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ABSTRACT OF THE DISSERTATION

Meta-Analysis Through Combining Confidence Distributions

by Guang Yang

Dissertation Director: Minge Xie

This dissertation develops a set of new statistical methods for synthesizing joint infor-

mation of multiple parameters from different sources by combining multivariate normal

confidence distributions. These methods support the development of an asymptotic effi-

cient network meta-analysis approach and also several robust multivariate meta-analysis

approaches. Both theoretical and numerical results show that the developed methods are

superior to the conventional frequentist meta-analysis approach and the commonly used

Bayesian methods. They also indicate that the developed approaches can mitigate effec-

tively the undue impact from potential outlying studies.

Meta-analysis generally refers to the process of systemically combining the results from

independent but similar studies in support of data-driven decision making. It has been

widely used in many fields, including clinical researches, social sciences, among others.

Many methods have been developed to combine information effectively and efficiently.
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However, there still remain several challenging problems. This dissertation aims to solve

two challenging problems that are often seen in meta-analysis.

The first part of this dissertation is on how to efficiently incorporate indirect evidence in the

network meta-analysis setting, which aims to strengthen the pairwise direct comparison by

borrowing information from indirect comparisons. The developed network meta-analysis

approach can efficiently combine all studies from a network of direct and indirect evidence,

and, moreover, effectively include studies that compare more than two treatments.

The second part of this dissertation is on how to mitigate effectively the effect of in-

consistent or outlying studies in the meta-analysis by developing two robust multivariate

meta-analysis approaches. One approach assumes that the number of studies goes to infin-

ity, whereas the other assumes that the number of studies is finite but each study size may

go to infinity. These approaches are shown to be robust against the effect of inconsistent

or outlying studies, as well as model misspecifications. We present both theoretical and

numerical results to show that these two robust approaches achieve high breakdown points

and retain relatively high efficiency in comparison with the most efficient approach.

Finally, an R package gmeta has been developed to facilitate the use of the unified univariate

meta-analysis framework through combining confidence distributions.

iii



List of Tables

2.1. CAD Trial Data, Target Lesion Revascularisation at 1 year . . . . . . . . . 19

2.2. Results of meta-analyses on CAD data . . . . . . . . . . . . . . . . . . . . . 26

2.3. Cirrhosis data: number of patients who had a first bleeding event. . . . . . 27

2.4. Results of meta-analysis on cirrhosis data . . . . . . . . . . . . . . . . . . . 28

2.5. Simulation Settings - Number of Trials k and Patients Involved in Each Group nij 29

2.6. Summary of results of simulation studies - Case 1 . . . . . . . . . . . . . . . 33

2.7. Summary of results of simulation studies - Case 2 . . . . . . . . . . . . . . . 34

2.8. Summary of results of simulation studies - Case 3 . . . . . . . . . . . . . . . 35

2.9. Summary of results of simulation studies - Case 4 . . . . . . . . . . . . . . . 40

3.1. Stomach Ulcer Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.2. Meta-analysis of results for log-odds and log-odds-ratio of the stomach ulcers example 73

3.3. Lidocaine Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4. Meta-analysis of results for log-odds and log-odds-ratio of the lidocaine example . 75

3.5. CAD Trial Data Set, Target Lesion Revascularisation at 1 Year . . . . . . . 80

3.6. Meta-analysis of results for log-odds of the treatments in CAD data set . . . . . . 81

iv



4.1. 2x2 Table From One Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.2. An Observed 2x2 Table From a Small Study . . . . . . . . . . . . . . . . . . 110

4.3. List of the p-value combination methods unified under the CD combining

framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

v



List of Figures

2.1. Network of comparisons for bare-metal stents (BMS), paclitaxel-eluting

stents (PES), and sirolimus-eluting stents (SES) in 37 trials (Stettler et al.,

2007) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1. Efficient and robust multivariate meta-analysis on the original data set. . . 71

3.2. Efficient and robust multivariate meta-analysis on the contaminated data set. 73

3.3. Efficient and robust multivariate meta-analysis on the original data set. . . 76

3.4. Efficient and robust multivariate meta-analysis on the contaminated data set. 77

4.1. An example of using CD for making inference. The solid curves in figure (a),

(b) and (c) are confidence distribution, confidence density, and confidence

curve, respectively, for the parameter µ based on a sample generated from

xi ∼ i.i.d N (µ(true) = 0, σ2(known) = 1). Here, the confidence distribution

is obtained by: HΦ(µ) = Φ(
√
n(µ− x̄)/σ). The confidence density is derived

by taking the first derivative w.r.t µ in H(µ), and the confidence curve is

defined as CCV(µ) = 1 − 2|H(µ) − 0.5|. The figure also illustrates the

procedure to obtain point estimates, confidence intervals, and p-values for

hypothesis testing problems through the confidence distribution, confidence

density, or confidence curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

vi



4.2. Individual and combined CDs based on asymptotic normality and signifi-

cance functions for fixed-effect meta-analysis. . . . . . . . . . . . . . . . . . 130

4.3. The meta-analysis results from fixed-effect model and Bayesian method. The

solid, dashed and dotted curves are the combined CD densities based upon

fixed-effect model with a0(·) = Φ−1(·) and a0(·) = DE−1(·), and Bayesian

method, respectively. For Bayesian method, the combined CD is pulled

closer to zero by the evidence in prior distribution (prior CD). . . . . . . . 134

4.4. The meta-analysis results from fixed-effect and random-effects models. The

solid, dashed and dotted curves are the combined CD densities based upon

fixed-effect model, random-effects model with DL estimate on heterogeneity,

and random-effects model with REML estimate on heterogeneity, respec-

tively. For random-effects models, the combined CDs are more dispersed. . 138

4.5. The meta-analysis results from conventional and robust fixed-effect and

random-effects models. The top figure plots the combined CDs densities

based on fixed-effect model, where the solid and dashed curves draw the

results from conventional and robust methods, respectively. The bottom fig-

ure plots the combined CDs densities based on random-effects model, where

the solid and dashed curves draw the results from conventional and robust

methods, respectively. The combined CDs from robust methods are slightly

wider and thus less efficient than the corresponding ones from conventional

methods, which is the trade off for robustness. . . . . . . . . . . . . . . . . 143

vii



4.6. The meta-analysis results from conventional and robust meta-analysis meth-

ods. The top three figures plot the results of fixed-effect methods. In par-

ticular, part (a) plots the results of fixed-mle method, where the solid and

dashed curves are combined CD densities using the original and contami-

nated data set. It is obvious that the results are impact by the outlying

studies, and the combined CD is pulled closer to zero significantly when

applying on the contaminated data set. Further, part (b) and (c) plot the

results of fixed-robust1 and fixed-robust2 methods. The combined CD

using the original and contaminated data set are drawn by solid and dashed

curves, and are close to each other. Thus, the robust methods limit the

impact of outlying studies. Likewise, part (d), (e), (f) plot the results of

random-reml, random-robust1, and random-robust2 methods. The solid

and dashed curves are combined CD densities using the original and con-

taminated data set, respectively. Once again, the conventional meta-analysis

method results are undermined by the outlying studies, whereas the robust

meta-analysis methods results are not. . . . . . . . . . . . . . . . . . . . . . 150

4.7. Individual and combined CDs (confidence curves) based on Peto’s method

and exact1 method for meta-analysis of 2x2 tables. The exact1 method

appropriately accounts the impact of zero event, where the confidence curves

go to infinity without decreasing at the sides having zero event, see the

confidence curves for study-05 and study-06. . . . . . . . . . . . . . . . . 156

4.8. Extended forest plot of the individual and combined CDs for RD from the

Tian’s method. The left part uses confidence curves, and the right part uses

confidence densities. The confidence densities based on the Tian’s method

are often ragged since the distribution G(c)(·) are acquired by simulation. . 160

viii



Acknowledgements

This dissertation would not have been finished without the guidance from my advisor,

assistance from my dissertation committee members, friendship from my friends, and the

unwavering support from my family.

First, I would like to express my deepest appreciation to my advisor, Professor Minge Xie.

His invaluable guidance has sustained my research ability and interest. This dissertation

would not have been possible without his continuous support and encouragement. He

does not only inspire me to find right directions to proceed my research projects, but

also patiently help me improve my communication and writing skills, not to mention the

generous financial support during all these years.

I would also like to express my gratitude to Professor Regina Liu, for her great help on my

research projects. I would also like to thank Professor Ying Hung, for taking her precious

time and effort to serve on my thesis committee. I would like to thank Dr. Junyuan Wang,

who patiently and generously provided me with guidance on thinking like a Biostatistician.

In addition, I would like to thank our graduate director Professor John Kolassa, who has

always been eager to help. I also have greatly benefited from the Department of Statistics

and Biostatistics of Rutgers University. The excellent faculty, staff and fellow students,

and the continuous financial support from the department, have provided an ideal research

environment throughout my graduate study.

ix



Dedication

To my family.

x



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. A Confidence Distribution Approach for an Efficient Network Meta-

Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2. A CD Approach for Network Meta-Analysis . . . . . . . . . . . . . . . . . . 9

2.2.1. Review of CD Approach for Univariate Meta-Analysis . . . . . . . . 10

2.2.2. A General Procedure to Combine Multivariate Normal CDs . . . . . 14

2.3. Real Data Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1. An Example on Coronary Artery Disease (CAD) . . . . . . . . . . . 17

xi



2.3.1.1. A Multivariate Random-Effects Model . . . . . . . . . . . . 18

2.3.1.2. The CD approach . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1.3. Traditional Pairwise Meta-Analysis . . . . . . . . . . . . . 21

2.3.1.4. Bayesian Hierarchical Model . . . . . . . . . . . . . . . . . 23

2.3.1.5. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.2. An Example on Cirrhosis . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4. Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.1. Simulation Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.3. A CD Approach with Adaptive Weights . . . . . . . . . . . . . . . . 37

2.5. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6. Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3. Combining Multivariate Normal Confidence Distributions and its Appli-

cation to Multivariate Meta-Analysis . . . . . . . . . . . . . . . . . . . . . . . 44

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2. Multivariate Normal CDs and their Combinations . . . . . . . . . . . . . . 48

3.2.1. Multivariate Normal CD . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.2. Decomposition of Multivariate Normal CD . . . . . . . . . . . . . . 52

3.2.3. A General Method for Combining Multivariate Normal CDs . . . . . 54

xii



3.3. Multivariate Meta-analysis by Combining CDs . . . . . . . . . . . . . . . . 56

3.3.1. Efficient Combination Method . . . . . . . . . . . . . . . . . . . . . 56

3.3.2. Robust Combination Methods . . . . . . . . . . . . . . . . . . . . . . 57

3.3.2.1. Robust Meta-Analysis of a Large Number of Studies . . . . 58

3.3.2.2. Robust Meta-Analysis of a Set of Large Studies . . . . . . 61

3.3.3. Extension to Incorporate Studies with Missing Endpoints . . . . . . 64

3.4. Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4.1. Example 1 - Meta-Analysis of a Large Number of Studies . . . . . . 68

3.4.2. Example 2 - Meta-Analysis of a Set of Large Studies . . . . . . . . . 71

3.4.3. Example 3 - Meta-Analysis of Studies with Missing Endpoints . . . 75

3.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.6. Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4. gmeta: An R Package Unified Meta-Analysis Methods Through Combin-

ing Confidence Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2.1. A Small Example - Conventional Model-based Meta-analysis . . . . 96

4.2.2. A Small Example - Robust Model-based Meta-analysis Methods . . 99

4.3. Review of CD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xiii



4.3.1. Confidence Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3.2. Combining CDs and a Unified Meta-analysis Approach . . . . . . . 111

4.4. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.4.1. Classical p-value Combination . . . . . . . . . . . . . . . . . . . . . . 116

4.4.2. Conventional Fixed-effect and Random-effects Meta-analysis . . . . 121

4.4.3. Robust Meta-analysis Methods . . . . . . . . . . . . . . . . . . . . . 137

4.4.4. Meta-analysis of 2x2 Tables . . . . . . . . . . . . . . . . . . . . . . . 149

4.4.5. Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

4.5. Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

xiv



1

Chapter 1

Introduction

Meta-analysis is the quantitative statistical method for systematically combining infor-

mation from different sources, which aims to provide combined inference with improved

efficiency or strengthen the conclusion of current study (Normand, 1999; van Houwelin-

gen et al., 2002). This method is widely used in many fields in support of evidence-based

decision-making (cf., Sutton et al., 2000; Sutton and Higgins, 2008, and references therein).

For a single parameter, a general univariate confidence distribution (CD) combining method

is proposed and utilized for univariate meta-analysis by Singh et al. (2005) and Xie et al.

(2011). This dissertation develops new multivariate meta-analysis approaches using similar

ideas by combining multivariate normal confidence distributions.

Multivariate meta-analysis jointly analyzes multiple parameters. It has been demonstrated

that analysis of multiple parameters all together can be beneficial to the combined inference

by borrowing information from one parameter to the other (Arends et al., 2003; Arends,

2006). However, such a method is still limitedly used in practice, although it has been

advocated for almost 30 years since it came into being (Riley, 2009). As the joint collection

of outcomes from multiple endpoints becomes more common, the demand for simple and

effective multivariate meta-analysis methods has never been greater (Jackson et al., 2011).

Two particular challenges that obstruct the widespread use of multivariate meta-analysis

are as follows:
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– How to efficiently integrate all the studies in a network of evidence, even when indi-

vidual studies are heterogenous with partial common parameters of interest; and

– How to set up robust approaches that can effectively withstand the impact of un-

known outlying studies.

This dissertation aims to address the two important problems above by developing new

multivariate meta-analysis approaches:

� We propose an asymptotic efficient network meta-analysis approach, which can ef-

fectively synthesize evidence from heterogenous studies with partial common param-

eters. This method is useful in clinical researches when the primary interest of a

meta-analysis is to compare the effectiveness of two experimental treatments. The

available studies may directly compare these two treatments and provide direct evi-

dence, or compare one of the two treatments to placebo and thus provide only indirect

evidence (Lumley, 2002; Lu and Ades, 2004). The proposed approach can efficiently

integrate both direct and indirect comparisons in a network of evidence, including

studies involved more than two treatments, and thus outperforms the traditional

pairwise meta-analysis approach which only summarizes direct comparisons. This

approach is prior free and can always provide proper inference in terms of confidence

intervals with correct coverage rates, whereas the commonly used Bayesian method

is sensitive to the choice of prior distributions.

� We propose two robust multivariate meta-analysis approaches, which can resist the

impact of unknown outlying studies. One approach is appropriate for meta-analysis

of a large number of studies, which relies on asymptotic normality and has an in-

herent connection to an M-estimation approach. The other approach is useful for

meta-analysis of a set of large studies, where outlying studies are down-weighted
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or excluded using data-dependent adaptive weights. These robust approaches can

provide consistent estimator when there are outlying studies involved in the meta-

analysis, whereas the conventional efficient meta-analysis approach and commonly

used Bayesian approaches can not. Meanwhile, they maintain relative high efficiency

when no outlying study exists. As a result, they provide a means of protection

against model misspecification, where outlying studies are not properly modeled. To

our knowledge, none of the existing approaches, including the Bayesian approaches,

can provide such protection. The robust approaches can also adapt to network meta-

analysis by incorporating heterogenous studies with partial common parameters.

These developments are based on combining confidence distributions. A CD uses a sample-

dependent distribution function on the parameter space to estimate the unknown param-

eter. It naturally contains more information than a point or interval estimator, and is

thus a more versatile tool for inference (Cox, 2013). This concept is broad and subsumes

normalized likelihood function, p-value function, and bootstrap distribution, among others,

under the same definition (cf., Xie and Singh, 2013, and reference therein).

In addition, the third part of this dissertation develops a computing software to facilitate

the use of the unified univariate meta-analysis framework proposed in Xie et al. (2011):

� We develop an R package gmeta. The gmeta() function uses the same structure

to perform all meta-analysis, including p-value combinations (cf., Marden, 1991),

conventional model-based meta-analysis (cf., Table IV of Normand, 1999), robust

meta-analysis under contaminated models (cf, Section 4 of Xie et al., 2011), and the

Mantel-Haenszel method, the Peto’s method, and two exact methods using Binomial

distribution without arbitrary continuity corrections (Tian et al., 2009; Liu et al.,

2013), for synthesizing the findings from 2 × 2 tables. The associated plot function



4

can show the individual and combined confidence distributions through extended

forest plots.

This dissertation organizes each chapter as a self-contained paper. There is some overlap

in some of background materials. Specifically, Chapter 2 develops an asymptotic network

meta-analysis approach by combining multivariate normal CD random vectors. Real ex-

amples and simulation studies show that the proposed approach is often superior than

the traditional pairwise meta-analysis and commonly used Bayesian methods. Chapter 3

introduces a general multivariate normal CD combining method by combining CD func-

tions, which supports the development of two robust multivariate meta-analysis approaches.

These approaches have superior performance than the asymptotic efficient meta-analysis

approach and Bayesian method, when outlying studies are involved in the meta-analysis.

Chapter 4 presents an R package gmeta, which provides an all-in-one solution for univariate

meta-analysis. Chapter 5 contains some concluding remarks.
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Chapter 2

A Confidence Distribution Approach for an Efficient

Network Meta-Analysis

In this chapter, we address the first problem mentioned in the introduction chapter

by developing a network meta-analysis approach that can efficiently integrate all the

studies in a network of evidence, even when individual studies are heterogenous with

partial common parameters of interest.

2.1 Introduction

Recent advances in computing and data storage technology have greatly facilitated data

gathering from many disparate sources. The demand for efficient methodologies for com-

bining information from independent studies or disparate sources has never been greater.

So far, meta-analysis is one of the most, if not the most, commonly used approaches for

synthesizing findings from different sources for pairwise comparisons. For example, it is

used in medical research for summarizing estimates from a set of randomized controlled

trials (RCTs) of the relative efficacy of two treatments (cf. Normand, 1999; Sutton and

Higgins, 2008). For more-complicated comparative effectiveness research, where the com-

parisons involve a network of more than two treatments, several generalizations have been

developed for combining information from various sources. A useful survey can be found
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in the report of the ISPOR Task Force on Indirect Treatment Comparisons Good Research

Practices (Jansen et al., 2011; Hoaglin et al., 2011) and its references. A key advantage of

network meta-analysis is that it can perform indirect comparisons among multiple treat-

ments.

We elaborate on network meta-analysis with a general setting and a worked example. In the

general setting, the process begins with a systematic research for RCTs that have compared

treatments for a particular condition. The trials that satisfy a set of eligibility criteria yield

a network of evidence, in which each node represents a treatment and each edge represents

a direct comparison in one or more trials. We assume that the network is connected, and

we denote the total number of treatments by p and the number of treatments in trial i

by pi (2 ≤ pi ≤ p). For example, Stettler et al. (2007) assembled data from 37 trials

for comparing the performance of three stents in patients with coronary artery disease.

Figure 2.1 illustrates the network of the comparisons among the three stents. Each stent is

connected to the other two through a number of direct comparisons, and these three stents

form a network. The primary objective is to assess the effectiveness of these three stents

(more broadly all treatments in the network). The estimates of network meta-analysis

yields pairwise comparisons.

SES

BMS PES

15 t r ials 14
 t r

ia
ls

7 t rials

1 three-arm
trial

Figure 2.1: Network of comparisons for bare-metal stents (BMS), paclitaxel-eluting stents
(PES), and sirolimus-eluting stents (SES) in 37 trials (Stettler et al., 2007)

Several network meta-analysis approaches have been reported in the literature. Lumley
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(2002) introduced a model for combining evidence from trials with pairwise comparisons

between treatments. Although this method allows borrowing of evidence from indirect

comparisons to strengthen the results of direct comparisons, it is somewhat restricted in

practice because it requires that each individual trial be a two-arm trial (i.e., compare

exactly two treatments). Thus, this method cannot deal with multi-arm trials as in the

example of Figure 2.1. Generalizing the method in Smith et al. (1995), Lu and Ades

(2004) introduced a network meta-analysis approach using a Bayesian hierarchical model.

Although this approach can include multi-arm trials, our simulation studies in Section 4

show that its inferences can be quite sensitive to the choice of priors. More specifically, if

the assumptions in the prior distribution does not agree with the underlying true model (the

unknown between-trial covariance structure), the resulting credible interval fails to achieve

the nominal coverage probability, and, in some cases, its empirical coverage probability can

be far below the nominal level.

This paper aims to introduce a new network meta-analysis approach that: i) can efficiently

synthesize evidence from a number of independent trials on multiple treatments; ii) can

include trials with multiple arms; and iii) does not need to specify priors for parame-

ters of interest or other parameters. The proposed approach is derived from combining

multivariate confidence distributions.

To some extent, our proposed CD approach extends of the method developed in Lumley

(2002) to include multi-arm trials. Compared with the Bayesian method in Lu and Ades

(2004), the proposed CD approach is a pure frequentist approach and it does not require

specification of priors. In fact, the proposed CD approach can be viewed as a frequentist

counterpart of the Bayesian method of Lu and Ades (2004).

The general idea of combining confidence distributions has been developed in Singh et al.

(2005) and Xie et al. (2011). The concept of CD and its utility in statistical inference
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have been investigated intensely; see, e.g., Schweder and Hjort (2002) and Singh et al.

(2005, 2007). A detailed survey of the recent developments on CD can be found in Xie and

Singh (2013). Roughly speaking, a CD bases inferences on a sample-dependent distribution

function, rather than a point or an interval, on the parameter space. A CD can be viewed

as a frequentist “distribution estimator” of an unknown parameter, as described in Xie

and Singh (2013) and Cox (2013). As a distribution function, a CD naturally contains

more information than a point or interval estimator, and is thus a more versatile tool for

inference. For example, for an odds ratio when the 2x2 table has zero events, point or

interval approaches may fail, but the CD approach remains valid, as shown in Liu et al.

(2013). CDs have been demonstrated in Singh et al. (2005) and Xie et al. (2011) to be

especially useful for combining information on a single parameter. In particular, Xie et al.

(2011) showed that the CD combining approach can provide not only a unifying framework

for almost all univariate meta-analysis applications, but it can also provide new estimates

that can achieve desirable properties such as high efficiency and robustness. Network meta-

analysis generally involves multiple parameters, and the information on each parameter

may have non-negligible impact on inferences for other parameters. To fully utilize the

joint information on multiple parameters, we construct multivariate joint CD functions for

the entire set of parameters from each study. The combination of these joint CD functions

leads to a novel frequentist approach to network meta-analysis.

Our numerical studies show that the proposed CD approach compares favorably with, and

often is superior to, traditional meta-analysis and the hierarchical Bayesian network meta-

analysis method proposed by Lu and Ades (2004). Specifically, in comparison with the

traditional method, the CD method is more efficient because it uses indirect evidence. In

comparison with the Bayesian method, the CD approach is prior-free and can always pro-

vide a proper inference (i.e., confidence intervals with correct coverage rates) for treatment
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effects, regardless of the between-trial covariance structure. Moreover, our simulation stud-

ies show that the performance of the Bayesian approach is sensitive to the choice of prior

distributions, which ideally should reflect the true underlying the between-trial covariance

structure.

The paper is organized as follows. Section 2 reviews the concept of CD and develops a

general method for combining multivariate normal CDs to facilitate network meta-analysis.

Section 3 uses two real data examples to illustrate the proposed CD approach in the analysis

of a three-treatment network, and to compare it with traditional meta-analysis and the

Bayesian network meta-analysis. In Section 4, the results of several simulation studies

demonstrate that the proposed CD approach can provide proper inferences. Comparisons

with the traditional and Bayesian network meta-analysis approaches are also provided.

Moreover, we devise a simple adaptive CD approach to address possible inconsistent (or

contradictory) evidence from indirect and direct comparisons. This adaptive approach can

alleviate undue influence from indirect comparisons whose evidence contradicts the direct

comparisons. Section 5 contains a summary and further remarks.

2.2 A CD Approach for Network Meta-Analysis

Assume that the evidence network comprises k independent clinical trials and involves the

effects of p treatments, denoted by the vector θ ≡ (θ1, · · · , θp)T. The individual trials may

have studied only a subset of the p treatments. More specifically, the i-th trial involves

pi ≤ p treatments. If pi < p, the i-th trial provides only partial information about θ,

in the sense that only the pi-dimensional parameter θi ≡ Aiθ is identifiable, where the

pi × p selection matrix Ai is obtained by removing from the p × p identity matrix (or,

more generally, any p × p orthogonal matrix A) the rows that correspond to the omitted
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parameters. Throughout this paper, we consider the following multivariate random-effects

model for network meta-analysis. It extends the univariate hierarchical random-effects

model reviewed in Normand (1999):

yi|θi,Σi
ind∼ N(θi,Σi), θi|θ,S

ind∼ N(Aiθ,AiSAT
i ), i = 1, 2, . . . , k (2.1)

where yi is the summary statistic from the i-th study, Σi is the covariance matrix of yi,

and S is the covariance matrix of random-effects distribution.

A key question in network meta-analysis is how the information on θi (which may provide

only partial information on θ) can be integrated to make efficient inference about θ. Our

proposed approach of combining multivariate normal CDs can provide a solution.

Before presenting our CD approach for network meta-analysis, we review the combining

CD procedure for the univariate case in Section 2.1 and then extend it to the multivariate

case in Section 2.2.

2.2.1 Review of CD Approach for Univariate Meta-Analysis

We first consider the special case where the parameter of interest is univariate. Model (2.1)

simplifies to model (2)-(3) of Normand (1999); i.e.,

yi|θi, σ2
i

ind∼ N(θi, σ
2
i ), θi|θ, τ2 ind∼ N(θ, τ2), i = 1, 2, . . . , k (2.2)

where θi is the study-specific mean (random-effect) and θ and τ2 are hyper-parameters for

θi.

For the univariate case, meta-analysis estimators used in current practice (c.f., Table IV

of Normand, 1999) can all be obtained through the unifying framework developed by Xie
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et al. (2011) using the CD concept. A CD has been loosely referred to as a distribution

function on the parameter space that can represent confidence intervals of all levels for a

given parameter of interest. More specifically, the following formal definition is proposed

in Schweder and Hjort (2002) and Singh et al. (2005, 2007):

Definition 2.1 Suppose Θ is the parameter space of the unknown parameter of interest

θ, and Y is the sample space corresponding to data Y = {y1, . . . , yn}. Then a function

H(·) = H(Y, ·) on Y ×Θ→ [0, 1] is a confidence distribution (CD) if:

(i) For each given Y ∈ Y, H(·) is a continuous cumulative distribution function on Θ; and

(ii) At the true parameter value θ = θ0, H(θ0) = H(Y, θ0), as a function of the sample Y,

follows the uniform distribution U [0, 1].

The function H(·) is an asymptotic CD (aCD) if the U [0, 1] requirement holds only asymp-

totically and the continuity requirement on H(·) is dropped.

