is one 

such visualization of the entire data set. It shows how frequent the activities are 

and where/when they occur.  

In general, activity summary could be visualized in a histogram form, or in a 

vector form. In vector form, the magnitude can represent the total number of 

participating features and the angle of the vector can represent the duration of 

the activity.  

Isolated activity visualization: A scientist can also choose to view only one 

activity from the list of detected activities. Only the features that are currently 

participating in the user specified activity are visualized. For example, timesteps 

70 to 73 in Figure 37 visualize one user specified activity out of the 15 “Merge-

Split” activities detected over 100 timesteps. A specific instance of the activity 

can be selected from the activity histogram. An example of isolated activity 

visualization can be seen in Figure 31. In this visualization, only the selected 

activity is visualized and only the participating features are highlighted. 

Alternatively, the participating features can be extracted among all the extracted 

features and can be visualized individually.  
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Forecast activity visualization: Forecast activity visualization is the 

visualization of all the features that “will” complete a specified activity. It 

visualizes only the features and their evolutions over time performing the 

modelled activity. In Figure 44a, timestep 8 highlights all the features that are 

currently performing the packet formation event. This is an example of visualizing 

features that will form a group in the future. The single feature Feature_A in 

timestep 8 evolves and eventually forms a group (i.e., the packet Packet_A) in 

future timesteps.   

Activity detection can also help in transfer function design. A time-varying 

transfer function can be generated by using the activity detection results 

automatically, i.e., by using the list of the tokens and their activity histories in the 

final places.  

 

 

Figure 31: An example of isolated activity visualization. The visualized activity 

is an instance of the “merge-split” activity (see Chapter 9). There are 15 

instances detected and only the selected one is visualized above. This 

instance happens between the timesteps 75 and 77. 
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CHAPTER 8: 

IMPLEMENTATION 

The flow diagram of the proposed activity detection framework is given in 

Figure 27. The implementation of this framework is formed of two major sub-

modules. These are: (1) Feature & Group tracking implementation and (2) Petri 

Net implementation.   

 

 

 

 

 

 

 

 

Figure 32: The modules of the feature and group tracking implementation. User 

inputs the parameters in a text based config file. This file is parsed by the 

standalone algorithm (which can also run on the Visit platform as a plugin) and 

accordingly, the data is processed for extracting, tracking the features & their 

groups and computing the attributes of these extracted features. These attributes 

are saved in various formats in the text based output files. The visualization 

module, reads a subset of these generated files to visualize the results.  

 

8.1. Implementation of feature & group tracking 

Feature and group tracking implementation reads and processes the data set 

to extract and track region of interests (i.e, features or their groups), compute the 
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attributes and visualize their evolution over time. Our implementation is in C++ 

and works both on Visit (as a plugin) and as a standalone module. Visit plugin is 

separate from the standalone module. The overview of feature and group 

tracking implementation is given in Figure 32. On the Visit platform, various 

parameters are given in a GUI environment (provided by Visit). The standalone 

algorithm uses a text based config file to read the parameters. These parameters 

include, file (data) names, starting and ending timesteps, variable names to be 

processed and various thresholds that are used in both feature and group 

extraction. These parameters passed into the core algorithm which performs 

feature and group extraction, attribute computation and feature and group 

tracking based on the given parameters. Once the core algorithm, the 

“standalone algorithm”, completes running, the features and their groups are 

visualized on Visit via a plugin which uses the output files of the standalone 

algorithm as input. 

The standalone algorithm saves the computed information in multiple files 

based on the information type. All these files are saved under a user specified 

folder (For the Visit plugin, this is a folder with the name 

GENERATED_TRACK_FILES which is created under the data folder). Based on 

the information type, the computed information is saved in *.poly, *.trak, *.attr, 

*.uocd, *.trakTable, t.groupTrakTable, and colormap files. Detailed information for 

the format of these output files can be found in Appendix II. 

The core output files (based on their extensions) are the *.poly, *.trak, 

*.group files where * represents the actual data file name with the individual 
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timestep index. For example, for a data set including “data1.vtk, data2.vtk, 

data3.vtk” we would have “data1.poly, data2.poly, data3.poly, data1.trak, 

data2.trak, data3.trak, data1.group, data2.group, data3.group” etc. Each .poly 

(for example data1.poly) file contains the surface information of all the extracted 

features. The surface information is saved in mesh format as in the earlier 

versions of feature tracking implementations. Besides the surface information, if 

the individual node values are also needed, then the generated *.uocd files can 

be used since they also include node values within each feature. In addition to 

these files, there is also a single .trakTable file which saves the entire tracking 

information of the features in all timesteps. Similarly, the file t.groupTrakTable 

saves the group tracking information for all the groups in all the timesteps. Both 

feature and group tracking files use “-1” as a key term to separate the previous 

timestep object IDs from the current timestep object IDs. The *.trak files include 

various attributes of each feature. Each line in a *.trak file contains various 

attributes of a feature. These attributes include the centroid location, feature 

volume, mass, moments, min and max values and the coordinates of these min 

and max values. In addition to these attributes, the bounding box coordinates 

summarized with two point locations (located on the lower left and the upper right 

corners of the bounding box) and group IDs of each feature are also included in 

these files. The order and the number of these computed attributes can be 

adjusted based on the domain. *.attr files present these computed attributes in a 

more human readable form. *.group files include group information. Each line in a 

file represents one group (where group ID is the line number) and includes the 
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member feature IDs from the same timestep. Therefore the number of objects 

change from one line to the next in *.group files. 

The feature extraction is done by a region growing algorithm which is re-

implemented by using VTK libraries. The feature tracking algorithm 

fundamentally relies on the implementation in [71]. The key point of the new 

region growing implementation is that the most computational gain is obtained by 

the removal of process of searching for the local maximum points. These local 

points were used as being the seed points in the original region growing 

algorithm. To save computation and time, our algorithm searches along each 

node only once in the data and when it finds a nodal value that is greater (or 

smaller) than the given threshold, it starts growing around that node to extract the 

feature. Since a feature is a set of connected components, this approach yields 

the same results when compared to the earlier versions of the region growing 

algorithm in [71] while gaining a huge improvement on the computational side. In 

the group tracking implementation, user defined similarity functions define the 

groups. This similarity function is used within a clustering algorithm to determine 

the groups. The determined groups are tracked based on the feature overlap 

criteria.  

The computed attributes and tracking information are used in the Petri Net 

implementation for activity detection. 

8.2. Implementation of TTPN 

The TTPN implementation takes the Petri Net model (given by the scientist) 

and the computed meta-data as input and creates a text based output file that 
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lists the detected activities. This file is used for visualization and for further data 

analysis. Figure 33 shows various steps of our Petri Net (PN) implementation. 

The first step if activity modelling. The activity model (the Petri Net model) is 

saved in a config file. The second step is activity detection. The config file is 

passed into the PN algorithm. The PN algorithm processes the meta-data over 

the time  to detect activities and creates a text based output file. The final step is 

activity visualization. The activity visualization step uses the list of the detected 

activities (the output file). Current activity visualization implementation runs on 

Visit platform as a plugin and visualizes the features in the timesteps specified in 

the output file. 

In our Petri Net implementation, which is implemented in C++, the Petri Net 

data structure is formed according to the model given by the scientist. In a given 

Petri Net model, the tokens are the only variables/classes that change over time. 

Each token also has a token-history. A token history is a list that adds the triple 

tuple (tj, Pi, ObjID) to a token’s token history at each iteration where the tj is the jth 

timestep and ObjID is the object (token) ID.  

In the merge case, all the merging object IDs form their individual triple tuples 

in a token-history. In our TTPN implementation we use logical or mathematical 

expressions formed of object attributes to describe a feature’s state or action. A 

place condition is run at each timestep to determine whether a token still remains 

in that place. Tokens that change their states are put into a vector for a further 

evaluation to check if they changed their places via the firing process. A 

transition condition is used to determine whether that transition can be enabled 



105 
 

 
 

for a given token. If a token satisfies the transition condition, then a second step 

checks whether the same token exists in all the incoming places. Furthermore, a 

third step checks whether the object satisfies “at least” one of the output places’ 

conditions. After passing the third step, the transition is enabled and ready to fire. 

Firing a transition for a token removes the token from all the incoming places’ 

lists, and inserts it into the output places for which the token satisfies the place 

conditions.  

 

 

Figure 33: The modules included in the Petri Net implementation are shown. 

