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ABSTRACT OF THE DISSERTATION

Using autonomous virtual agents to study the perception of

intention

By PETER C. PANTELIS

Dissertation Director:

Dr. Jacob Feldman

Mental states (e.g., goals, beliefs, and intentions) may be attributed to agents on the

basis of motion cues, and previous studies have successfully related low-level percep-

tual qualities of a stimulus agent’s trajectory (i.e. speed, acceleration, or other manner

of motion) to resulting subjective percepts. I argue for a powerful and novel experi-

mental paradigm, in which I utilize a two-dimensional virtual environment populated

by autonomous agents whose simulated vision, memory, and decision making capa-

bilities can be manipulated. These agents—nicknamed “IMPs” (Independent Mobile

Personalities)—navigate the environment, collecting “food” and interacting with one

another. Their behavior is modulated by a small number of distinct goal states: at-

tacking, exploring, fleeing, and gathering food. In a first study, subjects attempt to

infer and report the IMPs’ continually changing goal states on the basis of their mo-

tions and interactions. Although these programmed ground truth goal states are not

directly observable, subjects estimate them accurately and systematically. I present

a Bayesian model of the inference of goal states which accurately predicts subjects’

responses, including their pattern of errors. In a second study, I use simulated evolu-

tion to create a pool of evolved IMPs which exhibit adaptive behavior. I operationally

define IMPs sampled from this simulated evolution as being more rational compared
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to non-evolved “control” IMPs, and find that subjects construe evolved IMPs as being

both more intelligent and more human-like than non-evolved IMPs. In a final critical

experiment, I demonstrate that subjects are better at discriminating the goal states of

evolved IMPs than those of non-evolved IMPs. The two studies I present in this thesis

provide empirical support for an account of adult “theory of mind” which asserts

that 1) the inference of latent mental states can be understood as the inversion of a

model of the generative processes producing the observable behavior of the agent, 2)

this generative model reflects expectations of agent rationality, and 3) evolutionary fit-

ness is a reasonable operational model of apparent agent rationality, to which subjects

are sensitive. These experiments also demonstrate that using autonomous agents as

stimuli opens up many basic research questions in the study of the interpretation of

intentionality.
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1

1. Introduction

How do human beings make inferences about the minds of other agents in their world,

on the basis of observing their behavior? This dissertation addresses this question,

drawing inspiration from and applying the techniques of many disciplines connected

to cognitive science: philosophy, developmental psychology, computational modeling,

traditional psychophysics, game theory and decision theory, artificial life, and evolu-

tionary algorithms. The synthesis of these elements, via an innovative experimental

method, has allowed for a novel approach to the study of human “theory of mind.”

The experiments and theory presented in this thesis are organized into two

chapters, each of which stands alone as a study addressing a more specific aspect of

the larger question:

In Chapter 2, I introduce the experimental stimuli: Autonomous virtual agents

with simulated cognitive and perceptual capabilities, which interact within a 2-dimensional

virtual environment. The subject’s task is to observe these agents and infer their inten-

tions on the basis of their motion behavior. I analyze their performance and present a

Bayesian computational model of this inference process. This model relies on creating

an accurate (but approximate) generative model of agent behavior, and inverting this

model to perform inference.

In Chapter 3, I further demonstrate the experimental potential of these au-

tonomous agents. By modifying their cognitive and perceptual capabilities through

a simulated evolutionary process, I create a set of agents which have been selected

for adaptive behavior and can therefore be considered more rational (compared to

non-evolved agents) with respect to the demands of their environment. I then examine

whether subjects are sensitive to this enhanced rationality, and ask whether subjects

can better infer the mental states of more rational agents. These questions are moti-

vated by theories from the philosophical and psychology literature, which posit that

the assumption of the observed agent being rational is critical for the inference of its

mental states.

These studies represent a departure from traditional psychophysics methods,
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in which physical attributes of a stimuli agent’s trajectory are manipulated and the

resulting subjective percept is studied. I instead manipulate hidden internal states

of agents, which influence agent behavior indirectly. This, I argue, provides a closer

analogy to the inferential processes comprising a “theory of mind.”
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2. Modeling the inference of goal states in intentional agents

2.1 Abstract

Inferring the mental states of other agents, including their goals and intentions, is a

central problem in cognition. A critical aspect of this problem is that one cannot ob-

serve mental states directly, but must infer them from observable actions. To study the

computational mechanisms underlying this inference, I developed (with collaborators)

a two-dimensional virtual environment populated by autonomous agents with inde-

pendent cognitive architectures. These agents navigate the environment, collecting

“food” and interacting with one another. The agents’ behavior is modulated by a small

number of distinct goal states: attacking, exploring, fleeing, and gathering food. I studied

subjects’ ability to detect and classify the agents’ continually changing goal states on

the basis of their motions and interactions. Although the programmed ground truth

goal state is not directly observable, subjects’ responses showed both high validity

(correlation with this ground truth) and high reliability (correlation with one another).

I present a Bayesian model of the inference of goal states, and find that it accounts for

subjects’ responses better than alternative models. Although the model is fit to the

the actual programmed states of the agents, and not to subjects’ responses, its output

actually conforms better to subjects’ responses than to the ground truth goal state of

the agents.

2.2 Introduction

Comprehension of the goals and intentions of others is an essential aspect of cognition.

Motion can be an especially important cue to intention, as vividly illustrated by a

famous short film by Heider and Simmel (1944). The “cast” of this film consists only

of two triangles and a circle, but the motions of these simple geometrical figures are

almost universally interpreted in terms of dramatic narrative. Indeed, it is practically

impossible to understand many naturally occurring motions without comprehending

the intentions that contribute to them: a person running is interpreted as trying to get
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somewhere; a hand lifting a Coke can is automatically understood as a person intending

to raise the can, not simply as two objects moving upwards together (Mann et al.,

1997). Much of the most behaviorally important motion in a natural environment is

produced by other agents and reflects unseen mental processes. But the computational

mechanisms underlying the inference of mental states, including goals and intentions,

are still poorly understood.

Human subjects readily attribute mentality and goal-directedness to moving

objects as a function of properties of their motion (Tremoulet and Feldman, 2000), and

are particularly influenced by how that motion seems to relate to the motion of other

agents and objects in the environment (Blythe et al., 1999; Barrett et al., 2005; Tremoulet

and Feldman, 2006; Zacks et al., 2009; Gao et al., 2010; Pantelis and Feldman, 2012). The

broad problem of attributing mentality to others has received a great deal of attention

in the philosophical literature (often under the term mindreading), and has been most

widely studied in infants and children (Gelman et al., 1995; Gergely et al., 1995; Johnson,

2000; Kuhlmeier et al., 2003). But the adult capacity to understand animate motion

in terms of intelligent behavior has been less studied. Computational approaches to

the problem of intention estimation are still scarce, in part because of the difficulty

in specifying the problem in computational terms. But new modeling approaches are

emerging from various perspectives and disciplines in this rapidly-developing area of

research (Feldman and Tremoulet, 2008; Baker et al., 2009; Crick and Scassellati, 2010;

Pautler et al., 2011).

Experimental stimuli in studies of the interpretation of intentionality from

motion have, like the original Heider and Simmel movie, consisted almost exclusively

of animations featuring motions crafted by the experimenters or their subjects to convey

specific psychological impressions. Traditional psychophysics is then applied to relate

attributes of the observed motion to the subjective impression produced (Blythe et al.,

1999; McAleer and Pollick, 2008). While this method has yielded important insights,

it suffers from certain critical limitations. Handcrafted stimuli are opaque in that it

is unclear exactly why the constituent motions convey the particular impressions they
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do, since they have been designed purely on the basis of the designers’ intuitions—

intuitions that are, in effect, the object of study. This makes it impossible to explore, for

example, the relationship between observers’ judgments of the agents’ mental states

and the true nature of the agents’ mental states, because the agents in such stimuli do

not, of course, actually possess mental states; they are simply fictive extensions of the

experimenters’ intuitions.

Other studies have examined the perception of animate motion more system-

atically, either by varying the velocity and orientation of agents parametrically, or

by manipulating parameters of simple programs generating agent behavior (Stewart,

1982; Dittrich and Lea, 1994; Williams, 2000; Tremoulet and Feldman, 2000, 2006; Gao

et al., 2009; Gao and Scholl, 2011; Pantelis and Feldman, 2012). While this method

avoids some of the aforementioned pitfalls of using handcrafted stimuli, the present

study represents a substantial departure even from this approach. In the spirit of Den-

nett (1978)’s suggestion to “build the whole iguana,” the goal was to create cognitively

autonomous agents whose motions actually were, at least in a limited sense, driven by

their own beliefs, intentions, and goals. To this end, I developed (with collaborators)

a 2D virtual environment populated with autonomous agents—virtual robots—who

locomote about the environment under their own autonomous control, interacting

with and competing with other agents in the environment. I refer to the agents as

IMPs, for Independent Mobile Personalities. Like agents in artificial life environments

(e.g. Yaeger, 1994; Shao and Terzopoulos, 2007), IMPs have a complete, albeit severely

restricted, cognitive architecture.

The IMPs can be understood to have one overall goal: to obtain “food” and

bring it back to a home location. But at each time step, an IMP’s behavior is modulated

by its continually-updating “goal” state, which determines how it will respond to

stimuli in the environment. An IMP can be in one of four discrete goal states: it can

explore the environment, gather food, attack another agent, or flee from another agent

(These four states were loosely modeled on the “Four Fs” of animal ethology, action

categories that are said to drive most animal behavior; see Pribram, 1960).
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The agents obtain information about their environment via on-board percep-

tion, consisting of a simple visual module with a 1D retina. The agents progressively

learn a map of their environment as they move about the environment. Lastly, the

agents have a limited capacity to reason about how to accomplish their goals (for

example, they can calculate the shortest path through the environment between their

current location and a goal location). Thus the IMPs are complete, though crude, cog-

nitive agents. Their observable actions are based entirely on what they want, know,

and think about their environment.

In the studies below, I ask what human subjects can infer about the IMPs’

intentions on the basis of observing them move about the environment, and how

they might go about performing this inference. Again, the IMPs’ goal states are not

directly observable, but are internal variables that determine how they respond to

what they themselves perceive in the environment around them. Thus, my main

question is really about the capacity of human subjects to represent that which, in turn,

represents: a mind. Traditional psychophysics concerns itself with the relationship

between physical variables (e.g. luminance or sound amplitude) and their mental

correlates (e.g. perceived lightness and loudness). This paradigm can, similarly, shed

light on the relationship between actual behavioral dispositions (like the tendency

of an agent to transition into an “attack” state) and their psychological correlates

(the subjective impression of intentions). In this sense, I see this paradigm as a true

“psychophysics of intention.”

The idea of using autonomous virtual agents as psychophysical stimuli was

previously explored in Pantelis and Feldman (2012). In that study, stimulus scenes were

populated with simple reflex agents which differed in their behavioral tendencies (the

way they reacted to other agents) but lacked perception, memory, or decision-making.

The goal of that study was to use a parameterized space of behavioral tendencies

as a way of generating agents with a wide range of “personalities,” in order to map

out subjects’ subjective personality space (via multidimensional scaling). The current

study has more ambitious aims, and the agents have a far more complex mental

architecture. The IMPs environment is a setting for interactive intentional behavior,
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and affords many possibilities for the empirical study of intention perception. For

example, by modifying the IMPs’ programming I can completely control the agents’

hidden cognitive and perceptual capacities (e.g. their vision, memory, or behavioral

dispositions) or the influence of these capacities on observable agent behavior. This

allows us to study how modifying any of these capacities, or even deleting them

entirely, might influence the way observers understand their mental properties.

In the current study I focus on one particularly central aspect of the computation

of intention: human observers’ ability to infer the “mental state” of agents on the basis

of their actions—that is, in this paradigm, to correctly ascertain which of the four

predefined goal states an agent is in at each point in time. I recognize the need for

caution in referring to the four IMPs goal states as “mental states.” The IMPs’ cognitive

capabilities are obviously very limited (see fuller description in Appendix A), and the

four IMP goal states are simply decision structures that determine how the agent’s

responses are conditioned on what it perceives and knows about its environment. I do

not mean to imply that a simple decision matrix is in any real sense equivalent to a real

human mental state. Nevertheless, I adopt this phrasing deliberately, because in the

context of this study, the IMPs’ states play the same role as intentional mental states:

they control the selection of action given the knowledge and perception accessible

to the agent. They are “behavioral dispositions” in the very literal sense that they

are internal characteristics that modulate the probability of behavior, and in this very

concrete sense are loose analogs of the more complex intentional dispositions that

govern human behavior.

In the two studies below, I ask subjects to observe four IMPs interacting, one

of which is designated as the target, and continually indicate using the computer

keyboard what state they think the agent is in at each point in time. In effect, I asked in

as direct a manner as possible whether the subjects could correctly divine the agent’s

internal state on the basis of its actions. Because this state is in fact simply a variable

inside the agent’s autonomous program (the “ground truth” goal state) I was then able

to analyze how often, and under what circumstances, the subject’s response was in fact

correct (validity, in traditional statistical terminology), as well as how often subjects
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Figure 2.1: (a) The virtual environment with its native IMPs (depicted as moving
triangles). (b) The IMPs have autonomous vision by virtue of simulated 1d retinas,
and by (c) exploring their environment they can (d) gradually develop a mental map
of the objects and obstacles it contains.

agreed with one another (reliability). I then introduce a computational model of the

inference process, ask how often and under what circumstances it is able to estimate

the true state, and evaluate how effectively it models subjects’ responses. Most of these

analyses (with the exception of reliability) are impossible using handcrafted displays,

because the agents in such displays have no ground truth mental states.
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2.3 Computational model

If one wishes to attribute goals to an agent effectively, it is useful to have a good

model of that agent. From an “ideal observer” (Knill and Richards, 1996; Geisler,

2004) or “rational analysis” (Anderson, 1989) perspective, the optimal solution to the

goal attribution problem indeed relies crucially upon an accurate model of the agent’s

goal- and environment-dependent behavior. In the IMPs domain, such a model would

express how an IMP’s action A depends probabilistically on its goal G and the state of

the environment S:

p(A|G,S). (2.1)

Given the observed action, and this model of how the agent generates its behavior,

the ideal observer works backwards to reason about the agent’s underlying goal. The

inference performed by the observer can be expressed as a problem of computing the

posterior probability of the goal G by inverting the generative model using Bayes’ rule:

p(G|A,S) ∝ p(A|G,S)p(G|S). (2.2)

This ideal observer approach to goal attribution has found past success when

applied to scenarios involving simple, two-dimensional “grid-world” environments

and restricted sets of possible goals and behaviors (Baker et al., 2009; Ullman et al.,

2009). In these limited contexts, a wide range of natural and intuitive behaviors can

be modeled as the result of rational “planning” in a Markov decision process (MDP),

and the process of inverting this model using Bayesian inference can be called “inverse

planning.”

As is true with any model of a complicated reality, a useful model of the agent

function will be compressive in nature. And because rationality is a powerful form of

compression, the assumption of a rational agent can be (and has been) an exceedingly

useful starting point when inferring beliefs, goals, and intentions. However, a rational

model of the IMPs’ behavior is not particularly well-defined, and even if it were,

the rational planning computations required for inverse planning would be intractable
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given the continuous state, multi-agent, partially observable MDPs required to express

the IMPs’ domain.

On the other hand, the actual model generating IMP behavior exists (it was used

to generate the stimuli) and makes sense (it accurately and precisely describes how

IMP behavior depends on the underlying goal state and the state of the environment).

If granted access to this complete generative model, one could therefore use Bayesian

inference to optimally estimate the IMP’s goal state, given the observed action. These

considerations make the complete generative model of the IMPs’ mental architecture

an attractive basis for modeling the “true” Bayesian ideal observer.

Nevertheless, I do not adhere to this ideal observer approach. A complete

generative model of the IMPs’ mental architecture would necessarily include all per-

ception, memory, and decision making processes undertaken by the IMP. It is doubtful

that human observers actually harbor a full generative model of the observed agent—

an analog of the computer program for generating the IMPs’ behavior—in their heads,

or that they observe sufficient data throughout the course of the experiment to induce

this program. And even if subjects did have access to the true IMP generative model,

the computations required for full Bayesian inference over this model are themselves

intractable, due to the complexity of the space of the IMPs’ potential mental states,

actions, and physical configurations.