In other words, a confidence distribution is a function defined on both the parameter space

and the sample space, satisfying requirements (i) and (ii). Requirement (i) simply says that

a CD should be a distribution on the parameter space. Requirement (ii) imposes some re-

strictions to facilitate desirable frequentist properties such as unbiasedness, consistency

and/or efficiency. The CD concept is broad, covering examples from regular parametric

(fiducial distribution) to bootstrap distributions, significance functions (also called p-value

functions), normalized likelihood functions, and, in some cases, Bayesian priors and pos-

teriors; see, e.g., Singh et al. (2007) and Xie and Singh (2013). A CD can be used to

draw various inferences for the unknown parameter. For example, the median/mean of

the distribution function H(·) can be used as a point estimator of θ, and the interval

(−∞, H−1(1− α)) forms a level (1− α) confidence interval, an immediate consequence of

Requirement (ii).
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Example 2.1 (CDs for univariate normal mean) Let {yi, i = 1, . . . , n} be an iid sample

from N(θ, σ2) with mean ȳ. Suppose that the parameter θ is of primary interest. If σ2 is

known, then HΦ(θ) = Φ(
√
n(θ− ȳ)/σ) satisfies the two requirements in Definition 2.1, and

it is a CD for θ. If σ2 is unknown, one can show that Ht(θ) = Ftn−1(
√
n(θ− ȳ)/s) is a CD

for θ. Here s2 is the sample variance, and Ftn−1 is the cumulative distribution function of

the student-t distribution with (n−1) degrees of freedom. However, HA(θ) = Φ(
√
n(θ−ȳ)/s)

is only an asymptotic CD for θ.

To combine individual CDs Hi(θ) = Hi(yi, θ), i = 1, . . . , k, Singh et al. (2005) proposed a

general recipe that uses a coordinate-wise monotonic function that maps the k-dimensional

cube [0, 1]k to the real line. Specifically, a combined CD can be constructed following

H(c)(θ) = G(c){g(c)(H1(θ), . . . ,Hk(θ))}, (2.3)

where the function G(c) is defined as G(c)(t) = Pr{g(c)(U1, . . . , Uk) ≤ t} in which U1, . . . , Uk

are independent U [0, 1] random variables. Xie et al. (2011) applied this general recipe to

meta-analysis, with a special choice of g(c):

g(c)(u1, . . . , uk) = w̃1a0(u1) + · · ·+ w̃ka0(uk), (2.4)

where a0(·) is a given monotonic function and w̃i ≥ 0, with at least one w̃i 6= 0, are generic

weights for the combination. Xie et al. (2011) and subsequent research showed that, with

suitable choices of g(c), almost all combining methods currently used in meta-analysis can

be unified under the framework of Equation (2.3), including p-value combination methods,

model-based meta-analysis (fixed-effect and random-effects models), the Mantel-Haenszel

method, Peto’s method, and also the method in Tian et al. (2009) by combining confidence

intervals.
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For the special model in (2.2), one can construct Hi(θ) = Φ((θ − yi)/(σ2
i + τ2)1/2) based

on the ith study and take a0(·) = Φ−1(·) and w̃i = 1/(σ2
i + τ2)1/2 in (2.4). Here τ2 is

assumed known. If τ2 is unknown, one can replace it with the DerSimonian and Laird esti-

mator τ̂2
DL (DerSimonian and Laird, 1986) or preferably the restricted-maximum-likelihood

estimator τ̂2
REML. Then the combined CD function for θ is

H(c)(θ) = Φ

( k∑
i=1

1

σ2
i + τ2

)1/2

(θ − θ̂(c))

 , (2.5)

where θ̂(c) = {
∑k

i=1
yi

σ2
i +τ2
}/{
∑k

i=1
1

σ2
i +τ2
}. The combined CD function is normal with

mean θ̂(c) and variance s2
c = {

∑k
i=1

1
σ2
i +τ2
}−1, which is ready for making point estimates

and constructing confidence intervals for the parameter θ.

From Definition 2.1, a CD function H(·) is a cumulative distribution function on the

parameter space for each given sample Yn. Thus, we can construct a random variable ξ

defined on Y×Θ such that, conditional on the sample, ξ has the distribution H(·). We call

this random variable ξ a CD random variable (see, e.g., Singh et al., 2007; Xie and Singh,

2013). Conversely, suppose we have a CD random variable ξ ∈ Y × Θ whose conditional

distribution, conditional on the sample, has a cumulative distribution function H(·). Then

H(·) is a CD for the parameter of interest θ.

We can express the normal CD combination (2.5) as a combination of CD random variables.

Specifically, for a CD-random variable ξi|yi ∼ Hi(θ) = Φ((θ−yi)/(σ2
i +τ2)1/2) derived from

the i-th study, we can define ξ(c) =
∑k

i=1wiξi, where wi = 1/(σ2
i +τ

2), and its corresponding

combined CD

H(c)(θ) = Pr(ξ(c) ≤ θ|data), for any θ ∈ Θ. (2.6)

It is straightforward to show that the H(c)(·) defined in (2.6) is the same as the one defined
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in (2.5).

The concept of CD random variable has been investigated in several recent publications. Xie

and Singh (2013) explored the connection of CD random variables with bootstrap estima-

tors when the bootstrap approach applies. Hannig and Xie (2012) discussed the association

of a CD random variable with the so-called belief random set, a fundamental concept in

the Dempster-Shafer theory of belief functions (cf. Dempster, 2008; Martin and Liu, 2013).

2.2.2 A General Procedure to Combine Multivariate Normal CDs

Constructing and combining CDs for multi-dimensional parameters is not a straightforward

extension of the univariate case. One difficulty is that the cumulative distribution function

is not a useful notion in the multivariate case, because (a) the region F (y) ≤ α is not of

main interest and (b) the property F (Y )
L
= U [0, 1] when Y

L
= F does not hold in <p (Singh

et al., 2007). Research thus far suggests that we either limit our interest to center-outward

confidence regions (instead of all Borel sets) in the p×1 parameter space or use asymptotic

normality; see Xie and Singh (2013) and also De Blasi and Schweder (2012). In the present

context, it suffices to consider only the multivariate normal CDs because individual CDs

are based on asymptotic normality. We use a multivariate normal CD definition proposed

in Singh et al. (2007). Intuitively, a distribution function H(·) is a multivariate normal

CD for a p × 1 vector θ if and only if the projected distribution of H(·) on any direction

λ ∈ <p, ||λ||2 = 1, is a univariate normal CD for λTθ. Here is a formal definition of a

multivariate normal CD:

Definition 2.2 Let ξ be a random vector on <p. For any given p× 1 vector λ, ||λ||2 = 1,

we denote by Hλ(·) the conditional distribution of λTξ given Y. We also denote by H(·)

the conditional distribution of ξ given Y. Then we call H(·) the multivariate normal CD
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(or, asymptotic multivariate normal CD) for a p× 1 parameter vector θ if and only if, for

any given λ, Hλ(·) is a univariate normal CD (or asymptotic CD) function for λTθ. Also,

the random vector ξ is called a CD random vector for θ.

Example 2.2 (CDs for multivariate normal mean) Suppose yi, i = 1, . . . , n are identically

and independently distributed observations from a multivariate normal distribution with

mean θ and covariance matrix Σ. If Σ is known, then the sample-dependent distribution

N(ȳ,Σ) is a multivariate normal CD function for θ, where ȳ is the sample mean. If

Σ is unknown but can be estimated consistently, say by Σ̂, then the sample-dependent

distribution N(ȳ, Σ̂) is an asymptotic multivariate normal CD function for θ.

The CD combination method for the multivariate case cannot be easily specified by follow-

ing (2.3) and (2.4), especially under the setting of (2.1), where pi may differ. Instead, we

utilize the concept of CD random vector and an extension of (2.6) to propose the following

scheme for combining multivariate normal CDs.

Theorem 2.1 Let Hi(θi) ≡ Hi(Yi,θi), i = 1 . . . , k are multivariate normal CD functions

for the multivariate parameters θi from k independent samples Yi, where θi = Aiθ for

the same p-dimensional target parameter vector θ. Additionally, let ξi be the CD random

vector for θi. For any t ∈ <p, we define

H(c)(t) = Pr

{( k∑
i=1

Wi

)−1 k∑
i=1

WiA
+
i ξi ≤ t

∣∣∣∣Y1, . . . ,Yk

}
, (2.7)

where A+
i is the Moore-Penrose pseudo-inverse of Ai. Then H(c)(·) = H(Y1, . . . ,Yk; ·) is

a multivariate normal CD for θ provided the following conditions hold:

(1) Each p× p matrix Wi is positive semi-definite.
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(2) C (Wi) = Vi, where C (Wi) is the column space of Wi and Vi is the row space of Ai.

(3) V1 + V2 + · · ·+ Vk = <p, where V1 + V2 + · · ·+ Vk
4
= {
∑k

i=1 vi|vi ∈ Vi, i = 1, . . . , k}.

In Theorem 1, conditions (2) and (3) state that, even if rank(Ai) < p for all i, so that θ is

not identifiable in any individual study, we can still derive a multivariate normal CD for θ

as long as the treatments are connected in a network.

Recall the multivariate model introduced in (2.1). We first consider the case in which

Σi and S are known. From Example 2.2, we know that N(yi,Σi + AiSAT
i ) is a

multivariate normal CD function for θi based on the i-th study. Let ξi be the cor-

responding CD random vector for inference on θi and Wi = A+
i (Σi + AiSAT

i )−1Ai.

It follows that
(∑k

i=1Wi

)−1∑k
i=1WiA

+
i ξi is normally distributed with mean vector

θ̂
(c)

= (
∑k

i=1Wi)
−1(
∑k

i=1WiA
+
i yi) and variance Sc = (

∑k
i=1Wi)

−1, given the sample.

Thus, following the recipe in Equation (2.7), the combined CD for θ is

H(c)(θ) = Ψ
(
S−1/2
c (θ − θ̂

(c)
)
)

(2.8)

where Ψ(·) is the cdf of the standard p × 1 multivariate normal distribution function.

Conditions (1) and (2) of Theorem 2.1 are satisfied by the specification of Wi, and condition

(3) is satisfied as long as the comparisons involved in the studies form a connected network.

Based on the combined multivariate CD function in (2.8), we can use θ̂
(c)

as a point

estimator for θ with variance Sc. Furthermore, inferences on any linear contrasts λTθ of

θ can be obtained from λTξ(c), where ξ(c) follows the distribution specified in Equation

(2.8).

If Σi and S are unknown, we can replace them with the sample estimators Σ̂i and SREML.

Then, as long as these estimators are consistent, the distribution N(yi, Σ̂i + AiSREMLA
T
i )
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is asymptotically a multivariate normal CD for θi. Here Σ̂i is the sample covariance ma-

trix, and SREML is the restricted-maximum-likelihood estimator of the heterogeneity between

studies. As a result, the combined CD function (2.8) is an asymptotic multivariate nor-

mal CD for θ with Σi and S replaced by Σ̂i and SREML, respectively. For the estimation

of S, Jackson et al. (2010) developed a direct extension of the DerSimonian and Laird

estimator of heterogeneity to multivariate case. Hereafter, we denote by SDL and SREML

respectively the estimator derived from Jackson et al. (2010) and the restricted-maximum-

likelihood estimator. We apply and examine both estimators in our numerical study of real

examples and simulations in Sections 3 and 4. Further discussions on the performance of

the DL and REML estimators for the heterogeneity in univariate random-effects models

can be found in Sidik and Jonkman (2007) and Thorlund et al. (2011).

2.3 Real Data Examples

In this section, we illustrate the proposed CD approach for network meta-analysis using two

real data examples, one on coronary artery disease and the other on cirrhosis. For compar-

ison, we also include the traditional pairwise meta-analysis and the Bayesian hierarchical

model.

2.3.1 An Example on Coronary Artery Disease (CAD)

Stettler et al. (2007) used data from a network of 37 trials to compare the performance of

three types of stent: bare metal stent (BMS), sirolimus-eluting stent (SES), and paclitaxel-

eluting stent (PES), in patients with coronary artery disease. Each trial involved at least

two of the three treatments; we analyze the data on a negative outcome, whether patients

required target lesion revascularisation (TLR) within one year (cf. Figure 2.1). One trial,
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TAXUS I, had zero events and is thus excluded from the analysis. Of the remaining 36

trials, listed in Table 2.1, 15 trials compared BMS with SES, 6 trials compared BMS with

PES, 14 trials compared SES with PES, and 1 trial compared all three treatments. The

network is connected, so simultaneous inference on the treatment effects is possible.

2.3.1.1 A Multivariate Random-Effects Model

We use treatments A, B, and C to denote the three types of stents BMS, SES and PES,

respectively. We use Ti to denote the set of treatments compared in the i-th trial; for

example, Ti = {A,C} for TAXUS IV. Further, let nij and rij be the number of total

patients and number of patients who experienced a TLR in the i-th study with treatment

j. Then with a binary individual responses we would assume

rij |pij ∼ Binomial(nij , pij), i = 1, 2, . . . , 36, j ∈ Ti (2.9)

where pij denotes the probability that a patient on treatment j experiences an event in the

i-th trial.

The target parameter is p = (pA, pB, pC)T, the overall probability of an event for BMS,

SES, and PES, respectively. In practice, one often applies a log transformation to the

observed odds of an event. Owing to the rapid convergence to a normal distribution

on the log-odds scale, it is customary to consider a general random-effects model for

θi = (logit(pij))
T,∀j ∈ Ti with parameter θ = (logit(pA), logit(pB), logit(pC))T; cf. DerSi-

monian and Laird (1986); Normand (1999). Here, logit(p) = log(p/(1 − p)). Specifically,

we have

level 1: rij |pij ∼ Binomial(nij , pij), i = 1, 2, . . . , 36, j ∈ Ti

level 2: θi ∼ N(Aiθ,AiSAT
i )

(2.10)
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Table 2.1: CAD Trial Data, Target Lesion Revascularisation at 1 year

Study
BMS (A) SES (B) PES (C)
rij nij rij nij rij nij

BASKET 35 281 25 264 25 281
C-SIRIUS 11 50 2 50 — —
DECODE 8 29 5 54 — —
DIABETES 27 80 6 80 — —
E-SIRIUS 44 177 8 175 — —
Ortolani 2007 11 52 6 52 — —
Pache 2005 51 250 25 250 — —
PRISON II 20 100 4 100 — —
RAVEL 16 118 1 120 — —
RRISC 10 37 6 38 — —
SCANDSTENT 47 159 4 163 — —
SCORPIUS 20 95 5 95 — —
SESAMI 19 160 7 160 — —
SES-SMART 27 128 9 129 — —
SIRIUS 106 525 26 533 — —
TYPHOON 45 357 13 355 — —
HAAMUS-TENT 9 82 — — 3 82
PASSION 23 309 — — 16 310
TAXUS II 39 269 — — 13 260
TAXUS IV 96 652 — — 28 662
TAXUS V 107 579 — — 62 577
TAXUS VI 46 227 — — 19 219
Cervinka 2006 — — 1 37 2 33
CORPAL — — 22 331 25 321
Han 2006 — — 9 202 11 196
ISAR-DESIRE — — 14 100 22 100
ISAR-DIABETES — — 9 125 15 125
ISAR-SMART3 — — 16 180 29 180
LONG DES II — — 6 250 18 250
Petronio 2007 — — 1 42 1 43
PROSIT — — 3 116 9 115
REALITY — — 44 684 43 669
SIRTAX — — 30 503 54 509
SORT OUT II — — 40 1065 46 1033
TAXi — — 4 102 2 100
Zhang 2006 — — 14 225 16 187
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where Ai is the selection matrix associated with Ti; for example, Ai =

 1 0 0

0 1 0

 if

Ti = {A,B}, Ai =

 1 0 0

0 0 1

 if Ti = {A,C}, Ai =

 0 1 0

0 0 1

 if Ti = {B,C}, and

Ai = I3 if Ti = {A,B,C}.

Further, let yij = log

(
rij

nij − rij

)
, σ̂2

ij =
1

rij
+

1

nij − rij
and yi = [yij , j ∈ Ti]

T, Σ̂i =

diag(σ̂2
ij , j ∈ Ti). Then an asymptotically equivalent model is

level 1: yi|θi ∼ N(θi, Σ̂i), i = 1, 2, . . . , 36

level 2: θi ∼ N(Aiθ,AiSAT
i ).

(2.11)

Finally, if that our primary concern is the efficacy of SES vs BMS, the parameter of

interest is the log-odds ratio reflecting the relative efficacy of treatment B vs A, that is

δAB ≡ θB − θA. We proceed to compare the results obtained from the proposed CD

procedure with those from the traditional pairwise meta-analysis and the Bayesian network

meta-analysis.

2.3.1.2 The CD approach

Consider the random-effects model in (2.11). We estimate the covariance matrix S by the

restricted-maximum-likelihood estimator SREML. We can construct a multivariate normal

aCD function for θi based on the i-th individual study, namely N(yi, Σ̂i + AiSREMLA
T
i ).

We use ξi|yi ∼ N(yi, Σ̂i + AiSREMLA
T
i ) to denote the associated CD random variable and

take Wi = A+
i (Σ̂i + AiSREMLA

T
i )−1Ai. Then, by (2.8), H(c)(θ) = Ψ(S

−1/2
c (θ − θ̂

(c)
)) is

the combined CD for θ, where θ̂
(c)

= (
∑k

i=1Wi)
−1(
∑k

i=1WiA
+
i yi) and Sc = (

∑k
i=1Wi)

−1.

Since we have A+
i = AT

i in the current case, we can replace A+
i with AT

i in the above
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formulas.

To make inferences for δAB ≡ θB − θA, we can use the marginal distribution of λT
ABξ

(c)

where λAB = (−1, 1, 0)T and ξ(c)|data ∼ N(θ̂
(c)
,Sc). Therefore, the point estimator δ̂AB

and its variance based on the CD procedure are

δ̂AB = λT
AB

{
k∑
i=1

A+
i (Σ̂i + AiSREMLA

T
i )−1Ai

}−1 k∑
i=1

A+
i (Σ̂i + AiSREMLA

T
i )−1AiA

T
i yi

var(δ̂AB) = λT
AB

{
k∑
i=1

A+
i (Σ̂i + AiSREMLA

T
i )−1Ai

}−1

λAB.

In practice, we might also be interested in simultaneous inferences on, say, q linear com-

binations of θ, e.g., Qθ where Q ∈ <q×p. The Bayesian approach often uses the marginal

posterior distribution of Qθ as the basis for statistical inference. Similarly, to draw in-

ferences for θ, the proposed CD network meta-analysis approach can use the marginal

distribution of Qξ(c) given the data. Here ξ(c) is the CD random vector associated with

the combined CD function H(c)(·) for θ.

2.3.1.3 Traditional Pairwise Meta-Analysis

A traditional meta-analysis for such a problem uses only the direct evidence, e.g., clini-

cal trials that explicitly compared BMS vs SES; see, e.g., Simmonds and Higgins (2007)

and Hoaglin et al. (2011). Let δ̂AB,i = log

(
riB(niA − riA)

riA(niB − riB)

)
for A,B ∈ Ti. A random-

effects model (DerSimonian and Laird, 1986) is considered:

level 1: δ̂AB,i ∼ N(δAB,i, σ
2
AB,i), i s.t. A,B ∈ Ti

level 2: δAB,i ∼ N(δAB, τ
2
AB).

(2.12)
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An overall estimate of the common log-odds ratio δAB, based on the direct evidence, is often

a weighted average of the estimates δ̂AB,i from individual studies (Hardy and Thompson,

1996):

δ̂AB,direct =

∑
iwiδ̂AB,i∑

iwi
with var(δ̂AB) =

1∑
iwi

, (2.13)

where the weight wi is often taken as the empirical weight determined by the reciprocal

of the variance σ2
AB,i adjusted to incorporate the heterogeneity τ2

AB, for example wi =

1/(σ2
AB,i + τ2

AB), as suggested in DerSimonian and Laird (1986).

In practice, when the variance σ2
AB,i and the heterogeneity τ2

AB are unknown, they are often

replaced by their corresponding estimates σ̂2
AB,i and τ̂2

AB, where σ̂2
AB,i = 1

riA
+ 1

niA−riA +

1
riB

+ 1
niB−riB , provided that rij 6= 0 and rij 6= nij , and τ̂2

AB is the REML estimate.

Similarly, we can obtain estimates δ̂AC and δ̂BC for the pairwise comparisons of BMS vs

PES and SES vs PES, respectively, based on the 7 and 15 trials that compared them

directly. Then an indirect comparison of BMS vs SES can be obtained by taking

δ̂AB,indirect = δ̂AC − δ̂BC and var(δ̂AB) = var(δ̂AC) + var(δ̂BC). (2.14)

We can then combine the δ̂AB,direct and δ̂AB,indirect to obtain an estimator that integrates

the two sources of information, provided that the direct and indirect comparisons are

consistent with each other or at least not contradictory. Here is a simple illustration of

inconsistent/contradictory evidence: the direct comparison concludes that the effect of

treatment X is larger than that of treatment Y, but the indirect comparison concludes the

opposite. Some discussion on issues of inconsistent evidence in network meta-analysis can

be found in Lumley (2002), Lu and Ades (2006), and Dias et al. (2010).

Although one can always apply the procedure above to combine the direct and indirect
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estimates, this procedure splits the three-arm trial into three two-arm trials and uses them

for three difference estimates. This is a drawback for traditional pairwise meta-analysis —

Trials with more than two arms cannot be fully incorporated in the meta-analysis unless

they are split into multiple two-arm trials. Those two-arm trials are treated as if they

were independent; whereas they came from the same trial. Consequently, such a network

meta-analysis often incurs bias and loss of efficiency, as observed in Jansen et al. (2011)

and Hoaglin et al. (2011). Taking into account this drawback, we consider δ̂AB,direct and

δ̂AB,indirect as two separate estimators of δAB in the analysis in later sections.

We show later that the CD approach can combine the direct and indirect evidence for δAB

efficiently, provided that the observed evidences from the direct and indirect comparisons

are consistent with each other or at least not contradictory.

2.3.1.4 Bayesian Hierarchical Model

Similar to the CD approach, a Bayesian approach can also incorporate all trials. However,

the Bayesian approach has to rely on prior distributions, which then impose additional

assumptions.

To carry out network meta-analysis on clinical trials with direct and indirect treatment

comparisons, Lu and Ades (2004, 2006) proposed the following hierarchical Bayesian model:

level 1: rij |pij ∼ Binomial(nij , pij), i = 1, 2, . . . , 36, j = A,B,C

level 2: (δAB,i, δAC,i)
T|δ,C ∼ N(δ,C) ⊥ µi|µ, σ2

µ ∼ N(µ, σ2
µ)

level 3: hyper prior distributions for δ, C

and parameters in the distribution of µ, σ2
µ if necessary

(2.15)
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where 
δAB,i

δAC,i

µi

 = TBS


logit(piA)

logit(piB)

logit(piC)

 and TBS
4
=


−1 1 0

−1 0 1

1/3 1/3 1/3

 .

As stated in Lu and Ades (2004), this model extends the one proposed by Smith et al.

(1995) to address the issues of incorporating indirect comparisons and to fully incorporate

trials with more than two arms.

Specifically, Lu and Ades (2004) considered two sets of prior distributions, Bayesian-HOM

prior and Bayesian-HET prior. The first set of prior distributions (“Bayesian-HOM”)

assumes a homogenous variance for δAB,i and δAC,i:

δ ∼ N(0, 103I2)

C = σ2

 1 1/2

1/2 1

 , σ−2 ∼ Gamma(10−3, 10−3)

µ ∼ N(0, 103), σ−2
µ ∼ Gamma(10−3, 10−3)

(2.16)

The second set of prior distributions (“Bayesian-HET”) allows heterogenous variances for

δAB,i and δAC,i:

δ ∼ N(0, 103I2)

C =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 , where ρ = 0.5

σ2
j ∼ Gamma(a, b), a ∼ Exp(0.01), b ∼ Gamma(10−3, 10−3), j = 1, 2

µ ∼ N(0, 103), σ−2
µ ∼ Gamma(10−3, 10−3)

(2.17)

Except for the different assumptions on the structure of covariance matrix C, both
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Bayesian-HOM and Bayesian-HET impose the same noninformative priors on δ, µ, and

σ2
µ. The assumptions of priors are subjective and often difficult to verify. Our numerical

studies in Section 4 suggest that the Bayesian approach is sensitive to the choice of priors.

2.3.1.5 Results

We consider the following six methods and compare their inferences on δAB:

� Traditional-Direct: Traditional frequentist meta-analysis on direct pairwise compar-

isons.

� Traditional-Indirect: Traditional frequentist meta-analysis on indirect pairwise com-

parisons.

� Bayesian-HOM: Bayesian network meta-analysis with homogeneous variance struc-

ture on δ.

� Bayesian-HET: Bayesian network meta-analysis with heterogeneous variance struc-

ture on δ.

� CD[SDL]: The proposed CD procedure with S estimated by an extension of the Der-

Simonian and Laird method to the multivariate case (Jackson et al. (2010)).

� CD[SREML]: The proposed CD procedure with S estimated by maximizing restricted

likelihood.

The values of δ̂AB and its corresponding 95% confidence interval (CI) or 95% credible

interval (CrI) from all six methods are summarized in Table 2.2.

Table 2.2 shows that all six methods yield similar point estimates of δAB. However, because

they use both direct and indirect evidence, the Bayesian methods and the CD methods yield
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Table 2.2: Results of meta-analyses on CAD data

Method δ̂AB s.d.(δ̂AB) 95% CI Length of 95% CI

Traditional-Direct −1.3757 0.1672 (−1.7035,−1.0479) 0.6556
Traditional-Indirect −1.2874 0.5129 (−2.2926,−0.2822) 2.0104

Bayesian-HOM −1.3681 0.1084 (−1.5900,−1.1650) 0.4250
Bayesian-HET −1.3770 0.1312 (−1.6170,−1.1028) 0.5142

CD[SDL] −1.2984 0.1174 (−1.5285,−1.0683) 0.4602
CD[SREML] −1.2957 0.1096 (−1.5104,−1.0809) 0.4295

smaller variance estimates and tighter confidence interval, in comparison with traditional

pairwise meta-analysis. Also, the results from indirect comparisons are in line with those

obtained from direct comparisons, although less efficient. It seems appropriate to combine

the trials with direct and indirect evidence.

2.3.2 An Example on Cirrhosis

As another example, we consider the data presented in Pagliaro et al. (1992) and used in Lu

and Ades (2004). The authors analyzed 26 trials of non-surgical treatments intended to

prevent first bleeding in patients with cirrhosis and esophageal varices who had never bled,

in order to assess the effectiveness of three types of treatments: beta-blockers, endoscopic

sclerotherapy and non-active treatment (control), denoted by A, B, and C, respectively.

Of the 26 trials, 2 trials compared all three treatments, 7 trials compared beta-blockers

vs control, and 17 trials compared sclerotherapy vs control. In Table 2.3, for trial i and

treatment j, rij is the number of patients who had a first bleeding event and nij is the total

number of patients. Our concern is with the relative performance of the active treatments:

beta-blockers vs sclerotherapy. However, the only trials that compared them directly were

the two three-arm trials, which were not sufficiently large. In this situation direct evidence

is not strong enough, and incorporating indirect evidence is particularly important for
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making inferences.

Table 2.3: Cirrhosis data: number of patients who had a first bleeding event.

