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Inflammation is a critical component of the physiological response to stress. 

Ideally, the endpoint of inflammation is restoration of homeostasis. However, when anti-

inflammatory processes fail to appropriately balance pro-inflammatory signals, 

inflammation can have deleterious effects. Clinically, this is problematic in diseases such 

as sepsis because therapies to control inflammation are limited. Rhythmic biological 

signals, ranging in time scale from very fast neural oscillations to very slow seasonal 

patterns, are ubiquitous in physiological systems, including those linked to inflammation. 

The characteristics of an oscillatory signal reflect the state of underlying rhythm-

generating physiological systems. Through studying homeostatic rhythms and their 

disruption in inflammation, we gained insight into the underlying mechanisms and 

potential diagnostic utility embedded in physiologic variability via mathematical 

modeling and systems biology approaches. 

Based on a mathematical model of human endotoxemia, an experimental model of 

systemic inflammation, we hypothesized that hormones entrain inflammatory mediators 

and impose circadian patterns on the endotoxemia response. A model of the interplay 
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between inflammation and circadian rhythms was developed and validated based on the 

temporal sensitivity of the inflammatory response. In addition to circadian rhythms, 

ultradian (~1hr) rhythms in cortisol are another prominent hormonal pattern linked to 

inflammation. By combining models of cortisol production and pharmacodynamics, we 

evaluated the downstream implications of ultradian rhythms, finding a relationship 

between the amplitude of homeostatic ultradian rhythms and responsiveness to 

subsequent stress. Heart rate variability (HRV) has been studied as a potential prognostic 

marker in inflammation-linked diseases. We modeled the interactions between human 

endotoxemia and the autonomic nervous system to understand the loss of HRV in 

response to stress, allowing for the rationalization of experimental observations in the 

framework of a quantitative model. Finally, we identified a warning signal of transitions 

between steady states in a mathematical model of chronic endotoxemia, illustrating the 

potential for our research to be applied in a translational context. These results all point 

towards the importance of rhythmic patterns in the underlying physiological systems 

driving the inflammatory response and the potential for useful information about these 

systems to be derived from the analysis of variability in physiological signals. 
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Chapter 1: Introduction 

1.1: The Clinical Problem of Systemic Inflammation 

Inflammation is a critical component of the physiological response of an organism 

to stressors. When the inflammatory response is successful, it leads to the healing of 

injury or the clearance of infection, and then the inflammatory process self-regulates and 

returns to homeostasis. However, when anti-inflammatory mechanisms fail to adequately 

counterbalance pro-inflammatory activity, the body can reach a state of prolonged, 

unresolving systemic inflammation. 

This dysregulated inflammatory state can cause significant harm to the body even 

in the absence of any exogenous stressor. Further complicating this issue is our general 

inability to effectively modulate persistent inflammatory states. Clinically, this represents 

a major challenge. It has long been known the control of inflammatory balances plays a 

key role in the progression of a variety of inflammation-related disorders (Bone 1996). 

Yet even general classes of approaches that work in the context of one particular disease 

may not apply more broadly. For instance, novel therapies aimed at treating rheumatoid 

arthritis and inflammatory bowel disease with anti-cytokine therapies have shown 

promise in recent years, but similar strategies have not produced such promising results 

in treating sepsis (Marshall 2003; Deans, Haley et al. 2005). 

Therapies for the management and control of inflammation in septic patients are 

limited (Martin, Mannino et al. 2003) and the only recently approved novel therapy 

(activated protein C) failed to show improved outcome  in a repeat Phase III clinical trial 

(Angus 2011). Sepsis is a syndrome resulting fundamentally from the activation of the 

systemic inflammatory response (SIRS) in the presence of a severe infection (Angus, 
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Linde-Zwirble et al. 2001; Decker 2004). Sepsis has an immense cost, both in human life 

lost and in expenditure of healthcare resources. Annually there are more than three 

quarters of a million cases, having an in-hospital mortality rate of over 25% and an 

average cost per case of more than $20,000 (Angus, Linde-Zwirble et al. 2001). This 

leads to over 200,000 deaths annually in the United States, making sepsis one of the 

leading causes of death nationwide (Kochanek and Smith 2004). Therefore, novel 

approaches to understand the biological mechanisms behind inflammation and their 

dysregulation in inflammation-linked diseases such as sepsis is of critical importance 

(Marshall 2008). 

1.2: The Human Endotoxemia Model 

Human endotoxemia is the response to the elective administration of endotoxin 

(lipopolysaccharide, LPS), a component of the outer membrane of Gram-negative 

bacteria that is recognized by the innate immune system and provokes an inflammatory 

response. Although acute, systemic inflammation is of course not reflective of all of the 

physiological changes occurring in complex disease like sepsis, human endotoxemia does 

precipitate signs and symptoms characteristic of clinical sepsis (Lowry 2005; Andreasen, 

Krabbe et al. 2008), acute respiratory distress syndrome (ARDS) (Buttenschoen, 

Kornmann et al. 2008), and trauma (Shanker, Coyle et al. 2010). These physiological 

changes include transcriptional responses in immune cells, secretion of cytokines and 

hormones, and changes in autonomic activity (Lowry 2009). All of these effects stem 

from responses generated by the binding of LPS to Toll-like receptor 4 (TLR4), thus 

activating innate immune cells and stimulating pathways linked to the production of 

inflammatory genes such as the NF-κB, JAK-STAT, and MAPK signaling pathways 
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(Foteinou, Calvano et al. 2009). This transcriptional activity leads to the production and 

release of both pro-inflammatory and anti-inflammatory cytokines, mediators of the 

inflammatory response and the return to homeostasis, respectively. 

The initial inflammatory response to LPS also propagates through afferent 

nervous signaling to the central nervous system (CNS), which then forms a feedback loop 

to regulate the progression immune response through modulating sympathetic and 

parasympathetic activity, which may be reflected in increased heart rate (HR) and 

decreased heart rate variability (HRV) (Godin, Fleisher et al. 1996). In particular, central 

regulation plays a role in governing the inflammatory response both through autonomic 

activity itself (Tracey 2002) and though the activation of the hypothalamic-pituitary-

adrenal (HPA) axis and the subsequent release of anti-inflammatory hormones such as 

cortisol (Beishuizen and Thijs 2003). 

1.2.1: Physiologic Variability in Human Endotoxemia 

Many of the components involved in the inflammatory response contain 

homeostatic rhythmic variability, and advances in clinical and experimental tools make 

assaying the state of these rhythms increasingly plausible. Figure 1.1 shows several of 

these homeostatic rhythms, including mediators directly involved in inflammation such 

as cytokines and immunomodulatory hormones, as well as oscillatory components that 

give rise to patterns in heart rate variability (HRV) that are disrupted in inflammation 

such as breathing pattern, blood pressure rhythms, and autonomic activity. Underlying 

every biochemical oscillator is some type of negative feedback mechanism (Novak and 

Tyson 2008). Possibly the simplest system to consider is a protein that acts as a 

transcription factor by inhibiting the transcription of its own mRNA. Given appropriate 
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time delays in transcription, translation, and translocation, as well as appropriate rate 

constants, this simple single-gene system oscillates (Novak and Tyson 2008). Real 

physiological systems typically consist of much more complex networks comprised of 

multiple feedback loops. Even still, physiological rhythms are of clinical interest because 

characteristics of those patterns convey information about the underlying system that is 

producing them, beyond simply measuring the mean value of a signal. For instance, in 

some cases, the network structure giving rise to rhythms can be reverse engineered from 

the pattern of rhythmicity (Pigolotti, Krishna et al. 2007). Given that negative feedback 

loops are critical in maintaining homeostasis and acute responsiveness, perturbations in 

negative feedback loops culminating in altered rhythmic patterns can reveal information 

about the integrity of the negative feedback system  (Veldhuis, Keenan et al. 2008). 
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Figure 1.1: Homeostatic rhythms, at a variety of time scales, which contribute to altered physiologic 

variability in endotoxemia. TNF-α data: (Petrovsky and Harrison 1998). Sympathetic nervous system 

activity data: (Donadio, Cortelli et al. 2008). Circadian cortisol data: (Brown, Meehan et al. 2001). 

Ultradian cortisol data: (Charloux, Gronfier et al. 1999). Lung volume, blood pressure, and short-term HR 

data: (Seydnejad and Kitney 2001). Circadian HR data: (Octavio, Rodriguez et al. 2004). TNF-α is an 

inflammatory cytokine that has a clear circadian pattern in response to LPS stimulation, and other cytokines 

also exhibit circadian patterns (Petrovsky and Harrison 1998). Autonomic signaling in inflammation 

contributes both to changes in cardiac function and modulation of the inflammatory response, and 

oscillatory activity is inherent in both sympathetic and parasympathetic branches. Cortisol is an anti-

inflammatory hormone, with a large circadian rhythm riding on top of an ultradian rhythm. Blood pressure 

and respiratory rhythms contribute to short-term patterns in HR, which are diminished in endotoxemia 
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Clinically, patterns in physiological signals represent a broad source of potential 

diagnostic and prognostic markers. For instance, perturbations in the rhythmicity of heart 

beats precede the onset of neonatal sepsis (Griffin, O'Shea et al. 2003; Moorman, Carlo et 

al. 2011). At a much longer time scale, circadian variations in plasma cortisol 

concentration, a factor that has been linked to immune dysfunction, has been associated 

with chronic stress resulting from depression (Yehuda, Teicher et al. 1996), obesity 

(Rosmond, Dallman et al. 1998), psychological stress (Polk, Cohen et al. 2005), and 

cancer (Mormont and Levi 1997; Sephton, Sapolsky et al. 2000). The loss of rhythmicity 

in these cases may reflect an underlying loss in the regulation of negative feedback 

control systems. 

1.3: Autonomic Dysfunction and HRV 

The autonomic nervous system is commonly divided into two branches, 

sympathetic and parasympathetic. Although these branches often function 

antagonistically, under certain circumstances they exhibit complementary behavior; for 

instance, co-activation of sympathetic and parasympathetic nerves at the sinoatrial region 

of the heart can produce an increased cardiac output relative to isolated stimulation of 

either nerve. It is well established that the autonomic nervous system plays a critical role 

in the progression and resolution of the inflammatory response by communicating 

through afferent and efferent neural mechanisms with the immune system. In systemic 

inflammation, activation of the autonomic nervous system leads to the release of 

immunomodulatory hormones. Furthermore, it has  recently been shown that the activity 

of the parasympathetic nervous system can more directly modulate the inflammatory 

response in real time (Munford and Tracey 2002). 
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Clinical measurement of autonomic activity is challenging and imprecise, yet 

there are a variety of techniques that can give some insight into autonomic function. 

Analysis of heart rate variability (HRV), generally defined as the quantification of some 

aspect of beat-to-beat variability in heart rate, is commonly used to develop metrics 

reflecting autonomic activity. The sinoatrial (SA) node, the pacemaker of the heart, is 

innervated by both sympathetic and parasympathetic branches of the autonomic nervous 

system. Thus, changes in autonomic outflow provoke changes in the pattern of 

heartbeats. These are simple and noninvasive metrics that indirectly reflect cardiac 

autonomic modulation. Spectral analysis of  HRV reveals two distinct frequency bands: 

low frequency (LF, 0.04-0.15 Hz) and high frequency (HF, 0.15-0.4 Hz). The spectral 

power in both frequency bands gives some indication of autonomic activity. HF is driven 

by the respiratory cycle and also responds to vagal signaling. LF responds to changes in 

both sympathetic and vagal activity. LF and HF are often interpreted as reflecting 

sympathetic and parasympathetic activity respectively and their ratio is often used to 

assess autonomic balance. Despite the fact that these metrics are, at best, overlapping and 

indirect measures of autonomic activity (Karemaker 1999), HRV has still proven to be 

useful in prognostic and diagnostic applications. 

Much has been learned about neuroimmune crosstalk in inflammation from 

endotoxemia experiments. However, even in controlled human endotoxemia experiments, 

the extent of correlation between the inflammatory state (i.e. cytokine levels) and 

autonomic dysfunction as assessed by HRV is not clear. One study found a weak 

correlation between various HRV metrics and TNF-α (Jan, Coyle et al. 2010), yet another 

found no relationship between HRV and cytokine levels (Kox, Ramakers et al. 2011) and 
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therapies like exogenous glucocorticoid treatment can alter cytokine responses without a 

corresponding change in HRV in a dose dependent manner (Rassias, Guyre et al. 2011). 

These results are not necessarily surprising, as autonomic dysfunction is just one of many 

physiological changes occurring in inflammation. However, they do suggest that a simple 

relationship between HRV and inflammatory state is unlikely to be found, particularly in 

a heterogeneous clinical environment rather than a controlled experimental setting. But 

even lacking a precise mechanistic interpretation of HRV in inflammation and sepsis, the 

clinical studies cited earlier show its importance as a prognostic and diagnostic tool. 

In an attempt to explain the pathogenesis of multiple organ dysfunction syndrome 

(MODS), as often occurs in sepsis, it has been hypothesized (Godin and Buchman 1996) 

that biological networks are collections of oscillatory systems (organs) that are coupled to 

one other and that the maintenance of healthy homeostasis is based both on the integrity 

of each oscillator and on the coupling between them. This hypothesis predicts that, when 

interorgan communication is disrupted and organs become isolated, the loss of oscillatory 

coupling leads to more regular output. This is supported both by a variety of 

mathematical models as well as experimental results. For instance, in response to human 

endotoxemia, the beats of the heart become more regular while autonomic regulation of 

HR is diminished (Sayk, Vietheer et al. 2008). This type of uncoupling of autonomic 

regulation of the heart has been implicated in pediatric sepsis (Ellenby, McNames et al. 

2001). 

A change in autonomic modulation of one tissue does not necessarily imply a 

similar change has occurred in other tissues. Although much of the results presented here 

discuss changes in the function of the heart, this is also important in considering the 
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transition to MODS, as centrally impaired neural signaling impacts many target organs. 

From this perspective, diminished HRV in sepsis and SIRS may not reflect only 

modulated autonomic activity but the loss of the ability to convey interorgan signals via 

the autonomic nervous system.  

1.4: Systems Biology and Mathematical Modeling of Inflammation 

One of the primary challenges hampering the discovery of effective therapies for 

inflammation-driven diseases is that multiple interacting pathways regulate the 

inflammatory response, giving rise to complex dynamics and often unintuitive results 

(Freeman and Natanson 2000). Approaching this challenge requires a systems-level 

understanding of inflammation (Seely and Christou 2000; Vodovotz, Clermont et al. 

2004) through mathematical and computational models of inflammation (Vodovotz, 

Constantine et al. 2009). Mathematical modeling facilitates studying the dynamics of a 

complex system while providing a systematic framework for integrating knowledge from 

diverse disciplines (Sontag 2004). Through this process, systems-based modeling 

leverages massive amounts of information, providing insight into both disease 

progression and potential therapeutic interventions (Rajasethupathy, Vayttaden et al. 

2005). In some respects , computational models can be viewed as digital analogs of 

transgenic animals in that components of the system can be manipulated to investigate a 

hypothesis (Kitano 2002). Mathematical models represent quantitative, explicit 

hypotheses of system function at a wide range of scales and levels of detail. Modeling the 

inflammatory response has the potential to lead to innovations in translational medicine 

where scientific research is applied for improved clinical care, for instance in 

rationalizing drug development, designing clinical trials, and optimizing patient care 
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(Vodovotz, Csete et al. 2008; Foteinou, Calvano et al. 2009). These tasks are all 

especially important in the context of inflammation-linked diseases like sepsis where 

mortality rates are high yet novel clinical developments have been slow (Namas, Zamora 

et al. 2011). 

Fundamentally, models of inflammation generally seek to understand the balance 

between pro- and anti-inflammatory effects. Ideally, the pro-inflammatory response is 

swift and strong enough to eliminate the inflammatory instigator (e.g. a pathogen) and 

then activate anti-inflammatory mechanisms which restore homeostasis. Additionally, 

heightened inflammation can also damage healthy tissue, releasing danger signals that 

further enhance pro-inflammatory signaling (Matzinger 2002). Conversely, it is also 

problematic if inflammation is not strong enough to eliminate the inflammatory 

&螦&螦&螦&螦&螦&螦&襀&訬&�&詆&�&譞&讞&�&�&負&螦螦螦螦螦螦螦螦螦螦

螦螦螦螦螦螦螦螦螦螦螦螦螦螦螦螦螦螦螦螦螦螦螦螦螦螦螦螦螦螦螦螦螦螦螦螦螦螦螦esponses 

(pathogen, pro-inflammation, anti-inflammation, damage) may exhibit complex 

dynamics; simple models of inflammation can produce interesting and biologically 

relevant dynamical patterns (Kumar, Clermont et al. 2004; Day, Rubin et al. 2006; 

Reynolds, Rubin et al. 2006). Of course, real biological networks are far larger and 

introduce further complexities. More complex models can account for spatial 

heterogeneity and stochasticity (An 2008; Dong, Foteinou et al. 2010) as well as a larger 

number of components, working towards unraveling the redundant complexity of 

inherent in inflammation. In addition to the fact that these more complex models contain 

more assumptions and unknowns which lead to problems with identifiability, larger 

models often make infeasible the kind of detailed mathematical analysis and intuitive 

understanding that can be achieved through the study of simpler models. 
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Much of the work presented in this dissertation is based on a mathematical model 

of human endotoxemia (Foteinou, Calvano et al. 2009; Foteinou, Calvano et al. 2009; 

Foteinou, Calvano et al. 2010; Foteinou, Calvano et al. 2011). This model can be 

considered to be of intermediate complexity, in that it does not attempt a fully detailed 

molecular description of inflammation, but it has grown to encompass some mechanistic 

detail, for instance in NF-κB signaling and cortisol pharmacodynamics. At the cellular 

level, recognition of LPS by TLR4 on immune cells leads to the activation of the NF-κB 

pathway and ultimately the production of both pro-inflammatory (P) and anti-

inflammatory (A) cytokines, which are proximal mediators of the systemic inflammatory 

response (Opal and DePalo 2000) and antagonistically work towards the self-regulation 

and resolution of inflammation. At the neuroendocrine level, the hypothalamic-pituitary-

adrenal (HPA) axis and the sympathetic nervous system (SNS) are the primary stress 

response pathways by which the central nervous system (CNS) regulates the immune 

response (Sternberg 2006). This was modeled by assuming that the production and 

release of counter-regulatory anti-inflammatory endogenous hormones cortisol (F) and 

epinephrine (EPI) respond to pro-inflammatory cytokines, and then these hormones feed 

back to modulate the transcriptional response in leukocytes. One notable feature of this 

model is that it contains no physiologic variability. Either the system is constant at a 

steady state, or the system is smoothly moving to a steady state in response to an external 

disturbance (e.g. exogenous LPS administration). The network structure is displayed in 

Figure 1.2 and the model is discussed in more detail, including equations and parameter 

values, in Appendix A. 



 

 

Figure 1.2: Network diagram of the model of human endotoxemia described in Appendix A 
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and validated by its ability to reproduce diverse sets of experimental data and clinical 

observations concerning the temporal sensitivity of the inflammatory response. 

The circadian pattern of cortisol secretion is fundamentally driven by circadian 

variations in the characteristics of a faster (~1 hr period) ultradian rhythm; however, the 

physiological effects of ultradian rhythms are less clear. By combining a model of 

cortisol by the hypothalamic-pituitary-adrenal (HPA) axis production with a 

pharmacodynamic model, we evaluated the implications of ultradian rhythms in cortisol 

in Chapter 3. The downstream transcriptional effects of glucocorticoid pulsatility are 

reflected by the difference in transcript abundance of glucocorticoid responsive genes 

when exposed to a normal ultradian glucocorticoid rhythm and a constant level of 

glucocorticoids with the same area under the curve (AUC) as the ultradian pattern. HPA 

axis parameter perturbations, altering both the amplitude and frequency of glucocorticoid 

bursts, diminish the difference between constant and ultradian cases as the ultradian 

rhythms become flatter. Furthermore, we found a relationship between the amplitude of 

homeostatic ultradian rhythms and responsiveness to subsequent stress, suggesting that 

ultradian rhythms may confer desirable properties on the HPA axis. 

Heart rate variability (HRV), the quantification of beat-to-beat variability, has 

been studied as a potential prognostic marker in inflammatory diseases such as sepsis. 

Chapter 4 focuses on the relationship between HRV and human endotoxemia. We 

modeled the interactions between human endotoxemia and the autonomic nervous system 

to understand the loss of HRV in response to stress. Additionally, we explored the 

dynamics of autonomic-heart coupling to understand experimental data on HRV from 

human endotoxemia experiments in the framework of a quantitative model. This 
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produced multiple plausible alternative hypotheses regarding autonomic function in 

inflammation which give insight into our current state of knowledge regarding autonomic 

dysfunction in inflammation and will guide future research. 

In Chapter 5 we focus on a modality of the potential translational application of 

systems biology and mathematical modeling. From the perspective of physiology as a 

dynamical system, an important task is identifying the propensity to transition from one 

steady state to another, which in practice can occur abruptly. Detecting impending 

transitions between steady states is of significant importance in many fields, and thus a 

variety of methods have been developed for this purpose, but lack of data has limited 

applications in physiology. Here, we propose a parameter-free model-based approach 

towards identifying critical transitions in systemic inflammation based on a minimal 

amount of assumptions about the availability of data and the structure of the system. We 

derived a warning signal metric to identify forthcoming abrupt transitions occurring in a 

mathematical model of chronic inflammation with a gradually increasing bacterial load. 

Intervention to remove the inflammatory stimulus was successful in restoring 

homeostasis if undertaken when the warning signal was elevated rather than waiting for 

the state variables of the system themselves to begin moving to a new steady state. 

These results all point towards the importance of rhythmic patterns in the 

underlying physiological systems driving the inflammatory response and the potential for 

useful information about these systems to be derived from the analysis of variability in 

physiological signals and leveraged through computational modeling. 
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Chapter 2: Modeling the Influence of Circadian Rhythms on 

Human Endotoxemia 

2.1: Introduction 

In recent years, a number of models of inflammation and endotoxemia have been 

developed by applying different modeling techniques (agent based modeling or equation 

based modeling), at different scales (molecular, cellular, systemic, or a combination), and 

focusing on different specific problems (acute inflammation, trauma, or the response to a 

specific disease) (Jit, Henderson et al. 2005; Lipniacki, Paszek et al. 2006; Prince, Levy 

et al. 2006; Zuev, Kingsmore et al. 2006; Mi, Riviere et al. 2007; An 2008; Kumar, Chow 

et al. 2008; Li, Verdolini et al. 2008; Foteinou, Calvano et al. 2009). These models have 

been developed with the practical goals of impacting healthcare through translational 

systems biology (Vodovotz, Csete et al. 2008; Foteinou, Calvano et al. 2009) and 

rationalizing the design of experiments and clinical trials (Clermont, Bartels et al. 2004). 

Because of the large number of components involved in inflammation, existing models 

make assumptions about which interactions are most important, either by simplifying or 

neglecting certain elements. One aspect that has not previously been studied from the 

perspective of systems biology is the interplay between circadian rhythms and 

inflammation. 

Circadian rhythms are periodic processes that are synchronized to the 24 hour 

light/dark cycle. This rhythmicity is widely observed in humans from the scale of 

biochemical reactions, such as hormone production, to behavioral patterns, such as 

regular sleeping and feeding times. In the context of healthcare, mouse and rat models 

have shown that the same dose of a drug can be lethal at certain times and ineffective at 
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others (Levi and Schibler 2007). Thus, it is not surprising that there is also a circadian 

component to inflammation; in fact, many of the elements typically included in models of 

inflammation (leukocytes, cytokines, and hormones) are known to have strong circadian 

patterns (Coogan and Wyse 2008).  The importance of these variations is apparent by 

observing that sepsis patients have a heightened risk of mortality between 2am and 6am 

(Hrushesky and Wood 1997). 

This chapter presents a mathematical model of the interplay between circadian 

rhythms in inflammation that synthesizes disparate biological knowledge about these 

systems. Circadian variability is introduced into our previous multiscale model of 

inflammation (Appendix A) under the hypothesis that the observed circadian variations in 

the inflammatory response are governed by the hormones cortisol and melatonin and their 

interactions with immune cells. The model is validated by its ability to reproduce 

experimental results from a variety of sources and its qualitatively accurate predictions of 

circadian variability in the strength of the inflammatory response.  

2.2: Model 

Many of the components described in Appendix A are known to have circadian 

rhythms. Several studies have shown that numerous pro- and anti-inflammatory cytokines 

undergo circadian variations in plasma levels, typically peaking in the night (Zabel, Horst 

et al. 1990; Petrovsky and Harrison 1997; Petrovsky and Harrison 1998; Petrovsky, 

McNair et al. 1998; Hermann, von Aulock et al. 2006). Plasma cortisol levels also exhibit 

a circadian pattern, peaking in the early morning. Cortisol is produced by the actions of 

the hypothalamic-pituitary-adrenal axis, and the circadian production is due to 
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stimulation from the central circadian clock in the suprachiasmatic nucleus (SCN) 

(Hermann, von Aulock et al. 2006; Kohsaka and Bass 2007). 

Due to the immunomodulatory effects of glucocorticoids and the strong circadian 

pattern of plasma cortisol levels, cortisol has been implicated in the circadian entrainment 

of cytokine production (Petrovsky and Harrison 1998). However, exogenous 

glucocorticoid administration is known to have a differential effect on cytokines; it 

stimulates the production of anti-inflammatory cytokines while inhibiting the production 

of pro-inflammatory cytokines (Barber, Coyle et al. 1993; Barnes 1998). Thus, it seems 

unlikely that cortisol alone could be responsible for the observed fluctuations in cytokine 

level, especially in light of the fact that a number of other hormones also vary either in or 

out of phase with cytokine levels (Petrovsky and Harrison 1998). 

Of particular interest is the hormone melatonin, due to its potential role as a 

mediator in the crosstalk between the SCN and the immune system (Coogan and Wyse 

2008). Melatonin is tightly regulated to have a peak in production in the night while 

remaining at very low levels the rest of the day and it has been shown to stimulate the 

production of cytokines, likely through the melatonin receptors in human leukocytes 

(Guerrero and Reiter 2002; Skwarlo-Sonta, Majewski et al. 2003). This is supported by 

experimental evidence showing that pinealectomy leads to decreased cytokine production 

in mice (del Gobbo, Libri et al. 1989). Thus, in the model presented herein, melatonin is 

used as the primary circadian regulator of cytokine production. Melatonin and cortisol 

drive the circadian variation in all of the model variables. 

In (Chakraborty, Krzyzanski et al. 1999), six different mathematical models are fit 

to experimental data to reproduce the circadian profile of plasma cortisol levels. They 
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found that several of these models were adequately able to capture the dynamics of the 

cortisol profiles. To assess which circadian cortisol equation is most effective to 

incorporate into this multiscale model of inflammation, the different circadian cortisol 

models were tested and shown to produce qualitatively similar results. Ultimately, this 

work incorporates the “two rates” model due to its simplicity. In this model, a zero-order 

production term (RF) is set to two different values depending on the time of day and the 

circadian pattern is induced by using a high production rate in the morning and a low 

production rate the rest of the day (Eq. 2.1a). For comparison, results for the most 

complex model, consisting of the first three terms of a Fourier series fit to the data (Eq. 

