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ABSTRACT OF THE THESIS 
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By RAVI GHANSHYAM PATEL 

 

Thesis Director: 

Professor Francisco Javier Diez 

 

Electroosmotic pumps show promise in many fields. For example, several lab-on-chip 

devices have been proposed the make use of these devices
 (1)

. This thesis will focus on 

finding the fluid velocity distribution inside an electroosmotic pump. First, the fluid 

velocity was calculated for an electroosmotic pump using a bipolar pulse train voltage. 

Next, the particle velocity for particles suspended in the fluid was found. A glass 

electroosmotic pump was constructed using a glass capillary tube. Using a 1mM Borate 

buffer solution and 0.5µm Fluosphere particles, time resolved micro particle image 

velocimetry (TRµPIV) was performed on the pump to obtain the particle velocity 

distribution inside the pump. The experiment fluid velocity was calculated from this 

particle velocity. The experimental particle and fluid velocities show excellent agreement 

with the theoretical calculations. 
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Chapter 1  

 

1.1. Introduction 
 

Electrokinetics is the study of phenomena that occur due to boundary interactions 

between solids and fluids. This thesis focus of two kinds of these phenomena: 

electroosmosis and electrophoresis. Electroosmosis is the motion of fluid near a solid 

wall due to the presence of an electric field. Electrophoresis is the motion of particles in a 

fluid due to the presence of an electric field.  

Electrokinetic phenomena have many useful applications, particularly in 

microfluidics. For example, using the electroosmotic effect, it is possible to construct a 

micro pump with no moving mechanical parts. In addition, the electrophoretic effect can 

be used to separate particles suspended in solution
 (2)

. This enables upcoming technology 

such as lab-on-chip
 (1)

. This thesis will focus on the movement of particles inside an 

electroosmotic pump. The fluid and particle velocities will be found theoretically and 

experimentally and compared. 

 
 

1.2. Electroosmosis and Electrophoresis 
 

When a fluid comes in contact with a solid, ions in the fluid organize to form an 

electric double layer next to the solid wall . The layer adjacent to the wall is formed by 

chemical interactions between the fluid and the solid. Its potential attracts the second 

layer by the Coulomb force. The Gouy-Chapman-Stern model is often used to describe 

the double layer (see Figure 1.1). This model assumes that ions in the first layer, called 

the Stern layer, are stationary with respect to the surface of the solid and the ions in the 
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second layer, called diffuse layer, move freely. In electroosmosis double layer forms on 

the surface is the wall in contact with the fluid. In electrophoresis the double layer forms 

around the surface of the particle suspended in the fluid
 (3)

. Figure 1.2 shows a diagram of 

the electroosmotic and electrophoretic effects. 

Past the Stern layer, charge is assumed to be distributed according to the Poisson-

Boltzmann equation
 (4)

: 

    ( )   
 

 
∑  

 

   

      ( 
   

  
 ( )) (1.1)   

Where   is the electric potential at   due to the double layer,   is the permittivity 

of the fluid, the summation is over each ion in the fluid,    is the concentration of the ion 

in the bulk fluid, e is the Faraday Constant,    is the charge of the ion, k is the Boltzmann 

constant, and T is the temperature. Because this equation is nonlinear, solutions exist for 

only a few special cases. Therefore, this equation is often simplified by assuming 

symmetric electrolytes, where ion and counter ion have the same charge. In one 

dimensional rectangular coordinates
 (2)

: 

 
   ( )

   
 

    

 
    (

  

  
 ( )) (1.2)   

 The equation is often linearized by using the Debye-Huckel approximation, when 

   

  
  is small

 (5)
: 

 
   ( )

   
 

      

   
 ( ) (1.3)   

 The Debye length,     (
   

      )
   

, characterizes the length at which the 

potential decays. This equation can be solved using a boundary condition. However, there 

is some uncertainty as to what boundary condition to use. The potentials at the Stern layer 
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and through the diffuse layer are estimated to be very high, but cannot be measured using 

current techniques. It is common to use the potential at the shear plane, where the no slip 

condition can be applied, because it is possible to experimentally determine the potential 

here. The potential at the shear plane is called the zeta potential
 (4)

. Equation 1.3 is 

integrated on the semi-infinite domain, defining     at the shear plane, to find: 

         (1.4)   

 At the solid-liquid interface, the material of the solid and the composition of the 

liquid determine the chemical interactions in the Stern layer, and so they determine the 

zeta potential. The chemical interactions in the solid-liquid interface, however, are very 

complex, so the zeta potential cannot be derived theoretically
 (5)

. From experiments, the 

surface material and roughness, the solutes and solvent, the pH of the solution, and the 

concentration of solution all significantly affect the zeta potential. Extremely dilute 

solutions do not follow the thin double layer approximation. The zeta potential cannot be 

measured directly because of the small scale of the double layer and techniques used to 

find the zeta potential rely on indirect measurements. 

Electroosmosis causes fluid in contact with a surface to flow under an electric 

field.  In an electroosmostic flow, an electric field is applied tangentially to a surface. The 

ions in the diffuse layer move according the Coulomb force generated by the electric 

field. They drag the surrounding fluid, which in turn viscously drags the bulk fluid. The 

motion of charged fluid above a fixed flat plate due to an electric field is used to 

represent electroosmosis. Similarly, in electrophoresis, the electric field creates a force on 

the ions in the Stern layer which transfers to the particle. A coordinate transform is used 

so that the particle is represented by a mobile flat plate
 (2)

. The motion of the charged 
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fluid above this plate due to an electric is used to represent electrophoresis. The velocity 

generated by electroosmosis, on the fluid, or electrophoresis, on the particle, can be used 

to find the zeta potential. This velocity can be calculated using the Navier-Stokes 

equation in conjunction with the potential distribution as shown above in Equation 1.4 

(2). 

