
ROBUST TIME-SERIES RETRIEVAL USING
ADAPTIVE SEGMENTAL ALIGNMENT

by

SHAHRIAR SHARIAT TALKHOONCHE

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Vladimir Pavlovic

And approved by

New Brunswick, New Jersey

October, 2013



ABSTRACT OF THE DISSERTATION

Robust Time-Series Retrieval Using Adaptive Segmental

Alignment

By Shahriar Shariat Talkhoonche

Dissertation Director: Vladimir Pavlovic

The problem of time-series retrieval arises in many fields of science and constitutes

many important sub-problems including indexing, storage, representation, similarity

measurement, etc. The center piece of time-series retrieval is, however, measurement of

similarity between the query and the stored sequences in the data-base. Since different

time-series sampled from similar phenomena can have variable lengths and/or warping,

simple distance metrics such as Euclidean distance are either undefined or do not provide

an accurate similarity measure. Therefore, alignment methods such as dynamic time

warping have been proposed. They essentially rely on the distance between every sample

point of contrasting sequences and recover their alignment using dynamic programming.

These algorithms are effective when the sequences are noise-free and causal.

In this work we introduce the concept of segmental sequence alignment. We claim

that dynamically dividing the contrasting sequences into subsequences and recovering

the optimal and monotonic matching between them instead of individual time-points

can result in constructing a similarity measure more robust to noise and non-causality.

We propose two different approaches and variants of them to accomplish segmental

sequence alignment.
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The first proposed approach is an isotonic extension of Canonical Correlation Anal-

ysis (CCA) properly constrained to satisfy the time monotonicity constraint necessary

for an alignment algorithm. The second approach is an extension of pair-HMM, which

is a probabilistic model for aligning sequences. We have defined a proper observation

model and efficient learning and inference algorithms to jointly recover the segmenta-

tion and alignment from segmental pair-HMM. We also propose a relaxation to the

probabilistic model to increase the computational efficiency.

We have shown the utility of our proposed techniques through extensive experiments

on both synthetic and real-world data. We have applied our methods to various data

sets from EEG signals to human activity. Our methods showed generally significant

improvement over traditional models especially in instances when the sequences are

corrupted by high levels of noise or are locally non-causal.
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Chapter 1

Introduction

1.1 Motivation

Rapid growth of information technology industry resulted in generating massive amounts

of data. Mining through this mountain of data is a difficult yet essential task. The diffi-

culty arises from the fact that even though the speed of an information retrieval system

is an important factor but so is its correctness.

A vast amount of the generated data can be expressed in form of an ordered set of

measurements. Examples of such representation range from stock closing prices ordered

(indexed) by days to video sequences that are an ordered set of images. Biological

sequences such as DNA or RNA are another examples. One can even represent the

shape of an object by moving clock-wise around the object and sample the coordinates

of every point.

This type of data formation is typically referred to as time-series or time sequence1.

One can define the time-series retrieval as the task of finding the most similar time-

series to a query sequence in a database and returning its class label. Many recognition

tasks ranging from financial data analysis such as sector recognition [1, 2, 3] to human

activity recognition [4, 5, 6] can be posed as a time-series retrieval problem. There have

been many attempts to improve the accuracy and scalability of algorithms involved in

time-series mining and retrieval [7, 8].

To achieve a reliable, fast and robust time-series retrieval, one may need to solve

many subproblems such as: What is the appropriate representation? How should the

data be indexed? How is the database serialized and stored? Finally, how does one

1We use time-series, sequence and, in some instances, signal interchangeably. In the last case we
obviously refer to time signals.
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Figure 1.1: A sample of an original signal and its noisy version. This type of noise is
called impulse or spike noise and happens due to sudden and temporary sensor failure
or interference.

assert the similarity of the query time-series to another sequence stored in the database.

In this work we focus on the last question. We will design a similarity measure

that has two specific requirements that are overlooked by other measures, resulting in

sub-optimal retrieval and classification performance. Those two requirements are:

• Resilience to noise and

• Resilience to local non-causality.

Similarity measures for time-series are typically based on matching and comparing

individual time samples. This approach makes similarity measures sensitive to noise.

There are many real-world applications that might carry different amounts of noise.

Essentially the amount of noise depends on the environment, sensors, data acquisition

method, measurement error and the sampling method.

Stock prices, for example, are noise-free but sampling from and the motion of an

object can be very noisy due to all the above reasons. If the data is passed through a

noisy channel or the process naturally happens in an environment that contains many

sources of noise, the amount of noise can be very significant. For instance, consider the

electroencephalogram (EEG) signals. These signals are recorded by attaching a set of

sensors to a cap and positioning it on subject’s head. The sensors detect the voltage

fluctuations caused by neural activity. These recordings often carry significant amount
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of noise caused by different sources. Scalp itself acts as a low-pass filter and sensors

in local proximity impose magnetic interference on each other. Therefore, a simple

noise removal pre-processing is not effective. A simple similarity measure in this case

will easily fail to provide a meaningful measure of distance between sequences of EEG

signals.

Sudden sensor failures are also among very common source of noise (Figure 1.1).

A faulty sensor might record long noisy samples and the noise-free data might not

be recoverable. This type of noise usually appears as random impulses over the time

span of the signal. Some similarity measures remove this type of noise by thresholding

the point-to-point distance. However, finding a suitable threshold is not an easy task

and usually is accomplished through some pre-sets based on engineering knowledge and

domain expert recommendations. Therefore, designing a similarity measure that is able

to remove the noise adaptively and according to the properties of the dataset is highly

desirable.

While the first requirement, i.e. resilience to noise, seems natural specially for

real-world applications, the second one, i.e. resilience to local non-causality needs more

clarification. First, let us define causality. A causal time-series has ordered time-points.

This specifically means that the time-series has been received exactly in the same order

that has been transmitted from the source.

For instance, if one samples from the closing price of the stock market every day and

store the samples (without passing them through a possibly non-causal channel), the

stored signal is considered causal. Now, for the sake of this particular example, assume

that the samples are transmitted to a distant destination using radio signals which are

relayed through many hops. It is clear that there exist several paths for a sample to

reach the destination and different paths might have different delays. Now assume that

the delay for the sample transmitted at time t is more than the one transmitted at time

t+ 1. The different delays cause the samples to be received in the reverse order. Thus,

the result of passing our causal signal through a channel with variable delays might be

a shuffled (non-causal) signal at the destination (Figure 1.2).

Of course, in the case of radio signals and network packets one is probably able to
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ordered set samples to be received in the reverse order.

Mirrored 

Figure 1.3: A small portion of the signal is mirrored, which might look like noise!

add a time-stamp to the data at the source and thereby recover the correctly-ordered

signal in the destination. In many cases however, it is not possible to add anything to

the signal because the source is not in our control. For instance , consider the brain

signals [9] or cosmic rays [10].

It is also noteworthy that some irregularities in signals that are often counted as

noise can easily be seen as a local shuffling of the true signal (Figure 1.3). Therefore, in

those cases it is crucial for the similarity measure to be able to find the most relevant

signal despite the local shuffling of the samples.

In Chapter 3 [11] we will discuss our motivation for designing a time-series align-

ment algorithm robust to noise and non-causality after first discussing prior approaches

related to this general problem in Chapter 2.

1.2 Thesis Statement and Contributions

Statement and Hypothesis: In this thesis we claim that dynamically dividing the

contrasting sequences into local subsequences and monotonically matching them instead

of individual time-points can result in constructing a similarity measure more robust
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to noise and non-causality compared to the state-of-the-art alignment algorithms. We

prove our hypothesis through theoretical results backed by extensive experimentation.

We essentially propose to divide the sequences into segments and relate the similarity

of the contrasting time-series to the distance of these segments. The intuition behind

segmental alignment is that comparing statistics of two small subsequences instead of

two sample points must be more robust to noise. Also, within that subsequence the

order of points can be ignored and thus the local non-causality will be handled naturally.

We summarize the contributions of this thesis, addressing the design of a similarity

measure resilient to noise and local non-causality.

• We present a similarity measure by solving a regression problem: In

Chapter 4, we introduce the concept of segmental alignment. We propose a least

squares objective based on a certain formulation of CCA. We pose the problem as

a regression and impose a set of constraints to impose convexity of the multipliers

and apply time monotonicity on the segment level. The proposed method works

by finding the distance of the convex hulls of segments. From another point of

view, we dynamically realize the segments and then reshape them such that they

are as similar as possible. From CCA point of view, we transfer the sequences into

another space where they are as similar as possible and then find the Euclidean

distance of the embedded sequences [6].

• We design a probabilistic similarity measure based on Hidden Markov

Models: In Chapter 5, we introduce another approach based on Hidden Markov

Models (HMM) to recover better segments for alignment and thus construct a

better similarity measure. We use a modified version of average linkage distance

and transform it to a metric to measure the distance between segments efficiently.

We also propose an appropriate learning algorithm that satisfies the constraints

of an alignment algorithm. Through extensive experimentation we prove that

using our new measure can result in high classification accuracy in presence of

excessive amount of noise and non-causality [12]. We also propose a relaxation

to our model to increase the computational efficiency. Bounding techniques are
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finally used on a certain data representation to prune unnecessary computation

and speedup the process [13].

In Chapter 2, we review the literature on alignment approaches. We conclude this

dissertation by having an overview of the performance of different similarity measures

in Chapter 6.
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Chapter 2

Basic Methodology and Review of Prior Work

2.1 Introduction

In this Chapter we discuss different similarity measures for time-series and mostly focus

on alignment methods. Generally there are two distinct research paths in time-series

alignment literature:

1. Model matching

2. Time-point to time-point matching.

Our focus in this work is mainly the second scenario. We however, briefly review a few

works in the literature that can be categorized as ”model matching”.

2.2 Model Matching

When the objective is to align a query sequence to ”all” sequences in the training set at

once or assess whether the query sequence is likely to be aligned to the whole training

set, one might consider building a generative model based on the training set and then

compute the likelihood of observing the query sequence given the model.

The works in this line of research are usually built upon a profile of the data.

Probably the most famous alignment model in this category is the profile HMM [14],

which is typically designed for symbolic sequences. To construct a profile HMM, one

needs to determine the number of states of the HMM and then the transitions and

middle states associated with delete and insert operations are defined based on the

profile model. The model can be trained using a regular expectation maximization

approach typically used to train hidden Markov models. This model does not provide
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a pairwise similarity measure between two sequences but established the similarity in

the class level.

An Extension of the profile HMM to real-valued time-series has been studied in

several works in the literature. In [15], the authors propose that all samples of the data

are generated by non-uniform sampling from a latent trace combined with rescaling and

noise. They essentially assume a latent space with twice the length of the time-series in

the dataset and the sub-sampling and scaling is are determined by state sequence. The

observation model is assumed to be sampled from a Gaussian distribution while the

transition weights are multinomial. The model is trained using a standard expectation

maximization. They have applied their method to Liquid Chromatography - Mass

Spectrometry and speed signals and show that this model indeed aligns the time-series.

The alignment problem can be tackled indirectly by estimating mixture of densities

generating the samples in time. A successful attempt in this direction has been made

by Kim and Pavlovic in [16]. The authors propose to consider a class conditional for

each sequence by modelling it as a naive Bayes. Then they form an objective which

is the summation of negative log likelihoods of the class conditionals and minimize

it. Hence, a mixture model is defined over the dataset which can later be used to

estimate the class label of the query. This approach for modelling the classification

and retrieval of time-series has an intrinsic alignment mechanism through the mixture

model generation.

In [17], Akimoto and Suemetsu propose to model the the sequences using Gaussian

processes [18]. The idea is to have two processes, one for modelling the shape and an-

other one for time transformation. Through the time transformation the misalignment

in time is handled and through the shape process the scaling problem is solved. This

type of modelling (time transformation and shape modelling) is typical in alignment

literature [4, 19], but the novelty of this work is in modelling such functions through

a Gaussian process prior.They infer from the model using Markov Chain Monte Carlo

[20]. They show in the results that their model is competitive to the state-of-the-art

and can recover the true alignment in case of moderately noisy input.
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Figure 2.1: DTW is an instance of elastic similarity measures. It is in contrast to rigid
measures such as Euclidean distance.

2.3 Time-Point Matching

Perhaps the most straightforward and intuitive measure of distance between two time-

series is the Euclidean distance. The Euclidean distance is only defined when the

contrasting sequences have the same length and dimension. Assume two time-series are

given such that xi ∈ Rd and yj ∈ Rd and X = {xi}Ni=1 and X = {yj}Nj=1, the Euclidean

distance is defined as

E(X,Y ) =

√√√√ N∑
i=1

(xi − yi)2 (2.1)

One can define other norms such as L1 or L∞ as well. The Euclidean distance has

some advantages. First, its computation cost is linear in time length of the sequences.

Second, it is parameter-free. Third, it is easy to implement and verify. In fact, in

many cases the Euclidean distance is a competitive similarity measure when possibly

combined with appropriate up-sampling and down-sampling to force the sequences to

have the same length [21]. This distance however, is extremely sensitive to noise and

misalignment and can deviate from the true and intuitive distance of sequences easily

due to many artifacts that can be added to the time-series.

Wapring Problem: Euclidean distance assumes sample point at time (index) i in

sequence X is associated with the ith sample point in sequence Y . Also it assumes that

the contrasting sequences are of the same length. To relax these two very conservative

assumptions, one can define a warping function, w(·), which deforms the time axis

such that given this new indexing one sequence transforms to the contrasting one. In
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Figure 2.2: DTW attempts to stretch and displace the sequences so that they have
the smallest possible distance. Left panel shows the original time-series and the cor-
respondences recovered by DTW. Right panel illustrates the transformed time-series
according to those correspondences.

particular a warping problem is defined as designing a warping function, w(·), such that

Y (t) = X(w(t)) where t is the time or a non-decreasing index. The warping function

needs to be monotonic and non-decreasing to preserve the direction of the time axis.

The rest of this Chapter is dedicated to reviewing different approaches that attack

the warping problem from different angles. Some approaches try to estimate the warping

function directly (for example [22]) and others try to focus on matching the time points

and implicitly designing this function (for example [23]). The warping problem and

the ”global alignment problem” are essentially the same in the sense that both of them

seek to find the most proper way of transforming one sequence to another.

The most famous alignment/warping approach or elastic similarity measure is Dy-

namic Time Warping (DTW) [24, 23]. DTW can be seen as the real-value version of

the edit distance problem [25].This constitutes an elastic measure of distance (Figure

2.1). A dynamic programming algorithm is used to solve the edit distance problem that

finds the minimum cost of transforming one sequence to the other one. As illustrated in

Figure 2.2, DTW finds the minimum cost of transforming one sequence such that it is

as similar as possible to the contrasting time-series. Since DTW is going to play a key

role in this work we briefly review the algorithm and the constraints that are typically

applied to it.

Dynamic Time Warping: Assume two time-series X and Y are given as before
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Definition

DTW (N,M) =


0 i = j = 0
∞ i = 0 or j = 0
D(xi, yi) + min{DTW (i− 1, j − 1), i = 1 . . . N,
DTW (i− 1, j), DTW (i, j − 1)} j = 1 . . .M

ERP (N,M) =


∑N

1 D(xi, g),
∑M

1 D(g, yj) i = 0 or j = 0
min{ERP (i− 1, j − 1) +D(xi, yj),
ERP (i− 1, j) +D(xi, g), i = 1 . . . N,
ERP (i, j − 1) +D(g, yj)} j = 1 . . .M

LCSS(N,M) =


0 i = 0 or j = 0

i = 1 . . . N
j = 1 . . .M

LCSS(i− 1, j − 1) + 1 |xi − yj | ≤ ε
max{LCSS(i− 1, j), LCSS(i, j − 1)} otherwise

EDR(N,M) =


N,M i = 0 or j = 0
min{EDR(i− 1, j − 1) + c, i = 1 . . . N
EDR(i− 1, j), EDR(i, j − 1)} j = 1 . . .M

Table 2.1: Dynamic programing based alignment algorithms. All algorithms are work-
ing on X and Y with N and M samples, respectively. D(·, ·) is a norm (usually L1, L2

or L∞). c = 0 is |xi − yj | ≤ ε and c=1 otherwise.

but without the requirement of having the same length. That is X = {xi}Ni=1 and

Y = {yj}Mj=1. The objective is to transform them so that they have the minimum

possible distance. Assume that point to point distance is defined as the Euclidean

distance. The dynamic programming is then defined as the first row of Table 2.1. Let

us look at the dynamic programming recursion more carefully:

DTW (i, j) = D(xi, yi)+min{DTW (i−1, j−1), DTW (i−1, j), DTW (i, j−1)}. (2.2)

The matched points (i, j) (those that correspond to the minimum cost) constitute a

path that is called alignment path or warping path or warping function (look at Figure

2.3). The constraints on DTW are:

1. Boundary constraints: The alignment must start from (1, 1) and end at (N,M).

2. Continuity: Warping path should not have any jumps. That is, every sample in

one sequence must be associated with a sample from the contrasting sequence

3. Time monotonicity: The alignment path never goes back in time.
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Warping function

Alignment path

Figure 2.3: DTW alignment path for aligning two time-series. The alignment path is
overplayed on the color coded pairwise distance of every points in contrasting sequences.