2.1b), are also shown. 
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Melatonin is modeled in a similar manner (Eq. 2.2), using RM as a zero-order 

production term that is large during the night and small during the rest of the day and also 

including a first-order degradation term. More complex models of melatonin production 

are not investigated because melatonin levels do not have the type of biphasic pattern that 

is sometimes apparent for cortisol. However, it is well established that pro-inflammatory 

cytokines can reduce or even fully suppress the nocturnal peak in melatonin (Skwarlo-

Sonta, Majewski et al. 2003; Jiang-Shieh, Wu et al. 2005; Fernandes, Cecon et al. 2006; 

Pontes, Cardoso et al. 2006; Pontes, Cardoso et al. 2007; Couto-Moraes, Palermo-Neto et 

al. 2009) and corticosteroids can antagonize this effect by stimulating melatonin 
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production (Ferreira, Fernandes et al. 2005; Fernandes, Cecon et al. 2006; Fernandes, 

Bothorel et al. 2009). The indirect effect of these two substances on melatonin production 

is modeled by including an indirect stimulus term for cortisol and an indirect inhibition 

term for pro-inflammatory cytokines on the production rate of melatonin. 

These models for cortisol and melatonin (Eq. 2.1, 2.2) are fit to experimental data 

(Hermann, von Aulock et al. 2006; Grivas and Savvidou 2007) to ensure that the peak 

levels of hormones in the model occur at the correct times. 
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Melatonin has been shown to stimulate the production of both pro- and anti-

inflammatory cytokines (Petrovsky and Harrison 1997; Raghavendra, Singh et al. 2001). 

This is modeled by adding a stimulating term to the production rates of P and A (Eq. 2.3). 

The strength of these interactions is calibrated based on experimental data for IL-1α (P) 

(Petrovsky, McNair et al. 1998) and IL-10 (A) (Petrovsky and Harrison 1997). 
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Cortisol produced in the adrenal cortex directly interacts with the adrenal medulla, 

stimulating epinephrine production (Wurtman, Pohorecky et al. 1972). This matches up 

well with available experimental data which shows that plasma epinephrine levels lag 

cortisol levels (Kronfol, Nair et al. 1997; Dimitrov, Benedict et al. 2009). This is modeled 

by letting cortisol stimulate the production rate of epinephrine (Eq. 2.4a). The normal 
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circadian pattern of heart rate variability (HRV) is roughly sinusoidal with a peak in the 

night (Massin, Maeyns et al. 2000); this behavior is likely driven by sleep patterns and a 

decrease in sympathetic activity at night (Ewing, Neilson et al. 1991). In this model, 

epinephrine is used as a surrogate for sympathetic activity, which inhibits the production 

rate of HRV. Experimental data are used to validate the responses of epinephrine 

(Kronfol, Nair et al. 1997) and HRV (Massin, Maeyns et al. 2000).  

 
( ) ( ), , , ,1 1in EPI EPI P EPI FRN out EPI

dEPI
k H H k EPI

dt
= ⋅ + ⋅ + − ⋅  (2.4a) 

 
, ,/in HRV out HRV

dHRV
k EPI k HRV

dt
= − ⋅  (2.4b) 

 
It is difficult to draw precise, quantitative conclusions about specific levels of the 

variables in this model because often, experimental data is not sufficient to calibrate the 

model. For instance, the measurements of cytokines that are used are indirect 

measurements that only give relative levels of cytokines (Petrovsky and Harrison 1997; 

Petrovsky, McNair et al. 1998). Thus, when plotted, all variables are scaled to be between 

0 and 1 in the baseline case when there is no inflammatory stimulus by subtracting the 

minimum and dividing by the difference between the maximum and minimum. These 

scalings are then consistently used throughout the other figures. 

All of the parameters used in the following simulations (beyond those presented 

in Appendix A) are shown in Table 2.1. After fitting the model to the data, sensitivity 

analysis is performed to gain insight into the model’s dependence on the newly-

introduced parameters. As in (Ihekwaba, Broomhead et al. 2004; Yue, Brown et al. 

2006), for each parameter, the sensitivity coefficient is calculated as 

 /

/

m

p

m m
S

p p

δ

δ
=  (2.5) 
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where p represents the parameter that is varied, δp is an incremental perturbation 

in the parameter, m is the response of the original system, and δm is the incremental 

change in m due to the perturbation δp. Then, m is defined as the minimum value of HRV, 

i.e. maximum HRV depression, throughout the entire time course in response to a low 

dose of LPS that results in a self-limited inflammatory response. Effectively, this 

sensitivity analysis measures how the perturbations in the parameter values affect the 

overall systemic response to the stimulus. Because this model responds differently 

depending on the time of dosing, due to the circadian nature of the baseline, the 

sensitivity analysis is run 24 different times to capture the response to LPS at the 24 

different hours of the day. 

Parameter Value Parameter Value Parameter Value 

kin,RM1 0.406 kP,M 0.973 TM1 1.732 

kin,RM2 0.032 kA,M 1.000 TM2 20.149 

kout,RM 0.421 TF1 12.082 kin,HRV 1.185 

kin,RF1 0.992 TF2 16.530 kout,HRV 1.045 

kEPI,FRN 0.090     
 

Table 2.1: Parameters for Eq. 2.1-2.4, in addition to those defined in Appendix A. 

2.3: Results 

Eq. 2.1-2.4, combined with the remaining unmodified equations from Appendix 

A, comprise a model of human endotoxemia that takes into account circadian variations 

in most of its variables. A network diagram of these interactions is shown in Figure 2.1. 

The model consists of several interacting modules representing various different scales; 

at the cellular level, the three essential transcriptional responses (pro-inflammatory P, 

anti-inflammatory A, and energetic E) are regulated by NFkB signaling and the 

recognition of LPS, as shown in the cellular level in Figure 2.1. The circadian hormones 

section of Figure 2.1 shows how circadian rhythms in the components of the system are 
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driven by SCN-regulated circadian rhythms in cortisol and melatonin production. 

Interactions between peripheral inflammation and the neuroendocrine axis are accounted 

for by incorporating the inflammatory effects of the hormones cortisol, epinephrine, and 

melatonin along with the systemic level influences on heart rate variability. 

 

Figure 2.1: Network diagram of the components of the model. 
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The model is designed to reproduce experimental data from a variety of sources 

(Kronfol, Nair et al. 1997; Petrovsky and Harrison 1997; Petrovsky, McNair et al. 1998; 

Massin, Maeyns et al. 2000; Hermann, von Aulock et al. 2006; Grivas and Savvidou 

2007), as shown in Figure 2.2. In this figure, a simulation is run with no inflammatory 

stimulus, giving the normal baseline condition for the model variables. While there is a 

link between cortisol and the anti-inflammatory response, variations seen in both the pro- 

and anti-inflammatory responses are primarily driven by melatonin levels. Cortisol is 

responsible for modulating the production of epinephrine, resulting in epinephrine levels 

peaking during the day slightly after cortisol does. Then, HRV is inhibited by epinephrine 

levels. 

 

Figure 2.2: Simulation of the model when there is no inflammatory stimulus. 

In addition to the simple “two rates” model (Eq. 2.1a) of cortisol used to generate 

Figure 2.2, a more complex model based on the Fourier series (Eq. 2.1b) was also tested 
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as shown in Figure 2.3. This model accounts for some of the small deviations from the 

simpler model, such as the small secondary peak after the circadian decrease in cortisol 

levels is already underway. This allows for a better fit for the epinephrine data, which 

shows that the epinephrine levels increase faster than they decline. However, it also leads 

to a worse fit for HRV. Overall, the predictions do not qualitatively improve when using 

the more complex model in Figure 2.3; thus, further results presented use the “two rates” 

model as in Figure 2.2. 

 

Figure 2.3: Simulation of the model, using an alternative equation for cortisol, when there is no 

inflammatory stimulus. 

To determine the sensitivity of the system with respect to the parameters, 

sensitivity analysis is performed by calculating the sensitivity coefficient (Eq. 2.5) for 

each parameter. The simulations are run for the case when the inflammatory stimulus is 

LPS0=1, which leads to a self-limited inflammatory response, and the response is tested 
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for dosing times at each of the 24 hours of the day. Figure 2.4 shows the results, with the 

large bars equal to the mean sensitivity coefficients and the small error bars equal to the 

standard deviation. 

 

Figure 2.4: Sensitivity analysis on the model parameters. Sensitivity coefficients are calculated by using 

Eq. 2.5 with δp=0.01. Error bars represent the standard deviation of the sensitivity coefficients for stimuli 

given at different times during the day. 

Figure 2.5 shows simulations of the application of an identical large inflammatory 

stimulus (LPS0=10) at two different times. First, at 8am (dashed lines), cortisol levels are 

high while cytokine levels are low. Thus, the cytokines have less ability to initiate an 

inflammatory response, and they are countered by the anti-inflammatory influence of 

cortisol. When the inflammatory stimulus is given at 8am, it provokes an acute response 

that resolves normally; within several hours, all of the variables have returned to their 

baseline values. But at midnight (solid lines), cortisol levels are very low and cytokine 

levels are high; thus, in this scenario, the system is more susceptible to inflammation. 

This is illustrated by the unresolved inflammatory response that is provoked by the 

inflammatory stimulus. Interestingly, even in the unresolved inflammatory state, the 

circadian oscillations persist in cortisol, epinephrine, and the pro- and anti-inflammatory 

responses. These oscillations are in phase with the normal oscillations in Figure 2.2. 
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Figure 2.5: Simulation of the model for stimuli at two different times. An inflammatory stimulus is given at 

8am (dashed lines) or 12am (solid lines). At 8am, the system is able to recover from the inflammatory 

stimulus, but at 12am, the same exact stimulus sends the system into an unresolved inflammatory state. 

Melatonin levels also respond differently in the two cases in Figure 2.5. In the 

case when inflammation resolves (dashed lines), there is almost no change in melatonin 

relative to the normal conditions in Figure 2.2. This is because the transient peaks in P 

and A occur during the day when melatonin levels are already low, so the cytokines 

cannot further suppress melatonin production. But in the case when inflammation does 

not resolve (solid lines), melatonin levels remain suppressed. However, a transient 

inflammatory response can still lead to a decrease in melatonin production, as shown in 

Figure 2.6 when the inflammatory stimulus is given towards the beginning of the period 

when melatonin production is high. 
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Figure 2.6: The inflammatory response can suppress melatonin levels. The solid lines show an 

inflammatory response (LPS0=1) initiated at 8pm so that the inflammation is heightened when melatonin 

production is beginning to increase. The dashed lines show the baseline conditions (as in Figure 2.2) for 

comparison. Pro-inflammatory cytokines suppress the production of melatonin, leading to suppressed 

nocturnal melatonin levels. However, normal melatonin production returns the following night when the 

pro-inflammatory signal has resolved. 

The temporal variation in the inflammatory response to LPS is illustrated in 

Figure 2.7. In this plot, the model is run as the time of the inflammatory stimulus 

(LPS0=1) is varied. Then, the peak of the pro-inflammatory signal (Pmax) is recorded as a 

representation of the overall strength of the inflammatory response. There is a significant 

circadian variation in this signal, which peaks at night and is low during the daytime. 
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Figure 2.7: Circadian changes in the strength of the inflammatory response. The strength of the 

inflammatory response varies, as illustrated by monitoring either the maximal response of pro-

inflammatory cytokines (Pmax) or the maximum depression in HRV.  Both of these variables have their 

maximum response in the night when normal levels of pro-inflammatory cytokines are elevated, and the 

minimum responses occur during the morning when cortisol levels are peaking. 

2.4: Discussion 

Circadian rhythms are of critical importance in inflammation because so many of 

the biological components that regulate the outcome of inflammation are themselves 

under circadian regulation. This work presents the first model that incorporates the effect 

of circadian variability on the inflammatory response. Proper treatment of inflammatory 

diseases requires an appreciation of circadian effects (Hrushesky and Wood 1997), so a 

quantitative understanding of circadian variations on inflammation is important in efforts 
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to translate computational systems biology approaches in inflammation to clinical 

relevance (Vodovotz, Csete et al. 2008; Foteinou, Calvano et al. 2009).  

The sensitivity analysis shown in Figure 2.4 illustrates the relative influence of 

the values of all model parameters on the outcome of the model. The outcome is defined 

as the minimum value of HRV after an inflammatory stimulus because heart rate 

variability is known to have prognostic value in critically ill patients. Because the 

sensitivity is measured with respect to changes in HRV, it is not surprising that some of 

the most sensitive parameters are in the equations for EPI (kin,EPI (20), kout,EPI (22) and 

k
0

REPI (23)), which is closely linked to HRV in the model, and HRV itself (kin,HRV (30) and 

kout,HRV (31)). Parameters governing the behavior of both pro-inflammatory cytokines 

(kin,P (49), kP,E (51), and kout,P (52)) and anti-inflammatory cytokines (kin,A (12) and kout,A 

(15))  also have high sensitivities. Of the ten most sensitive parameters, eight represent 

the production and degradation terms for the four variables mentioned (HRV, EPI, P, and 

A). The other two are k0
REPI (23), the production rate of epinephrine’s receptor, and kP,E 

(51), which links cellular energetic activity to changes in the pro-inflammatory response. 

Functionally, many of the most sensitive parameters relate to the communication between 

the different modules of the system. The acute inflammatory response relies on this 

signaling to activate other components of the neuroimmune system and provoke a 

systemic response to inflammation, and this is reflected by high sensitivities in 

parameters governing cytokine and hormonal signals. 

The new parameters added to the model to account for circadian rhythms, labeled 

1-11 in Figure 2.4, have relatively low sensitivity coefficients compared to the most 

sensitive parameters from the original model that does not incorporate circadian effects, 
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indicating that the model retains its circadian response even when the new parameters are 

not precisely set. Yet although the sensitivities for the circadian parameters are less than 

the sensitivities of some of the other parameters mentioned earlier, this should not be 

taken to mean that the circadian components added to the model are unimportant in 

determining the outcome of the system. This is illustrated by the time-dependent 

responses found for identical inflammatory stimuli, as shown in Figure 2.5-2.7. 

The persistent inflammatory state shown in Figure 2.5 (solid lines) is interesting 

because this type of persistent inflammation, either along with a persistent infection or 

after the pathogen is successfully cleared, has been observed clinically (Bone 1996; 

Alberti, Brun-Buisson et al. 2002). The suppression of the circadian release of melatonin, 

shown in the simulation in Figure 2.6, illustrates the ability of the model to capture 

critical aspects of the neuroimmune feedback on the production of circadian hormones. A 

similar diminished nocturnal melatonin release in response to inflammation has been 

observed experimentally (Fernandes, Cecon et al. 2006). Furthermore, the observed 

temporal dependence of the inflammatory response, as shown in Figure 2.5 and Figure 

2.7, has important implications in translational medicine, where the goal is to translate 

current scientific discoveries into tools that can be applied to clinical problems. 

Specifically, modeling circadian variations in inflammation could lead to optimized 

clinical treatment times. Models could potentially be used to optimize the treatment of 

individual patients in an effort towards fulfilling the promise of personalized medicine. In 

inflammation, this is particularly important because it has been repeatedly observed that 

patients with sepsis have a significantly increased risk of mortality at night, but if they 

survive until the morning rise in cortisol levels is underway, they are likely to survive at 
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least until the next night (Hrushesky and Wood 1997). This qualitatively matches the 

results shown in Figure 2.7, where the potential for an inflammatory response is greatest 

at night and is significantly lower during the daytime; furthermore, Pmax reaches its 

minimum early in the morning when the risk of death from sepsis is decreased. The 

observed differences in Pmax mainly arise due to the variations in cortisol and in both pro- 

and anti-inflammatory cytokines. When cortisol levels are high, the system is protected 

from a heightened inflammatory response. But when cortisol levels are low, natural 

variations in cytokine levels result in periods of time when the system is primed for an 

inflammatory response. 

One key aspect of the interplay between circadian rhythms and inflammation that 

is not adequately considered in this work is the feedback from inflammation to circadian 

rhythms. There is some evidence suggesting that immune mediators can directly 

influence the circadian clock by modulating the strength of expression of clock-related 

genes and by shifting the phase of circadian rhythms (Coogan and Wyse 2008). 

Melatonin has been implicated mediating these processes; additionally, inflammatory 

cytokines are known to influence the production of melatonin (Mundigler, Delle-Karth et 

al. 2002; Fernandes, Cecon et al. 2006), likely facilitating bidirectional information 

transfer between the neuroendocrine and immune systems. 

The relationship between circadian rhythms and inflammation may be of 

particular importance in understanding the effects of chronic stress. In response to 

chronic stress from a variety of stimuli, such as depression (Yehuda, Teicher et al. 1996), 

obesity (Rosmond, Dallman et al. 1998), psychological stress (Polk, Cohen et al. 2005), 

and various types of cancer (Mormont and Levi 1997), circadian variations in plasma 



32 
 

 
 

cortisol concentration are diminished while overall cortisol levels remain high. The loss 

of the circadian nature of autonomic and neuroendocrine signaling in chronically stressed 

patients may be linked to a patient’s overall potential to mount a healthy response to an 

inflammatory stressor (Lowry 2009). Furthermore, an extended period of stress hormone 

exposure results in diminished anti-inflammatory capacity as manifested by dynamic 

alterations in circulating levels of the anti-inflammatory cytokine IL-10, similar to 

subjects exposed only to LPS (van der Poll, Barber et al. 1996; van der Poll, Coyle et al. 

1996). The clinical relevance of the circadian component of inflammation, particularly as 

it relates to chronic stress, is illustrated by the fact that diminished circadian variability in 

cortisol is associated with increased mortality in patients with breast cancer (Sephton, 

Sapolsky et al. 2000). The model presented here provides a solid foundation towards 

future work exploring the intricacies of these interactions. 
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Chapter 3: Transcriptional Implications of Ultradian 

Glucocorticoid Secretion, in Homeostasis and in the Acute 

Stress Response 

3.1: Introduction 

Glucocorticoid hormones, corticosterone in rats and cortisol in humans, are 

released from the adrenal cortex as a general response to stress. The secretion of 

glucocorticoids is regulated by the hypothalamic–pituitary–adrenal (HPA) axis: 

corticotrophin-releasing hormone (CRH) released from the hypothalamus stimulates 

adrenocorticotropic hormone (ACTH) secretion in the pituitary gland, which provokes 

the production of glucocorticoids by the adrenal gland. Glucocorticoids then complete 

feedback loops by inhibiting the release of both CRH and ACTH. Circadian rhythms in 

CRH, ultimately originating from exogenous cues of light and feeding (Reppert and 

Weaver 2002), drive circadian rhythms in plasma glucocorticoid levels. Feedback 

between glucocorticoids and ACTH production leads to ultradian (roughly hourly) 

rhythms in glucocorticoid release (Walker, Terry et al. 2010). 

Experimentally, discrete ultradian bursts of glucocorticoid release can be 

determined, and the amplitude, timing, and regularity of these bursts can be assessed 

(Veldhuis, Iranmanesh et al. 1989; Veldhuis, Iranmanesh et al. 2001). These pulse 

properties can be differentially regulated in disease (Lightman and Conway-Campbell 

2010), motivating interest in understanding the origins of HPA pulsatility, the 

relationship between pulsatility and stress responsiveness, the modulation of ultradian 

rhythms, and the mechanisms of downstream effects. 
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Several experiments have shown the importance of glucocorticoid pulsatility in 

regulating the transcription of glucocorticoid responsive genes (Lightman and Conway-

Campbell 2010). Rapid binding and dissociation between glucocorticoid receptor (GR) 

and DNA (McNally, Muller et al. 2000) leads to gene pulsing in response to pulsatile 

glucocorticoid treatment (Stavreva, Wiench et al. 2009). Even in the absence of a 

difference in concentration between pulsatile and constant cortisol treatment, broad 

differential transcription persists (McMaster, Jangani et al. 2011). These experimental 

results are complimented by models of the HPA axis that have attempted to explore the 

origins of the pulsatile release of glucocorticoids (Brown, Meehan et al. 2001; Keenan, 

Licinio et al. 2001; Walker, Terry et al. 2010). From the perspective of pharmacology, 

pharmacokinetic and pharmacodynamic models of glucocorticoid action have been 

developed and applied towards quantitatively understanding the behavior of endogenous 

and exogenous glucocorticoids (Ramakrishnan, DuBois et al. 2002). 

It has been hypothesized that pulsatile secretion of glucocorticoids is important in 

governing the behavior of the GR signaling pathway without desensitizing the system, 

thus maintaining the responsiveness of the HPA axis to acute stress without 

inappropriately elevating glucocorticoid responsive systems in homeostasis (Desvergne 

and Heligon 2009). It has been further hypothesized that, if the normal pattern of 

ultradian glucocorticoid rhythms is lost in stress (Lightman and Conway-Campbell 

2010), then the new homeostatic equilibrium defined by altered pulsatility may exhibit 

dysregulation of glucocorticoid responsive genes, potentially leading to glucocorticoid 

resistance through constitutive exposure to glucocorticoids (Desvergne and Heligon 

2009). Modeling the mechanisms that underlie both the loss of pulsatility and the 
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differences in downstream responses caused by altered glucocorticoid secretion patterns 

is important in understanding the physiological relevance of ultradian rhythms in both 

homeostatic and stressed conditions. 

We previously presented the basic elements of a mathematical model combining 

the pulsatile release of glucocorticoids by the HPA axis (Walker, Terry et al. 2010) with 

the downstream pharmacodynamic effects of glucocorticoids on target genes (Yao, 

DuBois et al. 2006) in homeostasis (Scheff, Kosmides et al. in press) This integrated 

model now allows us to investigate the importance of pulsatility not only in homeostasis, 

but also with respect to perturbations in the form of altered parameter values and acute 

stressors. The downstream transcriptional effects of glucocorticoid pulsatility are 

reflected by the difference in transcript abundance of glucocorticoid responsive genes 

when exposed to a normal ultradian glucocorticoid rhythm and a constant level of 

glucocorticoids with the same area under the curve (AUC) as the ultradian pattern. HPA 

axis parameter perturbations, altering both the amplitude and frequency of glucocorticoid 

bursts, diminish the difference between constant and ultradian cases as the ultradian 

rhythms become flatter. Through these computational simulations, the mechanistic 

origins of glucocorticoid pulsatility and peripheral responses to pulsatility are explored 

within the framework of a mathematical model. This is of importance both in evaluating 

pathophysiological HPA axis behavior and in considering the clinical use of 

glucocorticoids, which are typically not given in an ultradian manner. Additionally, we 

study the concept of HPA axis pulsatility as it relates to the stress response by testing 

system responsiveness to acute CRH exposure as it relates to the phase and amplitude of 

ultradian rhythms. The observed positive relationship between ultradian amplitude and 
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peak responsiveness to stress provides computational evidence that the loss of 

homeostatic ultradian rhythms may have adverse effects on the response to stressors. 

3.2: Methods 

3.2.1: Linking Glucocorticoid Production and Pharmacodynamics 

To study the impact of ultradian rhythms on downstream processes regulated by 

glucocorticoids, we need to account for both the rhythmic production of glucocorticoids 

by the HPA axis and the pharmacodynamic action of glucocorticoids in peripheral cells. 

3.2.1.1: The HPA Axis and Glucocorticoid Secretion 

Several prior models have been published in an attempt to investigate ultradian 

rhythms in HPA axis function, particularly with respect to the mechanistic origins of 

ultradian rhythms. These prior studies consider the origin of ultradian rhythms as due to 

either discrete bursting (Keenan, Licinio et al. 2001; Keenan and Veldhuis 2003) or an 

unstable fixed point driving oscillatory dynamics (Liu, Hu et al. 1999; Jelic, Cupic et al. 

2005; Kyrylov, Severyanova et al. 2005; Savić and Jelić 2005; Bairagi, Chatterjee et al. 

2008; Walker, Terry et al. 2010). The latter class of models rely on either unphysical 

parameter values or time delays to induce oscillations, as illustrated by Vinther et al. 

(Vinther, Andersen et al. 2010). 

Still other models represent the HPA axis without rhythmicity. For instance, in 

(Gupta, Aslakson et al. 2007), a model of the HPA axis was developed linking the 

primary hormone determinants of glucocorticoid secretion: stress stimulates 

hypothalamic CRH, which stimulates pituitary ACTH, which stimulates adrenocortical 

glucocorticoids. Then, the HPA network is completed by accounting for negative 

feedback via glucocorticoids to both CRH and ACTH. In addition, the pituitary 



37 
 

 
 

concentration of GR is considered. GR, when activated by glucocorticoids, stimulates 

both the production of more GR and the inhibition of ACTH. 

In (Walker, Terry et al. 2010), the model described above was modified to capture 

the pulsatile dynamics of glucocorticoid secretion. First, it is assumed that the dynamics 

of CRH are not critical in the origin of ultradian rhythms. Despite the fact that pulsatile 

release of CRH has been observed in rats and macaques (Ixart, Barbanel et al. 1991; 

Mershon, Sehlhorst et al. 1992), glucocorticoids are known to have a slow effect on CRH 

(Ma, Levy et al. 1997) and sheep whose hypothalamus and pituitary were surgically 

disconnected maintained pulsatile glucocorticoid release (Engler, Pham et al. 1989). 

Therefore, the model was simplified to consider CRH only as a constant parameter p1, 

reducing the system to only three differential equations: pituitary ACTH (a, Eq. 3.1a); the 

availability of pituitary GR (r, Eq. 3.1b); and adrenal glucocorticoids (o, Eq. 3.1c). 

ACTH stimulates the production of glucocorticoids, and glucocorticoids (mediated by 

GR) inhibit the release of ACTH, forming a negative feedback loop. However, the 

mechanisms behind these hormone releases are not the same, which is important in the 

origin of pulsatility. ACTH is synthesized and stored in the pituitary gland, ready to be 

released rapidly when an appropriate signal is received. Glucocorticoids are synthesized 

by the adrenal cortex in response to ACTH signaling, which results in a time delay 

between ACTH release and glucocorticoid release. This time lag is incorporated into the 

equation representing the release of glucocorticoids from the adrenal gland, thus 

producing a delay differential equation (DDE) system, shown in Eq. 3.1. p1 in Eq. 3.1a 

represents the effect of CRH on the system and τ in Eq. 3.1c is the time delay. Eq. 3.1d 

translates the dimensionless variable o into the concentration of glucocorticoids in the 
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plasma in nM, Dp, by scaling the oscillations by the normal homeostatic ultradian 

amplitude, represented by the parameter A. Parameter values are given in Table 3.1. 