 
  ( )

  
  

  ( )

 
     ( )    ( ) (1.5)   

Where   is the flow velocity, P is the pressure,   is the density of the fluid,   is 

the kinematic viscosity, and    is the Coulomb force caused by the electric field. 

According to the Poisson Equation, the Coulomb force can be written as  

   ( )    ( ) ( )     ( )   ( ) (1.6)   

Where   is the charge density of the fluid and E is the applied electric field. 

Microfluidic flows are relatively slow moving and have small characteristic lengths, so 

the Reynolds numbers are small, and Stokes flow can be used as an approximation. In 

addition, pressure gradients can be ignored. The zeta potential is assumed to be a physical 

property that does not depend on time, so the flow can be taken to be steady. The electric 

field is assumed to be unidirectional, uniform, and applied in the lengthwise direction. 

For one dimensional rectangular coordinates and uniform electric field, the equation 

reduces to
 (4)

: 

 
   ( )

   
 

  

 

   ( )

   
 (1.7)   

For electroosmosis, this equation is integrated using the semi-infinite domain 

boundary conditions: ( (   )    and 
  

  
|
   

   (where y=0 at the shear plane) to 

give: 
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    ( )  
    

 
(      ) (1.8)   

    and    have replaced   and   to represent the electroosmotic velocity and 

wall zeta potential, respectively. The potential,  , is approximated using Debye Huckel 

approximation (see Equation 1.4). For small Debye lengths (    ), the exponential 

term vanishes and the electroosmotic velocity becomes
 (2)

: 

      
   

 
  (1.9)   

For electrophoresis, Equation 1.7 is integrated using the semi-infinite domain 

boundary conditions: ( (   )  
   

 
 and  |      (where y=0 at the shear plane) to 

give: 

    ( )  
    

 
(    ) (1.10)   

    and    have replaced   and   to represent the electrophoretic velocity and 

particle zeta potential, respectively. The potential,  , is approximated using Debye 

Huckel approximation (see Equation 1.4). The velocity of the particle is the velocity at 

the wall.  

     
   

 
  (1.11)   

For convenience, Equations 1.9 and 1.11 are written as follows
 (2)

: 

         , where      
   

 
 (1.12)   

         , where     
   

 
 (1.13)   
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    and     are defined as the electroosmotic and electrophoretic mobilities. They 

are properties of the solid-liquid interface and do not depend on the electric field. 

Equations 1.12 and 1.13 are known as the Smoluchowski equation
 (2)

. 

Through these calculations, the fluid velocity produced by electroosmosis and the 

particle velocity produced by electrophoresis are shown to be directly proportional to the 

zeta potential. This demonstrates the importance of measuring the zeta potential for 

electroosmosis and electrophoresis. Techniques used to measure the zeta potential by 

electroosmosis consist of finding the electroosmotic velocity so that the zeta potential can 

be calculated by Equation 1.9 and 1.11. From this, it is clear why the zeta potential is 

defined as the potential at the shear plane. Fluid flow does not occur between the surface 

and the shear plane, so the electroosmotic mobility is only affected by the flow velocity 

of the fluid which is viscously dragged to the velocity in Equation 1.12 and 1.13 by the 

shear layer. 

If the walls and particles are far enough apart, the double layers do not overlap 

and the Poisson-Boltzmann equation holds. The Debye-Huckel approximation can then 

be applied if the zeta potential can be assumed to be small. The thin double layer 

approximation can be used if the Debye length is small. As long as these conditions are 

satisfied, an experimentalist can calculate the zeta potential from Equations 1.12 and 1.13 

by finding the velocities of the particles or fluid under an applied electric field. Using this 

zeta potential, the velocity of the particles and fluid can be predicted for other electric 

fields. 

 Minor 
(6) (7)

 has shown that the characteristic response time for the electroosmotic 

and electrophoretic effect are: 
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      (
     

 
) (1.14)   

      (
  

   

 
) (1.15)   

 The electrophoretic effect occurs at a much faster time scale than the 

electroosmotic effect because the diameter of the particles are much smaller than the 

height of the microchannel. 

 

1.3. Thesis Outline 
 

The electroosmotic and electrophoretic effect can be generated inside a fluid filled 

microchannel under an applied electric field. Each wall acts as the solid-liquid interface 

for electroosmosis. Particles can be added to the microchannel. Under the applied electric 

field, electroosmosis would drive the fluid and electrophoresis would drive the particles. 

The pressure from the fluid would also create a force on the particles. 