Study
Beta-blockers (A) Sclerotherapy (B) Control (C)
rij nij rij nij rij nij

1 2 43 9 42 13 41
2 12 68 13 73 13 72
3 4 20 — — 4 16
4 20 116 — — 30 111
5 1 30 — — 11 49
6 7 53 — — 10 53
7 18 85 — — 31 89
8 2 51 — — 11 51
9 8 23 — — 2 25
10 — — 4 18 0 19
11 — — 3 35 22 36
12 — — 5 56 30 53
13 — — 5 16 6 18
14 — — 3 23 9 22
15 — — 11 49 31 46
16 — — 19 53 9 60
17 — — 17 53 26 60
18 — — 10 71 29 69
19 — — 12 41 14 41
20 — — 0 21 3 20
21 — — 13 33 14 35
22 — — 31 143 23 138
23 — — 20 55 19 51
24 — — 3 13 12 16
25 — — 3 21 5 28
26 — — 6 22 2 24

We apply the same six methods as in the CAD data set. The parameter of interest is

δAB, the log-odds ratio of first bleeding for beta-blockers vs sclerotherapy. The results are

presented in Table 2.4.
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Table 2.4: Results of meta-analysis on cirrhosis data

Method δ̂AB s.d.(δ̂AB) 95% CI Length of 95% CI

Traditional-Direct 0.7284 0.8439 (−0.9256, 2.3824) 3.3080
Traditional-Indirect −0.0927 0.8069 (−1.6738, 1.4884) 3.1622

Bayesian-HOM 0.5228 0.3171 (−0.0969, 1.1461) 1.2430
Bayesian-HET 0.6466 0.3250 ( 0.0410, 1.3151) 1.2741

CD[SDL] 0.5688 0.2588 ( 0.0617, 1.0761) 1.0144
CD[SREML] 0.6381 0.2445 ( 0.1589, 1.1174) 0.9585

In Table 2.4, we again observe that the Bayesian methods and the CD procedures have sub-

stantially lower variance as a result of integrating all treatment comparisons. Therefore,

the network-meta-analysis approaches have effectively strengthened the results obtained

from direct comparisons by borrowing information from indirect comparisons. Unlike the

results in the CAD example, pairwise meta-analysis using only direct comparisons does

not achieve significant results, whereas the Bayesian and CD approaches yield significant

or almost significant results. However, the validity of combining direct and indirect treat-

ment comparisons should be carefully investigated, the difference between δ̂AB,indirect and

δ̂AB,direct raises concerns about consistency between direct and indirect evidence. The topic

of inconsistent evidence is discussed in Higgins et al. (2002, 2003). We also discuss this

topic further in Section 4.3 and Section 5.

In these two examples, the CD and Bayesian approaches yield similar results. The confi-

dence intervals derived from the CD approach are only slightly tighter than those derived

from the Bayesian approach. However, our simulation studies in the next section show

that the Bayesian credible intervals may not achieve the nominal coverage probability, and

their empirical coverage probabilities may be far below the nominal level when the as-

sumed prior on the between-trial covariance structure does not agree with the underlying

true model. This latter condition is almost impossible to verify in practice. In contrast,
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the proposed CD combining approach does not require any prior, and the derived confi-

dence intervals can maintain adequate coverage probability regardless of the between-trial

covariance structure.

2.4 Simulation Studies

We conducted simulation studies to compare the performance of the proposed CD combin-

ing approach with traditional pairwise meta-analysis and the Bayesian method.

2.4.1 Simulation Settings

We based our simulation on the structure of the cirrhosis data. Specifically, the evidence

network involves three treatments (A, B, and C). The problem of interest is to infer the

relative effectiveness of A vs B.

Consider two scenarios, one with 24 trials and the other with 96 trials. In the first scenario,

the 24 clinical trials, comprise 1 trial comparing all three treatments, 3 trials comparing

A and B, 10 trials comparing treatments A and C, and 10 trials comparing B and C. The

number of patients in each arm of each trial is 100, i.e., nij = 100,∀i and j ∈ Ti. In the

second scenario the number of trials of each type is four times that in the first scenario.

The simulation is designed to show the benefit of borrowing strength from indirect evidence

when direct evidence (trials directly comparing treatments A and B) is somewhat limited.

Table 2.5: Simulation Settings - Number of Trials k and Patients Involved in Each Group nij

Total Number of Trials k \Type of Trial ABC AB AC BC nij
Simulation Scenario 1 k=24 1 3 10 10 100
Simulation Scenario 2 k=96 4 12 40 40 100
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We generate the simulated data from the model:

rij |pij ∼ Binomial(nij , pij), pij =
exp(θij)

1 + exp(θij)
, i = 1, 2, . . . , 24 or 96, j ∈ Ti

θi ∼ N(Aiθ,AiSAT
i )

(2.18)

where Ai consists of the rows of the identity matrix corresponding to the treatments in Ti.

We specify the true value of θ = (−1.82,−1.21,−0.80)T as the values are close to those

estimated from the cirrhosis data. It follows that the probabilities of observing an event

in treatment A, B, and C are p = (0.14, 0.23, 0.31)T. For the covariance matrix S, we

consider three cases:

Case 1:

S =


1 0 0

0 1 0

0 0 1

 ⇐⇒ B =


2 1 0

1 2 0

0 0 1/3

 ;

Case 2:

S =


2.5736 −1.2868 1.7132

−1.2868 4.8528 −0.5660

1.7132 −0.5660 1.8528

 ⇐⇒ B =


10 1.5811 0

1.5811 1 0

0 0 1

 ;

Case 3:

S =


3.1070 0.4314 1.2358

0.4314 0.7557 0.4693

1.2358 0.4693 0.8645

 ⇐⇒ B =


3.0000 1.9092 −1.0392

1.9092 1.5000 −0.7348

−1.0392 −0.7348 1.0000

 ,

where B = cov(δAB,i, δAC,i, µi) = TBSSTT
BS, and δAB,i, δAC,i, µi and TBS are defined as in

model (2.15). Here “⇐⇒ ” indicates the one-to-one correspondence between the covariance

matrix S in model (2.18) and the covariance matrix B in the Bayesian models.
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In Case 1, S is set to an identity matrix to ensure that the true model (2.18) meets

the assumptions of Bayesian-HOM in Section 3.1.4, and is thus equivalent to the case

of (2.16) with σ2 = 2. Similarly, the covariance matrix S in Case 2 allows the true

model (2.18) to meet the assumptions of Bayesian-HET, and is thus equivalent to the

case of σ2
1 = 10, σ2

2 = 1 and ρ = 0.5 in (2.17). As suggested in Joseph et al. (1997), we

further extend the model to incorporate correlations between δAB,i, δAC,i and µi, instead

of assuming independence. Therefore, in Case 3, the covariance matrix S is specified to

give an arbitrary covariance structure such that B fails to meet the assumptions of either

Bayesian-HOM or Bayesian-HET.

In summary, we consider a total of six (= 2× 3) settings in our simulation study: 24 and

96 trials each with three specifications of the covariance matrix S.

2.4.2 Results

We consider and compare the performance of a total of nine approaches. They include the

six methods listed in Section 3.1.5: Traditional-Direct and Traditional-Indirect, Bayesian-

HOM and Bayesian-HET, and CD[SDL] and CD[SREML]. Additionally, we include three

other CD approaches: two semi-Bayesian approaches, CD[SBHOM] and CD[SBHET], in which

the covariance matrix S is estimated by the Bayesian method with prior in (2.16) and

(2.17), respectively, and CD[STRUE], which uses the true covariance matrix S. The CD[STRUE]

method allows us to separate the effect of estimating the mean alone and study the potential

impacts on estimation of the mean when different approaches are used to estimate S. Thus,

the nine methods are:

� Traditional frequentist methods:
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– Traditional-Direct: Traditional frequentist meta-analysis of direct pairwise com-

parisons.

– Traditional-Indirect: Traditional frequentist meta-analysis via indirect pairwise

comparisons.

� Bayesian methods:

– Bayesian-HOM: Bayesian network meta-analysis with homogenous variance

structure on δ.

– Bayesian-HET: Bayesian network meta-analysis with heterogenous variance

structure on δ.

� CD methods:

– CD[SDL]: S estimated by SDL.

– CD[SREML]: S estimated by SREML.

– CD[SBHOM]: S estimated by SBHOM.

– CD[SBHET]: S estimated by SBHET.

– CD[STRUE]: using the known true S.

In simulation Scenario 1 Case 1, for example, we generate data according to the model

specified in (2.18), and then apply each method to estimate δAB and calculate the corre-

sponding 95% confidence (credible) interval. We repeat this process 1000 times. For each

method, we report the mean and standard deviation of the 1000 δ̂AB and the percentage

of times (coverage) that the 1000 95% CIs cover the true δAB = 0.6070 and the average

interval length. The results for Scenarios 1 and 2 with Case 1 (S = I3×3) are presented in

Table 2.6. Similarly, the results for Case 2 and Case 3 are presented in Tables 2.7 and 2.8.

It is straightforward to verify that the chance that no trial has zero events in the entire
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1000 replications is at least 99.97%. Thus the zero events issue is not considered in the

simulation study.

Table 2.6: Summary of results of simulation studies - Case 1

Method
Average

δ̂AB s.d.(δ̂AB) 95% CI coverage Length of 95% CI

Scenario 1 - Small Number of Trials k = 24

Traditional-Direct 0.5952 0.7167 0.867 2.7041
Traditional-Indirect 0.5913 0.6312 0.941 2.5225

Bayesian-HOM 0.5796 0.4097 0.937 1.5704
Bayesian-HET 0.5736 0.4104 0.938 1.5712

CD[SREML] 0.5677 0.4057 0.897 1.3766
CD[STRUE] 0.5732 0.3850 0.955 1.5554

CD[SDL] 0.5718 0.4195 0.862 1.2550
CD[SBHOM] 0.5719 0.3925 0.940 1.5337
CD[SBHET] 0.5714 0.3927 0.943 1.5225

Scenario 2 - Large Number of Trials k = 96

Traditional-Direct 0.5843 0.3658 0.927 1.3950
Traditional-Indirect 0.6104 0.3118 0.962 1.2681

Bayesian-HOM 0.6126 0.2016 0.948 0.7663
Bayesian-HET 0.6126 0.2016 0.943 0.7701

CD[SREML] 0.5780 0.1915 0.936 0.7242
CD[STRUE] 0.5856 0.1900 0.966 0.7777

CD[SDL] 0.5762 0.1932 0.904 0.6536
CD[SBHOM] 0.5852 0.1920 0.959 0.7716
CD[SBHET] 0.5852 0.1918 0.954 0.7680

From the results in Tables 2.6, 2.7 and 2.8, it is evident that the traditional pairwise meta-

analysis is much less efficient than the CD network meta-analysis approaches. Specifically,

compared with the results from the CD[SREML] method, the lengths of 95% CIs obtained

from traditional meta-analysis methods are much greater, even though the probabilities of

covering the true value are comparable. This suggests that, when the parameter of interest

is a vector, information on one parameter may be potentially useful for inferences on other

parameters. Thus, mixed treatment comparisons should be considered in our settings.
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Table 2.7: Summary of results of simulation studies - Case 2

Method
Average

δ̂AB s.d.(δ̂AB) 95% CI coverage Length of 95% CI

Scenario 1 - Small Number of Trials k = 24

Traditional-Direct 0.6176 1.4759 0.849 5.4220
Traditional-Indirect 0.5905 0.8818 0.937 3.4753

Bayesian-HOM 0.6095 0.7450 0.887 2.4177
Bayesian-HET 0.5706 0.7360 0.913 2.6355

CD[SREML] 0.5793 0.6922 0.916 2.5426
CD[STRUE] 0.5820 0.6865 0.973 2.9649

CD[SDL] 0.6165 0.7289 0.811 2.0011
CD[SBHOM] 0.6323 0.7030 0.901 2.3815
CD[SBHET] 0.6044 0.6930 0.906 2.4856

Scenario 2 - Large Number of Trials k = 96

Traditional-Direct 0.6433 0.7431 0.924 2.8474
Traditional-Indirect 0.6287 0.4279 0.951 1.7643

Bayesian-HOM 0.6852 0.3540 0.899 1.1858
Bayesian-HET 0.6454 0.3436 0.960 1.3952

CD[SREML] 0.6200 0.3226 0.959 1.3164
CD[STRUE] 0.6261 0.3254 0.980 1.4823

CD[SDL] 0.6455 0.3227 0.864 0.9721
CD[SBHOM] 0.6636 0.3324 0.933 1.2085
CD[SBHET] 0.6279 0.3256 0.968 1.3876



35

Table 2.8: Summary of results of simulation studies - Case 3

Method
Average

δ̂AB s.d.(δ̂AB) 95% CI coverage Length of 95% CI

Scenario 1 - Small Number of Trials k = 24

Traditional-Direct 0.4706 0.8260 0.868 3.0721
Traditional-Indirect 0.4250 0.4582 0.915 1.8193

Bayesian-HOM 0.4135 0.4400 0.855 1.4116
Bayesian-HET 0.4065 0.4388 0.853 1.4186

CD[SREML] 0.4834 0.4201 0.892 1.4924
CD[STRUE] 0.5010 0.4058 0.953 1.7241

CD[SDL] 0.3957 0.4510 0.787 1.2756
CD[SBHOM] 0.3750 0.4169 0.855 1.3811
CD[SBHET] 0.3753 0.4141 0.852 1.3824

Scenario 2 - Large Number of Trials k = 96

Traditional-Direct 0.4823 0.4132 0.912 1.5936
Traditional-Indirect 0.4472 0.2250 0.896 0.9051

Bayesian-HOM 0.4603 0.2131 0.807 0.6828
Bayesian-HET 0.4589 0.2097 0.822 0.6996

CD[SREML] 0.5057 0.1943 0.919 0.7724
CD[STRUE] 0.5261 0.1978 0.949 0.8620

CD[SDL] 0.4435 0.2029 0.749 0.6242
CD[SBHOM] 0.3959 0.2027 0.754 0.6954
CD[SBHET] 0.3950 0.2002 0.759 0.7042
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Consider the probability that the nominal 95% CI covers the true δAB as one criterion for

assessing the performance of each meta-analysis method. It is evident from the simulation

study that the results of the Bayesian methods are sensitive to the specifications of their

prior distributions. Specifically, Bayesian-HOM fails to achieve appropriate coverage in

Cases 2 and 3 (e.g., 89% and 90% in Table 2.7 and 86% and 81% in Table 2.8), regardless

whether the number of studies is small or large. Similarly, Bayesian-HET fails to provide

satisfactory coverage in the Case 3 (85% and 82% in Table 2.8) when its assumption on

prior cannot cover the true model. In summary, both Bayesian methods are able to estimate

δAB properly only if their prior assumptions cover the underlying true covariance model,

and they fail to do so when their prior assumptions are not compatible with the underlying

true covariance model. So the Bayesian procedures are vulnerable to their assumptions on

priors, and we should make as few assumptions as possible when specifying priors.

In examining the results of the CD procedures, we first observe that CD[STRUE] achieves

desirable coverage rates in all cases (95%−98% in Tables 2.6, 2.7, and 2.8). Therefore, the

performance of the CD procedure is satisfactory for combining information on θ. However,

the performance of the CD procedure is strongly affected by the quality of estimating the

covariance matrix S. To help establish a practical guideline, we compare the quality of

estimates based on the extended DL method SDL and the REML method SREML. Specifi-

cally, we plug in the corresponding estimates in the process of constructing and combining

individual CDs, and again we study the performance of estimates δ̂AB and the correspond-

ing 95% CIs. The performance of CD[SREML] is reasonable in all settings, i.e., close to the

nominal 95% coverage (see, e.g., 92% − 96% in Tables 2.6, 2.7, and 2.8) as long as the

number of studies is sufficiently large. Further, the coverage rate of CD[SREML] improves

from 89%− 92% to 92%− 96% as the number of studies increases from 24 to 96. On the

other hand, the coverage rate of CD[SDL] is relatively low, around 79% − 86%, when the
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sample size is small. Moreover, the performance of CD[SDL] does not always improve as

the number of studies increases. For example, the coverage rate of CD[SDL] drops from

78.7% to 74.9% in Table 2.8. Thus, the REML method is preferable to the extended DL

method for estimating the covariance matrix S. This observation is consistent with the

shortcomings of the DL method reported in univariate random-effects models by Emerson

et al. (1993). Between the REML and DL methods, we recommend the CD procedure with

SREML for network meta-analysis when S is unknown.

Finally, the results for the semi-Bayesian CD procedures appear to be similar to the results

for the corresponding Bayesian procedures. Specifically, the performance of CD[SBHOM] is

in line with Bayesian-HOM. It achieves appropriate coverage in Case 1 (94% and 96% in

Table 2.6), but fails in Cases 2 and 3 (90% and 93% in Table 2.7 and 86% and 75% in

Table 2.8), regardless of the number of studies k = 24 or 96. Similarly, the results for

CD[SBHET] are in line with Bayesian-HET. It provides satisfactory coverage in Cases 1 and

2 (94% and 95% in Table 2.6 and 91% and 97% in Table 2.7), but fails Case 3 (85% and

76% in Table 2.8). Once again, the CD procedure is sensitive to the quality of estimation

of S. Also, the confidence distribution H(c)(·) in (2.8)is an asymptotic CD that is more

suitable for making inferences on θ when k → ∞, under which both the mean vector θ

and the between-trials covariance matrix S can be estimated consistently.

2.4.3 A CD Approach with Adaptive Weights

As we observed from in Section 4.2, the overall findings for a network can be quite unreli-

able when indirect evidence and direct evidence inconsistent. In this section, an adaptive

weighting system improves resistance to the impact of inconsistent indirect comparisons

by down-weighting the trials that contribute to the inconsistent evidence. Here, the degree
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of inconsistency from an indirect comparison is measured by how the trials in the indi-

rect comparison deviate from the overall outcome for the direct comparison. The precise

formulation of this measure, which we loosely call “distance,” is given after Model (2.19).

Taking into account this distance, the CD combining process can still use indirect compar-

isons that provide outcomes consistent with those from the direct comparisons, but it can

also reduce the impact of inconsistent indirect comparisons. We demonstrate this property

through the following simulation studies.

We consider the model (2.18) used in Scenario 1 in Section 4.1, with two modifications.

First, we increase the total number of trials from 24 to 33 so that three trials, instead of

one trial, compare treatments A, B, and C, and ten trials, instead of three trials, directly

compare treatments A and B. We still have ten trials comparing treatments A and C and

ten trials comparing treatments B and C. Thus, for inferences on δAB, we have 13 direct

comparisons and 20 trials with information on the indirect comparison. Second, the trials

containing information on the direct comparison are consistent, but some of the remaining

20 trials containing information on the indirect comparison may be biased. Specifically, we

consider the following model to generate the simulation data:

rij |pij ∼ Binomial(nij , pij), pij =
exp(θij)

1 + exp(θij)
, i = 1, 2, . . . , 33, j ∈ Ti

θi ∼ (1− ε)N(Aiθ,AiSAT
i ) + εN(Ai(θ − ηi),AiSAT

i )

where

ε = 0 and ηi = 0 for i s.t. Ti = {A,B,C} or Ti = {A,B}

ε = 0.4 and ηi =

 (ηA,i, 0, 0)T for i s.t. Ti = {A,C}

(0, ηB,i, 0)T for i s.t. Ti = {B,C}
(2.19)

Here, the values of ηA,i and ηB,i are fixed numbers simulated from N(2, 4).
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Model (2.19) indicates that all trials that compare both treatments A and B directly have

the same underlying true parameter θ, whereas some trials involving A only or B only may

have different underlying true parameters. If we are to include the trials that provide the

indirect comparison in our analysis, it would be desirable to exclude or down-weight those

trials. In this case, we devise the following notion of distance di,

di =



(δ̂AC,i −medianl s.t. Tl={B,C}δ̂BC,l)− δ̂AB,direct√
var(δ̂AB,direct)

for i s.t. Ti = {A,C}

(medianl s.t. Tl={A,C}δ̂AC,l − δ̂BC,i)− δ̂AB,direct√
var(δ̂AB,direct)

for i s.t. Ti = {B,C},

where δ̂AB,direct and var(δ̂AB,direct) are obtained from Equation (2.13). Heuristically, di for

each indirect comparison trial measures its deviation from the overall outcome given by all

direct comparison trials. For example, we could consider including only the studies with

distance |di| ≤ 1 in the meta-analysis. In other words, we would define w∗i as

w∗i =

 1 if |di| ≤ 1

0 if |di| > 1,

and use w∗i in the method CD[SREML]-adjusted. Specifically, we set Wi = w∗i × A+
i (Σ̂i +

AiSREMLA
T
i )−1Ai, and take the cdf of the random vector in (2.7) as the combined multi-

variate normal CD. We show that in this way the combined CD is able to exclude those

inconsistent indirect trials – trials with large di. There are many other choices of adaptive

weights. For convenience, we use here the simple, though somewhat restrictive, |di| ≤ 1 to

remove inconsistent studies from combination. A detailed discussion of choices of adaptive

weights and their applications to combining CDs can be found in Xie et al. (2011).

In a further simulation study (Case 4), we consider two settings. In Setting 1, we generate
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the simulated data using model (2.18), in which all studies have the same underlying true

parameter value, but modify it to have 33 trials with the same composition of trials as model

(2.19). In Setting 2, the simulated data are generated from model (2.19). In this case, some

trials used in the indirect comparison have a different underlying true parameter value. In

both settings, three trials compare all three treatments, ten trials compare treatments A

and B, ten trials A and C, and ten trials B and C. The number of patients involved in

each arm of each study is 100. We apply CD[SREML], CD[SREML]-adjusted, and CD[STRUE] to

the simulated data sets. We repeat the entire process 1000 times and report the results in

Table 2.9.

Table 2.9: Summary of results of simulation studies - Case 4

Method
Average

δ̂AB s.d.(δ̂AB) 95% CI coverage Length of 95% CI

Setting 1 - 33 Trials without Inconsistent Indirect Trials

CD[SREML] 0.5733 0.2984 0.9200 1.1122
CD[SREML]-adjusted 0.5780 0.3705 0.9230 1.4078

CD[STRUE] 0.5818 0.2955 0.9520 1.2139

Setting 2 - 33Trials with Inconsistent Indirect Trials

CD[SREML] 1.1425 0.3932 0.7190 1.4808
CD[SREML]-adjusted 0.6479 0.3934 0.9770 1.9963

CD[STRUE] 1.1001 0.3367 0.6260 1.2250

All three methods are able to achieve appropriate coverage rate (92% − 95% in Setting

1) if all trial outcomes are consistent with one another. However, in Setting 2, with

inconsistent indirect trials, only CD[SREML]-adjusted provides appropriate inference on δAB.

In particular, the estimate δ̂AB = 0.6479 by CD[SREML]-adjusted is not far from the true

δAB = 0.6070, and its 95% CI has a coverage rate of 97.7%. Therefore, with carefully

designed study-specific weights, the CD procedure is able to provide some resistance to the

impact of inconsistent indirect trials mistakenly included in the meta-analysis.
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2.5 Concluding Remarks

In this paper, we have proposed a frequentist method for network meta-analysis by com-

bining multivariate normal confidence distributions (CDs) associated with individual stud-

ies. This proposed CD approach can perform indirect comparisons in a network of mixed

treatment comparisons, and it can use the findings from indirect comparisons efficiently

to enhance the overall inference of the entire network. The CD approach can also be

modified by using an adaptive weighting scheme to reduce the effect of indirect compar-

isons whose findings contradict those from the direct comparisons. Overall, the proposed

CD approach can effectively and efficiently integrate direct and indirect information from

disparate sources. In fact, the CD approach can estimate consistently and efficiently the

parameters of interest as well as the between-trials covariance matrix when the number of

studies goes to infinity. Through simulation studies, we have also demonstrated that the

CD approach generally outperforms traditional pairwise meta-analysis and the Bayesian

hierarchical model. In conclusion, the CD approach is highly competitive for network

meta-analysis.

In comparing the approaches on the CAD data in Section 3.1, we excluded the TAXUS I

trial to avoid addressing the issue of zero events there. In traditional pairwise meta-analysis,

one customarily adds 0.5 to zero events. This correction is arbitrary and introduces bias

in the inferences. By removing zero-event trials from the analysis, one would lose the

information they contain. For example, for TAXUS I, zero event is a favorable outcome

for both BMS and PES. This loss can cause concerns as well, especially if the zero-event

trials constitute a sizable portion of the data. For an exact inference method involving

zero events, the approach of combining significance functions proposed in Liu et al. (2013)

can avoid the shortcomings of the earlier approaches.
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In network meta-analysis, it is important to assess the consistency of the evidence from all

trials in the network. However, such assessment is often difficult. One reason is that designs

often differ between the trials yielding direct comparisons and the trials leading to indirect

comparisons. Furthermore, it is practically impossible to distinguish between inconsistency

and heterogeneity of random effects. See Higgins et al. (2002, 2003) for further discussion

of this topic.

Although our examples involve clinical trials in medical studies, we emphasize that the

proposed CD approach can be applied broadly for any multiple comparison studies in many

other domains. For example, to establish ratings for a list of restaurants based on a survey

of customer ratings, customers would be able to provide data only on the restaurants that

they have patronized. The CD approach could be applied by constructing and combining

CDs based on the ratings given to those restaurants by a group of customers.

2.6 Appendix

Lemma 1 Suppose Wi, i = 1, . . . , k are p×p positive semi-definite symmetric matrices and

Vi is the column space of Wi. Let V = V1 + V2 + · · ·+ Vk
4
= {
∑k

i=1 vi|vi ∈ Vi, i = 1, . . . , k}.

Then
∑k

i=1Wi is positive definite provided that V = <p.

Proof of Lemma 1:

It is a direct result that
∑k

i=1Wi is positive semi-definite. Suppose there exists a p×1 vector

v 6= 0 such that vT(
∑k

i=1Wi)v = 0. Then, for any fixed i, we have vTWiv = 0, which

implies that W
1/2
i v = 0. It follows that v ∈ kernel(W

1/2
i ), and immediately v ∈ kernel(Wi)

since Wi is symmetric. Thus v ⊥ Vi. Since i is arbitrary, we conclude that v ⊥ V = <p

and v has to be 0, which contradicts the assumption that v 6= 0.
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Proof of Theorem 2.1:

Let ξ(c) = (
∑k

i=1Wi)
−1
∑k

i=1WiA
+
i ξi and H(c)(t) = Pr{ξ(c) ≤ t|Y1, . . . ,Yk}. We need to

show that H(c)(·) = H(Y1, . . . ,Yk; ·) is a multivariate normal CD for θ. Define Hλ(t) =

Pr{λTξ(c) ≤ t|Y1, . . . ,Yk} for any given vector λ satisfying ||λ||2 = 1. By Definition 2.2,

it suffices to show that Hλ(t) is a univariate normal CD function for λTθ.

To do so, we first note that Hλ(t) goes from 0 to 1 monotonically as t goes from −∞ to

∞. Thus, Hλ(t) is a cdf. Second, we note that ξi, defined by ξi|Y i = yi ∼ N(yi, var(Y i)),

is a CD random vector for θi, and furthermore, A+
i ξi is a CD random vector for

θ in the sense that the distribution function of ηTA+
i ξi is a CD for ηTθ for any

η ∈ Vi. Since (
∑k

i=1Wi)
−1 exists by Lemma 1, we consider the conditional distribu-

tion of
(
Wi(

∑k
i=1Wi)

−1λ
)T

A+
i ξi given Yi. Clearly, it is a univariate normal CD for(

Wi(
∑k

i=1Wi)
−1λ

)T
θ, because Wi(

∑k
i=1Wi)

−1λ ∈ Vi. Therefore, it is straightforward to

show that, at the true parameter value θ = θ0,

Pr{Hλ(Y1, . . . ,Yk) ≤ s} = Pr

Φ


∑k

i=1

(
Wi(

∑k
i=1Wi)

−1λ
)T

A+
i Yi − λTθ0√∑k

i=1 σ
2
i

 ≤ s
 = s

where σ2
i = var

((
Wi(

∑k
i=1Wi)

−1λ
)T

A+
i ξi

)
. Thus, we have established that, at the

true θ = θ0 and as a function of the sample Y1, . . . ,Yk, Hλ(Y1, . . . ,Yk) follows the

uniform distribution U [0, 1]. This completes the proof.
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Chapter 3

Combining Multivariate Normal Confidence Distributions

and its Application to Multivariate Meta-Analysis

In this chapter, we propose a general method for combining multivariate normal con-

fidence distributions. The proposed methodology can support the development of

efficient and robust multivariate meta-analysis approaches. The robust approaches

can effectively mitigate the undue impact of potential outlying studies and thus address

the second problem mentioned in the introduction chapter.

