
i

© 2013

Sedat Ozer

ALL RIGHTS RESERVED

i

ACTIVITY DETECTION IN SCIENTIFIC VISUALIZATION

By SEDAT OZER

A Dissertation submitted to the

Graduate School-New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Prof. Deborah Silver

And approved by

New Brunswick, New Jersey

OCTOBER, 2013

ii

ABSTRACT OF THE DISSERTATION

Activity Detection in Scientific Simulations

By SEDAT OZER

Dissertation Director:

Prof. Deborah Silver

Today’s state of the art simulations generate high-resolution data at an ever-

increasing rate. Such simulations produce data with billions of mesh points (or

voxels) for each timestep and thousands of such timesteps with multiple

variables. Time-varying data can easily reach peta- and exa-byte scale.

Visualizing these massive data sets is still an on-going problem. Even after

visualizing this data, viewing each variable at each timestep is practically

impossible when there are thousands of timesteps. Simulations become too

complex for the scientist to analyze manually. In such time-varying data sets,

scientists want to know “where and when events happen” or “how long an event

lasts”. Finding these events in thousands of timesteps is not possible with

iii

standard visualization tools. What scientists need are routines, procedures and

visualizing techniques to help filter massive data and help focus on areas and

events of interest automatically.

The problems facing any attempt to localize complex events (activities)

automatically in time-varying 3D scientific data can be summarized as: (1)

provide an appropriate way for users to define an event of interest; (2) find an

appropriate formalism to model this event; (3) apply the model to detect many

instances of the event of interest in simulation data; and (4) present the detected

events to users in an appropriate visual form.

The contributions in this dissertation include introduction of the concept of

activity detection for scientific visualization, the use of Petri Nets to model and

detect activities in scientific visualization, an enhancement of Petri Nets to

include the dynamics of scientific phenomena and demonstration of the use of

activity detection on three different 3D time-varying data sets as case studies. In

addition, a full 3D group-tracking model in which we extract and track groups as

well as the individual features that form them is presented.

iv

TABLE of CONTENTS:

ABSTRACT OF THE DISSERTATION.........……………………………………….. ii

LIST OF FIGURES……………………............……………………………………….vi

CHAPTER 1: INTRODUCTION .. 1

1.1. Motivation, problem statement .. 4

1.2. What is activity detection in scientific visualization? 6

1.3. Enhancing scientific visualization .. 11

1.4. Summary of contributions .. 13

CHAPTER 2: THE PROPOSED ACTIVITY DETECTION FRAMEWORK 16

2.1. Definitions .. 16

2.2. An overview of the proposed activity detection framework 21

2.2.1 Segmentation .. 24

2.2.2 Tracking .. 27

2.2.3 Activity detection ... 31

CHAPTER 3: BACKGROUND – RELATED WORK ... 34

3.1. Related work in computer vision .. 34

3.2. Related work in visualization .. 39

3.3. Activities as patterns and the use of machine learning 40

CHAPTER 4: GROUP TRACKING ... 42

4.1. Overview of the group tracking algorithm ... 44

4.2. Group extraction via clustering ... 48

4.3. Similarity functions ... 50

4.4. Group tracking & group events ... 51

4.5. Group & cross-level events .. 55

4.6. Creating a domain specific similarity function 59

4.7. Results ... 62

CHAPTER 5: PETRI NETS FOR ACTIVITY DETECTION 72

5.1. Fundamental Petri Net concepts and components 73

5.2. Marked Petri Nets .. 75

5.3. Timed and stochastic Petri Nets ... 77

5.4. Coloured Petri Nets .. 79

5.5. Earlier definitions of the enabling and firing processes 79

5.6. Unaddressed problems for activity detection...................................... 81

CHAPTER 6: TOKEN-TRACKING PETRI NETS FOR ACTIVITY DETECTION 84

6.1. Activity detection framework with TTPN ... 90

v

6.2. Modeling with Petri Nets .. 91

CHAPTER 7: ACTIVITY VISUALIZATION ... 95

CHAPTER 8: IMPLEMENTATION.. 100

8.1. Implementation of feature & group tracking 100

8.2. Implementation of TTPN .. 103

CHAPTER 9: EXPERIMENTAL RESULTS FOR ACTIVITY DETECTION 109

9.1. Merge-split activity detection in turbulent vortex structures 109

9.2. Detecting anomalous bending in acoustic plume scans 115

9.3. Packet formation in wall bounded turbulence flow simulations......... 120

CHAPTER 10: DISCUSSION AND CONCLUSION ... 124

ACKNOWLEDGEMENTS, PUBLICATIONS AND PRESENTATIONS 128

REFERENCES ... 130

APPENDIX – I: ATTRIBUTE GENERATION ... 136

A1.1. Scale-invariance feature transform (SIFT) .. 139

A1.2. Scale space extrema detection ... 140

A1.3. Keypoint localization ... 147

A1.4. Orientation assignment ... 149

A1.5. Keypoint descriptors ... 150

A1.6. 3D-SIFT and SIFT-like algorithms .. 152

APPENDIX – II: USER MANUAL .. 153

APPENDIX – III: DATA SETS ... 168

A3.1. Pseudo-spectral simulation of coherent turbulent vortex structures . 168

A3.2. Acoustic plume scans ... 169

A3.3. Wall bounded turbulence flow simulations .. 170

vi

LIST of FIGURES:

Figure 1: Inputs and outputs of a typical activity detection framework 3

Figure 2: Scientific Data examples ... 5

Figure 3: Iso-surface visualization of vortices in a time-varying 3D computational

fluid dynamics simulation .. 6

Figure 4: A simple sequence of an activity ... 7

Figure 5: Flow diagram of hypothesis testing. .. 12

Figure 6: A relational diagram illustrating the flow in scientific visualization 20

Figure 7: An illustration of the extracted and tracked features in the data. 22

Figure 8: An Activity Detection Framework with Petri Nets 23

Figure 9: A generic activity detection framework .. 32

Figure 10: A classification schema for various activity detection techniques 38

Figure 11: An example of a hierarchical structure .. 43

Figure 12: Group tracking framework flow diagram .. 46

Figure 13: An illustration of volume-overlap based group tracking 54

Figure 14: Single Feature Track events vs. group tracking events 56

Figure 15: An illustration of full merge, partial merge, full split and partial split .. 57

Figure 16: An illustration of cross-group event ... 59

Figure 17: Visualization of feature tracking vs. group tracking in wall bounded

turbulent flow simulation data ... 64

Figure 18: The evolution of a selected feature and its group is visualized in the

first five timesteps ... 66

Figure 19: The total number of extracted features vs. the total number of

identified packets in each timestep ... 67

Figure 20: Group tracking results are visualized in timesteps 1, 2 and in timestep

8 ... 69

Figure 21: Group tracking results are visualized in timesteps 21, 26 and in

timestep 31. .. 70

Figure 22: Group extraction is shown on the large data set 71

Figure 23: Illustration of Petri Net components on the Petri Net model of the

unattended bag example. ... 75

Figure 24: An example of enabling and firing a transition in a marked Petri Net. 78

Figure 25: Various illustrations of different time dependent problems in Petri

Nets. ... 87

Figure 26: The use of sub-nets in TTPN ... 89

Figure 27: Flow diagram of the proposed activity detection framework 92

Figure 28: Illustrative examples of (a) conflict and (b) deadlock. 93

Figure 29: An example of graph based activity visualization 96

Figure 30: Illustrative example of activity-histogram ... 97

Figure 31: An example of isolated activity visualization 99

file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501512
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501513
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501514
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501514
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501515
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501517
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501518
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501519
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501520
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501522
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501523
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501524
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501526
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501527
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501528
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501528
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501529
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501529
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501530
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501530
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501531
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501531
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501532
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501532
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501533
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501534
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501534
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501536
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501536
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501537
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501538
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501539
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501540
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501541
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501542

vii

Figure 32: The modules of the feature and group tracking implementation 100

Figure 33: The modules included in the Petri Net implementation are shown .. 105

Figure 34: The Petri Net data structure used in TTPN. 108

Figure 35: The Petri Net model of the merge-split activity 109

Figure 36: The total number of detected activities changes, as the value of k0

changes .. 111

Figure 37: Three detected instances of the “merge-split” activity are visualized

 ... 112

Figure 38: Two other detected instances of the “merge-split” activity are

visualized .. 113

Figure 39: Another combination of merge, split and continue events is modeled

 ... 114

Figure 40: A Petri Net model for “Anomalous Plume bending” is shown 117

Figure 41: “Anomalous Plume bending” detection in a time-varying 3D plume

data set is visualized .. 118

Figure 42: The Petri Net model for “Anomalous Plume bending” is shown 119

Figure 43: Various information of the wall bounded turbulence DNS 122

Figure 44: Sample detected packet formations are visualized in wall bounded

turbulence DNS .. 123

Figure 45: An illustration of two different objects with the same mean and

variance values ... 137

Figure 46: Illustration of the concept scale in scale space 140

Figure 47: Computing the local extrema points. ... 143

Figure 48: Visualizing the first and second octaves of a given image. 144

Figure 49: The effect of scaling at various octaves and scales......................... 145

Figure 50: Computed DoG images for Figure 49. ... 146

Figure 51: Keypoint descriptor computation process .. 151

Figure 52: A sample configuration file for feature and group tracking module. . 156

Figure 53: A sample configuration file for the Petri Net module. 159

Figure 54: A sample from the content of an *.attr file. 162

Figure 55: A sample from the content of an *.group file. 165

Figure 56: A sample from the content of an *.trak file. 166

Figure 57: A schematic diagram of acoustic plume scan process 170

Figure 58: in wall bounded turbulence simulations ... 171

file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501544
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501545
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501546
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501547
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501547
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501548
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501548
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501549
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501549
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501550
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501550
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501551
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501552
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501552
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501553
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501554
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501555
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501555
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501563
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501564
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501565
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501566
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501567
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501568
file:///C:/Users/x/Desktop/PhD%20Thesis/ThesisDraftAllChapters_version6.42.docx%23_Toc368501569

1

CHAPTER 1:

INTRODUCTION

Today’s state of the art simulations and data acquisition systems generate

high resolution data at an ever increasing rate. These simulations are generally

in 3D with many variables and many timesteps. They produce data with billions

of mesh points (or voxels) for each timestep and thousands of such timesteps

with multiple variables. Time-varying data can easily reach peta- and exa-byte

scale. Visualizing these massive data sets is still an on-going problem. Even after

visualizing this data, viewing each variable or each object “feature” at each

timestep is practically impossible in thousands of timesteps. Simulations become

too complex for the scientist to analyse manually for simulations with identifiable

features. Scientists want to know “where and when events happen” or “how long

an event lasts”. Finding these events in thousands of timesteps is not possible

with today’s tools. What scientists need are routines, procedures and visualizing

techniques to help filter massive data and help focus on areas and events of

interest. Furthermore, in many simulations, scientists have hypothesis about

events occurring in the data and would like to test and refine their assumption.

Allowing a scientist to model an event and then search for that event over

thousands of timesteps would both filter massive data and enable scientists to

focus on regions of interests in space and time.

Detection of events has been an active research area in video analysis and

there have been a large number of techniques and tools have been proposed

2

(see Chapter 3). However, currently there is no tool available for scientists to

define, model and automatically search for complex events, i.e., activities, in their

time-varying 3D scientific data. Most visualization and analysis routines are still

focused on a single timestep. Available visualization routines for time-varying

data are mostly concerned with the correspondence problem which involves

correlating objects from one timestep to the next. However, these routines do not

provide the scientist with the ability to model complex spatio-temporal patterns or

to answer the fundamental issue of where, when and how “interesting things”

occur.

Activity detection is an automated search process for finding a specific and

complex pattern (activity) in a large data set containing many different types of

patterns. Activity examples include formation of features (such as galaxies,

halos, storms or blood clots), anomalous interaction or behaviour (anomaly

detection), merge-split or ignition events. These events are distributed over a

large number of timesteps. Different portions of the pattern happen at different

timesteps. The duration of an activity changes from one instance to another, i.e.,

one instance of an activity may take 20 timesteps and another instance of the

same activity could take four. Inputs and outputs of an activity detection

framework are shown in Figure 1. Inputs to a typical activity detection system are

the data set and the definition of the activity. The output of an activity detection

framework is the list of detected activities including the answers to the “where,

when and which” questions.

3

The problems facing any attempt to localize complex events (activities)

automatically in time-varying 3D scientific data can be summarized as follows: (1)

define an event of interest; (2) model this event; (3) detect all the instances of the

model in simulation data; (4) visualize the results.

In this dissertation, we introduce activity detection and discuss the

applicability of activity detection for both data analysis and visualization

purposes. The main goal is to develop a framework that a scientist can use

to first model a spatio-temporal pattern and then search through massive

data sets to find instances of such a pattern. The natural way of modeling

events or activities is using a graphical and state based approach that can

convert or translate the semantics of an event into a graph-based sequential

model. Therefore, in this dissertation, Petri Nets are proposed to model and

search events in scientific simulations. The focus primarily is the activities of

observable features. However, the presented techniques can be used for

detecting any type of activity.

Inputs Outputs

Activity

Detection

Framework

Data

Definition (template)

of the activity

A list of found activities including:

1) where the activity happens,

2) when it happens,

3) which objects are involved in the

activity.

Figure 1: Inputs and outputs of a typical activity detection framework. In
addition to the typical data, a form of the activity definition is also given to
the framework. This form may be in the same format as the input data, in a
form of a mathematical equation or can be a semantic description, etc. The
output of the framework is the list of detected activities.

4

1.1. Motivation, problem statement

Visualization routines for time-varying 3D data are heavily focused on the

problems of feature tracking [71]. Feature tracking correlates the features

(scientific objects) from one timestep to the next in time-varying scientific

simulations. Examples of scientific data sets are shown in both Figure 2 and

Figure 3. Figure 2a visualizes the first timestep of an ocean simulation where the

region of interests are the ocean eddies and Figure 2b visualizes the first

timestep of a 3D computational fluid dynamics simulation where the region of

interests are the vortices. Figure 3 visualizes sample timesteps from the

processed data (extracted and tracked vortices) by applying the feature tracking

algorithm on the entire fluid dynamics simulation data (the data set has 100

timesteps). While the available feature tracking techniques allow time-varying

data analysis in 3D simulations, they do not provide the scientist flexibility to

model different activities or hypothesis about the data to answer the fundamental

issue of where and when “interesting things” occur.

Scientists are usually interested in analysing specific patterns and studying

local interactions, the origin of features, how they evolve, and how they interact.

These patterns can span multiple timesteps and can occur frequently throughout

the simulations. Many of the patterns include different types of feature states or

their various types of interactions. In this dissertation, we call these time

dependent patterns “events” or “activities”.

Relating to Figure 3 and the vortex simulation dataset, sample questions a

scientist may ask of the data include:

5

 Which features first merge and then split within a period of five timesteps

(merge-split activity)?

 How many features do further split among the features that already

performed the “merge-split” activity defined above?

 How long does it take for features to merge-split-split and then merge

again?

 Which features rotate around other objects and where do these events

occur?

 When does a feature type transform into another feature type and how

long do these transformation events take?

Answering similar questions in the computer vision community has been an

active research area and is referred to as “activity detection” or “activity

(a) (b)

Figure 2: Scientific Data examples: (a) the visualization of the first timestep of an
ocean simulation, (b) visualization of the first timestep of a computational fluid
dynamics simulation.

6

recognition”. However, this is not an active topic of research in the 3D

visualization community.

1.2. What is activity detection in scientific visualization?

Activity detection is an active research field in video analysis. For example

consider a security surveillance system at an airport. There are hundreds of

locations and thousands of hours of video that must be monitored. One situation

of interest to security personal is a “leaving a bag unattended” activity where a

person walks in with a bag, puts the bag down and then walks away without the

Figure 3: Iso-surface visualization of vortices in a time-varying 3D computational
fluid dynamics simulation. The extracted and tracked vortices in the first three
timesteps and the last three timesteps of the simulation data are shown above.
Each individual vortex has a unique color. The splitting vortices have the same
parent vortex’s color. The data set is from [71].

Timestep 1 Timestep 2 Timestep 3

Timestep 98 Timestep 99 Timestep 100

…

7

bag. In Figure 4, a model of this activity is shown as a sequence of key and

atomic (primitive) events. This sequence is shown as a directed graph. Clearly,

we can add complexity to this sequence, for example, by adding more than one

person where there is a group of people holding a bag or where the person

routinely picks up a bag and puts it down. In a video sequence, each step would

occur at a specific point in time. An example of an activity sequence from a video

is given in Figure 4. Underneath each activity state, a sample time step is given

representing where in the dataset that event is detected. In another video

sequence, the detection would occur in different time steps and the time

difference between the states would vary.

Many other activity examples have been searched in video data such as:

 a person leaves his/her car to meet another person in another car as

in [25],

 a person robs a bank as in [3],

 a person skips the checkpoint at an airport as in [41],

All these activities involve actors performing the activity, contain a certain

semantic description and span over multiple timesteps. Furthermore, they can all

be categorized by a sequence of timesteps.

Timestep 1

Figure 4: A simple sequence of an activity. The activity is formed of four
different atomic events (actions) over the course of 42 timesteps.

A person

appears
Person
walks

Leaves the
bag

Disappears
without the bag

Timestep 15 Timestep 36 Timestep 42

8

Similar to Figure 4, there are many cases where the scientists are looking for

complex interactions of features in 3D scientific simulations. Extraction of such

events and their quantification is important for data analysis in scientific data

sets.

While detecting particular activities has been an active research area in video

analysis, activity detection remains an open research problem in 3D scientific

visualization. The problems facing any attempt to localize activities automatically

in time-varying 3D scientific data are four-fold, namely,

1. How to define and model a complex interaction that spans a limited time,

2. How to detect simultaneous activities efficiently when there are multiple

actors performing the same activity independently in the scene,

3. How to use an activity model to automate and ease the querying and

visualization processes,

4. How to develop a generic method that can be used in many different

domains in scientific visualization, i.e., a method that does not require

adapting the available source code to each domain or to each application.

The first problem is related to the inference problem in computer vision and

has been an active research area under the “activity detection” name, (although

the terms “activity recognition”, “action detection” and “action recognition” have

also been used interchangeably). In this dissertation, we propose to use Petri

Nets to model an activity in scientific visualization.

The second problem is the detection of multiple activities simultaneously

where different actors are performing the same activity independently. When

9

there are multiple objects in the scene, each object is likely to perform the same

activity independent of the other possible activity performers (objects). Although

there have been recent studies in video, surveillance and multimedia fields to

detect activities with Petri Nets, the main goal has been the detection of a single

activity performed by one or many people or a person’s interaction with the

surrounding objects (mainly other humans or vehicles). In many scientific

simulations the number of objects is greater than one, thereby increasing the

likelihood of observing more than one activity happening in a scene over time.

This problem is a common problem in both computer vision and scientific

visualization communities. To handle this case, we enhance Petri Nets to detect

simultaneous activities of scientific objects.

The third problem in attempting to automatically localize events is related to

the efficient integration of the activity detection with scientific visualization.

Activity detection archives a list of participating features, their locations and

associated timesteps. This information can be used to enhance scientific

visualization by isolating features in each timestep or even designing observable

feature based time-varying transfer functions.

Any specific activity can always be implemented directly for a simulation.

However, this approach is not scalable and does not easily allow scientists to re-

model or reuse these activity programs. With Petri Nets, we provide scientists a

generic method to model and detect events in time-varying 3D data.

In this dissertation, we present 3 different examples. The first data set is a

toy data set. It contains a pseudo-spectral simulation of coherent turbulent vortex

10

structures. In this data set, features merge, split throughout the data set and we

look for the features that perform a specific combination these events. The

combination we seek is “merge-split” activity. The second data set is a collection

of acoustic scans of a plume in the sea over time. In this data set, the scientists

are interested in detecting the specific timesteps when unusual changes in

direction or magnitude of the bending of the plume in response to local ocean

currents occur. The third data set is a wall bounded turbulent Direct Numerical

Simulation (DNS). In this data set, there are hundreds of hairpin vortices

(features) interacting with each other in each timestep. One event, which

interests scientists, in such simulations is finding when several “young” hairpins

come together and eventually form a group of unconnected hairpins moving

together. These are the three examples we have chosen to explore. However, in

many other domains, there are problems with similar need for methods of

detection of events such as blood clot formation in blood flow simulations,

extinction and re-ignition in turbulent flames in combustion simulations or

magnetic storm formations in space weather simulations.

These abovementioned scientific objects mimic the computer vision example

in which actors perform activities: the actors are now features in the time-varying

scientific data and the activities reflect interactions or changes in feature states.

The ability to model and detect such activities where and when they take place

would be helpful in these situations.

11

1.3. Enhancing scientific visualization

Activity detection can be used as an analysis and visualization tool. These

ideas are summarized below:

 Activity detection to model or validate an hypothesis in scientific

simulations: Many scientific simulations are generated to simulate a

specific event or phenomena. Such phenomena are modeled by a set of

hypothesis. Activity detection can be used to detect and thus validate,

such phenomena happening within the data. For example, if there is no

such event found in the data, then the original hypothesis may not be

correct.

While scientific simulations are the alternatives to the experimental

setups for data gathering, there are specific issues in simulations. One of

the fundamental problems in simulations, (as opposed to the physical and

economical limitations in experimental studies) is establishing a successful

model describing the phenomena. The model in many cases is not clearly

known in advance, and therefore it usually requires several iterations to

refine. The refinement process is done via an interactive and recursive

process, in which first the simulation data is generated based on the

model and then the generated simulation data is analysed, and then the

model is tuned or restructured based on the analysis results. Activity

detection can be used to help in hypothesis generation and validation.

12

Figure 5 shows the flow diagram for hypothesis testing. In scientific

simulations, the scientist usually has an idea (hypothesis) about possible

phenomena happening in the data and would like to analyse and check

those phenomena. For that purpose, first the scientist creates the

simulation data, extracts and tracks all the region of interests in the

simulation and computes their attributes. These computes attributes help

scientist to model his/her hypothesis first, and then the activity detection

algorithm would extract all the instances of the model. The visual results

would provide feedback to scientist to refine their model (i.e., hypothesis).

The red loop (shown in Figure 5) would repeat itself for model refinement.

Figure 5: Flow diagram of hypothesis testing. Once the attributes are
computed, scientist can go through the loop the refine his/her hypothesis.

 Activity detection for time-varying data analysis: Once the scientist is

assured that the hypothesis is correct, then he/she can search for various

types of events within the data. Searching for various types of events, the

number of such events occuring and the duration of such events can help

13

the scientist in understanding their data and ultimately the phenomena of

interest. Specifically, the statistics of the participated features, the

numbers of partially completed activities and their percentage can be used

to analyze the scientific data and scientific phenomena.

 Activity detection for improving the visualization of time-varying

data: Activity detection can help reduce clutter, and can focus on events

rather than focusing on features. This is especially useful in data

abstraction for visualization. While not the focus of this dissertation,

activity detection can also help model and generate automated time-

varying transfer functions. Please see Chapter 7 for more about activity

visualization.

1.4. Summary of contributions

The contributions of this dissertation are listed as follows:

1) Introduction of the concept “activity detection” for scientific visualization,

2) proposal of the use of Petri Nets to model and detect activities in scientific

simulations,

3) enhancement of the existing Petri Net formalism to handle simultaneous

activity detection in time-varying 3D data with the introduction of token-

tracking Petri Nets,

4) the use of a similarity based clustering algorithm to first define and then

group features automatically in scientific datasets,

5) proposal of an algorithm for tracking groups (besides the features) in

scientific datasets,

14

6) description of how activity detection can be used to enhance scientific

visualization, and

7) demonstration of the use of activity detection on three different 3D time-

varying data sets.

In Chapter 2, first a list of the descriptions of the commonly used terms in this

dissertation is given and then an overview of the proposed activity detection

framework and its parts including segmentation, tracking and activity detection

are discussed. The related literature in activity detection is provided in Chapter 3.

Chapter 4 presents an algorithm that enhances the feature tracking algorithm to

group the features and track these groups as well as the features.

 Chapter 5 provides the background for Petri Nets to model and detect

activities with Petri Nets. Chapter 6 presents the enhancements in Petri Nets that

were made as a part of this dissertation. These enhancements consider the

dynamics of scientific simulations. Resulting Petri Net is called token-tracking

Petri Nets and can be used for both activity modelling and detection in scientific

visualization. Activity detection in scientific simulations also enhances

visualization. Such activity visualization techniques are discussed in Chapter 7.

Chapter 8 presents the details of the implementations of the proposed activity

detection framework. Three case studies of activity detection in scientific

visualization are provided in Chapter 9. In Chapter 10 we conclude this

dissertation.

Appendices include additional information that complements this dissertation.

Appendix I discusses the importance of attribute computation by giving the

15

details of a specific attribute computation technique (SIFT). Appendix II includes

the details of the format of both inputs and outputs in the presented activity

detection framework. Appendix III provides background on the data that is used

as the input for the proposed activity detection framework.

16

CHAPTER 2:

THE PROPOSED ACTIVITY DETECTION FRAMEWORK

In this chapter, we provide the definitions and background

needed to understand the project and its context. We start with a list

of common terms and how we intend them to be understood, then

introduce the activity detection framework, and finally review various

aspects of activity detection.

2.1. Definitions

Below is a set of commonly used terms.

Data: In this dissertation, we will use the term data to describe a set of

numbers (values) representing the entire set of measurements in a domain. The

values at each node can be single (scalar) or can be vector (multiple values for

each node). If these measurements come from different locations of a geometric

space, then we will call the data spatial data. Therefore spatial data, besides the

measurements (data values), also includes the location of these data values and

typically includes the connectivity information.

