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In traditional topology optimization formulation the external load are 

deterministic and the uncertainties are not considered. The convex modeling based 

topology optimization method for solving topology optimization problems under external 

load uncertainties is presented in this dissertation. The load uncertainties are formulated 

using the non-probabilistic based unknown-but-bounded convex model. The sensitivities 

are derived and the problem is solved using gradient based algorithm. The proposed 

convex modeling based method yields the material distribution which would optimize the 
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worst structure response under the uncertain loads. Comparing to the deterministic based 

topology optimization formulation, the proposed method provided more reliable solutions 

when load uncertainties were involved. The proposed method can work with other 

method to solved complicated design problems. A protective structure design problem 

involving load uncertainties, multiple design objectives and unconstrained structure is 

solved by integrating the convex modeling based topology optimization method with 

regional strain energy formulation and inertial relief method. The simplicity, efficiency 

and versatility of the proposed convex modeling based method can be considered as a 

supplement to the sophisticated probabilistic based topology optimization methods. 
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Chapter 1  

Introduction 

For centuries engineers have been striving to design better structures like higher 

stiffness with less material usage [1]. Numerous methods have been proposed and in 

many of them design parameters (e.g. loads, structural geometries, and material 

properties) are assumed to be deterministic: in other words, possible uncertainties of the 

parameters are not considered in these methods. However, it is not always possible to 

avoid the uncertainties in engineering applications. Uncertainties could be brought into 

the structural design problem from various sources. Measurement errors, inaccuracy in 

the manufacturing process and perturbations in the external environment for example, are 

possible sources of uncertainties. Safety of the design given by the deterministic methods 

cannot be guaranteed when uncertainties are involved.  

The uncertainties must be formulated into the structural design problem in order 

to reach a more reliable solution. Many approaches have been developed and generally 

they can be cataloged into probabilistic-based methods and non-probabilistic-based 

methods.  

The probabilistic methods are established on the statistical analysis of the 

uncertain parameters. Under this uncertainty model the design problem can be formulated 

as optimizing the design target subject to prescribed reliability constraints (Reliability 

Based Design Optimization, RBDO) [2-4]. However it is worth noting that the 

probabilistic-based methods heavily rely on the accuracy of the statistical analysis. It is 
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shown that insufficient number of samples could induce large errors into the reliability 

calculation [5] and render the probabilistic based design result meaningless. 

The non-probabilistic methods, including the convex model, the interval set and 

the fuzzy set, do not require the probability information. Therefore they can be utilized 

when such information is not available. Among them the convex model, which was 

proposed by Ben-Haim and Elishakoff in 1990 [6], represents the uncertainties by their 

extreme values and is ideal to treat the unknown-but-bounded uncertainties, which is one 

of the most common types of uncertainties in engineering application.  

In these approaches the worst system response
1
 under given uncertain stimulation 

is used as the benchmark for system performance evaluation. The possibilities of the 

system reaching the extremes need not to be calculated hence the probability information 

would not be required. Based on this framework, the design problem can be formulated 

as optimizing the design target subject to the constraint that the worst situation within the 

uncertainty bounds satisfies the design requirement (Worst Case Design Optimization, 

WCDO) [7]. As an alternative to the RBDO approaches, the WCDO has been 

investigated by a number of studies. Elishakoff et al proposed a convex model based non-

probabilistic safety factor method [8]; Pantelides and Ganzerli also demonstrated a robust 

truss optimization approach [9] based on the convex models. The Eigenvalue 

Superposition of Convex Models (ESCM) formulation described in Chapter 2 [10] also 

                                                 

Worst here means opposite to the desired value, for example largest stress when small stress is preferred 1  
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utilized the convex model and significantly increased the efficiency in solving truss 

design optimization problems under load uncertainties.  

In this dissertation, a structural design optimization problem is formulated under 

the non-probabilistic WCDO framework as expressed below: 

  
max

( )

s.t.           

mi

( , ) 0

                     

n      

( )

        

0

  

j

w w

g

E







a
a

a f

f

 (1-1) 

The objective function w  can be any desired structure property and the constraint 

function max [ ( , )] 0jg f a f  confines the worst system response. The   0E f  constraint 

represents the bounds on the uncertainties of the stimulation f  and the actual expression 

is problem dependent.  

The expression in Eq.(1-1) can be expanded into a two-level optimization 

problem: the upper level problem focus on optimizing the structure and the lower level 

problem locates the worst case scenario. By defining   max,
max

( , )j jg ga f , the upper level 

problem, which gives the optimum design, can be expressed as: 

 
max,

min             ( )

s.t.             ( ) 0, 1
j

w w

j ng



 

a
a

a
 (1-2) 

And the lower level problem, that finds the worst structural response, is defined as: 

 
 

 

max            

s.t.            0

ig

E 

f
f

f
 (1-3) 

The design variable a  is considered as constant in the lower level problem.  

It is obvious that identifying the correct worst case scenario requires the lower 

level problem to be solved to its global optimality, otherwise the feasibility in the upper 
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level problem cannot be guaranteed. However as pointed out by Ben-Haim and 

Elishakoff in [6] and will be shown in the following chapters, in many situations the 

lower level problems might not always be convex, in fact in majority of the situations 

they are concave [6], and consequently their global optimality mighty be difficult to 

achieve. As mentioned above obtaining the global optima in the lower level problem is 

crucial for the WCDO framework, since the structure performance must be evaluated at 

its worst situation. In addition to the non-convex challenge the computational cost 

presents as another concern. If the lower level problems were solved by iterative methods 

then the iterations must be performed for every design step in the upper level problem. 

For instance if it would take 100 iterations to solve the lower level problem and there 

were 100 design steps in the upper level, a total number of 10000 iterations must be 

performed to reach the final design. For computational intense problems such as the 

topology optimization problems this approach is impractical. Finally in the two-level 

formulation the solution of the lower level problem served as constraints in the upper 

level design problem. The sensitivities of these constraints might not be able to be 

directly derived due to the absence of explicit expressions and the lack of sensitivity 

information would worsen the situation.  

To overcome the obstacles, the convex modeling based topology optimization 

method was developed. This method was applied to a protective structure design problem 

with load uncertainties and the sensitivity was analyzed. 
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1.1 Research Contribution 

The structure design under external load uncertainty problem was investigated in 

this dissertation. The uncertainties are formulated using convex model based unknown-

but-bounded uncertainty model. The Eigenvalue Superposition of Convex Models 

method was developed for solving truss size optimization problems. The ESCM concept 

was then extended to topology optimization yielding the convex modeling based 

topology optimization method for solving structure design problems with external load 

uncertainties. The sensitivity was analyzed and numerical examples were shown. Finally 

the convex modeling based method was utilized in solving the protective structure design 

problem together with other methods. 

1.2 Out Line of the Dissertation 

In this dissertation the for convex modeling based method solving structure 

design problem under external load uncertainties was proposed. The research background 

and motivation was introduced in Chapter 1. In Chapter 2 the ESCM method for solving 

truss size optimization problem was derived. The derivation started from solving a single 

uncertainty problem by constructing an eigenvalue problem; the multiple-uncertainty 

problem was then solved through superposition of the solutions of single uncertainty sub 

problems. The effectiveness of the ESCM method was demonstrated through numerical 
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examples. The proposed method is extended to topology optimization in Chapter 3. 

Sensitivity analysis was performed and the result obtained from the new convex 

modeling based topology optimization was compared with results from traditional 

methods. In Chapter 4 a protective structure design problem involving external load 

uncertainty, multiple-objective optimization and unconstrained structure was analyzed by 

integrating the convex modeling based topology optimization method with regional strain 

energy formulation and inertial relief method. Conclusions were made in Chapter 5 as 

well as possibilities for future research.  
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Chapter 2  

ESCM Method in Truss Design Optimization 

Being characterized as “… a structure composed of slender members joined 

together at their end points” by Hibbeler [11], trusses have been widely applied in 

various of fields for centuries and have been intensively studied by numerous engineers, 

scientists and mathematicians from many different aspects. Early studies of trusses could 

be traced back to the age of ancient Rome more than two thousand years ago [1]. 

Throughout the years engineers are searching for designs which would best meet the 

demand and the methods for optimizing truss structures are sophisticated.  

2.1 Introduction to Truss Design Optimization 

The modern design optimizations of truss structures generally fall into three 

categories [12]: 1). The Size Optimization; 2). The Geometry Optimization; and 3). The 

Topology Optimization. 

In the size optimization problem, the geometries and the topologies of the truss 

structures are considered as fixed. The sizes of the truss elements, cross section areas for 

example, are the design variables and the design objective is optimized [13]. 
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Figure 2-1. The Size Optimization 

For the geometry optimization, the design variables are the coordinates of the joints of 

the truss elements.  

 

Figure 2-2. The Geometry Optimization 
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In the topology optimization, the connectivity of truss elements is the design variable and 

the layout of the structure is optimized. 

 

Figure 2-3. The Topology Optimization 

Among the three, the size optimization is the focus of this dissertation due to its 

broad range of applications [14]. It is the fundamental problem in truss design 

optimization and its versatility can be seen from the fact that by properly setting the 

initial design and design variable lower bound, the size optimization approach can be 

used to solve topology optimization problems. 

2.2 Truss Design Optimization  

To better illustrate the problem, a simple truss structure design optimization 

problem is considered here, as shown in Figure 2-4.  
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Figure 2-4. Structure under External Load Uncertainties 

Two external loads with uncertainties in both directions and magnitudes, 1
f  and 2

f , are 

applied to the structure at Node 1 and Node 2. The design objective is to find the 

optimum cross section areas of the bars which minimize the total weight of the structure. 

The design requirement is that the maximum magnitudes of displacements of Node 3 and 

Node 4 must not exceed given values. The structure can be discretized by finite element 

method as Ku f and the nodal displacement vector of j
th

 node j
u  can be expressed as 

1j T
j j

 u B u B K f  

where K is the global stiffness matrix, jB  is a localization matrix and the index j  

indicates the j
th 

node. The global load vector f can alternatively be expressed as the 

assembly of the nodal load vector i
f ,as  

 
i

T
i

n
i

i

i







A

f A f

f f

 (2-1) 

where iA  is another localization matrix, and the summation should be understood as 

assembly. The matrices jB and iA have the form of 

0 1 0 0

0 0 1 0

T

 
 
   
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and they give the relation between the 2 1 nodal vectors and the 1m global vector, where 

m is the total DOFs.  