3.1 Introduction

Meta-analysis is a statistical method that aims to combine information from different

sources. It is widely applied in support of making decisions in many fields, including

education, marketing, medical research and etc., e.g., see the 281 references in Sutton

and Higgins (2008)’s review of recent developments of meta-analysis. Most meta-analysis

methods are developed for combining inference of a single parameter. As a result, such

methods do not use the information of correlations between the parameters, if there is any.

Multivariate meta-analysis instead simultaneously combines inferences of all parameters. It

can often strength the inference by borrowing information from other related parameters.

Along with the advanced technology, collection of high dimensional data is much easier
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than before, and the request for jointly collecting outcomes of multiple endpoints evolves

as a common practice. As the sequel, the demand for simple and effective multivariate

meta-analysis method has never been greater.

Multivariate meta-analysis method can be traced back to Hedges and Olkin (1985). It is

recently reviewed by van Houwelingen et al. (2002) and Arends (2006). Although it has

been advocated for almost 30 years from it came into being, the method is still limitedly

used in the realm of practical evidence synthesis (Riley, 2009). The lack of awareness of the

benefit brought by multivariate meta-analysis, and the lack of effective approaches obstruct

its widely use (Jackson et al., 2011). One particular challenge is that the crucial assumption

– all studies involved in the meta-analysis must have the same underlying parameters or

hyper-parameters, must be satisfied. A violation of such an assumption would lead to

biased or even invalid combined estimates. This issue is aggravated in the multivariate

case in the sense that if one parameter in one study has different underlying parameter,

then the combined estimates for all parameters might be impacted. However, diagnosis of

such violations is difficult, especially in the multivariate case. Therefore, it is desirable to

have a robust approach that can tolerate such violations to some extent.

This paper proposes a general method for multivariate meta-analysis. This method is broad

in the sense that it incorporates the model-based multivariate meta-analysis approach as

a special case. Such an approach provides asymptotically efficient estimator under the

standard multivariate fixed-effect or random-effects models (van Houwelingen et al., 2002;

Arends, 2006). The proposed method can also support developing new robust multivariate

meta-analysis approaches. These robust approaches can provide combined estimators that

are resistant to the impact of the potential outlying studies, and as a result, can provide a

means of protection against model misspecification. To our knowledge, no existing multi-

variate meta-analysis approach, including Bayesian methods, can make consistent inference
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on the target parameters, in the existence of unknown outlying studies.

The first robust approach applies to meta-analysis of a large number of studies. It relies

on asymptotic normality, and has an inherent connection to an M-estimation approach.

The combined estimator maintains high relative efficiency, e.g., it attains
√

3/π ≈ 97.72%

efficiency asymptotically in both fixed-effect and random-effects models when there are no

outlying studies. The second approach applies to meta-analysis of a set of large studies. It

uses data-dependent adaptive weights to down-weight or exclude studies contained little or

misleading information about the parameter of interest. The combined estimator has an

oracle property under the fixed-effect model, and as a result, it is asymptotically efficient

as the individual studies sample sizes goes to infinity.

Another challenge in the multivariate meta-analysis is that often only the summary statis-

tics of each endpoints are available but not their correlations. Thus, it is worth knowing

that the proposed method can include studies with misspecified correlations, and provide

consistent estimator with minor conditions (Liu, 2012). An important subject of multivari-

ate meta-analysis is network meta-analysis, which lays particular emphasis on improving

the inference of one parameter by borrowing information from other related parameters.

The recent development on network meta-analysis is controversial on attributing the dis-

agreement between the direct and indirect evidence to heterogeneity or inconsistency, cf.,

the discussion in Jansen et al. (2011); Hoaglin et al. (2011); Li et al. (2011) and the ref-

erences therein. The proposed method can adapt to apply to network meta-analysis, by

incorporating studies with information about only a subset of target parameters. In par-

ticular, the robust approaches can adaptively down-weight studies provided potentially

inconsistent information in the combining process, and thus can avoid to make decisions

on the inclusion or exclusion of such studies in the evidence collecting process. Such deci-

sions are often ambiguous due to the lack of information. Therefore, the robust approaches
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have an advantage in network meta-analysis.

The proposed method is developed by combining multivariate normal confidence distribu-

tions (CDs). Loosely speaking, a CD uses a sample-dependent distribution function on the

parameter space that can represent all level confidence intervals for making inference on the

parameter of interest. The concept of CD can be rooted back to Bayes (1763) and Fisher

(1930), and gains renewed interest in recent years (Schweder and Hjort, 2002; Singh et al.,

2005, 2007). A comprehensive review of recent developments on CDs, including a renewal

of definition from pure frequentist viewpoint, methods of constructing CDs, and using CDs

for making inference, can be found in Xie and Singh (2013) and the followed discussions.

As a distribution estimator, a CD inherently contains more information, such as skewness,

than a point or interval estimator (Xie and Singh, 2013; Cox, 2013). Therefore, it is useful

for making inference based on one study, and it is also an ideal tool for combining the

information from different studies.

The application of using CD for combining information from independent sources is pro-

posed by Singh et al. (2005). This CD combining method is shown to be useful for meta-

analysis. For the single parameter case, a CD combining method, which unifies almost all

univariate meta-analysis approaches under the same framework, and develops new robust

meta-analysis approaches, is proposed by Xie et al. (2011). The proposed method in this

paper is in essential a generalization of that CD combining method to the multivariate

case. However, this generalization is not a simple extension, since the property used in the

univariate combining framework, mapping U[0, 1] → <p by a single monotonic function

when p = 1, is not meaningful when p ≥ 2. To circumstance such difficulty, a method of

combining CD random vectors, rather than combining CD functions, is proposed by Yang

et al. (2013a). Although such a method can provide efficient multivariate meta-analysis
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approach under the standard fixed-effect or random-effects model, it is not ready for de-

veloping robust multivariate meta-analysis approaches. Thus, we present a method that

directly combines multivariate normal CD functions as in the univariate case. It indeed

generalizes the CD combining method proposed by Xie et al. (2011) to multivariate case.

As a result, all derived meta-analysis approaches, including the robust approaches, can

be correspondingly developed under the new framework. It also includes the method of

combining CD random vectors as a special case.

This article proceeds as follows. Section 2 reviews and explores the concept of multivariate

normal CD, and then proposes a general method that combines multivariate normal CDs.

Section 3 discusses on the application of the general combining method to multivariate

meta-analysis. It shows the properties of different approaches based on combining joint

CDs, e.g., efficiency and robustness. It indicates that the newly developed robust multi-

variate meta-analysis methods can provide consistent estimator for the target parameters,

whereas the conventional frequentist and Bayesian methods fail, when outlying studies are

inadvertently included in the meta-analysis. Furthermore, the proposed general combining

method can incorporate studies with missing endpoints, which are often the case in the

network meta-analysis scenarios. Section 4 presents some numerical results and Section 5

concludes with a summary and some further discussions.

3.2 Multivariate Normal CDs and their Combinations

3.2.1 Multivariate Normal CD

A CD uses a sample-dependent distribution function to estimate the unknown parameter.

It is a distribution estimator like the Bayesian posterior, however, it is a pure frequentist

concept without any Bayesian reasoning involved. In principle, any sample dependent
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distribution function, which can provide all levels of confidence intervals, can be used as a

CD. An attractive aspect of using such a distribution estimator is that it contains wealthy

information for making almost all types of inference, including point estimates, confidence

interval and p-values for hypothesis testing problems. In fact, such inferences can be drawn

from a CD in a same way as they are drawn from a Bayesian posterior distribution. The

CD can subsume a broad range of frequentist concepts. For example, it has been shown

that normalized likelihood function, p-value function, and bootstrap distribution can all

be viewed as confidence distributions (cf., Xie and Singh, 2013, and reference therein).

More formally, a univariate CD is defined as following. For a single parameter θ ∈ Θ,

suppose Y is the sample space corresponding to data Y = {y1, . . . , yn}, then a confidence

distribution (CD) is defined as a function H(·) ≡ H(Y , ·) on Y ×Θ → [0, 1] such that: i)

H(·) is a cumulative distribution function on Θ for each given Y ∈ Y; and ii) at the true

parameter value θ = θ0, H(θ0) = H(Y , θ0), as a function of the sample Y , follows the

uniform distribution U[0, 1] (Schweder and Hjort, 2002; Singh et al., 2005). The second

requirement imposes restrictions to facilitate desirable frequentist properties such as un-

biasedness, consistency and/or efficiency. The function H(·) is an asymptotic CD (aCD)

if the U[0, 1] requirement holds only asymptotically. A concomitant concept is CD ran-

dom variable. Intuitively, a CD random variable is a random variable ξ defined on Y ×Θ

such that it has the distribution H(·) given the sample Y , where H(·) is the CD for θ.

Given any CD function H(·), one can construct a CD random variable associated with

H(·). On the other hand, given any CD random variable ξ ∈ Y × Θ whose conditional

distribution is H(·) (conditional on the sample Y ), then H(·) is a CD for θ, the parameter

of interest (Singh et al., 2007). A CD is useful for making inference. For example, let

H(·) = H(·,Y) denote a CD, obtained based on the sample Y, for the parameter θ. Then,

the mean/median/mode of the distribution estimator H(·) provides point estimators for
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θ, the interval (−∞, H−1(α)) is a 100(1− α)% level one-sided confidence interval (CI) for

θ, and the tail mass H(b) provides a p-value for the one-sided hypothesis test K0 : θ ≤ b

versus K1 : θ > b, for any given b (Xie and Singh, 2013).

Extend the CD concept to multivariate case is not straightforward, since the property

F (y)
L
= U[0, 1] when Y

L
= F does not hold in <p for p ≥ 2 (Singh et al., 2007). The

development of joint CD function, as a result, either concentrates the interest within center-

outwards confidence regions (rather than all Borel sets) in the parameter space, or makes

use of asymptotic normality (De Blasi and Schweder, 2012; Xie and Singh, 2013). In

this paper, we consider the multivariate normal CD, which assumes asymptotic normality,

during our development of the general combining method. It is sufficient to cover all our

later discussions in the sense that almost every CD considered for combining in practice

is asymptotically normal (Hannig and Xie, 2012). The definition of multivariate normal

CD relies on CD random variable, or CD random vector in the multivariate case. Loosely

speaking, for a p × 1 vector parameter θ, a distribution function H(·) is a multivariate

normal CD for θ if and only if the projected distribution of H(·) on any direction λ ∈ <p

is a univariate normal CD for λTθ. More formally, the following definition is proposed and

utilized in Yang et al. (2013a).

Definition 3.1 Let ξ be a random vector on <p. We denote by H(·) the conditional

distribution of ξ given Y . For any given p × 1 vector λ, we also denote by Hλ(·) the

conditional distribution of λTξ given Y . Then we call H(·) the multivariate normal CD

(or, asymptotic multivariate normal CD) for a p× 1 parameter vector θ if and only if, for

any given λ, Hλ(·) is a univariate normal CD (or asymptotic CD) function for λTθ. Also,

the random vector ξ is called a CD random vector for θ.

Example 3.1 (Multivariate Normal Mean) Suppose yi, i = 1, . . . , n are identically and
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independently distributed observations from a multivariate normal distribution N(θ,S).

Then, the function

H(n)(θ) = Ψ(S
−1/2
(n) (θ − ȳ(n))) (3.1)

satisfies requirements in Definition 3.1 and thus is a multivariate normal CD function

for θ. Here, ȳ(n) is the sample mean, S(n)=S/n, and Ψ(·) is the cumulative distribution

function of the standard p× 1 multivariate normal distribution function. If S is unknown

but can be estimated consistently, say by Ŝ, then the sample-dependent distribution (3.1)

with S(n) = Ŝ/n is an asymptotic multivariate normal CD function for θ. Further, the

random vector ξ(n) such that ξ(n)|yi, i = 1, . . . , n ∼ N(ȳ(n),S(n)) is the CD random vector

for θ associated with the CD function H(n)(θ).

The multivariate normal CD H(n)(θ) can be used to make inference for any linear combina-

tion of θ, say λTθ, for any given λ ∈ <p. Define H(n),λ(t) = Φ((λTS(n)λ)−1/2(t−λTȳ(n))),

where Φ(·) is the cumulative distribution function of the standard univariate normal dis-

tribution function. Based on the Definition 3.1, H(n),λ(t) is a univariate normal CD, and

can be used to make inference, for the parameter t = λTθ.

The multivariate normal CD function can also be used to make joint inference for the

parameter vector θ. Specifically, we have the following theorem regarding the properties of

point estimator, confidence region and hypothesis testing based on the multivariate normal

CD.

Theorem 3.1 Let H(n)(θ) = Ψ(S
−1/2
(n) (θ− θ̂(n))) be a sample-dependent multivariate nor-

mal CD function for θ ∈ <p. Then,

(i) Point estimator:

If σ2
min, the smallest eigenvalue of S(n), such that σ2

min ∝ 1/n → 0 as the sample size
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n→∞, then the centerpoint θ̂(n) is a consistent estimator for θ.

(ii) Hypothesis testing:

For the test K0 : θ0 ∈ B versus K1 : θ0 ∈ Bc, where θ0 is the true parameter value,

B = {θ : θ − θ̂(n) ∈ B} and B is the Borel set in <p, asymptotically Pr{θ0 ∈ Bc} =∫
Bc dH(n)(θ) = H(n)(B

c) is the corresponding p-value of the test.

(iii) Confidence region:

The set {θ : (θ− θ̂(n))
TS−1

(n)(θ− θ̂(n)) ≤ q1−α(χ2
p)} provides a level 100(1−α)% confidence

region for θ, where q1−α(χ2
p) denotes (1−α)-th quantile of the chi-square distribution with

p degree of freedom. More generally, for any given non-singular non-random pA×p matrix

A, the set {η : (η − Aθ̂(n))
T(AS(n)A

T)−1(η − Aθ̂(n)) ≤ q1−α(χ2
pA

)} provides a level

100(1− α)% confidence region for Aθ.

A proof of Theorem 3.1 can be found in the Appendix. It provides several means of using

H(n)(θ) to make inference for θ. However, in the context of meta-analysis, we need to com-

bine the information for θ from different sources, e.g. combine H(n1),1(θ), . . . ,H(nk),k(θ),

before making any inference. The proposed general CD combining method uses an equiv-

alent expression of a multivariate normal CD, as a set of p univariate normal CDs .

3.2.2 Decomposition of Multivariate Normal CD

The Cramér-Wold theorem (Cramér and Wold, 1936) allows a multivariate normal CD

to be decomposed as an equivalent set of p univariate normal CDs, without losing any

information. Specifically, given H(θ) = Ψ(S−1/2(θ − y)), for any basis Λ = [λ1, . . . ,λp],
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define

HΛ(θ) =


H1(λT

1 θ)

...

Hp(λ
T
p θ)

 , (3.2)

where Hj(t) = Φ((λT
j Sλj)

−1/2(t − λT
j y)) is the projected univariate normal CD for pa-

rameter λT
j θ based on H(θ). If taking Λ such that Λ = DS−1/2 for some diagonal matrix

D, then

H(θ) = H1(λT
1 θ) ·H2(λT

2 θ) · · ·Hp(λ
T
p θ) = det(diag(HΛ(θ))). (3.3)

Thus, HΛ(θ) reserves all information in H(θ). Further, consider CD random variables

ξj |Y ∼ Hj(·), then the conditional distribution (conditional on sample data Y ) of ξj1 and

ξj2 are independent since ΛSΛT = D2.

Thus, we conclude:

Lemma 3.1 Let H(θ) = Ψ(S−1/2(θ − y)) be a multivariate normal CD functions for

θ ∈ <p. Take Λ = S−1/2, denote Λ
4
= [λ1, . . . ,λp]

T and consider the vector HΛ(θ) =
H1(λT

1 θ)

...

Hp(λ
T
p θ)

, then: i) H(θ) = det(diag(HΛ(θ))); and ii) Hj(·) are orthogonal to each

other, in equivalent, the CD random variable ξj |Y = y ∼ Hj(·) are independent to each

other.

Essentially, Lemma 3.1 indicates that the multivariate CD, H(θ), and the set of univariate

CDs, HΛ(θ), can be derived from one another without any other information.
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3.2.3 A General Method for Combining Multivariate Normal CDs

The use of CD for combining information from independent sources is proposed by Singh

et al. (2005), in light of the wealth information CD contained. In the univariate case, sup-

pose we have k independent CDs Hi(θ), i = 1, . . . , k regarding to the same single parameter

θ, then the function

H(c)(θ) = G(c){g(c)(H1(θ), . . . ,Hk(θ))}, (3.4)

is a combined CD function for θ, where G(c)(t) = Pr{g(c)(U1, . . . , Uk) ≤ t}, and U1, . . . , Uk

are independent U [0, 1] random variables.

Specifically, Xie et al. (2011) showed that a special family of g(c)(·) such that

g(c)(u1, . . . , uk) = w1a0(u1) + · · ·+ wka0(uk), (3.5)

can unify all commonly used univariate meta-analysis methods under the same framework

(3.4). Here, a0(·) is any given monotonic function and wi ≥ 0, with at least one wi 6= 0, are

generic weights for the combination. Methods unified under the equation (3.5) includes the

p-value combination methods (cf., Marden, 1991), model-based meta-analysis (cf., Table IV

of Normand, 1999), the Mantel-Haenszel method, Peto’s method, and the method proposed

by Tian et al. (2009) which combines confidence intervals.

To extend the combining method to multivariate case, the difficulty resides in applying

a(·) to Hi(θ) to get a vector for combination. A direct application of a(·) to Hi(θ) would

give a set of vectors, instead of a particular vector, when the parameter θ is a vector. And

therefore, it would be meaningless for combination. The proposed method circumvents this

difficulty using the results in Section 2.2, by expressing a p-dimensional multivariate CD as p

univariate CDs, and applying a(·) to such p univariate CDs individually. Specifically, denote
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a0[·] as element-wise applying of a0(·) to a vector, e.g., a0[HΛ
i (θ)] =


a0(Hi1(λT

i1θ))

...

a0(Hip(λ
T
ipθ))

.

Then,

Theorem 3.2 Let Hi(θ) = Ψ(S
−1/2
i (θ − yi)), i = 1, . . . , k be the multivariate normal CD

functions for the same multivariate parameter θ from k independent studies. For any

monotonic function a0(·) with first derivative, denote by

H(c)(θ) = G(c)

{
k∑
i=1

W
1/2
i a0[HΛ

i (θ)]

}
, (3.6)

then H(c)(θ) is a (asymptotic) multivariate normal CD for θ given the generic weights

matrices Wi are p × p positive-definite. Here, Λi = S
−1/2
i and G(c)(·) is the cumula-

tive distribution function of
∑k

i=1 W
1/2
i a0[Ui], where Ui = [Ui1, . . . , Uip]

T, and Uij are

independent U[0, 1] random variables.

A proof the Theorem 3.2 can be found in the Appendix. The proposed combining method

(3.6) reduces to (3.4) with g(c)(·) in (3.5) when p = 1. It also covers the method of com-

bining CD random vectors proposed by Yang et al. (2013a), by taking a0(·) = Φ−1(·).

It can yield new robust multivariate meta-analysis approaches by taking a0(t) = t or us-

ing adaptive weights, which are difficult to derive through combining CD random vectors.

In the next section, we develop different multivariate meta-analysis approaches with dis-

tinct properties, by choosing different a(·) functions when applying the general method in

Theorem 3.2 to different models.
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3.3 Multivariate Meta-analysis by Combining CDs

In this section, we show that our proposed general method for combining multivariate

CDs can yield a variety of new methods for multivariate meta-analysis. Specifically, we

show in Section 3.1 an efficient combining method for standard multivariate random-effects

model. We further develop in Section 3.2 robust combining methods for situations where

the study population is contaminated. We present in Section 3.3 an extension of the

combining method that can incorporate studies with missing endpoints.

3.3.1 Efficient Combination Method

We consider the multivariate random-effects model (3.7) (van Houwelingen et al., 2002;

Arends, 2006), which can be viewed as a natural extension of the univariate random-effects

model considered in Normand (1999). Suppose

Model 3.1: yi|θi,Si
ind∼ N(θi,Si), θi|θ,Σ

ind∼ N(θ,Σ), i = 1, 2, . . . , k (3.7)

where yi is the summary statistic from the i-th study, Si is the covariance matrix of yi,

θi is the study-specific mean (random-effects), and θ and Σ are hyper-parameters for θi.

This model also covers the fixed-effect model, which is equivalent to take Σ ≡ O.

Then, under above setting, we can show that Hi(θ) = Ψ((Si + Σ̂)−1/2(θ − yi)) is an aCD

for θ, where Σ̂ is a consistent estimate of Σ. Apply Theorem 3.2 to Model 3.1, and take

a0(·) = Φ−1(·) and Wi = (Si + Σ̂)−1 in (3.6), then

Method 3.1: H
(c)
E (θ) = Ψ

(
S
−1/2
c,E

(
θ − θ̂

(c)

E

))
(3.8)
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is a combined CD for θ, where θ̂
(c)

E = (
∑k

i=1 Wi)
−1
∑k

i=1 Wiyi can be used as a com-

bined point estimator, with variance Sc,E = (
∑k

i=1 Wi)
−1. This combined CD H

(c)
E (·) is

equivalent to the one given in Yang et al. (2013a), which uses CD random vector as the

combining vehicle.

The traditional multivariate meta-analysis combines point estimators yi from individual

studies, and uses θ̂pt =
(∑k

i=1(Si + Σ̂REML)
−1
)−1 (∑k

i=1(Si + Σ̂REML)
−1yi

)
as a combined

point estimator for θ, where Σ̂REML is the restricted-maximum-likelihood (REML) estima-

tor for Σ (Jennrich and Schluchter, 1986; Jackson et al., 2011). This θ̂pt is the maximum

likelihood estimator (MLE) for θ, which is asymptotically normal with mean θ and co-

variance matrix Spt = var(θ̂pt) =
(∑k

i=1(Si + Σ̂REML)
−1
)−1

. It is often referred as the

most efficient point estimator since its variance Spt achieves the Cramér-Rao lower bound

when Σ known. Evidently, θ̂
(c)

E is equivalent to θ̂pt by replacing Σ̂ with Σ̂REML. Thus, the

combined CD H
(c)
E (·) can lead to efficient inference.

3.3.2 Robust Combination Methods

The proposed general combining method in Theorem 3.2 can also support the development

of robust meta-analysis methods. One great concern in meta-analysis is that the studies

involved might not have the same underlying true parameters or hyper-parameters value.

This concern is more severe in multivariate case because even only one study has one

different parameter can affect the estimation of all parameters. Thus, there is a great

need to develop robust multivariate meta-analysis methods that can provide protections

on failing to satisfy such an assumption. The proposed robust method achieved such

robustness by limiting the impact of outlying studies. Specifically, Section 3.3.2.1 considers

the setting of combining a large number of studies, e.g., k goes to infinity, and Section 3.3.2.2
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considers the setting large studies, e.g., ni goes to infinity.

3.3.2.1 Robust Meta-Analysis of a Large Number of Studies

As an extension of Model 3.1, we borrow ideas from Huber (1964) and consider the following

contaminated random-effects model:

Model 3.2:
yi|θi,Si

ind∼ N(θi,Si),

θi|θ,Σ
ind∼ (1− ε)N(θ,Σ) + εDε(θ), i = 1, . . . , k

(3.9)

where ε < 1/2 and Dε(θ) is any contaminating distribution.

In above model, the study-specific means θi come from a mixed model, where the majority

comes from a normal distribution, and the rest comes from a contaminating distribution

Dε(θ). Let θ0 be the population mean of the uncontaminated population N(θ,Σ), and θ∗

be the population mean of the contaminated population (1 − ε)N(θ,Σ) + εDε(θ). Note

that θ0 = θ∗ if ε = 0, or the contaminated distribution Dε(θ) is symmetric around λTθ0

for any λ, e.g., Dε(θ) = N(θ0,Σ1).

Let Hi(θ) for θ∗ be the individual joint CD functions based on the sample from i-th study.

Apply Theorem 3.2 to Model 3.2, and take a0(t) = t, then

Method 3.2a: H
(c)
R (θ) = Ψ


(

1

12

k∑
i=1

Wi

)−1/2 k∑
i=1

W
1/2
i

(
HΛ
i (θ)− 1

2
1

) (3.10)

is a combined aCD for θ∗, where 1 is p×1 vector with all elements equal to 1. This combined

aCD H
(c)
R (·) relies on the fact that the summation of k random vectors, whose elements are

independent U[0, 1]-distributed random variables, can approximate a multivariate normal

distribution well even when k is quite small.
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Method 3.2a provides a robust combining approach by taking a0(t) = t to limit the impact

of individual CDs on the combined CD, e.g., CDs based on studies came from Dε(θ). The

idea is like using sample median, instead of sample mean, as robust estimator for the center

point of the population. However, it is often in practice that Model 3.2 is misspecified as

Model 3.1, where the contamination component is not considered. If so and if there is

indeed some outlying studies, then Hi(θ) based on the misspecified model is no longer a

CD for θ∗. Instead, it is a CD-like function, a function that follows Definition 3.1 without

the U[0, 1] distribution assumption (Xie et al., 2011). Using CD-like function for combining

would bring an issue to the covariance matrix estimation in H
(c)
R (·). Therefore, we propose

to consider

Method 3.2b: H̃
(c)
R (θ) = Ψ


(

k∑
i=1

W
1/2
i DiW

1/2
i

)−1/2 k∑
i=1

W
1/2
i

(
HΛ
i (θ)− 1

2
1

)
(3.11)

as a combined aCD for θ∗, where Di = diag




(Hi1(λT
i1θ̂

(c)

R )− 1/2)2

...

(Hip(λT
ipθ̂

(c)

R )− 1/2)2


. As a result,

Method 3.2b extends the robust method to combine CD-like functions, by evaluating the

covariance matrix through Di instead of 1
12I. In addition, it provides a means of protection

against model misspecification.

The asymptotically efficient point estimator under the uncontaminated model (3.7), θ̂
(c)

E ,

is a weighed average of observed sample means. Thus, it lacks robustness, because its

breakdown point equals to zero in the limit. On the other hand, the centerpoint of H̃
(c)
R (·),

θ̂
(c)

R , as another point estimator for θ∗, equals to the solution of an M-estimating equations:

k∑
i=1

W
1/2
i

(
HΛ
i (θ)− 1

2
1

)
= 0. (3.12)
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As a result, we have the following theorem regarding the robustness of θ̂
(c)

R .

Theorem 3.3 Let v2
i(j) be the j-th largest singular value of the generic weight matrix Wi,

then (1) As k →∞, θ̂
(c)

R is a consistent estimator of θ∗.