Still, it is possible to apply Bayesian reasoning over a model of agents’ goal-

and context-dependent behavior, using an approximate model of IMP behavior rather

than the true underlying generative model. This model need not represent with

perfect fidelity all aspects of the agent’s actions, the scene, or the mapping from scenes

and goals to actions. It need only capture the key features of the IMPs’ situations,

goals, actions, and the structure of the dynamic relationships between them that are

necessary to support inferences that are accurate and precise enough for everyday social

functioning. This approach also has the potential to yield tractable computations that

can be performed in real time—a truly desirable feature for both natural and artificial

systems faced with real-world time constraints.

I formalize this idea by constructing a dynamic Bayesian network (DBN), shown
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in Fig. 2.2, which represents observers’ knowledge about the probabilistic, temporal

dependencies between the IMPs’ states (configuration of agents, food, and obstacles

in the environment), goals and actions. To compress the IMPs’ continuous, multidi-

mensional state and action spaces, this DBN represents the IMPs’ activities at a more

abstract level by chunking similar states and actions into semantically coherent cate-

gories. The parameters of the DBN are learned from prior experience; specifically, I

use the actual generative model of the IMPs to produce repeated observations of IMPs’

activities. These simulations serve as data for supervised learning.

The DBN employed by the model is only meant to be an approximation of

the internal model of IMP behavior that may be harbored by subjects. Also, when

compared to the true generative model governing IMP behavior, the approximate

model is coarser in resolution with respect to states and actions, and therefore will

appear noisier. This is not an uncommon outcome for Bayesian models: the gap

between the true generative process (which can, in principle, be deterministic if all the

relevant variables are known) and the modeled generative process becomes absorbed

into the model’s noise or stochasticity.

Next, I provide technical details about representation, learning, and inference

procedures, or in other words, how the DBN is first constructed and then used to

reason about the IMPs’ goal-directed behaviors.

2.3.1 Approximate representation of states and actions

I first simplify the set of possible IMP actions. Although the IMPs can take on various

speeds and angular velocities, I classify all IMP actions as either turn left, turn right, or

move straight ahead. Second, I simplify the set of possible environmental configurations.

I coarsely discretize the agent-centric physical space into 9 sections (Figure 2.3). The

nearest other IMP and nearest food to the target agent can each lie in one of these 9

sections; thus, the discretization scheme allows for 9× 9 = 81 possible configurations

of the environment (with respect only to the relative locations of the nearest other IMP

and nearest food). It should be noted that subjects may very well rely on a qualitatively

different discretization scheme, or may not rely on any such discretization at all.



12

St+1 Gt+1St Gt

At At+1

Figure 2.2: Graphical model of the Dynamic Bayesian Network with which the IMP is
modeled, S represents the environmental configuration, or scene, G represents the goal
state of the IMP, and A represents the IMP action. St+1 is conditional on both St and Gt,
At depends on St and Gt, and the action taken by the IMP at time t, At, will influence
the subsequent configuration of the environment at time t + 1, St+1.

2.3.2 Learning phase

In order to empirically determine this conditional probability of an action at time t,

P(At|Gt,St), I sample the generative model by running a large number of simulated

IMPs environments. When an IMP is in a particular goal state, in the context of a

particular environmental configuration, the selected action is tabulated. Eventually,

this learning process yields a table that approximates the IMP’s “policy” (conditional

probability of an action) given any goal state/environment combination.

The probability of transitioning among the four goal states, P(Gt+1|Gt,St), rep-

resents another set of critical parameters of the DBN that must be learned through this

sampling process. The stochasticity in the actual generative model governing agent

behavior reflects the programmed probabilities of an IMP transitioning among the

various goal states. But the DBN is non-deterministic because the person observing

the behavior (the subject) has uncertainty about the beliefs of the agent—i.e. what the

agent perceives or remembers about its environment at any given time point.

2.3.3 Inference phase

Once the parameters of the DBN have been learned, inference of the IMPs’ goal states,

given their observed actions, can be performed. I model the observer’s inference by
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Figure 2.3: The discretization of the agent-centric space, used for the Bayesian model.

computing the marginal posterior probability of a goal at time t, given the state and

action sequence up to that point:

P(Gt|S1:t,A1:t) ∝ P(At|Gt,St)
∑
Gt−1

P(Gt|Gt−1,St−1). (2.3)

At t = 1, each goal state is believed to be equally likely. At each subsequent time step,

this computation yields a probability distribution across the four possible goal states

which integrates the the probability of changing goals with the likelihood that each

goal produced the observed actions.

2.3.4 Free parameters of the Bayesian model

The Bayesian model fits a great many parameters, in an attempt to approximate the

generative model of the IMPs as a simplified DBN. However, the parameters of the DBN

are all fit to simulated data; they serve to reduce the policy and transition probabilities
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of an IMP to lookup tables. Only three free parameters are fit with respect to the

subjects’ actual responses: two for discretizing the agent-centric environment, and one

response “lag” parameter (rather than using the model output for the point in time

aligning precisely with the subject’s response, the model’s outputs are averaged over a

trailing period determined by this parameter). For comparison, a very simple statistical

model, only learning the base rates of subjects’ responses across the four response

types (attack, explore, flee, and gather) and attempting to predict subjects’ responses

on this basis, would fit the very same number of free parameters. In later sections,

I provide a quantitative comparison among these different methods of predicting

subjects’ responses, along with a non-model-based alternative (multinomial logistic

regression) to my Bayesian approach.

2.4 Experiment 1

The first experiment tested subjects ability to successfully categorize the IMPs’ behav-

iors and detect transitions among the IMPs’ goal states. The four possible underlying

states were explained transparently to the subjects during an initial training phase.

2.4.1 Methods

Subjects

Twelve undergraduate students in introductory psychology classes at Rutgers Univer-

sity participated in the experiment, and received course credit for their participation.

Two additional subjects’ data were excluded due to failure to follow experimental in-

structions (the subject did not respond during entire experimental trials, or pressed

inappropriate keys). Each experimental session lasted approximately 30 minutes.

Stimuli

Each subject viewed the same set of 20 scenes, generated in advance. Each pre-

recorded scene was 60 seconds in duration, and was presented within a 400 x 400 pixel

window, horizontally subtending approximately 13.5◦ of visual angle. Each scene was
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Figure 2.4: A frame from a sample scene viewed by subjects. The red IMP is in an
“attack” state, the purple IMP is “exploring,” the yellow IMP is “fleeing,” and the green
IMP is “gathering.” Note that colors were only shown during training scenes. During
the remainder of the experiment, the target IMP was colored blue, and the other IMPs
were colored black.

populated with 4 identically parameterized IMPs at randomized starting positions, 15

gray food objects (divided evenly into 3 clusters, with each cluster initially placed at a

random starting position), and two square red obstacles (placed at the same locations

in each scene). A fuller description of the virtual environment and the programming

of the IMPs can be found in the Appendix A, and example scenes can be viewed at

http://ruccs.rutgers.edu/˜jacob/demos/imps/.

Procedure

Five initial training scenes were shown. Subjects were instructed to simply observe the

action and try to determine what was happening within the scenes. During training,

each IMP’s true goal state was reflected in its color (see Fig. 2.4). After subjects watched

these 5 scenes, they were asked what they thought the IMPs were doing, and what the

colors might mean. It was then explained to them that the colors actually corresponded
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to the underlying mental or behavioral state of the IMP, and that an IMP could be in

one of four of these states at a given time: “attacking” another agent, “exploring” its

environment, “fleeing” from another agent, or attempting to “gather” food.

Each subject then viewed 15 additional scenes, the first of which was treated

as practice and excluded from analysis. In these scenes, IMPs did not change color;

that is, the subjects’ task was to infer the underlying state of an IMP solely from its

behavior and context. The target IMP was colored black, and the other 3 were colored

blue. Subjects were instructed to pay attention to the black agent in each scene, and

indicate on the keyboard which state they thought this target agent was in at any given

time. Four keys represented the 4 respective possible states; subjects were instructed

to press a key as soon after a scene began as possible, and thereafter to press a key only

when they thought the target IMP had transitioned into a new state. Subjects each

viewed the same 20 total scenes, and in the same order.

2.4.2 Behavioral Results

Figure 2.5 illustrates how subjects responded at they observed the 14 test scenes. The

“ground truth,” programmed goal state of the target IMP is shown in the top horizontal

bar for each scene. The proportion of subjects’ responses across the four response types

is shown in the middle row.

I first examined subjects’ performance by measuring the proportion of time

that their classifications matched the ground truth state of the target IMP (validity; see

Table 2.1). Mean accuracy was 48%, approximately twice chance performance.

Table 2.1: Accuracy of subjects and model, with respect to ground truth goal state

Scene
1 2 3 4 5 6 7 8 9 10 11 12 13 14 All

Subjects .32 .63 .45 .46 .17 .14 .32 .68 .68 .36 .44 .55 .73 .76 .48
Model .34 .56 .51 .47 .25 .31 .27 .56 .67 .45 .50 .47 .57 .67 .47

Another critical aspect of subject performance is intersubject agreement (relia-

bility). Excluding portions of trials for which the most common response was “none

yet given” (a response category represented by black in Fig. 2.5), an average of 8.7 out
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(a) Scenes 1-5.
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(b) Scenes 6-10.
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(c) Scenes 11-14.

Figure 2.5: Experiment 1. This figure shows, over time, the underlying “ground
truth” state of the agent (top row for each scene), the distribution of subject responses
(middle row), and the output distribution of the Bayesian model (bottom row). Red
represents the “attack” state, blue = “explore,” yellow = “flee,” and green = “gather.”
For the subjects’ responses, black indicates the proportion of subjects who had not yet
responded on the keyboard during a given trial.
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of 12 subjects (73%) agreed upon the modal response at any given time.

A comparison of estimated goal states to actual ones shows a number of in-

teresting patterns, as illustrated by the inter-state confusion matrix (Table 2.2). The

analysis reveals one dominant source of subject “errors.” Subjects generally did not

initiate responding immediately at the start of each trial; 13% of overall trial time was

prior to the initial response. As IMPs were most likely to be in the explore state at the

beginnings of trials, these errors of omission account for a large proportion of subjects’

misclassifications for this action type. Otherwise, subjects’ detection of the explore

state was 79%. Accuracy was lower for the other states. For example, when an IMP

was in the flee state, subjects were actually most likely to respond attack or explore, and

the hit rate for flee was only 10%.

Subjects’ response rates across the four types were well-calibrated to the actual

time the IMPs spent in each state: Subjects’ responded explore most frequently, followed

by gather, attack, and flee. Overall, subjects tended to slightly overestimate explore at

the expense of gather, which was slightly underestimated.

Table 2.2: Confusion matrix for subjects’ responses in Exp. 1 (averaged across subjects).
Mean proportion of IMP time spent in each state is in parentheses, and mean proportion
of time subjects spent in each response category is at the bottom of each column.

Subject Response
Actual State None Attack Explore Flee Gather
Attack (.16) .05 .42 .38 .11 .04
Explore (.39) .25 .04 .60 .03 .08
Flee (.08) .07 .28 .38 .10 .17
Gather (.37) .07 .07 .32 .08 .46

.13 .13 .44 .07 .22

2.4.3 Bayesian model performance

KL Divergence

The Bayesian model outputs a posterior distribution across the four possible response

types. I consider a model to be a good fit if this distribution matches well with the

distribution of the (12) subjects’ responses across these four types. For this reason, I
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use Kullback-Leibler (KL) divergence as my model performance metric.

KL divergence is a non-symmetric measure relating two probability distribu-

tions. If M is the model’s output distribution, and S is the subjects’ response distri-

bution, then the KL divergence is the number of extra bits required to encode S using

M instead of S. Thus, a lower KL divergence represents a better fit, with a minimum

possible KL of 0 indicating that the two distributions are exact matches, and a maxi-

mum possible KL being arbitrarily large, depending on the smoothing parameter (ε)

inserted into the model distribution in lieu of zero values. KL divergence is also a ratio

scale measure of performance; that is, a reduction of a factor of 2 in KL divergence

corresponds to a representation that is twice as accurate.

As a baseline, a “null” model—believing the agent to always be equally likely

to be in any of the four goal states (attack, explore, flee, gather)—would fit subjects’

responses (on average) at KL = .863. A slightly less naı̈ve model, which knows the

distribution of subject responses (see Table 2.2) and believes the probability of agent

being in the four respective goal states to always be in proportion to these empirically

determined response rates, fits subjects’ responses at KL = .630.

Fitting and evaluating the model

As illustrated in Figure 2.5, the posterior distribution (output) of the Bayesian model

across the four response types matches quite well with the distribution of subjects’ re-

sponses. I fit the model’s three free parameters using KL divergence as the performance

metric. The best fitting parameters are not the global best fit: Because assessment of one

particular configuration of parameters (while recruiting, in this case, ∼ 1200 simulated

scenes) may take multiple hours of computer time, the parameter space is coarsely

discretized. Radius was allowed to take on values of 50, 70, 100, 130, 160, or 190

pixels. Angle was allowed to take on values of π/6, π/3, π/2, 2π/3, or 5π/6 radians.

Additionally, rather than crossing radius × angle, the model was assessed by keeping

one of these parameters constant (at 100 pixels and 2π/3 radians, respectively) and

varying the other.

The model fit best when discretizing the space with a 100 pixel radius and
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an angle of 5π/6 radians. The model also fit subjects’ responses best if, rather than

using the model output at the particular point in time aligning with the subject’s

response, a trailing average of the model’s outputs—going back up to 12 s—was used.

Using a trailing average (rather than taking the model’s prediction at a given quarter

second timeslice) both helps to accommodate inertia in subjects’ responses, and tends

to naturally smooth out artificial discontinuities resulting from the harsh discretization

of the agent-centric space. Using this model, with its best fitting free parameters (100

pixels, 5π/6 radians, 12 s), resulted in an average KL divergence (with respect to

subjects’ distribution of responses) of .334.

Table 2.3: Confusion matrix for model’s responses in Exp. 1. Mean proportion of IMP
time spent in each state is in parentheses, and mean proportion of time model spent in
each response category is at the bottom of each column.

Model Belief
Actual State Attack Explore Flee Gather
Attack (.16) .36 .38 .14 .12
Explore (.39) .13 .55 .13 .19
Flee (.08) .29 .36 .11 .24
Gather (.37) .12 .28 .09 .51

.18 .41 .11 .30

Table 2.4: Model performance with respect to modal subject responses in Exp. 1.
This table shows the proportion of time that the modal subject response matched the
maximum likelihood response of the model. Because subjects’ modal response was
“no response”, on average, for the first 8 s of each scene (they failed to respond for the
first 13.4% of trials), chance performance for a model is 21.7% and maximum overall
performance is 86.6%.

Scene
1 2 3 4 5 6 7 8 9 10 11 12 13 14 Overall
.68 .58 .73 .80 62 .44 .62 .83 .89 .66 .57 .84 .93 .92 .72

I additionally fit a multinomial logistic regression model, predicting subjects’

responses from several underlying variables at any given time. This is a discriminative,

statistical approach that lacks the temporal component of the dynamical Bayesian

model. The following variables enter into the regression model as continuous input

variables: relative angle of nearest other agent, distance to nearest other agent, relative

angle of nearest food, distance to nearest food, agent turning velocity, and agent speed.
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Figure 2.6: A visualization of subjects’ and model’s confusion matrices in Exp. 1. The
probability of a response (by either the subjects [top] or model [bottom]), given the
“ground truth” state of the IMP, is represented on a gradient from white (very low) to
black (very high). The main diagonal represents “hits”: correct detections of the actual
IMP state. All other cells represent confusions.
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Figure 2.7: The correlation between subjects’ accuracy and the model’s accuracy, with
respect to ground truth. Each point in the figure represents one of the 14 scenes from
Exp. 1, and is labeled to correspond to the numbering in the other figures.
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This is the same information with which I endow the Bayesian model, although in

finer resolution—for input to the Bayesian model, all of these variables are highly

discretized. For example, whereas the Bayesian model only knows whether the target

IMP is turning left, right, or moving straight ahead, the regression model has access to

its precise turning velocity.

