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This thesis consists of two studies pertaining to the evolution and genomic signa-

tures of viruses. Viruses are obligate intracellular parasites that have a great impact

on human, animal and plant health. The first study involves the human infecting

Influenza A H5N1 viruses. H5N1 is an avian virus which occasionally infects humans,

with a 50-60% mortality rate. Human-to-human transmission is limited, and most

H5N1 infections are transmitted to humans from birds. Under such a transmission

scheme, there can be a possibility of a biased transmission of H5N1 strains from birds

to humans. Such a biased transmission could arise due to higher efficiency of some

avian strains in infecting humans, an enhanced ability of the human immune response

to clear some of the human-infecting avian strains, etc. We developed a novel strat-

egy to identify such signatures and analyzed publicly available H5N1 hemagglutinin

sequences from China, Egypt, and Indonesia. In each geographic region, it was found

that human infecting strains arose from a subset of the avian viral pool characterized
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by geography specific mutations. These mutations lie in functionally important re-

gions of hemagglutinin proteins involved in viral attachment to cells, immune response

etc. After correcting for this transmission bias, an absence of further widespread bias

was observed. This research also showed that vaccine evasion mutant viruses are

unlikely to infect humans, a finding with significant implications for rational vaccine

design.

As a separate project, we developed a new method to detect novel capsid se-

quences. It is expected that a large part of the virosphere still remains uncharac-

terized. Viruses show remarkably high levels of sequence diversity. Hence, sequence

similarity based methods have limited success in detection of novel viral sequences in

metagenomic studies. However, in contrast to high sequence diversity, the capsid pro-

teins from diverse families of icosahedral viruses show a conserved eight stranded beta

barrel known as the “Jelly-roll” fold. Motivated by this structural conservation, we

sought to classify such capsid protein sequences using a machine learning approach

on alignment free features. The nature of the alignment free features suitable for

the problem are first discussed. Using these alignment free features, a high-accuracy

Support Vector Machine (SVM-Caps) was developed for classifying jelly-roll capsid

proteins against other proteins. The predictive power of this classifier was compared

to that of BLAST, a popular tool based on sequence similarity. SVM-Caps was found

to have comparable but lower power to detect capsid sequences of known viral families,

but significantly higher power in detection of capsid sequences from novel families.

As an application of this method, the viral metagenomic data from the French Lake

Bourget study were analyzed and many potential novel capsid sequences were found.
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Chapter 1

Introduction

In this thesis, I discuss two projects on population genetics and bioinformatics of

viruses. Viruses are obligate parasites that need a host to replicate and synthesize

their proteins [11]. Viruses infect hosts from all domains of life (archea, bacteria and

eukaryotes) [12], and many viruses are prominent human, animal and plant pathogens.

In humans, some of the most notorious and damaging diseases, such as AIDS [13, 14],

Influenza [15], some types of cancer [16], smallpox [17], polio[18], rabies [19] and

Hepatitis [20] are of viral origin. Intense effort to understand their biology has led to

remarkable advancements in molecular biology, immunology, and public health.

In this chapter, I first review the important facts about viruses. This will help

set the stage for the research discussed in Chapter 3 on detecting novel capsid se-

quences from a diverse set of known and unknown viral families. I also review viral

metagenomic sequencing, an emerging field which is revolutionizing our understand-

ing of viral diversity and functions, and discuss the novel bioinformatics challenges

presented by such analyses. Next, I focus on Influenza viruses and review key research

relevant to our work on H5N1 Influenza A viruses, which is discussed in Chapter 2.

1.1 Diversity of the Viral Universe

Since their discovery in late 19th century, intense research has led to an understand-

ing of the life-cycles, structures, and pathogenicity of many diverse viruses infecting

diverse hosts from all domains of life. Many viruses can now be cultured in the labs,

and ∼ 5, 000 species of viruses are known. Through these studies, it is now clear that
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viruses are an extremely diverse group of biological entities. This diversity stems

from many different aspects. As viruses depend on their hosts for replication and

translation of proteins, they have evolved different strategies to infect these diverse

hosts. Even within the viruses infecting same types of hosts, there can be substan-

tial differences in viral infection strategies due to the nature of their surface proteins

(which governs the cellular channels they use to enter cells), their structures (which

determine where in the cell they are located) and their genome-type and genomic

content (which determine the host cellular machinery they need to interact with). I

focus on the latter two aspects below.

1.1.1 Viral Genomes and Genes

Whereas the genomes of cellular organisms are composed of DNA, the genomes of

viruses can be either DNA or RNA [11]. Genomes of DNA viruses can be further

classified into single stranded DNA (ssDNA) or double stranded DNA (dsDNA) (all

cellular organisms have double-stranded DNA genomes). Moreover, the viral DNA

genomes can either be circular or linear. RNA genomes of viruses can be single

(ssRNA) or double stranded (dsRNA) and are mostly linear. Single stranded RNA

viral genomes can be further classified into positive or negative depending on whether

the viral messenger RNA (which can be translated into proteins) is derived from the

genome or its complement. Some viruses are ambisense and their proteins can be

translated on both the RNA strand derived from the genome as well as its comple-

ment. RNA and DNA viruses can also have segmented genomes (similar to chro-

mosomes in humans). Most of the viral genomes are haploid, i.e. they possess one

homologous copy of each segment. In contrast, some viruses such as HIV are diploid

and have two copies of each segment [11]. Each of these classes of viruses has distinct

replication strategies: for DNA viruses, replication is DNA→ DNA; for RNA viruses

replication is RNA→RNA. However, there also exist viruses whose replication strat-

egy is either DNA → RNA → DNA or RNA→ DNA → RNA. These viruses use the
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Figure 1.1: Virus classification based on genome type introduced by Baltimore [2].
The image was made available by Thomas Splettstoesser via the Creative Commons
license.

enzyme Reverse Transcriptase (RT) to convert DNA to RNA, and form a separate

class called RT utilizing DNA/RNA viruses. The classification of viruses based on

genome types, messenger RNA production strategies and replication strategies was

introduced by Baltimore [2] (Fig. 1.1), and is also acknowledged by the International

Committee on Taxonomy of Viruses (ICTV) [21]. ICTV further classifies these classes

into Orders, Families, Subfamilies, Genera, Species in decreasing order of hierarchy

[21].

Viral genome sizes exhibit a huge range from a mere 1, 680 bases long for Deltavirus

to ∼ 2, 500, 000 base pairs long for Pandoraviruses [22]. The number of genes also

show a similar variation from 1 to ∼ 2, 500 (Table 1.1). Such diversity in the gene

content of viruses highlights the diverse nature of the viral life-cycles, wherein differ-

ent proteins are utilized for different functions. Most of the viral proteins are family-

specific, and few are homologous in higher taxonomic units. There are no genes which

are universally present in all viruses. This is in contrast to cellular organisms, which

possess several common genes such as the conserved ribosomal RNA and proteins

[23, 24], etc. Notably, viruses do not possess ribosomes, the essential components of
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cells which translate proteins from messenger RNA. Although there are few capsid-

less viral families known [25], the most prevalent gene in viruses encodes the capsid

protein, which is used to build protective shells around viral genomes. In spite of the

prevalence of capsid proteins, there is a great diversity in their sequences and protein

structures (see below for conservation of capsid structures). Other than this gene,

there are also some other notable genes, which are conserved in many diverse viral

families, but not in all. Such genes were called “viral hallmark genes” by Koonin et

al. [12], and include Superfamily 3 Helicase (involved in DNA/RNA strand separa-

tion), Replicase (involved in replication of DNA), RNA dependent RNA Polymerase

(involved in replication of RNA genomes), etc. However, apart from these few cases,

there is considerable variability in the prevalence of viral genes, reflecting the need

for specific host-dependent functions in different types of viruses.

Table 1.1: Properties of Viral Genomes (from ViralZone

[1])

Class
Genome Size

(kb)
Segments Genes

dsDNA 4.5-2,500 1-105 5-2556

ssDNA 1.8-12.5 1-8 2-16

dsRNA 3.7-30.5 1-12 2-14

ssRNA(+) 2.3-31 1-5 1-15

ssRNA(-) 1.7-25.2 1-8 1-12

dsDNA-RT 3.0-8.3 1 3-8

ssRNA-RT 5.1-11.0 1 8
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1.1.2 Viral Capsid Structures

Most viruses possess some sort of proteinaecious shells around their genomes and

other contents [11]. These capsid shells are built out of multiple copies of a few pro-

teins which self-assemble to form, in most cases, symmetric capsids. They can be

broadly classified into two symmetry classes: a) helical and b) icosahedral (Fig. 1.2).

Some viral capsids do not fall into either of these symmetry classes and are irregularly

shaped, e.g. conical shaped HIV capsids, brick-shaped poxvirus capsids, bottle and

droplet shaped archaeal virus capsids [26] etc. Nonetheless, all the exceptional shaped

capsids are still built from multiple copies of few distinct proteins. Viruses of bacte-

ria, called bacteriophages, often have an icosahedral or elongated icosahedral capsid

attached to a helical tail with tail fibers. The majority of the viruses have icosahedral

capsids, whose structures are further characterized by the number of building units

they possess (a system due to Caspar and Klug [27]). Some viruses possess a lipid

membrane outside the capsids, in which case they are referred to as enveloped. In

case of enveloped viruses, the lipid layer is often obtained from the host cell when the

virus exits the host cell membrane.

Since the principal contents of viral capsids are the viral genomes, the size of

capsids can vary as dramatically as the size of the viral genomes. Capsid sizes can

range from 20 nm for Circoviridae to ∼ 1µm for giant complex-shaped viruses such

as the Pandoraviruses and long viruses like Filoviruses.

1.1.3 Conservation of the “Jelly-Roll Fold” in Capsid Subunit Proteins

Many viruses have icosahedral capsids and it was beleived that this common symme-

try emerged from the constraint of building a symmetric shell with identical subunits.

Indeed, the absence of sequence similarity of the subunit capsid proteins supported

the notion of multiple routes in the evolution of icosahedral capsids. However, high-

resolution structural studies since the late 1970s onwards began suggesting otherwise.
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Figure 1.2: Viral Capsid structures. Except the helical capsid of Ribgrass Mosaic
Virus (second in top row, transverse section shown), all other capsids have icosahedral
symmetry. Figure reproduced with permission from Goddard et al. [3]. The codes
below the names of viruses refer to the structure accession codes in PDB.
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A

B

C

Figure 1.3: Single and Double Jelly-Roll containing Capsid Proteins. The canonical
jelly-roll fold possessing 8 β strands (B-I) is shown in (A), with the fold structure
schematically shown in (B). The capsid structure of STIV showing two jelly-roll folds
is shown in (C). Sub-figures A and B are reproduced with permission from Cheng &
Brooks [4], and (C) from Khayat et al. [5].

Initially, a plant and a human virus with icosahedral capsid were shown to have a

similar fold in their capsid subunit structures – an eight beta-stranded “jelly-roll fold”

(Fig. 1.3 A, B) [6]. This same fold was also later observed for the capsid subunit of an

insect virus. As a variant on this theme, capsid subunits possessing two such folds,

perhaps due to duplication, were found to be shared between viruses infecting differ-

ent domains of life – the human infecting adenovirus, and the bacteriophage PRD1.

The work of Khayat et al. [5] then extended this conservation to viruses infecting the

third domain of life. They showed that the Sulfolobus Turreted Icosahedral Virus

(STIV), a virus infecting the archaea species Sulofolobus, also contained the PRD1

like fold (Fig. 1.3 C). Currently, there are more than 20 families of viruses and many

types of unclassified of RNA and DNA viruses known to carry either one or two copies

of this conserved fold (Table 3.1) [6, 28, 29].

The evolutionary history and antiquity of viruses has always been disputed. Since
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some viruses still use RNA genomes, one of the theories of origins of viruses proposes

that viruses are relics of a pre-cellular era, the so-called RNA world [12]. Consistent

with this theory, the structural conservation of the jelly-roll fold between viruses in-

fecting all three domains of life suggests a common ancestry of these viruses, dating

to before the separation of the evolutionary lineages of eukaryotes, bacteria and ar-

chaea, more than 3 billion years ago [6]. The structural conservation of the jelly-roll

fold has motivated detailed research into conservation of structural motifs in capsid

subunit proteins of other viruses. This has resulted in a phylogeny of viruses based

on structural similarities in capsid proteins, and has identified 4 main lineages: a)

Picorna-like – capsids containing one copy of jelly-roll fold, b) PRD1-like – capsids

containing two copies of jelly-roll folds, c) HK97-like – this lineage includes tailed-

bacteriophages (possessing icosahedral heads) and herpesviruses, and d) BTV-like

– these are exclusively dsRNA viruses of eukaryotes and bacteria [6] (Fig. 1.4). In

Chapter 3, I focus on developing a method to detect novel capsid sequences from the

first two jelly-roll fold containing lineages.

1.2 Viral Metagenomics

1.2.1 Overview

Typically, viruses have been studied by isolating and culturing them in labs [11]. This

involves first culturing their hosts, and then innoculating them with virus-containing

solution to get plaques. Such a procedure is not amenable to large scale studies of

viral diversity. In 1998, a new way of studying the genomic content of microbes in

environmental samples was introduced by Handelsman et al. [30]. This novel method,

termed “metagenomics”, involved isolation and sequencing of the genomic content of

organisms from environmental samples directly without the need to culture them. For

viruses specifically, this method was first developed and applied to isolate viral DNA

from marine water samples by Breitbart et al. [31] in 2002. Their method, which in
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Figure 1.4: Capsid Structure Based Phylogeny of Viruses. Figure is reproduced with
permission from Abrescia et al. [6]
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essence has remained the same in more recent studies as well, involved filtration of

virus-sized particles, extraction and amplification of the DNA from these virus-like

particles, and sequencing of the amplified sequences using sequencing technologies.

These studies found a huge diversity of viruses: 400-7000 different types of viruses.

The majority of the viral genomic sequences identified could not be mapped to known

viruses, indicating that most of the viruses sequenced were novel. In the last decade

a variety of environments such as marine sediment, potable water, hot springs, stro-

matolites, human gut, infant feces, other animal tissues etc. have been analyzed to

understand their viral content and diversity (see [32–34] for reviews) and many new

viruses have been characterized. Consistent with the earliest studies, a huge diversity

of viruses is found in most environmental samples, and a high fraction of this diversity

is thought to originate from novel, uncharacterized viruses.

Apart from uncovering viral diversity in different environments, viral metagenomic

studies have also provided novel insights into human disease and health [34]. The

viromes of the human gut, saliva, respiratory and oropharyngaeal tracts have been

characterized. It was found that the most numerous viruses were bacteriophages

with the number of bacteriophages in the human body estimated at 1013 − 1015

(compared to 1013 human cells, and 1014 microbes in the human body) [33]. These

bacteriophages are thought to play important roles in regulating the human bacterial

microbiome as well as in the transfer of bacterial virulence genes. A number of novel

viruses implicated in human diseases have also been discovered through metagenomics

studies, such as a novel arenavirus responsible for fatal transplant-associated disease

[35], novel bocaviruses and picornaviruses from stool samples of children with non-

polio acute flaccid paralysis [36], etc. Furthermore, the viral diversity of herpesviruses

and retroviruses were shown to be significantly different in the respiratory tracts of

individuals with and without cystic fibrosis [37]. Thus, viral metagenomics provides

not only a way to discover novel potential etiological agents for human diseases, but

can also be used to understand the changes in viral communities associated with
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different diseases. These studies are helping shed light on potentially novel processes

present in some human diseases.

1.2.2 Bioinformatics Challenges

Depending on the sequencing platform used, a typical viral metagenome project pro-

duces tens of megabases of data, in the form of short reads with average read-sizes of

100− 500 base pairs. These massive number of sequence reads are then subjected to

bioinformatics analysis to further study the sequence properties. These analyses fall

into four classes: a) pre-processing and filtering, b) characterization of viral species

and gene of origin, c) assembly of reads into contigs, and d) abundance analysis (for

a review see [34]). Each of these analyses are confronted with several challenges and

confounding factors. The first class of analysis aims to ensure that only high-quality

reads are retained and that there is no contamination in the dataset due to non-viral

genomic sequences. The latter issue is complicated by the fact that some reads may be

similar to non-viral organisms, but the similarity could be to inserted viral sequences

in their genomes (e.g. prophages in bacteria). The second class is one of the most

challenging aspects in the bioinformatics analysis of viral metagenomics reads, which

I discuss in depth below. In the third class of analyses, short reads are assembled

to form longer contigs, and possibly full viral segments. This can be challenging due

to the existence of conserved sequence motifs between viruses, which could lead to

assemblies of chimeric contigs. As a consequence, very stringent criteria are imposed

on sequence overlap between reads for assembly. This in turn, depending on read

coverage, can lead to incomplete viral segments. The fourth class of analyses involves

characterizing the metagenome set in terms of the abundance of certain taxa or gene

functions. This can be complicated by the uneven representation in terms of read cov-

erage of the viral content of the metagenomic sample. Nonetheless, several publicly

available bioninformatics tools and pipelines overcome these challenges in analyzing

raw viral metagenomic read data [34].



12

The second class of analyses mentioned above involves the mapping of sequence

reads to known viruses and genes. The most popular approach for this step uses

sequence similarity of reads to the database of known organisms. The preferred tool

used for this approach is tBLASTx [38], which compares the similarity of a translated

DNA sequence (in all possible frames) to a database of proteins. Because, viral

sequences in metagenomic datasets can be very different from the known viruses,

use of translated reads, instead of actual reads, is preferred so as to eliminate the

impact of silent mutations on sequence comparison. One of the main issues with such

sequence similarity based methods, which arise in the context of viral metagenomics,

is that a large fraction (50 − 90%) of the reads cannot be assigned to any known

organism [32]. The reasons for this large discrepancy are believed to be the poor

representation of actual viral diversity in our databases, the high diversity of viruses

in the samples studied and the high rates of evolution of viruses.

To circumvent the problem of using sequence similarity to identify novel genomic

sequences, several approaches based on alignment-free features have been studied (see

[39] for a review of alignment-free features). These methods rely on species-specific

signatures in the frequency of certain short sequence motifs in their genomes [40],

which can be preserved even in the absence of evident sequence similarity of novel

sequences to known database sequences. Examples of such methods are TETRA [41],

PhyloPythia[42], Phymm [43], MGTAXA [44], etc. All these methods employ some

form of machine learning algorithms (Support Vector Machines or Hidden Markov

Models) to learn the signatures of different taxonomic groups in the alignment-free

features used. Such algorithms are then used to predict the taxonomic classification

of the sequence. Except MGTAXA, all of these methods have been developed for

bacterial metagenomics, where a similar problem of large number of unassignable

reads exists [40]. MGTAXA has been trained on viral genomes, and is currently

the only available program using alignment-free features for identification of novel

viruses [34]. Thus, our work in Chapter 3 on detection of novel capsid sequences
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using alignment-free features is a crucial new addition.

1.3 Influenza Viruses

Influenza viruses are some of the most prevalent human and animal pathogens. They

infect various species of mammals and birds [45], and in humans, cause millions of

cases of “flu” each year with hundreds of thousands of fatalities [46]. They have

also caused several pandemics resulting in huge losses of human lives. One such

widely believed emerging pandemic threat is the Influenza A subtype H5N1 [47], the

population genetics of which I discuss in Chapter 2.

1.3.1 Overview

Influenza viruses are single-stranded (negative sense) RNA viruses of the Orthomyx-

oviridae family. Their capsids are enveloped with the surface glycoproteins hemagglu-

tinin (HA) and neuraminidase (NA) embedded in the lipid envelope. Their genomes

are segmented into 8 segments carrying a total of 10 genes, although some strains have

been shown to have some additional genes [48]. There are three genera of Influenza

viruses, A-C (see [45, 49] for reviews). Of these three genera, the most commonly

human-infecting viruses are from the genera A and B. Influenza B viruses are endemic

to humans, and seldom cause significant disease in humans likely due to coevolution

with humans for a long time [50]. In contrast, Influenza A viruses infect a variety

of bird and mammal hosts, with wild aquatic birds being their natural reservoir [45].

They have higher mutation rates as compared to the genus B viruses, which enable

them to cause seasonal epidemics inspite of vaccination as well as the occasional

pandemics (discussed below).

The genus A is further classified into different subtypes based on the antigenic

properties of the two surface glycoproteins HA and NA. There are currently 16 HA
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(numbered H1-H16) and 9 NA (numbered N1-N9) subtypes are known. Human in-

fections are predominantly caused by the subtypes H1N1 and H3N2 currently, and

these are the viruses which cause the seasonal epidemics [50]. Within each subtype,

there can be considerable genetic variety from year to year, requiring the development

of new vaccines every one or two years [50]. The prime drivers of the evolutionary

diversity of Influenza A viruses are point mutations and reassortment. Whereas the

former refer to nucleotide mutations in the genomic sequence, the latter occurs when

segments from different sub-types are packaged into the same virus particle during

co-infection of a host cell by different subtypes. The high mutation rates of influenza

viruses are caused by the error-prone RNA dependent RNA polymerase. This leads

to mutations rates of around 10−3 amino acid/year, which are ∼ 106 times those of

humans. Due to the shuffling of viral segments, reassorted viruses can have substan-

tially different antigenic properties and can cause pandemics in situations when the

human immune system cannot effectively control such novel viruses [49].

1.3.2 Emergence of Novel Strains and Pandemics

Influenza viruses have caused three pandemics in the 20th century [51], and one in

the 21st century [52]. These pandemics are the 1918 “Spanish Flu” (H1N1), the 1957

“Asian Flu” (H2N2), the 1968 “Hong Kong Flu” (H3N2), and the 2009 “Swine Flu”

(H1N1, but different than the seasonal variety). These pandemics have cumulatively

caused millions of human deaths worldwide. The Spanish Flu alone was reponsible

for 50− 100 million deaths. Apart from these well-characterized pandemics, there is

also evidence of ten influenza pandemics in historical documents since the late 16th

century, which have occured at 10-70 year intervals [53].

The strains which have caused the last four pandemics are now characterized.

Unlike the strains which cause seasonal epidemics, currently the H3N2 and H1N1

subtypes, these pandemic causing strains were novel human-infecting strains where

some of the eight segments originated from viral subtypes that infect other animals.
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The 1918 H1N1 pandemic strain was thought to be a purely avian influenza virus

(all eight segments from avian infecting viruses) and was introduced into humans

just before the onset of the pandemic [54]. The 1957 H2N2 pandemic was due to a

reassortant of an avian H2N2 virus with the descendants of the H1N1 human viruses

from the 1918 pandemic. The 1968 H3N2 pandemic was due to a further reassortant

between the 1957 H2N2 and an avian H3 (N subtype unknown) virus [47]. Finally,

the 2009 H1N1 was a triple reassortant between a human H3N2, a swine H1N1 and

an avian H1N1 virus [55]. It is believed that such introductions of influenza viruses

with HA and NA of viruses infecting other species cause pandemics due to the lack

of successful neutralization by human immune response of these antigenically novel

influenza viruses [45]. The internal genes in such pandemic viruses are often from

human infecting viruses, since the mechanisms involved in Influenza replication are

different in humans from other hosts such as swine and birds.

Besides the few subtypes which currently infect humans, a large number of In-

fluenza A subtypes circulate in wild birds, and it is possible that any of these through

reassortment or mutation could give rise to a pandemic [15]. Indeed, there are already

reports of human infections involving influenza subtypes such as H5N1, H7N7, H9N2

and most recently H7N9, which had so far not been known to infect humans.

1.3.3 H5N1 Influenza Viruses

Among the above mentioned novel Influenza A subtypes to infect humans, the H5N1

viruses have had the most number of human infections. H5N1 is an avian Influenza

A virus, which occassionally infects humans. Similar to the 1918 H1N1 pandemic

strain, all the segments of H5N1 are from avian infecting influenza viruses. There

are now hundreds of reported human cases with a high mortality rate of around

60% [56]. The pandemic potential of H5N1 is currently limited due to the lack of

human-to-human transmission and almost all the human infections arise from contact

with infected birds [47] (see [57] for a probable human-to-human transmission chain).
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Avian influenza viruses typically prefer attachment to particular cellular receptors

that in humans are present in the lower respiratory tract. In contrast, human influenza

viruses prefer attachment to cellular receptors in the upper respiratory tract. Since

humans mainly transmit influenza viruses through airborne water droplets coughed

or sneezed out, this receptor specificity of H5N1 is now believed to be the main reason

behind the lack of human-to-human transmission [58]. However it was recently shown

in experimental evolution studies [59, 60], that transmission between mammals can

be achieved by 4-5 mutations in the genes HA and PB2 (RNA polymerase subunit).

Thus, H5N1 overcoming the barriers to human-to-human transmission and giving rise

to a pandemic still remains a looming possibility [61].

H5N1 viruses have a complicated evolutionary history. The precursor to current

H5N1 viruses originated in migratory wildfowl, which then spread to domestic birds

and poultry and subsequently diversified to produce different genotypes [48, 62]. The

first outbreak of avian cases was in domestic geese in Guandong, China in 1996.

The first outbreak of human cases was in Hong Kong in 1997, which was caused

by reassorted viruses between H5N1, H9N2 and H6N1 subtype viruses from China.

Although this lineage of Hong Kong H5N1 viruses was eliminated through culling

of poultry, the H5N1 lineages in China continued to diversify through reassortment

and to spread to many domestic and wild avian species, with domestic geese as their

reservoir. The major genotype to emerge in Southeast Asia and China, was the

genotype Z, which emerged in wild birds from Hong Kong in 2002. This genotype

was more successful in infecting a large number of avian hosts. A reassortant virus

between the genotypes Z and V led to the Qinghai Lake outbreak in wild geese [63].