2.2.1 Unknown-but-Bounded Uncertainty Formulation 

The uncertainties in the external loads are formulated with the unknown-but-

bounded model, which is a typical convex model. The name of the model explains itself: 

although the exact value the parameter is unknown, the variation is within a known range. 

In this model the variable x with uncertainty is decomposed into its nominal value x and 

deviation x . The nominal value is considered deterministic and the deviation is bounded. 

The exact formulation of this model is problem dependent and for the external loads in 

the Figure 2-4 problem, which are assumed to have uncertainties in both magnitudes and 

directions, the uncertainty formulation is introduced as follow. 

The nodal load vector 1
f  decomposed into its nominal value and deviation 

1 1 1  f f f . The nominal term 1
f  is constant and the magnitude of the deviation 1f  is 

confined to be smaller or equal to a given value 1c , as expressed in Eq.(2-2). 

 
 

1 1 1

2
1 1 1

1

T

c

  

    

f f f

f f f
 (2-2) 

This expression can be visualized in Figure 2-5, where the load 1
f  perturbs within the 

shaded circular area defined by 1
f  and 1f . 
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Figure 2-5. The Unknown-but-Bounded Uncertainty Formulation 

It should be noted that without losing generosity, the bound value 1c  in Eq.(2-2) can be 

normalized and yields the following simplified uncertainty formulation 

 
2

1

i i i

i

  

 

f f f

f
 (2-3) 

which can also be expressed by using the global load vector f  as 

 
1T T

i i

  

  

f f f

f A A f
 (2-4) 

The above unknown-but-bounded uncertainty model defined in Eq.(2-3) and Eq.(2-4) is 

used in the derivation of this research. 

2.2.2 Problem Formulation 

Implementing the uncertainty model shown in Eq.(2-3) into Eq.(1-1) gives the 

complete explicit expression for the structural design optimization problem defined in 

Figure 2-4, as described below 
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 max

2

min          ( )

s.t.                ( )

                      

                       1

j
j

i i i

i

w w

d




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 

a
a

u a

f f f

f

 (2-5) 

This single level formulation can be extended into a two-level formulation in the same 

manner as Eq.(1-2) and Eq.(1-3). The upper level problem is straightforwardly expressed 

as 

 
max

min     ( )

s.t.           ( )j
j

w w

d





a
a

u a
 (2-6) 

For the lower level problem a trick is played to avoid the square root introduced 

by the vector norm. Instead of using the original objective function j
u , the squared term 

   
2

2

= =
T T

j j j j 
 
 

u u u u u

 

is used. Thus the lower level formulation becomes 

 

2

2

max                     

s.t.                 

                        1

j

i i i

i

  

 

f
u

f f f

f

 (2-7) 

Expanding the norm terms and Eq.(2-7) is rewritten into  

 

 

 

1

i

max         

s.t.                        

                          1

n T
i T T T i

i j j i
i

i i i

T
i

     

  

  

f
f A K B B K A f

f f f

f f

 (2-8) 

This formulation in Eq.(2-8) can alternatively be expressed using the global load vector 

f instead of the nodal vectors i
f , which yields 
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1max         

s.t.              

               1

T T T
j j

T T
i i

 

  

  

f
f K B B K f

f f f

f A A f

 (2-9) 

Quadratic forms are observed in both the objective function and the constraint functions 

in Eq.(2-9). The problem in Eq.(2-9) is a typical Quadratically Constrained Quadratic 

Programming (QCQP) problem. Since the matrices K  and jB  are positive semi-definite 

(P.S.D), as proven in [15], the resultant matrix - -1T T
j jQ = K B B K  is either a zero matrix or a 

P.S.D matrix with zero matrix leads to a trivial solution. This problem is a well-known 

non-convex minimization problem and is classified as NP-Hard problem [16-18]. 

The non-convexity of this lower level problem can be visualized through a simple 

example. Consider the structure under one load with uncertainty shown in Figure 2-6 

 

Figure 2-6. The 3-Node 2-Element Structure 

The load 1
f has known maximum magnitude and uncertain direction. The magnitude of 

displacement 1
u  is concerned. The mathematical formulation is established as 

 

2
1

2
1

min                  

s.t.                   c





f
u

f

 (2-10) 
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Noted that by convention the objective is changed from a maximized positive to a 

minimized negative. The design domain of the Eq.(2-10) can be plotted as 

 

Figure 2-7. Feasible Domain of Eq.(2-10) Problem 

The colored contour represents the objective function. The domain is clearly concave and 

multiple local optima can be identified in Figure 2-7. As mentioned before, this non-

convexity would make solving the problem through conventional gradient based method 

impractical. 

The non-convexity problem of the WCDO has been studied in the literature. 

Elishakoff et al proposed a convex model based on the non-probabilistic safety factor 

method [8]. Pantelides and Ganzerli demonstrated a robust truss optimization method [9]. 

Approaches utilizing interval linear algebra for Uncertain Linear Equations (ULE) [19] is 

also proposed [20]. Semi-Definite Programming (SDP) [21] relaxation method is 

introduced to find the response ellipsoidal bounds [22, 23]. Particularly for the problems 

involving uncertainties on the external loads, which is the focus of this research, the 
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Quadratically Constraint Quadratic Programming (QCQP) formulations is often used, and 

they can be solved through the SDP relaxation method, as given in [24]. 

2.2.3 SDP Relaxation Method 

The SPD relaxation method conservatively approximates the global optima of the 

Eq.(2-7) lower level problem by relaxing it into the SDP problem. As remarked by 

Vandenberghe [25], the resultant SDP problems are convex optimization problems and 

their global optimum can be obtained by many well-established algorithms [26].  

To be specific, the Lagrangian of the Eq(2-9) lower level problem 

1max         

s.t.              

               1

T T T
j j

T T
i i

 

  

  

f
f K B B K f

f f f

f A A f  

can be written as 

 

1 ( 1)

( 1)

( ) ( ) ( 1)

T T T T T
j j i i ii

T T T
i i ii

T T T
i i ii

L 





      

     

         

f K B B K f f A A f

f Qf f A A f

f f Q f f f A A f

 (2-11) 

The idea of relaxation is that instead of directly minimizing the Lagrangian, a lower 

bound is defined as 

 ,   t L   f f  

The bound is then tightened by an optimization problem 

  

max               

s.t.         

            

, 0

        0

L t

t

t







  

f

f  (2-12) 

Performing homogenization on  , 0L t  f  gives 
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which is equivalent to 
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T
i i i i
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i i t





   
 
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Q A A Qf
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 (2-13) 

The problem in Eq.(2-12) can therefore be reformulated as 

 

max                                     

s.t.     0
( )

    

                                         0

i

T
i i ii

T T
ii

t

t

t






   
 

    



Q A A Qf

Qf f Qf
 (2-14) 

Note that the design variables have changed from f in Eq.(2-12) to i in 

Eq.(2-14). The Eq.(2-14) is a standard SDP problem which can be solved by many well-

established algorithms. The solution is given as 

2

max max
j T t u f Qf

 

With this SDP solution, the upper level design problem in Eq.(2-6) can be written as 

max

min    ( )

s.t.          ( ) j

w w

t d





a
a

a  

Using the SPD relaxation technique, the concave lower level problem is relaxed 

into a convex SDP problem and the true solution of the original concave problem is 

conservatively approximated with solution of the convex SDP problem. However in this 

approach an optimization problem is still required to find the worst case scenario, which 

hampers the overall efficiency in solving the structure design problem. 
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2.3 Eigenvalue-Superposition of Convex Models (ESCM) Method 

The eigenvalue-superposition of convex models (ESCM) approach is presented in 

this section to address the aforementioned challenges in solving the lower level problem. 

The derivation of the method starts from a single uncertainty truss structure design 

optimization problem. The multiple-uncertainties situation is then considered, followed 

by the sensitivity analysis. 

2.3.1 Single Uncertainty Problem 

Consider the structure with one uncertain load 1 1 1   f f f  applied, as shown in 

Figure 2-8. The problem is further simplified by neglecting the nominal load 1 f  and 

assuming 1 1  f f . 

 

Figure 2-8. The Truss Structure under Single Uncertain Load 

Following these assumptions, the lower level optimization problem can be described as 

 
 

 

1 2
, 1 1 1

1

2
1 1 1

max          ( )

s.t.               1

T
j

T

    


    

f
u f f Q f

f

f f f

 (2-15) 
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where 1
1 1
T T T

j j
 Q A K B B K A . In fact this problem is essentially identical to the problem 

illustrated in Figure 2-6, which is concave and cannot be solved by conventional gradient 

search. 

To tackle this problem, the Lagrangian of Eq.(2-15) is firstly examined, which is 

given as 

      1 1 1 1 1, 1
T T

L            
  

f f Q f f f  (2-16) 

The 1
st
 order KKT conditions can then be established as 

 1* * 1* 0    Q f f  (2-17) 

  1* 1* 1 0
T

   f f  (2-18) 

 * 0   (2-19) 

  * 1* 1* 1 0
T

     
  

f f  (2-20) 

The stationarity condition in Eq.(2-17) is indeed an eigenvalue problem with all 

eigenvalues of Q  satisfies the equation. The primal feasibility condition in Eq.(2-18) on 

the other hand can be considered as the eigenvector normalization condition. The dual 

feasibility condition in Eq.(2-19) would be automatically satisfied since as mentioned 

before, the Q  matrix is either a zero or P.S.D matrix, hence * ,which is the eigenvalue of 

Q , must be non-negative. Finally the complementary slackness condition requires the 

constraint to be active in case Q  being positive definite (P.D), due to the fact that *  

must be positive in such condition. 
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By solving the 1
st
 order KKT conditions, it can be identified that the optimum 

candidates are the eigenvalues of Q . In order to determine the true optimum, the second 

order sufficient condition is then examined This 2
nd

 order condition can be found as 

 *   0 Q I  (2-21) 

Performing eigen-decomposition on Q  yields TQ VDV where D  is a diagonal matrix 

with eigenvalues of Q  in the diagonal. The V  is the matrix of eigenvectors. Since Q  is 

P.S.D, V  can be normalized as a unitary matrix, which implies T
V V I , T

V QV = D . Pre 

and Post multiplying Eq.(2-21) by T
V  and V  respectively yields 

 * *T T     V QV V IV D I 0  (2-22) 

For the 2-D problem Eq.(2-22) can also be written into its component form 

* *
1 1

* *
2 2

0 0 0

0 0 0

   

   

     
      

      
0

 

Clearly the positive semi-definite condition is equivalent to *
1 0     and *

2 0    , 

or *
1 2    . It proves that only the largest eigenvalue of Q  satisfies the 2

nd
 order 

condition and hence is the true optimum. In fact *  H Q I  can be treated as the 

Hessian matrix of the Lagrangian in Eq.(2-16) and it would be P.S.D if *  is the largest 

eigenvalue of Q . According to Theorem 4.8 of [27], the Lagrangian function is convex, 

and the optimum is global.  