An important terminology is needed to be defined. Based on (2.2), the warping path

can move in only three direction: horizontal (deletion), vertical (insertion) and diagonal

(match) where all of them move forward in time to respect the third constraint, time

monotonicity. Deletion and insertion can switch their meaning based on the reference

sequence and they are called gap operations as well.

The time complexity of DTW is obviously O(NMd). By keeping all the pairwise

distances DTW can be solved in O(NM). As a similarity measure one may take

DTW (N,M) as the distance of warped sequences and use it for retrieval. Despite the

success in applying DTW for alignment and finding appropriate distance between time-

series, there are cases where DTW fails to provide an intuitively correct alignment. In

some cases, DTW might try to warp one axis to cover the variability in the other axis.

That is, a large portion on one sequence might be associated with a single element in the

contrasting sequence. This problem was originally detected by [24] and various methods

were presented to handle it. One can categorize those attempts as the following:

Warping band: Perhaps the most famous method proposed by [24]. One can

change (2.2) to DTW (i, j) = min{αDTW (i − 1, j), αDTW (i, j − 1), DTW (i − 1, j −

1)} + D(xi, yj) where α is positive real number. As α gets larger, the warping path

will be more and more biased toward the diagonal. This idea can be implemented by
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(1,1)

(N,M)

(a) Original single steps

(1,1)

(N,M)

(b) A different step pattern

Figure 2.4: DTW with different step patterns. Panel (a) represents the classic
DTW step pattern. Panel (b) shows the step pattern associated with: DTW (i, j) =
min{DTW (i− 2, j − 1), DTW (i− 1, j − 2), DTW (i− 1, j − 1)}+D(xi, yj)

hard coding the permissible off diagonal deviation proportional to the length of the

sequences. We will elaborate more on this method in Chapter 4.

Windowing: Proposed by [23], one can restrict the elements of sequences that can

be matched to those that fall into a window such that |i −
(
N
M
j

)
| < R, where R is a

positive integer. One can consider other shapes instead of a square and such shapes

have been proposed in several papers such as [26, 27].

Step patterns, (slope constraint): One can look at (2.2) as a set of permissible

step patterns. For instance, one can change it to DTW (i, j) = min{DTW (i − 2, j −

1), DTW (i− 1, j− 2), DTW (i− 1, j− 1)}+D(xi, yj) which forces the warping path to

move one step diagonally for each horizontal or vertical movement (Figure 2.4). Many

stepping patterns have been proposed. [28] contains a review on those step functions.

In addition to the above methods, more grounded approaches such as Derivative

DTW (DDTW) [29] have been proposed to alleviate the problems that arise when one

applies DTW to sequences with local differences. Consider the case that X contains a

time-point xi and Y contains a time-point yj of identical values but xi is a part of a

rising trend where yj is part of falling trend. DTW considers matching xi and yj as a

perfect match while intuitively this is not correct. In [29] Keogh and Pazzani propose

to change the features that DTW works on to the derivatives of the sequences rather

than their actual value. In fact, the feature they use is the average of the slope of

the sequence at every point. The results show a better alignment can be achieved in

certain cases by DDTW. Of course, one needs to deal with added noise resulting from
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derivative operation and therefore this method needs a noise removal pre-processing

and if the data contains significant amount of noise, DDTW will not be effective at all.

One limitation of DTW (and many other alignment algorithms) is that they require

the contrasting signals to have the same dimensionality. In other words, they do not

allow aligning signals of different modalities. This is intuitively sensible since aligning

two irrelevant signals (for example audio and video) does not make sense in the first

glance. However, one can imagine numerous scenarios where one needs to find the rela-

tion of two signals of different modality. For instance, consider aligning audio recording

and video capture of a speech given by a person. In this case one may want to overlay

the two signals in the most appropriate way and thus needs an alignment tool.

In [4], the authors propose to accomplish the task of aligning signals of different

modalities using a spatial embedding through Canonical Correlation Analysis (CCA)

[30] and then aligning them in the common attribute space using DTW. They call

this method Canonical Time Warping (CTW). The authors followed up with [22] by

introducing Generalized Time Warping (GTW) to be able to align multiple sequences

of different modalities efficiently by solving the objective function using Gauss-Newton

algorithm and thus abandon the dynamic programming. There are other works in the

literature of biological time-series alignment that are in the same line with CTW, such

as [31] where the authors use CCA to find common attributes of multiple sequences.

They parametrize the warping function by using a linear combination of hyperbolic

tangents. They then call the sequences aligned in the attribute space. This approach

results in finding the commonality of multiple sequences and the ability to isolate them

from the irrelevant parts of very long sequences.

Dynamic Time warping, as we said before, is the real-value version of edit distance

problem. Another category of alignment methods use a threshold on the distance of

time samples to convert the problem back to the edit distance. That is, for every

correspondence they compare the distance of contrasting samples against a threshold

to decide whether they are similar or not. Many algorithms are designed based on this

idea and they share many merits with string sequence alignment algorithms typically

using in biological sequence alignment [14, 32]. The most famous algorithm in this
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category is Longest Common Sub-Sequence (LCSS) [33, 34]. In [34] Vlachos et al

propose to use LCSS for retrieving trajectory sequences of at most three dimensions.

They essentially propose to use the LCS algorithm by thresholding the distance of

every two samples by ε and confine the warping window with another threshold δ. The

similarity measure is then normalized by the length of the two sequences. They also

show that this measure has a weak notion of triangular inequality and thus is suitable

for retrieval. The thresholding enables LCSS to be more robust to noise and outliers

compared to Euclidean distance and DTW.

Edit distance with Real Penalty (ERP) [35] is a distance metric which lives some-

where between DTW and LCSS. ERP does not compare the pairwise distance of sample

points against a threshold. Instead, it compares the distance of each point to a ref-

erence in case of gap operations which can be interpreted as comparing the pairwise

distance against a variable threshold. That is, if the distance between two points is

too large it uses the distance of one of those points from the aforementioned reference

point. Another work in this line is Edit Distance for Real Sequences (EDR) proposed

in [36]. EDR advances the accuracy performance of LCSS by adding a constant gap

penalty to the score function. The idea of gap penalty comes from biological sequence

alignment [32]. In fact, there are three approaches one can take regarding gaps in an

alignment algorithm: 1) no gap penalty (such as in edit distance or DTW); 2) Constant

gap penalty as in EDR and 3) affine gap penalty. Look at [37] for a comprehensive re-

view on different gap penalties. Generally, one can achieve better alignment results

by using more sophisticated gap penalties such as affine. However, in that case there

are more parameters to be determined. EDR achieves higher performance compared to

DTW, ERP and LCSS in case of noisy data. The authors use a hierarchical clustering

framework to show that their similarity measure can result in a better clustering when

applied to trajectory datasets such as Austrian Sign Language (ASL) [34] when arti-

ficial noise is added to the sequences. They recommend to set the threshold ε to the

quarter of standard deviation of the sequence. A summary of dynamic programming

based alignment algorithms is presented in Table 2.1.
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Other works have enhanced the edit distance algorithms by adding more compu-

tational efficiency. Fast Time Series Evaluation (FSTE) [38] provides a faster way of

computing the edit distance based algorithms which are dependent on a threshold such

as LCSS and EDR. It partitions the space into grid cells based on the threshold and

assigns the sample points of each sequence to their appropriate cell. The matching is

then performed in the intersection of the cells associated with each pair. The authors

also propose another algorithm, Swale, by assigning a reward for match and a penalty

for gap which extends EDR constant gap penalty.

Another type of similarity measures rely on some pattern or property in the time-

series. In [39] authors propose to threshold the time-series and use the threshold cross-

ing regions to assess the similarity of sequences. Essentially, they only consider the

intervals that contain the sample points with value higher than a pre-defined threshold

and compute the distance between the time intervals. This approach shows promising

results for certain applications such as environmental air pollution or gene expression

data. Chen et al propose a more general work in the same line in [19] by introducing

Spatial Assembling Distance (SpADe). SpADe searches for similar pattern in contrast-

ing time-series by scaling and shifting in time and amplitude. Then SpADe measures

the similarity only on those similar patterns. The major problem with SpADe is that

it requires many parameters such as pattern length, time shift, scale shift etc. to be

manually tuned or given. The results also show a performance in par with DTW.

A comprehensive review and experimentation on many of the mentioned similarity

measures is available in [21]. The authors empirically show that there exist no absolute

winner algorithm and DTW can still be considered as a competitive baseline for sim-

ilarity measure design. We also consider DTW as our baseline algorithm in this work

and show that our methods are able to outperform DTW especially in case of noisy

data and even when DTW is coupled with noise removal pre-processing.
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Chapter 3

A Motivation: Classification of non-causal EEG signals

3.1 Introduction

The motivation for our work and endeavour to invent an alignment method resilient

to noise and non-causality comes from a very interesting research related to cognitive

and perceptive sciences. The problem was to discover and identify the underlying

behaviour of human brain in response to exposure to human faces. It was known for

long in the literature of cognitive science that around 170 ms after the stimuli onset

(seeing a face) the perception of faces starts. This result were backed by ERP analysis

done in a manual fashion by experts. The recorded brain scans (fMRI or EEG) were

averaged and compared to control cases to recover the salient differences that might

be associated with face perception. Attempts were made to include statistical analysis

to show the significance of these results mathematically [40]. However, the significance

of those results were minimal in eyes of researchers in machine learning and statistics

community. Therefore, we started applying powerful statistical and signal processing

methods on EEG recordings based on a very carefully designed experiment and were

able to establish the significance of the marker that happens at approximately 170 ms

past the onset (known as N170) and point to other possible markers and regions in the

brain that might be of interest for further research. In the following we present those

results and the conclusion points to the necessity of a noise and non-causality resilient

similarity measure.

EEG signals are very challenging to analyze due to the noisy nature of sampling,

cross-talk among different channels and, most importantly, ”artifacts” of routine brain

activities such as blinking or breathing. Independent Component Analysis [41], coupled

with other dimensionality reduction methods such as the PCA, is often used as a tool to
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recover the important underlying signals while removing such artifacts. Nevertheless,

the unsupervised reduction methods are typically insufficient for identification of fea-

tures needed for accurate and robust classification of EEG signals as the large variance

of input signals does not always warrant its classification significance.

In contrast to unsupervised data-driven feature extraction, common EEG signal

analysis approaches focus on fixed dictionaries of wavelet [42], short term Fourier trans-

form [43], or other well-established non-stationary signal representations. However,

variability in temporal occurrence of important EEG events, typically exhibited across

different subjects and trials, makes the use of such features challenging, requiring tem-

poral alignment. Moreover, fixed dictionary representations, not adapted to data, can

be dense, affecting their robustness and making them less attractive for classification

settings.

In the Brain-Computer Interface (BCI) literature Common Spatial Patterns (CSP)

have shown very promising results [44] as the data-driven means for characterizing

temporal patterns that can be used for signal classification. CSP is a linear transfor-

mation that maps the original signal into a space where the data shows a high class

relative variance. However, CSP’s applicability is typically restricted to sparse EEG

signals, with well defined temporal boundaries, making such patterns less appropriate

for settings of dense signals, such as those in our dataset.

In this work we focus on identification of sparse, data-driven spatio-temporal EEG

dictionaries that directly reflect our classification objective. Our goal is not only to

identify those patterns as the means of efficient and robust classification but to also

assert their relationship with established EEG perceptual signatures such as P100,

N170, or P250.

3.2 Predictive models

Our goal is to design robust and accurate predictors of the stimulus classes that can

account for high levels of noise/artifacts in the input signal as well as inter-subject

variability. We also seek to identify a small subset of features of the EEG signal, the
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Figure 3.1: Face/vase illustrations

so-called predictive signatures, that contribute to these predictions.

To achieve this goal we focus on a recently proposed family of sparse logistic regres-

sion models. Sparse logistic regression models are a class of probabilistic parametric

classifiers whose goal is to model the predictive process while minimizing the number of

parameters used in this prediction. In particular, consider the binary response variable

y ∈ {0, 1}, the predictor (feature) vector X ∈ Rp. For instance, in the EEG setting yi

can be the class of response (face/vase) while the k − th feature Xk could be the mea-

sured EEG signal in channel c at time t. Furthermore, consider the set of N training

points D = {(yi,Xi)}Ni=1. The logistic regression model represents the class-conditional

probabilities through a sigmoidal function of the linear predictors,

log
Pr(yi = 1|X, β0,β))

Pr(yi = 0|X, β0,β))
= β0 +XTβ. (3.1)

The classifier uses the Bayes rule, f(X|β0,β) = arg maxy Pr(y|X, β0,β). To find the

optimal classifier one can consider a number of objectives, such as the square loss [45]

or logistic loss [46], such that loss of prediction on this set of points D is minimized,

while keeping the cardinality k of the utilized features small, k << p. For instance, for

logistic loss we seek to

min
β0,β

1

N

N∑
i=1

logP (yi|Xi, β0,β) (3.2)

s.t. card(β) ≤ k, (3.3)

where card(·) denotes the cardinality or the number of non-zero entries in vector β

(equivalently, the L0 norm of β).

Unfortunately, this task is, in general, computationally intractable. One typically

instead focuses on a tractable relaxation known as the L1 or lasso regression [45] (also
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known as sparse coding), reflected in the Lagrangian:

min
β0,β

1

N

N∑
i=1

logP (yi|Xi, β0,β) + λ||β||1 (3.4)

where ||β||1 is the L1 norm
∑p

l=1 |βl|. Some more recent work has quantified conditions

under which the optimization in (3.4) is guaranteed to lead to the same solutions as the

original objective (3.3). Nevertheless, in practice the lasso objective leads to models

with few non-zero coefficients that focus on those aspects of the feature vector most

responsible for distinction between 0/1 classes of inputs. The objective in (3.4) is convex

in β, leading to several efficient gradient based algorithms, see c.f., [46].

Lasso regression focuses on identification of individual features. In many tasks, such

as the EEG signal analysis, individual features (values of voltage measured by electrode

e at time t) may be insufficiently strong or too variable to lead to robust predictions.

Instead, groups of spatio-temporally proximal features may serve as better predictors

(e.g, short spatio-temporal signal forms). A typical approach taken in the community

is to design such features using fixed dictionaries, such as the Fourier, wavelet, or other

bases. In contrast, we seek to find those features directly from data, i.e., identify

compact data-dependent spatio-temporal dictionaries of EEG signals. We use Group

lasso [47], an extension of lasso, to accomplish this task.

Formally, consider the partitioning of the weight vector β into a set of groups βj , j =

1, . . . , J , where each group contains a subset of coefficients β (or, equivalently features

X). Let ||η||K be the K norm of vector η ∈ Rd, d ≥ 1, ||η||K = (ηTKη)
1
2 where K

is a symmetric positive-definite matrix. The group lasso estimate is defined as the

minimizer of

1

N

N∑
i=1

logP (yi|Xi, β0,β1, ...,βJ) + λ

j=J∑
j=1

||βj ||Kj , (3.5)

where

log
Pr(yi = 1|X)

Pr(yi = 0|X)
= β0 +

j=J∑
j=1

XT
i,jβj . (3.6)

In an extension to the lasso regression, Group lasso leads to predictors with few non-zero

or active groups of coefficients. Here we have considered K to be diagonal.
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3.3 EEG Data Collection

Five adults between the ages of 20 and 30 years participated in this experiment. All

adults had normal or corrected-to-normal vision, and none had a history of neurological

abnormalities.

Our stimulus set consisted of 60 randomly ordered presentations of the face and non-

face images shown in figure 3.2. Each trial consisted of stimulus presentation (300ms)

and a post-stimulus recording period (1000ms). The inter-trial interval, during which

a black fixation cross was presented on a gray background, varied randomly between

1500-2000ms. Participants were required to determine whether each stimulus was a

face or a non-face, and responded using two buttons on a button box. Participants

were instructed to make their responses as quickly and accurately as possible, and they

had 1500ms from stimulus onset to do so.

