
ARCHITECTURAL SUPPORT FOR VIRTUAL
MEMORY IN GPUs

BY BHARATH SUBRAMANIAN PICHAI

A thesis submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Computer Science

Written under the direction of

Dr.Abhishek Bhattacharjee

and approved by

New Brunswick, New Jersey

October, 2013

ABSTRACT OF THE THESIS

Architectural Support for Virtual Memory in GPUs

by Bharath Subramanian Pichai

Thesis Director: Dr.Abhishek Bhattacharjee

The proliferation of heterogeneous compute platforms, of which CPU/GPU is a

prevalent example, necessitates a manageable programming model to ensure widespread

adoption. A key component of this is a shared unified address space between the

heterogeneous units to obtain the programmability benefits of virtual memory. Indeed,

processor vendors have already begun embracing heterogeneous systems with unified

address spaces (e.g., Intel’s Haswell, AMD’s Berlin processor, and ARM’s Mali and

Cortex cores).

We are the first to explore GPU Translation Lookaside Buffers (TLBs) and page

table walkers for address translation in the context of shared virtual memory for het-

erogeneous systems. To exploit the programmability benefits of shared virtual memory,

it is natural to consider mirroring CPUs and placing TLBs prior (or parallel) to cache

accesses, making caches physically addressed. We show the performance challenges of

such an approach and propose modest hardware augmentations to recover much of this

lost performance.

We then consider the impact of this approach on the design of general purpose GPU

performance improvement schemes. We look at: (1) warp scheduling to increase cache

hit rates; and (2) dynamic warp formation to mitigate control flow divergence overheads.

We show that introducing cache-parallel address translation does pose challenges, but

ii

that modest optimizations can buy back much of this lost performance.

In the CPU world, the programmability benefits of address translation and phys-

ically addressed caches have outweighed their performance overheads. This paper is

the first to explore similar address translation mechanisms on GPUs. We find that

while cache-parallel address translation does introduce non-trivial performance over-

heads, modestly TLB-aware designs can move performance losses into a range deemed

acceptable in the CPU world. We presume this stake-in-the-ground design leaves room

for improvement but hope the larger result, that a little TLB-awareness goes a long

way in GPUs, sets the stage for future work in this fruitful area.

iii

List of Figures

2.1. The diagram on the left shows conventional GPU address translation with an

IOMMU TLB and PTW in the memory controller. Instead, our approach em-

beds a TLB and PTW per shader core so that all caches become physically-

addressed. 6

2.2. Compared to a baseline architecture without TLBs, speedup of naive, 3-ported

TLBs per shader core, with and without cache-conscious wavefront scheduling,

with and without thread block compaction. Naive TLBs degrade performance

in every case. 8

3.1. Shader core pipeline with address translation. We assume that L1 data caches

are virtually-indexed and physically-tagged (allowing TLB lookup in parallel

with cache access). All caches (L1 and shared caches, which are not shown) are

physically-addressed. Note that the diagram zooms in on the memory unit. . . 12

3.2. The left diagram shows the percentage of total instructions that are memory

references and TLB miss rates; the right diagram shows the average number of

distinct translations requested per warp (page divergence) and the maximum

number of translations requested by any warp through the execution. 14

3.3. Performance for TLB size and port counts, assuming fixed access times. Note

that TLBs larger than 128 entries and 4 ports are impractical to implement and

actually have much higher access times that degrade performance. 16

3.4. On a 128-entry, 4-port TLB, adding non-blocking support improves performance

closer to an ideal (no increasing access latency) 32-port, 512-entry TLB. . . . 18

iv

3.5. Three threads from a warp TLB miss on addresses (0xb9, 0x0c, 0xac, 0x03),

(0xb9, 0x0c, 0xac, 0x04), and (0xb9, 0x0c, 0xad, 0x05). A conventional

page walker carries out three serial page walks (shown with dark bubbles) , mak-

ing references to (1-4), (5-8), and (9-12), a total of 12 loads. Our cache-aware

coalesced page walker (shown with light bubbles) reduces this to 7 and achieves

better cache hit rate. 19

3.6. Our page table walk scheduler attempts to reduce the number of memory refer-

ences and increase cache hit rate. The highlighted entries show what memory

references in the page walks are performed and in what order. This hardware

assumes a mux per MSHR, with a tree-based comparator circuit. We show 4

MSHRs though this approach generalizes to 32 MSHRs. 20

3.7. (Left) On a 128-entry, 4-port TLB, adding non-blocking and PTW scheduling

logic achieves close to the performance of an ideal (no increasing access latency)

32-port, 512-entry TLB. (Right) Our augmented TLB with 1 PTW consistently

outperforms 8 PTWs. 21

4.1. The left diagram shows conventional CCWS, with a cache victim tag array.

The right diagram shows, compared to a baseline architecture without TLBs,

speedup of naive, 4-ported TLBs per shader core, augmented TLBs and PTWs,

CCWS without TLBs, CCWS with naive TLBs and PTWs, and CCWS with

augmented TLBs and PTWs. 24

4.2. On the left, we show TA-CCWS which updates locality scores with TLB misses.

On the right, we show TLB conscious warp scheduling, which replaces cache

VTAs with TLB VTAs to outperform TA-CCWS, despite using less hardware. 26

4.3. TLB-aware CCWS performance for varying weights of TLB misses versus cache

misses. TA-CCWS (x:y) indicates that the TLB miss is weighted x times as

much as y by the LLS scoring logic. 27

4.4. TLB conscious warp scheduling achieves within 5-15% of baseline CCWS with-

out TLBs. The left diagram shows TCWS performance as the number of entries

per warp (EPW) in the VTA is varied. The right diagram adds LRU depth

weights to LLS scoring. 28

v

5.1. Comparison of warp execution when using reconvergence stacks, thread block

compaction, and TLB-aware thread block compaction. While TLB-TBC may

execute more warps, its higher TLB hit rate provides higher overall performance. 30

5.2. Performance of TBC without TLBs with TBC when using naive 128-entry, 4-

port blocking TLBs, and when augmenting TLBs with nonblocking and PTW

scheduling facilities. 31

5.3. Hardware implementation of TLB-aware TBC. We add only the combinational

logic in the common page matrix (CPM) and a warp history field per TLB

entry. The red dotted arrows zoom into different hardware modules. 32

5.4. Performance of TLB-aware TBC, as the number of bits per CPM counter is

varied. With 3-bits per counter, TLB-aware TBC achieves performance within

3-12% of TBC without TLBs. 34

A.1. Average cycles per TLB miss, compared to L1 cache misses. TLB miss penalties

are typically twice as long as L1 cache miss penalties. 37

A.2. Page divergence cumulative distribution functions. We show what percentage of

warps have have a page divergence of 1, 2-3, 4-7, 8-15, and 16-32. 38

A.3. Percentage of total cycles that are idle for blocking GPU TLBs and various

nonblocking and page table walking optimizations. 38

A.4. Page divergence cumulative distribution functions when using 2MB large pages.

We show what percentage of warps have have a page divergence of 1, 2-3, 4-7,

8-15, and 16-32. 39

vi

Acknowledgements

I thank my advisor Dr. Abhishek Bhattacharjee, whose guidance enabled me to pursue

this study. I express my gratitude to Dr. Lisa Hsu of Qualcomm for the insightful

feedback during the course of my thesis work. Further, I would like to express my

gratitude to my lab mates Binh Pham and Zi Yan for the meaningful discussions we

had on the project, life, the universe and everything. I would like to thank Dr. Ricardo

Bianchini and Dr. Thu Nguyen for supervising my thesis defense. Finally, I would like

to thank the Department of Computer Science, Rutgers University for providing the

necessary research infrastructure.

vii

Table of Contents

Abstract . ii

List of Figures . iv

Acknowledgements . vii

1. Introduction . 1

2. Background, Our Approach, Methodology 4

2.1. Address Translation on CPUs . 4

2.2. Address Translation on CPU/GPUs . 4

2.3. Goals of Our Work . 6

2.4. Methodology . 8

2.4.1. Evaluation Workloads . 8

2.4.2. Evaluation Infrastructure . 9

3. Address Translation for GPUs . 10

3.1. Address Translation Design Space . 10

3.2. CPU-Style Address Translation in GPUs 11

3.3. Augmenting Address Translation for GPUs 15

4. TLBs and Cache-Conscious Warp Scheduling 23

4.1. Baseline Cache-Conscious Wavefront Scheduling 23

4.2. Adding Address Translation Awareness 25

4.3. Performance of CCWS with TLB Information 27

5. TLBs and Thread Block Compaction . 29

5.1. Baseline Thread Block Compaction . 29

viii

5.2. Address Translation Awareness . 32

5.3. Performance of TLB-Aware TBC . 34

6. Discussion and Future Work . 35

7. Conclusion . 36

Appendix A. Miss Penalty Cycles and Page Divergence CDFs 37

A.1. TLB Miss Penalties for Blocking TLBs 37

A.2. Page Divergence CDFs . 37

A.3. Idle Cycle Analysis . 38

A.4. Page Divergence CDFs with Large Pages 39

References . 40

ix

1

Chapter 1

Introduction

The advent of the dark silicon era [57] has generated research on hardware accelerators.

Recent heterogeneous systems include accelerators for massive multidimensional data-

sets [59], common signal processing operations [52], object caching [40], and spatially-

programmed architectures [50]. To ensure widespread adoption of accelerators, their

programming models must be efficient and easy to use.

One option is to have unified virtual and physical address spaces between CPUs and

accelerators. Unified address spaces enjoy many benefits; they make data structures and

pointers globally visible among compute units, obviating the need for expensive memory

copies between CPUs and accelerators. They also unburden CPUs from pinning data

pages for accelerators in main memory, improving memory efficiency. Unified address

spaces also require architectural support for virtual-to-physical address translation.

CPUs currently use per-core Translation Lookaside Buffers (TLBs) and hardware

page table walkers (PTWs) to access frequently-used address translations from operat-

ing system (OS) page tables. CPU TLBs and PTWs are accessed before (or in parallel

with) hardware caches, making caches physically-addressed. This placement restricts

TLB size (so that its access time does not overly increase cache access times), but ef-

ficiently supports multiple contexts, dynamically-linked libraries, cache coherence, and

unified virtual/physical address spaces. Overall, CPU TLB misses expend 5-15% of

runtime [7, 9, 10, 11, 12, 51], which is considered acceptable for their programmability

benefits.

As accelerators proliferate, we must study address translation and its role in the

impending unified virtual address space programming paradigm. We are the first to

explore key accelerator TLB and PTW designs in this context. We focus on general

2

purpose programming for graphics processing units (GPUs) [15, 19, 49, 48] for two

reasons. First, GPUs are a relatively mature acceleration technology that have seen

significant recent research [20, 21, 31, 41, 45, 54, 55]. Second, processor vendors like

Intel, AMD, ARM, Qualcomm, and Samsung are embracing integrated CPU/GPUs

and moving towards fully unified address space support, as detailed in Heterogeneous

Systems Architecture (HSA) [39] specifications. For example, AMD’s upcoming Berlin

processor commits to fully unified address spaces using heterogeneous uniform memory

access (hUMA) technology [53].

Today’s GPUs and CPUs typically use separate virtual and physical address spaces.

Main memory may be physically shared, but is usually partitioned, or allows unidirec-

tional coherence (e.g., ARM allows accelerators to snoop CPU memory partitions but

not the other way around). GPU address translation has traditionally been performed

using Input/Output Memory Management Unit (IOMMU) TLBs at the memory con-

troller, leaving caches virtually-addressed. This approach sufficed in the past because

there was no concept of coherence or shared memory support with the host CPU.

However, as vendors pursue address space unification with specifications like HSA, this

approach becomes insufficient.

We are the first to consider alternatives to this approach, by placing GPU TLBs

and PTWs before (or in parallel with) cache access (i.e., realizing physically-addressed

caches). This mirrors CPU TLBs and achieves the same programmability benefits; for

example, efficient support for multiple contexts and application libraries, and cache

coherence between CPU and GPU caches (all of which are industry goals [39]).

We show that vanilla GPU TLBs degrade performance, demonstrating that the

success of accelerator platforms may hinge upon more thoughtful TLB designs. In

response, we propose augmentations that recover much of this lost performance. We

then show how address translation affects: (1) warp scheduling to increase cache hit

rates; and (2) dynamic warp formation to mitigate control flow divergence overheads.