In order to prevent overfitting this model to the data set, I applied a cross-

validation procedure. Because there were 6 potential input variables to be included

in the regression, there were 63 possible combinations of variables, and therefore

63 candidate regression models to test. For the cross-validation procedure, for each

candidate model, the data set was first split randomly into a training set and a testing

set (I used 25%/75%, 50%/50%, and 75%/25% splits). The candidate model was then fit

to the training set and assessed with the testing set, using percent of subject responses

correctly predicted as the performance measure. This procedure was repeated 10

times for each model, and the results were averaged to provide an assessment of the

generalizability of the candidate model.

Individual models performed similarly across the three training/testing split

conditions. Several regression models performed about equally well; I selected the

model that generalized to test sets best, on average, across all three. This model

employed four input variables: relative angle of nearest other agent, distance to nearest

other agent, distance to nearest food, and agent turning velocity.

This regression model is thus not a straw man, but a fair and robust treatment of

this approach. However, the regression model includes 15 free parameters, compared

to the 3 free parameters employed by the Bayesian model. To compensate for this

difference in model parsimony, I calculated the Akaike information criterion (AIC) for

both models. I then computed the difference in adjusted (natural) log likelihood (see

Burnham and Anderson, 2002), which expresses the relative fit of the Bayesian and

logistic models after adjusting for the number of fitted parameters. Figure 2.8 shows

this difference over time for each of the 14 scenes (adjusted log likelihood values over

zero favor the Bayesian model). As can be seen in the figure, the Bayesian model is

nearly always preferred by a very large margin.



24

0 20 40 60
20

0

20

40

60
1

0 20 40 60
20

0

20

40

60
2

0 20 40 60
20

0

20

40

60
3

0 20 40 60
20

0

20

40

60
4

0 20 40 60
20

0

20

40

60
5

0 20 40 60
20

0

20

40

60
6

A
IC

 A
dj

us
te

d 
Lo

g 
Li

ke
lih

oo
d 

R
at

io

0 20 40 60
20

0

20

40

60
7

0 20 40 60
20

0

20

40

60
8

0 20 40 60
20

0

20

40

60
9

0 20 40 60
20

0

20

40

60
10

0 20 40 60
20

0

20

40

60
11

Time (s)
0 20 40 60

20

0

20

40

60
12

0 20 40 60
20

0

20

40

60
13

0 20 40 60
20

0

20

40

60
14

Figure 2.8: Experiment 1. Both the Bayesian model and the multinomial logistic
regression output a normalized posterior distribution across the four possible goal
states. At every quarter-second time slice, I calculate this distribution for either model
and plot the AIC adjusted log relative likelihood of the subjects’ data. Positive values
favor the Bayesian model.
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A benefit of the regression approach was that I could assess the diagnostic value

of these input variables when taken in isolation (Blythe et al., 1999). Table 2.5 shows

how well the various parameters predicted subjects’ responses; this is a class of simple

models, each employing 6 free parameters fit to subjects’ data. Using KL divergence

again as the performance metric, a regression model that only knows the distance to

the nearest food to the agent fits subjects’ responses best. However, such a model’s

effectiveness lies only on its ability to discriminate between the two most frequent

response types: explore and gather, and this model will never select attack or flee as the

most likely IMP state. Similarly, a model that instead only uses the distance to the

nearest other agent performs well by distinguishing between explore and attack, but

will never select flee or gather. The regression approach needs to integrate information

across several input variables, employing a great number more free parameters, to

better capture features shared by the patterns of subjects’ responses and the Bayesian

model.

The Bayesian model, despite being fit primarily to the IMP’s programmed states

(via simulated data), actually fits subjects’ modal responses much better than it fits this

ground truth (Tables 2.1 & 2.4). Consistent with this result, the model indeed makes

similar errors to subjects, with respect to ground truth (Tables 2.2 and 2.3, Figure 2.6)

and finds individual scenes to be similarly difficult (or easy) to classify accurately

(Figure 2.7). That is, when the Bayesian model did not predict ground truth accurately,

it tended to make errors that were similar to those made by human subjects.

Table 2.5: Perceptual variables as predictors of subjects’ responses, when entered into
a logistic regression. Average KL divergence is shown, with respect to the distribution
of subjects’ responses (lower is better).

Variable KL Divergence
Distance to nearest food .436
Distance to nearest agent .479
Speed of agent .598
Relative angle of nearest agent .622
Relative angle of nearest food .628
Turning velocity of agent .628



26

Estimating the parameters of the DBN through sampling

The policy and transition probabilities of the IMPs are approximated through sampling

of the actual generative model—i.e. by running the simulation a large number of times.

The larger the sample, the closer the model will actually approximate the policy of the

IMPs. This accumulation of data can be considered the learning mechanism of the

model.

For the analysis summarized in Figure 2.9, I first collecting a large set (∼ 2500)

of simulations from which to sample. Then, I took 10 random samples from this larger

set, of size 25, 100, 250, or 1000 (for the 2500 scene sample size, I used the entire

set). Using KL divergence, I evaluated Bayesian models using IMP policies and goal

state transition probabilities approximated from these samples of varying sizes. As

shown in Figure 2.9, the model’s performance improves with greater sample size, with

diminishing returns once one draws from samples of 1000 simulations or more.

2.4.4 Discussion

In Experiment 1, subjects were asked to continually categorize the behavior of a target

IMP as reflecting one of four possible underlying goal states. Because these goal states

existed in the program of the IMPs, there was a “ground truth” basis for assessing

subjects’ accuracy, and subjects’ responses indeed showed moderate agreement with

this ground truth. More impressive was the very high level of agreement among

subjects, which suggested that subjects approached this categorization task in a similar

fashion.

By what method might subjects perform this task? I assessed a dynamic

Bayesian model as a candidate solution to the problem of goal inference subjects faced.

The Bayesian model must first learn from a large amount of (simulated) training data,

and then can approximate subject performance very well.
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Figure 2.9: Model performance as a function of how many simulations are run to
approximate the IMP policy and transition matrix. As there are four IMPs populating
each scene, each simulated scene actually samples four IMP trajectories.
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2.5 Experiment 2

In Experiment 2, I manipulated the transition matrices of the IMPs such that their

probability of transitioning to the attack or flee states would be greater (see Tables 2.6

and 5.2). In doing so, I intended to create IMPs whose behavioral dispositions would be

different from those utilized in Experiment 1, thus allowing us test the generalizability

of the Bayesian computational model to a new set of subjects viewing a new set of

IMPs. Additionally, the order of scene presentation was randomized, allowing for

valid comparisons between the patterns of subject performance earlier versus later in

the experiment.

2.5.1 Methods

Subjects

Eleven undergraduate students in introductory psychology classes at Rutgers Univer-

sity participated in the experiment, and received course credit for their participation.

One additional subject’s data were excluded due to failure to follow experimental

instructions. Each experimental session lasted approximately 30 minutes.

Stimuli and Procedure

The stimuli and procedure were identical to that of Experiment 1, with the following

exceptions:

1.) The scenes were generated using IMPs with modified goal state transition

matrices.

2.) The five training scenes were presented to each subject in random order. The

first test scene, which was also regarded as practice and thrown out for each subject,

was the same for each subject. The following 14 test scenes, included in analysis, were

presented to each subject in random order.
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Table 2.6: Confusion matrix for subjects’ responses in Exp. 2 (averaged across subjects).
Mean proportion of IMP time spent in each state is in parentheses, and mean proportion
of time subjects spent in each response category is at the bottom of each column.

Subject Response
Actual State None Attack Explore Flee Gather
Attack (.18) .01 .39 .41 .12 .07
Explore (.45) .13 .08 .59 .06 .14
Flee (.13) .02 .19 .43 .25 .10
Gather (.25) .08 .06 .38 .03 .46

.08 .14 .49 .09 .20

2.5.2 Behavioral Results

Subjects’ overall accuracy with respect to ground truth was 48%, which matched per-

formance in Exp. 1. Excluding portions of trials for which the most common response

was “none yet given” (represented by black in Fig. 2.10), an average of 7.9 out of 11

subjects (72%) agreed upon the modal response at any given time—an intersubject

reliability also very similar to that of Exp. 1.

2.5.3 Model performance

Reusing the free parameters originally fit to Exp. 1’s data (100 pixel radius, 5π/6 radian

angle, 12 s trailing average) but approximating the policy and transition probabilities

of the IMPs with a new set of ∼ 1000 simulated scenes, the average KL divergence of

the Bayesian model’s output distribution and the subjects’ response distribution was

.382. Figure 2.10 illustrates the “ground truth” mental state of the IMP, the distribution

of subjects’ responses, and the model’s output (using this parameterization) for each

of the 14 scenes.

As in Exp. 1, this discretization of the agent-centric space results in the best fit

for Exp. 2. Figure 2.12 illustrates how the model’s performance changes as the length

of the trailing average (lag) parameter increases. Holding the other two parameters

constant (at 100 pixels and 5π/6 radians), model performance asymptotes at around

14 s. As in Exp. 1, setting this parameter to 12 s is at or near optimal.
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The best cross-validated multinomial logistic regression, using its 15 free pa-

rameters originally fit to Exp. 1, did not generalize as well to the new subjects’ data

(KL = .424). Figure 2.11 shows that the adjusted log likelihood (compensating for the

number of parameters in both models via AIC) strongly favors the Bayesian model

over the logistic one, as in Exp. 1.

To provide some additional context for the performance of these two models, a

null model performed better than it did in the previous experiment (KL = .783), as did

a model that only learns and applies the base rates of subject responses in Exp. 2 (KL

= .569, see Table 2.6 for these base rates).

Model fit, early versus late in the experiment

One might hypothesize that as subjects become more attuned to the nature of the

agents over the course of the experimental session, their performance will come to

more closely conform to the Bayesian model’s output, because this model relies on

accurately approximating the underlying generative model governing agent behavior.

However, the model did not fit subjects’ responses better for later trials versus earlier

trials. I performed a repeated measures ANOVA with trial number (1-14) as the

independent variable and model accuracy with respect to subject response over the

course of the trial (i.e. scene) as the dependent variable. There was no main effect of

trial number on conformity to the Bayesian model (F[13,130] = 1.16,p = 0.32). This is

perhaps not surprising; because the subject received no feedback over the course of

these 14 trials as to whether or not his or her responses were correct (with respect to

ground truth or the model), there is no basis for learning. Whatever subjects learned

about the nature of the IMPs apparently was confined to the initial training period.

2.5.4 Discussion

The pattern of behavioral results observed in Exp. 1 largely replicated with a new

group of subjects viewing IMPs whose program was slightly altered. Both subject

accuracy (with respect to ground truth) and reliability (with respect to one another)
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(c) Scenes 11-14.

Figure 2.10: Experiment 2. This figure shows, over time, the underlying “ground
truth” state of the agent (top row for each scene), the distribution of subject responses
(middle row), and the output distribution of the Bayesian model (bottom row). Red
represents the “attack” state, blue = “explore,” yellow = “flee,” and green = “gather.”
For the subjects’ responses, black indicates the proportion of subjects who had not yet
responded on the keyboard during a given trial.
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Figure 2.11: Experiment 2. Both the Bayesian model and the multinomial logistic
regression output a normalized posterior distribution across the four possible goal
states. At every quarter-second time slice, I calculate this distribution for either model
and plot the AIC adjusted log relative likelihood of the subjects’ data. Positive values
favor the Bayesian model.



33

0 5 10 15 20 25 30
0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

Trailing Average Lag (s)

K
L 

D
iv

er
ge

nc
e

Figure 2.12: Model performance as a function of how far back the trailing average (lag)
parameter reaches.

were consistent with figures obtained in Exp. 1. But, more critically, I demonstrated that

my modeling approach—and indeed the specific free parameters fit to the previous

data—generalized robustly to this new set of data. Lastly, the data from Exp. 2

revealed that subjects’ learning over the course of the experiment did not influence

the computational model’s proficiency as a model for the inference process used by

subjects.

2.6 General Discussion and Conclusion

The data show that subjects are proficient at estimating the IMPs’ ground truth goal

states, both in terms of reliability (intersubjective agreement) and in terms of validity

(accuracy in estimating the true IMP state). Although this internal goal state is only

implicit in the IMPs’ behavior, subjects can divine it; they can “tell what the agents are

thinking,” and tend to concur with one another.

Naturally, subjects’ performance does not align perfectly with the underlying
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programming of the IMPs. I found that under-segmentation of the state trajectory

was far more common than over-segmentation (cf. Zacks and Tversky, 2001). That is,

subjects often missed brief excursions into other states, but rarely indicated a transition

between states when one had not occurred. Of course, most such brief excursions entail

virtually no observable change in behavior. This finding merely reinforces the idea that

detecting a change in intentional state is a concrete computational process that requires

sufficient data or evidence in order to yield useful, robust results. That subjects’

responses tend to have inertia—their data indicate a tendency to consider not just the

IMP’s momentary behavior, but observations made during preceding timepoints—is

a feature naturally captured by the dynamic Bayesian model.

Subjects’ intuitions were fairly consistent across experiments. The optimal

discretization of the environment surrounding the IMP (with respect to the model’s

fit) was the same for each independent sample of subjects. And the expectations and

intuitions influencing how a subject would respond in the experiment remained stable

across test trials; any learning that occurred did so during the initial practice trials.

In other words, the internal model subjects held for the IMPs and their behavior did

not appear to change much over the course of the experimental session. Perhaps this

should not be surprising, given that subjects did not receive feedback validating or

invalidating their responses. Nonetheless, this argues against the role of extensive

learning in subjects.

The development of a useful and robust model of another agent’s behavior

is indeed central to my treatment of the problem of mental state estimation. In the

case of my computational treatment, an approximate model of the IMPs is “learned”

and tabulated via observations made during simulations. But building a model of the

observed agent need not require any learning at all: In some cases, one can derive a

model of the agent from a simplifying assumption (e.g., the agent is rational) and the

prescribed behavior given this assumption (e.g., the agent will behave rationally with

respect to its goals, beliefs, preferences, and possible actions, Baker et al., 2009; Ullman

et al., 2009). Computational approaches that rely on inverting either the true generative

model of the agent, an approximation of this generative model (as in this paper), or
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an idealized generative model of a rational agent can each be extremely compressive,

reducing the representation of the agent “function” to a compact and generalizable set

of rules.

I briefly mention how my computational approach to mental state inference

relates to the extensive literature on “mindreading” (Nichols and Stich, 1998). This

literature has centered on a debate between simulation theory, which posits that deter-

mination of others’ intentions is based on tacit simulation of one’s own behavior (e.g.

Heal, 1996; Goldman, 2006), and theory theory or model theory, which argues instead

that reasoning about another agent’s mind relies on a rich representation of goals,

beliefs, or intentions and how they relate to behavior (e.g. Stich and Nichols, 2003).

The computational model I present might be said to have elements of both approaches.

On the one hand, it estimates mental states via a model (or theory) of agents that

explicitly represents mental states and relates them to actions. On the other hand, I

in fact derive this model from extensive simulations of agent behavior, allowing the

probability of actions conditioned on the goal state and the scene—P(A|G,S)—to be

tabulated. However, one should note that the model I use to simulate and understand

other agents need not, and does not, rely on the observer’s own decision processes, as

in simulationist accounts.

The debate between theory theory and simulation theory has been hampered,

I would argue, by a dearth of concrete computational models of intention estimation

in the literature, which has left somewhat unclear exactly what each position entails

or predicts. I hope that the concrete framing of the intention estimation problem

provided by the IMPs virtual environment paradigm, along with the computational

model for intention estimation that I have proposed, will help focus future debate over

underlying principles.

These methods pave the way towards a true “psychophysics of intention,” in

which the subjects’ perception of psychological characteristics of motion in the environ-

ment can be studied in the same way that perception of physical properties has been

studied for decades. My results confirm that subjects can indeed detect mental states
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systematically (though of course not perfectly) and make it possible to more directly in-

vestigate the computational mechanisms underlying this essential cognitive function.

In future work, I hope to expand the range of behaviors and degree of intelligence

exhibited by the IMPs, which, after all, are still extremely limited compared to human

agents. Even more ambitious future versions of our environment may be used to study

comprehension of more cognitively complex phenomena—that is, to move beyond the

“Four F’s” and closer to the range of behavior exhibited by real human agents.
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3. Interpreting the behavior of autonomous agents selected by
simulated evolution

3.1 Abstract

The ability to make inferences about the minds of other agents in the world is highly

adaptive to the human (and many other) species, as evidenced by how natural and

commonplace these inferences are to our cognitive repertoire. In the psychophysical

study of how goals, intentions, beliefs, or other mental states are attributed to agents

on the basis of their motion, several previous studies have related low-level perceptual

qualities of the agent’s trajectory (such as speed) to the resulting subjective percept.