The final solution for the Eq.(2-15) problem can therefore be calculated as 

   
1 2

, 1* 1* 1* 1*
max

max

T T
j T        f

u f Q f f VDV f
 

where max  is the largest eigenvalue of Q  and 1*f  is the corresponding eigenvector. 
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2.3.2 Multiple-Uncertainty Problem 

In the previous section the simple single uncertainty problem is solved through an 

eigenvalue approach. The method is extended to a more complicated multiple-uncertainty 

situation in this section. Considered the Figure 2-9 problem, two uncertain loads are 

applied with  i i i  f f f  and 0i f .  

 

Figure 2-9. The Truss Structure under Multiple Uncertain Loads 

The lower level problem is constructed as 

 

1 2 2
, 1 2

1 1 1

2
1

2 2 2

2
2

max         ( )

s.t.               

                     1

                   

                     1

j

i

 

  

 

  

 

f f
u f f

f

f f f

f

f f f

f

 (2-23) 

Noted that for the linear system  , ij if
u f , superposition principle can be applied and the 

system can be decomposed into      
1 2 1 2, 1 2 , 1 , 2j j j   f f f f

u f f u f u f , or simply as 

1 2 1 2, , ,j j j  f f f f
u u u . Utilizing the subadditivity of the norms, an inequality relation can be 

established as 

 

1 2 1 2, , ,j f f j f j f  u u u
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Take the maximum on both side yields 

 
1 2 1 2, , ,max maxj f f j f j f    

   
u u u  (2-24) 

Since the maximum function is distributive, Eq.(2-24) can be further expanded into 

 
1 2 1 2, , ,max max maxj f f j f j f      

     
u u u  (2-25) 

Clearly the right hand side of Eq.(2-25) provides a confident bound to the left hand side 

and can be used as a conservative estimation to the global optimum of the original lower 

level optimization problem. It also should be noticed that since 

 
, , ,

 

i i i i

i i i

j j j 

  

 f f f f

f f f

u u u

 (2-26) 

The inequality relation in Eq.(2-25) can be applied to Eq.(2-26) and yields 

 , , , ,max max max
i i i i ij f j j j       

     

f f f f
u u u u  (2-27) 

Recall that the last term in Eq.(2-27) is in face the square root of the objective function of 

the single uncertainty problem stated Eq.(2-15). Together with the constraint 
2

1i f , 

this term can be calculated as the square root of the solution of the following problem as 

Eq.(2-28) 

 

2
,

2

max              

s.t.               1

ij

i

i





 

f
u

f

f

 (2-28) 

or explicitly expressed as 

  , 1* 1*max
i T

j
i i

     
 

f
u f Q f  (2-29) 

where *
i  is the largest eigenvalue of the corresponding iQ  matrix. 
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Utilizing the result shown in Eq.(2-29), a conservative bound for the global 

optimum of the multiple uncertainty problem in Eq.(2-23), namely the Eigenvalue 

Superposition of Convex Models (ESCM) bound, can be defined as 

 
1 2, ,

1 2
max

j f f j     f
u u  (2-30) 

This bound can be used as a conservative estimation of the solution of the lower level 

problem in Eq.(2-7) and by substituting this ESCM bound defined in Eq.(2-30) into the 

optimization problem stated in Eq.(2-5), the ESCM structure design optimization 

formulation can be defined, as 

 
 ,

1

min                           ( )

s.t.                 ( )
n

j
i j

i

w w

d




 
f

a
a

u a a

 (2-31) 

where  i a  are the largest eigenvalues of 1( ) ( ) ( )T T T
i i j j i

 Q a A K a B B K a A . 

2.3.3 Sensitivity Analysis 

The sensitivity of the ESCM bound in Eq.(2-31) is calculated in this section. 

Differentiating the bound with respect to the k
th

 element of the design variable a yields 

 
 1

n
T

jj
i

k ka a

  


 

B K f
 (2-32) 

The 1T
j ka B K f term can be calculated as 

 11 1

1

1

2

T
T TTT T T j jj j j

T
T Tk k k

j j
a a a

   

 

      
    
 

f K B B K fB K f f K B B K f

f K B B K f
 

where 
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 1
1 1

T
T T T

j j
T T

T T T T
j j j j

k k ka a a

 
 

 

   
   

   

f K B B K f
K K

f K B B f f K B B f  

1
1 1

k ka a


  

 
 

K K
K K  

For the  n
j ki a   term, it can be expanded into 

 
  1

2

n

j
n i

ki

i

ika a






 
  






 



  

the i ka   term involves eigenvalue differentiation and in case of none repeating 

eigenvalue, the Nelson’s method[28] can be used and the result is given as 

 i iT

k ka a

 


 

Q
x x   

where x  is the eigenvector corresponding to the largest eigenvalue i . The i ka Q term 

is derived following the chain rule 

1 1

1 1

[

]

i T T T
i j j i

k k

T

T T T
i j j i

k

a a

a

  

  

 
 

 

 
 

 

Q K
A K B B K K A

K
A K B B K K A

 

For the repeating eigenvalue problem, other methods such as given in [29, 30] can be 

employed, and that completes the sensitivity analysis. 

2.4 Numerical Examples 

Two numerical examples are presented in this section. In the first example, a 

simple truss design with one uncertain external load is solved. In the second example, a 

multiple external loads with uncertainties case is considered. The results from the 
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proposed ESCM method are compared to those from SDP method and Monte Carlo 

simulation.  

2.4.1 Single Load with Uncertainty 

Consider the 4-node 5-element truss structure with 1 external load. The initial 

structure configuration is given in Figure 2-10. Node 1 and Node 2 are fixed in both 

horizontal and vertical directions. The load with uncertainties is applied at Node 3. 

 

Figure 2-10. The 4-Node 5-Element Truss Structure 

The total weight of the structure is minimized subject to the constraint that the 

magnitude of displacement of Node 4 to be smaller or equal to 0.5. The Young’s modulus 

  and density   are 10 and 1 respectively for all elements. The external loads with 

uncertainties are modeled in the circle unknown-but-bounded model. Their nominal value 

f  is zero. The deviation f  is described as 

2
 1T T T       f f f f AA f  

The mathematical formulation of the this truss design problem is constructed as 
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 2

4

min              ( )

s.t.                                

                1

                          max[ ( , ) ] 0.5

                               ( , )

m m m
m

T T T

w w l a  

 

       





a

f

a

f f

f f f f AA f

u a f

a 0.1 300

 (2-33) 

The ESCM bound and the SDP bound are evaluated at a 0.5  to exam their effectiveness. 

Table 2-1. Function Value when 0.5a   for Example 1 

 Function Value Difference Relative Diff 

Monte Carlo 0.3617   

SDP 0.3617 0 0% 

ESCM 0.3617 0 0% 

As seen in Table 2-1, the results from both the ESCM and SDP methods match 

with the result form Monte Carlo simulation, which is considered as the true solution. 

The yalmip [31] SDP solver converges to its solution in 6 iterations. The time cost for 

both methods in this example are similar. The results prove the derivations in section 

2.3.1, that the ESCM method solves the single-constraint QCQP problem to its global 

optimum. The SDP method also gives the exact solution in this situation, as proven by 

Boyd [32]. 

The SDP relaxation formulation and the ESCM single level formulation are 

solved by the fmincon function using interior-point algorithm respectively. For the SDP 

problem, the gradient of the objective function is user-provided, while the gradient of the 

constraint is approximated by FDM, since the explicit expression of the gradient of the 

SDP bound cannot be derived. For the ESCM problem, the gradients of the objective 
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function and the constraint are analytically calculated and they are verified by the 

DerivativeCheck option in fmincon with central difference FDM. At the point 0.5a , the 

maximum relative discrepancies between analytic solution and FDM are 112.36 10  for 

the objective function and 142.51 10  for the constraint. Both problems converge to their 

local optima and the results are listed in Table 2-2. 

Table 2-2. Results from SDP and ESCM for Example 1 

 Optimum Func Value Iterations Func Calls 

SDP 1.5168 26 162 

ESCM 1.5167 20 22 

The ESCM demonstrates a significantly higher efficiency and produces a slightly 

better result compare to the SDP. Because of the FDM, the number of function calls in 

the SDP is high. The large amount of function calls greatly impact the efficiency of the 

SDP approach. The optimized elements sizes are listed in Table 2-3. 

Table 2-3. ESCM Optimized Elements Sizes of Example 1 

𝒂𝑖 1 2 3 4 5 

SDP 0.2678 0.3115 0.2678 0.1000 0.3115 

ESCM 0.2678 0.3115 0.2678 0.1000 0.3115 

At the accuracy of 4 significant digits, the optimized configuration of the SDP and 

ESCM are the same. The optimized configuration is plotted in Figure 2-11.  
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Figure 2-11. Optimized Structure Configuration of Example 1 

The structure could be viewed as two independent triangles linked by one bar. 

The upper triangle is formed by element 1 and 2 while element 3 and 5 form up the lower 

triangle. They are connected by element 4. The upper triangle supports the load hence it 

is strengthened by the optimizer. The displacement is measured at the lower triangle so it 

is also reinforced. The connection between the two triangles is set to the lower bound 

hence minimum amount of force is transferred. The optimized configuration is verified 

by Monte Carlo simulation and the results are shown in Table 2-4. 

Table 2-4. Verification of the Optimized Result for Example 1 

 Function Value Difference Relative Diff 

Monte Carlo 0.5   

ESCM 0.5 0 0% 

The ESCM produces the exact solution as expected. 