Specifically, our contributions are as follows:

First, we show that placing TLBs and PTWs before (or in parallel with) cache

access degrades performance by 20-50%. This is because cache-parallel accesses mean

3

latency (and thus sizing) is paramount. Meanwhile, GPU SIMD execution, in which

multiple warp threads execute in lock-step, means a TLB miss from a single thread can

stall all warp threads, magnifying miss penalties. Fortunately, we show that modest

optimizations recover most lost performance.

Second, we show the impact of TLBs on cache-conscious warp/wavefront scheduling

(CCWS) [54], recently-proposed to boost GPU cache hit rates. While naively adding

TLBs offsets CCWS, simple modifications yield close to ideal CCWS (without TLBs)

performance. We also study TLB-based CCWS schemes that are simpler and higher-

performance.

Third, we show how TLBs affect dynamic warp formation for branch divergence. Us-

ing thread block compaction (TBC) [20], we find that dynamically assimilating threads

from disparate warps increases memory divergence and TLB misses. Though naive

designs degrade performance by over 20%, adding TLB-awareness mitigates these over-

heads, boosting performance close to ideal TBC (without TLBs).

Overall, this work is the first to study GPU address translation in a unified virtu-

al/physical memory space paradigm. While our work is relevant to server and client

systems, our evaluations focus on server workloads. Our insights, however, are relevant

across the compute spectrum, highlighting TLB, PTW, and warp scheduling interac-

tions. All address translation support degrades performance to an extent; the question

is whether the overheads are worth the associated programmability benefits. Current

CPUs generally deem 5-15% performance degradations acceptable [7, 8, 11, 12, 18].

While our GPU TLB proposals meet these ranges, we shed light on various GPU ad-

dress translation design issues rather than advocate a specific implementation. In fact,

we believe that there is plenty of room for improvement and even alternate GPU TLB

designs and placement (e.g., opportunistic virtual caching [9]). This paper provides

valuable insights for future studies and methodology for reasoning about the impact of

address translation on GPU performance.

4

Chapter 2

Background, Our Approach, Methodology

In this chapter, we discuss the contemporary translation schemes in CPUs and GPUs.

Further, we elucidate the need for unified virtual address space and explain the goals

of our work followed up with the methodology adopted to perform this study.

2.1 Address Translation on CPUs

CPU TLBs have long been studied by the academic community [7, 8, 11, 12, 33, 51].

Most CPUs currently access TLBs prior to (or in parallel with) L1 cache access, real-

izing physically-addressed caches. This approach dominates commercial systems (over

virtually-addressed caches [16, 37]) because of programmability benefits. Physically-

addressed caches prevent coherence problems from address synonyms (multiple virtual

addresses mapping to the same physical address) and homonyms (a single virtual ad-

dress mapping to multiple physical addresses) [16]. This efficiently supports multiple

contexts, dynamically-linked libraries, cache coherence among multiple cores and with

DMA engines.

2.2 Address Translation on CPU/GPUs

Recent interest in general purpose programming for GPUs has spurred commercial

CPU/GPU implementations and research to program them [15, 19, 49, 48]. Intel,

AMD, ARM, Qualcomm, and Samsung already support integrated CPU/GPU systems,

with cross-platform standards for parallel programming (e.g., OpenCL [43]). NVidia

supports general purpose GPU programming through CUDA [58] and is considering

GPU architectures for the cloud (e.g., Kepler [47]), with an eye on general purpose

computation.

5

Current heterogeneous systems use rigid programming models that require separate

page tables, data replication, and manual data movement between CPU and GPU.

This is especially problematic for pointer-based data structures (e.g., linked lists, trees)

1. Recent research [22, 23, 28, 27] tries to overcome these issues, but none solve the

problem generally by unifying the address space. As such, although GPUs currently

use separate address spaces (though latest CUDA releases permit limited CPU/CPU

virtual address sharing [58]), vendors have begun supporting address translation [13]

as a step towards unified virtual and physical address spaces.

There are many possibilities for address translation in GPUs. AMD and Intel use

Input Output Memory Management Units [1, 2, 25] (IOMMUs) with their own page

tables, TLBs, and PTWs. IOMMUs with large TLBs are placed in the memory con-

troller, making GPU caches virtually-addressed. In this paper, we study the natural

alternative of translating addresses before (or in parallel with) cache access. This has

the following programmability benefits.

CPU/GPU systems with full-blown address translation more naturally support a

single virtual and physical address space. This eliminates the current need for CPUs

to initialize, copy, pin data pages (in main memory), duplicate page tables for GPU

IOMMUs, and set up IOMMU TLB entries [13]. It also allows GPUs to support page

faults and access memory mapped files, features desired in hUMA specifications [53]

(though their feasibility requires a range of hardware/software studies beyond the scope

of this work).

Second, physically-addressed caches support multiple contexts (deemed desirable by

HSA [39] and NVidia’s Kepler whitepaper [47]) more efficiently. Virtually-addressed

caches struggle due to incoherence from address synonyms [37]. Workarounds like cache

flushing on context switches can ensure correct functionality, but do so at a performance

and complexity cost versus physically-addressed caches.

Third, address translation placement that allows physically-addressed caches also

1Some platforms provide pinning mechanisms that do not need data transfers. Both CPU and GPU
maintain pointers to the pinned data and the offset arithmetic is the same; however, the pointers are
distinct. This suffers overheads from pinning and pointer replication (which can lead to buggy code).

6

����������	
���	�
	���

���������������	
������

�

�������	����	�������

������	
����
���

������	
����
���

������	
����
���

������	���������

������	�����

������	����������

����	 �! " #

������������
 �	
��

���������������	
������

�

�������	����	�������

������	
����

������	
����

������	
����

������	���������
������	�����

������	����������

 �!

���

" # �!

���

" # �!

���

" #

Figure 2.1: The diagram on the left shows conventional GPU address translation with an
IOMMU TLB and PTW in the memory controller. Instead, our approach embeds a TLB and
PTW per shader core so that all caches become physically-addressed.

efficiently supports application libraries (mentioned by HSA as a design goal). Tradi-

tional virtually-addressed GPU caches suffer from address homonyms [16], which can

arise when executing libraries.

Finally, cache coherence between CPU and GPU caches has long been deemed de-

sirable [35, 39, 55]. In general, cache coherence is greatly simplified if GPU caches are

physically-addressed, in tandem with CPU caches.

2.3 Goals of Our Work

Processor vendors are embracing support for unified address spaces between CPUs

and accelerators, making accelerator address translation a first-class design objective.

Unfortunately, the programmability benefits of address translation do not come for free.

In the past, CPU address translation overheads of 5-15% of system runtime have been

deemed a fair tradeoff for its benefits [7, 9, 10, 11, 12, 51]. Given the rise of GPU

address translation, our goal is to conduct the first study of GPU TLBs and PTWs.

We have already established that like CPUs, it is desirable for GPUs to have

physically-addressed caches for various programmability benefits. A natural design

option is to mirror CPUs, placing GPU TLBs prior to (or in parallel with) L1 caches.

7

The right side of Figure 2.1 shows our approach, with per shader core TLBs and PTWs.

Like CPUs, we assume that L1 caches are virtually-indexed and physically-tagged, al-

lowing TLB access to overlap with L1 cache access. This contrasts with past academic

work ignoring address translation [20, 21, 54] or placing an IOMMU TLB and PTW in

the memory controller (the diagram on the left side of Figure 2.1).

For all its programmability benefits, address translation at the L1-level is chal-

lenging because it degrades performance by constraining TLB size. Figure 2.2 shows

that naive designs that do not consider the distinguishing characteristics of GPUs can

severely degrade performance. The plots show speedups (values higher and lower than

1 are improvements and degradations) of general purpose GPU benchmarks using naive

128-entry, 3-port TLBs with 1 PTW per shader core (With TLB). Not only do naive

TLBs degrade performance, they also lose 30-50% performance versus conventional

cache-conscious wavefront scheduling and thread block compaction [20, 54]. These

degradations arise for three reasons, unique to GPUs.

First, GPU memory accesses have low temporal locality, increasing TLB miss rates.

Second, shader cores run multiple threads in lock-step in warps (in NVIDIA terminol-

ogy) [21, 20, 41]. Therefore, a TLB miss on one warp thread effectively stalls all warp

threads, magnifying the miss penalty. Third, multiple warp threads often TLB miss in

tandem, stressing conventional PTWs that serialize TLB miss handling.

Therefore, a key goal of this work is to refashion conventional CPU TLB and PTW

hardware to fit GPU characteristics. We show that modest but informed modifications

significantly reduces the degradations of Figure 2.2. In fact, simple, thoughtful GPU

TLBs reduce GPU address translation overheads to 5-15% of system runtime.

We emphasize that our study is one natural design point to achieve programmability

benefits [39]. Whether this is the best design point is a function of what performance

overhead is considered reasonable, alternate implementations, and emerging classes of

GPU workloads. Though this is beyond our scope, we do present broad insights to

reason about address translation in GPUs (and more broadly, accelerators).

8

�

���

���

���

���

���

��	

��

�

�
��
�
�

�

�
�
�
�

�

��

��
�
�

��
��

�

��
�
��
�
�

�
�
��

��
�
�
�
�

�
�
�
�
�
�
�

������ !

""��

""���#������ !$

�!"

�!"�#������ !$

Figure 2.2: Compared to a baseline architecture without TLBs, speedup of naive, 3-ported
TLBs per shader core, with and without cache-conscious wavefront scheduling, with and without
thread block compaction. Naive TLBs degrade performance in every case.

2.4 Methodology

2.4.1 Evaluation Workloads

We use server workloads from past studies on control-flow divergence and cache schedul-

ing [20, 54]. From the Rodinia benchmarks [17], we use bfs (graph traversal), kmeans

(data clustering), streamcluster (data mining), mummergpu (DNA sequence align-

ment), and pathfinder (grid dynamic programming). In addition, we use memcached,

a key-value store and retrieval system, stimulated with a representative portion of the

Wikipedia traces [24]. Our baseline version of these benchmarks have memory foot-

prints in excess of 1GB.

Ideally, we would like to run benchmarks that will be prevalent on future integrated

CPU/GPU platforms. Unfortunately, there is a dearth of such workloads because of

the lack of abstractions that ease CPU/GPU programming (like unified address spaces

themselves). We do include applications like memcached which will likely run on these

systems but expect that future workloads supporting braided parallelism (a mix of task

and data parallelism from a single source) [42] will particularly benefit from unified

address spaces. Our studies enable these applications and provide insights on their

performance with GPU address translation.

9

2.4.2 Evaluation Infrastructure

We use GPGPU-Sim [5] with parameters similar to past work [20, 54]. In particular,

we assume 30 SIMT cores, 32-thread warps, and a pipeline width of 8. We have, per

core, 1024 threads, 16KB shared memory, and 32KB L1 data caches (with 128 byte

lines and LRU). We also use 8 memory channels with 128KB of unified L2 cache space

per channel. We run binaries with CPU and GPU portions, but report timing results

for the GPU part. GPGPU-Sim uses single instruction multiple data (SIMD) pipelines,

grouping SIMD cores into core clusters, each of which has a port to the interconnection

network with a unified L2 cache and the memory controller.

Most of our results focus on 4KB pages due to the additional challenge imposed

by small page size; however, we also present initial results for large 2MB pages later

in the paper. Note that large pages, while effective, don’t come for free and can have

their own overheads in certain situations [3, 8, 46]. As a result, many applications are

restricted to 4KB page sizes; it is important for our GPUs with address translation to

be compatible with them.

10

Chapter 3

Address Translation for GPUs

We now introduce design options for GPU TLBs and PTWs, showing the shortcomings

of blindly porting CPU-style address translation into GPUs. We then present GPU-

appropriate address translation.

3.1 Address Translation Design Space

We consider the following address translation design points.

Number and placement of TLBs: CPUs traditionally place a TLB in each proces-

sor core so that pipelines can have quick, unfettered address translation. One might

consider the same option for each GPU shader core. It is possible to implement one

TLB per SIMD lane; this provides the highest performance, at the cost of power and

area (e.g., we assume 240 SIMD lanes, so this approach requires 240 TLBs per shader

core). Instead, we assume a more power- and area-frugal approach, with one TLB per

shader core (shared among lanes).