These modules include activity modeling, activity detection and activity 

visualization. Activity modeling module includes the user interface that saves 

the activity model in a format that the PN algorithm can read. The format is 

given in a text based config file. The activity detection module reads the 

config file and creates the data structure accordingly. Then the PN algorithm 

is run on the meta-data. The detected activities are saved in a text based 

output file. This file is passed into the activity visualization module in which 

first the output file is parsed to obtain the participating feature IDs and their 

associated timesteps; then these parsed feature IDs are highlighted in the 

appropriate visualization technique (see Chapter 7 for a list of activity 

visualization techniques).  
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In each domain or in each application, different feature attributes can be 

computed and saved in different orders. Moreover, a different combination of the 

available feature attributes can be used as a condition for each place or for each 

transition. To cover such variability and flexibility in action and state definitions, in 

our implementation we use Petri Net variables. A Petri Net variable is either a 

specific feature attribute or a default action from a library (such as merge, split, 

continuation or new born) and can belong to either the current timestep or the 

previous timestep. 

In our implementation, Petri Net variables take one of the following forms: 

“tcA#”, “tpA#”, “tcD#” or “tpD#” where the first two characters, tc and tp, stand for the 

current timestep and previous timestep respectively. A# is an integer number and 

represents the index (column) number of an attribute from a list of attributes for a 

given feature and D# represents the index number of the predefined action from a 

library. For example, “tcD4” means the fourth action from the library (which is the 

split action in our implementation) in the current time, and “tcA3” means the third 

attribute value of a feature in the current timestep.    

Let us consider the transition: “Volume increase is more than %40 of the 

previous volume value”. This can be expressed as a difference of the volume 

values of the current and previous timesteps. Assuming the third value in the 

attributes file represents the volume, we can construct the related transition 

condition as “(tcA3 – tpA3) > (0.4 * tpA3)”. This Boolean expression decides 

whether the condition is satisfied and serves as an action detector. Similarly, the 

place conditions can define the feature states. Our token-tracking Petri Net 
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implementation allows the use of built in functions for constructing similar 

condition expressions. 

Activity visualization uses the token history. In our implementation, the token 

history is captured in an output file. In the output file, each line represents one 

detected activity. Each of these lines formed of a sequence of triplets. The 

sequence represents the activity model. Each triplet includes an object ID, its 

current place ID, and the current timestep. The difference between the first and 

last triplets’ timesteps yields the activity duration.  

Figure 34 illustrates the data structure of a Petri Net. The Petri Net data 

structure includes various types of objects. These include transitions, places, 

arcs and tokens. Since the number of transitions, places and arcs change from 

one PN model to another, linked lists (and vectors in C++) are the data structures 

we use in our implementation. Each arc is defined as triplet including the arc-

weight, and the IDs of its starting and ending nodes that are formed of one place 

and one transition. While all the arc weights have the value of one in TTPN 

models, we still keep the arc-weight variable in each arc for compatibility with 

other Petri Nets. Each transition has its own ID, condition, a list of its incoming 

arcs and a list of its outgoing arcs. Similarly, each place has its own ID, condition, 

a list of its incoming arcs and a list of its outgoing arcs. In addition to these 

members, places also have a list of its tokens and a flag indicating whether the 

place is an initial place or a final place. Each token has its own ID, its history, a 

set of attributes that are used to define the Petri Net variables in conditions, and 
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a flag indicating whether a token is still active in the Petri Net or not (for 

disappearing tokens or searching purposes). 

 

 

 

 

 

 

PetriNet (PN) 

Places Transitions 

PlaceID 

inputArcs 

OutputArcs 

PlaceCondition 

ListOfFeatures 

Initial/FinalPlace 

TransitionID 

inputArcs 

OutputArcs 

TransitionCondition 

TransitionID 

PlaceID 

ArcWeight 

RealObjID 

ActivePNToken 

CurrentFrameID 

ObjHistory 

…
 

…
 

Arcs 

…
 

…
 

ObjID 

FrameID 

PlaceID 

…
 Figure 34: The Petri Net data structure used in TTPN. 
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CHAPTER 9: 

 EXPERIMENTAL RESULTS FOR ACTIVITY DETECTION 

Activity detection is applied to three different case studies. Each of 

these case studies uses a different data set.  

 

The data sets used in this dissertation are described in Appendix III. 

9.1. Merge-split activity detection in turbulent vortex structures 

To test the TTPN, we first apply it on the pseudo-spectral vortex simulation 

data (see Appendix III-A3.1). The activity of interest is a “Merge-Split activity” 

where a single vortex merges with another vortex and then splits again within k0 

time frames. This activity is similar to the ones found in [12] and [24]. A Petri Net 

for this activity is shown in Figure 35. The variable k0 represents a duration set by 

the user. In this Petri Net model, if a feature performs the continuation event 

more than k0 consecutive time steps, then the feature (token) goes back to P1. 

    P1  

P2 
P3 

Continuation > k0 

Merge 

Split 

    

  

  

  

  

Figure 35: The Petri Net model of the merge-split activity. In this model, first 

multiple features merge to form a single feature and then within k0 timesteps, 

the merged feature splits into multiple features again.  
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Notice that the definitions of the places are not important. Therefore all the place 

conditions set to logical true. The transitions characterize the entire activity. Each 

transition is an event that is detected by processing the tracking history. For 

testing, k0 was set to 5 in our applications. However, we include how the total 

number of detected activities changes with respect to the k0 value in Figure 36. In 

the figure, the k0 value changes from 1 to 10 along the x-axis and the total 

number of detected activities at each k0 value is shown as a blue diamond. As 

shown in the figure, the total number of detected activities increases as the value 

increases except the k0=5 value, at which the total number of detected activities 

remain the same when compared to the value at k0=4.  

The simulation data resolution is 1283 and the data contains 100 timesteps. 

The features and their attributes along with their tracking history were computed 

by the feature tracking algorithm at the threshold value 5. The merge, split and 

continuation events of each feature is computed from the correspondence list. 

The correspondence list is computed by the feature tracking algorithm. Running 

TTPN on this meta-data found 15 completed “Merge-Split” activities in the 100 

timesteps. Figure 37 visualizes three sample activities. As it is shown between 

the timesteps 64 and 67, our proposed technique is not limited to detect only one 

activity at a time. These two detected activities overlap in time.  On the figures, 

each feature has a distinct color, except that splitting features have the same 

color. Only the features that are currently performing a detected activity are 

highlighted and all the other features are visualized transparently. Figure 38 

visualizes another two instances from the detected 15 activities. The first one is 
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between the timesteps 1 and 3. The second instance takes place between 

timesteps 3 and 8. 

While all the visualizations in this thesis are obtained at fixed k0 value (k0=5) 

for the Merge-Split activity, we also include another combination of merge and 

split events in Figure 39. Figure 39a shows the Petri Net model describing the 

“merge-split-continue-split” case. TTPN detected 8 instances of the modeled 

merge-split-continue-split activity in 100 timesteps and these instances are 

visualized as histograms in Figure 39b.  

 

Figure 36: The total number of detected activities changes, as the value of k0 

changes. The value of k0 is changed from1 to 10 and for each k0 value, the 

total number of detected activities is plotted with a blue diamond on the plot.  
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Figure 37: Three detected instances of the “merge-split” activity are visualized. The activity is modeled as a Petri Net 
shown above, and is defined as a feature merging and splitting within k0=5 timesteps. The activity detection process 
found 15 “Merge-Split” activities over 100 timesteps. Three activities out of those 15 are visualized above. The colored 
dots in the Petri Net show the locations of the participating features for each timestep in the associated feature colors. 
All other vortices that do not participate in an active merge-split activity are shown transparent in the visualization. Two 
of the found activities are shown in timesteps 64-67. The associated time-varying transfer function is automatically 
generated for the visualization. Petri Nets encapsulate the components that define an activity and help in abstracting 
time. For example, another “Merge-Split” activity which occurs over 4 timesteps instead of 3 is shown timesteps 70-73. 



113 
 

 
 

 

Figure 38: Two other detected instances of the “merge-split” activity are visualized. The first detected activity is 
shown between the timesteps 1 and 3. The second detected activity starts at the timestep 3 and completes in 
timestep 8.  

 

Timestep 1 Timestep 2 Timestep 3 Timestep 4 

Timestep 5 Timestep 6 Timestep 7 Timestep 8 
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Figure 39: Another combination of merge, split and continue events is modeled. (a) shows the Petri Net model for a 
longer activity. In this activity, we seek for a subset of features that have completed the “merge-split” activity. In addition 
to performing previously defined “merge-split” activity, features also need to continue for at least k1 times and then split 
again. (b) the results of the modeled Petri Net are summarized in histograms. Each place is assigned a histogram. 
After running the Petri Net on 100 time steps, TTPN detects 8 instances of the modeled activity. These results are 
obtained when k0=5 and k0=1.   
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9.2. Detecting anomalous bending in acoustic plume scans 

For the next application, we have used the meta-data computed from the 

acoustic plume scans. Detailed description of the data can be found in Appendix 

III-A3.2. The meta-data is obtained from [66]. We have applied a Petri Net 

analysis to determine if the bending patterns observed in the plumes are 

consistent with a semi-diurnal tidal cycle (the datasets have multiple plumes, in 

this example, we focus on only one of them). Ordinarily, changes in direction of 

tidal flow imply a stagnant period in between directions during which the plume 

would be vertical. Ocean currents are not expected to shift the plume from left to 

right or vice versa by skipping a state between two timesteps along the x-z plane. 