It is observed in the first example that since both the ESCM and SDP methods 

give the exact solutions for the single-constraint lower level sub problem, the ESCM 
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design and SDP design converge to the same optimized configuration. Thanks to the 

simplicity and differentiability of the ESCM bound, the ESCM single level formulation 

converges in less iteration and makes fewer function calls comparing to the SDP two-

level approach. 

2.4.2 Multiple Loads with Uncertainties 

To demonstrate the effectiveness of the proposed ESCM method, a truss structure 

design optimization problem with multiple uncertain loads is examined. The structure is 

composed of 9 nodes and 16 elements, as shown in Figure 2-12. Node 1 and Node 2 are 

fixed in both directions and loads are applied to all other nodes. In this problem, the 

design variable is the element cross section area vector a and the total weight of the 

structure is minimized subject to the constraint that the maximum magnitude of 

displacement of Node 9 to be smaller or equal to 0.5. The Young’s modulus   and 

density   are 100 and 1 respectively for all elements. The external loads with 

uncertainties are modeled in the unknown-but-bounded model. The nominal value vector

f  is listed in Table 2-5. 

Table 2-5. The Value for the Nominal Load Vector f  

i  3 4 5 6 7 8 9 

i
xf  0 0 0 0 0 0 0 

i
yf  -2 -2 -2 -2 -2 -2 -2 
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Figure 2-12. The 9-Node 16-Element Truss Structure 

The ESCM single level optimization problem is formulated as follow 

 

 9,

max

2

min          ( )

s.t.               , 0.5

                         

                          1
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w w l a  



  

 



a

f

a

u a f

f f f

f

a 0.1 300

 (2-34) 

The ESCM bound and the SDP bound are evaluated at 1a  to exam their 

effectiveness. Since this is a multiple uncertainty problem, both methods give 

conservative estimations of the true solution, as shown in Table 2-6. 

Table 2-6. Function Value when 
0

a = 1  

 Function Value Difference Relative Diff 

Monte Carlo 1.6125   

ESCM 1.6546 0.0421 2.6% 

SDP 1.6489 0.0364 2.3% 
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The Eq.(2-34) problem is solved using the ESCM method. The algorithm 

consistently converged to the same solution from different starting points; and since the 

1
st
 order optimality conditions are satisfied for all the trials, the solution is indeed the 

optimum solution. The details are shown in Table 2-7 and it is demonstrated in this 

example that the ESCM single level formulation provides an efficient and stable 

approach for solving the truss design optimization problem. 

Table 2-7. ESCM Results from Different Starting Point 

Starting Point 
Optimum Func 

Value 
1st Order Optimality Iteration Func Calls 

0
a = 300  20.2708 1.280×10

-6
 55 59 

0
a = 1  20.2708 1.280×10

-6
 32 37 

0
a = 0.5  20.2708 1.280×10

-6
 38 45 

0
a = 0.01  20.2708 1.280×10

-6
 34 35 

The optimized elements sizes are listed in Table 2-8. All none listed elements 

sizes are set to the lower bound, which is 0.1, by the optimizer. 

Table 2-8. ESCM Optimized Elements Sizes 

i 1 3 4 5 7 13 14 16 

𝒂𝑖 4.6362 0.1003 3.0758 3.1025 2.3990 0.9322 0.2332 1.1376 

The optimized configuration is verified by Monte Carlo simulation and is 

considered as a safe design. The results are shown in Table 2-9. 
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Table 2-9. Verification of the Optimized 

 Function Value Difference Relative Diff 

Monte Carlo 0.4704   

ESCM 0.5 0.0296 6.3% 

As a comparison the SDP relaxation method is also used to solve the Eq.(2-34) 

problem. Multiple starting points had been tried and the algorithm stopped at different 

points. A significantly higher number of iterations and function calls compare to the 

ESCM method is observed and the 1
st
 order optimality conditions are not satisfied hence 

the solutions are feasible solutions instead of optimum solutions. When starting from 

infeasible domain, i.e., 0
a = 0.01 , the program terminated after 8 iterations reporting no 

feasible solution found. The results are listed in Table 2-10 and one can reach the 

conclusions from this example that the SDP relaxation formulation is very sensitive to 

staring point and is low in efficiency. 

Table 2-10. SDP Relaxation Results from Different Starting Point 

Starting 
Point 

Optimum Func 
Value 

1
st
 Order 

Optimality 
Step Size Iter 

Func 
Calls 

0
a = 300  19.1240 1.412 5.85×10

-11
 110 2034 

0
a = 1  19.8154 31810 5.67×10

-11
 76 1431 

0
a = 0.5  19.8117 30050 8.64×10

-11
 19 354 

0
a = 0.01  N/A N/A N/A 8 159 

From the results of this example it could be seen that both the ESCM and the SDP 

conservatively estimate the global optimum of the multiple-constraint lower level 
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problem. The SDP approach fails to give an optimum solution from multiple starting 

points. On the other hand the ESCM single level formulation converges significantly 

faster than the SDP relaxation formulation and stably reaches the same optimum solution 

from a different starting point. As verified by the Monte Carlo simulation, the ESCM 

approach gives a safe design. 
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Chapter 3  

Convex Modeling Based Topology Optimization 

Topology optimization is an optimization method which finds material 

distribution that optimizes an objective function while satisfying certain constraints 

within the predefined design domain. Ever since the introduction of the homogenization 

method by Bendsøe and Kikuchi[33] into structural topology optimization problems, the 

topology optimization of solid continuum has become one of the most active fields in  

structural design optimization community during the past few decades.  

3.1 Introduction to Topology Optimization Method 

In order to formulate the topology optimization problem, the design variable, the 

objective function and the constraints need to be defined. In a typical topology 

optimization problem, the design variable is the material distribution described by a  and 

the problem can be presented as 

  min         d



a

a  (3-1) 

       0s.t.           d V


  a  (3-2) 

                      0,1a  (3-3) 

 
                      

                         :

  



σ f 0

σ C ε
 (3-4) 
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The objective function in Eq.(3-1) measures the performance of the structure. The 

  a  term is the structure property function and many different types of properties can be 

used as the objective, including the most commonly accepted strain energy. The 

inequality relation described in Eq.(3-2) limits the total material usage with the   a  term 

as the material density function. Equation Eq.(3-3) indicates that the design variable has 

to take the value 1 by selection and 0 by de-selection at any point within the domain. 

Finally the behavior of the structure is governed by the PDE system stated in Eq.(3-4). 

Analytical solution of PDEs of complex systems are sometimes unavailable and often 

impractical to calculate, finite element analysis is usually involved. Consequently the 

general formulation can be expressed as (assuming strain energy is used as the objective 

function) 

 
 

 

  
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                                  0,1
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u Ku
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K a u f

 (3-5) 

Here iv  represents the volume of the i
th

 element of the meshed domain and the material 

usage is calculated through summation of all the selected elements, which is defined by 

the value of ia , the volume integral over the domain is thus simplified due to the 

discretization. The behavior of the system is described by the stiffness matrix K , which 

is a function of the material density   a , and the force vector f . 

Clearly the problem stated in Eq.(3-5) is a binary optimization problem since the 

design value is restricted to take either 1 or 0. Generally, the solution to such 
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optimization problem is not yet practicable. Therefore continuous optimization strategies, 

such as methods based on the Solid Isotropic Material with Penalization (SIMP) model 

[34] are often adopted where the material density is assumed to vary from 0 to 1, or 

 0 a 1 .  

The SIMP model describes the material in the following way: 

     0p

e ea aK K  (3-6) 

where eK  is the element stiffness matrix and 0
eK  defines the material properties of a 

given isotropic material. Clearly  0 0e   K  and   01e e  K K , and the model 

described in Eq.(3-6) interpolates between the material properties 0 and 0
eK . When 

specifying the penalty parameter 1p  , the SIMP model makes the intermediate densities 

unfavorable therefore a 0-1 design can be obtained. The effect of different penalty is 

illustrated in Figure 3-1. Usually 3p   is selected [35]. 

 

Figure 3-1 SIMP Model with Different Penalty 
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Following this idea the problem formulation is evolved into 

 

0
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3 0
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K K

Ku f

 (3-7) 

In the problem showed in Eq.(3-7) the objective function and the constraints are 

continuous and differentiable, and therefore the optimization problem can be solved using 

gradient based optimization algorithms. The material density of each element is updated 

using the sensitivity information during the optimization process and the optimization 

algorithm eventually finds the optimal structure. The flow chart for solving the topology 

optimization problems is illustrated in Figure 3-2. 

For conciseness some constraints in Eq.(3-7) are deliberately hidden and this 

simplification yields 

 

0
1

min         

s.t.                 

                

T

N

i i
i

U

V a v V






 

a
u Ku

Ku f  (3-8) 

It should be kept in mind that although not shown in the problem statement, the system is 

still subject to those constraints. 
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Figure 3-2 The Workflow of Topology Optimization 

3.1.1 Strain Based Topology Optimization Method 

Although widely accepted the strain energy based topology optimization 

formulation has its limitations. Introduced by Lee [36], the strain based topology 

optimization method resolves the problems of strain distortion and stress concentration of 

the traditional method. In this new method the objective function is defined in terms of 

the effective strain  , as shown in Eq.(3-9). 
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a

Ku f  (3-9) 

The square of effective strain of the i
th

 element 2
i  can be calculated as: 

 
 

0
2

0 0

T T
e e e e e eT

e e

a E E



  

u K u u K u
u Cu  (3-10) 

where C  is the stress strain relation matrix; 0
eK  is the element stiffness matrix without the 

material density function  
p

a , as in Eq. (3-6); and 0E  is the base Young’s modulus. 

By defining the new global stiffness matrix 0
K  assembled from 0 0

e EK , the 

topology optimization problem in Eq.(3-9) can be rewritten as 

 

2 0

1

0

min       

s.t.                   

                        

N
T

i
i

V V










a
u K u

Ku f  (3-11) 

The effectiveness of the strain based topology optimization method can be seen from the 

following example given by Lee [36]: 

Consider the cantilever problem defined in Figure 3-3: 

 

Figure 3-3 Problem Definition for the Strain Based Method Example2 

                                                 
2 Resource: 36. Lee, E. and Rutgers University. Graduate School--New Brunswick., A strain based topology optimization 

method, 2011. p. x, 112 p. 
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The beam has its left edge fixed and a vertical force is applied at the lower right corner. 