PTW mechanisms, counts, and placement: It is possible to implement page table

walking with either hardware or software (where the operating system is interrupted on

a TLB miss [29]). Hardware approaches require more area but perform far better [29].

When using hardware PTWs, it is possible to implement one or many per TLB. While

a single PTW per TLB saves area, multiple PTWs can potentially provide higher per-

formance if multiple TLB misses occur. Finally, placing PTWs with TLBs encourages

faster miss handling; alternately, using a single shared PTW saves area at the cost of

performance.

Size of TLBs: While larger TLBs have a higher hit rate, they also occupy more

area and have higher hit times. Since TLB access must complete by the time the L1

11

cache set is selected (for virtually-indexed, physically-tagged caches), overly-high hit

times degrade performance. In addition, TLBs use power-hungry content-addressable

memories [9]; larger TLBs hence consume much more power.

TLB port count: More TLB ports permit parallel address translation, which can be

crucial in high-throughput shader cores. Unfortunately, they also consume area and

power.

Blocking versus non-blocking TLBs: One way of reducing the impact of TLB

misses is to overlap them with useful work. Traditional approaches involve augmenting

TLBs to support hits under the original miss or additional misses under the miss.

Both approaches improve performance, but require additional hardware like Miss Status

Holding Registers (MSHRs) and access ports.

Page table walk scheduling: Each page table walk requires multiple memory refer-

ences (four in x86 [6]) to find the desired PTE, some of which may hit in caches. In

multicore systems, it is possible that more than one core concurrently experience TLB

misses. In response, one option (which has not been studied to date) is to consider the

page table walks of the different cores and see if some of their memory references are to

the same locations or cache lines. In response, it is possible to interleave PTW memory

references from different cores to reduce the number of memory references and boost

cache hit rates (while retaining functional correctness).

System-level issues (TLB shootdowns, page faults): The adoption of unified

address spaces means that there are many options for handling TLB shootdowns and

page faults. In one possibility, we interrupt a CPU to execute the shootdown code or

page fault handler on the GPU’s behalf. This CPU could be the one that launched

the GPU kernel or any other idle core. Alternately, GPUs could themselves run the

shootdown code or the page fault handler, as suggested by hUMA [53].

3.2 CPU-Style Address Translation in GPUs

Since GPU address translation at the L1 cache level has not previously been studied,

the design space is a blank slate. As such, it is natural to begin with CPU-style TLBs.

12

�����

������

������

�����	

��������

�������

�
�
��
�
��
��
��

�
�
�
�

�
�
�
�
�
�

�
�
�
��
��
��
�
�
�
�

�

!

�
��
��
"
�
�
#

�
��

�
�
�
�

$

%

&
�
'
�
�(
�

)
��
��
��
�
(

)
��

&
��
�

&�'��(�!���

�
��

�
�
�
�

$

%

*
�&

+
)
�
�

$

%
�

&
+
)
�
�

&
�
'
�
�(
�
�
��

�
�
�
��
�
�
��
�

$�

�
�
�
,�
-
�
�
,

Figure 3.1: Shader core pipeline with address translation. We assume that L1 data caches are
virtually-indexed and physically-tagged (allowing TLB lookup in parallel with cache access).
All caches (L1 and shared caches, which are not shown) are physically-addressed. Note that
the diagram zooms in on the memory unit.

We now discuss this baseline naive architecture.

Figure 3.1 shows our design. Each shader core maintains a TLB/PTW and has 48

warps (the minimum scheduling unit) per shader core. Threads of a warp execute the

same instruction in lock-step. Instructions are fetched from an I-cache and operands

read from a banked register file. Loads and stores access the memory unit (which Figure

3.1 zooms on).

The memory unit’s address generation unit calculates virtual addresses, which are

coalesced to unique cache line references. We enhance conventional coalescing logic to

also coalesce multiple intra-warp requests to the same virtual page (and hence PTE).

This is crucial towards reducing TLB access traffic and port counts. At this point, two

sets of accesses are available: (1) unique cache accesses; and (2) unique PTE accesses.

These are presented in parallel to the TLB and data cache. Note that we implement

virtually-indexed, physically-tagged L1 caches. We now elaborate on the design space

options from Section 3.1, referring to Figure 3.1 when necessary.

Number and placement of TLBs: As previously detailed, we assume 1 TLB per

shader core shared among SIMD lanes, to save power and area.

PTW mechanisms, counts, and placement: Our GPU, like most CPUs today,

13

assumes hardware PTWs because: (1) they achieve higher performance than software-

managed TLBs [29]; and (2) they do not need to run OS code (which GPUs cannot

currently execute), unlike software-managed TLBs.

CPUs usually place PTWs close to each TLB so that page table walks can be quickly

initiated on misses. We use the same logic to place PTWs next to TLBs. Finally, CPUs

maintain one PTW per TLB. While it is possible to consider multiple PTWs per GPU

TLB, our baseline design mirrors CPUs and similarly has one PTW per shader core.

We investigate the suitability of this decision in subsequent sections.

Size of TLBs: Commercial CPUs currently implement 64-512 entry TLBs per core

[11, 26]. These sizes are typically picked to be substantially smaller and lower-latency

than CPU L1 caches. Using a similar methodology with CACTI [44], we have found

that 128-entry TLBs are the are the largest possible structures that do not increase

the access time of 32KB GPU L1 data caches. We use 128-entry TLBs in our naive

baseline GPU design, studying other sizes later.

TLB port count: Intel’s CPU TLBs support three ports in today’s systems [26]. Past

work has found that this presents a performance/power/area tradeoff appropriate for

CPU workloads [4]. Our baseline design assumes 3-ported TLBs for GPUs too but we

revisit this in subsequent sections.

Blocking versus non-blocking: There is evidence that that some CPU TLBs do

support hits under misses because of their relatively simple hardware support [30].

However, most commercial CPUs typically use blocking TLBs [7, 51] because of their

high hit rates. We therefore assume blocking TLBs in our baseline GPU design. This

means that similar to cache misses, TLB misses prompt the scheduler to swap another

warp into the SIMD pipeline. Swapped-in warps executing non-memory instructions

proceed unhindered (until the original warp’s page table walks finish and it completes

the Writeback stage). Swapped-in threads with memory references, however, do not

proceed in this naive design as they require non-blocking support.

Figure 3.1 shows that TLBs have their own (MSHRs). We assume, like both GPU

caches and past work on TLBs [41], that there is one TLB MSHR per warp thread (32

in total). MSHR allocation triggers page table walks, which inject memory requests to

14

�
�
�

��
��
��
��
��
��

�
	

�
�
�
�

��
�
�

�
�

�
�

�

�
��

��

�

�
�
�
�
��
�

�

�

�
�
��
	�
�
�

�

�
�
�

��
��

��

�
� ����� ��

�

��

��

��

��

���

�
	

�
�
�
�

��
�
�

�
�

�
�

�

�
��

��

�

�
�
�
�
��
�

�

�

�
�
��
	�
�
�

�

�

��

�
��
�

��!�"�#	
$ %&'���

Figure 3.2: The left diagram shows the percentage of total instructions that are memory refer-
ences and TLB miss rates; the right diagram shows the average number of distinct translations
requested per warp (page divergence) and the maximum number of translations requested by
any warp through the execution.

the shared caches and main memory.

Page table walk scheduling: CPU PTWs do not currently interleave memory ref-

erences from multiple concurrent TLB misses for increased cache hit rate and reduced

memory traffic. This is because the low incidence of concurrent TLB misses on CPUs

[12] isn’t worth the complexity and area overheads of such logic (though this is likely to

require relatively-simple combinational logic). Similarly, our naive baseline GPU design

also doesn’t include PTW scheduling logic.

System-level issues (shootdowns, page faults: CPUs usually shootdown TLBs on

remote cores when its own TLB updates an entry, using software inter-processor inter-

rupts (IPIs). We assume the same approach for GPUs (i.e., if the CPU that initiated

the GPU modifies its TLB entries, GPU TLBs are flushed). Similarly, we assume that

a page fault interrupts a CPU to run the handler. In practice, our performance was not

affected by these decisions (because shootdowns and page faults almost never occur on

our workloads). If these become a problem, as detailed in hUMA, future GPUs may

be able to run dedicated OS code for shootdowns and page faults without interrupting

CPUs. We leave this for future work.

Performance: Having detailed this naive baseline approach, we profile its performance

for our workloads. Our results, already presented in Figure 2.2 in Section 2.3, shows

15

the inadequacies of naive baseline GPU address translation. Overall, performance is

degraded by 20-35%. The graph on the left of Figure 3.2 complements this data by

showing: (1) the number of memory references in each workload as a percentage of

the total instructions; and (2) miss rates of 128-entry GPU TLBs. While the number

of memory references are generally low compared to CPUs (under 25% for all bench-

marks), TLB miss rates are very high (ranging from 22% to 70%). This is because GPU

benchmarks tend to stream through large quantities of data without much reuse. In

addition, we find that average miss penalties are well above 200 cycles for every bench-

mark (Figure A.1 in the Appendix). To put this in perspective, this is over double the

penalty of L1 cache misses.

Fortunately, we now show that simple GPU-aware modifications of naive TLBs and

PTWs counter these problems, recovering most of this lost performance.

3.3 Augmenting Address Translation for GPUs

GPU execution pipelines differ widely from CPUs in that they perform data-parallel

SIMD operations on warps. Since each warp simultaneously executes multiple threads,

it can conceivably prompt multiple TLB misses (up to the warp width, which is 32 in our

configuration). In the worst cases, all TLB misses could be to different virtual pages or

PTEs. Thus, there is more pressure on TLBs in some ways, but also more opportunity

for parallelism, if designed with GPUs in mind. We now detail optimizations to exploit

these opportunities, quantifying their improvements.

TLB size and port counts: An ideal TLB is large and low-latency. Furthermore, it

is heavily multi-ported, with one port per warp thread (32 in total). While more ports

facilitate quick lookups and miss detection, they also significantly increase area and

power. Figure 3.3 sheds light on size, access time, and port count tradeoffs for naive

baseline GPU address translation. We vary TLB sizes from 64 to 512 entries (the range

of CPU TLB sizes) and port count from 3 (like L1 CPU TLBs) to an ideal number of

32. We present speedups versus against the no-TLB case (speedups are under 1 since

adding TLBs degrades performance). We use CACTI to assess access time increases

16

���

���

���

���

�

�
�

�
	
�

	

�

�
	

�
�

�
	
�

	

�

�
	

�
�

�
	
�

	

�

�
	

�
�

�
	
�

	

�

�
	

�
�

�
	
�

	

�

�
	

�
�

�
	
�

	

�

�
	

�� ������� ����� ����� ������ �����

�
�
�
�
�
�
�

������ �

!��"��

���"��

���"��

!	��"��

Figure 3.3: Performance for TLB size and port counts, assuming fixed access times. Note that
TLBs larger than 128 entries and 4 ports are impractical to implement and actually have much
higher access times that degrade performance.

with size.

Figure 3.3 shows that larger sizes and more ports greatly improve GPU TLB perfor-

mance. In general, 128 entry TLBs perform best; beyond this, increased access times

reduce performance. Figure 3.3 also shows that while port counts do impact perfor-

mance (particularly for mummergpu and bfs), modestly increasing from 3 ports (in our

naive baseline) to 4 ports recovers much of this lost performance. The graph on the

right of 3.2 shows why, by plotting page divergence (the number of distinct translations

requested by a warp). We show both average page divergence the maximum page di-

vergence of any warp through execution. Figure 3.2 shows warps usually request far

less than their maximum of 32 translations. This is because coalescing logic accessed

before TLBs reduce requests to the same PTE into a single lookup. Only bfs and

mummergpu have average page divergence higher than 4. While this does mean that

some warps have higher lookup time (e.g., when mummergpu encounters its maximum

page divergence of 32), simply augmenting the port count of the naive implementation

to 4 recovers much of the lost performance. Figure A.2 in the Appendix shows more

details on the page divergence requirements of different benchmarks.

Blocking versus non-blocking TLBs: Using blocking TLBs, the only way to overlap

miss penalties with useful work is to execute alternate warps without memory references.