Region of interest (ROI): A region of interest (ROI) is the spatial area or the

volume that covers a certain set of interest points (i.e., nodes) in the data. The

definition of the “interest” depends on the application domain and in this

dissertation we restrict it to a scientific object in an observable form. Therefore, in

the data, all the nodes that are not a part of any region of interests form a new

type of object: background. Generally speaking, the term background is usually

17

used to describe the unimportant part of the data and region of interest is used to

describe the important part of the data.

Object, feature: We will use the terms object and feature interchangeably

referring to a region of interest that has a physical meaning or that is in an

observable form. An object or a feature can be a connected set of regions or a

group of unconnected regions. For example a human can be an object in one

context in a video data, while in another data set a cluster (group) of humans can

be defined as a single object.

Group: A group is a set of related objects. The relation can be only logical

(such as all the green objects, the set of voxels with a certain value, etc.) or can

also have a physical meaning (such as a flock of bird, a school of fish, a galaxy,

etc.).

Meta-data, attributes: We will use the terms meta-data or attributes to

describe a set of computed quantitative properties of the objects that are usually

obtained by processing the data. Examples include the mean value of an object’s

member points, volume, centroid or surface points of an object.

Spatio-temporal Pattern: A spatial pattern is a pattern that can be defined by

only the geometric (or spatial) properties of the data such as shape or length.

Spatio-temporal pattern is a pattern that is a function of both space and time.

That is, the pattern does not occur in a single timestep. Instead, it spans over

multiple timesteps to occur. Detection (or recognition) of such patterns, typically

require inspecting sets of timesteps. Therefore spatio-temporal patterns cannot

18

be detected by inspecting only the geometric structures in a single (each)

timestep.

Event: An event can be defined in many different ways including: 1) the

cause of the change in an object’s state, 2) a spatio-temporal pattern, or 3) an

entire eco-system including the cause, objects and the change in object states

over the time. System approach is more generic and it allows us to model and

analyse an event by using the available system based techniques and tools

(such as Petri Nets). In such systems, an event can be considered as a spatio-

temporal pattern and can be modelled by considering various causes that result

a change in objects’ state. An event happens over a course of timesteps and can

include the interactions of different types of objects. Events can be further divided

into two groups: atomic events (actions) and complex events (activities).

Action: An atomic event or action is the primitive event that happens in a

short time span. Actions usually occur between two consecutive timesteps. For

example, an object may split from one timestep to the next [71]. Therefore, in

many cases, an action can be inferred by comparing the current timestep to a

specific (reference) timestep.

Activity: A complex event or an activity is a set of actions that spans multiple

timesteps and can include multiple object types, object states or object

interactions. Complex events, i.e., activities, usually occur over more than 2

timesteps.

19

Actor: An actor is an object that participates or is involved in an activity. We

will use the terms actor, object or feature interchangeably to refer to a region of

interest that performs the activity or is participating in the activity.

Phenomenon: In this dissertation, we will use the term phenomenon

specifically referring to a scientific spatio-temporal pattern.

Segmentation, extraction: Segmentation (or extraction) is the process of

defining a set of voxels as a region of interest. During segmentation, each voxel

in a 3D data is labelled as part of a ROI or as part of the background.

Object recognition: Recognition is the process of assigning a label to each

segmented data point (node) from a given set of labels (such as flame, jet,

bubble, vortex, hairpin, etc.). Object recognition is the process of specifying the

labels for the regions of interests. In scientific simulations, usually a set of

connected points (nodes) represent a single (scientifically meaningful) object,

therefore such set of connected data points collectively are assigned the same

label or ID.

Scientific visualization: Scientists study scientific phenomena through

experiments to analyse and understand the underlying dynamics. These

experiments yield large amounts of data. Data collection through physical

experiments (setups) can be expensive in some domains. In others, it may be

almost impossible due to the physical limitations. This is where the scientific

simulations become useful and feasible to understand the scientific phenomena.

Figure 6 illustrates the data collection and visualization schema in scientific

domains.

20

Scientific data can be either simulation based or real (collected by means of

various data acquisition tools). In this dissertation, we will use the both data types

(i.e., simulation and real data). The type, the format and the properties of

scientific data changes from field to field depending on the properties of the

domain such as the topology of the domain, its shape or data dimensions. In this

dissertation, we focus on 3-Dimensional (3D) time-varying data sets in which the

data is collected and saved in 3 dimensional space (i.e., in a volume) over a

course of timesteps. Each 3D volume consists of nodes (voxels).

Each node can have a scalar or a vector measurements (or values); and

each of these values is a function of time, i.e., these values may change over

time. Moreover, in each 3D volume, the connectivity information of the nodes is

known (given). A time-varying 2D data set can also be considered a 3D data set

Scientific

Hypothesis
Simulation

Results

(Data)

Data

Pre-Processing

Phenomena

Modeling &

Extraction

Phenomena

Quantification

Phenomena

Visualization

Visual

exploration

Rendering

Data Processing & Visualization

Figure 6: A relational diagram illustrating the flow in scientific visualization.
Two major parts of scientific visualization are separated: (a) scientific data
collection and (b) data processing & visualization.

Scientific Data Gathering

Data

Acquisition

Scientific

Experiment

Pre-Processing

(a) (b)

21

by considering the 2D data as a layer (a slice) and then by adding another layer

(where all the values are either equal to the minimum or maximum value of the

original 2D data) on top of the original 2D data.

2.2. An overview of the proposed activity detection framework

A typical activity detection framework involves actors and the actors are

separated from the background. In 3D scientific simulations, this process

involves segmentation and tracking.

Since an event, fundamentally, is the cause or the result of a change in an

actor’s state, it is essential to extract the object (actor) first and then define its

state in the data. This information can be computed after the segmentation step.

Since an activity spans over multiple timesteps, it is also essential to track the

objects over time. Therefore, before the activity detection step, one needs to

segment and track the actors. The effect of segmentation (extraction) and

tracking in visualization are illustrated in Figure 7. Segmentation (extraction)

quantifies the features in the data. Thus only the voxels that are part of a feature

can be visualized in the data. Tracking correlated the features from one timestep

to the next and provides the correspondence information. By using the

correspondence information we can assign the same color to the same

segmented object (even if it moves or changes its shape) over time.

Figure 8 shows the overall framework for activity detection with Petri Nets in

scientific visualization. The input to the system is the time-varying data set and

the Petri Net model defined by the scientist. The first step is processing the data

in the framework. In this step, features, groups, variable changes or other types

22

of user interested entities are computed. The computed meta-data includes

spatial properties of the objects and may include volume, mass, centroid, max

and min locations, max and min positions, orientation, shape information,

bounding box, etc.

The next step in the framework is correlating the meta-data over time.

Correlating the objects (thus their spatial attributes) is known as the

correspondence problem.

…

…

Time-varying 3D data

Visualization of the extracted features

Visualization of the extracted and tracked
features over time

…

t1 t
2
 t

n

t
1
 t

2
 t

n

t
1
 t

2
 t

n

(after) feature
extraction

(a)

(b)

(c)

Figure 7: An illustration of (a) time-varying data, (b) visualization of the
extracted features in the data, (c) visualization of the extracted and tracked
features in the data.

(after) feature
extraction and

tracking

23

…

…

Time-varying 3D data

Visualization of the extracted features

Visualization of the extracted and tracked

features over time

…

t1 t
2
 t

n

t
1
 t

2
 t

n

t
1
 t

2
 t

n

Figure 8: An Activity Detection Framework with Petri Nets. (a) the inputs are
the data and the activity model. The activity or event of interest is defined by
the scientist and it is the event that the scientist is interesting in searching for
within the dataset. The way the scientist describes the event is through the
use of a Petri Net. (b) the next step is processing the data. In this step
features, groups, etc. are computed and stored as meta-data. (c) This meta-
data is used to correlate features/variables and their changes over time.
These time-dependent attributes are added to the meta-data. (d) once this
information (meta-data) is computed, it can be searched using the Petri Nets
to find an activity of interest. The output of the Petri Net is a list of timesteps
where the event occurs and a list of features that participate in the activity.

Feature Extraction,

Min/Max, Variables, Group

Extraction, …

Data Set Processing
Spatial Attributes

Volume,

Mass,

Centroid,

.

.

.

Correspondence
List, Split,

Merge,
Position Change,

d(.)/dt,
.
.
.

Time-dependent

Attributes

f(t)

t

g(t)

Tracking/Correlating in Time

Activity/event of

interest

Inputs

T
1

P
3
 P

1

Activity Detection

T

3

P
2

t
1
 t

2
 t

3

t
10

 t
11

 t
12

t
13

t
14

Activity detected: t
1
 – t

3

Activity detected: t
10

 – t
14

T
2

t

(a)

(b)

(c)

(d)

24

To solve this problem one of many available tracking algorithms using

volume overlap, location estimation or shape matching can be used to correlate

these objects; or the tracking information may be inherent in the simulation.

Time-dependent attributes may include tracking history of the features (the

correspondence list), position changes, and any other value/attribute that is a

function of time (including time dependent derivatives). All these computed meta-

data (both the spatial attributes and the time dependent attributes) is fed into the

final step for activity detection. Activity detection uses this meta-data along with

the activity model as the inputs to search for the specified activity.

The final step is searching throughout the input meta-data for the activity.

The Petri Net is evaluated (run) over time by means of tokens (described in

Chapter 5). Tokens represent features undergoing activities and are updated as

they move through the Petri Net. The tokens that complete the sequence are the

ones that perform the activity.

As a summary, a typical activity detection framework includes three

fundamental processes: 1) segmentation and attribute computation, 2) tracking

and 3) activity detection.

2.2.1 Segmentation

Segmentation, i.e., extraction or background removal, is the process of

labelling the nodes (or voxels) as either being a region of interest or being part of

the background in the data. If there are various types of regions-of-interests in

the data, then the labelled region of interest points can be further classified. In

25

scientific simulations, usually, a group of connected region of interest points form

a meaningful (observable) scientific object. Examples of scientific objects are

vortices in computational fluid dynamics, halos in cosmology simulations, or cell

structures in blood flow simulations.

There are various techniques proposed to segment regions-of-interests

including thresholding, region growing, clustering, machine learning algorithms,

histogram based techniques, level-set techniques, model based, geometry and

topology based techniques. A list of available techniques and their sample

applications can be found in papers [1], [56], [36] and [86].

Recognition is the process of assigning a label to the detected region of

interest from a set of available labels. In other words, it is identifying the type of

an object. The recognition process is usually operates on a set of distinctive

attributes (properties) of the region of interest. These attributes help distinguish

feature types from one another. Typically, deriving such attributes requires the

information of the object’s boundaries (contours) so that by looking at the data

values within the boundaries of an object various attributes such as the shape,

volume and other attributes can be computed.

Domain knowledge is essential to build successful segmentation techniques.

There is (currently) no known segmentation technique that work wells in each

and every domain or applications. In many domains, a thresholding process

yields effective results for feature extraction. In such applications, domain

knowledge is utilized to determine the threshold value. However, in many

scientific domains the thresholding operation by itself is not sufficient enough

26

and, therefore, is combined with the node (or voxel) connectivity information for a

better accuracy in segmentation. The domain knowledge in such applications is

used in both defining the threshold value and the type of connectivity. Region

growing is one such technique. For example, in sneak-based or level-set based

techniques, the connectivity information expanded to include the “global” shape

information of the object.

As the structure and the definition of the objects gets complex, the utilization

of the detailed domain knowledge in the segmentation technique gets more

important. In such complex techniques a new set of data, i.e., meta-data, is

generated prior to the segmentation process. For example, in some techniques

the mean and variance values are computed and saved in a vector form. Such

attribute vectors are used in machine learning techniques to segment the region

of interests or to identify the type of a region of interest. Besides the mean and

variance values, there are many types of attributes defined and used in computer

vision field for both action recognition and object segmentation. Recently, the

power of computing local attributes in various applications has shown promise in

various segmentation, detection and tracking applications. Examples of such

local attributes are SIFT [45], meshSIFT [48] or SURF [6] techniques. For a

detailed description of the SIFT technique see Appendix I.

In our proposed activity detection framework, any of the available

segmentation and recognition techniques can be employed to extract features

from scientific simulations.

27

2.2.2 Tracking

Since an activity is a temporal process that causes a change in an object’s

state, it is essential to detect the changes in each object’s state and in each

timestep. While each object’s state can be computed from their spatial attributes

in each timestep, as we start to process a new timestep, computers do not know

which objects in new timestep respond to the ones from the previous timestep.

(While correlating objects in time is a trivial task for the human brain and eye, this

is a challenging task for the computers since the number of found objects, their

location and shape information vary from one timestep to the next). The solution

to this problem is widely known as tracking. In both computer vision and in

scientific visualization fields there has been a considerable amount of work done

for tracking regions-of-interests over time. Please refer to the surveys [91], [77]

and [90] for a list of available tracking techniques and their applications in

computer vision.

In scientific simulations, extracting and tracking scientific objects are

considered together in time-varying data applications. These applications are

usually called under the name feature tracking. The term feature tracking from

scientific visualization and the term object tracking from computer vision

applications have similar descriptions. They both fundamentally first segment the

objects (features) in the data and then track (correlate) these segmented objects

over time.

In scientific visualization, the first complete feature tracking framework was

introduced by Samtaney et al. [1], as a solution to extract and track the

28

volumetric features within time-varying data sets. In their paper, they proposed

the first feature tracking framework and used centroid position, volume, mass

and 2D circulation information to track features. In the same group, Silver and

Wang extended the feature tracking framework by introducing the volume

tracking schema in [71], [72] and [73]. They observed that most features overlap

between two consecutive time frames when the frame sampling rate is high

enough. By incorporating this observation in their work, they also developed a

more memory efficient algorithm which supports unstructured data sets. The next

refinement, prompted by extending the feature tracking framework to a

distributed Adaptive Mesh Refinement (AMR) data structures, allowed a viewer

to isolate a multi-level isosurface and visualize its evolution spatiotemporally at

different resolutions [1]. Next, the fitting of ellipsoids to the features was

introduced for an efficient attribute computation and applied to the

characterization and visualization of plumes [66]. Several studies use a predictive

approach to tracking. In [64], Reinders et al. proposed a method that estimates

the locations of the features in the next frame to improve the tracking quality by

assuming that the features evolve predictably. Similarly, Muelder and Ma in [50]

proposed a tracking schema including a prediction method. However, instead of

extracting all the features first, they propose using the information of the current

and previous frames to estimate the location of the feature in the next frame and

they use that information to perform both segmentation and tracking at the same

time. Other studies address different ways of abstracting the correspondence. Ji

et al. [33] proposed a method to track features by using higher dimensional

29

isosurfacing. Thus, instead of extracting the isosurfaces from each time frame

and then performing an overlapping test, they propose using the higher

dimensional geometry to track user selected features in time by performing an

isosurfacing process in 4D as opposed to doing it in 3D. In [79], Tzeng and Ma

applied neural networks to find the region boundaries by estimating the transfer

functions in the feature tracking framework. Sohn and Bajaj [74], proposed a

method to compute the correspondence in time-varying contour trees. By

applying the contour three on feature tracking, they tracked user selected

contours. In [38], Laney et al. propose to use Morse-Smale complex to segment

bubbles in a hierarchical segmentation structure. Different attributes have also

been used to correlate features. In [34], Ji and Shen proposed using earth

mover’s distance metric to track objects as an alternative to the volume

overlapping or attribute based matching methods. In [1], Caban et al. proposed to

use first and second order statistics with run-length matrices to capture textures

and to distinguish them. Thus, by generating a feature vector, they perform a

similarity search to find the best matches. In [24] Gezahegne et al. proposed a

method that allows objects to retain their original labels for a couple of frames,

thus the algorithm can detect bubbles going through each other instead of being

classified as merged and then split. Weber et. al. proposed a technique using

Reeb graphs to track features in [83].

Besides the individual objects (features), defining groups of objects and

tracking them in many domains has also been the interest in many domains.

Early studies of group tracking consider movement of features within radar data a

30

list of such papers can be found in [82]. Computer vision studies also address

group tracking. McKenna et al. [49] proposed a computer vision based tracking

system. The system utilized color to disambiguate occlusions and to qualitatively

estimate the depth ordering and position during occlusion. The system tracks

groups of people through mutual occlusions as they form groups and then

separate. Gennari and Hager [23] introduced a general class of partitioning

functions to define a group, and a set of rules to split and merge groups. Based

on the group definition, they proposed a modified PDA estimator to track groups

of objects. They reported that they can detect the groups of people that merge

and split. Mucientes and Burgard integrated Multi-Hypothesis Tracking (MHT)

with Murty’s algorithm to tack clusters of people [51]. Joo and Chellappa targeted

on solving the data association problem in object tracking using the multi-

hypothesis approach [35]. Lau et al. extended the MHT method to hypothesize

over both, the group formation process (models) and the association of

observations to tracks (assignments) [39].

While grouping and group tracking has long been studied in computer vision,

it is relatively a new subject in scientific visualization. As part of this dissertation,

a group tracking algorithm which is an extension of the feature tracking algorithm

of Silver and Wang in [71] and [73] is described.

Any of these above-mentioned techniques can be employed in our proposed

activity detection framework to track region of interests.

31

2.2.3 Activity detection

Activity detection is the process of searching for the existing instances of an

activity in time-varying data sets. While there is a slight difference between

activity detection and activity recognition, fundamentally, we will assume that

they both serve the same purpose: extracting the instances of a certain activity or

a set of activities. The subtle difference between activity detection and activity

recognition lies in the definition of activity. If there are multiple activities are

defined (modelled) in the data, then the process of finding and labelling the

instances of any of these activities in the data is known as activity recognition. If

there is only a single activity to detect (or if the purpose is finding “any” activity in

the data regardless of its label), then the process of finding the instances of the

activity is simply an activity detection process. Note that the terms “activity

detection”, “activity recognition”, “action detection” and “action recognition” have

also been used interchangeably, as discussed in the survey paper [78].

Activity detection is related to data mining. Data mining is the process of

finding new and nontrivial information within a data set. This information can be

in the form of a pattern, a model of the process that generated the data set or the

correlation information between the available variables. Activity detection

specifically deals with the complex patterns that are in the form of sequences (or

combinations) of simpler patterns. A successful data mining technique requires

domain knowledge [26]. This is also true for a generic activity detection

framework. Inputs and outputs of a generic activity detection framework are

shown in Figure 4.

32

While supervised and unsupervised techniques can also be used for activity

detection, they do not provide an intuitive and easy way to express a hypothesis.

Our focus in this paper is presenting a technique that allows a scientist to specify

an event and search for it. Therefore, in this paper we propose to use Petri Nets

to express and model an activity. A Petri Net model is a graph abstracting an

activity. Therefore the same Petri Net model (graph) can be used in different

simulations with different parameters. Compared to the learning based data

mining techniques, their performance depends on the model description as

opposed to forming new training data. Choosing between learning based

algorithm and graph based algorithm balances a trade-off between needing

additional data for training and needing to specify an accurate description. A

graph based approach is more likely to meet our objective of enabling hypothesis

testing.

As a framework, activity detection involves numerous steps including

segmentation, tracking and computing the feature attributes An illustration of

Figure 9: A generic activity detection framework. This figure emphasizes on
the inputs of the activity detection module. Activity detection module runs on
meta-data. The content of the meta-data depends on the domain and on the
description of the activity.

Activity Detection

Time-varying

Data

The activity model

M
e
ta

-D
a
ta

M
e
ta

-D
a
ta

Feature &
Group

Extraction

Feature

Tracking

Group

Tracking

Activity detection framework

33

such individual steps and their connection to each other in a complete activity

detection framework is given in Figure 9. In Figure 9, the entire data is processed

only within the Feature & Group Extraction module. This step produces its own

meta-data. Tracking modules use this meta-data as input and then create their

own meta-data as output. Activity detection module operates on only the meta-

data that is computed in both extraction (segmentation) and in tracking steps.

In the next chapter, we review the related activity detection work.

34

CHAPTER 3:

BACKGROUND – RELATED WORK

This chapter presents the related work from the computer vision

field.

Activity detection (or activity recognition) has been studied in many fields

under the names event detection, event recognition, activity detection or activity

recognition. Figure 10 classifies a list of various activity detection techniques.

However, since computer vision applications are the most relevant applications

that can be applied to scientific visualization, the focus in this chapter si on

computer vision applications.

3.1. Related work in computer vision

In computer vision, the activity detection problem is treated with different

approaches including clustering, machine learning or semantic based techniques

using rules or graphs such as Petri Nets. All of these approaches require the

domain knowledge in different forms. For example, in the case of machine

learning, the domain knowledge is embedded within the training data. The

learning process and the accuracy of the technique depend on the validation.

Validation requires ground truth which is a set of expected or real outputs (labels)

from the technique. Picking (or generating) the ground truth or the training data is

equivalent to manually picking and labelling multiple instances of the activity

within the data set. This is almost the same as exploring the data manually in

each timestep and, therefore, is an extremely time consuming task [62].

35

Semantic based activity detection approaches simply generate a model of

the given activity from its description. These approaches do not require training

data or a certain type of cost or similarity function to be derived. Instead, the

domain expert defines the activity in a sequential form in a timely manner and

this description is used to search for the event. The sequential form can be in the

form of a set of rules (as in [75]) or a graph (as in [25], [40], [58], [42]). Both rule-

based and graph-based techniques are fundamentally logic based (if-then based)

techniques. Among those, the graph-based techniques use a state based

approach in which the various stages of an activity are described as the

individual nodes (e.g., finite state machines, Petri Nets). Petri Nets encompasses

both rule-based techniques and finite state machines (a finite state machine is a

subclass of Petri Nets. See Chapter 5). Using the Petri Net formalism, a scientist

models an activity in a graphical fashion where objects in the simulation pass

through different stages on the way to being classified as an activity. Once the

graphical model is available, a Petri Net algorithm evaluates the model to search

for the instances of the activity automatically. (This is analogous to knowledge-

assisted visualization [16].)

In computer vision, activity detection applications mainly focused on human

related activities. These include interactions or relations between: humans and

humans [54], humans and vehicles [31], humans and web sites [85] or certain

human behaviours or their situations in certain environments as in [76]. Various

techniques including Bayesian techniques, hidden Markov models and

conditional random fields are used to “learn” and detect activities in such

36

examples. A detailed list of available activity examples and detection techniques

can be found in the review papers [1], [61], [40] and [78]. Recently, Petri Nets

gained the attention of researchers in both data mining and activity detection

communities as in [3], [14], [25], [40], [58] and [42]. This is due to the fact that

Petri Nets can be used as a natural way of modelling semantic descriptions of

activities or events.

While the activity detection related Petri Nets works aimed to work with video

data, they do not incorporate the “dynamic” properties of the time-varying

environment (e.g., split, merge, appear and disappear events) within the Petri

Net formalism. Some of the above-mentioned Petri Net treatments such as timed

Petri Nets or Stochastic Petri Nets still lack supporting the dynamics of a “time-

varying” system in the sense that the objects (with their attributes) change in

time-varying systems.

Figure 10, classifies various techniques based on their distinctive properties.

Firstly, all the techniques are categorized according to their purpose: whether the

technique is used for a search related purpose or for a knowledge discovery

(data mining) purpose. Knowledge discovery techniques fundamentally rely on

the anomaly detection principle, in which, typically, data is “clustered” first based

on a predefined metric and then the objects that fall in different clusters are

further investigated usually by analysing the relative frequency of the

occurrences in each cluster. Example applications can be found in [18] or in [62].

Unless the domain knowledge is properly utilized, clustering based techniques

37

(with the use of commonly available metrics) do not guarantee finding what the

user/scientist is interested.

Search based techniques all include the domain knowledge in a certain form.

The domain knowledge is the information of the activity being searched and of

the environment in which the activity is performed. Search based techniques can

be further classified based on how the domain knowledge is utilized. The activity

being searched can be given as a part of the data (with labels attached to

individual time steps). This is the most common form of presenting the template

of the activity in activity detection applications. Example approaches of modelling

the activity in data form can be found in [63] or in [89]. Alternatively, the definition

of activity can be given semantically as in [3]. Semantic approaches typically

express the entire activity as a graph in which the order of the nodes are drawn

from the given semantic description. On the other hand, machine learning based

techniques learn the order of states and their numbers typically from the given

data. In some domains, the activity can be modelled with a mathematical function

as well.

While the goal of a typical activity detection framework is fundamentally

extracting all the instances of the given activity, some of the available techniques

(usually the early activity recognition works in computer vision) work on detecting

a single instance (the first available instance or a random subset of all the

available instances) of the activity in the given dataset.

Modelling an activity is important. In the literature, while some work focused

on modelling activities of a single agent (an activity performed by a single object,

38

such as a single human), other work focused on modelling activities performed

by multi-agents (the activities of multiple agents, such as multiple humans) in the

literature. Notice that multi-agent activity detection techniques do not necessarily

work on detecting all the instances of the modelled activity in the data. For

example, the model given in [58] focuses on detecting a single activity performed

by multiple people.

Figure 10: A classification schema for various activity detection techniques.
Rather than listing specific techniques only, this classification schema also aims
to give a sense of how the available techniques can be classified based on their
input or outputs.

Domain knowledge

can be given as:

1) a part of the data

(with labels)

2) a physical and

sequential model,

3) a mathematical

model.

Activity detection

Activity modeling and

extraction (Search)

Activity detection as anomaly

detection (data mining)

Based on the

domain

knowledge type

Based on the

purpose type
Based on the data type

Based on

the technique

The purpose can be

the detection of:

1) single-agent

activity,

2) multi-agent

(collective) activity,

3) any instance of

the activity,

4) all the instances of

the activity.

Data type can be:

1) time-varying 1D

(Voice/speech),

2) time-varying 2D (Video),

3) Hybrid data (Voice + Video),

4) multiple 1D measurements

(Sensor networks),

5) Time-varying volumetric

(3D) data (Scientific and

medical data sets).