In this study, I aim to relate a far more abstract, but powerful, variable to resulting

inferences about the mental states of agents: the rationality of the agent. To this end,

I created (with collaborators) a 2-dimensional virtual environment, populated by au-

tonomous agents with simulated perception, memory, and decision making. Critically,

the modular manner by which we program the agents allows us to modify them to-

ward more adaptive strategies through simulated evolution. We then operationally

define agents sampled from this simulated evolution as being more rational compared

to non-evolved (randomly-programmed) agents. Subjects were highly sensitive to the

evolved status of the agents: They construed evolved agents as being more intelligent,

and also more human-like, than non-evolved agents. Furthermore, subjects were more

accurate in making judgments about the “mental” states of evolved agents. These

results provide critical evidence in support of philosophical and psychological models

of theory of mind that posit rationality as a central basis for the attribution of mental

states.

3.2 Introduction

There is a special class of objects in the world which is especially salient to the human

cognitive and perceptual systems: objects which are alive and are construed to have
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minds. The behavior of these objects reflects underlying mental processes, and there-

fore is interpreted in a qualitatively different manner from that of inanimate objects

without intentions (Dennett, 1987; Leslie, 1987, 1994). What makes a particular object

seem animate, and what does an object’s behavior reveal about its mental state? These

questions have historically received a great deal of attention in developmental psy-

chology (e.g. Gelman et al., 1995; Gergely et al., 1995; Johnson, 2000; Williams, 2000)

and philosophy (e.g. Heal, 1996; Nichols and Stich, 1998; Stich and Nichols, 2003; Gold-

man, 2006), and are receiving increasing attention in psychophysics with adult subjects

(Blythe et al., 1999; Tremoulet and Feldman, 2000; Barrett et al., 2005; Tremoulet and

Feldman, 2006; McAleer and Pollick, 2008; Zacks et al., 2009; Gao et al., 2010; Pantelis

and Feldman, 2012) and in computational modeling (Feldman and Tremoulet, 2008;

Baker et al., 2009; Crick and Scassellati, 2010; Pautler et al., 2011; Pantelis et al., 2013).

3.2.1 The relationship between agent, environment, and behavior.

The behavior of an agent reflects its external context, or circumstances, but the causal

influence of the external physical world on the agent’s behavior is indirect, mediated

by unseen, internal processes. Different varieties of internal mental or dispositional

states—e.g., goals, intentions, beliefs, and emotions—have often been studied as dis-

tinct from one another, but all satisfy the following condition: they are internal states

of the agent which conditionalize the agent’s behavior. Depending on the state of the

agent, the observer can expect different behavior. This is why the consideration of

mental states plays a critical role in satisfactorily modeling the agent (i.e. possessing a

“theory of mind”), and this is why these hidden mental states can be inferred on the

basis of behavior by inverting such a model.

This treatment of the problem of inferring the mental state of an observed agent

assumes that the agent exhibits behavior that is connected causally with its goals, or

intentions, or beliefs, etc. This conception of agency is at least as old as Thomas

Aquinas. If this assumption is not at least partially true, then the agent’s behavior will

be unpredictable on the basis of its mental state, and, inversely, one will be wholly

unable to infer the mental state of the agent on the basis of the behavior. In other
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words, the behavior becomes non-diagnostic of the hidden state. The agent must be

“minimally rational” (Cherniak, 1981).

If one does not model the agent as being in some way rational—doing things for

a reason—then it is meaningless to consider this object to be an agent, and its behavior

ceases to be different from that generated by any other object class, guided by rules

constrained by alternative considerations like Newtonian mechanics (Stewart, 1982;

Williams, 2000). Positing that an object has a mind—a qualitatively different model for

the generative processes producing the object’s behavior—ceases to add explanatory

power if this mind (and its beliefs, goals, intentions that lead to decisions) does not

have any observable consequence vis-a-vis connecting means to ends.

But beyond this minimum standard, what does it mean to be rational? The

normatively rational agent acts in a manner that maximizes expected utility across

possible outcomes. Under decision theory (which generalizes to game theory if there

are multiple “players”), this agent takes into account all of the possible factors which

are relevant to the problem in order to arrive at the optimal decision, which implies

a body of knowledge and reasoning framework that “if not absolutely complete, is

at least especially clear and voluminous” (Simon, 1955, p. 99). This burden can be

difficult to meet in practice, especially when the set of relevant environmental variables

is poorly-defined, continuous, dynamic, or not fully observable to the agent. When

other agents are added to the environment, and the rational strategy will depend on the

strategies adopted by these other agents (i.e. in a game theoretic setting), this further

compounds the problem.

An alternative perspective on agent choice relaxes the demands on the agent

in terms of the amount of information, time, and computational power it is expected

to have at its disposal when making a decision (Simon, 1955; Kahneman, 2003). This

approach—“bounded rationality”—sacrifices the analytic precision and optimality of

stricter mathematical models of rational choice, in favor of more approximate—but

generally effective, and computationally tractable—methods of reasoning under un-

certainty. Dennett (1987) simplifies the definition of agent rationality even further, and

firmly embeds the concept of rationality into the environmental niche of the agent:



40

What is (approximately) rational for the agent is what is adaptive with respect to its

(empirical) evolutionary success, even if “the demands of nature and the demands of

a logic course are not the same”, and our cognitive and perceptual faculties may be

“nothing more than a bag of tricks” (p. 51).

3.2.2 The intentional stance

Modeling the agent as a rational actor, by one of the above standards, can be quite

useful in trying to understand its behavior. Dennett (1987) defines this strategy of

taking the “intentional stance” in this manner:

[F]irst you decide to treat the object whose behavior is to be predicted

as a rational agent; then you figure out what beliefs that agent ought to

have, given its place in the world and its purpose. Then you figure out

what desires it ought to have, on the same considerations, and finally you

predict that this rational agent will act to further its goals in the light of of

its beliefs. (p. 17)

The Baker et al. (2006, 2007) approach (also applied in Ullman et al., 2009;

Tauber and Steyvers, 2011) is the inversion of Dennett’s intentional stance, formalized

computationally. The inferential process can be conceived as “inverse planning”—i.e.

positing a rational actor and then inferring the goals that would be the most sensible

given the observed behavior:

At issue in both theories is a mapping that is fundamental to a theory of mind: a

mapping from intentions to predicted actions, and from observed actions to intentions.

This mapping is a many-to-many relation (Searle, 1984; Malle et al., 2001), which is

what makes theory of mind so difficult to define and tackle computationally.

The intentional stance serves to simplify a complicated physiological and psy-

chological reality (the vastly complex underlying process generating another agent’s

behavior) in a manner that is adaptive in its explanatory and predictive power. Like

all models, the intentional stance is an approximation. It may be applied to inanimate
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objects in the world as well as truly intentional ones1, and also to groups and markets,

which may (or may not) behave rationally, but are not sentient nor volitional, except

in the abstract. The intentional stance may even be applied to the self as one attempts

to rationalize one’s behavior after the fact.

If human theory of mind relies in the application and inversion of the intentional

stance (i.e. a rational model of the agent), then 1) people ought to be sensitive to the

level of perceived rationality in observed agents, and 2) the more rational the behavior

of the agent, the better people ought to be at inferring their mental states. Testing these

predictions experimentally requires:

• a means for creating intentional agents to be used as stimuli

• a definition of agent rationality that is well-defined and non-circular

• a way to manipulate this level of rationality in stimulus agents, and

• a “ground truth” for assessing the accuracy of human subjects as they estimate

the mental states of the agents.

Below I present an experimental paradigm that satisfies all of these criteria, pre-

senting a 2D simulation environment to subjects in which autonomous agents (nick-

named “IMPs” for “Independent Mobile Personalities”) compete in a simple game.

These agents have modular perceptual and cognitive capabilities which determine

their behavior and can be manipulated parametrically. Importantly, for the purposes

of this study, the parameters governing the perceptual and cognitive architecture of

the IMPs can also be evolved. I use an IMP’s fitness within the environment as my

operational definition of rationality, and let a simulated evolution select for this fitness.

3.2.3 Artificial life, simulated evolution, and rationality

Artificial life can be loosely defined as the modeling and simulation of biological

processes or behaviors, with the goal of imitating life with increasing fidelity. The

1Though, to the materialist, modeling an object—animate or inanimate—as “truly” having a mind is
never a veridical account, which would invalidate this distinction.
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study of artificial life cuts across many disciplines, perspectives, and eras (Chaitin, 1970;

Braitenberg, 1984; Yaeger, 1994; Carnahan et al., 1997; Shao and Terzopoulos, 2007),

and need not involve any evolutionary or genetic algorithms. But when evolutionary

programming is applied to the subfield of artificial life, it is perhaps applied the most

literally—The “organisms,” “generations,” and “environments” to be modeled and

simulated are hardly metaphorical at all.

Evolutionary approaches differ in detail, but require the same collection of

elements: 1) A representation of the agent that can be altered in some way, 2) A

method for generating a population of agents, 3) a means of assessing the “fitness” of

each agent, and 4) A strategy for creating subsequent generations of agents based on

this assessment (i.e. “selection and genetic operators,” Mitchell and Forrest, 1993).

The relative adaptiveness of various strategies can be assessed as proportional

to their respective frequencies in the evolved population (Bicchieri, 2009). Depending

on the particular evolutionary algorithm and domain, this iterative process may ul-

timately converge to one optimal or approximately optimal strategy. In many other

interesting cases, the resulting population of agents may have multiple modes rep-

resenting co-evolved stable equilibria, for example in the simulated co-evolution of

pursuit and evasion, or predators and prey (Reynolds, 1994; Cliff and Miller, 1996;

Nolfi and Floreano, 1998). These treatments successfully model the concept of evo-

lutionarily stable strategies first put forth by Smith and Price (1973), which merged

the concept of the Nash equilibrium from game theory with the study of evolutionary

dynamics. However, evolution—even the simulated variety—is a complex, noise-

sensitive process. The outcomes are not always clean nor stable, and the dynamics can

be chaotic (Nowak and Sigmund, 2004).

The evolutionary algorithm I employ meets a basic minimum threshold of

effectiveness for the purposes of the psychophysics experiments presented in this

study: IMP strategies which are more adaptive (i.e. more rational within the constraints

of this domain) must appear with greater frequency in the evolved population. I sample

IMPs from various generations of simulated evolution and consider these sampled

IMPs to be operationally “more rational” than randomly parameterized (non-evolved)
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IMPs.

3.3 The IMPS environment

IMPs are virtual robots rendered on the computer screen as moving triangles. Pantelis

and Feldman (2012) also used moving triangular automata, modeled as reflex agents,

as psychophysical stimuli, and Pantelis et al. (2011) built on this approach, employing

more complex agents with architectures closely resembling those used in the present

study. As in the animated film created by Heider and Simmel (1944), the agents

populating the virtual environment are rendered as basic geometric shapes (in the case

of the IMPs, isosceles triangles), an approach that is designed to isolate the motion

behavior of these stimuli as the critical aspect of the scene to be connected to how

subjects perceive them.

The ability of the IMPs to survive and thrive during each simulated generation

of evolution involves finding and collecting “food” in the environment and bringing it

back to a pre-specified “cache” location while avoiding obstacles and the harassment

of other IMPs.

An IMP’s behavior is determined at all times by three factors: 1) what be-

havioral state it is in, 2) its knowledge of whether food and other imps are nearby

(modulated by both perception and memory), and 3) its method for navigating this

environment. An IMP can be in one of four states: “explore,” “attack,” “hide,” or

“gather,” and each IMP follows the same simple program given that it is in one of these

four states. What distinguishes the agent behaviors, and allows them to be evolved,

are their differential capabilities building and utilizing mental maps of the environ-

ment and their probabilities for transitioning between their possible behavioral states.

The strategy for a respective IMP (its location within the “IMP strategy space”) can

therefore be represented by a long set of discrete and continuous parameters, and the

search for the optimal strategy, given the constraints on the IMP architecture and the

rules of the “game”, can be conceived as a search of this high-dimensional strategy

space.
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One might have a loose intuition about what IMP parameter settings might

be better than others, but attempting to analytically derive the optimal (normatively

rational) agent strategy for an IMP playing this dynamic game within a continuous,

constantly-changing environment—itself populated with a virtual infinity of other

possible IMPs—would be a futile effort. I therefore attempt, through simulated evolu-

tion, to generate IMPs which, though probably not optimal in their parameterization,

behave more rationally than other IMPs which have not been selected through this

process.

3.4 IMP Evolution

Each IMP’s program is governed by 22 parameters,2 distributed over four cognitive

and perceptual modules:

• Vision. The IMP’s vision module is modeled as a 1-dimensional retina, which

receives a 1D array of information from a finite set of vision rays cast forward from

the center of the IMPs body. If a ray intersects with an object in the environment,

the vision module returns its color. Three parameters govern vision: the number

of rays cast (an integer from 1 to 50), the angular field of vision (a continuous

value from 0◦ to 195◦), and the length of the rays (a continuous value from 0 to

56, with 56 being the approximate length of the environment’s diagonal). The

rays are projected at equal angular intervals across the field of vision. As a result,

the larger the field of vision, the wider the space between rays (given a constant

number of rays).

• Memory. Using input returned from its vision module, the IMP continually

updates a mental map of its environment. The environment is subdivided into

an n×n grid, where n is a parameter which is allowed to take on an integer value

from 60 to 175. The IMP may believe each of the square subdivisions in this grid

2Technically, only 18 of these parameters are free to vary. 16 of the parameters represent the probabil-
ities in a 4×4 goal state transition table (see ”Decision making”), and because the rows in this transition
table are constrained to sum to 1, this eliminates 4 degrees of freedom in the IMP program.
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to contain another IMP, food, an obstacle (walls are considered to be obstacles),

or to be unknown.

• Decision making. The IMP is a finite state automaton, and can be in one of four

states at any given time: attack, explore, flee, or gather. When an IMP makes a

“decision,” it decides which of the four states it will be in at the next iteration

(i.e. frame) of the simulation. It also decides on a target location towards which

to move, which is a function of the state in which the IMP resides and its current

memory representation of the environment.

One parameter determines how frequently the IMP makes a decision to both

update its state and its target location. This parameter can take on an integer

value from 1 (i.e. the IMP updates its state/target each at each and every frame)

to 90 (i.e. the IMP updates its state/target every 90 frames).

The IMP transitions to a new state (or remains in the same state) stochastically,

according to a 4×4 transition table. Thus, this 4×4 transition table represents 16

of the IMP’s parameters (though only 12 of them are free to vary; see footnote).

• Path planning. To assist in determining the shortest unimpeded path to a target

location in the environment, the IMP builds a path planning grid. This grid

subdivides the environment into square sections, each of which the IMP may

believe is either safe to be traversed, or possibly contains an obstacle. This is an

n×n grid, where n is a parameter which is allowed to take on an integer value

from 1 to 50. If the value is set to be very low, then the IMP path planning

algorithm will typically return that there are no unimpeded paths to the target

location, and the program will default to taking a direct path to the target location,

without regard to whether an obstacle may be standing in the way.

An evolution initializes with a population of 5 IMPs, each with a randomly

generated set of parameters. During each generation, these 5 IMPs interact within the

environment for 3600 frames (displayed during psychophysics experiments at a rate

of 60 frames per second). An IMP begins with 50 “health” points, and automatically
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loses .01 points each frame. If the IMP’s health ever reaches zero, the IMP “dies” and

becomes a piece of food, which may then be treated like any other piece of food that

exists in the environment.

If the IMP neither collects any food nor collides with any other IMP, it will have

a “health” of 14 at the end of a generation, which is a fairly common outcome. But each

time an IMP successfully brings a piece of “food” back to its initial location, it receives

a benefit of 50 points. If an IMP is in the “attack” state, and collides with another

IMP that is not in the attack state, the other IMP loses .4 points and the attacking IMP

sustains no damage. If the other IMP is also in the attack state, then both IMPs lose .2

points. If neither is in the attack state, then both IMPs lose .1 points. These costs and

benefits define the utility of various outcomes in this environment, and the health of

the agent at the end of a generation is used to assess its “fitness.”