17

We have seen however, that GPU TLB miss penalties are extremely long. Therefore,

GPU address translation requires more aggressive non-blocking facilities. Specifically,

we investigate:

Hits from one warp under misses from another warp: In this approach, the swapped-in

warp executes even if it has memory references, as long as they are all TLB hits. As

soon as the swapped-in thread TLB misses, it too must be swapped out. This approach

leverages already-existing TLB MSHRs and requires only simple combinatorial logic

updates to the warp scheduler. In fact, hardware costs are similar to CPU TLBs which

already support hits under misses [30]. We leave more aggressive miss under miss

support for future work.

Overlapping TLB misses with cache accesses within a warp: Beyond overlapping a

warp’s TLB miss penalty with the execution of other warps, it is also possible to overlap

TLB misses with work from the warp that originally missed. Since warps have multiple

threads, even when some miss, others may TLB hit. Since hits immediately yield

physical addresses, it is possible to look up the L1 cache with these addresses without

waiting for the warp’s TLB misses to be resolved. This boosts cache hit rates since

this warp’s data is likelier to be in the cache before a swapped-in warp evicts its data.

Furthermore if these early cache accesses do miss, subsequent cache miss penalties can

be overlapped with the TLB miss penalties of the warp.

In this approach, TLB hit addresses immediately look up the cache even if the same

warp has a TLB miss. Data found in the cache is buffered in the standard warp context

state in register files (from past work [21, 54]) before the warp is swapped out. This

approach requires no hardware beyond simple combinational logic in the PTW and

MSHRs to allow TLB hits to proceed for cache lookup.

Results: Figure 3.4 quantifies the benefits of non-blocking TLBs, normalized to a base-

line without TLBs. We first permit hits under misses, then also allow TLB hits to

proceed to the cache without waiting for misses to be resolved. We compare these to

an ideal and impractical 512-entry TLB with 32 ports and no increased access latencies.

While hits under misses improve performance, immediately looking up the cache

for threads that TLB hit and PTW scheduling is even more effective. For example,

18

���

���

���

���

���

�

	

�

�

�
�
�
��
�

�
�
�
�
�
�

�
�
�
��
��
�
�

��
��
�
�
��

��
�
�

�
�
��

�
�
�
�
�

�
�
�
�
�

�

�������� ����������������

 !��"��������������������� #�������$%����&'�($%�����)*�

Figure 3.4: On a 128-entry, 4-port TLB, adding non-blocking support improves performance
closer to an ideal (no increasing access latency) 32-port, 512-entry TLB.

streamcluster gains an additional 8% performance from overlapped cache access.

Overall, Figure 3.7 shows that modest TLB design enhancements boost performance

substantially. We will show how additional enhancement further bring performance

close to the impractical, ideal case.

Page table walk scheduling: Our page divergence results show that GPUs execute

warps that can suffer TLB misses on multiple threads. Often, the TLB misses are to

distinct PTEs. Consider the example in Figure 3.5, which shows three concurrent x86

page walks. x86 page table walks require a memory reference to the the Page Map

Level 4 (PML4), Page Directory Pointer (PDP), Page Directory (PD), and Page Table

(PT). A CR3 register provides the base physical address of the PML4. A nine bit index

(bits 47 to 39 of the virtual address) is concatenated with the base physical address to

generate a memory reference to the PML4. This finds the base physical address of the

PDP. Bits 38-30 of the virtual address are then used to look up the PDP. Bits 29-21,

and 20-12 are similarly used for the PD and PT (which has the desired translation).

Figure 3.5 shows multilevel page lookups for a warp that has three threads miss-

ing on virtual pages (0xb9, 0x0c, 0xac, 0x03), (0xb9, 0x0c, 0xac, 0x04), and

(0xb9, 0x0c, 0xad, 0x05). We present addresses in groups of 9-bit indices as these

correspond directly to the page table lookups. Naive baseline GPU PTWs perform the

three page table walks serially (shown with dark bubbles). This means that each page

19

���������	��
����

� �

��� �����	

��� ������

��� �������

� �

� �

��� �������

��� ������

��� ����	��

� �

� �

��� ����	��

��� ����	��

��� ����	��

� �

� �

��	 �����

��� ������

��� ������

� �

� �

��� �����	�

��� �����	�

��
 �������

� �

���� ��� ��

��

� �

�

�

� �

�

�

	 �

��

��

�����������������������	��
�����

� �

�

�

�

�

�

� � �

� � ��

Figure 3.5: Three threads from a warp TLB miss on addresses (0xb9, 0x0c, 0xac, 0x03),
(0xb9, 0x0c, 0xac, 0x04), and (0xb9, 0x0c, 0xad, 0x05). A conventional page walker
carries out three serial page walks (shown with dark bubbles) , making references to (1-4),
(5-8), and (9-12), a total of 12 loads. Our cache-aware coalesced page walker (shown with light
bubbles) reduces this to 7 and achieves better cache hit rate.

table walk requires four memory references; (1-4) for (0xb9, 0x0c, 0xac, 0x03), (5-

8) for (0xb9, 0x0c, 0xac, 0x04), and (9-12) for (0xb9, 0x0c, 0xad, 0x05). Each

of the references hits in the shared cache (several tens of cycles) or main memory. For-

tunately, simple PTW scheduling exploiting commonality across concurrent page table

walks improves performance in two ways:

Reducing the number of page table walk memory references: Higher order virtual address

bits tend to be constant across memory references. For example, bits 47-39, and 38-30 of

the virtual address change infrequently as lower-order bits (29 to 0) cover a 1GB address

space. Since these bits index the PML4 and PDP during page table walks, multiple

page table walks usually traverse similar paths. In Figure 3.5, all three page walks

read the same PML4 and PDP locations. We leverage this observation by remembering

PML4 and PDP reads so that they can be reused among page walks. This means that

three PML4 and PDP reads are replaced by a single reads.

Increasing page table walk cache hit rates: 128-byte cache lines hold 16 consecutive 8-

byte PTEs. Therefore, there is potential for cache line reuse across different page table

walks. For example, in Figure 3.5, two PD entries from the same cache line are used for

20

�������
��	
���
���
���

������
��	
���
���
����

������
��	
���
���
����

�����

������

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�������
��	
���
���
���

������
��	
���
���
����

������
��	
���
���
����

�����

������

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�������
��	
���
���
���

������
��	
���
���
����

������
��	
���
���
����

�����

������

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

� � � �

�������
��	
���
���
���

������
��	
���
���
����

������
��	
���
���
����

�����

�����

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

� � �

Figure 3.6: Our page table walk scheduler attempts to reduce the number of memory references
and increase cache hit rate. The highlighted entries show what memory references in the page
walks are performed and in what order. This hardware assumes a mux per MSHR, with a tree-
based comparator circuit. We show 4 MSHRs though this approach generalizes to 32 MSHRs.

all walks. Similarly, the PT entries for virtual pages (0xb9, 0x0c, 0xac, 0x03) and

(0xb9, 0x0c, 0xac, 0x04) are on the same cache line. We exploit this observation

by interleaving memory references from different page table walks (shown in lighter

bubbles). In Figure 3.5, references 3 and 4 (from three different page table walks)

are handled successively, as are references 5 and 6 (from page walks for virtual pages

(0xb9, 0x0c, 0xac, 0x03) and (0xb9, 0x0c, 0xac, 0x04)), boosting hit rates.

Implementation: Figure 3.6 shows PTW scheduling (TLBs and PTWs are present,

though not shown). MSHRs store the virtual page numbers causing TLB misses. We

propose combinational hardware that scans the MSHRs, extracting, in four consecutive

steps, PML4, PDP, PD, and the PT indices. Each stage checks whether the memory

access for its level are amenable to coalescing (they are repeated) or lie on the same

cache line. The PTW then injects references (for each step, we show the matching

memory reference from Figure 3.5).

Figure 3.6 shows that a comparator tree matches indices in each stage of the algo-

rithm. The It scans the PML4 indices looking for a match in bits 47-44 because both

a repeated memory reference and PTEs within the same cache line share all but the

bottom 4 index bits. Once the comparator discovers that all the page walks can be

satisfied from the same cache line in step 0, a memory reference for PML4 commences.

21

���

���

���

���

���

�

	

�

�

�
�
�
��
�

�
�
�
�
�
�

�
�
�
��
��
�
�

��
��
�
�
��

��
�
�

�
�
��

�
�
�
�
�

�
�
�
�
�

�

��������
����	�������
 !"#$%"���������
&����"��'�����()"*'�����"$+�

���

���

���

���

���

�

	

�

�

�
�
�
��
�

�
�
�
�
�
�

�
�
�
��
��
�
�

��
��
�
�
��

��
�
�

�
�
��

�
�
�
�
�

�
�
�
�
�

�

�"#$%"��������
�"#$%",�������
�"#$%�"��������
&����"��'�����()"*'�����"$+�

Figure 3.7: (Left) On a 128-entry, 4-port TLB, adding non-blocking and PTW scheduling logic
achieves close to the performance of an ideal (no increasing access latency) 32-port, 512-entry
TLB. (Right) Our augmented TLB with 1 PTW consistently outperforms 8 PTWs.

In parallel with this memory reference, the same comparator tree now compares the

upper 5 bits of the PDP indices (bits 38-34). Again, all indices match, meaning that

in step 1, only one PDP reference is necessary. In step 2, PD indices are studied (in

parallel with the PDP memory reference). We find that the top 5 bits match but that

the bottom 4 bits don’t (indicating that they are multiple accesses to the same cache

line). Therefore step 2 injects two memory references (3 and 4) successively. Step 3

uses similar logic to complete the page walks for (0xb9, 0x0c, 0xac, 0x03), (0xb9,

0x0c, 0xac, 0x04), and (0xb9, 0x0c, 0xad, 0x05).

To reduce hardware, we use a comparator tree rather than implementing a compara-

tor between every pair of MSHRs (which provides maximum performance). We have

found that this achieves close to pairwise comparator performance. Also, we share one

comparator tree with muxes for all page table levels. This is possible because MSHRs

scans can proceed in parallel with loads from the previous step.

Results: Figure 3.7 (left) shows that PTW scheduling significantly boosts GPU per-

formance. For example, bfs and mummergpu gain from PTW scheduling because they

have a higher page divergence (so there are more memory references from different TLB

22

misses to schedule). We have found that PTW scheduling achieves its performance ben-

efits by completely eliminating 10-20% of the PTW memory references and boosting

PTW cache hit rates by 5-8% across the workloads. Consequently the number of idle

cycles (due in large part to TLB misses) reduces from 5-15% to 4-6% (see Figure A.3

in the Appendix for more details), boosting performance.

Overall, Figure 3.7 (left) shows that thoughtful non-blocking and PTW scheduling

extensions to naive baseline GPUs boosts performance to the extent that it is within 1%

of an ideal, impractical, large and heavily-ported 512-entry, 32-port TLB with no access

latency penalties. In fact, all the techniques reduce GPU address translation overheads

under 10% for all benchmarks, well within the 5-15% range considered acceptable on

CPUs.

Multiple PTWs: Multiple PTWs are an alternative to PTW scheduling. Unfortu-

nately, their higher performance comes with far higher area and power overheads. In

our studies, we have found that single PTW with augmented TLBs (4-ports with non-

blocking and PTW scheduling extensions) consistently outperforms naive TLBs with

more PTWs. Specifically, Figure 3.7 (right) shows a 10% performance gap between

the augmented 1 PTW approach and 8 naive PTWs. We therefore assume (for the

remainder of the paper), a single lower-overhead PTW with non-blocking support (hit

under miss and cache overlap) and PTW scheduling augmentations.

23

Chapter 4

TLBs and Cache-Conscious Warp Scheduling

Having showcased the GPU address translation design space, we now move to our sec-

ond contribution. There are many recent studies on improving GPU cache performance

[32, 31, 36, 45, 54] via better warp scheduling. We focus on the impact of address trans-

lation on cache-conscious wavefront scheduling (CCWS) [54]. Our insights, however,

are general and hold for other approaches too.