 In this thesis the movement of particles inside an electroosmotic channel will be 

measured, so both electrophoresis and electroosmosis are considered. In the previous 

section, the electroosmotic velocity was found. However, if the electric field is applied at 

a high enough frequency the fluid velocity would never fully develop. It must be 

considered unsteady and varying throughout the cross section of the channel. The fluid is 

driven by electroosmosis and the particles are viscously dragged by the fluid as well as 

by the electrophoretic force. This particle velocity is solved for. The electrophoretic 

effect is assumed to take effect instantly after voltage is applied because it acts on a much 

faster time scale. An electroosmotic pump is constructed and filled with a particle 

mixture. As power is applied to the channel, the velocity of the particles is measured 
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using time resolved micro particle image velocimetry (TRµPIV)
 (7) (8)

. This experimental 

velocity is compared to the derived velocity. 
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Figure 1.1. Diagram of the double layer according to the Gouy-Chapman-Stern model
 (9)
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Figure 1.2. Diagram of the electrophoretic (left) and electroosmotic (right) effects. The 

double layers at the solid-liquid interface react to the electric field and cause a force on 

the particle (left) and the fluid (right). 
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Chapter 2  

 

2.1. Derivation of flow and flow rate using Duhammel’s theorem and separation of 

variables 
 

The flow profile generated by applying a time dependent voltage is modeled here 

using a variation of Stokes’ First and Second Problem. Electroosmotic flows typically 

have very low Reynolds numbers, so they can be assumed to be Stokes flows. The diffuse 

layer can be represented as the plate in Stokes’ Second Problem
 (10)

, moving at a velocity 

equal to the electroosmotic slip velocity. The velocity is assumed to be linear with the 

applied voltage. This is approximately true because the response time for the 

electroosmotic slip velocity is very fast. The electric field is applied as a bipolar pulse 

train waveform as shown in Figure 2.1. Therefore, according to Equation 1.12, the slip 

velocity is assumed to be the same function scaled by the electroosmotic mobility. u
+
 is 

defined as the electroosmotic velocity associated with the positive voltage pulse and u
-
 is 

electroosmotic velocity associated with the negative voltage pulse. 

Figure 2.2 shows the geometry of the channel. Assuming the width of the channel 

is large compared to the height of the channel, the electroosmotic effects due to the side 

walls can be neglected and the problem can be modeled as the fluid flow between two 

infinite plates moving at the electroosmotic slip velocity. 

As in Stokes’ Problems, the governing equation is the diffusion equation
 (11)

. 

However, in Stokes’ Second Problem, uslip would have a simple sinusoidal expression, 

but in this problem, the velocity follows the same curve as the voltage, multiplied by a 

scaling factor. The velocity initially is taken to be zero for all y. By symmetry, the top 

half and bottom half the channel are identical, so only the top half the channel needs to be 
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solved for, using the symmetry boundary condition at the center of the channel. The 

electroosmotic slip velocity is used as the boundary condition for the top of the channel. 

The fluid velocity profile uf(y,t) can be found from the follow PDE: 

 

   

  
  

    

   

  (   )         ( )

   

  
|
   

  

  (   )   

 (2.1)   

 By Duhamel’s Theorem
 (12) (13)

, the solution to the above problem is: 

 

  (   )  ∫  (     )
  ( )

  
  

 

 

 ∑ (      ) (  (  )    (  ))

 

   

   

(2.2)   

 Since  ( ) is a bimodal pulse train, it is composed of a series of discontinuities. 

  (  )    (  ) is the difference in  ( ) at the discontinuity     .  (   ) is the 

solution to the following homogeneous PDE: 

 

  

  
  

   

   

 (   )   
  

  
|
   

  

 (   )   

 (2.3)   

  (   ) can be solved for using separation of variables
 (13)

: 

  (   )    
 

 
∑

(  ) 

  
   (   )      

  

 

   

 (2.4)   

 Where    is  
(    ) 

  
.  The discontinuities in f(t) occur at: 
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 (     )          

(   )(     )            
 (2.5)   

 At the first set of discontinuities, the expression   (  )    (  )         

and at the second set, the expression   (  )    (  )       . From Duhamel’s 

equation, the final solution is
 (12) (13)

: 

 

  (   )     (   )  (  

   ) ∑( (        ) (      )

 

   

  (        ) (      )) 

(2.6)   

Where         (     ),      (   )(     )    , and   (   ) is the 

Heaviside step function. The volume flow rate, Q, is calculated by integrating over the 

cross sectional area of the channel: 

  ( )   ∫ ∫  (   )    
 

 

 

 

 (2.7)   

This evaluates to: 

 

 ( )     ( )  (  

   ) ∑( (      ) (      )

 

   

  (      ) (      )) 

(2.8)   

Where: 

     (  
 

 
∑

(  )    (   )

  
 

 

   

     
  ) (2.9)   



14 

 

 

 

 (        ) (      ) can be interpreted as the fluid velocity response to unit 

step voltage change. Similarly,  (      ) (      ) can be interpreted as the flow rate 

response to unit step voltage change. 

To compare the effect frequency has on the fluid velocity, two plots are 

generated. In first case, the frequency is set to 1Hz and in the second case it is set to 

100Hz. Plots are generated for u
+
=0.7mm/s, u

-
=-0.3mm/s, t

+
=400 ms, t

- 
= 600 ms, ν=10

-6
 

m
2
/s, h=150 µm and for u

+
=0.7mm/s, u

-
=-0.3mm/s, t

+
=4 ms, t

- 
= 6 µs, ν=10

-6
 m

2
/s, h=150 

µm. Note that L is the time for 1 period and equals t
+
+t

-
. The frequency is f=1/L. These 

parameters are selected using the geometry of the channel used for the experimental 

section of this thesis (see Chapter 3). 

Figure 2.3 shows that the response time is nearly instantaneous for all y when the 

frequency is 1Hz. The velocity vs. time graphs are nearly identical for all y. With this 

frequency, the step changes in the voltage are so slow that they have time to propagate to 

the center of the channel before the next step change occurs. However, when the 

frequency is increased to 100 Hz (see Figure 2.4), there is significant variation in velocity 

vs. time graphs for different values of y. At the faster frequency, changes in the 

electroosmotic slip velocity do not have time to propagate through the channel. The rise 

time for these propagations is on the order of 10 ms. 