The outbreak at this lake, which is an important sanctuary for a variety of migratory

birds, was the precursor of the spread of H5N1 out of East and Southeast Asia into

Eurasia and Africa. A case in point is Egypt, where the first outbreak in poultry and

humans was observed in early 2006, soon after the Qinghai Lake outbreak [64]. H5N1

is now endemic in poultry and domestic ducks in Egypt, and more than a hundred
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human cases have been reported so far.

To understand the pandemic potential of H5N1, recent studies have focussed on

the mutations underlying the evolution of human-to-human transmissibility in H5N1.

On the experimental side, the above mentioned studies on experimental evolution of

transmissibility in ferrets uncovered 3-4 mutations in HA and a single mutation in

PB2 [59, 60]. In addition, Watanabe et al. [65] identified mutations in H5N1 strains

from Egypt, which in the course of natural evolution had acquired higher affinity

for cellular receptors in upper respiratory tract in humans. On the computational

side, several studies have looked for persistent sequence markers in human-to-human

transmissible viruses versus avian-to-avian viruses [66–68], using a wide range of

Influenza A subtypes. Although these studies shed light on mutations underlying

human-to-human transmission, they have not looked at persistent markers associated

with human H5N1 infections. This issue is the focus of the research discussed in

Chapter 2.

1.4 Outline of the Dissertation

In Chapter 2, I discuss research on transmission bias of H5N1 viruses from birds to

humans. Since human infections of H5N1 are transmitted from birds to humans,

signs of transmission bias could potentially indicate mutations which are important

for human infections of H5N1. We first develop a novel strategy which can detect

transmission bias at residues at an annual level. This strategy is then applied to

uncover several signs of transmission bias in human infections of H5N1 in publicly

available HA sequences from China, Egypt and Indonesia – the countries with the

highest number of human H5N1 infections. We find that in each geographic region,

only a subset of avian H5N1 virusees characterized by specific mutations can infect

humans. In Egypt, vaccination in poultry seems to have driven avian viruses away

from this subset, suggesting that vaccination of poultry can be highly efficient in
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reducing H5N1 human infections. After correcting for the transmission bias in each

region, we find that human infecting H5N1 viruses are not substantially different from

the aforementioned subset of avian viruses.

In Chapter 3, I present a novel method for the identification of novel jelly-roll con-

taining capsid sequences using machine learning algorithms on alignment free features.

As discussed above, using sequence similarity based methods majority of sequences in

viral metagenomics studies that are expected to be of viral origin are not identifiable

as known viruses. In such scenarios, methods based on alignment free features are

expected to perform better than sequence similarity based methods and have been in-

vestigated in the context of microbial metagenomics. The motivation for this project

comes from the paucity of algorithms using alignment-free features for detection of

novel viral sequences. We focus on detecting novel capsid sequences with the jelly-roll

structural motif, which in spite of the sequence divergence in viral sequences, is con-

served in a variety of families. Using counts of amino-acid motifs, which are robust to

sequence evolution, a machine learning algorithm is shown to classify known jelly-roll

capsid sequences with high accuracy against virtually all other proteins. Next, the

performance of this method is compared with the most popular sequence-similarity

based method to show an improved performance in detecting novel capsid sequences

from unknown families. As an application, this method is applied to a viral metage-

nomic dataset to find several potentially novel jelly-roll capsid sequences.

I conclude the dissertation with discussion on some promising future lines of re-

search.
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Chapter 2

Transmission Bias of Influenza A H5N1 Viruses

from Birds to Humans and Vaccine Evasion

“As long as H5N1 is out there in

the world,” Webster said, “there is

the possibility of disaster. Thats

really the bottom line with H5N1.

So long as its out there in the

human population, there is the

theoretical possibility that it can

acquire the ability to transmit

human-to-human.” He paused.

“And then God help us”.

David Quammen quoting Robert

Webster in “Spillover”

2.1 Introduction

The H5N1 Influenza A avian virus is widely believed to be a pandemic threat [69–

71]. Although human H5N1 infections occur rarely, they are usually accompanied

by severe respiratory complications with high morbidity. Of the 633 confirmed cases

world-wide, there have been 377 deaths, with a mortality rate approaching 60% ([72],

WHO report, July 5, 2013). Infections in humans occur almost exclusively from direct

human contact with infected wild birds or poultry. Currently, the poor human-to-

human transmission efficiency of circulating H5N1 strains [48] limits their pandemic
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potential. However, this can be overcome by the rapid evolution of H5N1 [61]. Labo-

ratory studies of experimentally evolved H5N1 strains have shown that current strains

can transmit efficiently between mammals (ferrets) with only 4-5 substitutions at spe-

cific residues in Hemagglutinin (HA) and Polymerase Basic 2 (PB2) proteins [59, 60].

These results coupled with the high mortality rate of human infections from currently

circulating strains highlight the urgent need to understand and control human infec-

tions of H5N1. Vaccination against H5N1 in birds has already been undertaken as a

strategy to curb H5N1 outbreaks in humans. For effective vaccination strategies, it

is crucial to identify which avian H5N1 strains are most likely to infect humans. It

is also important to understand how the H5N1 virus is evolving under vaccination

induced selection pressure. In this work, we investigate the nature of H5N1 strains

most likely to infect humans and find that there are significant signs of transmission

bias of H5N1 from birds to humans. The interplay between identified transmission

bias and vaccine-induced selection pressures on evolution of H5N1 is also discussed.

Since almost all human H5N1 infections so far were transmitted from avian hosts,

any observed signature of biased transmission from birds to humans could represent

enhanced/diminished efficiency of certain H5N1 strains to infect human hosts. Se-

lection in H5N1 viruses infecting humans has been studied previously [73–75] using

differences in the rates of synonymous and non-synonymous mutations in human iso-

lates as a signature of selection in humans. However, because H5N1 is transmitted

from birds to humans, such analyses cannot distinguish between selection pressures

on H5N1 from avian or human hosts. A hypothetical scenario of a mutation in H5N1

which is beneficial (to H5N1) for avian infections, but selectively neutral in human

infections, illustrates this point (Fig. 2.1 A). Such a mutation would also show a rise

in the frequency in human isolates, which could be interpreted as a sign of positive

selection in human infections i.e. beneficial for H5N1 in human infections. In general,

an analysis involving only human H5N1 isolates cannot identify mutations which are

specifically important in human infections, and a comparative analysis between both
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Figure 2.1: Hypothetical scenarios of mutations in H5N1 which are specifically ben-
eficial only in avian infections (A) and only in human infections (B). A) A mutation
which is beneficial for avian infections but selectively neutral for human infections will
show an increase in frequency human isolates, since H5N1 infections are transmitted
to humans from birds. B) A mutation which is beneficial in human infections, but
selectively neutral in avian infections, will show: i) amino-acid frequency difference
between human and avian isolates of the same year, and ii) low probability to neu-
trally evolve from the avian viral pool of the previous year. These are the methods
used to detect the transmission bias of H5N1 infections from birds to humans.

human and avian isolates is required.

The hypothetical scenario of a mutation conferring enhanced efficiency in human

infections but neutral in avian infections suggests a strategy to identify mutations

important for human H5N1 infections (Fig. 2.1B). Such a mutation would be over-

represented in human isolates as compared with avian isolates, leading to a trans-

mission bias of H5N1 from birds to humans. In general, mutations which either

enhance/diminish efficiency of H5N1 infections in humans can be identified using
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the two signatures of transmission bias: a) a significant difference in amino-acid fre-

quencies in human isolates compared to avian isolates from the same year, and b) a

significantly low probability of neutral evolution of the human isolates from the avian

viral pool of the previous year. These criteria were applied to detect mutations im-

portant for human infections using Hemagglutinin (HA) protein sequences of H5N1

avian and human isolates from 1996-2011 collected in China, Egypt and Indonesia.

For each geographic region, several residues that show transmission bias on an annual

resolution were identified. These results show that, in each geographic region, strains

infecting humans are significantly more likely to originate from a subset of the avian

viral pool rather than the entire avian viral pool. The residues which represent this

transmission bias lie in immunologically relevant regions of HA, such as the epitope

regions, the receptor binding site, the polybasic cleavage site and the trans-membrane

site. In Egypt, we find that human isolates are significantly different from vaccine

resistant avian isolates. This suggests that vaccine-resistant avian strains are not

likely to infect humans.

2.2 Methods

2.2.1 Sequence Data

Aligned amino acid and nucleotide sequences for Hemagglutinin of H5N1 isolates were

downloaded from the NCBI Influenza Virus Resource database: http://www.ncbi.n

lm.nih.gov/genomes/FLU/Database/nph-select.cgi, on August 8, 2012 (Egyptian

isolates) and October 18, 2012 (Asian isolates). Alignment was performed using the

program MUSCLE [76] using default parameters. Identical strains were removed using

both the web resource’s option and additional programming (to account for identity

up to missing residues) with human isolates preferably retained from a set of identical

isolates. Host, region, and year information for all isolates were also downloaded from

the above website. The resulting dataset comprised of 1209 (153 human, 1056 avian)
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isolates in Egypt, China and Indonesia from years 1996-2011. Human derived isolates

for all geographical regions combined were from years 2005-2010.

2.2.2 Principal Component Analysis (PCA)

Principal Component Analysis is a general method of feature reduction used to

capture and visualize high-dimensional data in few most important variables. The

method amounts to diagonalizing the covariance matrix and representing the high-

dimensional data in the subspace of top eigenvectors with the highest eigenvalues. In

the context of population genetics, PCA is routinely used to understand the relat-

edness of different genomic sequences, referred to as population structure [77]. We

performed PCA on Hemagglutinin amino acid and nucleotide sequence data for iso-

lates from both avian and human hosts to understand population structure of H5N1

in each geographic region. Both amino acid and nucleotide sequences in the dataset

had sites with more than two variants. To encode these amino acids or nucleotides

into numerical values, we used the following prescription. Amino acids at each residue

were assigned values 0,1,2,...,19, with the most common variant assigned to 0, the next

frequent 1, and so on. In all isolates in each geographic region, we excluded residues

with a missing amino-acid, which could indicate a deletion or missing sequence. The

numerical data for each residue was normalized by subtracting the mean. However,

we did not divide the result by the standard deviation to ensure that the more variant

sites carry higher weight in the PCA analysis. The PCA analysis was done using the

module for Singular Value Decomposition in SciPy [78].

2.2.3 Clustering H5N1 strains using a distance cutoff in PCA space

PCA on H5N1 isolates from each geographic region revealed that human isolates from

each region cluster together with a subset of avian isolates (see Results below). To

understand this population sub-structure and its relevance to transmission bias, we

constructed clusters in PCA space by first clustering human isolates that were close to
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one other, and then clustering avian isolates that were close to these human isolates.

More specifically, we first retained only those PCA components which accounted for

> 4% variance. Clusters were constructed of all human isolates closer than a distance

corresponding to 4% variation of the total variation in each local region. It was found

that by using this distance cutoff, almost all (> 80%) of the human isolates in each

region clustered together.

The following algorithm was used for clustering human isolates. Initially all human

derived isolates were placed in the un-clustered list. Because each human isolate

belongs to a cluster (albeit of size one), a randomly chosen isolate was chosen to seed

the first cluster and was removed from the list of unclustered isolates. In the next

step, all isolates within the distance cutoff from this initial isolate were included in

the cluster, and removed from the list of unclustered isolates. If the cluster size was

greater than one, then new unclustered isolates were added to this cluster if they

were closer than the distance cutoff to at least one of the cluster isolates. This step

was iterated until there were no isolates in the unclustered list that were within the

distance cutoff to any of the cluster isolates. To construct the next cluster, an isolate

was randomly chosen from the list of unclustered isolates, and the same algorithm

was repeated. The construction of clusters ended when the continuously updated list

of unclustered isolates was exhausted. For each geographic region we found that most

(> 80%) human derived isolates formed a single cluster using the distance cutoff of

4% of total variance.

Avian isolates that fell within a distance corresponding to 2% variation from all

the human isolates in the identified cluster were also added to the cluster. This subset

of the avian isolates was then used as the set of avian isolates closest to the human

isolates. Schematic representation of this algorithm using data on isolates from Egypt

is shown in Fig. (2.2), and PCA plots showing human and closely clustering avian

isolates for each region are shown in Fig. (2.3). The list of all closely clustering avian

and human isolates from each geographical region is given in Appendix A.
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Figure 2.2: A) Schematic representation of the clustering algorithm used to cluster
most similar human and avian isolates from Egypt using the first two principal compo-
nents. Discs of proximity of radius corresponding to 1% of the total variance around
each human isolate (red circle), and those human isolates whose discs of proximity
overlap are said to cluster together. Next, all the avian isolates (blue circles) that fall
in the discs of proximity of clustering human isolates are retained in the cluster. B)
The results of the actual implementation using a distance cutoff of 4% of the total
variance using the top 4 principal components.

2.2.4 Detection of residues in the human isolates with significant amino

acid frequency differences from the avian isolates

For isolates from each region and year, we computed the significance of differences in

amino acid frequencies at each residue between the human and avian isolates using the

multinomial distribution. Since human infections of H5N1 are derived from viruses

transmitted from birds, we expect the amino-acid frequencies at residues in human

isolates to be similar to those of avian isolates upto sampling bias. Thus, amino

acids at a given residue in human isolates from a given year were treated as samples

drawn from the distribution of amino acids present at the same residue in the avian

isolates of the same year. The multinomial formula for sampling was used to evaluate

the likelihood of sampling the human amino acid configuration from the amino acid

distribution from the avian isolates. At a given residue in isolates from a given year

and region, let {n1, n2, n3, ...} be the observed counts for amino-acids {aa1, aa2, ...} in

the human isolates, and let {p1, p2, p3, ...} be the corresponding amino-acid frequencies
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in the avian isolates. The likelihood of observing these counts in human isolates, given

that they are sampled randomly from the avian isolates, is given by

L({n1, n2, n3, ...}; {p1, p2, p3, ...}) =
N !

n1!n2!....
(pn1

1 p
n2
2 p

n3
3 ...) (2.1)

where N = n1 + n2 + n3 + ... is the total number of human derived isolates from

a given year and region.

An empirical p-value for this likelihood was computed by drawing 108 random

sample sets of equal size to the human isolates from the distribution of amino-acid

residues in avian isolates, and counting the fraction of such realizations with a lower

likelihood than observed. To correct for population structure differences between

human and avian H5N1 isolates from each geographic region, we repeated this anal-

ysis only on the subset of avian isolates that clustered closest to human isolates, as

described in the previous section.

2.2.5 Detection of residues in human derived isolates with low probability

of evolving neutrally from the avian H5N1 isolates

We adapted the method introduced by Pan and Deem [79] to compute the probabili-

ties of neutrally evolving the observed amino-acid configurations at each site of human

isolates from the avian isolates of the previous year. In this method, the process of

neutral mutation is modeled as Poisson process. We deviate from this method in

two important ways. First, since H5N1 strains infecting humans were transmitted to

humans from birds, we compute the probability of neutral evolution of human isolates

from the avian isolates. Second, for the rate matrix, we used an Influenza specific

protein evolution model called “FLU”, which was developed by Dang et al. [80]. This

model was constructed using maximum likelihood analysis on thousands of influenza

virus protein sequences.

If the amino-acid frequencies in the avian isolates for the previous year (say

y-1) were observed to be {p1, p2, p3, ...}, then the theoretically evolved frequencies
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{pe,1, pe,2, pe,3, ....} can be computed using the protein evolution model Q as

[pe,1, pe,2, pe,3, ....] = [p1, p2, p3, ...] · exp(Qt) (2.2)

where [..] is a row vector, Q is a 20×20 matrix, and t is measured in units of mutation

rate, which I assume to be the substitution rate of 4.77 × 10−3/site/year [62]. This

assumption is exact for infinite effective population size, and should be accurate for

the micro-evolution of H5N1, where the population size has been estimated to be

∼ 103 − 104 [81]. Using these evolved frequencies, the likelihood of observing the

amino-acid configuration of human isolates of year y can be computed as before:

L ({n1, n2, n3, ...}; {pe,1, pe,2, pe,3, ...}) =
N !

n1!n2!....
pn1
e,1p

n2
e,2p

n3
e,3... (2.3)

To compute the significance (p-value) of this likelihood value, randomly generated

108 sets of samples from the evolved distribution {pe,1, pe,2, pe,3, ...} were obtained

and the likelihoods were calculated for each of these sets using the above formula.

The empirical p-value of the observed likelihood value is the fraction of these 108

samples with lower likelihoods than the one observed.

2.2.6 Sensitivity to Ascertainment Bias

The database contained far fewer human isolates than avian isolates, with some years

having only ∼ 10 human isolates. In such a scenario, a few outlier samples could

bias the results. To understand this, the sensitivity of results when only a subset

of the full dataset is used (known as “jackknifing test”) was studied. Randomly

chosen 1,000 subsets containing 75% of human and 1,000 subsets of 75% of avian

isolates in each year were generated. The above two analyses were repeated on the

1, 000 × 1, 000 = 106 combinations of these subsets of human and avian isolates.

The mean and standard deviations for the log likelihoods of amino acid frequency

difference and of neutral evolution were calculated using the methods described above

for all the combinations. In the final results, only those residues were retained that
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either had a mean likelihood of amino acid frequency difference < 10−5 and neutral

evolution likelihood < 10−3, or vice versa.

2.2.7 Sensitivity to Mutation Rate Variation

As the computation of probabilities of neutral evolution of human derived isolates

from the avian viral isolates uses mutation rate as an input parameter, the sensitivity

to site-to-site variation in mutation rates was also studied. First, the program PhyML

[82] was used to generate maximum likelihood phylogenetic trees for amino-acid data

of H5N1 isolates from Egypt by using a popular model for modeling variable mutation

rates, the discrete Γ4 model [83]. In this model, mutation rates are assumed to be dis-

tributed according to the Gamma distribution. Instead of using the computationally

more expensive continuous variation of mutation rates, discrete mean values for four

equally weighted intervals of mutation rates are used. PhyML calculates the maxi-

mum likelihood values for mutation rates of the 4 classes of the discrete Γ4 model.

Both human and avian isolates from Egypt were analyzed using PhyML using the

rate model FLU and other default parameters and obtained the maximum likelihood

values for 4 classes of the discrete Γ4 model to be {0.0288, 0.2353, 0.8012, 2.9346},

which was multiplied with the mean rate of 4.77 × 10−3/site/year [62] to get the 4

classes of mutation rates. The likelihood of neutral evolution for all the significant

sites using each of these rates and all the significant residues were found to have a

mean likelihood of neutral evolution < 10−5.

2.3 Results

2.3.1 Human H5N1 Isolates derive from a subset of avian viruses with

geography specific epitope profiles

We analyzed 1209 HA sequences of H5N1 isolates from avian (n=1056) and human

hosts (n=153) from China, Indonesia and Egypt, collected from 1996-2011. Principal
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Figure 2.3: PCA of Hemagglutinin amino-acid sequences from H5N1 isolates from
China (A), Egypt (B) and Indonesia (C).

Component Analysis (PCA) was used to study population structure (Methods). PCA

plots for HA sequences from each geographic region are shown in Fig. 2.3. In each

geographic region, human isolates cluster with subsets of avian isolates, suggesting a

transmission bias in H5N1 infections from avian hosts to humans. To characterize the

subsets of avian isolates most likely to infect humans, we identified clusters of closely

related human and avian isolates, using a distance cutoff in PCA space (Methods,

Fig. 2.2). The identified clusters consist of most of the human isolates in each region:

30 out of 36 in China, 70 out of 71 in Egypt, and 46 out of 50 in Indonesia.

Two signatures were used to identify transmission bias in avian to human infec-

tions: a) the residues should have a significant difference in amino-acid frequency in

human isolates compared to avian isolates from the same year, and b) the residues
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in human isolates should have a significantly low probability to derive from neutrally

evolved avian viral isolates from the avian viral pool of the previous year. To evolve

the avian pool neutrally from one year to the next, we adapted the method of Pan

and Deem [79] (Methods). The expected frequencies of amino acids at a given residue

in a given year were obtained by neutrally evolving the observed amino acid frequen-

cies at this residue in the previous year, using an amino acid transition probability

matrix from the influenza specific substitution model of Dang et al. [80]. Using the

avian isolate frequencies (either actual or expected under neutral evolution from the

previous year) as a-priori expected human isolate amino-acid frequencies, the multi-

nomial formula was used to estimate the probabilities of the observed human isolate

amino-acid frequencies. A jackknife test was used to determine significantly low prob-

abilities (Methods). Significant residues thus identified are listed in Table 2.1 by year

and geography. Amino acid frequencies for these residues are in Table 2.2.

Table 2.1: Significant residues identified by comparison

of human isolates with all avian isolates in each region

and year

Year Position

P-value of

neutral

evolution

Significance

of amino

acid

frequency

difference

Jackknifing

mean log-

likelihood

for neutral

evolution

Jackknifing

mean log

likelihood

for amino

acid

frequency

difference

Egypt

2009 43 < 1.00× 10−8 1.00× 10−8 21.44± 3.58 1 5.53± 1.01

1log likelihoods are expressed as negative log10.
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2009 74 4.28× 10−6 1.42× 10−6 6.59± 0.68 4.33± 0.51

2009 97 2.60× 10−6 2.80× 10−7 6.6± 0.66 4.59± 0.52

2009 110 1.10× 10−5 3.10× 10−7 6.36± 0.65 4.61± 0.57

2009 120 < 1.00× 10−8 2.00× 10−8 19.7± 3.63 5.59± 1.05

2009 123 1.43× 10−5 6.77× 10−6 6.36± 0.66 3.74± 0.47

2009 141 2.96× 10−5 2.85× 10−5 6.49± 0.93 4.9± 0.8

2009 144 2.64× 10−6 1.19× 10−6 6.57± 0.65 4.38± 0.5

2009 151 < 1.00× 10−8 3.36× 10−6 22.13± 4.63 5.84± 1.01

2009 162 4.00× 10−7 6.44× 10−4 9.2± 1.43 3.55± 0.69

2009 165 8.83× 10−6 1.90× 10−6 6.35± 0.68 3.94± 0.47

2009 226 1.00× 10−8 9.00× 10−8 9.32± 0.9 6.05± 0.66

China

2005 140 < 1.00× 10−8 2.64× 10−3 9.5± 2.74 3.71± 0.24

2005 174 < 1.00× 10−8 < 1.00× 10−8 8.94± 1.65 3.37± 0.22

2005 181 < 1.00× 10−8 < 1.00× 10−8 9.47± 2.57 3.47± 0.23

2005 322 < 1.00× 10−8 < 1.00× 10−8 20.82± 0.03 3.45± 0.23

Indonesia

2005 86 < 1.00× 10−8 < 1.00× 10−8 13.9± 1.61 7.01± 1.01

2005 140 < 1.00× 10−8 1.12× 10−3 19.64± 1.6 3.26± 0.4

2005 200 4.20× 10−7 < 1.00× 10−8 7.12± 3.13 7.03± 1.02

2005 325 < 1.00× 10−8 < 1.00× 10−8 17.63± 1.97 7.13± 1.04

2006 86 < 1.00× 10−8 1.00× 10−8 35.03± 12.55 5.98± 1.31

2006 94 1.00× 10−7 1.15× 10−3 8.78± 1.66 4.04± 0.84

2006 140 2.60× 10−7 2.13× 10−3 9.99± 1.7 3.86± 0.76
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2006 200 < 1.00× 10−8 6.08× 10−5 32.71± 9.35 4.27± 1.04

2006 325 < 1.00× 10−8 < 1.00× 10−8 39.08± 18.59 8.32± 1.56

2007 184 2.25× 10−6 < 1.00× 10−8 5.66± 2.51 4.45± 0.45
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Several of these residues have a high frequency (> 80%) amino-acid in the human

isolates in each region (Fig. 2.4 and Table 2.2). Most of the human isolates in each

geographical region cluster together (80− 99%) (Fig. 2.3) and these amino acids are

virtually conserved in these closely clustering human isolates. These amino acids are

also almost conserved (frequencies > 89%) in closely clustering avian isolates, but

have low to intermediate frequencies (18− 38%) in other avian isolates (see Methods

for identification of closely clustering avian isolates). Moreover, at these residues, we

found that the human isolates show much higher probability to neutrally evolve from

the closely clustering avian isolates of the previous year (data not shown). These

results, taken together, suggest that for each geographic region, human infections

are significantly more likely to arise from an identifiable subset of avian isolates,

characterized by specific amino acids at identified residues, rather than from the

entire avian viral pool.

Many of the loci associated with transmission bias are located in or near functional

regions of HA, such as the epitope regions (corresponding to epitopes B, D and E in H3

HA), the receptor binding site, the polybasic cleavage site, and the trans-membrane

region (Table 2.2). The mapping of these residues on the protein structure of H5N1

HA [7] shows that most of these residues are in the head region of the HA protein

structure (Fig. 2.5). We also found that all except one of the high frequency residues

identified arose in the avian viral pool of the region in either the same year or the year

previous to when the corresponding human infections were reported, which further

suggests their relevance to human infections (Table 2.2).