At the end of a generation, the algorithm assesses the health of the surviving

IMPs. Dead IMPs (those whose health reached zero) are discarded. Five new IMPs

are created for the next generation. Each new IMP is spawned from a previously

surviving IMP, with probability in proportion to the health of that parent IMP. Then,

the parameters of the new agent are randomly tweaked, or “mutated,” such that every

new IMP bears some close resemblance to an IMP from the previous generation, but is

slightly altered.

For Experiments 1a–1c, three runs of evolution were simulated (each of 1000

generations), each with a randomized starting population. In these evolutions, all of

the parameters were free to mutate after every generation. For Experiment 2, one

run of evolution was simulated (of 1000 generations), with the memory and pathing

resolutions held constant (at 150 and 25, respectively), only evolving the vision and de-

cision making parameters. Further details about the precise nature of the evolutionary

algorithm are included in Appendix B.
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3.5 Experiment 1: Discriminating between evolved and non-evolved IMPs

Evolved IMPs exhibit behaviors selected for their adaptiveness, and are therefore

more rational than non-evolved (randomly-parameterized) IMPs with respect to their

simulated environment. In a series of experiments (1a–1c), I ask whether subjects can

discriminate between evolved and non-evolved IMPs on the basis of their perceived

intelligence (Exps. 1a–1b) or on the basis of which seem more convincingly human

(Exp. 1c).

In the following section, I describe how this pool of evolved, more rational

IMPs was generated.

3.5.1 Experiment 1: Evolution results

Across three 1000-generation evolutions (populated with 15000 total IMPs), 90.4% of

IMPs survived to the next generation, with 31.4% of IMPs successfully collecting at

least one piece of food.

The evolutionary algorithm I have used may be best considered as a local

search that spends more time in more adaptive areas of the agent space, rather than a

process which asympototically converges to one or more stable equilibria. Consider

the results of the three evolution runs, with respect to the IMP parameter determining

the transition probability of an IMP remaining in the “gather” state, given that it is

currently in this gather state (Fig. 3.1). In none of the three runs does this parameter

converge to any particular value; rather, the respective populations oscillate across a

wide range over the course of an 1000-generation simulation.

Nevertheless, the IMPs exhibit a preference to remain in the gather state, i.e. the

evolving populations rarely dip below .25 on this parameter (.25 is the setting at which

the IMP does not prefer remaining in this state versus transitioning to one of the other

three). And if one examines a histogram of settings of this parameter for the 15000 total

IMPs created and tested with this evolutionary algorithm, a setting of approximately

.7-.8 for this parameter appears to have been the most successful. It makes intuitive

sense that a relatively high setting for this parameter would be adaptive, because the
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Figure 3.1: The left panel shows the evolution of the IMP parameter which determines
the transition probability of an IMP remaining in the “gather” state, given that it is
currently in this gather state (these time series are smoothed with a 10-generation
trailing average). The evolution was done three times. IMPs without any preference
for transitioning to the gather state, versus one of the other three possible states, would
have this parameter set to .25, represented in this figure with a black dotted line. The
right panel shows a histogram of the frequency of all possible values for this parameter,
pooled across all three runs of evolution—15000 IMPs in total.

successful gathering of food—which entails dragging this food from one location to

another, a task which can be sidetracked by brief excursions into non-gather states—is

an adaptive behavior, given the cost structure of the environment.

Another parameter which showed one clear mode across the evolutionary

population was for the IMP field of vision (Fig. 3.2). Wider fields of vision were more

adaptive—and the wider, the better. However, for another vision parameter, governing

the length of vision rays “cast” from the front of the IMP (Fig. 3.3), the distribution has

two modes, likely indicative of two predominant visual strategies. Extremely short

vision rays were not adaptive, but IMPs that cast rays of approximate 8 times their

own body length (one-fifth the width of the environment) fared well, as did IMPs that

cast much longer rays approaching the maximum.

The reason why longer vision rays do not necessarily dominate has to do with

tradeoffs in the way the IMPs’ visual module works. Longer vision indeed allows for

the IMP to detect objects in the environment at great distances. However, because the
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Figure 3.2: A histogram of the frequency of all possible fields of vision for the IMPs,
pooled across all three runs of evolution.

IMP does not know how far away these objects are from the 1D information it collects,

longer vision may indeed hinder the construction of an accurate mental map of the

environment. Because the “walls” of the environment are considered to be obstacles,

an IMP with vision rays of maximum length may also look around and believe itself

to be surrounded by impassable objects, even if these objects are actually quite distant.

Also, when it attempts to gather food, it may detect food at various distances and opt to

pursue the more distant food, unaware that an easier meal was far closer. By contrast,

an IMP with shorter vision rays may not be able to detect objects at great distances,

but it can localize these objects better as it builds its mental map, and is less likely to

waste time pursuing distant food of which it is unaware.

The optimal setting for a particular IMP parameter, however, not only depends

on the utility structure of the environment, but also on how the other parameters are

set. In other words, a particular “gene” on the IMP “chromosome” evolves in contexts

both external (the environment) and internal (the other “genes”) to the IMP. I have

already speculated that an IMP having relatively shorter vision ray length might be
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Figure 3.3: A histogram of the frequency of all possible vision ray lengths for the IMPs,
pooled across all three runs of evolution. An asterisk (*) on the x-axis denotes the width
of the environment, and a double asterisk (**) denotes the length of the environment’s
diagonal—the maximum value allowed for this parameter.

able to create a more precise mental map of its environment, leading to more adaptive

behavior. Examining a joint histogram of vision ray length and memory resolution

(Fig. 3.4) supports this claim. IMPs which have both relatively short vision ray length

and near-maximal memory resolution appear in the evolved population with great

frequency.

Analysis of the evolved IMPs could be continued in many different directions,

but I will abridge it here, having established that IMPs sampled from this simulated

evolution would not be sampled uniformly from the IMP strategy space. Rather,

evolution has selected these IMPs, pushing them toward areas of this space which

should be more adaptive—and more rational given these IMPs’ environmental niche.

In the following psychophysics experiments, I examine whether subjects are sensitive

to the enhanced rationality of this pool of IMPs.
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Figure 3.4: A 2D histogram of the joint frequencies of all combinations of parameter
settings for memory resolution (x-axis) and vision ray length (y-axis). Darker bins
contain a higher frequency of IMPs sampled from the evolution, across all generations
of all three runs of evolution.



52

3.5.2 Methods

Subjects

Thirty-six undergraduate students (12 in each condition) in introductory psychology

classes at Rutgers University participated in the experiment, and received course credit

for their participation. Each experimental session lasted approximately 30 minutes.

Stimuli

Twelve sets of scenes, each set consisting of 25 scenes, were generated in advance. In

each experiment (1a–1c), one of these 12 sets of scenes was presented to each of 12

subjects. Therefore, each of the 12 sets of scenes was shown to 3 different subjects, one

in each experiment. The only difference in the experimental procedure, among these

three experiments, was in the task instructions (reported below in the experiments’

respective sections).

Each prerecorded scene was 60 seconds in duration, and was presented within

a 950×950 pixel window, horizontally subtending approximately 31◦ of visual angle.

Each scene was populated with 5 IMPs, 5 clusters of food (depicted as gray octagons),

and 20 obstacles (4 large obstacles and 16 smaller obstacles, depicted as red squares).

A screenshot of this 2D environment is shown in Figure 3.5. This environmental

configuration (60 seconds, 5 IMPs, 5 food clusters, 20 obstacles) was identical to the

evolutionary environment used to generate the evolved IMPs. All of the IMPs and

objects were initialized at random locations in each scene, with obstacles being allowed

to overlap with each other or the “walls” of the environment.

When the individual scenes were generated and inspected, scenes were thrown

out if one of the two target IMPs “died” over the course of the scene. Scenes were also

thrown out if—in a very rare circumstance—any of the IMPs in the scene ceased

moving altogether without having died, presumably as a result of some degenerate set

of incompatible parameter settings in its program.

Details about the IMPs environment, not covered here or in above sections, can

be found in Appendix B.
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Figure 3.5: A screenshot of a scene from Experiments 1a–1c. The subject’s task was to
choose between the red and blue agent on the basis of its intelligence (Exps. 1a–1b) or
based on which was more likely to be controlled by a human player (Exp. 1c). Subjects
responded on a 6-level scale, from “strongly red” to “strongly blue.”
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Procedure

In each scene, three of the IMPs were colored black, while target IMPs were colored

red and blue, respectively. After first reading a description of the environment—

with specific emphasis on what was good or bad for the IMPs—subjects watched a

sequence of 25 scenes. In the first scene, considered practice for the subject and not

analyzed, all IMPs were randomly parameterized. In each of the subsequent 24 scenes,

the black IMPs were randomly parameterized. Of the red and blue IMPs, one was

randomly parameterized, and the other was an evolved IMP sampled from a random

generation of simulated evolution. Whether the evolved IMP was colored red or blue

was counterbalanced across trials.

To recall, three runs of evolution had been simulated to provide a pool of

evolved IMPs for these experiments. In each experiment, 4 subjects (one-third) viewed

evolved IMPs sampled from each of the respective simulations.

At the end of each scene, the subject was instructed to indicate, on the keyboard,

which IMP (red or blue) had behaved more intelligently (in Exps. 1a-1b), or was more

likely to have been controlled by a human player (Exp. 1c). This subject was allowed

to respond on a 6-level scale, from “strongly red” to “strongly blue.” The experiment

moved on to the next trial after the subject made a response.

3.5.3 Experiment 1a: Basic discrimination

Because the “random” agents are drawn uniformly from the parameter space, and

the evolved agents are sampled from the same space, but tend to be concentrated in

more adaptive regions, there is indeed overlap between the two IMP distributions

that sets an upper limit on discrimination. In this sense, the task sets up as a signal

detection problem, with the “signal” distribution being the evolved IMPs and the

“noise” distribution being the randomly parameterized IMPs. I ask whether subjects

can discriminate between these signal and noise distributions on the basis of their

perceived intelligence.

The experimental instructions included a plain English explanation of what
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was good or bad for IMPs as they interacting within the scenes (see Appendix C).

This explanation was consistent with the actual programmed cost structure of the

environment, determining IMP “health.”

Subjects could respond on a 6-level scale, from “strongly red” to “strongly

blue”, depending on how confident they were that one of the two IMPs had behaved

more intelligently than the other. Color was randomized and counterbalanced with

respect to whether the red or blue IMP was the target (evolved) or lure (randomized)

on a given trial. If I assign numbers to the ratings, from 1 (strongly believe the random

IMP was more intelligent) to 6 (strongly believe the evolved IMP was more intelligent),

an average rating of 3.5 represents chance performance, or no discrimination.

Results

On average, subjects provided a rating of 4.12, significantly greater than this chance

3.5 level (t[11] = 7.60),p< .001). Therefore, they rated evolved agents to be significantly

more intelligent than non-evolved agents. Because subjects provided a range of discrete

ratings (i.e. this was not simply a 2AFC task), and because this experiment lends

itself to a signal detection framework (as explained above), I additionally constructed

ROC curves for subjects’ responses, as a further visualization of their discrimination

ability on this task. A caveat applies: Because targets and lures were presented

simultaneously rather than on separate trials, a rating of 6 for the target IMP is assumed

to be automatically indicate a rating of 1 for the lure IMP (and vice versa), which

artificially constrains the ROCs to be symmetrical. Therefore, these are not bona fide

ROC curves, but are nevertheless illustrative of general trends in subject responses. As

shown in Figure 3.6, every subject showed discrimination above chance, judging the

evolved IMPs to be more intelligent.

On what basis did subjects make their discrimination? During debriefing,

nearly all subjects indicated that an IMP’s proficiency in collecting food was a main

criterion for their decision making. An IMP’s ability to navigate its environment

without either getting stuck at obstacles, or thrashing back and forth without making

progress in any direction, was a secondary criterion expressed by many subjects.
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Figure 3.6: ROC curves for all 12 subjects in Experiment 1a, each presented in a different
color. Across various confidence thresholds (subjects responded on a 6-level scale), a
“hit” is a scene for which the subject selected the evolved IMP, and a “false alarm” is a
scene for which the subject selected the non-evolved IMP. The more “bowed” the ROC
curve is above the line of no discrimination (represented with a solid black line), and
the greater the area under the curve, the better the subject’s discrimination.
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This suggests that the evolution procedure I used selected for productive behaviors

(collecting food) and selected against counterproductive behaviors (navigating the

environment poorly), and that subjects were able to detect this greater efficiency in the

evolved IMPs.

One of the primary IMP traits enabling an IMP to successfully gather food

is a greater tendency to remain in the gather state, reflected in one of its transition

probability parameters: p(Gather|Gather). As displayed in the empirical cumulative

distributions along this parameter (Fig. 3.7, red lines), IMPs selected by subjects as

more intelligent indeed tended to be higher on this parameter.

By Kolmogorov-Smirnov (K-S) test, the selected and rejected IMP samples are

drawn from significantly different distributions, with respect to this p(Gather|Gather)

parameter (p < .001). Selected IMPs also exhibited a much stronger tendency to transi-

tion from flee to gather (p[Gather|Flee];p < .001).

Ability to navigate the environment is less straightforwardly related to any

particular IMP parameter; different combinations of parameters governing memory

resolution, path planning, and vision interact to produce more or less effective naviga-

tion. Observed navigation ability is also a noisy reflection of the IMP programming;

IMPs find themselves in more or less challenging circumstances depending on where

they are randomly placed among obstacles in the environment. For these reasons,

the selected and rejected IMP distributions were quite similar with respect to these

navigation-related parameters, analyzed in isolation. They differed along the field of

vision parameter (p < .05, Fig. 3.8). However, this difference was small, and given the

strong tendency for evolved IMPs to be high on this parameter, this observed differ-

ence in Experiment 1a may merely reflect this parameter’s high correlation with a more

robust, primary independent variable: the evolved status of the IMP.

I treat this evolved status as a categorical variable here, but each IMP was in

fact sampled from a different generation of its respective evolution. Therefore, one

might expect that IMPs sampled from later generations of evolution would appear

more intelligent than those sampled from earlier stages. On the other hand, in the

above analysis of the evolutionary dynamics, I observed that IMP parameters did
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Figure 3.7: Empirical cumulative distribution functions, along the parameter governing
the probability of remaining in the gather state, for various IMP populations.
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not tend to converge over time, but rather oscillated frequently over the course of a

1000-generation evolution, only exhibiting general tendencies in the aggregate.

Over all evolved IMPs presented to subjects, there was no correlation between

generation of evolution and intelligence rating (r[286] = −.050,p = .399). As shown in

Figure 3.9, perceived intelligence peaked for IMPs sampled from between generations

300 and 400, and was lowest for IMPs sampled between generations 900 and 1000.

A reinspection of Figure 3.1 may explain this result. As the three runs of evolution

oscillated between values on one critical IMP parameter (p[Gather|Gather]), each of the

three evolutions coincidentally oscillated toward a high value between generations

300 and 400, and all three randomly swung low between generation 900 and 1000. All

of the analyses undertaken thus far appear to indicate that the simulated evolution

indeed produced IMPs that were, on average, perceived to be more intelligent than

randomly-generated IMPs, but that this evolution itself wandered noisily around the

IMP space across generations.

3.5.4 Experiment 1b: Mismatched description

In Experiment 1a, subjects perceived evolved IMPs to be more intelligent than non-

evolved IMPs. Subjects were provided with a description of the associated costs

and benefits of various things that could happen to the IMP, and this description

was consistent with the actual utility structure of the environment in which the IMPs

evolved, and in which the IMPs appeared to subjects. In Experiment 1b, subjects were

instead given a misleading description of what was good or bad for the IMPs (see

Appendix C). Subjects were instructed that collecting food was slightly beneficial to

the IMP, but that pursuing food was “usually more trouble than it is worth.” The payoff

matrix for IMPs colliding with other IMPs was presented in a manner distorted from

the true programmed payoff matrix.