Electrophysiological Recording and Processing. While participants were per-

forming the above task, continuous EEG was recorded using a 128-channel Geodesic

Sensor Net (Electrical Geodesics, Inc.), referenced online to vertex (Cz). The electrical

signal was amplified with 0.1 to 100Hz band-pass filtering, digitized at a 250 Hz sampling

rate. Data were preprocessed offline using NetStation 4.2 analysis software (Electrical

Geodesics, Inc.). The continuous EEG signal was segmented into 900ms epochs, start-

ing 100ms prior to stimulus onset. Data were filtered with a 30Hz low-pass elliptical

filter and baseline-corrected to the mean of the 100ms period before stimulus onset.

NetStation’s automated artifact detection tools combed the data for eye blinks, eye

movements, and bad channels. Segments were excluded from further analysis if they

contained an eye blink (threshold ±70µV ) or eye movement (threshold ±50µV ). In the

remaining segments, individual channels were marked bad if the difference between the

maximum and minimum amplitudes across the entire segment exceeded 80µV . If more

than 10% of the 128 channels were marked bad in a segment, the whole segment was

excluded from further analysis. If fewer than 10% of the channels were marked bad in

a segment, they were replaced using spherical spline interpolation. For the subsequent

data analysis we retained signal ranges from 0ms (stimulus onset) up to 700ms.
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Test cases L1 Logistic Regression Group Lasso
full 50-100 100-200 200-300 ≥ 400 full 50-100 100-200 200-300 ≥ 400

subject 1 82.40 70.04 80.14 78.48 57.91 88.11 66.45 79.43 68.37 55.77
subject 2 98.26 69.10 94.10 86.11 50.00 92.53 73.26 93.92 77.60 50.00
subject 3 86.88 77.16 86.11 82.72 50.00 73.46 54.78 85.49 70.06 50.00
subject 4 84.78 74.90 82.02 80.83 67.00 87.94 66.01 82.81 79.45 64.23
subject 5 80.74 64.64 91.79 59.64 58.93 91.43 60.71 87.89 59.29 63.93

Average 86.61 71.17 86.83 77.56 56.77 86.69 64.24 85.91 70.95 56.77

Table 3.1: Across subject AUCs for L1 logistic regression and group lasso, in percentage
points, for different time ranges.

3.4 EEG Data Analysis

In our experiments we used L1-norm logistic regression and group lasso described in

section 3.2, to design classifiers and spatio-temporal dictionaries for the purpose of

predicting the class of visual stimulus to which our subjects were exposed. We used the

methods of [46] and [48] to train the two classifiers.

In the data pre-processing stage we filtered the EEG signals by an FIR band-pass

filter 8-14 Hz to retain a portion of the alpha range of brain signals. We then normalize

each channel independently and windsorize 5% of the peak. Each processed signal

forms a 129 × 700 = 90, 300 dimensional feature vector X = [Xi,t], i = 1, . . . , 129,

t = 1, . . . , 700. For the group lasso setting we formed spatial groups of size five for each

channel and its four nearest spatial neighbors. Temporal groups were set to fixed size

of 10 samples, set at every 5th sample (i.e., 1-10, 5-15, etc.)

As a baseline classifier, we also use a k-nearest neighbor (kNN) predictor which

transfers labels from the training instances using majority voting to the query instance.

For kNN we used the following heuristic to remove the outliers. On training data

we computed the median of each class as its corresponding center. We classified the

training points using those centers with k equal to 90% of the cluster size. We then

removed those samples which were not classified correctly and found the centers again.

This procedure was repeated several times. The resulting centers were able to classify

more than 80% of the training data correctly, which we deemed sufficient to prevent

overfitting. We used L1 norm as the measure of distance between points.

To assess the ability of classifiers to identify established signal patterns typically

used in visual perception, such as the P100, N170, P250, we contrast the three models

constructed over the full range of temporal data (0-700ms) with those constructed with
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data limited to specific temporal ranges. We chose the ranges of [50ms-100ms], [100ms-

200ms], [200ms-300ms], and over 400ms.

We focused on the typically more challenging across-subject classification task where

we test the ability of classifiers to generalize across different subjects. To accomplish

this we train our classifiers on all but one subject and test the model’s performance on

the EEG sequences of the remaining subject. We report the AUC (area under ROC

curve) scores for all classifiers as a measure of their classification effectiveness.

3.5 Experimental Results

Table 3.1 summarizes predictive performance of the two classifiers across the subjects,

as well as the average performance. Results for the baseline kNN approach were sub-

stantially worse across all temporal ranges. Average AUC scores were 51.63%, 54.79%,

56.16%, 63.51%, 58.65%, starting with the full all the way to ≥ 400 range. Without

the aforementioned outlier removal technique in Section 3.4 the AUC scores downgrade

to 48.29%, 47.26%, 51.46%, 54.8%, 52.70%, respectively.

The compound AUC measure suggests that both L1 and the group lasso can give

effective prediction for across-subject predictions but varies significantly across subjects.

Responses of some subjects, such as 2 & 3, can be effectively predicted using isolated

spatio-temporal features of the L1 regression. On the other hand, responses of subjects

1, 4, and 5 are substantially better predicted using the group model, which signifies

the importance of collective activity in select spatio-temporal regions. On average,

simultaneous use of features across the full temporal range of 0-700ms leads to best

performance, but this is also observed if the temporal range is restricted to 100ms-200ms

with the L1 prediction, closely followed by the same restricted range with group lasso.

This is clearly in agreement with the known role of the N170 potential in detection of

human faces. No other isolated temporal range has lead to similar level of classification

performance.

We next examined the spatio-temporal localization of features selected by our sparse

predictors, for the across-subject setting. This is illustrated in Figure 3.2. Results
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are shown for average models (over the five subjects) and, as an exemplar, for one

specific subject (Subject 1). The two left most columns represent spatial locations and

(relative) intensities of non-zero features, accumulated over the full temporal range.

Namely, if βi,t is the weight of the (processed/filtered) response Xi,t of channel i at

time t, the weights displayed correspond to βi =
∑

t βi,t. The first of those columns

indicates spatial locations of features present when subjects are exposed to ’face’ stimuli,

while the next column shows the same for ’vase’ stimuli. The spatial locations show

consistency both across subjects and across the two models (L1 and group lasso). Group

models induce selection of larger spatial groups of electrodes, based on our definition

of spatial neighborhoods. In general and as expected, L1 models reduce this spread.

It is interesting that the sensors selected by our classifiers mostly lay in the occipital

and temporal areas of the brain, the visual regions that have been implicated in object

recognition.

The right-most column in Figure 3.2 displays the temporal distribution of weights,

accumulated over all electrodes: the cumulative weight is βt =
∑

i βi,t, computed sep-

arately for all positive (face/blue) weights and negative (vase/red) weights. Again, we

observe significant amount of consistency across five subjects. Moreover, the temporal

placement of the selected weights shows interesting correlation with known indicators

such as the N170 and P250, with the weight around N170 showing very strong peaks.

We also observe a considerable concentration of ’face’ weights around 400ms, which

can be associated with N400. The third concentration around 600ms can be seen as

a continuation of the N400. The temporal position of the ’vase’ features exhibits very

strong peaks slightly before the ’face’ signals, around 120-130ms.

In the case of the L1 model, which enforces no temporal smoothness (grouping)

of selected features, we also observe strong peaks in some subjects in the range of

50ms-100ms. Not unexpectedly, the temporal signatures show more variability than

the corresponding temporal signatures of group lasso model. It should finally be noted

that in the case of L1 model and subject 5 we observe temporal signatures that deviate

from those in all other cases. This, together with the relatively low AUC scores for

L1 on subject 5 and the high scores for the same subject with restricted temporal



25

Face sp. weights Vase sp. weights Temp weights

Avg L1 0 100 200 300 400 500 600 700
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Avg G-Lasso 0 100 200 300 400 500 600 700
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Sub 1 L1 0 100 200 300 400 500 600 700
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Sub 1 G-Lasso 0 100 200 300 400 500 600 700
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Figure 3.2: Average and Subject 1 spatial and temporal distribution of positive
(face/blue) and negative (vase/red) weights estimated by L1 logistic regression and
group lasso models. Top of each sensor map corresponds to the occipital brain region.

range (100-200), suggests the existence of spurious (outlier) features at fine temporal

scales. However, group lasso successfully eliminated these outliers by requiring collective

excitation over larger temporal windows.

It is important to stress that under either of the two modeling approaches our data-

driven models recovered specific stimulus signatures that are very closely associated

with, but not identical to, established indicators. This is significant from two perspec-

tives. First, it validates the analysis methodology presented here by showing that one

can pick out accepted spatio-temporal correlates in a completely agnostic fashion. This

is thus a potentially general methodology for use in identifying EEG markers for tasks

that hitherto have not been associated with any distinct ERP components. Second,

and more specifically, to the extent our results differ from the discrete ERP face cor-

relates, they suggest that additional temporal epochs, besides just the 170 or 250 ms
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points, might carry information regarding face perception. Future investigations can

probe whether this additional information is associated with aspects of face perception

beyond just labeling a pattern as a face.

3.6 Conclusion

In this work we showed that the brain signals recorded from subject when exposed

to face stimuli is statistically significantly different from the control signal where the

subjects were exposed to vase stimuli. We were also able to recover the salient time

markers and sensors contributing to the distinction of the two classes. Not only we

were able to assert the traditional markers such as N170 but we also pointed possibly

new time markers which encourages further research in this area.

All great points mentioned above are true but despite our numerous attempts we did

not have much success in improving the recognition results any further. The reason for

that, relies on the fact the signals are not aligned. Even the scans from the same subjects

may not be aligned. This cause the distribution of futures to be noisy and thus the

regressor will fail to capture and recover the appropriate coefficient. The solution is to

align all sequences. The problem however, is that the traditional alignment algorithms

such as Dynamic Time Warping c.f. [23] are extremely susceptible to noise while EEG

signals carry a significant amount of noise. Moreover, EEG signals tend to be non-

causal [9]. This means that the order of time points might differ from one signal to

another at least locally. However, the time monotonicity is a key assumption in all

alignment algorithms.

These properties of EEG signals motivated us to design an algorithm for align-

ment that is noise-resilient and insensitive to local reordering of time-points (local non-

causality). We later show that the methods built upon this idea is applicable to general

time-series alignment and significantly outperforms all alignment algorithms when the

signal is severely noisy and/or non-causal.
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Chapter 4

Isotonic Canonical Correlation Analysis

4.1 Introduction

As we discussed in Chapter 2, the problem of sequence alignment arises in many fields

of science as a consequence of dealing with data that does not live in fixed dimensional

Euclidean spaces. In this Chapter we focus on computer vision problems. In computer

vision, sequence alignment is an important first step used to solve problems such as the

human activity analysis and recognition, c.f., [4]. The alignment can be used to establish

a measure of similarity between two sequences of video frames or motion capture data,

which can be subsequently employed for sequence classification or clustering [49].

As we discussed before, a traditional way to address the alignment problem between

two sequences relies on Dynamic Time Warping (DTW). DTW is typically solved using

a combinatorial dynamic programming algorithm that searches for a globally optimal

warping path, mapping the domain of one sequence onto the other. DTW and its

derivatives have shown great success in many practical alignment applications [21]. In

practice the unconstrained warping of a generic DTW often fails to yield reasonable

and robust results. Imposing constraints on the feasible warping paths has empirically

shown to improve the classification performance [50, 24, 51]. For instance, the Sakoe-

Chiba band constraint [24], which restricts the maximum deviation of matching slices

from the diagonal by p% of the sequence length, can result in substantially improved

alignments depending on the choice of p. Recently, [51] proposed an adaptive band

approach that estimates function spaces of time warping paths, removing the need for

a fixed p. In this setting motion class-specific warping-path constraints are learned

for each class that reflect the warping variations of samples within it. Nevertheless,

imposing a proper set of constraints on DTW is still a challenging problem.
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Segmental Alginment: One additional property of DTW-based alignment is that

it assumes pairing of individual data points: a sample at time tx in sequence x is

typically aligned with only one other sample at time ty in sequence y. In many practical

applications it may be more desirable to establish pairing between groups of points:

associating a temporal segment tx = [tx,1, . . . , tx,2] to another segment of the contrasting

sequence, ty = [ty,1, . . . , ty,2]. The segment pairing can reflect alignment of e.g., segment

sufficient statistics instead of the raw sample values, making the comparison more

robust to individual sample differences. For example, in mocap data segment-level

alignment can be less susceptible to individual subject differences while performing a

certain motion or activity. Alignment on the segment level can also be justified as a

way of comparing the local segment densities, in view of the Hilbert space embeddings

of probability distributions [52]. Additionally, point-to-point pairing deems DTW to be

very sensitive to noise. While pairing convex combinations of the segments of the two

contrasting sequences can impose additional filtering on data leading to a more robust

alignment.

A natural way of solving the alignment problem is to find the aligned subspace

(manifold in general) where the correlation of two sequences is maximized. Canonical

correlation analysis (CCA) provides the necessary means for finding such a subspace

between a pair of random variables. However, CCA in its original formulation does not

respect the critical monotonicity property of any temporal alignment, which prevents

arbitrary permutations of time indexes (e.g., self intersection of time, mapping tx,1 →

ty,2 and tx,2 → ty,1 when tx,1 < tx,2, ty,1 < ty,2). To address this problem [31] proposed

to formulate CCA of two vectors as a regression problem with a proper hyperbolic

basis for the coefficient vector, guaranteeing monotonicity and the isotonic character of

this solution. Their approach, however, does not immediately extend to multivariate

time series and also does not explicitly model the segment alignment. A CCA-based

formulation was also used in [4] but the alignment was accomplished using traditional

DTW.

In this Chapter we present a novel approach based on an isotonic extension to CCA

to tackle the problem of sequence alignment. Unlike the traditional CCA, we introduce
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alternative constraints that guarantee monotonicity in the projected alignment space.

We show that these constraints are of quadratic nature, similar to the traditional CCA

normalization constraints. This set of constraints is supplemented with non-negativity

and norm-1 normalization constraints, which together allow alignment of segments and

the Hilbert density embedding interpretation. We then present an efficient solution to

the isotonic CCA optimization based on iterative coordinate descent and non-negative

least squares. The performance of the isotonic CCA alignment is evaluated in synthetic

experiments and on a MoCap-based activity recognition task, where it is contrasted to

traditional alignment approaches. The results demonstrate that the new method can

improve recognition accuracy and exhibit resilience to noise in cases where traditional

sample-based DTW alignments are prone to failure.

4.2 Isotonic CCA Model

In this section we formulate the problem of aligning two sequences X and Y as a

general Isotonic CCA task. We first introduce the notation and the unconstrained

CCA objective and follow by developing the necessary set of constraints that guarantee

monotonicity and allow segment-based alignment.

Let the two multivariate sequences X and Y be represented as matrices of size

N × Tx and Y is a N × Ty, respectively. The unconstrained CCA alignment objective

is:

(Wx,Wy) = arg min
Wx,Wy

1

NT
‖XWx − YWy‖2F , (4.1)

where Wx and Wy are the linear warping matrices of size Tx×T and Ty×T , respectively.

The role of these warping matrices is to map the two sequence time-scales into a common

space (of dimension T here) where the sequences become most similar (in the L2 sense).

Traditional CCA, c.f. [30], imposes orthonormality quadratic constraintsW T
x cov[X]Wx =

I, W T
y cov[Y ]Wy = I, W T

x cov[X,Y ]Wy = 0 to find the set of projections Wx and Wy.

However, such constraints do not guaranty monotonicity in the projected space, namely

that

t1 ≤ t2 ⇒ wx(t1) ≤ wx(t2). (4.2)
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Here wx(t) is the continuous warping function and Wx is the sampled version of wx(t)

where Wx(i, j) = 1 ⇔ wx(j) = i indicates that i-th sample of sequence X is mapped

onto the j-th sample of the canonical time coordinate. In the next section we propose

an alternative constraint set of monotonic constraints to replace the traditional CCA

orthonormality constraints.

4.2.1 Monotonicity Constraints

To introduce the new monotonicity constraints we next consider the case when Wy is

fixed. We denote by Z = YWy. The same considerations are valid when both Wx and

Wy, although the above assumption simplifies the exposition.

Consider the problem of monotonically aligning an N × Tx matrix X to a N ×

T matrix Z. For this alignment to respect monotonicity constraints we define the

optimization as follows:

arg min
W

1

NT
‖XW − Z‖2F (4.3)

subject to

• Monotonicity

wTk (1− Cwl) = 0, k > l (4.4)

wTk (1− CTwl) = 0, l > k (4.5)

• Simplex (normalization and non-negativity)

W T1 = 1 (4.6)

W ≥ 0 (4.7)

Here wi denotes the ith column of W . 1 is a T × 1 vector of all 1’s. Constraint (4.7)

is non-negativity on per-element basis. C is a T × T cumulative operator defined as

C =



1 0 0 . . . 0

1 1 0 . . . 0

1 1 1 . . . 0

...
...