2.3.2 In Egypt, H5N1 isolates exhibiting Vaccine-induced Antigenic Drift

are less likely to infect Humans

Some avian strains circulating in Egypt have undergone diversification in response

to vaccine induced selection pressure in poultry [84, 85]. These antigenically drifted

avian isolates are now classified as a variant group within the sub-clade 2.2.1 (group I
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Figure 2.5: Mapping of significant residues on the protein structure of H5N1 Hemag-
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was analyzed using the program Pymol [8].
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mutations associated with human infections (A) and vaccine-evasion mutations (B)
possessed by each isolate. A) The mutations associated with human infections are
those significant mutations identified in Table 2.1, and which have > 80% average
frequency in human isolates. These mutations are P-74, D-97, H-110, S-123, S-141,
F-144, N-165 and M-226 (total = 8). B) Vaccine-evasion mutations are taken from
Cattoli et al. [9] and are S-74, G-140, P-141, Y-144 and K-162 (total = 5).

in Abdelwhab et al. [85]). The mutations characteristic of these isolates are S-74, N-

97, R-110, P-123, G-140, P-141, Y-144, K/E-162, H-165, E-184, and V-226 [85]. Our

results identified all but one (G-140) of the residues characterizing this vaccine resis-

tant avian H5N1 group as characteristic of the transmission bias of H5N1 infections

from avians to humans (Table 2.1). However, the mutations characterizing human

isolates at these residues were distinct from those characteristic of the escape mutant

group. Specifically, residues 74, 97, 110, 123, 144, and 165 have virtually conserved

amino-acids in closely clustering human and avian isolates, which are different from

those characterizing the variant group of avian isolates (Fig. 2.4). Since 70 out of

71 human isolates from our Egypt dataset cluster closely, these findings suggest that

the variant group of avian isolates from vaccinated birds are significantly unlikely to

infect humans.

A serological study using reverse genetically designed viruses carrying the above
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mentioned variant group specific mutations showed that the mutations S-74, G-140, P-

141, Y-144 and K-162 are involved in escape from neutralization due to Mexican H5N2

vaccine induced antibodies in chickens [9]. A comparative PCA analysis of the H5N1

isolates from Egypt carrying the high frequency transmission bias mutations versus

the vaccine evasion mutations (Fig. 2.6) found that the closely-clustering human and

avian isolates carry 0-1 out of the 5 vaccine evasion mutations, whereas the more

divergent avian isolates carry 3-5 mutations. The cluster of vaccine escape mutant

isolates is distinct from the cluster containing human isolates, and carries 0-1 of the

8 high frequency transmission bias mutations (P-74, D-97, H110, S-123, S-141, F-

144, N-165, and M-226). These results suggest that mutations involved in vaccine

evasion, at least in Egypt, have led to inefficient transmission of avian H5N1 viruses

to humans. In other words, the potential of human infections for avian H5N1 viruses

was effectively neutralized using the Mexican-derived H5N2 vaccine on poultry in

Egypt.

2.3.3 Residues associated with human H5N1 isolates after correcting for

Biased Transmission

We investigated whether there are any residues associated with human infection after

correcting for the transmission biases described above. Such loci should display a)

significant amino acid frequency differences between human isolates and the subset of

closely clustering avian isolates of the same year, and b) significantly low probabilities

of having evolved neutrally from the subset of closely clustering avian isolates of the

previous year. The residues which have these properties are listed in Table 2.3 for

each geographic region and year. The identified residues are in the epitope D region

of the H3 Hemagglutinin (residues 184-186 in isolates from Indonesia), and near the

trans-membrane site (residue 513 in isolates from Egypt). The T513I mutation in

Egypt arose in 2006, and for the years 2007 and 2008 showed enrichment in human

isolates (8 out of 19 and 3 out of 7 human isolates respectively) as compared with the
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closest avian isolates (frequencies 0.07-0.15), but not for the year 2009 (Fig. 2.7 A).

The mutation N-184 arose in 2005 in isolates circulating in Indonesia, and showed

enrichment in the reported human isolates in 2007 (5 out of 5) over the avian isolates

(frequency < 20%) (Fig. 2.7 3B). The mutations E-185 and E-186 are in close linkage

with the N-184 mutation and show similar enrichment in human isolates as compared

with avian isolates from Indonesia from the year 2007 (data not shown).

Table 2.3: Significant residues identified by comparison

of human isolates with closely clustering avian isolates in

each region and year

Year
Position

9

P-value of

neutral

evolution

Significance

of amino

acid

frequency

difference

Jackknifing

mean log-

likelihood

for neutral

evolution 10

Jackknifing

mean log

likelihood

for amino

acid

frequency

difference

China

- - - - - -

Egypt

2007 513 < 10−8 2.07× 10−5 14.92± 2.75 3.34± 1.19

Indonesia

2007 183 < 10−8 4.71× 10−6 7.69± 10−11 3.30± 0.46

2007 184 1.01× 10−3 < 10−8 4.51± 3.71 4.29± 10−11

9H5 numbering
10Log-likelihoods are reported as negative log10



43

A B
(n=5)

(n=19) (n=7)

Figure 2.7: Annual frequencies for major amino acid at significant residues in Table
2.3 in human isolates.

2007 185 < 10−8 5.50× 10−7 7.79± 1.88 2.68± 0.89

2.4 Discussion

We found a pronounced population substructure in the H5N1 strains in each geo-

graphical region studied, with human isolates clustering together with a subset of

avian isolates (Fig. 2.3). A comparative analysis of all avian and human isolates in

each region identified residues characterizing the subsets of avian isolates with in-

creased potential for infecting humans in each geographic region (Table 2.1). These

residues are in or near the epitope regions, the receptor binding site, and the poly-

basic cleavage site of the HA proteins (Fig. 2.5). Several of these residues have high

frequency of an amino-acid in human and closely clustering avian isolates but signif-

icantly lower frequency in other avian isolates (Fig. 2.4, Table 2.2). This suggests

that not all avian strains can efficiently infect humans. Instead, only an identifiable

subset, with specific amino acids at identified residues, can do so. The amino-acids at

these identified residues seem to have been important for the H5N1 viruses to infect
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humans in the specific geographic regions.

A possible biological reason for this transmission bias is that the identified mu-

tations are involved in efficient binding to receptors on human epithelial cells. It is

known from the study of Yamada et al. [7] that HA from human isolates has the

ability to bind to cells with both the avian-type (α2, 3) and human-type (α2, 6) sialic

acids, whereas HA from avian isolates can bind only to the avian type sialic acid.

Watanabe et al. [65] also studied the mutations responsible for receptor binding prop-

erties of human infecting H5N1 isolates circulating in Egypt and found that isolates

with increased affinity for human-type sialic acid binding also retained binding to the

avian-type sialic acid. They showed that mutations at residue 192 and at residues

129 in combination with 151 (also identified in Table 2.1) enhanced the binding to the

human-type sialic acid, while still retaining binding to avian-type sialic acid. Thus,

these studies suggest that some human strains possess affinity to both human and

avian type receptors, indicating that these strains can infect both human and avian

hosts. This is consistent with our claim that only a subset of avian strains can infect

humans, since they possess HA proteins that are compatible with human type cell

receptors also.

Counter to the above claim, Watanabe et al. [65] showed that an older reference

avian strain with the amino acids identified in Table 2.1 does not bind efficiently

to human-type sialic acid. They showed that reverse-genetically designed isolates

with specific mutations at the residues 129, 151 and 192, in the background of the

reference strain, increased the virulence of H5N1 in mice as compared to the original

reference avian-derived strain. These results suggest that the identified mutations in

Table 2.1 may not be directly responsible for increased human-type sialic acid binding

or increased virulence. Given that the mutations identified in Table 2.1 are almost

conserved within human isolates and closely clustering avian isolates, but are at low

frequencies in the other avian isolates, and that these mutations were present in the

isolates in the study by Watanabe et al. [65], these mutations may be a pre-requisite
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for higher human-type receptor binding and/or higher virulence.

Another possible reason for transmission bias of H5N1 strains from birds to hu-

mans could be vaccine-induced diversification of avian viruses. In Egypt, some of

the identified residues conserved in the closely clustering human and avian isolates

have also been shown to be involved in vaccine evasion [84, 85]. Cattoli et al. [9]

studied the effect of Mexican H5N2 strain induced antibodies in chickens on a diver-

gent clade of avian-derived H5N1 isolates from commercial poultry farms in Egypt,

where the Mexican H5N2 vaccines are used intensively. Using reverse genetics and

serological studies, they found the mutations at residues 74, 140, 141, 144 and 162 to

be important for the vaccine-resistance of the divergent clade of H5N1 isolates. Our

results identified all the above residues, except the residue 140. The amino acids at

the residues 74, 141 and 144 were found to be almost conserved in human isolates and

are different from the ones involved in vaccine-resistance (Figs. 2.4, 2.6). The mutual

exclusivity of the vaccine-evading mutations (in poultry) and the the high frequency

transmission bias mutations associated with human infections (Fig. 2.6) suggests that

during acquisition of vaccine-evasion, the divergent avian isolates lost the ability to

infect humans.

This situation could arise either due to: a) low viral loads in vaccinated poultry

[86] leading to reduced transmission to humans, b) the escape mutant virus is a

poor transmitter in general, or c) vaccine induced molecular changes in HA make the

mutant strains transmit inefficiently to humans. Although it is currently difficult to

distinguish between these possible scenarios, our results show that vaccination with

the Mexican H5N2 strain evolved the virus away from human infectivity. Cattoli

et al. [9] showed that avian-derived strain with mutations that are associated with

human infections can be neutralized by antibodies induced in chickens by vaccination

with Mexican H5N2. Thus, although the intensive use of the Mexican H5N2 vaccine

has led to the development of vaccine-resistant avian H5N1 isolates, this vaccine

could prove beneficial to control human infections in Egypt. To our knowledge, this
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is the first observation that selection pressure from vaccination of poultry may be

driving H5N1 away from being able to infect humans. Our analysis also suggests that

appropriate vaccination of poultry against specific epitopes may significantly mitigate

the risk of human infections.

After correcting for transmission bias of H5N1 isolates from the avian viral pool

to humans, we found that certain amino acids at identified residues have a higher

frequency in human isolates compared to the closely clustering avian isolates. This

suggests that these residues increase the likelihood of human infectivity in the partic-

ular genetic background of avian H5N1 strains which are most likely to infect humans

(Table 2.3, Fig. 2.7). The residues identified to have this property in Indonesia are

in the region corresponding to epitope D of H3 HA, suggesting selective pressure by

the human immune response. The residue 513 identified in Egypt lies close to the

transmembrane site of HA, whose function is involved in later stages of cell-entry

[87]. Intriguingly, these residues do not have significant scores when human isolates

are compared with all the avian isolates after correcting for ascertainment bias. Al-

though this scenario could arise due to small sample size bias (18 human isolates in

Egypt in year 2007 and 5 in Indonesia in 2007), it could also arise from the similar-

ity of the amino-acid frequencies at these sites in the human isolates to that of the

entire avian pool rather than the closely clustering avian isolates to the human iso-

lates, which suggests that these mutations have originated multiple times on different

genetic backgrounds. In any event, after correcting for the biased transmission of

human isolates from the avian viral pool, my analysis suggests that natural selection

in human H5N1 infections is not very widespread.

In summary, the main results of this chapter are: 1) that in each geography,

only certain identifiable subgroups of avian-derived H5N1 isolates seem able to infect

humans, and 2) selection pressure from vaccination has created escape mutants which

are unable to infect humans efficiently. Experimental investigation of these results

would provide additional insights into the biological mechanisms underlying enhanced
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human infectivity of certain H5N1 strains as well as on how vaccination pressure

impacts the ability of H5N1 avian viruses to infect humans.
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Chapter 3

Detection of Novel Viral Capsid Sequences using a

Machine Learning Approach on Alignment-Free

Features

There are a million virus particles

per milliliter of seawater for a

global total of 1030 virions! Lined

up end to end, they would stretch

200 million light years into space.

Vincent Racaniello of “Virology

Blog”

3.1 Introduction

Viruses are now believed to be the most numerous and diverse biological organisms

in the biosphere with an estimated 1030 − 1031 virus particles on the Earth [88].

With the advances in sequencing and other molecular biology techniques, it is now

possible to isolate virus-sized particles from an environmental sample, extract the

DNA/RNA content of these virus-like particles, sequence and assemble these genomes,

and identify viruses in the environmental sample. Such viral “metagenomic” studies

have provided a new way of analyzing the viral content of numerous environmental

and biotic microcosms by circumventing the traditional approach of culturing viruses

[32] and have tremendous potential to uncover the enormous diversity of viruses

[33]. The viral composition for different environments such as seawater, hot springs,
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marine sediment, potable water, etc. and organism-derived samples such as tissues,

feces, etc. are now known (see [33] for a review). Metagenomic studies have also

elucidated the biological functions of the viruses in the microcosms studied [89], and

have the potential to discover novel disease causing viruses [35, 36].

In spite of their success, such studies have also pointed to limitations of the ex-

isting methods in uncovering the full genomic content of environments [33, 34]. One

such limitation, arising consistently in all viral metagenomic studies, is that a large

number of sequences (44-99 % in the studies reviewed in [33]) are not homologous to

any known sequences in databases. Most metagenomic studies use sequence similar-

ity with known organisms to identify novel sequences, with Basic Local Alignment

Search Tool (BLAST) being the most popular tool [38]. BLAST evaluates the se-

quence similarity between the query sequence and a target database using a protein

evolution model to assess the significance. Unlike the conserved 16S rRNA used to

detect the presence of prokaryotic genomes [42], viruses do not share a single con-

served genomic sequence and viral sequences can be quite diverse. The immense

diversity of the virosphere, the fast rates of viral evolution, and the comparatively

small number of known viral sequences (∼ 5, 000 viral species with complete genomes)

are believed to be the reasons which limit the identification of novel viral sequences

using BLAST and other sequence similarity based methods. Thus, viral metagenomic

studies could benefit from a method which could identify novel viral sequences in a

sequence-similarity independent manner. In this chapter, I present our work on such

a method to identify novel capsid sequences.

Capsid proteins are the building blocks of virion shells and are essential features

of viruses [90]. In spite of having considerable variability in sequences, capsid pro-

teins from a large set of diverse viral families have been shown to have a conserved

structural motif known as the jelly-roll fold, composed of eight beta strands forming

a wedge [6, 28, 29]. This structural conservation has been seen across some families of

bacteriophages, viruses of archea, and eukaryotic RNA and DNA viruses (Table 3.1).
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The existence of the conserved jelly-roll motif possibly points to the common origin

of these diverse viral families, and viruses are now believed by some to predate the

origin of cellular life [12, 91]. Another explanation for the conservation of the jelly-roll

fold could be convergent evolution, thus pointing to the advantage of adopting this

fold. In either case, the conservation of this motif could be useful in identification

of novel viruses, although the sequence properties underlying this strucutural motif

remain poorly understood [92]. Such sequence properties are likely to be shaped by

biophysical constraints such as self-organization into icosahedral capsids, maintaining

the structural stability of such capsids in variety of environments and the ease of dis-

sembly in host cells. The imprint of such constraints can be obscured and scattered

in the primary sequences of capsid proteins, which may not be evident in sequence

similarity based comparisons. Machine learning algorithms have been used in nu-

merous such contexts, where useful information for the problem at hand is present

in a cryptic fashion in the various features of data samples. We therefore chose to

use a machine-learning approach to learn classification of the jelly-roll motif contain-

ing capsid sequences against other viral and non-viral proteins using alignment-free

features.

Alignment-free features offer an alternative characterization of DNA/protein se-

quences [39]. A typical class of such features consists of counts of certain short

motifs in a given sequence (e.g. di-, tri-, and tetra-nucleotide frequencies). Sequence-

homology based methods are limited in their applicability to divergent sequences and

in the relatively high computation time. Alignment-free features can address these

limitations, and have been used for fast taxonomic binning (classification of DNA se-

quences according to organisms of origin) [40] and evolutionary relationships between

divergent organisms such as viruses [93], among other uses. Several programs exist

for taxonomic binning using alignment-free features such as TETRA (tetranucleotide

frequency [41]), Phylopythia (5-6 nucleotide frequencies with gaps [42]), Phymm (sub-

set of 1-12 nucleotide frequencies [43]), Metacluster (tetranucleotide frequencies [94]),
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but none of these have been trained and validated on viral genomes [34]. The only

program using alignment-free features and trained on viral sequences is MGTAXA

[44] – a program based on Phymm that has been used to predict host-taxonomy for

phages. One of the problems with using oligonucleotide frequencies is that viruses

can possess similar composition to their hosts [34], and can confound the prediction of

taxonomy for novel viruses. Moreover the use of oligonucleotide frequencies does not

utilize the information of evolutionary conservation of protein structures, such as the

jelly-roll fold, which is more likely to be present in the amino-acid sequences rather

than nucleotide sequences of genes. Thus, to capture the structural conservation of

jelly-roll motifs in capsid proteins for identification of novel capsids, a feature space

composed of frequencies of short amino-acid motifs was used to characterize capsid

and other proteins.

In this chapter, I first describe the nature of the alignment free features used and

the rationale behind their choice. The performance of the Support Vector Machine

(SVM) trained to classify jelly-roll containing capsid proteins from human proteins

and viral polymerases and reverse transcriptases is discussed next. The performance

of this SVM classifier (SVM-Caps from hereon) is compared to that of the program

BLAST, which is the most popular tool used in viral metagenomics for annotation

based on sequence-similarity. I find that this SVM-Caps can outperform BLAST in

situations mimicking the detection of novel viral families. Finally, SVM-Caps is used

to detect novel putative viral capsids in the viral metagenomic data from a French

freshwater lake, Lake Bourget.

3.2 Methods

3.2.1 Sequence Data

All protein sequences used in this study were downloaded from a curated database

called RefSeq [95]. This curated database consists of a non-redundant collection of
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genomes and protein sequences from broad range of organisms sequenced to date.

From this database, we downloaded all proteins from viruses (n=134,031), non-

mammal vertebrates (n=258,301), invertebrates (n=631,386), plants (n=566,219),

fungi (n=734,575), and protozoa (n=430,365). For archea and bacteria, a reduced

set of proteins (n=97,070) from 35 species evenly spaced on the phylogenetic tree

were used, and for mammals human proteins (n=34,521) were used.

Because capsid proteins for the viruses in the dataset have different names, capsid

proteins were isolated from the viral dataset by using the keywords ‘capsid’, ‘coat’,

‘gp23’, ‘head protein’, ‘L1’, ‘VP1’, ‘VP2’, ‘VP3’ and ‘gag’, followed by manual cu-

ration. This procedure resulted in 1823 capsid protein sequences. From these, 606

capsid sequences were extracted from viral families that are known to possess the

jelly-roll fold, using the information in references [6, 29], and taxonomy information

of viruses from ICTV [21] (Table 3.1). Information about these sequences can be

found in Appendix B.

Similarly, 599 protein sequences were extracted for viral RNA and DNA Poly-

merases and Reverse Transcriptases using keywords such as ‘Polymerase’, ‘RDRP’,

‘Pol’, ‘Reverse Transcriptase’ and ‘RT’.

Table 3.1: Viral Families with Jelly-Roll Capsid Proteins

Viral Family Genome Type
Jelly-roll

type
Host

Dataset

Samples

Adenoviridae dsDNA (L1) Double Vertebrates 11

Ascoviridae dsDNA (C 2) Double Invertebrates 4

Asfarviridae dsDNA (L) Double Vertebrates -

Birnaviridae dsRNA Single Vert.3, Invert.4 -

1Linear
2Circular
3Vertebrates
4Invertebrates
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Bromoviridae ssRNA (+ 5) Single Plants 26

Caliciviridae ssRNA (+) Single Vertebrates 11

Corticoviridae dsDNA (L) Double Bacteria 1

Comoviridae ssRNA (+) Single Plants -

Dicistroviridae ssRNA (+) Single Invertebrates 2

Geminiviridae ssDNA (C) Single Plants 222

Iridoviridae dsDNA (L) Double Vert., Invert. 6

Luteoviridae ssRNA (+) Single Plants 23

Microviridae ssDNA (C) Single Bacteria 14

Mimiviridae dsDNA (L) Double Protozoa 1

Nodaviridae ssRNA (+) Single Vert., Invert. 13

Papillomaviridae dsDNA (C) Single Vertebrates 112

Parvoviridae ssDNA (L) Single Vert., Invert. 29

Phycodnaviridae dsDNA (L/C) Double Algae 15

Picornaviridae ssRNA (+) Single Vertebrates 28

Polyomaviridae dsDNA (C) Single Vertebrates 14

Poxviridae dsDNA (L) Double Vert., Invert. -

Sequiviridae ssRNA (+) Single Plants -

Tectiviridae dsDNA (L) Double Bacteria 6

Tetraviridae ssRNA (+) Single Invertebrates 5

Tombusviridae ssRNA (+) Single Plants 39

Tymoviridae ssRNA (+) Single Plants, Invert. 24

5positive-stranded



54

3.2.2 Alignment Free Features

Genomic and protein sequences can be aligned for homologous proteins from different

species when the sequences under study are similar. Such alignments can then be used

for comparative analyses of differences among the species. For example, 16SrRNA

is a ribosomal RNA which shows similarity across a number of eukaryotic, bacterial

and archaeal species, and was used to understand the evolutionary relationship of

species across these domains of life [23]. But if the sequences under study are diver-

gent, alignment of sequences can fail to give any meaningful information. Alignment

free features are useful in such scenarios for comparitive characterization of diver-

gent sequences. Features such as frequencies of small sequence motifs do not require

sequence alignment, and have been used to study the species-specific signatures in

genomes [40], phylogeny of divergent viruses [93], etc. Because the capsid protein

sequences from different viruses can show very little sequence similarity, we chose to

characterize proteins using frequency of short amino-acid motifs for this study.

Given a protein sequence S, and a family of motifs {m1, ...,mk}, the protein

can be represented by an N-dimensional vector {f1, ..., fk}, where fi is the number

of occurences of motif mi in the sequence S. Some of the motifs used contain a

variable gap, in which case each gapped motif is actually a tuple of simpler motifs.

For example, in the case of the motif αβ[gap ≤ 3]γδ, the number of occurences

of this motif in a sequence is the sum of occurences of the motifs αβγδ, αβ ∗ γδ,

αβ ∗ ∗γδ and αβ ∗ ∗ ∗ γδ, where ∗ can be any alphabet. The exact nature of the short

amino-acid motifs used is discussed below. A custom Python program was developed

to calculate the motif counts of each protein sequence using string operations for

pattern-matching. Since the number of occurences of all the motifs in a sequence

scales linearly with the length of the sequence and the lengths of protein sequences

used can vary dramatically, the counts for each sequence were normalized so that

they add to unity.
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3.2.3 Support Vector Machine Algorithm for Classification

Classification is one of the central problems in machine learning [96]. It involves

“learning” of patterns separating the different classes of training samples to predict

the class of test samples. One of the most popular algorithms for classification is the

Support Vector Machine algorithm (SVM) [97]. Given two or more classes of training

samples represented in a vector space, SVM constructs a hyper-surface separating

the different classes. In its simplest form, it constructs a separating hyperplane

with the normal to the hyperplane as a superposition of some of the sample vectors

(“support vectors”). Of the many possible such hyperplanes, the algorithm choses

the hyperplane which maximizes the distance of the nearest training sample of each

class to the separating hyperplane (maximum margin). SVM can be extended to

also construct more complicated separating hyper-surfaces using non-linear distance

kernels. The mathematical formulation of the SVM is discussed in Appendix C. In

this study, the SVM implementation for Python from the package Scikit Learn [98]

was used.

3.2.4 BLASTP and DELTA-BLAST

Basic Local Alignment Search Tool (BLAST) [38] is the most popular tool widely

used to compare nucleotide and protein sequence similarity. BLAST is used in most

metagenomic studies to identify the organisms present in the environmental sample

by finding sequence similarity between the genomic sequences present in the sample

and the database of known organisms. This method consists of finding local similari-

ties in query sequence and target database, with a similarity score based on a known

substitution rate matrix (e.g. BLOSUM62 in case of protein sequences). The statisti-

cal significance of this similarity score is then evaluated by estimating the probability

of this score arising due to a randomly generated target database and is given by the

expect-value (E-value). The technical details about the implementation of this algo-

rithm can be found in Altschul et al. [38]. The program BLASTP (protein BLAST)
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version 2.2.27+ available from the NCBI software repository was used. When using

BLASTP with a custom target database (such as the dataset of all jelly-roll contain-

ing datasets), the e-value reported for each pair of query and target sequence corrects

for the lengths of the sequences, but not for the size of the database. Thus, to obtain

an e-value corrected for multiple hypothesis testing, the e-value was divided by the

number of sequences in the database.

DELTA-BLAST is an improved algorithm for detecting sequence similarity be-

tween a query sequence and target database in situations of lower sequence identity

[99]. Whereas the original algorithm uses sequence similarity between the query se-

quence and a single target protein sequence, DELTA-BLAST compares the similarity

of the query sequence to a number of protein sequences known to have a conserved

domain. Using this approach a more accurate estimate of local evolutionary rate

matrix can be obtained by using the sequence variation in a given family of proteins

rather than using a simplified global rate matrix (such as the BLOSUM62 used by

BLAST). For detection of conserved domains in the sequence, this algorithm relies

on the Conserved Domain Database (CDD) [100], a manually curated database of

families of proteins showing similar structures. This algorithm has been shown to

be more sensitive than BLASTP [99], although this advantage is expected only for

protein families existing in the CDD. Both the web interface at the NCBI website, as

well as the stand-alone command-line version of DELTA-BLAST downloaded from

the NCBI software repository were used.