By defining each direction of plume bending as an object state (Figure 40a) we 

use a Petri Net to model the normal process and detect the anomalies along the 

x-z plane (Figure 40b). We observe three instances of anomalous-bending at 

times steps 9, 10 and 12 (circled in red in Figure 41a) within the first plume data 

set. Our TTPN algorithm provides results that match the observed results.  

However, when applied to a larger data set, the results of the current Petri 

Net model were too large. This let the scientist to refine the model since the 

original model did not consider the 3D nature of ocean currents and plume 

responses. The redefined new states with new conditions are shown in Figure 

42a and they consider the angles in 3D between z axis and x-y plane. The 

scientist observed that the plume can move left or right within 45o (along the x-y 
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plane) and up or down (along the z axis) from one state to the next. Any angle 

difference that is greater than 45o is considered as an anomaly. The new TTPN 

(Figure 42b) has detected 131 timesteps as anomalies out of the 479 available 

timesteps. The available 479 timesteps are plotted along the x axis (where the 

unit is in days) in Figure 42c. For each day, the magnitude of Plume A bending 

and its major direction is represented using an arrow. The anomaly events are 

highlighted with a pink star. While this is still large, it is much more in tune with 

the data. Further discussion on plume bending can be found in [8]. 
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Figure 40: A Petri Net model for “Anomalous Plume bending” is shown. (a) The plume behavior is categorized in 5 
states (P1, P2, P3, P4 and P5) based on its angle (the angle between the center line of the plume and the z axis). 
These five states are illustrated in two dimensional plane. (b) Based on the defined five states in (a), the Petri Net 
model is drawn. The place that is labeled “A” represents the anomalous bending and therefore when the token 
(i.e., the timesteps in this case since there is only one plume) falls into this place, an anomalous bending is 
detected. This Petri Net is applied on 15 timesteps.  
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Figure 41: “Anomalous Plume bending” detection in a time-varying 3D plume data set is visualized. This data 
set is formed of 15 timesteps (i.e., 3-dimensional scans of the plumes are obtained at 15 different times). This 
data set contains one of three available plumes. (a) In each timestep, first the plume is segmented by using 
the feature tracking algorithm in the data and the isosurface of the extracted plume is visualized. The relative 
orientation of the plume to the normal is shown on the right of each timestep. The anomalies that do not fit the 
defined periodic movement between the plume bending states are circled in red. (b) In this data set, there are 
5 states are defined and these states are shown in x-z plane, i.e., the states are defined in 2D for these 15 
timesteps. There are two states on each side of the normal. 
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Figure 42: The Petri Net model for “Anomalous Plume bending” is shown. (a) The plume behavior is categorized in 4 
states (P1, P2, P3 and P4) based on its angle (the angle between the center line of the plume and the z axis). These 
four states are illustrated in three dimensions. (b) Based on the defined four states in Figure 40a, the Petri Net model 
is drawn. The place that is labeled “A” represents the anomalous bending and therefore when the token (i.e., the 
timesteps in this case since there is only one plume) falls into this place, an anomalous bending is detected. This 
Petri Net is applied on 479 timesteps. (c) The plume’s direction (and magnitude) is shown over 26 days (total 497 
timesteps). The pink stars are the anomaly timesteps in which the anomalous plume bending is detected by the Petri 
Net.  

(c) 
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9.3. Packet formation in wall bounded turbulence flow 

simulations 

In Direct Numerical Simulations (DNS) of wall bounded turbulence flow, 

scientists have been interested in searching for the existence of groups of 

coherent but unconnected features, their formation, dynamic evolution and 

number of these groups [65], [53]. An illustration of such a group is shown in 

Figure 44c [1]. The yellow hairpin vortices (features) move coherently inducing a 

secondary (blue) fluid mass of low momentum. These coherent structures are 

called packets. (This is analogous to groups of humans walking coherently in a 

crowd or to a school of fish). In general, the hairpins are not connected within a 

packet. Each packet includes varying number of hairpins where these hairpins 

are aligned at a downstream-leaning angle (γ) and the distance between the 

hairpins should not exceed a predefined physically meaningful value. Some of 

these packets lead to the formation of younger packets over time. Moreover, 

among all these packets, some act coherently forming super structures inducing 

meandering regions of low momentum. (an illustration of such super structures is 

given in Figure 44c) The activity we are interested in is the “packet formation” 

event which is characterized by a single hairpin evolving into a packet formed of 

multiple features over time [65]. 

The initial simulation data (shown in Figure 17 and in Figure 44a) has 46 

timesteps with the resolution 384x256x69. Figure 44b shows the Petri Net model 
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for packet formation. In Figure 44b, P1 and P2 represent a packet formed of a 

single feature, P3 and P4 represent a packet formed of multiple features in Figure 

44b. The activity (packet formation) starts at P1 (initial place) and ends at P4 (final 

place). Notice that the transition “A group of hairpins moving together” can be 

replaced with another Petri Net to detect and identify groups. Group dynamics 

needs to be computed as a part of the tracking algorithm. See Chapter 4 for the 

details of group tracking and group dynamics. 

Quantification and visualization of the packets in time-varying data require us 

to track the history of the packets. Feature extraction is performed at the 

threshold 0.1*10-3 via a region growing algorithm and the objects with the volume 

lower than 25 are filtered. The average number of extracted features is 308 and 

the average number of found groups is 163 in 46 time frames. Figure 44d 

demonstrate the number of found feature and packet numbers in each time 

frame.   

The PN model yielded 288 packet formation activities over 46 timesteps. 

Figure 44a visualizes the portion of the activities that take places in the timesteps 

between 8 and 13. It is apparent that the single Feature_A (circled in purple) 

transforms into the Packet_A in the following timesteps. All other packets that are 

not currently performing the modeled activity are transparent (Forecast activity 

visualization). 
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Figure 43: Various information of the wall bounded turbulence DNS, (a) A PN model for the packet 
formation event where p1 and p2 represents single hairpin vortex, p3 and p4 represents packets including 
multiple hairpin vortices, (b) an illustration of a packet (a group of hairpin vortices) and a super structure 
formed of packets, (c) The number of found packets and features (hairpin vortices) in each timestep. 
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Figure 44: Sample detected packet formations are visualized in wall bounded turbulence DNS. An 
example formation of a packet (Packet_A) is circled in purple. In timestep 8 the purple feature is a small 
feature while in timestep 13 it looks like a bullet shaped packet (A packet is illustrated in the previous 
figure). 
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CHAPTER 10: 

 DISCUSSION AND CONCLUSION 

In this dissertation, we show that there are activities in 3D scientific 

simulations and these activities can be modelled and detected by employing the 

available activity detection techniques from computer vision applications. An 

activity can be modelled as a time sequence where each node in the sequence 

represents a state of an object. In a high level description, activity detection is 

extracting the meaning from the data. 

In this dissertation, the use of a graph based technique, Petri Nets, is 

proposed first to model an activity of interest and then to detect the instances of 

the modelled activity over time for 3D time-varying scientific data sets. The 

proposed technique relies on the object attributes. These attributes are computed 

by first extracting the objects and then tracking them over the time by the 

available feature and group tracking algorithms. As a part of this dissertation, a 

group extraction and tracking algorithm is presented to determine the groups and 

to track them over the time.     

Petri Nets operate on tokens. In scientific visualization, the tokens 

correspond to the features including feature attributes. In scientific simulations, 

feature attributes change over the time, therefore the tokens also change over 

the time. In order to include such time variance, an enhanced Petri Net: token-

tracking Petri Nets is proposed in this dissertation. Token-tracking Petri Nets can 

handle the variance in an object’s state or the change in its attributes as going 
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from one timestep to the next. Token-tracking Petri Nets utilize the available 

tracking information to update the tokens in each place. In this formalism, each 

token gains time-varying capabilities.  

Activity detection with Petri Nets helps scientists with hypothesis validation in 

scientific simulations. A scientist can first formulate an idea or an hypothesis of 

how features interact or how they evolve and then search for that activity 

amongst thousands of time steps. Through an iterative process, the hypothesis 

can be refined by interpreting the visualized results.   

Future work may include integrating the activity detection results within the 

visualization step in a more efficient way. There are various ways of utilizing the 

results of activity detection in visualization (these are partially discussed in 

Chapter 7). Effective routines can help visualizing large data sets on standard 

computers within a reasonable computing time.  