...
. . .

...

1 1 1 . . . 1


(4.8)
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Figure 4.1: Effects of operators wTk (1 − Cwk−1) and wTk (1 − CTwk+1) (row vector
format). The first operator ”forces” the leading elements of wk to be zero, up before
the last nonzero element of wk−1. The second operator constrains the trailing elements
of vector wk to zero, past the first element of wk+1. The center panel shows an example
of a non-negative matrix W that satisfies those constraints. The rightmost panel shows
results of applying the constraint operators discussed above on the first and the last
column of W . wk can be non-zero wherever both Cwk−1 and Cwk+1 are identically
equal to 1. White = 0, black = 1.

The idea behind the definition of monotonicity constraints (4.4,4.5) is as follows.

Consider the k-th column of matrix W , wk. Constrains (4.6,4.7) ensure that each

column vector is non-negative and sums to one (i.e., a stochastic vector). Now consider

the effect of operator 1 − Cwk−1, premultiplying the previous row of W by C and

subtracting this result from 1. Premultiplication by C constructs the CDF (cumulative

score) of wk−1. Subtraction from 1 constructs the ”complement” of this CDF. This is

illustrated in Figure 4.1.

The outcome of applying these operators is that the any pair of columns of W has

to be ”orthogonal”, in the sense illustrated in Figure 4.1. The constrains (4.4) requires

all elements of column wk to be zero for all indexes before the index of the last non-zero

element in the previous columns. Conversely, (4.4) states that any element of wk has

to be zero past the first non-zero element of the subsequent columns. Note that the

non-negativity of W , together with normalization, is crucial for these interpretations to

hold. These constrains will result in a generalization of traditional DTW constraints.

We also note that (4.6) implies that (4.4) and (4.5) can simplified to

wTk Cwk−1 = 1, wTk C
Twk+1 = 1, ∀k = 2, . . . , T − 1. (4.9)

Notice that all pairwise constraints have been reduced to the smaller set of T − 2

constraints. This is because ”orthogonality” of wk and wk−1 automatically implies

”orthogonality” of wk and wl, ∀l < k. Similar argument holds for the other constraint.
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4.2.2 Isotonic CCA Objective

The isotonic CCA objective, which satisfies monotonicity constraints, can now be writ-

ten as:

(W ∗x ,W
∗
y ) = arg min

Wx,Wy

1

NT
‖XWx − YWy‖2F+ (4.10)

λ1‖Wx‖F + λ2‖Wy‖F

s.t.

wTX,kCwX,k−1 = 1, wTX,kC
TwX,k+1 = 1, 1 < k < T

wTY,kCwY,k−1 = 1, wTY,kC
TwY,k+1 = 1, 1 < k < T

W T
X1 = 1,WX ≥ 0 (4.11)

W T
Y 1 = 1,WY ≥ 0 (4.12)

Unlike traditional CCA, we do not require the cross-term constrains (”orthogonality”

of WX and WY ). Regularizing the objective with L2-norm of the parameters, given

Eq. 4.11 and Eq. 4.12, increases the number of non-zero coefficients within time seg-

ments. The latter will lead to higher resilience to noise by ”spreading” the weights over

segments instead of focusing on individual samples.

4.3 Optimization of Isotonic CCA Objective

Traditional CCA can be solved in closed form using a generalized eigenvalue-eigenvector

analysis, see e.g., [30]. The isotonic CCA, on the other hand, contains non-negativity

constraints in addition to a (smaller number) of quadratic and linear (normalization)

constraints. We thus follow an alternative approach of alternating least squares to solve

the optimization at hand. In this formulation CCA objective can be solved by holding

one projection matrix fixed while optimizing the other using traditional least squares

algorithms, as indicated by the form of (4.3). This procedure is repeated by alternating

the roles of the two warping matrices, until convergence.

Each individual least-squares problem of form (4.3) contains quadratic constraints

outlined in the previous section. The resulting quadratically constrained quadratic

program (QCQP) also contains the non-negativity constraints, leading to a non-negative
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QCQP. However, if all wk but one are assumed fixed, the problem turns into a non-

negative least squares problem with linear constraints.

Let W−k denote the W matrix in (4.3) with the k-th column removed. The opti-

mization problem for the k-th column of W becomes

arg min
wk

1

N
‖Xwk − zk‖2 (4.13)

subject to

A(W−k)wk = 1

wk ≥ 0

where

A(W−k) =


wTk−1C

T

wTk+1C

1T

 . (4.14)

The first two constraints of A(W−k) are satisfied when the parts of wk corresponding

to 1s in wTk−1C
T and wTk+1C are zero:

wk =


0

w̃k

0

 (4.15)

Hence, the problem can be now be formulated in terms of the remaining nonnegative

portion w̃k as

arg min
w̃k

1

N
‖X̃w̃k − zk‖2 (4.16)

subject to

1T w̃k = 1

w̃k ≥ 0
(4.17)

where X̃ is the submatrix (columns) of X corresponding to w̃k.

This new problem is a case of nonnegative least squares with equality constraints.

In particular, following [53] we define

1T = USVT (4.18)
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Here

U = 1

S =
[ √

n 0 . . . 0

]

V =



1/
√
n 1/

√
n · · · 1/

√
n

1/
√
n a · · · −b

... −b . . . −b

1/
√
n −b · · · a


=
[
v1 V−1

]
(4.19)

Let

w̃k = K

 y1

y2

 = V/S1

 y1

y2

 (4.20)

Then

1TK =
[

1 0 · · · 0

]
(4.21)

X̃K =
[
X̃1/n X̃V−1/

√
n

]
(4.22)

and the optimal solutions are

y∗1 = 1 (4.23)

y∗2 = arg min
y2
‖X̃V−1/

√
ny2 − (zk − X̃1/n)‖2 (4.24)

subject to

V−1/
√
ny2 ≥ −1/n (4.25)

To convert the above LSI problem to non-negative least squares, we have to first convert

it into a least distance problem (LDP) and the solve the LDP using non-negative least

squares. Now we can apply the exact same steps in [53] by setting E = X̃V−1/
√
n,

f = (zk − X̃1/n), G = V−1/
√
n and h = −1/n.

4.3.1 Initialization and complexity analysis

Because the program in Eq. 4.10 is non-convex due to quadratic equality constraints,

initialization can be critical. A reasonable initialization, suggested by methods such

as [4] can be based on the DTW path. In our case standard DTW initialization needs
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to be modified to account for the segmental alignment imposed by our objective. This

can, for instance, be accomplished by averaging successive columns of the corresponding

DTW matrices WDTW , e.g., wi = 1
K

∑K−1
k=0 wDTW,K·i+k. The time complexity of the

overall isotonic CCA optimization depends the embedding dimension, T , and the aver-

age time segment length K, as O(TK3). The values of K and T are usually dependent

on the time length of the sequences, Tx and Ty. That is, K ∝cmax(Tx,Ty)
T and for in-

stance in our experiments T = bmin(Tx,Ty)
2 c. Therefore in this case, the time complexity

will be dependent only on Tx and Ty, i.e. O(
max(Tx,Ty)3

min(Tx,Ty)2
).

4.4 Experimental Results

In this section we demonstrate the utility of IsoCCA through experiments conducted on

synthetic data as well as 3D human motion capture (MoCap) time series, similar to [4].

MoCap data depicts trajectories of joint angles of human subjects that perform various

periodic and aperiodic activities. We focus on classification tasks as the measure of

alignment quality in both settings. We assessed the noise robustness of the proposed

approach and investigated the effect of parameters and initialization on the algorithm

performance. In all experiments we set T = bmin(Tx,Ty)
2 c and λ1 = λ2 = 0.5, unless

otherwise noted.

4.4.1 Synthetic Data

To investigate the properties of IsoCCA and contrast it with DTW, we generated a syn-

thetic dataset consisting of 10 examples each from two classes of univariate sequences.

The first class is a segment of a sinusoid while the second class is a rectangular signal,

both randomly embedded in segments of Gaussian noise. Heterogeneous noise is gen-

erated from five Gaussian processes with means µ ∈ [0, 5] and variances σ2 ∈ [0, 10]

chosen uniformly at random. Two examples of sequences from the sinusoid class are

depicted in Figure 4.2. IsoCCA is initialized from DTW by averaging blocks of DTW

projection matrices Wx and Wy, as described in Section 4.3.1.
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Figure 4.2: From left to right: sample sequences, DTW and IsoCCA warping matrices.

Using a 1-NN classifier and leave-one-out cross-validation query sequences were clas-

sified in one of the two classes. This yielded recognition rates of 60.00% (12 out of 20)

for DTW vs. 90.00% (18 out of 20) reported by IsoCCA. High levels of noise led to

spurious DTW alignments, as illustrated in Figure 4.2. On the other hand, IsoCCA

was able to more accurately capture the alignment of the essential signals parts, while

discarding the noise, as alluded to by the shown alignments.

4.4.2 Motion Capture data

We selected 62 sequences containing more than 40000 frames of 8 different actions from

the CMU MoCap data [54]: walking, runing, boxing, jumping, marching, dancing, sit-

ting down and shaking hands. Each class contains 7, 10, 8, 6, 10, 10, 7 and 4 sequences,

respectively. Classes were selected with actions performed by different subject. The

dimensionality of data is reduced from 62 to 10 using PCA while keeping 99.8% of the

energy. Figure 4.3 shows examples of selected videos and their corresponding warping

matrices.

We compared our method to DTW, CTW [4], best unconstrained matching (Hun-

garian algorithm), and standard CCA. 1-NN is used as the classifier to find the closest

sequence to any given query in a leave-one-out setting. In DTW Sakoe-Chiba con-

straint with ρ = 15% is imposed to improve its performance in classification. The best
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Figure 4.3: Example actions and their corresponding IsoCCA warping matrices.

unconstrained matching imposed no monotonicity constraints, as was the case with the

standard CCA. The overall accuracies are shown in Table 4.1.

Method IsoCCA DTW CTW CCA Hungarian

Accuracy 87.10% 80.65% 54.05% 45.16% 43.55%

Table 4.1: MoCap recognition rates.

Applying CTW to the MoCap recognition problem in the best case yields a recog-

nition rate lower than the baseline DTW. A ostensible benefit of CTW is the pairwise

spatial alignment. However, this is not a concern in MoCap data with known correspon-

dences. In our setting CTW produces similar distance scores across ranges of motion,

indicating over-fitting. The global PCA used here (same spatial embedding for all ele-

ments in the dataset) is less prone to differences in individual data-pairs. To improve

performance of CTW one would have to carefully control the spatial projections, per-

haps using within-class regularization or some global regularization constraints. How-

ever, we were unable to find such a setting in our experiments. Furthermore, we com-

pared our method with parametric warping proposed in [55] for which the recognition

rate was 25%. The confusion matrix for IsoCCA is presented in Table 4.2. Throughout

the experiments we have used DTW alignment path as the initialization point.
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walk run boxing jump Marching salsa dance sit shake
walk 100 0 0 0 0 0 0 0
run 0 100 0 0 0 0 0 0

boxing 0 0 100 0 0 0 0 0
jump 0 0 0 100 0 0 0 0

Marching 0 0 0 0 100 0 0 0
salsa dance 0 0 0 0 0 60 40 0

sit 0 0 43 0 0 0 57 0
shake 0 0 0 25 0 0 0 75

Table 4.2: Confusion matrix for IsoCCA(in percentage points)

Noise resilience analysis

To assert robustness to noise we added two types of noise to the clean MoCap data. We

have compared DTW and IsoCCA in case of additive Gaussian noise and sparse noise

spikes. The noise process in the case of additive Gaussian noise is N(0, pσi), added to

i-th feature with σi the standard deviation of the feature and p ∈ [0, 1]. In case of spike

noise, we have randomly added values drawn from the normal process, N(0, pσi), to

randomly chosen time points of each feature. The number of noisy time points is not

more than 5% of the length of the time-series, spread uniformly over the full time-span.

Figure 4.4 depicts DTW and IsoCCA recognition rates in presence of different levels of

noise. Figure 4.4 indicates that IsoCCA outperforms DTW a margin that increases as

Figure 4.4: From left to right: noisy (additive Gaussian) query and clean training set,
query and training are both noisy (additive Gaussian), noisy (sparse spikes) query and
clean training set.

the noise level grows. We will shortly show that the algorithm parameters can change

the recognition performance drastically in case of noisy data.
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4.4.3 Parameter sensitivity

An important aspect of the proposed approach relates to the choice of the common

embedding dimension T and the ”spreading factors” λ = λ1 = λ2 ,the L2-norm regu-

larization coefficients. Intuitively, smaller T would result in alignments of longer time

segments. Larger λ, as discussed earlier, increases the number of non-zero elements in

warping matrices. Figure 4.5 shows the dependence of the recognition rate as a func-

tion of T in the range 1 to bmin(Tx,Ty)
2 c, in the presence of different levels of additive

Gaussian noise. Interestingly, with no noise added, changing T does not significantly

impact the recognition rate. As the noise strengthens, smaller T results in improved

recognition (down to a level), indicating the importance of segmental alignments.

In the experiments we found the algorithm largely insensitive to λ, with the recog-

nition rate slightly improved for higher λ in the presence of noise. Nevertheless, the

L2-regularization is critical for yielding a stable objective.

Figure 4.5: Effect of changing common dimension T . Horizontal axis shows proportion

of Tmax = bmin(Tx,Ty)
2 c

4.5 Conclusions

In this Chapter we presented an alignment algorithm based on isotonic CCA which lin-

early maps two sequences to a common subspace such that the non-decreasing mono-

tonicity in time is preserved. In addition, the alignment approach naturally fosters

alignments of sequence segments instead of individual samples. We presented a solu-

tion for the isotonic CCA based on non-negative least squares. Our experimental results
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Figure 4.6: IsoCCA works by finding nearest neighbour distance between convex hulls
of the segments in contrasting sequences. However, nearest neighbour is not proper
metric. That is d(A,C) + d(B,C) 6≥ d(A,B).

show that the segment-based alignment of IsoCCA can be beneficial in cases when high

levels of noise can reduce robustness of traditional DTW alignments.

The proposed framework is general and can be extended to simultaneous alignment

of multiple sequences, using generalizations of CCA from pairs to sets of datapoints. De-

spite promising preliminary results, computational complexity of the proposed solution

and its dependence on initial conditions may be of concern. Additional consideration

is necessary to improve the algorithmic efficiency and scalability. Additionally, the re-

trieved segments tend to be very short and unrealistic. There are also many jump in

the the alignment path.

The main problem with IsoCCA is that the proposed framework does not provide a

proper metric between the segments. The reason for that lies in the fact that IsoCCA

works by effectively finding the closet points of the convex hulls of the two segments

of points. This results in a non-metric because the triangular inequality does not hold

(Figure 4.6). Moreover in the case of overlapping convex hulls, their distance is zero

even though the size of the common area can be very small resulting in unnecessarily

small segments. The IsoCCA objective (4.10) does not guarantee to correspond every

point in one sequences with one or more points in the other. In other words, the

alignment path produced by IsoCCA might have jumps. All these properties result

in having unrealistic segments. IsoCCA works well as a similarity measure but the

segmentation can be improved.
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Chapter 5

Segmental Pair-HMM

5.1 Introduction

In Chapter 4 we introduced our first segmental alignment algorithm, IsoCCA. Even

though IsoCCA is resilient to noise, it is sensitive to the choice of initial point and

does not provide a good segmentation. In this Chapter we present a new method that

produces much better and coherent segments. We expect that better segmentation

must result into a better simialrity measure.

In [5] author proposes a method relevant to the approach that we will be presenting

in this Chapter. Ryoo proposes to find the best matching segments of the two sequences

based on a probabilistic model. However, the algorithm does not handle gaps/insertions

and, hence, does not consider a complete alignment model. Moreover, the author

suggests empirically fixing all segment lengths, with the approach lacking clear means to

handle data-driven segments. In practice, however, variable and data-adapted segments

result in more robust alignments.

In this Chapter we propose a segmental alignment framework based on a probabilis-

tic model and investigate its properties and robustness against noise in the context of

sequence classification. The new contributions are:

• We suggest a distance metric based on average pair-wise distances suitable for

measuring similarity between two segments , aimed at segmental sequence align-

ment.

• Based on the proposed distance metric we develop a probabilistic alignment model

by extending the pair-HMM formalism.

• We propose a relaxation to the original model and use bounding techniques to
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reduce the computation time.