The problem is also solved using the traditional strain energy based formulation as 

comparison. The optimum design configurations are plotted in Figure 3-4 and in Figure 

3-5 the Von Mises Stress is plotted for both designs. It proves that compared to the 

traditional strain energy based method, high stress concentration can be avoided in the 

strain based topology optimization method. 

 

Figure 3-4 Results of the Strain Based Method Example3 

                                                 
3 Resources: 36. Ibid. 

(a) Strain Based Formulation 

(b) Strain Energy Based Formulation 
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Figure 3-5 Von Mises Stress Plot of the Strain Based Method Example4 

3.2 Topology Optimization under Load Uncertainty 

In the traditional topology optimization formulation all the parameters, for 

example the external excitations, are often assumed to be deterministic. However in 

practical applications uncertainties are always unavoidable. Measurement errors, 

inaccuracy in manufacturing process, perturbations in external environment for example, 

are possible sources of uncertainties. The introduction of uncertainties not only affects 

the reliability of the final design but can also dramatically change the overall structure 

layout in certain circumstances [37], therefore the uncertainties must be considered in the 

design problem in order to achieve a more reliable solution. 

                                                 
4 Resource: 36. Ibid. 

(b) Strain Energy Based Formulation 

(a) Strain Based Formulation 
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Many methods has been developed to tackle such problems, for example, the 

Reliability Based Topology Optimization (RBTO) is proposed by Kharmand and Olhoff 

[37]. This approach has attracted a lot of attention and led to many studies of the kind. 

For example the three-dimensional geometrical nonlinearity problem solved by Jung and 

Cho [38] utilized the RBTO framework. Ayyub systematically studied the application of 

fuzzy sets concept in structural design [39] and the object in the design was described by 

a fuzzy set. However as discussed in Chapter 1, the probabilistic based method requires 

extensive statistical information on the uncertain parameter, and the fuzzy set based 

methods has their own disadvantages, such as complexity when multiple variables 

presented [40].  Based on the worst case design optimization (also called anti-

optimization) concept introduced by Elishakoff in [41], a method utilizing genetic 

algorithm (GA) was proposed by Venter and Haftka in [42], which reduced the two-level 

optimization problem into a single level problem. In this research, the topology 

optimization problem under external load uncertainty is constructed following the convex 

model and utilizing the worst case design optimization concept. To illustrate the solution 

strategy to this problem, an example shown in Figure 3-6 is used. 
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Figure 3-6 Topology Optimization under Load Uncertainty 

In this problem, the load uncertainty is formulated following the same unknown-

but-bounded model as describe in section 2.3, which decomposes the load into the 

nominal part and perturbation part, and the magnitude of the perturbation is bounded. 

Mathematically this model is expressed as 

  
2

2

 i i i

T
i i i c

  

    

f f f

f f f
  

The i
f  represents the nominal load and if  denotes the perturbation. The design target 

is to find the optimum material distribution which minimizes the total strain energy of the 

structure. However the introduction of load uncertainty into the original problem would 

render the objective, i.e., the strain energy, which is a function of the load, 

undeterministic. By the spirit of worst case scenario design, the maximum possible strain 

energy under the given uncertain load is selected as the new objective in order to achieve 

a conservative, or safe, solution. Thus the problem shown in Figure 3-6 can be described 
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as an optimization problem to find the optimum material distribution that minimizes the 

maximum possible strain energy under the load uncertainty.  

3.2.1 Problem Formulation 

Following the previous argument and introducing the load uncertainty into the 

design problem in Eq. (3-8), the formulation for the problem in Figure 3-6 is established 

as 

 

 

 
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 (3-12) 

The maximum value of the objective function can be found through solving the lower 

level optimization problem, which is defined as 

 

  2
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s.t.                     
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i i i
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i i
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



  

  

f
u Ku

Ku f

f Af

f f f

f f

 (3-13) 

Consequently the Eq. (3-12) upper level problem can be simplified into  

 
 

 

max

0

min         

s.t.              

U

V V

a
a

a
 (3-14) 

with maxU  term being the global optimum solution of the lower level problem states 

Eq.(3-13). Now the solution process of the design problem relies on the success in 
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evaluating the objective function value and more importantly its sensitivity with respect 

to the design variable, that is, calculating  maxU a  and the sensitivity term  max kU a a .  

Since the objective maxU  is the solution of the problem in Eq.(3-13), evaluating its 

value is in fact equivalent to solving the lower level optimization problem to its global 

maximum solution. Using equality constraints Ku f , if Af  and   f f f  of 

Eq.(3-13) in the expression of the objective TU  u f , the problem can be rewritten as 

 
   

 

max             

s.t.                     1

T
i i i i

T
i i

   

  

f f Q f f

f f

 (3-15) 

where TQ A KA  and Q  is Positive Semi-Definite (P.S.D) and for simplicity the 

constraint is assumed to be   1
T

i i  f f  instead of   2
T

i i c  f f . The feasible domain 

of the problem in Eq.(3-15) is plotted in Figure 3-7.  

 

Figure 3-7 Feasible Domain of Eq.(3-15) Problem 
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Clearly the problem is concave since the existence of multiple local maxima is 

observed. Therefore solving this problem using a conventional gradient based method 

may lead to different local optima when searching from different starting point and 

consequently the true worst case situation cannot be reliably identified. Furthermore 

using a time consuming iterative method for this lower level problem would make 

solving the already computational intense upper level topology optimization problem 

impractical, since the lower level problem needs to be solved in every iteration of the 

upper level design process. 

3.3 Convex Modeling Based Topology Optimization 

In order to overcome the aforementioned challenges the convex modeling based 

topology optimization method is developed from the ESCM method. Firstly the lower 

level problem, which is to identify the worst case structure response, is solved; the 

sensitivity of the lower level solution is then analyzed. With the function value and 

sensitivity information ready, the upper level design problem can be solved through a 

gradient based topology optimization algorithm. 
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3.3.1 Solution and Sensitivity of the Lower Level Problem 

Following the concepts of the ESCM method, the solution strategy starts with 

analyzing the KKT optimality conditions. The Lagrangian of the problem in Eq.(3-15) 

can be found as 

 
     

       

1

2 1

T T
i i i i i i

TT T T
i i i i i i i i

L 



          
  

           
  

f f Q f f f f

f Q f f Q f f Q f f f

 (3-16) 

The 1
st
 order KKT conditions are established from differentiating the Lagrangian: 

 2 2 2i i i

i

dL

d
      


Q f Q f f 0

f
 (3-17) 

   1 0
T

i i   f f  (3-18) 

 0   (3-19) 

   1 0
T

i i     
  

f f  (3-20) 

Differentiating the Lagrangian one more time yields the 2
nd

 order condition: 

 
 

2

2
2 2

i

d L

d
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
Q I 0

f
 (3-21) 

It should be noted that the 2
nd

 order condition in Eq.(3-21) requires 1  , where 1  is the 

largest eigenvalue of Q  and 1 0  . Together with the complementary slackness condition  

in Eq.(3-20) it could be proven that the inequality constraint in Eq.(3-18) must be active 

at the global optimum, therefore it can be treated as an equality constraint 

   1 0
T

i i   f f  (3-22) 

Rearranging the terms in the stationarity condition in Eq.(3-17) yields 
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 i i i     Q f Q f f 0  (3-23) 

Since matrix Q  is symmetric by construction, it is never defective and always has a 

complete basis of eigenvectors, hence can be decomposed using the eigen-decomposition, 

which yields TQ VDV . Pre-multiplying Eq.(3-23) by the eigenvector matrix transpose 

T
V  and collecting terms results 

 
 T i i i T     V Q f Q f f V 0

  

 
T T i T T i T i     V VDV f V VDV f V f 0   

 T i T i T i     DV f DV f V f 0  (3-24) 

Assuming T i V f x  and T i DV f b , Eq.(3-24) can be converted into 

   Dx x b  (3-25) 

It should be pointed out that by construction the linear transformation T i x V f  

preserves the magnitude of the vectors 

     1
T T

T i T i i i      x x f VV f f f
  

Therefore a system of equations can be constructed 

 
1T

  



Dx x b

x x
 (3-26) 

The Lagrange multiplier   can be recovered from Eq.(3-26) and the aforementioned 

KKT systems can be solved. 

The solutions to the system described in Eq.(3-26) depends on the right hand 

vector b . The solution method will be discussed for three different cases: 1) with all 

components of b  being non-zeros, 2) when some but not all components of b  being zeros 

and 3) while b  being a zero vector. To simply the derivation procedure a two 
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dimensional problem is considered. The three dimensional problems can be handled in 

the similar manner. 

1) All components of b  being non-zeros 

The most general case when all the components of b  are non-zeros is firstly 

considered. In this case, as proven by [43],   must not be an eigenvalue of Q . Therefore 

  I D  is invertible and x  can be expressed as 

  
1




 x I D b  (3-27) 

The x  term can be eliminated from Eq.(3-27) by inserting Eq.(3-27) into Eq.(3-25) as 

  
2

1T 


 b D I b  (3-28) 

For 2-D structures Eq.(3-28) can be expanded into the component form as 
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 
 (3-29) 

As shown in [44] the above system yields at most four distinct real roots for the Lagrange 

multiplier  , with one root larger than 1 , two roots between 1  and 2 , and one root 

smaller than 2 . However as stated before the 2
nd

 order condition Eq.(3-21) filtered out 

all the solutions except for the root greater than 1 , and this root can be found through 

iterative methods with a starting point in the section of 1 1 1, b     . Letting the solution 
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of the Eq.(3-29) * , the optimizer *if  of the problem in Eq.(3-15) can be found from 

Eq.(3-23), as 

  
1

* *i i


  f I Q Q f
  

Finally the global optimum solution can be evaluated as 

          * * *
max

max

2 +
T TT T

i i i i i i i i i iU
 
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f f Q f f f Q f f Q f f Q f  (3-30) 

Thus the objective function value of the problem in Eq.(3-14) is calculated.  

In order to solve the design problem using a gradient based method, the sensitivity 

of the objective function is required. The sensitivity analysis starts with differentiating 

the solution found as in Eq. (3-30) with respect to the design variable ka  
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f f Q f f

Q f
f f f f f f Q

 (3-31) 

Terms kd daQ  and i
kd daf  require evaluations. The derivation of the kd daQ  term is 

straight forward since TQ A KA  by construction. Thus  

 T

k k

d d

da da


Q K
A A  (3-32) 

where the calculation for kd daK  is well known and can be found in [35].  