4.1 Baseline Cache-Conscious Wavefront Scheduling

Basic operation: CCWS observes that conventional warp scheduling (e.g., round

robin) is oblivious to intra-warp locality, touching data from enough threads to thrash

the L1 cache [54]. Carefully limiting the warps that overlap with one another promotes

better cache reuse and boosts performance. CCWS accomplishes this using the baseline

hardware shown in Figure 4.1. The cache holds tags and data, but also a warp identifier

for the warp that allocated the cache line. A lost locality detector (LLD) maintains per-

warp, set-associative cache victim tag arrays (VTAs), which store the tags of evicted

cache lines. The LLD, with lost locality scoring (LLS), identifies warps that share

cache working sets and those that increase cache thrashing. CCWS scheduling logic

encourages warps that share working sets to run together.

CCWS operates as follows. Suppose a warp issues a memory reference. After

coalescing, the address is presented to the data cache. On a cache miss, CCWS logic

is invoked to determine whether multiple warps are thrashing the cache. The VTA

of the current warp is probed to see if the desired cache line was recently evicted. A

hit indicates the possibility of inter-warp interference. If the warp making the current

request were prioritized by the scheduler, intra-warp reuse would be promoted and

24

���������	�
���	�

�	��������

���	���	�
�������������

���������

����
�������	�

����
����	

���������	
�����

��� ������!	

���"�������	����	�" ��

���"�������	����	�" ��

������������ 		����#�� $

���!	�%���������
����

�&
���
���

��
���
���

�'
���
���

�(
���
���

���)���
����	��

����

��!	���	
�	������

�

���

���

���

���

�

���

���

���

�
	

�
�
�
�
�

�
�
�
�

�
�
�
��

�
��
�
�
�

�
�
��
�

�
�
�
�
�
�
�

���������
�� ����������
!!"��#�$����%
!!"��#���������%
!!"��#�� ����������%

(*+,
-�.

Figure 4.1: The left diagram shows conventional CCWS, with a cache victim tag array. The
right diagram shows, compared to a baseline architecture without TLBs, speedup of naive, 4-
ported TLBs per shader core, augmented TLBs and PTWs, CCWS without TLBs, CCWS with
naive TLBs and PTWs, and CCWS with augmented TLBs and PTWs.

cache misses reduced. This information is communicated to the LLS, which maintains

a counter per warp. A VTA hit increments the warp counter; whenever this happens,

LLS logic sums all counter values. The LSS cutoff logic checks if the total is larger

than a predefined cutoff; if so, warps with the highest counter values are prioritized

since they hit most in VTAs, indicating that their lines are most-recently evicted and

hence most likely to gain if not swapped out. We refer readers to the CCWS paper [54]

for more details and sensitivity studies on the update and cutoff values, LSS, and LLD

hardware overheads. The remainder of our work assumes 16-entry, 8-way victim VTAs

per warp.

Performance of basic approach: While baseline CCWS ignored address translation

[54], one might expect that boosting cache hit rate should also increase TLB hit rates.

Figure 4.1 (right) quantifies the speedup (against a baseline without TLBs) of (1) naive

blocking 128-entry, 4-port TLBs with one PTW (no non-blocking or PTW scheduling);

(2) augmented TLBs that overlap misses with cache access and allow hits under misses

(non-blocking), with PTW scheduling; (3) CCWS without TLBs; (4) CCWS with naive

TLBs; and (5) CCWS with augmented TLBs.

25

Baseline CCWS (without TLBs) improves performance for all benchmarks by at

least 20%. However, adding CCWS to naive TLBs and augmented TLBs outperform

vanilla naive and augmented versions by only 5-10%. Also, the gap between CCWS

with and without TLBs remains large.

4.2 Adding Address Translation Awareness

In response, we propose two CCWS schemes with TLB information.

TLB-aware CCWS (TA-CCWS): CCWS loses performance when integrating TLBs

(even augmented ones) because it treats all cache misses equivalently. In reality, some

cache misses are accompanied by TLB misses, others with TLB hits. In this light,

baseline CCWS should be modified so that LSS logic weighs cache misses with TLB

misses more heavily than those with TLB hits. TA-CCWS does exactly this, prompting

more frequent TLB misses to cause the LSS counter sum to go over the threshold faster.

This in turn ensures that the final pool of warps identified as scheduling candidates

enjoys intra-warp cache and intra-warp TLB reuse.

The diagram on the left of Figure 4.1 shows TA-CCWS hardware, with practically

no changes to baseline CCWS. We consider only TLB weights that are multiple of 2 so

that shifters can perform the counter updates.

TLB conscious warp scheduling (TCWS): TCWS goes beyond TA-CCWS by

observing that TLB and cache behavior are highly correlated. For example, TLB

misses are frequently accompanied by cache misses because a TLB miss indicates that

cache lines from its physical page were references far back in the past. Therefore, it

is possible to subsume cache access behavior by analyzing the intra-warp locality lost

on TLB behavior. TCWS exploits this correlation by replacing cache line based VTAs

with smaller, lower-overhead, yet more performance-efficient TLB-based VTAs.

Figure 4.2 (right) illustrates TWCS with TLB-based VTAs containing virtual ad-

dress tags. VTAs are now looked up on TLB misses rather than cache misses. VTA hits

are communicated to LSS update logic, where per-warp counters are updated (similar

to baseline CCWS). When the sum of the counters exceeds the prefedined cutoff, warps

26

��������	
���������	�����
��

���������	�
���	�

�	��������

���	���	�
�������������

���������

����
�������	�

����
����	

���������	
�����

��� ������!	

���" ��

���" ��

���#��

����$���������
����

�%
���
���

��
���
���

�&
���
���

�'
���
���

���(���
����	��

����

����
$�

)�*

��!	���	
�	������

���

���"�� "��+

���"�� "��+

�������������

���������	�
���	�

�	��������

���	���	�
�������������

���������

����
�������	�

����
����	

���������	
�����

��� ������!	

���"�������	����	�" ��

���"�������	����	�" ��

������������ 		����,�� -

���!	�$���������
����

�%
���
���

��
���
���

�&
���
���

�'
���
���

���(���
����	��

����

)������
��������*

��!	���	
�	������

���

Figure 4.2: On the left, we show TA-CCWS which updates locality scores with TLB misses.
On the right, we show TLB conscious warp scheduling, which replaces cache VTAs with TLB
VTAs to outperform TA-CCWS, despite using less hardware.

with the highest LLS counters are prioritized.

This initial approach uses baseline CCWS but with TLB VTAs. There is, however,

one problem with this approach. As described, we now update LSS scores only on TLB

misses so warp scheduling decisions are relatively infrequent compared to conventional

CCWS, which updates scores on cache misses. This makes CCWS less rapidly-adaptive,

possibly degrading performance. Therefore, we force more frequent scheduling decisions

by also updating LSS counters on TLB hits. We update by observing that each TLB set

has an LRU stack (logically) of PTEs. This study assumes 128-entry, 4-way associative

GPU TLBs. To update LSS logic sufficiently often, we track the LRU depth of TLB

hits. Then, we update the LLS scoring logic, weighting a deeper hit more heavily since

it indicates that the PTEs are closer to eviction (and TLBs/caches are likelier to suffer

thrashing). A key parameter is how to vary weights with LRU depth.

Interestingly, TCWS requires less hardware than CCWS. Since TCWS VTAs main-

tain tags for 4KB pages, fewer of them are necessary compared to cache line VTAs. We

27

����������	
���	�
	���

���������������	
������

�

�������	����	�������

������
����

���

������
����

���

������
����

���

������	���������

������	�����

������	����������

����	 �! " #

������������
 �	
��

���������������	
������

�

�������	����	�������

������
����

������
����

������
����

������	���������

������	�����

������	����������

 �!

���

" # �!

���

" # �!

���

" #

���������������	
������

�

�������	����	�������

������
����

������
����

������
����

������	���������

������	�����

������	����������

 �!

���

" # �!

���

" # �!

���

" #

�
���
���
���
���
���
��	

��

�

�
��
�
�

�
�
�
�
�

�

��

��
�
�

��
��

�

��
�
��
�
�

�
�
��

��
�
�
�
�

��
�
�
�
�
�

������ ! ""��

""���#������ !$ �!"

�!"�#������ !$

�

���

���

���

���

���

��	

��

�

�
��
�
�

�
�
�
�
�

�

��

��
�
�

��
��

�

��
�
��
�
�

�
�
��

��
�
�
�
�

��
�
�
�
�
�

������ !

""��

""���#������ !$

�!"

�!"�#������ !$

#���$

#���	%

#���	�

#���	&

'
#���	()	

"�������

*
�
��
�
	+
	�
�,
�
�
�
�

�
�
�
�
�
�

�
�
-
�$
��
�	
�
�
�
�

�
�
�

#
��
��
.
�
�
�

�
�,
�
�
�
�

�
!

�
�
�
�
��
	

/
��
��
��
�
�

/��

��$$

������	����

�
�
�
��
$
$
	

0
�
�
1	
�
�
��

�
�,
�
�
�
�

�
!

�
	�
�
/
�
$

�
!
	

�
�
/
�
$

�
�
�
�
��
	"
�
��

,
�
�
��
$
�
��
-

" #

���������	��
����

% %

�
	 &&'����

�
� &&'��(�

�
� &&'�')

% %

% %

��
 &&'�')

��� &&'����

��� &&'����

% %

% %

��� &&'��*	

��� &&'��*�

��� &&'��	�

% %

% %

��� &&'����

��(&&'����

��� &&'����

% %

% %

��(&&'���*

��� &&'���	

��� &&'��(�

% %

���� ��� ��

��

� &

2

(

3 4

)

5

6 �%
��

�&

�����������������������	��
����

% %

�
	 &&'����

�
� &&'��(�

�
� &&'�')

% %

% %

��
 &&'�')

��� &&'����

��� &&'����

% %

% %

��� &&'��*	

��� &&'��*�

��� &&'��	�

% %

% %

��� &&'����

��(&&'����

��� &&'����

% %

% %

��(&&'���*

��� &&'���	

��� &&'��(�

% %

���� ��� ��

��

� &

2

3

4

(

)

��/�	%	
7.68	%�8	��8	%29

��/�	�
7.68	%�8	��8	%(9

��/�	&
7.68	%�8	��8	%39

��/�	2

����	%

,
�
�
�
1

,
�
�
�
1

,
�
�
�
1

��/�	%	
7.68	%�8	��8	%29

��/�	�
7.68	%�8	��8	%(9

��/�	&
7.68	%�8	��8	%39

��/�	2

����	�

,
�
�
�
1

,
�
�
�
1

,
�
�
�
1

��/�	%	
7.68	%�8	��8	%29

��/�	�
7.68	%�8	��8	%(9

��/�	&
7.68	%�8	��8	%39

��/�	2

����	&

,
�
�
�
1

,
�
�
�
1

,
�
�
�
1

��/�	%	
7.68	%�8	��8	%29

��/�	�
7.68	%�8	��8	%(9

��/�	&
7.68	%�8	��8	%39

��/�	2

����	2

,
�
�
�
1

,
�
�
�
1

,
�
�
�
1

��/�	%	
7.68	%�8	��8	%29

��/�	�
7.68	%�8	��8	%(9

��/�	&
7.68	%�8	��8	%39

��/�	2

����	(

,
�
�
�
1

,
�
�
�
1

,
�
�
�
1

��/�	%	
7.68	%�8	��8	%29

��/�	�
7.68	%�8	��8	%(9

��/�	&
7.68	%�8	��8	%39

��/�	2

����	3

,
�
�
�
1

,
�
�
�
1

,
�
�
�
1

���

��*

��	

���

�

�
(

�
�
	

�
�
�

�
�
�

�
(

�
�
	

�
�
�

�
�
�

�
(

�
�
	

�
�
�

�
�
�

�
(

�
�
	

�
�
�

�
�
�

�
(

�
�
	

�
�
�

�
�
�

�
(

�
�
	

�
�
�

�
�
�

�� ���� ����� ��� ������ �����

��
�
�
�
�
�

� !���+�

���,���

(��,���

	��,���

����,���

�
�

��
��
��
��
��
��

��

�

�
��
�
�

�
�
�
�
�

�

��

��
�
�

��
��

�

��
�
��
�
�

�
�
��

��
�
�
�
�

&
�
��
�
�
��
�
�

-�������.�,�/�-����

0��������� ��"�����1���-���

���

���

��*

��	

���

�

��

�

�
��
�
�

�
�
�
�
�

�

��

��
�
�

��
��

�

��
�
��
�
�

�
�
��

��
�
�
�
�

��
�
�
�
�
�

!�,�����
1���������������
%2,3���������������������
%2�&�������������
0��������4����/5���4�,���� !

