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Cross-selective receptor arrays coupled with higher-order neural processing can be seen

in naturally occurring olfactory systems, where a large number and variety of analytes

can be detected, distinguished, even quantified using relatively few receptors and clever

combinatorial odor decoding. This strategy has been imitated in artificial sensor array

systems that are paired with computational signal-processing tools in diverse applications

that range from vintage wine year discrimination to disease diagnosis. However, the com-

plexity of receptor response patterns to even a single analyte, coupled with non-linearity

of response to mixtures of analytes, makes quantitative inference of individual compound

concentrations within mixtures a challenging task. In this work, I show how output from

two distinct types of sensor arrays, each combined with Bayesian analysis, can be used to

predict component concentrations in complex mixtures. In the first case, the array con-

sists of four engineered G-protein-coupled receptors used for deciphering mixtures of highly

related sugar nucleotides. We employ a biophysical model that explicitly takes receptor-

ligand interactions into account in order to quantify mixture constituents. Furthermore, we

develop a universal metric of receptor array performance, and use it to study the funda-

mental limits imposed on the accuracy of ligand recognition by the physics and biology of
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receptor-ligand interactions. This provides design guidelines for sensor arrays optimized for

mixture analysis. Antagonistic receptor response, well-known to play an important role in

biological systems, proves to be essential for precise recognition of mixture components. The

second array consists of a mixed-potential electrochemical sensor operating under different

applied bias currents to monitor gas mixtures in diesel engine exhaust. Here, the sensitivity

and selectivity of a device is tuned by current application, thus a single sensor serves as

an entire array when operated under multiple conditions. Both a linear and non-linear

model are used to quantify ammonia gas in the presence of propylene interference. While

more data-intensive, the nonlinear model captures cross-interference between analytes and

yields more accurate predictions. Our Bayesian methodology is easily generalized to other

‘artificial nose’ applications by the inclusion of additional models.
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Chapter 1

Introduction

Mammalian and insect olfactory systems are capable of recognizing tens of thousands of

odors – mostly organic compounds with diverse chemical structures and properties [1–4].

The olfactory tasks commonly faced by such systems include detecting odors, estimating

their strength, identifying their source, and recognizing one specific odor in the background

of another [5]. The sense of smell exhibits amazing sensitivity and discriminatory power,

distinguishing between closely related compounds and detecting vanishingly small odorant

concentrations [6]. Olfactory signaling is mediated by a superfamily of several hundred

G-protein-coupled receptors (GPCRs) – a significant fraction of the total number of genes

in many higher eukaryotes [7–11]. In mammals, GPCRs are located on the surfaces of

the cilia projected from olfactory receptor neurons (ORNs); typically receptors of only one

type are expressed in a given neuron [12] (Figure 1.1a). Odor recognition is combinatorial,

with one odorant activating multiple receptors and one receptor responding to multiple

odorants (Figure 1.1b) [12–16]. The resulting complex patterns of receptor activation enable

robust identification of many more odors than would have been possible with “lock and

key” receptors reacting to only one analyte. Moreover, several studies provide evidence for

widespread inhibitory responses in which receptors are antagonized by odorants [14,15,17–

20].

The idea of combinatorial recognition has been adapted to artificial arrays in which

multiple sensors with partially overlapping selectivities respond to a given analyte [22–25].

While the output of these cross-specific arrays in response to single compounds can gener-

ally be interpreted through pattern recognition algorithms [25–28], computational analysis

becomes more difficult when the array is presented with a mixture of compounds. Indeed,
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s

(a) (b)

Figure 1.1: Overview of olfactory system and the combinatorial scheme for coding odors.
(a) Schematic of the olfactory epithelium and olfactory bulb (adapted from [21]). Typically, one receptor is
expressed in each ORN. These receptors bind odorant molecules as the first step of signal transduction to
higher brain areas. (b) Adapted from [12]. An odorant can activate multiple receptors and each receptor
is capable of responding to multiple odorants. In this scheme, each receptor contributes a component of a
combinatorial code for discriminating a large number and variety of odorant molecules.

the non-linear nature of sensor responses to multiple ligands makes it hard to train discrim-

inatory algorithms on a “typical” subset of patterns. The non-linear dependence of sensor

output on ligand concentrations is generic in reporter systems and may be compounded by

potential binding interference of the two ligands, saturation of the sensor output [29] and, of

particular concern, potential antagonistic action of one ligand on another’s activity [19]. As

a result, responses to complex mixtures have primarily been used to “fingerprint” specific

mixtures rather than identify their constituents quantitatively [30–33]. There are relatively

few studies which focus on the quantitative analysis of mixtures: for example, Heilig et al.

used a single sensor and Fourier transformation techniques to analyze a binary mixture of

CO and NO2 [34], White et al. trained artificial neural networks to identify relative con-

centrations in binary mixtures [35], and Woodka et al. used a non-negative least squares

method to quantify the composition of analyte mixtures with up to five components [36].

In Chapter 2, we present a physical model of receptor-ligand recognition that explicitly

relates observed response patterns to component concentrations and receptor properties,



3

making it easier to quantify mixture constituents. We use Bayesian inference to predict

absolute concentrations of each ligand in arbitrary mixtures of uridine diphosphate (UDP)

sugar nucleotides applied to a combinatorial array of four GPCRs. We introduce RANSA

(Receptor Array Nested Sampling Algorithm), the software developed for calibration, in-

ference, and optimization of sensor arrays that was used throughout the work described in

this thesis. RANSA is freely available at http://olfaction.rutgers.edu.

In Chapter 3 we derive design principles that enable accurate mixture discrimination

with cross-specific GPCR-based sensor arrays. We find that optimal sensor parameters ex-

hibit relatively weak dependence on component concentrations, making a single designed

array useful for analyzing a sizable range of mixtures and that the maximum number of mix-

ture components that can be successfully discriminated is twice the number of receptors in

the array. Our in silico studies of sensor array design also reveal that antagonistic responses,

in which the receptor is bound by the ligand but there is no downstream reporter activity,

are necessary for precise recognition of mixture components. This conclusion provides a ra-

tionale for the widespread inhibitory responses observed in natural olfactory systems. The

work described in Chapters 2 and 3 was done in collaboration with James R. Broach and

Addison (Tad) D. Ault and was published in [37].

In Chapter 4 we turn our attention to solid-state electrochemical devices. Au/YSZ/Pt

(Au and Pt electrodes and Yttria-stabilized Zirconia electrolyte) sensors are a promising

technology for monitoring levels of nitrogen oxides and ammonia in diesel engine exhaust.

However, in addition to the target gases these sensors react to unburned hydrocarbons

present in the gas mixture. The observed crossinterference between target and non-target

gases cannot be fully mitigated by applying different bias currents to the sensor. On the

other hand, sensor sensitivity and selectivity towards various components of the mixture

depend on the bias current setting, allowing us to effectively create an array of sensors

by applying dfferent bias currents to the same device. We show how such an array can

be used to predict absolute concentrations of ammonia in the presence of propylene. The

procedure consists of two steps: the calibration step, in which the parameters of the model

are determined a priori in the laboratory setting, and the prediction step, which mimics

the deployment of the device in real-world conditions. We investigate a linear model, in

http://olfaction.rutgers.edu
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which response of the sensor to each gas is assumed to be additive, and a nonlinear model,

which takes interference between gases into account. We find that the nonlinear model,

although more complex, yields more accurate predictions. We also find that relatively few

sensor readings and bias current settings are required to make reliable predictions of gas

concentrations in the mixture, making our approach feasible in a variety of automotive and

other technological settings. In summary, we show that our methodology can be employed

with both biological systems and synthetic receptor arrays (“artificial noses”) designed for

various industrial needs. The work described in Chapter 4 was performed in collaboration

with the Electrochemical Sensors and Devices Group at Los Alamos National Laboratory

and is presented in the following manuscript: J. Tsitron, C.R. Kreller, P.K. Sekhar, R.

Mukundan, F.H. Garzon, E.L. Brosha, and A.V. Morozov, “Bayesian decoding of the am-

monia response of a zirconia-based mixed-potential sensor in the presence of hydrocarbon

interference,” which is currently in review.
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Chapter 2

Decoding output of GPCR-based sensor arrays

2.1 Biological implementation of the sensor array

Our sensor array is comprised of four engineered receptors (L-3, H-20, K-3 and 2211) with

distinct but overlapping specificities for four types of nucleotide sugars: UDP-glucose (UDP-

Glc), UDP-galactose (UDP-Gal), UDP-glucosamine (UDP-GlcNAc) and UDP. The recep-

tors were evolved in vitro from the human UDP-glucose receptor using directed mutagenesis

of the residues involved in ligand binding (see § 2.1.3) [38]. Nucleotide sugars and their

derivatives are key constituents in polysaccharide synthesis and other cellular processes.

Their structural similarity makes them a challenging target for array-based discriminatory

analysis. To assess receptor-ligand interactions quantitatively in our sensor array, we func-

tionally expressed the receptors in S.cerevisiae. To do so, we replaced the yeast pheromone

receptor with one of the sensor GPCRs in strains in which the pheromone response pathway

was modified to respond to the heterologous receptor by inducing transcription of the E.

coli lacZ gene [39]. In this fashion, the extent of GPCR activation following ligand addition

could be directly monitored as the level of β-galactosidase produced in the cell, which we

measured using a fluorescence-based assay (§ 2.1.4). Applying a mixture of nucleotide sug-

ars to the receptor array yields a complex pattern of responses of the four receptor-bearing

strains. The response of each receptor depends on the concentration of all components in

the mixture, on the receptor-ligand binding affinities, and on the efficacy with which each

ligand activates the receptor. Nonetheless, the contents of arbitrary nucleotide sugar mix-

tures can be deciphered using array readout as input to a physical model of receptor-ligand

interactions.
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Figure 2.1: Overview of the GPCR-based biosensor array. (a) Each receptor-ligand combination
is tested for functional activation, yielding 16 binding curves. For each curve, intensity normalized by the
maximum intensity on the plate is plotted against log

10
n (n is the ligand concentration in M). The error bars

on each curve are from four biological replicates. The single-receptor, single-ligand binding curves are used
to calibrate the physical model by inferring ∆G, A and b separately for each receptor-ligand combination.
(b) An unknown mixture of four ligands is applied to each of the four receptors. The resulting fluorescent
response curves together with the {∆G, A, b} predictions are used as input to the Bayesian algorithm designed
to predict absolute concentrations of each ligand in the mixture. R1: H-20, R2: K-3, R3: L-3, R4: 2211.
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2.1.1 Reagents.

UDP-glucose (UDP-Glc), UDP-galactose (UDP-Gal), UDP-N-acetylglucosamine (UDP-

GlcNAc), uridine diphosphate (UDP) and fluorescin (FDG) were purchased from Sigma-

Aldrich (St. Louis, MO).

2.1.2 Strains and plasmids.

Mutagenesis and selection were performed in yeast strain CY10560 (PF US1-HIS3

ade2∆3447 ade8∆3457 can1-100 far1∆1442 his3∆200 leu2-3, 112 lys2 sst2∆1056 ste14 ::

trp1 :: LY S2 ste18γ6-3841 ste3∆1156 trp1-1 ura3-52). β-galactosidase assays were per-

formed using yeast strain CY10981 (PFUS1-HIS3 can1-100 far1∆1442 his3∆200 leu2-

3, 112 lys2 sst2∆2 ste14 :: trp1 :: LY S2 ste3∆1156 trp1-1 ura3-52) carrying plasmid

Cp1021 (PF US1-LacZ 2µm URA3). The UDP-glucose receptor and 2211, H-20 and K-3

mutants were cloned as previously described [38].

2.1.3 Targeted mutagenesis and selection of functional receptor mutants

The L-3 mutant was isolated using a procedure similar to that previously employed with

the H-20 and K-3 mutants [38]: oligonucleotides with randomized sequences corresponding

to the codons to be mutagenized were utilized to generate overlapping PCR products.

The L-3 motif corresponds to amino acid residues LLxSA on TM7. Mutant libraries were

generated by gap repair using overlapping PCR products and transformed to media selective

for recombined plasmids. To select for functional mutants, libraries were replica-plated to

selective SC-His media [40] containing one of six ligands: UDP-Gal, UDP-Glc, UDP-galNAc,

UDP-GlcNAc, UDP or dTDP-glucose (50 µL of 1 mM solution spread on 30 mL of SC–Leu-

His agar medium in 8.5 cm Petri plates). Yeast growth media was supplemented by 1 mM

3AT, a competitive inhibitor of the HIS3 reporter gene product, which sets the threshold for

reporter gene activation. Functional receptor mutants that showed qualitatively disparate

responses to the panel of ligands were selected for further analysis. Among these, the H-20

and K-3 mutants, described earlier [38], and the L-3 mutant, described here, were selected

to be utilized alongside the 2211 “parent” in a four-receptor array for analysis of mixtures
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of UDP-Glc, UDP-Gal, UDP-GlcNAc and UDP.

2.1.4 β-galactosidase assays.

Our β-galactosidase assays were based on microtiter assays described previously [41]. Yeast

strains expressing each of the four mutant receptors were diluted to OD600 of ∼ 0.05 in

flasks. Cultures were then grown overnight in 100 mL selective media to an OD600 of

0.1−0.2. Serial dilutions of each ligand or mixture of ligands were prepared in yeast culture

medium in 96-well culture blocks. Ligands or mixtures of ligands were transferred in 20 µL

aliquots in quadruplicate to deep-well polypropylene 384-well plates using a BioMek robotic

liquid handler. 180 µL of suspended yeast cells in medium (undiluted from the overnight

cultures) were then aliquotted into each well and mixed. The cultures were sealed with foil

tape and incubated at 30◦C on a plate shaker at 400-500 rpm for 4 hours (H-20, K-3 and

L-3 receptors) or overnight (2211 receptor). After incubation, β-galactosidase substrate [41]

(FDG solution; 0.5 mM fluorescein di-beta-D-galactopyranoside, 2.3% Triton X-100, and

0.127 M Pipes, pH 7.2) was mixed with an equal volume of Pierce Y-PER solution (Thermo

Scientific) and distributed in 25 µL aliquots to black 384-well plates. 50 µL aliquots of the

yeast/ligand cultures were then transferred into the black 384-well plates and mixed gently

but thoroughly by pipetting, taking care to avoid generating bubbles. A single layer of

paper towel was placed on top of each plate and the plates were then individually wrapped

in aluminum foil and incubated without shaking at 37◦C for approximately one hour before

reading on an automated fluorescent plate reader (Perkin Elmer EnVision).

Microtiter plate-based assays are often subject to edge- or plate-bias due to uneven

heating or discrepancies in timing across a single plate or among plates. While no obvious

plate effects were seen, it is very difficult to control for all possible variations in a single

experiment. Due to the number of samples and the need to make efficient use of materials,

each of the mixture experiments was split across two plates per receptor. In mixtures

of equal proportions, samples containing UDP, UDP-Gal and UDP-GlcNAc but lacking

UDP-Glc were on Plate 1, while all mixtures containing UDP-Glc were on Plate 2. In the

UDP-Gal/UDP-Glc binary mixtures of unequal proportions, samples containing 90%, 80%

or 60% UDP-Glc were on Plate 1, while samples containing 40%, 20% or 10% UDP-Glc
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were on Plate 2.