Through extensive experiments we show that the proposed method can lead to im-

proved classification results on benchmark sequence classification tasks, classification

of non-causal EEG signals, and recognition of activities from human motion data. This

proposed approach is particularly resilient to noise where other similar approaches fail.

This Chapter is organized as follows: in Section 5.2 we construct our segmental

metric. In Section 5.3 the proposed model is discussed in detail. Section 5.5 introduces

the relaxed model for reduced computational time. In Section 5.6 experimental results

is presented followed by Section 5.7 that concludes this Chapter with the discussion of

our findings and some suggestions for future work.

5.2 Segment Matching Metric

In some applications, as illustrated in Chapter 1, one is interested in matching un-

ordered small segments of points. This naturally leads to matching two unordered sets

of points where permutation is not a matter of concern. In addition to insensitivity to

permutation, we seek to find a distance metric the suppresses the noise and is efficient

to compute. Many distance metrics have been proposed to measure the distance be-

tween sets, c.f., [56]. Often the proposed distances are based on non-linear functions

(Hausdorff, for instance), which are computationally intensive. Moreover, Hausdorff-

type distances can be highly insensitive to the content of the contrasting sets, focusing

instead on the boundary cases. Kernels proposed on sets [57] are not also suitable

when the set of points is small and therefore, in practice the estimated distribution is

inaccurate. In the following we propose a distance based on average pair-wise distances.

Formally, for two sets of points X and Y, we consider

d(X ,Y) =
1

|X ||Y|
∑
xi∈X

∑
yj∈Y

‖xi − yj‖n, (5.1)

where ‖.‖n is a convex norm between two points. It is trivial to show d(X ,Y) ≥ 0 and

d(X ,Y) = d(Y,X ). It is also straightforward to prove that (5.1) has the triangular

property given the convexity of the norms. Equation (5.1) needs to be slightly modified
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to have definiteness property (i.e d(x, y) = 0 ⇐⇒ x = y).

D(X ,Y) =
1

|X ∪ Y|

 1

|X |
∑
xi∈X

∑
yi∈(Y\X )

‖xi − yj‖n +
1

|Y|
∑

xi∈(X\Y)

∑
yi∈Y
‖xi − yj‖n

 .(5.2)

Equation (5.2) is symmetric, non-negative and definite due to empty sums in case

of equality of X and Y. To prove that (5.2) has triangular property, one can partition

(D(X ,Y) +D(Y,Z)−D(X ,Z)) ≥ 0 into disjoint sets and observe that given triangular

property of (5.1), the required inequality holds for (5.2). Note that in case of X ∩Y = ∅,

(5.2) reduces to (5.1). In practice, any sampling is prone to measurement error. This

emphasizes the importance of definiteness property imposed by (5.2) even for real-

valued signals. We will show in the experimental results that even though the ordering

of samples is not preserved within a short segment when modelled as a set, the proposed

metric can be used for general purpose alignment. The metric also exhibits invariance

to arbitrary temporal permutations. This can be beneficial for non-causal sequences

that arise from random delays (e.g., EEG). However, it can also be desirable in video

retrieval settings when, for instance, the direction of an activity is not a concern. In the

experiments we will demonstrate that this metric is resilient to noise when incorporated

into an alignment algorithm. In Section 5.3 we demonstrate how it can be computed

efficiently.

5.3 Segmental Pair-HMM (SPHMM)

The Pair HMM, introduced by [14], can be seen as a probabilistic model defined on pairs

of sequences (X,Y ) that aims to describe their joint likelihood, P (X,Y |alignment).

As shown in Figure 5.1, PHMM has three states: M for match, I for insertion and

D for deletion. Given two sequences of observations X and Y with n and m samples,

respectively, the match state emits a pair of samples (x, y) x ∈ X, y ∈ Y . Insertion

and deletion states emit (x,−) and (−, y) respectively where − stands for a gap. This

model implements an affine gap penalty which is more general than constant gap penalty

typically used in DTW.

In the following we add the notion of segmentation to the pair-HMM formalism. To

define the segmentation structure consider a sequence X = (x1, x2, . . . xn) of length
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Figure 5.1: Segmental Pair-HMM state-transition diagram

n. A segment Xb:e, a contiguous subsequence of X, is defined such that Xb:e =

(xb, xb+1, . . . , xe). Equivalently, the segment is defined by segment indexes s = (b, b +

1, . . . e). We consider non-overlapping and tight segments over X. That is, a com-

plete segmentation of X is defined as S = (s1, s2, . . . , sL) such that b1 = 1, eL =

n, bi+1 = ei+1. This S(X) = (X1,X2, . . . ,XL) now defines the segmentation of sequence

X = (x1 . . . xn) into segments ((x1 . . . xe1), (xb2 . . . xe2) . . . (xbL . . . xeL)). Likewise, we

define S(Y ) for Y . From this point forward we represent the segmentation of both

sequences, X and Y , with S = (S(X),S(Y )) = ((X1, X2, . . . XLX
), (Y1, Y2, . . . YLY

)).

Given the segments defined by S, a segmental alignment is a sequence of correspon-

dences Q = (q1, q2 . . . qT ) where qt = (it, jt), it ∈ {1, . . . LX}, jt ∈ {1, . . . Ly} indicating

the matching of segments, such that the following monotonic constraints hold:

it ∈ {it−1, it−1 + 1}, jt ∈ {jt−1, jt−1 + 1}. (5.3)

The likelihood of one such fixed alignment Q is defined as

P (X,Y |S, Q, λ) =
T∏
t=1

bqtqt−1(X,Y ) (5.4)

where λ encompasses the HMM parameters. Here the likelihood of a match is

bqtqt−1
(X,Y ) =



exp(−D(Xit ,Yjt)) ·Ψ(|Xit |, |Yjt |) it = it−1 + 1,

jt = jt−1 + 1

exp(−σg|Xit |) it = it−1 + 1, jt = jt−1

exp(−σg|Yjt |) it = it−1, jt = jt−1 + 1

(5.5)
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where D(Xit ,Yjt) is the distance between two segments, defined in (5.2), Ψ specifies

the distribution of the corresponding segment lengths, and σg is a scaling factor. The

transition probabilities in the match sequence are defined by the state transition graph

in Figure 5.1 and are denoted by a. For instance,

aqtqt−1qt−2
=



δ , it−1 = it−2 + 1, it = it−1,

jt−1 = jt−2 + 1, jt = jt−1 + 1

ε , it−1 = it−2 + 1, it = it−1 + 1,

jt−1 = jt−2, jt = jt−1

τ , it−1 = it−2 + 1, it = T,

jt−1 = jt−2 + 1, jt = T

etc.

(5.6)

with initial transitions, e.g.,

a(0)
q1 =


δ , i1 = 0, j1 = 1, or i1 = 1, j1 = 0

1− 2δ − τ , i1 = 1, j1 = 1

τ , i1 = 0, j1 = 0

(5.7)

where i1 = 0 stands for deleting the first segment of X and similarly j1 = 0 denotes

deleting the first segment of Y . Ψ in (5.5) can be learned from the data or given as a

prior distribution, e.g., uniform. Note that the first case of (5.5) defines the observation

probability of matching two segments (associated with state M in Fig 5.1) while other

cases correspond to gap operations (states I and D).

5.3.1 Inference in SPHMM

An optimal alignment for a fixed segmentation S can be found as

Q∗ = arg max
Q

P (Q|X,Y,S, λ) = arg max
Q

P (X,Y |Q,S, λ)P (Q). (5.8)

The prior on Q in (5.8) can be uniform or can encode traditional band-priors such as

the Sakoe-Chiba band. (5.4)-(5.8) show that the optimal alignment is the Viterbi path

for observing segmented sequences (X,Y ).

It is possible to find an optimal segmentation S∗ , together with the optimal align-

ment, as

Q∗,S∗ = arg max
Q,S

P (S, Q|X,Y, λ) = arg max
Q,S

P (X,Y |S, Q, λ)P (S)P (Q). (5.9)
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Figure 5.2: Pair-HMM null model.

We specify uniform prior on S. To assert that the alignment likelihood indicates a

relationship between the contrasting sequences rather than a random match, one needs

to compare this likelihood to that of a null model. This null model deletes all segments

of one sequence and inserts segments of the contrasting sequence 5.2. Therefore, the

likelihood of the null model is

P (X,Y |S, R) =

(
η(1− η)LX

LX∏
i=1

exp(−σg|Xi|)

)η(1− η)LY

LY∏
j=1

exp(−σg|Yi|)


(5.10)

where R is the null HMM model with transitions depicted in Figure 5.2 and observation

model similar to 5.5 (except for the the first equation which is the likelihood of observing

a match between two segments). Thus, we intend to evaluate

Q∗,S∗ = arg max
Q,S

P (X,Y |S, Q, λ)P (Q)

P (X,Y |S, R)
. (5.11)

Note that the prior on segmentation is cancelled out. It is possible to evaluate both

SPHMM and null model in a single pass over the sequences. In particular, one can

assign every match in the SPHMM model to a pair of insertion and a deletion and

likewise assign every gap operation to its corresponding insertion or deletion in the

null model. Thus, it would be straightforward to formulate reward for match and

penalties for opening and extending a gap by expanding (5.11) with respect to (5.4)

and (5.10). This helps with seeing this formulation in the context of an alignment

dynamic algorithm with affine gap penalty. In particular, for two segments Xi and Yj

the matching reward is

rmm(Xi, Yj) =
1− 2δ − τ
(1− η)2

(5.12)

for staying in match state or

rgm(Xi, Yj) =
1− ε− τ
(1− η)2

(5.13)
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for transitioning from a gap state to match. Consequently, the gap opening penalty for

Xi is

rop(Xi) =
δ

(1− η)
(5.14)

and gap extension penalty is

rex(Xi) =
ε

(1− η)
. (5.15)

By transferring into log-odds ration the relationship between a Viterbi algorithm and a

dynamic programming for alignment is evident. The resulting algorithm is a straight-

forward extension of the best-path algorithm described in [14] to segmental model by

searching over all permissible segment lengths at each step of the recursion considering

the match rewards a gap penalties in (5.12)-(5.15). That is, in every state, all possible

segments are considered and the segmentation that leads to the highest ratio of pos-

teriors (5.11) is chosen. To make this procedure computationally tractable one may

impose a maximum constraint on the segment length.

Complexity:The time complexity of (5.11) is dependent both on the lengths of

segments in each sequence and the length of the sequences themselves. Given that the

number of states is fixed and small, one can prove that the time complexity of the

dynamic programming (or marginal matching) algorithm is O(lX lYmn) where lX and

lY are the maximum segment lengths and n and m are the lengths of sequences X

and Y , respectively. To compute the distance between two segments, one can employ

the summed area table technique [58] to improve the performance. That is, the pair-

wise distances of all pairs of samples are pre-calculated and the summed area table is

constructed. Then within the matching procedure only a few additions are required

to compute the distance. With a simple memorization technique the complexity can

be decreased to O(max(lx, ly)mn) .Usually, lX and lY are not too long relative to the

sequence lengths. Thus, the overall time complexity is typically a small constant factor

away from that of the regular DTW.
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5.3.2 Marginal matching likelihood

This subsection introduces an approximation to forward algorithm for segmental pair-

HMM. Let us define Γ to be the set of all possible segmentations of two sequences X and

Y with m and n samples, respectively. Also assume that Π is the set of all segmental

alignments between X and Y . Using forward algorithm one can estimate the following

P (X,Y |λ) =
∑
S∈Γ

∑
Q∈Π

P (X,Y |Q,S, λ)P (S)P (Q). (5.16)

We will assume P (S) to be uniform. Computing (5.16) is not tractable for every possible

segmentation. Therefore, we approximate the joint probability of X and Y by explic-

itly marginalizing over all alignments. That is, we approximate (5.16) by estimating

P (X,Y |S∗) at each step where S∗ is a partially optimal segmentation. Specifically, S∗

denotes the segments that are optimal only for a partial alignment of the sequences X

and Y up to the current step of the algorithm. We use the following recursion to define

this approximation.

P
(
X1:i, Y1:j |qtqt−1,

(
S∗(X1:(i−k)), S

∗(Y1:(j−l))
)
λ
)

= bqtqt−1×

max
S′∈

(
Γ(X1:(i−k)),

Γ(y1:(j−l))

) ∑
Q′∈
Π(i−k),(j−l)

P
(
X1:(i−k), Y1:(j−l)|Q′, λ,S′

)
(5.17)

where

(S∗ (X1:i) , S
∗ (Y1:j)) = arg max

S′∈(Γ(X1:i),Γ(Y1:j))

∑
Q′∈Πi,j

P (X1:i, Y1:j |Q′, λ,S′). (5.18)

In (5.17) and (5.18) k and l are permissible segment lengths for X and Y . Γ(.) is the set

of all segmentations while S∗(.) denotes the approximated segmentation of the given

input sequence. Πi,j is the set of all possible alignments of X and Y up to xi and

yj . In (5.17) qtqt−1 defines the current state the same way we defined it in (5.5). The

second term of right hand side of (5.17) finds the maximum marginalized likelihood over

aligning partial sequences given all possible segmentations up to xi−k, yj−l. The result

of applying this recursive algorithm is the approximated marginalized likelihood of X

and Y . This is useful in classification problems where one is not necessarily interested in

alignment path or optimal segmentation but a reliable likelihood is more desirable. In
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this paper however, we mainly show the result of the dynamic programming algorithm

that arises from (5.11). The dynamic programming algorithm not only provides us

with a likelihood that later can be used as a measure of similarity, but also yields

the optimal alignment path and segmentation which is essential to our analysis. We

observed superior classification accuracy using the marginal matching algorithm in EEG

classification (Section 5.6).

5.3.3 Learning SPHMM parameters

Algorithm 1 Learning algorithm for SPHMM.#(A→ B) denotes the number of transitions
from state A to state B decoded by the Viterbi algorithm.

Initialization
Randomly initialize δ, ε and τ . Set Ψ(i, j) to uniform.
repeat

E-step: Align training sequences using the Viterbi algorithm described in Section
5.3
M-step:

1. Re-estimate transition parameters: δ = #(M→I)+#(M→D)
2#(M→∗) , ε =

#(I→I)+#(D→D)
#(I→∗)+#(D→∗) and τ = 1− 2δ − ε.

2. Re-estimate segment length distribution, Ψ(i, j) =
#(|XtX

|=i,|YtY
|=j)

#segments
∀t∈{1 . . . LX}, tY ∈ {1 . . . LY }.

3. Tune the parameters using (5.22) with (δ,ε and τ) as the initial values (project
back if needed to respect the feasibility of the starting point)

until Convergence.

To learn the parameters of SPHMM one can use a standard expectation maximiza-

tion algorithm typically used to train HMM parameters [59]. The parameter of the

null model cannot be trained using EM algorithm and must remain constant during

training in order to have the consistent reference model. One good choice to set η is

the maximum likelihood estimate of (5.10). That is,

η =
2

LX + LY + 2
(5.19)

where LX and LY are number of segments (based on the prior) in each sequence. In

our experiments we noticed choosing η according to (5.19) may result into overfitting
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to the training set in a classification problem and therefore suggest choosing η > .5 in

that case.

The standard EM algorithm, does not respect certain constraints that must hold

when one designs an alignment algorithm. Those constrains are designed to keep match-

ing reward and gap penalties (Eq. (5.13)-5.15) within certain bounds. In particular

one would like to have

1 < rmm, rgm < zm, (5.20)

zg < rop, rex < 1, (5.21)

where 1 < zm and 0 < zg < 1 are real numbers. In our experiments we have set

zm = exp(5) and zg = exp(−10) which provide a reasonable range for learning the

parameters. Maximizing the contribution of matching rewards and gap penalties while

satisfying above constraints will lead to solving

(δ∗, ε∗, τ∗) = arg max
δ,ε,τ

(ĉmm log (1− 2δ − τ) + ĉgm log(1− ε− τ) + ĉop log(δ) + ĉex log(ε))

(5.22)

st.

2 log(1− η) < log (1− 2δ − τ) < log(zm) + 2 log(1− η) (5.23)

2 log(1− η) < log (1− ε− τ) < log(zm) + 2 log(1− η) (5.24)

log(zg) + log(1− η) < log(δ), log(ε) < log(1− η) (5.25)

log(τ) < 0 (5.26)

where for N alignments in the training set

ĉmm =
#(M →M)

N
(5.27)

ĉgm =
#((I or D)→M)

N
(5.28)

ĉop =
#(M → (I or D))

N
(5.29)

ĉex =
#(I → I) + #(D → D)

N
(5.30)

where #(A → B) stands for the number of transitions from state A to B. In (5.22), we have

transferred to log-space for numerical stability and used the fact that parameter of the null

model (η) will not be updated. One can transfer (5.22) into a linear programming by adding

log(τ) to the objective function and effectively maximize the likelihood of the average Markov

model (transitions) under mentioned constraints.
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Figure 5.3: Piecewise linear approximation of a sequence based on fixed segments. The
right plot shows the segments and the approximated lines (dashed lines). Two of the
segments that are to be matched are magnified.