(2) The breakdown point of θ̂
(c)

R is

min
1≤t≤k

{
t :

t∑
i=1

vi(1) ≥
k∑

i=t+1

vi(p)

}
/k. (3.13)

Therefore, the breakdown point achieves 1/2 if the weights Wi are all taken as Wi = I,

where I is the p× p identity matrix.

A proof of the Theorem 3.3 can be found in Appendix. It indicates that Method 3.2b

is asymptotically equivalent to an M-estimation method. As a result, the combined CD

H̃
(c)
R (·) can lead to robust inference.

Method 3.2b also maintains relative high efficiency. When no contamination, Model 3.1 is

the true model and H
(c)
E (·) gives asymptotically efficient inference for θ0. It can be shown

that the length of CI based on H̃
(c)
R (·) is relatively

√
π/3 ≈ 1.0233 wider than those based

on H
(c)
E (·), for any given λTθ0 at the same confidence level. Thus, Method 3.2b achieves

a relative efficiency of
√

3/π ≈ 0.9772 when there is no outlying studies, as shown in the

following theorem.

Theorem 3.4 Let the weight matrix Wi = (Si+Σ̂)−1, and σ2
i(j) be the j-th largest singular

value of (Si + Σ̂). If ε = 0, and σ2
i(j) ∝ 1/ni → 0 at the same rate n, then, as n→∞ and

k →∞, the asymptotic relative efficiency of H̃
(c)
R (·) compared to H

(c)
E (·) is

√
3/π ≈ 0.9772.

A proof of the Theorem 3.4 can be found in Appendix.
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It is important to be aware that the combined CD function H̃
(c)
R (θ) has the correct variance

estimates, but not the H
(c)
R (θ), under misspecified models. As a result, H̃

(c)
R (θ), rather

than H
(c)
R (θ), provides protection against model misspecification, when outlying studies

are unawarely included in the meta-analysis. If all inputs Hi(θ) are indeed CD functions,

then Di → 1
12I, and H̃

(c)
R (θ) is asymptotically the same as H

(c)
R (θ). On the other hand,

under the contaminated model with small studies, the construction of a CD or aCD function

for each study might be a difficult task. Thus, the extension of the method to combine

CD-like functions is also practical useful.

3.3.2.2 Robust Meta-Analysis of a Set of Large Studies

Section 3.3.2.1 develops a robust method using asymptotic normality which requires the

number of studies k goes to infinity. To expand our development to cover meta-analysis of

limited studies, we develop in this subsection a robust method which assumes k is bounded.

This robust method assumes fixed-effect model with outlying studies, which can be viewed

as a special case of the random-effects model specified in Model 3.2. It leads to a combined

CD function for the parameter of interest, rather than an aCD function as in Method 3.2b.

Specifically, suppose k studies each has sample sizes n1, . . . , nk, and without loss of gener-

ality, we assume ni goes to infinity at the same rate n. Let θ be the parameter of interest,

and the underlying true value of θ for the i-th study be θi, which may not be the same

across all k studies, and the studies with different values are unknown. A special example

of this setting is the following fixed-effect model:

Model 3.3:
yi|θi,Si

ind∼ N(θi,Si),

I0 = {i : θi = θ0}, |I0| ≥ k/2, i = 1, . . . , k
(3.14)
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where θ0 is the true parameter value of the majority of the studies for meta-analysis, and

|I0| is the size of the set I0. Model 3.3 can be viewed as a special case of Model 3.2 with

Σ = O. It reduces to the conventional fixed-effect model when θi = θ0 for all studies.

The reason we restricted the model to fixed-effect model is the development of the robust

method requires Hi(θ) satisfies:

Condition (A). For any fixed γ, 0 < γ < 1
2 , and λ ∈ <p, Li,λ = H−1

i,λ (1− γ)−H−1
i,λ (γ)→ 0,

in probability, as n→∞.

This is a generalized version of the condition specified in Xie et al. (2011) Section 4.

Intuitively, it requires θ̂i → θi as n→∞, where θ̂i is the centerpoint of Hi(θ).

The key idea in developing the robust approach is utilizing data-dependent adaptive weights

to down-weight or exclude studies contained little or misleading information about the

parameter of interest, and therefore only keep studies contained correct information for

combining. Specifically, we present the Method 3.3 as a two steps algorithm:

Method 3.3 - Algorithm:

Step 1: For a fixed i, let w̃i(j), j = 1, . . . , k be a set of adaptive weights satisfies

lim
n→∞

w̃i(j) =

 1 if θj = θi

0 if θj 6= θi

, (3.15)

then combine H1(θ), . . . ,Hk(θ) using Theorem 2 by taking a0(·) = Φ−1(·) and Wj =

w̃i(j)S
−1
j , and denote the combined CD by H

(c)
i (θ). Repeat this step for i = 1, . . . , k.

Step 2: Let θ̂
(c)

i be the centerpoint of H
(c)
i (θ), and define depth(θ̂

(c)

i ) to be the depth

of θ̂
(c)

i with respect to the set Ic = {θ̂
(c)

1 , . . . , θ̂
(c)

k }. Let Id,max = {i : depth(θ̂
(c)

i ) =

max depth(θ̂
(c)

i )}.
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If |Id,max| = 1, then denote H
(c)
imax

(θ) as H
(c)
R,adpt(θ), where imax = argmax depth(θ

(c)
i ).

And, H
(c)
R,adpt(θ) is a combined CD for θ0.

If |Id,max| > 1, then combine H
(c)
l (θ) for l ∈ Id,max using Method 3.1, and the combined

CD H
(c)
R,adpt(θ) is a combined CD for θ0.

Here, the data depth can be calculated using the Tukey’s method (Rousseeuw and Ruts,

1996; Rousseeuw and Struyf, 1998) or the Liu’s method (Liu, 1990; Liu et al., 1999).

Intuitively, Step 1 uses the CD-combining Method 3.1 to combine H1(θ), . . . ,Hk(θ), while

adjusting weight matrix by the adaptive weight w̃i(j). The combined CD H
(c)
i (θ) is a

combined CD function for θi, if w̃i(j) satisfies (3.15). For example, the adaptive weights

are often inversely related to the “distance” of θj to θi,

w̃i(j) = Ψ(S
−1/2
i (θ̂j − θ̂i))/Ψ(0). (3.16)

And, Step 2 identifies the CD(s) corresponding to the median(s) of θ̂
(c)

i , combines them if

not unique, and uses it as the combined CD for θ0. Because θ0 is the majority of θi, the

median of θ̂
(c)

i is a consistent estimator for θ0, and as a result, the correspondent CD is a

CD for θ0.

Let H
(c)
0 (θ) be the combined CD function, in the ideal case, using Method 3.1 and only

the studies in the set of I0, assuming the membership of I0 is known. Let θ̂
(c)

0 denote the

centerpoint of H
(c)
0 (θ), then θ̂

(c)

0 is an asymptotic efficient estimator of θ0. The following

theorem shows that the centerpoint of H
(c)
R,adpt(θ), θ̂

(c)

R,adpt, is a consistent, robust, and also

an asymptotic efficient estimator of θ0. In fact, θ̂
(c)

R,adpt achieves an oracle property, which

is a stronger result than θ̂
(c)

R based on Method 3.2b, under the Model 3.3.

Theorem 3.5 Under the Model 3.3, let H
(c)
R,adpt(θ) be the combined CD using Method 3.3,
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and denote θ̂
(c)

R,adpt as the centerpoint of H
(c)
R,adpt(θ), then as n→∞:

(1) The estimator θ̂
(c)

R,adpt → θ0, in probability.

(2) The breakdown point of the estimator θ̂
(c)

R,adpt is 1/2.

(3) The estimator θ̂
(c)

R,adpt is asymptotically efficient, since n1/2||θ̂
(c)

R,adpt − θ̂
(c)

0 ||2 → 0 as

n→∞.

The proof of part (1) and (2) is the same as the proof of Theorem 1 in Xie et al. (2011), and

follows the fact that |I0| ≥ k/2. The proof of part (3) is the same as the proof of Theorem

2 in Xie et al. (2011), which relies on the fact that w̃i(j) goes to zero at rate o(nα) for any

α < 0 if j 6∈ Ii, and |w̃i(j) − 1| = O(k · n−1/2(log n)2) if j ∈ Ii, where Ii = {l : θl = θi}.

3.3.3 Extension to Incorporate Studies with Missing Endpoints

The previous developments assumes all studies involved in meta-analysis having the param-

eter of interest in the same dimension. This assumption might be too restrictive. Studies

for meta-analysis are often undergone independently, and as a result, often have different

designs and outcomes (Sutton and Higgins, 2008). Thus, some parameters might not be

identifiable in some of the studies. For example, studies in network meta-analysis in gen-

eral only have partial common parameters. Specifically, suppose k studies are performed

for investigating the effects of p treatments, denoted by the vector θ = (θT1, . . . , θTp)
T.

An individual study might investigate only a subset of such p treatments. For exam-

ple, the i-th study involves pi < p treatments, and only the pi-dimensional parameter

θi = (θT1, . . . , θTpi)
T is indefinable. Therefore, it only provides partial information about

θ. Theorem 3.6 shows that the proposed general combining method can adapt to include

studies where only a subset of the parameters is identifiable.
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Theorem 3.6 Let Hi(θi) ≡ Ψ(S
−1/2
i (θi − yi)), i = 1, . . . , k be multivariate normal CD

functions for the multivariate parameter θi from k independent sample yi, where θi = Aiθ

for the same parameter vector θ. Here, the pi × p selection matrix Ai is obtained by

removing from the p× p identity matrix (or, more generally, any p× p orthonormal matrix

A) the rows that correspond to the omitted parameters. For any monotonic function a0(·),

denote by

H(c)(θ) = G(c)

{
k∑
i=1

W
1/2
i A+

i a0[HΛ
i (θi)]

}
, (3.17)

then H(c)(θ) is a (asymptotic) multivariate normal CD for θ if:

(1) Each p× p matrix Wi is positive semi-definite.

(2) The column space C(Wi) of Wi is identical to the rows space R(Ai) of Ai.

(3) V1 +V2 + · · ·+Vk = <p where Vi = R(Ai), where V1 +V2 + · · ·+Vk
4
= {
∑k

i=1 vi|vi ∈

Vi, i = 1, . . . , k}.

Here, A+
i denotes the Moore-Penrose pseudo inverse of Ai, and G(c)(·) is the cumulative

distribution function of
∑k

i=1 W
1/2
i A+

i a0[Ui], where Ui = [Ui1, . . . , Uipi ]
T, and Uij are

independent U[0, 1] random variables.

As a result, Model 3.1 is generalized to Model 3.4:

Model 3.4: yi|θi,Si
ind∼ N(θi,Si), θi|θ,Σ

ind∼ N(Aiθ,AiΣAT
i ), i = 1, 2, . . . , k

(3.18)

The efficient CD combining approaches developed in Method 3.1 is adapted to

Method 3.4: H
(c)
E (θ) = Ψ

(
(

k∑
i=1

Wi)
1/2

(
θ − (

k∑
i=1

Wi)
−1

k∑
i=1

WiA
+
i yi

))
(3.19)
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And correspondingly, Model 3.2 is generalized to Model 3.5:

Model 3.5:
yi|θi,Si

ind∼ N(θi,Si), θi = Aiθi,unobs,

θi,unobs|θ,Σ
ind∼ (1− ε)N(θ,Σ) + εDε(θ), i = 1, . . . , k

(3.20)

The robust CD combining approaches developed in Method 3.2b is adapted to

Method 3.5: H̃
(c)
R (θ) = Ψ

{
(

k∑
i=1

W
1/2
i A+

i DiAiW
1/2
i )−1/2

k∑
i=1

W
1/2
i A+

i

(
HΛ

i (θ)− 1

2
1i

)}
(3.21)

where Di = diag




(Hi1(λT
i1θ̂

(c)

R )− 1/2)2

...

(Hipi(λ
T
ipi θ̂

(c)

R )− 1/2)2


, and 1i is pi × 1 vector with all 1.

The robustness and relative efficiency results in Theorem 3.3 and 3.4 still holds for Method

3.5.

At last, Model 3.3 is generalized to Model 3.6:

Model 3.6:
yi|θi,Si

ind∼ N(θi,Si), θi = Aiθi,unobs,

I0 = {i : θi,unobs = θ0}, |{i : i ∈ I0 and l ∈ Ti}| ≥ k/2,∀l, i = 1, . . . , k

(3.22)

where Ti denotes the set of indices of the parameters observed in the i-th study.

The algorithm of Method 3.3 stays the same except that the adaptive weights requires

lim
n→∞

w̃i(j) =

 1 if θj,unobs = θi,unobs

0 if θj,unobs 6= θi,unobs

, (3.23)
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and a particular choice could be

w̃i(j) = {Ψ(S
−1/2
i (Aiθ̂j(mdn) − θ̂i))×

∏
l 6∈Ti

Φ((θ̂j(mdn),l − θ̂mdn,l)/σmdn,l)}/Ψ(0). (3.24)

where θ̂mdn,l = median{θ̂i,l, l ∈ Ti} is the median of the observed l-th parameter value,

σmdn,l is the standard deviation corresponding to θ̂mdn,l, and θ̂j(mdn) is obtained by plugin

θ̂mdn,l to θ̂j if the l-th parameter is not observed in the j-th study, e.g.,

θ̂j(mdn),l =

 θ̂j,l if l ∈ Tj

θ̂mdn,l if l 6∈ Tj
. (3.25)

3.4 Numerical Examples

This section illustrates the proposed multivariate meta-analysis methods through three

real data examples, namely, the ulcer, lidocaine, and coronary artery disease (CAD) data

set. Section 3.4.1 uses the ulcer data to compare the performance of the efficient CD

approach (Method 3.1), the robust CD approach (Method 3.2b) and a commonly used

Bayesian method. These methods obtain results similar to the previous publications. The

data is further modified to include outlying studies for meta-analysis. Only the robust

CD approach can resist to the impact of such outlying studies, whereas both efficient CD

approach and the Bayesian method fail when outlying studies exist. Section 3.4.2 uses

the similar thought to illustrate the other robust approach (Method 3.3) using lidocaine

data. Section 3.4.3 applied all above approaches to the CAD data to show the proposed

meta-analysis method can incorporate studies with partial information regarding to the

target parameter vector.



68

3.4.1 Example 1 - Meta-Analysis of a Large Number of Studies

The first example shows meta-analysis of a large number of studies using the ulcer data

set. The data set is a collection of 41 randomized clinical trials, regarding the superiority

of a novel surgical treatment for reducing recurrent bleeding on stomach ulcer patients,

conducted from 1980 to 1989 (Sacks et al., 1990; Efron, 1996). Table 3.1 lists the number

of patients had recurrent bleeding (an adverse event) after the treatment (rij) and the

total number of patients had stomach ulcers undergone such treatment (nij) from these

41 studies. This data set was analyzed by Efron (1996) and Xie et al. (2011) using the

empirical Bayes method and the univariate CD combining methods, respectively. The

parameter of interest in their analysis is the log-odds ratio δ in favor of the new treatment.

Here, we instead consider the vector of log odds θ = (θA, θB)T in order to show the

advantage of jointly analyzing multiple endpoints, and the log odds ratio can be obtained

by δ = θA − θB.

Given the binary type of the response for an individual patient, it often assumes rij |pij ∼

Binomial(nij , pij), where pij denote the probability that a patient experiencing recur-

rent bleeding in the i-th study with j-th treatment, i = 1, . . . , 41, j = A,B. After re-

parameterizations, it is customary to consider an asymptotic equivalent model as specified

in Model 3.1 with k = 41:

yi|θi,Si ∼ N(θi,Si),

θi|θ,Σ ∼ N(θ,Σ), i = 1, 2, . . . , 41
(3.26)

where yi = [yij , j = A,B]T,θi = [θij , j = A,B]T, and Si = diag(σ̂2
ij , j = A,B), with yij =

log (rij/(nij − rij)) , θij = log (pij/(1− pij)), and σ̂2
ij = 1/rij + 1/(nij − rij). Here, we add
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0.5 to the entries of zeros, and subtract 0.5 from rij if rij = nij , in order to obtain mean-

ingful sample estimates yi, as suggested in Efron (1993) and others. Further, we assume

the within study covariance matrices Si are diagonal matrices, reflecting the independence

between observed outcomes from treatment groups due to randomization (van Houwelingen

et al., 2002).

Therefore, our proposed efficient CD approach (CD[Efficient], Method 3.1, (3.8)) and ro-

bust CD approach (CD[Robust-M Estimation], Method 3.2b, (3.11)) can be applied to

the ulcer data set straightforwardly. For comparison reason, we also consider a Bayesian

meta-analysis approach, which assumes Model (3.26) with the following none informative

conjugate priors on θ and Σ.

prior: θ ∼ N(0, 103I),

Σ ∼ σ2IW(I, 2), σ2 ∼ IG(0.01, 0.01)
(3.27)

where IW represents inverse Wishart distribution, and IG represents inverse gamma dis-

tribution.

The 2nd column of Table 3.2 presents the results of all three approaches with the point

estimators of θ and δ and associated 95% CIs. Such results show that the new surgical

treatment is significantly better than the traditional treatment in reducing adverse event

(recurrent bleeding) rates, which is in agree with Efron (1996) and Xie et al. (2011).

Further, we notice that the 95% CIs for δ in the 2nd column of Table 3.2 are shorter than the

corresponding 95% CIs in left half of Table 3 in Xie et al. (2011), where the meta-analysis

are performed on the single parameter δ by combining univariate CDs Hδ,i(δ). It implies

a slight improvement on efficiency of estimating δ by jointly analyzing θ = (θA, θB)T.

Figure 3.1 draws the combined CD function for θ using contour plots, and draws the
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derived CD function for δ using CD density plot. It is obvious that the variability of θ̂A

is much less than θ̂B. Thus, the new treatment not only reduces the event rate but also

achieves a more stable performance. Such an observation can only be discovered under the

joint analysis of θA and θB.

The original data set contains studies retained relative consistent information with the

majorities in favor the new treatment. To demonstrate the impact of gross outlying studies,

we devise a “contaminated” data set by artificially creating 6 inconsistent studies. Such

studies are created by imitating mistakenly writing 1 on the ten’s digit place of the observed

log odds that causes the inference to be favorable on the old treatment. Specifically, we

increase the original log-odds by 10 if the log-odds in the new treatment group is greater

or equal to zero (study 6, 11, 33), and decrease the original log-odds by 10 if the log-odds

in the old treatment group is less than −2 (study 3, 5, 41). These modified log odds are

far out of bound since the observed log odds in original data set range from −4.2195 to

4.2195.

We apply the same three approaches and presents their results on the last column of

Table 3.2. It is obvious that the inference based on the CD[Efficient] method and Bayesian

method are significantly impact by these outlying studies, whereas the inference based

on CD[Robust-M Estimation] method is not. For example, the δ̂ based on CD[Efficient]

move from −0.93 to 0.09 using the original and contaminated data set, and those based

on Bayesian method move from −0.91 to 0.06. The superiority conclusion of the new

treatment is no longer valid when applying the CD[Efficient] and Bayesian method to the

contaminated data set. The estimated overall log odd ratios even flip their signs. On the

other hand, the δ̂ based on CD[Robust-M Estimation] slightly move from −0.91 to −0.78.

Thus, the CD[Robust-M Estimation] method limits the impact of outlying studies, and

holds on the superiority conclusion.
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Likewise, Figure 3.2 draws the contour plots for θ and density plot for δ based on the

combined CD functions. It is clear that the combined CD based on CD[Efficient] moves

significantly compared with Figure 3.1, whereas the combined CD based on CD[Robust-M

Estimation] stays still.
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Figure 3.1: Efficient and robust multivariate meta-analysis on the original data set.

3.4.2 Example 2 - Meta-Analysis of a Set of Large Studies

The second example shows meta-analysis of a set of large studies using the lidocaine data

set. The data set in Table 3.3 contains mortality events after a heart attack using intra-

venous lidocaine and a control treatment (Hine et al., 1989). It includes 6 studies with

sample sizes from 83 to 300, which are relatively large. We consider a fixed-effect model

where the parameter of interest are event probabilities θ = (pT , pC)T, and risk difference

δ = pT − pC as in line with Normand (1999) and Xie et al. (2011). Here, pT and pC
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Table 3.1: Stomach Ulcer Data Set

Trial Index
New Treatment (A) Old Treatment (B)
rij nij rij nij

1 7 15 11 13
2 8 19 8 16
3 5 34 4 39
4 7 36 4 31
5 3 12 0 12
6 4 7 4 4
7 4 17 13 24
8 1 16 13 16
9 3 14 7 22
10 2 38 12 32
11 6 12 8 8
12 2 7 7 9
13 9 21 7 24
14 7 21 5 25
15 3 25 11 32
16 4 11 6 10
17 2 10 8 10
18 1 31 4 27
19 4 28 15 31
20 7 43 16 43
21 6 40 13 21
22 4 18 5 39
23 14 68 13 74
24 6 21 8 21
25 0 6 6 6
26 1 10 5 15
27 5 17 5 15
28 0 10 12 14
29 0 22 8 24
30 2 18 10 21
31 1 15 7 13
32 8 24 15 27
33 6 12 7 9
34 0 20 5 23
35 4 17 2 16
36 10 40 12 20
37 3 16 2 16
38 4 34 5 19
39 7 38 15 37
40 0 34 34 34
41 0 9 0 16
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Table 3.2: Meta-analysis of results for log-odds and log-odds-ratio of the stomach ulcers example

Original Data Set Contaminated Date Set
CD[Efficient]

θ̂A (95%CI) −1.2433(−1.4710,−1.0156) −0.5484(−0.7762,−0.3207)

θ̂B (95%CI) −0.3132(−0.6788, 0.0523) −0.6389(−1.0045,−0.2734)

δ̂ (95%CI) −0.9301(−1.2964,−0.5637) 0.0905(−0.2759, 0.4568)
CD[Robust-M Estimation]

θ̂A (95%CI) −1.2482(−1.4812,−1.0152) −1.1803(−1.4133,−0.9473)

θ̂B (95%CI) −0.3404(−0.7145, 0.0337) −0.4024(−0.7765,−0.0283)

δ̂ (95%CI) −0.9078(−1.2827,−0.5329) −0.7779(−1.1528,−0.4030)
Bayesian Model

θ̂A (95%CI) −1.2406(−1.5080,−1.0000) −0.8202(−1.8560, 0.1999)

θ̂B (95%CI) −0.3258(−0.6683, 0.0409) −0.8760(−1.9440, 0.2333)

δ̂ (95%CI) −0.9148(−1.3100,−0.5458) 0.0558(−1.3030, 1.3621)
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Figure 3.2: Efficient and robust multivariate meta-analysis on the contaminated data set.



74

denote the probability of mortality events in the lidocaine group and the control group,

respectively. Specifically,

yi|θ,Si ∼ N(θ,Si), i = 1, . . . , 6 (3.28)

where yi = [yij , j = T,C]T, yij = rij/nij , and Si = diag(σ̂2
ij , j = T,C). σ̂2

ij = yij(1 −

yij)/nij .

We apply the efficient CD approach (CD[Efficient], Method 3.1), the robust CD ap-

proach (CD[Robust-Adaptive Weights], Method 3.3), and a Bayesian approach assumes

non-informative prior N(0, 103I2) on θ. The results are presented on the 2nd column of

Table 3.4. The results are close to each other, and in agree with the significance of increased

mortality rate of using lidocaine. Figure 3.3 plots the θ̂
(c)

i from the Step 1 of Method 3.3 in

open circles, marks the median θ̂
(c)

R,adpt using filled circle, and draws θ̂
(c)

E using filled square.

The θ̂
(c)

E is instead the region confined by θ̂
(c)

i s. It also plots CD densities for δ. The CD

densities based on the efficient and robust method are very close to each other.

We further illustrate the impact of potential outliers by creating an outlying study. Suppose

one erroneously uses 21, instead of 1, as the number mortality event, when calculating the

point estimate of the first study. We repeat the analysis on the contaminated data set,

and present the results on the 3rd column of Table 3.4. The efficient CD approach and

the Bayesian approach change a lot, and the significance conclusion does no longer hold.

On the other hand, the robust CD approach instead appears to change only slightly, and

the significance conclusion still holds. A comparison of Figure 3.3 and Figure 3.4 shows

that the θ̂
(c)

E is pulled out of the place where θ̂
(c)

i s gathered by the outlying study. The CD

densities plot shows the impact of injecting the outlying study for inference δ. The robust

method is slightly change, whereas the efficient method is largely change with its center
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moved from positive to negative.

Table 3.3: Lidocaine Set

Trial Index
Treatment (T) Control (C)
rij nij rij nij

1 2 39 1 43
2 4 44 4 44
3 6 107 4 110
4 7 103 5 100
5 7 110 3 106
6 11 154 4 146

Table 3.4: Meta-analysis of results for log-odds and log-odds-ratio of the lidocaine example

Original Data Set Contaminated Date Set
CD[Efficient]

θ̂T (95%CI) 0.0652(0.0447, 0.0857) 0.0652(0.0447, 0.0857)

θ̂C (95%CI) 0.0336(0.0186, 0.0486) 0.0854(0.0703, 0.1004)

δ̂ (95%CI) 0.0316(0.0062, 0.0570) −0.0201(−0.0456, 0.0053)
CD[Robust-Adaptive Weights]

θ̂T (95%CI) 0.0636(0.0414, 0.0857) 0.0659(0.0425, 0.0894)

θ̂C (95%CI) 0.0310(0.0152, 0.0469) 0.0349(0.0174, 0.0524)

δ̂ (95%CI) 0.0325(0.0053, 0.0598) 0.0311(0.0018, 0.0604)
Bayesian Model

θ̂T (95%CI) 0.0648(0.0449, 0.0848) 0.0648(0.0449, 0.0848)

θ̂C (95%CI) 0.0337(0.0186, 0.0488) 0.0855(0.0704, 0.1005)

δ̂ (95%CI) 0.0311(0.0063, 0.0556) −0.0206(−0.0455, 0.0039)

3.4.3 Example 3 - Meta-Analysis of Studies with Missing Endpoints

The last example shows network meta-analysis using the CAD data set, which gathers 37

clinical trials that investigated the performance of three types of stent: bare-metal stents

(BMS), sirolimus-eluting stents (SES) and paclitaxel-eluting stents (PES), in patients with

coronary artery disease (CAD), denoted by treatment A, B and C, respectively (Stettler
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Figure 3.3: Efficient and robust multivariate meta-analysis on the original data set.

et al., 2007). Each row of Table 3.5 represents one study, which compared the rate of target

lesion revascularisations (TLRs) at one year after surgeries using BMS, SES and PES. The

outcomes of some stents are missing in some individual studies. The parameter of interest is

the vector of log odds θ = (θA, θB, θC)T and all pairwise comparisons δj1j2 = θj2−θj1 , j1 =

A,B,C, j2 = A,B,C, j1 6= j2. This example intends to show that the proposed combining

methods are adapt to incorporate studies with missing endpoints.

Let us consider the multivariate random-effects model that incorporates missing arms using

Model 3.4 with k = 37:

yi|θi,Si ∼ N(θi,Si),

θi|θ,Σ ∼ N(Aiθ,AiΣAT
i ), i = 1, 2, . . . , 37.