3.2.5 Protein Structure Prediction

Because the SVM predicts whether a given sequence is a jelly-roll containing capsid

sequence or not, the best proof of validity of the prediction will be to show that the

predicted capsid sequence has the jelly-roll fold. Protein structure prediction is a

highly complex problem and unfortunately protein structure prediction algorithms

currently have only limited success. For most methods, similarity of sequences to
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known proteins whose structures have been solved is one of the first steps in model-

ing, and thus prediction accuracy is crucially dependent on the sequence similarity of

sequences to the known proteins. In community wide blind protein structure predic-

tion competitions, it has been observed that depending on the similarity to known

sequences and structures of test proteins, the accuracy of prediction algorithms ranges

from 20-90% of amino acids correctly placed (within a distance cut-off) [101]. Thus,

it is not currently possible to reliably model divergent novel protein sequences. The

criterion used to deem a novel candidate sequence suitable for structural modeling

was based on similarity of candidate sequences to known jelly-roll containing cap-

sid sequences. When we applied our method to predict novel capsid sequences in

the metagenomic data from Lake Bourget, we found that some of the novel candi-

date proteins have similar sequences to known jelly-roll containing capsid proteins

using the more sensitive sequence-similarity algorithm DELTA-BLAST (see above).

We used some of the best existing methods for protein structure modeling of these

putative capsid sequences. First, the CPHmodels 3.2 web-server [102] was used to

find a known template protein structures for the structure prediction of candidate

sequences. Then using these as (optional) user-submitted templates, the I-TASSER

web-server [10] was used for structure prediction and comparative analysis.

CPHmodels 3.2 webserver is one of the fastest algorithms for protein structure

prediction that has been shown to have a cumulative accuracy of 74% on benchmark

datasets [102]. This algorithm works in two modes. First, a sequence similarity to

known protein structures is sought, and if found, this known protein structure is used

as a template in modeling. If no significant similarity is found, then a second mode of

detecting remote homology is used. In this mode, a secondary structure prediction is

used to find similarities with known protein structures, with similar structures used

as templates for model building. Once a template has been found then 3D protein

structure is modeled, using the template as an initial backbone, based on ab-initio

energy minimizing and sequence/structural similarity. CPHmodels 3.2 web-server
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was used to find suitable templates for candidate capsid sequences with similarity to

capsids sequences. The significance of the sequence, predicted secondary structure,

and predicted solvent accessibility similarities of the query sequence to those template

is calculated empirically as the chance of finding such similarities if randomly chosen

templates were used. This significance is listed as a Z-score (range 0 to inf) and a

threshold for accuracy determined using benchmark studies is Z > 10.

Using the highest scoring template generated by CPHmodels 3.2 web-server as a

user-submitted template, the candidate capsid sequences were submitted for struc-

tural modeling at the I-TASSER web-server. I-TASSER algorithm has consistently

been ranked the best performing algorithm in community-wide competitions [10].

This algorithm works in a similar way to the CPHmodels3.2 algorithm mentioned

above, but the details of template finding and ab-initio modeling have some differ-

ences. The detailed algorithm can be found in Roy et al. [10] and references therein.

The significance of the prediction for the structure is given by metric called the C-

score. C-score, which ranges from -5 to 2, has been shown to be correlated with root

mean square distance (RMSD) for the amino-acids of the predicted and actual pro-

tein structures in benchmark studies, and it has been observed that a C-score greater

than -1.5 corresponds to the predicted structure having the same fold as the actual

test structure.

3.3 Results

3.3.1 Support Vector Machine Classifier can Classify Jelly-roll Contain-

ing Capsid Sequences against Other Proteins with High Accuracy

A Support Vector Machine was trained to classify capsid protein sequences containing

the jelly-roll fold against other proteins. We downloaded all viral protein sequences

from RefSeq [95], and using search keywords isolated 1823 capsid sequences (Meth-

ods). From these capsid proteins, 606 belonged to viruses from families known to
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possess the jelly-roll fold (both single and double) (Table 3.1). We next focussed on

the nature of the alignment-free features which can be useful in the classification of

such capsid protein sequences against other proteins.

Table 3.2: Classification of amino-acids based on physical

properties

Amino Acids Encoded

Class

Polar Charge Hydropathy

Ala, Cys, Phe, Ile, J,

Leu, Met, Val

0 No Neutral Hydrophobic

Asp, Glu 1 Yes Negative Hydrophilic

Gly, Pro, Trp 2 No Neutral Hydrophilic

His, Asn, Gln, Ser,

Thr, Tyr

3 Yes Neutral Hydrophilic

Lys, Arg 4 Yes Positive Hydrophilic

The physical properties of the amino acids are most likely to be important, rather

than the specific amino acid per se, for the conserved jelly-roll structural motif. There-

fore, each amino acid was encoded in a reduced alphabet composed of five classes

(denoted 0 to 4) based on combinations of charge, polarity, and hydropathy (Table

3.2). Each protein sequence, encoded in the reduced alphabet for amino acids, was

then characterized by the occurences of sequence motifs. A priori, it is not clear what

would be the best way of choosing these sequence motifs for the problem at hand.

The choice for motifs was guided by two rules: a) the number of motifs should be

smaller (or comparable) to the size of the capsid protein sequence (average size ∼ 400
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aa), and b) to capture universal properties of the jelly-roll forming capsid sequences,

the motifs should be insensitive to the high sequence variability observed in viruses,

i.e. they should be partially robust to amino acid substitutions, insertions and dele-

tions (indels). By using the reduced alphabet discussed above, substitutions within

the class of amino acids having same charge, polarity and hydropathy are tolerated.

To account for indels, motifs with variable gaps were used. Several types of sequence

motifs that fit the above criteria we explored. The best performance was achieved for

the following type of sequence motifs: two letters followed by a variable gap of upto

10 characters followed by two more letters i.e. {αβ[gap ≤ 10]γδ} where variables α,

β, γ, δ can take values of each class 0-4. This procedure resulted in each protein

sequence being represented by a 54 = 625 dimensional vector, where each entry of the

vector corresponds to count of a certain motif in the sequence. Because the lengths of

the proteins can vary and the total number of occurences of all motifs is proportional

to the length of the sequences, the counts were normalized so as to sum up to unity.

By representing each protein with its profile of counts of the above mentioned

motifs, I used a linear SVM (Methods, Appendix C) to learn classification between

jelly-roll containing capsid proteins and the outgroup of human proteins, and viral

polymerases and reverse transcriptases. For the outgroup training dataset, 600 ran-

domly chosen human proteins and 400 randomly chosen viral polymerases and reverse

transcriptases (Methods) were used. Since the number of capsid sequences for each

viral family in the capsid dataset is variable (n = 1 − 222, Table 3.1), a more bal-

anced representation of different families was ensured by using randomly chosen 75%

of capsid sequences for each family, with a maximum of 10 used sequences from each

family. This procedure resulted in 150 sequences in the capsid training dataset. By

testing the predictions on hold out data, the true positive rate of this SVM classifier

(SVM-Caps) was found to be 76.5±3.5% for capsids (n=456), and false-positive rates

were 6.3±0.8% for human proteins (n=1400) and 1.3±3.5% for viral polymerases and

reverse transcriptases (n=199). The Receiver Operating Characteristic (ROC) curve
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Figure 3.1: Receiver Operator Characteristic curve (ROC) showing true-positive
rates for test jelly-roll possessing capsid proteins (n=456) and false-positive rates
for test human proteins (n=1400) and test viral polymerases and reverse transcrip-
tases (n=199). Area under ROC curve is 0.9463. The maximum area under the ROC
curve ranges from 1 for perfect classifier to 0.5 for a random classifier.

for this classifier for one random realization of the training set is shown in Fig. 3.1.

The area under this ROC curve was 0.9463.

The performance of SVM-Caps was studied ∼ 2 million proteins from archea,

bacteria, fungi, plants, protozoa, invertebrates and non-mammal vertebrates (Meth-

ods). In spite of the proteins from these organisms not being present in the training

dataset, surprisingly, a good prediction accuracy was found with false-positive rate

< 9% (Table 3.3). The ROC curves for these different classes are shown in Fig. 3.2.

The areas under ROC curves were 0.92-0.93 (Table 3.3). These results suggest that

SVM-Caps can classify capsid sequences from proteins from non-viral proteins and
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viral polymerases and reverse transcriptases with a low false-positive rate.

Table 3.3: Performance of SVM on proteins from other organisms. The training set
for SVM comprised of jelly-roll capsids, viral polymerases/reverse transcriptases, and
human proteins.

Group N
False Positives

(Rate in %)
Area under

ROC

Fungi 734575 63021 (8.57) 0.9224
Protozoa 430365 34428 (8.00) 0.9276

Plants 566219 45517 (8.03) 0.9277
Non-mammalian

Vertebrates
258301 16522 (6.40) 0.9376

Invertebrates 631386 49113 (7.78) 0.9278
Archea/Bacteria 97056 8676 (8.94) 0.9232

3.3.2 SVM-Caps can outperform BLASTP in detection of Novel Viral

Capsid Sequences from Novel Viral Families

BLAST [38] is a popular local alignment tool which has been used extensively in

metagenomic analyses to identify novel species [33] (Methods). In such analyses, a

variant of BLAST, called tBLASTx, is used to compare the similarity of translated

nucleotide sequences to a target protein database. Since SVM-Caps works with pro-

tein sequences, we used the program BLASTP, which is similar to tBLASTx except

that it uses proteins sequences as input queries. We performed a comparative study

of the prediction powers of BLASTP and SVM under two simulated scenarios. First,

we assessed the performance of both approaches to detect novel viruses of known

families exhibiting jelly-roll fold in their capsid proteins, and second, to detect novel

viruses from novel families potentially possessing jelly-roll fold.

For the first scenario, randomly assigned capsid sequences from the dataset were

placed in “known” and “unknown” sequences (using the above-mentioned scheme for

ensuring balanced representation of each viral family). BLASTP was then used to

detect sequence similarity of the “unknown” capsid sequences to the “known” capsid
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Figure 3.2: ROC curve showing true-positive rates for test jelly-roll possessing capsid
proteins (n=456), and proteins from different organismal groups (n=97056-734575)
from RefSeq database. Area under each ROC curve was 0.92-0.94 (Table 3.3).
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Figure 3.3: Family-wise comparison of performance of BLAST and SVM classifier to
detect test jelly-roll capsid sequences when some members of the family are used in
training set. The mean prediction accuracies using BLAST and SVM for 20 trials
are shown, with grey bars indicating standard deviation. Only families with > 5
“unknown”/test sequences are shown, with results for all jelly-roll possessing families
shown in Table 3.4. The names of the viral families are truncated to remove “-viridae”
from them.

sequences. A capsid sequence from the “unknown” dataset is “detected” if the e-

value obtained by BLASTP is lesser than 5% after correcting for multiple testing

(Methods). To assess the performance of SVM-Caps, an SVM was first trained to

classify the “known” dataset of capsid sequences against human proteins and viral

polymerases and reverse transcriptases as mentioned above. The predictions of this

SVM classifier were used to “detect” capsid sequences from the “unknown” dataset.

The family-wise prediction powers for BLASTP and SVM, averaged over 20 random

realizations of “known” and “unknown” datasets, are shown in Fig. 3.3 and Table 3.4.

We found that BLASTP has a higher prediction accuracy (average accuracy = 96%)

than SVM (average accuracy = 76%) for all viral families, though for some families

the performance is comparable (Table 3.4).



65

Figure 3.4: Family-wise comparison of performance of BLAST and SVM classifier to
detect test jelly-roll capsid sequences when members of the family are not used in
training set. The mean prediction accuracies using BLAST and SVM for 20 trials
are shown, with grey bars indicating standard deviation. Only families with > 5
“unknown”/test sequences are shown, with results for all jelly-roll possessing families
shown in Table 3.4. The names of the viral families are truncated to remove “-viridae”
from them.

For the second scenario, all capsid sequences from a given viral family were as-

signed to the “unknown” dataset, and the capsid sequences from other families were

retained in the “known” dataset (using the above mentioned scheme to ensure equiv-

alent weightage for each family). The subsequent analysis as described above for the

first scenario was repeated, using such “known” and “unknown” datasets for each

viral family having the jelly-roll fold. As expected, both SVM-Caps and BLASTP

do not perform well in this scenario, with average prediction accuracies of 26% and

11% respectively. But, SVM-Caps was found to have a significantly higher prediction

accuracy than BLASTP (p < 0.0001, see Fig. 3.4, Table 3.4). Thus, these results

together suggest that while BLAST can be more useful for detection of novel viral

sequences from extant families, the SVM based approach can be more successful than

BLAST for detection of novel viral families.
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Table 3.4: Comparison of BLASTP and SVM-Caps per-

formance in situations mimicking detection of novel cap-

sids from extant jelly-roll fold possessing families, and

novel capsids from novel jelly-roll possessing families.

The accuracies listed are averaged over 20 trials (max-

imum accuracy = 1). Bold entries indicate significantly

better performance for BLAST/SVM (p < 0.05).

Viral Family
Number

of test

samples

Family used in

training

Family not used in

training

SVM-

Caps

Accuracy

BLASTP

Accuracy

SVM-

Caps

Accuracy

BLASTP

Accuracy

Adenoviridae 3 0.38± 0.24 0.68± 0.2 0± 0 0± 0

Ascoviridae 1 1± 0 1± 0 0.3± 0.46 1± 0

Bromoviridae 16 0.5± 0.09 0.88± 0.09 0.36± 0.1 0.04± 0.03

Caliciviridae 3 0.55± 0.34 1± 0 0.28± 0.26 0.7± 0.28

Corticoviridae 1 0± 0 0± 0 0± 0 0± 0

Dicistroviridae 1 0.65± 0.48 1± 0 0.65± 0.48 0.8± 0.4

Geminiviridae 212 0.87± 0.04 0.99± 0 0.17± 0.09 0.01± 0

Iridoviridae 2 1± 0 1± 0 0.43± 0.29 1± 0

Luteoviridae 13 0.94± 0.04 1± 0 0.94± 0.03 0.2± 0.12

Microviridae 4 0.64± 0.23 0.9± 0.12 0.46± 0.29 0± 0

Mimiviridae 1 0.7± 0.46 1± 0 0.7± 0.46 1± 0

Nodaviridae 4 0.8± 0.2 0.88± 0.22 0.5± 0.25 0.59± 0.25

Papillomaviridae 102 0.62± 0.07 0.97± 0.08 0.14± 0.06 0.03± 0.01

Parvoviridae 19 0.58± 0.12 0.86± 0.08 0.19± 0.11 0± 0.01
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Phycodnaviridae 5 0.62± 0.2 1± 0 0.34± 0.16 0.99± 0.04

Picornaviridae 18 0.7± 0.11 0.85± 0.15 0.63± 0.09 0.32± 0.07

Polyomaviridae 4 0.69± 0.21 0.88± 0.13 0.2± 0.17 0± 0

Tectiviridae 2 0.78± 0.25 0± 0 0.78± 0.25 0± 0

Tetraviridae 2 0.58± 0.29 0.98± 0.11 0.3± 0.33 0± 0

Tombusviridae 29 0.62± 0.08 1± 0 0.41± 0.08 0.67± 0.09

Tymoviridae 14 0.92± 0.09 1± 0 0.83± 0.12 0.04± 0.06

3.3.3 Detection of Novel Capsid Sequences in Metagenomic Data on the

French Lake Bourget

As an application of the SVM based approach for detection novel jelly-roll capsid

sequences, sequences from the viral metagenomic data obtained for water samples

from the French freshwater lake, Lake Bourget [103] were analyzed. The metagenomic

data collection and sequencing techniques for this study were designed to extract viral

sequences, and the authors were able to show no significant contamination due to

bacteria. Sequence reads were mapped to known genomes using tBLASTx (thresholds

at e-value < 0.001 and BLAST bit-score > 50). They further showed that of the

reads which could be mapped to known genomes, 70% mapped to viral sequences,

thus indicating a high concentration of viruses in their samples (estimated at 107

virus-like-particles/ml of water sample). The sequence data for unknown assembled

contigs (n=11,038) and unknown open reading frames (ORFs) (n=28,872) for this

project were downloaded from the Metavir web-server [104].

Using SVM-Caps, we found that 1019 unknown ORFs (on 999 unknown contigs),

longer than 170 amino acids, were predicted by SVM to be jelly-roll capsid protein
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sequences. Because some of the identified novel capsid sequences should have inter-

mediate sequence similarity to known capsid sequences, we extracted a subset of pre-

dicted capsid ORFs which were similar, but just below the thresholds of significance,

to the known jelly-roll capsids from the dataset. We used BLASTP to extract pre-

dicted capsid ORFs similar to known jelly-roll containing capsids (pairwise BLASTP

e-value < 0.0001, query size = 1019 proteins, target size = 606 proteins). This pro-

cedure resulted in 38 ORFs. Since the smallest genome of a jelly-roll exhibiting virus

is 1.76kb (Porcine Circovirus [105]), we focussed on the 6 ORFs (out of the 38 in the

previous step) which were on contigs longer than 1.7kb to identify possibly complete

genomes (Table 3.5). Surprisingly, using DELTA BLAST [99], it was found that 2

of these 6 ORFs mapped significantly to capsid proteins from Geminiviridae family

(e-value < 10−20, using the non-redundant database), and 1 ORF mapped to coat

protein from Plasmopora Halsteidii Virus A (e-value= 3×10−9, using non-redundant

database) (Table 3.6). Although these ORFs were classified as “unknown” using

tBLASTx (i.e. not meeting the thresholds e-value < 0.001 and bit score > 50 using

non-redundant database), a more sensitive search algorithm, DELTA BLAST, was

able to detect significant similarity to capsid proteins. Due to the high computation

time of DELTA BLAST, its use in large scale metagenomic annotation studies is not

suitable. But using SVM-Caps to filter putative capsid proteins can significantly re-

duce the number of ORFs. Thus, using SVM-Caps predictions to screen for putative

capsid proteins followed by more elaborate downstream analysis of these putative

capsid ORFs can prove to be a useful strategy.

Table 3.5: Pairwise BLASTP results for putative novel

capsid ORFs with known Jelly-roll containing Capsid Se-

quences
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ORF
Target Capsid

(GI6)

Percent

iden-

tity

Alignment

length

E-

value

Bit

Score

contig18897

gene 3

Maize streak virus

(9625667)
23.53 136

2.00×

10−6
33.5

contig18897

gene 3

Eragrostis curvula

streak virus

(229605060)

28.33 60
6.00×

10−6
32

contig37564

gene 2

Hibiscus chlorotic

ringspot virus

(20153394)

26.09 115
2.00×

10−5
31.6

contig18897

gene 3

Tobacco yellow dwarf

virus (20564137)
26.92 104

2.00×

10−5
30

contig18897

gene 3

Wheat dwarf virus

(18071200)
25 84

2.00×

10−5
30.4

contig20303

gene 2

Canine papillomavirus

4 (164429764)
28.99 69

2.00×

10−5
31.2

contig37577

gene 3-

partial

Equus caballus

papillomavirus 1

(20428635)

26.4 125
2.00×

10−5
31.2

contig37537

gene 1-

partial

Sweet potato leaf curl

South Carolina virus

(327409463)

25.53 94
3.00×

10−5
28.9

contig18897

gene 3

Sweet potato leaf curl

virus (29294540)
24.77 109

4.00×

10−5
29.6

6RefSeq identifier
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contig21296

gene 1-

partial

Pseudoalteromonas

phage PM2 (9632869)
30.19 53

7.00×

10−5
28.5

Table 3.6: DELTA BLAST results for putative capsid

ORFs with significant similarity to capsid proteins using

non-redundant database

Target Protein DELTA

BLAST

e-value

Percent

Identity

Alignment

length

Contig 18897 Gene 3

coat protein [Tomato yellow

leaf curl virus - Il]

2.00× 10−28 17 165

coat protein [Tomato yellow

leaf curl Mali virus]

5.00× 10−28 16 165

coat protein [Tomato leaf

curl virus]

5.00× 10−28 19 258

coat protein [Honeysuckle

yellow vein mosaic virus]

3.00× 10−27 18 146

coat protein [Tomato yellow

leaf curl virus-[Minab:Iran]]

4.00× 10−27 16 165

Contig 37537 Gene 1 (partial)
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Coat protein [Tomato yel-

low leaf curl virus - Il]

2.00× 10−22 17 107

AV1 [Premna leaf curl virus] 3.00× 10−22 17 107

coat protein [Tomato yellow

leaf curl Mali virus]

4.00× 10−22 18 107

coat protein, partial

[Tomato yellow leaf curl

virus]

7.00× 10−22 17 106

coat protein, partial [Water-

melon chlorotic stunt virus]

1.00× 10−21 18 107

Contig 37564 Gene 2

putative coat protein, par-

tial [Plasmopara halstedii

virus A]

3.00× 10−9 30 123

coat protein [Sclerophthora

macrospora virus A]

0.014 26 117

Using tertiary structure modelling, we found that the 3 ORFs mentioned above

showed characteristic topology similar to the jelly-roll fold. We first used CPHmod-

els3.2 web-server [102] to identify suitable template protein structures used to model

the tertiary structures of the unknown putative capsid ORFs. The best structural

templates predicted were the capsid protein of Satellite Tobacco Necrosis Virus (PDB

id: 2BUK [106]) for two ORFs, and for one was capsid protein of Tomato Bushy Stunt

Virus (PDB id: 2TBV [107]) for one ORF. Both these protein structures are known

to possess a single copy of the jelly-roll motif. Using these as optional user-submitted
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TM score =0.525

B Contig 37537 Gene 1

TM score = 0.593

Contig 18897 Gene 3A

C

TM score =0.589

Contig 37564 Gene 2

Figure 3.5: Alignment of predicted structure for putative novel jelly-roll containing
capsids with structurally most similar known jelly-roll containing capsids. Contig
18897 Gene 3 (A) and Contig 37537 Gene 1 (B) were found to be structurally clos-
est to Satellite Tobacco Necrosis Virus capsid (PDB id: 2BUK/2STV), and Contig
37564 Gene 2 to capsid protein of Tomato Bushy Stunt virus (PDB id: 2TBV). Grey
corresponds to the known templates, and red corresponds to the predicted structures
for putative capsids. TM-score, a measure of structural similarity, of greater than 0.5
indicates same topology between the template and predicted model [10].
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templates for modelling, the web-server I-TASSER [10] was used to perform an in-

depth structural prediction for these ORFs. We found that although the structures

predicted were not significant (estimated TM-scores: 0.49 ± 0.15 for contig 18897

gene 3, 0.49± 0.15 for contig 37537 gene 1, and 0.36± 0.12 for contig 37564 gene 2),

some of them could have the correct fold (TM-score > 0.5 correlates with the same

fold). The structural alignment between predicted models and the given templates

indicates that they have similar topology (TM scores of 0.52-0.59) (Fig. 3.5).

None of the predicted structures exhibited the complete eight beta-stranded jelly-

roll motif. The topology of the jelly-roll fold (but not the secondary structure) was

exhibited by gene 3 on contig 18897 (abbreviated as 18897-3) with 6 of the 8 beta

strands of the motif, as well as by gene 2 on contig 37564 (abbreviated as 37564-2)

with overlap of 5 out of 7 beta strands, but not by gene 1 on contig 37537. This

discrepancy in the number of beta strands in the predicted structures could arise

due to limitations of the secondary structure prediction algorithm PSIPRED used by

I-TASSER, which has an accuracy of 78% [108]. The predicted structure for 37564-2

also showed striking similarity to the other parts of the capsid protein structure of

Tomato Bushy Stunt Virus with several overlapping secondary structures and folds

(Fig. 3.5 C). Thus, taken together, the above results suggest that the ORFs 18897-

3 and 37564-2 could be jelly-rold containing capsid sequences. Moreover, the low

sequence identity to known capsid proteins (Table 3.6) indicates that they could be

from novel viral families.

3.4 Discussion & Future Work

In this chapter, a novel method for detection novel jelly-roll containing capsid se-

quences was presented. The low sequence similarity between viruses, coupled with

the poor representation of the enormous viral diversity in characterized databases,

limits the effectiveness of sequence similarity based methods for detecting novel viral
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sequences. This limitation is borne out in most of the viral metagenomic studies

where a large fraction of sequence reads cannot be confidently mapped to any known

viruses or other organisms. Several studies have successfully explored the use of

alignment-free features in such scenarios to identify novel organisms in spite of low

sequence similarity [42, 43]. Most of such studies have focused on microbial metage-

nomics, and to our knowledge, there exists only one method (MGTAXA) which can

be used for identification of viruses using alignment-free features [44]. MGTAXA is a

novel Hidden Markov Model based method which can predict the taxonomy of viral

sequences using 12 nucleotide frequencies. Although such information is useful, for

the problem of detecting whether a sequence is viral or not, this method is much

more computationally expensive than our method. Thus, the work developed in this

chapter is a crucial addition to this field.

All of the above mentioned methods relying on alignment-free features have two

commonalities: a) they use frequencies of short sequence motifs, and b) they use

machine learning algorithms to solve the classification problems underlying detection

of novel sequences. Our method uses both of these aspects, but deviates in the for-

mer by using motifs comprised of a reduced alphabet of amino-acids, rather than

of nucleotides. This choice was natural since the aim was to exploit the remarkable

structural conservation of the jelly-roll motif exhibited by capsid proteins from di-

verse viral families. Although methods based on alignment-free features do extract

useful signals from genomes, contrary to our method, they are not explicitly based on

either sequence/structural conservation or other obvious biological properties (except

perhaps the codon biases used by viruses). By using motifs that are based on physical

properties of amino-acids and that can be robust to sequence evolution, we were able

to construct a high-accuracy classifier for jelly-roll capsid proteins.