Technique can be:

1) Learning based with

labels,

2) clustering (without

labels),

3) Graph or rule based,

4) Hybrid (combination

of the above

mentioned techniques).

39

The modelling strategies also vary based on the spatial properties of the

domain or the dimensions of the data. Some modelling techniques utilize the

spatial or topological structure or the spatial/topological change that is inherent in

the data.

3.2. Related work in visualization

In scientific simulations, there are many cases where the scientists are

interested in analysing complex events of features. Examples are: formation of a

packet [65], formation of a galaxy as in [9] and combustion events as in [84].

Three specific examples we use in this paper include “Anomalous Plume

Bending”, “Packet formation” and “Merge-Split”. Many other domains have the

need for detection of activities such as blood clot formation in blood flow

simulations [30], magnetic storm formations in space-weather simulations [46]

and extinction and re-ignition in turbulent flames in combustion simulations [47].

All these examples involve actors performing activities. Therefore all these

activities can be modelled by using a common formalism. Activities occur over

multiple timesteps in which feature attributes or their types may change over a

course of an experiment / simulation.

Activity detection techniques works on a set of computed attributes. This

assumes that both the regions of interests are already segmented, tracked and

their attributes are available. Therefore, in this section first we will briefly go over

the available activity detection work in video visualization and then will go over

the techniques that could help segment and track the objects in time-varying 3D

scientific data sets.

40

Video Visualization: Event visualization in video data has been widely

studied in the visualization community. For example, Botchen et al. presented a

video visualization technique, VideoPerpetuoGram, for action visualization in

video data [11]. In their method they treated the stacks of 2D time-varying video

data as 3D volume data and visualized actions in such volume data. Parry et al.

presented a hierarchical event selection algorithm for event visualization in video

data and applied their method on snooker video [55]. A list of available

applications and techniques can be found in the survey paper [10]. However

none of these papers had a technique to model a scientific activity.

Related work in scientific visualization includes extraction and tracking.

Extracting atomic events and features from time-varying data has been widely

studied in scientific visualization. This information is crucial to activity detection

and provides the meta-data input to an activity detection framework.

3.3. Activities as patterns and the use of machine learning

Learning techniques requires labels attached to the data. In (machine)

learning techniques, labels are formed first. This is usually done by isolating the

time interval involving a sample activity in the data first. Next step is isolating the

objects that are part of the activity within the isolated time interval of the data.

Then, each object’s certain and distinctive attributes are computed in each

timestep within the isolated data. This process is repeated for multiple instances

of the same activity, and also for other activities to create a library of activities.

Each activity sample is assigned a label. This process can also be considered

creating the training data for machine learning techniques.

41

The success of the pattern recognition techniques is highly correlated to

whether the selected attributes sufficient enough to discriminate the activity to be

detected from all the other activity types in the data. To ensure that, some

techniques first compute N possible attributes and then selecting only the M of

these N attributes where M< N (or preferably M<<N) by incorporating the domain

knowledge. The other techniques compute only the “smart” (i.e. discriminative)

features by using the domain knowledge.

It is an active research field to compute and define the useful and

discriminative attributes for activity detection. These attributes can be only spatial

or spatio-temporal. Spatial attributes concern only the object’s current state and

therefore they can summarize and characterize only the current state of an

object. Spatio-temporal attributes summarize and characterize a series of an

object’s state over a certain time interval. Current trend in computer vision is

studying individual activities and summarizing these activities manually.

42

CHAPTER 4:

GROUP TRACKING

Group tracking is an integral part of activity detection. In this

chapter, we extend feature tracking to extract, track and follow

groups of features as they travel and interact in a time-varying data

set*.

In many scientific domains, physical groups exist besides the individual

features. Understanding both the individual feature evolutions and the group

evolutions is important to understanding the dynamics of scientific phenomena.

For example, groups of cells and studying their collective behavior is of interest in

biochemistry [57], groups of galaxies (halos) is of interest in cosmology [9] and

groups of hairpin vortices (packets) is of interest in wall bounded turbulent

simulations [53].

Generally speaking, a group is a set of coherent structures (features) that are

related to each other in certain ways or “act” together. (This is analogues to birds

that both act individually and fly together in flocks). An example from scientific

simulations is a pair of features where a feature rotates around the other feature.

Therefore group extraction and group tracking is as important as feature tracking

in many scientific simulations. All the above mentioned group examples have a

hierarchical structure where a set of smaller structures (e.g., a set of voxels)

forms a high level structure (e.g., a feature) and a set of these high level

*
Some material presented in this chapter has been published in an LDAV 2012 paper:

 S. Ozer, J. Wei, D. Silver, K.-L. Ma, P. Martin, "Group Dynamics in Scientific Visualization", Large Data

Analysis and Visualization (LDAV), 2012 IEEE Symposium on, 2012.

43

structures (e.g., features) forms an even higher level structure (e.g., groups).

This is illustrated in Figure 11.

While feature tracking follows the interaction and evolution of individual

features, the dynamics of groups of features has not been fully addressed in

scientific visualization. Therefore one of our contributions in this dissertation is

presenting a group tracking schema for time-varying 3D scientific simulations.

Our focus is on unconnected or disambiguated features in this dissertation

(although, our model can also be applied to groups of connected features). While

many features in scientific simulations can be connected at very low thresholds,

our goal in this work is to understand the dynamics of groups of individual

features.

In order to track groups, we first extract features, track them and then group

them based on the domain specific grouping criteria. Once features are grouped

at each timestep, the groups are tracked to see how they change and interact

over time. A clustering algorithm is employed to cluster (group) the features. One

Figure 11: An example of a hierarchical structure. A voxel is an atomic
structure for a feature, and where a feature is the atomic structure for a group.

44

benefit of employing a clustering algorithm is the ability to isolate and map the

group definitions from various domains to the computational domain via similarity

functions. This property of clustering algorithms helps us to build a generic model

for group tracking. We apply our group tracking model on a wall bounded

turbulence-Direct Numerical Simulation (DNS) and demonstrate various

visualizations in the following subsections.

4.1. Overview of the group tracking algorithm

The group tracking framework flow diagram is shown in Figure 12. In this

diagram, the first step is feature extraction (Figure 12a). Feature extraction is

discussed in Chapter 2 and Chapter 3. Once features are extracted, their spatial

attributes can be computed. A spatial attribute is an attribute that can be

computed by using only a feature’s segmentation information. Table 1 lists

various examples of spatial attributes.

Spatial feature attributes Time-dependent feature
attributes

Feature-to-feature
attributes

Centroid,
Max/min,
Volume,
Shape,
Total number of particles,
Mass,
Self-Orientation, Moments,
Extends, Mean/variance over
voxels,
Surface information.

Velocity,
Acceleration,
Self-rotation,
Swirl,
Extension,
Expansion,
Shrinkage,
Change in a feature
attribute,
Mean/variance over
time.

Rotation around a feature,
Distance,
Relative orientation,
Nearest-neighbour
information,
Variable difference/sum,
Mean/variance over
features.

Table 1: Three different attribute categories and examples for each category

Next step is feature tracking (Figure 12b). Feature tracking correlates the

features from the previous timestep ti-1 to the next step ti [72] (See Chapter 2 and

Chapter 3 for a list of available feature tracking techniques). This correlation

45

information is saved in a feature history. In this step, time-dependent feature

attributes can also be computed (time-dependent attribute examples are given in

Table 1). These are the attributes derived by jointly considering the current and

previous spatial-feature attributes. They can also define the change in a feature

attribute over a specified duration. Accessing a specific feature’s attribute in the

previous timesteps requires tracking information, i.e., feature history. An example

of this is the velocity. Other attributes are listed in the middle column of Table 1.

 Concurrently with feature tracking, one can also compute feature-to-feature

attributes. These are the attributes that are computed by comparing a feature to

neighboring features in the same timestep. They can be derived from feature

attributes or time dependent feature attributes. For example, the mean (or

variance) of a feature attribute can be computed over the neighbor features.

 In the next step groups are determined (Figure 12c). A group is a set of

coherent features that are associated together based on some criteria. These

criteria can be expressed in terms of all the feature attribute types. A list of

sample attributes can be found in Table 1.

 Grouping criteria can be geometry, distance, shape, rotation or orientation

based. For a group, all these criteria can be combined and expressed within a

single “similarity” function which is used by a clustering algorithm to determine

the groups. Once groups are determined, spatial group attributes can also be

computed in this step. Spatial group attributes are defined similar to the spatial

46

feature attributes. They summarize the spatial properties of the extracted group

and its member features.

Tracking groups is the next step (Figure 12d). Group tracking correlates the

extracted groups in timestep ti to the groups in timestep ti-1. Once computed, this

computed correlation information is saved as group history. Time-dependent

group attributes are also computed in this step by using the group history. Time-

dependent group attributes are defined similar to the time-dependent feature

attributes. These are the attributes derived by using the current and previous

spatial-group attributes.

Once groups are determined and tracked, Group-to-group attributes can be

computed. These attributes are also defined similar to their feature counterpart,

 Feature-to-feature attribute computation

 Feature

extraction

Spatial-feature

attribute

computation

 Feature
tracking

t
i
 + t

i-1
 t

i

 Visualization

.

Figure 12: Group tracking framework flow diagram.

(a) (b)

 Group-to-group attribute computation

 Group

extraction

Spatial-group

attribute

computation

Group
tracking

t
i
 + t

i-1

Time-dependent
group attribute
computation

t
i

 Visualization

(c) (d)

Time-dependent
feature attribute
computation

 Higher-level

group

extraction

Spatial

attribute

computation

Higher-level
group
tracking

t
i
 + t

i-1

Time-dependent
attribute
computation

t
i

 Visualization

(e) (f)

47

i.e., feature-to-feature attributes. They are the attributes that are computed by

comparing a group to one another or to a certain number of neighbour groups in

the data. The last steps involve creating super-structures of groups (Figure 12e).

If the domain has super-structures (groups of groups) that are defined with a

different set of criteria, then similar to the group extraction step, super-structures

can be extracted by using the related similarity function for the super-structures.

At this step, each group is assigned to a super-structure by a clustering

algorithm. Spatial super-structure attributes are also computed at this step.

These attributes are also defined similar to the spatial-feature attributes. They

summarize the properties of the super-structure and its member groups.

Furthermore, time-dependent super-structure attributes can also be defined

similar to the time-dependent feature attributes. These are the attributes derived

by using the current and previous spatial- super-structure attributes.

Recursively, once defined, all the higher level structures can be extracted and

tracked in a similar way to the super-structures. And their associated attributes

can be computed.

Time-varying visualization uses the tracking results at each structure level.

Therefore once the tracking is performed and the related time-varying attributes

are computed, the associated level structures can be visualized. In the following

sections, we will focus on clustering, group tracking and group visualization in

detail.

48

4.2. Group extraction via clustering

Extracting groups, fundamentally, is a process in which each feature is

assigned a group ID. Each feature in the same group would have the same

group ID while each group would have its own unique group ID. Grouping can be

considered as a clustering problem. Typically, a clustering algorithm runs in an

attribute space in which a point would represent a scientific feature. In such an

attribute space, a feature is represented with a vector formed of feature

attributes. A list of different types of feature attributes is given in Table 1.

Therefore it is essential to compute the feature attributes that would help

describe a group before starting the clustering process. Clustering algorithms

usually operate with the assumption that closer points in a feature space fall in

the same cluster. Therefore it is essential to convert a scientific group definition

in a metric such that the metric should give a closer value for the same features

in a same group. If this metric is a similarity metric, than as the similarity value

gets greater, the features become more similar in the attribute space. If Euclidian

distance is used for the metric, then the smaller the distance value, the closer the

features and as the features get closer, they start to fall into the same cluster.

Once features are extracted and their feature-to-feature attributes are

computed, they can be grouped using a clustering algorithm. The focus below is

on simulations where features cluster together and then act in groups.

Hierarchical and partitioning clustering algorithms are two main types of similarity

based clustering methods [32], [88]. Hierarchical clustering seeks to build a

hierarchy of clusters. It either starts from each individual data object as a cluster

49

and merges two most similar clusters every time until only one cluster is left

(agglomerative clustering); or it starts from the whole collection of data as a

cluster and split the data set recursively until reaching a pre-specified cluster

number. Partitioning clustering, such as the K-means algorithm, divides data

objects into a number (often specified by a priori K value) of clusters according to

some optimization criterion. Hierarchical clustering yields a hierarchical structure

besides the final cluster information. Hierarchical clustering does not require a

pre-specified number of clusters as opposed to the partitioning clustering.

Moreover, hierarchical clustering does not require any initialization parameters as

opposed to K-means algorithm that require initial cluster centroids. However,

there is a trade-off between these advantages of hierarchical clustering and its

computational efficiency. For more information on the clustering algorithms

please refer to the text books [4] and [27]. In this work, we use hierarchical

clustering to extract groups in our group tracking model. At each timestep the

clustering algorithm is run and groups are formed.

In a clustering algorithm, the features with the highest similarity are grouped

into the same cluster. Notice that within a cluster, all the features should be

similar to each other, while each of them should be dissimilar for the inter-cluster

features. The similarity function that is used in the clustering algorithm is defined

and described in the next sub-section.

50

4.3. Similarity functions

A similarity function is a function S: Rn x Rn → R that provides a measure of

the similarity between two given vectors in a similarity space. These two given

(input) vectors represent two different features with their n attributes. For any two

given vectors FA and FB, the similarity measure S(FA, FB) is the same as S(FB,

FA), i.e., S(FB, FA) = S(FA, FB). Moreover, S(FB, FA) ≤ S(FA, FA) and S(FB, FA) ≥

0. Notice that if the vectors FA and FB are dissimilar, then the similarity measure

should be low. While in some work, the similarity value can have negative values;

it is assumed to be nonnegative in this dissertation.

In our applications, we assume that if the vectors are dissimilar, then the

similarity value between the two vectors is the minimum value (i.e., 0 in our

applications), i.e., S(FB, FA) = 0. With these conditions in mind, a group can be

defined in terms of a similarity function. This similarity function will have a

nonzero similarity value for any two given features in a given group and will have

a zero similarity value for any given two features from different groups. For

example, distance based similarity functions yield a higher similarity value as the

distance between two input vectors decreases; i.e., as the features get closer to

each other, the similarity value increases. Another example can be a shape and

distance based similarity function in which the features that are close to each

other and look alike would give higher similarity values. A threshold can be set

for the similarity function value to define the terms similar and dissimilar. A higher

value of the similarity function implies a greater similarity between the given two

features. Once the similarity function is defined or selected from an available

51

list/library, the clustering algorithm can group the features based on this provided

similarity function.

4.4. Group tracking & group events

Identifying the dynamics of structures (e.g., features or groups) requires

correlating these structures over time, which is generally known as the

correspondence problem [72]. The tracking step addresses the correspondence

problem in the group tracking framework (in Figure 12d). Once we have identified

groups and features in the data, we can identify what happens to groups over

time. Similar to features, groups can merge, split, appear (birth), disappear

(death) or continue (see next section for details).

In the framework, group level tracking (matching) from one timestep to the

next can be performed by combining the feature tracking information of the

current time with the extracted group information (as shown in Figure 12d).

Clearly, if the features overlap in volume, then their groups also overlap in

volume. Therefore, in this work we employ a volume overlapping schema to track

groups.

Even in the cases where the features do not overlap, their groups can

overlap since groups are bigger structures. In our model, each group has a list of

its individual features and each feature has its group_ID. For reference, each

feature is represented by Fk,j
i, where k is a unique feature identifier, j is the group

identifier that the feature belongs to and i is the timestep (ti) index. Similarly, each

52

group is represented by Gj
i, where j is a unique identifier in the timestep ti. A

particular group is the union of its member features:

 ⋃

 (1)

where h is the number of total features within the group with the identifier j in

timestep ti. We use the following definition for volume overlap for groups which is

an extension of the one in [72]:

Overlap: If the group GA
i corresponds (matches) to GB

i-1, then GA
i overlaps GB

i-1.

i.e., GB
i-1∩GA

i ≠ Ø.

By using this overlap definition, an overlap table can be computed between the

groups from one timestep to the next. The overlap table can be computed by

using various criteria. These can include:

Feature overlap criterion: This criterion uses the sum of overlapping feature

volumes between the groups. Since we assume that a complete feature is a part

of a group, a group’s volume can be computed by summing up the volumes of

each member features. Figure 13 illustrates the tracking process with the feature

overlapping criterion. The feature and group extraction steps (with attributes) are

completed in the first timestep t1. When the framework starts processing the next

timestep t2, the first step is extraction of the features and computing the feature

attributes. Then features are matched to the ones in t1 by using the volume

overlapping criterion [72]. Feature tracking relates features from t1 to the ones in

t2. Assume that grouping is done based on the distance information only. In this

case, groups can be extracted by using the spatial-feature attributes only. Group

extraction yields GroupA, GroupB and GroupC in t2. Group tracking step creates

53

the overlap table based on the feature overlapping criteria (instead of using the

actual values computed in overlap table for feature tracking). For groups, overlap

table is computed by using the entire volume of the joint member features

between t1 and t2. This is shown in Table 2.

 Group_1 Group_2

GroupA FA 0

GroupB FB FC ᴜ FD

GroupC 0 FE

Table 2: Overlap table by using the feature overlap criterion.

Based on the overlap table, GroupA is matched to Group1 and GroupC is

matched Group2 only. However GroupB is matched to both Group1 and Group2.

The dominant group for Group B is Group1 since the volume of FB is greater than

the sum of volumes of FC and FD.

Feature number overlap criterion: This criterion uses the total number of

overlapping features within each group. If the features are relatively

homogeneous in volume and shape, then this kind of a simplification could work

reasonably faster. However, matching/correspondence is a function of both time

and spatial properties. Using only the number of matching features does not

summarize the spatial attributes of groups properly since it ignores the volume or

shape information and thus may not yield an accurate matching. Especially in

cases where a threshold is used, the least matching groups with the least feature

numbers can be ignored. However such groups might have bigger volume and

might be the actual dominant matching groups.

54

Convex hull overlap criterion: This criterion first defines a convex hull for each

group that comprise all the features within, and then perform a volume overlap

test between the convex hulls for group matching. This criterion considers the

spaces between the features as well. The volume of the containing envelope of

all the features in a group is used. Thus, a convex hull of an oddly shaped group

formed of 2 or 3 small features can contain a bigger volume and can overlap with

other neighbour groups.

In our case study, the features are not homogenous in volume or in shape.

Therefore, the feature overlap criterion is used in our applications. A tolerance

value can be used in an overlap table to ignore smaller overlaps [72]. This

Group1?

Group2?

GroupA={F
A
}

GroupC={F
E
}

Group_1A

Group_1B

Group_2

F

2
 F

1

F
3

F
4

F
5

Group Tracking (Volume overlap)

t
2
 (After Group Tracking)

t
2
 (After Group Extraction)

F
2

F
1

F
3

F
4

F
5

 Group_1=F
1
ᴜ F

2

Group_2=F
3
ᴜ F

4
ᴜ F

5

t
2
 (After Feature Extraction)

F

B
 = F

2
 F

A
 = F

1

 F
C
 = F

3

F
D
 = F

4

F
E
 = F

5

Feature Tracking (Volume overlap)

F
C

F
D

F

E

GroupA = Group_1

GroupB = Group_1 and Group_2

GroupC = Group_2

t
1
 (After Group Tracking)

Figure 13: An illustration of volume-overlap based group tracking. GroupB is
formed of two features from Group_2 and one feature from Group_1 in t1.

This is a partial split event. Groups in t1 and t2 can be correlated visually after

the group tracking process.

F
B

F

A

 GroupB=F
B
ᴜF

C
ᴜF

D

55

process helps eliminating unwanted small amounts of overlaps (matches) or

detecting false events. Groups GA
i and GB

i-1 are matched, if:

 (

)

 (2)

Equation 2 defines the normalized volume difference test as in [72]. The domain

dependent Tolerance value is a percentage value. Figure 18 shows an example

visualization of both feature tracking and group tracking.

4.5. Group & cross-level events

Feature tracking can characterize the evolutionary events (dynamics) of

features such as merge, split, continue, birth (appear) and death (disappear) [72].

Similar to features, the higher level structures (groups) can split, merge, continue

or die. However, these group events are slightly different than the ones defined

for features. The difference is due to the fact that the features are unconnected in

groups. A list of defined group level events is illustrated in Figure 14.

Birth: A new group of features is formed in the current timestep and is not

correlated to any group in the previous timestep. i.e., if the group GA
i does not

overlap any groups in ti-1 (GB
i-1∩GA

i = Ø), then the group GA
i is considered as a

new born group.

Death: An existing group of features in the previous timestep disappears in the

current timestep. If the group GB
i-1 does not overlap any groups in ti, then the

group GB
i-1 is considered as a disappearing group and the event is called a death

event.

56

Full Split: A single group GB
i-1 in ti-1 splits into a number of N groups (N>1) in ti.

Each of these group in ti overlaps GB
i-1, i.e., GB

i-1∩Gi
j ≠ Ø for each jєN.

Full Merge: This is the event where a number of N groups merge to form a

single group. i.e., if a number of N groups (N>1) in ti-1 merge to form a single

group GB
i in ti, then GB

i overlaps each of N groups in ti-1, , i.e., GB
i∩ Gj

i-1
 ≠ Ø for

each jєN. An illustration of full merge is shown in Figure 9b.

Figure 14: Single Feature Track events vs. group tracking events. In group
tracking, merge and split events are further divided into being full or partial
events. Moreover, cross-level events can be defined within a group tracking
schema.

We define the following events for groups:

Partial Merge: This is the event where some features from several groups

(portions of several groups) leave their main groups and join other existing

groups resulting in a lesser number of total groups. Different portions of a group

in ti-1 can merge to several other groups in ti. Also note that different portions of

different groups in ti-1 can merge to the same group in ti. Therefore the total

number of N groups in ti-1 merge and form a number of M new groups (M<N) in ti,

57

where each of these N groups in ti-1 overlaps each of the M groups in in ti. At the

end, the total number of groups M in ti will be less than the total number of groups

N in ti-1. An illustration if partial merge is shown in Figure 9a.

Partial Split: This is the event where the portions of a number of N groups split

from their groups to “get together” and form a new group. i.e., only the portions of

a total number of N groups (N>1) in ti-1 get together and form a total number of M

new groups in ti. In this case, each of these N groups in ti-1, overlaps each of the

M groups in in ti. At the end the total number of groups M in ti will be higher than

the total number of groups N in ti-1.

Continuation: If none of the above-mentioned events occurs, than this is a

continuation event for the group.

Figure 15 illustrates these events. As Figure 15a illustrates, if multiple groups

(say N groups) in timestep ti partially correlate with multiple groups (Say M

groups) in the timestep ti+1 and if the number of correlating groups N differs than

A B

C
C

A B

D

A

 A1

A2

B B

ti+1
t

i
 t

i+1
 t

i

(a) (b)
Figure 15: An illustration of full merge, partial merge, full split and partial split.
(a) partial merge and partial split, (b) full merge and full split events.

t
i
 t

i+1
 t

i
 t

i+1

Partial Split

Partial Merge

Full Split

Full Merge

58

the number of the correlating groups (M) in the next timestep, then we say that

there is a partial event happening between those two timesteps. Depending on

the case whether M>N or N>M, we call the event Partial Merge or Partial Split

respectively. If M is equal to N, then we will consider that there is no split or

merge event happened at the group level, therefore this case (where M = N) is

called continuation event.

Figure 15b illustrates the full split and full merge events. If a single group in

the timestep ti correlates with M groups in the timestep ti+1, or if N groups in the

timestep ti correlates with a single group in the timestep ti+1, then we say there

is a full event occurred between the timesteps ti and ti+1. If the event is from 1

group to M groups then we call the event as full split, and similarly if the event is

happening between the N groups in ti and a single group in ti+1. Then we call the

event as full merge.

As it can be inferred from the above definitions, partial events are the ones

happening between many groups and many groups; full events are the ones

happening between a single group and many groups. In addition to these events,

when hierarchical structures are considered, the cross-level events can also be

defined and detected. Cross-level events are the events that happen between a

structure and a higher level structure. For example, group tracking allows

detecting a feature leaving its group to join another one (cross-group event).

Cross-group: This is the event where a feature leaves its group to join another

group. In this event, while at the group level, groups can remain the same

(groups continue); at the feature level, a feature can move from one group to

59

another and therefore, this event is different than the partial merge or split

events. An illustration of this event is shown in Figure 16. In the illustration, when

we use the first level (feature) tracking, we only detect the split event that occurs

within the Group_S. However, when the group tracking is used, we can detect

that a feature moves from Group_R to Group_S (a cross-group event).

4.6. Creating a domain specific similarity function

A packet is defined geometrically and this definition is based on the distance

and he angles (orientation) between the features. Here, we demonstrate how to

derive a domain specific similarity function which defines a scientific group. Our

specific scientific group example is packet which is a specific term used in wall

bounded turbulent simulations and it defines a group of hairpin vortices that

move coherently.

Figure 16: An illustration of cross-group event. A feature in timestep ti-1
moves from Group_R to Group_S in the next timestep ti, while the number
of groups remains the same.

ti-1

ti

Group_S Group_R

Group_R Group_S

60

Specifically, we define a packet as a set of features meeting all of the

following three criteria:

I. The distance between a given set of two features should be less than a

predefined distance (threshold).

II. The angle between two given features should be equal or less than 45o.

III. The packet should be elongated along the X axis such that the cross section

(in y-z plane) increases along the X axis.

Various distance measures can be computed and used for the first criterion,

such as the nearest neighbour distance (on the feature surface), the centroid

distance or the distance between the local extrema points. We notice that the

local maximum point of each feature localizes around the top of the feature.

Therefore we use the distance between the local maximum points to simplify the

computations. We used different thresholds parallel to each axis for the distance

criterion.