(3.29)
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Figure 3.4: Efficient and robust multivariate meta-analysis on the contaminated data set.

where yi = [yij , j ∈ Ti]
T,θi = [θij , j ∈ Ti]

T, and Si = diag(σ̂2
ij , j ∈ Ti), with yij =

log (rij/(nij − rij)), θij = log (pij/(1− pij)), and σ̂2
ij = 1/rij + 1/(nij − rij). Here, Ai is

the selection matrix associated with Ti, the set of treatments involved in the i-th study.

For example, Ti = {A,C} for study TAXUS-I, and Ai =

 1 0 0

0 1 0

 if Ti = {A,B},

Ai =

 1 0 0

0 0 1

 if Ti = {A,C}, Ai =

 0 1 0

0 0 1

 if Ti = {B,C}, and Ai = I3 if

Ti = {A,B,C}.

The proposed efficient CD approach (CD[Efficient], Method 3.4), and robust CD ap-

proaches (CD[Robust-M Estimation], Method 3.5, and CD[Robust-Adaptive Weights],

Method 3.6) can incorporate studies with missing arms and apply to the above model. It



78

is worth to note that the practical performance of Method 3.6 is good under the random-

effect model, though the conclusions in Theorem 3.5 only holds under the fixed-effect model.

For comparison reason, we also consider the following Bayesian approach assumed none

informative conjugate prior for both θ and Σ:

yi|θi,Si ∼ N(θi,Si), θi = Aiθi,unobs,

θi,unobs|θ,Σ ∼ N(θ,Σ), i = 1, . . . , 37,

prior:

θ ∼ N(0, 103I),

Σ ∼ σ2IW(I, 3), σ2 ∼ IG(0.01, 0.01)

(3.30)

The 2nd column of Table 3.6 presents the results of all three approaches with the point

estimators of θ and the log odds ratios δj1j2 and associated 95% CIs. Such results show

that SES and PES are superior than BMS in terms of reducing TLRs at one year, which

is in line with the results reported by Hoaglin et al. (2011) and Yang et al. (2013a).

As in the previous example, we create a “contaminated” data set for CAD study. Specifi-

cally, we modify only one small study, TAXUS-I. This intends to show that, if not handled

carefully, a single small outlying study can dominate all other large studies in meta-analysis

and lead to counterintuitive results. The study TAXUS-I compared BMS vs PES. It re-

ported three events in BMS group, zero event in PES group, and had only 30 patients

enrolled in each group. Suppose that a transcription error made by mistakenly inter-

changed the number of event reported in the two groups in TAXUS-I. This transcription

error is prone since the two groups have the same total number of patients. The error leads

the TAXUS-I observed a counter example to the majority of the studies, as the common

medical practice and our previous analysis on the original data set indicated that PES is

superior to BMS for reducing TLRs at one year for CAD patients. Yet it does not change
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the overall conclusion because study TAXUS-I is only one small study among all 37 studies

involved in the meta-analysis (results not shown).

However, if instead of imputing 0.5 to the zero event, suppose an extreme small value, say

10−176 is imputed for zero. As a result, the observed log odds magnified by a factor of

100, decreasing from log(0.5/(30 − 0.5)) = −4.0775 to −407.75, which is far away from

the log odds values obtained from the other 22 studies involved BMS. Therefore, we create

‘contaminated” data set that includes one small study that is strongly in favor of the

performance of BMS. Intuitively, impute 0.5 or any other values should not change the

result very much due to the relative small sample size. Thus, it is a surprise that the

analysis reveals this single study can dominate all other large studies in meta-analysis.

Apply the same three approaches to the contaminated data set, the results are presented

on the last column of Table 3.6. It is obvious that the results of the CD[Efficient] method

and Bayesian method are dominated by the modified TAXUS-I, and conclude that BMS

is the stents with least TLRs at one year. On the other hand, the CD robust methods

(CD[Robust-M Estimation] and CD[Robust-Adaptive Weights]) holds on to the original

conclusion regarding to the superiority of SES and PES over BMS, by limiting the impact

of this single small extreme study TAXUS-I.

In this section, we illustrate the performance of the proposed multivariate meta-analysis ap-

proaches by comparing the results of the efficient CD approach, the robust CD approaches,

and a corresponding Bayesian approach on three real data examples from the literatures.

The studies involved in these data sets have been shown to be consistent to each other

by previous analysis, and consequently, the efficient CD approach, robust CD approaches

and the Bayesian approach are expected to obtain comparable results. These original data

sets are further manipulated to create artificially “contaminated” data sets by introducing

some outlying studies. These outlying studies have summary statistics which are far away
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Table 3.5: CAD Trial Data Set, Target Lesion Revascularisation at 1 Year

Study
BMS (A) SES (B) PES (C)
rij nij rij nij rij nij

BASKET 35 281 25 264 25 281
C-SIRIUS 11 50 2 50 — —
DECODE 8 29 5 54 — —
DIABETES 27 80 6 80 — —
E-SIRIUS 44 177 8 175 — —
Ortolani 2007 11 52 6 52 — —
Pache 2005 51 250 25 250 — —
PRISON II 20 100 4 100 — —
RAVEL 16 118 1 120 — —
RRISC 10 37 6 38 — —
SCANDSTENT 47 159 4 163 — —
SCORPIUS 20 95 5 95 — —
SESAMI 19 160 7 160 — —
SES-SMART 27 128 9 129 — —
SIRIUS 106 525 26 533 — —
TYPHOON 45 357 13 355 — —
HAAMUS-TENT 9 82 — — 3 82
PASSION 23 309 — — 16 310
TAXUS I 3 30 — — 0 30
TAXUS II 39 269 — — 13 260
TAXUS IV 96 652 — — 28 662
TAXUS V 107 579 — — 62 577
TAXUS VI 46 227 — — 19 219
Cervinka 2006 — — 1 37 2 33
CORPAL — — 22 331 25 321
Han 2006 — — 9 202 11 196
ISAR-DESIRE — — 14 100 22 100
ISAR-DIABETES — — 9 125 15 125
ISAR-SMART3 — — 16 180 29 180
LONG DES II — — 6 250 18 250
Petronio 2007 — — 1 42 1 43
PROSIT — — 3 116 9 115
REALITY — — 44 684 43 669
SIRTAX — — 30 503 54 509
SORT OUT II — — 40 1065 46 1033
TAXi — — 4 102 2 100
Zhang 2006 — — 14 225 16 187
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Table 3.6: Meta-analysis of results for log-odds of the treatments in CAD data set

Original Data Set Contaminated Date Set
CD[Efficient]

θ̂A (95%CI) −1.4978(−1.6784,−1.3173) −2.9203(−3.1008,−2.7397)

θ̂B (95%CI) −2.7864(−2.9646,−2.6083) −2.9888(−3.1670,−2.8107)

θ̂C (95%CI) −2.4365(−2.6453,−2.2276) −2.5592(−2.7680,−2.3503)

δ̂AB (95%CI) −1.2886(−1.5026,−1.0746) −0.0686(−0.2826, 0.1454)

δ̂AC (95%CI) −0.9386(−1.1606,−0.7166) 0.3611( 0.1391, 0.5831)

δ̂BC (95%CI) 0.3500( 0.1639, 0.5360) 0.4297( 0.2436, 0.6157)
CD[Robust-M Estimation]

θ̂A (95%CI) −1.4889(−1.6737,−1.3042) −1.4850(−1.6697,−1.3002)

θ̂B (95%CI) −2.7944(−2.9768,−2.6121) −2.7870(−2.9694,−2.6047)

θ̂C (95%CI) −2.4478(−2.6615,−2.2341) −2.4317(−2.6454,−2.2180)

δ̂AB (95%CI) −1.3055(−1.5246,−1.0865) −1.3020(−1.5211,−1.0830)

δ̂AC (95%CI) −0.9589(−1.1860,−0.7317) −0.9467(−1.1739,−0.7195)

δ̂BC (95%CI) 0.3467( 0.1563, 0.5371) 0.3553( 0.1649, 0.5457)
CD[Robust-Adaptive Weights]

θ̂A (95%CI) −1.4125(−1.6987,−1.1264) −1.4126(−1.6987,−1.1265)

θ̂B (95%CI) −2.7709(−3.0469,−2.4949) −2.7709(−3.0469,−2.4949)

θ̂C (95%CI) −2.4448(−2.7713,−2.1184) −2.4448(−2.7713,−2.1184)

δ̂AB (95%CI) −1.3584(−1.7302,−0.9865) −1.3583(−1.7302,−0.9864)

δ̂AC (95%CI) −1.0323(−1.4303,−0.6342) −1.0322(−1.4303,−0.6342)

δ̂BC (95%CI) 0.3261( 0.0608, 0.5913) 0.3261( 0.0608, 0.5913)
Bayesian Model

θ̂A (95%CI) −1.5004(−1.6910,−1.3140) −18.3014(−52.4248, 16.2610)

θ̂B (95%CI) −2.7919(−2.9940,−2.6070) −2.7793(−3.0030,−2.5770)

θ̂C (95%CI) −2.4457(−2.6600,−2.2310) −2.4936(−2.7300,−2.2720)

δ̂AB (95%CI) −1.2915(−1.5280,−1.0640) 15.5222(−19.0913, 49.5858)

δ̂AC (95%CI) −0.9453(−1.2000,−0.7150) 15.8079(−18.7015, 50.1003)

δ̂BC (95%CI) 0.34620( 0.1425, 0.5619) 0.2857( 0.0308, 0.5456)
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from the original majorities. In these situations, the results from the efficient CD approach

and the Bayesian approach are drastically influenced by these outlying studies, whereas

the results from the robust CD approaches are not. Thus, the robust CD approaches re-

sist to model-misspecification, and outperform the efficient CD approach and the Bayesian

approach when performing meta-analysis on data sets with potential outliers.

3.5 Discussion

In this paper, we consider multivariate normal CDs and construct individual CDs based

on asymptotic normality. The asymptotic normality assumption might seem strong, but,

in fact, all MLE type of combinings have assumed such an assumption (Fraser and Mc-

Dunnough, 1984). Further, almost every CD used for combining is usually asymptotically

normal, in the sense that all Hi(θ,yi) ≈ Ψ{S−1/2
i (θ−Ti(yi))} for some statistic Ti(yi) and

scaling Si (Hannig and Xie, 2012). At last, the multivariate normal CD is the only known

multivariate CD under the l-CD definition – joint CD through Craeér-Wold device (Singh

et al., 2007).

The proposed CD combining method is broadly applicable. It can be used to combine

CDs from independent studies regardless the method used to construct such CDs. For

example, one challenging meta-analysis problem is to synthesize studies had different types

of outcomes (Dominici and Parmigiani, 2005). The conventional meta-analysis method can

not combine studies reported binary outcomes (e.g., high or low), with studies reported

continues outcomes (e.g., the number of blood platelets). The CD combining method

instead can combine such studies by building CDs regarding to the same parameter(s),

which can be measured from each individual studies.

The proposed CD combining method is also very flexible, in terms of the choice on function
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a0(·) and weights Wis. We focus on two choices of the function a0(·) when applying our

method to multivariate meta-analysis. The choice of a0(·) = Φ−1(·) in general provides effi-

cient estimators, whereas a0(t) = t produces robust estimators. Other choices may be able

to integrate such two features, for example, a0(t) = F−1(t) where F (t) =
Φ(t)− Φ(−q)
Φ(q)− Φ(−q)

.

Here F (·) in fact is the distribution function of a random variable following truncated

normal distribution with support [−q, q]. Intuitively, this method leads to combined es-

timator mimic the properties of trimmed mean. As a result, such a0(·) leads to a robust

combined CD with higher relative efficiency when no contaminated studies involved in the

meta-analysis. For example, the relative efficiency is 98.4238% − 99.9974% for q = 1 to

q = 4 whereas the relative efficiency for using a0(t) = t is 97.7205%.

In meta-analysis, it is often the case that only the summary statistics of each endpoints

but not their correlations, e.g., var(yij), j = 1, . . . , p instead of var(yi), are reported in the

literatures. As a result, the within study covariance matrices Si would have correlations

missing, or more generally, are misspecified. For the proposed method in Theorem 3.2,

replace Si by a surrogate “working” covariance matrix Si,W, e.g., covariance matrix without

correlations, can lead to an aCD function for θ, say H
(c)
w (·). The center point of H

(c)
w (·),

θ̂W, is a consistent point estimator for θ, and it is asymptotically normally distributed with

a “sandwich” covariance matrix, if: i) Si,W symmetric and positive semi-definite; and ii)

(niSi,W)
−1 →Mi in probability as ni →∞, where Mi is a fixed matrix (cf., Theorem 2.3 in

Liu, 2012). Therefore, the proposed method is flexible to include studies with misspecified

within study covariance matrices.

The robust meta-analysis approach is important because it provides protection on model

misspecification. In the context of network meta-analysis, where direct and indirect evi-

dence from disparate sources are combined, the “evidence inconsistency” can be interpreted

in terms of “variance discrepancy”. Intuitively, indirect evidence, which was obtained by
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integrating different sources of information, often has larger underlying variance than direct

evidence, due to potential compromise of study control. For example, a set of clinical trials

is gathered for making inference on the relative performance of treatments A vs C. Indirect

evidence, which comes from combining studies compared A vs B and B vs C, would in gen-

eral has larger variance than direct evidence, which comes from studies directly compared

A vs C. The reason is that the randomization is controlled only within individual studies,

and such randomization might be compromised when combining two studies for obtaining

indirect evidence. As a result, the contaminated model (3.9) might be more appropriate

than the conventional random-effects model (3.7).

At last, we want to demonstrate that the proposed method can be applied to various

multivariate meta-analysis problems. It is computationally efficient and easy to be built in

a statistical packages, as mvmeta (White, 2009).

3.6 Appendix

Proof of Theorem 3.1:

(i) Point estimator:

For any 0 < ε < 1
2 and λ ∈ <p, define H(n),λ(t) = Φ((λTS(n)λ)−1/2(t − λTȳ(n))) and

consider L(n),λ = H−1
(n),λ(1− ε)−H−1

(n),λ(ε). If σ2
min ∝ 1/n→ 0 then λTS(n)λ→ 0, and thus

L(n),λ → 0, in probability, as the sample size n → ∞. By Singh et al. (2007), λTθ̂(n) is a

consistent estimator for λTθ.

Take λ = ej where ej is a p× 1 vector has 1 on the j-th position and zero on all others for
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j = 1, . . . , p, then it follows that, for any δ > 0,

Pr
{
||θ̂(n) − θ0||2 ≥ δ

}
= Pr


p∑
j=1

(θ̂(n),j − θ0,j)
2 ≥ δ


≤

p∑
j=1

Pr
{

(θ̂(n),j − θ0,j)
2 ≥ δ

}
=

p∑
j=1

Pr
{
|θ̂(n),j − θ0,j | ≥

√
δ
}

=

p∑
j=1

2
(

1− Φ
(√

δ/(eT
j S(n)ej)

1/2
))

≤
p∑
j=1

2
(

1− Φ(
√
δ/σmin)

)
→ 0 as n→∞

(3.31)

where θ0 is the true parameter value. Thus, θ̂(n) is a consistent estimator for θ.

(ii) Hypothesis testing:

We first show that the conclusion is valid for Brect =

p∏
j=1

Jj where Jj represents an interval

(bj1, bj2).

Let λT
j = eT

j S
−1/2
(n) then

H(n)(θ) =

p∏
j=1

H(n),λj
(λT

j θ). (3.32)

Let J̃j =
(
min(λT

j b1,λ
T
j b2),max(λT

j b1,λ
T
j b2)

)
, where b1 = (b11, b21, . . . , bp1)T and b2 =

(b12, b22, . . . , bp2)T. By Singh et al. (2007),

Pr{λT
j θ0 ∈ J̃j} =

∫
J̃j

dH(n),λj
(t), (3.33)
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Note that the probability in (3.32) are independent for j = 1, . . . , p, and thus

Pr{S−1/2
(n) θ0 ∈

p∏
j=1

J̃j} =

p∏
j=1

Pr{λT
j θ0 ∈ J̃j}

=

p∏
j=1

∫
λT
j θ∈J̃j

dH(n),λj
(λT

j θ)

=

∫
S
−1/2
(n)

θ∈
∏p

j=1 J̃j

d

p∏
j=1

H(n),λj
(λT

j θ)

=

∫
S
−1/2
(n)

θ∈
∏p

j=1 J̃j

dH(n)(θ)

(3.34)

which implies

Pr {θ0 ∈ Brect} = Pr

θ0 ∈
p∏
j=1

Jj

 =

∫
∏p

j=1 Jj

dH(n)(θ) =

∫
Brect

dH(n)(θ) (3.35)

and therefore

Pr {θ0 ∈ Bc
rect} = 1− Pr {θ0 ∈ Brect} =

∫
Bc

rect

dH(n)(θ) = H(n)(B
c
rect) (3.36)

provides the p-value for K0 : θ0 ∈ Brect versus K1 : θ0 ∈ Bc
rect.

Based on Dudley (2002), any set B ∈ B is unions and/or intersections of some Brect in <p,

and this completes the proof.

(iii) Confidence region:

Let B = {θ : ||S−1/2
(n) (θ− θ̂(n))||2 ≤ q1−α(χ2

p)}, then Pr{θ0 ∈ B} =
∫
B dH(n)(θ) = 1−α and

the conclusion follows by the dual relationship between hypothesis testing and confidence

region.

Proof of Theorem 3.2:
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We first show that the function H(·) defined in in Theorem 3.2 is an asymptotically cumu-

lative distribution function on the parameter space given Y i.

Suppose E[a0[Ui]] = m1 and var(a0[Ui]) = vI, where 1 is p×1 vector with all entries equal

to 1 and I is p × p identity matrix. Without loss of generality, suppose a0(·) monotonic

non-decreasing and has first derivative, then asymptotically,

G(c)(t) = Ψ

(v · k∑
i=1

Wi

)−1/2(
t−

k∑
i=1

W
1/2
i ·m1

)
.

 (3.37)

Thus,

H(c)(θ) = G(c)
{∑k

i=1 W
1/2
i a0[HΛ

i (θ)]
}

= Ψ

(v · k∑
i=1

Wi

)−1/2( k∑
i=1

W
1/2
i (a0[HΛ

i (θ)]−m1)

) (3.38)

The inference based on (3.38) is asymptotically equivalent to an M-estimation approach

solves:
k∑
i=1

W
1/2
i (a0[HΛ

i (θ)]−m1) = 0 (3.39)

Suppose θ0 is the true parameter value and consider the Taylor expansion of a0(Hij(λ
T
ijθ))

at Zij = λT
ij(θ0 − Y i):

a0(Hij(λ
T
ijθ)) = a0(Φ(λT

ij(θ − Y i)))

= a0(Φ(Zij)) + a′0(Φ(Zij))φ(Zij) · λT
ij(θ − θ0) + op(n

−1/2)
(3.40)
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Thus,

a0[HΛ
i (θ)]

=


a0(Φ(Zi1))

...

a0(Φ(Zip))

 +


a′0(Φ(Zi1))φ(Zi1)

. . .

a′0(Φ(Zip))φ(Zip)




λT
i1

...

λT
ip

 (θ − θ0) + op(n−1/21)

= a0[Ui]− cΛi(θ − θ0) + op(n
−1/21)

(3.41)

where c = E[a′0(Φ(Zij))φ(Zij)] and Zij are independent standard normal random variable,

Ui = (Ui1, . . . , Uip)
T, and Uij are independent U[0, 1] random variables.

Therefore, the Taylor expansion of M-estimating equation (3.39) around θ0 yields:

θ̂
(c)
− θ0 =

(
c

k∑
i=1

W
1/2
i Λi

)−1( k∑
i=1

W
1/2
i (a0[Ui]−m1)

)
+ op(n

−1/21) (3.42)

which implies var(θ̂
(c)

)→
(
c
∑k

i=1 W
1/2
i Λi

)−1 (
v
∑k

i=1 Wi

)(
c
∑k

i=1 W
1/2
i Λi

)−T
as k →

∞, and

H(c)(θ)→ Ψ
(
S(c)−1/2

(θ − θ̂
(c)

)
)

as k →∞ (3.43)

where S(c) =
(
c
∑k

i=1 W
1/2
i Λi

)−1 (
v
∑k

i=1 Wi

)(
c
∑k

i=1 W
1/2
i Λi

)−T
.

Thus, H(c)(θ) is an asymptotically cumulative distribution function for θ.

Because H(c)(θ) is a distribution function on <p for given Y i, i = 1, . . . , k, by construction

theorem (Chung and AitSahlia, 2003), we can construct a random vector on <p such that

ξ(c)|Y i, i = 1, . . . , k ∼ H(c)(·) for each given Y i, i = 1, . . . , k. To show H(c)(θ) is an

asymptotic multivariate normal CD for θ, define Hλ(t) = Pr{λTξ(c) ≤ t|Y 1, . . . ,Y k} for

any given vector λ ∈ <p, based on Definition 3.1, it suffices to show that Hλ(t) is univariate

normal CD function for λTθ.
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First note that Hλ(t) goes from 0 to 1 monotonically, as t goes from −∞ to ∞. Thus,

Hλ(t) is a cumulative distribution function. Second, at the true parameter value θ = θ0,

a0[HΛ
i (θ)] = a0[ΦΛ

i (θ − Y i)] = a0[ΦΛ
i (θ0 − Y i)] = a0[Ui]. (3.44)

Let ηi = a0[Ui] then,

H(c)(Y 1, . . . ,Y k;θ0) = Ψ

(v · k∑
i=1

Wi

)−1/2( k∑
i=1

W
1/2
i ηi −

k∑
i=1

W
1/2
i ·m1

)
= Ψ

(v · k∑
i=1

Wi

)−1/2( k∑
i=1

W
1/2
i (ηi −m1)

)
→ Ψ

v−1/2

(
k∑
i=1

Wi

)−1/2
( k∑

i=1

Wi

)1/2

(η −m1)


as k →∞

= Ψ
(
v−1/2(η −m1)

)
(3.45)

where η is p× 1 random vector with distribution N(m1, vI). And it is straightforward to

show that, at the true parameter value θ = θ0,

Pr{Hλ(Y 1, . . . ,Y k) ≤ s} = Pr
{

Φ
(

(||λ||2 · v)−1/2 · λT(η −m1)
)
≤ s
}

= s (3.46)

Thus, we have established that, at the true θ = θ0 and as a function of the sample

Y 1, . . . ,Y k, Hλ(Y 1, . . . ,Y k) follows the uniform distribution U [0, 1]. Q.E.D. �

Proof of Theorem 3.3:

Let θ̂
(c)

R denote the center point of H̃
(c)
R (θ) in (3.11). Then, it is also the solution of the

M-estimating equation (3.12), and conclusion (1) follows from the standard argument of

an M-estimating equation (c.f., Huber, 1964).
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The conclusion (2) follows from the standard M-estimation as well, except that in our case

we have to incorporate the given weights eT
j W

1/2
i ej for some vector ej ∈ <p. Note that

vi(p) ≤ eT
j W

1/2
i ej ≤ vi(1) for any vector ej ∈ <p. On the other hand, Hij(t) is bounded

between 0 and 1, so Hij(t)− 1/2 is bounded between −1/2 and 1/2. Thus, the minimum

and maximum contribution of the i-th study to the equation is ±vi(p)/2 and ±vi(1)/2,

respectively.

For the estimation of the j-th component of θ, it is sufficient and necessary to require

that the summation of eT
j W

1/2
i ej over the outlying studies dominates the summation of

eT
j W

1/2
i ej over the non-outlying studies in order to break down the estimating equation

so that the solution of the estimating equation approaches infinity. In consideration of the

worst possible case, the breakdown point is obtained as the one stated in conclusion (2).

Q.E.D. �

Proof of Theorem 3.4:

The Taylor expansion of Hij(λ
T
ijθ) at Zij = λT

ij(θ0 − Y i) gives:

Hij(λ
T
ijθ) = Φ(λT

ij(θ − Y i)) = Φ(Zij) + λT
ij(θ − θ0) · φ(Zij) + op(n

−1/2) (3.47)

Therefore,

HΛ
i (θ) =


Φ(Zi1)

...

Φ(Zip)

+


φ(Zi1)

. . .

φ(Zip)



λT
i1

...

λT
ip

 (θ − θ0) + op(n
−1/21)

= Ui − 1
2
√
π
W

1/2
i (θ − θ0) + op(n

−1/21)

(3.48)
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where Zij are independent standard normal random variable, Ui =


Ui1
...

Uip

, and Uij are

independent U[0, 1] random variables.

Given Model (3.7) is true, H̃
(c)
R (θ) and H

(c)
R (θ) are essentially equivalent. Their center

point θ̂
(c)

R is the solution of the M-estimating equation:

k∑
i=1

W
1/2
i

(
HΛ
i (θ)− 1

2
· 1
)

= 0 (3.49)

The Taylor expansion of above M-estimating equation around Zij yields,

θ̂
(c)

R − θ0 =

(
1

2
√
π

k∑
i=1

Wi

)−1( k∑
i=1

W
1/2
i

(
Ui −

1

2
1

))
+ op(n

−1/21) (3.50)

which implies var(θ̂
(c)

R )→ π
3 (
∑k

i=1 Wi)
−1 as k →∞, and

H
(c)
R (θ)→ Ψ

(
S

(c)
R

−1/2
(θ − θ̂

(c)

R )

)
as k →∞ (3.51)

where S
(c)
R = π

3 (
∑k

i=1 Wi)
−1.

From the efficient combination approach in (3.8):

H
(c)
E (θ) = Ψ

(
S

(c)
E

−1/2
(θ − θ̂

(c)

E )

)
(3.52)

where S
(c)
E =

(∑k
i=1 Wi

)−1
and θ̂

(c)

E =
(∑k

i=1 Wi)
−1
∑k

i=1 Wiyi

)
.

Therefore, the asymptotic relative efficiency of H̃
(c)
R (·) compared to H

(c)
E (·) is

√
3/π ≈

0.9772 as n→∞ and k →∞. Q.E.D. �
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Chapter 4

gmeta: An R Package Unified Meta-Analysis Methods

Through Combining Confidence Distributions

In this additional chapter, we put forward a computing software that realizes the

unified univariate meta-analysis framework proposed in Xie et al. (2011). The R

package gmeta can provide an all-in-one solution for univariate meta-analysis problems.

4.1 Introduction

In this article, we introduce an R package gmeta that can help users carrying out all

standard meta-analysis through a single function gmeta(). Simply speaking, meta-analysis

is a statistical procedure that synthesizes findings from independent sources for decision

making (Glass, 1976). It is widely used in scientific fields such as biology, chemistry,

psychology and clinical trials analysis to combine current study results with historical

results based on systematically reviewing published literatures. A throughout review of

standard meta-analysis methods can be found in Normand (1999).

The gmeta package has a unified structure for performing meta-analysis. All methods are

invoked from a single function gmeta(). Specifically, methods incorporated in the gmeta()

function include, but are not limited to, p-value combination, fixed-effect and random-

effects model-based meta-analysis, Mantel-Haenszel and Peto’s method for synthesizing
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2x2 tables. The gmeta() function imitates the structure of the well known glm() function,

where generalized linear models are unified under a single function through the interrelated

options on arguments family and link. Likewise, the gmeta() function unifies all standard

meta-analysis methods through the options on arguments method and linkfunc. The

option on method reflects the assumptions made for meta-analysis model, e.g., fixed-effect or

random-effects model. The option on linkfunc defines the way information from individual

study is handled for integration, e.g., for Fisher efficiency or Bahadur efficiency.