���

���

��*

��	

���

�

��

�

�
��
�
�

�
�
�
�
�

�

��

��
�
�

��
��

�

��
�
��
�
�

�
�
��

��
�
�
�
�

��
�
�
�
�
�

��&�� ��&���
(�&��� 	�&���
��&���6�7����������

�
(
	

��
��
��
�(
�	
��

��

�

�
��
�
�

�
�
�
�
�

�

��

��
�
�

��
��

�

��
�
��
�
�

�
�
��

��
�
�
�
�

&
�
�
�
�8
�3
�
��
�
�
�� 93����� .�:

�

��

(�

��

	�

���

��

�

�
��
�
�

�
�
�
�
�

�

��

��
�
�

��
��

�

��
�
��
�
�

�
�
��

��
�
�
�
�

&
�
��
�
�
��
�
�

.�,�/�-���� � !�.�����

�

��

���

���

���

���

���

��

�

�
��
�
�

�
�
�
�
�

�

��

��
�
�

��
��

�

��
�
��
�
�

�
�
��

��
�
�
�
�

"
/�

��
�

� !�.���� �����/ "���������������/

�

��

(�

��

	�

���

� ���,�� (��,�* 	��,��� ����,���

&
�
��
�
�
��
�
�

&����8�3�������

��

������

�����

�������

������������

����������

�
�
(
�
	

��
��
�(
��

��

�

�
��
�
�

�
�
�
�
�

�

��

��
�
�

��
��

�

��
�
��
�
�

�
�
��

��
�
�
�
�

0�
��
�"
/�

��
��
�
��
�
�&
�
��
�
�
��
�
�
�

,
��
�,

��
��"

/�
��
�

!�,�����

1���������������

%2�,3���������������

������

%2�&�������������
�

��

(�

��

	�

���

� ���,�� (��,�* 	��,��� ����,���

&
�
��
�
�
��
�
�

&����8�3�������

��

������

�����

�������

������������

����������

���

��*

��	

���

�

!
�,
��

��
�

1
��
��
�
�
�
�
��

��
��

�5
�,
3�

��
�
�
�;

%
�2

�&
�
�

��
��

�
�
�
���

�

!
�,
��

��
�

1
��
��
�
�
�
�
��

��
��

�5
�,
3�

��
�
�
�;

%
�2

�&
�
�

��
��

�
�
�
���

�

!
�,
��

��
�

1
��
��
�
�
�
�
��

��
��

�5
�,
3�

��
�
�
�;

%
�2

�&
�
�

��
��

�
�
�
���

�

!
�,
��

��
�

1
��
��
�
�
�
�
��

��
��

�5
�,
3�

��
�
�
�;

%
�2

�&
�
�

��
��

�
�
�
���

�

!
�,
��

��
�

1
��
��
�
�
�
�
��

��
��

�5
�,
3�

��
�
�
�;

%
�2

�&
�
�

��
��

�
�
�
���

�

!
�,
��

��
�

1
��
��
�
�
�
�
��

��
��

�5
�,
3�

��
�
�
�;

%
�2

�&
�
�

��
��

�
�
�
���

�

�� �� ����� ��� ����� �����

��
�
�
�
�

���&�� ��&��� (�&��� 	�&���

#���	�$$:�	��.����

�������������

������	����

�������
������

!�$�����	
"�������	��-��

���	��-��

���	
,:����	 �$�

���	
������

#���	�$$:�
��-��

��	����	,����

 �-;#���	����������;����

 �-;#���	����������;����

��$�	��������	��������	7���9

,����	<�����	 �-	�����

#%
 �-
 �-

#�
 �-
 �-

#&
 �-
 �-

#2
 �-
 �-

����:�	
�����$$

��$$

/��=

�����:��
����$���

#���	�$$:�	��.����

������	����

!�$�����	
"�������	��-��

���	��-��

���	
,:����	 �$�

���	
������

#���	�$$:�
��-��

��	����	,����

 �-;#���	����������;����

 �-;#���	����������;����

��$�	��������	��������	7���9

,����	<�����	 �-	�����

#%
 �-
 �-

#�
 �-
 �-

#&
 �-
 �-

#2
 �-
 �-

����:�	
�����$$

��$$

/��	���	
 �!	��$$=

�����:��
����$���

 �!

�����	����	�����
������������

#���	�$$:�	��.���� ������	����

!�$�����	
"�������	��-��

���	��-��

���	
,:����	 �$�

���	
������

#���	�$$:�
��-��

��	����	,����

 �-;����

 �-;����

 �!����

 �!	<�����	 �-	�����

#%
 �-
 �-

#�
 �-
 �-

#&
 �-
 �-

#2
 �-
 �-

����:�	
�����$$

��$$
 �!	< �
/��=

�����:��
����$���

 �!

 �-;#��;""

 �-;#��;""

�
���
��(
���
��	
�

���
��(
���

��

�

�

�
�
�
�
�

�

��

��
��

�

�

�
�
��

�

��
�
�
�
�
�

'�<3��� ! 9��������� !
""���#�,�� !$ ""���#��<3��� !$
""���#���������� !$

2153

�
���
��(
���
��	
�

���
��(
���

�� �� ����� ��� ������ �����

��
�
�
�
�
�

""���#�,�� !$ ""���#9��������� !$
�94""���#�=�$ �94""���#(=�$
�94""���#	=�$

2153

Figure 4.3: TLB-aware CCWS performance for varying weights of TLB misses versus cache
misses. TA-CCWS (x:y) indicates that the TLB miss is weighted x times as much as y by the
LLS scoring logic.

find that TLB-based VTAs in TCWS require half the area overhead of cache line-based

CCWS.

4.3 Performance of CCWS with TLB Information

We now quantify how well TA-CCWS and TCWS perform.

TLB-aware cache conscious scheduling results: Figure 4.3 shows that updating

LLS scoring logic with not just cache misses but also TLB miss information improves

performance substantially. The graph separates the speedups of baseline CCWS (no

TLB) and CCWS with augmented TLBs with non-blocking and PTW scheduling logic.

It then shows TA-CCWS, with ratios of how much a TLB miss is weighted versus a

cache miss. Clearly, weighting TLB misses more heavily improves performance. When

they are weighted 4 times as much as cache misses, TA-CCWS achieves within 5-10%

of CCWS without TLBs for four benchmarks (mummergpu, memcached, streamcluster

and pathfinder). While bfs and kmeans still suffer degradations, we will show that

TLB conscious cache scheduling boosts performance even for these benchmarks signif-

icantly.

TLB conscious cache scheduling results: Figure 4.4 shows that TCWS compre-

hensively achieves high performance. The graph on the left shows how varying the

number of entries per warp (EPW) in the TLB VTA affects performance (this graph

28

�
���
���
���
���

�
���
���
���

�
	

�
�
�

�
�

�

�
�
�

�
�
�

��

�
��

�
�

�

�
�
��

�

�
�
�
�
�
�
�

������������ ������!�"�����

��������#$� ��������#$�

��������#$� ��������#$�

���������#$�

�
���
���
���
���

�
���
���
���

�
	

�
�
�

�
�

�

�
�
�

�
�
�

��

�
��

�
�

�

�
�
��

�

�
�
�
�
�
�
�

������������ ������!�"�����

�%&����'��'�('�� �%&����'��'��'��

�%&����'�('��'�)

��������
����

��� ���

���

Figure 4.4: TLB conscious warp scheduling achieves within 5-15% of baseline CCWS without
TLBs. The left diagram shows TCWS performance as the number of entries per warp (EPW)
in the VTA is varied. The right diagram adds LRU depth weights to LLS scoring.

isolates the impact of EPWs alone without LRU depth weighting) Typically, 8 EPWs

per warp VTA does best, consistently outperforming TA-CCWS.

Figure 4.4 (right) then shows how updating LLS scores based on the depth of the

hit in the TLB set’s LRU stack improves performance. We consider many LRU stack

weights but only show three of them due to space constraints. The first scheme weights

hits on the first entry of the set (MRU) with a score of 1, the second a score of 2, the

third a score of 3, and the fourth a score of 4 (LRU(1, 2, 3, 4)). Similarly, we also

show LRU(1, 2, 4, 8) and LRU(1, 3, 6, 9). TLB misses that result in TLB VTA

hits are scored as before.

LRU(1, 2, 4, 8) typically performs best, consistently getting within 1-15% of the

baseline CCWS performance without TLBs. In fact, not only does TCWS require only

half the hardware of TA-CCWS or even CCWS, it outperforms TA-CCWS consistently.

At a high level, these results make two points. First, warp scheduling schemes that

improve cache hit rates are intimately affected by TLB hit rates too. Second, overheads

from this can be effectively countered with simple, thoughtful TLB and PTW awareness.

Our approach, like CPU address translation, consistently reduces overheads to 5-15%

of runtime.

29

Chapter 5

TLBs and Thread Block Compaction

Our final contribution is to show how address translation affects mechanims to reduce

branch divergence overheads. Traditionally, SIMD architectures have supported di-

vergent branch execution by masking vector lanes and stack reconvergence [14, 21],

significantly reducing SIMD throughput. Proposed solutions have included stream pro-

gramming language extensions [34], allowing vector lanes to execute scalar codes for

short durations [38], or more recently, dynamic warp formation techniques [21] which

assimilate threads with similar control flow paths to form new warps. While address

translation affects all of these approaches, we focus on the best known dynamic warp

formation scheme, Thread Block Compaction (TBC) [20].

5.1 Baseline Thread Block Compaction

Basic operation: We now briefly outline the operation of baseline thread block com-

paction. We refer readers to the original paper for complete details [20]. In CUDA and

OpenCL, threads are issued to SIMD cores in units of thread blocks. Warps within

a thread block can communicate through shared memory. TBC essentially also pro-

poses control flow locality within a thread block and is implemented using block-wide

reconvergence stacks for divergence handling [20]. At a divergent branch, all warps of

a thread block synchronize. TBC hardware scans the thread block’s threads (which

can be across multiple warps) to identify which ones follow the same control flow path.

Threads are compacted into new dynamic warps according to branch outcomes and

executed until the next branch or reconvergence point (where they are synchronized

again for compaction). Overall, this approach increases SIMD utilization.

30

�������

�	
���	
��
	
���	
�

�	
���	
��
�	
���	
�

�	
����	
�
��	
����	
�

�������

�	���
	
��

	
���	��

	
���	���
�	����	��

�	�����	���
��	���
	
�

�������

	
���	���
	���
	
�

�	���
	
��

	
��
	
�

	
��
	
��

	
����	��

�������
�	
���	
�
	
���	
�

�	
���	
��
�	
���	
�

�	
����	
�
��	
����	
�

������������� 	
���

���������������

������������
���

�

�	��

	
�

	
�
�	��

�

	
�
�	��
�	��
�	��

�

�	��
��	��
��	��

	
�

�

	
�
�	��
	��

	
�

�

�	��

	
�

	
�

	
�

�

	
�

	
�

	
�
��	��

������������������
���
�

�	��
�	��
�	��
�	��

�

�	��
��	��
��	��
�	��

�

�	��
�	��
	��
��	��

�

�	��
��	��
��	��
�	��

�

�	��
�	��
�	��
�	��

�

�	��
�	��
	��
��	��

Figure 5.1: Comparison of warp execution when using reconvergence stacks, thread block
compaction, and TLB-aware thread block compaction. While TLB-TBC may execute more
warps, its higher TLB hit rate provides higher overall performance.

Unfortunately, blindly adding address translation has problems. Dynamically as-

similating threads from different warps into new warps increases both TLB miss rates

and warp page divergence (which amplifies the latency of one thread’s TLB miss on

all warp threads). Consider, for example, the control flow graph of Figure 5.1. In this

example, each thread block contains three warps of 4 threads. Each thread is given a

number, along with the virtual page it is accessing if it is a memory operation. For

example, 1(6) refers to thread 1 accessing virtual page 6, 1(x) means that thread 1

is execution a non-memory instruction, and x(x) means that the thread is masked off

through branching.