The function should provide a positive value for a pair of features in the

same packet and a zero value for a pair of features from different packets. In this

example to simplify the computations, we use only the coordinates of the

maximum node value of each feature and construct 3 dimensional attribute

vectors for each feature. With the assumption where a ≠ b , for given any two

features a and b, we define the distances along x, y and z coordinates as: ∆x = a1

– b1; ∆y = a2 – b2; ∆z = a3 – b3, where ai and bi (i=1,2,3) are the ith element of the

attribute vector.

61

Input: a1, b1, a2, b2, a3, b3, BoxLengthx, BoxLengthy, BoxLengthz Output: S(b,a)

Define the variables:

∆x = a1 – b1; ∆y = a2 – b2; ∆z = a3 – b3,

Dx = BoxLengthx – abs(∆x); Dy = BoxLengthy – abs(∆y); Dz = BoxLengthz – abs(∆z);

Define A, B and C variables as follows:

A = (sign(Dx) + 1) (sign(Dy) + 1) (sign(Dz) + 1)/8; B = (sign(∆x∆z) + 1)/2;

C = (sign((π/4) - atan(∆z/∆x)) + 1)/2;

The similarity measure is computed by the following equation (assuming that ∆x≠0):

S(b,a) = S(a,b) = ABC/∆x

Pseudo-algorithm:

Dx = Thresh_x - fabs(delta_x); Dy = Thresh_y - fabs(delta_y); Dz = Thresh_z - fabs(delta_z);

currentAngle= atan(delta_z/delta_x);

Anglesign = sign(currentAngle);

higher= (sign(delta_x*delta_z)+1)/2;

WithinBox= (sign(Dx)+1)*(sign(Dy)+1)*(sign(Dz)+1)/8;

if (Anglesign > 0)

 AngleSmallerThanMax= (sign(MaxAngle - currentAngle)+1)/2;

else

 AngleSmallerThanMax = 0;

alltheconditionsTrue = higher * WithinBox * AngleSmallerThanMax;

 if (delta_x !=0)

 S = alltheconditionsTrue/fabs(delta_x);

else if (delta_z !=0)

 S = alltheconditionsTrue/fabs(delta_z);

else

 S = 0; return S;

Table 3: Defining the similarity function S and the corresponding pseudo-
algorithm are shown.

62

Since packet identification has predefined box dimensions, we define a box

with its length along x, y and z coordinates. Then define the distance varibles

along each axis as Dx, Dy and Dz to check whether a given new feature (say b)

falls within the 3D box distance of the original feature (say a). The A variable as

defined in Table 3 checks for all these. Assuming that ∆x is a nonzero value, the

similarity measure is computed by the following equation: S(b,a) = S(a,b) =

ABC/∆x. This means that the closest features along the x axis will be more

similar. (The complete pseudo-algorithm is given in Table 3). In the above

equation, the variable A checks whether given two vectors fall within a predefined

box of each other; B checks whether the features are elongated on the x-z plane

in the ascending order, and C checks whether the angle between the given two

vectors is less than 45o. If one of these conditions is not satisfied by the given

two vectors, the final similarity value will become zero.

4.7. Results

We apply our group tracking algorithm on the wall bounded turbulent data

set described in Appendix-III. We implemented and used two types of grouping

techniques in the results presented in this section. The first grouping technique is

called “packet identification” and is a similar implementation of the presented

algorithms in [53] and [65]. The second grouping technique is the clustering

technique.

The described technique in [53] operates on each 2D plane in the 3D data

individually to determine the groups. Our 3D implementation uses a node which

has the maximum value within a feature. Thus, a feature is summarized with a

63

single node. This process uses the results of feature extraction and feature

tracking. Therefore while the original algorithm is an O(N) operation, where N is

the number of total voxels in the data, our packet identification algorithm is an

O(M) algorithm where M is the number of the total features in the data. Therefore

with the reasonable assumption where M<<N, our algorithm works faster than

the original technique, while the results are reasonably similar to the original

algorithm.

The packet identification algorithm used in this dissertation can be

summarized as:

1) Extract each feature and compute their attributes.

2) Represent each feature with its maximum swirling value and its location.

3) Take an ungrouped feature as the starting feature and give it a new and

unique group ID.

4) Draw a bounding box around the maximum location of the starting feature

and look for all the features that fall within the box.

5) For each feature within the box,

6) Choose the closest unchecked feature (along the x axis) within

the box and compute the angle between the maximum locations of

these two features on (x,z) plane.

7) If the angle is smaller than 45o, label the new feature with the

same group ID and set it as the starting feature, then go to step 4.

 8) Go to step 3.

64

Packet_A

Packet_B

Packet_C

Feature_a

(a) Feature tracking at t
1
. In feature tracking each feature has a unique color.

(b) Group tracking at t
1
. In group tracking each group has a unique color.

Figure 17: Visualization of feature tracking vs. group tracking in wall bounded turbulent flow simulation data. The
original simulation data contains 46 timesteps. The variable being visualized is swirl magnitude; (a) Features
extracted in t

1
 where each feature has an automatically generated unique color (total 262 features); (b) Packets in t

1

where a total of 177 packets are identified and 3 sample packets (Packet_A, Packet_B and Packet_C) are circled.
Packets are groups of features that travel together.

65

Figure 17a visualizes the extracted features in the first timestep of the wall

bounded turbulent simulation data set. The individual features are extracted and

visualized by using the feature tracking algorithm. In the figure, each feature has

a unique color. Figure 17b visualizes the identified packets in the same timestep.

The packets are formed of the extracted features in Figure 17a. In Figure 17b,

each group has a unique color and the features that are the members of the

same group have the same group color. Figure 18a visualizes the evolution of a

selected feature Feature_a over the first five timesteps. Figure 18b visualizes the

evolution of the entire group Packet_A (i.e., the packet) of Feature_a over the

first five timesteps.

In the first timestep, the feature tracking algorithm extracted 262 features.

These 262 features form total of 177 packets in the same timestep. Note that the

total number of extracted features changes with the filtering parameters

(thresholds). Similarly, the total number of identified packets changes with the

group identification parameters. These parameters include the angle between the

features and the bounding box size along x, y and z axis. The change in total

number of extracted features versus the total number of identified packets in

each timestep can be seen in Figure 19. The results shown in Figure 19 indicate

that a packet is formed of two individual features on average.

66

Figure 18: The evolution of a selected feature and its group is visualized
in the first five timesteps. (a) The evolution of a single feature (Feature_a
from Figure 17) is visualized in the first five timesteps. All the features are
extracted and then tracked by feature tracking algorithm. Except
Feature_a, all the other features are visualized transparently. (b) The
evolution of Feature_a’s group (Packet_A) is visualized in the first five
timesteps. Groups are determined (i.e., extracted) and tracked by using
group tracking algorithm. Except Packet_A, where Feature_a ϵ Packet_A,
all the other groups are visualized transparently. Features join and leave
packets throughout a packet evolution.

Feature_a

t1

t2

t4

t5

Feature_a

(a) (b)

Packet_A

t3

t1

t2

t4

t3

t5

67

Group tracking algorithm is applied on the data set with the defined similarity

function (see Table 3) and the clustering algorithm. The results are summarized

in Figure 20 and Figure 21. Figure 20 visualises the sample time steps 1, 2 and

time step 8. Figure 21 shows the results in time steps 21, 26 and 31. In the

figures, each group has a unique color and the same packet gets the same color

0 5 10 15 20 25 30 35 40 45 50
100

150

200

250

300

350

time step

feature number

packet number

Figure 19: The total number of extracted features vs. the total number of
identified packets in each timestep. The data set contains 46 timesteps. The
blue color shows the total number of features in each timestep. The red line
shows the total number of identified groups in each timestep.

68

in the next time step. These results were obtained with the parameters where

Thresh_x =0.3, Thresh_y =0.08 and Thresh_z = 1. The features with a volume

that is smaller than 25 are filtered out. Therefore, such small features do not

show up in the figures.

Notice that as the grouping parameters change, the size of a packet and the

total number of features in each packet change. The number of features change

based on the segmentation parameters (the threshold value used in the region

growing case). For the grouping, if the segmentation parameters remain the

same, then the grouping becomes allocating these segmented features into

scientifically meaningful groups. Therefore, the total number of groups decreases

as the grouping parameters increase in our results.

Group extraction and tracking has also been applied on the larger simulation

which is described in Appendix III. The resolution of this data is 2520x1120x110

and it contains 250 timesteps. A sample result of applying the group tracking

algorithm on this data set is shown in Figure 22. Figure 22a visualizes all the

extracted features and their groups in the first timestep. In the figure, each group

has a unique color. There are 3828 features visualized in this figure. These 3828

features are grouped into 3244 packets. Figure 22b visualizes a selected area in

Figure 22a to magnify the details. It would require magnifying the figure several

times to see the features clearly. Figure 22c visualizes sample features in detail

after many magnifying process.

69

Figure 20: Group tracking results are visualized in timesteps 1, 2 and in timestep 8. The visualized
data is wall-bounded turbulence simulation.

 t1

 t
2

 t
8

70

Figure 21: Group tracking results are visualized in timesteps 21, 26 and in timestep 31. The visualized
data is wall-bounded turbulence simulation.

 t
21

 t
26

 t
31

71

Figure 22: Group extraction is shown on the large data set. (a) in this first timestep, there are 3828 features are
extracted. All these 3828 features are grouped into 3244 packets and these packets are visualized. (b) A
selected area is magnified. (c) an area within the selected area is further magnified to see individual features’
shape.

 t
21

 t
26

 t
31

(b) (c)

(a)

72

CHAPTER 5:

PETRI NETS FOR ACTIVITY DETECTION

The easiest way to model an activity is using a flowchart or a

state graph. Petri Nets are one such formalism supporting parallel

and distributed systems. Therefore, in this dissertation, Petri Nets

are proposed to model and detect activities. This chapter, first

describes the fundamental Petri Net formalisms and then discusses

the existing and unaddressed problems in the existing activity

detection (recognition) applications using Petri Nets.

In this dissertation, we propose using Petri Nets for activity modeling, activity

detection and for hypothesis validation. In this chapter, we provide the essential

background for Petri Nets. Then we will discuss the existing and unaddressed

problems in the existing activity detection applications with Petri Nets.

Petri Nets were introduced by Carl Adam Petri in [60]. Essentially, Petri Nets

are graph based techniques that can model parallel and distributed systems and

are used in many fields including software development, workflow management

and manufacturing. Since their initial introduction, due to new requirements of

various fields and domains, the capability of Petri Nets increased yielding various

Petri Net formalisms such as Marked Petri Nets, where places need to include

more than one token; Timed Petri Nets, where a token needs to wait a certain

time (delay) to become available for enabling a transition; Probabilistic Petri Nets,

73

where the delay of Timed Petri Nets varies by including uncertainty and Coloured

Petri Nets, where IDs are used to distinguish between tokens. The detailed

information about these different Petri Net formalisms can be found in the books

[59] and [20]. Petri Nets are also used in software engineering applications. As a

result, there have been a significant amount of Petri Nets work has been

proposed related to software development. An example of such work is Object

Petri Nets support polymorphism, inheritance and dynamic binding [37]. Note

that, later on the term “Object Petri Nets” is also used in activity detection

applications indicating that the tokens are objects in a Petri Net [25], [40].

Petri Nets can help modeling (describing) activities. In order to do that, an

activity is analyzed semantically and then is decomposed it into its key points.

These key points construct the nodes in the time sequence, i.e. the Petri Net

model. Such key points include feature (actor) states, and atomic (primitive)

events (i.e., actions). Petri Nets (PN) are one of many techniques that allow

graphical modeling of discrete systems and complex temporal events [52].

5.1. Fundamental Petri Net concepts and components

In general, all the Petri Net formalisms include four main components. These

are: (1) the set of places P, (2) the set of transitions T, (3) the input function I that

maps a transition to a set of places, (4) the output function O that maps a place

to a set of transitions. Therefore a generic Petri Net structure is a four-tuple (P, T,

I, O) where:

74

 P = {p1, p2, p3, …, pn} is the set of n places which are drawn as circles in

the graph,

 T = {T1, T2, T3, …, Tk} is the set of k transitions which are drawn as bars

(rectangles) in the graph,

 In x k: is the input transition relation matrix between the places and

transitions where the relation is usually defined in terms of arcs such that

I(j , i) = k is the arc weight from jth place to the ith transition. We will call

this type of arcs (from a place to a transition) as incoming arcs.

 On x k: is the output transition relation between the transitions and places

where the relation is usually defined in terms of arcs such that O(j , i) = k

is the arc weight from ith transition to the jth place. We will refer to this type

of arcs (from a transition to a place) as outgoing arcs.

The arc weights are usually represented on each individual arc. The arcs

without any specific weight number are assumed to have the arc weight 1. In a

classical Petri Net graph, a transition cannot have an edge (connection) to

another transition and similarly a place cannot have an edge to another place. In

the literature, places can also be classified further as being preconditions or post-

conditions [59], [20].

An example of a Petri Net is shown in in Figure 23. The Petri Net models the

left bag (unattended bag) activity that is previously described in Figure 4 in

Chapter 1.

75

5.2. Marked Petri Nets

Marked Petri Nets allow to include multiple “tokens” to be in each place. A

token is the primitive structure that a Petri Net operates on and is represented by

a solid dot in a graph (see Figure 23). A deterministic and marked Petri Net is

formed of places, transitions, arcs and tokens, therefore is a 5-tuple (P, T, I, O,

M) in which:

 M = {m1, m2, m3, …, mn} is the current marking summarizing the

configuration of the tokens in a given Petri Net where mi is the number of

tokens at the place pi.

The functions I and O represent the set of arcs between places and

transitions. The state of a marked Petri Net is defined by the number of tokens in

each place at a certain timestep. If it is not specified on the graph, then the

weight of each arc is assumed to be 1.

Person

Person

with bag

Carries a bag

Figure 23: Illustration of Petri Net components on the Petri Net model of the
unattended bag example.

Picks up

the bag

Leaves

the bag

Person

without a

bag

Person

disappears

Token

Place

Incoming Arc

Transition

Outgoing Arc

Walks
Final Place:

Activity

Detected

76

The dynamics of a marked Petri Net is defined by two operations: enabling

and firing a transition. A transition Ti is enabled in T if and only if there are

enough tokens in each input places for the consumptions to be possible:

 (3)

Firing a transition T consumes I(i,j) tokens from each of its input place i, and

produces O(j,i) tokens in each of its output places j. As such, the final marking of

a marked Petri Net can be computed with the following equation:

 (4)

where K = (O - I) and Ek is the vector of the transitions that are fired. Therefore

E(i) = 1 if Ti is fired, and 0 otherwise.

Figure 24 shows an example Petri Net constructed with 4 places and 2

transitions where P = {p1, p2, p3, p4}, T = {t1, t2}, M = {2,0,0,0},

[

]

 and

[

]

, therefore

[

]

,

At the timestep t1 there are only 2 tokens in place p1. Therefore nothing happens

in this case. Now, assume that a new token enters to p2 at timestep t2 (as shown

in Figure 24b). The new marking M becomes M = {2,1,0,0}. At this moment, the

condition (1) is satisfied for T1 since M(1) = 2 and M(2) = 1. The firing process

moves the tokens from p1 and p2 to p3. The final marking can be computed as:

77

 [

] [

] *

+ [

] (5)

However, notice that in this case, firing T1 enables the transition T2. Therefore in

this case, the final marking in timestep t2 becomes:

 [

] [

] *

+ [

] (6)

 Once T1 is fired, the new marking enables T2. Firing T2 gives the final marking of

the Petri Net in timestep t2.

5.3. Timed and stochastic Petri Nets

Timed Petri Nets add time constraint to places (or transitions) by allowing

time dependent operations in marked Petri Nets. Therefore it is a 6 tuple (P, T, I,

O, M, D) where D ={D1, D2,.. ,Dn}. Di is the timing associated with place pi (or

transition Ti). When a token falls into the place pi, it becomes unavailable for the

duration Di. This token, therefore cannot be moved to another place before the

time Di has elapsed. It becomes available after the duration Di passed again.

This kind of schema is especially useful to limit the movement of tokens in a Petri

Net by time. For example, consider Figure 24d. In timestep t2, the token does not

stay in p3 since it immediately moves into the place p4. A time constraint in p3

would avoid this case, by forcing the token to remain in this place for a pre-

specified D3 time duration. At any time, the final marking M is the sum of Ma and

78

Mu where the marking Ma is made up of the available tokens and the marking Mu

is made up of the unavailable tokens.

Figure 24: An example of enabling and firing a transition in a marked Petri Net.
When a transition is fired, tokens move along the Petri Net.

In timed Petri Nets, the time duration associated with each place (or each

transition) is a fixed value. However, in some cases, this duration varies. To

include such variance in durations in timed Petri Nets, stochastic Petri Nets have

(a) t1

 (b) t2

 (d) t2

 (c) t2

p1

p
2

p
3
 p

4
 T

1
 T

2

p
3
 p

4
 T

1
 T

2

p
3
 p

4
 T

1
 T

2

p
3
 p

4
 T

1
 T

2

p
1

p
2

p
1

p
2

p
1

p
2

2

2

2

2

The transition is enabled

The transition is fired

The transition is enabled

 (e) t
2

p
3
 p

4
 T

1
 T

2

p
1

p
2

2

The transition is fired

79

been proposed. In stochastic Petri Nets, each token is assigned a probabilistic

duration in each place [59], [20].

5.4. Coloured Petri Nets

In a Marked Petri Net, all the tokens are considered identical. However, in

some applications (as in activity detection applications), tokens need specific

identifiers (ID) attached. To handle such situations Coloured Petri Nets have

been proposed. In a Coloured Petri Net, a color (i.e., an ID) is attached to each

token [20]. Coloured Petri Nets also allow attaching a function to each arc. Such

an arc function can map a color (an ID) to another one or they can be

conditioned based on the color. For instance, an arc can transform the color

yellow into the color blue, and the color red to the color green. The tuple (P, T,

Pre, Post, M0, C) represents a Coloured Petri Net where Pre is the set of

functions associated with incoming arcs and Post is the set of functions

associated with the outgoing arcs. C = {C1, C2, …} is the set of colors and the

color Ck is the n tuple i.e. Ck=<ck1, ck2, ck3,…,ckn >. For example, in a typical

activity detection application, ckn may represent an object’s attribute (such as

volume, mass, shape, etc.). Therefore we can use colors to encode attributes.

5.5. Earlier definitions of the enabling and firing processes

The dynamics of typical Petri Nets are defined by two fundamental

operations, namely enabling and firing a transition. Enabling a transition

fundamentally indicates that the tokens “can” move from the input places to the

output places of the transition. Firing is “the process” of moving the tokens from

80

those input places to the output places. The exact definitions of these two terms

change slightly from application to application. For example, according to the

work in [25], a transition is enabled if all the input places have at least one token.

Firing a transition removes one token from every input place and inserts a token

to every output place.

A similar firing and enabling schema is defined by Lavee et. al. in [40]. In

their work, they state that a transition is enabled when all the input places have

tokens at least the number of arc weight. In their work, they also state that the

enabling rule can be modified to contain conditions on the properties of tokens.

Firing a transition removes a number of tokens from each of the transition’s input

places equal to the arc weight and creates a number of new tokens in each of the

output places equal to the arc weight [40]. Assigning a priority to each transition

could solve the conflict problem. A timed transition fires only if its duration

parameter is greater than the time condition of the place (or of the transition).

Albenese et. al. in [3] state that a transition fires if and only if all its input

places have a token and only if the transition condition is satisfied. When a

transition fires, all enabling tokens are removed and a token is placed in each of

the output places.

Similar enabling and firing processes are also defined by Perse et. al [58]. In

their work, a transition Tj is enabled if and only if M(pi)>=I(pi,Tj) where M(pi) is the

number of tokens in the input place pi.

81

5.6. Unaddressed problems for activity detection

As mentioned previously, most computer vision applications use objects as

tokens, places as object states and transitions as actions or conditions. There

are several problems associated with the existing Petri Net applications in activity

detection for scientific visualization. These problems are summarized below:

 Handling the change in an object’s state or an object’s attributes:

In earlier system applications of Petri Nets (examples can be found in [37]

and [52]), tokens usually are expected to remain in a place and do not split,

merge, disappear or change their shapes (or their states) in a place over the

time. However this is not the case in computer vision or in scientific simulation,

especially when a place represents an object’s state and a transition represents

an object’s action. Objects dynamically change their state or their attributes from

one timestep to the next and this change somehow has to be considered within a

Petri Net formalism. For example, consider a case where a place represents

“feature with volume>50”. In this example, a feature may fall into this place if its

volume is greater than 50 nodes (voxels) in a timestep. Assume that this

feature’s volume becomes 30 since it shrinks in the next timestep. In this case, it

should no longer remain in the place in the next timestep even if there is no

transition is designed to fire the token (i.e. the feature) for this case. Therefore,

only the tokens that are currently still in the same object state should remain in

the same place. The natural way of doing this is including the change, i.e., time

variance in tokens, into the Petri Net formalism.

82

In recent activity detection applications with Petri Nets, a place represents an

object’s state. An object’s state can be any set of quantitative attributes helping

to describe the activity. For example, an object’s state can be “a person without

the bag” while in another place, a state could just be “a person” as in Figure 23.

In such situations (in the literature this type of Petri Nets also called Object Petri

Nets as in [40]) the existing applications do not check whether a token still

remains in the same place which represents an object state. In cases where a

token no longer satisfies a place’s definition, it still remains in the same place

until it is fired. However, if the situation describing the state change is not

modeled in the given Petri Net, then the token is simply “stuck” in its current

place.

 Handling the change in token numbers due to the merge and split

events:

In scientific simulations, the number of features may change from one

timestep to the next. In Petri Nets, where a token represents a feature with its

attributes, the existing tokens need to be updated to reflect this change. Scientific

dynamics include merge, split, continue and disappear events [72] and these

events model the change in the total number of features from one timestep to the

next. The number of actors for split and merge events may change from one

instance to another. For example, in one merge instance two features may

merge to form one and in another merge instance five features may merge to

form a single feature. Similarly, in one split instance, one feature may split into

four features while in another split case one feature may split into two. This

83

variability in the number of merging and splitting features makes it harder for the

scientist to model these events even with the arc functions in Coloured Petri

Nets. Moreover, even if these events are not explicitly modeled in a given Petri

Net, the Petri Net should still consider the fundamental dynamics of the scientific

environment. Therefore, in the next chapter we propose a new Petri Net

formalism that handles these above-mentioned problems.

84

CHAPTER 6:

TOKEN-TRACKING PETRI NETS FOR ACTIVITY

DETECTION

Petri Nets do not consider the dynamics of scientific simulations.

Therefore in this chapter, we present token-tracking Petri Nets to

handle the problems discussed in the previous chapter. Token-

tracking Petri Nets can handle the time variance in tokens and

support the dynamics of scientific environments by incorporating the

tracking information.

In all the earlier Petri Net applications of activity detection, the tokens are

usually expected to remain in a place and do not split, merge, disappear or

change their shapes, attributes or states in a place over the time until they are

fired. However, this is not the case in many applications. Objects (thus the

tokens) dynamically change their state or their attributes from one timestep to the

next and this change somehow has to be included within a Petri Net formalism. ,

This change is considered and included by coupling the Petri Net with the

tracking information in the proposed enhanced Petri Net. We enhance Petri Nets

and call the enhanced version token-tracking Petri Nets. Token-tracking Petri

Nets (TTPN) consider the feature dynamics by updating the tokens and their

places automatically as the time changes. In TTPN, this change is considered

and included by coupling the Petri Net with the tracking information.

85

A TTPN is a 10 tuple (P, T, I, O, CP, CT, S, E, Mk-1
+, F) where Mk-1

+ is the final

marking (see Figure 25) obtained in the previous timestep tk-1 and F is the

updating function that maps the existing tokens in a Petri Net from tk-1 to the

tokens extracted in tk such that:

 F(
) =

 . (7)

The state of a TTPN (i.e., the configuration of tokens in places) is a function

of time and is described by the tuple (Mk-1
+, F). in Petri Nets.

 represents the

final marking of the Petri Net in timestep k-1 and
 represents the initial

marking in timestep k. While the existing Petri Net applications assume that

 (as illustrated in Figure 25-Case A), this assumption does not hold in

scientific simulations (as illustrated in Case B, Case C and Case D) since tokens

become time dependant. Therefore, in general we can say that

 .

TTPN is designed to handle such situations in scientific simulations.

Similar to coloured Petri Nets, each token has an ID in TTPN. The marking

M= {µ1, µ2, µ3, …, µn} summarizes the distribution of tokens in a given Petri Net.

µn is the set of tokens in place Pn such that µn = {X1, X2, …}. A token Xa is n tuple

such that Xa= (xa1(tk), xa2(tk), xa3(tk),…,xan(tk)) where xan(tk) is the nth attribute of

the token Xa at timestep tk. This means that the tokens in TTPN are time

dependent. The initial marking Mk
- of a Petri Net is the marking that is mapped

from the previous timestep tk-1 to the current timestep tk and the final marking Mk
+

is the marking where all the enabled transitions has fired such that no further

enabled transition remains in the timestep tk. The mapping from previous

timestep to the current one is done by use of a function. Tracking information is

86

used to update the object attributes in this dissertation. This process involves

extracting new tokens in the data set and then assigning them to the existing

tokens from the previous timestep in the Petri Net by use of tracking information.

We call this process the update process of TTPN.

Once all the tokens and their places are updated via the function F, the next

step is evaluating the Petri Net by firing all the enabled transitions for each token.