Group tracking is an important part of the proposed activity detection 

framework. Increasing the grouping accuracy and the tracking accuracy helps 

detecting the activities more accurately. The visualization of the group tracking 

results can also be enhanced. The current version relies on retaining the same 

color information of the dominant parent. These may results in visually 

misleading results in some cases, where all the objects (features) initially 

originate from the same group or the same feature. In such situations all those 

child features will retain the same color even if they are in different groups. 

Various different visualization approaches can be applied to avoid such 

confusion. 
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In this dissertation, all the applications were based on physically observable 

coherent features. However, notice that token-tracking Petri Nets are not limited 

to the detection of the activities of only coherent features. The proposed activity 

detection framework can also be applied to detect the activities of specific nodes 

or quantities in both Lagrangian and Eulerian simulations. For example, activities 

such as “the minimum pressure remains constant for 5 time steps” can still be 

modelled and detected by token-tracking Petri Nets. In this case, the 

segmentation and tracking steps of the framework would become trivial since 

either each node, a quantity or the entire domain would become a token in 

TTPN. 

One of the main challenges in scientific data analysis is creating the training 

set or ground truth for the use of available machine learning or data mining 

techniques in scientific simulations. Petri Nets can also create the necessary 

training data set from the semantic descriptions for further analysis with other 

data mining techniques. A semantic based approach (such as Petri Nets) allows 

exploratory knowledge discovery besides detecting certain events in timevarying 

data sets. Once a good set of (representative) training data is created, future 

work may focus on including machine learning techniques for object recognition, 

object state detection or for action detection within the proposed framework. 

Classification algorithms could be useful for recognizing different object types or 

different object actions. 

The use of activity detection is demonstrated in three sample data sets. The 

different case studies demonstrate that while the domains and actors are 
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different, the concept of activity detection can be applied to all. The proposed 

activity detection framework went over all the time steps and pulled out the 

relevant features and time steps effectively into more manageable chunks. 

Experimental results showed promising results to use Petri Nets for “knowledge-

assisted visualization”. Therefore graph based techniques work in conjunction 

with the available visualization techniques and they remain as intuitive and 

accessible solutions to the both scientists and the visualization community.  

TTPNs support parallel and distributed systems and thus parallel processing. 

Due to their graph based structure, TTPN remain as a scalable choice for 

modelling activities performed by multiple features. Future work may include 

investigating the optimal parallel computational approaches for TTPNs.  
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APPENDIX – I:  

ATTRIBUTE GENERATION  

Attributes play an essential role in segmentation, tracking and action 

recognition techniques. Recognition is typically done after computing several 

features for each object (the recognition process is equivalent to a retrieval or a 

matching process). The success of such recognition techniques fundamentally 

depends on whether a label can be assigned to a segmented (or detected) object 

based on its attributes. Such approaches inherently assume that the object 

attributes are distinctive so that the labels can be derived by discriminating the 

object attributes.  

Consider a specific situation where each object is represented only with the 

mean and variance of its all member node values. Assume that two of these 

objects have the same mean and variance values such that [m 𝜎 ]T (where m is 

the mean and 𝜎 is the standard deviation). In this case, if we know that one of 

these two objects represents a sphere and the other one represents an arrow, 

and if we use only the mean and variance values for such shape discrimination 

(i.e. recognition), regardless of the used technique, we would simply fail in 

deciding which object is a circle and which one is the arrow. Figure 45 illustrates 

this situation. In this example, a simple thresholding process could first segment 

(mask) the region of interests from the background. The next step would be 

deciding on which area (region of interest) is a sphere and which area is an 

arrow. Since both the sphere and and arrow objects have a single (uniform) 
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value that is represented with the dark blue color, they both have the same mean 

and zero variance value. Therefore no approach would yield an accurate 

labelling for these two objects if we represent each of these objects by their 

individual mean and variance (or standard deviation) values only. This example 

shows the importance of attribute computation and selection for an efficient 

recognition process. 

          

 

Figure 45: An illustration of two different objects with the same mean and 
variance values. (a) An image containing a sphere and an arrow with a uniform 
value (represented with the dark blue color), (b) representing each object with its 
mean and standard deviation values. 

In many computer vision applications, the recognition process is highly (and 

sometimes solely) depends on the shape based attributes, i.e. the shape 

descriptors. Shape descriptors can be categorized under two labels namely 

global descriptors and local descriptors. 

Global attributes: Global attributes are the attributes that “summarize” a 

unique characteristic of an object. Examples are mean, variance values of all the 

node values of an object, volume, mass, moments, etc. All these attributes 

summarize the entire set of nodes (voxel or pixel) of an object or (or its mesh 

points) with a less and usually fixed number of values. Therefore we can say that 

these features map M number of voxels (where M varies from an object to 

another) into N number of attributes (where N is fixed for all the objects). Usually 

(but not necessarily) M>N. An example for this case is the mean value 

Object_A =*
𝑚𝐴

𝜎𝐴
+ 

Object_B =*
𝑚𝐵

𝜎𝐵
+ 

 (a)  (b) 
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computation which is a mapping from many nodes to one value, i.e., one 

attribute.   

Local attributes: Local attributes are the individual points of an object that 

can describe the object uniquely when considered all together. These special 

points are sometimes called interest points since they can (collectively) 

discriminate the object from other types. They are computed from only a small 

portion of the entire data. Example local feature types are the corners (and their 

numbers), local curvatures, and local histograms. The entire set of local 

attributes (altogether) also summarizes a characteristic of an object. Since the 

number of such interesting points changes from object to object, the number of 

the local attributes varies from object to object. On the contrary, the length (the 

number) of computed attributes is fixed in global features for each object. Local 

attributes are mostly used for shape related tasks and therefore also named 

shape descriptors. 

Various techniques have been proposed to “detect” the informative (salient) 

local points of an object for different data types. The data type can be one 

dimensional (1D), two dimensional (2D) or three dimensional (3D) based on the 

data acquisition (or generation) environment, its geometrical and topological 

structure.  

Recently, many researcher focused on first defining and then detecting the 

local attributes due to the success of the Scale-Invariance Feature Transform 

(SIFT) in many computer vision applications including recognition and image 

retrieval. Following the success of SIFT, Speeded Up Robust Features (SURF) 
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algorithm also has been proposed for computer vision applications. While there 

are some technical limitations in these algorithms, there are also legal limitations 

since both algorithms are currently patented to their respective owners. Currently 

there are many available techniques that extract local descriptors based on 

different criteria. Examples are Local Energy based Shape Histogram (LESH), 

Gradient Location and Orientation Histogram (GLOH). 

In order to understand the local descriptor concept better, we will go over the 

SIFT algorithm as a representative algorithm here.  

A1.1. Scale-invariance feature transform (SIFT)  

Local attributes were proposed and studied before the SIFT algorithm. 

However, SIFT algorithm emphasized on their importance with its robust and 

successful image analysis, recognition, and retrieval applications. The 

fundamentals of SIFT algorithm can be found in the papers [43], [44] and [45]. 

According to [45] SIFT algorithm has four major steps: 

1) Scale-space extrema detection: This step finds (detects) all the extrema 

points in scale space as candidate local attribute points. 

2) Keypoint localization: For each candidate local attribute point (keypoint) 

found in step 1 (in scale space), compute the actual location and scale 

values. 

3) Orientation Assignment: For each keypoint, compute the orientation and 

magnitude values based on the local image gradients. 

4) Keypoint Descriptor: Compute (derive) a set of attributes for each keypoint 

based on the neighbour pixels.  
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A1.2. Scale space extrema detection  

Keypoint locations that are invariant to scale changes of the image can be 

detected by finding stable points across all possible scales [45]. A scale is a 

filtering parameter (a distance measure in image filtering).  A discrete scale 

space of an (2D) image can be considered as a discrete 3D volume where the 

third dimension is formed of by filtering the original image with a constant 

increment in scale. A sampled illustration of a scale space is shown in Figure 46. 

 

Figure 46: Illustration of the concept scale in scale space. (a) The original image, 
(b) samples taken from a scale space of the original image.  As it is shown, the 
filtering process removes the high frequency components of the image and the 
result is a blurred version of the original image at a certain scale.   

Original Image Its grayscale version 
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The most intuitive and appropriate filter is Gaussian kernel (which is a space-

space kernel) according to [45]. Therefore, a scale space of an image is formed 

by convolving the Gaussian kernel with the image at different and continuous 

scales.  

                                                              (9) 

Where I(x,y) is the pixel value of the image I at the (x,y) coordinate, * is the 

convolution operation, L(x,y,σ) is the filtered (scaled) version of the original 

image I at the scale σ. G(x,y,σ) is the Gaussian kernel: 

          
 

     
                                                    (10) 

It is well known that the Laplacian of a Gaussian operator is good at 

detecting edges and blobs. As we smooth and down-sample an image, we get rid 

of the sharp corners existing in the image, thus more objects gets blob-like 

shapes. Therefore if we apply the Laplacian of a Gaussian operator (𝛁2G) on an 

image at different scales, then we could detect edges and blobs at different 

scales. Since we already computed scale space image at various scales, the 

Laplacian of a Gaussian operator can be approximated by using two consecutive 

samples of L in scale.  