The most popular tool used in metagenomic studies to annotate novel genomic

sequences is BLAST [38]. Using controlled comparative studies of simulated scenarios,

I found that although BLAST performs better than SVM-Caps in detection of novel
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members of the same family, it has a significantly lower performance than SVM in

detecting members of novel viral families. Because, sequence similarity within viral

families is expected to be higher than across families, the higher success of BLAST

in the former scenario is expected given its high specificity. In spite of the absence

of sequence similarity, alignment-free features can still show similarity [39], and, as

in the case of the latter scenario, can lead to a higher performance for the methods

using them.

Using SVM-Caps, the viral metagenomic data obtained from water samples from a

freshwater lake, Lake Bourget, in France [103] were analyzed to predict the existence

of several novel jelly-roll containing capsid sequences. Using tBLASTx, Roux et

al. found that in this dataset only 26.4% and 18.4% reads mapped to known organisms

and viruses respectively. Furthermore, 91% of the reads that mapped to viruses

mapped to Microviridae viruses. This family of small single stranded DNA viruses

possesses jelly-roll containing capsid proteins. It is possible that some of the large

fraction of unknown sequences could belong to novel families similar to Microviridae,

which possess jelly-roll capsid proteins. Thus, our finding of 999 unknown contigs

with putative jelly-roll capsid sequences, is plausible. In the absence of methods

to validate these unknown contigs en-masse, we used the following way of validating

some of these contigs. We reasoned that some of these predicted novel capsid proteins

might show intermediate sequence-similarity to known capsid proteins. Using this

approach, three candidate sequences were isolated, which showed significant sequence

similarity to known capsid proteins using the more sensitive sequence similarity based

algorithm DELTA-BLAST [99]. These results are expected as it was shown that

DELTA-BLAST is more powerful at detecting sequence similarity between divergent

sequences as compared to BLAST [99]. Two out these three novel putative capsids

were then showed to exhibit partial structural similarity to jelly-roll containing capsids

using protein structure modeling, further validating these candidate ORFs as jelly-

roll containing capsid proteins. These results confirm the potential of SVM classifier
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to identify putative novel jelly-roll capsid sequences from metagenomic data.

The limitations of this work suggest several future avenues of research. The re-

quirement of intermediate sequence similarity restricted the focus to only few of the

ORFs predicted to be capsids. The maximum utility of SVM-Caps lies in detecting

divergent capsid sequences. Thus, it would be desirable to be able to use an inde-

pendent alignment-free method to validate these predicted ORFs as jelly-roll capsids.

One possible way could be to use similarity in feature space as a metric. Although

intuitive, this approach would need more testing especially since such a metric has

the potential to give taxonomic information. Another area of concern which demands

future research is to study the sensitivity of SVM-Caps to artefacts of metagenomic

assembly. Since metagenomics involves assembly of reads obtained from sequencing

environmental DNA/RNA, often hybrid assembled contigs can arise which comprise

of genomic sequences from multiple species. It is not clear how sensitive the SVM

performance will be on such genomic chimeras, and this issue needs further study.
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Chapter 4

Future Work

The research presented in this dissertation suggests several fruitful lines of research.

In chapter 2, I discussed the use of a novel strategy to understand transmission bias

in H5N1 infections from birds to humans. H5N1 viruses cannot transmit between

humans yet, and all human infections are transmitted from birds. Many important

human infecting viruses such as Ebola, Rabies, SARS Coronavirus, Dengue, etc. have

been a result of such “spillover” events, i.e. infections which jumped from other ani-

mals into humans. In most of these viruses, after an initial spillover event from animal

to human, human-to-human transmission is also observed. The methods developed

in this thesis can be used to understand not only the transmission bias in the initial

spillover events, but can also be used to detect selection on short time scales in the

latter stages of human-to-human transmission. On the theoretical side, the method

introduced by Pan and Deem [79], which enables the calculation of the probability of

neutral evolution of amino-acid frequencies on short time scales, assumes the scenario

of infinite effective population size. To be applicable to the study of situations such

as intra-host micro-evolution of viruses, this method needs to be modified for finite,

possibly small, effective population sizes.

In Chapter 3, a novel method was developed to detect unknown capsid sequences

using machine learning algorithm on alignment-free features. This approach exploited

the conservation of a particular structural fold, the “jelly-roll” fold, in the capsid

proteins of viruses from several diverse families. Given the high accuracy of this

method exhibits to classify such capsid sequences against virtually all other proteins,

it is reasonable to expect that certain essential features underlying the jelly-roll fold
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are being used in the classification. An in-depth study of extracting such features

and understanding their prevalence with respect the jelly-roll folds of the diverse

families could provide clues into the sequence determinants of this conserved fold.

Furthermore, Abrescia et al. [6] have discovered other conserved structural motifs in

capsid proteins. The methods developed in this chapter can be employed to detect

these other type of conserved capsid sequences. Bacteriophages are probably the

most numerous organisms in the biosphere, and a large class of them have capsid

proteins with a conserved structural motif (distinct from the jelly-roll fold). Thus,

an alignment-free method to detect novel capsid sequences from such bacteriophage

families would be highly relevant for the viral metagenomic community.
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Appendix A

Closely clustering Avian and Human H5N1

Isolates

Table A.1: Closely clustering avian and human isolates

identified using a distance cutoff in the principal compo-

nent space

Accession

Number

Host Date Virus Name

Egypt

ABM92273 Human 2007/01 A/Egypt/0636-NAMRU3/2007(H5N1)

ACI06187 Human 12/24/07 A/Egypt/10211-NAMRU3/2007(H5N1)

ACI06188 Human 12/26/07 A/Egypt/10215-NAMRU3/2007(H5N1)

ACI06189 Human 12/29/07 A/Egypt/10216-NAMRU3/2007(H5N1)

ADG21405 Human 12/29/07 A/Egypt/10217-NAMRU3/2007(H5N1)

ABJ90343 Human 2006/10 A/Egypt/12374-NAMRU3/2006(H5N1)

ABP96845 Human 2007 A/Egypt/1394-NAMRU3/2007(H5N1)

ABM54179 Human 2006 A/Egypt/14724-NAMRU3/2006(H5N1)

ABP96847 Human 2007 A/Egypt/1731-NAMRU3/2007(H5N1)

ABP96848 Human 2007 A/Egypt/1902-NAMRU3/2007(H5N1)

ACI06180 Human 02/26/08 A/Egypt/1980-NAMRU3/2008(H5N1)

ABP96849 Human 2007 A/Egypt/2256-NAMRU3/2007(H5N1)

ACI06181 Human 03/02/08 A/Egypt/2289-NAMRU3/2008(H5N1)
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ABP96850 Human 03/13/07 A/Egypt/2321-NAMRU3/2007(H5N1)

ACI06182 Human 03/04/08 A/Egypt/2514-NAMRU3/2008(H5N1)

ACI06183 Human 03/08/08 A/Egypt/2546-NAMRU3/2008(H5N1)

ABP96852 Human 2007 A/Egypt/2616-NAMRU3/2007(H5N1)

ABP96853 Human 2007 A/Egypt/2620-NAMRU3/2007(H5N1)

ABU53968 Human 2007 A/Egypt/2629-NAMRU3/2007(H5N1)

ABU53971 Human 2007 A/Egypt/2750-NAMRU3/2007(H5N1)

ABU53972 Human 2007 A/Egypt/2751-NAMRU3/2007(H5N1)

ABK32775 Human 2006 A/Egypt/2763-NAMRU3/2006(H5N1)

ABK32778 Human 2006 A/Egypt/2947-NAMRU3/2006(H5N1)

ABU53966 Human 2006 A/Egypt/2991-NAMRU3/2006(H5N1)

ACI06184 Human 04/05/08 A/Egypt/3158-NAMRU3/2008(H5N1)

ACI06186 Human 04/16/08 A/Egypt/3401-NAMRU3/2008(H5N1)

ABU53973 Human 2007 A/Egypt/4081-NAMRU3/2007(H5N1)

ABU53974 Human 2007 A/Egypt/4082-NAMRU3/2007(H5N1)

ABU53975 Human 2007 A/Egypt/4226-NAMRU3/2007(H5N1)

ABK32782 Human 2006 A/Egypt/5614-NAMRU3/2006(H5N1)

ABU53976 Human 2007 A/Egypt/6251-NAMRU3/2007(H5N1)

ADG21402 Human 05/16/06 A/Egypt/7021-NAMRU3/2006(H5N1)

ACT15310 Human 01/11/09 A/Egypt/N00001/2009(H5N1)

ADG21427 Human 01/11/10 A/Egypt/N00269/2010(H5N1)

ADG21429 Human 01/12/10 A/Egypt/N00270/2010(H5N1)

ACT15312 Human 01/23/09 A/Egypt/N00585/2009(H5N1)

ACT15314 Human 02/03/09 A/Egypt/N00605/2009(H5N1)

ACT15316 Human 02/07/09 A/Egypt/N00606/2009(H5N1)

ADG21431 Human 02/02/10 A/Egypt/N01360/2010(H5N1)

ADG21435 Human 02/12/10 A/Egypt/N01982/2010(H5N1)

ADG21437 Human 02/15/10 A/Egypt/N02038/2010(H5N1)
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ACT15320 Human 03/03/09 A/Egypt/N02039/2009(H5N1)

ADG21439 Human 02/13/10 A/Egypt/N02127/2010(H5N1)

ACT15322 Human 03/09/09 A/Egypt/N02407/2009(H5N1)

ADG21441 Human 02/23/10 A/Egypt/N02554/2010(H5N1)

ACT15324 Human 03/14/09 A/Egypt/N02563/2009(H5N1)

ACT15326 Human 03/24/09 A/Egypt/N02752/2009(H5N1)

ADG21443 Human 02/27/10 A/Egypt/N02770/2010(H5N1)

ADG21445 Human 03/03/10 A/Egypt/N03071/2010(H5N1)

ADG21447 Human 03/07/10 A/Egypt/N03072/2010(H5N1)

ACT15328 Human 03/30/09 A/Egypt/N03228/2009(H5N1)

ACT15330 Human 04/01/09 A/Egypt/N03272/2009(H5N1)

ACT15332 Human 04/15/09 A/Egypt/N03434/2009(H5N1)

ACT15334 Human 04/16/09 A/Egypt/N03438/2009(H5N1)

ACT15338 Human 04/19/09 A/Egypt/N03450/2009(H5N1)

ACT15342 Human 05/11/09 A/Egypt/N04394/2009(H5N1)

ACT15345 Human 05/17/09 A/Egypt/N04396/2009(H5N1)

ADG21449 Human 03/31/10 A/Egypt/N04434/2010(H5N1)

ACT15347 Human 05/18/09 A/Egypt/N04526/2009(H5N1)

ACT15349 Human 05/18/09 A/Egypt/N04527/2009(H5N1)

ACT15351 Human 05/25/09 A/Egypt/N04822/2009(H5N1)

ACT15353 Human 05/25/09 A/Egypt/N04823/2009(H5N1)

ADG21407 Human 05/29/09 A/Egypt/N04830/2009(H5N1)

ACT15357 Human 06/06/09 A/Egypt/N05056/2009(H5N1)

ADG21410 Human 06/16/09 A/Egypt/N05912/2009(H5N1)

ADG21412 Human 07/25/09 A/Egypt/N07392/2009(H5N1)

ADG21416 Human 08/01/09 A/Egypt/N08835/2009(H5N1)

ADG21418 Human 08/26/09 A/Egypt/N09174/2009(H5N1)

ADG21422 Human 11/22/09 A/Egypt/N11981/2009(H5N1)
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ADG21425 Human 2009/12 A/Egypt/N15262/2009(H5N1)

ACR56220 Avian 05/24/07 A/chicken/Egypt/07175-

NLQP/2007(H5N1)

ACA29670 Avian 06/19/07 A/chicken/Egypt/07181-

NLQP/2007(H5N1)

ACA29679 Avian 12/24/07 A/chicken/Egypt/07665S-

NLQP/2007(H5N1)

ACR56224 Avian 01/04/08 A/chicken/Egypt/0811-NLQP/2008(H5N1)

ACR56251 Avian 01/10/08 A/chicken/Egypt/08124S-

NLQP/2008(H5N1)

ADD21350 Avian 2008/01 A/chicken/Egypt/0814S-

NLQP/2008(H5N1)

ACR56227 Avian 01/07/08 A/chicken/Egypt/0823-NLQP/2008(H5N1)

ACA29683 Avian 01/03/08 A/chicken/Egypt/0836S-

NLQP/2008(H5N1)

ACR56254 Avian 02/09/08 A/chicken/Egypt/08371S-

NLQP/2008(H5N1)

ACR56230 Avian 01/16/08 A/chicken/Egypt/0838-NLQP/2008(H5N1)

ACR56233 Avian 01/18/08 A/chicken/Egypt/0847-NLQP/2008(H5N1)

ACR56223 Avian 01/03/08 A/chicken/Egypt/085-NLQP/2008(H5N1)

ACR56234 Avian 01/22/08 A/chicken/Egypt/0850-NLQP/2008(H5N1)

ACR56239 Avian 02/17/08 A/chicken/Egypt/0870-NLQP/2008(H5N1)

ADD21349 Avian 2008/06 A/chicken/Egypt/0883-NLQP/2008(H5N1)

ACR56247 Avian 12/24/08 A/chicken/Egypt/0896-NLQP/2008(H5N1)

ADM85845 Avian 2009/12 A/chicken/Egypt/091317s/2009(H5N1)

ADD21355 Avian 2009/02 A/chicken/Egypt/0915-NLQP/2009(H5N1)

ACX31965 Avian 2009/01 A/chicken/Egypt/092-NLQP/2009(H5N1)

ACX31993 Avian 2009/02 A/chicken/Egypt/0920-NLQP/2009(H5N1)



83

ADD21378 Avian 2009/01 A/chicken/Egypt/093smg-

NLQP/2009(H5N1)

ADD21365 Avian 2009/05 A/chicken/Egypt/09485s-

NLQP/2009(H5N1)

ACX31973 Avian 2009/03 A/chicken/Egypt/0960-NLQP/2009(H5N1)

ADB85109 Avian 05/12/09 A/chicken/Egypt/0987-NLQP/2009(H5N1)

AEQ72831 Avian 09/09/10 A/chicken/Egypt/10117/2010(H5N1)

AEQ72839 Avian 10/21/10 A/chicken/Egypt/10132/2010(H5N1)

ADM85868 Avian 2010/02 A/chicken/Egypt/101604v/2010(H5N1)

ADM85880 Avian 2010/03 A/chicken/Egypt/10189s/2010(H5N1)

ADM85881 Avian 2010/03 A/chicken/Egypt/1020d/2010(H5N1)

AEQ72813 Avian 04/13/10 A/chicken/Egypt/1021AD/2010(H5N1)

ADM85883 Avian 2010/03 A/chicken/Egypt/1021L/2010(H5N1)

ADM85888 Avian 2010/05 A/chicken/Egypt/1022L/2010(H5N1)

AEQ72825 Avian 08/01/10 A/chicken/Egypt/10249SF/2010(H5N1)

AEQ72830 Avian 08/08/10 A/chicken/Egypt/10259SF/2010(H5N1)

AEQ72827 Avian 08/04/10 A/chicken/Egypt/10264AG/2010(H5N1)

ADM85852 Avian 2010/01 A/chicken/Egypt/1029/2010(H5N1)

ADM85854 Avian 2010/02 A/chicken/Egypt/1034/2010(H5N1)

ADM85871 Avian 2010/02 A/chicken/Egypt/1034qd/2010(H5N1)

AEQ72828 Avian 08/05/10 A/chicken/Egypt/1038AL/2010(H5N1)

AEQ72842 Avian 12/10/10 A/chicken/Egypt/10413SF/2010(H5N1)

AEQ72835 Avian 09/29/10 A/chicken/Egypt/10513S/2010(H5N1)

ADM85875 Avian 2010/02 A/chicken/Egypt/1052g/2010(H5N1)

ADM85885 Avian 2010/03 A/chicken/Egypt/1058sf/2010(H5N1)

ABN70706 Avian 2006 A/chicken/Egypt/1078-

NAMRU3/2006(H5N1)
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ABN70707 Avian 2007 A/chicken/Egypt/1079-

NAMRU3/2007(H5N1)

ABN70708 Avian 2006 A/chicken/Egypt/1080-

NAMRU3/2006(H5N1)

ABN70709 Avian 2006 A/chicken/Egypt/1081-

NAMRU3/2006(H5N1)

AEQ72816 Avian 06/08/10 A/chicken/Egypt/1090/2010(H5N1)

AEQ72869 Avian 01/27/11 A/chicken/Egypt/111127V/2011(H5N1)

AEQ72850 Avian 01/10/11 A/chicken/Egypt/1112/2011(H5N1)

AEQ72877 Avian 02/23/11 A/chicken/Egypt/111640V/2011(H5N1)

AEQ72896 Avian 03/21/11 A/chicken/Egypt/1117AF/2011(H5N1)

AEQ72879 Avian 02/27/11 A/chicken/Egypt/11184S/2011(H5N1)

AEQ72890 Avian 03/13/11 A/chicken/Egypt/111945V/2011(H5N1)

AFI44347 Avian 10/05/11 A/chicken/Egypt/1119AF/2011(H5N1)

AEQ72903 Avian 04/26/11 A/chicken/Egypt/1123AL/2011(H5N1)

AEQ72845 Avian 01/04/11 A/chicken/Egypt/112SG/2011(H5N1)

AEQ72884 Avian 03/03/11 A/chicken/Egypt/1134SD/2011(H5N1)

AEQ72861 Avian 01/20/11 A/chicken/Egypt/113AF/2011(H5N1)

AFI44339 Avian 07/08/11 A/chicken/Egypt/11506SF/2011(H5N1)

AEQ72905 Avian 06/13/11 A/chicken/Egypt/11529S/2011(H5N1)

AEQ72894 Avian 03/17/11 A/chicken/Egypt/1155/2011(H5N1)

AEQ72856 Avian 01/12/11 A/chicken/Egypt/1156S/2011(H5N1)

AEQ72868 Avian 01/27/11 A/chicken/Egypt/1158SF/2011(H5N1)

AFI44345 Avian 07/27/11 A/chicken/Egypt/11667s/2011(H5N1)

AFI44343 Avian 07/26/11 A/chicken/Egypt/11672s/2011(H5N1)

AEQ72870 Avian 02/07/11 A/chicken/Egypt/116AF/2011(H5N1)

AEQ72857 Avian 01/14/11 A/chicken/Egypt/1174S/2011(H5N1)

AEQ72872 Avian 02/14/11 A/chicken/Egypt/117AF/2011(H5N1)
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AEQ72874 Avian 02/19/11 A/chicken/Egypt/1197AG/2011(H5N1)

AEQ72844 Avian 01/04/11 A/chicken/Egypt/119S/2011(H5N1)

AFI44358 Avian 2012/02 A/chicken/Egypt/12186F-12/2012(H5N1)

AFI44357 Avian 2012/02 A/chicken/Egypt/12186F-9/2012(H5N1)

AFI44356 Avian 01/12/12 A/chicken/Egypt/1219s/2012(H5N1)

ABO64688 Avian 2006 A/chicken/Egypt/12378N3-

CLEVB/2006(H5N1)

ABO64689 Avian 2006 A/chicken/Egypt/12379N3-

CLEVB/2006(H5N1)

AFI44355 Avian 01/09/12 A/chicken/Egypt/128s/2012(H5N1)

ABN70710 Avian 2007 A/chicken/Egypt/1300-

NAMRU3/2007(H5N1)

ACM68979 Avian 02/23/08 A/chicken/Egypt/15NLQP-

CLEVB244/2008(H5N1)

ACD64996 Avian 02/25/07 A/chicken/Egypt/1709-

1VIR08/2007(H5N1)

ABO64697 Avian 2007 A/chicken/Egypt/1892N3-

HK49/2007(H5N1)

ACM68984 Avian 01/25/08 A/chicken/Egypt/22NLQP-

CLEVB232/2008(H5N1)

ABY79009 Avian 2007 A/chicken/Egypt/3044NAMRU3-

CLEVB59/2007(H5N1)

ABY79010 Avian 2007 A/chicken/Egypt/3045NAMRU3-

CLEVB60/2007(H5N1)

ABY79011 Avian 2007 A/chicken/Egypt/3046NAMRU3-

CLEVB62/2007(H5N1)

ABY79014 Avian 2007 A/chicken/Egypt/3049NAMRU3-

CLEVB75/2007(H5N1)
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ABG67712 Avian 2006 A/chicken/Egypt/5611NAMRU3-

AN/2006(H5N1)

ABY79019 Avian 2007 A/chicken/Egypt/9383NAMRU3-

CLEVB112/2007(H5N1)

ABY79033 Avian 2007 A/chicken/Egypt/9400NAMRU3-

CLEVB211/2007(H5N1)

ABD85144 Avian 2006 A/chicken/Egypt/960N3-004/2006(H5N1)

ABW37430 Avian 03/06/07 A/chicken/Egypt/F6/2007(H5N1)

ADY16731 Avian 03/24/09 A/chicken/Egypt/F8/2009(H5N1)

AEP37319 Avian 01/19/11 A/chicken/Egypt/M2773A/2011(H5N1)

ABW37431 Avian 12/25/06 A/chicken/Egypt/R1/2006(H5N1)

ABW37432 Avian 01/01/07 A/chicken/Egypt/R2/2007(H5N1)

ABW37436 Avian 02/26/07 A/chicken/Egypt/R6/2007(H5N1)

BAK23400 Avian 2008/11 A/chicken/Egypt/RIMD12-3/2008(H5N1)

BAK23402 Avian 2008/06 A/chicken/Egypt/RIMD5-3/2008(H5N1)

AEP84526 Avian 02/28/11 A/chicken/Egypt/S2938A/2011(H5N1)

AEP37324 Avian 05/12/11 A/chicken/Egypt/S3280B/2011(H5N1)

ACJ61696 Avian 02/22/06 A/chicken/Qalubia/1/2006(H5N1)

ACA29675 Avian 03/20/07 A/duck/Egypt/07322S-NLQP/2007(H5N1)

ACR56249 Avian 01/03/08 A/duck/Egypt/0845S-NLQP/2008(H5N1)

ADD21352 Avian 2008/04 A/duck/Egypt/08561S-NLQP/2008(H5N1)

ACU16727 Avian 02/20/08 A/duck/Egypt/0871/2008(H5N1)

ACR56240 Avian 04/06/08 A/duck/Egypt/0875-NLQP/2008(H5N1)

ACR56245 Avian 09/26/08 A/duck/Egypt/0891-NLQP/2008(H5N1)

AEA92628 Avian 2008/12 A/duck/Egypt/0897-NLQP/2008(H5N1)

ADD21369 Avian 2009/02 A/duck/Egypt/09118sm-

NLQP/2009(H5N1)

ACX31969 Avian 2009/02 A/duck/Egypt/0926-NLQP/2009(H5N1)
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ADD21372 Avian 2009/04 A/duck/Egypt/09274sm-

NLQP/2009(H5N1)

ACX31992 Avian 2009/01 A/duck/Egypt/093-NLQP/2009(H5N1)

ADD21380 Avian 2009/02 A/duck/Egypt/0930smL-

NLQP/2009(H5N1)

ADD21364 Avian 2009/04 A/duck/Egypt/09315s-NLQP/2009(H5N1)

ADD21374 Avian 2009/05 A/duck/Egypt/09332sm-

NLQP/2009(H5N1)

ACX31997 Avian 2009/04 A/duck/Egypt/09339S-NLQP/2009(H5N1)

ACX31984 Avian 2009/04 A/duck/Egypt/09349S-NLQP/2009(H5N1)

ADD21368 Avian 2009/01 A/duck/Egypt/0934sm-NLQP/2009(H5N1)

ADD21375 Avian 2009/02 A/duck/Egypt/0945smf-

NLQP/2009(H5N1)

ADD21376 Avian 2009/02 A/duck/Egypt/0967smf-

NLQP/2009(H5N1)

ADD21359 Avian 2009/04 A/duck/Egypt/0970-NLQP/2009(H5N1)

ACX31975 Avian 2009/04 A/duck/Egypt/0972-NLQP/2009(H5N1)

ACX31966 Avian 2009/01 A/duck/Egypt/099-NLQP/2009(H5N1)

ACX31989 Avian 2009/02 A/duck/Egypt/0990SM-

NLQP/2009(H5N1)

AEQ72832 Avian 09/14/10 A/duck/Egypt/10118/2010(H5N1)

AEQ72838 Avian 10/20/10 A/duck/Egypt/10131/2010(H5N1)

ADM85863 Avian 2010/02 A/duck/Egypt/101565v/2010(H5N1)

ADM85882 Avian 2010/03 A/duck/Egypt/10157s/2010(H5N1)

AEQ72818 Avian 06/10/10 A/duck/Egypt/10185SS/2010(H5N1)

ADM85851 Avian 2010/01 A/duck/Egypt/1022/2010(H5N1)

AEQ72821 Avian 06/28/10 A/duck/Egypt/10228SF/2010(H5N1)

AEQ72824 Avian 07/20/10 A/duck/Egypt/10255AG/2010(H5N1)
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AEQ72834 Avian 09/22/10 A/duck/Egypt/10290SF/2010(H5N1)

AEQ72836 Avian 10/12/10 A/duck/Egypt/10331SF/2010(H5N1)

AEQ72837 Avian 10/14/10 A/duck/Egypt/10336SF/2010(H5N1)