Similar to typical Petri Nets, firing is done by rewriting Equation (1) for a given

token Xa such that

 (8)

where
 is the new location of the token Xa in the Petri Net. The same token

needs to be in the all input places to enable a transition (along with the transition

condition). In a given TTPN model, each arch weight is considered 1 to model a

hypothesis or an activity. Furthermore, TTPN considers the dynamics of the

system including merge, split, appear, disappear and continuation internally and

therefore, a scientist does not need to model these events at each place

explicitly. This process incorporates the time variance in Petri Nets and simplifies

the modelling of an activity. An overview is given in Figure 26. Consider the given

Petri Net model with its tokens in timestep tk-1 with its existing tokens in Figure

26a. The green token (e.g., a feature) in P2 splits into three tokens (e.g., three

features) in timestep tk (shown in Figure 26b). Traditional Petri Nets do not allow

a token split while waiting in the same place. However, the TTPN can do this by

using sub-nets. A sub-net is a Petri Net in which the time information is attached

to both tokens and the arcs.

87

(a) 𝐌𝑘
 (b) 𝐌𝑘

 (c) 𝐌𝑘

P
2

(e) 𝐌𝑘

time

Timestep k-1 Timestep k

𝐌𝑘
 𝐌𝑘

 𝐌𝑘

Figure 25: Various illustrations of different time dependent problems in Petri

Nets. 𝑴𝒌 𝟏
 represents the final marking of the Petri Net in timestep k-1 and

𝑴𝒌
 represents the initial marking in timestep k. While the existing Petri Net

applications assume that 𝑴𝒌 𝟏
 𝑴𝒌

 (as illustrated in Case A), this
assumption does not hold in scientific simulations (as illustrated in Case B,
Case C and Case D) since tokens become time dependant therefore in

general that 𝑴𝒌 𝟏
 𝑴𝒌

 . TTPN is designed to handle such situations in
scientific simulations.

Case A:

P
1

T
1
 is enabled

P
2

P
3

P
1

T
1
 is fired

P
2

P
3

Case B:
Split

P
1

T
1
 is not enabled

P
2

P
3

(d) 𝑴𝑘

P
1

P
2

P
3

T
1
 is not enabled

P
1

P
2

T
1
 is enabled

P
3

P
2

(i) 𝑴𝑘

Case D:
Disappear

(h) 𝑴𝑘

P
1

P
2

P
3

T
1
 is not enabled

P
1

P
2

T
1
 is not enabled

P
3

P
2

(1) Is T
1
 fired already?

(2) Is this the final or a

valid marking at the

timestep k?
(g) 𝑴𝑘

Case C:
Merge

(f) 𝑴𝑘

P
1

P
2

P
3

T
1
 is not enabled

P
1

P
2

T
1
 is enabled

P
3

88

In TTPN, each place with its tokens (except the final place) is first isolated

from the given Petri Net model and converted into a sub-net as shown in Figure

26c. The main purpose of the sub-net is to correlate the existing tokens in a

given Petri Net from tk-1 to the new tokens extracted in tk by using the tracking

information. Therefore the sub-net is a time-dependent Petri Net.

For each place Pi, the sub-net creates two additional (pseudo) places
 and

 (shown with black circles in Figure 26). Correlating the tokens from tk-1 to the

extracted ones in tk is graphically represented by the combination of a black arc,

a transition and a red arc. The red arcs are defined only for the tokens from tk

and the black arcs are defined only for the tokens from tk-1. From one timestep to

the next, a scientific feature will either merge, split, disappear or continue. The

transitions merge, splits, disappears and continues are obtained from the

tracking information. For the merge transition, the sub-net removes b merging

tokens from tk-1 and puts the merged token from tk into
 . Similarly, the splits

transition moves the splitting token from tk-1 in Pi and puts a number of

corresponding tokens from tk into
 . The values of the variables a and b (along

with the token IDs) are obtained from the tracking information. The continues

transition removes a token from tk-1 in Pi and puts the corresponding token from tk

into
 . The disappears transition removes disappearing tokens from Pi to

 .

Once the sub-net reaches its final marking, the tokens remaining in
 are

the ones that changed their state during the transition from tk-1 to tk, and the

tokens in
 are the disappearing ones during the transition from tk-1 to tk.

89

Depending on the domain, the tokens in both places
 and

 can be

moved back into the place Pi, can be discarded or can be moved back into one of

the initial places. Figure 26d illustrates the update process for the Petri Net

shown in Figure 26a. In Figure 26d, each place (except the final place) is

converted into a sub-net, then each of these sub-nets is executed independently.

The update process replaces the single token in Figure 26a with 3 tokens. Once

the update process is completed, the isolated places with their updated tokens

Figure 26: The use of sub-nets in TTPN. (a) a scientist given Petri Net and
its marking at the timestep tk-1 is shown, (b) the marking of the Petri Net
(PN) changes in tk since the token splits into 3 objects. However since
there is no transition is fired, the marking cannot change in traditional Petri
Nets; (c) to solve this, each place is represented with a sub Petri Net (sub-
net) in TTPN. The sub-net can model and allow the change in the marking
of PN during the transition from tk-1 to tk. (d) Each place (except the final
place) in the PN is replaced with this sub-net and once the execution of the
sub-net is completed for each place, the update process is completed and
the initial marking is obtained in tk.

Existing applications

do not allow this

situation (from tk-1 to tk)

Merge

No state

change

Split

s

Disappears

P
3

a

b

Continues

P
i

𝑃𝑖

P
i

P

X

(d) Representation of the given PN

𝑃𝑖

Valid for t
k

Valid for t
k-1

(c) Sub-net for Pi

F

 P
1

T
1
 T

2

P
3

P
2

P

1

T

1
 T

2

P
3

P
2

P
2
 P

1

T

1
 T

2

a a

b b

(a) Timestep: t
k-1

(b) Timestep: t
k

90

are put back into the given model. Therefore while the direct transition from

Figure 26a to Figure 26b is not defined in typical Petri Nets, this transition

becomes possible through the TTPN (by defining and using sub-nets).

After running the update process, the new (updated) tokens can be used to

execute the given model to obtain the final marking in tk. This is done by using

Equation 8.

6.1. Activity detection framework with TTPN

 Figure 27 shows how the framework operates in each timestep. The input to

the system is the time-varying data set and the Petri Net model which is defined

by the scientist (see next section). The first step is processing the data in the

framework. In this step, features, groups, variable changes or other types of user

interested entities are computed. Different types of features can be extracted by

using appropriate tools for the respective domain. The computed meta-data may

include volume, mass, centroid, max and min locations, max and min positions,

orientation, shape information, etc. Once all the tokens are formed in t0, they are

used to execute the Petri Net starting from the initial place. Both the meta-data

and the final marking

 is passed into the next timestep t1.

 In timestep t1, first the data at t1 is processed to extract features and groups.

Then their meta-data is computed. This meta-data is transformed into tokens.

Next step is correlating the extracted features and groups to the extracted ones

in t0. Any of the available tracking algorithms (such as volume overlap, prediction

or time-varying contour based algorithms) can be used to correlate features and

groups or it may be inherent in the simulation. The tracking step computes

91

various attributes including the tracking history of the features (correspondence

list), position changes, and any other value/attribute that is a function of two

consecutive timesteps. Both the newly formed (extracted) tokens and computed

tracking information are fed into the Petri Net for activity detection. In the Petri

Net, the first step is correlating the existing tokens from t0 to the tokens extracted

in t1. Once the Petri Net is updated by using the tracking information, the marking

 is obtained. Then, the Petri Net is executed to obtain the final marking

 .

 Both the computed meta-data at t1 and
 are fed into the next step. This

process repeats itself recursively for each timestep. The meta-data that comes

from the previous timestep is updated with the new tokens extracted in the

current timestep by using the tracking information in each new timestep. Tokens

which fall into the final place are the ones performing the complete activity.

 When the evaluation over time is completed, the list of tokens with their

token histories in the final place can be used to generate an activity list. This list,

can be used for visualization and further data analysis purposes.

6.2. Modeling with Petri Nets

The scientist can model an activity as a combination of feature states and

actions. Table 2 provides examples to illustrate what a token, place and transition

may represent in a Petri Net model. The activity model should be drawn by

considering only one instance of an activity. (Many different Petri Nets could be

drawn representing the same activity). That instance should start from an initial

place where the activity starts and should end at a final place where the activity is

completed.

92

…

Timestep t0 Timestep t1 Timestep tn

Feature &

Group

Tracking

Token

formation

T
1

P
3

P
1

 T
3

P
2

T
2

Activity of Interest
(Model)

Creating the

PN Data

Structure

Populating & Executing the PN

Token
formation

…

…

Update

the PN
Execute
the PN

𝐌𝟏

𝐌𝟎

Updating & Executing the PN

t
0

Feature &

Group

Extraction

Feature &
Group
Extraction

𝑴𝟏

t
1

Figure 27: Flow diagram of the proposed activity detection framework. Activity model is given by
the scientist and is used to create the Petri Net data structure. Tokens are formed based on the
extracted feature (or group) attributes. Once the final marking is obtained, the feature (or group)

attributes and the final marking (𝑴𝟎
) are passed into the next timestep. In the next timestep, first

the features are extracted; their attributes are computed and tokens of the current timestep are

formed. Tracking information is combined with 𝑴𝟎
 to correlate these tokens to the ones in the

Petri Net in the update process. This yields the initial marking 𝑴𝟏
 Once the Petri Net is updated,

the execution process yields the final marking 𝑴𝟏
 . This process recursively continues in each

new timestep. The tokens that fall into the final place are the ones that complete the activity.

Data_t
0

Data_t

1

Feature &
Group
Tracking

Token
formation

Update
the PN

Execute
the PN

Updating & Executing the PN

Feature &
Group
Extraction

Data_t
n

t
n-1

𝑴𝒏 𝟏

𝑴𝒏

93

One important aspect of modelling an activity is that the scientist should

consider the flow of tokens from one place to the next, when drawing the model.

Since the purpose is detecting multiple events, a token should represent a

portion of an instance of the activity in a Petri Net. For example, assume that a

place represents “two-people hand-shaking” in computer vision. In that case, a

token represents a group of two people who are hand-shaking. Similarly, while a

token can represent a feature in one place, in the next place a token can

represent a group of features. This is especially useful to simplify the modelling

of formation type of activities where a feature eventually transforms into a super-

structure such as a packet (see [1] and [65]). Since the merge, split, disappear

cases are implicitly handled by TTPN (via the sub-net shown in Figure 26c), the

scientist does not need to consider these cases in his/her model explicitly for

each place. This makes it simpler to define the overall flow.

Deadlocks and conflicts: In an activity model, deadlocks and conflicts

should be avoided. Figure 28 illustrates deadlock and conflict situations as

described in [59] and in [20]. Figure 28a illustrates a conflict case where firing

one of the transitions disables the other one. In such situations, our

Small

feature

T1 enabled

T2 enabled

 Conflict: Firing
one transition
disables the other
one. Which to
choose?

(a)

Large

feature

Deadlock: The
Petri Net is in a
state where T1
will never fire.

(b)

Figure 28: Illustrative examples of (a) conflict and (b) deadlock.

T1

94

implementation fires the first transition that is defined in the model. (i.e., the

priority is always given to the transition with the lowest transition ID). Figure 28b

illustrates a deadlock case where no firing is possible. In this illustration two input

places are opposite of each other and it is impossible to be in both of them at

once. Therefore, it is impossible to fire the transition. Similar situations should be

avoided in a Petri Net model.

Currently, the scientist provides the model along with all the place and

transition conditions in a text based config file in our existing Petri Net

implementation. This is described in detail in Appendix II. We are currently

developing a better interface that will help scientist model an activity graphically.

Preliminary results can be seen in [80].

95

CHAPTER 7:

ACTIVITY VISUALIZATION

Activity detection enhances visualization. This chapter presents

various visualization techniques that utilize activity detection.

In general, activity detection adds functionality and flexibility to time-varying

visualization and allows event based data abstraction. For example, it can

identify the timesteps where the activity takes place and the features performing

the activity. Moreover, activity detection allows different visualizations highlighting

that activity. Different places of a Petri Net can be used to enhance visualization.

For instance, the features (tokens) at the intermediate states, i.e., places, can be

visualized separately at each timestep. If the scientist is interested in seeing what

features from timestep 17 are at place 3 (P3), those features can be highlighted

in an isosurface or volume rendering. Conversely, a scientist can ask at which

timesteps features move into P3.

Some examples of activity detection visualization are described below:

Graph based activity visualization: In graph based visualization, tokens

show the progress of the activity on a given Petri Net graph. An example of graph

based activity visualization is shown in Figure 29. The visualized activity is an

instance of 15 detected merge-split activities (see Chapter 9.1). The activity

model contains three places and three transitions. The visualized instance of the

activity starts in timestep 32 and completes in time step 34. In timestep 32, there

96

are two brown tokens (two brown features) shown below the final place (P3)

indicating that these brown features completed the activity. Two blue tokens and

a single red token are shown below the initial place (P1) indicating that these

features are about to merge. The associated features are highlighted in the

isosurface visualizations in each time step. The place of a token shows the

progress of an activity over time. Therefore, token based visualization is useful to

follow the progress of an activity visually.

As the number of tokens increase in a place, visualizing many tokens in a

place may become less informative since the token colors may not be

distinguishable visually. In such situations, where the number of tokens is large

enough, a histogram (bar-chart) can be attached to each place as an alternative

graph based activity visualization as shown in Figure 30.

Activity - Histogram (bar-chart): A histogram (bar-chart) is attached to

each place in a Petri Net. The total number of features and how these numbers

change over time can be seen in histograms. Example activity histograms are

shown in Figure 30. Each histogram visualises the summary of the total number

t32 t33 t34

Figure 29: An example of graph based activity visualization. The visualized

activity is an instance of the merge-split activity. Tokens are visualized below

the places. Associated features are highlighted in isosurface visualization.

97

of features in a place from Figure 29. For example, the histograms under the

label P1 show the total number of tokens in timesteps 32, 33 and 34 individually.

In activity histograms, each bar (at each timestep) can be further segmented,

where each segment can summarize the total number of features participating in

the same activity. Each of these segments should be assigned a unique color

(where the color of a segment may represent either a token or a detected

activity). Alternatively, the total number of detected activities can be visualized

over time (i.e., the total number of detected activities vs. timesteps) in an

histogram. A user can further analyze a specific segment or timestep by selecting

Figure 30: Illustrative example of activity-histogram. An histogram can be

attached to each place and the histogram can be updated at each time step as

shown. The visualized activity is an instance of the merge-split activity. The

activity is previously visualized in Figure 29. The number above each histogram

shows the total number of tokens in each place in each time step.

P1 P
2
 P

3

t33:

t
32

:

t
34

:

 3 0

 0 0

 0 0

 1

 2

 3

98

the interesting timestep (or the activity) in the histogram. Thus the selected

features can be highlighted in the data and can be visualized.

Activity summary visualization: Activity summary is the visualization of all

the detected activities along with the entire data set (or a portion of the data set,

if the data set is excessively huge) in a single visualization. Figure 40c is one

such visualization of the entire data set. It shows how frequent the activities are

and where/when they occur.

In general, activity summary could be visualized in a histogram form, or in a

vector form. In vector form, the magnitude can represent the total number of

participating features and the angle of the vector can represent the duration of

the activity.

Isolated activity visualization: A scientist can also choose to view only one

activity from the list of detected activities. Only the features that are currently

participating in the user specified activity are visualized. For example, timesteps

70 to 73 in Figure 37 visualize one user specified activity out of the 15 “Merge-

Split” activities detected over 100 timesteps. A specific instance of the activity

can be selected from the activity histogram. An example of isolated activity

visualization can be seen in Figure 31. In this visualization, only the selected

activity is visualized and only the participating features are highlighted.

Alternatively, the participating features can be extracted among all the extracted

features and can be visualized individually.

99

Forecast activity visualization: Forecast activity visualization is the

visualization of all the features that “will” complete a specified activity. It

visualizes only the features and their evolutions over time performing the

modelled activity. In Figure 44a, timestep 8 highlights all the features that are

currently performing the packet formation event. This is an example of visualizing

features that will form a group in the future. The single feature Feature_A in

timestep 8 evolves and eventually forms a group (i.e., the packet Packet_A) in

future timesteps.

Activity detection can also help in transfer function design. A time-varying

transfer function can be generated by using the activity detection results

automatically, i.e., by using the list of the tokens and their activity histories in the

final places.

Figure 31: An example of isolated activity visualization. The visualized activity

is an instance of the “merge-split” activity (see Chapter 9). There are 15

instances detected and only the selected one is visualized above. This

instance happens between the timesteps 75 and 77.

100

CHAPTER 8:

IMPLEMENTATION

The flow diagram of the proposed activity detection framework is given in

Figure 27. The implementation of this framework is formed of two major sub-

modules. These are: (1) Feature & Group tracking implementation and (2) Petri

Net implementation.

Figure 32: The modules of the feature and group tracking implementation. User

inputs the parameters in a text based config file. This file is parsed by the

standalone algorithm (which can also run on the Visit platform as a plugin) and

accordingly, the data is processed for extracting, tracking the features & their

groups and computing the attributes of these extracted features. These attributes

are saved in various formats in the text based output files. The visualization

module, reads a subset of these generated files to visualize the results.

8.1. Implementation of feature & group tracking

Feature and group tracking implementation reads and processes the data set

to extract and track region of interests (i.e, features or their groups), compute the

101

attributes and visualize their evolution over time. Our implementation is in C++

and works both on Visit (as a plugin) and as a standalone module. Visit plugin is

separate from the standalone module. The overview of feature and group

tracking implementation is given in Figure 32. On the Visit platform, various

parameters are given in a GUI environment (provided by Visit). The standalone

algorithm uses a text based config file to read the parameters. These parameters

include, file (data) names, starting and ending timesteps, variable names to be

processed and various thresholds that are used in both feature and group

extraction. These parameters passed into the core algorithm which performs

feature and group extraction, attribute computation and feature and group

tracking based on the given parameters. Once the core algorithm, the

“standalone algorithm”, completes running, the features and their groups are

visualized on Visit via a plugin which uses the output files of the standalone

algorithm as input.

The standalone algorithm saves the computed information in multiple files

based on the information type. All these files are saved under a user specified

folder (For the Visit plugin, this is a folder with the name

GENERATED_TRACK_FILES which is created under the data folder). Based on

the information type, the computed information is saved in *.poly, *.trak, *.attr,

*.uocd, *.trakTable, t.groupTrakTable, and colormap files. Detailed information for

the format of these output files can be found in Appendix II.

The core output files (based on their extensions) are the *.poly, *.trak,

*.group files where * represents the actual data file name with the individual

102

timestep index. For example, for a data set including “data1.vtk, data2.vtk,

data3.vtk” we would have “data1.poly, data2.poly, data3.poly, data1.trak,

data2.trak, data3.trak, data1.group, data2.group, data3.group” etc. Each .poly

(for example data1.poly) file contains the surface information of all the extracted

features. The surface information is saved in mesh format as in the earlier

versions of feature tracking implementations. Besides the surface information, if

the individual node values are also needed, then the generated *.uocd files can

be used since they also include node values within each feature. In addition to

these files, there is also a single .trakTable file which saves the entire tracking

information of the features in all timesteps. Similarly, the file t.groupTrakTable

saves the group tracking information for all the groups in all the timesteps. Both

feature and group tracking files use “-1” as a key term to separate the previous

timestep object IDs from the current timestep object IDs. The *.trak files include

various attributes of each feature. Each line in a *.trak file contains various

attributes of a feature. These attributes include the centroid location, feature

volume, mass, moments, min and max values and the coordinates of these min

and max values. In addition to these attributes, the bounding box coordinates

summarized with two point locations (located on the lower left and the upper right

corners of the bounding box) and group IDs of each feature are also included in

these files. The order and the number of these computed attributes can be

adjusted based on the domain. *.attr files present these computed attributes in a

more human readable form. *.group files include group information. Each line in a

file represents one group (where group ID is the line number) and includes the

103

member feature IDs from the same timestep. Therefore the number of objects

change from one line to the next in *.group files.

The feature extraction is done by a region growing algorithm which is re-

implemented by using VTK libraries. The feature tracking algorithm

fundamentally relies on the implementation in [71]. The key point of the new

region growing implementation is that the most computational gain is obtained by

the removal of process of searching for the local maximum points. These local

points were used as being the seed points in the original region growing

algorithm. To save computation and time, our algorithm searches along each

node only once in the data and when it finds a nodal value that is greater (or

smaller) than the given threshold, it starts growing around that node to extract the

feature. Since a feature is a set of connected components, this approach yields

the same results when compared to the earlier versions of the region growing

algorithm in [71] while gaining a huge improvement on the computational side. In

the group tracking implementation, user defined similarity functions define the

groups. This similarity function is used within a clustering algorithm to determine

the groups. The determined groups are tracked based on the feature overlap

criteria.

The computed attributes and tracking information are used in the Petri Net

implementation for activity detection.

8.2. Implementation of TTPN

The TTPN implementation takes the Petri Net model (given by the scientist)

and the computed meta-data as input and creates a text based output file that

104

lists the detected activities. This file is used for visualization and for further data

analysis. Figure 33 shows various steps of our Petri Net (PN) implementation.

The first step if activity modelling. The activity model (the Petri Net model) is

saved in a config file. The second step is activity detection. The config file is

passed into the PN algorithm. The PN algorithm processes the meta-data over

the time to detect activities and creates a text based output file. The final step is

activity visualization. The activity visualization step uses the list of the detected

activities (the output file). Current activity visualization implementation runs on

Visit platform as a plugin and visualizes the features in the timesteps specified in

the output file.

In our Petri Net implementation, which is implemented in C++, the Petri Net

data structure is formed according to the model given by the scientist. In a given

Petri Net model, the tokens are the only variables/classes that change over time.

Each token also has a token-history. A token history is a list that adds the triple

tuple (tj, Pi, ObjID) to a token’s token history at each iteration where the tj is the jth

timestep and ObjID is the object (token) ID.

In the merge case, all the merging object IDs form their individual triple tuples

in a token-history. In our TTPN implementation we use logical or mathematical

expressions formed of object attributes to describe a feature’s state or action. A

place condition is run at each timestep to determine whether a token still remains

in that place. Tokens that change their states are put into a vector for a further

evaluation to check if they changed their places via the firing process. A

transition condition is used to determine whether that transition can be enabled

105

for a given token. If a token satisfies the transition condition, then a second step

checks whether the same token exists in all the incoming places. Furthermore, a

third step checks whether the object satisfies “at least” one of the output places’

conditions. After passing the third step, the transition is enabled and ready to fire.

Firing a transition for a token removes the token from all the incoming places’

lists, and inserts it into the output places for which the token satisfies the place

conditions.

Figure 33: The modules included in the Petri Net implementation are shown.

These modules include activity modeling, activity detection and activity

visualization. Activity modeling module includes the user interface that saves

the activity model in a format that the PN algorithm can read. The format is

given in a text based config file. The activity detection module reads the

config file and creates the data structure accordingly. Then the PN algorithm

is run on the meta-data. The detected activities are saved in a text based

output file. This file is passed into the activity visualization module in which

first the output file is parsed to obtain the participating feature IDs and their

associated timesteps; then these parsed feature IDs are highlighted in the

appropriate visualization technique (see Chapter 7 for a list of activity

visualization techniques).

106

In each domain or in each application, different feature attributes can be

computed and saved in different orders. Moreover, a different combination of the

available feature attributes can be used as a condition for each place or for each

transition. To cover such variability and flexibility in action and state definitions, in

our implementation we use Petri Net variables. A Petri Net variable is either a

specific feature attribute or a default action from a library (such as merge, split,

continuation or new born) and can belong to either the current timestep or the

previous timestep.

In our implementation, Petri Net variables take one of the following forms:

“tcA#”, “tpA#”, “tcD#” or “tpD#” where the first two characters, tc and tp, stand for the

current timestep and previous timestep respectively. A# is an integer number and

represents the index (column) number of an attribute from a list of attributes for a

given feature and D# represents the index number of the predefined action from a

library. For example, “tcD4” means the fourth action from the library (which is the

split action in our implementation) in the current time, and “tcA3” means the third

attribute value of a feature in the current timestep.

Let us consider the transition: “Volume increase is more than %40 of the

previous volume value”. This can be expressed as a difference of the volume

values of the current and previous timesteps. Assuming the third value in the

attributes file represents the volume, we can construct the related transition

condition as “(tcA3 – tpA3) > (0.4 * tpA3)”. This Boolean expression decides

whether the condition is satisfied and serves as an action detector. Similarly, the

place conditions can define the feature states. Our token-tracking Petri Net

107

implementation allows the use of built in functions for constructing similar

condition expressions.

Activity visualization uses the token history. In our implementation, the token

history is captured in an output file. In the output file, each line represents one

detected activity. Each of these lines formed of a sequence of triplets. The

sequence represents the activity model. Each triplet includes an object ID, its

current place ID, and the current timestep. The difference between the first and

last triplets’ timesteps yields the activity duration.

Figure 34 illustrates the data structure of a Petri Net. The Petri Net data

structure includes various types of objects. These include transitions, places,

arcs and tokens. Since the number of transitions, places and arcs change from

one PN model to another, linked lists (and vectors in C++) are the data structures

we use in our implementation. Each arc is defined as triplet including the arc-

weight, and the IDs of its starting and ending nodes that are formed of one place

and one transition. While all the arc weights have the value of one in TTPN

models, we still keep the arc-weight variable in each arc for compatibility with

other Petri Nets. Each transition has its own ID, condition, a list of its incoming

arcs and a list of its outgoing arcs. Similarly, each place has its own ID, condition,

a list of its incoming arcs and a list of its outgoing arcs. In addition to these

members, places also have a list of its tokens and a flag indicating whether the

place is an initial place or a final place. Each token has its own ID, its history, a

set of attributes that are used to define the Petri Net variables in conditions, and

108

a flag indicating whether a token is still active in the Petri Net or not (for

disappearing tokens or searching purposes).