The partial derivative of Gaussian can be expressed as: 

         

  
 𝜎        𝜎 .                                        (11) 

On the other side, the partial derivative of a Gaussian kernel can also we 

approximated by using the finite difference approximation. As a result, the 

Laplacian of a Gaussian kernel (G) can be approximated as: 

𝜎        𝜎  
         

  
 

                  

     
                              (12) 
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Where k is a constant such that for a given pair of consecutive scales σ1 and 

σ2 (where σ1< σ2 ) σ2=kσ1. Therefore the difference of two Gaussians at 

consecutive scales can be written as: 

       𝜎        𝜎       𝜎         𝜎 .                       (13) 

Since the Gaussian kernel is also used to create a scale space of an image, 

the approximation of Laplacian of a Gaussian applied on an image, can be 

computed by using the samples from the scale space of the image. Applying the 

Laplacian of a Gaussian on an image can be approximated as the difference of 

two consecutive scale space images since: 

                  𝜎         
                  

        
                                 (14) 

         (                   )         𝜎                             (15)           

Where           is the actual result and D(x,y,σ) is its approximation. As a 

result, the Laplacian of a Gaussian operator (filter) is approximated by the 

difference of two Gaussians (DoG). Since the discrete scale space of an image is 

already computed at various scales, the difference of scale space images are 

used in SIFT such that: 

                            .                               (16) 

D(x,y,σ), i.e. the difference of Gaussians (DoG), is computed for each 

consecutive pairs in a discrete scale space. Once DoG images (samples) are 

constructed, the next step is finding the minimum and maximum points. These 

are the extrema points that appear or disappear along the scale at a certain 

location. Lowe suggests using three DoG samples taken at 3 consecutive scales 
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(such as at the scales σ1, σ2=kσ1 and σ3= kσ2) to find the minimum and 

maximum points. This process is shown in Figure 47 [45].  

 

Figure 47: Computing the local extrema points. The pixel denoted “X” on the 
picture, is a local extremum point if it is the minimum or the maximum among all 
the green points in DoG samples (images), image source: [45]. 

The value at the location X (shown in Figure 47)is compared to its 8 

neighbors in D(x,y,σ2), its 9 neighbors in D(x,y,σ1) and its 9 neighbors in 

D(x,y,σ3). If its value is greater than all of its neigbor values then it is saved as a 

local maximum. If it is smaller than all its neighbors, then it is saved as a local 

minimum point. 

Once all the extrema points are found in a scale space, a new octave is 

created by downsampling the original image. Down-sampling is done by taking 

every other pixel along x and y dimensions. And DoG images of this down-

sampled image are computed and then the extrema points are also computed in 

this octave. An octave is the discrete scale space of an image. The scale space 

computed by using the original size is considered as the first octave, and second 

octave is the discrete scale space created from the down-sampled version of the 

 
scale (σ)  

x 
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original image. In each octave, the image dimensions are reduced to half. An 

illustration of various octaves of a given image is shown in Figure 48.  

 

Figure 48: Visualizing the first and second octaves of a given image. 

Summary: 

1) Compute the scale space of an image via the convolution process, 

2) Construct the DoG images for each consecutive pairs (along the scale) in 

scale space, 

3) Find the local minimum and maximum points in DoG images according to 

the Figure 47. 

4) Down-sample the image, 

5) Repeat step 1 through 3 for the down-sampled image. 

Notice that since image is down-sampled, the scale σ, is the two times of the 

σ used in the previous octave. This process ensures that the distance value 

remains the same in filtering in each octave.  

D(x,y,σ1) D(x,y,σ
2
) D(x,y,σ

3
) 
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Figure 49: The effect of scaling at various octaves and scales. The top left image 
is the original image. 

Figure 49 shows samples taken from scale space along both scale and 

octave. The original image (the image shown in top left corner in Figure 49) is a 

high definition image with the dimensions ~ 1000 by 1000. Therefore, when it is 

resized to fit the figure, it is distorted. However, in its actual size, it looks crispier 

than any other image shown in the figure. 



146 
 

 
 

 

Figure 50: Computed DoG images for Figure 49. 
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A1.3. Keypoint localization 

Keypoints are detected at different scales and octaves. It is essential to find 

the most accurate location for those points of they are detected in down-sampled 

images. This process becomes more important as the number of octave 

increases since the difference between two neighbour pixels change as the 

image is downsampled from one octave to the next. 

Lowe suggests approximating D(x,y,σ) by using only the first three terms of 

its Taylor expansion where the function is shifted to make the origin at the 

sample point. Then 

        
   

  
  

 

 
     

    .                             (17) 

Where D and its derivatives are evaluated at the sample point x = [x,y,σ]T . 

Since we are interested in finding the local minimum and local maximum points 

(and since the derivative of D(x) is zero at local min and max points), we can 

simply take the derivative of this approximation with respect to x and equate that 

to zero to estimate the local minimum (or local maximum) location  ̂ as: 

 ̂   
     

    
  

  
                                                (18) 

Then the difference value at the estimated location is: 

   ̂    
 

 
 
   

  
 ̂                                            (19) 

Since  ̂ is an offset (the relative distance) from the actual pixel coordinate, it 

should be close to the original pixel. That is only true if  ̂ <0.5. Otherwise, it will 

be closer to another pixel. Therefore, this operation should be re-computed for 
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that new (closer) pixel. Lowe suggests that if the value of |   ̂ |      , the 

keypoint at that location should be deleted from the keypoint list. 

Since the Laplacian of a Gaussian is good at detecting the edges and blob 

like structures, the algorithm will detect many keypoints along the edges. This will 

yield an increased number of keypoints along the edges. To eliminate such 

keypoints, SIFT algorithm computes Hessian matrix H to estimate the local 

(principal) curvatures of D(x,y,σ).  

  [
      

      
]                                               (20) 

The curvature information of D(x,y,σ) at the point (x,y) can be obtained by 

investigating the Eigen values of H. Assume that two Eigen values of H are e1 

and e2. Then the sum of e1 and e2 is equal to Trace of H, and the determinant of 

H is equal to the multiplication of the two Eigen values, i.e., 

                                                       (21) 

                                                     (22) 

If the determinant is negative, the point is deleted from the keypoint list. 

Assume that e1 > e2 and e1=re2, then 

      

      
 

       
 

    
 

        
 

     
  

      

 
                                     (23) 

Then we need to check if 
      

      
  

      

 
 .                 

In SIFT, for r =10, if the point does not satisfy the above inequality, then it will 

be ignored. 
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A1.4. Orientation assignment 

Until now, we only found “interesting points”, i.e. keypoints in the image. That is, 

we only have a coordinate (x,y) information of some “selected” pixels where the 

selection is based on the keypoint localization process described above. Next 

step is computing rotation invariant, and scale invariant attributes that could 

uniquely characterize these selected points. For that purpose, SIFT computes a 

set of 128 attributes for each keypoint. Since each set describes a keypoint, they 

are called descriptors. SIFT uses local gradient magnitudes and orientations 

within the neighborhood of each keypoint to form keypoint’s descriptors. Since 

orientation is related to rotation, SIFT suggests to remove a reference orientation 

from these computed attributes. Thus the orientation based attributes become 

rotation invariant. In SIFT a gradient orientation is defined as:  

            (
                       

                       
)                             (24) 

The reference orientation is determined by forming a histogram of neighbour 

orientations. The gradient magnitude and its orientation values are computed 

within the 1.5   distance of the keypoint, where    is the scale for the current 

octave.  Before forming the histrogram, to consider the closer pixels more than 

the further away points, the magnitudes are weighted with a Gaussian circular 

window with a σ =1.5  . where the magnitude of the gradient is defined as: 

       

√(                       )
 
 (                       )

 
                



150 
 

 
 

Once all the orientations and magnitudes are computed within the 

neighbourhood of the keypoint, all the orientations (angles) are quantized 

(binned) into 36 bins covering 360 degrees. After the quantization, each 

histogram value (for each bin) is computed by summing the magnitudes of the 

neighbour pixels whose orientations fall into the corresponding bin. Once the 

histogram is formed, the highest peak is chosen to assign an orientation to the 

keypoint. For that, in order to decrease the effects of the quantization (binning) 

process (i,e, for a better orientation estimate), SIFT fits a parabola to the 3 

histogram values closest to each peak. This final value is assigned to the 

keypoint as orientation. If there are more than one peaks that are greater than 

80% of the highest peak in the histogram, then each of these points also used to 

generate a new keypoint at the same location. 