Moving on to the i
kd daf  term, the analysis starts with differentiating both sides 

of the stationarity condition in Eq.(3-23) as 

 
     

ii i

k k k

dd d

da da da

 
 

Q fQ f f
 (3-33) 

Expanding Eq.(3-33) and collecting terms yields 
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d d d d d

da da da da da
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Q f Q f
f Q f f

 

The term i
kd daf  can be expressed as a function of kd daQ  and kd da , as shown in 

Eq.(3-34) 

      
1 1

i
i i i

k k k

d d d

da da da


 

 
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f Q
I Q f f I Q f  (3-34) 

The kd daQ  is already known and kd da  can be evaluated through introducing the 

  1 0
T

i i   f f  relation shown in Eq.(3-22). Differentiating both sides of Eq.(3-22) 

yields 

  
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 2 0
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T T
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da da da
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ff f
f f f  (3-35) 

Re-expressing the stationarity condition in Eq.(3-23) as  
1i i


  f I Q Q f  and plugging 

into Eq.(3-35) result in 
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Following the chain rule Eq.(3-36) can be rewritten as 
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Q
f I Q f f
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 (3-37) 

Thus kd da  is expressed in terms of kd daQ , which is derived previously. By inserting 

this result into Eq.(3-34), i
kd daf can also be considered as a function of kd daQ  and the 

sensitivity max kdU da , as shown in Eq.(3-31), can be evaluated. These results complete the 

analysis when all the components of b  are non-zeros. 
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2) Some but not all components of b  being zeros 

For the second case, it is assumed that some but not all of the components of 

vector b  are zeros. The physical meaning of this is that the nominal load has the same 

directions as the eigenvectors of the Q  matrix. For the two dimensional case the system 

described in Eq.(3-26) can be rewritten into the component form as 

 

1 1 1 1

2 2 2 2

1 1 2 2
1 2

2 2

0

0

1

T

x x b

x x b

x x
x x

x x


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       
         
       

   
     

   

 (3-38) 

The assumption on the vector b  implies that either 1b  or 2b  equals to zero. Therefore the 

system can be further broken down into two circumstances: when 1 0b   and when 2 0b  , 

with the supposition that 1 2  . By using 1v  and 2v  to indicate the eigenvectors 

associated with the eigenvalues, the case when 1 0b   represents when i
f  is aligned with 

2v  while 2 0b   implies that i
f  is in the direction of 1v . 

In case of 1 0b  , Eq.(3-38) can be written as a set of algebraic equations: 
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2 2 2

2 2
1 2
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x

x b

x x

 

 
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 

    

Working from the relation  1 1 0x   , it requires either 1 0x   or 1 0   . If 1 0x  , 

from the condition 2 2
1 2 1x x   , 2x  can be solved as 2 1x   , 2 2 2b x   , or 2 2b   . 

On the other hand if 1 0   , it implies that 1  ,  2 2 1 2x b    . It should be noted that 

the condition 2 2
1 2 1x x   requires 2 1x  . Consequently    2 2 1 2 2 1 2 1x b b         

(since 1 2  ), therefore in order for a solution to exist the following relation must hold: 
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1 2 2b   . Furthermore the 2
nd

 order condition implies that 1 2    . Therefore 

combining all the above analyses an conclusion could be reached that when 1 2 2b   , 

2 2b    with 1 0x  , 2 2 2x b b ; and when 1 2 2b   , 1   with  2 2 1 2x b     and

 
2

1 2 1 21x b        . 

Now considering the other case when 2 0b  , a similar set of algebraic equations 

can be constructed as 

 

 

 

1 1 1

2 2

2 2
1 2

0

1

x b

x

x x

 

 

 

 

 

  

Following the same idea the relation  2 2 0x    requires either 2 0x   or 2 0   . 

When 2 0x  , 1x  can be solved as 1 1x   , and 1 1 1b x   , or 1 1b   . When 2 0   , 

2   and  1 1 2 1x b    . However the relation 2 2
1 2 1x x   confines the magnitude of the 

1x  term to be 1 1x  , which can be extended to    1 1 1 2 1 1 2 1x b b        , or 

2 1 2b     , and it violates the 2
nd

 order condition which necessitates that 1 2    . 

Therefore 2 0    is not a valid solution and the only solution to this problem is 

1 1b   , with 1 1 1x b b . 

The above discussion provides the completes description of the derivation for the 

case when some but not all of b ’s components equal to zeros. Once the correct solution 

for the Lagrange multiplier   is identified one can proceed to the sensitivity analysis, 

which is identical to the previous non-zeros case and will not be repeated here. 
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3) The vector b  being a zero vector 

In the third case, b  is assumed to be a zero vector. The physical meaning of this 

special case is that the nominal load i f 0 , as shown in Figure 3-8: 

 

Figure 3-8 The 
i f 0  Situation 

It can be proven by definition T i DV f b . Since both D  and T
V  are full rank, the only 

solution for b 0  is i f 0 . 

With the absence of the nominal load, the lower problem can be expressed as 

 
 

 

max            

s.t.             1

T
i i

T
i i

 

  

f Q f

f f

 (3-39) 

The 1
st
 order KKT conditions can be found as 

 2 2i i

i

dL

d
     


Q f f 0

f
 (3-40) 

   1 0
T

i i   f f  (3-41) 

 0   (3-42) 

   1 0
T

i i     
  

f f  (3-43) 
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As pointed out before, from the dual feasibility condition in Eq.(3-42) and the 

complementary slackness condition in (3-43) it can be seen that the constraint 

  1
T

i i  f f  must be active at the optimum, therefore the primal feasibility condition in 

Eq.(3-41) can be converted into an equality constraint. Combining the Eq.(3-40) and 

Eq.(3-41) an eigenvalue problem can be defined and solving this problem yields the 

optimum candidates. Furthermore by employing the 2
nd

 order condition, which has the 

same expression as Eq.(3-21), the global optima can be filtered out from the candidate 

pool, since only the greatest eigenvalue of the Q  matrix satisfies the 2
nd

 order condition. 

Thus the solution to the Eq.(3-39) problem can be found as 

 

 

 

max

max

* *

*

T
i i

T
i i

U



   
  

  



f Q f

f Q f  (3-44) 

where *  is the greatest eigenvalue of Q  and *if  is the corresponding eigenvector. The 

sensitivity analysis of the solution found in Eq.(3-44) follows the eigenvalue 

differentiation.  

 * *
*

T
i

k

i

k

d d

da da


  

Q
f f

 

The calculation of kd daQ  is the same as in Eq.(3-32) and it completes the sensitivity 

analysis. 

With the function value of the lower level problem evaluated and the sensitivity 

analysis completed, the upper level design problem, as formulated in Eq.(3-14), is ready 

to be solved by standard gradient based topology optimization algorithms, such as the 
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Sorting Method, Optimization Criteria (OC) or Method of Moving Asymptotes (MMA) 

[35].  

3.4 Numerical Example 

In this section, a design problem of a cantilever under load uncertainty is 

discussed to demonstrate the effectiveness of the convex modeling based topology 

optimization method.  

In this example a rectangular design domain with left edge fixed is considered, as 

shown in Figure 3-9 (a). The structure is subject to an unknown-but-bounded load with 

uncertainty applied at the lower right corner. The design objective is to obtain higher 

overall stiffness hence the strain energy of the structure is minimized. The problem is 

solved using the convex modeling based min compliance formulation. 

To serve the purpose of comparison the problem is also solved with a traditional 

method through replacing the load with uncertainty by deterministic loads. Two 

comparisons are made, first with a single static load and second with a multiple-load-case 

with loads pointing to different directions, as shown in Figure 3-9 (b) and Figure 3-9 (c) 

respectively. The applied loads are indicated by the arrows. 
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Figure 3-9 Design Domain and Boundary Conditions of the Cantilever 

The optimum structures generated for the three problems are illustrated in Figure 3-10. 

The arrows indicate the directions of the loads which yield the maximum strain energies 

for the configurations, namely the worst loads. 

(a) ESCM 

(b) Single Load 

(c) Multiple-Load-Case 



58 

 

 

 

Figure 3-10 Results of Cantilever Example 

It is observed from this example that the convex modeling based method and the 

multiple-load-case example have yielded similar configurations. The reason is that during 

each iteration of the convex modeling based design process, the worst case scenario, or 

the worst load, of the current configuration was used; similarly for the multiple-load-case 

situation, multiple loads pointing to different directions were considered simultaneously. 

Since the worst load was covered by the region spanned by the multiple load cases, the 

result obtained is similar to that of the convex modeling based method. The effect of the 

worst load is considered at the cost of computational complexity in the multiple load case 

(a) ESCM 

(b) Single Load 

(c) Multiple-Load-Case 
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strategy. For the single deterministic load scenario, in contrast, only one direction was 

considered while other possibilities were ignored. Consequently this resulted in poor 

performance under the worst load, as seen in Table 3-1, where the maximum strain 

energies of the optimized structures for the three different situations are listed. 

Table 3-1 Strain Energy under the Worst Load 

 Convex Model Single Multiple 

Strain Energy 83.90 190.16 84.46 

The difference between the convex modeling based and the multiple-load-case is 

that in the first method the worst load, which is automatically determined, was always 

used. While for the later one all the applied excitations are considered equally. Only with 

a sufficiently large number of loads the method based on multiple load cases yields a 

similar result as the convex modeling based method. It is also worth noting that compared 

to the convex modeling based method, the computational cost of the multiple-load-case 

method is much higher, since numerous analyses must be performed. In this example five 

load cases are considered, which implies that within every iteration of the optimization 

algorithm, five FEM analyses are required, compared to two FEM analyses of the convex 

modeling based method. 

Through this example the effectiveness of the convex modeling based method in 

solving topology optimization problem is demonstrated. It can be seen that the convex 
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modeling based method extends the capacity of the topology optimization when load 

uncertainties are involved.  
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Chapter 4  

Protective Structure Design 

4.1 Introduction to Protective Structure Design 

The protective structure design problem has a wide range of engineering 

applications. For example in packaging design, one of the primary objectives is to protect 

its content when a package is dropped. Figure 4-1 illustrates a typical packaging drop test. 