PetriNet (PN)

Places Transitions

PlaceID

inputArcs

OutputArcs

PlaceCondition

ListOfFeatures

Initial/FinalPlace

TransitionID

inputArcs

OutputArcs

TransitionCondition

TransitionID

PlaceID

ArcWeight

RealObjID

ActivePNToken

CurrentFrameID

ObjHistory

…

…

Arcs

…

…

ObjID

FrameID

PlaceID

…
 Figure 34: The Petri Net data structure used in TTPN.

109

CHAPTER 9:

 EXPERIMENTAL RESULTS FOR ACTIVITY DETECTION

Activity detection is applied to three different case studies. Each of

these case studies uses a different data set.

The data sets used in this dissertation are described in Appendix III.

9.1. Merge-split activity detection in turbulent vortex structures

To test the TTPN, we first apply it on the pseudo-spectral vortex simulation

data (see Appendix III-A3.1). The activity of interest is a “Merge-Split activity”

where a single vortex merges with another vortex and then splits again within k0

time frames. This activity is similar to the ones found in [12] and [24]. A Petri Net

for this activity is shown in Figure 35. The variable k0 represents a duration set by

the user. In this Petri Net model, if a feature performs the continuation event

more than k0 consecutive time steps, then the feature (token) goes back to P1.

 P1

P2
P3

Continuation > k0

Merge

Split

Figure 35: The Petri Net model of the merge-split activity. In this model, first

multiple features merge to form a single feature and then within k0 timesteps,

the merged feature splits into multiple features again.

110

Notice that the definitions of the places are not important. Therefore all the place

conditions set to logical true. The transitions characterize the entire activity. Each

transition is an event that is detected by processing the tracking history. For

testing, k0 was set to 5 in our applications. However, we include how the total

number of detected activities changes with respect to the k0 value in Figure 36. In

the figure, the k0 value changes from 1 to 10 along the x-axis and the total

number of detected activities at each k0 value is shown as a blue diamond. As

shown in the figure, the total number of detected activities increases as the value

increases except the k0=5 value, at which the total number of detected activities

remain the same when compared to the value at k0=4.

The simulation data resolution is 1283 and the data contains 100 timesteps.

The features and their attributes along with their tracking history were computed

by the feature tracking algorithm at the threshold value 5. The merge, split and

continuation events of each feature is computed from the correspondence list.

The correspondence list is computed by the feature tracking algorithm. Running

TTPN on this meta-data found 15 completed “Merge-Split” activities in the 100

timesteps. Figure 37 visualizes three sample activities. As it is shown between

the timesteps 64 and 67, our proposed technique is not limited to detect only one

activity at a time. These two detected activities overlap in time. On the figures,

each feature has a distinct color, except that splitting features have the same

color. Only the features that are currently performing a detected activity are

highlighted and all the other features are visualized transparently. Figure 38

visualizes another two instances from the detected 15 activities. The first one is

111

between the timesteps 1 and 3. The second instance takes place between

timesteps 3 and 8.

While all the visualizations in this thesis are obtained at fixed k0 value (k0=5)

for the Merge-Split activity, we also include another combination of merge and

split events in Figure 39. Figure 39a shows the Petri Net model describing the

“merge-split-continue-split” case. TTPN detected 8 instances of the modeled

merge-split-continue-split activity in 100 timesteps and these instances are

visualized as histograms in Figure 39b.

Figure 36: The total number of detected activities changes, as the value of k0

changes. The value of k0 is changed from1 to 10 and for each k0 value, the

total number of detected activities is plotted with a blue diamond on the plot.

112

Activity detected

in timesteps 64-66

Timestep 64 Timestep 65 Timestep 67

 P
1
 P

2

Timestep 66

P
3

. .

 P
1
 P

2

.

.

.

 P

1
 P

2

 .

.

 P
1
 P

2

 .

P

3

.

.

Merge
Split

P
3
 P

3

Activity detected

in timesteps 65-67

Continuation > k
0

Merge

Split

Continuation > k
0

Split

Merge
Continuation > k

0

Split

Continuation > k
0

Split

Merge Merge

Timestep 70 Timestep 71 Timestep 73 Timestep 72

Continue

 p
1
 p

2

 p
3

. .

 p
1
 p

2

 p
1
 p

2

p

3
 p

1
 p

2

p

3
 p

3

.

.

.

.

Continuation > k
0

Split

Continuation > k
0

Split

Continuation > k
0

Split

Continuation > k
0

Split

Merge Merge Merge Merge

Activity detected in

timesteps 70-73

Figure 37: Three detected instances of the “merge-split” activity are visualized. The activity is modeled as a Petri Net
shown above, and is defined as a feature merging and splitting within k0=5 timesteps. The activity detection process
found 15 “Merge-Split” activities over 100 timesteps. Three activities out of those 15 are visualized above. The colored
dots in the Petri Net show the locations of the participating features for each timestep in the associated feature colors.
All other vortices that do not participate in an active merge-split activity are shown transparent in the visualization. Two
of the found activities are shown in timesteps 64-67. The associated time-varying transfer function is automatically
generated for the visualization. Petri Nets encapsulate the components that define an activity and help in abstracting
time. For example, another “Merge-Split” activity which occurs over 4 timesteps instead of 3 is shown timesteps 70-73.

113

Figure 38: Two other detected instances of the “merge-split” activity are visualized. The first detected activity is
shown between the timesteps 1 and 3. The second detected activity starts at the timestep 3 and completes in
timestep 8.

Timestep 1 Timestep 2 Timestep 3 Timestep 4

Timestep 5 Timestep 6 Timestep 7 Timestep 8

114

Figure 39: Another combination of merge, split and continue events is modeled. (a) shows the Petri Net model for a
longer activity. In this activity, we seek for a subset of features that have completed the “merge-split” activity. In addition
to performing previously defined “merge-split” activity, features also need to continue for at least k1 times and then split
again. (b) the results of the modeled Petri Net are summarized in histograms. Each place is assigned a histogram.
After running the Petri Net on 100 time steps, TTPN detects 8 instances of the modeled activity. These results are
obtained when k0=5 and k0=1.

 P
1

P
2

P
3

Continuation > k
0

Merge

Split

Continuation > k
1

P
4

Split

P
5

(a)

(b)

115

9.2. Detecting anomalous bending in acoustic plume scans

For the next application, we have used the meta-data computed from the

acoustic plume scans. Detailed description of the data can be found in Appendix

III-A3.2. The meta-data is obtained from [66]. We have applied a Petri Net

analysis to determine if the bending patterns observed in the plumes are

consistent with a semi-diurnal tidal cycle (the datasets have multiple plumes, in

this example, we focus on only one of them). Ordinarily, changes in direction of

tidal flow imply a stagnant period in between directions during which the plume

would be vertical. Ocean currents are not expected to shift the plume from left to

right or vice versa by skipping a state between two timesteps along the x-z plane.

By defining each direction of plume bending as an object state (Figure 40a) we

use a Petri Net to model the normal process and detect the anomalies along the

x-z plane (Figure 40b). We observe three instances of anomalous-bending at

times steps 9, 10 and 12 (circled in red in Figure 41a) within the first plume data

set. Our TTPN algorithm provides results that match the observed results.

However, when applied to a larger data set, the results of the current Petri

Net model were too large. This let the scientist to refine the model since the

original model did not consider the 3D nature of ocean currents and plume

responses. The redefined new states with new conditions are shown in Figure

42a and they consider the angles in 3D between z axis and x-y plane. The

scientist observed that the plume can move left or right within 45o (along the x-y

116

plane) and up or down (along the z axis) from one state to the next. Any angle

difference that is greater than 45o is considered as an anomaly. The new TTPN

(Figure 42b) has detected 131 timesteps as anomalies out of the 479 available

timesteps. The available 479 timesteps are plotted along the x axis (where the

unit is in days) in Figure 42c. For each day, the magnitude of Plume A bending

and its major direction is represented using an arrow. The anomaly events are

highlighted with a pink star. While this is still large, it is much more in tune with

the data. Further discussion on plume bending can be found in [8].

117

P 1

P 2

P 3

P 4

A

(b)

P
 4

(a): Possible Plume states

P
 2
 P 3

 z

x

P
 1

T1

T3 T5

T6 T4

T2

T7

T8
T9

T10

Figure 40: A Petri Net model for “Anomalous Plume bending” is shown. (a) The plume behavior is categorized in 5
states (P1, P2, P3, P4 and P5) based on its angle (the angle between the center line of the plume and the z axis).
These five states are illustrated in two dimensional plane. (b) Based on the defined five states in (a), the Petri Net
model is drawn. The place that is labeled “A” represents the anomalous bending and therefore when the token
(i.e., the timesteps in this case since there is only one plume) falls into this place, an anomalous bending is
detected. This Petri Net is applied on 15 timesteps.

P
 5

T
1

T
2

T
1

P
 5

118

Figure 41: “Anomalous Plume bending” detection in a time-varying 3D plume data set is visualized. This data
set is formed of 15 timesteps (i.e., 3-dimensional scans of the plumes are obtained at 15 different times). This
data set contains one of three available plumes. (a) In each timestep, first the plume is segmented by using
the feature tracking algorithm in the data and the isosurface of the extracted plume is visualized. The relative
orientation of the plume to the normal is shown on the right of each timestep. The anomalies that do not fit the
defined periodic movement between the plume bending states are circled in red. (b) In this data set, there are
5 states are defined and these states are shown in x-z plane, i.e., the states are defined in 2D for these 15
timesteps. There are two states on each side of the normal.

(b)

Timestep 1

Timestep 2

Timestep 3

Timestep 4

Timestep 5

Timestep 6

Timestep 7
 Timestep 8

Timestep 9
 Timestep 10

 0

Timestep 11
 0 Timestep 12

 0
Timestep 13
 0

Timestep 14
 0 Timestep 15

 0

0 1 -1
2 -2

(a)

119

P 1

P 2
P 3

P 4

A

(b)
P

 4

(a): Possible Plume states

P

 2

P
 3

z

y

x

P
 1

T1

T3

T5

T6

T4

T2

T7

T8 T9

T10

Figure 42: The Petri Net model for “Anomalous Plume bending” is shown. (a) The plume behavior is categorized in 4
states (P1, P2, P3 and P4) based on its angle (the angle between the center line of the plume and the z axis). These
four states are illustrated in three dimensions. (b) Based on the defined four states in Figure 40a, the Petri Net model
is drawn. The place that is labeled “A” represents the anomalous bending and therefore when the token (i.e., the
timesteps in this case since there is only one plume) falls into this place, an anomalous bending is detected. This
Petri Net is applied on 479 timesteps. (c) The plume’s direction (and magnitude) is shown over 26 days (total 497
timesteps). The pink stars are the anomaly timesteps in which the anomalous plume bending is detected by the Petri
Net.

(c)

120

9.3. Packet formation in wall bounded turbulence flow

simulations

In Direct Numerical Simulations (DNS) of wall bounded turbulence flow,

scientists have been interested in searching for the existence of groups of

coherent but unconnected features, their formation, dynamic evolution and

number of these groups [65], [53]. An illustration of such a group is shown in

Figure 44c [1]. The yellow hairpin vortices (features) move coherently inducing a

secondary (blue) fluid mass of low momentum. These coherent structures are

called packets. (This is analogous to groups of humans walking coherently in a

crowd or to a school of fish). In general, the hairpins are not connected within a

packet. Each packet includes varying number of hairpins where these hairpins

are aligned at a downstream-leaning angle (γ) and the distance between the

hairpins should not exceed a predefined physically meaningful value. Some of

these packets lead to the formation of younger packets over time. Moreover,

among all these packets, some act coherently forming super structures inducing

meandering regions of low momentum. (an illustration of such super structures is

given in Figure 44c) The activity we are interested in is the “packet formation”

event which is characterized by a single hairpin evolving into a packet formed of

multiple features over time [65].

The initial simulation data (shown in Figure 17 and in Figure 44a) has 46

timesteps with the resolution 384x256x69. Figure 44b shows the Petri Net model

121

for packet formation. In Figure 44b, P1 and P2 represent a packet formed of a

single feature, P3 and P4 represent a packet formed of multiple features in Figure

44b. The activity (packet formation) starts at P1 (initial place) and ends at P4 (final

place). Notice that the transition “A group of hairpins moving together” can be

replaced with another Petri Net to detect and identify groups. Group dynamics

needs to be computed as a part of the tracking algorithm. See Chapter 4 for the

details of group tracking and group dynamics.

Quantification and visualization of the packets in time-varying data require us

to track the history of the packets. Feature extraction is performed at the

threshold 0.1*10-3 via a region growing algorithm and the objects with the volume

lower than 25 are filtered. The average number of extracted features is 308 and

the average number of found groups is 163 in 46 time frames. Figure 44d

demonstrate the number of found feature and packet numbers in each time

frame.

The PN model yielded 288 packet formation activities over 46 timesteps.

Figure 44a visualizes the portion of the activities that take places in the timesteps

between 8 and 13. It is apparent that the single Feature_A (circled in purple)

transforms into the Packet_A in the following timesteps. All other packets that are

not currently performing the modeled activity are transparent (Forecast activity

visualization).

122

Figure 43: Various information of the wall bounded turbulence DNS, (a) A PN model for the packet
formation event where p1 and p2 represents single hairpin vortex, p3 and p4 represents packets including
multiple hairpin vortices, (b) an illustration of a packet (a group of hairpin vortices) and a super structure
formed of packets, (c) The number of found packets and features (hairpin vortices) in each timestep.

X

Z

(b)

P
1

P
2

A group of hairpins

moving together

P
3

Number of hairpins

increase within the packet

Expanding

 P
4

A group of hairpins

moving together

(a)

0 5 10 15 20 25 30 35 40 45 50
100

150

200

250

300

350

time step

feature number

packet number

(c)

123

Figure 44: Sample detected packet formations are visualized in wall bounded turbulence DNS. An
example formation of a packet (Packet_A) is circled in purple. In timestep 8 the purple feature is a small
feature while in timestep 13 it looks like a bullet shaped packet (A packet is illustrated in the previous
figure).

Timestep 8 Timestep 9

Timestep 10 Timestep 11

Timestep 12
Timestep 13

A single hairpin (Feature_A)

Packet_A with multiple features

Packet_A

Packet_A

Packet_A

Packet_A

124

CHAPTER 10:

 DISCUSSION AND CONCLUSION

In this dissertation, we show that there are activities in 3D scientific

simulations and these activities can be modelled and detected by employing the

available activity detection techniques from computer vision applications. An

activity can be modelled as a time sequence where each node in the sequence

represents a state of an object. In a high level description, activity detection is

extracting the meaning from the data.

In this dissertation, the use of a graph based technique, Petri Nets, is

proposed first to model an activity of interest and then to detect the instances of

the modelled activity over time for 3D time-varying scientific data sets. The

proposed technique relies on the object attributes. These attributes are computed

by first extracting the objects and then tracking them over the time by the

available feature and group tracking algorithms. As a part of this dissertation, a

group extraction and tracking algorithm is presented to determine the groups and

to track them over the time.

Petri Nets operate on tokens. In scientific visualization, the tokens

correspond to the features including feature attributes. In scientific simulations,

feature attributes change over the time, therefore the tokens also change over

the time. In order to include such time variance, an enhanced Petri Net: token-

tracking Petri Nets is proposed in this dissertation. Token-tracking Petri Nets can

handle the variance in an object’s state or the change in its attributes as going

125

from one timestep to the next. Token-tracking Petri Nets utilize the available

tracking information to update the tokens in each place. In this formalism, each

token gains time-varying capabilities.

Activity detection with Petri Nets helps scientists with hypothesis validation in

scientific simulations. A scientist can first formulate an idea or an hypothesis of

how features interact or how they evolve and then search for that activity

amongst thousands of time steps. Through an iterative process, the hypothesis

can be refined by interpreting the visualized results.

Future work may include integrating the activity detection results within the

visualization step in a more efficient way. There are various ways of utilizing the

results of activity detection in visualization (these are partially discussed in

Chapter 7). Effective routines can help visualizing large data sets on standard

computers within a reasonable computing time.

Group tracking is an important part of the proposed activity detection

framework. Increasing the grouping accuracy and the tracking accuracy helps

detecting the activities more accurately. The visualization of the group tracking

results can also be enhanced. The current version relies on retaining the same

color information of the dominant parent. These may results in visually

misleading results in some cases, where all the objects (features) initially

originate from the same group or the same feature. In such situations all those

child features will retain the same color even if they are in different groups.

Various different visualization approaches can be applied to avoid such

confusion.

126

In this dissertation, all the applications were based on physically observable

coherent features. However, notice that token-tracking Petri Nets are not limited

to the detection of the activities of only coherent features. The proposed activity

detection framework can also be applied to detect the activities of specific nodes

or quantities in both Lagrangian and Eulerian simulations. For example, activities

such as “the minimum pressure remains constant for 5 time steps” can still be

modelled and detected by token-tracking Petri Nets. In this case, the

segmentation and tracking steps of the framework would become trivial since

either each node, a quantity or the entire domain would become a token in

TTPN.

One of the main challenges in scientific data analysis is creating the training

set or ground truth for the use of available machine learning or data mining

techniques in scientific simulations. Petri Nets can also create the necessary

training data set from the semantic descriptions for further analysis with other

data mining techniques. A semantic based approach (such as Petri Nets) allows

exploratory knowledge discovery besides detecting certain events in timevarying

data sets. Once a good set of (representative) training data is created, future

work may focus on including machine learning techniques for object recognition,

object state detection or for action detection within the proposed framework.

Classification algorithms could be useful for recognizing different object types or

different object actions.

The use of activity detection is demonstrated in three sample data sets. The

different case studies demonstrate that while the domains and actors are

127

different, the concept of activity detection can be applied to all. The proposed

activity detection framework went over all the time steps and pulled out the

relevant features and time steps effectively into more manageable chunks.

Experimental results showed promising results to use Petri Nets for “knowledge-

assisted visualization”. Therefore graph based techniques work in conjunction

with the available visualization techniques and they remain as intuitive and

accessible solutions to the both scientists and the visualization community.

TTPNs support parallel and distributed systems and thus parallel processing.

Due to their graph based structure, TTPN remain as a scalable choice for

modelling activities performed by multiple features. Future work may include

investigating the optimal parallel computational approaches for TTPNs.

128

ACKNOWLEDGEMENTS,

PUBLICATIONS AND PRESENTATIONS

I acknowledge that the data used in this dissertation is obtained from our

collaborators including Prof. Pino Martin (for the wall bounded turbulent

simulation data), Dr. Karen Bemis (for the under-water plume data) and my

advisor Prof. Deborah Silver (for the pseudo-spectral simulation data).

The following is the list of publications and presentations including a portion

of the material presented in this dissertation:

1) S. Ozer, D. Silver, K. Bemis, P. Martin, “Activity Detection in Scientific

Visualization”, Visualization and Computer Graphics, IEEE Transactions on,

2013: This publication is a summary of the various chapters included in

this dissertation.

2) L. Liu, S. Ozer, K. Bemis, J. Takle, D. Silver, “An Interactive Method for

Activity Detection Visualization“, Large Data Analysis and Visualization (LDAV),

2013 IEEE Symposium on, 2013 (Poster).

3) S. Ozer, J. Wei, D. Silver, K.-L. Ma, P. Martin, “Group Dynamics in Scientific

Visualization”, Large Data Analysis and Visualization (LDAV), 2012 IEEE

Symposium on, 2012: This publication is a summary of Chapter 4

fundamentally. Therefore, this publication includes the content from

Chapter 4 mainly.

129

4) K. G. Bemis, S. Ozer, G. Xu, P. A. Rona, D. Silver, “Event Detection for

Hydrothermal Plumes: A case study at Grotto Vent”, Abstract OS52A-05

presented at 2012 Fall Meeting, AGU, 3-7 Dec. 2012.

5) S. Ozer, D. Silver, K. Bemis, P. Martin, J. Takle, “Activity Detection for

Scientific Visualization”, Large Data Analysis and Visualization (LDAV), 2011

IEEE Symposium on, 117-118, 2011 (Poster).

6) S. Ozer, D. Silver, P. Martin, “Group Tracking in Scientific Visualization”, IEEE

Visualization, Visweek, Providence, RI, 2011 (Poster).

7) S. Ozer, “An activity detection framework for 3D time varying scientific data

sets”, ECE seminars, University of Massachusetts, Dartmouth, MA, May 2013

(Presentation).

8) S. Ozer, “Activity detection in scientific visualization”, VIVA seminars,

University of Virginia,VA, August 2013 (Presentation).

130

REFERENCES

[1] R. Adrian, C. Meinhart, C. Tomkins, “Vortex organization in the outer region of
the turbulent boundary layer”, J. Fluid Mech. 422, pp. 1–54, 2000.

[2] J. K. Aggarwal and M. S. Ryoo, “Human activity analysis: A review”, ACM
Computing Surveys, 2010.

[3] M. Albanese, R. Chellappa, V. Moscato, A. Picariello, V. S. Subrahmanian, P.
Turaga, and O. Udrea, “A constrained probabilistic petri net framework for
human activity detection in video,” IEEE Trans. Multimedia, 2008.

[4] E. Alpaydin, “Introduction to Machine Learning”, MIT Press, Cambridge, MA,
2004.

[5] N. Atmakuri, “Feature Tracking and visualization in Visit”, M.Sc. thesis,
Rutgers University, N.J., 2010.

[6] H. Bay, A. Ess, T. Tuytelaars, L. V. Gool, "SURF: Speeded Up Robust
Features", Computer Vision and Image Understanding (CVIU), Vol. 110, No.
3, pp. 346--359, 2008.

[7] K. G. Bemis, S. Ozer, G. Xu, P. A. Rona, D. Silver, “Event Detection for
Hydrothermal Plumes: A case study at Grotto Vent”, Abstract OS52A-05
presented at 2012 Fall Meeting, AGU, 3-7 Dec. 2012.

[8] K. G. Bemis; G. Xu; J. Rabinowitz; P. A. Rona; D. R. Jackson; C. D. Jones:
Understanding Plume Bending at Grotto Vent on the Endeavour Segment,
Juan de Fuca Ridge, EOS, Transactions AGU, AGU Fall Meeting (abstract
V11E-2544), 2011.

[9] S. Bhattacharya, S. Habib, K. Heitmann, “Dark Matter Halo profiles of
massive clusters: theory vs. observations”, Astrophysical Journal, 2011.

[10] R. Borgo, M. Chen, B. Daubney, E. Grundy, H. J anicke, G. Heidemann,
B. H oferlin, M. H oferlin, D. Weiskopf, and X. Xie, “A survey on videobased
graphics and video visualization,” Eurographics (State of the Art Reports),
Llandudno, UK, pages 1–23, 2011.

[11] R.P. Botchen, S. Bachthaler, F. Schick, M. Chen, G. Mori, D. Weiskopf, T.
Ertl, “Action-Based Multifield Video Visualization”, in Visualization and
Computer Graphics, IEEE Transactions on, 2008. 14(4): p. 885-899.

[12] K. P.-T. Bremer, G. Weber, V. Pascucci, M. Day, and J. Bell, “Analyzing
and Tracking Burning Structures in Lean Premixed Hydrogen Flames”, IEEE
Transactions on Visualization and Computer Graphics 16(2), 2010.

[13] J. Caban, A. Joshi, and P. Rheingans. “Texture-based feature tracking for
effective time-varying data visualization”. IEEE Transactions on Visualization
and Computer Graphics, 13(6):1472–1479, 2007.

[14] C. Castel, L. Chaudron, and C. Tessier, “What is going on? A high level
interpretation of sequences of images,” in Proc. Workshop Conceptual
Descriptions Images (ECCV), Cambridge, U.K., 1996, pp. 13–27.

[15] J. Chen, D. Silver, and L. Jiang. “The feature tree: Visualizing feature
tracking in distributed AMR datasets”, In Proceedings of IEEE symposium on
Parallel and Large-Data Visualization and Graphics 2003, pages 103–110,
2003.

131

[16] M. Chen, D. Ebert, H. Hagen, R.S. Laramee, R. Van Liere, K.-L. Ma, W.
Ribarsky, G. Scheuermann, D. Silver, “Data, Information and Knowledge in
Visualization”, IEEE Computer Graphics and Applications (IEEE CG&A), Vol.
29, No. 1, January/February 2009, pages 12-19.

[17] S.-Y. Chen and X. Shan, “High-Resolution Turbulent Simulations Using
the Connection Machine-2,” Computers in Physics, vol. 6, no. 6, pp. 643-646,
1992.

[18] D.J. Cook, N.C. Krishnan, P. Rashidi, “Activity Discovery and Activity
Recognition: a New Partnership”, Cybernetics, IEEE Transactions on
(Volume:43 , Issue: 3), 2013.

[19] T. Darom, Y. Keller, "Scale-Invariant Features for 3-D Mesh Models",
Image Processing, IEEE Transactions on 21.5 (2012): 2758-2769.

[20] R. David, H. Alla, “Petri nets & Grafcet,” Prentice Hall, ISBN: 0-13-
327537-X, 1992.

[21] V.M. Fernandez, N.J. Zabusky, S. Bhat, D. Silver, and S.-Y. Chen,
“Visualization and Feature Extraction in Isotropic Na- vier-Strokes
Turbulence,” Proc. AVS95 Conf., Boston, Apr. 1995.

[22] K. S. Fu, & J. K. Mui, “A survey on image segmentation”, Pattern
recognition, 13(1), 3-16, 1981.

[23] G. Gennari and G. D. Hager, “Probabilistic Data Association Methods in
Visual Tracking of Groups.”, IEEE CVPR, 2004.

[24] A. Gezahegne and C. Kamath, “Tracking non-rigid structures in computer
simulations”, in Proceedings of the IEEE ICIP 2008.

[25] N. Ghanem, D. Dementhon, D. Doermann, and L. Davis, “Representation
and recognition of events in surveillance video using petri net,” In CVPR
Workshop, 2004.