The gmeta() function also implements several robust meta-analysis methods. The motiva-

tion is to provide protection from model-misspecification, and limit the impact of unknown

outlying studies. These robust methods are developed along the conception of using sample

median, instead of sample mean, for the estimation of the population mean. Though the

development requires a thorough understanding of confidence distribution (see, Section 4

of Xie et al., 2011), its practical use does not. The users only need to distinguish that one

type of methods, ‘-robust1’, are designed for performing meta-analysis on a number of

large studies, e.g. in the case where studies sample sizes ni →∞, whereas the other type

of methods, ‘-robust2’, are designed for performing meta-analysis on a large number of

studies, e.g., in the case where the number of studies, k →∞. Moreover, the performance

of these two types of robust methods are similar under common practical situations, so

even unawareness of the difference is in general not an issue.

In medical researches, clinical trials are often presented in 2x2 tables, where the number

of events are often assumed following Binomial distribution. The gmeta() function can

take 2x2 tables as inputs and combine them through Mantel-Haenszel or Peto’s method.

However, both methods are based on large sample theory such as asymptotic normality,

which leads to invalid inference when the sample size is small. The meta-analysis of clinical

trials are also challenged by studies with rare events. For examples, studies with zero total
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event, where neither the treatment nor the control group observe an event. Such studies

are often excluded from the analysis or applied artificial continuity corrections to zero

event (Nissen and Wolski, 2007; Efron, 1996). However, exclusion or continuity correction,

either way, leads to suspiciously biased results (J Sweeting et al., 2004; Tian et al., 2009; Liu

et al., 2013). Thus, it is desirable to have methods that can appropriately account studies

with small sample size and/or rare events. Therefore, the gmeta() function incorporates

methods proposed by Tian et al. (2009) and Liu et al. (2013). These two methods are called

“exact” methods because of using Binomial distribution, instead of asymptotic normality,

during the development. As a result, these methods can use all available studies without

any artificial continuity corrections on the zero event, and provide correct inference, in

terms of Type I error rate, on risk difference (RD) and log odd ratio (LOR), respectively.

As a final remark, we want to point out that the gmeta() function not only unifies dif-

ferent meta-analysis methods operationally, but also implements these methods under the

same structure of combining confidence distributions (CDs). Intuitively, the CD combining

method extends the traditional model-based meta-analysis, in a similar way as the copula

extended the linear correlation for describing the dependence between random variables.

The copula allows one to separate the estimation of the distribution of random vectors to

the estimation of marginal and copula. It then use parameters to describe the strength

and structure of the dependence. Likewise, the gmeta() function separates the process of

summarizing information from individual studies and synthesizing those information. It

summarizes the evidence from each study into a CD, and then combines these CDs using a

unified general formula. This combination is flexible in the sense that various linkfunc can

be taken and each provides different features, e.g., efficiency or robustness. We hold the in-

troduction of the CD combining framework until illustrating the usage of gmeta with some

simple examples, see Singh et al. (2005, 2007) and Xie et al. (2011) for the development of
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CD concept and the CD combining framework.

This article proceeds as follows. Section 4.2 provides an overview of the gmeta package

with simple examples. Section 4.3 reviews the concept of confidence distribution and the

general CD combining method. It is the theoretical support for the gmeta() function

unifying all meta-analysis methods. Section 4.4 illustrates the use of gmeta() function

for p-value combination, model-based meta-analysis, and 2x2 tables synthesis through real

data examples. Section 4.5 concludes the article with a discussion of planned further

developments on the package.

4.2 Overview of the gmeta Package

The gmeta package implements the unified meta-analysis method described in Xie et al.

(2011) using S3 methods. The main function gmeta() has the following arguments:

gmeta <- function(gmi, gmi.type = c(’pivot’, ’cd’, ’pvalue’, ’2x2’),

method = c(’fixed-mle’,

’fixed-robust1’, ’fixed-robust2’, ’fixed-robust2(sqrt12)’,

’random-mm’, ’random-reml’, ’random-tau2’,

’random-robust1’, ’random-robust2’, ’random-robust2(sqrt12)’,

’fisher’, ’normal’, ’stouffer’, ’min’, ’tippett’, ’max’, ’sum’,

’MH’, ’Mantel-Haenszel’, ’Peto’, ’exact1’, ’exact2’),

linkfunc = c(’inverse-normal-cdf’, ’inverse-laplace-cdf’),

weight = NULL, study.names = NULL, gmo.xgrid = NULL, ci.level = 0.95,

tau2 = NULL, mc.iteration = 10000, eta = ’Inf’, verbose = FALSE,

report.error = FALSE)
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The key arguments are method and linkfunc, where method reflects the assumptions made

for meta-analysis model, and linkfunc defines the way information from individual studies

handled for integration. The following examples show the use of gmeta() without assuming

any knowledge on the concept of CD.

4.2.1 A Small Example - Conventional Model-based Meta-analysis

Let us consider a hypothetical toy example, suppose four studies regarding the same pa-

rameter of interest are gathered for meta-analysis. The summary statistics reported are

y=c(-2,0,1,2) and s=c(1,1,1,1) for study-specific means and associated standard devi-

ations. As in line with Normand (1999), conventional fix-effect and random-effects model-

based meta-analysis can be done through the following script.

> y <- c(-2,0,1,2)

> s <- c( 1,1,1,1)

> # original data set

> gdf <- data.frame(mns=y, sds=s)

>

> # conventional fixed-effect meta-analysis

> gmt.fix <- gmeta(gmi=gdf, method=’fixed-mle’,

+ gmo.xgrid=seq(-10,10,by=0.001))

> # summary of the combining results

> summary(gmt.fix)

Model-Based Meta-Analysis through CD-Framework

Call:
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gmeta.default(gmi = gdf, method = "fixed-mle", gmo.xgrid = seq(-10,

10, by = 0.001))

Summary of Combined CD:

mean median stddev ci.lower ci.upper

Combined CD 0.25 0.25 0.5000002 -0.729982 1.229982

Confidence level = 0.95

Summary of Individual CDs:

mean median stddev ci.lower ci.upper

study-1 -2 -2 1 -3.95996402 -0.04003598

study-2 0 0 1 -1.95996402 1.95996402

study-3 1 1 1 -0.95996402 2.95996402

study-4 2 2 1 0.04003598 3.95996402

Confidence level = 0.95

>

> # conventional random-effects meta-analysis

> gmt.rdm <- gmeta(gmi=gdf, method=’random-mm’,

+ gmo.xgrid=seq(-10,10,by=0.001))

> # summary of the combining results

> summary(gmt.rdm)

Model-Based Meta-Analysis through CD-Framework

Call:
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gmeta.default(gmi = gdf, method = "random-mm", gmo.xgrid = seq(-10,

10, by = 0.001))

Summary of Combined CD:

mean median stddev ci.lower ci.upper

Combined CD 0.25 0.25 0.8539126 -1.423638 1.923638

Confidence level = 0.95

Summary of Individual CDs:

mean median stddev ci.lower ci.upper

study-1 -2 -2 1 -5.347276 1.347276

study-2 0 0 1 -3.347276 3.347276

study-3 1 1 1 -2.347276 4.347276

study-4 2 2 1 -1.347276 5.347276

Confidence level = 0.95

For model-based meta-analysis, the input gmi are summary statistics, means and standard

deviations. The summary statistics are organized into a two columns data.frame or ma-

trix, where each row takes the reported mean and standard deviation from an individual

study. The name of each study can be specified through the row names of the data.frame

or matrix, or through the argument study.names. If NULL, the default values are

study-[row.index]. The argument method specifies the method used for meta-analysis,

for example, method=‘fixed-mle’ for fixed-effect model and method=‘random-mm’ for

random-effects model with moment estimator for heterogeneity. The argument gmo.xgrid
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specifies the range and gridding points for evaluating the individual and combined CDs. It

should cover the range of yi ± 3si with fine gridding. We will discuss these arguments in

detail later.

In this small example, the fixed-effect method obtains a combined point estimate (mean)

0.25 with standard deviation (stddev) 0.50. The random-effects method obtains the same

point estimate (mean) 0.25 with a slightly larger standard deviation (stddev) 0.85. This is

because the random-effects model assumes an additional layer of randomness on the study-

specific means, whereas fixed-effect model assumes all studies have the same underlying

true value of the mean parameter (Normand, 1999).

4.2.2 A Small Example - Robust Model-based Meta-analysis Methods

The conventional model-based meta-analysis assumes that all studies involved in the meta-

analysis have the same underlying true parameter or hyper-parameter value. Such assump-

tion is vulnerable to the unaware inclusion of outlying studies. For example, suppose a

transcription error causes the reported summary mean statistics y=c(-2,0,1,2) to be

recorded as y.cntm=(-2,0,1,20), e.g., a 10 times larger mean value for the 4th study. In

this case, the conventional model-based meta-analysis results are significantly impacted by

this outlying study. For example, the fixed-effect model obtains a combined mean value

4.75, compared to 0.25 based on original data set. The random-effects model obtains

similar results.

> y.cntm <- c(-2,0,1,20)

> # contaminated data set

> gdf.cntm <- data.frame(mns=y.cntm, sds=s)

> rownames(gdf.cntm) <- c(’study-1’,’study-2’,’study-3’,’study-4(outlying)’)



100

>

> # conventional fixed-effect meta-analysis

> gmt.cntm.fix <- gmeta(gmi=gdf.cntm, method=’fixed-mle’,

+ gmo.xgrid=seq(-10,30,by=0.001))

> summary(gmt.cntm.fix)

Model-Based Meta-Analysis through CD-Framework

Call:

gmeta.default(gmi = gdf.cntm, method = "fixed-mle", gmo.xgrid = seq(-10,

30, by = 0.001))

Summary of Combined CD:

mean median stddev ci.lower ci.upper

Combined CD 4.749863 4.75 0.4999998 3.770018 5.729784

Confidence level = 0.95

Summary of Individual CDs:

mean median stddev ci.lower ci.upper

study-1 -2 -2 1 -3.959964 -0.04003598

study-2 0 0 1 -1.959964 1.95996402

study-3 1 1 1 -0.959964 2.95996402

study-4(outlying) 20 20 1 18.040036 21.95996402

Confidence level = 0.95

>
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> # conventional random-effects meta-analysis

> gmt.cntm.rdm <- gmeta(gmi=gdf.cntm, method=’random-mm’,

+ gmo.xgrid=seq(-10,30,by=0.001), tau2=gmt.rdm$tau2)

> summary(gmt.cntm.rdm)

Model-Based Meta-Analysis through CD-Framework

Call:

gmeta.default(gmi = gdf.cntm, method = "random-mm", gmo.xgrid = seq(-10,

30, by = 0.001), tau2 = gmt.rdm$tau2)

Summary of Combined CD:

mean median stddev ci.lower ci.upper

Combined CD 4.75 4.75 0.8539126 3.076362 6.423638

Confidence level = 0.95

Summary of Individual CDs:

mean median stddev ci.lower ci.upper

study-1 -2 -2 1 -5.347276 1.347276

study-2 0 0 1 -3.347276 3.347276

study-3 1 1 1 -2.347276 4.347276

study-4(outlying) 20 20 1 16.652724 23.347276

Confidence level = 0.95
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Here, we suppose the heterogeneity tau2 for the random-effects is known as τ2 = 1.92, the

value estimated through original data set.

> # tau2 - the heterogeneity parameter in random-effects model

> gmt.rdm$tau2

[1] 1.916667

The robust meta-analysis methods, on the other hand, can limit the impact of outlying

study, and provide protection on failing to consider the outlying studies in the model

assumptions. As shown in the following script, the method fixed-robust1 provides pooled

mean estimate 0.64 with standard deviation 0.70 using the original data set, and pooled

mean estimate 0.32 with standard deviation 0.81 using the contaminated data set. The

pooled estimate based on the contaminated data set is even smaller, because the 4th study

in the contaminated data set is further away from the majorities, and as a result, it is

further down-weighted during the combining step (cf., Section 4 of Xie et al., 2011).

> # robust meta-analysis method

> # on original data set

> gmt.rbst <- gmeta(gmi=gdf, method=’fixed-robust1’,

+ gmo.xgrid=seq(-10,30,by=0.001), tau2=gmt.rdm$tau2)

> summary(gmt.rbst)

Model-Based Meta-Analysis through CD-Framework

Call:

gmeta.default(gmi = gdf, method = "fixed-robust1", gmo.xgrid = seq(-10,

30, by = 0.001), tau2 = gmt.rdm$tau2)
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Summary of Combined CD:

mean median stddev ci.lower ci.upper

Combined CD 0.6409065 0.6409065 0.4117606 -0.1661293 1.447942

Confidence level = 0.95

Summary of Individual CDs:

mean median stddev ci.lower ci.upper

study-1 -2 -2 1 -3.95996402 -0.04003598

study-2 0 0 1 -1.95996402 1.95996402

study-3 1 1 1 -0.95996402 2.95996402

study-4 2 2 1 0.04003598 3.95996402

Confidence level = 0.95

>

> # on contaminated data set

> gmt.cntm.rbst <- gmeta(gmi=gdf.cntm, method=’fixed-robust1’,

+ gmo.xgrid=seq(-10,30,by=0.001), tau2=gmt.rdm$tau2)

> summary(gmt.cntm.rbst)

Model-Based Meta-Analysis through CD-Framework

Call:

gmeta.default(gmi = gdf.cntm, method = "fixed-robust1", gmo.xgrid = seq(-10,

30, by = 0.001), tau2 = gmt.rdm$tau2)

Summary of Combined CD:
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mean median stddev ci.lower ci.upper

Combined CD 0.3215122 0.3215122 0.4760393 -0.6115077 1.254532

Confidence level = 0.95

Summary of Individual CDs:

mean median stddev ci.lower ci.upper

study-1 -2 -2 1 -3.959964 -0.04003598

study-2 0 0 1 -1.959964 1.95996402

study-3 1 1 1 -0.959964 2.95996402

study-4(outlying) 20 20 1 18.040036 21.95996402

Confidence level = 0.95

To understand the robust meta-analysis methods and other advanced features, it is pre-

ferred to have a working knowledge on the concept of confidence distributions (CDs). We

present a brief review of using CD for meta-analysis in Section 4.3. For the practical use of

the gmeta package, it can be skipped and referred back when needed while going through

the examples in Section 4.4.

4.3 Confidence Distribution

4.3.1 Confidence Distribution

A CD uses a sample-dependent distribution function to estimate the unknown parameter.

Loosely speaking, it is a distribution function on the parameter space that can represent
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all level confidence intervals for the parameter of interest. It contains more information

comparing to the point or interval estimators, and is an ideal candidate as information

carrier for combination. The following formal definition is proposed by Schweder and

Hjort (2002) and Singh et al. (2005, 2007):

Definition 4.1 Suppose Θ is the parameter space of the unknown parameter of interest

θ, and Y is the sample space corresponding to data Y = {y1, . . . , yn}. Then a function

H(·) = H(Y, ·) on Y ×Θ→ [0, 1] is a confidence distribution (CD) if:

(i) For each given Y ∈ Y, H(·) is a continuous cumulative distribution function on Θ; and

(ii) Pr{θ0 ≤ H−1(α)} = α,∀0 ≤ α ≤ 1, where θ0 is the true parameter value.

The function H(·) is an asymptotic CD (aCD) if lim
n→∞

Pr{θ0 ≤ H−1(α)} → α,∀0 ≤ α ≤ 1,

and the continuity requirement on H(·) is dropped.

The second condition facilitates desirable frequentist properties, such as unbiasedness, con-

sistency and/or efficiency, of the estimates derived from H(·). We show through the follow-

ing examples that the CD concept covers from regular parametric cases to p-value functions,

see Singh et al. (2005) and Xie and Singh (2013) for more examples on normalized likelihood

functions, bootstrap distributions and Bayesian posteriors, among others.

Example 4.1 (Normal mean and variance) Suppose a normal sample Xi ∼ N (µ, σ2), i =

1, . . . , n is observed and σ is known, then the function ψ(X, µ) =
µ−X
σ/
√
n

is monotonically

increasing in µ and has distribution N (0, 1). Thus, the function

HΦ(µ) = Φ

(
µ−X
σ/
√
n

)
(4.1)

satisfies the two conditions in Definition 4.1 and thus is a CD for µ, where Φ(·) is the

cumulative distribution function of the standard normal distribution. If the parameter σ is
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not known, then HΦ(µ) is no longer a sample dependent function on the space of µ since it

also involves σ, and thus it is not a CD for µ. In this case, consider the t-pivotal quantity

T (X, µ) =
µ−X
s/
√
n

, it has a Student t-distribution with df n− 1, and is asymptotic normal

as n→∞. Thus, the functions

HT (µ) = FTn−1

(
µ−X
s/
√
n

)
and HA(µ) = Φ

(
µ−X
s/
√
n

)
(4.2)

are CD and aCD for the parameter µ, respectively. Here, s is the sample standard deviation

and FTn−1(·) is the cumulative distribution function of the t-distribution with df n− 1.

For the parameter σ2, the sample-dependent cumulative distribution function

Hχ2(θ) = 1− Fχ2
n−1

((n− 1)s2/θ) (4.3)

is a CD for σ2, where Fχ2
n−1

(·) is the cumulative distribution function of the χ2
n−1-

distribution. Here, we take Hχ2(·) = 1−Fχ2
n−1

(·) because the quantity ψ(X, σ2) =
(n− 1)s2

σ2

is monotonic decreasing in σ2.

Example 4.1 illustrates using pivot statistics to construct confidence distribution. Given an

observed sample, a pivot statistic is a function of observations and unobservable parameters,

whose probability distribution does not depend on any unknown parameter. For example,

the z-statistic and t-statistic used in (4.1) and (4.2). In general, suppose x is an observed

sample, θ is the parameter of interest, ψ(x, θ) is a (an asymptotic) pivot statistic that

is (asymptotically) distributed as F (·). Without loss of generality, we suppose F (·) is

monotonic non-decreasing in θ. Then, a CD (an aCD) function for θ can be constructed

by H(θ) = F (ψ(x, θ)).
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The CD is loaded with information in the sense that various inferences for the parameter

of interest can be drawn from it, including but not limit to point estimates, confidence

intervals, and hypothesis testing. For example, Figure 4.1 part (a) plots the CD for the

mean parameter µ based on formula (4.1) in Example 4.1. It shows that the mean/median

of the distribution function H(µ) can be used as a point estimator for µ, the interval

(H−1(α1), H−1(1 − α2)) forms a level 100(1 − α1 − α2)% confidence interval (CI) for any

given 0 ≤ α1 ≤ 1 − α2 ≤ 1, and the p-value for the one-sided hypothesis testing problem

K0 : µ ≥ µ0 versus Ka : µ < µ0 can be obtained through the tail mass 1 − H(µ0).

Figure 4.1 also plots the confidence density h(µ) = ∂H(µ)/∂µ, and the confidence curve

CCV(µ) = 1 − 2|H(µ) − 0.5| = 2 min{H(µ), 1 −H(µ)}, on part (b) and (c), respectively.

The confidence density and confidence curve are useful in the theoretical development, for

example, Blaker (2000) relies the confidence curve to derive improved exact confidence

intervals for a general discrete distribution (cf. Section 7 of Xie and Singh, 2013).

An extension of the Example 4.1 is dropping the normality assumption on the sample X

and only assuming X comes from a population with finite mean µ and variance σ2.

Example 4.2 (aCD based on Central Limit Theorem (CLT)) Suppose X1, . . . , Xn are i.i.d.

samples from a distribution with finite first and second cental moments, µ and σ2, respec-

tively, where µ is the parameter of interest and σ2 is known. Let X =
∑
Xi/n, then

according to CLT,
√
n(µ −X) → N (0, σ2) as n → ∞. Therefore, µ−X

σ/
√
n

is an asymptotic

pivot statistic. As a result, Φ
(
µ−X
σ/
√
n

)
is an aCD function.

As an application of Example 4.1 and 4.2, the following Example 4.3 illustrates how to

build aCD for log odds ratio (LOR) of 2x2 table. In clinical trials, the outcomes are

often dichotomous, e.g., observed an event or not. A 2x2 table, as shown in Table 4.1, is

commonly used for summarizing the study outcomes.
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Use CD for Making Inference

Figure 4.1: An example of using CD for making inference. The solid curves in figure
(a), (b) and (c) are confidence distribution, confidence density, and confidence curve, re-
spectively, for the parameter µ based on a sample generated from xi ∼ i.i.d N (µ(true) =
0, σ2(known) = 1). Here, the confidence distribution is obtained by: HΦ(µ) = Φ(

√
n(µ −

x̄)/σ). The confidence density is derived by taking the first derivative w.r.t µ in H(µ), and
the confidence curve is defined as CCV(µ) = 1− 2|H(µ)− 0.5|. The figure also illustrates
the procedure to obtain point estimates, confidence intervals, and p-values for hypothe-
sis testing problems through the confidence distribution, confidence density, or confidence
curve.

Table 4.1: 2x2 Table From One Study

Events Non-Events Total

Treatment(Drugs) Xi ni −Xi ni
Control(Placebo) Yi mi − Yi mi

Total ti Ni − ti Ni

Example 4.3 (aCD for Log Odds Ratio (LOR) of 2x2 Tables) Suppose that a clinical trial

is designed to investigate the relative performance of a novel treatment (drugs) versus the

current standard medical practice (control or placebo), and the dichotomous (e.g., stroke
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or not) outcomes are organized as in Table 4.1. The study sample size is large, and thus

no entries in Table 4.1 is zero. The estimated LOR and its standard deviation based on

the Table 4.1 are

θ̂i = log

(
Xi/(ni −Xi)

Yi/(mi − Yi)

)
and si =

√
1

Xi
+

1

ni −Xi
+

1

Yi
+

1

mi − Yi
(4.4)

It is known that the sample distribution of θ̂i converges to N (θi, s
2
i ) quickly as the sample

size Ni → ∞, where θi is the underlying true value of the LOR. Thus, asymptotically the

statistic (θi − θ̂i)/si ∼ N (0, 1) and therefore an aCD for θi can be constructed by

Hasymp(θi) = Φ
(

(θi − θ̂i)/si
)

(4.5)

An advanced method of constructing CD for LOR, without asymptotic normality, is

through the instrumentality of significance functions or p-value functions (Fraser, 1991).

Let us consider the hypothesis testing problem K0 : θ ≤ t0 versus Ka : θ > t0. The

p-values, p(·), can be interpreted as a function of t0, i.e., p = p(t0) while t0 varies over the

parameter space. This p(t0) is known as significance function or p-value function (Fraser,

1991), and this significance function p(·) = p(·,x) almost always satisfies the definition of

CD (Singh et al., 2005, 2007).

Example 4.4 (Exact CD for Log Odds Ratio (LOR) of 2x2 Tables based on p-value func-

tions derived by Fisher’s Exact Test) Follow the Example 4.3, but now suppose that the

sample size is small. In this case, the large sample theory such as asymptotic normality is

not suitable, and thus the aCD in (4.5) is not suitable for making inference on θi. Further,

if the event rate is small enough such that any entry in Table 4.1 is zero, then neither θ̂i

nor si is meaningful unless adjusting the zeros by artificially continuity corrections. For
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example, Table 4.2.

Table 4.2: An Observed 2x2 Table From a Small Study

Events Non-Events Total

Treatment 4(Xi) 3(ni −Xi) 7(ni)
Control 4(Yi) 0(mi − Yi) 4(mi)

Total 8(ti) 3(Ni − ti) 11(Ni)

Different from Example 4.3, let us consider the hypothesis testing problem:

K0 : Ψi = Ψ∗ vs. Ka : Ψi > Ψ∗ (4.6)

with respect to odds ratio Ψi, where Ψ∗ is an arbitrary but fixed value on the parame-

ter space. The p-value function pi(Ψ) based on the mid-p adaptation of Fisher’s Exact

Test (Fisher, 1922) is

pi(Ψ) ≡ pi(Ψ;xi, yi) = PrΨ(Xi > xi|Ti = ti) +
1

2
PrΨ(Xi = xi|Ti = ti) (4.7)

where Ti is defined as Ti = Xi+Yi, and the distribution of Xi conditional on Ti = ti follows

noncentral hypergeometric distribution:

PrΨ(Xi = x|Ti = ti) =

(
ni
x

)(
mi

ti − x

)
Ψx

Ui∑
s=Li

(
ni
s

)(
mi

ti − s

)
Ψs

, Li 6 xi 6 Ui (4.8)

where Li = max(0, ti −mi), Ui = min(ni, ti). Then, the p-value function HΨ(Ψ) = pi(Ψ)

is an exact CD function for Ψi, and thus the CD function for the LOR, θi, is simply

Hexact(θ) = HΨ(exp(θ)) (Liu et al., 2013).

In particular, the exact CD function Hexact(·) is able to make correct inference for studies
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contain zero event, whereas the aCD Hasymp(·) has to be constructed with artificial continuity

corrections and thus is biased (J Sweeting et al., 2004). Further, the exact CD is more

efficient than the aCD when the study sample size is small (Liu et al., 2013).

The concept of CD is broad. Besides pivotal quantities’ distributions and p-value functions,

it also covers bootstrap distributions, normalized likelihood functions, Bayesian posteriors,

among others (Singh et al., 2007; Xie and Singh, 2013). In fact, any sample dependent

distribution function “can” be used as a CD, just as any sample dependent scalar value

“can” be used as a point estimator. However, CD constructed following the requirements

in Definition 4.1 can ensure the estimates derived from such CD have desirable properties.

For example, the unbiasedness, consistency, or efficiency of the point estimates based on

the mean or median of CD.

4.3.2 Combining CDs and a Unified Meta-analysis Approach

Assume k independent studies are available, all regarding the same parameter θ. Based

on the methods introduced in Example 4.1- 4.4, we can construct CDs Hi(θ) = Hi(Xi, θ),

i = 1, . . . , k for θ based on sample Xi from each individual study. To combine individual

CDs and make an overall inference on θ, a general combining method is proposed by Singh

et al. (2005). The key is choosing a coordinate-wise monotonic function g(c)(u1, . . . , uk)

that maps the k-dimensional cube [0, 1]k to real line. In particular, the combined CD can

be built through:

H(c)(θ) = G(c){g(c)(H1(θ), . . . ,Hk(θ))} (4.9)

where G(c)(t) = Pr{g(c)(U1, . . . , Uk) ≤ t} is the cumulative distribution function of

g(c)(U1, · · · , Uk). Here, U1, . . . , Uk are independent U[0, 1] random variables. The com-

bined function H(c)(·) is a valid CD for θ as long as the inputs Hi(θ) share the same
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underlying true parameter θ and independent to each other. The methods used to obtain

individual CDs Hi(θ) are irrelevant.

To apply this general combining method to meta-analysis, a special family of g(c)(·) is

proposed by Xie et al. (2011):

g(c)(u1, . . . , uk) = w1a0(u1) + · · ·+ wka0(uk) (4.10)

where a0(·) is a given continuous and monotonic (without loss of generality, say increasing)

function and wi ≥ 0, with at least one wi 6= 0, are generic weights for the combination.

Though other choices may possible, the gmeta implements the general combining method

with g(c)(·) in formula (4.10). It indeed unifies almost all methods currently used in meta-

analysis, including p-value combination methods, fixed-effect and random-effects model-

based meta-analysis methods, the Mantel-Haenszel method, the Peto’s method, the method

proposed in Tian et al. (2009) by combining confidence intervals, and also the method

proposed in Liu et al. (2013) by combining significance functions (see Xie et al., 2011, and

subsequent research).