In this experiment (and in Experiment 1c), each of 12 subjects saw a set of 24

scenes which were identical to those seen by one corresponding subject in Experiment

1a, and in the same order. Therefore, critically, all of the low-level perceptual cues

intrinsic to the stimuli were precisely controlled. The only difference between the
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Figure 3.9: Each evolved IMP was sampled from a random generation of a 1000-
generation simulated evolution. Here, IMPs are placed into bins according to the
generation of evolution from which they were sampled. Whereas subjects consistently
rated evolved IMPs to be more intelligent (i.e. gave a rating greater than the chance
level of 3.5, shown here with a dashed black line), IMPs sampled from later versus
earlier generations of evolution do not appear to be perceived any differently with
respect to intelligence.
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experience of a subject in Experiment 1a and his counterpart in Experiment 1b was the

task instructions.

Results

8 out of 12 subjects produced responses that were significantly positively correlated

with their counterparts in Experiment 1a. The average pair of corresponding subjects

from Experiments 1a and 1b produced responses that were positively correlated (M =

.401, t[11] = 4.66,p< .001). As in Experiment 1a, the average subject rated evolved IMPs

to be significantly more intelligent than randomly-generated IMPS (M = 3.78, t[11] =

2.30,p < .05). However, this effect was not as strong as in Experiment 1a (t[22] =

2.22,p < .05), as demonstrated in Figure 3.10. Subjects were therefore sensitive to these

task instructions when assessing the intelligence of IMPs; the evolved IMPs seemed

intelligent, but not as intelligent as they would have seemed given a description of the

demands of the environment more consistent with that of the actual environment in

which the IMPs were evolved.

Certain IMP qualities, such as the ability to navigate the environment well, were

likely to appear intelligent irrespective of more specific details about the cost structure

of the environment, which partially explains the correlation among subject responses

across experiments, and why evolved IMPs appeared more intelligent in both cases.

While less sensitive to the tendency of the IMPs to collect food, they were not totally

insensitive to it (Fig. 3.7). This is consistent with a fascinating account reported by

several subjects during debriefing: Even though subjects reported being keenly aware

that food was of negligible value, the IMP act of successfully pursuing and collecting

food just seemed irresistibly intentional or elegant, and it was difficult to suppress the

impression that an IMP exhibiting this behavior was intelligent—especially when the

other probe IMP did not seem to be doing anything particularly intentional.
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x-axis and hit rate plotted on the y-axis.
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3.5.5 Experiment 1c: “Turing test”

In Experiment 1c, subjects were given an accurate description of what was good or

bad for the IMPs, the very same description as was provided in Experiment 1a. As in

Experiment 1b, each of 12 subjects saw a set of 24 scenes which were identical to those

seen by a subject in Experiment 1a, and in the same order, controlling for all of the

low-level perceptual cues intrinsic to the stimuli. Again, the only difference between

the experience of a subject in Experiment 1a and his counterpart in Experiment 1c was

the task instructions (see Appendix C). The motivation for this experiment was to ask

whether evolved IMPs (compared to non-evolved IMPs) would appear to subjects to

behave more convincingly as though they were controlled by humans, and to further

ask whether subjects’ expectations of a rational agent and an agent controlled by a

human were the same.

Subjects were told that some of the IMPs were robots controlled by a computer

program, and some were controlled by human players. To make this cover story more

plausible, subjects were told that the human player would not be able to see the entire

environment from above (as the subject could), but could only see this environment

from the perspective of his triangular avatar. Furthermore, the subject was told that

seeing objects at a distance was often difficult for the human player, as was moving

around the environment fluidly. This cover story was effective; during debriefing, few

subjects reported any suspicion that, in fact, neither of the probe IMPs had actually

been controlled by a human player (the reactions ranged from ”I had some sneaking

suspicion all along.” to ”My mind is blown!).

The task, in this experiment, was to choose the IMP which was more likely to

have been controlled by a human player. Subjects were therefore probed not on the

intelligence (i.e. rationality) of the IMPs, per se, but on how convincingly human they

appeared to be. It is important to note that most simulation theory accounts of this

task would not consider these tasks to be distinct: We are always implicitly asking

“What would I do?”, bootstrapping the same internal simulation process. Dennett

(1987) presents this as a main difficulty in testing the predictions of his account of
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theory of mind, versus simulation accounts; since the self, other human agents, and

the abstractly-rational agent should all be expected to behave similarly in similar

situations (namely, according to what the observer construes to be the rational choice),

how can one find experimental evidence that supports one theoretical account and not

the other? I propose that this experiment may provide such an opportunity, as we shall

observe whether subjects had different expectations of “intelligent” versus “human”

behavior.

Results

In Experiment 1c, 4 out of 12 subjects produced responses that were significantly

positively correlated with their counterparts in Experiment 1a. The distribution of

correlations was marginally positive (M = .251, t[11] = 2.06,p = .064). Furthermore, the

average subject rated evolved IMPs (versus non-evolved IMPs) as being more likely

to have been generated by a human (mean rating = 3.83, t[11] = 3.17,p < .01). This

is a noteworthy result in itself; the evolved IMPs passed this quasi-Turing Test, and

were more convincingly human than their randomly-generated counterparts. This

effect, however, was smaller than that observed in Experiment 1a (t[22] = 2.20,p < .05).

I therefore conclude that subjects based their decisions on at least partially different

criteria.

The magnitude of the effect was quite similar to that exhibited by subjects in

Experiment 1b (Fig. 3.10). One, therefore, might be tempted to conclude that subjects

in Experiment 1b and 1c were answering on similar bases. Yet only 2 out of 12

subjects produced responses that were significantly positively correlated with their

counterparts in Experiment 1b, and the responses of the average pair of subjects from

these two experiments were not significantly correlated (M = .110, t[11] = 1.23,p = .243).

This suggests that while both groups of subjects showed a weak preference for the

evolved IMPs, they were likely responding according to different criteria.

Therefore, in Experiments 1a–1c, subjects viewed the same scenes, but em-

ployed three dissociable (though overlapping) sets of standards for discriminating
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among the IMPs. In Experiments 1a and 1b, this strategy involved the subject in-

voking his theory (or model) of how an intelligent (or rational) IMP should behave,

given different assumed costs and benefits of various behaviors. In Experiment 1c,

subjects were tasked with invoking their personal models for how a human player

would behave in this environment.

At debriefing, most subjects reported that they expected the human player

to more effectively collect food and navigate the environment (i.e. exhibiting the

behavior of a rational agent, as in Experiment 1a). But others adopted very different

strategies. Some assumed that all of the non-probe IMPs were robots (there were always

three other agents inhabiting the scene), and therefore chose the IMP which behaved

least like these presumed automata. At least one subject reported that he, in fact,

expected that the robots would perform better in this environment, and thus selected

the less competent IMP. And one particularly distrustful subject indeed reported that

he thought the human player would be trying to trick him into thinking he was a robot,

and therefore adopted the strategy of selecting the more robotic-seeming IMP!

Subjects’ responses in this task were correlated, if only weakly, with responses

made only on the basis of perceived intelligence with respect to the demands of the

environment. Yet, it seems clear that, regarding subjects’ expectations of how other

humans behave, they are willing and able to augment their “human” model with a

great many considerations, not all of which are directly related to a straightforward

conception of rationality, and not all of which are consistently applied subject to subject.

3.5.6 Discussion

In Experiments 1a–1c, subjects saw scenes which had the same perceptual content

but could be interpreted differently depending on what subjects were told about the

nature of the IMPs and their environment. Subjects always attended to two IMPs, one

of which was sampled from simulated evolution, and the other which was randomly-

parameterized (non-evolved). In all three experiments, subjects were more likely to

select the evolved IMP, but this effect was strongest when the task was to select the more

intelligent IMP, and they were given a description of the demands of the environment
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that matched those of the environment in which the IMPs were evolved (Experiment

1a). In Experiment 1b, subjects were misled about what behaviors were likely to be

good or bad for the IMP, but they still showed a weak preference for the evolved IMPs.

The same was true in Experiment 1c, in which subjects selected the IMP which they

believed was more likely to have been controlled by a human player. We conclude

that the expectations subjects have for the behavior of a human player and a rational

agent may be different, and that what is construed as rational behavior will depend on

assumptions about the cost structure of the environment.

3.6 Experiment 2: The inference of mental states in evolved (vs. non-

evolved) agents

Here I present the most critical experiment of this thesis. I use the IMPs environment to

empirically test a prediction that follows from a specific perspective on theory of mind:

The more rational the agent, the easier it should be for subjects to understand its mental

states and processes. IMPs may not have bona fide minds, but they do have ground

truth goal states (they may attack, explore, flee, or gather) which change dynamically

over the course of a scene and are meant to be analogous with intention. They also

have simulated vision, the capabilities of which can be inferred by the subject on the

basis of observed behavior. As subjects watch a target IMP which is either evolved

or non-evolved, they are asked to continually estimate the goal state of this IMP (by

the same method employed in Chapter 2), and after the scene is finished, provide an

estimate of how far they think the IMP can see.

3.6.1 Experiment 2: Evolution results

In Experiment 2, subjects’ were instructed to make inferences about the intentional

states of target IMPs, and their visual ability. The simulated evolution which generated

IMPs for this experiment allowed for the IMPs’ state transition probabilities to be

evolved, along with their vision modules. Memory resolution and path planning

resolution were kept constant (at 150 and 25, respectively), at settings for which IMPs
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could be expected to navigate obstacles in the environment well, given adequate vision

capabilities.

One 1000-generation run of evolution was simulated (populated with 5000

total IMPs). 91.1% of IMPs survived to the subsequent generation, with 25.8% of IMPs

successfully collecting at least one piece of food. For some parameters, examination of

the traits of IMPs sampled from this evolution revealed similar patterns of preferred

parameter settings when compared with the population generated for Experiments

1a–1c. The distribution of vision ray lengths, for instance, was similarly bimodal, and

with these modes at the same values. On the other hand, whereas the Experiment

1 IMPs showed a preference for very wide fields of vision (see Fig. 3.2), the newer

population of IMPs show a mode at approximately 60-75◦, with very wide fields of

vision being much less preferred (Figure 3.11).3 These disparate results illustrate that

what makes for an adaptive setting along one parameter will depend critically on the

possible settings of other parameters—in this evolution, memory and path planning

were constant, whereas in the previous evolutions, the memory and path planning

resolution parameters could take on any possible value across a wide range.

3.6.2 Methods

Subjects

Ten adult subjects between the ages of 22 and 37 participated in the experiment.

Subjects received $7 for their participation, which lasted approximately 40 minutes.

Stimuli

Each subject viewed a different set of 27 scenes, generated in advance. As in Experi-

ments 1a–1c, these scenes were 60 seconds in duration and contained 5 IMPs, 5 food

clusters, and 20 obstacles. The displayed scenes were of the same size as reported in

3In this histogram, the 0-15◦ bin appears to be the most popular setting for this parameter. However,
because of the hard limits set at each end of the allowable range for each parameter during evolution, the
resulting histograms tend to artificially “pile up” at both extremes. Thus, this apparent mode is probably
spurious in comparison to the mode at 60-75◦.
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Figure 3.11: A histogram of the frequency of all possible fields of vision for the IMPs,
over 1000 generations of evolution performed to generate stimuli IMPs for Experiment
2.

the previous experiments.

Procedure

The first two scenes served as training for the subject, and were each populated with

5 randomly-parameterized IMPs. In these training scenes, each IMP’s true goal state

was reflected in its color, and changed with varying frequencies over the course of the

scene. Subjects were invited to guess which of the four possible IMP states—attack,

explore, flee, or gather—corresponded to which colors. In general, they were accurate

in their initial assessments, but these training scenes provided the opportunity to get

a concrete sense of what the behaviors corresponding to these four goal states looked

like, and what was meant by the “state” of the IMP.

These training scenes also provided an opportunity for the subject to become

comfortable with the demands of the task, as they practiced making keypresses and

using the mouse. After these two training scenes, the subject saw 25 scenes (the first of

which was treated as practice and not analyzed), in which one target IMP was colored

blue, and the other 4 were colored black. Subjects were instructed to pay attention to



69

the blue agent in each scene, and indicate on the keyboard which state they thought this

target agent was in at any given time. Four keys represented the 4 respective possible

states; subjects were instructed to press a key as soon after a scene began as possible,

and thereafter to press a key only when they thought the target IMP had transitioned

into a new state4.

At the end of a scene, the display would freeze at the last frame, cuing the

subject to make one additional judgment. The subject was instructed to estimate how

far he believed the target IMP could see, and was told that this distance could range

from not extending past the tip of the IMP’s “nose” (i.e. a blind IMP) all the way to a

maximum distance equivalent to the length of the environment’s diagonal—This was,

in fact, the true range of possible vision lengths for the IMPs.

The subject indicated his estimate with two mouse clicks (first the left button,

then the right button). Subjects were advised that an intuitive method for performing

this task was to first click the center of the target agent, and then make a second click

at a location as far from the agent as it could see. However, if the subject believed that,

due to the position of an IMP in the environment and a high estimated vision length,

this second click would necessarily fall outside of the environment, then clicking any

two arbitrary points in the environment would suffice. After the subject provided two

mouse clicks, the experiment moved on to the next trial.

In half of the 24 randomly-shuffled trials, the blue target IMP was randomly

parameterized. In the other half of trials, the IMP was sampled from a random

generation of simulated evolution. Whether the IMP was evolved or non-evolved thus

served as the primary independent variable, and we measured the effect of this variable

on the inferences subjects made about the IMPs’ goal states and vision capabilities.

3.6.3 Results: Goal state inference

The average subject correctly identified the goal state of non-evolved (randomly-

parameterized) IMPs 33.4% of the time, if one considers the beginning portion of a

4This aspect of the subject’s task was identical to that of the previous experiments reported in Chapter
2.
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trial, during which the subject had not yet responded, to be “incorrect.” If one throws

out these portions of trials, average subject accuracy was 36.0%. In either case, ac-

curacy was only slightly (though significantly) above chance performance of 25%

(t[9] = 4.33,p < .01 or t[9] = 5.37,p < .001, depending on the scoring criterion).

For the IMPs sampled from simulated evolution, the subjects made correct

inferences 39.9% (or 43.2%, by the alternate criterion) of the time, performing sig-

nificantly better than when observing the non-evolved IMPs (t[9] = 3.27,p < .01 or

t[9] = 3.51,p < .01).

Table 3.1: Confusion matrix, hit rates, false alarm rates, and d’ for each of the IMPs’
goal states, for non-evolved (randomly-parameterized) IMPs (pooled across subjects).
Mean proportion of IMP time spent in each state is in parentheses. Overall response
rates are included in the bottom row.

Subject Response
Actual State None Attack Explore Flee Gather HR FAR d’
Attack (.23) .048 .112 .544 .108 .188 .112 .073 .236
Explore (.34) .090 .073 .610 .054 .174 .610 .512 .248
Flee (.17) .063 .092 .548 .112 .186 .112 .080 .184
Gather (.27) .059 .062 .462 .090 .328 .328 .181 .466

.068 .082 .545 .086 .220

Table 3.2: Confusion matrix, hit rates, false alarm rates, and d’ for each of the IMPs’
goal states, for IMPs sampled from the simulated evolution (pooled across subjects).
Mean proportion of IMP time spent in each state is in parentheses. Overall response
rates are included in the bottom row.

Subject Response
Actual State None Attack Explore Flee Gather HR FAR d’
Attack (.18) .057 .145 .431 .101 .266 .145 .076 .373
Explore (.32) .109 .071 .529 .108 .184 .529 .361 .428
Flee (.12) .065 .135 .364 .151 .285 .151 .089 .317
Gather (.38) .049 .062 .327 .066 .496 .496 .227 .737

.071 .089 .414 .096 .330

These results are consistent with my hypothesis that, when observing an agent

whose behavior better conforms to subjects’ expectations of rationality, the intentions

of this agent will be easier to infer. However, there are at least two plausible alternate

explanations for why accuracy would be better for these evolved IMPs: 1) Certain

states are intrinsically easier to discriminate than other states, and these states occur
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more frequently in the evolved case, and 2) The distribution over the possible IMP

states has less uncertainty (i.e. lower entropy) in the evolved case, and therefore the

state of the IMP will be inherently easier to predict on the basis of a modified response

strategy (i.e. responding more frequently for a priori more likely states, without an

increase in actual discrimination for these states).

These are reasonable hypotheses, as their premises are both empirically true.