[26] M. Goebel, L. Gruenwald, “A survey of data mining and knowledge
discovery software tools”, SIGKDD Explor 1999, 1(1):20–33.

[27] J. Han, Data Mining, “Concepts and Techniques”, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2005.

[28] The HDF Group. Hierarchical data format version 5, 2000-2010.
http://www.hdfgroup.org/HDF5.

[29] A. I. Hernandez, G. Carrault, F. Mora, L. Thoraval, G. Passariello, J. M.
Schleich, “Multisensor fusion for atrial and ventricular activity detection in
coronary care monitoring,” IEEE Transactions on Biomedical Engineering,
vol. 46, no. 10,pp. 1186–1190, 1999.

[30] J. A. Insley; L. Grinberg; M. E. Papka; “Visualizing multiscale, multiphysics
simulation data: Brain blood flow”, Large Data Analysis and Visualization
(LDAV), 2011.

[31] Y.A. Ivanov, A.F. Bobick, “Recognition of Visual Activities and Interactions
by Stochastic Parsing,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22:852–872, 2000.

[32] A. Jain, M. Murty, and P. Flynn, “Data clustering: A review,” ACM Comput.
Surv., vol. 31, no. 3, pp. 264–323, 1999.

132

[33] G. Ji, H-W. Shen, and R. Wenger. “Volume tracking using higher
dimensional isosurfacing”. In Proceedings of Visualization 2003, pages 209–
216, 2003.

[34] G. Ji and H.-W. Shen, 2006. ”Feature Tracking Using Earth Mover’s
Distance and Global Optimization,” Pacific Graphics 2006.

[35] S-W. Joo and R. Chellappa, “A multiple-hypothesis approach for
multiobject visual tracking.”, IEEE Trans Image Process 16(11):2849– 2854.

[36] I. Koprinska, & S. Carrato, “Temporal video segmentation: A survey”,
Signal processing: Image communication, 16(5), 477-500, 2001.

[37] C. Lakos, “From Coloured Petri nets to Object Petri nets”, 16th
international conference on applications and theory of Petri nets 1995, LNCS,
Springer, pp:278-297, 1995.

[38] D. Laney, P.-T. Bremer, A. Mascarenhas, P. Miller, and V. Pascucci,
“Understanding the Structure of the Turbulent Mixing Layer in Hydrodynamic
Instabilities.”, IEEE Transactions on Visualization and Computer Graphics
Vol. 12, No. 5, pp. 1053-1060, 2006.

[39] B. Lau, K. O. Arras and W. Burgard, “Tracking groups of people with a
multi-model hypothesis tracker.”, In: International conference on robotics and
automation (ICRA), Kobe, Japan.

[40] G. Lavee, E. Rivlin, M. Rudzsky, “Understanding video events: a survey of
methods for automatic interpretation of semantic occurrences in video,”
Trans. Sys. Man. Cyber Part C 39(5):489–504, 2009.

[41] G. Lavee, M. Rudzsky, E. Rivlin, A. Borzin, “Video Event Modeling and
Recognition in Generalized Stochastic Petri Nets,” IEEE trans. on Circuits and
Systems for Video Technology, Vol 20, N0:1, 2010.

[42] J. N. K. Liu, K. Wang, Y.-L. He, X.-Z. Wang, “Formal Representation and
Verification of Ontology Using State Controlled Coloured Petri Nets”, Reliable
Knowledge Discovery, pp 269-290, 2012.

[43] D. G. Lowe, "Local feature view clustering for 3D object recognition," IEEE
Conference on Computer Vision and Pattern Recognition, Kauai, Hawaii
(December 2001), pp. 682-688.

[44] D. G. Lowe, "Object recognition from local scale-invariant features,"
International Conference on Computer Vision, Corfu, Greece (September
1999), pp. 1150-1157.

[45] D. G. Lowe, "Distinctive image features from scale-invariant keypoints,"
International Journal of Computer Vision, 60, 2 (2004), pp. 91-110.

[46] J. G. Luhmann, S. C. Solomon, J. A. Linker, J. G. Lyon, Z. Mikic, D.
Odstrcil, W. Wang, and M. Wiltberger, “Coupled model simulation of a Sun-to-
Earth space weather event,” J. Atmos. Sol. Terr. Phys., 66, 1243, 2004.

[47] K.-L. Ma, E. B. Lum, H. Yu, H. Akiba, M.-Y. Huang, Y. Wang, and G.
Schussman. Scientific discovery through advanced visualization. Journal of
Physics: Conference Series, 16(1):491, 2005.

[48] C.Maes, T.Fabry, J.Keustermans, D.Smeets, P.Suetens, and D.Van-
dermeulen, “Feature detection on 3-D face surfaces for pose normali- sation
and recognition,” in Proc. 4th IEEE Int. Conf. BTAS, Sep. 2010, pp. 1–6.

133

[49] S. McKenna, S. Jabri, Z. Duric, A. Rosenfeld, and H. Wechsler, “Tracking
groups of people”, Comput. Vis. Image Understanding, vol.80, no. 1, pp. 42–
56, 2000.

[50] C. Muelder and K.-L. Ma. “Interactive feature extraction and tracking by
utilizing region coherency”. In Proceedings of IEEE Pacific Visualization
Symposium, April 2009.

[51] M. Mucientes and W. Burgard, “Multiple hypothesis tracking of clusters of
people.”, in IEEE/RSJ international conference on intelligent robots and
systems, October 2006, pp 692–697.

[52] T. Murata, "Petri nets: Properties, analysis and applications", Proceedings
of the IEEE 77, no. 4 (1989): 541-580.

[53] C. O’Farrrell, M. P. Martin: Chasing eddies and their wall signature in DNS
data of turbulent boundary layers, Journal of Turbulence, vol. 10, id. N15,
2009.

[54] N. Oliver, B. Rosario, A. Pentland, “A Bayesian Computer Vision System
for Modeling Human Interactions,” Proceedings of Intl. Conference on Vision
Systems ICVS99, Spain, January 1999.

[55] M. L. Parry, P. A. Legg, D. H.S. Chung, I. W. Griffiths, M. Chen,
“Hierarchical Event Selection for Video Storyboards with a Case Study on
Snooker Video Visualization,” IEEE Visualization 2011 Proceedings, 2011.

[56] V. Pascucci, X. Tricoche, H. Hagen, J. Tierny (Eds.), “Topological
methods in data analysis and visualization”, ISBN 978-3-642-15014-2,
Springer, 2011.

[57] E. Palsson, H.G. Othmer, “A model for individual and collective cell
movement in Dictyostelium discoideum”, Proc. Natl. Acad. Sci. USA 97,
10448–10453, 2000.

[58] M. Perše , M. Kristan , J. Perš , G. Mušič , G. Vučkovič , S. Kovačič,
“Analysis of multi-agent activity using petri nets,” Pattern Recognition, v.43
n.4, p.1491-1501, April, 2010.

[59] J. L. Peterson, “Petri net theory and the modeling of systems”, Prentic-
Hall, ISBN: 0-13-661983-5, 1981.

[60] C. A. Petri, “Kommunikation mit automaten”, University of Bonn, West
Germany, 1962.

[61] R. Poppe, “A survey on vision-based human action recognition,” Image
and Vision Computing, 2010.

[62] P. Rashidi, D. J. Cook, L. B. Holder, M. Schmitter-Edgecombe,
“Discovering activities to recognize and track in a smart environment”,
Knowledge and Data Engineering, IEEE Transactions on, 23(4), 527- 539,
2011.

[63] N. Ravi, N. Dandekar, P. Mysore, M. L. Littman, "Activity recognition from
accelerometer data", In AAAI, pp. 1541-1546, 2005.

[64] F. Reinders, F.H. Post, and H.J.W. Spoelder. “Visualization of time-
dependent data using feature tracking and event detection”, The Visual
Computer, 17(1):55–71, 2001.

134

[65] M. J. Ringuette, M. Wu, M. P. Martin, “Coherent structures in direct
numerical simulation of turbulent boundary layers at Mach 3”, J. Fluid Mech.
594, pp. 59-69, 2008.

[66] P. A. Rona, K.G. Bemis, D. Kenchammana-Hosekote, and D. Silver,
“Acoustic imaging and visualization of plumes discharging from black smoker
vents on the deep seafloor”, IEEE Visualization 1998 Proceedings, 1998, pp.
475-478.

[67] R. Samtaney, D. Silver, N. Zabusky, and J. Cao, “Visualizing features and
tracking their evolution”, IEEE Computer, 27(7):20–27, July 1994.

[68] K. Santilli, K. Bemis, D. Silver, J. Dastur, P. Rona,“Generating Realistic
Images from Hydrothermal Plume Data”, IEEE Visualization, pp: 91-98, 2004.

[69] W. Schroeder, K. Martin, B. Lorensen, “Visualization Toolkit: An Object-
Oriented Approach to 3D Graphics, 4th Edition”, ISBN-10: 193093419X,
2006.

[70] P. Scovanner, S. Ali, and M. Shah, “A 3-dimensional sift descriptor and its
application to action recognition,” in Proc. 15th Int. Conf. MULTI- MEDIA,
2007, pp. 357–360.

[71] D. Silver and X. Wang, “Tracking and visualizing turbulent 3d features”,
IEEE Transactions on Visualization and Computer Graphics 3,2, 129–141,
1997.

[72] D. Silver and X. Wang, “Volume tracking”, In Proceedings of Visualization
1996, 157–164.

[73] D. Silver and X. Wang. “Tracking scalar features in unstructured datasets”.
In Proceedings of Visualization 1998, pages 79–86, 1998.

[74] B.S. Sohn and C. Bajaj. “Time-varying contour topology”. IEEE
Transactions on Visualization and Computer Graphics, 12(1):14–25, 2006.

[75] H. Storf, M. Becker, M. Riedl, “Rule-based Activity Recognition
Framework: Challenges, Technique and Learning”, 3rd International
Conference on PervasiveHealth 2009, pp 1-7, 2009.

[76] E. M. Tapia, S. S. Intille, K. Larson, “Activity Recognition in the Home
Using Simple and Ubiquitous Sensors,” In Pervasive Computing, pages 158–
175, 2004.

[77] E. Trucco, E., & K. Plakas. Video tracking: a concise survey. Oceanic
Engineering, IEEE Journal of, 31(2), 520-529 (2006).

[78] P. Turaga, R. Chellappa, V.S. Subrahmanian, and O. Udrea, “Machine
recognition of human activities: A survey,” IEEE Trans. on Circuits and
Systems for Video Technology, vol. 18, no. 11, pp. 1473–1488, Nov. 2008.

[79] F.-Y. Tzeng and K.-L. Ma. “Intelligent feature extraction and tracking for
large-scale 4d flow simulations”. In Proceedings of Supercomputing 2005
Conference., 2005.

[80] Vizlab, Rutgers University, NJ, USA, “http://vizlab.rutgers.edu”.
[81] X. Wang, “Visualizing and tracking features in 3D time-varying datasets”,

Ph.D. Thesis, Rutgers University, 1999.
[82] M. J. Waxman and O. E. Drummond, “A bibliography of cluster (group)

tracking,” in Proc. SPIE Conf. Signal and Data Processing of Small Targets,
vol. 5428, 2004, pp. 551–560.

135

[83] G. Weber, P.-T. Bremer, J. Bell, M. Day, and V. Pascucci, “Feature
tracking using Reeb graphs”, In Proceedings TopoInVis Workshop, 2009.

[84] J. Wei, H. Yu, R. W. Grout, J. H. Chen, K. -L. Ma, "Visual Analysis of
Particle Behaviors to Understand Combustion Simulations", IEEE Computer
Graphics and Applications, 32(1): 22-33, 2012.

[85] J. Wei, Z. Shen, N. Sundaresan, K.-L. Ma, “Visual Cluster Exploration of
Web Clickstream Data”, In IEEE Conference on Visual Analytics Science and
Technology 2012.

[86] D. Weinland, R. Ronfard, & E. Boyer, “A survey of vision-based methods
for action representation, segmentation and recognition”, Computer Vision
and Image Understanding, 115(2), 224-241, 2011.

[87] G. Xu, D. R. Jackson, K. G. Bemis, P. A. Rona, “Observations of the
volume flux of a seafloor hydrothermal plume using an acoustic imaging
sonar”, Journal of Geochemistry, Geophysics, Geosystems, 2013.

[88] R. Xu and D.I.I. Wunsch, “Survey of clustering algorithms”, IEEE Trans.
Neural Networks 16 (3) (2005) 645–678.

[89] J. Yamato, J. Ohya, K. Ishii, "Recognizing human action in time-sequential
images using hidden Markov model", In Computer Vision and Pattern
Recognition, 1992. Proceedings of IEEE CVPR'92, pp. 379-385, 1992.

[90] H. Yang, L. Shao, F. Zheng, L. Wang, & Z. Song, (2011). Recent
advances and trends in visual tracking: A review. Neurocomputing, 74(18),
3823-3831.

[91] A. Yilmaz, O. Javed, M. Shah, “Object tracking: A survey”. Acm
Computing Surveys (CSUR), 38(4), 13 (2006).

136

APPENDIX – I:

ATTRIBUTE GENERATION

Attributes play an essential role in segmentation, tracking and action

recognition techniques. Recognition is typically done after computing several

features for each object (the recognition process is equivalent to a retrieval or a

matching process). The success of such recognition techniques fundamentally

depends on whether a label can be assigned to a segmented (or detected) object

based on its attributes. Such approaches inherently assume that the object

attributes are distinctive so that the labels can be derived by discriminating the

object attributes.

Consider a specific situation where each object is represented only with the

mean and variance of its all member node values. Assume that two of these

objects have the same mean and variance values such that [m 𝜎]T (where m is

the mean and 𝜎 is the standard deviation). In this case, if we know that one of

these two objects represents a sphere and the other one represents an arrow,

and if we use only the mean and variance values for such shape discrimination

(i.e. recognition), regardless of the used technique, we would simply fail in

deciding which object is a circle and which one is the arrow. Figure 45 illustrates

this situation. In this example, a simple thresholding process could first segment

(mask) the region of interests from the background. The next step would be

deciding on which area (region of interest) is a sphere and which area is an

arrow. Since both the sphere and and arrow objects have a single (uniform)

137

value that is represented with the dark blue color, they both have the same mean

and zero variance value. Therefore no approach would yield an accurate

labelling for these two objects if we represent each of these objects by their

individual mean and variance (or standard deviation) values only. This example

shows the importance of attribute computation and selection for an efficient

recognition process.

Figure 45: An illustration of two different objects with the same mean and
variance values. (a) An image containing a sphere and an arrow with a uniform
value (represented with the dark blue color), (b) representing each object with its
mean and standard deviation values.

In many computer vision applications, the recognition process is highly (and

sometimes solely) depends on the shape based attributes, i.e. the shape

descriptors. Shape descriptors can be categorized under two labels namely

global descriptors and local descriptors.

Global attributes: Global attributes are the attributes that “summarize” a

unique characteristic of an object. Examples are mean, variance values of all the

node values of an object, volume, mass, moments, etc. All these attributes

summarize the entire set of nodes (voxel or pixel) of an object or (or its mesh

points) with a less and usually fixed number of values. Therefore we can say that

these features map M number of voxels (where M varies from an object to

another) into N number of attributes (where N is fixed for all the objects). Usually

(but not necessarily) M>N. An example for this case is the mean value

Object_A =*
𝑚𝐴

𝜎𝐴
+

Object_B =*
𝑚𝐵

𝜎𝐵
+

 (a) (b)

138

computation which is a mapping from many nodes to one value, i.e., one

attribute.

Local attributes: Local attributes are the individual points of an object that

can describe the object uniquely when considered all together. These special

points are sometimes called interest points since they can (collectively)

discriminate the object from other types. They are computed from only a small

portion of the entire data. Example local feature types are the corners (and their

numbers), local curvatures, and local histograms. The entire set of local

attributes (altogether) also summarizes a characteristic of an object. Since the

number of such interesting points changes from object to object, the number of

the local attributes varies from object to object. On the contrary, the length (the

number) of computed attributes is fixed in global features for each object. Local

attributes are mostly used for shape related tasks and therefore also named

shape descriptors.

Various techniques have been proposed to “detect” the informative (salient)

local points of an object for different data types. The data type can be one

dimensional (1D), two dimensional (2D) or three dimensional (3D) based on the

data acquisition (or generation) environment, its geometrical and topological

structure.

Recently, many researcher focused on first defining and then detecting the

local attributes due to the success of the Scale-Invariance Feature Transform

(SIFT) in many computer vision applications including recognition and image

retrieval. Following the success of SIFT, Speeded Up Robust Features (SURF)

139

algorithm also has been proposed for computer vision applications. While there

are some technical limitations in these algorithms, there are also legal limitations

since both algorithms are currently patented to their respective owners. Currently

there are many available techniques that extract local descriptors based on

different criteria. Examples are Local Energy based Shape Histogram (LESH),

Gradient Location and Orientation Histogram (GLOH).

In order to understand the local descriptor concept better, we will go over the

SIFT algorithm as a representative algorithm here.

A1.1. Scale-invariance feature transform (SIFT)

Local attributes were proposed and studied before the SIFT algorithm.

However, SIFT algorithm emphasized on their importance with its robust and

successful image analysis, recognition, and retrieval applications. The

fundamentals of SIFT algorithm can be found in the papers [43], [44] and [45].

According to [45] SIFT algorithm has four major steps:

1) Scale-space extrema detection: This step finds (detects) all the extrema

points in scale space as candidate local attribute points.

2) Keypoint localization: For each candidate local attribute point (keypoint)

found in step 1 (in scale space), compute the actual location and scale

values.

3) Orientation Assignment: For each keypoint, compute the orientation and

magnitude values based on the local image gradients.

4) Keypoint Descriptor: Compute (derive) a set of attributes for each keypoint

based on the neighbour pixels.

140

A1.2. Scale space extrema detection

Keypoint locations that are invariant to scale changes of the image can be

detected by finding stable points across all possible scales [45]. A scale is a

filtering parameter (a distance measure in image filtering). A discrete scale

space of an (2D) image can be considered as a discrete 3D volume where the

third dimension is formed of by filtering the original image with a constant

increment in scale. A sampled illustration of a scale space is shown in Figure 46.

Figure 46: Illustration of the concept scale in scale space. (a) The original image,
(b) samples taken from a scale space of the original image. As it is shown, the
filtering process removes the high frequency components of the image and the
result is a blurred version of the original image at a certain scale.

Original Image Its grayscale version

141

The most intuitive and appropriate filter is Gaussian kernel (which is a space-

space kernel) according to [45]. Therefore, a scale space of an image is formed

by convolving the Gaussian kernel with the image at different and continuous

scales.

 (9)

Where I(x,y) is the pixel value of the image I at the (x,y) coordinate, * is the

convolution operation, L(x,y,σ) is the filtered (scaled) version of the original

image I at the scale σ. G(x,y,σ) is the Gaussian kernel:

 (10)

It is well known that the Laplacian of a Gaussian operator is good at

detecting edges and blobs. As we smooth and down-sample an image, we get rid

of the sharp corners existing in the image, thus more objects gets blob-like

shapes. Therefore if we apply the Laplacian of a Gaussian operator (𝛁2G) on an

image at different scales, then we could detect edges and blobs at different

scales. Since we already computed scale space image at various scales, the

Laplacian of a Gaussian operator can be approximated by using two consecutive

samples of L in scale.

The partial derivative of Gaussian can be expressed as:

 𝜎 𝜎 . (11)

On the other side, the partial derivative of a Gaussian kernel can also we

approximated by using the finite difference approximation. As a result, the

Laplacian of a Gaussian kernel (G) can be approximated as:

𝜎 𝜎

 (12)

142

Where k is a constant such that for a given pair of consecutive scales σ1 and

σ2 (where σ1< σ2) σ2=kσ1. Therefore the difference of two Gaussians at

consecutive scales can be written as:

 𝜎 𝜎 𝜎 𝜎 . (13)

Since the Gaussian kernel is also used to create a scale space of an image,

the approximation of Laplacian of a Gaussian applied on an image, can be

computed by using the samples from the scale space of the image. Applying the

Laplacian of a Gaussian on an image can be approximated as the difference of

two consecutive scale space images since:

 𝜎

 (14)

 () 𝜎 (15)

Where is the actual result and D(x,y,σ) is its approximation. As a

result, the Laplacian of a Gaussian operator (filter) is approximated by the

difference of two Gaussians (DoG). Since the discrete scale space of an image is

already computed at various scales, the difference of scale space images are

used in SIFT such that:

 . (16)

D(x,y,σ), i.e. the difference of Gaussians (DoG), is computed for each

consecutive pairs in a discrete scale space. Once DoG images (samples) are

constructed, the next step is finding the minimum and maximum points. These

are the extrema points that appear or disappear along the scale at a certain

location. Lowe suggests using three DoG samples taken at 3 consecutive scales

143

(such as at the scales σ1, σ2=kσ1 and σ3= kσ2) to find the minimum and

maximum points. This process is shown in Figure 47 [45].

Figure 47: Computing the local extrema points. The pixel denoted “X” on the
picture, is a local extremum point if it is the minimum or the maximum among all
the green points in DoG samples (images), image source: [45].

The value at the location X (shown in Figure 47)is compared to its 8

neighbors in D(x,y,σ2), its 9 neighbors in D(x,y,σ1) and its 9 neighbors in

D(x,y,σ3). If its value is greater than all of its neigbor values then it is saved as a

local maximum. If it is smaller than all its neighbors, then it is saved as a local

minimum point.

Once all the extrema points are found in a scale space, a new octave is

created by downsampling the original image. Down-sampling is done by taking

every other pixel along x and y dimensions. And DoG images of this down-

sampled image are computed and then the extrema points are also computed in

this octave. An octave is the discrete scale space of an image. The scale space

computed by using the original size is considered as the first octave, and second

octave is the discrete scale space created from the down-sampled version of the

scale (σ)

x

144

original image. In each octave, the image dimensions are reduced to half. An

illustration of various octaves of a given image is shown in Figure 48.

Figure 48: Visualizing the first and second octaves of a given image.

Summary:

1) Compute the scale space of an image via the convolution process,

2) Construct the DoG images for each consecutive pairs (along the scale) in

scale space,

3) Find the local minimum and maximum points in DoG images according to

the Figure 47.

4) Down-sample the image,

5) Repeat step 1 through 3 for the down-sampled image.

Notice that since image is down-sampled, the scale σ, is the two times of the

σ used in the previous octave. This process ensures that the distance value

remains the same in filtering in each octave.

D(x,y,σ1) D(x,y,σ
2
) D(x,y,σ

3
)

145

Figure 49: The effect of scaling at various octaves and scales. The top left image
is the original image.

Figure 49 shows samples taken from scale space along both scale and

octave. The original image (the image shown in top left corner in Figure 49) is a

high definition image with the dimensions ~ 1000 by 1000. Therefore, when it is

resized to fit the figure, it is distorted. However, in its actual size, it looks crispier

than any other image shown in the figure.

146

Figure 50: Computed DoG images for Figure 49.

147

A1.3. Keypoint localization

Keypoints are detected at different scales and octaves. It is essential to find

the most accurate location for those points of they are detected in down-sampled

images. This process becomes more important as the number of octave

increases since the difference between two neighbour pixels change as the

image is downsampled from one octave to the next.

Lowe suggests approximating D(x,y,σ) by using only the first three terms of

its Taylor expansion where the function is shifted to make the origin at the

sample point. Then

 . (17)

Where D and its derivatives are evaluated at the sample point x = [x,y,σ]T .

Since we are interested in finding the local minimum and local maximum points

(and since the derivative of D(x) is zero at local min and max points), we can

simply take the derivative of this approximation with respect to x and equate that

to zero to estimate the local minimum (or local maximum) location ̂ as:

 ̂

 (18)

Then the difference value at the estimated location is:

 ̂

 ̂ (19)

Since ̂ is an offset (the relative distance) from the actual pixel coordinate, it

should be close to the original pixel. That is only true if ̂ <0.5. Otherwise, it will

be closer to another pixel. Therefore, this operation should be re-computed for

148

that new (closer) pixel. Lowe suggests that if the value of | ̂ | , the

keypoint at that location should be deleted from the keypoint list.

Since the Laplacian of a Gaussian is good at detecting the edges and blob

like structures, the algorithm will detect many keypoints along the edges. This will

yield an increased number of keypoints along the edges. To eliminate such

keypoints, SIFT algorithm computes Hessian matrix H to estimate the local

(principal) curvatures of D(x,y,σ).

 [

] (20)

The curvature information of D(x,y,σ) at the point (x,y) can be obtained by

investigating the Eigen values of H. Assume that two Eigen values of H are e1

and e2. Then the sum of e1 and e2 is equal to Trace of H, and the determinant of

H is equal to the multiplication of the two Eigen values, i.e.,

 (21)

 (22)

If the determinant is negative, the point is deleted from the keypoint list.

Assume that e1 > e2 and e1=re2, then

 (23)

Then we need to check if

 .

In SIFT, for r =10, if the point does not satisfy the above inequality, then it will

be ignored.