Because the response time is so fast, the velocity profile can be approximated to 

be uslip for all h when the frequency is below 1 Hz. This cannot be assumed when the 

frequency is 100 Hz. 

 

2.2. Derivation of steady state flow rate 
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In this section, the flow rates generated by bipolar pulse train waveforms with 

various duty cycles and voltages will be compared. Because the velocity throughout the 

channel initially starts at zero, there are starting effects. These transients will be separated 

from the complete flow rate to find the steady state flow rate. This steady state flow rate 

allows the waveforms to be compared while neglected the starting effects.  

Let     (     ) (   )(     )], where R is a very large, positive integer. 

R represents a period of the bipolar pulse train very far from the starting time. On this 

interval, the starting effects are negligible. By inspection,        ( )      . The flow 

rate can be expanded over n as follows: 

 

 

 

 

 

 

 ( )        (     )  {[ (  (     )) (  (   

  ))   (  (     )    ) (  (     )    )]    
  (  (   )(     )) (  (   )(     ))   (  (  

 )(     )    ) (  (   )(     )    )]  [ (  

 (     )) (   (     ))   (   (     )    ) (  

 (     )    )]    (  (   )(     )) (  (   )(   

  ))   (  (   )(     )    ) (  (   )(     )  
  )]   }   

(2.10)   

 

Terms that are multiplied by  (    ) where    (   )(     ) are 

dropped because they are zero for the interval considered. 

 

 ( )        (     )  {[ (  (     )) (  (   

  ))   (  (     )    ) (  (     )    )]    
  (  (   )(     )) (  (   )(     ))   (  (  

 )(     )    ) (  (   )(     )    )]  [ (  

 (     )) (   (     ))   (   (     )    ) (  

 (     )    )]     (  (   )(     )    ) (  (  

 )(     )    )]}  

(2.11)   

 

Let  ̅     (     ). This represents the time starting at a period long after 

voltage is initially applied. The flow rate can by rewritten as: 
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 ( ̅   (     ))        (     )  {  ( ̅  (   )(   
  )) ( ̅  (   )(     ))   ( ̅  (   )(     )  
  ) ( ̅  (   )(     )    )]      ( ̅  (     )) ( ̅  
(     ))   ( ̅  (     )    ) ( ̅  (     )    )]  
  ( )̅ ( ̅)   ( ̅    ) ( ̅    )]     ( ̅    ) ( ̅    )]}  

(2.12)   

 

By definition,  (    )    for     , so the flow rate can be simplified as 

follows: 

 
 ( ̅   (     ))        (     )  {   ( ̅    ) ( ̅  
  )]    ( ̅  (   )(     ))   ( ̅  (   )(     )  
  )]      ( ̅  (     ))   ( ̅  (     )    )]  
  ( )̅   ( ̅    )]}  

(2.13)   

 

When n is much smaller than R, the following limits can be defined. 

        ( ̅  (   )(     ))          for n<<R 
       ( ̅  (   )(     )    ))        for n<<R 

(2.14)   

 

 Using these limits, the flow rate can be further simplified as: 

 
 ( ̅   (     ))        (     )  {   ( ̅    ) ( ̅  
  )]    ( ̅)   ( ̅    )]    ( ̅  (     ))   ( ̅  
(     )    )]    ( ̅   (     ))   ( ̅   (     )  
  )]   }  

(2.15)   

 

Since  ( )̅    ( ̅   (     )) for any large R, the above equation gives the 

steady state flow rate. Rearranging: 

 

 ( ̅)        (      ( ̅   ) ( ̅   )

 ∑[ ( ̅   (     ))   ( ̅   (     )    )]

 

   

} 

(2.16)   

 

The time averaged steady state flow rate is found by integrating over a full period. 

      
 

     
∫  ( ̅   (     ))  ̅

     

 

 (2.17)   

 Evaluating this expression gives: 
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   (         )

     

 
     

     
{
  

 
∑

 

   
 

[(       
   

)

 

   

 ∑(     
  (     )[     

 (     )       
   

 

   

      
 (      )   ])]} 

(2.18)   

The flow rate is nondimensionalized and shown as follows. 

 

 ( ̅   (   
    ))

    
 (   

    ) {[   ( ̅     
) ( ̅     

)]

 ∑[  ( ̅   (   
    ))    ( ̅   (   

    )     )]

 

   

} 

 

(2.19)   

Where: 

    (   ∑
(  )    (  

 )

  
  

 

   

      
  

  
) (2.20)   

The average flow rate is nondimensionalized and shown as follows. 

 

    
  (   

   
       )

 
   

    

       { ∑
 

    
  [(        

  
   

)

 

   

 ∑ (      
  

 (   
    ) [      

  
(   

    )        
  

   

 

   

       
  

(   
     )   ])]} 

(2.21)   

 Where: 
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  ,        √                 ,       

 (     )

      ,   

   
 

  

    
   ,        

  

    
  ,      

 
  

     
   ,       

  

     
   ,   

  
      

 

(2.22)   

 The flow rate appears to depend on the nondimensional term,   . For large   , the 

flow rate appears plug like, following the shape of the applied voltage exactly. The steady 

state and total response for large    are also identical. However, for lower   , there is 

significant rise time and a clear transient response (see Figure 2.5). Since    represents 

the ratio of the length of the period to the height of the channel, shorter periods and 

thicker channels correspond to slower rise times. As expected, the flow velocity takes 

longer to reach the center of the channel in this case. 