ADM85847 Avian 2010/01 A/duck/Egypt/103swf/2010(H5N1)

AEQ72819 Avian 06/15/10 A/duck/Egypt/10403S/2010(H5N1)

AEQ72812 Avian 02/24/10 A/duck/Egypt/1046SF/2010(H5N1)

ADM85858 Avian 2010/02 A/duck/Egypt/1053/2010(H5N1)

ADM85884 Avian 2010/02 A/duck/Egypt/1063s/2010(H5N1)

ADM85876 Avian 2010/02 A/duck/Egypt/1068s/2010(H5N1)

ADM85873 Avian 2010/02 A/duck/Egypt/1097s/2010(H5N1)

AEQ72888 Avian 03/08/11 A/duck/Egypt/11106SF/2011(H5N1)

AEQ72880 Avian 02/28/11 A/duck/Egypt/1110AF/2011(H5N1)

AEQ72866 Avian 01/23/11 A/duck/Egypt/11117S/2011(H5N1)

AEQ72852 Avian 01/11/11 A/duck/Egypt/1113SD/2011(H5N1)

AEQ72892 Avian 03/15/11 A/duck/Egypt/1116AF/2011(H5N1)

AEQ72898 Avian 04/04/11 A/duck/Egypt/11175SF/2011(H5N1)

AEQ72889 Avian 03/09/11 A/duck/Egypt/11221S/2011(H5N1)

AEQ72854 Avian 01/11/11 A/duck/Egypt/1123SF/2011(H5N1)

AEQ72891 Avian 03/15/11 A/duck/Egypt/11246S/2011(H5N1)

AEQ72848 Avian 01/06/11 A/duck/Egypt/1125S/2011(H5N1)

AEQ72849 Avian 01/09/11 A/duck/Egypt/1130AG/2011(H5N1)

AEQ72871 Avian 02/13/11 A/duck/Egypt/1174SF/2011(H5N1)

AFI44350 Avian 11/29/11 A/duck/Egypt/11762s/2011(H5N1)

AFI44348 Avian 10/22/11 A/duck/Egypt/1187/2011(H5N1)

AFI44344 Avian 07/27/11 A/duck/Egypt/1198AS/2011(H5N1)

ABO64692 Avian 2006 A/duck/Egypt/12380N3-

CLEVB/2006(H5N1)
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ABO64693 Avian 2006 A/duck/Egypt/13010N3-

CLEVB/2006(H5N1)

ACD64997 Avian 03/04/07 A/duck/Egypt/1709-3VIR08/2007(H5N1)

ABG81040 Avian 2006/06 A/duck/Egypt/2253-3/2006(H5N1)

ABY79008 Avian 2007 A/duck/Egypt/3043NAMRU3-

CLEVB56/2007(H5N1)

ABY79012 Avian 2007 A/duck/Egypt/3047NAMRU3-

CLEVB63/2007(H5N1)

ABY79833 Avian 2007 A/duck/Egypt/5169-1/2007(H5N1)

ABY79032 Avian 2007 A/duck/Egypt/9399NAMRU3-

CLEVB202/2007(H5N1)

BAJ07733 Avian 2007/01 A/duck/Egypt/D2Br210/2007(H5N1)

BAJ07734 Avian 2007/01 A/duck/Egypt/D2Li234/2007(H5N1)

BAJ07736 Avian 2007/01 A/duck/Egypt/D3Li12/2007(H5N1)

ABW37429 Avian 12/25/06 A/duck/Egypt/F5/2006(H5N1)

AEP27003 Avian 12/22/10 A/duck/Egypt/M2583A/2010(H5N1)

AEP37317 Avian 12/22/10 A/duck/Egypt/M2583D/2010(H5N1)

AEP37323 Avian 02/20/11 A/duck/Egypt/M3075B/2011(H5N1)

AEP37318 Avian 12/26/10 A/duck/Egypt/Q2645C/2010(H5N1)

ABW37435 Avian 02/20/07 A/duck/Egypt/R5/2007(H5N1)

ADD21377 Avian 2009/03 A/goose/Egypt/09102smf-

NLQP/2009(H5N1)

ADD21379 Avian 2009/02 A/goose/Egypt/0912smg-

NLQP/2009(H5N1)

ADM85844 Avian 2009/09 A/goose/Egypt/09134sml/2009(H5N1)

ADM85874 Avian 2010/02 A/goose/Egypt/1057/2010(H5N1)

AEQ72876 Avian 02/22/11 A/goose/Egypt/11162S/2011(H5N1)

AEQ72900 Avian 04/12/11 A/goose/Egypt/11350S/2011(H5N1)
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ABW37434 Avian 02/01/07 A/goose/Egypt/R4/2007(H5N1)

AEQ72906 Avian 04/03/11 A/ostrich/Egypt/11139F/2011(H5N1)

ACR56222 Avian 12/25/07 A/peacock/Egypt/07667S-

NLQP/2007(H5N1)

AEQ72904 Avian 05/08/11 A/quail/Egypt/1171SG/2011(H5N1)

ABY79015 Avian 2007 A/quail/Egypt/3050NAMRU3-

CLEVB77/2007(H5N1)

ABK34513 Avian 2005/12 A/teal/Egypt/14051-

NAMRU3/2005(H5N1)

ACA29677 Avian 05/24/07 A/turkey/Egypt/07444S-

NLQP/2007(H5N1)

ADD21370 Avian 2009/03 A/turkey/Egypt/09206sm-

NLQP/2009(H5N1)

ACX31972 Avian 2009/02 A/turkey/Egypt/0959-NLQP/2009(H5N1)

AEQ72902 Avian 04/20/11 A/turkey/Egypt/112694V/2011(H5N1)

ABG67714 Avian 2006 A/turkey/Egypt/5613NAMRU3-

T/2006(H5N1)

ADD13576 Avian 2007 A/turkey/Egypt/7/2007(H5N1)

ABY79031 Avian 2007 A/turkey/Egypt/9398NAMRU3-

CLEVB195/2007(H5N1)

ABW37425 Avian 02/25/06 A/turkey/Egypt/F1/2006(H5N1)

ABW37426 Avian 03/01/06 A/turkey/Egypt/F2/2006(H5N1)

China

ABD28180 Human 11/01/05 A/Anhui/1/2005(H5N1)

ADG59080 Human 2005 A/Anhui/1/2005(H5N1)

AEO89065 Human 12/10/06 A/Anhui/1/2006(H5N1)

AEO89082 Human 03/17/07 A/Anhui/1/2007(H5N1)
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ABD28181 Human 11/11/05 A/Anhui/2/2005(H5N1)

ADG59048 Human 2005 A/Anhui/2/2005(H5N1)

AEO89118 Human 12/04/08 A/Beijing/1/2009(H5N1)

ABR10842 Human 2006 A/China/2006(H5N1)

ABE68932 Avian 2005 A/Duck/Fujian/1734/05(H5N1)

ACJ68610 Human 12/06/05 A/Fujian/1/2005(H5N1)

ACJ68612 Human 03/04/06 A/Guangdong/01/2006(H5N1)

AEO89109 Human 02/16/08 A/Guangdong/1/2008(H5N1)

AEO89048 Human 06/03/06 A/Guangdong/2/2006(H5N1)

ABD28182 Human 11/23/05 A/Guangxi/1/2005(H5N1)

ADG59086 Human 2005 A/Guangxi/1/2005(H5N1)

AEO89100 Human 02/12/08 A/Guangxi/1/2008(H5N1)

ABI34142 Human 2006 A/Guangzhou/1/2006(H5N1)

AEO89154 Human 01/15/09 A/Guizhou/1/2009(H5N1)

AEO89030 Human 04/01/06 A/Hubei/1/2006(H5N1)

ACJ68607 Human 01/27/06 A/Hunan/1/2006(H5N1)

AEO89091 Human 01/16/08 A/Hunan/1/2008(H5N1)

AEO89136 Human 01/08/09 A/Hunan/1/2009(H5N1)

AEO89172 Human 01/23/09 A/Hunan/2/2009(H5N1)

ACB87563 Human 2007 A/Jiangsu/2/2007(H5N1)

ACJ68613 Human 12/04/05 A/Jiangxi/1/2005(H5N1)

AEO89127 Human 01/05/09 A/Shandong/1/2009(H5N1)

AEO89021 Human 03/13/06 A/Shanghai/1/2006(H5N1)

ACJ68609 Human 01/03/06 A/Sichuan/1/2006(H5N1)

AEO89039 Human 04/16/06 A/Sichuan/3/2006(H5N1)

AEO89145 Human 01/10/09 A/Xinjiang/1/2009(H5N1)

ABG23657 Human 2006 A/Zhejiang/16/2006(H5N1)

ACN39410 Avian 01/28/07 A/chicken/Anhui/1089/2007(H5N1)
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ABJ96761 Avian 2005 A/chicken/Fujian/11933/2005(H5N1)

ABJ96763 Avian 2005 A/chicken/Fujian/12239/2005(H5N1)

ABJ97047 Avian 2006 A/chicken/Guangxi/683/2006(H5N1)

ADG59055 Avian 2008 A/chicken/Guizhou/7/2008(H5N1)

ACN39419 Avian 01/29/07 A/chicken/Hubei/2856/2007(H5N1)

ACN39421 Avian 01/29/07 A/chicken/Hubei/3002/2007(H5N1)

ADG59050 Avian 2009 A/chicken/Hunan/1/2009(H5N1)

ACN39415 Avian 01/23/07 A/chicken/Hunan/1793/2007(H5N1)

ADG59088 Avian 2005 A/chicken/Hunan/21/2005(H5N1)

ACN39422 Avian 11/30/06 A/chicken/Hunan/3157/2006(H5N1)

ADG59069 Avian 2009 A/chicken/Shandong/A-1/2009(H5N1)

ABJ96712 Avian 2006 A/chicken/Shantou/1233/2006(H5N1)

ABJ96718 Avian 2006 A/chicken/Shantou/3840/2006(H5N1)

ADG59062 Avian 2008 A/chicken/Tibet/6/2008(H5N1)

ADG59083 Avian 2005 A/duck/Anhui/56/2005(H5N1)

ADD10580 Avian 12/15/08 A/duck/Eastern China/008/2008(H5N5)

ADD10569 Avian 01/15/09 A/duck/Eastern China/031/2009(H5N5)

ADD10558 Avian 12/15/08 A/duck/Eastern China/108/2008(H5N1)

ADD10547 Avian 01/15/09 A/duck/Eastern China/909/2009(H5N1)

ABJ96762 Avian 2005 A/duck/Fujian/12032/2005(H5N1)

ABJ96765 Avian 2006 A/duck/Fujian/668/2006(H5N1)

ABJ96963 Avian 2006 A/duck/Guangxi/1258/2006(H5N1)

ABJ96961 Avian 2006 A/duck/Guangxi/1436/2006(H5N1)

ABJ96675 Avian 2006 A/duck/Guangxi/150/2006(H5N1)

ABJ96956 Avian 2006 A/duck/Guangxi/1830/2006(H5N1)

ABJ96955 Avian 2006 A/duck/Guangxi/2143/2006(H5N1)

ABJ96679 Avian 2006 A/duck/Guangxi/392/2006(H5N1)

ABJ96668 Avian 2005 A/duck/Guangxi/5075/2005(H5N1)
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ABJ96672 Avian 2005 A/duck/Guangxi/5457/2005(H5N1)

ABJ96682 Avian 2006 A/duck/Guangxi/744/2006(H5N1)

ABJ96706 Avian 2006 A/duck/Guiyang/1260/2006(H5N1)

ACN39412 Avian 12/30/06 A/duck/Henan/1647/2006(H5N1)

ACN39414 Avian 12/30/06 A/duck/Henan/1652/2006(H5N1)

ACN39420 Avian 01/29/07 A/duck/Hubei/2911/2007(H5N1)

ADG59047 Avian 2005 A/duck/Hubei/49/2005(H5N1)

ACF16400 Avian 2006 A/duck/Hubei/Hangmei01/2006(H5N1)

ACN39416 Avian 01/23/07 A/duck/Hunan/1930/2007(H5N1)

ACN39417 Avian 01/23/07 A/duck/Hunan/1964/2007(H5N1)

ACN39418 Avian 01/23/07 A/duck/Hunan/1994/2007(H5N1)

ACN39423 Avian 11/30/06 A/duck/Hunan/3315/2006(H5N1)

ACN39424 Avian 11/30/06 A/duck/Hunan/3340/2006(H5N1)

ACN39409 Avian 12/15/06 A/duck/Hunan/689/2006(H5N1)

ADG59076 Avian 2005 A/duck/Jiangxi/80/2005(H5N1)

ADC97015 Avian 12/15/08 A/duck/Shandong/009/2008(H5N1)

ABJ96709 Avian 2005 A/duck/Shantou/13323/2005(H5N1)

ACH85377 Avian 2006 A/duck/Yunnan/4873/2006(H5N1)

ACH85399 Avian 2006 A/duck/Yunnan/6490/2006(H5N1)

ABJ96662 Avian 2005 A/goose/Guangxi/4289/2005(H5N1)

ABJ96673 Avian 2006 A/goose/Guangxi/52/2006(H5N1)

ABJ96671 Avian 2005 A/goose/Guangxi/5414/2005(H5N1)

ADG59046 Avian 2005 A/goose/Hubei/65/2005(H5N1)

ABJ96716 Avian 2006 A/goose/Shantou/3265/2006(H5N1)

ABJ96717 Avian 2006 A/goose/Shantou/3295/2006(H5N1)

ABJ96748 Avian 2006 A/goose/Yunnan/1143/2006(H5N1)

ACH85443 Avian 2006 A/goose/Yunnan/4985/2006(H5N1)

ABJ96742 Avian 2005 A/goose/Yunnan/6169/2005(H5N1)
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ACH85509 Avian 2006 A/goose/Yunnan/6193/2006(H5N1)

ACZ54018 Avian 01/10/07 A/lesser

kestrel/Heilongjiang/194/2007(H5N1)

ABW21647 Avian 2005 A/mallard/Huadong/S/2005(H5N1)

ABW21657 Avian 2005 A/mallard/Huadong/lk/2005(H5N1)

ADG59077 Avian 2006 A/shrike/Tibet/13/2006(H5N1)

ACR48937 Avian 2008 A/tree sparrow/Jiangsu/1/2008(H5N1)

ABX83938 Avian 2005 A/wild duck/Hunan/021/2005(H5N1)

ABX83951 Avian 2005 A/wild duck/Hunan/211/2005(H5N1)

Indonesia

ABU99134 Avian 2006 A/Chicken/Indonesia/Siak1631-

2/2006(H5N1)

ABU99093 Avian 05/01/06 A/Chicken/West

Java/SMI-ENDRI2/2006(H5N1)

ABU99086 Avian 07/01/06 A/Chicken/West

Java/TASIK2/2006(H5N1)

ABU99083 Avian 08/01/06 A/Chicken/West

Java/TASIKSOL/2006(H5N1)

ABW06336 Human 11/24/05 A/Indonesia/195H/2005(H5N1)

ABW06315 Human 2005 A/Indonesia/245H/2005(H5N1)

ABW06287 Human 02/03/06 A/Indonesia/298H/2006(H5N1)

ABW06244 Human 02/21/06 A/Indonesia/341H/2006(H5N1)

ABP51969 Human 07/08/05 A/Indonesia/5/2005(H5N1)

ABW06169 Human 05/10/06 A/Indonesia/542H/2006(H5N1)

ABW06222 Human 05/29/06 A/Indonesia/567H/2006(H5N1)

ABW06117 Human 06/13/06 A/Indonesia/583H/2006(H5N1)

ABW06139 Human 07/06/06 A/Indonesia/604H/2006(H5N1)
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ABW06367 Human 2005 A/Indonesia/7/2005(H5N1)

ABM90434 Human 01/05/07 A/Indonesia/CDC1031/2007(H5N1)

ABM90478 Human 01/06/07 A/Indonesia/CDC1032/2007(H5N1)

ABM90489 Human 01/07/07 A/Indonesia/CDC1032N/2007(H5N1)

ABM90511 Human 01/11/07 A/Indonesia/CDC1046/2007(H5N1)

ABM90522 Human 01/11/07 A/Indonesia/CDC1046T/2007(H5N1)

ABI36040 Human 11/08/05 A/Indonesia/CDC184/2005(H5N1)

ABI36041 Human 11/12/05 A/Indonesia/CDC194P/2005(H5N1)

ABI36042 Human 12/13/05 A/Indonesia/CDC287E/2005(H5N1)

ABI36044 Human 12/15/05 A/Indonesia/CDC292N/2005(H5N1)

ABI36050 Human 01/14/06 A/Indonesia/CDC329/2006(H5N1)

ABI36051 Human 01/30/06 A/Indonesia/CDC357/2006(H5N1)

ABI36057 Human 02/20/06 A/Indonesia/CDC390/2006(H5N1)

ABI36198 Human 03/23/06 A/Indonesia/CDC523/2006(H5N1)

ABI36295 Human 04/26/06 A/Indonesia/CDC582/2006(H5N1)

ABI36318 Human 05/18/06 A/Indonesia/CDC623/2006(H5N1)

ABI36384 Human 05/23/06 A/Indonesia/CDC634P/2006(H5N1)

ABI36469 Human 05/29/06 A/Indonesia/CDC644T/2006(H5N1)

ABI36450 Human 07/06/06 A/Indonesia/CDC699/2006(H5N1)

ABI49396 Human 08/05/06 A/Indonesia/CDC739/2006(H5N1)

ABI49407 Human 08/07/06 A/Indonesia/CDC742/2006(H5N1)

ABI49415 Human 2006 A/Indonesia/CDC759/2006(H5N1)

ABL31755 Human 09/24/06 A/Indonesia/CDC836/2006(H5N1)

ABL31780 Human 10/14/06 A/Indonesia/CDC887/2006(H5N1)

ABL07008 Human 11/10/06 A/Indonesia/CDC938/2006(H5N1)

ABW74701 Human 2006 A/Indonesia/TLL001/2006(H5N1)

ABW74702 Human 2006 A/Indonesia/TLL002/2006(H5N1)

ABW74703 Human 2006 A/Indonesia/TLL003/2006(H5N1)
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ABW74704 Human 2006 A/Indonesia/TLL004/2006(H5N1)

ABW74707 Human 2006 A/Indonesia/TLL007/2006(H5N1)

ABW74708 Human 2006 A/Indonesia/TLL008/2006(H5N1)

ABW74709 Human 2006 A/Indonesia/TLL009/2006(H5N1)

ABW74714 Human 2006 A/Indonesia/TLL014/2006(H5N1)

ABU99081 Avian 09/01/06 A/Muscovy

Duck/Jakarta/HABWIN/2006(H5N1)

ADB07927 Avian 2007/01 A/Muscovy duck/West

Java/Bks3/2007(H5N1)

ABU99084 Avian 08/01/06 A/Quail/Jakarta/JU1/2006(H5N1)

AEH42723 Avian 05/02/07 A/chicken/Badung/BBVD-175/2007(H5N1)

AEH42724 Avian 05/15/07 A/chicken/Badung/BBVD-205/2007(H5N1)

AEH42734 Avian 09/03/07 A/chicken/Badung/BBVD-532/2007(H5N1)

AEH42711 Avian 07/26/07 A/chicken/Bangli/BBVD-

387ab/2007(H5N1)

AEH42712 Avian 09/13/07 A/chicken/Bangli/BBVD-

555ab/2007(H5N1)

AEH42714 Avian 09/18/07 A/chicken/Bangli/BBVD-563/2007(H5N1)

AEH59134 Avian 07/06/07 A/chicken/Bantul/BBVW-446-

24454/2007(H5N1)

AEH59146 Avian 07/10/07 A/chicken/Bantul/BBVW-482-

22234/2007(H5N1)

AEH42686 Avian 03/27/07 A/chicken/Denpasar/BBVD-

145/2007(H5N1)

AEH42688 Avian 06/14/07 A/chicken/Denpasar/BBVD-

291/2007(H5N1)

AEH42690 Avian 08/15/07 A/chicken/Denpasar/BBVD-

430/2007(H5N1)
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AEH42694 Avian 08/27/07 A/chicken/Denpasar/BBVD-

494/2007(H5N1)

BAL61222 Avian 2010/05 A/chicken/EastJava/UT551/2010(H5N1)

BAL61218 Avian 2010/04 A/chicken/EastKalimantan/UT498/2010(H5N1)

AEH42700 Avian 06/04/07 A/chicken/Flores

Timur/BBVD-256/2007(H5N1)

AEH42697 Avian 08/21/07 A/chicken/Gianyar/BBVD-

458/2007(H5N1)

BAK42591 Avian 2010/06 A/chicken/Indonesia/D10015/2010(H5N1)

AEH42721 Avian 08/21/07 A/chicken/Klungkung/BBVD-

455/2007(H5N1)

AEH42722 Avian 08/23/07 A/chicken/Klungkung/BBVD-

484/2007(H5N1)

AEH59202 Avian 11/04/07 A/chicken/Kulon

Progo/BBVW-822-545/2007(H5N1)

AEH59204 Avian 11/26/07 A/chicken/Kulon

Progo/BBVW-922-511/2007(H5N1)

AEH59165 Avian 09/14/07 A/chicken/Magelang/BBVW-662-

762/2007(H5N1)

AEH59166 Avian 09/14/07 A/chicken/Magelang/BBVW-662-

762A/2007(H5N1)

AEH59167 Avian 09/14/07 A/chicken/Magelang/BBVW-662-

763/2007(H5N1)

AEH59175 Avian 08/25/07 A/chicken/Magelang/BBVW-667-

944/2007(H5N1)

ADB07926 Avian 03/07/07 A/chicken/Pessel/BPPVRII/2007(H5N1)

AEH59149 Avian 07/24/07 A/chicken/Sleman/BBVW-493-

214/2007(H5N1)
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AEH59226 Avian 01/26/08 A/chicken/Sleman/BBVW-82-

65/2008(H5N1)

AEH42705 Avian 07/10/07 A/chicken/Tabanan/BBVD-

339/2007(H5N1)

AEH42706 Avian 08/21/07 A/chicken/Tabanan/BBVD-

461/2007(H5N1)

ADB07921 Avian 01/18/08 A/chicken/West

Java/Smi-Acul/2008(H5N1)

ADB07930 Avian 2005/02 A/chicken/West Java/Smi-Hay/2005(H5N1)

AEH59119 Avian 05/05/07 A/duck/Bantul/BBVW-224-

24466/2007(H5N1)

AEH59120 Avian 06/19/07 A/duck/Bantul/BBVW-358-

24381/2007(H5N1)

AEH59181 Avian 09/21/07 A/duck/Bantul/BBVW-678-

2D403/2007(H5N1)

AEH59206 Avian 12/02/07 A/duck/Bantul/BBVW-949-

2D362/2007(H5N1)

AEH59157 Avian 08/19/07 A/duck/Kulon

Progo/BBVW-618-11001/2007(H5N1)

AEH59213 Avian 01/15/08 A/duck/Magelang/BBVW-24-

44380/2008(H5N1)

AEH59127 Avian 05/28/07 A/duck/Magelang/BBVW-604-

44401/2007(H5N1)

AEH59122 Avian 07/24/07 A/duck/Sleman/BBVW-379-

34423/2007(H5N1)

AEH59125 Avian 05/15/07 A/duck/Sleman/BBVW-598-

32237/2007(H5N1)
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ADB07929 Avian 2006/09 A/muscovy

duck/Jakarta/Sum106/2006(H5N1)

AEH42693 Avian 08/23/07 A/peaceful

dove/Denpasar/BBVD-480/2007(H5N1)
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Appendix B

Jelly Roll Capsid Proteins in Dataset

Table B.1: Capsid protein sequences in dataset from fam-

ilies known to possess jelly-roll fold

RefSeq GI Protein Name Virus Viral Family

9626565 capsid protein IX Human adenovirus F Adenoviridae

224531380 L1 gene product Human adenovirus A Adenoviridae

9626630 L1 gene product Human adenovirus A Adenoviridae

9626631 L1 gene product Human adenovirus A Adenoviridae

9626166 capsid protein IX Human adenovirus C Adenoviridae

9628847 L1 52K Fowl adenovirus A Adenoviridae

190340978 capsid protein IX Human adenovirus D Adenoviridae

197944770 capsid protein IX Human adenovirus B Adenoviridae

51527268 capsid protein IX Human adenovirus E Adenoviridae

388570686 capsid protein III Goose adenovirus 4 Adenoviridae

197944730 capsid protein IX Human adenovirus B Adenoviridae

115298543 50.9 kDa Major

capsid protein

Spodoptera

frugiperda ascovirus

1a

Ascoviridae

116326831 major capsid protein Trichoplusia ni

ascovirus 2c

Ascoviridae
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116326851 major capsid protein Trichoplusia ni

ascovirus 2c

Ascoviridae

134287212 major capsid protein Heliothis virescens

ascovirus 3e

Ascoviridae

400355027 coat protein Amazon lily mild

mottle virus

Bromoviridae

9626930 coat protein Alfalfa mosaic virus Bromoviridae

19744916 coat protein Apple mosaic virus Bromoviridae

20087043 coat protein Cowpea chlorotic

mottle virus

Bromoviridae

20087061 coat protein Citrus leaf rugose

virus

Bromoviridae

20143448 coat protein Elm mottle virus Bromoviridae

20177490 coat protein Pelargonium zonate

spot virus

Bromoviridae

20178605 capsid protein Olive latent virus 2 Bromoviridae

20564220 coat protein Tulare apple mosaic

virus

Bromoviridae

20564159 capsid protein Tomato aspermy

virus

Bromoviridae

21426911 coat protein Broad bean mottle

virus

Bromoviridae

24817636 coat protein Prunus necrotic

ringspot virus

Bromoviridae

46393303 coat protein Parietaria mottle

virus

Bromoviridae

50428572 coat protein Humulus japonicus

latent virus

Bromoviridae
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22550383 coat protein Spring beauty latent

virus

Bromoviridae

56692635 coat protein Fragaria chiloensis

latent virus

Bromoviridae

66090971 coat protein Cassia yellow blotch

virus

Bromoviridae

9626474 capsid protein Cucumber mosaic

virus

Bromoviridae

9632352 coat protein Peanut stunt virus Bromoviridae

20564171 coat protein Tobacco streak virus Bromoviridae

98960848 coat protein Prune dwarf virus Bromoviridae

119943075 coat protein Strawberry necrotic

shock virus

Bromoviridae

148717841 coat protein Citrus variegation

virus

Bromoviridae

212525351 coat protein Blackberry chlorotic

ringspot virus

Bromoviridae

224808904 coat protein Gayfeather mild

mottle virus

Bromoviridae

261041623 coat protein Melandrium yellow

fleck virus

Bromoviridae

28392818 capsid protein Vesicular exanthema

of swine virus

Caliciviridae

21699778 VP2 minor capsid

protein

Calicivirus strain NB Caliciviridae

28392841 capsid protein Walrus calicivirus Caliciviridae

28392850 capsid protein Canine calicivirus Caliciviridae

28268489 capsid protein Feline calicivirus Caliciviridae
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50284530 capsid protein Sapovirus Mc10 Caliciviridae