1
3

21

pda
p a

dt p r o
= − ⋅

+ ⋅ ⋅
 (3.1a) 
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HPA axis model Glucocorticoid pharmacodynamics model 

Param Value Param Value Param Value Param Value 
p1 36 * τ 0.25 * α 0.0175 † kprod (hr-1) 1  
p2 15 * A (nM) 650 Bmax 

(fmol/mg) 
44 † kdeg (hr-1) 10 

p3 7.2 * p1,stress 200 Kd (nM) 5.13 †,‡ kS (mg/fmol) 1 
p4 0.05 * tCRH,start (hr) 47.5 τDR (hr) 1.13 †   
p5 0.11 * tCRH,end (hr) 47.6     
p6 2.9 *       
 

Table 3.1: Model parameter values. * Taken from (Walker, Terry et al. 2010). † Taken from (Yao, DuBois 

et al. 2006). ‡ Taken from (Wolff, Baxter et al. 1978). 

As in (Walker, Terry et al. 2010), the time delay is set to 15 minutes. Although 

this time delay is larger than experimentally measured delays (Papaikonomou 1977), this 

may be due in part to the deterministic simulations performed here, as noise in the system 

facilitates noise-induced oscillations at lower time delay values (Walker, Terry et al. 

2010). 

3.2.1.2: Glucocorticoid Pharmacodynamics 

The model represented by Eq. 3.1 culminates in the release of glucocorticoids by 

the adrenal cortex into systemic circulation. To assess the downstream effects of 

glucocorticoids, the concentration of glucocorticoids in circulation must be related to the 

transcriptional regulatory activity of GR. To do this, the model of glucocorticoid release 
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from the HPA axis in Eq. 3.1 is combined with the glucocorticoid pharmacodynamic 

model (Yao, DuBois et al. 2006) shown in Eq. 3.2. 

Glucocorticoids are neutral, lipophilic hormones, so they freely diffuse across cell 

membranes to the cytoplasm, where they interact with GR. At rest, GR are sequestered in 

the cytoplasm where they are bound to or chaperoned by various heat shock proteins 

(HSP). Upon binding between glucocorticoids and GR, HSP are released. Then, the 

activated GR-glucocorticoid complex translocates into the nucleus and binds to 

glucocorticoid responsive elements (GRE) on DNA as a dimer, promoting the 

transcription of many genes, including inflammatory genes. These steps are summarized 

in Eq. 3.2: movement of glucocorticoids across the cell membrane is assumed to be linear 

(2a); binding between glucocorticoids and GR to form the activated complex DR , based 

on Bmax, the concentration of cytosolic GR, and Kd, the dissociation constnant (2b); 

translocation of the complex to the nucleus where DR1 represents the nuclear regulation 

and τDR is the mean transit time (2c); and transcriptional regulation of a prototypical 

glucocorticoid responsive gene, denoted mRNA (2d). Table 3.1 lists the parameter values 

used in Eq. 3.2. 

c p
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In all cases, DDE system was solved by using the dde23 function in MATLAB 

(Shampine and Thompson 2001) and setting the assumed history of a prior to the initial 

time point to be a constant equal to the initial condition. 

3.2.2: Modulated Glucocorticoid Patterns 

The model described in Eq. 3.1-3.2 spans both the production of glucocorticoids 

and the pharmacodynamic effects of glucocorticoids. This quantitative, mathematical 

system facilitates the study of how modulations in HPA axis function are propagated 

through to peripheral transcriptional regulation. The nondimensionalized HPA axis model 

in Eq. 3.1 contains seven parameters (p1 through p6 and the time delay τ) which, when 

perturbed, alter the output of the adrenal cortex. In the context of our model, altering any 

of p1 through p6 changes the amplitude of ultradian rhythms, while altering τ changes the 

frequency of ultradian rhythms. Therefore, in this chapter, two HPA axis modulations are 

explored: (1) altered ultradian magnitude by perturbing the feedback from adrenal 

glucocorticoid secretion to pituitary ACTH secretion, p2; and (2) altered ultradian 

frequency by perturbing the time delay from pituitary ACTH secretion to adrenal 

glucocorticoid secretion, τ. These two modulations are assumed to be representative of 

perturbations to HPA axis feedback loops in general, which have been explored 

experimentally with respect to altered ultradian behavior (Veldhuis, Iranmanesh et al. 

2001). 

3.2.3: Acute Stress Response 

The parameter p1 in Eq. 3.1a represents CRH’s influence on the pituitary gland. 

To mimic the acute stress response, this parameter is acutely elevated as in Eq. 3.3, 

provoking transient responses in the other model variables which resolve within 5 hours. 
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It has been shown experimentally that responsiveness to noise stress varies as a 

function of ultradian phase (Windle, Wood et al. 1998; Windle, Wood et al. 1998). In an 

attempt to model this phenomenon, Eq. 3.3 was applied for different time cutoffs, 

spanning the entire ultradian cycle (1 hour, sampled every 6 minutes). 

In the previous section, individual parameters were perturbed to modulate the 

amplitude and frequency of ultradian rhythms. An advantage of a computational 

modeling approach is that large scale surveys of the parameter space can be performed to 

more generally assess the performance of the system under what could be considered 

genetic or environmental perturbations. Based on this concept, 100,000 random sets of 

parameters p2 through p6 were generated based on Eq. 3.4, where N(1,1) is a random 

number sampled from a normal distribution with mean 1 and standard deviation 1, with 

the goal of studying the relationship between pulsatility and stress responsiveness. 

(1,1)i ip p′ = ⋅N
 

(3.4) 

 
This produced model parameterizations with a wide range of behaviors, including 

ultradian rhythms at a variety of amplitudes. To assess the general relationship between 

pulsatility and the stress response, these systems with random parameters were tested by 

applying an acute stressor as defined in Eq. 3.3. Then, the peak values of the responses 

were measured with respect to ultradian rhythmicity. 

3.2.4: Circadian Rhythms 

Circadian rhythms in glucocorticoid concentration have been observed 

experimentally. In contrast to ultradian rhythms, which are largely assumed to arise due 
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to dynamics internal to the HPA axis, circadian rhythms are typically viewed as a 

centrally mediated external signal which drives 24 hour variability in glucocorticoid 

secretion (Reppert and Weaver 2002). For this reason, prior models that have considered 

this issue typically drive a model parameter by an imposed sinusoid with a 24 hour period 

(Jelic, Cupic et al. 2005; Kyrylov, Severyanova et al. 2005; Bairagi, Chatterjee et al. 

2008; Vinther, Andersen et al. 2010; Walker, Terry et al. 2010). This has previously been 

applied to the HPA axis model in Eq. 3.1 (Walker, Terry et al. 2010) by setting the 

parameter p1, representing CRH drive, to a sinusoid, as in Eq. 3.5. 

1 26 10sin(2 / 24)p tπ= +  (3.5) 

 
This results in the ultradian rhythms in HPA hormones having circadian 

amplitudes. 

3.3: Results 

The integrated DDE system given in Eq. 3.1-3.2 comprises the production of 

glucocorticoids by the HPA axis and glucocorticoid pharmacodynamics culminating in 

the transcription of glucocorticoid responsive genes; the components and interactions 

involved in this system are shown in a network diagram in Figure 3.1. 
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Figure 3.1: Network diagram of pituitary-adrenal interactions (Eq. 3.1, black lines) and glucocorticoid 

pharmacodynamics (Eq. 3.2, gray lines). Lines ending in arrows represent stimulation, and lines ending in 

open circles represent inhibition. The black box in front of mRNA represents the stimulus in the first term of 

Eq. 3.2d. The dashed line represents the nonlinear dose-response relation in Eq. 3.2b. Production and 

degradation rates are not shown for clarity. ACTH (a), released by the anterior pituitary, stimulates the 

release of glucocorticoids (o) from the adrenal cortex. Glucocorticoids have two effects in the model: (1) 

negative feedback onto ACTH production in the anterior pituitary via pituitary GR (r); and (2) 

transcriptional regulation of glucocorticoid responsive genes in peripheral tissues. In a peripheral cell, GC 

diffuses into the plasma (Dp), binds to its receptor forming the drug-receptor complex (DR), translocates 

into the nucleus (DR1), and regulates the transcription of glucocorticoid responsive genes (mRNA). 

To evaluate the difference in transcriptional responses to constant or pulsatile 

glucocorticoid exposure, two cases are shown in Figure 3.2. First, the model is evaluated, 

as described in Eq. 3.1-3.2 and Table 3.1, producing a pulsatile pattern in the components 

of the glucocorticoid pharmacodynamic model, culminating in gene pulsing observed in 

the mRNA variable. This pulsatile scenario is compared to a simulation in which a 

constant amount of glucocorticoids is imposed, equal in total to the amount of 

glucocorticoids secreted in the pulsatile case described above. In this constant case, the 

mRNA production stimulated by the glucocorticoid pharmacodynamic model is greater 

than the mRNA in the rhythmic case. 
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Figure 3.2: Two simulations are shown, representing the ultradian model propagation through the 

glucocorticoid pharmacodynamic model (black lines) and a constant level of glucocorticoids with the same 

AUC imposed on the plasma GC variable (gray lines). Despite the fact that the same total amount of 

glucocorticoids is equal in both cases, there is a significant difference in the mean levels of glucocorticoid 

responsive mRNA. 

The integrated model developed here allows for the assessment of HPA axis 

dysfunction on homeostatic gene regulation. As the feedback from adrenal 

glucocorticoids to pituitary ACTH release (p2) is decreased, the amplitude of oscillations 

in HPA axis variables, and thus in glucocorticoid responsive mRNA, are progressively 

diminished, as shown in Figure 3.3.  A similar response is observed in Figure 3.4 as the 

time delay for the effect of ACTH on glucocorticoid secretion (τ) is decreased. 

Decreasing the time delay provokes increased oscillatory frequency along with a lower 

amplitude. 
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Figure 3.3: Ultradian oscillations in ACTH, GR, and GC as the feedback between GC and ACTH is 

decreased. Thick solid lines: normal feedback (default parameter value, Table 3.1), highest pulsatility; 

dashed lines: 20% decreased feedback, intermediate pulsatility; thin lines: 25% decreased feedback, lowest 

pulsatility. As the feedback is further decreased, the system eventually produces a flat output. 

 

Figure 3.4: Ultradian oscillations in ACTH, GR, and GC as the frequency is altered by decreasing the time 

delay for feedback from GC to ACTH relative to the default value in Table 3.1. Thick solid lines: normal 

time delay (default parameter value), highest pulsatility and lowest frequency; dashed lines: 12% decreased 

time delay, intermediate pulsatility and frequency; thin lines: 28% decreased time delay, lowest pulsatility 

and highest frequency. As the time delay is further decreased, the system eventually produces a flat output. 

Quantifying the effect of pulsatility on downstream responses within the context 

of HPA axis modulation is complicated by the shifting mean value of glucocorticoid 

levels shown in both Figure 3.3 and Figure 3.4 as the ultradian amplitude decreases. One 

approach to separate the effects of pulsatility and the changing mean is shown in Figure 

3.5. Comparing a particular pulsatile output of the HPA axis and a constant 
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glucocorticoid level with the same AUC, the distance between the mean glucocorticoid 

responsive mRNA in those two cases represents the effect that the pulsatile secretion 

pattern is exerting. As pulsatility is lost, this difference (D in Figure 3.5) in means 

decreases until it is exactly zero when ultradian rhythms disappear. 

 

Figure 3.5: As the time delay from ACTH secretion to GC release (τ) is decreased, the frequency of 

ultradian rhythms increases and the amplitude decreases. Decreased ultradian amplitude corresponds with a 

smaller difference (D) between glucocorticoid responsive mRNA when comparing pulsatile (black lines) 

and constant (gray lines) glucocorticoid levels with the same AUC. 

Although the results presented above concern, for simplicity, the case where no 

circadian rhythms are present in the model, Figure 3.6 shows that the significant 

transcriptional difference between constant and pulsatile cases persists even in the 

presence of both ultradian and circadian rhythms. The presence of pulsatility still leads to 
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the suppression of glucocorticoid-responsive mRNA, only now with a circadian 

dependence on the magnitude of suppression. 

 

Figure 3.6: Top: Circadian (black) and constant (gray) plasma glucocorticoid levels, at the same AUC. The 

circadian rhythms are defined by imposing circadian variability in the parameter p1 via Eq. 3.5. Bottom: 

mRNA output from the pharmacodynamic model (Eq. 3.2). As in Figure 3.2, there is a significant 

transcriptional difference in model output depending on the presence or absence of ultradian rhythms. 

Applying an acute stimulus at different time points relative to the ultradian phase 

revealed a significant ultradian dependence in the acute stress response, shown in Figure 

3.7. When the stimulus was given during the rising phase of the ultradian rhythm, a 

robust response was generated. However, during the falling phase, the response was 

severely blunted. 
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Figure 3.7: HPA axis responses, quantified by GC values, to stimuli at various time points relative to the 

ultradian phase. These time points range from 1.5hr (lightest gray color) to 2.5hr (darkest black color), 

incrementing by 0.1hr (6 minutes), as indicated by the vertical bars at the top of the figure. As has been 

seen experimentally (Windle, Wood et al. 1998; Windle, Wood et al. 1998), there is a strong dependence 

on the response to a stressor depending on whether the stressor occurs in the rising of falling GC phase. 

 

Figure 3.8: Scatter plot of peak mRNA values versus homeostatic GC (o) amplitude for 2,092 of 100,000 

parameter sets which have homeostatic mean mRNA values close to those produced by the default 

parameters in Table 3.1. 

The application of an acute stressor to the HPA axis model with random 

parameters produced a wide range of responses. To narrow down these 100,000 different 
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responses, parameter sets were selected if the mean homeostatic level of mRNA was near 

(difference of less than 0.05) the value obtained from the default parameters (Table 3.1). 

This filtering produced 2,092 parameter sets. Then, for these 2,092 parameter sets, 

multiple simulations were performed at different time points, as in Figure 3.7, due to the 

fact that random parameter values produce random phases. The peak values in the mRNA 

responses for each parameter set were averaged together and plotted against the 

amplitude of ultradian rhythms in homeostasis, shown in Figure 3.8. There is a positive 

correlation between ultradian amplitude and peak stress responsiveness at amplitude 

values greater than 1.5. High levels of responsiveness, such as that of the default model 

parameters in Table 3.1, are attainable almost exclusively through parameter values 

which lead to ultradian rhythms in homeostasis. These same general relationship between 

ultradian amplitude and responsiveness to acute stimuli was also observed when similar 

simulations were performed in a similar HPA axis model (Jelic, Cupic et al. 2005). 

3.4: Discussion 

The pulsatile dynamics of glucocorticoid secretion from the HPA axis are 

important in governing downstream responses. As summarized in Figure 3.2, even for the 

same total amount of glucocorticoid exposure, the presence of pulsatility exerts a 

suppressive effect on glucocorticoid responsive genes. The existence of such a difference 

in responses in this model is due to nonlinearities in glucocorticoid signal transduction, 

otherwise the aggregate output would not depend on the input pattern. This is evident in 

Figure 3.2, where DR is activated at a higher mean level in the constant glucocorticoid 

case, and the ultradian peaks in DR1 do not even reach the level of its constitutive 

activation in the constant case. This behavior is driven by two properties of the system. 
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First, the nuclear GR complex concentration responds quickly to the level of systemic 

glucocorticoids (Stavreva, Wiench et al. 2009) and GR quickly associates and dissociates 

from its DNA targets (McNally, Muller et al. 2000). This is reflected in Figure 3.2 where 

ultradian oscillations propagate from their origin in the HPA axis through to the nuclear 

concentration of activated GR (DR1). In the ultradian nadirs, the value of DR1 rapidly 

declines. In the constant scenario, there is no such period of clearance, so the nuclear 

levels of activated GR remain constitutively elevated. This is similar to recent 

experimental results showing that the synthetic glucocorticoid dexamethasone does not to 

dissociate from the receptor on the timescale of physiological ultradian glucocorticoid 

rhythms, resulting in a flat level of nuclear GR in response to cyclic dexamethasone 

treatment (Stavreva, Wiench et al. 2009). The second property leading to a difference 

between ultradian and constant cases is the nonlinear binding relationship between 

glucocorticoids and GR. Eq. 3.2b represents a generic sigmoidal binding relationship 

between ligand (glucocorticoids) and receptor (glucocorticoid receptor), where the ligand 

rapidly binds to its receptor as a function of ligand concentration, until the concentration 

grows so high that the receptor is saturated. The nonlinear activation of DR depends on 

the level of glucocorticoids relative to the dissociation constant Kd. As the mean level of 

plasma glucocorticoids is higher than Kd, the high levels of glucocorticoids in ultradian 

bursts approach the saturation limit. Therefore, the very high peak levels of 

glucocorticoids reached during secretory bursts cannot drive proportionally large 

increases in DR. Thus, the specific properties of endogenous glucocorticoids, as 

represented in the pharmacodynamic model in Eq. 3.2, are critical in generating the 

differential response to glucocorticoid ultradian rhythms. 
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In recent years, systems biology has become sufficiently sophisticated that 

researchers often move beyond simply asking how a system functions to asking why it 

functions in a certain manner (Lander 2004). Along these lines, the association between 

ultradian rhythmicity and stress responsiveness shown in Figure 3.8 suggests that the 

presence of pulsatility in homeostatic HPA function confers the potential for increased 

acute stress responsiveness. This relationship between pulsatility and responsiveness has 

been previously hypothesized to exist based on studies showing rapid transcriptional 

responses to bursts of glucocorticoids (Desvergne and Heligon 2009; Lightman and 

Conway-Campbell 2010), and the modeling work here suggests that the magnitude of the 

response as well as the timing (Figure 3.7) may be of importance with respect to 

pulsatility. This is particularly interesting given that disruptions in HPA axis 

responsiveness have been implicated in a variety of diseases including rheumatoid 

arthritis, asthma, and chronic fatigue syndrome (Webster, Tonelli et al. 2002). The results 

presented here provide computational evidence that the loss of ultradian rhythms in 

homeostasis may reflect underlying HPA axis dysfunction (such as shown in Figure 3.3 

and Figure 3.4) that is manifested in diminished stress responsiveness. 

When the CRH stimulus was given in the rising phase, significantly larger 

responses were observed than in the falling phase, as shown in Figure 3.7. This is in 

agreement with experiments in rats showing that the response to noise stress is enhanced 

in the rising or interpulse corticosterone phase and diminished in the falling 

corticosterone phase (Windle, Wood et al. 1998; Windle, Wood et al. 2001). Therefore, 

based on this relationship between pulse phase and the magnitude of an acute stress 

response, altered pulsatile patterns should be expected to lead to altered stress responses. 
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The results in Figure 3.8 go further than just looking at rising and falling responses in one 

model. Based on the large number of random parameter sets tested, which lead to a wide 

range of ultradian amplitudes, Figure 3.8 shows that the peak responsiveness of the 

system generally increases with the amplitude of ultradian rhythms. 

The relationship between peak responsiveness and amplitude in Figure 3.8 makes 

sense in light of the relationship between pulsatility and downstream transcriptional 

effects (mRNA) in Figure 3.2. The presence of oscillations, assuming a constant total 

amount of glucocorticoids, effectively suppresses homeostatic responses to 

glucocorticoids. Then, in a stress response where the system is responding to the 

magnitude rather than the homeostatic oscillations of glucocorticoids, mRNA has further 

to increase relative to its mean value in the oscillatory case. 

In addition to the mechanisms for downstream ultradian regulation present in this 

model, other mechanisms to explain nonlinearities in glucocorticoid signal transduction 

have been proposed. However, the inclusion of further nonlinearities into the model 

would only serve to heighten the differences between pulsatile and constant 

glucocorticoid exposure. For instance, our model does not consider the behavior of 

corticosteroid-binding globulin (CBG), a plasma protein that binds to cortisol. At 400-

500 nM of cortisol, plasma CBG is saturated (Ballard 1979), so increases in cortisol 

beyond this level are free to move into cells. As ultradian rhythms in cortisol move above 

and below this saturation threshold, one would expect this nonlinearity to have a 

significant effect on the behavior of glucocorticoid responsive genes (Lightman and 

Conway-Campbell 2010). However, it is known that the synthetic glucocorticoid 

dexamethasone has no affinity to CBG, and in a study on the pharmacodynamics of both 
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dexamethasone and corticosterone, it was found that a simple linear term relating plasma 

glucocorticoid concentration and cytoplasmic glucocorticoid concentration can 

sufficiently model the action of both glucocorticoids  (Yao, DuBois et al. 2006). 

Therefore, we have not included CBG binding and saturation in our model and instead 

used the linear relationship in Eq. 3.2a. Similar linear approximations for the effect of 

cortisol at normal concentrations have been widely used in HPA axis models and 

glucocorticoid pharmacodynamic models (Mager, Pyszczynski et al. 2003; Jelic, Cupic et 

al. 2005; Savić and Jelić 2005; Yao, DuBois et al. 2006; Bairagi, Chatterjee et al. 2008; 

Vinther, Andersen et al. 2010; Walker, Terry et al. 2010), which allows for simpler 

models which do not explicitly account for cortisol binding proteins. 

It has also been observed experimentally that different genes respond to 

differently to glucocorticoids. Dexamethasone activates glucocorticoid responsive genes 

in a concentration dependent manner, although the mechanism of activation of specific 

genes at lower doses than others is not yet understood (Reddy, Pauli et al. 2009). Rate-

sensitive responses to glucocorticoids have also been observed on a nongenomic 

timescale (Dallman and Yates 1969; Atkinson, Wood et al. 2008; Russell, Henley et al. 

2010), although this fast feedback mechanism has mainly been studied within the HPA 

axis and not in peripheral glucocorticoid regulated systems. Due to the importance of 

glucocorticoid signaling in a wide range of critical biological processes, it is plausible 

that multiple complimentary mechanisms govern downstream responses to ultradian 

rhythms. 

The decrease in time delay shown in Figure 3.4 produces a similar loss of 

ultradian amplitude as the decrease in feedback strength shown in Figure 3.3. It is not 
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surprising that decreasing the time delay results in diminished oscillations, as the time 

delay was introduced specifically so that this model could account for ultradian 

rhythmicity (Walker, Terry et al. 2010). Intuitively, this result may be explained by 

thinking about the size of the time windows in which plasma glucocorticoid 

concentration is increasing and decreasing. As the frequency increases, both of these 

windows shrink: there is less time to reach a very high ultradian peak, and there is less 

time to clear to a very low ultradian nadir. This predicted relationship between the 

frequency and amplitude of ultradian rhythms is supported by in vivo human 

experimental evidence correlating the sizes of cortisol secretory bursts with the durations 

of postsecretory pauses (Veldhuis, Iranmanesh et al. 1989). Pathophysiological 

conditions involving chronic stress have also been linked to increases in glucocorticoid 

pulse frequency. In rats with adjuvant-induced arthritis, the frequency of corticosterone 

pulses is significantly increased, producing elevated resting hormone levels and more 

continuous GR activation, qualitatively matching to the results in Figure 3.4 (Harbuz, 

Windle et al. 1999; Windle, Wood et al. 2001).  In severely depressed patients, HPA axis 

dysfunctions result in a similar increase in cortisol pulse frequency (Deuschle, Schweiger 

et al. 1997). 

Approximately 30% of patients with major depression exhibit hypercortisolemia 

(Young, Carlson et al. 2001), and an elevated baseline level of plasma cortisol would 

diminish the suppressive effects of pulsatility and possibly lead to glucocorticoid 

resistance due to constitutive exposure to glucocorticoids (Desvergne and Heligon 2009). 

Glucocorticoid resistance has been hypothesized to arise due to several different 

mechanisms in the presence of chronic glucocorticoid exposure (Schaaf and Cidlowski 
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2002; Ito, Chung et al. 2006). The effect of high glucocorticoid levels is also important 

from a clinical perspective as glucocorticoid drugs are typically given without regard for 

pulsatility. Treatment of inflammatory diseases with high doses of glucocorticoids often 

results in deleterious side effects and no current glucocorticoid therapy attempts to mimic 

physiological pulsatility (Lightman, Wiles et al. 2008). The computational results 

presented here support the idea that pulsatility itself regulates the downstream effects of 

glucocorticoids and should be considered in the therapeutic delivery of glucocorticoids, 

rather than seeking more potent drugs which minimize the frequency of treatment 

(Lightman and Conway-Campbell 2010). 

Although changes in pulsatility have been observed in chronically stressed rats 

(Windle, Wood et al. 2001), it is difficult to draw specific conclusions about the 

importance of pulsatility in chronic stress, particularly as different forms of chronic stress 

produce very different pathophysiological changes. For instance, it has been observed 

that chronic stress can facilitate increased HPA axis responsiveness through interactions 

between elevated glucocorticoid levels and insulin secretion (Dallman, Akana et al. 

2004), yet decreased HPA axis responsiveness has also been observed in chronic stress 

(Raison and Miller 2003). As our model does not explicitly account for these and other 

interacting systems, as well as glucocorticoid tolerance, it is difficult to derive specific 

conclusions about the importance of glucocorticoid pulsatility in the context of 

chronically stress without a more refined and model of the specific pathophysiology. 

In any model of a biological system, determining appropriate parameter values is 

a challenge. As much as possible, we used parameter values from the literature that were 

previously set in the original development of the HPA axis model (Walker, Terry et al. 
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2010) and the glucocorticoid pharmacodynamic model (Yao, DuBois et al. 2006). 

However, the experiments performed using large numbers of random parameter sets 

shows that the model’s general function is not dependent on specific parameter values. 

The HPA axis model was originall developed to study pulsatile secretion of 

glucocorticoids, but not their downstream effects. The glucocorticoid pharmacodynamic 

model was developed in the context of understanding how endogenous circadian rhythms 

regulate glucocorticoid action. The fact that we used models and parameters designed 

without the applications in this chapter in mind supports the generality of our conclusions 

and helps overcome issues of overfitting that are common in systems biology 

(Gutenkunst, Waterfall et al. 2007). An issue with this approach of combining models 

from the literature is that the models may not have been designed to study the exact 

system at hand. For instance, in (Yao, DuBois et al. 2006), the glucocorticoid 

pharmacodynamic model is developed for rat skeletal muscle. Although the GR signaling 

pathway is conserved across tissues, the relation between plasma and intracellular steroid 

concentrations (α in Eq. 3.2a) is unlikely to be constant in different tissues. Tissues with 

high capillary permeability, such as the liver, have been shown to respond to total 

glucocorticoid concentration (free and bound) while tissues with less capillary 

permeability, such as the pancreas, respond only to free glucocorticoids (Keller, 

Richardson et al. 1969). A slightly higher value of α was estimated for the liver (Mager, 

Pyszczynski et al. 2003), and one would expect a significantly higher value for cells that 

are more directly exposed to plasma glucocorticoids, such as peripheral blood leukocytes. 