The average flow rate for various positive and negative voltage pulses are found 

and shown in Figure 2.6. They are plotted as a function of the ratio between the integral 

of the positive voltage pulse to the integral of the negative voltage pulse. The average 

flow rates are normalized to the root mean square of the flow rate. This normalized flow 

rate is effectively the flow rate produced by a DC voltage running at the root mean square 

of the bipolar pulse train waveform. It is assumed that the resistance of the channel is not 

affected by the applied voltage. Therefore the pump draws power like a simple resistor 

circuit where the average power is the square of the RMS voltage divided by the 

resistance. Since the slip velocity is linear with voltage, and the steady state flow rate 

with the slip velocity, taking the RMS of the flow rate allows comparison of the power 

usage for various waveforms.  

When the areas under the positive and negative voltage pulses are equal, the 

average flow rate is zero for all curves because the flow produced during the positive 
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voltage pulse cancels out the flow produced during the negative voltage. When the duty 

cycle goes to 100% (V
+
t
+
/V

-
t
-
 goes to infinity), the normalized flow rate approaches 1. 

When the duty cycle goes to 0% (V
+
t
+
/V

-
t
-
 goes to 0), the normalized flow rate 

approaches -1. As expected, in these cases, these flow rates are identical to the flow rate 

produced by a DC voltage. For a given voltage pulse area ratio, a V
+
 to V

-
 ratio of 1 uses 

the most power. 

 

2.3. Movement of Particles due to Electrophoresis and Electroosmosis 
 

 The previous sections described the motion of fluid in an electroosmotic micro 

channel. In this section, the movement of the particles in the micro channel is considered. 

There are several forces acting on particles in electroosmotically driven flow: Stokes 

drag, the pressure force, the Basset force, and the electrophoretic force. Assuming the 

flow is laminar, the Basset-Boussineq-Oseen
 (14)

 equation can be used to describe the 

motion of the particles. This equation is shown below. 
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(2.23)   

 This equation is a force balance for the particles. The right hand side is the mass 

of the particle times its acceleration. The left hand side (LHS) is the sum of the forces 

acting on the particle. The first term on the LHS is the Stokes drag for a spherical 

particle. The second term is the pressure force. The third term is the added mass term. 

Because the movement of the particle causes the surrounding fluid to move as well, the 

extra inertia of the surrounding fluid must be accounted for. The fourth term is the Basset 

history force. This arises because the boundary layer of the fluid has momentum and 
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takes time to react to the acceleration of the particles. The fifth term is the electrophoretic 

force 
(14)

. The electric field used to drive the electroosmotic flow also creates a force on 

the particles. It is assumed to follow a repeating bipolar pulse train as discussed earlier.  

 The Navier-Stokes equation can be used to approximate the pressure term: 

       

   

  
       (2.24)   

 Assuming the flow is unidirectional and fully developed, Equation 2.24 reduces 

to: 

       

   

  
 (2.25)   

Substituting Equation 2.25 into Equation 2.23, and rearranging: 
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(2.26)   

 Where: 
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Here, the pressure term and the added mass terms have been combined
 (14)

. The 

mass of the particle has been absorbed into Fep to give fep, which represents the electric 

force per unit particle mass. The following equation describes fep. 

        
  ( )  (   

     
 ) ∑ ( (      )   (      ))

 

   

 (2.28)   

   
  is the electrophoretic force on the particles when the positive voltage pulse is 

applied and    
 is the force when the negative voltage pulse is applied. up is solved for 
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using the Laplace transform technique
 (13)

 for solving ordinary differential equations. The 

result is shown below: 
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(2.30)   

This equation describes the motion of particles in electroosmotic flow.    
 , 

   
      and    remain unsolved for.    and    can be found in terms of the wall zeta 

potentials as shown in Section 1.2. 

     
   

  
   (2.31)   
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To find    
  and    

  , the fluid velocity in Equation 2.29 must first be set to zero. 

This leaves the electrophoretic contribution to velocity: 

 

    
 

     
(         

      (   √ )       

    
      (   √ )) 

(2.32)   

This electrophoretic velocity can be found using the particle zeta potential as 

shown in Section 1.2. 

    
  

   

  
   (2.33)   

These zeta potentials and must be found experimentally as will be discussed in 

Section 4.1. 
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Figure 2.1. The voltage applied to the channel has the waveform above. It is a periodic 

function, alternating between a positive voltage pulse, V
+
, for t

+
 time and a negative 

voltage pulse, V
-
, for t

-
 time. 
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Figure 2.2. Isometric view of the channel (top). Cross-section of the channel (bottom). 