For each single ligand or combination of ligands, a series of measurements was per-

formed at several values of the total concentration nl =
∑Nlig

i=1 nl
i (M): log10 nl =

{−3.0, −3.5, . . . , −6.5, −9.0} for H-20, K-3, L-3 and {−5.0, −5.5, . . . , −9.0} for 2211. The

total chemical potential µl = kBT log nl is then given by µl = µ −
∑l−1

i=1 ∆µi (l = 1 . . . N),

where N is the number of measurements in the series, ∆µl are known chemical potential

differences between two consecutive measurements, and µ = −3kBT log(10) is the chemical

potential at the 1 mM reference point. Note that in order to reconstruct the total chemical

potential for all points in the series, only µ needs to be predicted. Each series of measure-

ments was replicated four times; fluorescence counts were normalized to 1.0 separately for

each plate (Dataset.xls).

2.2 Physical model of the sensor array

2.2.1 Single-receptor, single-ligand model

We start with the simplest case in which a receptor interacts with a single ligand. We

assume that the observed signal in our receptor-bearing reporter strain is proportional to

the probability that the receptor is bound by the ligand. This proportionality value, A,

which we refer to as the receptor efficacy, can range from 1, for a full agonist, to 0, for a

full antagonist. Thus, for a single receptor interacting with a single ligand, the amount of

activation of the reporter in the receptor-bearing strain is given by eq. (2.1). Reporter acti-

vation measurements as a function of single ligand concentration are shown in Figure 2.1a

We use these data to estimate the parameters of eq. (2.1) (Figure 2.2a) and the amount

of experimental noise σ̃ for each single-receptor, single-ligand combination using Bayesian

inference with nested sampling [42] – a Bayesian Monte-Carlo (MC) technique that yields

an ensemble of models from which the average value of each parameter and its standard

deviation can be computed. Unlike other methods such as MC sampling of the product

of likelihood and priors, nested sampling allows us to keep track of the evidence, yielding

absolute values of the posterior probability. See Appendix A for details. The most likely

values of the parameters (Table B.1) are then used for subsequent evaluation of mixtures of
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compounds. The accuracy of parameter predictions depends on the range of concentrations

available for these calibration experiments (Figure B.1) and on the amount of experimental

noise (Figure B.2)

2.2.2 Multiple-receptor, multiple-ligand model

Once all receptor-ligand interaction parameters have been determined through the analysis

of single-ligand calibration experiments, we can proceed to interrogating mixtures of ligands

with receptor arrays. In considering the response of receptor-bearing strains to ligand

mixtures, we note that each ligand contributes to the overall receptor occupancy and that

each receptor molecule on the cell surface activates the reporter with an efficacy specified

by the ligand to which it is bound, which is often different for different ligands (Table B.1).

Assuming that all ligands bind competitively to the same site on the receptor, we model

the response of the receptor-bearing strain to mixtures of compounds by calculating the

total intensity as a sum of fractional occupancies of the receptor by each ligand weighted by

the corresponding efficacies (eq. (2.6)). We treat each of the receptor-bearing strains with

an unknown mixture, sequentially diluted to provide a series of samples across a million-

fold range of concentrations (Figure 2.1b) We carry out Bayesian inference for the entire

receptor array, predicting the total concentration of all ligands and the concentration ratios

of ligand pairs (Figure 2.2b). From these values we can deduce the absolute concentration

of each ligand in the mixture.

2.3 Mathematical details of receptor-ligand binding models; Bayesian

formalism

2.3.1 Single-receptor, single-ligand

For a single receptor interacting with a single ligand, we model the normalized reporter

fluorescent intensity as:

I l(∆G, A, b) = A
e−β(∆G−µl)

1 + e−β(∆G−µl)
+ b, (2.1)
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where A is the receptor efficacy, b is the background intensity (a small amount of background

fluorescence observed in the absence of ligand binding), ∆G is the free energy of receptor-

ligand binding, β = 1/kBT (kB is the Boltzmann constant, and T is the temperature), and

µl is the chemical potential.

We compute the log-likelihood of the data by assuming that fluorescence measurements

are Gaussian-distributed around values from eq. (2.1):

L = log P ({Ĩ}|∆G, A, b, σ̃) = −
1

2σ̃2

N
∑

l=1

[

I l(∆G, A, b) − Ĩ l
]2

−
N

2
log(2πσ̃2), (2.2)

where Ĩ l (l = 1 . . . N) are measured intensities and σ̃ is the noise parameter. The log-

likelihood is used to estimate the posterior probability of all model parameters according

to the Bayes’ formula [42]:

P (∆G, A, b, σ̃|{Ĩ}) =
P ({Ĩ}|∆G, A, b, σ̃)P (∆G)P (A)P (b)P (σ̃)

P ({Ĩ})
, (2.3)

where on the right-hand side the likelihood from eq. (2.2) is multiplied by the product

of priors for each model parameter and divided by evidence. {Ĩ} combines data from all

experimental replicates. We use uniform priors (invariant with respect to translations,

x → x + a):

P (x) =











1/(xmax − xmin) if x ∈ [xmin, xmax],

0 otherwise
(2.4)

for ∆G, A and b, and Jeffrey’s priors (invariant with respect to rescaling, x → ax) for σ̃:

P (x) =











1/(x log(xmax/xmin)) if x ∈ [xmin, xmax],

0 otherwise
(2.5)

We have used (∆Gmin, ∆Gmax) = (−20.0, 5.0) kcal/mol, (Amin, Amax) = (0.0, 1.0),

(bmin, bmax) = (0.0, 1.0), (σ̃min, σ̃max) = (0.001, 100.0) in our calculations.

2.3.2 Single-receptor, multiple-ligands

The reporter response to a mixture of ligands is given by

I l
k =

Nlig
∑

m=1

Ak
mpk,l

m + bk, (2.6)
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where pk,l
m = e−β(∆Gk

m−µl
m)/Zk,l is the probability that receptor k is bound by ligand m

and Zk,l = 1 +
∑Nlig

i=1 e−β(∆Gk
i −µl

i) is the partition function. ∆Gk
m is the binding free energy

between receptor k and ligand m (k = 1 . . . Nrec, m = 1 . . . Nlig), Ak
m is the efficacy, and bk

is the background intensity. The background intensity for receptor k is the average from all

calibration experiments involving that receptor. µl
m = kBT log nl

m is the chemical potential

of ligand m, which can be expressed through the total chemical potential µl and the relative

concentrations αm = nl
m+1/nl

1 (∀l, m = 1 . . . Nlig − 1):

µl
1 = µl + kBT log

1

S
,

µl
m = µl + kBT log

αm−1

S
, m = 2, 3, . . .

(2.7)

where S = 1 +
∑Nlig−1

i=1 αi. Note that an arbitrary choice of the ligand in the denominator

leads to several equivalent representations of the relative concentrations.

2.3.3 Multiple-receptors, multiple-ligands

The log-likelihood of the observed pattern of fluorescence intensities from multiple receptors

interrogated by a mixture of ligands is given by

L = log P ({Ĩ}|{α}, µ, {σ̃}) = −
Nrec
∑

k=1







1

2σ̃2
k

Nk
∑

l=1

[I l
k({α}, µ) − Ĩ l

k]2 +
Nk

2
log(2πσ̃2

k)







. (2.8)

Here I l
k({α}, µ) is defined in eq. (2.6) (in the interests of brevity, we suppress its dependence

on {A, b, ∆G} for each receptor-ligand combination). Ĩ l
k denotes fluorescence measured for

receptor k at the total chemical potential µl, Nk is the total number of measurements, and σ̃k

is the noise parameter. Similarly to eq. (2.3), the log-likelihood is used to estimate the pos-

terior probability P ({α}, µ, {σ̃}|{Ĩ}). We employ a uniform prior for µ with (µmin, µmax) =

(−10.0, −2.0) and a Jeffrey’s prior for α’s with (αmin, αmax) = (0.0001, 100.0).

2.4 Tests (and results) of the physical model

We have tested our approach using a series of assays in which a known combination of ligands

was applied to the receptor-bearing strains. As an initial test, we mixed equal proportions

of two, three and four ligands in all possible combinations and predicted absolute ligand
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concentrations. We used a model in which four ligands interacted with four receptors, even

if only one, two or three ligands were actually present in the mixture. As can be seen in

Figure 2.3 and Table B.2, our approach is generally quite successful in identifying both zero

and non-zero ligand concentrations in the mixtures. For example, with single ligands and

binary mixtures the correct chemical or pair of chemicals is predicted to have the highest

concentrations in all 10 cases. However, the inference is consistently less accurate with

UDP-containing mixtures, due in part to larger errors in the predicted total concentration.

Thus UDP-related efficacies and binding free energies are less optimal than those of other

ligands, as will be demonstrated in detail below.

Our second test involved combining UDP-Glc and UDP-Gal in several unequal propor-

tions and applying the resulting mixture to the four-receptor array (Figure 2.4 and Ta-

ble B.3). As before, we use a four-ligand model, which should predict zero concentrations

for UDP-GlcNAc and UDP. The predicted values of α1= [UDP-Glc]/[UDP-Gal] show that

the ratio of [UDP-Glc] to [UDP-Gal] is successfully ranked in all cases except for the 60/40

and 40/60 mixtures. Apart from the excessive values of α2= [UDP-GlcNAc]/[UDP-Gal]

in the 90/10 and 80/20 cases, which are nonetheless not as large as α1, concentrations of

all ligands absent from the mixture are correctly inferred to be close to zero. We obtain

similar results with the alternative definition of α’s (α1= [UDP-Gal]/[UDP-Glc], etc.) (Ta-

ble B.4), showing that our approach is not overly sensitive to the arbitrary definition of

relative concentrations.

Increasing the number of receptors should improve prediction accuracy by providing

additional information about the mixture. To see the extent of these improvements, we

have used a variable number of receptors to infer component concentrations in six equal-

proportion mixtures of two nucleotide sugars from Figure 2.3 (Figures 2.5 and B.3). As

expected, the errors rapidly get smaller as the number of receptors is increased, making

larger arrays unnecessary. Surprisingly, in several cases adding extra receptors makes the

errors somewhat worse before they become better again (see e.g. the R3 and R3/R4 error

bars in the UDP + UDP-Gal α1 panel of Figure B.3, indicating that the noise in the new

data outweighs the benefit of additional measurements.
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Figure 2.3: Prediction of ligand concentrations in equal-proportion mixtures. We used
nested sampling of a four-receptor, four-ligand model to estimate means and standard deviations for the
relative concentrations of all ligands in the mixture and the total ligand concentration at the 1 mM reference
point (see § 2.1.4)These predictions were converted into absolute concentrations (mM) for each ligand at the
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As evident from the activation profile of each receptor in response to each ligand (Fig-

ure 2.1a), the receptors differ from each other in fairly subtle ways. In particular, different

ligands do not invoke markedly orthogonal profiles of receptor responses. Nonetheless, even

with this suboptimal array design, our algorithm provides accurate identification of ligands

present in a mixture and a reasonable assessment of the relative amounts of each.
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Chapter 3

Optimization of sensor array performance

3.1 Hessian analysis

Our Bayesian approach estimates posterior probabilities for the concentration of each com-

ponent in an arbitrary mixture. With sufficient data, variation of the posterior probability

with model parameters is determined by the corresponding log-likelihood (eq. (2.8)), which

can be visualized as a multidimensional landscape. The global maximum on this landscape

corresponds to the model that best describes the data, while the curvature at the maximum

shows how sensitive the likelihood is to the change in each parameter. Narrow peaks result

in precisely defined parameter values, whereas wide plateaus yield many nearly equivalent

predictions and therefore sizable uncertainties in parameter estimates. Expanding the log-

likelihood in the vicinity of its maximum yields a Hessian matrix (eq. (C.2)), which contains

information about standard deviation σi of each model parameter γi (eq. (C.4)) [44]. For

example, if the observed receptor response does not depend on γi, zero entries appear in

the Hessian, leading to the infinite uncertainty σi. Making all Hessian matrix elements

uniformly larger leads to the smaller σi for each predicted parameter γi.

Hessian analysis relies on the quadratic expansion in the vicinity of the log-likelihood

maximum and hence it is important to check how well it captures the behavior of the more

general but computationally intensive nested sampling approach. To create a test case

for which the answer is known, we have used eq. (2.6) to generate synthetic data for 15

equal-proportion mixtures from Figure 2.3 in the low-noise limit (σ̃ = 0.01 for all recep-

tors, several times smaller than experimental values from Table B.1). We observe close

correspondence between parameter uncertainties inferred from nested sampling vs. Hessian

analysis (Figure D.1). Moreover, since larger uncertainties make it easier for the average
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values of predicted parameters to be incorrect, there is also correlation between Hessian er-

rors and the absolute differences between mean predicted and true values (Figure D.2). The

Hessian-based approach remains useful when experimental data, for which the precise model

is unknown and the noise is substantially higher (Table B.1), is analyzed in the same way:

the average over 4 correlation coefficients between Hessian errors and standard deviations

from nested sampling (computed for α1, α2, α3 and log10 n) is 0.85, and the average over 4

correlation coefficients between Hessian errors and absolute differences between predicted

and true values is 0.69. In both real and synthetic cases, the Hessian matrix was computed

with correct relative and total concentrations and {∆G, A, b} values from Table B.1. We

conclude that Hessian errors are a reasonable measure of sensor array performance.

Not all receptors are equally good candidates for inclusion into biosensor arrays – for

example, receptors with similar sets of efficacies and binding affinities should be less useful

than receptors with more orthogonal binding and activation patterns. Here we make such

qualitative insights precise by developing a Hessian approach to biosensor array design.

That is, given a certain number of measurements with an array of fixed size (typically, a

series in which the total concentration is changed step-by-step within a certain range), we

wish to derive the most optimal choice of receptor properties for deciphering the mixture.

From the Hessian point of view, the best array will have the smallest errors in predicting

component concentrations (eq. (C.4)). Because each error is inversely proportional to the

determinant of the Hessian, we maximize the determinant instead of minimizing the errors

directly. Similarly to the prediction of constituent concentrations, the maximization is

carried out by nested sampling [42]. In general, the most optimal receptor parameters and

their robustness will depend on the relative concentration of each component in a mixture

and on the number of measurements made with the array. For example, an array fine-tuned

to detect small admixtures of compound B in the background of compound A may function

less well if the concentrations of A and B become approximately equal.