However, increasing the value of α in the simulations performed here does not alter any 

of the conclusions about the effects of glucocorticoid pulsatility. As increasing α is 
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effectively the same as exposing the system to a higher amplitude glucocorticoid 

ultradian rhythm, GR would be even more saturated at an equivalent constant dose, 

resulting in an even larger difference between pulsatile and constant glucocorticoid 

exposure. This implies that, even if the pharmacodynamics are identical in different 

tissues, pharmacokinetic effects may result in enhanced responses to pulsatility in certain 

tissues. Precise quantification of this effect is complicated by the experimental challenges 

in determining the cyotosolic concentrations of lipophilic molecules like glucocorticoids 

(Garnier-Suillerot 1995). 

Studies of glucocorticoid ultradian rhythms are complicated by interpretation of 

prior experimental evidence: sampling frequencies lower than once every ~15 minutes do 

not sufficiently capture ultradian rhythms; pulses in cortisol are sometimes mislabeled as 

noise or as responses to a stimulus; and multiple replicates with unsynchronized ultradian 

rhythms produce an overly flat ensemble average. For these reasons, glucocorticoid 

pulsatility is often understated (Young, Abelson et al. 2004). Despite these limitations, a 

growing body of experimental evidence suggests that the properties of glucocorticoid 

ultradian rhythms dynamically change with seasonal (Ingram, Crockford et al. 1999), 

menstrual (Feldman, Mondon et al. 1979; Bao, Liu et al. 2003), and circadian (Veldhuis, 

Iranmanesh et al. 1989) rhythms. These longer-term rhythms, in addition to significant 

interindividual heterogeneity, illustrate the value of a model-based approach which can 

be used to assess the implications of a wide range of system dynamics on downstream 

effects of HPA pulsatility. 

The impact of glucocorticoid pulsatility on the stress response is particularly of 

interest in the context of inflammation, given that glucocorticoids are powerful regulators 
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of many inflammatory genes. Although many inflammatory effects of glucocorticoids are 

mediated through protein-protein interactions, rather than direct transcriptional 

modulation as considered here, those effects still depend on the concentration activated 

nuclear GC-GR complex. For instance, it has been shown that cortisol infusion prior to an 

inflammatory challenge can modulate cytokine responses (Barber, Coyle et al. 1993). 

While it is not yet clear how ultradian rhythms impact this type of phenomenon, the 

results presented here suggest that some of this effect could be related to the disturbance 

of rhythmic cortisol levels. Integrating this ultradian model into our larger endotoxemia 

model described in Chapter 2 will allow us to further refine our understanding of the 

interplay between physiologic variability and the inflammatory response. 
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Chapter 4: Heart Rate Variability and Human Endotoxemia 

This chapter contains two primary sections. First, section 4.1 discusses how the 

model of endotoxemia discussed in Appendix A and Chapter 2 can be linked to HRV 

through a semi-mechanistic model. Then, section 4.2 focuses on what this type of 

modeling can inform us about autonomic function in human endotoxemia. 

4.1: Modeling Autonomic Regulation of Cardiac Function and 

Heart Rate Variability in Human Endotoxemia 

4.1.1: Introduction 

Heart rate variability (HRV) is generally defined as the quantification of the 

distribution of time intervals between successive heartbeats. Reduction in HRV, a 

manifestation of altered autonomic function under stress, is potentially a useful predictor 

of outcome in myocardial infarction (Kleiger, Miller et al. 1987), congestive heart failure 

(Ponikowski, Anker et al. 1997), diabetic neuropathy (Pagani 2000), and neonatal sepsis 

(Lake, Richman et al. 2002). Diminished HRV has also been observed in critically ill 

patients in intensive care units (Morris, Norris et al. 2007), which motivates interest in 

HRV as a critical variable in the recovery from critical illness (Lowry and Calvano 

2008). Due to this clinical relevance, dynamic characteristics of HRV have been assessed 

by time domain, frequency domain (Task 1996), and nonlinear metrics (Peng, Havlin et 

al. 1995; Lake, Richman et al. 2002). The majority of HRV research has thus far focused 

on the interpretation of the patterns of HRV (Lahiri, Kannankeril et al. 2008) rather than 

linking cellular-level mechanisms to patterns (Buchman 2009). The realization that health 

may be characterized by a certain degree of variability of human heart signals motivates 

the hypothesis that appropriate physiologic variability is the manifestation of robust 
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dynamics of control signals whose fluctuations equip the host with the ability to 

anticipate external and internal disturbances. We hypothesize that these variable 

dynamics are driven by the convergence of rhythmic physiological signals on the heart 

via autonomic modulation. 

Studying the effects of critical illness on HRV requires a clinical model that can 

be experimentally evaluated in great detail. Human endotoxemia, the injection of 

lipopolysaccharides (LPS or endotoxin, used interchangeable herein) into healthy human 

subjects, has been extensively used as a model of systemic inflammation due to 

qualitatively similar responses in systemic physiologic and metabolic processes, 

including changes in leukocyte abundance and behavior, hormonal secretion, and cardiac 

function (Lowry 2005). Responses observed in human endotoxemia experiments mimic 

observed responses in systemic inflammation in ICU patients, albeit over different 

timescales (Haimovich, Reddell et al. 2010), thus making the human endotoxemia model 

an excellent platform for exploring mechanistic underpinnings of the systemic 

inflammatory response. A key component in the response to endotoxemia is a decrease in 

HRV, concomitant with imbalances in autonomic activity reflected by perturbed 

autonomic oscillatory responses in HR (Godin, Fleisher et al. 1996; Rassias, Holzberger 

et al. 2005; Jan, Coyle et al. 2009; Jan, Coyle et al. 2010). 

Despite an understanding of the importance of inflammation in a wide variety of 

disorders and a large number of experiments elucidating the details of the inflammatory 

response, novel treatments aimed at controlling inflammation remain elusive (Freeman 

and Natanson 2000). The complexity of the interacting, redundant pathways involved in 

the inflammatory response necessitate a systems-level understanding of inflammation 
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(Seely and Christou 2000; Vodovotz, Clermont et al. 2004), thus leading to interest in the 

inflammatory response from a systems biology perspective (Vodovotz 2010). The 

dynamic signals evoked in an inflammatory response are propagated to the sinoatrial 

(SA) node of the heart to assess how HRV is perturbed in endotoxemia. Previously, 

endotoxemia-induced changes in HR and HRV have been described by physicochemical 

relations which begin to elucidate the signals that give rise to altered phenotypes 

(Foteinou, Calvano et al. 2010; Foteinou, Calvano et al. 2011). However, this neglects 

that HR and HRV are both derived from the same physiological process, the beats of the 

heart, and that the contraction of the heart as initiated by firing neurons at the SA node is 

a noisy, discrete process. This motivates the development of a more mechanistic model to 

produce discrete heartbeat signals that can then be used to calculate HR and HRV, 

providing a basis for the development of autonomic dysfunction in endotoxemia. This 

chapter proposes a semi-mechanistic mathematical model linking endotoxemia to cardiac 

function through an integral pulse frequency modulation (IPFM) model (Bayly 1968) that 

produces discrete heartbeats as output based on autonomic modulation of the heart. 

Variability is considered both at high frequencies (autonomic oscillations) and much 

lower frequencies (circadian rhythms). Outputs of the model, namely HR and HRV, are 

shown to accurately capture experimentally-observed phenomena in human endotoxemia 

studies. Furthermore, the links between autonomic activity and cardiac function are 

explored, as well as how these communication links are affected by acute stress. 

Understanding the loss of variability of cardiac function in endotoxemia serves as a step 

towards gaining insight into similar changes in HRV observed clinically in response to 

stress (Haimovich, Reddell et al. 2010). It is important to consider how the 
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communication between the autonomic nervous system and the heart in endotoxemia 

(Sayk, Vietheer et al. 2008) will affect both measureable parameters of HRV and the 

mechanistic underpinnings that give rise to altered cardiac function. Thus, connections 

between processes at the cellular, molecular, and neural levels are quantitatively linked to 

HRV. This work builds towards translational applications of systems biology (Vodovotz, 

Csete et al. 2008; Foteinou, Calvano et al. 2009) by moving towards an understanding of 

the relationship between fundamental biological processes and clinical outcomes. 

4.1.2: Methods 

4.1.2.1: Human Endotoxemia Model 

Bacterial endotoxin, a component of the outer cell membrane of gram-negative 

bacteria, is an important mediator in the pathophysiology of gram-negative bacterial 

sepsis (Opal, Scannon et al. 1999). This complex macromolecule induces its injurious 

effects by a non-cytotoxic interaction with CD14-bearing inflammatory cells, such as 

macrophage-monocytes, circulating neutrophils and lung epithelial cells. These effector 

cells are activated through a family of Toll-like receptors and subsequently release a 

network of inflammatory products. These host-derived mediators function in concert to 

induce the systemic inflammatory response syndrome (SIRS) (Parrillo 1993) leading to a 

variety of clinical disorders, including adult respiratory distress syndrome (ARDS) 

(Miyata and Torisu 1986; Bayston and Cohen 1990). Elective administration of 

endotoxin to otherwise healthy human volunteers has been used to study systemic 

inflammation and gain insight into behavior of inflammatory mediators encountered in 

acute, as well as chronic, inflammatory disease. Human endotoxemia precipitates signs 

and symptoms characteristic of clinical sepsis (Lowry 2005; Andreasen, Krabbe et al. 
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2008) and ARDS (Buttenschoen, Kornmann et al. 2008), inducing a reduction in HRV 

(Godin, Fleisher et al. 1996; Rassias, Holzberger et al. 2005). While we do not argue that 

the human endotoxin (lipopolysaccharide=LPS) challenge model precisely replicates an 

acute infectious or sepsis condition, human endotoxin challenge does serve as a useful 

model of toll-like receptor 4 (TLR4) agonist-induced systemic inflammation by providing 

a reproducible experimental platform tying systemic inflammation to physiological signal 

generation and alterations in HRV. As an example, it has recently been demonstrated that 

LPS challenge induces transient dynamic changes in leukocyte gene expression similar to 

day 1 trauma patients (Shanker, Coyle et al. 2010). 

In an effort to establish quantitative relationships among the components involved 

in endotoxemia, we developed a mathematical model of human endotoxemia (Foteinou, 

Calvano et al. 2009; Foteinou, Calvano et al. 2009). A detailed description of the 

components of the mathematical model is given in Appendix A and Chapter 2 and the 

network structure is displayed in Figure 4.1. At the cellular level, recognition of LPS by 

TLR4 on immune cells leads to the activation of the NF-κB pathway and ultimately the 

production of both pro-inflammatory (P) and anti-inflammatory (A) cytokines, which are 

proximal mediators of the systemic inflammatory response (Opal and DePalo 2000) and 

antagonistically work towards the self-regulation and resolution of inflammation. At the 

neuroendocrine level, the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic 

nervous system (SNS) are the primary stress response pathways by which the central 

nervous system (CNS) regulates the immune response (Sternberg 2006). This was 

modeled by assuming that the production and release of counter-regulatory anti-

inflammatory endogenous hormones cortisol (F) and epinephrine (EPI) respond to pro-
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inflammatory cytokines, and then these hormones feed back to modulate the 

transcriptional response in leukocytes. In addition, circadian rhythms in model 

components, both at the level of immune cells and CNS activity, were considered by 

accounting for diurnal patterns in the release of the hormones cortisol and melatonin (M), 

which then propagate their circadian rhythmicity to other variables (Scheff, Calvano et al. 

2010). 
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Figure 4.1: Network structure. At the cellular level, LPS is recognized by its receptor, activating the NF-κB 

signaling cascade that provokes a significant transcriptional response consisting primarily of pro-

inflammatory (P) and anti-inflammatory (A) signaling as well as a decrease in cellular bioenergetic 

processes (E). Neuroendocrine-immune crosstalk results in the secretion of stress hormones cortisol (F) and 

epinephrine (EPI), which serve as immunoregulatory branches of the central nervous system. They are also 

centrally regulated to obey circadian dynamics. Finally, these signals propagate to the heart, where HR and 

HRV are modulated in a systemic inflammatory response. 



66 
 

 
 

We previously explored the principles of the Warner model (Warner and Cox 

1962) to describe the influences of the antagonistic relationship between the sympathetic 

and parasympathetic branches of the autonomic nervous system on the firing at the SA 

node of the heart (Foteinou, Calvano et al. 2011).  Autonomic activity at the SA node of 

the heart can be inferred based on blood epinephrine concentration (Foteinou, Calvano et 

al. 2011), which has a circadian pattern with a peak during the middle of the day, slightly 

lagging the diurnal behavior of cortisol (Kronfol, Nair et al. 1997; Dimitrov, Benedict et 

al. 2009; Scheff, Calvano et al. 2010). A1 (Eq. 4.1a) represents the neurotransmitter 

concentration at the SNS nerve ending, which is associated with blood norepinephrine 

concentration and is assumed to be similarly responsive to endotoxemia as epinephrine 

(Schaller, Waeber et al. 1985). Plasma norepinephrine ultimately influences the local 

concentration at the SA node as described by A2 (Eq. 4.1b). This produces antagonistic 

changes in effective local sympathetic (Eq. 4.1c) and parasympathetic (Eq. 4.1d) activity. 

These relationships were used to develop a physicochemical model of the effect of 

endotoxemia on HR (Foteinou, Calvano et al. 2011), with parameters given in Table 4.1. 
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Parameter Value Parameter Value Parameter Value 

Ka1 3.654 KC 11.286 Kin,Tpar 45.181 

Ka2 0.055 kTsym,Tpar 7.764 kTpar,Tsym 9.756 

Ka3 2.927 Ka4 3.435 Kout,Tpar 4.201 
 

Table 4.1: Parameters used in Eq. 4.1, as defined in (Foteinou, Calvano et al. 2011). 
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When combining Eq. 4.1 with our circadian model (Scheff, Calvano et al. 2010), 

described above and in Appendix A, we now observe that the effective sympathetic (Tsym) 

and parasympathetic (Tpar) modulation of HR and HRV exhibit diurnal patterns as 

imposed by central circadian regulation. Experiments measuring muscle sympathetic 

nerve activity show that it is responsive to light (Saito, Shimizu et al. 1996) and that 

during sleep, sympathetic activity decreases (Gherghel, Hosking et al. 2004). Based on 

experimental evidence that parasympathetic activity can be estimated by respiratory sinus 

arrhythmia measured by the spectral analysis of heart rate, it has been shown that 

parasympathetic activity also follows circadian dynamics (Burgess, Trinder et al. 1997), 

as measured by both time domain (pNN50) and frequency domain metrics (Burger, 

Charlamb et al. 1999). These oscillatory dynamics, leading to short-term HRV and long-

term circadian rhythms in HR and HRV, have not yet been studied in a model that links 

autonomic activity to the beating of the heart within the context of an integrated model of 

inflammation. Below, variability in HR is studied in terms of these rhythmic signals 

through the development of a model linking the inflammatory response with alterations in 

the pattern of discrete heart beats. 

4.1.2.2: Modeling Autonomic Influence on Cardiac Dynamics 

To describe how internal signals representing cellular and molecular processes 

responsive to endotoxemia are propagated to the heart, the oscillatory signals giving rise 

to variability in HR must first be accounted for. We hypothesize that the convergence of 

these variable autonomic signals, representing both circadian rhythms and higher 

frequency oscillations, gives rise to the characteristic patterns of variability in HR. Thus, 

the first step towards developing a more mechanistic model of cardiac function in 
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endotoxemia is describing the nature of autonomic regulation at the SA node of the heart. 

Three sources of oscillations are considered: sympathetic and parasympathetic 

oscillations and circadian rhythms. 

HRV is typically calculated based on a series of RR intervals, which are generated 

from ECG signals by measuring the time interval between successive R waves. In the 

frequency domain of RR intervals, the power spectrum is typically divided into two 

frequency bands: low frequency (LF, 0.04-0.15 Hz) and high frequency (HF, 0.15-0.4 

Hz). While the precise autonomic underpinnings of HF and LF power are unclear and 

likely indirect (Karemaker 1999), HF is related to vagal activity and LF responds to 

changes in both vagal and sympathetic tone; thus, the ratio LF/HF may give some insight 

into the relative autonomic control of HR. Incorporating higher-frequency oscillations in 

autonomic modulation of HR allows for the production of a more biologically realistic 

heartbeat signal. 

Long-term circadian oscillations in autonomic activity at the SA node influence 

the diurnal pattern of heartbeats. Sympathetic activity increases HR, while 

parasympathetic activity decreases HR; therefore, combining models that represent 

autonomic activity in inflammation (Foteinou, Calvano et al. 2011) and circadian 

rhythms in inflammation (Scheff, Calvano et al. 2010) generates variables reflecting 

circadian rhythms in sympathetic and parasympathetic activity at the SA node. These 

circadian autonomic activities lead to diurnal patterns in both HR and HRV (Huikuri, 

Niemela et al. 1994; Korpelainen, Sotaniemi et al. 1997; Nakagawa, Iwao et al. 1998). 

Circadian rhythms are hypothesized to express sympathetic activity as proportional to 

autonomic modulation and parasympathetic activity as inversely proportional. Circadian 
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rhythms are included to represent autonomic influences on the SA node, specifically 

slowly evolving circadian rhythms.  

The inclusion of autonomic activity through a modified Warner-type model (Eq. 

4.1), stimulated by central hormonal circadian rhythms allow for the assessment of 

changes in autonomic control of heart rate variability (Chiu and Kao 2001). When 

sympathetic activity increases, the SA autonomic modulation is expected to increase, 

corresponding to more frequent firing and thus higher HR. When parasympathetic 

activity increases, the opposite occurs and HR decreases. Our model aims to introduce 

circadian variability in the autonomic modulation of the SA node, through the 

connections to our endotoxemia model via Tsym (Eq. 4.1c) and Tpar (Eq. 4.1d), which are 

ultimately linked to circadian rhythms in HR that match well with experimental data 

showing that HR peaks during the day and is lower at night (Nakagawa, Iwao et al. 

1998). 

HF and LF power have been observed to exhibit circadian rhythms under normal 

conditions (Huikuri, Niemela et al. 1994; Korpelainen, Sotaniemi et al. 1997; Nakagawa, 

Iwao et al. 1998). In human endotoxemia, HF and LF power both decrease acutely before 

recovering (Godin, Fleisher et al. 1996; Jan, Coyle et al. 2009; Jan, Coyle et al. 2010). 

Both circadian and acute responses may be explained by the link between vagal activity 

and HF and LF oscillations. Suppressing vagal activity leads to decreases in both HF and 

LF power, contrary to the outdated view that HF reflects only vagal activity and LF 

reflects only sympathetic activity (Task 1996). Experimental data of circadian rhythms in 

HF and LF are in phase with the predicted circadian oscillations in Tpar in Figure 4.2. 

Further, in human endotoxemia, Tpar decreases to reflect diminished parasympathetic 
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activity during the acute systemic inflammatory response (Foteinou, Calvano et al. 2011). 

Thus, we hypothesize that the variable amplitudes of HF and LF oscillations are governed 

by parasympathetic activity.  

 

Figure 4.2: Circadian rhythms in the effective sympathetic and parasympathetic activity (Tsym and Tpar) at 

the sinus node of the heart. Diurnal rhythms from the circadian release of cortisol propagate through 

epinephrine, ultimately influencing Tsym and Tpar, which oscillate out of phase in homeostasis. 

HF and LF oscillations are assumed to contribute in an additive manner to SA 

node autonomic modulation as two sinusoids. In (Brennan, Palaniswami et al. 2002), HF 

and LF oscillations are similarly modeled as sinusoids with frequencies 0.334 Hz and 

0.025 Hz, respectively. The LF frequency is set so low (below the LF range) because it is 

meant to also allow for realistic changes in very low frequency (VLF, <0.05 Hz) activity. 

However, this impedes the direct calculation of LF and HF powers because the peak in 

the power spectrum is so narrow that it hardly influences the power in the LF frequency 

band. Therefore, in Eq. 4.2, the mean values of the frequencies in the HF and LF bands 

were used. Then, the peaks in the power spectrum fall directly within the HF and LF 

bands, facilitating the use of standard methods of calculating HF and LF power to study 
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model output. The amplitudes of the HF and LF sinusoids depend on Tpar, which 

produces homeostatic circadian rhythms in HRV (Huikuri, Niemela et al. 1994; 

Korpelainen, Sotaniemi et al. 1997; Nakagawa, Iwao et al. 1998) as well as acute 

suppression of HRV in endotoxemia (Godin, Fleisher et al. 1996; Jan, Coyle et al. 2009; 

Jan, Coyle et al. 2010). 

The aforementioned assumptions are succinctly summarized in the model of Eq. 

4.2 and Table 4.2. The effective autonomic modulation at the SA node depends on 

contributions including circadian and higher frequency modulation of the heart as well as 

a constant activity level which gives rise to the mean resting HR. 
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Parameter Value Parameter Value 

HR 1 kpar,HF 1 
kosc 0.05 fHF 0.275 
kpar,LF 0.5 kcirc 0.04 
fLF 0.105   
 

Table 4.2: Parameter values used in Eq. 4.2. Frequencies for the HF and LF bands are set to the mean value 

of the standard limits of those bands. The other parameters are set manually. In practice, the parameters in 

the IPFM model would need to be tuned to an individual subject due to significant person-to-person 

variability in cardiac dynamics, such as the mean heart rate and the amplitude of circadian rhythms. 

4.1.2.3: Generation of Discrete Heartbeats 

Autonomic activity influences the heart by modulating the pattern of discrete 

heartbeats by altering the concentration of neurotransmitters at the SA node. An idealized 
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neuron functions by sensing local neurotransmitter concentration and, when that 

concentration crosses a threshold, the postsynaptic neuron fires. This type of neural-based 

discretization process occurs at the sinoatrial (SA) node of the heart, which normally 

initiates the electrical impulses that trigger contraction of cardiac tissue. As the SA node 

is innervated by both sympathetic and parasympathetic branches of the autonomic 

nervous system and the imbalance between these branches is critical to the loss of HRV, 

an ideal model would be one that dynamically controls the time interval of integration 

between successive firings based on autonomic activity as defined in Eq. 4.2. 

A continuous signal can be converted to discrete events via an integrate-and-fire 

model in which the signal is repeatedly integrated until it reaches a threshold, thus 

signifying an event. One realization of an integrate-and-fire model which can discretize a 

continuous signal is an integral pulse frequency modulation (IPFM) model. IPFM models 

allow for the translation of a continuous signal into a discrete series of events, 

conceptually similar to the behavior of a neuron (Bayly 1968). A continuous input signal 

m(t) represents modulation of neural firing, such as is defined in Eq. 4.2 to represent 

modulation at the SA node. Then, the times of firings are found by repeatedly integrating 

m(t) until a threshold ∆ has been reached:
1

( )
k

k

t

t

m t dt
+

= ∆∫ . ∆ is set to 1 in all simulations 

performed here. 

This produces a vector t with elements tk to represent the kth discrete event. In our 

model of heartbeat generation, m(t) represents autonomic modulation of the heart and the 

discrete events produced through the IPFM model represent heartbeats initiated by the 

SA node (Chiu and Kao 2001; Brennan, Palaniswami et al. 2002). HR is modulated by 
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shifting the mean value of m(t) up (increased HR) or down (decreased HR). And because 

of variations in autonomic activity, the output of the IPFM model (heartbeats) will 

contain some variability. There are two primary mechanisms by which HRV is 

modulated through this model. Most directly, changes in HRV are driven by variable 

amplitudes of the HF and LF oscillators in Eq. 4.2. When the amplitude of these 

oscillators decreases, m(t) becomes more and more flat until there is very little beat-to-

beat variability. However, even with constant amplitudes for HF and LF, HRV can still 

change because RR intervals become shorter as the mean value of m(t) shifts up due to 

circadian influences from Tsym and Tpar,. Thus, the observed decrease in variability as 

assessed by HRV metrics is partially reflecting the changing mean value of heart rate 

(Niklasson, Wiklund et al. 1993). This initially may seem analogous to what is observed 

when sympathetic activity increases, such as in exercise where there seems to be an 

inverse relationship between HR and HRV (Javorka, Zila et al. 2002). However, looking 

at the raw HR data in these cases makes it clear that the amplitude of oscillations in HR is 

lost in concert with increased mean HR. Therefore, if the amplitude of these oscillations, 

and thus HRV, is to be dynamic, it must be represented with a model that has the ability 

to alter the amplitude of oscillatory components, as in Eq. 4.2. 

4.1.2.4: Calculation of HRV 

A variety of HRV parameters are assessed, spanning the time domain (SDNN, the 

standard deviation of normal-to-normal heartbeat intervals), frequency domain (HF, LF, 

and associated measures), and nonlinear analysis (sample entropy). All parameters are 

calculated over epochs that are 5 minutes in length, as is typical in the analysis of HR 

data (Task 1996). Each of the i epochs of RR intervals is denoted by RRi. The time 
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domain measure, SDNN, is simply the standard deviation of interbeat intervals generated 

by the IPFM model, defined in Eq. 4.3. 

 stdev( )i iSDNN RR=  (4.3) 

 
The frequency domain statistics are calculated from mean-subtracted RR interval 

sequences based on the output of MATLAB’s pyulear function with an order of 12, 

which implements an autoregressive model using the Yule-Walker algorithm to estimate 

the power spectral density. Then, HF and LF values represent the area under the curve in 

linear units over the appropriate frequency ranges of 0.15-0.4 Hz and 0.04-0.15 Hz 

respectively. HFn and LFn are normalized values, defined as HFn=HF/(HF+LF) and 

LFn=LF/(HF+LF). The LF/HF ratio is also computed. 

Sample entropy (SampEn) (Richman and Moorman 2000) is calculated using the 

implementation available on PhysioNet (http://www.physionet.org/physiotools/sampen/). 

SampEn is defined as the negative natural logarithm of the estimated conditional 

probability that two subseries of m points that have all matched within a tolerance r 

continue to match within that tolerance at the next point. Therefore, a low value of 

SampEn means that the input series has a very regular structure, and high values 

correspond with high entropy, irregular signals. 

4.1.2.5: Generation of Poincaré Plots and their Geometric Properties 

Poincaré plots of RR intervals are generated for the scenarios described above. 

These plots are derived from a time series of RR intervals by plotting each value RR(i) on 

the x-axis versus its successive value RR(i+1) on the y-axis. Thus, if the system 

generated two consecutive RR intervals that were identical, that point would lie directly 

on the 45° diagonal. Variability in the Poincaré plot can be quantified by calculating the 
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standard deviation along this diagonal line and perpendicular to the diagonal line. These 

values, called SD1 and SD2, are visualized by plotting an ellipse whose axes are equal to 

SD1 and SD2. SD1 and SD2 have been used to roughly represent short-term and long-

term variability in HR due to their intuitive, geometric interpretations (Brennan, 

Palaniswami et al. 2001). 

4.1.3: Results 

Circadian and higher-frequency variability in autonomic modulation at the SA 

node is taken into account in Eq. 4.2, allowing for simulation of homeostasis and the 

biologically rhythms present in homeostasis. Based on this, Figure 4.3 shows the 

homeostatic model output. m(t) has a clear circadian pattern in Figure 4.3A and also 

exhibits higher-frequency variability in Figure 4.3B. Both the mean value and the 

amplitude of variability of m(t) are under diurnal regulation. Circadian rhythms in HR 

(Figure 4.3C) and HRV as assessed by SampEn and SDNN (Figure 4.3D) are present in 

model output. HF and LF power, visualized on the power spectra in Figure 4.3E-F 

representing 00:00 and 12:00 respectively, also contain significant diurnal variability. 