All threads execute blocks A and D but only threads 2, 3, 5, and 12 execute block

C due to a branch divergence at the end of A (the rest execute block B). Blocks B and

C consist of a memory operation. Figure 5.1 shows the order in which warps execute

blocks B and C, using conventional stack reconvergence. Since there is no dynamic warp

formation, it takes six distinct warp fetches to execute both branch paths. Instead,

Figure 5.1 shows that forming TBC reduces warp fetches to just three, fully utilizing

31

�
���
���
���
���
�

���
���

�
	

�
�
�
�
�

�
�
�
�

�
�
�
��

�
��
�
�
�

�
�
��
�

�
�
�
�
�
�
�

��������� �� �����

��!�"�#����$ ��!�"���������$

��!�"�� �����$

Figure 5.2: Performance of TBC without TLBs with TBC when using naive 128-entry, 4-port
blocking TLBs, and when augmenting TLBs with nonblocking and PTW scheduling facilities.

SIMD pipelines.

While TBC may at first seem ideal, address translation poses problems. For exam-

ple, the first dynamic warp now requires virtual pages 1 and 6. If we consider a 1-entry

TLB which is initially empty, the first warp takes 2 TLB misses, the second 3, and

the third 2. Instead, Figure 5.1 shows a TLB-aware scheme that potentially performs

better by forming a first dynamic warp with threads requiring only virtual page 6 and a

second warp requesting virtual page 1. Now, the first two warps suffer 2 TLB misses as

opposed to 5 (for baseline, TLB-agnostic TBC), without sacrificing SIMD utilization.

Performance of basic approach: Figure 5.2 quantifies the performance of TLB-

agnostic TBC when using address translation. Against a baseline without TLBs, we

plot the speedup of TBC without TLBs, TBC with naive 128-entry, 4-port TLBs (block-

ing, no PTW scheduling), TBC with augmented TLBs (nonblocking, overlap misses

with cache access, PTW scheduling). We also show naive TLBs and augmented TLBs

without TBC. There is a significant performance gap between TBC with and without

TLBs. Even with augmented TLBs, an average of 20% performance is lost compared

to ideal TBC (without TLBs). In fact, augmented TLBs without TBC actually outper-

form augmented TLBs with TBC. We have found that this occurs primarily because

TBC increases per-warp page divergence (by an average of 2-4 for our workloads). This

further increases TLB miss rates by 5-10%. In response, we study TLB-aware TBC,

assuming block-wide reconvergence stacks and age-based scheduling [20].

32

����������	
������������

�
	
��
�
��
��
��
�
�
�
	

�
	
�
�
�
	

�
	
�
�

�	
�
�
	
�
�

�
�
�

�
�
�	
�
�
�

�
��
�
�
�
	

!
�
"

�
	
�
�
#
�

$
�	
�
�
�
#

$��

��

%
�
�
	
�
�
�
�
��
�

�
�
&
�"
'
((
	

"����
����

!�	���
���&����

�
!
�

��)

��*

��+

,

�
�
"

%	-	��

!
�
��
.

/ ��
�0��)!��

/ ��
�0��*!��

/ ��
�0��+!��

,

!
�
�

(
��
�

�

'	

�	���	
!�	��

���&����

�
�
�
�
�#
�

1
�
�
�
�
	

�
�
��
/
	
�

�
�

!�
���

��������	�2�&

%�'�	��) ,
%�'�	��* ,

, ,

!��
����
2�&�
�'((

�� ��� ��

�� ��� ��

�� ��� ��

"-�� �2��	�
�	���/	�	�� %���

!��(��� !�	���
���&����

!�"

!�� ��3
��&�
��
��#

�&���	�����������

Figure 5.3: Hardware implementation of TLB-aware TBC. We add only the combinational
logic in the common page matrix (CPM) and a warp history field per TLB entry. The red
dotted arrows zoom into different hardware modules.

5.2 Address Translation Awareness

Hardware details: Figure 5.3 shows how we make TBC aware of address translation

awareness with minimal additional hardware. The diagram shows the basic SIMD

pipeline, with red dotted arrows zooming on specific modules. We add only the shaded

hardware to basic TBC from past work [20].

In baseline TBC, on a divergent branch, a branch unit generates active masks based

on branch outcomes. A block-wide active mask is sent to the thread compactor and

is stored in multiple buffers. Each cycle, a priority encoder selects at most one thread

from its corresponding inputs and sends its ID to the warp buffer. Bits corresponding

to the selected threads are reset, allowing encoders to select from remaining threads

in subsequent cycles. At the end of this step, threads have been formed into dynamic

warps based on branch outcomes. When these dynamic warps becomes ready (indicated

by the r bit per warp buffer entry) they are sent to the fetch unit, which stores program

counters and initiates warp fetch. We refer readers to the TBC paper [20] for details

on how the priority encoder and compactor assimilate dynamic warps.

33

Our contribution is to modify this basic design and encourage dynamic warp for-

mation among warps that have historically accessed similar TLB PTEs and are hence

likely to do so in the future, minimizing page divergence and miss rates. We use a ta-

ble called the Common Page Matrix (CPM). Each CPM row holds a tag and multiple

saturating counters. The CPM maintains a row for every warp (48 rows for our SIMD

cores), each of which has a counter for every other warp (47). Each counter essentially

indicates how often the warp ID associated with the row and the column have accessed

the same PTEs in the past. We use this structure in tandem with the priority encoder.

Threads are compacted into the warp buffer only if the thread’s original warp had ac-

cessed PTEs that threads already compacted in the new dynamic warp also accessed.

This information is easily extracted in the CPM when compacting threads; we choose

a CPM row with the thread’s original warp number. Then, we look up the counters

using the original warp numbers of the threads that have already been compacted into

the target dynamic warp. We compact the candidate thread into the dynamic warp

only if the selected counters are at maximum value.

Figure 5.3 shows that CPM counters are updated on TLB hits. Each TLB entry

maintains a history of warp numbers that previously accessed it. Every time a warp

hits on the entry, it selects a CPM row and updates the counters corresponding to the

warps in the history list. To ensure that CPM continues to adapt to program behavior,

the table is periodically flushed (a flush every 500 cycles suffices).

Hardware overheads: TLB-aware TBC adds little hardware to baseline TBC. We

track PTE access similarity between warps rather than between threads to reduce

hardware costs and because original warps (not dynamic ones) usually have modest

page divergence. This means that focusing on warp access patterns provides most of

the benefits of per-thread information, but with far less overhead. The CPM has 48x47

entries; we find that 3-bit counters perform well, for a total CPM of 0.8KB. In addition,

we use a history length of 2 per TLB; this requires 12 bits (since warp identifier is 6

bits). Fortunately, we observe that PTEs do not actually use full 64-bit address spaces

yet, leaving 18 bits unused. We use 12 of these 18 bits to maintain history. All CPM

updates and flushes occur off the critical path of dynamic warp formation.

34

�

���

���

���

���

�

���

���

�
	

�
�
�
�
�

�
�
�
�

�
�
�
��

�
��
�
�
�

�
�
��
�

�
�
�
�
�
�
�

������������

����� �!������

���"�#������������$��

���"�#������������$��

���"�#���������%��$��

Figure 5.4: Performance of TLB-aware TBC, as the number of bits per CPM counter is varied.
With 3-bits per counter, TLB-aware TBC achieves performance within 3-12% of TBC without
TLBs.

5.3 Performance of TLB-Aware TBC

Figure 5.4 shows the performance of TLB-aware TBC against baseline TLB-agnostic

TBC without TLBs, and with augmented TLBs. We assume 1, 2, and 3 bits per CPM

counter; more bits provide greater confidence in detecting whether warps access the

same PTEs. Even 1 bit counters drastically improves performance over TLB-agnostic

TBC with augmented TLBs (15-20% on average). 3 bits boost performance within

5-12% of baseline TBC without TLBs, well within the typical 5-15% range deemed

acceptable on CPUs. Like CCWS, these results mean that even though address trans-

lation tests conventional dynamic warp formation, simple tweaks recovers most lost

performance.

35

Chapter 6

Discussion and Future Work

Shared last-level TLBs. Recent work has shown the benefits of last-level TLBs

shared among multiple CPU cores [11]. We will consider the benefits of this approach

in future work.

Memory management unit (MMU) caches. x86 cores use MMU caches to store

frequently-used PTEs from upper levels of the page table tree [6]. These structures

accelerate page table walks and may be effective for GPUs too. Future studies will

consider MMU caches; note though that many benefits of their benefits are similar to

adding PTW intelligence.

Large pages. Past work [3, 8, 56, 46] has shown that large pages (2MB/1GB) can

potentially improve TLB performance. However, in some cases, their overheads can

become an issue; for example, they require specialized OS code, can increase paging

traffic, and may require pinning in physical memory (e.g., in Windows). We leave a

detailed analysis of the pros and cons of large pages to future work. We do, however,

present initial insights on 2MB pages. Specifically, one may, at first blush, expect large

pages to dramatically reduce page divergence since it is much likelier that 32 warp

threads request the same 2MB chunk rather than the same 4KB chunk. Though this

is usually true, we have found that some benchmarks, mummer and bfs), still suffer

high page divergences of 6 and 3 (Figure A.4 in the Appendix). Warp threads in these

benchmarks have such far-flung accesses that they essentially span 12MB and 6MB of

the address space. We therefore believe that a careful design space study of superpages

is a natural next step in the envolution of this work.

36

Chapter 7

Conclusion

This work examines address translation in CPU/GPUs. We are prompted to study

this because of industry trends toward fully-coherent unified virtual address spaces in

heterogeneous platforms. The reasons for this trend are well-understood – fully coherent

unified virtual address spaces between cores and accelerators simplify programming

models and reduce the burden on programmers to manage memory. Unsuprisingly,

we find that adding address translation at the L1-level of the GPUs does degrade

performance. Moreover, we find that the design of GPU address translation should not

be naively borrowed from CPUs (even though CPU address translation is a relatively

mature technology) because the resulting overheads are untenable. We conclude that

the wide adoption of heterogeneous systems, which rely on a manageable programming

model, hinges upon thoughtful GPU-aware address translation.

We show that, fortunately, simple designs mindful of GPU data-parallel execu-

tion significantly reduce performance overheads from cache-parallel address transla-

tion. We also show that two recent proposals for improving GPU compute execution

times (Cache-Conscious Wavefront Scheduling and Thread Block Compaction), have

their gains nearly eliminated with the introduction of cache-parallel address transla-

tion. However, these schemes can be made TLB-aware with a few simple adjustments,

bringing their performance back from the brink and approaching their original gains.

Overall, mindful implementation of TLB-awareness in the GPU execution pipeline is

not complicated, thus enabling manageable performance degradation in exchange for

the industry-driven desire for enhanced programmability. Therefore, we expect there

is a body of low-hanging fruit yet to be plucked for enhancing address translation in

heterogeneous systems.

37

Appendix A

Miss Penalty Cycles and Page Divergence CDFs

A.1 TLB Miss Penalties for Blocking TLBs

�

��

���

���

���

���

���

�
��

	

	
	
�
�
�

�
	
�
�
�
�

	
�
	
��
��
�
�

��
��
�
	
��

��
�
�

�
�
��
��
�
�
�
�

�
�
��
�
�

���������������� ������	�����������

Figure A.1: Average cycles per TLB miss, compared to L1 cache misses. TLB miss penalties

are typically twice as long as L1 cache miss penalties.

Figure A.1 shows that TLB miss penalties are expensive, well above 200 cycles in

all cases. In fact, they are about twice as long as L1 cache misses because they involve

multiple memory references to walk the radix tree page table. This, in combination

with high miss rates, explains why naive blocking GPU TLBs degrade performance.

A.2 Page Divergence CDFs

Figure A.2 shows how many warps that execute experience page divergence values

of 1, 2 to 3 pages, 4 to 7 pages, 8 to 15 pages, and 16 to 32 pages. Higher page

divergence values require more ports. In general, 80% of warps for all benchmarks

except for mummergpu have a page divergence of 3 or under, meaning that 3 ports per

38

�

��

��

��

��

���

� ���	�
 ���	�� ���	��� ����	�
�

�
��
�
�
��
�
�

	����	���

���

���������

������

���������

�������������

����������

Figure A.2: Page divergence cumulative distribution functions. We show what percentage of

warps have have a page divergence of 1, 2-3, 4-7, 8-15, and 16-32.