3.2 Optimal parameters for single-receptor, two-ligand system

To demonstrate our approach, we first optimize parameters of a single receptor discrimi-

nating a mixture of two ligands. By maximizing the determinant of the Hessian, in this
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case a 2 × 2 matrix, as a function of two efficacies and two binding energies, we find that

the best discrimination is achieved if one ligand acts as an agonist and the other as an

antagonist: A1 = 1 and A2 = 0 or A1 = 0 and A2 = 1 (for simplicity, background inten-

sities were set to 0 in all sensor array designs). Although in both cases each ligand binds

strongly to the receptor, there is a unique set of optimal binding energies ∆G1 and ∆G2 for

each agonist-antagonist scenario (Figures 3.1 and 3.5a). The actual values of the binding

energies depend on the relative concentration α; for unequal ligand concentrations the two

{∆G1, ∆G2} sets will in general be distinct. This is not surprising since exchanging ligand

labels amounts to exchanging relative concentrations of the agonist and the antagonist in

the mixture. The height of the peak in both determinant landscapes is the same, indicating

that the two alternative solutions lead to equally acceptable array designs as long as the

∆G’s are tuned appropriately.

The fine-tuning of binding energies is not necessary if either the total concentration

log10 n is known and the task is to minimize the error in predicting the relative concentra-

tion α, or vice versa (Figures 3.1 and 3.2). The single-peak landscape structure appears

only if the absolute concentrations of both components need to be predicted together. Strik-

ingly, simultaneous prediction of the total and relative concentrations is impossible with the

agonist-agonist receptor response (Figure 3.3). See Appendix C.1 for details.

The dependence of the optimal binding energies on the value of α is fairly weak (Fig-

ure 3.4). Thus one set of ∆G’s optimized for a specific value of α provides a near-optimal

solution for a sizable range of ligand concentrations.

3.3 Design of multiple-receptor, multiple-ligand arrays

The agonist-antagonist pattern observed in the one-receptor, two-ligand case plays the role

of a basic building block when two or more receptors interact with multiple ligands: nested

sampling maximization of the Hessian determinant with respect to binding energies ∆G

and efficacies A reveals that the array as a whole performs best if each receptor binds one

agonist and one antagonist. For example, in the two-receptor, four-ligand case (Nrec = 2,

Nlig = 4) receptor 1 strongly binds ligands 1 and 3 with A1 ≃ 1 and A3 ≃ 0, whereas
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agonist case, plotted as a function of binding energies ∆G1 and ∆G2 in the one-receptor, two-ligand
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receptor 2 strongly binds ligands 2 and 4 with A2 ≃ 0 and A4 ≃ 1 (Figure 3.5b (i)).

Each ligand preferentially binds to only one receptor. When another receptor is added to

the array, the optimal binding and activation pattern becomes strikingly different: each

receptor once again binds both an agonist and an antagonist but ligand 1 now acts as an

antagonist to all three receptors (Figure 3.5b (ii)). Each of the other three ligands is an

agonist to one of the receptors. In the Nrec = 4, Nlig = 4 case each ligand is an agonist for

one receptor and an antagonist for another (Figure 3.5b (iii)). Once again, each receptor

binds both an agonist and an antagonist. The determinant of the Hessian is dominated

by these agonist-antagonist patterns, and is less sensitive to the changes in efficacies and

binding energies that do not affect them.

In light of the observed agonist-antagonist behavior, it is not surprising to see that

each receptor can identify concentrations of at most two ligands (Figure 3.5c, blue dots).

The uncertainty in predicting components of the mixture is minimized if for every receptor

one ligand binds strongly as a full agonist and another as a full antagonist. As we have

seen, when receptor parameters are less than optimal, the discrimination is still possible

but additional receptors may be required: three or four rather than two in the four-ligand

case (Figures 2.5 and B.3). If we eliminate the agonist-antagonist degree of freedom by

setting all efficacies to 1, discriminating Nlig requires twice as many receptors (Figure 3.5c,

red dots). In this case each receptor is strongly bound by only one ligand, measuring its

concentration independently of the other members of the array. Having access to the full

range of receptor responses makes it possible to double the number of ligands in the mixture,

but the relationship between Nrec and Nlig remains linear.

3.4 Symmetry properties of optimal sensor arrays

The patterns shown in Figure 3.5b are not unique – indeed, alternative agonist-antagonist

patterns can be generated simply by exchanging receptor labels. Less trivially, a given

ligand can be an agonist or an antagonist for different combinations of receptors. In the

simplest case of one receptor interacting with two ligands, this symmetry generates two

equivalent global maxima discussed above: A1 = 0, A2 = 1 and A1 = 1, A2 = 0 (Figure 3.5d

(i)). In the two-receptor, three-ligand case symmetry arguments combined with extensive
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Figure 3.5: Optimal design of receptor arrays. (a) Determinant of the Hessian in the one-receptor,
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sampling yield three global maxima of the Hessian determinant. Each global maximum

corresponds to the situation where one of the three ligands acts as an antagonist to both

receptors (Figure 3.5d (ii)). The red arrow in Figure 3.5d (ii) indicates a trivial exchange of

receptor labels, whereas the black arrows connect three different globally optimal solutions.

In addition, there are 9 local maxima with one of the ligands acting either as an agonist

to both receptors, or as an agonist to one receptor and an antagonist to the other (e.g.

Figure 3.5d (iii); see Appendix C.3 for a complete enumeration).

In general, Nrec × Nlig ∆G’s are necessary to characterize all the global and local peaks

on the Hessian determinant landscape, with 2Nrec binding energies describing any given

agonist-antagonist pattern. The values of the binding energies depend on the component

concentrations in the interrogated mixture. In the Nlig = 2Nrec case all maxima are global

and each receptor interacts with two unique ligands. To estimate the benefit of additional

receptors, we increased the number of receptors from two to three to four in the four-ligand

case (Figure 3.5d (iv), (v), (vi)). After adding the third receptor the average uncertainty

of one total and three relative concentrations, 〈σ2
i 〉, decreased from 0.439 to 0.125. How-

ever, only a slight gain was seen when the fourth receptor was added, with 〈σ2
i 〉 becoming

0.101. Thus adding more and more receptors to the array yields increasingly marginal

improvements after a certain threshold.

The agonist-antagonist rules described above create readout patterns that are not a

simple sum of array responses to single-ligand binding. For one receptor optimized to dis-

criminate two ligands (Figure 3.5d (i)), fluorescent response to the mixture is intermediate

between full activation by the agonist and full repression by the antagonist (Figure 3.6a).

This intensity modulation provides enough information for decoding the contents of the

mixture. Similarly, in the two-receptor, three-ligand case (Figure 3.5d (ii)) a mixture of all

three ligands induces a response with intermediate fluorescense levels (Figure 3.6b). This

pattern is distinct from those induced by single ligands and by binary mixtures with the

same relative concentrations as in the three-ligand case.
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(normalized to 1.0) corresponding to log

10
n = −3.0. Nlig = 2: α = 0.25; Nlig = 3: α1 = 10−4, α2 = 0.5

(leading to α = 10−4, 0.5 and 5 × 103 for the binary combinations of ligands 1-2, 2-3 and 1-3, respectively).
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3.5 Performance analysis and improvement of the experimental biosensor

array

The design guidelines described above can be used to predict which parameter changes

lead to most significant improvements in performance compared to our currently imple-

mented array. Although we do not have direct experimental control over the values of A

and ∆G, such insights are useful e.g. for choosing the best combination of several recep-

tors from a larger library. Familiar agonist-antagonist patterns emerge when ∆G’s and A’s

are optimized either separately or together to discriminate an equal-proportion, four-ligand

mixture (Figure 3.7). In particular, if A’s are kept fixed, ∆G’s for the most distant pair

of A’s become more favorable for each receptor, creating an agonist-antagonist pair (Fig-

ure 3.7c). Conversely, if ∆G’s are fixed, the values of A corresponding to the two lowest

∆G’s become more distant from each other (Figure 3.7d). Not surprisingly, the agonist-

antagonist patterns are even more pronounced if both ∆G’s and A’s are allowed to relax

(Figure 3.7e and Figure 3.7f). Because two and certainly three optimized receptors are

sufficient for discriminating four-ligand mixtures (Figure 3.5c), the fourth receptor, which

does not follow the usual pattern as strongly as the other three, appears to be superfluous.

Similarly to the cases shown in Figure 3.5d, Figure 3.7e and Figure 3.7f represent only

one solution from a large family of local and global maxima of the Hessian determinant,

which are related by permutations of receptor and ligand indices. Optimizing receptor-

ligand parameters leads to a sizable improvement in array performance: with σ̃ = 1 for all

receptors, σµ = 2.64, σα1
= 5.46, σα2

= 16.47, σα3
= 3.19 for the original array, whereas

σµ = 0.69, σα1
= 0.68, σα2

= 0.95, σα3
= 0.68 for the array in which both A’s and ∆G’s

have been optimized.

For the experimentally implemented four-receptor GPCR array, nested sampling er-

rors are consistently larger when UDP is present in the mixture (Figure 2.3, Table B.2).

This observation is consistent with Hessian analysis: for example, the average Hessian un-

certainties for three UDP-free binary mixtures are 〈σµ〉 = 0.77, 〈σα1
〉 = 6.12, 〈σα2

〉 =

11.09, 〈σα3
〉 = 0.0002. For three UDP-containing binary mixtures, the average Hessian

errors are 〈σµ〉 = 19.09, 〈σα1
〉 = 5.57, 〈σα2

〉 = 113.44, 〈σα3
〉 = 57.72 (as before, all Hessian
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Figure 3.7: Improving performance of the experimentally implemented sensor array. Free
energies ∆G (a) and efficacies A (b) in the experimentally implemented sensor array with parameters from
Table B.1. Free energies ∆G (c) and efficacies A (d) from two sensor arrays in which the determinant of
the Hessian was maximized only with respect to ∆G’s and A’s, respectively. Free energies ∆G (e) and
efficacies A (f) in the optimal sensor array in which the determinant of the Hessian was maximized with
respect to both ∆G’s and A’s. The determinant was computed using four replicates of an equal-proportion
mixture of four ligands and σ̃ = 1 for all receptors. For each receptor, concentrations were taken from the
corresponding experiment (§ 2.1.4). In panels a-d, the order of ligands is L1: UDP, L2: UDP-Gal, L3:
UDP-Glc, L4: UDP-GlcNAc. The order of receptors is R1: H-20, R2: K-3, R3: L-3, R4: 2211. Note that
ligand and receptor identities are lost in panels e,f since all parameters have been optimized.
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errors are computed with correct concentrations and σ̃ = 1 for all receptors). The Hessian

determinants are also consistently smaller for UDP-containing binary mixtures. These ob-

servations indicate that UDP parameters are further away from the optimal four-receptor

array designed to analyze an equal-proportion binary mixture: either A’s or ∆G’s need to

be changed in order to create stronger agonist-antagonist patterns.

3.6 Discussion

We have developed a Bayesian algorithm that allows determination of all the constituents

in an unknown mixture from the output of a cross-specific sensor array. Our algorithm

employs a physical picture of sensor-analyte interactions to model the non-linear relationship

between ligand concentrations and the reporter response. After appropriate calibration of

each sensor’s response to each analyte of interest, the algorithm interprets the integrated

output of the entire array and, with a sufficient number of variably tuned sensors, reliably

returns the amount of each chemical in a complex mixture.

We also provide quantitative guidelines for designing optimal sets of sensors. Three

general principles emerged from our computational and theoretical studies of array de-

sign. First, the optimal parameters of the sensors exhibit weak dependence on the relative

amounts of compounds in a mixture. Thus a given set of optimal sensors will remain near-

optimal through a sizable range of ligand concentrations. Nonetheless, analyzing a mixture

where both compounds are present in roughly similar amounts is better accomplished with

a set of sensors different from those fine-tuned to measure a small amount of one compound

in the presence of a large excess of the other.

Second, the maximum number of ligands in a mixture whose levels can all be determined

simultaneously is simply twice the number of sensors in the array. This linear relationship

is different from the exponential relationship between ligands and receptors in olfactory

systems [4, 12]. The problem addressed by the olfactory system, to recognize a very large

number of individual odors with a limited repertoire of receptors, is not the same as that

solved by our algorithm, to determine all the constituents in a complex mixture. In fact,

even the most skilled human nose can simultaneously detect and distinguish no more than
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a handful of odorants.

Third, the optimum design of receptors for the array demands that one of the ligands

function as a strong agonist of a receptor and a second ligand as a strong antagonist of

that receptor. Antagonists sharpen the discriminatory powers of the array by heightening

the differences in the receptor response to individual compounds. As a result, a mixture

of chemicals produces an array readout which is not a superposition of responses to indi-

vidual ligands, and whose intensity pattern may be fine-tuned for maximum recognition

through receptor-ligand binding energies. Accordingly, odors that function as antagonists

to a subset of olfactory receptors could potentially increase the discriminatory power of the

olfactory system, and in particular enable it to resolve mixtures that contain those odors.

Recent analysis of olfactory receptors suggests that some odorants do possess antagonist

activity [14, 17–20]. Our theoretical framework provides a rationale for the existence of

such antagonists and underscores their role in both olfactory systems and artificial receptor

arrays.
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Chapter 4

Another application: RANSA used to mitigate hydrocarbon

interference when targeting ammonia gas with a

mixed-potential sensor array

4.1 Motivation

The potential health consequences resulting from exposure to diesel engine exhaust have

been well documented; these transportation-related pollutants are responsible for a number

of negative health and environmental impacts [45,46]. However, new studies have shown that

recently strengthened federal requirements governing diesel engines of new manufactured

heavy-duty diesel vehicles have resulted in major cuts in emissions of particulate matter

(PM) and nitrogen oxides (NOx) [47]. After implementation of new standards in the US in

2010, the NOx and PM emissions from the diesel vehicles studied had been reduced upwards

of 98% and 95% respectively per gallon of diesel fuel [47]. These reductions stem from the

use of selective reduction catalyst (SRC) [48,49] and exhaust gas recirculation (EGR) [50,51]

systems paired with regenerative particulate traps [52] located in the exhaust systems of

heavy-duty diesel trucks. With SRC type systems, an ammonia source is provided by the

on-board storage of diesel exhaust fluid, typically a mixture of urea and de-ionized water.

SRC systems also incorporate limited EGR.

In contrast, the enhanced-EGR (EEGR) approach uses extensive exhaust gas recircula-

tion in order to deprive the combustion event of oxygen by introducing cooled exhaust gas

into the intake system and therefore does not use, or require, urea for on-board ammonia

generation [53]. Both systems rely on particulate traps to reduce PM emissions; the traps

are regenerated periodically on-board by injection of diesel fuel at elevated temperatures.

The inclusion of PM filters and traps made necessary the transition to ultra-low sulfur lev-

els in diesel fuels to prevent excessive PM formation and premature clogging. The EGR
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approach to reducing NOx emissions has a greater negative impact on overall diesel fuel

efficiency since more particulates are produced by design in order to reduce NOx forma-

tion within the combustion chamber and thus the PM traps must be regenerated more

frequently. SRC systems, on the other hand, may offset added weight and extra system

costs and complexity by offering greater fuel savings. The exact approach used by vehicle

manufacturers is left to their discretion.

Despite these recent advances, there remains a demand for suitable exhaust gas sensor

technologies to monitor tailpipe emissions and to control and maintain efficient operation of

SRC and EGR systems [54]. For example, uncontrolled ammonia injection into the SRC can

cause more serious air pollution than excess NOx resulting from the combustion event [55].