A1.5. Keypoint descriptors  

So far we detected keypoint locations, and assigned them an orientation. 

These variables are not invariant to affine transformations. SIFT suggests using 

local gradients and magnitudes within a region to form a histogram. The 

histogram values are the final keypoint descriptors.  

The histogram values (descriptors) are computed by first forming n by n 

subregions in an m by m neighborhood where m≥n and the keypoint is centered 

in the m by m region. (SIFT suggests creating 4 by 4 subregions in the 16 by 16 

neighborhood of each keypoint). Each neighbor’s gradient orientation and 

magnitude is computed and these magnitudes are weighted by a Gaussian 

window with a σ =1.5  . The points outside the Gaussian window are ignored. 
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The computed orientations are rotated relative to the keypoint’s orientation. This 

process makes the computed orientations invariant to the rotation operations. 

The process of computing the descriptors of a keypoint are illustrated in Figure 

51 [45]. 

               

Figure 51: Keypoint descriptor computation process. First a Gaussian window is 
places where the center is the keypoint (red point). Then each neighbor pixel’s 
magnitude and orientation is computed and magnitudes are weighted with the 
Gaussian window weight. Then the orientations are quantized and histograms for 
each subblock (In this figure for each 4 by 4 sub-block). Image origin: [45]. 

For descriptor computation, each orientation is quantized into 8 bins (as opposed 

to 36 bins for the reference orientation computation). Since SIFT computes 4 by 

4 arrays around the keypoint, it computes these 8 bins for each block within the 4 

by 4 array. As a result, 4x4x8= 128 elements are computes as the attribute 

vector for each keypoint.  Once the vector is formed, it is normalized to the unit 

length. Once the attribute vector is normalized, the values above 0.2 are 

truncated to 0.2.  

 

 

 



152 
 

 
 

A1.6. 3D-SIFT and SIFT-like algorithms 

Original SIFT algorithm is developed mainly considering the problems 

associated with 2D image (data) sets (such as segmentation, image recognition, 

retrieval and affine transformation). Therefore all the operations are defined and 

used in 2D. In many data sets (Such as medical scans, videos) the data is 

considered 3D and, hence, a 3D version of the SIFT algorithm would be more 

efficient than applying the original SIFT algorithm on 3D data. Therefore 

Scovanner et. al. [69] proposed a 3D SIFT algorithm. 3D SIFT extends the 2D 

equations of the original SIFT algorithm into 3D. However, since many 3D 

applications require (or operate on) mesh structures, there are different mesh 

based SIFT algorithms proposed. These algorithms compute SIFT-like features 

from mesh structures. Examples are MeshSIFT can be found in [48] and [19].  

While the results are not presented in this dissertation, our preliminary tests 

for applying meshSIFT on scientific objects did not show promise for tracking 

scientific objects. This is due to the blob-like structure of scientific objects in 

general. However, the application areas of SIFT or MeshSIFT-like algorithms are 

broader. Future work may include using such algorithms for modelling complex 

shape-based actions or activities of scientific objects.  
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APPENDIX – II:  

USER MANUAL   

This chapter describes the content of the both the output files 

and the configuration files for the existing implementations of the 

proposed activity detection framework used in this dissertation. We 

will first describe the content of the Feature & Group tracking 

implementation and hen will describe the configuration file for the 

Petri Net implementation. 

Content of the configuration file for feature & group tracking 

implementation and the meaning of the used keywords are given below: 

DATA_FILES_PATH:  This is the path of the file starts and ends with “/”. 

Example usage is given in Figure 52. 

GENERATED_FILES_PATH: This is the path under which all the created files 

will be saved. Example usage is given in Figure 52. 

FILE_BASE_NAME: This is the unchanging part of the name of the data files. 

For example, assume that a simulation data set is formed of following 5 files: 

nwa_avg_1.nc, nwa_avg_2.nc, nwa_avg_3.nc, nwa_avg_4.nc and 

nwa_avg_5.nc. In this case, the data at each timestep is saved in each file and 

FILE_BASE_NAME (unchanging part) in this data set is: nwa_avg_ .   

FILE_EXTENSION: In the above example all files end with the extension “.nc”. 

Therefore in the above simulation data set, this variable is set to .nc. 
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INITIAL_TIME_STEP: This the time index that the data set starts with. For 

example in the above simulation data set, the data set starts from the first 

timestep (nwa_avg_1.nc). Therefore for that example, initial timestep is 1.  

 FINAL_TIME_STEP: This the time index that the data set ends with. For 

example in the above simulation data set, the data set ends with the data set 

nwa_avg_5.nc. Therefore for that example, the final timestep is 5. 

 TIME_STEP_INCREMENT: This variable defines how the time index (timestep) 

changes (the different) from one file to the next. For example, in the above 

simulation data set, the indices increase one by one. Therefore timestep 

increment in this case is 1. 

 TIME_STEP_PRECISION: This variable defines in which format the time index 

(timestep) is saved. For example, if the index part is saved as 001, 002, 003, 

004, 005, then the timestep precision would be 3. If the timestep indices are 

saved as 0001, 0002, 0003, 0004, 0005, then the timestep precision would be 4. 

In the above simulation data set, the indices are saved in single digits. Therefore 

timestep precision in this case is 1. 

 VARIABLE_NAMES: If there are more than one variable saved in the data file, 

this variable defined which variable (or variables) to be loaded in the data. An 

example is given in Figure 52. 

THRESHOLD1: This is the threshold value that is used for region growing 

algorithm.  The region growing algorithm could segment the region of interests 

based on whether the values smaller or greater than this threshold (the default 
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value is segmenting the greater regions in the data. However, the smaller regions 

can also be segmented by a change in the code).    

THRESHOLD2: This variable is saved here for future references. In the future, 

two or more than two variables can be used at once to segment a region of 

interest.  

DELTA_X_THRESHOLD: This is the distance based threshold along x axis that 

is used in packet extraction and tracking algorithm. If the purpose is feature 

tracking, this value must set to 0 along with Delta y and delta z thresholds. 

DELTA_Y_THRESHOLD: This is the distance based threshold along y axis that 

is used in packet extraction and tracking algorithm. If the purpose is feature 

tracking, this value must set to 0 along with Delta x and delta z thresholds. 

DELTA_Z_THRESHOLD: This is the distance based threshold along z axis that 

is used in packet extraction and tracking algorithm. If the purpose is feature 

tracking, this value must set to 0 along with Delta y and delta x thresholds. 

SMALLEST_OBJECT_VOLUME_TO_TRACK: This is the threshold to filter small 

objects out. The integer number set for this variable is the minimum volume 

(where the volume is the total number of the voxels or nodes in a segmented 

feature). If the volume of the object is smaller than this value, it will be ignored 

and will not be saved as a feature. 

X_Dim: This is the integer value that defines the total number of voxels (i.e., the 

dimension along the x axis in the data. 
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DATA_FILES_PATH:  /Users/data/ 

 GENERATED_FILES_PATH:  /Users/data/GENERATED_TRACK_FILES1/ 

 FILE_BASE_NAME: nwa_avg_ 

 FILE_EXTENSION: .nc 

 INITIAL_TIME_STEP: 1 

 FINAL_TIME_STEP: 5 

 TIME_STEP_INCREMENT: 1 

 TIME_STEP_PRECISION: 1 

 VARIABLE_NAMES: omega 

 THRESHOLD1: -0.0000000000331    

 THRESHOLD2: 40.6 

 DELTA_X_THRESHOLD: 0.01 

 DELTA_Y_THRESHOLD: 0.01 

 DELTA_Z_THRESHOLD: 0.01 

 SMALLEST_OBJECT_VOLUME_TO_TRACK: 15 

 X_Dim: 722 

 Y_Dim: 362 

 Z_Dim: 40 

 X1_Dim: 721 

 Y1_Dim: 361 

 Z1_Dim: 39 

 X0_Dim: 0 

 Y0_Dim: 0 

 Z0_Dim: 0 

Figure 52: A sample configuration file for feature and group tracking module. 
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Y_Dim: This is the integer value that defines the total number of voxels (i.e., the 

dimension) along the y axis in the data. 

Z_Dim: This is the integer value that defines the total number of voxels (i.e., the 

dimension) along the z axis in the data. 

The below variables allow user to select a portion of the data and process 

only that selected portion (i.e., sub-region) in the data. A portion of the data can 

be defined by the coordinates of two points (Namely Point1 and Point0). These 

two points define the extends of the selected portion. They can be virtually 

visualized as the lower left corner (Point0) and the upper right corner (Point1) of 

a 3dimensional box. Each point can be defined by their coordinates in Cartesian 

coordinates.  

X1_Dim: This is an integer index defining the x coordinate of the point 1 (Point1) 

that define the most right point that should be used in the data (if the entire data 

needs to be processed, than this variable must be set to X_Dim-1). 