 

Figure 4-1 Packaging Drop Test 5 

However the protective structure design problem can be very complicated. Considering 

the drop test illustrated above, several challenges can be identified: the direction of the 

                                                 
5 Resource: http://www.opti-pack.org/10700,2 

http://www.opti-pack.org/10700,2
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impact force when the package hits the floor is uncertain; both the packaging and its 

content needs to be considered; and during free fall the package is unconstrained. In this 

chapter, a protective structure design problem is investigated due to its wide range of 

engineering application and high level of complexity.  

Consider the problem shown in Figure 4-2:  

 

Figure 4-2 Protective Structure Design under Load Uncertainty 

The design domain is unconstrained and is composed of two regions: the inner region A 

and the outer region B; region A is non-designable and needs to be protected. The design 

target is to find the optimum layout in region B which provides the maximum protection 

to region A under an uncertain impact at the lower right corner.  

There are several challenges worth pointing out in solving this problem: Firstly 

the external load is uncertain and consequently deterministic based topology optimization 

method cannot be used. Secondly there are multiple objectives for the design: protecting 
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region A while maintaining the overall structure integrity. The protection requires 

minimum amount of strain energy in the A region and the structural integrity 

consideration prefers a lower total strain energy. Therefore it is a multi-objective 

optimization problem. Thirdly the structure is unconstrained. A large rigid body motion 

will be involved when external load is applied and the response of the structure can no 

longer be analyzed by a static method.  

In order to solve this protective structural design problem, the convex modeling 

based topology optimization method is combined with the regional strain energy 

formulation and the inertial relief method. 

4.1.1 Regional Strain Energy Formulation 

Strain energy of the whole design domain is used as the objective function in most 

topology optimization formulations, where an optimum structure which yields the 

maximum overall rigidity can be achieved by minimizing the total strain energy. A 

regional strain energy formulation was proposed by Gea [45] for solving energy 

absorbing compliant structure design problems. In this method the strain energy of a 

specified region in the design domain is considered. Combining with the total strain 

energy, the rigidity and compliance of the structure can be obtained simultaneously. 

Consider the problem shown in Figure 4-3 for example: 
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Figure 4-3 Regional Strain Energy Formulation 

Region A is a portion of the total design domain and it should absorb as much strain 

energy as possible to protect the other part of the structure; at the same time the overall 

structural integrity must be maintained. To achieve both goals Eq.(4-1) is used as the new 

objective function 

 min     
T

A

U

U
 (4-1) 

Clearly both requirements can be satisfied since minimizing TU  keeps the structural 

integrity while minimizing 1 AU  is equivalent to maximizing AU  ( AU  is the strain energy 

and 0AU  ). 

For discretized system the regional strain energy AU  can be calculated through 

summing the element strain energy of the elements in region A: 

 T
A e e e

i

U  u K u , i A  (4-2) 

Denoting the part of the global stiffness matrix associated with region A assembled from 

Eq.(4-2) as AK , the relation can also be written as 
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 T
A AU  u K u  (4-3) 

4.1.2 Inertial Relief Method 

Traditionally the majority of topology optimization problems focus on solving 

static problems. However in many practical problems dynamic physics are involved. For 

example in the aforementioned packaging drop test problem the system cannot be 

considered as static during the impact since the packaging is unconstrained and both rigid 

body displacement and elastic deformation are involved. Compared to the static analysis, 

the dynamic analysis requires a much higher computational effort. Furthermore the 

sensitivity information which is essential for the topology optimization cannot be easily 

obtained, since the solution to the dynamic problem is calculated at each time step [46]. 

The inertial relief method, which considers the dynamic effect but has a complexity level 

of static problems, can be utilized in solving dynamic topology optimization problems.  

The inertial relief method approximates the dynamic solution to unconstrained 

systems under constant or slowly varying load problems [47] and accurate results can be 

obtained when the frequency of the external load is much lower than the structure’s first 

natural frequency [48]. As summarized by Song et al. [49], when a time independent load 

is applied to an unconstrained structure the dynamic equilibrium equation can be written 

as 

 Total TotalKu + Mu = f  (4-4) 

where M  is the global mass matrix and the second time derivative of the displacement u  

is the acceleration. The subscript Total indicates total value and it can be decoupled into 
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the rigid body motion part (denoted by the subscript Rigid) and elastic deformation part, 

as in Eq.(4-5) and Eq.(4-6) 

 Total Rigid u u u  (4-5) 

 Total Rigid u u u  (4-6) 

By inserting these relations into Eq.(4-4) the governing equation becomes 

 Rigid Rigid   Ku Ku Mu Mu f  (4-7) 

Since the rigid body motion will not generate any internal force within the structure, 

Rigid Ku 0  and therefore can be removed from Eq.(4-7). Furthermore based on the 

unconstrained structure subject to time independent load assumption, the acceleration due 

to elastic deformation is negligible compared to rigid body acceleration. Hence Mu  can 

also be neglected and Eq.(4-7) can be simplified to 

 Rigid Ku Mu f  (4-8) 

The term RigidMu  represents the inertial force generated by the rigid body motion and 

Eq.(4-8) is the governing equation used in the inertial relief method.  

It is worth pointing out that moving the inertial force term to the right side of 

Eq.(4-8) yields 

 Rigid Ku f Mu  (4-9) 

The right hand side terms can be considered as the new load and thus the original 

dynamic problem is converted into a static problem. 

In Eq.(4-9) the rigid body acceleration Rigidu  can be found from rigid body dynamics. The 

motion at any point of a rigid body can be expressed by the motion of a given reference 
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point [50]. Therefore when choosing the center of gravity (CG) as the reference point, the 

motion at any node of a meshed geometry can be described by the motion of its CG, as 

shown in Figure 4-4 

 

Figure 4-4 Rigid Body Motion of Meshed Geometry 

The acceleration of j
th

 node j

Rigidu  can be calculated from the CG acceleration CG
Rigidu  and a 

geometric rigid body transformation matrix j
R  

 j j CG
RigidRigid u R u   

where  

 
j
xj

Rigid j
y

u

u

 
  
 

u ,
 

 

1 0

0 1

j CGj

j CG

y y

x x

   
  

 
R ,

CG
x

CG CG
Rigid y

CG
z

u

u



 
 

  
 
 

u   

The coordinates of the CG CGx  and CGy  can be calculated as 

 
1

1

1 nCG i

in
iCG i

i
i

x x
m

y ym 



    
     

    

 (4-10) 

where ix , iy  and im  are the coordinates and the mass for the i
th

 node respectively.  
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The global acceleration vector Rigidu  can be obtained through assembling the nodal 

vectors, which yields 

 CG
Rigid Rigidu Ru   

where 

1

2

Rigid

Rigid

Rigid

n
Rigid

    
     
 
 
    

u

u
u

u

,

1

2

n

    
     
 
 
    

R

R
R

R

 

The resultant load acting on the CG can also be obtained from the same transformation: 

 CG Tf R f   

The concept of inertial relief requires that the resultant load on the CG CG
f  must be 

balanced by the inertial force about the CG, as described in Eq.(4-11). 

 T CG CG T
Rigid  R MRu f R f  (4-11) 

It should be pointed out that the elastic deformation u  is orthogonal to the rigid body 

shapes iφ . This can be proven through mode analysis. The rigid body shapes iφ  are 

eigenvectors corresponding to the eigenvalues 0i  , while the elastic deformation u  can 

be expressed as a linear combination of other eigenvectors corresponding to the non-zero 

eigenvalues, as shown in Eq.(4-12) 

 0T
i φ Mu  (4-12) 

Since the rows of the geometric rigid body transformation matrix R  can be considered as 

linear combinations of the rigid body shapes iφ , Eq.(4-12) can be extended into 

 T R Mu 0  (4-13) 

Combining the governing equation in Eq.(4-8) with Eq.(4-11) and Eq.(4-13) yields 
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T T CG T

Rigid

     
     

     

K MR u f

R M R MR u R f
 (4-14) 

Solving Eq.(4-14) gives the elastic deformation u  and the CG acceleration CG
Rigidu  

simultaneously. The unconstrained problem is therefore solved by the inertial relief 

method. 

4.2 Problem Formulation 

For a typical protective structural design problem as illustrated in Figure 4-2, the 

design requires that strain energy absorbed by region A, denoted by AU , is minimized and 

protected. Meanwhile the strain energy of the whole structure TU  also needs to be 

minimized to maintain the overall structure integrity. By utilizing the concept of the 

regional strain energy method introduced in section 4.1.1, the objective function can be 

defined as 

 min        A TU U
a

 (4-15) 

It should be noted that since this is a multi-objective optimization problem, and therefore 

when converting the multiple objectives to a single objective the choice may not be 

unique. For the problem in Figure 4-2 for example, the weighted sum formulation can 

also be used, as in Eq.(4-16) 

 min        A A T Tw U w U
a

 (4-16) 

However specifying the weightings Aw and Tw  might be problematic. The multiplication 

formulation shown in Eq.(4-15) is used as the objective function for its simplicity. 
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In this problem external loads have uncertainties. The convex modeling based 

topology optimization method can be used to solve the uncertainty problem. The worst 

structure response can be identified using the convex modeling based method under a 

given load uncertainty and this worst case, indicated by  
max

AU , can be used as the new 

design objective. The convex modeling based method also gives the load that yields the 

worst response, namely the worst load *
f . The total strain energy can be evaluated using 

*
f , and the design problem with load uncertainty can be formulated as 

 

   

 

max

0

min        

s.t.                   

                      

                      

                  

                 1

A T

i

i i i

T
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V V

  







  

  

a
f

Ku f

f Af

f f f

f f

 (4-17) 

The structure in Figure 4-2 is unconstrained during the impact. In this case static 

analysis Ku f  can no longer be used. This issue can be resolved by implementing the 

inertial relief method explained in section 4.1.2. Consider the inertial relief equation in 

Eq.(4-14): 

 
T T CG T

Rigid

     
     

     

K MR u f

R M R MR u R f
  

It can be simplified into 

 ˆ ˆ Ku Gf  (4-18) 

where 

ˆ
T T
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By defining a rectangular matrix  

 nxnL I 0  

The displacement u  can be extracted from û  as ˆu Lu , and it can be calculated using 

Eq.(4-18), as 

 1ˆ u LK Gf  (4-19) 

Replacing the original governing equation with the modified inertial relief governing 

equation in Eq.(4-19), the design problem can be defined as 

 

   
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max

0

1
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s.t.                       