EO flow is approximated using a variation of Stokes’ problems. The flow is assumed to 

be viscously dragged by the walls moving at the electroosmotic velocity,      . 
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Figure 2.3. Instantaneous flow velocity, at various channel locations for an applied 

bipolar asymmetric waveform with f=1Hz and h=150µm. The channel height, u
+
, u

-
, t

+
 

and t
-
 are set to 300µm, 700µm/s, -300µm/s, 60% of period, and 40% of period. At low 

frequencies, there is little variation in velocity along the cross section of the channel. The 

velocity is approximately equal to the slip velocity everywhere in the channel. 
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Figure 2.4. Instantaneous flow velocity, at various channel locations for an applied 

bipolar asymmetric waveform with f=100Hz and h=150µm. The channel height, u
+
, u

-
, t

+
 

and t
-
 are set to 300µm, 700µm/s, -300µm/s, 60% of period, and 40% of period. At higher 

frequencies, the velocities at different radial locations vary significantly. Each step 

change in the slip velocity does not have time to propagate throughout the channel before 

the next step change occurs. 
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Figure 2.5. Combined steady state and transient flow rate vs. time (top). Steady state 

flow rate vs. time (bottom). The channel height, u
+
, u

-
, t

+
 and t

-
 are set to 300µm, 

700µm/s, -300µm/s, 60% of period, and 40% of period. The blue curve is for a waveform 

with frequency f= 1Hz (       ) and the green line is for a waveform with frequency 

f=100Hz (        ). 
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Figure 2.6. Flow rate v. ratio of the areas under the voltage curve for positive and 

negative voltages. Each curve represents the flow rate for different ratios of positive to 

negative voltage. All curves meet where the ratio of areas is one where they have zero 

flow rates. 
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Chapter 3  

 

3.1. Manufacturing 
 

An electroosmotic pump was designed to test the equations derived in the earlier 

sections. The channel height and width were chosen to be 0.3mm and 3mm. This allows 

the channel to be approximated as a 1D channel height wise because effects from the 

widthwise directions would occur at significantly slower time scale as shown in Equation 

1.14. The characteristic time for electroosmotic effect in the widthwise direction is 36 

seconds compared to 0.36 seconds is the height wise direction.   

The pump is composed of a glass channel connecting two reservoirs. The base 

was constructed using three glass Fisherbrand Precleaned Microscope Slides arranged in 

a “U” shape. Two parallel slides were placed one centimeter apart, and the third slide was 

epoxied across along the bottoms of the two parallel slides. The glass channel was cut 

from a 0.3mm tall by 3mm wide borosilicate glass capillary tube (VitroCom VitroTubes) 

using a tungsten carbide glass etcher (General Scriber/Glass Etching Pen) to a length of 

2cm. It was then epoxied across the gap in the base along the top.  

Reservoirs were then created from a 3mL polyethylene plastic pipette from Fisher 

Scientific. Two, 1cm long tubes were cut from the bulb of the pipette. They were placed 

on either side of the glass channel so that the ends of the channel fell inside the cylinders 

and epoxied to the glass slides so that the bottoms of the cylinders were sealed. Figure 3.1 

shows the completed electroosmotic pump. 
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An electrode is placed each reservoir. Inert, 0.25mm, 99.9% platinum wires from 

Sigma Aldrich were used to limit electrode reactions. A Tektronix AFG 3021B signal 

generator connected to a Trek Model 5/80 High Voltage Amplifier powers the pump. 

 

3.2. Cleaning and Preparation 
 

To clean the pump, first, deionized water is adding continuously to one reservoir, 

causing pressure to force fluid through the channel into the other reservoir, until both 

reservoirs are filled. The deionized water is removed and the reservoirs are refilled twice 

more in the same manner.  The pump is connected to the power supply and a DC 

waveform is applied for 20 minutes. The voltage is varied until the current is around 

0.5mA.  This process is repeated once with a 100mM sodium hydroxide solution, once 

more with deionized water, and once with a 1mM borate buffer solution, with the 

exception of applying voltage for 40 minutes instead of 20 minutes.  The 1mM borate 

buffer solution was chosen as the working fluid for the pump.  Previous work has shown 

that this solution is able to produce measurable electroosmotic velocities. The 100mM 

NaOH cleaning solution was prepared by mixing deionized water with anhydrous sodium 

hydroxide. The 1mM borate buffer was prepared by mixing deionized water with 

anhydrous sodium tetraborate and anhydrous boric acid. All anhydrous compounds were 

provided by Sigma-Aldrich. 

The microchannel is viewed using a Nikon Eclipse Ti-U bright field microscope 

with a 40X objective. Images are captured a using the high speed PowerView HS-2000 

camera and the Photron FASTCAM Viewer image capture software. The camera’s 

resolution and pixel size are 1024 x 1024 and 17µm x 17µm, giving a total field of view 

of 17.4mm x 17.4mm. It has an intensity range of 8 bits. The camera is mounted to the 
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microscope using a Nikon F-mount with 2X magnification, giving a total magnification 

of 80X.  

0.5µm polystyrene beads (FluoSphere F8810) were used as tracer particles for 

these experiments. They were chosen because they appeared, on average, approximately 

5 pixels in diameter on the camera, so were close to the ideal size for µPIV. These 

particles were received as suspensions (2% solids) in water. The suspensions were mixed 

with the 1mM borate buffer solution in a 10:1 solution to suspension ratio. The pump is 

filled with this mixture for the experiments. 

 
 

3.3. Experimental Procedure 
 

Once the particle mixture is added to the pump, the pump is mounted onto the 

microscope stage and connected to the power supply. The microscope is focused at the 

center of the channel lengthwise and widthwise and varied height wise. The bright field is 

switched on and the particles can be seen in through the eyepiece and the camera in 

Photron FASTCAM Viewer.  

Two types of experiments are performed. In the first type, images are captured as 

DC voltage is applied to the pump. Data from this experiment can be used to calculate the 

electroosmotic slip velocity and the electrophoretic force as described in Chapter 2. In the 

second type, images are captured while a bipolar pulse train waveform, with varying 

positive and negative voltages and duty cycles, is applied. The camera and signal 

generator are synchronized via TTL so that the camera starts recording at the beginning 

of a period in the waveform. The signal generator is switched on a few seconds before the 

camera is so that the transient effects dissipate before data is gathered. The camera 

records at 2000 frames per second in both cases. 
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The captured images must be preprocessed in Matlab before they can be analyzed. 