60677689 VP2 minor capsid

protein

Calicivirus isolate

TCG

Caliciviridae

9790294 minor capsid protein Rabbit hemorrhagic

disease virus

Caliciviridae

106060736 58 kd capsid protein Norwalk virus Caliciviridae

113478396 capsid protein VP1 Murine norovirus 1 Caliciviridae

194268062 capsid Steller sea lion

vesivirus

Caliciviridae

9632869 major capsid protein

P2

Pseudoalteromonas

phage PM2

Corticoviridae

10314011 capsid protein Acute bee paralysis

virus

Dicistroviridae

9629652 capsid polyprotein partial Drosophila C

virus

395406757 coat protein Wheat yellow dwarf

virus

Geminiviridae

311788803 coat protein Ageratum leaf curl

Cameroon virus

Geminiviridae

401817561 coat protein French bean severe

leaf curl virus

Geminiviridae

401829594 coat protein Soybean chlorotic

spot virus

Geminiviridae

9632378 coat protein Potato yellow mosaic

Panama virus

Geminiviridae

9630668 coat protein Bean dwarf mosaic

virus

Geminiviridae

9632990 AV1 coat protein Pepper leaf curl virus Geminiviridae
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9632991 AV2 precoat protein Pepper leaf curl virus Geminiviridae

9626668 coat protein Chloris striate mosaic

virus

Geminiviridae

9626689 coat protein Digitaria streak virus Geminiviridae

9626987 coat protein Tomato golden

mosaic virus

Geminiviridae

9627992 coat protein Panicum streak virus Geminiviridae

9630701 coat protein Tomato mottle virus Geminiviridae

9629637 coat protein Tomato mottle Taino

virus

Geminiviridae

9632369 coat protein Sida golden mosaic

virus

Geminiviridae

9845215 coat protein Cotton leaf curl

Gezira virus

Geminiviridae

10257476 capsid protein Horseradish curly top

virus

Geminiviridae

10518471 capsid protein Tomato rugose

mosaic virus

Geminiviridae

14647160 coat protein Ageratum yellow vein

Sri Lanka virus

Geminiviridae

14717138 coat protein Cucurbit leaf crumple

virus

Geminiviridae

16507264 coat protein Cotton leaf curl

Rajasthan virus

Geminiviridae

18249858 V1 coat protein Soybean crinkle leaf

virus

Geminiviridae

18450239 coat protein Miscanthus streak

virus

Geminiviridae



105

19073914 coat protein AV1 Bhendi yellow vein

mosaic virus

Geminiviridae

19919897 coat protein Bean calico mosaic

virus

Geminiviridae

20143471 coat protein Eupatorium yellow

vein virus

Geminiviridae

20153402 coat protein Honeysuckle yellow

vein mosaic virus

Geminiviridae

20178611 capsid protein Tomato chlorotic

mottle virus

Geminiviridae

20279532 coat protein Watermelon chlorotic

stunt virus

Geminiviridae

20428541 coat protein Sugarcane streak

virus

Geminiviridae

20522147 coat protein South African cassava

mosaic virus

Geminiviridae

20564137 coat protein Tobacco yellow dwarf

virus

Geminiviridae

108518228 coat protein Tomato golden mottle

virus

Geminiviridae

20806030 coat protein AV1 Dicliptera yellow

mottle virus

Geminiviridae

20806025 coat protein Squash yellow mild

mottle virus

Geminiviridae

20806016 coat protein Cabbage leaf curl

virus

Geminiviridae

20806521 coat protein Tomato mosaic

Havana virus

Geminiviridae
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21165976 V1 (coat protein) Tomato leaf curl

Bangalore virus

Geminiviridae

21218465 coat protein Tomato leaf curl virus Geminiviridae

21218472 coat protein Tomato leaf curl

Karnataka virus

Geminiviridae

21218479 coat protein Tomato leaf curl

Taiwan virus

Geminiviridae

21493008 coat protein Bean golden mosaic

virus

Geminiviridae

9626467 coat protein Bean golden yellow

mosaic virus

Geminiviridae

21911443 coat protein Hollyhock leaf

crumple virus

Geminiviridae

22128598 coat protein Pepper golden mosaic

virus

Geminiviridae

22726210 Coat protein Papaya leaf curl virus Geminiviridae

22788706 coat protein Tomato leaf curl

Vietnam virus

Geminiviridae

23096166 coat protein Pepper leaf curl

Bangladesh virus

Geminiviridae

28209381 coat protein Tomato leaf curl

Gujarat virus

Geminiviridae

28380573 coat protein V2 Tomato yellow leaf

curl Malaga virus

Geminiviridae

28872847 coat protein Cotton leaf curl

Alabad virus

Geminiviridae

28872854 coat protein Cotton leaf curl

Kokhran virus

Geminiviridae
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28913322 coat protein Cotton leaf curl

Multan virus

Geminiviridae

28976186 coat protein Tomato leaf curl Laos

virus

Geminiviridae

28976179 coat protein Tomato leaf curl

Bangladesh virus

Geminiviridae

29135252 coat protein Ageratum yellow vein

Taiwan virus

Geminiviridae

29135245 coat protein Chilli leaf curl virus Geminiviridae

29171764 coat protein Malvastrum yellow

vein virus

Geminiviridae

29243868 coat protein Sida golden mosaic

Florida virus

Geminiviridae

29243847 coat protein CP Sida mottle virus Geminiviridae

29243861 coat protein Potato yellow mosaic

Trinidad virus

Geminiviridae

29243890 coat protein Sweet potato leaf curl

Georgia virus

Geminiviridae

166162031 capsid protein Rhynchosia golden

mosaic virus

Geminiviridae

29294568 coat protein Tomato leaf curl Sri

Lanka virus

Geminiviridae

29294561 coat protein Tomato leaf curl

Malaysia virus

Geminiviridae

29294599 coat protein Tobacco leaf curl

Japan virus

Geminiviridae

29337257 coat protein Sida golden mosaic

Costa Rica virus

Geminiviridae
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29337262 coat protein Sida golden mosaic

Honduras virus

Geminiviridae

29337271 coat protein Sida yellow vein virus Geminiviridae

29501757 coat protein Okra yellow vein

mosaic virus

Geminiviridae

29502196 coat protein V1 Tomato curly stunt

virus

Geminiviridae

30146804 capsid protein Beet mild curly top

virus

Geminiviridae

31442399 coat protein Luffa yellow mosaic

virus

Geminiviridae

32493266 coat protein Tomato leaf curl Java

virus

Geminiviridae

32493273 coat protein Tomato leaf curl

Philippines virus

Geminiviridae

30146793 coat protein Sugarcane streak

Reunion virus

Geminiviridae

41057578 coat protein Sida micrantha

mosaic virus

Geminiviridae

41057588 coat protein Dolichos yellow

mosaic virus

Geminiviridae

41057726 coat protein Pepper yellow vein

Mali virus

Geminiviridae

41057733 coat protein Tomato leaf curl Mali

virus

Geminiviridae

45445709 coat protein Tomato yellow leaf

curl Kanchanaburi

virus

Geminiviridae
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9629911 coat protein Sugarcane streak

Egypt virus

Geminiviridae

9626216 coat protein Beet curly top virus Geminiviridae

46359748 coat protein Tomato chino La Paz

virus

Geminiviridae

46359762 coat protein Squash leaf curl

Philippines virus

Geminiviridae

46395058 coat protein Tomato leaf curl

Sudan virus

Geminiviridae

46402154 capsid protein Spinach curly top

virus

Geminiviridae

22128603 coat protein Macroptilium mosaic

Puerto Rico virus

Geminiviridae

22128612 coat protein Macroptilium yellow

mosaic Florida virus

Geminiviridae

29243883 coat protein Tobacco leaf curl

Kochi virus

Geminiviridae

29251561 AV1 coat protein Squash mild leaf curl

virus

Geminiviridae

22128022 coat protein Stachytarpheta leaf

curl virus

Geminiviridae

29243838 capsid protein Tomato severe leaf

curl virus

Geminiviridae

20564206 capsid protein Tomato yellow leaf

curl Sardinia virus

Geminiviridae

22128015 coat protein Ageratum yellow vein

China virus

Geminiviridae
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29337248 coat protein East African cassava

mosaic Zanzibar virus

Geminiviridae

28867232 coat protein AV1 Cotton leaf crumple

virus

Geminiviridae

9625667 26.8 kD virion capsid

protein

Maize streak virus Geminiviridae

20564195 coat protein Tomato pseudo-curly

top virus

Geminiviridae

187476505 coat protein Macroptilium yellow

mosaic virus

Geminiviridae

19881402 coat protein Bean yellow dwarf

virus

Geminiviridae

20806050 coat protein Sri Lankan cassava

mosaic virus

Geminiviridae

9632882 coat protein Tomato yellow leaf

curl Thailand virus

Geminiviridae

29126597 coat protein East African cassava

mosaic Cameroon

virus

Geminiviridae

21426902 coat protein Tomato yellow leaf

curl virus

Geminiviridae

19352428 coat protein Ageratum enation

virus

Geminiviridae

29028718 coat protein Chayote yellow

mosaic virus

Geminiviridae

23395821 coat protein Croton yellow vein

mosaic virus

Geminiviridae
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60683948 coat protein Tomato leaf curl

Mayotte virus

Geminiviridae

45390218 coat protein Honeysuckle yellow

vein virus

Geminiviridae

57790518 coat protein Malvastrum yellow

vein Yunnan virus

Geminiviridae

20340274 coat protein Tobacco curly shoot

virus

Geminiviridae

24432117 coat protein Tobacco leaf curl

Yunnan virus

Geminiviridae

28916653 coat protein Mungbean yellow

mosaic India virus

Geminiviridae

21594414 coat protein Tomato yellow leaf

curl China virus

Geminiviridae

29294540 coat protein AV1 Sweet potato leaf curl

virus

Geminiviridae

18071200 Coat protein Wheat dwarf virus Geminiviridae

29243854 coat protein CP Sida yellow mosaic

virus

Geminiviridae

71849680 coat protein Cotton leaf curl

Bangalore virus

Geminiviridae

83571709 coat protein Sida leaf curl virus Geminiviridae

386361877 coat protein Wheat dwarf India

virus

Geminiviridae

85667887 coat protein Tomato leaf curl

Joydebpur virus

Geminiviridae

85667900 coat protein Tomato yellow spot

virus

Geminiviridae
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85718608 coat protein Vernonia yellow vein

virus

Geminiviridae

387600897 capsid protein Maize streak Reunion

virus

Geminiviridae

387600873 coat protein Tomato yellow leaf

distortion virus

Geminiviridae

92918809 coat protein Merremia mosaic

virus

Geminiviridae

108519231 coat protein Sida mosaic Sinaloa

virus

Geminiviridae

393186609 capsid protein French bean leaf curl

virus-Kanpur

Geminiviridae

110084002 coat protein Siegesbeckia yellow

vein virus

Geminiviridae

112180296 coat protein Pepper yellow leaf

curl Indonesia virus

Geminiviridae

113200772 coat protein Euphorbia mosaic

virus

Geminiviridae

113972273 coat protein Malvastrum leaf curl

Guangdong virus

Geminiviridae

113972280 coat protein Siegesbeckia yellow

vein Guangxi virus

Geminiviridae

114067527 coat protein Tomato leaf curl

Guangxi virus

Geminiviridae

115350046 capsid protein Tomato yellow leaf

curl Guangdong virus

Geminiviridae

115353272 capsid protein Tomato leaf curl

Guangdong virus

Geminiviridae



113

115353279 coat protein Okra yellow crinkle

virus

Geminiviridae

116294318 coat protein Desmodium leaf

distortion virus

Geminiviridae

116294326 coat protein Corchorus yellow spot

virus

Geminiviridae

116536744 coat protein Tomato leaf curl

Pune virus

Geminiviridae

117530757 coat protein Malvastrum yellow

mosaic virus

Geminiviridae

121614280 coat protein Sida yellow mosaic

Yucatan virus

Geminiviridae

122809022 coat protein Crassocephalum

yellow vein virus -

Jinghong

Geminiviridae

126030107 coat protein Tomato leaf curl

Arusha virus

Geminiviridae

126031756 coat protein Tomato leaf curl

Seychelles virus

Geminiviridae

126640092 coat protein Mesta yellow vein

mosaic virus

Geminiviridae

146411801 coat protein Clerodendron yellow

mosaic virus

Geminiviridae

148659001 coat protein Pepper curly top

virus

Geminiviridae

149980612 coat protein Tomato leaf curl

Sinaloa virus

Geminiviridae
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149980618 coat protein Tomato severe rugose

virus

Geminiviridae

164564314 coat protein Radish leaf curl virus Geminiviridae

166153477 capsid protein Chickpea chlorotic

dwarf Sudan virus

Geminiviridae

167046007 coat protein Tomato leaf curl

Ghana virus

Geminiviridae

168164405 coat protein Eragrostis streak

virus

Geminiviridae

169303567 coat protein Beet curly top Iran

virus

Geminiviridae

169822863 coat protein Tomato leaf curl

Cebu virus

Geminiviridae

169822877 coat protein Tomato leaf curl

Cotabato virus

Geminiviridae

169822870 coat protein Tomato leaf curl

Mindanao virus

Geminiviridae

189303449 coat protein Urochloa streak virus Geminiviridae

189311145 Coat protein Barley dwarf virus Geminiviridae

189311150 Coat protein Oat dwarf virus Geminiviridae

189475231 coat protein Mesta yellow vein

mosaic Bahraich virus

Geminiviridae

190149264 coat protein Pumpkin yellow

mosaic Malaysia virus

Geminiviridae

190336466 coat protein Wissadula golden

mosaic virus

Geminiviridae

190336475 coat protein Macroptilium golden

mosaic virus

Geminiviridae
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190336514 capsid protein Allamanda leaf curl

virus

Geminiviridae

190336524 coat protein Tomato leaf curl

Palampur virus

Geminiviridae

190336531 coat protein Blainvillea yellow

spot virus

Geminiviridae

190336540 coat protein Tomato common

mosaic virus

Geminiviridae

190336549 coat protein Tomato mild mosaic

virus

Geminiviridae

194322733 coat protein Chickpea chlorotic

dwarf virus

Geminiviridae

195535991 coat protein Tomato leaf curl

Kumasi virus

Geminiviridae

196049397 coat protein Tomato leaf curl

Kerala virus

Geminiviridae

197322511 coat protein Okra mottle virus Geminiviridae

197914889 capsid protein Pepper yellow dwarf

virus - New Mexico

Geminiviridae

203449527 coat protein Jatropha leaf curl

virus

Geminiviridae

219552922 coat protein Gossypium darwinii

symptomless virus

Geminiviridae

222822600 coat protein Bhendi yellow vein

Bhubhaneswar virus

Geminiviridae

224581830 coat protein Pedilanthus leaf curl

virus

Geminiviridae
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224591440 coat protein Cotton leaf curl

Burewala virus

Geminiviridae

225847630 coat protein Rhynchosia golden

mosaic Yucatan virus

Geminiviridae

226202301 coat protein Tomato leaf curl

Patna virus

Geminiviridae

229605060 coat protein Eragrostis curvula

streak virus

Geminiviridae

239740601 coat protein Passionfruit severe

leaf distortion virus

Geminiviridae

254729453 coat protein Okra leaf curl virus Geminiviridae

255983866 coat protein Tomato leaf curl

Hainan virus

Geminiviridae

262396921 coat protein Saccharum streak

virus

Geminiviridae

281372527 coat protein Tomato leaf curl

Cameroon virus

Geminiviridae

281372529 coat protein Tomato leaf curl

Cameroon virus

Geminiviridae

296006067 coat protein Okra yellow mosaic

Mexico virus

Geminiviridae

296006054 coat protein Sida golden mottle

virus

Geminiviridae

296005649 coat protein Abutilon Brazil virus Geminiviridae

296011098 coat protein Soybean mild mottle

virus

Geminiviridae

296040241 coat protein Soybean chlorotic

blotch virus

Geminiviridae
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306478724 coat protein Turnip curly top virus Geminiviridae

304360753 coat protein Sida golden mosaic

Florida

virus-Malvastrum

Geminiviridae

308125299 coat protein Digitaria didactyla

striate mosaic virus

Geminiviridae

308814739 coat protein Tobacco leaf curl

Pusa virus

Geminiviridae

310288307 capsid protein Spinach severe curly

top virus

Geminiviridae

311788794 coat protein Malvastrum yellow

vein Changa Manga

virus

Geminiviridae

313493546 coat protein Okra leaf curl

Cameroon virus

Geminiviridae

315570368 coat protein Bromus catharticus

striate mosaic virus

Geminiviridae

317453631 coat protein Rhynchosia yellow

mosaic India virus

Geminiviridae

321961794 coat protein Sida mosaic Bolivia

virus 2

Geminiviridae

321961749 coat protein Sida mosaic Bolivia

virus 1

Geminiviridae

321961703 coat protein Abutilon mosaic

Bolivia virus

Geminiviridae

322840371 coat protein Spinach curly top

Arizona virus

Geminiviridae
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323361059 capsid protein Tomato mottle leaf

curl Zulia virus

Geminiviridae

327409463 coat protein Sweet potato leaf curl

South Carolina virus

Geminiviridae

330370662 coat protein Cleome golden mosaic

virus

Geminiviridae

332290614 coat protein Bean yellow mosaic

Mexico virus

Geminiviridae

332290619 coat protein Rhynchosai mild

mosaic virus

Geminiviridae

332290627 coat protein Merremia mosaic

Puerto Rico virus

Geminiviridae

333595895 coat protein Eragrostis minor

streak virus

Geminiviridae

334847636 coat protein Tobacco yellow

crinkle virus

Geminiviridae

372204031 coat protein Tomato dwarf leaf

virus

Geminiviridae

403516100 coat protein Paspalum striate

mosaic virus

Geminiviridae

404184257 capsid protein Paspalum dilatatum

striate mosaic virus

Geminiviridae

404184274 capsid protein Sporobolus striate

mosaic virus 1

Geminiviridae

404184291 capsid protein Sporobolus striate

mosaic virus 2

Geminiviridae

404184316 capsid protein Digitaria ciliaris

striate mosaic virus

Geminiviridae
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9695414 major capsid protein Lymphocystis disease

virus 1

Iridoviridae

45686022 major capsid protein Ambystoma tigrinum

virus

Iridoviridae

48843722 major capsid protein Lymphocystis disease

virus - isolate China

Iridoviridae

56692709 major capsid protein Singapore grouper

iridovirus

Iridoviridae

49237388 major capsid protein Frog virus 3 Iridoviridae

388260085 major capsid protein European catfish

virus

Iridoviridae

9634965 coat protein P3 Cereal yellow dwarf

virus - RPS

Luteoviridae

9634104 coat protein P3 Barley yellow dwarf

virus-PAS

Luteoviridae

15150437 coat protein Soybean dwarf virus Luteoviridae

18314287 coat protein P3 Bean leafroll virus Luteoviridae

20178352 coat protein Pea enation mosaic

virus-1

Luteoviridae

20219028 viral coat protein Barley yellow dwarf

virus-MAV

Luteoviridae

30146801 coat protein P3 Cereal yellow dwarf

virus - RPV

Luteoviridae

30248021 coat protein Beet western yellows

virus

Luteoviridae

29366748 coat protein P3 Barley yellow dwarf

virus-GAV

Luteoviridae

51980899 coat protein Carrot red leaf virus Luteoviridae
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9629164 coat protein Potato leafroll virus Luteoviridae

20428575 coat protein Turnip yellows virus Luteoviridae

20260790 coat protein Cucurbit aphid-borne

yellows virus

Luteoviridae

19881392 coat protein Beet mild yellowing

virus

Luteoviridae

30146775 coat protein P3 Barley yellow dwarf

virus-PAV

Luteoviridae

9632982 capsid protein Sugarcane yellow leaf

virus

Luteoviridae

110645396 coat protein Chickpea chlorotic

stunt virus

Luteoviridae

189418881 coat protein Melon aphid-borne

yellows virus

Luteoviridae

189418888 coat protein P3 Rose spring

dwarf-associated virus

Luteoviridae

253729533 coat protein

readthrough

Wheat yellow dwarf

virus-GPV

Luteoviridae

253729534 coat protein Wheat yellow dwarf

virus-GPV

Luteoviridae

308125289 P3 coat protein Cotton leafroll dwarf

virus

Luteoviridae

348020289 coat protein Brassica yellows virus Luteoviridae

17402852 capsid protein

VP2-related protein

Chlamydia phage

phiCPG1

Microviridae

17402853 capsid protein VP3 Chlamydia phage

phiCPG1

Microviridae
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12085136 major capsid protein Bdellovibrio phage

phiMH2K

Microviridae

12085140 minor capsid protein Bdellovibrio phage

phiMH2K

Microviridae

12085142 minor capsid protein Bdellovibrio phage

phiMH2K

Microviridae

19387569 capsid protein Spiroplasma phage 4 Microviridae

9626346 major coat protein Enterobacteria phage

G4 sensu lato

Microviridae

9625357 capsid morphogenesis

protein

Enterobacteria phage

alpha3

Microviridae

9625360 capsid morphogenesis

protein

Enterobacteria phage

alpha3

Microviridae

9625363 major coat protein Enterobacteria phage

alpha3

Microviridae

393707864 viral coat protein

VP1

Microvirus CA82 Microviridae

9791177 minor capsid protein Chlamydia phage

CPAR39

Microviridae

9791178 major capsid protein Chlamydia phage

CPAR39

Microviridae

9791182 minor capsid protein Chlamydia phage

CPAR39

Microviridae

311977809 capsid protein 1 Acanthamoeba

polyphaga mimivirus

Mimiviridae

38018422 capsid protein beta Nodamura virus Nodaviridae

38018423 capsid protein gamma Nodamura virus Nodaviridae
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19551003 coat protein Striped Jack nervous

necrosis virus

Nodaviridae

25121783 mature capsid protein

gamma

Pariacato virus Nodaviridae

25121784 mature capsid protein

beta

Pariacato virus Nodaviridae

22681118 coat protein Epinephelus tauvina

nervous necrosis virus

Nodaviridae

34610125 capsid protein Macrobrachium

rosenbergii nodavirus

Nodaviridae

98960855 coat protein Redspotted grouper

nervous necrosis virus

Nodaviridae

194351533 capsid protein Barfin flounder virus

BF93Hok

Nodaviridae

262396907 coat protein Barfin flounder

nervous necrosis virus

Nodaviridae

262396912 coat protein Tiger puffer nervous

necrosis virus

Nodaviridae

320339431 capsid protein Penaeus vannamei

nodavirus

Nodaviridae

322867243 capsid protein Santeuil nodavirus Nodaviridae

9628556 minor capsid protein

L2

Human

papillomavirus type

50

Papillomaviridae

9628557 major capsid protein

L1

Human

papillomavirus type

50

Papillomaviridae
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9628572 minor capsid protein