 

 

Figure 4.3: Autonomic modulation at the SA node of the heart, shown at two scales (A and B), leading to 

circadian rhythms in smoothed HR (C) and HRV (D), as assessed by time domain (SDNN, solid line) and 

nonlinear (SampEn, dashed line)

RR intervals at 12am. Two peaks, representing LF and HF oscillations, are present. LF and HF values are 

calculated as the area under this curve, 0.04

these HF and LF values undergo significant changes throughout the daily circadian cycle.

 

: Autonomic modulation at the SA node of the heart, shown at two scales (A and B), leading to 

circadian rhythms in smoothed HR (C) and HRV (D), as assessed by time domain (SDNN, solid line) and 

nonlinear (SampEn, dashed line) metrics. E shows a power spectrum calculated from a 5 minute window of 

RR intervals at 12am. Two peaks, representing LF and HF oscillations, are present. LF and HF values are 

calculated as the area under this curve, 0.04-0.15 Hz for LF and 0.15-0.4 Hz for HF. F shows how that 

these HF and LF values undergo significant changes throughout the daily circadian cycle.
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: Autonomic modulation at the SA node of the heart, shown at two scales (A and B), leading to 

circadian rhythms in smoothed HR (C) and HRV (D), as assessed by time domain (SDNN, solid line) and 

metrics. E shows a power spectrum calculated from a 5 minute window of 

RR intervals at 12am. Two peaks, representing LF and HF oscillations, are present. LF and HF values are 

HF. F shows how that 

these HF and LF values undergo significant changes throughout the daily circadian cycle. 



 

 

Figure 4.4: Poincaré plots of RR intervals in homeostasis, at 00:00 (A), 06:00 (B), 12:00 (C), 

(D). Inset in each figure is the circadian pattern of 

plot. The ellipses represent the dispersion of points as the axes are equal to the standard deviation of points 

on each axis. The major and minor axes of the ellipses are drawn on the figure, representing the standard 

deviations along the y=x diagonal (SD1) an

geometry of the Poincaré plots is observed, r

a minimum of (0.027, 0.046) in 

The addition of beat

of the RR interval time series via the 

evenly spaced throughout the day: 00:00

 

s of RR intervals in homeostasis, at 00:00 (A), 06:00 (B), 12:00 (C), 

Inset in each figure is the circadian pattern of Tpar and the region that was used to generate the 

. The ellipses represent the dispersion of points as the axes are equal to the standard deviation of points 

on each axis. The major and minor axes of the ellipses are drawn on the figure, representing the standard 

deviations along the y=x diagonal (SD1) and the y=-x diagonal (SD2). A large circadian pattern in the 

s is observed, ranging from a maximum of (SD1, SD2) = 

in C. 

The addition of beat-to-beat variability in RR intervals permits the visualization 

of the RR interval time series via the Poincaré plots in Figure 4.4. Four maps are shown, 

evenly spaced throughout the day: 00:00, 06:00, 12:00, and 18:00. Inset in each figure is 
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s of RR intervals in homeostasis, at 00:00 (A), 06:00 (B), 12:00 (C), and 18:00 

and the region that was used to generate the Poincaré 

. The ellipses represent the dispersion of points as the axes are equal to the standard deviation of points 

on each axis. The major and minor axes of the ellipses are drawn on the figure, representing the standard 

x diagonal (SD2). A large circadian pattern in the 

(0.13, 0.15) in B to 

ermits the visualization 

Four maps are shown, 

Inset in each figure is 



 

 

the state of Tpar at the time when the map is generated. The ellipses have axes equal to the 

standard deviations of the points along the diagonal and perpendicular to the diagonal 

(Brennan, Palaniswami et al. 2001)

center of the mass of points) 

changes in the mean value of 

undergoes significant changes throughout the day in 

values are plotted over time, exhibiting clear circadian patterns.

Figure 4.5: LF and HF values are calculated, as shown in 

simulation, and these values are plotted as functions of time. A: Circadian rhythms in LF and HF; B: 

normalized LF and HF (LFn=LF/(LF+HF), HFn=HF/(LF+HF)); and C: the LF/HF ratio. LF and HF are in 

phase, but their normalized values are out of phase.

 

at the time when the map is generated. The ellipses have axes equal to the 

standard deviations of the points along the diagonal and perpendicular to the diagonal 

(Brennan, Palaniswami et al. 2001). The mean value of the RR interval (roughly the 

center of the mass of points) moves, illustrating long term variability due to circadian 

ue of m(t). Local variability (roughly the spread of points) 

undergoes significant changes throughout the day in Figure 4.5 where the HF and LF 

plotted over time, exhibiting clear circadian patterns. 

: LF and HF values are calculated, as shown in Figure 4.3E, at many points throughout the 

simulation, and these values are plotted as functions of time. A: Circadian rhythms in LF and HF; B: 

normalized LF and HF (LFn=LF/(LF+HF), HFn=HF/(LF+HF)); and C: the LF/HF ratio. LF and HF are in 

malized values are out of phase. 
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E, at many points throughout the 

simulation, and these values are plotted as functions of time. A: Circadian rhythms in LF and HF; B: 

normalized LF and HF (LFn=LF/(LF+HF), HFn=HF/(LF+HF)); and C: the LF/HF ratio. LF and HF are in 



 

 

Figure 4.6: Response to a dose of LPS given at 20:00.

cytokines secreted by immune cells (A) to neuroendocrine

autonomic activation in C and D) to the activity of the heart, reflected by changes in effective autonomic 

modulation (E) and HR (F). 

 

: Response to a dose of LPS given at 20:00. Changes propagate through proinflammatory 

cytokines secreted by immune cells (A) to neuroendocrine-mediated effects (epinephrine release in B; 

autonomic activation in C and D) to the activity of the heart, reflected by changes in effective autonomic 

79 

 

Changes propagate through proinflammatory 

inephrine release in B; 

autonomic activation in C and D) to the activity of the heart, reflected by changes in effective autonomic 



 

 

Figure 4.7: Changes in HRV in response to a dose

(A), but relative values (B) and the LF/HF ratio (C) show that HF is more strongly suppressed than LF. 

SampEn (dashed line) and SDNN (solid line) both decrease in response to LPS, but SampEn decreases 

more relative to the amplitude of its normal circadian rhythm.

An acute dose of LPS

inflammatory response. As described in detail in Appendex A, LPS is recognized by 

TLR4 on immune cells and instigates 

those that lead to the release of pro

mediators in neuroendocrine

stress hormones such as cortisol

disturbance propagates through the system, from pro

 

: Changes in HRV in response to a dose of LPS given at 20:00. Both LF and HF are suppressed 

(A), but relative values (B) and the LF/HF ratio (C) show that HF is more strongly suppressed than LF. 

SampEn (dashed line) and SDNN (solid line) both decrease in response to LPS, but SampEn decreases 

ore relative to the amplitude of its normal circadian rhythm. 

An acute dose of LPS is given at 20:00, thus provoking a simulated

inflammatory response. As described in detail in Appendex A, LPS is recognized by 

immune cells and instigates a wide range of transcriptional responses, including 

those that lead to the release of pro-inflammatory cytokines. These cytokines serve as 

mediators in neuroendocrine-immune communication, leading to the central release of 

stress hormones such as cortisol and catecholamines. Figure 4.6 shows how this acute 

disturbance propagates through the system, from pro-inflammatory mediators to anti
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Both LF and HF are suppressed 

(A), but relative values (B) and the LF/HF ratio (C) show that HF is more strongly suppressed than LF. 

SampEn (dashed line) and SDNN (solid line) both decrease in response to LPS, but SampEn decreases 

is given at 20:00, thus provoking a simulated systemic 

inflammatory response. As described in detail in Appendex A, LPS is recognized by 

a wide range of transcriptional responses, including 

These cytokines serve as 

immune communication, leading to the central release of 

shows how this acute 

inflammatory mediators to anti-
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inflammatory hormones, finally leading to an increase in Tsym and a decrease in Tpar, 

which then provoke changes in cardiac dynamics in response to acute stress. In response 

to changes in Tsym and Tpar, the autonomic modulation of the SA node, m(t) as given in 

Eq. 4.2, is shifted up and the amplitudes of its higher-frequency oscillatory components 

are diminished in Figure 4.6E. Figure 4.7 shows how LF and HF both decrease while the 

LF/HF ratio increases, in agreement with experimental data (Godin, Fleisher et al. 1996; 

Jan, Coyle et al. 2009; Jan, Coyle et al. 2010). The Poincaré plots displayed in Figure 4.8 

show a significant tightening that begins directly after LPS injection and reaches maximal 

tightening several hours later. Figure 4.7D shows the output of two HRV parameters, 

SDNN and SampEn. Both parameters capture the circadian pattern prior to LPS and both 

show an acute decrease after LPS treatment, but the decrease in SampEn is much larger 

than the decrease in SDNN relative to the normal circadian rhythms observed in each 

parameter. The above results concerning LPS all study the system response to a dose of 

LPS at the same time point. The computational model presented here allows for a more 

broad exploration of the circadian influence on the endotoxemia response, shown in 

Figure 4.9 where LPS is given at 5:00 and 12:00, illustrating the maximum differences in 

responses as quantified by HRV. 



 

 

Figure 4.8: Poincaré plots showing the response to a dose of LPS at 20:00, showing maps at 20:00 (A), 

21:00 (B), 22:00 (C), and 01:00 (D).
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Figure 4.9: There is a circadian dependence on the response of the model to a dose of LPS. The maximum 

difference is observed between LPS given at 5:00 and 12:00; HRV is quantified by SampEn. 

To determine the model response to decoupling between the heart and the 

autonomic nervous system, the amplitude of HF and LF oscillations, kosc in Eq. 4.2, is 

halved. Figure 4.10 shows how SDNN changes under these conditions by showing a 24-

hour period of diminished kosc in between one day on each side of normal conditions. The 

amplitude of circadian rhythms in SDNN and the magnitude of SDNN are both 

diminished in the decreased coupling region. 
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Figure 4.10: Decoupling between the autonomic nervous system and the heart is simulated by decreasing 

coupling by 50% during the shaded area in the figure. Both the amplitude of circadian rhythms and the 

magnitude of HRV (assessed by SDNN) are diminished. 

4.1.4: Discussion 

The components required to link neuroendocrine-immune interactions with 

circadian and higher-frequency autonomic variability in HR are combined through our 

proposed model (Eq. 4.2), which incorporates circadian control of cardiac function via 

autonomic activity along with HF and LF oscillations. While hormonal circadian rhythms 

alone produce circadian rhythms in model output, some higher frequency oscillations are 

required to produce the local variability that is observed in real heartbeat signals. HF and 

LF power is dependent on vagal signaling, and more specifically it is known that HF and 

LF are diminished under human endotoxemia (Godin, Fleisher et al. 1996; Jan, Coyle et 

al. 2009). Thus, Eq. 4.2 represents the dependence of HF and LF oscillatory amplitudes 

on Tpar. Figure 4.3A displays a clear change in the shape of m(t) as the local oscillations 

have very different amplitudes depending on the position in the circadian cycle. Power 

spectra, taken at 00:00 and 12:00 respectively which are close to times at which Tpar is at 

its maximum and minimum values, processed to calculate the HF and LF values shown in 
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Figure 4.3F show a significant drop in the area under the curve of the power spectrum 

over those frequency ranges throughout the normal diurnal cycle. These HF and LF 

powers, calculated more frequently, are shown in Figure 4.5. Though raw LF and HF are 

in phase, HF is suppressed more strongly so that the normalized values LFn and HFn are 

actually out of phase (Godin, Fleisher et al. 1996; Jan, Coyle et al. 2009). A similar 

pattern is seen in Figure 4.7A-C after an acute dose of LPS. Both LF and HF decrease, 

but the decrease in HF is more profound, so that the LFn increases relative to HFn. Thus, 

the LF/HF ratio remains elevated throughout the recovery phase, illustrating continued 

imbalance between sympathetic and parasympathetic modulation at the SA node (Godin, 

Fleisher et al. 1996; Jan, Coyle et al. 2009). 

In Figure 4.6 and Figure 4.7, changes in Tsym, Tpar, and the HRV parameters are 

persistent for over 24 hours after an LPS injection while all other variables in the model 

recover to their baseline conditions within 24 hours. Run for a longer period of time, 

these model variables recover within a couple days. Despite this, HRV parameters do 

recover to within the normal range of circadian variability within 24 hours. In studies 

where LPS is given to humans and ECGs are recorded for 24 hours as the inflammatory 

response is initiated and then resolves in a self-limited response, HRV has generally been 

observed to recover within 24 hours post-injection (Alvarez, Katsamanis Karavidas et al. 

2007). 

The HF and LF sinusoids in Eq. 4.2 are assumed to mechanistically arise 

somewhere outside of the model. Biologically, LF and HF oscillations arise largely from 

vasomotor activity and respiration under control conditions, respectively (Lombardi, 

Malliani et al. 1996).  As m(t) represents only the autonomic modulation specifically at 
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the SA node of the heart, the transduction of the signals producing HF and LF oscillations 

to the heart must be considered.  So, the terms that modulate the amplitude of these 

sinusoids based on the level of Tpar represent the ability of the oscillatory signals to be 

reflected in neurotransmitter concentrations at the SA node, based on the observed 

relationship between vagal signaling and HF and LF components of HR. Vagal activity 

modulates LF and HF oscillations in HR and without this vagal activity, LF and HF 

responses are blunted (Karemaker 1999). In other words, the HF and LF peaks that 

appear in the power spectrum of HR depend on the autonomic nervous system to 

communicate these signals to the SA node. Thus, LF and HF give some indication as to 

the coupling between the heart and the autonomic nervous system, which is of particular 

interest as HR is relatively easy to assess noninvasively. Indeed, in endotoxemia, an 

increase in regularity is observed in HR, neutrophil function, and plasma cortisol levels 

(Rassias, Holzberger et al. 2005), in line with theoretical expectations of the response of 

decoupled biological systems (Pincus 1994) and the results shown in Figure 4.10 where 

variability is lost under decoupling. Although these results show an instant decoupling 

rather than a gradual process as likely occurs in vivo, decoupling may be important in 

adverse conditions such as endotoxemia when interorgan communication is diminished 

(Godin and Buchman 1996; Godin, Fleisher et al. 1996). Clinically, assessing the 

interorgan communication by means such as evaluating HF and LF is critical to 

understanding and assessing the extent of injury in multiple organ dysfunction syndrome 

(MODS) and sepsis (Schmidt, Müller-Werdan et al. 2007). HF and LF most directly 

measure cardiac-autonomic coupling, but they can also be used as accessible proxies for 

measuring general interorgan communication (Schmidt, Müller-Werdan et al. 2007). In 
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addition, drugs that normally alter heart rate by autonomic modulation fail to have an 

effect in endotoxemia (Sayk, Vietheer et al. 2008). Thus, the effect of endotoxemia on the 

heart can be viewed as a decoupling between the autonomic nervous system and the SA 

node. This decoupling represents a potential mechanism for the observed decreased 

complexity and increased regularity in physiological signals (Pincus 1994; Buchman 

1996). The recovery of HRV following injury can then be viewed as a recoupling of 

autonomic and cardiac systems, and more generally a recoupling of organ systems in the 

recovery phase. The model presented here begins to decipher the nature of this 

relationship through the variable m(t) which represents the communication link between 

the autonomic nervous system and the heart. 

One of the fundamental contributions of the described modeling work is the 

incorporation of circadian rhythms in both HR and HRV parameters. This is of particular 

interest due to the loss of circadian rhythms observed in inflammation (Lowry 2009) and 

the interplay between inflammatory mediators and molecular circadian machinery both 

centrally in the suprachiasmatic nucleus (SCN) and in peripheral tissues (Haimovich, 

Calvano et al. 2010; Scheff, Calvano et al. 2010). The circadian dependence of this model 

is shown in Figure 4.9 where identical doses of LPS are given at two different times, 

0:500 and 12:00. These two times produce a maximal difference in responses, as the 

diurnal peak in cortisol occurs between these time points, and this primes the system for a 

robust anti-inflammatory response. Thus, before this hormonal priming occurs, a 

significantly larger decrease in HRV (quantified by SampEn) is observed. However, in 

both cases, the overall dynamics of the system (an acute response and recovery to 

baseline) are similar. These computational results match with clinical observations that 
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sepsis patients are at elevated risk of mortality from 02:00 to 06:00, before the circadian 

peak in cortisol secretion (Hrushesky, Langevin et al. 1994). Considering this type of 

circadian dependence on responses to pathogens, and also to therapies, is important in 

optimizing treatment of inflammatory disease (Hrushesky and Wood 1997). In Figure 

4.6, circadian rhythms in cardiac function are blunted in response to a dose of LPS as the 

LPS-induced acute increase in Tsym and acute decrease in Tpar overwhelm the normal 

diurnal pattern of those variables. In Figure 4.7A, the decrease in both LF and HF in 

response to endotoxemia is only slightly larger than the physiologic changes in LF and 

HF due to circadian rhythms. This is because, in the model, Tpar is predicted to pass 

relatively close to zero in its diurnal cycle, so in endotoxemia, there is not much further 

for it to fall. While this result may seem unintuitive, it matches with experimental results 

showing that the drop from maximum to minimum values during circadian rhythms in 

HF and LF (Huikuri, Niemela et al. 1994; Korpelainen, Sotaniemi et al. 1997; Nakagawa, 

Iwao et al. 1998) and the depression in HF and LF due to endotoxemia (Godin, Fleisher 

et al. 1996; Jan, Coyle et al. 2009; Jan, Coyle et al. 2010) can both be anywhere from 

50% to 90% depending on experimental protocol. However, by looking at Poincaré plots 

(compare Figure 4.4 and Figure 4.8) or by assessing HRV by other metrics such as 

SDNN and SampEn as in Figure 4.7D, it is clear that there is a significant increase in 

regularity in response to LPS that is fundamentally different than what is observed in 

normal circadian patterns. This illustrates the importance of assessing multiple 

variability/regularity metrics to tease out subtle patterns in HR data. 

An advantage of the model presented here, relative to a continuous 

physicochemical model of either HR or HRV, is that it produces discrete beats as output. 
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This allows both HR and HRV to be derived from a single variable signal, as they are 

experimentally, and it allows for comparison of the performance of HRV metrics. Figure 

4.7D is provocative in this regard as it shows SDNN and SampEn, two common HRV 

parameters, both are able to capture normal circadian dynamics as well as the acute 

response to LPS; however, when their axes are aligned such as in Figure 4.7D so that the 

amplitude of circadian rhythms is equal for both parameters, it is clear that SampEn is 

much more significantly suppressed in endotoxemia. Thus, by taking a more mechanistic 

approach that models heartbeats rather than attempting to directly estimate changes in 

HRV, these types of quantitative differences can be discovered. 

The representation of neurotransmitter concentration at the SA node (Foteinou, 

Calvano et al. 2011) is conceptually based on the Warner model (Warner and Cox 1962) 

of sympathetic and vagal influences of HR. A similar idea is explored in the work of 

Chiu and Kao (Chiu and Kao 2001) in which an IPFM model is modulated by the vagal 

and sympathetic outputs of the Warner model. The work presented in this chapter goes a 

step further by ultimately linking the model of autonomic modulation at the SA node with 

a larger, well-established model of human endotoxemia to explore changes in cardiac 

output specifically within this context. This introduces some additional complexity into 

m(t) since the amplitude of HF and LF oscillations depend on a nonlinear model, and also 

circadian influences are directly incorporated through Tsym and Tpar. In general, one 

cannot assume that this type of multimodal input signal will be effectively transduced 

through an IPFM model without the addition of significant distortion (Nakao, Norimatsu 

et al. 1997). However, the power spectra in Figure 4.3 clearly show that the HF and LF 
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frequency components are strongly present in the short-term variability of IPFM-

generated HR. 

By linking cardiac dynamics with a detailed model of the inflammatory response, 

we have begun to explore the mechanistic underpinnings that may underlie the 

relationship between autonomic dysfunction and modulated HR and HRV in 

endotoxemia, and by extension, possible decoupling among other organ systems. The 

mechanism-based approach (Vodovotz, Constantine et al. 2009) of the endotoxemia 

model  allows for the future investigation of the relationship between neuroendocrine-

immune state and cardiac function. This linking of processes at the molecular and cellular 

level with outcomes at the systemic level (namely clinically accessible variables such as 

HR and HRV) is an important step towards developing translational applications of 

systems biology. 

4.2: On Heart Rate Variability and Autonomic Activity, in 

Homeostasis and in Systemic Inflammation 

4.2.1: Introduction 

A marker of a healthy functioning heart is variability in the time intervals between 

successive heart beats, known as heart rate variability (HRV). There are a wide range of 

analytical techniques to quantify HRV from heart rate (HR) measurements (Bravi, 

Longtin et al. 2011), including power spectral analysis which has traditionally been 

viewed as a way to quantify the states of the sympathetic and parasympathetic branches 

of the autonomic nervous system (ANS), since both branches of the ANS converge at the 

sinoatrial (SA) node and convey oscillatory signals to the heart (Malliani, Lombardi et al. 

1994). This type of mechanistic interpretation of HRV data has long been a contentious 
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issue (Eckberg 1997); however, broad inferences about autonomic activity are still 

commonly made from HRV data, due in large part to the difficulty of more directly 

measuring autonomic activity (Scheff, Mavroudis et al. in press). Analysis of HRV data 

aimed at diagnostic and prognostic applications is appealing because of the noninvasive 

nature of HRV assessment and the apparent correlation between HRV depression, i.e., 

loss of HR variability, with disease severity and poor clinical outcomes (Garrard, 

Kontoyannis et al. 1993; Piepoli, Garrard et al. 1995; Annane, Trabold et al. 1999; 

Korach, Sharshar et al. 2001; Barnaby, Ferrick et al. 2002; Tateishi, Oda et al. 2007). In 

particular, dysregulation of autonomic signaling is seen as a critical component in the 

progression of inflammation-linked disorders like sepsis (Annane, Trabold et al. 1999; 

Schmidt, Werdan et al. 2001), which has motivated research on inflammation and HRV. 

However, there is still a limited understanding of the precise mechanistic links between 

inflammation and HRV, which limits the clinical uses of HRV metrics and the potential 

knowledge gained from HRV analysis (Dick, Molkov et al. 2012; Scheff, Mavroudis et 

al. 2012). 

Due to the significant challenges remaining in understanding the underlying 

mechanistic basis of the inflammatory response in general, there has been extensive work 

on experimental models of systemic inflammation such as the human endotoxemia model 

(Lowry 2005). Elective administration of bacterial endotoxin (LPS)  to otherwise healthy 

human volunteers serves as a useful model of TLR4 agonist-induced systemic 

inflammation, providing a reproducible experimental platform tying systemic 

inflammation to physiological signal generation (Lowry 2005; Lowry 2009). Low doses 

of LPS given to humans elicit neuroendocrine, hemodynamic, and leukocyte 
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transcriptional responses that reproduce, in part, those seen after acute injury and 

systemic inflammation (Lowry 2005; Andreasen, Krabbe et al. 2008; Lowry 2009; 

Shanker, Coyle et al. 2010), including a reduction in HRV (Godin, Fleisher et al. 1996; 

Lowry 2005; Rassias, Holzberger et al. 2005; Alvarez, Katsamanis Karavidas et al. 2007; 

Jan, Coyle et al. 2009; Haimovich, Calvano et al. 2010; Jan, Coyle et al. 2010). Thus, 

human endotoxemia experiments represent a platform for the analysis of relationships 

between inflammation, autonomic dysfunction, and changes in HRV(Scheff, Mavroudis 

et al. 2012) . While a number of studies have explored the effect of endotoxemia on HRV 

as well as other metrics of autonomic function (Godin, Fleisher et al. 1996; Rassias, 

Holzberger et al. 2005; Alvarez, Katsamanis Karavidas et al. 2007; Sayk, Vietheer et al. 

2008; Jan, Coyle et al. 2009; Jan, Coyle et al. 2010; Lehrer, Karavidas et al. 2010; Kox, 

Ramakers et al. 2011; Rassias, Guyre et al. 2011; Scheff, Mavroudis et al. 2011), careful 

experimental design and analysis is required to interpret results and coherently build a 

conceptual framework linking inflammation with autonomic dysfunction (Scheff, 

Mavroudis et al. 2012; Scheff, Mavroudis et al. 2012). It is important to extract the 

maximal amount of information from experiments while understanding their limitations 

and the scope of remaining unknowns. For instance, while changes in HRV metrics are 

often cited as evidence for changes autonomic function, the underlying physiological 

complexity makes such conclusions difficult (Eckberg 1997). If alternative hypotheses 

can equally plausibly explain experimental observations, then further investigations are 

required for a more complete understanding; but if this is not appreciated, then scientific 

progress will be impeded. In this respect, a mathematical model can serve as a framework 
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allowing for the rationalization of experimental results and the elucidation of deeper 

meaning (Ottesen 2011). 

In this section, we study models describing the relationship between the 

autonomic nervous system and patterns of heart beats. These models incorporate 

mechanisms that govern the relationship between autonomic activity and HRV, such as 

high frequency autonomic oscillations, binding kinetics of neurotransmitters to receptors 

at the SA node, changes in mean levels of autonomic activity, and inflammation-induced 

uncoupling between the heart and the autonomic nervous system. We analyzed these 

models first to illustrate the complexity inherent in inferring autonomic function from HR 

and HRV data alone and how even simple assumptions about cardiac autonomic 

modulation can lead to unintuitive results. We then investigated the human endotoxemia 

response in particular by leveraging our models to explain and rationalize experimental 

observations. The unintuitive relationships between autonomic signaling and HRV play a 

role in explaining the effect of the cholinergic anti-inflammatory pathway on the 

inflammatory response. Furthermore, by combining experimental data with model 

analysis, we concluded that significant uncertainty remains in the general function of the 

autonomic nervous system, even in a very controlled experimental model like human 

endotoxemia. Multiple plausible patterns of autonomic changes could be leading to the 

observed responses (increased HR, decreased HRV, uncoupling between the autonomic 

nervous system and the heart) and it is important to properly interpret what is learned 

from experiments measuring HRV. 
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signaling and Poincaré plots of RR intervals (Brennan, Palaniswami et al. 2002). Chiu et 

al. analyzed a slightly more complex model that accounts for some of the signal 

transduction steps between the release of autonomic neruotransmitters and the regulation 

of SA node activity (Chiu and Kao 2001; Chiu, Wang et al. 2003). The goal was to 

investigate the relationship between autonomic inputs, such as oscillating frequency and 

mean levels of autonomic outputs, and the beating of the heart. Eq. 4.4 shows a general 

example of this type of model structure. 

 
nor nor nornor m a sin( t )ω= + ⋅ ⋅  (4.4a) 

 
ach ach achach m a sin( t )ω= + ⋅ ⋅  (4.4b) 

 
icpm nor ach

m(t ) k k nor k ach= + ⋅ − ⋅  (4.4c) 

 1

( )
k

k

t

t

I m t dt
+

= ∫  (4.4d) 

 
The variables nor and ach represent norepinephrine and acetylcholine, 

neurotransmitters released by the sympathetic and parasympathetic nerves respectively 

which modulate the beating of the heart. Each of these variables has a mean level mk as 

well as an oscillatory component with amplitude ak and frequency ωk. These sinusoids 

represent the underlying LF and HF signals apparent in HRV data. In reality, oscillations 

at other time scales are also present, such as circadian rhythms, but the analysis presented 

here focuses only on a short time scale so these much higher frequency rhythms are not 

included. The two autonomic variables are linearly combined to produce m(t), the 

autonomic modulation of the SA node. This equation also includes the parameter kicpm to 

account for the intrinsic cardiac pacemaker function in the absence of autonomic 

signaling. Sympathetic activity increases m(t) and parasympathetic activity decreases 

m(t). Then, Eq. 4.4d defines an integral pulse frequency modulation (IPFM) model, 



96 
 

 
 

which consists of the repeated integration of m(t) up to a threshold I. Whenever this 

threshold is reached, it represents a heartbeat. Thus, the differences between successive 

firings of the IPFM model constitute RR intervals. It is important to note that, while Eq. 