ˆ                       
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f

u LK Gf

f Af

f f f

f f

 (4-20) 

The strain energy AU  can be expressed as a function of displacement u , following 

relation given in Eq.(4-3) 

 1ˆ ˆT iT T T T i
A A AU   u K u f AG K L K LK GAf   

The worst structure response can be found trough solving the problem defined in 

Eq.(4-21) 

 
   

 

max             

s.t.                     1

T
i i i i

T
i i

   
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f f Q f f

f f

 (4-21) 

where 1ˆ ˆT T T
A A

 Q AG K L K LK GA . This problem can be solved by using the convex 

modeling based method proposed in section 3.3.1. The worst load  * *i i f A f f  is also 
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recovered during the convex model solution procedure and * 1 *T
TU  f K f  can be 

evaluated accordingly. 

4.2.1 Sensitivity Analysis 

The solution strategy to the design problem in Eq.(4-20) follows the convex 

modeling based method proposed in Chapter 3. Now the sensitivity of the objective 

function needs to be analyzed. Differentiating the objective function    *

max
A TU U 

 
f  

with respect to the design variable element pseudo density ka  yields 

 
     

   
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max *max
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A T TA
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k k k

d U U d Ud U
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da da da
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     

 

f f
f  (4-22) 

The calculation for the term  
max

A kd U da  follows the derivation in section 3.3.1 

and can be expressed as a function of A kd daQ  and i
kd daf , the latter one is also a 

function of A kd daQ . 

For the term  *
T kd U da 

 
f , it can be expanded as 
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K
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f
f f A K A f

 (4-23) 

The term kd daK  is readily known and as mentioned before the i
kd daf  is a function of 

A kd daQ . 
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As seen in Eq.(4-22) and Eq.(4-23) the sensitivity of the objective function 

   *

max
A TU U 

 
f  can be expressed in terms of A kd daQ . Since 1ˆ ˆT T T

A A
 Q AG K L K LK GA , 

A kd daQ  can be calculated as follow: 
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It can be identified from Eq.(4-24) that the terms A kd daK , kd daG  and ˆ T
kd da

K  require 

evaluation. The calculation for A kd daK  is similar to that of kd daK  and is not repeated. 

The term kd daG  can be calculated as 
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For the term ˆ T
kd da

K , by definition 
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The terms kd daR , kd daK and kd daM  requires evaluation. The derivations for the latter 

two are readily known. For kd daR , since R  is defined as 

1

2

n

    
     
 
 
    

R

R
R

R

, 
 

 

1 0

0 1

j CGj

j CG

y y

x x

   
  

 
R , 

1

1

1 nCG i

in
iCG i

i
i

x x
m

y ym 



    
     

    

 

therefore 

 

1

2

k

k

k

n

k

d

da

d
d

da
da

d

da

  
  
  
  
  

   
 
 
  
  
   

R

R
R

R

, 
0 0

0 0

CG

j
k

CGk

k

dy

d da

dxda

da

 
 
 
 

 
 

R
 (4-27) 

where the terms CG kdy da and CG kdx da  can be evaluated as 
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Inserting Eq. (4-28) into Eq. (4-27) gives kd daR . 

With the terms kd daR , kd daK and kd daM  evaluated, A kd daQ  and i
kd daf  can 

be calculated. The sensitivity analysis is completed by plugging the results back to 

Eq.(4-22). 

4.2.2 Utilizing Strain Based Topology Optimization Method 

As introduced in section 3.1.1, the strain based topology optimization method 

proposed by Lee [36] can avoid strain distortion and stress concentration found in strain 
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energy based formulation. This new topology optimization method can also be employed 

into the protective structure design problem. 

By using the strain based formulation as shown in Eq.(3-11), the protective 

structure design problem can be expressed as 
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where 2 0T
i A

A

  u K u  and 2 0T
i

T

  u K u , the definitions for 0
AK  and 0

K  follow the 

descriptions in section 3.1.1. The worst case effective strain can be evaluated by solving 

the problem defined in Eq.(4-30) 
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where 0 1ˆ ˆT T T
A A

 Q AG K L K LK GA .  

The sensitivity calculation for the strain based problem in Eq.(4-29) is very 

similar to that of the strain energy based problem in Eq.(4-20). The only difference is 

when calculating the term A kd daQ , 0
A kd daK  is evaluated instead of A kd daK  in the strain 

energy based problem. 

With the sensitivity information ready the design problem can be solved. 
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4.3 Results and Discussions 

In this section, the protective structure design problem introduced in Chapter 4.1 

is analyzed and solved using the proposed convex modeling based method. Two 

examples are analyzed in this section. In the first example there is one load with 

uncertainty applied at the lower right corner of the unconstrained structure. In the second 

example four loads with uncertainties are applied simultaneously at the four corners of 

the structure. 

4.3.1 Example 1 

Considered the structure shown in Figure 4-5, the outer cushion B must provide 

protection to the content A under external impact. The strain based topology optimization 

formulation is used and the protection is measured in terms of total effective strain. 

Therefore the design requires minimizing the total effective strain in region A. The 

structure is unconstrained and a force with uncertainty is applied at the lower right corner. 

In practice the cushion is usually made of material much lighter and softer than 

the content to reduce the total weight of the packaging and to absorb the majority part of 

the energy during impact. In this example the cushioning material in region B is assumed 

to be 1000 times lighter and 10 times softer than the content material in region A, or 

1000A B  , 10A BE E . 
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Figure 4-5 Protective Structure Design Example 1 

The optimum configuration to the Figure 4-5 problem is plotted in Figure 4-6 

 

Figure 4-6 Result of the Protective Structure Design Example 1 
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It can be seen in the result that the content region A is enclosed by the shell shape 

protecting structures formed in region B. The protecting effect of the design can be 

proven by the percentage of total effective strain in different region under the worst case 

scenario. Among the total amount of effective strain, region B accounts for 99.98% and 

only 0.02% goes to region A, as shown in Table 4-1. Since the region A is subject to 

minimum deformation, it is well protected.  

Table 4-1 Total Effective Strain under the Worst Load 

 
Region A Region B Total  

Total Effective 
Strain 

0.2 1221.6 1221.8 

Percentage 0.02% 99.98% 100% 

In terms of energy it can be found that the content is subject to only 0.50% of the 

impact energy. The cushioning absorbs almost all of the impact energy, as listed in Table 

4-2. The results agree with the effective strain results and region A can be considered as 

safe. 

Table 4-2 Strain Energy under the Worst Load 

 
Region A Region B Total  

Strain Energy 1.9 375.2 377.1 

Percentage 0.50% 99.50% 100% 
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4.3.2 Example 2 

In this second example four loads with uncertainties are applies to the same 

structure described in Example 1, as seen in Figure 4-7. 

 

Figure 4-7 Protective Structure Design Example 2 

In this example the material properties are the same as Example 1, the cushioning 

material is assumed to be 1000 times lighter and 10 times softer than the content material, 

or 1000A B  , 10A BE E . 

The design problem is solved by the proposed convex modeling based method 

and the optimized configuration is plotted in Figure 4-8. It is observed in the plot that the 

content is suspended by the protecting structure.  
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Figure 4-8 Result of the Protective Structure Design Example 2 

The total effective strain of different regions is listed in Table 4-3. In this example less 

than 1% of total effective strain is contributed by region A and the majority of 

deformation happens in region B. 

Table 4-3 Total Effective Strain under the Worst Load 

 
Region A Region B Total  

Total Effective 
Strain 

6.0 5642.4 5648.4 

Percentage 0.11% 99.89% 100% 

When analyzing the performance of the structure using strain energy it is observed that 

the protective structure absorbed 96.43% of the total strain energy. The content only 

contributes 3.57%, as shown in Table 4-4. Since under the worst case minimum amount 



81 

 

 

of strain energy was absorbed by the content, the protective structure can be considered 

as effective.  

Table 4-4 Strain Energy under the Worst Load 

 
Region A Region B Total  

Strain Energy 60.2 1624.0 1684.2 

Percentage 3.57% 96.43% 100% 

It is clearly demonstrated through the two protective structure design example that 

the convex modeling based method can evaluate the performance of the structure under 

the external load uncertainties. This method can be integrated with other analyzing tools 

and can be used to solve complicated design problems. 
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Chapter 5  

Conclusion and Future Work 

5.1 Conclusion 

In this dissertation a new method, namely the convex modeling based topology 

optimization method, for handling external load uncertainty in structure design problem 

is proposed. This new method formulated the uncertainties using the non-probabilistic 

based model and served as a complement to the sophisticated probabilistic based method. 

This new method is especially useful when the distribution information of the load 

uncertainties is unavailable and it can be easily implemented into other analysis tools. 

Developed from the truss design optimization problem, the ESCM method 

formulates the external load uncertainties using a convex modeling based unknown-but-

bounded uncertainty formulation. The design problem is then defined following the 

concept of worst case design optimization: if the design satisfies the requirement under 

the worst condition, it can be considered safe. Therefore the design problem can be 

formulated as a two-level optimization problem: the lower level problem locates the 

worst case scenario while the upper level problem designs the optimum structure. The 

single-constrained lower level problem can be solved using an eigenvalue approach. The 

solution to the multiple-constrained lower level problem is estimated by a superposition 
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of the eigenvalue solutions. The sensitivity of solution to the lower level problem is then 

analyzed and with the sensitivity information the design problem can be solved.  

The ESCM method is further integrated into the topology optimization problem, 

yielding the Convex Modeling Based Topology Optimization Method. This formulation 

extends the capability of the topology optimization method to take the external load 

uncertainties into consideration. The effectiveness of this convex modeling based 

topology optimization method is demonstrated through comparisons with conventional 

topology optimization formulations.  

The convex modeling based topology optimization method can be implemented 

into other analyzing tools due to its simplicity. In this dissertation a protective structure 

design problem is considered. In addition to external load uncertainties, this design 

problem has multiple objectives and the structure itself is unconstrained. The problem is 

solved using the proposed convex modeling based method in conjunction with strain 

based topology optimization method, regional strain energy formulation and inertial relief 

method. The resulted structure is considered as very effective since nearly all the impact 

energy is absorbed by the protecting structure, leaving the content intact.  
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5.2 Future Work 

The repeating eigenvalue situation would require further investigation. The 

computational efficiency can be further improved. Measures such as GPU computing can 

be implemented. 
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