L2

Human

papillomavirus type

60

Papillomaviridae

9628573 major capsid protein

L1

Human

papillomavirus type

60

Papillomaviridae

9628548 minor capsid protein

L2

Human

papillomavirus type

48

Papillomaviridae

9628549 major capsid protein

L1

Human

papillomavirus type

48

Papillomaviridae

9627492 L1 protein Iotapapillomavirus 1 Papillomaviridae

9628453 L1 protein Alphapapillomavirus

12

Papillomaviridae

9635140 minor capsid protein

L2

Kappapapillomavirus

1

Papillomaviridae

9635141 major capsid protein

L1

Kappapapillomavirus

1

Papillomaviridae

9627071 minor capsid protein Deltapapillomavirus 2 Papillomaviridae

9627073 major capsid protein Deltapapillomavirus 2 Papillomaviridae

13186230 L1 Kappapapillomavirus

2

Papillomaviridae

21326234 minor capsid protein

L2

Thetapapillomavirus

1

Papillomaviridae

21326235 major capsid protein

L1

Thetapapillomavirus

1

Papillomaviridae
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9629728 L1 Common chimpanzee

papillomavirus 1

Papillomaviridae

27531793 L1 Human

papillomavirus type

92

Papillomaviridae

30315801 L1 protein Felis domesticus

papillomavirus type 1

Papillomaviridae

56698754 minor capsid protein Trichechus manatus

papillomavirus 1

Papillomaviridae

56698755 major capsid protein Trichechus manatus

papillomavirus 1

Papillomaviridae

56693043 L1 Canis familiaris

papillomavirus 2

Papillomaviridae

62362152 minor capsid protein Erethizon dorsatum

papillomavirus 1

Papillomaviridae

62362153 major capsid protein Erethizon dorsatum

papillomavirus 1

Papillomaviridae

18138524 L1 protein Omikronpapillomavirus

1

Papillomaviridae

9628580 minor capsid protein

L2

Alphapapillomavirus

3

Papillomaviridae

9628581 major capsid protein

L1

Alphapapillomavirus

3

Papillomaviridae

9627086 minor capsid protein Deltapapillomavirus 1 Papillomaviridae

9627087 major capsid protein Deltapapillomavirus 1 Papillomaviridae

9626061 minor capsid protein

L2

Human

papillomavirus type

6b

Papillomaviridae
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9626062 major capsid protein

L1

Human

papillomavirus type

6b

Papillomaviridae

9627369 L1 protein Human

papillomavirus type

49

Papillomaviridae

9628443 minor capsid protein Alphapapillomavirus

13

Papillomaviridae

9628444 major capsid protein Alphapapillomavirus

13

Papillomaviridae

68304295 L1 Procyon lotor

papillomavirus 1

Papillomaviridae

20428634 minor capsid protein Equus caballus

papillomavirus 1

Papillomaviridae

20428635 major capsid protein Equus caballus

papillomavirus 1

Papillomaviridae

37595916 L1 Human

papillomavirus type

96

Papillomaviridae

9626067 minor capsid protein

L2

Mupapillomavirus 1 Papillomaviridae

9626068 major capsid protein

L1

Mupapillomavirus 1 Papillomaviridae

9627107 minor capsid protein Human

papillomavirus type

16

Papillomaviridae
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9627108 major capsid L1

protein

Human

papillomavirus type

16

Papillomaviridae

9626077 L1 protein Alphapapillomavirus

7

Papillomaviridae

9627152 minor capsid protein Human

papillomavirus type 5

Papillomaviridae

9627153 major capsid protein Human

papillomavirus type 5

Papillomaviridae

13186282 late protein L1 Alphapapillomavirus

4

Papillomaviridae

9627064 capsid protein L1 Deltapapillomavirus 4 Papillomaviridae

386576358 L1 gene product Papio hamadryas

papillomavirus type 1

Papillomaviridae

82547789 L1 protein Bovine

papillomavirus 7

Papillomaviridae

389656406 minor capsid protein Human

papillomavirus type

135

Papillomaviridae

389656407 major capsid protein Human

papillomavirus type

135

Papillomaviridae

389656414 minor capsid protein Human

papillomavirus type

136

Papillomaviridae

389656415 major capsid protein Human

papillomavirus type

136

Papillomaviridae
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389656422 minor capsid protein Human

papillomavirus type

137

Papillomaviridae

389656423 major capsid protein Human

papillomavirus type

137

Papillomaviridae

389656430 minor capsid protein Human

papillomavirus type

140

Papillomaviridae

389656431 major capsid protein Human

papillomavirus type

140

Papillomaviridae

389656438 minor capsid protein Human

papillomavirus type

144

Papillomaviridae

389656439 major capsid protein Human

papillomavirus type

144

Papillomaviridae

97331433 L1 Capra hircus

papillomavirus 1

Papillomaviridae

392283764 L1 protein Phocoena phocoena

papillomavirus 1

Papillomaviridae

392283736 L1 protein Phocoena phocoena

papillomavirus 2

Papillomaviridae

392283743 L1 protein Phocoena phocoena

papillomavirus 4

Papillomaviridae

109390375 L1 Tursiops truncatus

papillomavirus 2

Papillomaviridae
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109390388 L1 protein Human

papillomavirus type

103

Papillomaviridae

109390395 L1 protein Human

papillomavirus 101

Papillomaviridae

113200770 L1 Rousettus

aegyptiacus

papillomavirus 1

Papillomaviridae

116536734 L1 Mastomys coucha

papillomavirus 2

Papillomaviridae

118129787 L1 Micromys minutus

papillomavirus 1

Papillomaviridae

156522778 L1 Bovine

papillomavirus 8

Papillomaviridae

164429764 minor capsid protein Canine

papillomavirus 4

Papillomaviridae

164429769 major capsid protein Canine

papillomavirus 4

Papillomaviridae

167600372 L1 protein Human

papillomavirus type

88

Papillomaviridae

189043083 L1 Ursus maritimus

papillomavirus 1

Papillomaviridae

189475226 minor capsid protein Bandicoot

papillomatosis

carcinomatosis virus

type 2

Papillomaviridae
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189475227 major capsid protein Bandicoot

papillomatosis

carcinomatosis virus

type 2

Papillomaviridae

194268072 L1 Capreolus capreolus

papillomavirus 1

Papillomaviridae

195661191 L1 Tursiops truncatus

papillomavirus 1

Papillomaviridae

206599542 L1 Sus scrofa

papillomavirus 1

Papillomaviridae

212286054 L2 capsid protein Caretta caretta

papillomavirus 1

Papillomaviridae

212286055 L1 capsid protein Caretta caretta

papillomavirus 1

Papillomaviridae

212286062 L2 capsid protein Chelonia mydas

papillomavirus 1

Papillomaviridae

212286063 L1 capsid protein Chelonia mydas

papillomavirus 1

Papillomaviridae

218685643 minor capsid protein Erinaceus europaeus

papillomavirus 1

Papillomaviridae

218685644 major capsid protein Erinaceus europaeus

papillomavirus 1

Papillomaviridae

224983327 early protein L1 Human

papillomavirus type

108

Papillomaviridae

225927575 L1 protein Human

papillomavirus 112

Papillomaviridae
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225927567 L1 protein Human

papillomavirus 109

Papillomaviridae

254810670 L1 protein Human

papillomavirus 116

Papillomaviridae

256352182 L1 Francolinus

leucoscepus

papillomavirus 1

Papillomaviridae

257136432 L1 Rattus norvegicus

papillomavirus 1

EES-2009

Papillomaviridae

258611057 L1 Canine

papillomavirus 5

Papillomaviridae

258611065 L1 Lambdapapillomavirus

3

Papillomaviridae

296040258 L1 Bettongia penicillata

papillomavirus 1

Papillomaviridae

297342362 minor capsid protein

L2

Human

papillomavirus 121

Papillomaviridae

297342363 major capsid protein

L1

Human

papillomavirus 121

Papillomaviridae

301173450 L1 Mus musculus

papillomavirus type 1

Papillomaviridae

304522121 L1 Gammapapillomavirus

HPV127

Papillomaviridae

319976690 L1 Human

papillomavirus type

128

Papillomaviridae
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319976682 L1 Human

papillomavirus type

129

Papillomaviridae

319976674 L1 Human

papillomavirus type

131

Papillomaviridae

319962674 L1 Human

papillomavirus type

132

Papillomaviridae

319962666 L1 Human

papillomavirus type

134

Papillomaviridae

326631683 L1 Camelus dromedarius

papillomavirus type 1

Papillomaviridae

326631691 L1 Camelus dromedarius

papillomavirus type 2

Papillomaviridae

332288084 L1 Zalophus

californianus

papillomavirus 1

Papillomaviridae

338209364 L1 Macaca fascicularis

papillomavirus 2

Papillomaviridae

338209371 L1 Colobus guereza

papillomavirus type 2

Papillomaviridae

347750419 L1 Morelia spilota

papillomavirus 1

Papillomaviridae

347750427 L1 Canine

papillomavirus 8

Papillomaviridae
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363540895 L1 Canine

papillomavirus 9

Papillomaviridae

379059608 L1 gene product Trichechus manatus

latirostris

papillomavirus 2

Papillomaviridae

404184239 L1 protein Crocuta crocuta

papillomavirus 1

Papillomaviridae

26335933 capsid protein 2 Porcine parvovirus Parvoviridae

26335936 capsid protein 1 Porcine parvovirus Parvoviridae

356457874 capsid protein 1 Human parvovirus

B19

Parvoviridae

356457875 capsid protein 2 Human parvovirus

B19

Parvoviridae

29823072 Coat protein VP1 LuIII virus Parvoviridae

33235705 capsid protein Blattella germanica

densovirus

Parvoviridae

9627949 capsid protein Mouse parvovirus 1 Parvoviridae

51593843 capsid protein VP Muscovy duck

parvovirus

Parvoviridae

51593844 capsid protein VP Muscovy duck

parvovirus

Parvoviridae

51593845 capsid protein VP Muscovy duck

parvovirus

Parvoviridae

294441963 37 kDa coat protein Infectious

hypodermal and

hematopoietic

necrosis virus

Parvoviridae

51555746 capsid protein Snake parvovirus 1 Parvoviridae
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9626079 Non-capsid protein H-1 parvovirus Parvoviridae

9626080 coat protein H-1 parvovirus Parvoviridae

19263355 Coat protein VP1 H-1 parvovirus Parvoviridae

312460625 coat protein

VP1/VP2

Aedes albopictus

densovirus

Parvoviridae

40795677 capsid protein VP1 Canine parvovirus Parvoviridae

40795678 capsid protein VP2 Canine parvovirus Parvoviridae

23334615 capsid protein Bombyx mori

densovirus 5

Parvoviridae

40804367 major capsid protein

VP3

Bombyx mori

densovirus 5

Parvoviridae

40804368 major capsid protein

VP1

Bombyx mori

densovirus 5

Parvoviridae

208429854 viral capsid protein Anopheles gambiae

densonucleosis virus

Parvoviridae

229342014 capsid protein Aedes aegypti

densovirus

Parvoviridae

238621219 capsid protein VP1 Human bocavirus 4 Parvoviridae

238621220 capsid protein VP2 Human bocavirus 4 Parvoviridae

302317869 capsid protein Bocavirus

gorilla/GBoV1/2009

Parvoviridae

302317870 capsid protein Bocavirus

gorilla/GBoV1/2009

Parvoviridae

312126260 capsid Porcine parvovirus 4 Parvoviridae

322688189 capsid protein Mosquito densovirus

BR/07

Parvoviridae

340025681 Capsid protein Paramecium bursaria

Chlorella virus 1

Phycodnaviridae
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9631580 Capsid protein Paramecium bursaria

Chlorella virus 1

Phycodnaviridae

340025827 Capsid protein Paramecium bursaria

Chlorella virus 1

Phycodnaviridae

340025832 Capsid protein Paramecium bursaria

Chlorella virus 1

Phycodnaviridae

9631998 Major capsid protein Paramecium bursaria

Chlorella virus 1

Phycodnaviridae

9632117 Capsid protein Paramecium bursaria

Chlorella virus 1

Phycodnaviridae

9632153 Capsid protein Paramecium bursaria

Chlorella virus 1

Phycodnaviridae

314055152 major capsid protein Ostreococcus tauri

virus 2

Phycodnaviridae

314055157 major capsid protein Ostreococcus tauri

virus 2

Phycodnaviridae

314055161 major capsid protein Ostreococcus tauri

virus 2

Phycodnaviridae

314055180 major capsid protein Ostreococcus tauri

virus 2

Phycodnaviridae

314055181 major capsid protein Ostreococcus tauri

virus 2

Phycodnaviridae

314055249 major capsid protein Ostreococcus tauri

virus 2

Phycodnaviridae

314055301 major capsid protein Ostreococcus tauri

virus 2

Phycodnaviridae

314055305 major capsid protein Ostreococcus tauri

virus 2

Phycodnaviridae
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25121840 coat protein VP4 Human enterovirus C Picornaviridae

25121841 coat protein VP2 Human enterovirus C Picornaviridae

25121842 coat protein VP3 Human enterovirus C Picornaviridae

25121843 coat protein VP1 Human enterovirus C Picornaviridae

25121875 capsid protein VP4 Theilovirus Picornaviridae

25121876 capsid protein VP2 Theilovirus Picornaviridae

25121877 capsid protein VP3 Theilovirus Picornaviridae

25121878 capsid protein VP1 Theilovirus Picornaviridae

25121919 capsid protein 1A Human enterovirus D Picornaviridae

25121920 capsid protein 1B Human enterovirus D Picornaviridae

25121921 capsid protein 1C

version 3

Human enterovirus D Picornaviridae

25121922 capsid protein 1C

version 1

Human enterovirus D Picornaviridae

25121923 capsid protein 1C

version 2

Human enterovirus D Picornaviridae

25121924 capsid protein 1D

version 2

Human enterovirus D Picornaviridae

25121925 capsid protein 1D

version 1

Human enterovirus D Picornaviridae

25121926 capsid protein 1D

version 3

Human enterovirus D Picornaviridae

25121796 capsid protein 1A Porcine sapelovirus 1 Picornaviridae

25121797 capsid protein 1B Porcine sapelovirus 1 Picornaviridae

25121798 capsid protein 1C Porcine sapelovirus 1 Picornaviridae

25121800 capsid protein 1D Porcine sapelovirus 1 Picornaviridae

182406747 capsid protein VP4 Saffold virus Picornaviridae

182406748 capsid protein VP2 Saffold virus Picornaviridae
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182406749 capsid protein VP3 Saffold virus Picornaviridae

182406750 capsid protein VP1 Saffold virus Picornaviridae

189418896 capsid protein VP4 Human TMEV-like

cardiovirus

Picornaviridae

189418897 capsid protein VP2 Human TMEV-like

cardiovirus

Picornaviridae

189418898 capsid protein VP3 Human TMEV-like

cardiovirus

Picornaviridae

189418899 capsid protein VP1 Human TMEV-like

cardiovirus

Picornaviridae

9626486 major capsid protein

VP1

Bovine polyomavirus Polyomaviridae

297591902 Major capsid protein

VP1

Simian virus 40 Polyomaviridae

9626981 capsid protein VP1 Murine pneumotropic

virus

Polyomaviridae

28376616 capsid protein VP2 Murine pneumotropic

virus

Polyomaviridae

28376617 capsid protein VP3 Murine pneumotropic

virus

Polyomaviridae

30315612 VP2 capsid protein African green monkey

polyomavirus

Polyomaviridae

30315613 VP3 capsid protein African green monkey

polyomavirus

Polyomaviridae

30315614 VP1 capsid protein African green monkey

polyomavirus

Polyomaviridae

9627024 VP1 (major capsid

protein)

Murine polyomavirus Polyomaviridae
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9627026 VP2 (capsid protein) Murine polyomavirus Polyomaviridae

9627025 VP3 (capsid protein) Murine polyomavirus Polyomaviridae

393738581 major capsid protein

VP1

MW polyomavirus Polyomaviridae

393738582 capsid protein VP2 MW polyomavirus Polyomaviridae

393738583 capsid protein VP3 MW polyomavirus Polyomaviridae

9626357 minor capsid protein Enterobacteria phage

PRD1

Tectiviridae

9626361 major capsid protein Enterobacteria phage

PRD1

Tectiviridae

9626366 minor capsid protein Enterobacteria phage

PRD1

Tectiviridae

211956457 capsid protein Bacillus phage AP50 Tectiviridae

211956463 major capsid protein Bacillus phage AP50 Tectiviridae

211956469 minor capsid protein Bacillus phage AP50 Tectiviridae

9632274 coat protein Helicoverpa armigera

stunt virus

Tetraviridae

38018443 large capsid protein Euprosterna elaeasa

virus

Tetraviridae

38018444 small capsid protein Euprosterna elaeasa

virus

Tetraviridae

9631281 capsid protein Nudaurelia capensis

beta virus

Tetraviridae

48697171 capsid protein p71 Dendrolimus

punctatus tetravirus

Tetraviridae

394743614 capsid protein Lettuce necrotic stunt

virus

Tombusviridae
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9626674 coat protein Cucumber necrosis

virus

Tombusviridae

9627424 coat protein Cardamine chlorotic

fleck virus

Tombusviridae

19774247 29 kDa coat protein Tobacco necrosis

virus D

Tombusviridae

20087051 capsid Cowpea mottle virus Tombusviridae

20428582 capsid protein Red clover necrotic

mosaic virus

Tombusviridae

20522129 capsid protein Sweet clover necrotic

mosaic virus

Tombusviridae

20564144 coat protein Turnip crinkle virus Tombusviridae

30018249 coat protein CP Pear latent virus Tombusviridae

30018255 coat protein Cucumber Bulgarian

latent virus

Tombusviridae

32469482 coat protein Pea stem necrosis

virus

Tombusviridae

39163651 coat protein Johnsongrass

chlorotic stripe

mosaic virus

Tombusviridae

39163636 coat protein Pelargonium flower

break virus

Tombusviridae

50080148 coat protein Beet black scorch

virus

Tombusviridae

11072115 26 kDa capsid protein Panicum mosaic virus Tombusviridae

9629190 capsid protein Saguaro cactus virus Tombusviridae

9633807 coat protein Carnation mottle

virus

Tombusviridae
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20087027 coat protein Cymbidium ringspot

virus

Tombusviridae

189042977 capsid protein Carnation Italian

ringspot virus

Tombusviridae

20177494 coat protein (p48) Oat chlorotic stunt

virus

Tombusviridae

9629523 capsid protein Leek white stripe

virus

Tombusviridae

9628879 capsid protein Olive latent virus 1 Tombusviridae

9634678 capsid protein (p38) Japanese iris necrotic

ring virus

Tombusviridae

20162542 coat protein Maize chlorotic

mottle virus

Tombusviridae

9629187 coat protein Tobacco necrosis

virus A

Tombusviridae

9790331 p41 capsid protein Tomato bushy stunt

virus

Tombusviridae

62327386 coat protein Olive mild mosaic

virus

Tombusviridae

20153394 coat protein Hibiscus chlorotic

ringspot virus

Tombusviridae

9629513 capsid protein Galinsoga mosaic

virus

Tombusviridae

38707977 coat protein Pelargonium necrotic

spot virus

Tombusviridae

66478135 coat protein Pelargonium line

pattern virus

Tombusviridae
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9626977 capsid protein Melon necrotic spot

virus

Tombusviridae

9625554 coat protein of 41

kDa

Artichoke mottled

crinkle virus

Tombusviridae

85718598 coat protein Angelonia flower

break virus

Tombusviridae

89888604 coat protein Cucumber leaf spot

virus

Tombusviridae

94536600 coat protein Lisianthus necrosis

virus

Tombusviridae

126010923 coat protein Nootka lupine

vein-clearing virus

Tombusviridae

212498617 capsid protein Grapevine Algerian

latent virus

Tombusviridae

216905812 coat protein Soybean yellow

mottle mosaic virus

Tombusviridae

9626697 coat protein Eggplant mosaic virus Tymoviridae

9629159 coat protein Kennedya yellow

mosaic virus

Tymoviridae

9627013 coat protein Ononis yellow mosaic

virus

Tymoviridae

20177482 coat protein Physalis mottle virus Tymoviridae

62327637 21 kDa capsid protein Citrus sudden

death-associated virus

Tymoviridae

62327641 capsid protein Citrus sudden

death-associated virus

Tymoviridae

18138527 coat protein Grapevine fleck virus Tymoviridae
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21686953 coat protein Turnip yellow mosaic

virus

Tymoviridae

9629257 21 kDa capsid protein Oat blue dwarf virus Tymoviridae

9634118 coat protein Poinsettia mosaic

virus

Tymoviridae

25013992 capsid protein Poinsettia mosaic

virus

Tymoviridae

11067740 coat protein Chayote mosaic virus Tymoviridae

82524284 coat protein Dulcamara mottle

virus

Tymoviridae

148724440 coat protein Okra mosaic virus Tymoviridae

194473851 coat protein CP Diascia yellow mottle

virus

Tymoviridae

212498836 coat protein Scrophularia mottle

virus

Tymoviridae

212498907 coat protein Nemesia ring necrosis

virus

Tymoviridae

212498988 coat protein Plantago mottle virus Tymoviridae

212525936 coat protein Anagyris vein

yellowing virus

Tymoviridae

226201771 capsid protein Grapevine Syrah

Virus-1

Tymoviridae

289522105 coat protein Olive latent virus 3 Tymoviridae

296006065 coat protein Chiltepin yellow

mosaic virus

Tymoviridae

326537272 coat protein Fig fleck-associated

virus

Tymoviridae
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339276126 coat protein Asclepias

asymptomatic virus

Tymoviridae
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Appendix C

Mathematical Formulation of Support Vector

Machine Algorithm

In Chapter 3, we used Support Vector Machine (SVM) to learn classification between

jelly-roll containing capsid proteins and other proteins. SVM is a maximum margin

supervised classifier, which works by finding a separating hypersurfaces between the

two or more classes of training data [97]. Once this separating hypersurface is found,

it can be used for predicting the classification of novel samples. In this appendix, I

discuss the mathematical formulation of this algorithm. I have closely followed the

discussion in the text by Bishop [96].

The input for the SVM comprises of representations of training samples in a

feature space, and their actual classes. Let the training samples be represented by,

{xi}, where i = 1, .., N and each xi is a feature vector with dimensionality D. For

simplicity, I will work with two class classification. Let the class labels for training

samples be {yi}, where i = 1, ..., N and each ti ∈ {−1, 1}. The SVM algorithm then

seeks to construct a function which will ideally be positive for training samples of class

1 and negative for training samples of class −1. In the case of the linear classification,

the ansatz for this function, known as “decision function”, is

y(x) = w · x + b (C.1)

where b is a constant, and w is the normal to the separating hyperplane y(x) = 0.

In principle, there can be many separating hyperplanes for the training data. The

separating hyperplane chosen by SVM is the one which maximizes the distance to the
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closest points of each class (maximizing “margin”). Using straigthforward geometry,

it can be shown that the distance of a point x to a plane specified by y(x) = 0 is given

by abs(y(x))/|w|. Assuming correct classification for all training samples implies

tiyi(xi) = |yi(xi)|. Thus, the problem of finding the maximum margin separating

hyperplane can be stated as

max
w,b

{
min

i

[
1

|w|
ti (w · xi + b)

]}
(C.2)

subject to the constraints

ti (w · xi + b) > 0 , i = 1, . . . , N (C.3)

Because the sign of the function y(x) predicts the class of a sample, one can

arbitrarily scale the function by a positive constant to still retain this property. Using

this freedom, the distance of the closest training samples to the separating plane can

be set to 1. Thus, Eq. (C.2) becomes the maximization of 1/|w|, which is equivalent

to minimization of |w|2, a problem in quadratic programming. The constraints now

change – since the closest samples to the hyperplane are set to be at distance 1, the

training samples thus obey the constraints

ti (w · xi + b) ≥ 1 , i = 1, . . . , N (C.4)

The maximization problem in the presence of constraints can be solved by intro-

ducing Lagrange multipliers ai.

L (w, b, {ai}) =
1

2
w2 −

∑
i

ai [ti (w · xi + b)− 1] (C.5)

Stationary solutions for w, b, {ai} then obey

w =
∑
i

aitix (C.6)∑
i

aiti = 0 (C.7)
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In addition to these, the Karush-Kuhn-Tucker relations for inequality constraints

imply

ai ≥ 0 (C.8)

ai [ti (w · xi + b)− 1] = 0 (C.9)

By definition, all the samples except the samples closest to the hyperplane obey

the strict inequality ti (w · xi + b) > 1. Thus, Eq. (C.9) implies that ai 6= 0 for only

the samples (strictly) closest to the separating hyperplane. Using Eq. (C.6), it is

evident that the normal to the plane w is a superposition of only these samples.

Therefore, these samples are called “support vectors”. The numerical solution then

proceeds using the methods of quadratic programming to find ai.

There are two important generalizations of this basic formulation. First, training

samples can be separable using a non-linear hypersurface and not a hyperplane. This

extension can be made by resolving the constraints in Eqs. (C.6, C.7) to get

L̃({ai}) =
∑
i

ai −
1

2

∑
i,j

aiajtitjk(xi,xj) (C.10)

where I have introduced the kernel function k(xi,xj) · xixj. Using different forms for

k(xi,xj) can result in non-linear separating hypersurfaces. For example some of the

popular choices for kernel functions are

k(xi,xj) = exp (−γ|xi − xj|)2 where γ > 0 (radial basis function) (C.11)

k(xi,xj) = tanh (xi · xj + γ) (sigmoidal) (C.12)

k(xi,xj) = (xi · xj + γ)d (polynomial) (C.13)

In each case, the decision function is given by

y(x) =
∑
i

aitik(xi,x) + b (C.14)

The second generalization to the original SVM algorithm addresses the problem of

“soft” classification. Often training data are not completely separable but we still wish
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to classify the data within some error margins. For this, an error function ei is assigned

to each point. For training samples which are well classified, i.e. tiy(xi) ≥ 1, the error

function is ei = 0. But for points which are not correctly classified ei = |ti − y(xi)|.

To introduce “softness” in classification, we can then make the following addition to

the minimization function

L(w, ei) =
1

2
w2 + C

∑
i

ei (C.15)

where C controls the amount of “softness” and is inversely proportional to the mean

error rate. In the limit of C → ∞, we recover the “hard” classification of above,

and ei are unconstrained in the limit of C → 0. Using a pre-determined value for

C, one can then repeat the procedure above to reduce this problem to a quadratic

programming problem, which can be solved using established numerical techniques.
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