First, the images are inverted so the particles show as bright spots instead of dark spots as 

captured in the raw images. This is required for the PIV application. Second, the images 

are averaged to calculate the background which is then subtracted from each image. This 

removes dirt and corrects for uneven lighting in the images. Finally the images are passed 

through a high and low pass filter. The high pass filter sharpens the images and the low 

pass filter reduces noise. This is achieved by separately passing the images through two 

Gaussian low pass filters, one with a kernel size of 31 by 31 and standard deviation of 21, 

and one with a kernel size of 3 by 3 and standard deviation of 3. The images from the 

first filter are subtracted from the images from the second filter. The images are now 

ready to be processed. 

PIV is performed on successive image pairs using the Insight 4G PIV software 

using a Gaussian edge mask and an interrogation window size of 128 by 128. This results 

in a velocity field for each image pair. The velocity vectors are averaged for each velocity 

field, so each image pair gives a particle velocity for a specific time and channel height. 

Figure 3.2 shows a diagram of the experimental set up. 
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Figure 3.1. Completed electroosmotic pump used in experiments. The pump is mounted 

onto the microscope stage and connected to the power supply. 
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Figure 3.2. Diagram of experimental set up. The microchannel is powered by a signal 

generator connected to a power amplifier. The bright field illuminates the microchannel. 

The particle’s shadows are captured by the camera and analyzed using PIV. 
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Chapter 4  

4.1. Finding the parameters 
 

 In Section 2.3, the velocity of particles in electroosmotic flow was found in terms 

of the fluid velocity and the electrophoretic force.  For each voltage applied to the 

microchannel, there are two parameters that must be solved for, the electroosmotic slip 

velocity and the electrophoretic force per unit particle mass. These can be found by 

capturing the particle velocity while voltage is applied to the channel as a step function.  

 Since the electroosmotic slip velocity and electrophoretic force are linear 

functions of voltage, the parameters for one voltage can be used to calibrate any 

experiment. For this analysis, Vo, uo, and fo will be used to designate the voltage, the 

associated velocity, and the associated electrophoretic force per mass.  Two voltages are 

tested: 100V and 200V. The velocity of the particles at the center of the channel is 

captured as the voltage is applied, using the technique described in Section 3.3. The 

results are shown in Figure 4.1.  From this graph, the velocity reaches a peak and then 

approaches a limit on the right. The peak appears because electrophoresis acts on a much 

shorter time scale than electroosmosis, so the particles respond quickly to the 

electrophoretic force. As the electroosmotic flow develops, it pushes the particles along 

with it. 

 Because the applied voltage is a step function, the step function response for 

electroosmosis is taken to be uf (See Equation 2.4).  The electrophoretic force is assumed 

to be proportional to the voltage, so a step function is also used for fep. The equations 

below describe uf and fep. 

        ( ) (3.1)  
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       (     ) (3.2)  

 

Equations 3.1 and 3.32 are substituted into particle velocity equation (see 

Equation 2.29).  fo and uo are varied until the peak and right side limit shown match the 

experimental data.  The results of the matching are shown in Figure 4.1. For comparison, 

the theoretical particle velocity was calculated, ignoring the added mass. This result 

differs from the full solution to the B-B-O equation. The Basset force appears to have a 

much smaller effect. When it is cancelled, the calculated velocities do not differ from the 

full solution to the B-B-O equation. uo and fo were found to be -183µm/s and 3.47 x 10
6
 

m/s
2
, respectively for 100V; and -380µm/s and 7.50 x 10

6
 m/s

2
, respectively for 200V. 

 As expected, the electrophoretic force and electroosmotic slip velocity for 200V is 

roughly double the values for the 100V case. The electroosmotic slip velocity for this 

channel configuration is 3.73 x 10
-4

 cm
2
/V-s. The particle charge can also be found using 

Coulomb’s Law: 

               
(3.3)  

 

The charge of the particles is 4.96 x 10
17 

C. Since uo and fo are known for an 

applied voltage of 100V and 200V, the velocity of the particles can be found for when a 

repeating bipolar pulse train is applied. The square wave response for electroosmosis is 

taken to be uf (See Equation 2.6). Since the electrophoretic force is proportional to the 

voltage, a square wave can also be used for fep. Equation 2.29 now fully describes the 

velocity of the particles with all the parameters known.  

 

4.2. Particle velocity due to bipolar pulse train voltage 
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The time resolved velocity distribution of the particles in response to the repeating 

bipolar pulse train voltage is captured using PIV. Data is captured along channel height 

for two waveforms. 

The particle velocity in response to a square waveform is first captured. (V
+ 

= 

100V, V
- 
= -100V, t

+
 = t

-
 = 0.005s). Using Equation 2.29 with the parameters found in the 

previous section, the theoretical particle velocity distribution can be found. 

The measured velocity profiles and calculated velocity profiles are compared in 

Figure 4.2 and 4.3. In Figure 4.2 the particle velocity profiles are shown and in Figure 4.3 

the fluid velocity profiles are shown. These are taken at various times spanning across a 

full period of the voltage waveform from the center of the channel to the top wall. t=0 

and t=0.005s mark the transition from the negative to positive voltage pulse and the 

positive to negative voltage pulse, respectively. Away from these transitions, the velocity 

profiles match closely. However, at these transitions, the velocity profiles significantly 

differ. This error likely occurs because of the limited frame rate of the camera. Because 

voltage is discontinuous at these times, the velocity changes too quickly, and the camera 

cannot capture the profile correctly. 