Y1_Dim: This is an integer index defining the y coordinate of the point 1 (Point1) 

that define the most right point that should be used in the data. (if the entire data 

needs to be processed, than this variable must be set to Y_Dim-1). 

Z1_Dim: This is an integer index defining the z coordinate of the point 1 (Point1) 

that define the most right point that should be used in the data. (if the entire data 

needs to be processed, than this variable must be set to Z_Dim-1). 
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X0_Dim: This is an integer index defining the x coordinate of the point 0 (Point0) 

that define the least left point that should be used in the data. (If the entire data 

needs to be processed, than this variable must be set to 0). 

Y0_Dim: This is an integer index defining the y coordinate of the point 0 (Point0) 

that define the least left point that should be used in the data. (If the entire data 

needs to be processed, than this variable must be set to 0). 

Z0_Dim: This is an integer index defining the z coordinate of the point 0 (Point0) 

that define the least left point that should be used in the data. (If the entire data 

needs to be processed, than this variable must be set to 0). 

Content of the configuration file for Petri Net implementation is shown in 

Figure 53. The keywords used in this file are described below.  

TrackingFileName:  This variable defines the location and name of the tracking 

file.  

IsTrackingInfoProvided: This variable is reserved for future improvement. This 

variable is used to state if tracking information is necessary or if it is inherent in 

the segmentation (attributes file). The value of this variable is Boolean and is 

provided as YES or NO. The current implementation always assumes that the 

tracking information is necessary and is provided. However, since in some 

applications there may be only one object, or the order of the objects remains the 

same in the attribute files at each timestep, a specific tracking step may not be 

necessary. Therefore, the term NO is reserved to describe this situation in future 

implementations. 
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InitialFrameNumber: This is an integer number describing the starting time index. 

FinalFrameNumber: This is an integer number describing the final timestep index 

that should be processed in the data set. 

TrackingFileName = Users/ GENERATED_TRACK_FILES1/nwa_avg_1.trakTable 

IsTrackingInfoProvided = YES    

InitialFrameNumber = 1 

FinalFrameNumber = 14 

Variables =  F0D6   

Places =   (2>1); (2>1) ; (2>1)         

Transitions =  (F0D6>1) ; (F0D6>2) ; 

FilesPath = /Users/NewParsedData/ 

TransitionsFileBaseName  =    nwa_avg_ 

TransitionsFileExtension =  .trak 

PlacesFileBaseName  =  nwa_avg_ 

PlacesFileExtension = .trak 

DefaultActionsFileBaseName = nwa_avg_ 

DefaultActionsFileExtention = .trak 

inputarcs = 1 1 1 2 2 1 

outputarcs = 2 1 1 3 2 1 

initialMarkings = 0 0 0 

FinalPlaceIDs = 3 

InitialPlaceIDs = 1 

Figure 53: A sample configuration file for the Petri Net module. 
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Variables: This are the Petri Net variables that are used to define the conditions 

in both transitions and places. 

Places: This is the line that defines the conditions for each place.  Each place 

condition is separated from other place conditions “;”. The number of conditions 

is equal to the number of the places in the Petri Net. The first condition is 

associated to the first place, the second condition is associated to the second 

place and so on, in the Petri Net. 

Transitions: This is the line where all the transition conditions are defined. Each 

transition condition is separated from other transition conditions by “;”. The total 

number of transitions in the Petri Net is equal to the number of total transitions. 

The condition order describes the transition index. I.e., the first condition is 

associated to the first transition; the second condition is associated to the second 

transition and so on, in the Petri Net. 

FilesPath: This is the path describing the folder where all the input files (including 

attributes or actions of objects) are located.  

TransitionsFileBaseName: This is the base name of the data set (i.e., the part of 

the file name that does not change by time).   Our implementation assumes that 

the object attributes are saved in separate timesteps. And for each timestep, all 

the object attributes are listed in a single file. Our implementation allows to define 

different file names for transitions and for places. The assumption is that, all the 

transition files start with the same constant name. The full file name is: 



161 
 

 
 

“FilesPath+ TransitionsFileBaseName+ currenttimeindex+ 

TransitionsFileExtension”. 

TransitionsFileExtension: This is the file extension for the attributes used in 

transition conditions. (as described in TransitionsFileBaseName). 

PlacesFileBaseName: This is the file base name for the Place attributes (similar 

to the TransitionsFileBaseName). 

PlacesFileExtension: This is the file extension for the attributes used in place 

conditions.  

DefaultActionsFileBaseName: This is the action file’s base name. The file defines 

the name of the “default” actions. (Such as merge, split or continuation.) 

DefaultActionsFileExtention: This is the extension of the action files. 

Inputarcs: Input arcs are the arcs from a place to a transition. Each arc is 

described by a triplet. A triplet is formed of 3 integers where the first integer is the 

PlaceID, the second intereger is the TransitionID and the third integer is the arc 

weight. While the token-tracking Petri Nets assume that arc weights are 1, for 

future improvements, we keep user to specify arc weights here. 
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Outputarcs: An output arc is the arc that originates from a transition and ends at 

a place. Similar to inputarcs, each outputarc is defined by a triplet. Each triplet 

represents a single output arc by 3 integers. The first integer represents the 

PlaceID, the second integer represents the TransitionID, and the third integer 

represents the arc weight. 

------------------------------------------------ 

object 0 attributes: 

Max position: (287.232605, 19.894339, -0.010823) with value: -0.000000 

Node #: 9156671 

Min position: (287.232605, 19.894339, -0.066988) with value: -0.000000 

Node #: 3145299 

Integrated content: -0.000000 

Sum of squared content values: 0.000000 

Volume: 44 

Centroid: (287.223584, 19.895294, -0.054405) 

Moment: Ixx = 0.000742 

Iyy = 0.000008 

Izz = 0.000454 

Ixy = -0.000079 

Iyz = -0.000010 

Izx = 0.000099 

------------------------------------------------ 

object 1 attributes: 

… 

… 

 
Figure 54: A sample from the content of an *.attr file. 
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initialMarkings: While the initial marking is always assumed to be zero (i.e., the 

total number of tokens in each place is zero initially) at the beginning in our 

current implementation, this keyword reserved here to be used in future 

implementations. 

FinalPlaceIDs: These are the set of PlaceIDs that are considered important to the 

user, or that are the end of an activity, or multiple activities. For example, two 

different activities can be modeled in a single Petri Net, and therefore there 

would be two different final places in the model (at least). 

InitialPlaceIDs: These are set of Places in which a new token can enter the Petri 

Net as a starting place. There can me multiple initial places in a single activity 

model. 

The output files of the standalone feature & group tracking algorithm are 

given below. The output files of the feature and group tracking implementation 

are saved in separate files in each timestep. Most of these files start with the 

data name. They are: 

 datanameX.attr 

 datanameX.group 

 datanameX.poly 

 datanameX.trak 

 datanameX.trakTable 

 datanameX.uocd 

 dataname_comp_1_END.list 
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 t.groupTrakTable 

 ColorMapX.txt 

The the letter X in the above listed names refer to the ecah timestep. Therefore 

these files (except the .trakTable, t.groupTrakTable and the 

dataname_comp_1_END.list files) are generated separately for each time step.  

A sample from the content of the datanameX.attr files is given in Figure 

54. This file lists the computed attributes for each object in a human readable 

form. Objects are given an integer ID starting from 0. Max position is the position 

of the maximum value within the feature. Node number is the node ID within the 

datafile. Integrated content is the sum of all the nodal values within the feature. 

Volume is the total number of nodes within the feature. Centroid is coordinate of 

the geometric centroid. The Ixx, Iyy, Izz, Ixy and Iyz are the elements of the 2nd 

order moment (tensor matrix). These values are listed for each individual feature 

extracted within the timestep. A detailed description of each of these terms can 

be found [81]. 

 A sample from the content of the datanameX.group file is given in Figure 

55. In Figure 52, each group is listed in one line. Each line starts with the group 

ID and then the member feature IDs are listed. For example the first line in the 

group file are “ 1 6 16” means groupID 1 has the features 6 and 16 as members. 

Similarly, Group 2 has feature 17 and  feature 18 as members. Group 3 has only 

one member (feature 22). While the earlier versions include more attributes in 

this file, the most recent version is limited to include only the member feature IDs 
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due to the size constraints. Most group attributes can be computed by combining 

the feature attributes with the information available in the group files. 