Ideally, implementation of closed-loop systems that keep ammonia use close to stoichiometry

in SRC systems in order to monitor tailpipe-out NOx emissions and insure regulatory

compliance is desired [54–57]. However, the development of successful sensors for diesel

applications has lagged in comparison to the advances made in the implementation of oxygen

lambda sensors for on-board diagnostics (OBD-II) of emission systems [58] that have become

mandatory for gasoline, spark-ignition vehicles. Because of the successful implementation

of robust, zirconia-based mixed-potential electrochemical sensors for gasoline engine control

and OBD in conjunction with three-way catalytic converters, derivatives of this technology

for diesel applications naturally attract considerable interest. However, the implementation

of the diesel analogue to OBD has proved to be more complicated.

Mixed-potential sensors are electrochemical devices that measure the non-Nernstian

potential of a mixture of gases, where the mixed potential is fixed by the rates of dif-

ferent electrochemical reactions occurring simultaneously at an electrode/electrolyte inter-

face [59, 60]. The employment of electrode materials that possess varying electro-catalytic

activities towards the redox half reactions has been shown to further increase the mixed-

potential response. Leveraging the success of commercial zirconia sensors, NOx [61, 62]

and NH3 [63, 64] sensors based on non-equilibrium electrochemical principles have been

investigated; however, commercialization of this technology has been hindered by its poor

reproducibility and stability [65, 66]. Because the mixed-potential response is highly de-

pendent on the kinetics of electrochemical reactions occurring at each electrode, stable
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electro-active areas are required to maintain a constant sensor response over the lifetime

of the device. Additionally, device sensitivity is improved by minimizing the amount of

heterogeneous reactions occurring prior to the analyte gas reaching the electrochemical in-

terface [67, 68]. To address these issues, the Electrochemical Sensors and Devices Group

at Los Alamos National Laboratory (LANL) has developed a patented sensor design that

incorporates dense electrodes and porous electrolytes in bulk [68–70], thin film [71,72], and

tape cast forms [73] (Figure 4.1). By using dense electrodes, heterogeneous catalysis is re-

duced, increasing sensitivity, and the increased morphological stability of dense electrodes

yields a robust electrochemical interface, increasing lifetime durability.

In general, the scientific community has addressed only some of the various issues with

electrochemical sensors such as accuracy, temperature-dependent sensitivity, response time,

sensor drift (baseline and signal), flow-rate dependence, poisoning from fuel constituents,

cross-sensitivity, and thermal cycling durability and shock. Cross-sensitivity to non-target

chemical species within a diesel emission system is an area of concern that this work

specifically focuses on. Existing commercial solid-state electrochemical technology (Au and

Pt electrodes and Yttria-stabilized Zirconia (YSZ) electrolyte) exhibits significant cross-

sensitivity to hydrocarbons (HCs) when exposed to a complex gas mixture of diesel engine

exhaust [74]. In this study, we investigate how the application of small bias currents to

Au/YSZ/Pt mixed-potential sensors (Figure 4.1) may be used to address this issue. Prior

studies have shown that sensor selectivity and sensitivity to a given analyte may be tuned

by using current biasing [72,75–77]. Although the response of the Au/YSZ/Pt sensor used

in this study towards both the target gas, NH3, and HCs is strongly influenced by cur-

rent biasing, we find that cross-interference effects cannot be entirely eliminated with this

method.

Here we focus on detecting NH3 in the presence of propylene (C3H6) as an HC interfer-

ence. Since the sensor reacts to both interfering and target gases regardless of the magnitude

of the bias current, the presence and concentration of NH3 in the gas mixture cannot be

straightforwardly deduced from the sensor output. Thus we employ Bayesian inference tech-

niques [42] to analyze sensor readouts. In order to achieve robust predictions, we use an
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array of sensors, each under a different bias current and thus exhibiting differential sensitiv-

ity to NH3 and C3H6. The array-based approach is reminiscent of mammalian and insect

olfactory systems in which, as a rule, several kinds of olfactory receptors respond to a given

analyte [2, 4]. Similar principles have been employed to create cross-reactive synthetic sen-

sor arrays, whose output is typically analyzed using pattern-recognition algorithms [22,24].

We have previously developed a Bayesian framework which explicitly takes receptor-ligand

interactions into account, and applied it to infer concentrations of four highly related sugar

nucleotides from the output of four bioengineered G-protein-coupled receptors [37,78]. Here

we apply a similar methodology to deduce NH3 and C3H6 concentrations simultaneously,

using readouts from an array of mixed-potential sensors as input. We also study the accu-

racy of our predictions as a function of the number of sensors in the array and the number

of independent measurements. This allows us to deduce the minimal set of requirements

for deployment of our sensor system in real-world conditions.

4.2 Preparation of sensors

Mixed-potential sensors based on 8 mol% yttria stabilized zirconia (Tosoh TZ-8YS, Japan)

and dense, metal wire electrodes (Au, Pt) with preferential selectivity to ammonia were

fabricated using a tape cast approach. A detailed description of the LANL method for

preparation of stable, reproducible mixed-potential sensors has been published elsewhere

[73,79]. Briefly, the YSZ electrolyte powder was dried in air at 100−150◦C for approximately

one hour. The dried powder was mixed with solvents xylene, ethyl alcohol and fish oil

(Blown Menhaden) and ball-milled for 24 hours. Plasticizers and binders (S-160 butyl

benzyl phthalate, polyalkylene glycol and polyvinyl butyral) were then added to the mixture,

which was further ball-milled for 24 hours. The mill was then discharged and de-aired for

approximately 10 minutes at the reduced pressure of 20-25” of mercury. Prior to casting

of the electrolyte slip, pieces of pure Au and Pt wire (0.01” in diameter) were cut into

1” lengths and straightened. Alternating pairs of Au and Pt were stuck to tape such

that the spacing between wire pairs was fixed; each set of Au/Pt electrode pairs would

constitute a single device. This time-saving approach facilitated handling the electrodes

during the upcoming time-critical portions of sensor forming process, while maintaining the
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same electrode separation and eventually the same electrode penetration depth into the

solid electrolyte. After de-gassing, the slurry was cast onto a Si-coated Mylar (G10JRM)

carrier film using a standard doctor blade apparatus with a gap of approximately 0.05” to

0.2”.

Once the tape was cast, it was allowed to partially dry for several minutes. This resulted

in a tape that was dry on the outside (facing air) but wet on the inside (in contact with the

carrier film). This tape was then turned upside down, exposing the wet side to air while

the dry side was in contact with the carrier film. The pre-fabricated electrode pairs were

placed on top of this wet tape such that a length of 7.5 mm of each wire was embedded

in the electrolyte. The tape was folded onto itself in order to enclose the electrodes within

the electrolyte. The remaining portions of the wires were left uncovered and exposed to

air, and would eventually serve as both electrode and signal-out leads attached to the data

acquisition system.

Next, the electrolyte tape with the partially enclosed electrodes was allowed to air-dry

fully, forming a mechanically stable, green sensor body (the green sensor body refers to

the unsintered and flexible form of the tape before it is heated to a high temperature to

densify). Individual sensors were cut from the green tape using a razor. The tape used

to fix the electrode gap and to facilitate handling during the sensor-forming procedure

was then removed, and the sensor green bodies were placed into an aluminum boat and

transferred to a tube furnace for removal of the organics and sintering using a multistep

temperature profile. While previous sensor work of this nature conducted at LANL showed

sensor response characteristics such as level of response and response time to be dependent

on sintering temperature, [67] the use of gold electrodes precludes sintering temperatures

above 1064◦C. Thus the maximum sintering temperature used for sensors in this work was

set at 1000◦C.

4.3 Sensor response characterization

The sensor response or sensitivity (defined as the difference in voltage generated upon

exposure to the test and base gases, respectively) was recorded using a Keithley 2400 source
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measurement unit with the Pt electrode connected to its positive terminal. The base gas

mixture was prepared by mixing pure streams of N2 and O2 using MKS 1179A mass-flow

controllers and the oxygen partial pressure was maintained at 10% PO2 during single-gas

sensor testing (e.g. NH3 testing in the concentration range of 0 − 100 ppm). The C3H6

interference (introduced to the test gas stream using another mass-flow controller and 2500

ppm C3H6/balance N2 stock concentration) was mixed with the NH3/O2/N2 mixture at

the inlet to the furnace tube upstream of the sensor, imparting a small dilution effect to O2

and NH3.

4.4 Models of sensor voltage

4.4.1 Linear Model

The response voltage of electrochemical sensors has previously been modeled for a single

compound, under some simplifying assumptions, as a linear function of analyte gas concen-

tration [60]. Starting with this simple model, we assume that mixtures of ammonia and

propylene produce a response voltage in the device which is a linear sum of the component

gas concentrations, thus disregarding any interaction between analyte gases. We express

the sensor response voltage at each bias current setting k as:

Vk = V k
0 + Ak[NH3] + Bk[C3H6], (4.1)

or, equivalently,

Vk = V k
0 + (Ak + Bkα)

(

[TOTAL]

1 + α

)

, (4.2)

where α = [C3H6]/[NH3], [TOTAL] = [NH3] + [C3H6], and Ak, Bk are the linear co-

efficients to be determined. Note that the advantage of expressing voltage in terms of α

and [TOTAL]i (i = 1...Nα, where Nα is the number of different total concentrations for

a given α) rather than individual gas concentrations [NH3]i and [C3H6]i is that the total

concentration can be controlled experimentally, e.g. through a series of dilutions.1

Sensor response voltage readings were taken at 4 bias current settings (0, −1.5, −3.5, and

−6 µA), with the sensor exposed to different mixtures of NH3 and C3H6. At each setting,

1Equivalently, we could have chosen to define the mixing ratio as α′ = [NH3]/[C3H6]. This arbitrary
choice of representation of the mixing ratio does not affect final predictions.
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a series of measurements corresponding to different total concentrations was extracted for

several values of α:

[TOTAL]i (ppm) =



































































{0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100} for α = 0,

{0, 40, 60, 120, 160, 180, 200} for α = 1,

{0, 50, 100, 150} for α = 1.5,

{0, 30, 90, 120, 150} for α = 2,

{0, 40, 80, 120} for α = 3,

{0, 20, 30, 60, 80, 90, 100} for α′ = 0

Note that in order to reconstruct [TOTAL]i for each series, only [TOTAL]ref needs to

be predicted since

[TOTAL]i = [TOTAL]ref −
i−1
∑

j=1

∆cj , (4.3)

and ∆cj , the differences in total concentration between consecutive measurements, are

assumed to be known. We choose [TOTAL]ref = 200 ppm to be the total concentration

at an arbitrary reference point (chosen to be a mixture of 100 ppm [NH3] and 100 ppm

[C3H6]). Once predictions for [TOTAL]ref and α are made, they can be used to estimate

[NH3]i and [C3H6]i for each individual mixture.

We use voltage measurements collected during sensor exposure to each test gas separately

(α = 0 and α′ = 0) to estimate linear coefficients Ak and Bk for each bias current k, as well

as the offset parameter V k
0 = V k

01
+ V k

02
. When α = 0, eq. (4.2) becomes

Vk = V k
01

+ Ak[TOTAL]. (4.4)

When α′ = 0, eq. (4.2), written in terms of α′:

Vk = V k
0 + (Akα′ + Bk)

(

[TOTAL]

1 + α′

)

,

becomes

Vk = V k
02

+ Bk[TOTAL]. (4.5)

Equations (4.4) and (4.5) are used as input to RANSA, which predicts the average values

of Ak, Bk, and V k
0 to be used in eq. (4.2) (Table E.1; least-squares fits yield very similar
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results). Note that although the baseline values have been subtracted from all voltages, V k
01

and V k
02

are allowed to adopt non-zero values as dictated by the global fits of non-linear

curves to straight lines. In practice, these offsets are small (Table E.1).

4.4.2 Nonlinear Model

We can potentially improve our predictions by incorporating interference between NH3 and

C3H6 via a more general nonlinear model :

Vk = Ck(α)

(

[TOTAL]

1 + α

)pk(α)

, (4.6)

where Ck(α) and pk(α) are unknown functions of α, with parameters to be estimated from

the data. Since full Bayesian treatment of these functions is too laborious, we employ least-

squares fits with cross-validation. Specifically, we randomize each set of 140 measurements

with the same [NH3]i and [C3H6]i and partition it into 5 training sets with 120 measure-

ments each and 5 non-overlapping test sets with 20 measurements each. For each training

set and each value of α, we find average Ck(α) and pk(α) using RANSA. Manual inspec-

tion of these results shows that, for each bias current k, Ck is an approximately quadratic

function of α (Figure E.1), and pk is an approximately linear function of α between α = 1

and α = 3 (Figure E.2):

Ck(α) = a′
k + b′

kα + c′
kα2,

pk(α) = ak + bkα.

(4.7)

We use a least-squares fit to estimate parameters ak, bk and a′
k, b′

k, c′
k on a given training

set and test our model on the corresponding test set by predicting α and [TOTAL]ref

for all available mixtures, again using RANSA. Figures E.1 and E.2 show variation in the

predicted Ck(α) and pk(α), as well as the respective linear and quadratic fits based on 5

training sets. For a complete list of model parameters, see Tables E.2 to E.4.
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4.4.3 Bayesian estimation of model parameters

We assume that the sensor voltage measurements are Gaussian-distributed around values

predicted by the model, and compute the log-likelihood of the data:

Lk = log P ({Ṽk}|{γk}, α, [TOTAL]ref , σ̃k) = −
1

2σ̃2
k

N
∑

l=1

(V l
k − Ṽ l

k)2 −
N

2
log(2πσ̃2

k), (4.8)

where k is the bias current index, V l
k({γk}, α, [TOTAL]ref , σ̃) is predicted voltage which

depends on a set of parameters {γk}, {Ṽk} is a set of voltage measurements Ṽ l
k (l = 1 . . . N ,

where N is the total number of measurements with a given α and bias current), and σ̃k

is the noise parameter. The parameter set {γk} consists of Ak, Bk, and V k
0 for the linear

model (eq. (4.2)), and ak, bk, a′
k, b′

k, c′
k for the nonlinear model (eqs. (4.6) and (4.7)). Note

that predicted voltage V l
k is a function of the measurement counter l because the total

concentration, which depends on [TOTAL]ref through eq. (4.3), may be different for each

measurement.

The total log-likelihood is given by L =
∑Ns

k=1 Lk, where Ns = 4 is the total number of

bias current settings. In principle, the log-likelihood can be used to estimate the posterior

probability for all unknowns according to the Bayes rule [42]:

P ({γ}, α, [TOTAL]ref , {σ̃}|{Ṽ }) =

P ({Ṽ }|{γ}, α, [TOTAL]ref , {σ̃})P ({γ})P (α)P ([TOTAL]ref )P ({σ̃})

P ({Ṽ })
,

(4.9)

where on the right-hand side the likelihood from eq. (4.8) is multiplied by the product of

priors for each model parameter and divided by evidence. {Ṽ } combines data from all bias

current settings, {σ̃} is a set of Ns noise parameters, and {γ} is the union of all parameter

sets {γk}. P ({γ}) and P ({σ̃}) are products of prior probabilities for each parameter in the

set. However, in practice we find it more reliable to estimate model parameters first in a

separate calibration step:

P ({γk}, σ̃k|{Ṽk}, α, [TOTAL]ref ) =
P ({Ṽk}|{γk}, α, [TOTAL]ref , σ̃k)P ({γk})P (σ̃k)

P ({Ṽk})
.