4.4d models the SA node as a single cell when in reality it is a cluster of cells, this 

assumption matches well with experimental data on the high-level function of the SA 

node (Dexter, Levy et al. 1989; Pyetan and Akselrod 2003). 

However, there is an obvious drawback to these kinds of linear models: they do 

not account for nonlinearity in the effects of autonomic activity on the heart. Although 

there are clearly myriad complexities of physiology not embodied by Eq. 4.4, possibly 

the most significant issue is that any change in the autonomic inputs proportionally 

produces a change in m(t) regardless of the state of the system; for instance, repeatedly 

increasing nor will lead to faster and faster HRs with no upper bound. Of course, 

autonomic modulation of the heart does not simply linearly reflect autonomic signaling; 

as is typical in physiology, saturation introduces an upper bound on the response of the 

heart (Saul 1990; Goldberger, Challapalli et al. 2001). Considering the model in Eq. 4.4, 

increases in mean sympathetic activity (i.e. increases in mnor) will produce corresponding 

increases in HR, even going well beyond what is physiologically possible. Furthermore, 

oscillations in autonomic activity will always be equally transduced to the SA node, 

regardless of the mean levels of oscillations. Saturation of autonomic modulation of the 

SA node destroys the linearity that facilitates those behaviors in the model. An expanded 

version of Eq. 4.4, including saturation effects, is shown in Eq. 4.5. 

 
nor nor nornor m a sin( t )ω= + ⋅ ⋅  (4.5a) 

 
ach ach achach m a sin( t )ω= + ⋅ ⋅  (4.5b) 
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Eq. 4.5 is largely the same as Eq. 4.4, except that a saturation function appears 

between each neurotransmitter and the SA node, representing binding of norepinephrine 

to adrenergic receptors (adr, Eq. 4.5c) and acetylcholine to cholinergic receptors (cho, 

Eq. 4.5d). Although autonomic neurotransmitters do act primarily through binding to 

receptors and a finite number of receptors does imply that saturation will occur at some 

point, conceptually the model structure would be the same for any type of similar 

saturation occurring upstream of the SA node.  These saturation functions limit the range 

of potential HR responses to autonomic signaling.  

Eq. 4.4 contains 9 parameters and Eq. 4.5 contains 13 parameters. Given that 

these parameters are generally not known and that the majority of insights derived from 

these theoretical models are qualitative and independent of specific parametrizations, the 

simulations below were performed with all parameters set to 1, with the following 

exceptions: the frequencies of autonomic oscillations were set to the mean values of the 

standard LF and HF ranges, 0.095 Hz and 0.275 Hz respectively; and the amplitudes of 

oscillations anor and aach were both set to 0.25, as if they were 1 then some simulations 

would result in m(t) becoming negative. Scenarios where specific parametrizations of the 

model may become important are discussed in more detail in subsequent sections. 
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Frequency domain HRV metrics were calculated by estimating the power 

spectrum of RR intervals with MATLAB’s fft function and finding the area under the 

curve over the LF (0.04-0.15 Hz) and HF (0.15-0.4 Hz) frequency bands. 

4.2.3: Results 

4.2.3.1: HRV as a Function of Autonomic Activity 

Two features of the models in Eq. 4.4-4.5 contribute to a relationship between 

mean levels of autonomic activity and HRV. First, there is an effect related to the 

magnitude of the inputs to an IPFM model, as illustrated in Figure 4.12. As m(t) increases 

and thus heart beats become faster, variability decreases because successive intervals are 

more similar due to their closeness relative to the frequency of oscillations in m(t). This 

means that perturbations that tend to increase m(t), such as increased sympathetic activity 

or decreased parasympathetic activity, suppress HRV while changes in the opposite 

direction lead to more variability. Second, the inclusion of saturation, which only appears 

in the nonlinear model in Eq. 4.5, plays an important role in evaluating the relationship 

between mean autonomic activity and transduction of oscillatory signals through an 

IPFM model, as shown in Figure 4.13. Increased mean values of sympathetic or 

parasympathetic activities leads to blunted oscillations in their corresponding 

neurotransmitters downstream due to saturation, thus leading to lower HRV. 
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Figure 4.12: Relationship between mean HR and HRV. Holding all parameters in Eq. 4.4 constant except 

the mean sympathetic activity mnor produces the blue (mnor = 0.5) and green (mnor = 1.5) curves on the left, 

with the gray curve having higher values of m(t). Because sympathetic and parasympathetic are combined 

additively in the linear model, these are equivalent to setting mach to 1.5 and mach to 0.5, respectively. 

Increasing the mean of m(t) produces higher HR (shorter RR intervals) as well as decreased variability, as 

all of the integrals (highlighted areas under the curves on the left) are over more similar time ranges. 
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Perturbation ∆HR ∆LF ∆HF ∆LF ∆HF 

Increase mean sympathetic activity ↑ ↓ ↓ ↓↓ ↓ 
Decrease mean sympathetic activity ↓ ↑ ↑ ↑↑ ↑ 

Increase mean parasympathetic activity ↓ ↑ ↑ ↑ ? 

Decrease mean parasympathetic activity ↑ ↓ ↓ ↓ ? 
 

Table 4.3: Relationship between changes in mean autonomic activity and changes in mean HR size, LF 

power, and HF power. Results are shown for both the linear (Equation 1) and nonlinear (Equation 2) 

models (∆HR is the same for both models). Up and down arrows represent increases and decreases. Two 

arrows represent a larger magnitude change, due to the cooperativity of both mechanisms for amplitude 

changes in the nonlinear model. A question mark represents an uncertain change, due to the two 

mechanisms working in opposite directions and thus leading to either and increase or decrease depending 

on the parametrization of the model. 

While these results only consider the effect of changing mean sympathetic or 

parasympathetic activities while holding oscillatory amplitudes constant, Appendix B 

considers the case where mean value and amplitude are proportional. 

4.2.3.2: Autonomic Function in Human Endotoxemia 

In human endotoxemia, consistent patterns in HR and HRV have been observed 

across several different experiments. HR increases while metrics of HRV, including LF 

and HF powers, decrease (Godin, Fleisher et al. 1996; Rassias, Holzberger et al. 2005; 

Alvarez, Katsamanis Karavidas et al. 2007; Sayk, Vietheer et al. 2008; Jan, Coyle et al. 

2009; Jan, Coyle et al. 2010; Lehrer, Karavidas et al. 2010; Kox, Ramakers et al. 2011; 

Rassias, Guyre et al. 2011; Scheff, Mavroudis et al. 2011). Considering the results in 

Table 4.3, this is in line with what would be expected to occur from stimuli leading to 

increased HR, such as increased sympathetic activity and/or decreased parasympathetic 

activity (Scheff, Mavroudis et al. 2011). This type of unbalanced autonomic response, 

leading to sympathetic predomination and thus increased HR and LF/HF ratio, represents 

a conventional wisdom that pervades the literature. Another key feature observed in 
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human endotoxemia is uncoupling between the autonomic nervous system and the heart, 

such that induced changes in autonomic activity during endotoxemia fail to produce 

corresponding changes in the output of the heart (Sayk, Vietheer et al. 2008). 

Three hypothetical scenarios for autonomic function giving rise to these observed 

patterns of HR, HRV, and uncoupling in human endotoxemia are shown in Figure 4.15, 

along with a homeostatic case for comparison. These scenarios represent different levels 

of autonomic activity (by altering mnor and mach), receptor-level regulation and coupling 

between the autonomic nervous system and the heart (by altering kadr and kcho), and non-

autonomic influences on HR (by altering kicpm), all producing similar outputs in terms of 

HR and HRV: 

1. Homeostasis. The nominal parameter values given in the Methods section 

were used to create a reference simulation. 

2. Endotoxemia mechanism 1. Sympathetic and parasympathetic activities 

increase (mnor = 10 and mach = 5) leading to blunted oscillations due to 

saturation as in Figure 4.13. Sympathetic activity predominates (kach,2 = 1.5) 

resulting in increased HR. 

3. Endotoxemia mechanism 2. Sympathetic activity increases (mnor = 10), 

resulting in increased HR and decreased LF rhythms. Diminished autonomic 

sensitivity at the SA node (kadr = 0.5 and kcho = 0.5) further reduces both LF 

and HF. In this scenario, parasympathetic activity can either increase or 

decrease, but the results shown in Figure 4.15 are for decreased 

parasympathetic activity (mach = 0.5). 
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4. Endotoxemia mechanism 3. Autonomic activity is largely uncoupled from 

the SA node (kadr = 0.5 and kcho = 0.5), resulting in decreased HRV. HR 

increases due to non-autonomic factors (kicpm = 1.4). In this scenario, 

autonomic activities can change in either direction, but the results shown in 

Figure 4.15 are for decreased sympathetic activity (mnor = 0.5) and increased 

parasympathetic activity (mach = 5). 

Furthermore, Appendix B illustrates how, even after significantly changing the 

assumptions that give rise to Eq. 4.5, these three scenarios depicted in Figure 4.15 

continue to reproduce changes in HR, HRV, and uncoupling similar to what has been 

observed in human endotoxemia experiments. 
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Figure 4.15: Mechanisms for HR/HRV changes in endotoxemia. Each row represents a different 

simulation. The m(t) column shows the autonomic modulation of the heart as defined in Eq. 4.5e based on 

the oscillations shown in the first two columns. The “Relative to homeostasis” column shows how HR, LF, 

and HF changed relative to homeostatic values in the first row. In all cases relative to homeostasis, HR 

increases while LF and HF decrease; the specific magnitudes of these changes (i.e. how much HR 

increases, etc.) can be tuned by the parameters of the model. The “Autonomic stimuli” column shows how 

HR, LF, and HF respond to 4 perturbations (as in Figure 4.14: increased sympathetic activity 50%, 

decreased sympathetic activity 50%, increased parasympathetic activity 50%, and decreased 

parasympathetic activity 50%, respectively) to quantify the level of uncoupling between the autonomic 

nervous system and the heart, again shown relative to homeostatic values. Uncoupling is indicated by 

relative insensitivity to autonomic stimuli. First row: homeostasis. Second row: endotoxemia mechanism 
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1, where sympathetic and parasympathetic activities increase and saturation of receptors leads to 

uncoupling. Third row: endotoxemia mechanism 2, where sympathetic activity increases, parasympathetic 

activity decreases (or increases), and uncoupling is due to a loss of sensitivity of the heart to autonomic 

stimuli. Fourth row: endotoxemia mechanism 3, where autonomic activities are uncoupled from the heart 

due to a loss of sensitivity but non-autonomic factors still increase HR. 

4.2.4: Discussion 

Although traditionally LF oscillations were seen as reflecting sympathetic activity 

and HF oscillations representing parasympathetic activity, spectral analysis truly 

quantifies the amplitudes of oscillations at certain frequencies, not their mean values 

(Saul 1990; Akselrod 1995; Eckberg 1997). In other words, LF and HF powers most 

closely reflect anor and aach in Eq. 4.5a-b rather than mnor and mach. This is a critical point, 

as LF and HF powers do not directly represent mean autonomic activities; instead they 

reflect the amount of oscillations on top of these mean levels. Furthermore, it is generally 

the mean values that are of interest, rather than the oscillatory amplitudes, but there is not 

a one-to-one correspondence between the amplitude of oscillations in inputs to the IPFM 

model and variability in generated heart beat intervals. Niklasson et al. found that HRV 

analysis based on RR intervals reveals a negative correlation between HR and HRV in 

both homeostatic experimental data as well as in a theoretical IPFM model (Niklasson, 

Wiklund et al. 1993), as is described in Figure 4.12. This was more thoroughly 

investigated by Chiu et al., revealing that autonomic perturbations that increase HR 

(increased sympathetic activity or decreased parasympathetic activity) tend to decrease 

both LF and HF powers, while perturbations that decrease HR (decreased sympathetic 

activity or increased parasympathetic activity) have the opposite effect (Chiu and Kao 

2001; Chiu, Wang et al. 2003). The results of Niklasson et al. and Chiu et al. roughly 
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correspond to the results for the linear model (Eq. 4.4) shown here in Table 4.3 and 

Figure 4.14. These results clearly illustrate how conventional wisdom about the 

physiological interpretation of frequency domain HRV metrics does not necessarily 

correspond with the basic mechanisms by which the ANS regulates the heart, as even 

under the very simplistic assumptions of the linear model, the relationship between 

autonomic activity and LF and HF powers is contrary to conventional wisdom. 

The nonlinear model (Eq. 4.5) is still fairly simple, yet adds even more 

complexity to the relationship between autonomic activity and HRV. Pyetan et al. studied 

this issue specifically for the parasympathetic branch alone (Pyetan, Zoran et al. 2001; 

Pyetan and Akselrod 2003; Pyetan and Akselrod 2004) and also found complex 

relationships between autonomic inputs and HRV. In total, what we learn from these 

simple modeling studies in isolation is that changes in HRV can be difficult to interpret, 

as changes in even basic assumption can have significant impacts on the results (see the 

differences between the linear and nonlinear models in Table 4.3 and Figure 4.14). 

These challenges in interpretation are important in experimental settings such as 

human endotoxemia, where HRV analysis is applied in attempts to gain insight into 

autonomic dysfunction in systemic inflammation. For instance, consider the cholinergic 

anti-inflammatory pathway, a key link between the ANS and the immune system (Pavlov, 

Wang et al. 2003; Huston and Tracey 2011). Parasympathetic afferent sensory fibers are 

activated in response to inflammation, leading to not only the central release of 

hormones, but also efferent parasympathetic activity which exerts an anti-inflammatory 

effect through acetylcholine signaling. Based on the view that HF power reflects 

parasympathetic activity, some have deemed it paradoxical that HF power and other 
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correlated HRV metrics are so significantly suppressed in endotoxemia (Fairchild, 

Srinivasan et al. 2011; Gholami, Mazaheri et al. 2012). Fairchild et al. addressed this 

issue at least in part by identifying transient increases in HRV mediated by 

parasympathetic signaling in response to a variety of different bacterial infections in mice 

(Fairchild, Srinivasan et al. 2011). However, this does not necessarily explain scenarios 

like human endotoxemia where no such transient increase in HRV is observed, and 

instead there is only a decrease in HRV until homeostasis is restored. 

Thinking in terms of the nonlinear model presented in Eq. 4.5 presents an 

alternative explanation as to the effect of the cholinergic anti-inflammatory pathway on 

HRV. An increase in parasympathetic signaling can lead to either increased or decreased 

HF power depending on the particular situation, as illustrated in Table 4.3 and Figure 

4.14. Therefore, there is no theoretical disconnect between heightened parasympathetic 

signaling and decreased HF power and HRV in general. This is fundamentally due to HF 

power reflecting the oscillatory amplitude rather than the mean level of parasympathetic 

activity, thus making the cholinergic anti-inflammatory response only indirectly linked to 

HRV, such as through the model shown in Eq. 4.5. And in reality, physiology is much 

more complex than Eq. 4.5, thus presenting even more opportunities for deviation from 

the normally-assumed relationship between HF and parasympathetic activity. 

The concept of uncoupling, the loss of interorgan communication, is also 

important in the context of systemic inflammation, as it has long been hypothesized to 

play a critical role in disease progression (Godin and Buchman 1996) and changes in 

variability metrics such as HRV have been proposed as metrics for uncoupling (Pincus 

1994; Godin, Fleisher et al. 1996). Clinically, similar quantification of uncoupling has 
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been shown to be a marker of disease severity in patients with multiple organ dysfunction 

syndrome (Schmidt, Muller-Werdan et al. 2004).  The most thorough investigation of the 

autonomic nervous system in human endotoxemia was performed by Sayk et al. through 

two novel experimental techniques: 1.) measuring muscle sympathetic nerve activity 

(MSNA) to directly quantify sympathetic activity in endotoxemia; and 2.) modulating 

blood pressure (BP) to quantify how BP-induced autonomic signaling is coupled to the 

heart in endotoxemia (Sayk, Vietheer et al. 2008). This produced two novel insights. 

They found that MSNA in the peroneal nerve is suppressed in endotoxemia, which is the 

opposite of what would have been expected based on changes in HR, and that the 

autonomic nervous system and the heart were effectively uncoupled in endotoxemia, as 

autonomic perturbations induced by changes in BP produced no significant effect on HR 

or HRV even as they significantly altered MSNA. 

The fact that sympathetic output of the peroneal nerve is diminished in 

endotoxemia does not necessarily mean that sympathetic activity at the heart behaves 

similarly, as different parts of the sympathetic nervous system may respond differently. 

Thus, the conventional wisdom of increased sympathetic activity in endotoxemia 

discussed above could very well still be true. However, the striking uncoupling found 

between changes in BP and HR requires closer examination. One can imagine that 

saturation at some point in autonomic signaling pathways, such as defined in Eq. 4.5c-d, 

could explain a kind of uncoupling in that if the system was responding to very high 

levels of autonomic activity, such that further changes in autonomic activity were be 

blunted by the time they reached the SA node and thus were not reflected in the output of 

the heart. For the model in Eq. 4.5, this would only be possible to rationalize with 
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observations of increased HR and decreased HRV in endotoxemia if mean sympathetic 

and parasympathetic activities were either 1.) significantly elevated in endotoxemia (e.g. 

by increasing mnor and mach in Eq. 4.5a-b) or if 2.) sensitivity to autonomic signaling was 

significantly decreased (e.g. by increasing the parameters in the denominators of Eq. 

4.5c-d). The former is possible, particularly in light of the cholinergic anti-inflammatory 

response as discussed above. The latter is possible as well, as non-autonomic 

inflammatory mediators exert regulatory effects on the beating of the heart (Takayama, 

Yuhki et al. 2005; Zorn-Pauly, Pelzmann et al. 2007; Gholami, Mazaheri et al. 2012) and 

crosstalk between the sympathetic and parasympathetic activities can result in altered 

sensitivities to autonomic neurotransmitters (Pyetan and Akselrod 2003). 

Additionally it is possible that 3.) the decrease in peroneal MSNA (Sayk, Vietheer 

et al. 2008) is matched by a decrease in sympathetic activity at the heart. Experiments in 

rats found that endotoxemia led to increased acetylcholine concentration and decreased 

norepinephrine concentration in the liver, lending further support to the hypothesis that 

sympathetic activity is diminished in endotoxemia (Huang, Wang et al. 2010). In this 

hypothetical regime, uncoupling between the autonomic nervous system and the heart 

(Sayk, Vietheer et al. 2008) would mask the effects of diminished sympathetic activity on 

HR, and the endotoxemia-induced increase in HR could be due to non-autonomic 

pathways (Takayama, Yuhki et al. 2005; Zorn-Pauly, Pelzmann et al. 2007; Gholami, 

Mazaheri et al. 2012). In terms of Eq. 4.5, this scenario would be equivalent to decreasing 

mnor to simulate decreased sympathetic activity, decreasing kicpm to simulate a non-

autonomic increase in HR, and decreasing both kadr and kcho to represent uncoupling. 
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Distinguishing between these three mechanisms, as shown in Figure 4.15, 

requires novel experimental work to look more closely at the autonomic nervous system 

in human endotoxemia (Sayk, Vietheer et al. 2008). It is important that these issues are 

approached with an accurate mindset of what the analysis of heart beats can and cannot 

provide. Signal transduction from the autonomic nervous system to the heart is complex, 

nonlinear, unintuitive, and often misinterpreted. Simple mathematical models, as 

discussed here and elsewhere (Niklasson, Wiklund et al. 1993; Chiu and Kao 2001; 

Brennan, Palaniswami et al. 2002; Pyetan and Akselrod 2003), can elucidate issues 

related to the interpretation of HR and HRV data. Specifically in the literature related to 

human endotoxemia, overzealous interpretation of HR and HRV signals is common and 

may be impeding more fundamental understanding of autonomic function in systemic 

inflammation. All three hypothetical mechanisms discussed above also allow for the 

possibility that autonomic modulation of the heart may be substantially different than 

autonomic activity elsewhere in the body. While quantification of HR and HRV can 

provide valuable insight into a system, the extent of this insight depends on how well the 

specific underlying mechanisms in a specific scenario are known, so that physiologically 

important signals can be accurately identified and isolated. 

Even the simple models discussed here illustrate some of the challenges in 

interpreting HRV data, despite the lack of such physiological elements as crosstalk 

between branches of the autonomic nervous system, redundant/complementary pathways, 

and closed loop autonomic control, to name just a few of the simplifications made here. 

Incorporating these further complexities into the conceptual picture makes the 

relationship between HRV and autonomic signaling even less clear. However, in a well-
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characterized system where relationships between autonomic activity and HRV have 

been established experimentally within a specific context, changes in HF and LF powers 

may still be meaningful and may predictably reflect changes in autonomic signaling. 

Lacking that, it is difficult to draw mechanistic conclusions from HRV data, as 

exemplified by the competing mechanisms shown in Figure 4.15 that can all equally 

rationalize HRV changes in human endotoxemia. Proper understanding of the 

information content and interpretation of HRV data is important in accurately assessing 

experimental data; thus, these issues also influences the perceived state of knowledge 

about autonomic function in systemic inflammation. Therefore, it is important to keep 

this in mind in experimental design and interpretation as progress is made towards the 

goal of deciphering the function of the autonomic nervous system in systemic 

inflammation. 
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Chapter 5: Predicting Critical Transitions in a Model of 

Systemic Inflammation 

5.1: Introduction 

Clinical data can be viewed in the context of the physiological state space, where 

each physiological parameter represents a dimension and common conditions appear 

clustered together due to their shared physiological underpinnings (Buchman 1996). 

These clusters represent steady states, regions where physiological parameters tend to 

stay constant in the absence of some perturbation to push the system towards another 

steady state. From this perspective, there is great value in determining to which steady 

state a patient belongs and if they are likely to move to another steady state as time 

progresses and their condition evolves (Buchman 2010; Cohen 2012). In terms of a 

dynamical system, this is equivalent to identifying a forthcoming bifurcation that will 

lead to a transition from the current steady state to a new steady state. In general, the 

earlier the diagnosis, the better the outcome, and thus it is important to detect warning 

signals of deterioration as early as possible. For example, there are approximately 

750,000 cases of sepsis leading to 200,000 deaths annually in the US (Angus, Linde-

Zwirble et al. 2001) and earlier detection of sepsis leads to more effective treatment and 

improved clinical outcomes, including lower mortality (Ridley 2005).. 

Identifying transitions between steady states of gradually changing dynamical 

systems is a problem with broad applications in many fields. For this reason, many prior 

studies have attempted to find markers of a system approaching a critical transition 

(Scheffer, Bascompte et al. 2009; Dakos, Carpenter et al. 2012). The general concept 

behind techniques for identifying critical transitions is that, as a dynamical system 
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approaches a bifurcation, characteristic patterns emerge in the output of the system due to 

the underlying mathematical structures. For instance, the responses of a system to random 

deviations from its steady state may become slower as the loss of stability is approached, 

a phenomenon known as “critical slowing down”. Statistically identifying hallmarks of 

deteriorating stability has yielded impressive results in some instances (Carpenter, Cole et 

al. 2011), but applications in physiology and medicine have been rare (Venegas, Winkler 

et al. 2005; Mormann, Andrzejak et al. 2007; Chen, Liu et al. 2012) likely due to most 

clinical measurements being relatively low frequency and noisy while the statistical 

identification of critical transitions traditionally relies on large amounts of data. This has 

been somewhat assuaged by the advent of modern clinical and experimental techniques, 

including such technologies as microfluidics and high-throughput transcriptional 

screening, but the large-scale collection of most physiological data remains invasive and 

expensive, and thus researchers and clinicians typically remain data-limited. With this in 

mind, techniques to identify transitions based on limited data are required for 

physiological applications. 

Lade and Gross recently proposed a novel technique for the identifications of 

critical transitions (Lade and Gross 2012). Rather than taking a purely statistical 

approach, they considered the possibility of improving performance by leveraging 

additional information about the system in question, namely knowledge of its network 

structure. While detailed models with perfectly identified parameter values are rare, often 

some very general principles are well established. By using data to numerically estimate 

the stability of a simple high-level model of a system, Lade and Gross tracked changes in 

stability over time as new data streamed in. This model-based approach produced 
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intriguing results suggesting that it allows for the robust prediction of forthcoming 

transitions based on sparser data than prior statistical approaches, making it an ideal 

candidate for evaluating physiological systems. However, application of Lade and 

Gross’s approach still requires significant assumptions about the measurability of internal 

components of the system (such as production and degradation rates), the structure of the 

system, or both, which may not be feasible in practice. 

In this chapter, we propose an approach for identifying critical transitions and 

apply it to a model of systemic inflammation that moves between steady states due to a 

progressing bacterial infection. Based on a combination of data and some high-level 

knowledge of the system’s network structure, a metric was derived to serve as a warning 

signal of abrupt transitions between steady states before the state variables begin their 

trajectories to the new steady state. Intervention to remove the inflammatory instigator 

proved successful in restoring homeostasis when performed after the warning signal 

became elevated, but was unsuccessful in this task when initiated later, after the system 

was already visibly on its trajectory towards a heightened inflammatory state. Critically, 

this approach requires a minimal amount of assumptions about the availability of data 

and the structure of the system while still retaining predictive power. Successful 

translation of the identification of transitions to clinical practice could have a 

transformational impact on healthcare, and this work represents a step towards that goal. 

5.2: Methods 

5.2.1: Generalized Modeling 

The study of physiological systems is hindered by both limited data and limited 

mechanistic knowledge. These practical limitations necessitate the use of analytical 
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methods designed to function in the presence of significant uncertainty. One such 

approach is generalized modeling (Gross and Feudel 2006; Kuehn, Siegmund et al. 