The goal state for which subjects’ discrimination was best is the gather state, and IMPs

were in this state for a larger proportion of time in the evolved IMP case. And,

the distribution over the possible goal states had a higher entropy for the randomly-

parameterized IMPs (1.95) than the evolved IMPs (1.87). However, neither of these al-

ternate hypotheses predict better discrimination of the individual states for the evolved

IMPs. Better accuracy for the evolved IMPs would wholly result, under these hy-

potheses, from either a greater tendency toward easier-to-discriminate states, or from

a modified response strategy. As shown in Tables 3.1 and 3.2, however, discrimina-

tion for each of the four IMP goal states was better when subjects were observing the

evolved IMPs, a result which cannot be explained under these alternate hypotheses.

To further illustrate the point, the evolved IMPs are less likely to be in either the

attack or flee states, but subjects are actually slightly more likely to respond “attack” or

“flee” when observing them, and are also more accurate in these responses. Improved

performance of this nature cannot be attributed to mere sensitivity to base rates, but

reflects truly enhanced discrimination.

Another alternate hypothesis might be that evolved agents might be more likely

to remain in a given state (rather than change state), and that this might make the task

of inferring the state easier for subjects. That is, if by the time a subjects is prepared

to make a response after observing the behavior of an IMP, the state of the IMP has

already changed, accuracy might be severely limited by reaction time, and this would

be exacerbated when observing an IMP whose state changes more frequently. There

is little evidence for the premise of this alternate hypothesis, however. Empirically,

the average evolved IMP remained in its state from one frame to the next 97.6% of the

time, while the average non-evolved IMP did so 97.31% of the time. For the average
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subject, the difference between evolved and non-evolved IMPs along this metric was

negligible, and not statistically significant (t[9] = 0.58,p = .571).

3.6.4 Results: Vision length estimation

Intentions and beliefs are two types of mental states which may be inferred from an

agent’s behavior. When subjects were probed about their subjective impression of IMP

goal states, this task served as a functional definition for the inference of intention

(“What are the IMPs trying to do?”). Similarly, it was hoped that asking subjects about

how far they believed the IMPs could see would be an analogous task to the inference

of beliefs (“What is the quality of IMPs’ knowledge of their environment?”). After

viewing each scene, the subject was instructed to estimate how far the target IMP was

able to see using two mouse clicks.

For the non-evolved IMPs, the actual lengths of IMP vision rays were drawn

randomly from a uniform distribution, from 0 to the length of the diagonal of the

environment. Empirically, these non-evolved IMPs had an average vision ray length

of 21.1 IMP lengths (a distance approximately 79% of the width of the environment and

57% of the diagonal). The distribution of evolved IMPs’ vision lengths was strongly

bimodal, and the mean setting of this parameter was only slightly higher (22.9 IMP

lengths) than in the non-evolved case (see Fig. 3.12 for both empirical cumulative

distributions).

The most striking empirical result was subjects’ vast underestimation of the

actual IMP vision lengths. On average, IMPs’ vision rays extended 22.0 IMP lengths,

but subjects, on average, estimated that IMPs could only see a distance of 4.5 IMP

lengths. Furthermore, there was no correlation between these estimates and the actual

IMP vision lengths—if anything, the overall correlation was weakly negative (r[238] =

−.099,p = .128). Additionally, while the underlying ground truth distributions for

this IMP parameter were uniform and bimodal, respectively (for the non-evolved and

evolved IMPs) subjects’ responses were gamma-distributed under both conditions

(Fig. 3.12)

From this overall pattern of data, it is clear that the way the IMP vision actually
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Figure 3.12: Empirical cumulative distribution functions for estimated and actual IMP
vision ray lengths in Experiment 2.

works was completely opaque to subjects, and that subjects were (at best) completely

insensitive to the underlying parameter governing IMP vision ray length when making

their estimates. Perhaps they came to the experiment with strong prior expectations

that shorter IMP vision lengths were more plausible. Or, perhaps subjects intuited

that if an IMP could “see” a certain distance, this meant that it could, at minimum,

detect objects directly in front of it at that distance. This is not necessarily true for all

IMPs, as their vision 1) loses resolution as large distances, as the space between rays

increases, and 2) requires two adjacent rays to return the same color in order to detect

any obstacle, food, or agent.

Another expectation subjects might have had about IMP behavior was that if

an IMP could see an object at a certain distance, it would react to that object, and in a

rational way. But due to the cognitive architecture of the IMPs—they are finite state

automata which transition among goal states probabilistically—they will often turn

toward or away from an object in the environment randomly. This can hardly be what

subjects expect from a rational agent: If the subject assumes a rational IMP, and there
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is food in front of an IMP at a certain distance, and the IMP does not seem to react

to it, the subject very well may infer that the IMP could not see it. To the subject, this

may seem a more plausible inference compared to the alternative—and true—account:

the IMPs’ decision to attack, explore, flee, or gather is actually generated by a partially

stochastic process.

In the experiments presented in Chapter 2, IMPs had slightly-different decision

making schemes (see Appendices A and B), transitioning among goal states according

to four separate transition probability tables, each reflecting a qualitatively different

circumstance the IMP might encounter. It should be noted that subjects’ overall accu-

racy for inferring the goal states of IMPs was higher in this previous study, perhaps

reflecting that their decision making was more intuitive to subjects, although we cannot

be sure of this explanation as this was not the only difference between the two virtual

environments and their resident IMPs.

Any behavior can be rationalized, i.e. construed as rational given some under-

lying set of beliefs, a set of possible actions, and a utility function. But if the set of

possible actions is known, the utility function is given, and the behavior is assumed

to be rational, then it may be the estimate of the beliefs which will change depending

on agent’s level of rationality. Given an observed behavior that appears to be irra-

tional given a veridical set of beliefs, one must either infer that the agent is behaving

irrationally, or that the agent holds non-veridical beliefs about the environment.

A reasoning process like this may explain why subjects so grossly underesti-

mated IMP vision length, because this scenario occurs frequently due to the stochastic

nature of IMP behavior. Yet, for the evolved IMPs, which are more rational than their

randomly-parameterized counterparts, and more likely to pursue food if they can see

it, this scenario should play out less frequently. Therefore subjects may, on average,

infer that the evolved IMPs can see further.

I have already established that the actual IMP vision ray length did not have

any positive correspondence with subjects’ estimates. For the average subject, the cor-

relation between actual IMP vision ray length and the subjects’ estimates was actually
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negative for randomly-parameterized IMPs (M = −.184, t[9] = 2.63,p < .05). The aver-

age correlation for the evolved IMPs was also weakly negative (M = −.077), though

not significantly so (t[9] = 0.78,p = .454). Therefore, if one were to observe a strong dif-

ference between subjects estimates of non-evolved versus evolved IMP vision lengths,

this difference would be unlikely to be attributable to overall actual differences in

programmed IMP vision ray length, which were quite small to begin with (evolved

IMPs could only see, on average, 8.5% further). Subjects were insensitive to this IMP

parameter.

Subjects estimated that evolved IMPs could see 37.2% further than their non-

evolved counterparts. The average subject estimated the vision length of an evolved

IMP to be 5.17 IMP lengths, significantly longer than for random IMPs (3.77 IMP

lengths; t[9] = 3.28,p< .01). As mentioned above, in both cases, subjects’ estimates were

approximately gamma-distributed; overall, the best gamma fit for random and evolved

IMPs, respectively, obeyed the same shape parameter k (1.58 vs. 1.60), but differed on

scale parameter θ (2.39 vs. 3.24)—Because the mean of a gamma distribution is kθ, the

difference in means between the two conditions largely reflects the difference in this θ

parameter.

In summary, this analysis revealed two main findings: 1) Subjects could not

accurately estimate the actual length of IMP vision rays, consistently underestimating

them, and 2) Subjects tended to believe the evolved IMPs could see further than

randomly-parameterized IMPs. I argue that these results can be explained by subjects’

rationalization of IMP behavior; when an IMP behaved irrationally (a more common

occurrence in the case of non-evolved IMPs), subjects may have attributed this to

shortcomings in their visual capability.

3.6.5 Discussion

Evolved IMPs can be considered rational (relative to their non-evolved counterparts)

given the context of their environment niche. They also appear to be more intelligent

to subjects; Experiment 1 established that the evolved status of the IMP was a robust

perceptual variable. So, given that the evolved IMPs both behave more rationally
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and convey the subjective impression of behaving more rationally, I asked how their

enhanced rationality would influence subjects’ more specific inferences about their

intentions and beliefs. Experiment 2 revealed two robust effects: Subjects were better

able to infer the goal states of evolved IMPs, and estimated that evolved IMPs could

see further.

3.7 General Discussion and Conclusion

As some minimal level of rationality is critical to the concept of agency, it follows that a

theory of mind—a means of understanding the mental states of the observed agent, and

their behavioral consequences—should also reflect an expectation of agent rationality.

But how should one define the agent rationality presumed by the inferential system?

For all of the creatures found in nature—and also some found in artificial systems,

such as our IMPs—it is quite difficult, if not impossible, to prescribe some normatively

rational strategy on the basis of game theory or decision theory. The strategy space

is simply too high-dimensional, and the full set of relevant environmental variables

to consider is both ever-changing and exceedingly difficult to discern in advance with

any confidence. In many known cases, a normative model of agent decision making

can also be plainly inaccurate as a descriptive theory of agent behavior, an empirical

fact to which an enormous heuristics and biases literature can testify (Kahneman

et al., 1982; Johnson-Laird, 1983; Gigerenzer and Goldstein, 1996). Furthermore, when

subjects fail to conform to normative models of rationality, it can often be argued that

it is the normative model that has betrayed its own shortcomings, either by lacking

robustness or efficiency, or making unsound assumptions about the nature of the

problem (Cosmides and Tooby, 1994; Gigerenzer, 2008).

For these reasons, I have operationally defined agent rationality in a manner

consistent with Dennett (1987): Behaviors that have been selected by evolutionary

pressure can be considered approximately rational, and more adaptive strategies are

more rational.
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Perhaps, for the IMPs, there does exist one setting in their 22-parameter pro-

gram which is provably optimal. I cannot derive this optimal IMP, but what I can do

is simulate evolution—the “master of high-dimensional trial and error” (Taleb, 2012,

p. 349)—to generate a pool of IMPs that is more rational than their non-evolved coun-

terparts. Experiment 1a demonstrated that subjects agree that these IMPs are more

intelligent, thereby demonstrating some level of consistency between our model of

evolved rationality and subjects’ expectations of rational agency. Experiment 2 then

demonstrated that, as predicted, subjects are also better able to make sense of the

behavior of more rational (evolved) IMPs. Agent rationality—as we have defined

it—results in better discrimination of intentions.

These experiments demonstrate that human intuitions about the mental pro-

cesses generating an agent’s behavior can be rigorously studied, and suggest that these

intuitions feature a notion of rationality. However, one important question remains

unanswered: How does one access an accurate generative model of agent behavior?

Dennett (1987) suggests that because evolved agents are approximately rational most

of the time, this allows the cognitive apparatus to use an abstract, normative standard

of rationality to model them. Yet, querying one’s own decision making apparatus does

seem to be an attractive approach compared to considering another’s complex mental

machinery in the abstract. This argument perhaps favors the simulationist account;

however, the system must also be quite flexible. Even if one uses intuitions about one’s

own decision making process as a starting point, one must be able to tweak this model

in light of circumstantial knowledge about the agent’s situation (as in Experiment 2b)

and the nature of the agent itself (Experiment 1c). And the more one is allowed to

tweak the self-simulation—the more a question of “What would I do in this situa-

tion?” becomes “What would I do in this situation...if I were not me?”—the blurrier

distinctions between simulation theory and theory theory become.

3.7.1 Future Directions

In this study, I employ a definition of rationality that is based on evolutionary fitness,

but the experimental approach I have used (the IMPs environment) opens the door for
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testing a wide range of hypotheses related to competing conceptions of rationality. For

instance, imagine if two sets of IMPs were created, one of which exhibited behavior

prescribed by a normative theory, and another whose strategies were determined by

a more naturalistic evolutionary process. Which set of IMPs would exhibit behavior

that better matches human intuitions and expectations about agency? The modular

nature of IMPs, and the ability to directly manipulate their cognitive and perceptual

capabilities, invites novel experimentation of this kind.
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4. Conclusions

The mind itself can be considered a model, a simplified abstraction with value derived

not from its veridicality, per se, but from its power to explain and predict phenom-

ena. Human beings rely critically on their understanding of this abstraction, because

the behavior of an entire class of objects in the world—agents—cannot be effectively

explained or predicted according to alternate models like physics (whether naı̈ve or

rigorous). If one knew the physical state of every subatomic particle in the agent’s

body and its surrounding environment, and all of the relevant physical rules govern-

ing their interaction, one could physically model the agent, in principle. But modeling

a physical process in this manner, to the precision required to predict any interesting

agent behavior, is well beyond the epistemological and computational limits of the

brain. Indeed, human evolution has selected against this inefficient approach, because

as a matter of fact we do not attempt to perform such an analysis when interacting

with objects construed to be agents. We instead rely on our theory of mind.1

Past experiments in the domain of theory of mind, dating to Heider and Simmel

(1944), have frequently relied on stimuli generated according to the intuitions of either

the experimenters or their subjects. This may result in too close a correlation between

the nature of the independent and dependent variables—stimulus generation and

subject response are both direct reflections of human intuitions about the subjective

content of scenes, and therefore what is manipulated and what is being measured

may be, at least to an extent, the same thing. The IMPs, of course, are programmed

according to the intuition of the programmer. But once the play button is hit in the

simulation environment, what will be displayed to subjects in the resulting scene is

not known in advance. And in Chapter 3, wherein the rationality of the IMPs was the

independent variable, it was not my subjective intuition that manipulated this variable.

A simulated evolution process produced the more rational IMPs.

1A bona fide “theory of mind” is sometimes construed to necessarily include a cognitively complex
metarepresentative ability, cf. Leslie (1984)’s “second order” theory of mind. I use the term less strictly, in
a manner which would also encompass relatively more reflexive or perceptual mechanisms (in response to
motion cues), and the inferences made by non-human species with respect to the intentions or dispositions
of other animals.
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This approach also enables new experimental directions in the study of inten-

tionality, only a few of which have been exploited in this dissertation. For example, if

agent behavior can be generated by an underlying program in real time, this allows

for immersive experimental paradigms (as in Gao et al., 2010; Pantelis and Feldman,

2012) in which subjects’ interaction with agents within the virtual environment—in

addition to their judgments—may shed light on underlying cognitive mechanisms.

But perhaps most importantly, using autonomous agents like IMPs as experimental

stimuli, and tasking subjects with inferring aspects of their generative program, brings

the psychophysics of theory of mind into closer analogy with the modeled process.

The inference of mental states is indeed an instance of a more general class of problems

faced by the human brain, in which the goal is to estimate the parameters of underlying

generative processes of the world.
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5. Appendices

5.1 Appendix A: IMP programming, Chapter 2

The experiment was programmed in MATLAB using the Psychtoolbox libraries (Brainard,

1997; Pelli, 1997; Kleiner et al., 2007). Scenes were rendered offline at a rate of approx-

imately 0.33 frames per second. By recording these frames offline, and saving the

timing and essential visual information (location and orientation of all objects) for each

frame, we could display scenes to subjects at a later time as animations, bypassing the

intensive computations necessary for generating the displays in real time.

To achieve a suitable smoothness and speed during replay to subjects, I linearly

interpolated the locations and orientations of objects in the scene between frames,

and each scene was sped up 15x. Thus, an originally rendered simulation consisting

of ∼ 300 frames over 900 seconds was transformed into a displayed scene of ∼ 1500

frames over 60 s (a change from approximately 0.33 to 25 frames per second). During

the experiments, subjects’ keyboard responses were recorded after the presentation of

each frame: ∼ 25 Hz.

5.1.1 Environment

Obstacles in the environment are stationary and cannot be moved or traversed by the

IMPs. Thus, IMPs must go around them to gain access a blocked location. In addition,

like a tall wall, obstacles in an IMP’s line of sight occlude its view of other IMPs or

food. Because the obstacles cannot move, they create a stable environment that the

IMPs can use for path planning.

Food objects and other IMPs are distinct in shape and color, allowing IMPs

to identify them against the background. Food is located in clusters, which allows

agents to reasonably expect more food to be available at the same location upon later

return. When food is “consumed” by the agent—which can only be done when the

IMP delivers food to its personal predetermined “cache” location—it quickly shrinks

and then disappears.
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5.1.2 Perception

The IMP agents are endowed with two perceptual modules: touch and vision.