(4.10)

Specifically, with the linear model eq. (4.4) is used to predict Ak and V k
01

and, similarly,

eq. (4.5) is used to predict Bk and V k
02

. With the nonlinear model, eq. (4.6) is employed



43

to estimate Ck(α) and pk(α). Note that α and [TOTAL]ref are assumed to be known for

the training datasets. Finally, we compute ensemble averages γ̄ for all model parameters γ,

and use them to predict α and [TOTAL]ref :

P (α, [TOTAL]ref , {σ̃}|{Ṽ }, {γ̄}) =

P ({Ṽ }|{γ̄}, α, [TOTAL]ref , {σ̃})P (α)P ([TOTAL]ref )P ({σ̃})

P ({Ṽ })
.

(4.11)

We use uniform priors (invariant with respect to translations, x → x + a):

P (x) =











1/(xmax − xmin) if x ∈ [xmin, xmax],

0 otherwise
(4.12)

for {γ} and [TOTAL]ref , and Jeffrey’s priors (invariant with respect to rescaling, x → ax)

for α and {σ̃}:

P (x) =











1/(x log(xmax/xmin)) if x ∈ [xmin, xmax],

0 otherwise
(4.13)

In each case, xmin and xmax are chosen to encompass all plausible solutions and thus have

no effect on final results.

We estimate all posterior probabilities by nested sampling [42].

4.5 Effects of bias current application

Figure 4.1 shows a schematic of the Au/YSZ/Pt tape-cast, mixed-potential sensor used in

this work, along with a photograph of the actual device. The sensor was placed into a tube

furnace and tested at a series of temperatures in order to determine optimum performance

specified by the tradeoff of NH3 sensitivity and response time. Figure 4.2a shows the open-

circuit response of the sensor for individual five-minute exposures to 100 ppm of NO, NO2,

NH3, and C3H6. While the sensor has relatively little sensitivity to NO and NO2, there

is substantial cross-sensitivity to C3H6. Figure 4.2b shows the effect of the application of

a −3 µA bias current on the relative selectivity for this device. We observe that while

the response to 100 ppm NO2 has been removed, the response to 100 ppm NO has been

augmented and that to C3H6 reduced by roughly 30% relative to NH3.
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dense electrodes

Au Pt

(a)
(b)

Figure 4.1: Au/YSZ/Pt mixed-potential sensor. (a) Schematic illustration of the sensor. The sensor
uses wire electrodes embedded into tape-cast, porous YSZ solid electrolyte. Top: side view, bottom: view
from below. (b) Photograph of the actual device. Electrolyte body is 1 cm in length.

Figure 4.2c shows that in the absense of hydrocarbon gases, this sensor could serve as

a highly selective ammonia sensor for SRC applications, as it exhibits limited sensitivity

to NO and especially NO2. Figure 4.2d shows voltage response to 100 ppm of the four

test gases as the bias current is varied from −4.5 µA to +3.5 µA. With the application

of increasing negative current bias, the NO, NO2, and C3H6 levels decrease with respect

to the ammonia response; however, the voltage for 100 ppm of C3H6 does not decrease

below −4.5 µV and therefore this particular hydrocarbon remains a substantial source of

interference with the ammonia signal. Thus the ability to alter response selectivity with the

Au/YSZ/Pt mixed-potential sensor is limited by HC interference. This fact, taken together

with preliminary sensor design studies of the effect of electrode geometry and the ratio of

bulk to interfacial resistance on Au/YSZ/Pt sensor response, [77] shows that some level of

undesirable cross-interference with non-target gas species such as C3H6 will be inevitable

with this sensor construct.
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Figure 4.2: Effects of bias current on sensor response. (a) Open-circuit (0 µA) response of the
sensor to 100 ppm of NO2, NO, NH3, and C3H6. (b) Same as (a), at −3 µA current bias. (c) Sensor
response to 0, 25, 50, 75, and 100 ppm of NH3 and equivalent amounts of NO2 and NO at −3 µA applied
current bias. (d) Sensor response to 100 ppm of NO2, NO, NH3, and C3H6 at various levels of positive and
negative current bias. Note that the baseline voltage (measured with no test gas present) is subtracted from
the voltage measured with 100 ppm of each test gas. All measurements were taken with sensors at 575◦C
and in 10% O2/balance N2, flowing at 500 ml/min.
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4.6 Deconvoluting ammonia response in the presence of hydrocarbon in-

terference

In light of the unavoidable HC interference discussed above, we carried out a series of

experiments aimed at collecting NH3/C3H6 interference data for subsequent mathematical

modeling. Each series of measurements was performed at four different bias current settings.

Since in this regime sensor selectivity and sensitivity depend on the magnitude of the

bias current (Figure 4.2d), using four settings is equivalent to creating an array of four

sensors, each of which produces a different response to a given mixture of NH3 and C3H6.

Figure 4.3a shows the baseline-corrected sensor response to various levels of NH3 in the

presence of 0, 20, 30, 60, 80, 90 and 100 ppm of the interfering gas, C3H6, with an applied

bias current of −6 µA (data for bias current settings of 0, −1.5, and −3.5 µA is shown

in Figures E.3a, E.4a and E.5a, respectively). These measurements are used as input to

RANSA, which predicts NH3 and C3H6 concentrations in each mixture.

4.6.1 Using linear Model

Since the magnitude of hydrocarbon interference depends on the relative concentration

of C3H6 with respect to NH3, we find it convenient to replot the data in terms of the

relative concentration (or mixing ratio) α ≡ [C3H6]/[NH3], and the total concentration

[TOTAL] ≡ [NH3] + [C3H6] (Figures 4.3b, E.3b, E.4b and E.5b). Each series of points

represents baseline-corrected sensor voltage measurements at a given bias current, as a

function of the total mixture concentration [TOTAL], for a given value of α (we only

consider gas mixtures for which four or more total gas concentrations are available, (see

§ 4.4.1 ). We see that, to a first approximation, the response of each sensor to a given

mixture is linear.

The linear model assumes that the total response to a mixture of gases is simply a sum

of responses to each individual gas in the mixture (eq. (4.1)). Thus, to fit mixture data to

a linear model, we first determine its parameters (V k
0 , Ak, and Bk, where k = 1 . . . 4 labels

bias current settings; cf. eqs. (4.4) and (4.5)) by using sensor responses to each separate

gas (black and red squares in Figures 4.3b, E.3b, E.4b and E.5b. Although we obtain full
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Figure 4.3: Sensor response to mixtures of NH3 and C3H6. (a) Sensor response voltage plotted as
a function of time and [C3H6]. [NH3] levels increase from 0 to 100 ppm in 10 ppm increments in the same
time course, and each curve corresponds to a different level of [C3H6], as indicated in the legend. (b) Sensor
response vs. total concentration [T OT AL], sorted by the mixing ratio α (squares). Lines with open circles
represent linear model predictions (eq. (4.2)). Raw interference data in (a) corresponds to α = 0, 1, 1.5, 2,
3, and α′ ≡ [NH3]/[C3H6] = 0. Each data point is an average of the approximately 140 voltage readings for
each pair of concentrations in (a) (standard errors are omitted for clarity). For example, the 200 ppm data
point for α = 1 (blue square), is an average of all measurements taken when the sensor was exposed to 100
ppm of NH3 and 100 ppm of C3H6, i.e., the black line in (a) from t = 51 min to t = 54 min. Note that α = 0
and α′ = 0 series of measurements correspond to individual gases rather than mixtures. (c) Same data as in
(b) (squares), with the α′ = 0 case omitted. Lines with open circles represent non-linear model predictions
(eq. (4.6)). With the exception of the α = 0 (black) curve, Ck and pk (cf. eq. (4.6)) are functions of ᾱ,
the mean value of α as predicted across five training/test data subsets (see § 4.4.2). The curve coefficients
in eq. (4.7) (ak, bk; a′

k, b′

k, c′

k) are also averaged over five training/test subsets. In the case of α = 0, Ck

is estimated as before but pk(α = 0) is the mean value inferred by RANSA in the calibration step rather
than predicted by a least-squares fit (see Figure E.2 and Table E.2). In (b) and (c), each predicted curve
is color-coded to correspond to different mixing ratios, as defined in the legends. Note that [T OT AL] = 0
measurements and predictions were omitted for clarity, except for the α = 0 and α′ = 0 cases in (b) which
were used to calibrate the linear model. For all panels, the bias current was set at −6µA, the baseline
voltage (voltage measured with no test gases present) was subtracted from all voltage measurements, and
all measurements were taken at 575◦C and in 10% O2/balance N2, flowing at 500 ml/min.
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Bayesian estimates for all model parameters by applying RANSA to eq. (4.10), we only

employ their average values in subsequent predictions, as integrating over the ensemble of

models would be prohibitively expensive. We then apply RANSA to eq. (4.11) to predict the

mixing ratio α and the total concentration at the reference point [TOTAL]ref (equivalent

to predicting absolute concentrations of NH3 and C3H6, see § 4.4.1) for each of the four

mixtures. Despite neglecting all nonlinearity in the data, we nonetheless do reasonably well

at predicting individual analyte concentrations (Figure 4.4).
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Figure 4.4: Prediction of gas concentrations in mixtures of NH3 and C3H6. Using a linear model
(eq. (4.2)) and a Bayesian nested sampling algorithm RANSA, we predict means and standard deviations
(shown as error bars) of the mixing ratio, α (a), and the total mixture concentration at the 200 ppm reference
point, [T OT AL]ref (b) for four different values of α from Figure 4.3b (α = 0 and α′ = 0 are omitted since
they were used to calibrate the model).
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4.6.2 Using nonlinear Model

Although the sensor response is approximately linear, interference between NH3 and C3H6

becomes more prominent at higher gas concentrations, making the additivity approxima-

tion less accurate. Interestingly, cross-interference between the two gases depends on both

the mixing ratio α and the bias current. For example, at 0 µA the voltage response is sub-

linear, indicating a preferential response to one of the two gas components (Figure E.3c).

This trend is gradually reversed with the increase in the negative current bias, resulting in

voltage responses at −6 µA that are inverted compared with their counterparts at 0 µA

(Figures 4.3c, E.4c and E.5c).

To model nonlinear sensor responses, we employ a straightforward generalization of

eq. (4.2) shown in eq. (4.6). The nonlinear model depends on two independent parameters,

Ck(α) and pk(α), which are functions of both the mixing ratio α and the bias current, as

observed in the data. To predict these functions and thus model the sensor response over

a range of α, we first divide all measurements into 5 training/test subsets as described in

§ 4.4.1. For each training subset, we predict Ck(α) and pk(α) using RANSA, for all available

values of α: 1.0,1.5,2.0, and 3.0. In this calibration step, we assume α and [TOTAL]ref to

be known, and employ eq. (4.10) to estimate means and standard deviations of the model

parameters.

Next, we employ polynomial fits to infer Ck and pk as explicit functions of α (eq. (4.7); cf.

Figures E.1 and E.2) for each training subset, using RANSA-predicted mean values of Ck(α)

and pk(α) as input. These steps yield a set of 5 models for Ck(α) and pk(α), allowing us to

cross-validate our predictions. Optionally, a single model can be produced by averaging the

polynomial parameters of Ck(α) (a′
k, b′

k, c′
k) and pk(α) (ak, bk) over 5 subsets of training

data, as in Figure 4.3c. Since the polynomial fits are done by least squares, they represent

a non-Bayesian step which was implemented because we do not have sufficient data for full

Bayesian inference (eq. (4.9)). This necessitates the use of cross-validation. We note that,

unlike the linear model, the nonlinear model is limited to a certain range of α’s because

Ck(α) and pk(α) predictions cannot be reliably extrapolated too far beyond the set of α’s

used in the calibration step. Thus the nonlinear model should be trained using a set of
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mixing ratios that cover the entire range of interest in subsequent applications.

Models trained on 5 training data subsets are then tested on their test set counterparts.

RANSA is utilized again to predict individual analyte concentrations (or, more specifically,

α and [TOTAL]ref which encode the same information, see § 4.4) using Ck(α) and pk(α)

functions as input to eq. (4.11) (Figure 4.5). Note that, as in the linear model, these

predictions combine data from all bias current settings. We see a sizable improvement in

our predictions of α and [TOTAL]ref when the nonlinear model is employed: the mean

absolute error in predicting α for four mixtures is 0.80 with the linear model, but is reduced

to 0.29 with the nonlinear model. The error becomes 0.23 when the α = 0 case is included in

the average for nonlinear predictions. Note that this case cannot be used to test the linear

model because α = 0 (single gas) data was used to calibrate it. Similarly, the mean absolute

error in predicting [TOTAL]ref is 2.6 ppm with the linear model, and 2.1 ppm with the

nonlinear model when the α = 0 case is included. The essential differences between linear

and nonlinear models also manifest themselves in the quality of predictions shown in panels

(b) and (c) of Figures 4.3 and E.3 to E.5. In the nonlinear case, the model predictions

employ predicted mixing ratios and predicted Ck and pk functions, even in the α = 0 case.

In contrast, α = 0 and α′ = 0 data were used to calibrate the linear model as described in

§ 4.4.1, and thus linear model predictions closely reproduce the data in those two cases.

4.7 Minimum data requirements for robust concentration predictions

Our computational framework for predicting gas analyte concentrations consists of two

steps: the calibration step, in which the parameters of the model are inferred in a labora-

tory setting using an array of sensors, and the prediction step, in which the same sensor

setup is employed to predict α and [TOTAL]ref (and thus absolute concentrations of each

constituent analyte) in real-world conditions. (In this study, all measurements were done in

the lab, with some of the data set aside to mimic real-world measurements.) While we can

assume that sufficient training data is available for gas mixtures of interest for subsequent

practical applications, the number of measurements taken in the prediction step must be

minimized in order to improve reaction times and efficiency of the device.



51

0

1

1.5

2

3

α

 

 

predicted
actual

α = 0 α = 1 α = 2 α = 3 α = 1.5 

(a)

0

50

100

150

200

 

 
predicted
actual

[T
O

T
A

L
] re

f

α = 0 α = 1 α = 2 α = 3 α = 1.5 

(b)

Figure 4.5: Prediction of gas concentrations in mixtures of NH3 and C3H6. Using a nonlinear
model (eq. (4.6)) and a Bayesian nested sampling algorithm RANSA, we predict means and standard de-
viations of the mixing ratio, α (a), and the total mixture concentration at the 200 ppm reference point,
[T OT AL]ref (b) for five different values of α from Figure 4.3c. All means and standard deviations are
averaged over five training/test data subsets (see § 4.4.2).
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Our predictions in Figure 4.5 were based on 20 independent voltage readings for each

mixture and each bias current setting (for the nonlinear model which was previously cali-

brated on 5 training datasets as described above). Since in practice a single device under

different bias current settings rather than a physical array of sensors is likely to be em-

ployed, it is important to minimize the number of measurements in each series of readings.