2012).  A generalized model is a system of equations representing interactions between 

variables based only on placeholder functions, which represent the connectivity between 

equations without making any assumptions about specific functional forms or 

parametrizations that all correspond to the same network structures. 

Although generalized models cannot simply be simulated forward to study a 

system because the placeholder functions are not explicitly defined mathematical 

functions, insights can still be drawn from the analysis of generalized models. For 

example, stability of a steady state can be quantified by calculating the eigenvalues of the 

Jacobian matrix, a local linearization of the system (Gross and Feudel 2006; Kuehn, 

Siegmund et al. 2012). The Jacobian matrix of a generalized model can be estimated in 

terms of partial derivatives of placeholder functions. If sufficient data is available, then 

those partial derivatives can be numerically estimated, and then stability of a system can 

be assessed without ever assuming any further properties of the system, such as the 

specific functional forms of the placeholder functions. In a system that is gradually 

approaching a critical transition, characteristic patterns often arise in the eigenvalues of 

the Jacobian matrix when a bifurcation occurs. This type of analysis can produce warning 

signals of an impending critical transition because changes in these eigenvalues often 

occur before the transition would be otherwise apparent from monitoring the state 

variables alone (Kuehn 2011; Lade and Gross 2012). Thus, if the dynamics of the system 

are reflected in the generalized model, then stability analysis of the generalized model 

may produce a quantifiable warning signal of critical transitions (Lade and Gross 2012). 
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5.2.2: Human Endotoxemia as a Model of Systemic Inflammation 

 As in the preceding chapters, we consider human endotoxemia as a model of 

systemic inflammation.  The underlying model used here is as defined in Appendix A, 

except that we studied this system in the presence of a gradually-increasing inflammatory 

load, mimicking a growing bacterial infection, by assuming linear growth with time in 

the production rate of LPS. Due to a positive feedback loop in the pro-inflammatory 

response (P), this model is bistable, with one steady state representing healthy 

homeostasis with low levels of inflammatory mediators, and the other steady state 

exhibiting heightened levels of inflammatory mediators that persist even when LPS is 

completely removed. As the bacterial load gradually increases, the system enters a slowly 

changing intermediate state followed by an abrupt transition to the heightened 

inflammatory state, as shown in Figure 5.1. If it were possible to perfectly model the 

inflammatory response and identify all model parameters, then that ideal model could be 

used to reliably predict future transitions. Instead, we use this model as a source of data 

and evaluate the ability of generalized models of systemic inflammation to predict critical 

transitions. 
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Figure 5.1: Transition between steady states in chronic inflammation. A gradually increasing bacterial load 

(LPS) produces an abrupt transition from a gradually-changing intermediate state to a heightened persistent 

inflammatory state. This transition is shown in the pro-inflammatory signaling variable (P), but it is equally 

apparent in other components of the system. 

5.2.3: Generalized Modeling of Systemic Inflammation 

In many respects, a generalized model can be considered to be a mathematical 

representation of a network diagram, encoding only the components of a system, 

connections between components, and the directionalities of connections. However, in 

the context of stability analysis, this network must be relatively simple; otherwise, the 

number of partial derivative estimates will grow to require an unreasonable volume of 

data. Therefore, a complex system must be reduced to a limited number of motifs to be 

represented in a generalized model. In systemic inflammation, key motifs include an 

injury or pathogen stimulating a pro-inflammatory response; the antagonistic relationship 

between pro- and anti-inflammatory mediators; and the positive feedback between tissue 

damage and pro-inflammatory signaling (Vodovotz, Constantine et al. 2009). These 

motifs are all represented in the model shown in Figure 5.2. Lipopolysaccharides (LPS) 

stimulate the pro-inflammatory transcriptional response (P), which then activates both 
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central immunomodulatory mechanisms (such as the release of cortisol, F) and peripheral 

transcriptional responses (A), which both serve to suppress pro-inflammatory activity. 

Generalized models, listed in Figure 5.2B, were constructed as high-level representations 

of systemic inflammation based on these critical motifs present in the systemic 

inflammatory response. A variety of models were constructed to more broadly assess 

performance, as the reduction of a large network to represent a limited number of motifs 

includes some degree of qualitative analysis. The generalized models evaluated here are 

those made up of anti- and pro-inflammatory signaling (A-P), cortisol and pro-

inflammatory signaling (F-P), either of those models plus LPS (A-LPS-P and F-LPS-P), 

and all four variables together (A-F-LPS-P). These five models represent every 

combination of A, F, LPS, and P that include both negative feedback (between P and 

either A or F) and positive feedback (in the equation for P). 
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Figure 5.2: Network structures of the underlying detailed model and the generalized models. A: network 

structure of the model of human endotoxemia used to generate data (Foteinou, Calvano et al. 2010). The 

red overlaid lines represent a high level simplification of this network structure, which corresponds to the 

first generalized model in B. B: network structures and equations for all five generalized models considered 

in this work. The systems are all comprised of, at most, four variables: bacterial load (LPS), pro-

inflammatory signaling (P), anti-inflammatory signaling (A), and cortisol (F). The generalized model 

equations are mathematical formalizations of the network structures. 

However, even making broad assumptions to significantly reduce the complexity 

of a generalized model is not necessarily sufficient to allow for the data-driven estimation 

of stability. If an equation in a generalized model depends on more than one variable, 

then its partial derivatives cannot be directly calculated based on measurements of the 

state variables alone unless some partial derivatives can be measured (e.g. the 

degradation rate of a variable) and/or some information can be gleaned from other 

equations (e.g. if the production rate of one variable equals the degradation rate of 

another) (Lade and Gross 2012). For a physiological response like systemic 
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inflammation, neither of these options is generally feasible. Instead, we estimated all 

partial derivatives from measurements of the state variables alone. From the output of the 

in silico model of systemic inflammation, we sub-sampled only the limited set of state 

variables used in the generalized models in Figure 5.2B to use as input data for the 

prediction of critical transitions. Using this data to estimate the stability of generalized 

models requires the estimation of partial derivatives of every generalized model equation. 

These partial derivatives were estimated by assuming the placeholder functions are linear 

over a relatively small time window and minimizing the least squared error of the data fit 

to these equations. Then, these estimated partial derivatives were used to find the 

eigenvalues of the Jacobian matrix of the generalized model. Repeated application of this 

process allows for tracking the estimated stability of the generalized model over time. 

This algorithm is described in more detail in Appendix C. 

A unique feature of this procedure is that the dimensionality of the underlying 

system (20 equations) is substantially larger than the dimensionality of the generalized 

models (2-4 equations), whereas previous applications of generalized models for 

predicting critical transitions used synthetic data from models with the same 

dimensionality as the generalized models (Lade and Gross 2012). Therefore, we are 

testing the hypothesis that only a subset of a system needs to be included in a generalized 

model to predict critical transitions. A complete formulation of the detailed model as well 

as the procedures for generating data and evaluating stability are found in the Appendix 

C. 
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5.3: Results 

The existence of a critical transition for the detailed model of systemic 

inflammation in the presence of a gradually increasing bacterial load is shown in Figure 

5.1. The critical transition that occurs at around 120 hours is abrupt and is preceded only 

by very gradually changing state variables. Thus, taking a traditional approach and 

deriving a warning signal based on a cutoff in the state variables would not provide a 

significant amount of time before the system was already well on its way to its new 

steady state. Thus, we derived an earlier warning signal of this transition with a minimal 

amount of assumptions through generalized modeling. 
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Figure 5.3: Translation from data to a warning signal. From bottom to top, the three plots show: (1) pro-

inflammatory signaling (P), with the line representing the detailed model output and the dots representing 

discrete samples every half hour; (2) the numerical derivative of P calculated with the backwards difference 

method; and (3) the maximum eigenvalue of the generalized model. Vertical lines between P and dP/dt 

indicate that the backwards difference method was used to estimate each derivative, taking into account the 

current time point and the previous time point only. Then, all of these values over a 10 hour window are 

used to estimate a single warning signal for the current time point. Thus, all of the vertical lines show all of 

the data that is used to produce the warning signal at a particular time point. 

Figure 5.3 displays an overview of how the output of the detailed model was 

translated into a warning signal. First, the state variables of the system were sampled at a 

constant rate, every 30 minutes in this example. This was done not for every variable in 

the model, but only for the variables that are included in the generalized model, in this 

case just pro-inflammatory signaling (P) and anti-inflammatory signaling (A). Then, 

derivatives of these state variables with respect to time were estimated at every point by 

using the backwards difference method, so that each estimate contains the most recent 

information possible. This also provided the opportunity to assess the predictive value of 
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quantifying the time derivatives of state variables. As can be seen in Figure 5.3, visible 

movement in both P and dP/dt occurred at approximately the same time. To evaluate the 

stability of the generalized model, a time window of 10 hours was used, combining the 

discretized state variables with the numerical derivatives to estimate partial derivatives of 

the system and thus estimate the eigenvalues of the two-variable generalized model. This 

produced two eigenvalues at each time point, of which only the larger eigenvalue is 

shown, as it dominates the response of the system. Conceivably, the other eigenvalues 

could provide information about changes in the dynamics of a system, but in all of the 

scenarios evaluated here, the maximum eigenvalue moved first. Each new estimate at a 

given time point was calculated based on the data from up to that time point, producing a 

warning signal updated in real time as data streamed in. The eigenvalue warning signal 

increased above its homeostatic value substantially earlier than either P or dP/dt, 

illustrating that generalized modeling can be leveraged as described here to develop a 

warning signal of critical transitions in the context of systemic inflammation. This 

validates the novel methodology for the estimation of stability based only on 

measurements of some state variables of a larger system without making any other 

assumptions about data availability or model structure. Furthermore, this shows that 

generalized models can provide warning signals even when they are fit to data generated 

by much more complex and higher dimensional systems. 

In addition to the simplest two-variable generalized model including only pro- 

and anti-inflammatory signaling, several different generalized models were evaluated, all 

containing the common motifs of negative feedback between pro- and anti-inflammatory 

signaling and a self-stimulatory positive feedback loop in pro-inflammatory signaling. In 
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all of the evaluated models, the patterns of increases in the eigenvalues were largely 

similar, as shown in Figure 5.4. This illustrates that the results presented here are not 

dependent on even a specific generalized model structure, as long as they contain the 

relevant motifs. The generalized model eigenvalues were also compared in Figure 5.4 to 

the eigenvalues of the detailed model. This confirms that the patterns of changes in the 

estimated eigenvalues begin at roughly the same time as is observed in the eigenvalues of 

the underlying system. 

 

Figure 5.4: Comparison of eigenvalues from generalized models and from the underlying model. Shown 

here are eigenvalues estimated from all of the different generalized models (λi where i is the variables 

contained in the generalized model, as shown in Figure 5.2), the eigenvalue calculated directly from the 

detailed model (λdetailed), and a state variable of the system (pro-inflammatory signaling, P). The estimated 

eigenvalues track the real eigenvalue, and they all clearly move before pro-inflammatory signaling enters 

its abrupt transition towards the persistent heightened inflammatory state. 

The results discussed above all used data sampled every 30 minutes from the 

detailed model. Figure 5.5 illustrates that even lower frequency data can still be 

transformed into a predictive warning signal through the methods applied here. Although 

as the sampling rate decreases there was clearly a decrease in performance, in terms of 
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deviation of the eigenvalue from baseline prior to the transition, there were still clear 

patterns in the trajectories of the eigenvalues up to a sampling period of approximately 4 

hours. 

 

Figure 5.5: Effect of sampling frequency on predictions. Warning signals were calculated from data 

sampled at periods ranging from 0.5 hr to 4 hr based on the generalized model containing only pro-

inflammatory signaling (P) and anti-inflammatory signaling (A). Predictive value is maximized as sampling 

frequency increases. 

To study the implications of early detection of a critical transition, we 

investigated an intervention applied when signs of a transition are apparent either in the 

eigenvalue warning signal or directly in the state variables of the model. Figure 5.6 shows 

the effects of removing the inflammatory instigator at these two time points. The earlier 

intervention driven by the early warning signal restored homeostasis, but the later 

intervention after the system had already begun to move to the heightened inflammatory 

state was not sufficient to avert the transition, ultimately leaving the system in a 

persistent inflammatory state even in the absence of an inflammatory instigator. The 

presence of a critical time window between the time when markers of an impending 
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transition are apparent and the “point of no return” where intervention does not 

successfully restore homeostasis underscores the importance of identifying warning 

signals as early as possible. 

 

Figure 5.6: Intervention performed based on the warning signal or the magnitude of state variables. 

Intervention to remove the bacterial load is performed either at 116 hr when the warning signal is clearly 

elevated (dashed lines) or at 120 hr after the state variables of the system have clearly begun to transition 

(solid lines). The earlier intervention is able to restore homeostasis, but the later intervention after the 

transition has already begun is not sufficient to restore homeostasis. 

5.4: Discussion 

A key innovation here lies at the intersection of data and modeling. If very high 

resolution and low noise data was available, no model would be necessary to predict 

transitions as traditional statistical and signal processing approaches could be utilized 

(Scheffer, Bascompte et al. 2009). Conversely, if a perfect computational model was 

available, then it could simply be simulated forward to predict the future even without 

any data. As shown by Lade and Gross, combining relatively limited data with a simple 

model based on high-level network structure can result in informative predictions of 
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forthcoming transitions (Lade and Gross 2012). In addition to investigating a novel 

application in systemic inflammation, we extended this technique in two important ways. 

First, we established that the dimensionality of the underlying system (a detailed model 

of systemic inflammation) does not need to be the same as the dimensionality of the 

generalized model derived from the high-level network structure. This is important 

because it shows that the high-level network structure of a significantly more complex 

system is sufficient to predict transitions, which is critical in any application to real data 

generated by a much more complex biological system. Second, we derived predictive 

estimates of the stability of the system based only on data from the state variables, rather 

than assuming knowledge or measurability of internal production and degradation rates. 

In our underlying model of systemic inflammation, bacterial load (LPS) drives the 

inflammatory response, and transitions were provoked by gradually increasing this 

variable. Yet even generalized models that do not include LPS still captured the loss of 

stability and movement between steady states driven by the self-stimulatory pro-

inflammatory feedback loop, which is shown in Figure 5.4 by the similar results 

produced regardless of whether LPS was included or excluded. This highlights that 

appropriate analysis of internal components of the inflammatory response can reveal a 

universal dynamics-based marker of the risk of transition, independent of the specific 

cue. This is an important conclusion because in a clinical setting the ultimate source of 

inflammation might not be known, or it might be difficult to quantify, or there could be 

multiple inflammatory instigators such as an injury and a subsequent infection. Because 

internal dynamics of the inflammatory response on its own contain sufficient information 
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to predict transitions, similar dynamics would be expected in any gradually deteriorating 

inflammatory condition. 

A high-level overview of the process for translating data into a warning signal is 

shown in Figure 5.3. In this example, the generalized model contained only variables 

representing pro- and anti-inflammatory signaling. Of course, there is no single 

biomarker that precisely corresponds to these terms. Thus, a significant challenge 

remains in determining how to reconcile data from a much higher dimensional system 

with a simple generalized model. One approach is through high-dimensional data 

analysis. Clusters of gene expression values could be used to define the state variables of 

a generalized model, similar to how we previously leveraged microarray data from 

peripheral blood leukocytes to infer levels of pro- and anti-inflammatory signaling 

(Foteinou, Calvano et al. 2009). Similarly, principal components analysis (PCA) has been 

applied to cytokine data, which can be used to identify key aggregate drivers of 

inflammation in a reduced dimensional space (Nieman, Brown et al. 2012). Based on 

these types of approaches, one can imagine the inputs to a generalized model being high-

level markers of system function rather than raw data of individual biomarkers. 

Another important issue in terms of the data input into a generalized model is 

sampling frequency. Other than through noninvasive metrics like ECG and EEG, which 

would not be sufficient to assess the inflammatory state of a patient to the extent 

necessary for the proposed computational methods, high frequency data is generally not 

available. As shown in Figure 5.5, performance increases as the sampling frequency 

decreases, but even with a relatively large sampling frequency, there is still predictive 

value in the eigenvalues. Depending on the speed of transition from one state to another, 
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the required sampling frequency would likely change, and factors such as biological or 

experimental noise could alter requirements. However, the salient point is that sampling 

at reasonable rates has the potential to provide predictive information when evaluated in 

the context of a generalized model. 

The concept of making predictions based on fairly simple models calibrated based 

on limited data is particularly important from a translational perspective. Systems biology 

represents an especially challenging field in terms of data availability. In general, 

complex systems biology models (including the detailed model of systemic inflammation 

discussed here) are not uniquely identifiable from available experimental data 

(Gutenkunst, Waterfall et al. 2007). The implication of this is that there may be multiple 

formulations of a model, in terms of both structure and parametrization, which can 

equally well fit a dataset, thus presenting a challenge in predictive applications of models. 

However, even this realization understates the true scope of the problem. A systems 

biology model may be fit to experimental data generated from multiple subjects under 

multiple different conditions, which is typically quite difficult as described above. A 

translational model must be fit to data generated from a single subject in a single 

condition, which is a far more difficult problem. Dynamics-based analysis of limited data 

in the context of a simple model has the potential to overcome these challenges by 

minimizing data required to predict transitions. 

The identification of early warning signals preceding a transition is particularly 

useful if it provides sufficient time for intervention to potentially avert an undesirable 

regime shift (Biggs, Carpenter et al. 2009). For instance, if a warning signal for the onset 

of a disease was identified, but earlier treatment did not improve clinical outcomes, it 
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would be of minor importance. The ultimate goal is not to simply detect a transition so 

that a patient could be more closely monitored and more rapidly treated, it is to detect a 

transition in sufficient time that the transition can be entirely averted through an 

appropriate intervention. In this regard, the results in Figure 5.6 are interesting as they 

show the potential for precisely this type of prediction by the presence of a critical time 

window between the identification of an early warning signal and the “point of no 

return”. This presents the opportunity for earlier intervention to restore homeostasis, 

whereas an identical intervention would be unsuccessful at a later time point after the 

state variables of the system have begun to visibly move towards the unhealthy steady 

state. 

The broad goal of data-driven prediction of the future state of patients is not new; 

ICU scoring systems have been designed and widely applied for this purpose. We draw a 

distinction between these traditional metrics, typically derived from simple combinations 

of commonly available clinical and demographic information, and newer dynamics-based 

methods that leverage advances in data collection towards more fine-grained predictions 

of imminent events. One class of approaches is based on the information content 

provided by very high dimensional measurements such as microarrays. Cobb et al. used 

microarrays to identify the onset of ventilator-associated pneumonia in trauma patients by 

identifying a subset of informative genes and using principal component analysis (PCA) 

to evaluate the movement of these genes from a normal recovering state to a pathological 

state representing pneumonia (Cobb, Moore et al. 2009). The identification of patients 

moving to different states in principal component space is similar to the concept of 

identifying transitions in physiological state space. This relationship is made more 
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explicit in the work by Chen et al. which attempts to identify “dynamical network 

biomarkers” (small clusters of genes representing components that change early in the 

transition between steady states) driven by a theoretical foundation based on statistical 

approaches towards identifying bifurcations in systems with multiple steady states (Chen, 

Liu et al. 2012). These microarray-based approaches are significantly different than the 

method proposed here in that they require high-dimensional measurements and they do 

not assume any a priori network structures to inform their predictions. High throughput 

measurements have also shown the potential to allow for the identification of changes in 

dynamics preceding transitions in other domains; for instance, high-resolution imaging 

revealed spatial patterns in ventilation driven by bistability and competition between 

short-range and long-range interactions (Venegas, Winkler et al. 2005). 

In addition to techniques applying dynamical analysis of high throughput data to 

predicting physiological transitions, data that can be feasibly acquired in a very high 

frequency manner has also been found to be useful. One useful type of analysis in this 

regard is heart rate variability (HRV) derived from ECG data, which has been shown to 

be predictive of the onset of neonatal sepsis (Moorman, Carlo et al. 2011) and potentially 

also sepsis in adults (Ahmad, Ramsay et al. 2009). Although the precise mechanistic 

origins of HRV are uncertain, it has been hypothesized that the characteristic patterns in 

HRV preceding the onset of sepsis may be the outcome of a dynamical system 

undergoing a bifurcation (Flower, Moorman et al. 2010). If this is true, it lends credence 

to the hypothesis that stability analysis has a role in predicting this type of bifurcation in 

patient state. There has also been progress in the analysis of EEG data for predicting the 

onset of epileptic seizures. Despite challenges in validating preliminary studies and 
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translating seizure prediction to clinical practice, appropriate analyses of this high-

frequency data have shown the ability to reveal predictive information (Mormann, 

Andrzejak et al. 2007). In total, experimental techniques that allow for either more 

frequent sampling or simultaneous measurements of large numbers of features enable 

dynamics-based approaches towards predicting future developments in patients’ states. 

 Significant challenges remain in model-based prediction of critical transitions 

between physiological steady states. Homeostasis, in reality, is not simply a single fixed 

point. There are both random and deterministic patterns in homeostasis. Circadian 

rhythms are a prominent source of homeostatic variability. Although circadian rhythms 

are often suppressed in critically ill patients (Mundigler, Delle-Karth et al. 2002; Lowry 

2009), there is still a need to very accurately distinguish between movement that is part of 

a healthy circadian rhythm and a pathological transition between steady states. 

Generalized models of periodic systems have been studied (Kuehn and Gross 2011), but 

not yet applied in the prediction of critical transitions. Random noise is another 

confounding factor which makes the estimation of partial derivatives from limited data 

more difficult, although appropriate smoothing of the data may be sufficient to retain 

predictive power (Lade and Gross 2012). 

Current scientific literature contains examples of improved mathematical 

techniques for identifying critical transitions from limited data as well as novel 

experimental techniques to generate more and better physiological data. This 

convergence between theory and experimentation makes the prospect of predicting 

transitions between physiological steady states more and more plausible as time goes on, 

with potential applications in a wide range of systems. The work presented here 
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represents a step forward towards achieving these translational goals in conditions related 

to systemic inflammation. 
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Chapter 6: Conclusions and Future Outlook 

In recent years, systems biology has shown the potential to produce impactful 

results from both scientific and translational perspectives. Systems biology facilitates 

approaching questions about complex and nonlinear systems that otherwise appear 

intractable (Lander 2004). It also allows for the opportunity to leverage these insights in a 

translational setting (Foteinou, Calvano et al. 2009). From this perspective, there are a 

number of potentially useful outputs of systems biology models: quantitative 

representations of existing hypotheses, novel hypotheses to guide future research, 

predictions of a system’s behaviors in different conditions, rationalization of differences 

between competing experimental results and theoretical frameworks, and insight into the 

properties and abilities conferred by a particular network structure. The novel results 

presented here contribute towards all of these areas. 

By evaluating the implications of circadian rhythms in human endotoxemia in 

Chapter 2, we tested the ability of a network structure based on central entrainment of 

peripheral inflammatory activity to reproduce experimental results and make predictions 

of network function throughout the circadian cycle. The model of ultradian rhythms in 

cortisol in Chapter 3 illustrates how modeling can give insight into the functional 

advantages of system-level properties by identifying a correlation between homeostatic 

ultradian rhythms and responsiveness to subsequent stress. Chapter 4 discusses how a 

quantitative model linking endotoxemia and HRV through autonomic activity can be 

used to evaluate the range of plausible mechanisms justified by experimental data. And 

Chapter 5 studies how model-based analysis can identify a warning signal of transitions 

between steady states in chronic inflammation. 
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In terms of the model linking circadian rhythms with human endotoxemia 

presented in Chapter 2, there are several factors not yet incorporated into the model that 

may be of significant importance. First, although our model considers circadian rhythms 

in components of the inflammatory response as driven by the central regulation of 

hormone secretion, in reality peripheralcircadian rhythms are driven by networks of clock 

genes in individual cells that are synchronized by central entraining signals. In the 

context of human endotoxemia, this distinction may be of significant importance because 

it has been shown experimentally that human endotoxemia results in altered expression of 

clock genes in peripheral immune cells (Haimovich, Calvano et al. 2010). Additionally, it 

is known that there is crosstalk between circadian and inflammatory systems, for instance 

clock genes respond to inflammatory mediators such as cortisol and various cytokines 

while cytokines production is also regulated by clock gene expression (Mavroudis, Scheff 

et al. 2012). Furthermore, while our model is of human endotoxemia and only acute LPS 

doses are considered in Chapter 2, the relationship between chronic inflammation and 

circadian rhythms is an important topic. While alterations in circadian rhythmicity have 

been observed in many different types of stress, deciphering the specific mechanisms 

(which may very well be different for different stressors) is an area of active research 

(Sriram, Rodriguez-Fernandez et al. 2012). 

Chapter 3 presented a model linking ultradian cortisol production with 

downstream pharmacodynamic effects. An obvious next step would be to integrate this 

within the larger model of human endotoxemia discussed in the other chapters to evaluate 

the implications of ultradian rhythmicity in a systems-level context. A significant 

challenge in this regard lies in the availability of high-frequency cortisol measurements in 



137 
 

 
 

human endotoxemia experiments to understand how endotoxemia alters the dynamics of 

the HPA axis. More generally, studies attempting linking characteristics of cortisol’s 

homeostatic ultradian rhythms with stress responsiveness would be of great interest, 

analogous to the Monte Carlo experiments in Chapter 3. 

The relationship between human endotoxemia, the autonomic nervous system, 

and HRV was explored in Chapter 4. The conclusions of this chapter directly lead to one 

important area of future work: further human endotoxemia experiments with two primary 

goals. First, to study the autonomic nervous system through metrics besides HRV (such 

as chemoreflex sensitivity (Schmidt, Muller-Werdan et al. 2004)) so to gain a better 

understanding of how HRV relates to changes in autonomic activity in endotoxemia. 

Second, to study perturbations of autonomic activity during endotoxemia to evaluate 

coupling between the autonomic nervous system and the heart (Sayk, Vietheer et al. 

2008). Additionally, from the modeling domain, one key issue is closing the feedback 

loop between inflammation, autonomic activity, and the heart. In the current model 

structure, the function of the heart is an output of the model and does not modulate any 

upstream components. In reality, altered HR leads to many physiological changes, for 

instance in blood pressure and autonomic activity (deBoer, Karemaker et al. 1987). Given 

the known relationships between autonomic activity and inflammation, it seems plausible 

that these physiological responses to changes in HR could modulate the progression of 

the inflammatory response. 

In Chapter 5, the potential for model-based prediction of transitions between 

steady states was explored in the context of chronic systemic inflammation. This work 

was done in the absence of circadian rhythms. Although circadian rhythms are often 
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suppressed in critically ill patients (Mundigler, Delle-Karth et al. 2002; Lowry 2009), 

there is still a need to very accurately distinguish between movement that is part of a 

healthy circadian rhythm and a pathological transition between steady states. Generalized 

models of periodic systems have been studied (Kuehn and Gross 2011), but not yet 

applied in the prediction of critical transitions. Random noise is another confounding 

factor which makes the estimation of partial derivatives from limited data more difficult, 

although appropriate smoothing of the data may be sufficient to retain predictive power 

(Lade and Gross 2012). Taking a broader perspective, there are also other approaches 

towards the identification of critical transitions that should also be explored. For instance, 

rather than relying on high frequency data, it could also be possible to leverage high 

dimensional transcriptomic/proteomic data towards similar ends (Chen, Liu et al. 2012). 