The content of the .poly, .trakTable and the uocd files remain the same as in [81] 

and in [5]. The .trak files compute the feature attributes and save them in a more 

compact way than the .attr files. The content and the order in this file changes 

from one version to the next. The content of the most recent version created by 

the standalone implementation is given below as example. In track files, the 

objects are listed according to their IDs starting from 0. That is, the attributes 

listed in the first line belongs to the feature 0, the second line belongs to the 

feature 1, etc. Each line contains the following 20 attributes in the order of: 

mass, volume, centroid[x,y,z], boundingboxcoordinates( 

lowerleftcornercoordinates[x,y,z], upperrightcornercoordinates[x,y,z]), 

minimumvaluelocation[x,y,z],   maximumvaluelocation[x,y,z], minimumValue, 

     1      6     16   

     2     17     18   

     3     22   

     4      9     27     28   

     5     30   

     6     32   

    … 

   … 

 

Figure 55: A sample from the content of an *.group file. 
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maximumValue, GroupID. An example file content is given in Figure 56 for the 

first two features. 

The t.groupTrakTable file contains the tracking information for the groups. Each 

line lists a correspondence in the file. Similar to the .trakTable file, the group IDs 

that are on the left side of the deliminator “-1” correspond to the groups from the 

previous timestep, and the groupIDs that are listed on the right side of “-1” 

correspond to the groups form the current timestep. 

The current TTPN implementation creates only one text-based output file. 

The name of this file is Event.list. Each line in this file represents one object 

(token) and its history. In each line, the tuple {ObjectID, TimeStep, PlaceID} is 

written for each timesteps along the movement of the token from an intial place 

to a final place. However, the recent versions of this file includes only the tuples 

from timesteps when a change is occurred (i.e. the token is fired) from one place 

     20.976601     527     6.476810   -0.612426    0.022417   6.421410  -0.645774   
0.002389   6.512880  -0.564202   0.074619   6.512880  -0.632179   0.033016   6.458000  
-0.638976   0.030187   0.014757   0.139331     55  

      2.183900     100     6.976500   -0.327972    0.010872   6.951950  -0.346679   
0.003298   7.006840  -0.299095   0.027541   6.970250  -0.319488   0.003298   6.970250  
-0.333083   0.010232   0.014932   0.035414  

    … 

   … 

    … 

   … 

 

Figure 56: A sample from the content of an *.trak file. 
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to another to reduce the file size. In between those tuples, the object is assumed 

to remain in the same place and therefore that information is not saved in the 

Event.list file. For example, assume that a line in an Event.list is 2 1 1 6 3 2 5 4 3. 

This line can be decoded into the tuples {2,1,1}, {6,3,2} and {5,4,3} and can be 

read as object_2 in timestep 1 falls into P1, it becomes object_6 in timestep 3 and 

changes its place to P2 and finally it becomes object_5 in timestep 4 and falls into 

the final place P3. Notice that the tuple for the timestep2 is missing in this line. 

This information is already inherently available in the data and can be obtained 

easily, when the tracking history is combined with the first timestep information. 

That is the same object remains in P1 in timestep 2. And its objectID in timestep 2 

can be obtained from the tracking history (provided by the tracking). Therefore 

there is no need to save that information in the Event.list file. 
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APPENDIX – III:  

DATA SETS   

In this dissertation, we use three different data sets from 3 different domains. 

These three data sets are described in this appendix. 

A3.1. Pseudo-spectral simulation of coherent turbulent vortex 

structures 

The first data set we use in this dissertation is a small data set from [72] 

which is a pseudo-spectral simulation of coherent turbulent vortex structures. The 

simulation includes an initial condition of six vortex tubes in parallel and 

orthogonal positions. To maintain the energy of the low wave number modes 

constant, a forcing scheme is applied [17], [21], [71]. The output of this simulation 

at each time step is saved in a separate file. These files (the dataset) contain 

vorticity values. The simulation data resolution is 1283 and it contains 100 

timesteps. The data type is a uniform grid and saved in binary files.  

This data set contains many merging and splitting features. It has become 

the typical (experimental) data set and used in many feature extraction and 

tracking related research including the papers including [72], [73] and [50].  
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A3.2. Acoustic plume scans 

Besides using simulation data, in this dissertation, we include a real data 

set to apply our techniques on. The real data set is formed of acoustic scans of 

an underwater plume. 

In turbulent underwater environments, hydrothermal plumes can be 

observed. Such underwater plumes are of the interest of many geologists and 

oceanographers as in [87] and [8]. As these plumes rise, they bend in response 

to ocean currents [66]. It is currently of the interest to analyze the relation 

between the underwater plumes’ behavior and the ocean currents. Scientists 

collect data in various ways to analyze such relation. For example, while earlier 

studies used ship-based scanners to capture data from the plume, the recent 

studies use more advanced and stationary systems to scan a plume underwater.  

The plume data used in this dissertation is a scan of a plume that is 

located above the clusters of smokers on Grotto mound, Main Endeavour Field, 

Juan de Fuca Ridge. The volumetric plume data contains increased backscatter 

intensity from the metallic sulfides and temperature fluctuations within the plume. 

The intensity values are collected by using an acoustic scanner. As shown in 

Figure 57, the scanner scans a slice of the plume at a time. Each slice is obtained 

by elevating the scanner. Then these slices are combined and processed to form 

a complete 3D data set representing the acoustic measurements of the 3D 

volume.   
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Two different data sets capture the behavior of the plumes from Grotto 

Vent in the Main Endeavour Field on the Juan de Fuca Ridge. A 24-hr time 

series (with hourly sampling) data set was collected in 2000 using the ROV 

Jason. Figure 41a shows one of three existing plumes in the 15 timesteps of the 

data with 513 resolution. The data type is a uniform grid in 3D. A three week time 

series (with sampling every three hours) was collected using the NEPTUNE 

Canada cabled seafloor observatory (479 timesteps available) in 2011. As the 

data set becomes too large to process and view manually, activities of interest 

need to be modeled and searched for automatically.  

A3.3. Wall bounded turbulence flow simulations 

In turbulence studies, scientists simulate the environments and conditions 

to analyze and understand turbulence. Recent focus includes studying and 

understanding the collective and coherent behaviors of vortices in wall-bounded 

Plume rises 

along this 

direction 

Figure 57: A schematic diagram of acoustic plume scan process. In this 

figure, the acoustic scanner collects the data by casting out a set of acoustic 

waves and then by measuring the reflection in the received acoustic waves. 

The 3D structure is captured by elevating the scans incrementally in short 

time intervals. Image is modified from [68]. 

The scanner 

Radially and mechanically elevating acoustic waves 

Plume 
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flows. Such collective and coherent vortices form groups called packets. In [1], it 

is proposed that these packets grow in size over time. Moreover, as they evolve, 

they result in nested packets. These nested packets consist of hairpins or cane-

type vortices that are growing up from the wall because the older packets give 

rise to the younger and slower packets. The term “hairpin” refers both to 

symmetric horseshoe-like vortices and asymmetric cane-like vortices. 

 

The turbulence structures in boundary layers have been studied in various 

flow regimes including subsonic, supersonic and hypersonic flow regimes 

examples can be found in [65] and [53]. An illustration of these turbulence 

structures is shown in Figure 58b. The yellow hairpin vortices (features) move 

coherently inducing a secondary (blue) fluid mass of low momentum. These 

coherent structures are the packets. (This is analogous to groups of humans 

walking coherently in a crowd or to a school of fish). Notice that, in general, the 

hairpins are not connected within a packet. Each packet includes varying number 

of hairpins where these hairpins should be aligned at a downstream-leaning 

angle (γ) and the distance between the hairpins should not exceed a predefined 

Figure 58: in wall bounded turbulence simulations (a) illustrating the groups of 
hairpin vortices (packets).  (b) An illustration of a packet in wall bounded 
turbulence simulations. Yellow hairpins elongate to form a certain angle that is 
smaller than 45o. 
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physically meaningful value (see Figure 58b). Some of these packets lead to the 

formation of younger packets over time. Moreover, among all these packets, 

some act coherently forming super structures inducing meandering regions of 

low momentum. (an illustration of such super structures is given in Figure 58a). 

The time-varying wall-bounded turbulence simulation data used in this 

dissertation contains two different data sets. Both sets contain various variables 

including temperature, velocity and swirling values for each voxel in each time 

step. The first data set is saved in a binary format and later on converted into the 

rectilinear VTK data format. Please refer to [69] for more information about 

different VTK data formats. The data dimensions are 384x256x69 and the data is 

contains 46 timesteps. 

The second data set is a larger data set and is saved in the rectilinear 

format by using the hdf5 libraries. Hdf5 is a “file” format and is used by many 

scientists. It is flexible and supports distributed systems and various 

programming languages such as C, C++ and Fortran. Please refer to [28] for the 

details of the HDF5 format. The data dimensions of this data set are 

2520x1120x110 and it contains 250 timesteps. The data produced at each time 

step is saved in a separate file and each file size is about 16 gigabyte.  

 The activity we are interested in wall-bounded turbulence simulations is 

the “packet formation” event which is characterized by a single hairpin evolving 

into a packet formed of multiple features over time.  

 