The particle velocity as a function of time at various channel heights is next 

compared in Figure 4.3. Here, the measured and calculated values match somewhat 

closely. The experimental data match the theory very well when y=0 and y=75µm. At the 

wall, however, there is significant error. Due to the scarcity of particles near the wall and 

light scattering due to the wall [], data had to be captured some distance away from the 

wall. The experimental fluid velocity can be calculated by subtracting the electrophoretic 

effect from the experimental particle velocity. From Equation 2.9, the electrophoretic part 
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of the particle velocity can be found by ignoring the electroosmotic terms. This results in 

the following equation. 

 
    

 

     
(         

      (   √ )       

    
      (   √ )) 

(3.4)  

This electrophoretic velocity is subtracted from the particle velocity to give the 

experimental fluid velocity. The experimental fluid velocity is compared to the 

theoretical fluid velocity in Figure 4.4.  The velocities are similar everywhere except at 

the voltage pulse transitions. Again, the discontinuity in voltage cannot be captured by 

the cameras because the frame rate is limited. 

The flow rate was then calculated and compared in Figures 4.5 and 4.6 for two 

different waveforms. In Figure 4.5, the voltage was applied as a square wave with a peak 

to peak voltage of 200V and frequency of 100Hz. The experimental and theoretical flow 

rates match very closely, except at the voltage transitions. As described earlier, this is due 

to the limited frame rate of the camera. In Figure 4.6, voltage is applied as a bipolar pulse 

train with V
+ 

= 200V, V
- 

= -100V, 100 Hz frequency, and 25% duty cycle. Here, the 

experimental and theoretical plots look similar initially, but at the voltage transition, the 

flow rates deviate. This is likely due to back pressure building up in the reservoirs. 

Because the average flow rate in this case is nonzero, pressure builds up in one reservoir 

to oppose the electroosmotic flow. 
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Figure 4.1. Particle velocity due to a 100V (top) and 200V (bottom) step waveform. The 

blue graph is found using high speed PIV. The green graph is found be solving the 

Basset–Boussinesq–Oseen equation and matching the peak and right side limit with the 

blue graph. The red graph shows the theoretical particle velocity ignoring the added mass 

term. 

  



40 

 

 

 

 
Figure 4.2. Selected particle velocity profiles. The top side shows the velocity profiles at 

a negative to positive slip velocity transition, starting from the center of the channel to the 

edge of the channel. The left side shows the velocity profiles at a positive to negative 

velocity transition, starting from the center of the channel to the edge of the channel. 

These plots show the top half of the velocity profiles and are for 300µm high rectangular 

channel, using a square wave of 200V peak to peak at 100Hz. 
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Figure 4.3. Selected fluid velocity profiles. The top side shows the velocity profiles at a 

negative to positive slip velocity transition, starting from the center of the channel to the 

edge of the channel. The left side shows the velocity profiles at a positive to negative 

velocity transition, starting from the center of the channel to the edge of the channel. 

These plots show the top half of the velocity profiles and are for 300µm high rectangular 

channel, using a square wave of 200V peak to peak at 100Hz. 
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Figure 4.4. Particle velocity due to a 200Vp-p, 100Hz square waveform at the channel 

heights: y=0 (top), y=75µm (middle), and y=150 µm (bottom). The green graph is found 

using high speed PIV. The blue graph is found by solving the Basset–Boussinesq–Oseen 

equation. 
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Figure 4.5. Fluid velocity due to a 200Vp-p, 100Hz square waveform at the channel 

heights: y=0 (top), y=75µm (middle), and y=150 µm (bottom). The green graph is found 

using high speed PIV. The blue graph is found by solving the Basset–Boussinesq–Oseen 

equation 
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Figure 4.6. Comparison of flow rate vs. time obtained experimental, with PIV and 

theoretically, with the Basset-Boussinesq-Oseen equation. Multiple periods were 

captured with PIV and averaged. A 200Vp-p square wave with a 100Hz frequency was 

applied to the pump. 
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Figure 4.7. Comparison of flow rate vs. time obtained experimental, with PIV and 

theoretically, with the Basset-Boussinesq-Oseen equation. Multiple periods were 

captured with PIV and averaged. A pulse train with a 100Hz frequency, V
+ 

= 200V,       

V
- 
= -100V, and 25% duty cycle was applied to the pump. 
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Conclusion 

 The experimental and theoretical particle and fluid velocity obtained in this thesis 

show good agreement. The fluid and particle velocity distributions match very well for 

towards the center of the wall and away from the voltage pulse transitions. Using the 

techniques described, the electrophoretic force, particle charge, and electroosmotic 

mobility were also found. 

 Errors were mainly caused by limitations in the camera. During the voltage 

transitions, camera frame rate was too low to accurately capture the particle velocity. A 

camera with a higher frame rate can be used, in the future, to measure the velocity 

distributions during the transitions. Another issue was the effect of back pressure on the 

fluid velocity. The pressure build up in the reservoirs can be accounted for in the 

electroosmotic velocity distribution. The fluid and particle velocity for non-net zero 

average flow rates can then be compared. The parameters and dimensions used for the 

experiments can also be varied to further test the equations presented in this thesis. For 

example, the channel height, particle size, and particle density can all be varied.  
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