In total, each component of this dissertation has laid the groundwork for future 

research, both experimental and computational. Continued work along these lines would 

likely be fruitful in gaining further insight into the inflammatory response and guiding 

future investigations. 
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Appendix A: Multiscale Model of Human Endotoxemia 

The model of human endotoxemia presented in this appendix was iteratively 

developed over several publications prior to this dissertation (Foteinou, Calvano et al. 

2009; Foteinou, Calvano et al. 2009; Foteinou, Calvano et al. 2010; Foteinou, Calvano et 

al. 2011) and is used in Chapters 2, 4, and 5. 

In vivo human endotoxin challenge is a commonly-used model for studying acute 

inflammation because it evokes signs and symptoms of systemic inflammation along with 

significant transcriptional and neuroendocrine responses (Lowry 2005). 

Lipopolysaccharides (LPS, endotoxin), found in the outer membrane of gram-negative 

bacteria are pathogen-associated molecular patterns (PAMPs) that are recognized by 

innate immune system pattern recognition receptors (PRRs), most notably Toll-like 

receptor 4 (TLR4), thus eliciting an inflammatory response. 

Through the analysis of leukocyte gene expression data, the essential responses 

characterizing the leukocyte transcriptional dynamics were identified. Specifically, these 

responses, in the case of transient human endotoxemia, include (1) an early increase in 

pro-inflammatory signaling molecule production; (2) an anti-inflammatory response to 

counter pro-inflammatory signaling; and (3) an energetic response representing 

diminished cellular bio-energetic processes. These transcriptional responses are triggered 

by the activation of critical signaling cascades as a result of the recognition of the 

extracellular LPS signal. In the endotoxin injury model, the focus has been on NF-κB as 

the archetypical signaling module that regulates the expression of pro-inflammatory 

genes, as provoked by the binding of LPS to its receptor TLR4 (R) (Eq. A.1a-A.1d) 

leading to the activation of the NF-κB, which initiates the transcriptional response to 
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inflammation. NF-κB is normally bound to IκB molecules which inhibit its translocation 

to the nucleus, thus inactivating its role as a transcription factor. LPS via TLR4 and 

adapter molecules stimulates the activation of IKK, which phosphorylates IκBα leading, 

in turn, to ubiquitination and degradation of IκBα in the proteasome. Then, the free NF-

κB can move into the nucleus and stimulate the transcription of a number of genes, 

including its inhibitor IκBα, thus creating a negative feedback loop. The NF-κB module 

is based on a reduced model of  NF-κB  dynamics that includes IKK (Eq. A.1e), nuclear 

(activated) NF-κB (Eq. A.1f), and IκBα (Eq. A.1g, A.1h) (Ihekwaba, Broomhead et al. 

2004) which allows the model to broadly capture the negative feedback regulatory 

behavior of NF-κB . The fundamental transcriptional processes found in the gene 

expression data are the pro-inflammatory (Eq. A.1i), anti-inflammatory (Eq. A.1j), and 

energetic (Eq. A.1k) responses. 
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k mRNA k IKK NFkBn IkBa k

dt
= ⋅ − ⋅ + ⋅ − ⋅ −  (A.1h) 

 , , , ,(1 ) (1 ) /in P P NFkBn P E out P

dP
k H H A k P

dt
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( ) ( ) ( ), , , , ,1 1 1( )in A A cAMP A FRN A E out A

dA
k H k H k A

dt
FR N= ⋅ + ⋅ + ⋅ + − ⋅  (A.1j) 

, , ,(1 ) /in E E P out E

dE
k H A k E

dt
= ⋅ + − ⋅  (A.1k) 

, ,i j i j
H k J= ⋅   

 
The interplay between the NF-κB pathway and the pro- and anti-inflammatory 

responses normally leads to a self-limited inflammatory response that resolves after LPS 

has been cleared, but high doses of LPS can lead to a state of persistent inflammation. 

Additionally, corticosteroids (both endogenous and exogenous) play a critical role in 

modulating the progression of inflammation and significant prior research has elucidated 

the mechanisms driving corticosteroid activity (Jusko 1994; DuBois, Xu et al. 1995; Xu, 

Sun et al. 1995; Sun, DuBois et al. 1998; Almon, DuBois et al. 2002; Almon, Dubois et 

al. 2005; Almon, Lai et al. 2005; Almon, DuBois et al. 2007). Such studies simulate the 

pharmacodynamic action of glucocorticoids at the cellular level and the 

pharmacogenomic effect of glucocorticoids at the transcriptional level (Ramakrishnan, 

DuBois et al. 2002; Jin, Almon et al. 2003; Jusko, DuBois et al. 2005). Corticosteroid 

pharmacodynamics include: (i) the binding of the corticosteroid to its cytosolic receptor; 

(ii) the subsequent formation of the corticosteroid-receptor complex; and (iii) the 

translocation of the cytosolic complex to the nucleus that alters the transcriptional 

machinery, activating or repressing numerous genes. This is modeled by equations 

governing the inflammation-induced production of cortisol (Eq. A.1l), transcription and 

translation of cytosolic glucocorticoid receptor (Eq. A.1m, A.1n), and the intracellular 

dynamics as the signal is transduced from the cytoplasm (Eq. A.1o) to the nucleus (Eq. 

A.1p). 
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Pro-inflammatory cytokines interact with neural-based pathways that modulate 

the progression of the immune response. As a result of the activation of neuroendocrine 

axis, anti-inflammatory hormones are secreted and recognized by immune cells. In the 

case of catecholamines, the secretion of catecholamines from SNS and adrenal medulla 

attenuates the pro-inflammatory manifestations of human endotoxemia, as evidenced by 

reduced TNF levels (van der Poll, Coyle et al. 1996). The anti-inflammatory influence is 

mediated by intracellular cAMP signaling potentiating anti-inflammatory (IL-10) 

signaling (van der Poll, Coyle et al. 1996; van der Poll 2001). Epinephrine is modeled as 

being secreted in response to stimulation by the pro-inflammatory response (Elenkov, 

Wilder et al. 2000), and ultimately leads to increased anti-inflammatory signaling, as 

shown in Eq. A.1q-A.1t). 
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Taken together, these elements in Eq. A.1 and the corresponding parameters in 

Table A.1 comprise a semi-mechanistic model of human endotoxemia. Further detail is 

available in previous publications (Foteinou, Calvano et al. 2009; Foteinou, Calvano et al. 

2009; Foteinou, Calvano et al. 2010; Foteinou, Calvano et al. 2011). 

Parameter Value Parameter Value Parameter Value 

klps,1 4.5 kin,P 0.03 kdeg 0.112 

klps,2 6.79 kout,P 0.33 ksyn_R 1.2 

ksyn 0.5 kP,NFkBn 29.74 rf 0.49 

k1 3 kP,E 9.05 kre 0.57 

k2 0.04 kin,A 0.461 kon 0.00329 

k3 5 kout,A 0.811 kdgr_R 0.0572 

k4 2.24 kA,cAMP 0.145 kT 0.63 

kin,mRNA,R 0.09 kA,E 0.534 kin,EPI 5.921 

kout,mRNA,R 0.32 kA,FRN 0.401 kout,EPI 7.286 

kmRNA,R,P 1.74 kin,E 0.08 kEPI,P 0.231 

kNFkB,1 16.29 kout,E 0.26 k0
REPI 11.01 

kNFkB,2 1.18 kE,P 2.21 k1,REPI 3.01 
kin,IKBa 0.46 kin,F 0.842 kREPI,EPI 0.85 

kIkBa,1 13.27 kout,F 1.058 k2,REPI 5.46 

kout,IkBa 0.46 kF,P 0.256 k3,REPI 5.55 

kI,1 1.4 ksyn_Rm 2.9 τ 0.053 

kI,2 0.87 IC50_Rm 26.2 n 5.509 

 
Table A.1: Parameters for the human endotoxemia model equations given in Eq. A.1. 
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Appendix B: Alternative Assumptions in Autonomic 

Regulation of the Heart 

The analysis presented in section 4.2 of Chapter 4 relies on a number of 

assumptions with regards to the analysis techniques used to investigate HRV and the 

structure of the models in Eq. 4.4-4.5. In the results presented in this appendix, we 

evaluated the implications of altering or relaxing these assumptions on the conclusions 

drawn about the relationship between the autonomic nervous system and the heart, 

particularly in human endotoxemia. 

B.1: Alternative Method for Calculating LF and HF Powers 

LF and HF powers are typically calculated by estimating the power spectrum of 

RR intervals (Task 1996), which is what was done for the results shown in the main text. 

However, it is known that calculating LF and HF powers based on RR intervals 

introduces dependencies on mean values of autonomic inputs, as was originally discussed 

by Niklasson et al. (Niklasson, Wiklund et al. 1993). This effect contributes to the 

dependency of LF and HF powers on mean autonomic activities illustrated in Figure 4.14 

and Table 4.3. By estimating the power spectrum based on instantaneous HR rather than 

RR intervals, this relationship would be expected to change (Niklasson, Wiklund et al. 

1993) and therefore could also impact the theoretical human endotoxemia results in 

Figure 4.15. 

Using HR rather than RR to calculate LF and HF powers produced the results 

shown in Figure B.1. The linear case is similar to the model considered by Niklasson et 

al. where they also found that using HR eliminates the relationship between mean 

autonomic inputs and spectral powers (Niklasson, Wiklund et al. 1993). For the nonlinear 



 

 

model, LF and HF powers do continue to change as the input changes, but the pattern is 

different than in Figure 4.

saturation mechanism. For instance, increased sympathetic activity leads to blunted 

oscillations in norepinephrine, ultimately resulting in decreased LF power.
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Figure B.2: Mechanisms for HR/HRV changes in endotoxemia. This is the equivalent of Figure 4.15 but 

with HR used instead of RR intervals for HRV calculation. The last two columns show that there is still 

significant uncoupling. 

B.2: Proportional Changes in Mean Value and Amplitude 

To interpret LF and HF powers, it is often implicitly (and sometimes explicitly) 

assumed that the amplitude of oscillations is proportional to the mean value, even though 

it is not clear if such a relationship generally holds (Saul 1990; Akselrod 1995; Eckberg 

1997). In Eq. 4.4-4.5, the opposite assumption is made: mean value and amplitude are 

independent. 
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In both the linear (Eq. 4.4) and nonlinear (Eq. 4.5) models in Chapter 4, 

neurotransmitter concentrations are defined as: 

 
nor nor nornor m a sin( t )ω= + ⋅ ⋅  (B.1a) 

 
ach ach achach m a sin( t )ω= + ⋅ ⋅  (B.1b) 

 
The mean values m and the amplitudes a are independent in Eq. B.1. An 

alternative formulation is shown in Eq. B.2, where the amplitude is directly proportional 

to the mean value.  

 ( )1
nor nor nor

nor m a sin( t )ω= ⋅ + ⋅ ⋅  (B.2a) 

 ( )1
ach ach ach

ach m a sin( t )ω= ⋅ + ⋅ ⋅  (B.2b) 

 
The effect of Eq. B.2 is to counter the saturation mechanism. Saturation causes 

high values of neurotransmitters to produce blunted oscillations downstream. However, if 

the amplitudes of oscillations are proportional to mean values, they oppose the saturation-

induced decreases in oscillations. 

The result of applying Eq. B.2 within the linear and nonlinear models is shown in 

Figure B.3. For the linear case, as there is no saturation, the relative powers change with 

the amplitudes of the relevant neurotransmitters, relative to Figure B.4. However, in the 

nonlinear case, since the changes in Eq. B.2 oppose the saturation in the nonlinear model, 

differences in relative powers are blunted.  

As in the previous section, the differences shown in Figure A3 do not 

substantially affect the uncoupling in the hypothetical endotoxemia scenarios in Figure 

A4. 



 

 

Figure B.3: Relationship between changes in mean autonomic activity and changes in LF power and HF 

power for both the linear (Eq. 4.4

with neurotransmitter oscillatory amplitudes proportional to mean values.

 

 

Relationship between changes in mean autonomic activity and changes in LF power and HF 

Eq. 4.4) and nonlinear (Eq. 4.5) models. This is the equivalent of

with neurotransmitter oscillatory amplitudes proportional to mean values. 
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Figure B.4: Mechanisms for HR/HRV changes in endotoxemia. This is the equivalent of Figure 4.15 but 

with neurotransmitter oscillatory amplitudes proportional to mean values. The last two columns show that 

there is still significant uncoupling. 

B.3: Combined Changes 

If these two altered assumptions (different method of HRV calculation and 

amplitudes depending on mean values) are applied together, as shown in Figure B.5 and 

Figure B.6, the responses to the hypothetical endotoxemia scenarios remain uncoupled. 

What this suggests is that, even with a variety of different assumptions, there are still a 

number of hypothetical scenarios that can equivalently capture experimental results. 

Furthermore, changing relatively simple assumptions in the model produced significantly 
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function of the autonomic nervous system in endotoxemia and the uncertainty of HR
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Figure B.5: Relationship between changes in mean autonomic activity and changes in LF power a

power for both the linear (Eq. 4.4

with HR used instead of RR intervals for HRV calculation and neurotransmitter oscillatory amplitudes 

proportional to mean values. 

 

 

different relationships between mean autonomic signaling and LF and HF powers. In 

total, these results serve to strengthen the conclusions of Chapter 4 with respect to the

function of the autonomic nervous system in endotoxemia and the uncertainty of HR

based insight into autonomic function. 
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Figure B.6: Mechanisms for HR/HRV changes in endotoxemia. This is the equivalent of Figure 4.15 but 

with HR used instead of RR intervals for HRV calculation and neurotransmitter oscillatory amplitudes 

proportional to mean values. The last two columns show that there is still significant uncoupling. 
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Appendix C: Predicting critical transitions 

This appendix serves to elaborate on the methods behind the work presented in 

Chapter 5. 

C.1: Identification of Early Warning Signals for Critical 

Transitions 

Identifying transitions between steady states of a gradually changing dynamical 

system does not only have value in healthcare, as is discussed in Chapter 5. Conceptually 

similar problems exist in finance (When will the market crash?), climate (When will an 

abrupt shift occur?), and ecology (When will the food chain break down as populations 

change?), to name a few. Statistical analyses of data in these fields has been used to 

identify early warning signals of critical transitions (Scheffer, Bascompte et al. 2009). 

The common thread between all of these different types of bifurcations in different types 

of systems is that characteristic patterns tend to occur as a bifurcation is gradually 

approached. For example, as a steady state approaches the loss of stability, the system is 

generally slower to respond to random fluctuations away from the steady state, leading to 

detectable patterns in the variance or autocorrelation of a state variable; this phenomenon 

is known as “critical slowing down”. 

An intuitive way to think about this is in terms of a locally linearized system of 

differential equations. In this context, the eigenvalues of the system reflect its stability. If 

the real parts of all eigenvalues are negative, then small perturbations away from the 

steady state will decay back to the steady state. If the real part of an eigenvalue becomes 

positive, then stability is lost and the system will move away from the steady state. 

However, as the loss of stability is approached, an eigenvalue of the system approaches 
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zero. The closer it is to zero, the longer it takes to return to the steady state, resulting in 

the aforementioned patterns in the statistical properties of the state variables. Therefore, 

the model-based approach discussed here and in Chapter 5 is fundamentally investigating 

the same phenomenon as this traditional statistics-based approach, it’s just that different 

data and techniques are applied at the same problem of detecting the impending loss of 

stability. 

Additionally, other statistical approaches have been applied to identify patterns in 

the dynamics of a system as it approaches a bifurcation, such as skewness, flickering, and 

spatial patterns (Scheffer, Bascompte et al. 2009). One can imagine model-based 

approaches at achieving the same goal of identifying critical transitions. Given a perfect 

model of a system, it can simply be simulated into the future to identify when an adverse 

event will occur. This generally is not feasible, given that the structure and 

parametrization of a system are typically not known. In systems biology, this is 

particularly challenging as biological network structures contain significant uncertainty 

(Shmulevich, Dougherty et al. 2002) and models contain parameters that cannot be 

identified from reasonable experimental data (Gutenkunst, Waterfall et al. 2007). In the 

context of a predictive and individualized model, the situation is even more challenging 

as the goal is to use data from a single patient at one state to predict what will happen in 

the future, when even multiple subjects with data at multiple steady states might not be 

sufficient. Recently, Lade and Gross proposed a novel technique for predicting critical 

transitions based on generalized modeling that works around these issues in typical 

model-based approaches (Lade and Gross 2012). Below, we discuss and extend this 

approach. 
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C.2: Generalized Models 

A generalized model is a system of equations comprised of placeholder functions 

to represent interactions between variables (Gross and Feudel 2006; Kuehn, Siegmund et 

al. 2012). No assumptions are made about specific functional forms or parametrizations 

that all correspond to the same network structure. As an example, Eq. C.1 shows the 

Lotka-Volterra predator-prey model. One can imagine a higher-level form of a predator-

prey model that simply describes the relationships between predator and prey in general 

terms. This is a generalized model, as shown in Eq. C.2. 

 
( )

( )

dX
X Y

dt

dY
Y X

dt

α β

γ δ

= −

= − −

 (C.1) 

 
1 2

3 4

( ) ( , )

( , ) ( )

dX
f X f X Y

dt

dY
f X Y f Y

dt

= −

= −

 (C.2) 

 
By appropriately setting all of the fis in the generalized model, the Lotka-Volterra 

equations can be derived. However, many other specific predator-prey models with 

different functional forms are also described by the generalized model. Therefore, 

mathematical results derived from analysis of Eq. C.2 have broader implications than 

results derived from analysis of Eq. C.1. 

A generalized model (Gross and Feudel 2006; Kuehn, Siegmund et al. 2012) can 

be constructed for any system with a known network structure. However, for the 

purposes of predicting critical transitions, there are some practical constraints on the 

structure of feasible generalized models. As is discussed below in more detail, the 

ultimate goal is to estimate the stability of the generalized model as a proxy for the 
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stability of the underlying system. This requires the estimation of the Jacobian matrix, 

which in turn necessitates the estimation of partial derivatives of the right hand side of 

every differential equation with respect to every variable it depends on. Therefore, the 

more variables and connections represented in a generalized model, the more partial 

derivatives that need to be estimated from limited data. Lade and Gross worked around 

this problem by considering only relatively small systems such that the dimensionality of 

the generalized models and the underlying systems could be the same (Lade and Gross 

2012). The model of systemic inflammation used here is significantly larger, consisting 

of 20 differential equations. Real systems are far larger and far more complex. This 

motivated one of our key methodological questions: is it possible to apply this technique 

on data generated from a high dimensional system while using a low dimensional 

generalized model? 

Addressing this question first requires network reduction to build the generalized 

model. Taking motivation from prior studies which simplify network structure by 

focusing on key measurable components while ignoring intermediate steps (Morris, Saez-

Rodriguez et al. 2011), we focused on LPS (LPS), pro-inflammatory signaling (P), anti-

inflammatory signaling (A), and cortisol (F): LPS was chosen because it is the gradually-

changing instigator of the inflammatory response in our model. P and A were chosen 

because they represent high level quantifications of the state of the inflammatory system 

as highlighted in Figure 5.2A. The antagonistic relationship between pro- and anti-

inflammatory signaling in inflammation and the positive feedback in pro-inflammatory 

signaling that can lead to runaway inflammation are common motifs in models of 

inflammation (Kumar, Clermont et al. 2004; Day, Rubin et al. 2006; Reynolds, Rubin et 
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al. 2006; Foteinou, Calvano et al. 2009; Nieman, Brown et al. 2012). F was used because 

cortisol is an important immunomodulatory hormone that has been widely studied and 

quantified in a variety of clinical and experimental settings; in contrast, pro- and anti-

inflammatory signaling are terms that are somewhat poorly defined in terms of clinical 

applications, but could plausibly be considered to represent some aggregate metrics 

derived from levels of cytokines or other inflammatory biomarkers  (Foteinou, Calvano et 

al. 2009; Nieman, Brown et al. 2012). 

As this is a somewhat ad hoc procedure, to ensure that we are not inappropriately 

focusing on one particular network structure we considered several different 

combinations of LPS, P, A, and F, ranging from all four variables to just P and either A or 

F, as is detailed in Figure 5.2. The equations are constructed with production and 

degradation rates represented by fi. These functions are never explicitly defined and 

therefore cannot be simulated forward as would be done with a traditional model, but 

instead are used to facilitate numerical analyses as described in the following sections. In 

general, we observed similar results for all of these generalized model structures, 

suggesting that it is not the specific details in building a generalized model that are 

important, but it is the higher level principles embedded in a model that are most critical. 

C.3: Stability Analysis of Generalized Models 

Traditional stability analysis of a system of ODEs is done by assessing the 

eigenvalues of the Jacobian matrix, which is a local linearization of the system. If the real 

parts of all eigenvalues at a steady state are negative, then it is stable. If one or more 

eigenvalues are positive, then it is unstable. This type of stability analysis is valid even in 

a system with a gradually changing parameter, as is the case in a system approaching a 
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critical transition, because the time scale of the gradual disturbance is much slower than 

the time scale of the transition (Lade and Gross 2012). In the context of generalized 

models, the Jacobian can be found symbolically and numerically estimated. To illustrate 

this, consider the generalized model containing LPS, P, A, and F. 

 
1 2

3 4

5 6

7 8

/ ( ) ( )

/ ( , , ) ( )

/ ( ) ( )

/ ( ) ( )

dLPS dt f f LPS

dP dt f LPS A P f P

dA dt f F f A

dF dt f P f F

µ= −

= −

= −

= −

 (C.3) 

 
The Jacobian matrix contains partial derivatives of the right sides of the ODEs in 

Eq. C.3. 
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 (C.4) 

 
In Eq. C.4, fi,j represents the partial derivative of fi with respect to j. The 

eigenvalues of J can easily be calculated if numerical values for each fi,j are plugged into 

Eq. C.4. However, as described above, the fis do not have defined functional forms, and 

thus their partial derivatives do not either. From this point, the system can either be 

analyzed symbolically in order to gain some mathematical insight into the range of its 

possible behaviors, or the unknowns can be derived from data. We take the latter 

approach, based on the data generated from the model of systemic inflammation 

described above. 

C.4: Estimation of Partial Derivatives 

To directly calculate the partial derivatives fi,j found in the Jacobian matrix 

defined in Eq. C.4 would require some assumptions that may not always be practical. 



158 
 

 
 

Lade and Gross estimated partial derivatives for their generalized models by assuming 

that some partial derivatives are directly measurable (such as the death rate of a species in 

an ecological model) and that the production rate in one equation is equal to the 

degradation rate in another (Lade and Gross 2012).  These assumptions facilitate fairly 

direct estimates of partial derivatives. However, as we assume that the only data available 

are the state variables sampled at a constant sampling frequency from the model in 

Appendix A, a less direct approach towards partial derivative estimation must be taken. 

Again considering the LPS-P-A-F model from Eq. C.3, the available data is 

measurements of those four state variables sampled at some constant sampling rate. We 

used the backwards difference method to calculate the derivatives of these state variables 

over time, as that gives an estimate of the left hand sides of Eq. C.3 that is most updated 

with the latest data. However, from this limited data, the partial derivatives cannot be 

directly calculated. To approach this problem, we assumed that each fi is linear in each of 

the variables it depends on. While it is known that the system is truly nonlinear, we 

hypothesized that assuming linearity over a relatively small time window would be 

sufficient to identify significant changes in the partial derivatives. We used a time 

window of 10 hours in all of the simulations shown here, although the results do not seem 

highly sensitive to this parameter choice as long as it is not wildly off by an order of 

magnitude or so. 

We tried two methods for estimating the linear coefficients for fi (which are the 

same as the partial derivatives fi,j). First, we applied linear regression to fit the numerical 

derivatives with the linear fis. For the A-F-LPS-P model shown in Eq. C.3, this is 
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equivalent to treating the system as is shown in C.5, and then each ki found through linear 

regression is an estimated partial derivative. 
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 (C.5) 

 
A main drawback of this approach is that it ignores what we know about the 

directionality of the network. For instance, the degradation rate of a hormone should 

always be negative, and LPS should always positively stimulate pro-inflammatory 

signaling. While these relationships typically held in linear regression, they did not 

always. To fix the signs of partial derivatives with known directionality in the network, 

the partial derivative estimation can be formulated as the optimization problem. An 

example for the A-F-LPS-P model is shown in Eq. C.6. 
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 (C.6) 

 
Note that the parameter k5 is unconstrained because it can be positive when the 

positive feedback term dominates and negative when the degradation term dominates. To 

solve Eq. C.6, we applied constrained nonlinear optimization via MATLAB’s fmincon 
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function. Because this optimization approach makes more intuitive sense due to further 

taking advantage of known aspects of high-level network structure, we applied it in all 

the results presented here. Replacing this method with simple linear regression still 

typically produces estimates that are good enough to estimate the stability of small 

generalized models (such as the one including only A and P), but the additional 

information conveyed by fixing the sign of the partial derivatives becomes more 

important for larger generalized models (such as the one including A, F, LPS, and P). 

C.5: Generalized Models for Predicting Critical Transitions 

Successful numerical estimation of the Jacobian matrix and calculation of the 

eigenvalues produces an estimated quantification of the stability of the system at a certain 

point in time. As new data streams in, this estimate can be updated to produce a signal 

that evolves over time. However, the ultimate goal is not to assess the current state of the 

system, it is to make a prediction about the future. The key to the predictive nature of this 

approach is that these eigenvalues do contain information about the future behavior of the 

system. In addition to assessing whether an eigenvalue is above or below a threshold, the 

trajectory of the eigenvalues over time can provide an indication of an impending loss of 

stability. Furthermore,  the phenomenon of bifurcation delay often results in a period of 

time between the mathematical loss of stability and significant movement from one 

steady state to another (Kuehn 2011; Lade and Gross 2012). Therefore, the estimation of 

the stability of a system based on a generalized model can plausibly prove to be 

predictive of critical transitions. 

Given the construction of a generalized model and the estimation of its relevant 

partial derivatives as described above, the calculation of the eigenvalues is 



161 
 

 
 

straightforward. Then, the question is how to interpret them. Lade and Gross wrote that 

“A warning is raised if at least one of the eigenvalues shows a clear trend toward the 

stability boundary (for ODEs, zero real part)” (Lade and Gross 2012). Most 

fundamentally, detecting an eigenvalue-based warning signal is based on movement in 

the eigenvalues, which in turn is based on movement in the partial derivatives. While it is 

not immediately clear how to precisely say how much movement is enough to elicit a 

warning, the information content in the eigenvalues can be seen in relative terms when 

compared to the state variables of the system or to derivatives of the state variables. 
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