Surprisingly, we find that the quality of our predictions does not decline significantly when

we gradually reduce the number of measurements from 20 to 1 for each k, α, and [TOTAL].

This may be due to the fact that each measurement, taken at the steady-state flow of the

gas mixture, conveys roughly the same information to the algorithm. Indeed, the mean ab-

solute error in predicting all α’s is 0.38 for 2 measurements, 0.22 for 5, and 0.28 for 20. The

mean absolute error is computed by first averaging mean values of α predicted by RANSA

for each mixture using 5 test sets with the number of points indicated above as input.

Next, the absolute error is computed as the absolute magnitude of the difference between

predicted and exact values, and averaged over all 5 mixtures (with α = 0.0, 1.0, 1.5, 2.0, 3.0).

Similarly, the mean absolute error in predicting [TOTAL]ref is 2.54 for 2 measurements,

2.16 for 5, and 2.36 for 20. Note that, as expected, standard deviation in each individ-

ual RANSA prediction of α and [TOTAL]ref increases as the number of measurements is

reduced, although the uncertainties remain small.

Our algorithm depends on voltage measurements taken at more than one value of the

total concentration for a given mixture (cf. eq. (4.3)). In real-world applications, controlled

dilution of the mixture of ammonia and hydrocarbons in a neutral buffer such as fresh air will

make the device more complex to build and operate. Thus, we investigate how the quality

of predictions depends on the number of different total concentrations or, equivalently, the

number of dilutions for the same mixture. Since among 4 mixtures with α 6= 0 we have

the most data for the α = 1 case (seven total concentrations; blue squares in Figures 4.3c,

E.3c, E.4c and E.5c, S3(c),S4(c),S5(c)), we focus on this dataset for our analysis. We start

with two points, corresponding to [TOTAL] = 0 ppm and [TOTAL] = 40 ppm (‘Range 1’),

and then gradually extend the range by including points with higher concentrations until

the full dataset is recovered. We predict [TOTAL]ref and α using the nonlinear model,

and plot absolute errors of our predictions as blue crosses in Figures 4.6a and 4.6b. In
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Figure 4.6: Robustness of gas concentration predictions with respect to the number of mea-
surements in training and test datasets. (a) Average absolute error ǭ(α) for predictions of α, plotted as
a function of the number of points with different total concentrations. ‘Range 1’ and ‘Range 2’ are defined
in the text. Mean values of α estimated by RANSA were averaged across 5 training datasets. The average
absolute error is given by the absolute magnitude of the difference between this average and the exact value
α = 1. (b) Same as (a) but the average absolute errors are shown for predictions of [T OT AL]ref . The exact
value is [T OT AL]ref = 200 ppm. (c) Means and standard deviations of α predicted by RANSA after omit-
ting the mixture for which the predictions were made from the training data, and recalibrating the model.
All means and standard deviations are averaged over 5 training subsets. (d) Same as (c) but for means and
standard deviations of [T OT AL]ref . Predictions in (a)-(d) use data from all 4 bias current settings.
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each individual calculation, we use the nonlinear model trained on 5 complete calibration

datasets.

We repeat the calculation starting at the high concentration end (‘Range 2’), first using

two points corresponding to [TOTAL] = 200 ppm and [TOTAL] = 180 ppm and then

adding measurements with lower concentrations until all seven points are included. Errors

in [TOTAL]ref and α for this set of calculations are shown as red circles in Figures 4.6a

and 4.6b. We observe that the quality of predictions strongly depends on which total con-

centrations are included in the analysis. It appears that low-concentration measurements

(Range 1), where the contributions from both gases are approximately additive, can be

used to infer [TOTAL]ref more accurately than α. In contrast, high-concentration mea-

surements, where cross-interference effects are more prominent, appear to be more beneficial

for the inference of α. In both cases, average errors exhibit non-uniform trends but ulti-

mately start to converge as the range is extended. Thus the number of times each mixture

is diluted should be chosen carefully depending on the level of accuracy desired for each

predicted variable.

Next, we check the ability of our algorithm to predict α and [TOTAL]ref for mixtures

that were not part of the training dataset. This ability is crucial because our framework must

yield reasonably accurate predictions for a range of α’s rather than just the discrete set of

mixtures on which it was trained. To this end, we leave out all data corresponding to one of

the α 6= 0 (α = 1, 1.5, 2, or 3), and refit the nonlinear model using the remaining 3 mixtures,

plus the data for α = 0. The model is then used to predict the total gas concentrations

in the mixture that was left out of the calibration step (Figures 4.6c and 4.6d). We see

that, encouragingly, the errors for α = 1.5 are reasonably small, likely because the data for

both α = 1 and α = 2 were available to train the model. On the other hand, our ability to

extrapolate the range of α is limited, as manifested by the α = 3 example. Thus the model

calibration step should be based on training data that covers the entire range of α’s to be

expected in subsequent applications, with reasonably fine spacing between adjacent values

of α.

Finally, we evaluate the benefit of combining data collected at multiple bias current

settings. We monitor errors in our predictions as additional sensors are incorporated into



55

1 2 3 4

0

1

1.5

2

3

Number of bias current settings

α

(a)

1 2 3 4
192

194

196

198

200

202

204

206

[T
O

T
A

L
] re

f

Number of bias current settings

(b)

Figure 4.7: Prediction accuracy as a function of the number of bias current settings. (a) Each
point represents the average predicted value of α. First, mean α’s are obtained for each of the 5 training
subsets and for each combination of sensors. These mean α’s are averaged over the training subsets and,
next, over the sensor combinations. The error bars represent standard deviations with respect to different
sensor combinations. Exact values are shown as horizontal dashed lines of the same color. Light grey bars
indicate the number of bias current settings (predictions are slightly offset for clarity). (b) Same as (a) but
for [T OT AL]ref .

the array. Using fewer current settings would simplify construction and operation of the

device. Here, we use the nonlinear model calibrated earlier on all 5 training datasets and all

4 bias current settings. However, instead of combining the data from all 4 bias currents, we

estimate the errors in α and [TOTAL]ref as the number of bias current settings is increased

from 1 to 4. With 4 settings, there are 4 combinations with a single sensor in the array, 6

combinations with two sensors, 4 with three, and a single one with the full dataset. For each

combination, we predict α and [TOTAL]ref (Figure 4.7). We see that, as expected, the

accuracy of our inference improves as additional bias current settings are used to collect the

measurements. However, if necessary, reasonable accuracy can be achieved even with 2 − 3

sensors, especially if the total concentration is of primary interest. Overall, the differential

sensitivity and selectivity of the device which results from the use of multiple bias currents

can be exploited for improved discrimination of gas mixtures.
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4.8 Discussion

Modern diesel engines require continuous monitoring of NOx and NH3 levels in tailpipe

emissions to ensure regulatory compliance and minimize air pollution. Au/YSZ/Pt mixed-

potential sensors represent a promising technology which could address this need. The

sensors are compact and rugged (Figure 4.1) and, moreover, their sensitivity and selectivity

toward target gases can be tuned by applying a bias current (Figure 4.2). Thus a single

sensor under different bias current settings can be used to create an entire array of sensors,

yielding more robust and accurate predictions of gas concentrations in mixtures. Unfortu-

nately, currently available zirconia-based electrochemical sensors exhibit cross-interference

with hydrocarbons such as propylene (C3H6) (Figure 4.2d). Thus sensor voltage readings

are not simply proportional to the amount of target gas in diesel exhaust.

Here we show that target gas concentrations can nonetheless be inferred from sensor

readouts if data is collected under several bias current settings. We focus on mixtures

of NH3 (target gas) and C3H6 (interfering gas), and develop a Bayesian framework for

predicting α, the ratio of concentrations between the two gases, and the sum of the two

concentrations. This information is equivalent to predicting absolute concentration of each

gas. Our Bayesian approach allows us to build an ensemble of models that explain the data

(rather than a single maximum-likelihood model), and thus evaluate both the mean value

of each parameter of interest and its uncertainty. The method is not limited to Au/YSZ/Pt

mixed-potential sensors and can be employed to infer concentrations for more than two gases

simultaneously. We expect our approach to be widely applicable in automotive as well as

other industrial applications which rely on the accurate knowledge of gas concentrations in

complex chemical mixtures.

The simplest model we have investigated assumes that gases in the mixture do not

interefere with one another, and hence the total voltage is a sum of contributions from

each individual gas. We train the parameters of this linear model using sensor readings

from individual gases, and then apply it to predict gas concentrations in mixtures. The

linear model is easy to set up and calibrate, and has few fitting parameters. Its accuracy

does not depend on the relative proportions of gases in the mixture. However, it neglects
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cross-interference between gases at higher gas concentrations, which causes nonlinearities

in sensor response (Figures 4.3c, E.3c, E.4c and E.5c).

In order to check whether modeling this effect improves the accuracy of our predictions,

we have built a nonlinear model as a straightforward generalization of the linear model (cf.

eqs. (4.2) and (4.6)). The nonlinear model has fitting parameters that are explicit functions

of α (see § 4.4.2), and therefore must be trained on data that uniformly covers the range of

mixtures to be encountered in subsequent applications. This makes the training procedure

more data-intensive, and limits the applicability of the model. In addition, the model is not

fully Bayesian and as a result needs to be cross-validated. The degree of polynomials used in

curve fitting likely depends on the application (sensor types, range of α, etc.) and needs to

be re-examined in each case. Despite these difficulties, prediction accuracy improves when

nonlinearities are taken into account, which justifies using the nonlinear model in situations

where it can be first calibrated in a laboratory setting using extensive training datasets,

and then deployed in the field. Interestingly, the nonlinear model captures cross-interference

between gases without explicit knowledge of reaction activity at molecular level.

Using our sensors and models in real-world conditions will be greatly facilitated by

making as few measurements as possible. To check what the minimal requirements are

for the deployment of our system, we have carried out four tests in which we reduce the

number of test datapoints in various ways and monitor prediction accuracy of the nonlinear

model. First, we kept all 4 bias current settings and the entire available range of total

concentrations of NH3 and C3H6, but reduced the number of datapoints for each given total

concentration and bias current setting. We found that, encouragingly, just 1 − 2 datapoints

are necessary, which should improve response times. More crucially, our algorithm depends

on the availability of data for several total concentrations, which in practice entails diluting

the mixture of interest in a neutral buffer. Since this step adds complexity to the system,

we checked the minimum number of total concentrations that are necessary for acceptably

accurate predictions. It appears that the number of dilutions can be reduced by judicious

choice of neutral buffer volumes, especially if only α or the total concentration are of interest.

Next, we tested the robustness of our framework with respect to extrapolating to the

values of α which do not appear in training data. We found that prediction accuracy is



58

sensitive to such extrapolations, which argues for carefully choosing the α range in the

calibration step. Finally, we checked whether the number of sensors (i.e., bias current

settings ) can be reduced below four. We saw that although adding sensors to the array

is clearly beneficial, it may be acceptable to use 2 − 3 or even a single sensor without too

much accuracy loss. Overall, we conclude that it is possible to achieve acceptable accuracy

levels, system complexity, and reaction times with our sensors and algorithms.



Appendices

59



60

Appendix A

Nested Sampling

The information contained in this Appendix is meant to serve as a brief summary of the

nested sampling approach. For a complete treatment please refer to [42].

A.1 Motivation

Bayes’ theorem tells us the relationship between the posterior probability density,

P (θ|D, H), the likelihood function, P (D|θ, H), and the prior probability density, P (θ|H)

of a set of parameters, θ:

P (θ|D, H) =
P (D|θ, H)P (θ|H)

P (D|H)
(A.1)

where D is the observed data and H is the underlying hypothesis, or model. The denom-

inator on the right side of eq. (A.1) is often referred to as the evidence(≡ Z), or as the

marginal likelihood (which describes how it is obtained, see below). This quantity is over-

looked in many parameter estimation problems as simply the normalization constant since

it does not explicitly depend on θ. However, when we are concerned with model selection

(which, it can be argued, should always be the case), this term takes center stage:

R =
P (H2|D)

P (H1|D)
=

P (D|H2)P (H2)

P (D|H1)P (H1)
=

Z2P (H2)

Z1P (H1)
(A.2)

Here, R is the ratio of posterior probabilities of two competing models, H1 and H2 and

P (H2)/P (H1) is the ratio of the two priors. The latter can usually be set to 1 since there

is no obvious reason to prefer one model over another a priori. In general, the evidence

will be higher for a model in which much of its parameter space has associated with it high

likelihood values, and smaller for a model if large areas of its parameter space are unlikely.

In light of the significance of Bayesian evidence in model selection (eq. (A.2)), Z joins

the posterior (P (θ), in compressed notation) as a desired output of eq. (A.1), the inputs
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being the likelihood and prior, L(θ) and π(θ), respectively. Traditionally, techniques such

as Markov Chain Monte Carlo (MCMC) sampling have been designed for the posterior and

used to estimate parameters of a model given data. However, convergence to stationarity

becomes incredibly slow when the posterior distribution is highly multi-modal. Moreover,

calculation of the evidence poses a computational challenge that is typically an order of

magnitude higher than that of parameter estimation since it involves a multi-dimensional

integration over the prior density:

Z =

∫

dkθL(θ)π(θ) (A.3)

Nested sampling mitigates this challenge by statistically “sorting” the points {θ} in pa-

rameter space by their likelihood values1 and then summing these likelihoods to find the

evidence. This avoids the multi-dimensional integral of eq. (A.3). The posterior is then

obtained as a by-product of this procedure, as described in the following sections.

A.2 Implementation

A.2.1 Sorting

Introduce the function

x(λ) =

∫

L(θ)>λ
π(θ)dθ, (A.4)

defined as the proportion of cumulant prior with likelihood greater than λ. As λ increases,

the restriction on likelihood becomes tighter. Therefore, x is a decreasing function of λ.

Note that xmin = 0 at λ = Lmax (if a global maximum exists). At λ = Lmin ≥ 0, xmax = 1

since in this case we are describing the cumulant mass of the entire prior and must satisfy

the normalization requirement for probability distributions:

∫

π(θ)dkθ = 1. (A.5)

We can look at the inverse of eq. (A.4), namely, L(x(λ)) ≡ λ, thus making a transfor-

mation from L(θ), with vector argument θ, to L(x) which has a scalar argument. Since

1In order to resolve ties between points of equal likelihood, a small amount of random noise can be added
to L. This imposes a ranking even if none existed before.
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dx = π(θ)dθ, eq. (A.3) tells us that the evidence is simply a sum over these elements and

can be computed using L(x):

Z =

∫ 1

0
L(x)dx. (A.6)

The sorted likelihood function L(x) is also the key to finding the posterior:

P (x) =
L(x)

Z
. (A.7)

Figure A.1: Nested sampling. Adapted from [80]. A mapping of a contour L(θ) to L(x).