TLB suffices. mummergpu is the exception, with a page divergence of about 16 required

to cover 80% of the warps.

A.3 Idle Cycle Analysis

�

�

�

�

�

��

��

��

��

�
�	

�

�
�
�
�

�

�
�
�
	

�

��
��
�
�

	�
�
�

��
�
	�
�

�
�
��
��
�
�
�

��
��
��
�
��
�
	�
�
	�
�
��
�
�
�
�
��
�
�
��
��

��
��
��
�
�
��
�
	

 �������

!��	������
�		�	

"#��$��������������

����		

"#���%�	���������

Figure A.3: Percentage of total cycles that are idle for blocking GPU TLBs and various non-

blocking and page table walking optimizations.

Figure A.3 shows the number of idle cycles as a percentage of total benchmark

runtime when using blocking GPU TLBs and as various optimizations are added. As

39

expected, the number of idle cycle decreases substantially (by 50% in many cases) when

using nonblocking and page table walk scheduling features.

A.4 Page Divergence CDFs with Large Pages

Figure A.4 shows CDFs for the page divergence counts assuming 2MB large pages.

While one might expect large pages to have sufficient reach to cover all threads of a

warp, it still takes 3 pages to cover 80% of the warps from bfs and pathfinder, and

over 8 pages for mummergpu.

�

��

��

��

��

���

� ���	�
 ���	�� ���	��� ����	�
�

�

��
�

�
��

�
�

��������������

���

���������

������

���������

������� �����

����������

Figure A.4: Page divergence cumulative distribution functions when using 2MB large pages.

We show what percentage of warps have have a page divergence of 1, 2-3, 4-7, 8-15, and 16-32.

40

References

[1] AMD. AMD I/O Virtualization Technology (IOMMU) Specification. 2006.

[2] Nadav Amit, Muli Ben Yehuda, and Ben-Ami Yassour. IOMMU: Strategies for
Mitigating the IOTLB Bottleneck. WIOSCA, 2010.

[3] Andrea Arcangeli. Transparent Hugepage Support. KVM Forum, 2010.

[4] Todd Austin and Gurindar Sohi. High-Bandwidth Address Translation for
Multiple-Issue Processors. ISCA, 1996.

[5] Ali Bakhoda, George Yuan, Wilson Fung, Henry Wong, and Tor Aamodt. Ana-
lyzing CUDA Workloads Using a Detailed GPU Simulator. ISPASS, 2009.

[6] T. Barr, A. Cox, and S. Rixner. Translation Caching: Skip, Don’t Walk (the Page
Table). ISCA, 2010.

[7] T. Barr, A. Cox, and S. Rixner. SpecTLB: A Mechanism for Speculative Address
Translation. ISCA, 2011.

[8] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mike Swift, and Mark Hill.
Efficient Virtual Memory for Big Memory Servers. ISCA, 2013.

[9] Arkaprava Basu, Mark Hill, and Michael Swift. Reducing Memory Reference En-
ergy with Opportunistic Virtual Caching. ISCA, 2012.

[10] Ravi Bhargava, Benjamin Serebrin, Francesco Spadini, and Srilatha Manne. Ac-
celerating Two-Dimensional Page Walks for Virtualized Systems. ASPLOS, 2008.

[11] A. Bhattacharjee, D. Lustig, and M. Martonosi. Shared Last-Level TLBs for Chip
Multiprocessors. HPCA, 2010.

[12] A. Bhattacharjee and M. Martonosi. Inter-Core Cooperative TLB Prefetchers for
Chip Multiprocessors. ASPLOS, 2010.

[13] Pierre Boudier and Graham Sellers. Memory System on Fusion APUs. Fusion

Developer Summit, 2012.

[14] W Bouknight, Stewart Denenberg, David McIntyre, J Randall, Amed Sameh, and
Daniel Slotnick. The Illiac IV System. Proceedings of the IEEE, 60(4):369–388,
April 1972.

[15] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike
Houston, and Pat Hanrahan. Brook for GPUs: Stream Computing on Graphics
Hardware. SIGGRAPH, 2004.

[16] M Cekleov and M Dubois. Virtual-Addressed Caches. IEEE Micro, 1997.

41

[17] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy Sheaffer, Sang
ha Lee, and Kevin Skadron. Rodinia: A Benchmark Suite for Heterogeneous
Computing. IISWC, 2009.

[18] D. Clark and J. Emer. Performance of the VAX-11/780 Translation Buffers: Sim-
ulation and Measurement. ACM Transactions on Computer Systems, 3(1), 1985.

[19] William Dally, Pat Hanrahan, Mattan Erez, Timothy Knight, Francois Labonte,
Jung-Ho Ahn, Nuwan Jayasena, Ujval Kapasi, Abhishek Das, Jayanth Gum-
maraju, and Ian Buck. Merrimac: Supercomputing with Streams. SC, 2003.

[20] Wilson Fung and Tor Aamodt. Thread Block Compaction for Efficient SIMT
Control Flow. HPCA, 2011.

[21] Wilson Fung, Ivan Sham, George Yuan, and Tor Aamodt. Dynamic Warp Forma-
tion and Scheduling for Efficient GPU Control Flow. MICRO, 2007.

[22] Isaac Gelado, Javier Cabezas, Nacho Navarro, John Stone, Sanjay Patel, and Wen
mei Hwu. An Asymmetric Distributed Shared Memory Model for Heterogeneous
Parallel Systems. ASPLOS, 2010.

[23] Blake Hechtman and Daniel Sorin. Evaluating Cache Coherent Shared Virtual
Memory for Heterogeneous Multicore Chips. ISPASS, 2013.

[24] Taylor Hetherington, Timothy Rogers, Lisa Hsu, Mike O’Connor, and Tor Aamodt.
Characterizing and Evaluating a Key-Value Store Application on Heterogeneous
CPU-GPU Systems. ISPASS, 2012.

[25] Intel. Intel Virtualization Technology for Directed I/O Architecture Specification.
2006.

[26] Intel Corporation. TLBs, Paging-Structure Caches and their Invalidation. Intel

Technical Report, 2008.

[27] Thomas Jablin, James Jablin, Prakash Prabhu, Feng Liu, and David August.
Dynamically Managed Data for CPU-GPU Architectures. CGO, 2012.

[28] Thomas Jablin, Prakash Prabhu, James Jablin, Nick Johnson, Stephen Beard,
and David August. Automatic CPU-GPU Communication Management and Op-
timization. PLDI, 2011.

[29] B. Jacob and T. Mudge. A Look at Several Memory Management Units: TLB-
Refill, and Page Table Organizations. ASPLOS, 1998.

[30] Aamer Jaleel and Bruce Jacob. In-Line Interrupt Handling for Software-Managed
TLBs. ICCD, 2001.

[31] Adwait Jog, Onur Kayiran, Nachiappan CN, Asit Mishra, Mahmut Kandemir,
Onur Mutlu, Ravi Iyer, and Chita Das. OWL: Cooperative Thread Array Aware
Scheduling Techniques for Improving GPGPU Performance. ASPLOS, 2013.

[32] Adwait Jog, Onur Kayiran, Asit Mishra, Mahmut Kandemir, Onur Mutlu, Ravi
Iyer, and Chita Das. Orchestrated Scheduling and Prefetching for GPUs. ISCA,
2013.

42

[33] G. Kandiraju and A. Sivasubramaniam. Going the Distance for TLB Prefetching:
An Application-Driven Study. ISCA, 2002.

[34] Ujval Kapasi, William Dally, Scott Rixner, Peter Mattson, John Owens, and Bruce
Khailany. Efficient Conditional Operations for Data-Parallel Architectures. MI-

CRO, 2000.

[35] Stefanox Kaxiras and Alberto Ros. A New Perspective for Efficient Virtual-Cache
Coherence. ISCA, 2013.

[36] Onur Kayiran, Adwait Jog, Mahmut Kandemir, and Chita Das. Neither More nor
Less: Optimizing Thread Level Parallelism for GPGPUs. PACT, 2013.

[37] Jesung Kim, Sang Lyul Min, Sanghoon Jeon, Byoungchul Ahn, Deog-Kyoon Jeong,
and Chong Sang Kim. U-Cache: A Cost-Effective Solution to the Synonym Prob-
lem. HPCA, 1995.

[38] Ronny Krashinsky, Christopher Batten, Mark Hampton, Steve Gerding, Brian
Pharris, Jared Casper, and Krste Asanovic. The Vector-Thread Architecture.
ISCA, 2004.

[39] George Kyriazis. Heterogeneous System Architecture: A Technical Review.
Whitepaper, 2012.

[40] Kevin Lim, David Meisner, Ali Saidi, Parthasarthy Ranganathan, and Thomas
Wenisch. Thin Servers with Smart Pipes: Designing SoC Accelerators for Mem-
cached. ISCA, 2013.

[41] Jiayuan Meng, David Tarjan, and Kevin Skadron. Dynamic Warp Subdivison for
Integrated Branch and Memory Divergence. ISCA, 2010.

[42] Garret Morris, Benedict Gaster, and Lee Howes. Kite: Braided Parallelism for
Heterogeneous Systems. 2012.

[43] Aftab Munshi. The OpenCL Specification. Kronos OpenCL Working Group, 2012.

[44] N. Muralimanohar, R. Balasubramonian, and N. Jouppi. CACTI 6.0: A Tool to
Model Large Caches. MICRO, 2007.

[45] Venyu Narasiman, Michael Shebanow, Chang Joo Lee, Rustam Miftakhudinov,
Onur Mutlu, and Yale Patt. Improving GPU Performance via Large Warps and
Two-Level Warp Scheduling. MICRO, 2011.

[46] Juan Navarro, Sitaram Iyer, Peter Druschel, and Alan Cox. Practical, Transparent
Operating System Support for Superpages. OSDI, 2002.

[47] NVidia. NVidia’s Next Generation CUDA Compute Architecture: Kepler GK110.
NVidia Whitepaper, 2012.

[48] John Owens, Mike Houston, David Luebke, Simon Green, John Stone, and James
Phillips. GPU Computing. IEEE, 96(5), 2008.

43

[49] John Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Kruger, Aaron
Lefohn, and Timothy Purcell. A Survey of General-Purpose Computation on
Graphcis Hardware. EUROGRAPHICS, 26(1), 2007.

[50] Angshuman Parashar, Michael Pellauer, Michael Adler, Bushra Ahsan, Neal Crago,
Daniel Lustig, Vladimir Pavlov, Antonia Zhai, Mohit Gambhir, Aamer Jaleel,
Randy Allmon, Rachid Rayess, Stephen Maresh, and Joel Emer. Triggered In-
structions: A Control Paradigm for Spatially-Programmed Architectures. ISCA,
2013.

[51] Binh Pham, Viswanathan Vaidyanathan, Aamer Jaleel, and Abhishek Bhattachar-
jee. CoLT: Coalesced Large Reach TLBs. MICRO, 2012.

[52] Wajahat Qadeer, Rehan Hameed, Ofer Shacham, Preethi Venkatesan, Christos
Kozyrakis, and Mark Horowitz. Convolution Engine: Balancing Efficiency and
Flexibility in Specialized Computing. ISCA, 2013.

[53] P Rogers. AMD Heterogeneous Uniform Memory Access. AMD, 2013.

[54] Timothy Rogers, Mike O’Connor, and Tor Aamodt. Cache Conscious Wavefront
Scheduling. MICRO, 2012.

[55] Inderpreet Singh, Arrvindh Shriraman, Wilson Fung, Micke O’Connor, and Tor
Aamodt. Cache Coherence for GPU Architecture. HPCA, 2013.

[56] M. Talluri and M. Hill. Surpassing the TLB Performance of Superpages with Less
Operating System Support. ASPLOS, 1994.

[57] Michael Taylor. Is Dark Silicon Useful? DAC, 2012.

[58] N Wilt. The CUDA Handbook. 2012.

[59] Lisa Wu, Raymond Barker, Martha Kim, and Kenneth Ross. Navigating Big Data
with High-Throughput, Energy-Efficient Data Partitioning. ISCA, 2013.