Finally, one can consider the algorithm in Alg.1 for learning the parameters of SPHMM.

Note that the inference step is approximated with the dynamic programming resulted from

(5.11). One can incorporate the method described in Section 5.3.2 to approximate the forward

algorithm and use it in a forward-backward learning task (backward algorithm can also be

approximated similarly) for estimating the posterior and finally learn the parameters including

the distribution of segment lengths.

5.4 Discussion on Segment Size and Noise Suppression

Consider two sequences, X and Y , that are to be sent through a noisy channel. In the source,

both sequences are segmented and each segment is approximated by a line then the obtained

lines are re-sampled and transmitted through the channel. To observe the mechanism of noise

suppression based on the proposed distance in Section 5.2, we consider aligning of the two signals

in the destination while an impulse noise is added to one of the sequences during transmission

due to some interference. Formally, let Xk and Yl be two of the line segments starting from the

same time index. That is, xbk+i = β(bk + i) + ξ, ybl+j = β(bl + j)+, where bk = bl. Suppose an

impulse corrupts Xk at i = j == tc (1 ≤ tc ≤ min(|Xk|, |Yl|)) such that xbk+tc = ybl+tc + ξ +α
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(Figure5.3) Assuming Xk ∩ Yl = ∅ the distance of two segments will be smaller than a point-

to-point match only if the following inequality holds

D(Xk,Yl) =
1

|Xk||Yl|

|Xk|∑
i=1

|Yl|∑
j=1

‖xbk+i − ybl+j‖

≤ |β|
|Xk||Yl|

|Xk|∑
i=1

|Yl|∑
j=1

‖ybl+i − ybl+j‖

+
(|Xk| − 1)

|Xk|
|ξ|+ 1

|Xk|
|ξ + α| < |ξ + α|.

(5.31)

Note that since Xk ∩ Yl = ∅, the original distance described by (5.2) is reduced to (5.1). We

used the convexity of the norm in the above. Therefore,

|Xk|∑
i=1

|Yl|∑
j=1

‖ybl+i − ybl+j‖ <
|Yl|(|Xk| − 1) [|α+ ξ| − |ξ|]

|β|
(5.32)

has to hold. One can observe that as long as α < −|ξ| − ξ or α > |ξ| − ξ, by increasing |Xk|

(or |Yl|) while the slope of the line (β) is kept constant, the left hand side of (5.32) grows

quadratically while the right hand side grows linearly which leads to bounded segment length.

Furthermore, if |β| → 0 then as long as |Xk| > 1, (5.32) is a tautology meaning that longer

segment length is always favourable. Consequently, As β increases a point-to-point match

becomes more likely. The result of such distance metric is that it flattens the signal around

an impulse not only according to its neighbourhood but also to the contrasting sequence. This

leads to a dynamic noise removal. Therefore, if the impulse is in fact a characteristic of the

signal and not a noise, it will not be removed (similar to DTW) but in case of noisy impulse, it

will be averaged and flattened.

5.5 Segmental Matching

In our experiments we observed that during learning SPHMM, the probability of transitioning

from match state to gap states can be decreased substantially without significantly affecting

the likelihood or alignment path. Given this observation, it is reasonable to expect a single

match operation coupled with adaptive segmentation be able to approximate the alignment.

Let Γm ⊂ Γ be the collection of all possible segmentation of X and Y such that: 1) the number

of segments is equal in each segmentation, L = LX = LY ; 2) Corresponding segments are then

matched, i.e. the alignment path Q = (q1, q2, . . . qL) where qi = (i, i). In other words, the

alignment is recovered through segmentation. That is,

P (X,Y ) =
∑

S∈Γm

P (X,Y |S)P (S) (5.33)
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where

P (X,Y |S) =

L∏
t=1

exp

(
− 1

σ
D(Xt, Yt)

)
Ψ(|Xt|, |Yt|) (5.34)

which is the likelihood of matching two segments in the original SPHMM model. D(·, ·) can

be any distance metric on sets. Therefore, the joint likelihood of X and Y is maximized by

searching over all possible segmentation. That is,

P ∗(X,Y ) = max
S∈Γm

P (X,Y |S)P (S) (5.35)

and consequently one may obtain the optimal segmentation as

S∗ = arg max
S∈Γm

P (X,Y |S)P (S) (5.36)

where we assume uniform prior on segmentation. A non-uniform prior on segmentation can

result into different alignments by favouring longer or shorter segments on different intervals of

the sequences. It is possible to compare this model with a random model similar to (5.10). In

that case the prior on segmentation will again cancel out and each matching will be compared

to a pair of deletion and insertion.

Removing the two gap operations not only reduces the computational effort incurred by

joint segmentation and alignment but also enables one to use bounding methods for particular

representations of time-series to further prune the unnecessary computation and speedup the

matching. For instance, if the time-series can be locally represented using Bag-of-Words and

histogram, often found as a representation in documents or complex video signals, Lampert

et al [60] have designed bounds on the distance between two segments given a minimum and

maximum segment length and their corresponding histograms. We leverage this fact to reduce

the computational time of the method proposed in this Section.

5.5.1 Bounding Histogram Distances

Bag-of-Words (BoW): is a popular representation that has been successfully used by re-

searchers [61, 62]. In this representation extracted features are clustered into several codewords

using a clustering method such as k-means. Similar features described by the same codeword

are then counted together and form a histogram for a single or a collection of frames. There-

fore, given a histogram map φbi:ei(.), we denote an H-bin histogram of a contiguous segment

bi : ei = (bi, bi + 1, . . . , ei − 1, ei) as Xbi:ei = φbi:ei(V ) or Xi for short.

Given the maximum segment length lmax, the minimum segment length lmin, and two

segments of sequence X and Y , starting from bi and bj , respectively, we denote the maximum
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length segments by Xbi = Xbi:bi+lmax
and Y bj = Ybj :bj+lmax

. Likewise, the minimum length

segments are denoted by Xbi
= Xbi:bi+lmin

and Y bj = Ybj :bj+lmin
. We are aiming to bound the

distance between the histogram features of any possible segment starting from Xbi extending

to Xbi+lmax
and Ybj extending maximally to Ybi+lmax

. Note that even though we use the same

lmin and lmax for both sequences, it is not a requirement of our method and is used only to

simplify the notation. The bin counts of Xbi and Ybj are bounded as

Xh
bi ≤ X

h
bi:bi+k ≤ X

h

bi , (lmin ≤ k ≤ lmax) (5.37)

Y hbj ≤ Y
h
bj :bj+z ≤ Y

h

bj , (lmin ≤ z ≤ lmax) (5.38)

where Xh
. and Y h. denote the histogram bin h.

One can easily extend (5.37, 5.38) to normalized histogram noting that |Xbi
| ≤ Xbi:bi+k ≤

|Xbi |. That is,

Xh
bi

|Xbi |
≤ X̂h

bi:bi+k ≤
X
h

bi

|Xbi |
, (lmin ≤ k ≤ lmax) (5.39)

Y hbj

|Y bj |
≤ Ŷ hbj :bj+z ≤

Y
h

bj

|Y bi |
, (lmin ≤ z ≤ lmax) (5.40)

It is straightforward to observe

min(Xh
bi
, Y hbj ) ≤ min(Xh

bi:bi+k, Y
h
bj :bj+z) ≤ min(X

h

bi , Y
h

bj ) (5.41)

max(Xh
bi
, Y hbj ) ≤ max(Xh

bi:bi+k, Y
h
bj :bj+z) ≤ max(X

h

bi , Y
h

bj ) (5.42)

for lmin ≤ k, z ≤ lmax. Following [62] one may construct the bounds on popular histogram

distances. For completeness of presentation these bounds are included below.

Bounding l1 distance: Noting that |a−b| = max(a, b)−min(a, b) and a simple reordering

of (5.41, 5.42) one can observe that

max(Xh
bi
, Y hbj )−min(X

h

bi , Y
h

bj ) ≤ |Xh
bi:bi+k − Y

h
bj :bj+z| ≤

max(X
h

bi , Y
h

bj )−min(Xh
bi
, Y hbj ) (5.43)

for lmin ≤ k, z ≤ lmax. The bounds on l1 distance are then the summation over all bins. That

is,

ll1b (Xbi , Ybj ,m, l) =

H∑
h=1

max(Xh
bi
, Y hbj )−min(X

h

bi , Y
h

bj ) (5.44)

ul1b (Xbi , Ybj ,m, l) =

H∑
h=1

max(X
h

bi , Y
h

bj )−min(Xh
bi
, Y hbj ) (5.45)
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and for normalized histograms

l̂l1b (Xbi , Ybj , lmin, lmax) =

H∑
h=1

max

 Xh
bi

|Xh

bi |
,
Y hbj

|Y hbj |

−min

 X
h

bi

|Xh
bi
|
,
Y
h

bj

|Y hbj |

 (5.46)

ûl1b (Xbi , Ybj , lmin, lmax) =

H∑
h=1

max

 X
h

bi

|Xh
bi
|
,
Y
h

bj

|Y hbj |

−min

 X
h

bi

|Xh
bi
|
,
Y
h

bj

|Y hbj |

 . (5.47)

Histogram intersection and χ2 distances can also be derived in the same way.

Bounding histogram intersection distance: Histogram intersection distance is defined

as

d∩(φHX , φ
H
Y ) = −

H∑
h=1

min(X̂h, Ŷ h) (5.48)

using (5.39), (5.40) the corresponding lower and upper bound is

l̂∩b (Xbi , Ybj , lmin, lmax) = −
H∑
h=1

min

 X
h

bi

|Xh
bi
|
,
Y
h

bj

|Y hbj |

 (5.49)

û∩b (Xbi , Ybj , lmin, lmax) = −
H∑
h=1

min

 Xh
bi

|Xh

bi |
,
Y hbj

|Y hbj |

 (5.50)

Bounding χ2 distance: χ2 distance is defined as

dχ2(φHX , φ
H
Y ) =

H∑
h=1

(
X̂h − Ŷ h

)2

X̂h + Ŷ h
. (5.51)

Using the normalized bounds on l1 distance i.e. (5.46) and (5.47) one can easily prove

l̂χ
2

b (Xbi , Ybj , lmin, lmax) =

H∑
h=1

(
max(0, l̂l1b )

)2

X
h
bi

|Xh
bi
| +

Y
h
bj

|Y h
bi
|

(5.52)

ûχ
2

b (Xbi , Ybj , lmin, lmax) =

H∑
h=1

(ûl1b )2

Xh
bi

|Xh
bi
|

+
Y h

bj

|Y h
bj
|

(5.53)

5.5.2 Fast Segmental Matching (Fast-SM)

We propose a recursive algorithm that starts matching from the end of the contrasting sequences.

Each segmental match is effectively finding the joint likelihood of Xi and Yi. Within each match

we search over all possible segmentations up to the maximum segment length. That is, given

lmax and lmin, for i = L, . . . 1, j = L, . . . 1 and considering uniform prior on segments the

likelihood of matching is

P (Xbi , Ybj ) = max
lmin≤k,z≤lmax

exp(−D(Xbi−k:i, Ybj−z:j))P (Xbi−k−1, Ybj−z−1). (5.54)
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In other words, (5.54) is the optimal maximum likelihood of matching segments by searching

over the likelihood of the last pair of segments in both sequences and all possible segmentation

starting from the current point.

We assume that the likelihood of correspondences in the local neighbourhood is approxi-

mately constant. Therefore, before executing a recursion we examine its approximated likelihood

against the best one found so far. We define P ∗ as the maximal likelihood calculated for the

alignment up to the preceding segment to (Xbi−k−1, Ybj−z−1), we have

P ∗ = max
lmin≤k′<k
lmin≤z′<z

{
P (Xbi−k′−1, Ybj−z′−1) · exp(D(X∗:bi−k′−1, Y

∗
:bj−z′−1))

}
(5.55)

whereX∗:bi−k′−1 and Y ∗:bj−z′−1 denote the best segments extended up to bi − k′ − 1 and bj − z′ − 1,

respectively. Note that all elements required to compute P ∗ are already calculated and no extra

effort is needed to determine it. The bounding is then defined as

P̃ (Xbi−k−1, Ybj−z−1) ≤ P ∗ exp(−lb(X:bi−k−1, Y:bj−z−1, lmin, lmax)) (5.56)

where lb is the corresponding lower bound defined in subsection 5.5.1. The idea is illustrated in

Figure 5.4. That is, we propose to bound the likelihood of a segment by the the product of the

maximal likelihood in its neighbourhood and the upper bound on the likelihood of matching

any two segments extended within its boundaries.Therefore, using (5.56) one can obtain an

approximated upper bound on P (Xbi−k−1, Ybj−z−1) and compare it against the best likelihood

obtained for the previous segment. We use the term ”approximated upper bound” since we have

made the assumption of smoothness on the local likelihood. If P̃ (Xbi−k−1, Yj−z−1) is lower than

the best likelihood for the preceding segment obtained so far, we do not expand the recursion

and set that corresponding likelihood to its minimum by

P (Xbi−k−1, Ybj−z−1) = P ∗ exp(−ub(X:bi−k−1, Ybj−z−1, lmin, lmax)). (5.57)

By setting P (Xbi−k−1, Ybj−z−1) to the minimum likelihood we avoid further expansion of this

path even if this point is visited again during the segmentation.

Another technique that contributes to improving the computational performance of our

approach stems from the BOW representation. This representation allows one to use the idea

of integral image [63] to calculate the cumulative sum of the histograms and thus obtain the

required segment using a single subtraction operation. That is, if I is a sequence of such

cumulative sums one can obtain a segment from bi to ei simply by Xbi:ei = Iei − Ibi−1.
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Figure 5.4: Approximate bounding of the likelihood. Axes show the index (time) of
contrasting sequences. The shaded area shows the highest alignment likelihood for each
correspondence given its optimal segmentation inferred so far. At segment (Xbi , Ybj )
we are verifying whether we should expand the new segment to (Xbi−k−1, Ybj−z−1).
The best likelihood is achieved by connecting to segment (Xbi − k′ − 1, Ybj − z′ − 1)
where lmin ≤ k′ < k and lmin ≤ z′ < z. Therefore, we can find P ∗ from which is
the likelihood of segmentation up to the end of (Xbi − k′ − 1, Ybj − z′ − 1). Then we
assume the smoothness on the neighbouring likelihood around that point and extend a
hypothetical segment from(Xbi−k−1, Ybj−z−1) to it which can be bounded.
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5.6 Experimental Results

We intend to use the likelihood reported by the dynamic programming algorithm (or marginal

matching likelihood) that arises from (5.11) for each alignment as the similarity measure for

classification. This is a common way for asserting the goodness of an alignment algorithm

quantitatively [21]. Note that the null model is the same for all sequences within a dataset.

We first apply SPHMM on synthetic data to qualitatively assess its performance and also

demonstrate its capability in aligning sequences generated by non-causal processes. We then

examine our proposed approach on the benchmark data, the first dataset (data1) from the UC

Riverside ”time-series classification page” [64]. To show that our method is able to deal with

non-causal and noisy real-world time-series we also apply it to a publicly available EEG data

set. Finally, we show that SPHMM can improve the performance of activity classification on a

subset of HDM05 MoCap data. Segmental matching (SM) and fast segmental matching (Fast-

SM) are applied to an activity recognition problem on a publicly available dataset and their

superior performance compared to other algorithms in the literature is demonstrated.

Euclidean distance is used as the measure of distance between two samples. We observed

that L1 norm can slightly, but not significantly, improve the results in case of excessive noise but

we do not include those results. Referring to our discussion in Sec 5.2, employing other distance

metrics between sets (such as Hausdorff) resulted in significantly inferior performance espe-

cially in noisy data and rendered the alignment of long sequences computationally intractable.

Therefore, those results are also omitted from the manuscript. Throughout this section lX and

lY denote the maximum allowed lengths of the segments. We have also assumed the scaling

parameter of gap operations (Equation (5.5)) to be σg = 1. In all experiments the classifier is

the baseline 1-Nearest Neighbour (1-NN). We have exclusively used 1-NN to shift the attention

from the classifier design to the similarity measure.