A.2.2 The nested sampling technique

In practice, nested sampling tabulates the sorted likelihood function by sampling n objects

θ (usually by MC methods) from the prior π subject to an evolving constraint L(θ) > L∗.

Initially, L∗ = 0 to ensure complete coverage. In terms of x this is equiavalent to sampling

uniformly and subject to the constraint x < x∗, where x∗ corresponds to L∗ (Figure A.1).

At each iteration, the move is inwards in x and upwards in L with the goal of finding and

quantifying the small region of high likelihood where most of the posterior lies. This is done

by replacing {x∗, L∗} with the worst object’s {x, L} before that worst object is discarded.

There are now n − 1 surviving objects, still uniformly distributed in x but confined to

a shrunken domain (characterized by the new x∗) which is nested within the old. The
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shrinkage ratio is distributed as P (t) = ntn−1, with statistics log(t) = (−1 ± 1)/n. The

final step is to generate a replacement object within the nested domain. At the kth iterate,

Lk = L∗ and xk = x∗ =
k
∏

j=1

tj . So we have a crude approximation of xk = e−k/n (ignoring

uncertainty) and the sequence L(x) is now available - no sorting is needed at all!

The evidence in eq. (A.6) can now be estimated by any convenient numerical recipe as

a weighted sum of the likelihoods:

Z ≈
∑

k

wkLk, (A.8)

where wk ≈ ∆x is the width associated with each object in the sequence. The simplest

assignment of the width is wk = xk−1 − xk. The estimation of Z can be slightly improved

with the trapezoidal rule, or similar.

In addition to the evidence and posterior, the information, or negative entropy can be

found:

H =

∫

P (x)log[P (x)]dx (A.9)

The information measure provides a guideline for termination of iterations: the nested

sampling calculation should be continued until most of Z has been found. The bulk of this

area occurs in the region of x ≈ e−H which suggests that iteration should continue until the

count k significantly exceeds nH.
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Appendix B

Additional Figures and Tables, Chapter 2
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Figure B.1: Prediction accuracy increases with the number of measurements at dif-
ferent total concentrations. Synthetic data was generated using eq. (2.1), with A = 0.8, b = 0.2,
and ∆G = −6.5 kcal/mol. To account for experimental error, Gaussian noise with σ̃ = 0.02 was
added to the intensity from eq. (2.1). The maximum total concentration of the ligand was gradu-
ally increased as shown in the nine panels on top, yielding more and more complete binding curves:
log

10
[max] = {−4.75, −4.5, −4.25, −4.0, −3.75, −3.5, −3.0, −2.75, −2.5}. log

10
[min] was −9.0 in all cases,

and 4 replicates with 9 datapoints per curve were created for each concentration range. In each panel Il is
plotted as a function of µl in the absence of noise. For each concentration range, 1000 nested sampling runs
were carried out to predict ∆G, A and b. The standard deviation σ∆G from each run was averaged and
plotted in the bottom panel as a function of the total range of ligand concentrations kBT ln([max]/[min]).
Each dot in the bottom panel is color-coded to correspond to a particular binding curve on top.
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Figure B.2: Prediction accuracy decreases with the amount of noise in the data. Synthetic
data was generated using eq. (2.1), with A = 0.8, b = 0.2, and ∆G = −6.5 kcal/mol. In analogy with
the experiments, we used the concentration range log

10
nl = {−3.0, −3.5, . . . , −6.5, −9.0} and created 4

replicates, yielding 36 datapoints. To model the increase in experimental error, Gaussian noise with σ̃
ranging from 0.01 to 0.17 was added to the intensity from eq. (2.1). For each value of σ̃, 1000 nested
sampling runs were carried out to predict ∆G, A and b. The standard deviation σ∆G from each run was
averaged and plotted as a function of σ̃.
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Figure B.3: Inference of ligand concentrations is improved with the number of receptors
interrogating the mixture. Shown on the log-scale are means and standard deviations for three relative
concentrations (α1, α2, α3) and the total concentration, predicted by RANSA using the four-ligand model
and up to four receptors: H-20 (R1), K-3 (R2), L-3 (R3), 2211 (R4). Each experiment has a 50-50 binary
mixture of two ligands indicated on top of each panel, leading to α1 = 1, α2 = α3 = 0, and log

10
[Total] = −3

at the reference point ([Total] = [UDP-Glc] + [UDP-GlcNAc] + [UDP-Gal] + [UDP]). UDP-Gal+UDP-
GlcNAc mixture: α1= [UDP-GlcNAc]/[UDP-Gal], α2= [UDP-Glc]/[UDP-Gal], α3= [UDP]/[UDP-Gal].
UDP-Glc+UDP-GlcNAc mixture: α1= [UDP-GlcNAc]/[UDP-Glc], α2= [UDP-Gal]/[UDP-Glc],
α3= [UDP]/[UDP-Glc]. UDP+UDP-Glc mixture: α1= [UDP]/[UDP-Glc], α2= [UDP-Gal]/[UDP-Glc],
α3= [UDP-GlcNAc]/[UDP-Glc]. UDP+UDP-GlcNAc mixture: α1= [UDP]/[UDP-GlcNAc],
α2= [UDP-Glc]/[UDP-GlcNAc], α3= [UDP-Gal]/[UDP-GlcNAc]. UDP+UDP-Gal mixture:
α1= [UDP]/[UDP-Gal], α2= [UDP-Glc]/[UDP-Gal], α3= [UDP-GlcNAc]/[UDP-Gal].
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Table B.1: Parameters of receptor-ligand interactions predicted from one-receptor, one-ligand
binding curves (UDP-Gal, UDP-Glc, UDP-GlcNAc) and one-receptor, two-ligand binding
curves (UDP). ∆G is the receptor-ligand binding free energy (kcal/mol), A is the receptor efficacy, b is the
background intensity, and σ̃ is the noise parameter which quantifies the discrepancy between the model and
the observed binding curves. Due to antagonistic activity of UDP, 50/50 UDP+UDP-Glc binary mixture
was used with K-3, L-3, 2211 and 50/50 UDP+UDP-Gal binary mixture was used with H-20 to predict UDP
parameters (compound concentrations were set to their exact values for these calibration predictions). In
each case, the mixture was chosen on the basis of the smallest standard deviation of ∆G.

UDP (L1) UDP-Gal (L2) UDP-Glc (L3) UDP-GlcNAc (L4)

∆G −7.42 ± .05 −6.69 ± .04 −6.29 ± .06 −6.16 ± .06

A .008 ± .009 .994 ± .005 .74 ± .01 .51 ± .01
H-20 (R1)

b .006 ± .005 .015 ± .009 .014 ± .009 .008 ± .006

σ̃ .036 ± .004 .041 ± .005 .037 ± .005 .029 ± .004

∆G −8.2 ± .2 −5.64 ± .07 −5.36 ± .04 −5.36 ± .06

A .18 ± .01 .81 ± .02 .94 ± .02 .55 ± .01
K-3 (R2)

b .10 ± .02 .11 ± .01 .069 ± .008 .111 ± .006

σ̃ .022 ± .003 .043 ± .005 .030 ± .004 .022 ± .003

∆G −7.4 ± .1 −6.21 ± .07 −6.6 ± .1 −5.60 ± .06

A .02 ± .02 .85 ± .03 .83 ± .03 .43 ± .01
L-3 (R3)

b .01 ± .01 .02 ± .01 .04 ± .02 .007 ± .004

σ̃ .064 ± .009 .049 ± .007 .070 ± .009 .018 ± .002

∆G −10.3 ± .3 −7.69 ± .09 −8.48 ± .08 −8.00 ± .09

A .010 ± .009 .82 ± .04 .85 ± .02 .89 ± .04
2211 (R4)

b 0.05 ± .01 .094 ± .008 .08 ± .01 .11 ± .01

σ̃ .019 ± .002 .035 ± .005 .046 ± .006 .044 ± .006
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Table B.2: Prediction of ligand concentrations in equal-proportion mixtures (data for Fig-
ure 2.3).

Ligand(s) in mixture [L1] [L2] [L3] [L4] [Total]

predicted 2.8 ± .7 .01 ± .01 .001 ± .001 .10 ± .08 2.9 ± 0.8
L1

actual 1.0 0 0 0 1.0

L2
predicted .0002 ± .0001 1.05 ± .04 .006 ± .008 .004 ± .009 1.06 ± .03

actual 0 1.0 0 0 1.0

predicted .0003 ± .0002 .01 ± .01 .96 ± .04 .003 ± .009 .97 ± .04
L3

actual 0 0 1.0 0 1.0

L4
predicted 2 × 10−4 ± 6 × 10−6 .0004 ± .0005 .0008 ± .0007 1.05 ± .04 1.05 ± .04

actual 0 0 0 1.0 1.0

predicted .093 ± .007 .092 ± .007 4 × 10−5 ± 4 × 10−5 .001 ± .002 .19 ± .01
L1 + L2

actual .5 .5 0 0 1.0

L1 + L3
predicted .082 ± .009 .023 ± .004 .09 ± .01 .000 ± .001 .20 ± .02

actual .5 0 .5 0 1.0

predicted .48 ± .08 .0001 ± .0002 .001 ± .001 .26 ± .05 0.7 ± 0.1
L1 + L4

actual .5 0 0 .5 1.0

L2 + L3
predicted .006 ± .001 .51 ± .03 .52 ± .03 .001 ± .003 1.03 ± .04

actual 0 .5 .5 0 1.0

predicted .0002 ± .0002 .58 ± .04 .002 ± .004 .51 ± .04 1.10 ± .06
L2 + L4

actual 0 .5 0 .5 1.0

L3 + L4
predicted .0054 ± .0008 .02 ± .01 .62 ± .07 .28 ± .06 .92 ± .06

actual 0 0 .5 .5 1.0

predicted .049 ± .006 .12 ± .01 .033 ± .008 .06 ± .01 .26 ± .02
L1 + L2 + L3

actual .33 .33 .33 0 1.0

L1 + L2 + L4
predicted .08 ± .02 .027 ± .006 1 × 10−5 ± 3 × 10−5 .36 ± .04 .46 ± .04

actual .33 .33 0 .33 1.0

predicted .064 ± .007 .038 ± .005 .068 ± .007 .003 ± .007 .17 ± .02
L1 + L3 + L4

actual .33 0 .33 .33 1.0

L2 + L3 + L4
predicted .0049 ± .0009 .25 ± .03 .46 ± .04 .02 ± .02 .73 ± .04

actual 0 .33 .33 .33 1.0

predicted .063 ± .007 .20 ± .02 .008 ± .008 .20 ± .02 .45 ± .04
All Four

actual .25 .25 .25 .25 1.0
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Table B.3: Prediction of [UDP-Gal] and [UDP-Glc] in unequal proportion mixtures (data
for Figure 2.4).

[UDP-Glc]/[UDP-Gal] α1 α2 α3 log10[Total]

predicted 11 ± 9 5 ± 4 .001 ± .002 −2.87 ± .03
90/10

actual 9 0 0 −3

80/20
predicted 2.3 ± .6 0.9 ± 0.3 .0004 ± .0002 −2.89 ± .03

actual 4 0 0 −3

predicted .71 ± .09 .01 ± .02 .0010 ± .0007 −2.95 ± .03
60/40

actual 1.5 0 0 −3

40/60
predicted 0.8 ± 0.2 .05 ± .09 .0005 ± .0004 −2.91 ± .02

actual 0.66 0 0 −3

predicted 0.7 ± 0.1 .05 ± .05 .0026 ± .0007 −2.83 ± .02
20/80

actual 0.25 0 0 −3

10/90
predicted .20 ± .07 .01 ± .02 .0031 ± .0007 −2.85 ± .03

actual 0.11 0 0 −3
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Table B.4: Prediction of [UDP-Gal] and [UDP-Glc] in unequal proportion mixtures us-
ing an alternative definition of relative concentrations. We used RANSA of a four-receptor, four-
ligand model to infer relative concentrations α1 = [UDP-Gal]/[UDP-Glc], α2 = [UDP-GlcNAc]/[UDP-Glc],
α3 = [UDP]/[UDP-Glc], as well as the total concentration [Total] = [UDP-Gal] + [UDP-Glc] + [UDP-
GlcNAc] + [UDP] at the 1 mM reference point. A’s and b’s were refit to account for “plate bias”: small
systematic deviations in the values of A and b (from the standard values shown in Table B.1 and used
everywhere else) between different plates. For plate 1 (measurements 1-3), AUDP−Gal, AUDP−Glc and b
were set to {0.94, 0.79, 0.64, 0.50}, {0.91, 0.81, 0.90, 0.81} and {0.02, 0.15, 0.02, 0.12} for H-20, K-3, L-3 and
2211, respectively. For plate 2 (measurements 4-6), the corresponding values were {0.96, 0.93, 0.94, 0.94},
{0.85, 0.79, 0.86, 0.95} and {0.02, 0.13, 0.03, 0.11}. AUDP−GlcNAc and AUDP were taken from Table B.1.

[UDP-Gal]/[UDP-Glc] α1 α2 α3 log10[Total]

predicted .48 ± .09 0.5 ± 0.1 .0002 ± .0001 −2.94 ± .03
10/90

actual .11 0 0 −3

20/80
predicted 1.0 ± .2 0.4 ± 0.3 .0003 ± .0002 −2.94 ± .04

actual .25 0 0 −3

predicted 3.2 ± .4 .02 ± .04 .003 ± .002 −2.95 ± .03
40/60

actual .66 0 0 −3

60/40
predicted 3.3 ± 0.8 .01 ± .03 .0003 ± .0002 −2.89 ± .02

actual 1.5 0 0 −3

predicted 7 ± 2 .02 ± .03 .003 ± .002 −2.80 ± .03
80/20

actual 4 0 0 −3

90/10
predicted 54 ± 25 0.0 ± 0.1 .03 ± .03 −2.78 ± .03

actual 9 0 0 −3
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Appendix C

Hessian analysis, details

Hessian matrix as a measure of sensitivity to model parameters. Differentiating

log-likelihood (eq. (2.8)) twice with respect to model parameters yields:

∂2L

∂γi∂γj
= −

Nrec
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k=1

1

σ̃2
k

Nk
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∂I l
k
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] ∂2I l
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∂γi∂γj

}

, (C.1)

where {γ} = ({α}, µ). The second term can be omitted in the low-noise limit (I l
k({α}, µ) −

Ĩ l
k ∼ σ̃k → 0), yielding a standard expression for the Hessian matrix [44]:
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Explicitly,
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(C.3)

Uncertainties σi for each predicted parameter γi are given by the diagonal elements of the

inverse Hessian matrix:

σ2
i = −‖

∂2L

∂γi∂γj
‖−1

ii . (C.4)
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C.1 Hessian analysis of a mixture of two ligands interacting with a single

receptor

For a single receptor and two ligands we obtain from eq. (C.3) (omitting the receptor index

and setting α1 = α, σ̃2 = 1 for convenience):

∂2L

∂α2
= −

N
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pl
2

α
(A2 − I l) −

I l
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(C.5)

C.1.1 Agonist-agonist scenario.