The IMPs’ “touch” module is programmed as a simple contact identifier. When

an IMP comes into contact with an object, it is made known to its program whether

this contacted object is food or another agent.

Modeled as a 1-dimensional retina, an IMP’s “vision” module allows it to

identify color in its field of vision as it navigates the 2-dimensional environment (see

Figure 2.1b). This retina is modeled as a series of rays cast radially at equal angular

intervals from the center of the IMP’s heading (i.e. the IMP’s “eye”). Because of the

intrinsic geometry of this ray casting, visual resolution is reduced for more distant

stimuli.

Three parameters constrain IMP vision: the number of rays cast by the IMP, the

distance to which these rays are cast, and the angular field of vision. These parameters

were fixed for all IMPs in Experiments 1 and 2: an IMP casts 20 rays, each extending

100 pixels, at equal angular intervals across a 135◦ field of vision.

Because no depth information is directly available to the vision module, the

IMPs need to observe an object from multiple angles to estimate its location with

precision. This situation is also known as the inverse projection problem, and useful

estimates are made possible in this case by the assumption that food objects are of

constant color and size. When rays [rm...rn] cast by the IMP detect color corresponding

to food, the IMP ascertains that food is located somewhere within the triangular region

bounded by the edges of rays rm and rn and it uses the centroid of this triangular

region as an initial estimate of the food object’s location. By successively viewing the

food object, the IMP builds up a running average of these centroid-based estimates,

increasing the accuracy of its estimated location. If other agents or obstacles occlude

part of the food-colored region, this can limit the accuracy and precision of the IMP’s

visual estimates.
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5.1.3 Memory

Using its vision module, an IMP is able to develop a “mental map” of the environment.

The mental map allows the agents to keep a record of its estimates of the locations of

obstacles, food, and other agents, and to to plan paths that either intersect or avoid

these objects.

The initial map is a tabula rasa, but it is quickly enriched by experience. The

mental map is dynamically updated based upon the input from the vision module;

areas where an object may exist are filled in, and areas where nothing is observed are

cleared (see Figure 2.1d). This dynamic updating is primarily used for food objects

and other agents because obstacles are represented as static elements in a binary map.

5.1.4 Goals and Actions

An IMP will be in one of four goal states at any given time: attack, explore, flee, or gather.

The IMP program converts these goal states into actions by deciding upon a particular

target location in the environment, and then instructing the IMP to move toward this

location according to its path planning algorithm (described below).

If the IMP is in the attack state, it finds the nearest location in its mental map

where another IMP may be located, and sets this as its target location.

If the IMP is in the explore state, it finds the nearest location in the mental map

that is unknown—that is, as yet unseen by the IMP—and sets this as its target location.

If the IMP is in the flee state, it finds the nearest location in its mental map where

another IMP may be located, orients itself in the opposite direction, and moves in this

direction.

If the IMP is in the gather state, and is touching food, it “grabs” this food and then

sets its target location to a predetermined random [x, y] location in the environment

designated as the IMP’s “cache.” If the IMP is not touching food, it finds the nearest

location in its mental map where a food object may be located, and sets this as its target

location.

If the IMP is in the attack, flee, or gather state and has a mental map that contains
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no information about the locations of food or other IMPs, it will default to the explore

state. Because the IMP’s mental map initializes as a tabula rasa, the IMP always begins

the simulation in the explore state.

The IMP transitions stochastically among these four states, conditional on

whether there is food or another IMP located nearby (according to its mental map).

In Experiments 1 and 2, food was considered “nearby” if it was fewer than 250 pixels

away, and another IMP was considered “nearby” if it was fewer than 100 pixels away.

Thus, there are 4 possible situations on which the IMP conditionalizes its behavior—

nothing nearby, food nearby, IMP nearby, or food and IMP nearby. Each of these

situations corresponds to a 4×4 transition table contained in its program.

The conditional state transition tables for the IMPs used in Experiments 1 and

2 are shown in Tables 5.1 and 5.2, respectively.

5.1.5 Path planning

The action state of the IMP determines a particular target location toward which the

IMP must move. The final module of the IMP’s cognitive architecture allows it to find

the shortest path from its location to this target location, given its present knowledge

of the environment (represented by its mental map).

The IMPs used an iterative implementation of the Floyd-Warshall path finding

algorithm to find solutions for the all-pairs shortest path problem. If an area of the

IMP’s mental map is believed to unoccupied by an object (food, agent, or obstacle)—

excluding unknown regions of the map—then the IMP assumes it may traverse this

area while planning its path.

5.2 Appendix B: IMP programming, Chapter 3

The virtual environment was programmed in Java and presented as an applet to

subjects. Frames of scenes could be generated and displayed nearly in real time (that

is, much quicker than in the MATLAB version presented in Chapter 2), but would

often display unevenly, owing to the variable amount of computation necessary for
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Table 5.1: Transition probability matrices for IMPs used in Chapter 2, Experiment 1.

No nearby objects (default)
Transition to:

Attack Explore Flee Gather
Attack .94 .02 .02 .02

Transition from: Explore .05 .80 .05 .10
Flee .02 .02 .94 .02
Gather .04 .04 .04 .88

Food nearby
Transition to:

Attack Explore Flee Gather
Attack .90 .04 .02 .04

Transition from: Explore .02 .84 .02 .12
Flee .02 .02 .84 .12
Gather .02 .02 .02 .94

Another IMP nearby
Transition to:

Attack Explore Flee Gather
Attack .97 .01 .01 .01

Transition from: Explore .08 .83 .08 .01
Flee .10 .04 .85 .01
Gather .03 .03 .03 .91

Food and other IMP nearby
Transition to:

Attack Explore Flee Gather
Attack .97 .01 .01 .01

Transition from: Explore .20 .40 .20 .20
Flee .06 .02 .90 .02
Gather .04 .04 .04 .88
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Table 5.2: Transition probability matrices for IMPs used in Chapter 2, Experiment 2.

No nearby objects (default)
Transition to:

Attack Explore Flee Gather
Attack .94 .02 .02 .02

Transition from: Explore .05 .80 .05 .10
Flee .02 .02 .94 .02
Gather .05 .10 .05 .80

Food nearby
Transition to:

Attack Explore Flee Gather
Attack .92 .03 .02 .03

Transition from: Explore .04 .80 .04 .12
Flee .01 .01 .92 .06
Gather .04 .04 .04 .88

Another IMP nearby
Transition to:

Attack Explore Flee Gather
Attack .93 .02 .03 .02

Transition from: Explore .10 .79 .10 .01
Flee .03 .02 .93 .02
Gather .06 .03 .06 .85

Food and other IMP nearby
Transition to:

Attack Explore Flee Gather
Attack .95 .01 .03 .01

Transition from: Explore .25 .30 .25 .20
Flee .03 .01 .95 .01
Gather .13 .04 .13 .70
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generating each frame. Therefore, scenes were rendered offline. Each scene consisted

of 3600 frames presented to subjects at a constant 60 frames per second. However, if

scenes were generated without being rendered on the computer screen—i.e. during

evolution—they could often be simulated at speeds up to 200-500 frames per second

(on a 3.10 GHz processor), with the path planning resolution of the IMPs (and to a

lesser extent, memory resolution) being the main limiting factor in terms of both time

and memory complexity.

A scene can be displayed in any size window; in these experiments, we used a

950×950 pixel window. If the square window is of width W, then an IMP has length

.0375W, a “small” obstacle is a .05W × .05W red square, and a “large” obstacle is a

.1W× .1W red square. A “cluster” of 5 food objects initializes as a gray regular octagon

with circumradius .0281W. As food objects (each of circumradius .0118W) are pulled

from the cluster by IMPs, this octagon shrinks linearly with the number of food objects

removed from it, until it is of the same radius as a single food object and may itself be

completely pulled away by an IMP.

The IMPs’ vision, memory, and path planning modules work in the same

manner as those of the previously described IMPs (see Appendix A), except that the

settings of these modules’ parameters are not, in this case, set by the experimenter,

but rather by the evolutionary algorithm. One difference in the programming of the

Java IMPs, versus the MATLAB IMPs, is that when the Java IMPs “grab” food, they

pull or “tow” this food toward their target cache location rather than pushing it. But

the primary difference in the way the Java IMPs are programmed lies in their decision

making module, described here:

5.2.1 Decision making

In order to conditionalize their behavior somewhat intelligently, the MATLAB IMPs

utilized in Chapter 2 relied on having four different goal state transition probability

tables, each applied to one of four qualitatively different circumstances in which an

IMP might find itself. By contrast, the Java IMPs only employ one transition table,

but this table’s respective columns are multiplied by different constants depending
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on the IMP’s circumstances and the content of its memory. That is, the probability of

transitioning to a particular goal state will vary over the course an IMP’s stint in the

environment.

The precise algorithmic rules governing this procedure are denoted below, but

the general empirical consequences are that the IMP will default to the explore state

if there are no other IMPs or food objects in its memory, that the IMP will be biased

against transitioning to the explore state if there are other IMPs or food objects in its

memory, and that IMPs will only be likely to flee other IMPs if they are nearby. This

is why even randomly-parameterized IMPs do not, on average, spend equal time in

each goal state (see Table 3.1).

Each IMP has attack, explore, flee, and gather “brain” modules in its program.

Every time the decision making module is queried (which happens once every n

frames, depending on the setting of another evolvable parameter), each brain returns

a potential target location in the environment (according to the same rules described

in Appendix A), and an “urgency” value between 0 and 1.0.

The previous goal state (Gt) of the IMP is known, and indexes one row of the

IMP’s goal state transition table. Each of the four entries in this row vector corresponds

to the probability of transitioning to one of the four goal states at time t + 1, and each

of these four probabilities is multiplied by the urgency returned by its corresponding

brain module. After this multiplication, the row vector is renormalized to sum to 1.0,

and the IMP transitions to one of the four goal states randomly according to this new

vector of probabilities.

• Attack brain: If the IMP memory contains no traces of other IMPs, returns an

urgency of 0. Otherwise, returns an urgency of 1.0.

• Explore brain: If Gt is explore, and the previous target for exploration has not yet

been reached by the IMP, returns an urgency equivalent to the maximum urgency

outputted by all brains at time t. Otherwise, returns an urgency of 0.6.

• Flee brain: If the IMP memory contains no traces of other IMPs, returns an

urgency of 0. If the distance to the nearest other IMP in memory, dn, is less than
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or equal to dc (where dc is two IMP lengths), returns an urgency of 1.0. If dn > dc,

returns an urgency of dc/dn.

• Gather brain: If the IMP is “grabbing” food, returns an urgency of 0.8. If the IMP

memory contains no traces of food, returns an urgency of 0. Otherwise, returns

an urgency of 1.0.

5.2.2 Evolution

After each generation of simulated evolution, our algorithm generated a population

of 5 new IMPs. Each surviving IMP from the previous generation could spawn each

of the new generation’s IMPs with probability hi/ht, where hi was the “health” value

of the surviving IMP, and ht was the total health of the previous generation of IMPs.

Every parameter of each new IMP was then randomly “mutated”, with the deviation

from the present parameter value being randomly drawn from the following normal

distributions, denoted here as N(µ,σ2):

• Vision resolution: N(0,9), rounded to the nearest integer.

• Vision field of vision: N(0, .04), in radians.

• Vision ray length: N(0,9)

• Memory resolution: N(0,25), rounded to the nearest integer.

• Path planning resolution: N(0,9), rounded to the nearest integer.

• Frames per new decision: N(0,25), rounded to the nearest integer.

• State transition probabilities: N(0, .0025) for each of the 16 probabilities in the

4×4 table. The rows are then renormalized to sum to 1.

Because IMPs that “died” during a generation were ineligible to reproduce in

the next generation, the evolution could not continue under the (rare) circumstance

where none of the 5 IMPs in the population survived. When this happened (typically

once over the course of 1000 generations, but sometimes never), the evolution would
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simply replay the previous generation of IMPs, but with food, obstacles, and IMPs

placed in newly-randomized initial locations.

5.3 Appendix C: Experimental instructions, Chapter 3

5.3.1 Experiment 1a

In this study, you will observe a series of 60-second scenes in which triangular “agents”

interact with one another and their environment.

In this environment, red squares are obstacles. The agents cannot move through

them.

It is beneficial to the agents to collect “food.” This food is round and gray and

can be found at various locations in the environment. For an agent to get the full

benefit of this food, it must bring it to a particular location, by “towing” it back there.

This location is different for each agent, and is the same location as its starting point in

the scene. Food disappears when the agent brings it to this point.

If the agent is attacked and hit head on by another agent, this is damaging to

its health. But an agent can also inflict this damage on another agent if it so chooses,

which may ultimately result in that other agent “dying” and becoming food.

If two agents hit each other head on, this hurts both agents, but to a lesser

degree.

Task instructions: There will be five agents in each scene, but you only need

pay attention to the red agent and the blue agent. After the scene is done, you should

indicate which of those two agents you think behaved more intelligently over the

course of the scene, on a scale of 1 (definitely the red agent) to 6 (definitely the blue

agent). So that you can rest your hands comfortably at the bottom row of the keyboard,

“1”, “2”, and “3”, will correspond to “Z”, “X”, and “C”, respectively. “4”, “5”, and

“6” will correspond to “,” “.” and “/”. The experiment will move on to the next scene

when you press a key.
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5.3.2 Experiment 1b

In this study, you will observe a series of 60-second scenes in which triangular “agents”

interact with one another and their environment.

In this environment, red squares are obstacles. The agents cannot move through

them.

It is beneficial to the agents to collect “food,” but only slightly so—it is usually

more trouble than it’s worth. This food is round and gray and can be found at various

locations in the environment. For an agent to benefit from this food, it must bring it

to a particular location, by “towing” it back there. This location is different for each

agent, and is the same location as its starting point in the scene. Food disappears when

the agent brings it to this point.

If the agent is attacked and hit head on by another agent, this is extremely

damaging to its health. But an agent can also inflict this damage on another agent if it

so chooses, and hitting another agent head on is very beneficial to its own health. Also,

inflicting damage on another agent may ultimately result in that other agent “dying”

and becoming food.

If two agents hit each other head on, this does not help or hurt either agent.

Task instructions: There will be five agents in each scene, but you only need

pay attention to the red agent and the blue agent. After the scene is done, you should

indicate which of those two agents you think behaved more intelligently over the

course of the scene, on a scale of 1 (definitely the red agent) to 6 (definitely the blue

agent). So that you can rest your hands comfortably at the bottom row of the keyboard,

“1”, “2”, and “3”, will correspond to “Z”, “X”, and “C”, respectively. “4”, “5”, and

“6” will correspond to “,” “.” and “/”. The experiment will move on to the next scene

when you press a key.

5.3.3 Experiment 1c

In this study, you will observe a series of 60-second scenes in which triangular “agents”

interact with one another and their environment.
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In this environment, red squares are obstacles. The agents cannot move through

them.

It is beneficial to the agents to collect “food.” This food is round and gray and

can be found at various locations in the environment. For an agent to get the full

benefit of this food, it must bring it to a particular location, by “towing” it back there.

This location is different for each agent, and is the same location as its starting point in

the scene. Food disappears when the agent brings it to this point.

If the agent is attacked and hit head on by another agent, this is damaging to

its health. But an agent can also inflict this damage on another agent if it so chooses,

which may ultimately result in that other agent “dying” and becoming food.

If two agents hit each other head on, this hurts both agents, but to a lesser

degree.

Task instructions: Some of the agents you will see in these video scenes were

controlled by human players, and some are robots. A human player does not see

the environment from your perspective (looking in on the scene from above), but

rather from the perspective of his/her triangular character, which can make navigation

difficult. He/she cannot necessarily see things well at a distance, for example, and

often must be quite close to something to recognize it. Controlling the movements of

one’s character can also be challenging.

There will be five agents in each scene, but you only need pay attention to the

red agent and the blue agent. After the scene is done, you should indicate which of

those two agents you think is more likely to have been controlled by a human player,

on a scale of 1 (definitely the red agent) to 6 (definitely the blue agent). So that you can

rest your hands comfortably at the bottom row of the keyboard, “1”, “2”, and “3”, will

correspond to “Z”, “X”, and “C”, respectively. “4”, “5”, and “6” will correspond to “,”

“.” and “/”. The experiment will move on to the next scene when you press a key.
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