5.6.1 Synthetic Data I

To demonstrate that our proposed approach can handle non-causal sequences and also have a

qualitative comparison with DTW we generated a synthetic dataset and designed the following

experiment. 100 sequences are generated from the model

Tj(t) =

10∑
i=1

(πi + νt) exp
(
(t− µ)2

)
+ ωt. (5.58)

The time length of all sequences is 450. Peaks in the sequences occur at mean times µ =

[30, 60, 90, 130, 150, 200, 230, 300, 380, 430]. The weights are set to π = [7, 1, 3, 10, 3, 6, 1, 8, 3, 10]and
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Figure 5.5: An instance of a generated sequence and its corresponding warped sequence
and its non-causal version.

are corrupted by white independent noise. ωt, νt = N(0, 1). We use a monotonic function for

the alignment ground truth such that

f(t) =

 1 + 0.01 · t2 t ≤ 100

310 + 150 · tanh(t/100) t > 100.
(5.59)

To introduce non-causality we add noise to (5.59) within four intervals such that

fn(t) =

 f(t) +N(0, 10) Bi ≤ t ≤ Ei ∀i

f(t) otherwise.
(5.60)

where Bi and Ei indicate the starting and ending time point of ith non-causal interval. The

non-causal time intervals are [50, 100], [125, 150], [250, 350] and [400, 425]. For every time-series

the contrasting sequence is generated by nearest neighbour interpolation at time points given

by (5.60). A sample of a sequence and its non-causal warped version are shown is Figure

5.5. SPHMM parameters are learned using Alg. 1 for aligning every sequence and its warped

(causal or non-causal) version. We tried segment lengths lx = ly = [50, 100, 150, 200]. For a

fair comparison with DTW we tried 10 different gap penalties (constant) from 0 to 100 which

was applied for every gap operation. zero gap penalty yielded best result for DTW. Six of such

alignments are depicted in Figure 5.6. The background is the distance between each sample.

The ground truth given by (5.60) is plotted in red while the resulting alignment from DTW is

is drawn in white and that of SPHMM in green. Both axes indicate time and plots are overlaid

on the pairwise distance of the two sequences. It is obvious from Figure 5.6 that SPHMM

outperforms DTW in aligning the non-causal time-series. To give a quantitative assessment of

the goodness of the alignment, the ground truth is compared with reported correspondences by

each algorithm. It should be noted that while DTW gives a correspondence for every time-point

of the sequence, SPHMM produces segments. These segments are indicated by the starting and

ending points. To be able to compare the sequence of segments with ground truth we have used
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linear interpolation. The goodness measure is the L1 distance of every correspondence from

the ground truth. The average L1 distance for DTW over 100 alignments is 8258.8. This value

is different for SPHMM for various segment lengths. Namely, the average distance is 7625.5,

5487.1, 5458.5, 5356.0 for lx = ly = [50, 100, 150, 200] respectively. It is interesting that the

distance does not change much for lX , lY > 100. The reason is that the largest non-causal

interval is 100 time-points long. In many cases the correct segments are extracted except for

the second time interval which is located on the valley of the warping function where decoding

the correct alignment is difficult for both algorithms.

5.6.2 Synthetic Data II

We used the same synthetic data in Section 4.4.1. The dataset is consisted of sinusoidal and

rectangular signals which are embedded into Gaussian noise such that the placement of the

signal is also random. Two samples of this dataset are shown in Figure 5.7. For IsoCCA

experimentation we generated 10 samples from each class and used 1-NN classifier in a leave-

one-out setting. We have shown that IsoCCA can achieve 90% accuracy while DTW cannot do

better than 60%. We however, need to train SPHMM parameters which is not feasible using a

training set derived from 20 sequences. Therefore, we generate 20 more sequences for training

the parameters. SPHMM can classify the 20 sequences in test set with 100% accuracy. To make

sure that the small size of the dataset is not affecting the result we generated 100 sequences and

used 5-fold cross-validation setting. we observed that SPHMM is still able to perfectly classify

all sequences.

5.6.3 Benchmark Data

In order to compare our proposed approach to DTW and demonstrate the applicability of our

method to general sequences, we tested SPHMM on the first subset of time-series from the

UC Riverside time-series repository that contains 20 datasets. The length of time-series in this

dataset varies from 60 to 637. To be able to test the noise resilience of SPHMM, we have added

two types of noise to all sequences. The first noise model in well-known impulse noise. Impulse

noise model is very well-known in signal processing community and can model abrupt sensor

failure (or other rapid change effects) [65]. In particular, additive noise process is Gaussian

N(0, ωσi) where σi is the standard deviation of feature i and ω is the power degree of the noise.

We have added the noise to time points chosen uniformly at random such that the noise does

not cover more than 20% of the sequence duration (Figure 5.8). We conducted the experiment
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Figure 5.6: Samples of aligning two sequences with non-causal intervals. Each plot
depicts the comparison of the ground truth alignment (red) with DTW (white) and
SPHMM (Green). The plots show the result for SPHMM with lx = ly = 150.
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Figure 5.7: Synthetic data from 4.4.1.
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on original data and noisy version of data with ω = 1. For every sequence, we have generated

three noisy samples (three noisy sequences) of the corresponding time-series. The algorithms

(DTW, PHMM and SPHMM) are then applied to each noisy version of the data and the

resultant recognition accuracies are averaged and reported. The results are shown in Tab 5.2, We

compared the proposed approach to DTW and pair-HMM (where no segmentation is applied)

with the warping band. To investigate whether DTW with a noise removal pre-processing is

superior to SPHMM, we removed the noise using a median filter with fixed window size of 5

and showed the recognition rates in the DTW-NR column. We have applied the Skao-Chiba

band suggested by UCR time-series page to DTW and PHMM. For SPHMM the maximum of

the aforementioned band and twice the maximum segment length is chosen as the band to allow

SPHMM accommodate up to two segments away from the diagonal of the alignment matrix.

The parameters of SPHMM are learned using the method defined in Alg. 1. The segment length

distribution however, is not learned and assumed to be uniform. In our experiments we noticed

that the model is sensitive to segment length distribution and introducing a non-uniform prior

can quickly lead to overfitting. This is due to the fact that the longer segments behave more

like outliers. Therefore, it makes sense to use uniform as the segment length distribution. The

parameters are not changed for noisy data experiments.

One can see in Table 5.2 that PHMM is superior to DTW in 9 cases and SPHMM is

superior or on par with PHMM in all cases and superior to DTW in 15 cases in the original,

noise-free setting. However, as soon as the noise is introduced, SPHMM shows significantly

better performance compared to both DTW and PHMM even though PHMM still outperforms

DTW. One may also notice that even though the median filter noise removal has elevated the

recognition rates of DTW (DTW-NR column of impulse noise section in Table 5.2), it still falls

behind SPHMM except for three cases. The superior performance of DTW-NR in those three

cases is due to the fact that the window size of median filter accidentally matches the noise

spread in one or two noisy versions of those datasets. However, there is no clear way of guessing

the correct window size in advance.

To investigate whether the reported results indeed indicate the significance of SPHMM, we

have performed Wilcoxon signed rank test [66]. In our case for a two-tailed Wilcoxon signed

rank test on 20 datasets and α = .05, T = min(R+, R−) < 52 was used to assert the significance

of the proposed classifier1. Table 5.1 summarizes the results of significance testing. As one can

observe SPHMM performs significantly better than other methods in all cases. In the original,

1R+ (R−) denote the total rank of datasets where the accuracy of method A is higher (lower) that
the accuracy of method B. See [66] for details.
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Figure 5.8: Sample of a sequence from UCR dataset (Coffee) with and without noise.

noise-free setting, PHMM’s performance is superior to that of DTW but trails the performance

of SPHMM. Since the significance of DTW-NR over DTW in the case of noisy data is very

much evident, we have not reported this 5.1.

Original Impulse Noise
PHMM > DTW SPHMM > PHMM DTW-NR > PHMM SPHMM > DTW-NR

R+ 141.5 141.5 181 141.5

R− 31.5 5.5 10 36

Table 5.1: Wilcoxon signed rank test for Table 5.2. ”>” stands for ”significantly better”.
Boldface indicates statistically significant relationships.

The average length of the extracted matching segments is approximately 1.04 with a stan-

dard deviation of 0.20 in case of noise free data. For the noisy version of the dataset the

average length of the matching segments rises to 1.60 with standard deviation of 1.01 indicating

that many segments are detected. One has to note that since the chosen data does not result

from the random delay processes, detecting many segments of lengths 1, i.e a sample-to-sample

matching, is not unexpected.On the other hand, and due to noise (inherent or artificial), it is

advantageous to have intermittently extended segments as evident from the reported standard

deviation.

To demonstrate that our approach is resilient to well-known additive Gaussian noise, we

have done the same experiment with the noise spread over the whole span of the signal. Since

the noise is more dominant in this case the maximum segment length is increased to 10. We

have performed noise-removal using and average filter before applying DTW to make sure that

a noise removal with constant window size cannot improve the performance of DTW beyond

SPHMM. The average filter window size is 10. The learned parameters are not changed from

original case. The result is again reported in Table 5.2. The significance of SPHMM, is obvious

and proved by Wilcoxon signed rank test depicted in Table 5.3. It is noteworthy that in the
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case of noisy data, pair-HMM is not significantly better than DTW when α = .05, underlining

the importance of longer segments extracted and matched by SPHMM. It is interesting to note

that noise removal was not able to improve the the performance of DTW and furthermore, in

15 cases has caused a degradation of the performance. This is due to the constant window size

and the fact that it does not adapt to the data which is crucial in case of such excessive noise.

To assert this conclusion we picked ”Trace” and ”Adiac” dataset and tried different window

sizes for filtering. The result showed significant improvement when the window size is set to

18 for ”Trace” and 5 for Adiac. In particular, their accuracy improved to 82.31 and 12.12 for

”Trace” and ”Adiac”, respectively. Another surprising point is that the accuracy results for

Beef dataset is higher in noisy case putting the quality of this dataset in doubt (normalization

removes this odd behaviour).

Computation Time: Figure 5.10 depicts the comparison of the average per alignment

computation time between DTW and SPHMM when applied to original noiseless data. For

short time-series the overhead of computing summed area table is dominant. For longer time-

series the computation time is roughly 4 times that of DTW which is much better than the

worst case. This is due to the fact that when the algorithm is investigating all segmentations

for a correspondence for the first time, it has to find the score of a full alignment for every

particular segment. This results in storing the score for every correspondence within all segments

originated from that correspondence. Therefore, it is not necessary to recompute those values

later when investigating the segmentations for neighbouring correspondences (neighbourhood

is defined by the maximum segment length).

Spectral Analysis: Discrete Cosine Transform (DCT) [67] is a well-known tool for ana-

lyzing time signals [68, 69, 21]. In summary, DCT is an orthogonal linear transformation that

expresses the signal with weighted summation of cosine functions with different frequencies.

One can approximate the signal by selecting the cosines that constitute the major portion of

the signal’s energy, based on their computed coefficients, and thus compress it efficiently by

storing only their properties such as frequency and coefficient. We define the complexity of a

signal as the number of DCT components that are needed to reconstruct it properly. That is,

the complexity of a signal increases with the number of DCT components that are required to

represent it.

To understand where SPHMM is working better than DTW and where it does not, we

looked at the DCT analysis of all signals in UCR time-series repository with no added noise.

We averaged all time-series in each dataset separately regardless of their class labels and applied

DCT with appropriate length on them. The number of DCT components that comprise 99% of
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DTW > DTW-NR SPHMM > DTW SPHMM > PHMM DTW ≈ PHMM

R+ 160 167 190 142

R− 50 27 1 55

Table 5.3: Wilcoxon signed rank test for Table 5.2 additive Gaussian noise section. ”>” stands
for ”significantly better”. Boldface indicates statistically significant relationships.
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Figure 5.9: UCR time-series database DCT analysis. Horizontal axis shows the dif-
ference between the accuracy of SPHMM and DTW such that higher positive number
indicates higher significance of SPHMM. Vertical axes shows the number of DCT com-
ponents needed to reconstruct the average time-series. The radius of each disk is pro-
portional to the average extracted segment length over all pairwise alignments between
train and test set for that time-series.
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Figure 5.10: Comparison of the average per alignment computation time of SPHMM and
DTW. Vertical axis show the time in seconds

the signal energy is retained. Figure 5.9 illustrates the relation between the complexity of the

time-series, recognition rate of SPHMM compared to DTW and the average extracted segment

length.

It is known in the literature that DTW and Euclidean distance are not very effective when

the signal is very simple [70]. Looking at Figure 5.9, one can see that this is exactly where

SPHMM constantly works better or at least in par with DTW. The only three datasets for

which SPHMM works slightly worse than DTW are relatively complex signals. Note that in all

those three cases the average segment length is relatively high. This shows that SPHMM tends

to extract unnecessary long segments for complex signals. In fact, SPHMM might capture a

component, which is naturally represented with a small variation in time domain, in a segment

and match it to the wrong but very similar segment in the contrasting sequence. Also note that

under-segmentation by SPHMM for complex signals is not always the case and it depends on

other properties of the data such as variation among classes. For instance, Olive Oil is classified

with much superior rate compared to DTW while being complex and also with smallest possible

segment length, 1. To summarize, if the signal is not very noisy but is relatively complex, one

might want to try smaller maximum segment lengths as it might result into a better performance.

5.6.4 EEG Signal Classification

We next applied our adaptive segmental alignment model to EEG signals to show its effectiveness

in case of non-causal and noisy time-series. We used the P300 dataset described in [71]. Each

subject is exposed to 6 different images, one of which is the target image. Dataset consists of

9 subjects. Four session are held for each subject. In each session six runs are conducted such
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l = 1 l = 5 l = 10 l = 20

Acc St.dev Acc St.dev Acc St.dev Acc St.dev

SPHMM 74.7 2.61 75.1 2.97 78.47 2.35 82.64 1.35

DTW 74.4 1.78 N/A

CTW 75.52 1.01 N/A

Table 5.4: Recognition rates for EEG dataset. The first row shows the maximum
segment length. For each maximum segment length the mean accuracy and standard
deviation over different folds are reported.

lfixed = 5 lfixed = 10 lfixed = 20 lfixed = 30

Acc St.dev Acc St.dev Acc St.dev Acc St.dev

70.62 2.14 72.79 2.16 73.89 2.62 72.64 2.17

Table 5.5: Accuracy results for different fixed segmentations

that the set of all 6 images is shown at least 20 times to each subject where one of the images

is the target in each run. We chose subject 1 and target 2 for our experiment. In each fold of

cross-validation we keep one session as training and the remaining three are used as the test

set such that every session is used as training once. 1-NN is used as the classifier. We applied

the default pre-processing on the data except that we increased the sub-sampling rate to 128

from 32 to acquire longer signals (129 samples). As recommended, we only kept 8 channels.

We have compared SPHMM against DTW and CTW [4]. The spatial embedding included by

CTW is a reasonable choice for aligning EEG signals. We have applied SPHMM with different

maximum lengths to demonstrate that the longer segments and permutation invariance of the

distance metric can result in improved recognition rates.

The results are shown in Table 5.4. As expected the accuracy does not show significant

improvement over DTW for maximum segment lengths of 5. However, for longer segments

SPHMM becomes significantly more accurate. Optimal performance of DTW was achieved

without a warping band.

We also applied our proposed forward algorithm approximation (5.16) to examine its per-

formance and compare it to the dynamic programming. We tried segment length of 10 and

the forward algorithm yielded 79.1(±1.12) which shows a marginal advantage for the marginal

matching algorithm.

To assess the effects of adaptive segmentation and alignment we also tested against sequences

pre-segmented into fixed length segments. The results are shown in Table 5.5. Adaptive seg-

mentation remains advantageous especially for longer segment lengths.
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Figure 5.11: Segment length distribution for all positions for two EEG sequences. A
certain portion of the graph is magnified. Smaller graph shows the likelihood of all
possible segmentations for a single position (24,38) in the alignment matrix

Segment Length Distribution: Based on (5.17) we estimated the likelihood of all pos-

sible segmentations in aligning two EEG sequences for a maximum segment length of 30 and

visualized it in Fig 5.11. The right-most graph depicts a vector field where each vector points

to the most likely segment length (result of 5.17) at the corresponding position in the warping

matrix and darker color indicates higher likelihood. The optimal alignment path is shown in

the graph. A small portion of the graph is magnified in the middle graph, and then with the

left-most graph depicting an example of the likelihood of all possible segmentations for a single

position (24,38) selected by the alignment algorithm as a match operation. The chosen segment

length at that position is 16 and 20 which has the highest likelihood and is the same segmenta-

tion selected by the alignment algorithm. This indicates the approximated forward algorithm

can potentially be used to learn an improved local segmentation model.