If both ligands have unit efficacies (A1 = A2 = 1), eq. (C.5) gives

∂2L

∂α2
= −

N
∑

l=1

(

pl
2 − αpl

1

Z lα(1 + α)

)2

. (C.6)

Let us assume for simplicity that µ is known, so that σ2
α = −

(

∂2L/∂α2
)−1

. Furthermore,

let us suppose that ∆G1 is fixed at a finite value, while ∆G2 varies from −∞ to +∞. It

is then easy to see that ∆G2 = ∆G1 is a special case, yielding pl
2 = αpl

1 (∀l) and thus

σ2
α = ∞. So, as expected, discrimination between the two ligands is impossible if they have

equal efficacies and binding affinities. If ∆G2 → −∞, Z l → +∞ (and pl
2 → 1, ∀l), making

∂2L/∂α2 = 0 for finite α. Thus discrimination is impossible if one of the ligands completely

saturates the receptor. However, if ∆G2 → +∞, Z l remains finite (while pl
2 → 0, ∀l),

yielding

∂2L

∂α2
≃ −

1

(1 + α)2

N
∑

l=1

(

pl
1

Z l

)2

. (C.7)

Surprisingly, discrimination is still possible in this limit, even if ligand 2 does not bind the

receptor (Figure 3.3). This is because the total concentration is known in this example

and so the information provided by ligand 1 is sufficient to infer α. Of course, if ligand

1 is either unbound (pl
1 → 0, ∀l) or strongly bound (Z l → +∞), predicting α becomes

impossible again.
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If α is known, the error in the predicted total chemical potential µ is determined by

(eq. (C.5)):

∂2L

∂µ2
= −β2

N
∑

l=1

(

Z l − 1

Z l2

)2

. (C.8)

Learning the value of the total concentration becomes impossible if both ligands are unbound

(Z l → 1), or if one ligand is bound so strongly that measuring the concentration of the other

ligand becomes problematic (Z l → ∞). Note that in both of these limits ∂2L/∂α2 = 0 as

well.

Simultaneous discrimination of µ and α is not possible if both ligands have equal efficacies

(Figure 3.3). Indeed, the determinant of the 2 × 2 matrix of second derivatives is always

close to 0:

det

(

∂2L

∂γi∂γj

)

=

(

β

α(1 + α)

)2 N
∑

l,l′=1

Z l′ − 1

Z l2Z l′ 3
(pl

2 − αpl
1)×

[

(pl
2 − αpl

1)(pl′

1 + pl′

2 ) − (pl′

2 − αpl′

1 )(pl
1 + pl

2)
]

.

(C.9)

This is because appreciable values of pl
1 or pl

2 lead to Z l > 1, which in turn suppresses the

determinant. The small value of the determinant means that at least one of the errors is

large. For example, if ∆G2 = ∆G1,

σ2
α = −

1

det
(

∂2L

∂γi∂γj

)

∂2L

∂µ2
(C.10)

is infinite because pl
2 = αpl

1(∀l), whereas Z l and thus ∂2L/∂µ2 are finite. In general,

the multidimensional analysis of this type is difficult because zeros in the numerator and

denominator of eq. (C.10) and a similar equation for σ2
µ have to be handled correctly.

C.1.2 Agonist-antagonist and antagonist-agonist scenarios.

If one of the ligands (e.g. ligand 2) acts as a perfect antagonist (A1 = 1, A2 = 0), eq. (C.5)

gives (Figure 3.2):

∂2L

∂α2
= −

N
∑

l=1

(

pl
1

)2
(

pl
2

α
+

1

Z l(1 + α)

)2

,

∂2L

∂µ2
= − β2

N
∑

l=1

(

pl
1

Z l

)2

,

∂2L

∂µ∂α
= − β

N
∑

l=1

(

pl
1

2

Z l

)(

pl
2

α
+

1

Z l(1 + α)

)

.

(C.11)
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With ligand 1 acting as an antagonist (A1 = 0, A2 = 1), we obtain (Figure 3.1):

∂2L

∂α2
= −

N
∑

l=1

(

pl
2

)2
(

pl
1

α
+

1

Z lα(1 + α)

)2

,

∂2L

∂µ2
= − β2

N
∑

l=1

(

pl
2

Z l

)2

,

∂2L

∂µ∂α
= − β

N
∑

l=1

(

pl
2

2

Z l

)(

pl
1

α
+

1

Z lα(1 + α)

)

.

(C.12)

If α = 1 eq. (C.12) is the same as eq. (C.11) with ∆G1 and ∆G2 interchanged. However,

for arbitrary α there is no symmetry, so that maximizing the determinant of the Hessian

with A1 = 0, A2 = 1 and A1 = 1, A2 = 0 yields two distinct solutions in the {∆G1, ∆G2}

space.

C.2 Alternative definitions of the relative concentrations.

Recall that the relative concentrations are defined as αm = nm+1/n1 (m = 1 . . . Nlig − 1),

where nj is the concentration of ligand j = 1 . . . Nlig. Different choices of the ligand in

the denominator may lead to very different numerical values of α if, for example, n1 ≪ n2

in a two-ligand, one-receptor system. Nevertheless, the uncertainty of both predictions is

related. Indeed, if α = n2/n1 → 0 one can show that

∂2L

∂α2
→ −

N
∑

l=1

(

el
1el

2(A2 − A1) − A1el
1 + A2el

2

(1 + el
1)2

)2

, (C.13)

where el
i = exp{−β(∆Gi − µl)}, i = 1, 2. Thus the absence of ligand 2 can generally be

predicted with finite uncertainty, at least if the total chemical potential µ is known. In the

α → +∞ limit,

∂2L

∂α2
→ −

1

α4

N
∑

l=1

(

el
1el

2(A2 − A1) − A1el
1 + A2el

2

(1 + el
2)2

)2

, (C.14)

and σ2
α = −

(

∂2L/∂α2
)−1

diverges as α4. This is expected because α → +∞ is equivalent to

α′ = n1/n2 = 1/α → 0, yielding σ2
α = α4σ2

α′ . Thus σ2
α′ remains finite as ligand 1 disappears

from the mixture. Moreover, the expression for ∂2L/∂α′2 in the α′ → 0 limit should be

the same as the expression for ∂2L/∂α2 in the α → 0 limit, but with ligand labels 1 and 2

interchanged. Indeed, if 1 ↔ 2 eq. (C.14) becomes the same as eq. (C.13), apart from the

1/α4 factor mentioned above.
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C.3 Number of agonist-antagonist patterns in an arbitrary receptor ar-

ray.

For an arbitrary receptor-ligand combination, there are

Nrec−1
∑

m=1

(m + 1)!

Nrec!
nNrec−m +

n(nNrec − 2nNrec−1 + 1)

(n − 1)Nrec!
(C.15)

unique patterns in which each receptor interacts with one agonist and one antagonist (the

patterns are unique in a sense that all patterns connected by trivial receptor label permu-

tations are counted only once). Here Nrec is the number of receptors, Nlig is the number

of ligands, and n = 2
(Nlig

2

)

is the number of ways in which one agonist and one antagonist

can be bound by a single receptor, so that the total number of patterns (some connected

by receptor label permutations) is nNrec . With Nrec = 2 and Nlig = 3 the total number of

patterns is 36, and 21 unique patterns include 3 combinations in which one of the ligands

acts as an antagonist for both receptors, 3 more where one of the ligands is the global ag-

onist, 6 mixed patterns where one ligand invokes the agonist-antagonist receptor response

and the other two are either an agonist or an antagonist for one of the remaining receptors,

and finally 9 patterns in which one of the receptors does not strongly interact with any

of the ligands. The remaining 15 patterns are related to the ones listed above through

receptor label permutations. The first subclass yields equivalent globally optimal solutions,

subclasses 2 and 3 correspond to local maxima, and the fourth subclass in which one of the

receptors remains unused does not yield any stable solutions, relaxing into one of the other

categories.
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Appendix D

Additional Figures, Chapter 3
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Figure D.1: Hessian uncertainties vs. standard deviations from nested sampling. Synthetic
data was generated as four replicates for each of the 15 equal-proportion mixtures from Figure 2.3, using
parameters from Table B.1 and σ̃ = 0.01 for all receptors (eq. (4.6)). For each receptor, concentration
ranges were taken from the corresponding experiment (see § 2.1.4). For each parameter, a Hessian error
computed using eq. (C.4) (x-axis) is compared with the standard deviation from a nested sampling run
(y-axis). Nested sampling simultaneously infers relative concentrations α1, α2, α3, the total concentration
and σ̃’s given receptor-ligand parameters from Table B.1.



81

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 

 

r = 0.65

0
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
 

 

r = 0.54

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

 

 
r = 0.29

0.0 0.02 0.04 0.06 0.08 1 0.12 0.14
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

 

 
r = 0.68

|<
α

1

p
re

d
>

 -
  α

1

tr
u

e
|

|<
α

2

p
re

d
>

 -
  α

2

tr
u

e
|

|<
α

3

p
re

d
>

 -
  α

3

tr
u

e
|

|<
lo

g
1

0
[T

o
ta

l]
p

re
d
>

 -
  lo

g
1

0
[T

o
ta

l]
tr

u
e
|

σα
1

σα
2

σ   α
3

σ log
10

[Total]

a b

c d

Figure D.2: Hessian uncertainties vs. errors in parameter predictions. Synthetic data was
generated as four replicates for each of the 15 equal-proportion mixtures from Figure 2.3, using parameters
from Table E.1 and σ̃ = 0.01 for all receptors (eq. (4.6)). For each receptor, concentration ranges were taken
from the corresponding experiment (§ 2.1.4).For each parameter, a Hessian error computed using eq. (C.4)
(x-axis) is compared with the absolute magnitude of the difference between the mean value predicted by
nested sampling and the correct value (y-axis). Nested sampling simultaneously infers relative concentrations
α1, α2, α3, the total concentration and σ̃’s given receptor-ligand parameters from Table B.1.
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Appendix E

Additional Figures and Tables, Chapter 4
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Figure E.1: Prediction of parameters a′

k, b′

k, c′

k (eq. (4.7)) by a least-squares quadratic fit to
Ck(α). Each point and its error bar represent the mean and the standard deviation of Ck(α) predicted by
RANSA for each training data subset (see § 4.4.2), and averaged over all 5 subsets. Each curve is found by
a least-squares fit to the mean Ck(α) (α = 0, 1, 1.5, 2, 3) inferred from a given training subset.
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Figure E.2: Prediction of parameters ak and bk (eq. (4.7)) by a least-squares linear fit to pk(α).
As in Figure E.1, each point and its error bar represent the mean and the standard deviation of pk(α)
predicted by RANSA for each training data subset (see § 4.4.2), and averaged over all 5 subsets. Each curve
is found by a least-squares fit to the mean pk(α) (α = 1, 1.5, 2, 3) inferred from a given training subset. Note
that the α = 0 case, which does not follow the linear trend, is treated separately, as described in the text.
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Figure E.3: Same as Figure 4.3, but with 0 µA bias current.
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Figure E.4: Same as Figure 4.3, but with −1.5 µA bias current.
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Figure E.5: Same as Figure 4.3, but with −3.5 µA bias current.
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Table E.1: Means and standard deviations of linear model parameters V k
01

,
V k

02
, Ak, Bk (Eqs. (4) and (5)) inferred by RANSA in the calibration step.

Bias Current (µA) V k
01

V k
02

Ak Bk

0.0 (k = 1) −.0032 ± 0 5.9 × 10−4 ± 0 8.9 × 10−4 ± 0 5.8 × 10−4 ± 0

−1.5 (k = 2) −.0031 ± 0 −4.9 × 10−4 ± 0 7.9 × 10−4 ± 0 5.0 × 10−4 ± 0

−3.5 (k = 3) −.0051 ± 1.7 × 10−4 −.0020 ± 1.2 × 10−4 7.1 × 10−4 ± 0 3.8 × 10−4 ± 0

−6.0 (k = 4) −.0042 ± 0 −8.1 × 10−4 ± 0 5.8 × 10−4 ± 0 2.7 × 10−4 ± 0

Table E.2: Means and standard deviatins of nonlinear model parameters Ck(α)
and pk(α) (eq. (4.6)) inferred by RANSA in the calibration step. All means and
standard deviations are averaged over 5 training subsets (see § 4.4.2).

Bias Current (µA) α Ck(α) pk(α)

0 .0005 ± 1.0 × 10−5 1.108 ± .006

1 .0028 ± 8.0 × 10−5 .794 ± .007

0.0 (k = 1) 1.5 .0031 ± 1.4 × 10−4 .816 ± .012

2 .0029 ± 1.4 × 10−4 .870 ± .013

3 .0039 ± 9.0 × 10−5 .848 ± .007

0 .0004 ± 9.0 × 10−6 1.154 ± .006

1 .0017 ± 2.9 × 10−5 .905 ± .004

−1.5 (k = 2) 1.5 .0017 ± 4.1 × 10−5 .954 ± .006

2 .0018 ± 5.1 × 10−5 .978 ± .007

3 .0019 ± 2.8 × 10−5 1.045 ± .005

0 1.6 × 10−4 ± 9.4 × 10−7 1.316 ± .001

1 7.6 × 10−4 ± 3.4 × 10−5 1.07 ± .01

−3.5 (k = 3) 1.5 6.5 × 10−4 ± 7.0 × 10−6 1.161 ± .003

2 7.9 × 10−4 ± 7.9 × 10−5 1.16 ± .03

3 7.7 × 10−4 ± 3.1 × 10−5 1.25 ± .01

0 1.2 × 10−4 ± 8.0 × 10−6 1.34 ± .02

1 3.9 × 10−4 ± 1.1 × 10−5 1.186 ± .006

−6.0 (k = 4) 1.5 4.0 × 10−4 ± 1.9 × 10−5 1.24 ± .01

2 5.0 × 10−4 ± 2.7 × 10−5 1.22 ± .01

3 5.9 × 10−4 ± 2.3 × 10−5 1.26 ± .01
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Table E.3: Parameters a′
k, b′

k, c′
k (eq. (4.7)) inferred by least-squares fits as

shown in Figure E.1. Each parameter is averaged over 5 training subsets (see
§ 4.4.2).

Bias Current (µA) a’ b’ c’

0.0 (k = 1) −.0004 .0021 .0007

−1.5 (k = 2) −.0003 .0013 .0004

−3.5 (k = 3) −.00012 .00056 .00020

−6.0 (k = 4) −3.4 × 10−5 .00025 .00013

Table E.4: Parameters ak, bk (eq. (4.7)) inferred by least-squares fits as shown
in Figure E.2. Each parameter is averaged over 5 training subsets (see § 4.4.2).

Bias Current (µA) a b

0.0 (k = 1) .029 .778

−1.5 (k = 2) .068 .844

−3.5 (k = 3) .084 1.00

−6.0 (k = 4) .031 1.17
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