149

A1.4. Orientation assignment

Until now, we only found “interesting points”, i.e. keypoints in the image. That is,

we only have a coordinate (x,y) information of some “selected” pixels where the

selection is based on the keypoint localization process described above. Next

step is computing rotation invariant, and scale invariant attributes that could

uniquely characterize these selected points. For that purpose, SIFT computes a

set of 128 attributes for each keypoint. Since each set describes a keypoint, they

are called descriptors. SIFT uses local gradient magnitudes and orientations

within the neighborhood of each keypoint to form keypoint’s descriptors. Since

orientation is related to rotation, SIFT suggests to remove a reference orientation

from these computed attributes. Thus the orientation based attributes become

rotation invariant. In SIFT a gradient orientation is defined as:

 (

) (24)

The reference orientation is determined by forming a histogram of neighbour

orientations. The gradient magnitude and its orientation values are computed

within the 1.5 distance of the keypoint, where is the scale for the current

octave. Before forming the histrogram, to consider the closer pixels more than

the further away points, the magnitudes are weighted with a Gaussian circular

window with a σ =1.5 . where the magnitude of the gradient is defined as:

√()

 ()

150

Once all the orientations and magnitudes are computed within the

neighbourhood of the keypoint, all the orientations (angles) are quantized

(binned) into 36 bins covering 360 degrees. After the quantization, each

histogram value (for each bin) is computed by summing the magnitudes of the

neighbour pixels whose orientations fall into the corresponding bin. Once the

histogram is formed, the highest peak is chosen to assign an orientation to the

keypoint. For that, in order to decrease the effects of the quantization (binning)

process (i,e, for a better orientation estimate), SIFT fits a parabola to the 3

histogram values closest to each peak. This final value is assigned to the

keypoint as orientation. If there are more than one peaks that are greater than

80% of the highest peak in the histogram, then each of these points also used to

generate a new keypoint at the same location.

A1.5. Keypoint descriptors

So far we detected keypoint locations, and assigned them an orientation.

These variables are not invariant to affine transformations. SIFT suggests using

local gradients and magnitudes within a region to form a histogram. The

histogram values are the final keypoint descriptors.

The histogram values (descriptors) are computed by first forming n by n

subregions in an m by m neighborhood where m≥n and the keypoint is centered

in the m by m region. (SIFT suggests creating 4 by 4 subregions in the 16 by 16

neighborhood of each keypoint). Each neighbor’s gradient orientation and

magnitude is computed and these magnitudes are weighted by a Gaussian

window with a σ =1.5 . The points outside the Gaussian window are ignored.

151

The computed orientations are rotated relative to the keypoint’s orientation. This

process makes the computed orientations invariant to the rotation operations.

The process of computing the descriptors of a keypoint are illustrated in Figure

51 [45].

Figure 51: Keypoint descriptor computation process. First a Gaussian window is
places where the center is the keypoint (red point). Then each neighbor pixel’s
magnitude and orientation is computed and magnitudes are weighted with the
Gaussian window weight. Then the orientations are quantized and histograms for
each subblock (In this figure for each 4 by 4 sub-block). Image origin: [45].

For descriptor computation, each orientation is quantized into 8 bins (as opposed

to 36 bins for the reference orientation computation). Since SIFT computes 4 by

4 arrays around the keypoint, it computes these 8 bins for each block within the 4

by 4 array. As a result, 4x4x8= 128 elements are computes as the attribute

vector for each keypoint. Once the vector is formed, it is normalized to the unit

length. Once the attribute vector is normalized, the values above 0.2 are

truncated to 0.2.

152

A1.6. 3D-SIFT and SIFT-like algorithms

Original SIFT algorithm is developed mainly considering the problems

associated with 2D image (data) sets (such as segmentation, image recognition,

retrieval and affine transformation). Therefore all the operations are defined and

used in 2D. In many data sets (Such as medical scans, videos) the data is

considered 3D and, hence, a 3D version of the SIFT algorithm would be more

efficient than applying the original SIFT algorithm on 3D data. Therefore

Scovanner et. al. [69] proposed a 3D SIFT algorithm. 3D SIFT extends the 2D

equations of the original SIFT algorithm into 3D. However, since many 3D

applications require (or operate on) mesh structures, there are different mesh

based SIFT algorithms proposed. These algorithms compute SIFT-like features

from mesh structures. Examples are MeshSIFT can be found in [48] and [19].

While the results are not presented in this dissertation, our preliminary tests

for applying meshSIFT on scientific objects did not show promise for tracking

scientific objects. This is due to the blob-like structure of scientific objects in

general. However, the application areas of SIFT or MeshSIFT-like algorithms are

broader. Future work may include using such algorithms for modelling complex

shape-based actions or activities of scientific objects.

153

APPENDIX – II:

USER MANUAL

This chapter describes the content of the both the output files

and the configuration files for the existing implementations of the

proposed activity detection framework used in this dissertation. We

will first describe the content of the Feature & Group tracking

implementation and hen will describe the configuration file for the

Petri Net implementation.

Content of the configuration file for feature & group tracking

implementation and the meaning of the used keywords are given below:

DATA_FILES_PATH: This is the path of the file starts and ends with “/”.

Example usage is given in Figure 52.

GENERATED_FILES_PATH: This is the path under which all the created files

will be saved. Example usage is given in Figure 52.

FILE_BASE_NAME: This is the unchanging part of the name of the data files.

For example, assume that a simulation data set is formed of following 5 files:

nwa_avg_1.nc, nwa_avg_2.nc, nwa_avg_3.nc, nwa_avg_4.nc and

nwa_avg_5.nc. In this case, the data at each timestep is saved in each file and

FILE_BASE_NAME (unchanging part) in this data set is: nwa_avg_ .

FILE_EXTENSION: In the above example all files end with the extension “.nc”.

Therefore in the above simulation data set, this variable is set to .nc.

154

INITIAL_TIME_STEP: This the time index that the data set starts with. For

example in the above simulation data set, the data set starts from the first

timestep (nwa_avg_1.nc). Therefore for that example, initial timestep is 1.

 FINAL_TIME_STEP: This the time index that the data set ends with. For

example in the above simulation data set, the data set ends with the data set

nwa_avg_5.nc. Therefore for that example, the final timestep is 5.

 TIME_STEP_INCREMENT: This variable defines how the time index (timestep)

changes (the different) from one file to the next. For example, in the above

simulation data set, the indices increase one by one. Therefore timestep

increment in this case is 1.

 TIME_STEP_PRECISION: This variable defines in which format the time index

(timestep) is saved. For example, if the index part is saved as 001, 002, 003,

004, 005, then the timestep precision would be 3. If the timestep indices are

saved as 0001, 0002, 0003, 0004, 0005, then the timestep precision would be 4.

In the above simulation data set, the indices are saved in single digits. Therefore

timestep precision in this case is 1.

 VARIABLE_NAMES: If there are more than one variable saved in the data file,

this variable defined which variable (or variables) to be loaded in the data. An

example is given in Figure 52.

THRESHOLD1: This is the threshold value that is used for region growing

algorithm. The region growing algorithm could segment the region of interests

based on whether the values smaller or greater than this threshold (the default

155

value is segmenting the greater regions in the data. However, the smaller regions

can also be segmented by a change in the code).

THRESHOLD2: This variable is saved here for future references. In the future,

two or more than two variables can be used at once to segment a region of

interest.

DELTA_X_THRESHOLD: This is the distance based threshold along x axis that

is used in packet extraction and tracking algorithm. If the purpose is feature

tracking, this value must set to 0 along with Delta y and delta z thresholds.

DELTA_Y_THRESHOLD: This is the distance based threshold along y axis that

is used in packet extraction and tracking algorithm. If the purpose is feature

tracking, this value must set to 0 along with Delta x and delta z thresholds.

DELTA_Z_THRESHOLD: This is the distance based threshold along z axis that

is used in packet extraction and tracking algorithm. If the purpose is feature

tracking, this value must set to 0 along with Delta y and delta x thresholds.

SMALLEST_OBJECT_VOLUME_TO_TRACK: This is the threshold to filter small

objects out. The integer number set for this variable is the minimum volume

(where the volume is the total number of the voxels or nodes in a segmented

feature). If the volume of the object is smaller than this value, it will be ignored

and will not be saved as a feature.

X_Dim: This is the integer value that defines the total number of voxels (i.e., the

dimension along the x axis in the data.

156

DATA_FILES_PATH: /Users/data/

 GENERATED_FILES_PATH: /Users/data/GENERATED_TRACK_FILES1/

 FILE_BASE_NAME: nwa_avg_

 FILE_EXTENSION: .nc

 INITIAL_TIME_STEP: 1

 FINAL_TIME_STEP: 5

 TIME_STEP_INCREMENT: 1

 TIME_STEP_PRECISION: 1

 VARIABLE_NAMES: omega

 THRESHOLD1: -0.0000000000331

 THRESHOLD2: 40.6

 DELTA_X_THRESHOLD: 0.01

 DELTA_Y_THRESHOLD: 0.01

 DELTA_Z_THRESHOLD: 0.01

 SMALLEST_OBJECT_VOLUME_TO_TRACK: 15

 X_Dim: 722

 Y_Dim: 362

 Z_Dim: 40

 X1_Dim: 721

 Y1_Dim: 361

 Z1_Dim: 39

 X0_Dim: 0

 Y0_Dim: 0

 Z0_Dim: 0

Figure 52: A sample configuration file for feature and group tracking module.

157

Y_Dim: This is the integer value that defines the total number of voxels (i.e., the

dimension) along the y axis in the data.

Z_Dim: This is the integer value that defines the total number of voxels (i.e., the

dimension) along the z axis in the data.

The below variables allow user to select a portion of the data and process

only that selected portion (i.e., sub-region) in the data. A portion of the data can

be defined by the coordinates of two points (Namely Point1 and Point0). These

two points define the extends of the selected portion. They can be virtually

visualized as the lower left corner (Point0) and the upper right corner (Point1) of

a 3dimensional box. Each point can be defined by their coordinates in Cartesian

coordinates.

X1_Dim: This is an integer index defining the x coordinate of the point 1 (Point1)

that define the most right point that should be used in the data (if the entire data

needs to be processed, than this variable must be set to X_Dim-1).

Y1_Dim: This is an integer index defining the y coordinate of the point 1 (Point1)

that define the most right point that should be used in the data. (if the entire data

needs to be processed, than this variable must be set to Y_Dim-1).

Z1_Dim: This is an integer index defining the z coordinate of the point 1 (Point1)

that define the most right point that should be used in the data. (if the entire data

needs to be processed, than this variable must be set to Z_Dim-1).

158

X0_Dim: This is an integer index defining the x coordinate of the point 0 (Point0)

that define the least left point that should be used in the data. (If the entire data

needs to be processed, than this variable must be set to 0).

Y0_Dim: This is an integer index defining the y coordinate of the point 0 (Point0)

that define the least left point that should be used in the data. (If the entire data

needs to be processed, than this variable must be set to 0).

Z0_Dim: This is an integer index defining the z coordinate of the point 0 (Point0)

that define the least left point that should be used in the data. (If the entire data

needs to be processed, than this variable must be set to 0).

Content of the configuration file for Petri Net implementation is shown in

Figure 53. The keywords used in this file are described below.

TrackingFileName: This variable defines the location and name of the tracking

file.

IsTrackingInfoProvided: This variable is reserved for future improvement. This

variable is used to state if tracking information is necessary or if it is inherent in

the segmentation (attributes file). The value of this variable is Boolean and is

provided as YES or NO. The current implementation always assumes that the

tracking information is necessary and is provided. However, since in some

applications there may be only one object, or the order of the objects remains the

same in the attribute files at each timestep, a specific tracking step may not be

necessary. Therefore, the term NO is reserved to describe this situation in future

implementations.

159

InitialFrameNumber: This is an integer number describing the starting time index.

FinalFrameNumber: This is an integer number describing the final timestep index

that should be processed in the data set.

TrackingFileName = Users/ GENERATED_TRACK_FILES1/nwa_avg_1.trakTable

IsTrackingInfoProvided = YES

InitialFrameNumber = 1

FinalFrameNumber = 14

Variables = F0D6

Places = (2>1); (2>1) ; (2>1)

Transitions = (F0D6>1) ; (F0D6>2) ;

FilesPath = /Users/NewParsedData/

TransitionsFileBaseName = nwa_avg_

TransitionsFileExtension = .trak

PlacesFileBaseName = nwa_avg_

PlacesFileExtension = .trak

DefaultActionsFileBaseName = nwa_avg_

DefaultActionsFileExtention = .trak

inputarcs = 1 1 1 2 2 1

outputarcs = 2 1 1 3 2 1

initialMarkings = 0 0 0

FinalPlaceIDs = 3

InitialPlaceIDs = 1

Figure 53: A sample configuration file for the Petri Net module.

160

Variables: This are the Petri Net variables that are used to define the conditions

in both transitions and places.

Places: This is the line that defines the conditions for each place. Each place

condition is separated from other place conditions “;”. The number of conditions

is equal to the number of the places in the Petri Net. The first condition is

associated to the first place, the second condition is associated to the second

place and so on, in the Petri Net.

Transitions: This is the line where all the transition conditions are defined. Each

transition condition is separated from other transition conditions by “;”. The total

number of transitions in the Petri Net is equal to the number of total transitions.

The condition order describes the transition index. I.e., the first condition is

associated to the first transition; the second condition is associated to the second

transition and so on, in the Petri Net.

FilesPath: This is the path describing the folder where all the input files (including

attributes or actions of objects) are located.

TransitionsFileBaseName: This is the base name of the data set (i.e., the part of

the file name that does not change by time). Our implementation assumes that

the object attributes are saved in separate timesteps. And for each timestep, all

the object attributes are listed in a single file. Our implementation allows to define

different file names for transitions and for places. The assumption is that, all the

transition files start with the same constant name. The full file name is:

161

“FilesPath+ TransitionsFileBaseName+ currenttimeindex+

TransitionsFileExtension”.

TransitionsFileExtension: This is the file extension for the attributes used in

transition conditions. (as described in TransitionsFileBaseName).

PlacesFileBaseName: This is the file base name for the Place attributes (similar

to the TransitionsFileBaseName).

PlacesFileExtension: This is the file extension for the attributes used in place

conditions.

DefaultActionsFileBaseName: This is the action file’s base name. The file defines

the name of the “default” actions. (Such as merge, split or continuation.)

DefaultActionsFileExtention: This is the extension of the action files.

Inputarcs: Input arcs are the arcs from a place to a transition. Each arc is

described by a triplet. A triplet is formed of 3 integers where the first integer is the

PlaceID, the second intereger is the TransitionID and the third integer is the arc

weight. While the token-tracking Petri Nets assume that arc weights are 1, for

future improvements, we keep user to specify arc weights here.

162

Outputarcs: An output arc is the arc that originates from a transition and ends at

a place. Similar to inputarcs, each outputarc is defined by a triplet. Each triplet

represents a single output arc by 3 integers. The first integer represents the

PlaceID, the second integer represents the TransitionID, and the third integer

represents the arc weight.

--

object 0 attributes:

Max position: (287.232605, 19.894339, -0.010823) with value: -0.000000

Node #: 9156671

Min position: (287.232605, 19.894339, -0.066988) with value: -0.000000

Node #: 3145299

Integrated content: -0.000000

Sum of squared content values: 0.000000

Volume: 44

Centroid: (287.223584, 19.895294, -0.054405)

Moment: Ixx = 0.000742

Iyy = 0.000008

Izz = 0.000454

Ixy = -0.000079

Iyz = -0.000010

Izx = 0.000099

--

object 1 attributes:

…

…

Figure 54: A sample from the content of an *.attr file.

163

initialMarkings: While the initial marking is always assumed to be zero (i.e., the

total number of tokens in each place is zero initially) at the beginning in our

current implementation, this keyword reserved here to be used in future

implementations.

FinalPlaceIDs: These are the set of PlaceIDs that are considered important to the

user, or that are the end of an activity, or multiple activities. For example, two

different activities can be modeled in a single Petri Net, and therefore there

would be two different final places in the model (at least).

InitialPlaceIDs: These are set of Places in which a new token can enter the Petri

Net as a starting place. There can me multiple initial places in a single activity

model.

The output files of the standalone feature & group tracking algorithm are

given below. The output files of the feature and group tracking implementation

are saved in separate files in each timestep. Most of these files start with the

data name. They are:

 datanameX.attr

 datanameX.group

 datanameX.poly

 datanameX.trak

 datanameX.trakTable

 datanameX.uocd

 dataname_comp_1_END.list

164

 t.groupTrakTable

 ColorMapX.txt

The the letter X in the above listed names refer to the ecah timestep. Therefore

these files (except the .trakTable, t.groupTrakTable and the

dataname_comp_1_END.list files) are generated separately for each time step.

A sample from the content of the datanameX.attr files is given in Figure

54. This file lists the computed attributes for each object in a human readable

form. Objects are given an integer ID starting from 0. Max position is the position

of the maximum value within the feature. Node number is the node ID within the

datafile. Integrated content is the sum of all the nodal values within the feature.

Volume is the total number of nodes within the feature. Centroid is coordinate of

the geometric centroid. The Ixx, Iyy, Izz, Ixy and Iyz are the elements of the 2nd

order moment (tensor matrix). These values are listed for each individual feature

extracted within the timestep. A detailed description of each of these terms can

be found [81].

 A sample from the content of the datanameX.group file is given in Figure

55. In Figure 52, each group is listed in one line. Each line starts with the group

ID and then the member feature IDs are listed. For example the first line in the

group file are “ 1 6 16” means groupID 1 has the features 6 and 16 as members.

Similarly, Group 2 has feature 17 and feature 18 as members. Group 3 has only

one member (feature 22). While the earlier versions include more attributes in

this file, the most recent version is limited to include only the member feature IDs

165

due to the size constraints. Most group attributes can be computed by combining

the feature attributes with the information available in the group files.

The content of the .poly, .trakTable and the uocd files remain the same as in [81]

and in [5]. The .trak files compute the feature attributes and save them in a more

compact way than the .attr files. The content and the order in this file changes

from one version to the next. The content of the most recent version created by

the standalone implementation is given below as example. In track files, the

objects are listed according to their IDs starting from 0. That is, the attributes

listed in the first line belongs to the feature 0, the second line belongs to the

feature 1, etc. Each line contains the following 20 attributes in the order of:

mass, volume, centroid[x,y,z], boundingboxcoordinates(

lowerleftcornercoordinates[x,y,z], upperrightcornercoordinates[x,y,z]),

minimumvaluelocation[x,y,z], maximumvaluelocation[x,y,z], minimumValue,

 1 6 16

 2 17 18

 3 22

 4 9 27 28

 5 30

 6 32

 …

 …

Figure 55: A sample from the content of an *.group file.

166

maximumValue, GroupID. An example file content is given in Figure 56 for the

first two features.

The t.groupTrakTable file contains the tracking information for the groups. Each

line lists a correspondence in the file. Similar to the .trakTable file, the group IDs

that are on the left side of the deliminator “-1” correspond to the groups from the

previous timestep, and the groupIDs that are listed on the right side of “-1”

correspond to the groups form the current timestep.

The current TTPN implementation creates only one text-based output file.

The name of this file is Event.list. Each line in this file represents one object

(token) and its history. In each line, the tuple {ObjectID, TimeStep, PlaceID} is

written for each timesteps along the movement of the token from an intial place

to a final place. However, the recent versions of this file includes only the tuples

from timesteps when a change is occurred (i.e. the token is fired) from one place

 20.976601 527 6.476810 -0.612426 0.022417 6.421410 -0.645774
0.002389 6.512880 -0.564202 0.074619 6.512880 -0.632179 0.033016 6.458000
-0.638976 0.030187 0.014757 0.139331 55

 2.183900 100 6.976500 -0.327972 0.010872 6.951950 -0.346679
0.003298 7.006840 -0.299095 0.027541 6.970250 -0.319488 0.003298 6.970250
-0.333083 0.010232 0.014932 0.035414

 …

 …

 …

 …

Figure 56: A sample from the content of an *.trak file.

167

to another to reduce the file size. In between those tuples, the object is assumed

to remain in the same place and therefore that information is not saved in the

Event.list file. For example, assume that a line in an Event.list is 2 1 1 6 3 2 5 4 3.

This line can be decoded into the tuples {2,1,1}, {6,3,2} and {5,4,3} and can be

read as object_2 in timestep 1 falls into P1, it becomes object_6 in timestep 3 and

changes its place to P2 and finally it becomes object_5 in timestep 4 and falls into

the final place P3. Notice that the tuple for the timestep2 is missing in this line.

This information is already inherently available in the data and can be obtained

easily, when the tracking history is combined with the first timestep information.

That is the same object remains in P1 in timestep 2. And its objectID in timestep 2

can be obtained from the tracking history (provided by the tracking). Therefore

there is no need to save that information in the Event.list file.

168

APPENDIX – III:

DATA SETS

In this dissertation, we use three different data sets from 3 different domains.

These three data sets are described in this appendix.

A3.1. Pseudo-spectral simulation of coherent turbulent vortex

structures

The first data set we use in this dissertation is a small data set from [72]

which is a pseudo-spectral simulation of coherent turbulent vortex structures. The

simulation includes an initial condition of six vortex tubes in parallel and

orthogonal positions. To maintain the energy of the low wave number modes

constant, a forcing scheme is applied [17], [21], [71]. The output of this simulation

at each time step is saved in a separate file. These files (the dataset) contain

vorticity values. The simulation data resolution is 1283 and it contains 100

timesteps. The data type is a uniform grid and saved in binary files.

This data set contains many merging and splitting features. It has become

the typical (experimental) data set and used in many feature extraction and

tracking related research including the papers including [72], [73] and [50].

169

A3.2. Acoustic plume scans

Besides using simulation data, in this dissertation, we include a real data

set to apply our techniques on. The real data set is formed of acoustic scans of

an underwater plume.

In turbulent underwater environments, hydrothermal plumes can be

observed. Such underwater plumes are of the interest of many geologists and

oceanographers as in [87] and [8]. As these plumes rise, they bend in response

to ocean currents [66]. It is currently of the interest to analyze the relation

between the underwater plumes’ behavior and the ocean currents. Scientists

collect data in various ways to analyze such relation. For example, while earlier

studies used ship-based scanners to capture data from the plume, the recent

studies use more advanced and stationary systems to scan a plume underwater.

The plume data used in this dissertation is a scan of a plume that is

located above the clusters of smokers on Grotto mound, Main Endeavour Field,

Juan de Fuca Ridge. The volumetric plume data contains increased backscatter

intensity from the metallic sulfides and temperature fluctuations within the plume.

The intensity values are collected by using an acoustic scanner. As shown in

Figure 57, the scanner scans a slice of the plume at a time. Each slice is obtained

by elevating the scanner. Then these slices are combined and processed to form

a complete 3D data set representing the acoustic measurements of the 3D

volume.

170

Two different data sets capture the behavior of the plumes from Grotto

Vent in the Main Endeavour Field on the Juan de Fuca Ridge. A 24-hr time

series (with hourly sampling) data set was collected in 2000 using the ROV

Jason. Figure 41a shows one of three existing plumes in the 15 timesteps of the

data with 513 resolution. The data type is a uniform grid in 3D. A three week time

series (with sampling every three hours) was collected using the NEPTUNE

Canada cabled seafloor observatory (479 timesteps available) in 2011. As the

data set becomes too large to process and view manually, activities of interest

need to be modeled and searched for automatically.

A3.3. Wall bounded turbulence flow simulations

In turbulence studies, scientists simulate the environments and conditions

to analyze and understand turbulence. Recent focus includes studying and

understanding the collective and coherent behaviors of vortices in wall-bounded

Plume rises

along this

direction

Figure 57: A schematic diagram of acoustic plume scan process. In this

figure, the acoustic scanner collects the data by casting out a set of acoustic

waves and then by measuring the reflection in the received acoustic waves.

The 3D structure is captured by elevating the scans incrementally in short

time intervals. Image is modified from [68].

The scanner

Radially and mechanically elevating acoustic waves

Plume

171

flows. Such collective and coherent vortices form groups called packets. In [1], it

is proposed that these packets grow in size over time. Moreover, as they evolve,

they result in nested packets. These nested packets consist of hairpins or cane-

type vortices that are growing up from the wall because the older packets give

rise to the younger and slower packets. The term “hairpin” refers both to

symmetric horseshoe-like vortices and asymmetric cane-like vortices.

The turbulence structures in boundary layers have been studied in various

flow regimes including subsonic, supersonic and hypersonic flow regimes

examples can be found in [65] and [53]. An illustration of these turbulence

structures is shown in Figure 58b. The yellow hairpin vortices (features) move

coherently inducing a secondary (blue) fluid mass of low momentum. These

coherent structures are the packets. (This is analogous to groups of humans

walking coherently in a crowd or to a school of fish). Notice that, in general, the

hairpins are not connected within a packet. Each packet includes varying number

of hairpins where these hairpins should be aligned at a downstream-leaning

angle (γ) and the distance between the hairpins should not exceed a predefined

Figure 58: in wall bounded turbulence simulations (a) illustrating the groups of
hairpin vortices (packets). (b) An illustration of a packet in wall bounded
turbulence simulations. Yellow hairpins elongate to form a certain angle that is
smaller than 45o.

X

Z

α

Where α ≤ 45
o

(b)

X

Z

(a)

172

physically meaningful value (see Figure 58b). Some of these packets lead to the

formation of younger packets over time. Moreover, among all these packets,

some act coherently forming super structures inducing meandering regions of

low momentum. (an illustration of such super structures is given in Figure 58a).

The time-varying wall-bounded turbulence simulation data used in this

dissertation contains two different data sets. Both sets contain various variables

including temperature, velocity and swirling values for each voxel in each time

step. The first data set is saved in a binary format and later on converted into the

rectilinear VTK data format. Please refer to [69] for more information about

different VTK data formats. The data dimensions are 384x256x69 and the data is

contains 46 timesteps.

The second data set is a larger data set and is saved in the rectilinear

format by using the hdf5 libraries. Hdf5 is a “file” format and is used by many

scientists. It is flexible and supports distributed systems and various

programming languages such as C, C++ and Fortran. Please refer to [28] for the

details of the HDF5 format. The data dimensions of this data set are

2520x1120x110 and it contains 250 timesteps. The data produced at each time

step is saved in a separate file and each file size is about 16 gigabyte.

 The activity we are interested in wall-bounded turbulence simulations is

the “packet formation” event which is characterized by a single hairpin evolving

into a packet formed of multiple features over time.