Figure 5.12 shows the histogram of selected segment lengths for all pairs of sequences by

aligning all recordings of two full sessions for target 2. The maximum segment length is set to

length of the sequence to observe which segment lengths are selected without being limited to

an upper bound. Since likely segments were mostly below the length of 20 we only show that

potion of the histogram. Segment length of 1 and 1 is the most likely segment length. If this

was not the case it would be very unlikely that DTW could result in any successful alignment.

5.6.5 Motion Capture Data

In order to show the effectiveness of our model in a challenging real-world application we

performed experiments on two motion capture datasets. The first one is CMU-MoCap [54],
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Figure 5.12: The distribution of segment lengths selected by alignment algorithm for
all pairwise matches with maximum length of 129. Note that no segments of length
over 30 were ever chosen.

which enables us to compare our results in this Chapter to IsoCCA. The second one is HDM05

MoCap dataset [72].

CMU MoCap: To contrast our approach with IsoCCA we tested SPHMM on MoCap

sequences in the same setting. We used the same selection of sequences as in Section 4.4.2.

Namely, 62 sequences containing more than 40000 frames of 8 different actions from CMU

MoCap dataset. walking, runing, boxing, jumping, marching, dancing, sitting down and shaking

hands. Each class contains 7, 10, 8, 6, 10, 10, 7 and 4 sequences, respectively. Classes were

selected with actions performed by different subjects. The dimensionality of data is reduced from

62 to 10 using PCA while keeping 99.8% of the energy. We compared SPHMM to IsoCCA, DTW

and CTW [4]. 1-NN is used as the classifier to find the closest sequence to any given query in a

leave-one-out setting. Parameters for SPHMM are empirically set to δ = 0.001, ε = .1, τ = 0.01

and l1 = l2 = 10. In DTW Sakoe-Chiba constraint with ρ = 13% is imposed to improve its

performance in classification. For higher levels of noise we have permitted more gap operations

for DTW by increasing warping window to ρ = 18%. CTW is applied on the original 62

dimensional data set as it showed a better performance on it. As mentioned in [6], CTW is

unable to achieve better results than DTW. The recognition accuracies are shown in Table 5.7.

Our method shows significantly higher performance compared to the other methods. The

segmental approach was able to recognize proper segments of sequences and match them to

their corresponding segments on the contrasting sequence. As an example, in Figure 5.13, we

have shown a portion of the alignment of two boxing sequences. Segments are separated by

red lines and matched segments are indicated by arrows. Segments with no arrow pointing to

them are either deleted or inserted based on the sequence one may take as reference. One can
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Table 5.6: Accuracy of fixed segmentation
lfixed = 5 lfixed = 10 lfixed = 20 lfixed = 50

Accuracy 80.65 74.19 77.42 69.35

Figure 5.13: A portion of alignment of two boxing sequences. Segments are separated
by red lines. The matched segments are indicated by arrows. Those segments with no
arrow pointing to them are either deleted or inserted.

observe that similar actions are distinguished and matched. This can be explained by the fact

that if the two partitions are similar and do not change drastically, the segment length tends

to be longer (ref. Section 5.4). Another interesting observation is that the direction of action is

ignored. Last match depicted in the figure, shows the correspondence of two punching actions

one in forward and the other one in backward direction. In an action recognition task one is

typically interested in retrieving actions regardless of their direction. However, the change of

direction can sometimes introduce practical difficulties.

Average match segment length for MoCap was 3.70 with standard deviation of 4.05 showing

that many (relatively) long segments are selected. Again to assert the efficacy of adaptive

segment length determination we compared our main results against fixed segmentation (Table

5.6). The results are significantly inferior to adaptive SPHMM. Based on table 5.6 we assume

that adaptive segmentation with maximum segment length of 20 may result in an even a better

performance.

To assess the noise resilience of the SPHMM compared to other methods we added impulse

noise in the same way described in Section 5.6.3 except that the spread of the noise is restricted

to 5% of the sequence. The noise is added only to the query sequences and the experiment setting

is as above. To investigate whether a noise removal pre-processing can improve the performance

Table 5.7: Accuracy of SPHMM versus other methods
SPHMM IsoCCA DTW CTW

Accuracy 90.32 87.10 82.26 50.64
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Figure 5.14: Comparing recognition accuracy of SPHMM versus other methods in pres-
ence of noise. Horizontal axes shows the level of noise.

of DTW beyond SPHMM, we apply a median filter on the data and show its performance with

DTW-NR along with the accuracies of DTW, IsoCCA and SPHMM in Figure 5.14. The noise

level in Figure 5.14 starts form ω = .2 to make the noise removal performed on the query for

DTW more meaningful. Obviously, noise removal on clean data will result in loss of information

and leads to degraded performance for DTW. One can observe the stability of the classification

accuracy of SPHMM in presence of different levels of noise. The noise removal can elevate the

performance of DTW at high noise levels but it reduces the accuracy in lower levels of noise.

HDM05: Contains MoCap data which is consisted of 2-3 rotation angles of 29 skeletal

joints, resulting in 62 joint angle time series. HDM05 includes 100 classes of action performed

by 5 subjects. We choose 8 action classes which are DepositFloorR, JumpingJack, KickRFront,

KickRSide, PunchLFront, PunchRFront, Squat, Walk2Steps. Sequences are around 300 time-

points long and the whole dataset contains 276 sequences in total. We perform 5-fold cross

validation and 1-NN is our classifier. Maximum segment length is set to 10. We compare our

method against DTW, canonical time warping (CTW) [4] and IsoCCA. SPHMM achieved the

highest accuracy, 85.5(±6.18). DTW, CTW and IsoCCA yield 70.1(±5.09), 60.2(±5.1) and

75.1(±6.8) respectively. The significance of SPHMM is evident from the reported results. The

confusion matrix for this experiment is shown in Table 5.8. One can notice that DepositFloorR

is confused with Walk2Steps and KickRFront with KickRSide. It should be noted that Deposit-

FloorR contains the action of walking (one or two steps) right before actual depositing. Also

KickRFront and KickRSide are very much alike. PunchRFront is also sometimes confused with

KickRFront, KickRSide and PunchLFront where one can perceive that those actions have a lot

in common making it difficult to distinguish them correctly in some instances.
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DFR JJack KRF KRS PLF PRF Sq W2S
DepositFloorR 65.6 0 0 0 6.3 3.1 0 25
JumpingJack 0 98 0 0 0 0 0 2
KickRFront 0 0 75.9 20.1 0 0 0 3.5
KickRSide 0 0 21.40 71.4 0 3.6 0 3.6

PunchLFront 0 0 3.6 3.6 82.1 10.7 0 0
PunchRFront 0 6.7 0 6.7 6.7 80 0 0

Squat 0 0 0 0 0 0 100 0
Walk2Steps 0 3.5 3.5 0 0 0 0 93.1

Table 5.8: Confusion matrix of action recognition for SPHMM(in percentage points)

Figure 5.15: Sample frames from UT-interaction dataset #1.

5.6.6 UT-Interaction

To apply segmental matching we needed to pick a dataset of reasonable length and complexity

so we could try different segmentation lengths and observe how the recognition rate is affected.

Therefore, popular action recognition datasets such as KTH [73] or Weizmann [74] datasets were

not suitable for our settings because they contain short periodic actions and only a few frames

are sufficient for a reliable recognition. Instead, we use the first subset of publicly available

UT-interaction dataset containing 10 sequences (60 after segmentation of actions). Within

each sequence, six actions, hand shaking, hugging, kicking, pointing, punching and pushing are

performed by 10 different actors. The videos involve camera jitter. Pedestrians are present

in the video which makes the recognition more difficult (Figure 5.15). We have used spatio-

temporal interest points (Cuboids) [75] as the descriptors. Then k-means is applied on the

resulting features to produce an 800 element codebook.

We use a nearest neighbour classifier to compare with [5]. Leave-one-sequence-out cross-

validation by holding one sequence for testing and using the remaining nine for training. Each

action in the test set is matched with all training sequences. As a baseline we report the results

on SVM using the same feature set and also the results reported in [5]. We have used l1 and

χ2 histogram distances. The results on the l1 distance metric are reported in Table 5.9. It

is evident from the results that our approach significantly outperforms other methods. Using

either l1 or χ2 distance metrics SM and Fast-SM were able to achieve the best result when the

maximum segment length was 30. χ2 achieved the best result even with maximum segment

length of 20. We tried different maximum segment lengths, namely, 10,15,20, 25 and 30. Figure
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5.17 illustrates how the resulting accuracy and speedup, gained by bounding the distance (Fast-

SM), change as the maximum segment length increases applying l1 and χ2 histogram distance

metrics. It is interesting to note that the recognition rates of Fast-SM and SM are identical in all

cases eliciting the fact that the bounding technique and the smoothness assumption on the local

likelihoods are in fact effective. In addition, Fast-SM achieves at least a 2-fold speedup compared

to SM. As shown in 5.17(a), χ2 achieves better results in smaller maximum segment lengths

pointing to it as a more suitable measure of distance on segment histograms. Unfortunately, as

the maximum segment length increases the bounds on the histogram distances become looser,

resulting in reduced speedup. However, one should notice that the shortest sequence is 24 frames

long and our final maximum segment length (30) already exceeds this limit. This implies that

the model has the option to effectively considers a single BOTW representation as an alternative.

We also applied SPHMM to observe whether a complete alignment model is able to achieve

better performance compared to SM and Fast-SM. The result showed that SPHMM cannot

advance the recognition rate beyond 91.57% yet is at least three times slower than SM and four

times slower than Fast-SM.

Samples of the discovered segments are depicted in Figure 5.16. Five activities are illustrated

and each segment is separated using a red bar. Only a few frames from each segment is shown.

The number of frames shown in each segment is proportional to the length of the segment such

that a longer segment is shown with more frames comparing to a shorter segment in the same

segmental alignment. An important observation is that the algorithm tends to encapsulate

similar relative motions within each segment. For instance, in the ’Hugging’ activity (Figure

5.16(a)), the second and the third segments, which both had the maximum length, encompass

the action of hugging. The next segment, shorter in length, contains the pause when the two

actors do not move substantially, while the last segment collects the frames corresponding to the

actors separating from each other. One can speculate that the second and third segments would

merge if the maximum segment length was large enough. However, having larger maximum

segment length results in longer running time.

A disadvantage of forcing a fixed segmentation is evident from this result. Fixed segmenta-

tion makes it quite probable for more (or less) than one part of an activity to fall into a segment

in one sequence and thus result into a sub-optimal matching to the corresponding segment in

the contrasting sequence. This will in turn, results into a sub-optimal similarity measurement.

The distributions of discovered segment lengths, when the distance metric is χ2, are illus-

trated in Figure 5.18. Very similar results have been observed for the l1 distance metric. It

is evident from the results that many segments with maximum possible length are discovered.
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(a) Hugging

(b) Pushing

(c) Hand Shaking

(d) Kicking

(e) Punching

Figure 5.16: Samples of discovered segments. Segments are separated by red bars.
Only a few frames from each segment are shown. The segments and sequences are
not necessarily of the same length. The number of frames shown for each segment is
increased or decreased for better illustration.

Method Accuracy

Segmental Match 91.57%
Dynamic BOW [5] 85.0%

SVM 85.0%
Voting [76] 88.0%

Table 5.9: Recognition rates on UT-interaction dataset #1.
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Figure 5.17: Accuracy and speedup results for l1 and χ2 distances. l1 is depicted as
green and χ2 as blue. Accuracy result of Fast-SM for distance metric is identical to
SM.

Accuray Method

Fast-SM 71.67
SVM [77] 70.00

Hough Voting [76] 77.00

Table 5.10: Accuracy results on UTI Part #2

Also it is interesting to note that as the maximum segment length increases the shape of the

distribution does not change, with one peak at each end of segment length range.

The proposed algorithm (Fast-SM) is applied on the second part of UT-interaction data

where the activities are performed on a lawn in a windy day. The classification task is much

more challenging compared to the first part since the background (trees and grass) is moving

and also the camera jitter is more severe. The experimental setting is exactly the same as that

of Part #1 reported in the main manuscript. The best result is reported in Table 5.10. The

only results that is better than Fast-SM is reported in [76] where the authors use ground truth

bounding boxes to eliminate many noisy features. The accuracy result of Dynamic BoW [5] on

this dataset is not mentioned in the original paper. However, the rate reported in Figure 7 in

[5] is less than 70%.

The resulting accuracy from using different distance metrics for four different maximum

segment lengths are illustrated in Figure 5.19. Similar to the results reported on Part #1, one

can observe consistently better performance of the algorithm when χ2 is used as the distance

metric over the l1 distance measure.
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5.7 Conclusion

In this Chapter we presented a probabilistic model for segmental sequences alignment. We

showed that a modified pair-HMM, in conjunction with a proper segment metric, can lead to

effective joint segmentation and segmental alignment. Our experimental results showed high

accuracy particularly when confronted with high levels of noise where DTW does not perform

well even after noise removal pre-processing. Additionally, the invariance to local permutation

has enabled our algorithm to perform well on non-causal signals. We also proposed a relaxation

over the original model which reduced the computational time. Especially when histograms

were used to represent the time-series we were able to prune the unnecessary computation

using bounds on histogram distance metrics.
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Chapter 6

Conclusion

Time-series retrieval is a central problem to many recognition tasks. Even though a fast time-

series retrieval technique is an essential part of many tasks, the correctness of such system is

of crucial importance. High levels of noise and other artifacts that might be added to a time-

series can make the problem even more difficult. Conventional similarity measures perform

sub-optimally when the signal is corrupted by excessive amounts of noise and local shuffling of

time samples. This results in an inferior performance of a time-series retrieval system.

In this work we introduced the concept of segmental alignment. We proposed to segment the

sequences into short sub-sequences and measure the distance of contrasting time-series based

on those segments. We proposed two methods for jointly realizing the segment boundaries and

measuring the similarity of two time-series.

The first method (IsoCCA) was an isotonic regression version of canonical correlation anal-

ysis (CCA). We modified the original objective of CCA to impose the convexity constraint on

the segments’ coefficients and thus measure the distance of two segments as the closest distance

of two convex-hulls. We further imposed another constraint to enforce the time monotonicity

in the segment level.

The second proposed method (SPHMM) was an extension of a probabilistic alignment

model, pair-HMM. We proposed a proper and efficient distance metric between segments. The

observation model of the HMM was changed to accommodate for the segments and an efficient

inference algorithm was proposed to jointly recover the segments and the likelihood of aligning

two time-series. To increase the computational efficiency, we proposed a relaxation to the origi-

nal model and combined it with a bounding method. The results showed superior performance

of our method compared to the state of the art in a broad range of applications and publicly

available datasets and benchmarks.

Choosing a similarity measure for time-series depends on the nature of the data and the

requirements of the application. Tables 6.1 and 6.2 summarize our conclusion on the choice of

similarity measure in a retrieval system based on the efficiency and accuracy. In Table 6.1, we
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Similarity Measure Misalignment Noise Local Non-causality

Euclidean Distance No No No

DTW/pair-HMM Severe Low No

LCSS/EDR/Swale Severe Moderate No

SM/Fast-SM Moderate Moderate Yes

IsoCCA/SPHMM Severe Severe Yes

Table 6.1: Qualitative comparison of similarity measures based on the time-series data
at hand.

Similarity Measure Time Complexity and Running Time

Euclidean Distance O(N)

Dynamic Programming O(NM)

IsoCCA O(max(N,M)3

min(N,M)2
)

SPHMM O(max(lx, ly)NM)

SM/Fast-SM O(max(lx, ly)NM)

Table 6.2: Comparison of similarity measures based on computational complexity. N
and M are contrasting time-series’ lengths. We have assumed the a pairwise distance
is pre-computed for all methods. lx and ly are maximum segment lengths in SPHMM.
SM and Fast-SM have the same worst case time complexity as SPHMM but their
running time is at least 3 times better than that of SPHMM. The running time of
IsoCCA is heavily dependent on the least square solver and the convergence rate of the
optimization.

have chosen three properties of a dataset and report our observations on the ability of different

similarity measures to deal with them. We have considered the severity of misalignment and

noise and presence or possibility of local non-causality. IsoCCA and SPHMM are the most

general algorithms and can cope with severe misalignment, noise and local non-causality. We

however, pay a price in terms of required computation for more sophisticated methods. The

computational complexity of alignment algorithms are summarized in Table 6.2. Segmental

Matching and Fast Segmental Matching have the same complexity as that of SPHMM but due

to pruning and relaxed model their actual running time is at least 3 times better than SPHMM.

Other considerations might also influence the choice of similarity measures when the dataset

contains millions of time-series. In that case one has to make sure that fast and tight lower

bounding methods exist for the similarity measure so that most of the comparisons need not to

be even computed.
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