The following example shows that the CD combining method (4.9), (4.10) covers model-

based meta-analysis as a special case by taking a0(·) = Φ−1(·) in (4.10).

Example 4.5 (aCD for Log odds ratio (LOR) of 2x2 Table - continued) Suppose k clinical

trials are performed for comparing the relative performance of the same novel treatment

versus control. In Example 4.3, we built a CD Hi(θi) for the study-specific LOR, θi,

based on the 2x2 table from the i-th study, and we want to combine them together for

estimating the overall LOR, θ. Follow Normand (1999), we assume a random-effects model
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θi ∼ N (θ, τ2) and τ2 is known. Thus, we have

θ̂i|(θi, si) ∼ N (θi, s
2
i ), θi|(θ, τ) ∼ N (θ, τ2), i = 1, . . . , k (4.11)

Therefore, asymptotically θ̂i ∼ N (θ, s2
i + τ2), and an aCD for θ based on the i-th study can

be found by

Hi(θ) = Φ
(

(θ − θ̂i)/vi
)

(4.12)

where v2
i = s2

i + τ2. Take a0(·) = Φ−1(·) and wi = v−1
i , and apply the general combining

method (4.9) with g(c)(·) given by (4.10), we find that

g(c)(H1(θ), . . . ,Hk(θ)) =
k∑
i=1

1

vi
Φ−1

(
Φ

(
θ − θ̂i
vi

))
=

(
k∑
i=1

1

v2
i

)(
θ −

∑k
i=1 θ̂i/v

2
i∑k

i=1 1/v2
i

)

Since g(c)(U1, . . . , Uk) =
k∑
i=1

wiΦ
−1(Ui) ∼ N (0,

k∑
i=1

w2
i ), which implies G(c)(t) =

Φ

t/
√√√√ k∑

i=1

w2
i

. Thus, the combined CD can be constructed by

H(c)(θ) = G(c){g(c)(H1(θ), . . . ,Hk(θ))} = Φ

g(c)(H1(θ), . . . ,Hk(θ))√∑k
i=1w

2
i


= Φ

( k∑
i=1

1

v2
i

)1/2(
θ −

∑k
i=1 θ̂i/v

2
i∑k

i=1 1/v2
i

) (4.13)

which is normally distributed with mean θ̂c =

∑k
i=1 θ̂i/v

2
i∑k

i=1 1/v2
i

and variance v2
c =

1∑k
i=1 1/v2

i

.

If the parameter τ2 is unknown, then we can replace it with the sample estimates, say

the Dersimonian-Laird moment estimator τ̂2
DL (DerSimonian and Laird, 1986), or the

restricted-maximum-likelihood estimator τ̂2
REML. As long as it is a consistent estimator for
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τ2, the combined function (4.13) is still an aCD for θ.

On the other hand, the conventional random-effects meta-analysis method assumes the same

model (4.11) (Normand, 1999). As a result, the DerSimonian and Laird estimator for θ

is θ̂DL =

∑k
1 θ̂i/(s

2
i + τ̂2

DL)∑k
1 1/(s2

i + τ̂2
DL)

with variance v2
DL =

1∑k
i=1 1/(s2

i + τ̂2
DL)

. Likewise, the REML es-

timator for θ is θ̂REML =

∑k
1 θ̂i/(s

2
i + τ̂2

REML)∑k
1 1/(s2

i + τ̂2
REML)

with variance v2
REML =

1∑k
i=1 1/(s2

i + τ̂2
REML)

(see

Table IV of Normand, 1999). The point estimates derived by CD, θ̂c, by replacing τ2 with

τ̂2
DL and τ̂2

REML, matches θ̂DL and θ̂REML, respectively. Therefore, the CD-based meta-analysis

method includes the conventional random-effects model-based meta-analysis as a special

case by taking a0(·) = Φ−1(·). Similar results hold for fixed-effect meta-analysis method,

which is equivalent to assume τ2 = 0 (see Section 3 of Xie et al., 2011).

The next section shows that different choices on linkfunc, a0(·), lead to different com-

bined CDs, with the derived point estimators having different properties, e.g., efficiency

or robustness. Specifically, it uses real data examples to show the commands for perform-

ing conventional, robust and exact meta-analysis, along with the methods of constructing

corresponding combined CDs.

4.4 Examples

We provide several examples of using functions in the gmeta package for meta-analysis. The

gmeta package can be installed as any other R package through the install.packages()

command. There are three key functions in the package for our purpose, the gmeta()

function is responsible for performing meta-analysis, the summary() function summarizes

the meta-analysis results, and the plot() function displays the results through extended

forest plots. Hereafter, we assume that the gmeta package is installed and loaded in the
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current R session.

# install and load package

> install.packages(’gmeta_2.2-3.zip’, repos = NULL)

> library("gmeta") # load the gmeta package

> ls("package:gmeta", all = TRUE) # list functions included in gmeta package

> data(package = "gmeta")$results # list data sets included in gmeta package

The ulcer data is included in the gmeta package and used throughout the following ex-

amples. It gathers 41 randomized clinical trials conducted between 1980 and 1989, all

compared the performance of a novel surgical treatment versus the old treatment (con-

trol), in terms of reducing the occurrence of an adverse event – recurrent bleeding (Sacks

et al., 1990; Efron, 1996). The data is organized in an R data.frame, where each row

contains the number of event and non-event from novel treatment group followed by the

number of event and non-event from control group. In fact, each row represents a 2x2

table as in Table 4.1 in order of (Xi, ni − Xi, Yi,mi − Yi). The parameter of interest is

the overall log odds ratio (LOR), θ, in favor of the new treatment. Thus, our objective is

making inference on θ by summarizing all evidence from these 41 clinical trials.

> data(ulcer) # load the ulcer dataset

> ulcer

TrtEvent TrtNonevent CtrlEvent CtrlNonevent

1 7 8 11 2

[...]

41 0 9 0 16
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4.4.1 Classical p-value Combination

For clinical trials compared new and old treatments, literatures often report the p-value of

hypothesis testing problem K0 : θ ≥ 0 vs Ka : θ < 0, where θ is the log odds ratio in favor

of the new treatment. Thus, we can obtain an overall p-value by combining individual p-

values from each individual studies. The classical p-values combination methods, including

Fisher method (Fisher, 1932), Stouffer (Normal) method (Stouffer et al., 1949), Tippett

(Min) method, Max method, and Sum method, are summarized in Marden (1991).

For the test K0 : θ ≥ t0 vs Ka : θ < t0, the p-value, p(·), can be viewed as a function of t0,

i.e, p(·) = p(t0) as t0 varies over the parameter space. This p-value function is in general a

CD or an aCD function, and thus the classical p-value combination is generally a special

case of CD-based meta-analysis. For example, Fisher method suggest to use

p(c) = Pr

{
χ2

2k ≥ −2
k∑
i=1

log(pi)

}
(4.14)

as the combined p-value from all k studies, and this combined p-value is Bahadur opti-

mal (Littell and Folks, 1973). From the CD combining framework, suppose pi(s) are the

p-value functions from i-th study, i = 1, . . . , k, for the hypothesis testing K0 : θ ≥ s vs

Ka : θ < s. Take a0(·) = log(·) and wi = 1 in (4.10), then the combined CD following the

general method (4.9) is

H(c)(s) = Pr

{
χ2

2k ≥ −2

k∑
i=1

log(pi(s))

}
(4.15)

It is obvious that p(c) = H(c)(t0), and thus Fisher method is a special case of CD-based

meta-analysis method.
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Table 4.3 lists the p-value combination methods unified under the CD combining frame-

work, along with the choice of g(c)(·) and the combined CD H(c)(·). Here, the Ck is a

random variable distributed as the sum of k independent U[0, 1] random variables, such

distribution is given by Potuschak and Müller (2009).

Table 4.3: List of the p-value combination methods unified under the CD combining frame-
work
Fisher method

classical p-value combination method p(c) = Pr
{
χ2

2k ≥ −2
∑k

i=1 log(pi)
}

choice of g(c)(·) g(c)(u1, . . . , uk) = log(u1) + . . .+ log(uk)

H(c)(·) H(c)(s) = Pr
{
χ2

2k ≥ −2
∑k

i=1 log(pi(s))
}

Stouffer (Noraml) method

classical p-value combination method p(c) = Φ(1/
√
k[Φ−1(p1) + . . .+ Φ−1(pk)])

choice of g(c)(·) g(c)(u1, . . . , uk) = Φ−1(u1) + . . .+ Φ−1(uk)

H(c)(·) H(c)(s) = Φ(1/
√
k[Φ−1(p1(s)) + . . .+ Φ−1(pk(s))])

Tippett (Min) method

classical p-value combination method p(c) = 1− (1−min(p1, . . . , pk))
k

choice of g(c)(·) g(c)(u1, . . . , uk) = min(u1, . . . , uk)

H(c)(·) H(c)(s) = 1− (1−min(p1(s), . . . , pk(s)))
k

Max method

classical p-value combination method p(c) = max(p1, . . . , pk)
k

choice of g(c)(·) g(c)(u1, . . . , uk) = max(u1, . . . , uk)

H(c)(·) H(c)(s) = max(p1(s), . . . , pk(s))
k

Sum method

classical p-value combination method p(c) = Pr
{
Ck ≤

∑k
i=1 pi

}
choice of g(c)(·) g(c)(u1, . . . , uk) = u1 + . . .+ uk

H(c)(·) H(c)(s) = Pr
{
Ck ≤

∑k
i=1 pi(s)

}

The function gmeta() can perform all these p-value combinations by choosing correspond-

ing methods. In particular, the input gmi is a vector of p-values from individual studies

for the same hypothesis, and correspondingly gmi.type=‘p-value’. The combination

method can be chosen from ‘fisher’,‘stouffer’,‘normal’,‘tippett’,‘min’,‘max’,

and ‘sum’. Example 4.6 shows the results of using gmeta() function to combine p-values
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for the hypothesis K0 : θ ≥ 0 vs Ka : θ < 0 for the ulcer data set.

Example 4.6 (p-value combination) To obtain meaningful pi from the i-th study, we add

0.5 to the twelve zero entries in the data frame, as suggested by Efron (1996) and others.

The sample statistic θ̂i is approximately normally distributed with mean θ and variance s2
i ,

where the summary statistics θ̂i and si are given in Example 4.3. Thus p-values for the

hypothesis: K0 : θ ≥ 0 vs Ka : θ < 0 based on each individual study can be calculated by:

> # keep original data set in ulcer.o

> ulcer.o <- as.matrix(ulcer)

> # impute 0.5

> ulcer <- ifelse(ulcer.o == 0, 0.5, ulcer.o)

> # summary statistics

> ulcer.theta <- log( (ulcer[,1]*ulcer[,4]) / (ulcer[,2]*ulcer[,3]) )

> ulcer.sigma <- sqrt(1/ulcer[,1] + 1/ulcer[,2] + 1/ulcer[,3] + 1/ulcer[,4])

> # p-values from individual studies for K0: LOR >=0 vs. Ka: LOR < 0

> ulcer.pvalues <- 1 - pnorm(0, mean=ulcer.theta, sd=ulcer.sigma)

> ulcer.pvalues

[1] 2.364514e-02 3.204119e-01 7.170408e-01 7.631117e-01 9.045478e-01

[6] 1.435593e-01 2.786246e-02 2.963888e-04 2.499260e-01 1.713687e-03

[11] 3.850228e-02 3.061835e-02 8.296315e-01 8.454856e-01 3.066366e-02

[16] 1.417192e-01 6.571353e-03 7.575993e-02 3.877901e-03 1.602023e-02

[21] 2.165047e-04 8.145715e-01 6.764660e-01 2.568914e-01 8.483522e-03

[26] 1.027274e-01 4.056633e-01 1.735560e-03 1.929439e-02 1.113040e-02

[31] 8.729020e-03 5.737073e-02 1.024082e-01 5.638801e-02 7.908861e-01

[36] 5.038550e-03 6.858163e-01 9.294398e-02 1.960676e-02 1.402044e-05
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[41] 6.108883e-01

Apply the Stouffer (Normal) method to combine these p-values, we have:

> # apply Stouffer (Normal) method

> gmo.pvl.normal = gmeta(ulcer.pvalues, gmi.type=’pvalue’, method=’normal’)

> # display results

> #gmo.pvl.normal

> #print(gmo.pvl.normal)

> summary(gmo.pvl.normal)

P-value combination through CD-Framework

Call:

gmeta.default(gmi = ulcer.pvalues, gmi.type = "pvalue", method = "normal")

Combine Method: normal

Combined p-value: 1.10779e-16

Individual p-values:

[1] 2.364514e-02 3.204119e-01 7.170408e-01 7.631117e-01 9.045478e-01

[6] 1.435593e-01 2.786246e-02 2.963888e-04 2.499260e-01 1.713687e-03

[11] 3.850228e-02 3.061835e-02 8.296315e-01 8.454856e-01 3.066366e-02

[16] 1.417192e-01 6.571353e-03 7.575993e-02 3.877901e-03 1.602023e-02

[21] 2.165047e-04 8.145715e-01 6.764660e-01 2.568914e-01 8.483522e-03

[26] 1.027274e-01 4.056633e-01 1.735560e-03 1.929439e-02 1.113040e-02

[31] 8.729020e-03 5.737073e-02 1.024082e-01 5.638801e-02 7.908861e-01
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[36] 5.038550e-03 6.858163e-01 9.294398e-02 1.960676e-02 1.402044e-05

[41] 6.108883e-01

The following code shows the results from all methods mentioned in Table 4.3.

## table of the result

> pvalue.combine.methods = c(’fisher’, ’stouffer’, ’tippet’, ’max’, ’sum’)

> combined.pvalue.vector = rep(NA,length(pvalue.combine.methods))

> for ( i in 1:length(pvalue.combine.methods) ) {

+ combined.pvalue.vector[i] <- gmeta(ulcer.pvalues, gmi.type=’pvalue’,

+ method=pvalue.combine.methods[i])$cmbd.pvalue

+ }

> mthds = ’method’

> pvlus = ’p-value’

> for ( i in 1:length(pvalue.combine.methods) ) {

+ mthds = paste(mthds, pvalue.combine.methods[i], sep=’\t\t& ’)

+ pvlus = paste(pvlus, combined.pvalue.vector[i], sep=’\t& ’)

> }

> cat(’\np-value combination result\n’, mthds, ’\n’, pvlus, ’\n’)

p-value combination result:

method & fisher & stouffer & tippet & max & sum

p-value & 2.1684e-19 & 1.1078e-16 & 5.7468e-04 & 1.6357e-02 & 4.8591e-09

The results show that the new treatment achieves significant reduction on the recurrence

bleeding events, since the combined p-value is significant at 5% level, no matter what

method used for the combination.
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4.4.2 Conventional Fixed-effect and Random-effects Meta-analysis

Let us consider the estimation of the log odds ratio θ under the following meta-analysis

models. In particular, the fixed-effect model:

θ̂i|(θ, si) ∼ N (θ, s2
i ), i = 1, . . . , k (4.16)

And, the random-effects model:

θ̂i|(θi, si) ∼ N (θi, s
2
i ), θi|(θ, τ) ∼ N (θ, τ2), i = 1, . . . , k (4.17)

where the fixed-effect model can be viewed as a special case of random-effects model by

taking τ2 = 0. Example 4.5 shows that these model-based meta-analysis can be unified

under the CD combining framework (see Section 3 of Xie et al., 2011, for more details).

The following code exemplifies of using gmeta() function to perform conventional

model-based meta-analysis. The argument method specifies the model assumptions,

e.g. method=‘fixed-mle’ for using fixed-effect model, and method=‘random-mm’ and

method=‘random-reml’ for using random-effects model with DL and REML estimator

for estimating heterogeneity, respectively. The argument linkfunc specifies the func-

tion a0(·). The default value is linkfunc=‘inverse-normal-cdf’ for a0(·) = Φ−1(·).

The other choice is linkfunc=‘inverse-laplace-cdf’ for a0(·) = DE−1(·), where

DE(t) = 1
2 exp(t)I{t ≤ 0} + (1 − 1

2 exp(−t))I{t > 0}. The argument weight specifies

the study-specific weights. The default value is NULL, where the weights will be assigned

depends on linkfunc. For example, if linkfunc=‘inverse-normal-cdf’ then inverse

standard deviation weights will be used for achieving Fisher efficiency, on the other hand,

if linkfunc=‘inverse-laplace-cdf’ then weights of all ones will be used for obtaining



122

Bahadur efficiency (Xie et al., 2011). Or else, the user can specify weight for each study

using a numeric vector.

The summary() function associated with the gmeta() output object presents a summary of

the results, including mean, median, standard deviation, lower and upper 95% confidence

interval (CI) boundary points derived from each individual CDs and the combined CD

function.

Example 4.7 (conventional fixed-effect meta-analysis) The simplest way to do the con-

ventional meta-analysis is using the summary statistics, means and standard deviations.

To save space, we delete the results of most individual CDs and focus on displaying the

results of the combined CDs.

> # use summary statistics

> ulcer.pdata <- cbind(ulcer.theta, ulcer.sigma)

> # default value linkfunc=’inverse-normal-cdf’ - Fisher efficiency

> gm1fp.mle <- gmeta(ulcer.pdata, method=’fixed-mle’,

+ gmo.xgrid=seq(-20,20,by=0.001))

> summary(gm1fp.mle)

Model-Based Meta-Analysis through CD-Framework

Call:

gmeta.default(gmi = ulcer.pdata, method = "fixed-mle", gmo.xgrid = seq(-20,

20, by = 0.001))

Summary of Combined CD:

mean median stddev ci.lower ci.upper
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Combined CD -0.8875844 -0.8875844 0.1255535 -1.133665 -0.6415031

Confidence level = 0.95

Summary of Individual CDs:

mean median stddev ci.lower ci.upper

study-01 -1.8382795 -1.8382795 0.9266964 -3.6545713 -0.02198789

[...]

study-41 0.5753641 0.5753641 2.0429418 -3.4287283 4.57945657

Confidence level = 0.95

>

> # using DE link for combining with default weight - Bahadur efficiency

> gm1fp.mle.DE <- gmeta(ulcer.pdata, method=’fixed-mle’,

+ linkfunc=’inverse-laplace-cdf’, gmo.xgrid=seq(-20,20,by=0.001))

> summary(gm1fp.mle.DE)

Model-Based Meta-Analysis through CD-Framework

Call:

gmeta.default(gmi = ulcer.pdata, method = "fixed-mle",

linkfunc = "inverse-laplace-cdf", gmo.xgrid = seq(-20, 20, by = 0.001))

Summary of Combined CD:

mean median stddev ci.lower ci.upper

Combined CD -1.063764 -1.064124 0.1061674 -1.271884 -0.8534409
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Confidence level = 0.95

Summary of Individual CDs:

mean median stddev ci.lower ci.upper

study-01 -1.8382795 -1.8382795 0.9266964 -3.6545713 -0.02198789

[...]

study-41 0.5753641 0.5753641 2.0429418 -3.4287283 4.57945657

Confidence level = 0.95

These results show that the new treatment is significantly better than the old treatment in

reducing recurrent bleeding rates, and match those presented in Xie et al. (2011).

Example 4.8 (conventional fixed-effect meta-analysis - cont.) In the previous examples,

we add 0.5 to the twelve entries of zero, in order to obtain meaningful sample estimates

θ̂i. Instead, we could exclude studies with zero event, if artificial continuity correction is

not preferred. Specifically, we can extract the summary statistics of studies with none zero

events and construct a data.frame ulcer.nzo.

> # exclude studies with zero event

> nzoidx <- c(1:4,7:10,12:24,26:27,30:33,35:39)

> ulcer.nzo <- ulcer[nzoidx,]

Specify the studies names through the rownames of the data frame, so that the indices in

study-index are corresponding to the indices in the original data set.

> # construct data.frame with summary statistics
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> ulcer.nzo.pdata <-

+ data.frame(mn=ulcer.theta[nzoidx],sd=ulcer.sigma[nzoidx])

> # specify row name of the data.frame so that it matches original data set

> rownames(ulcer.nzo.pdata) <- paste(’study-’,

+ formatC(nzoidx,width=2,format=’d’,flag=’0’), sep=’’)

Use gmeta() function to perform the fixed-effect model-based meta-analysis.

> gm1fp.nzo.mle <- gmeta(ulcer.nzo.pdata, method=’fixed-mle’,

+ gmo.xgrid=seq(-20,20,by=0.001))

The results are similar as the previous results, where studies with zero event were included

by continuity corrections. Here, the absolute value of estimated LOR is smaller, −0.7970

versus −0.8876, partially due to the exclusion of study-40, which is strongly in favor of

the new treatment.

> summary(gm1fp.nzo.mle)

Model-Based Meta-Analysis through CD-Framework

Call:

gmeta.default(gmi = ulcer.nzo.pdata, method = "fixed-mle",

gmo.xgrid = seq(-20, 20, by = 0.001))

Summary of Combined CD:

mean median stddev ci.lower ci.upper

Combined CD -0.7969914 -0.7969914 0.1287665 -1.04937 -0.544613
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Confidence level = 0.95

Summary of Individual CDs:

mean median stddev ci.lower ci.upper

study-01 -1.8382795 -1.8382795 0.9266964 -3.6545713 -0.02198789

study-02 -0.3184537 -0.3184537 0.6825753 -1.6562771 1.01936968

study-03 0.4111958 0.4111958 0.7162780 -0.9926836 1.81507498

study-04 0.4881568 0.4881568 0.6814521 -0.8474651 1.82377861

study-07 -1.3457091 -1.3457091 0.7033884 -2.7243253 0.03290697

study-08 -4.1743873 -4.1743873 1.2152872 -6.5563067 -1.79246785

study-09 -0.5371429 -0.5371429 0.7960944 -2.0974595 1.02317352

[...]

study-39 -1.1050848 -1.1050848 0.5359444 -2.1555170 -0.05465263

Confidence level = 0.95

Further, in this case, we can construct exact individual CDs using significance functions,

as shown in Example 4.4. The gmeta() function can take (exact) CDs as input, instead of

summary statistics, which implicitly assumes normality. Here, we must explicitly specify

gmi.type=‘cd’ since the default value is gmi.type=‘pivot’, i.e., the summary statis-

tics, means and standard deviations. Also, we specify the study names by the argument

study.names, so that they match with the original data set.

> # use a list of (exact) CDs as input

> # construct CD for each individual study

> ulcer.nzo.cdata <- list()
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> idx = 1

> for (i in nzoidx) {

+ # CD function based on Fisher Exact Test

+ cdi.exact.func <- function(theta) {

+ 1 - pFNCHypergeo(ulcer[i,1], ulcer[i,1]+ulcer[i,2],

+ ulcer[i,3]+ulcer[i,4], ulcer[i,1]+ulcer[i,3], theta) +

+ + dFNCHypergeo(ulcer[i,1], ulcer[i,1]+ulcer[i,2],

+ ulcer[i,3]+ulcer[i,4], ulcer[i,1]+ulcer[i,3], theta) / 2

+ }

+ # CD evaluated at gridding points

+ li <- ulcer.theta[i] - 4*ulcer.sigma[i]

+ ui <- ulcer.theta[i] + 4*ulcer.sigma[i]

+ xi = seq(from=li, to=ui, by=0.001)

+ cdi.exact <- sapply(exp(xi), cdi.exact.func)

+ # a list of CD and correspoding gridding points

+ ulcer.nzo.cdata[[idx]] = cbind(xi, cdi.exact)

+ idx = idx + 1

+ }

> # combine individual CDs to obtain a combined CD function

> gm1fc.nzo.mle <- gmeta(ulcer.nzo.cdata, gmi.type=’cd’, method=’fixed-mle’,

+ gmo.xgrid=seq(-10,10,by=0.001), study.names=paste(’study-’,

+ formatC(nzoidx,width=2,format=’d’,flag=’0’), sep=’’))

> # summary of the result (mean, median, stddev, lower95CI, upper95CI)

> summary(gm1fc.nzo.mle)

Model-Based Meta-Analysis through CD-Framework
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Call:

gmeta.default(gmi = ulcer.nzo.cdata, gmi.type = "cd", method = "fixed-mle",

study.names = paste("study-", formatC(nzoidx, width = 2,

format = "d", flag = "0"), sep = ""), gmo.xgrid = seq(-10,

10, by = 0.001))

Summary of Combined CD:

mean median stddev ci.lower ci.upper

Combined CD -0.7897418 -0.7892671 0.1266928 -1.039529 -0.5426535

Confidence level = 0.95

Summary of Individual CDs:

mean median stddev ci.lower ci.upper

study-01 -1.7860442 -1.7301555 0.9660527 -3.9254255 -0.009779846

study-02 -0.3097563 -0.3070509 0.6981395 -1.6941752 1.058931405

study-03 0.4070910 0.3989053 0.7393358 -1.0529698 1.918549161

study-04 0.4839813 0.4674239 0.7003865 -0.8668185 1.937976104

study-07 -1.3162494 -1.2943594 0.7204508 -2.8145085 0.048953619

study-08 -4.0217210 -3.8706791 1.2837491 -7.2912533 -1.839365752

study-09 -0.5292889 -0.5028864 0.8240183 -2.2653177 1.039309378

[...]

study-39 -1.0912408 -1.0808067 0.5439268 -2.1979966 -0.046737430

Confidence level = 0.95
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The plot function associated with the gmeta() output objects provides an extended forest

plot, for graphically illustrating the individual and combined CDs. The argument studies

specifies the indices of individual studies to show on the plot, e.g., studies=[vector

of indices of individual studies for plotting]. The default value is NULL, which

shows only the combined CD. The argument plot.option specifies the form of CD

for plotting, the default value is ‘confidence-density’, other available choices are

‘confidence-curve’ or ‘cv’, and ‘confidence-distribution’ or ‘cdf’. For each CD,

the median is marked by open circle, and the lower and upper 95%CI bounds are marked by

[ and ], respectively, on the line below the CDs. The individual and combines CDs from

summary statistics and exact CDs are shown in Figure 4.2.

> # plot the individual CDs and the combined CD (extended forest plot)

> # compare the exact CDs and asymptotic normal CDs used for combination

> postscript(file=’ulcer-plot1-extended-forest-plot.eps’,

+ paper="special", width=14, height=11, horizontal=FALSE)

> par(mfrow=c(1,2), mar=c(2,2,2,2)+0.1, mgp=c(2,1,0), oma=c(3,0,4,0))

> # left sub-figure, CDs based on asymptotic normality.

> plot(gm1fp.nzo.mle, studies=c(5,6,8,16,17), xlim=c(-10,5))

> title("Extended Forest Plot - Confidence Densities

+ From Asymptotic Normality")

> # right sub-figure, exact CDs based on Fisher Exact Test.

> plot(gm1fc.nzo.mle, studies=c(5,6,8,16,17), xlim=c(-10,5),

+ plot.option=’confidence-density’) # default is ’confidence-density’.

> title("Extended Forest Plot - Confidence Densities

+ From Significance Functions")

> # overall title
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> mtext("Compare Individual CDs Based on Asymptotic Normality

+ and Significance Functions for Fixed-effect Meta-analysis",

+ NORTH<-3, line=0, adj=0.5, cex=1.2, col="black", outer=TRUE)

> dev.off()
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Individual and Combined CDs Based on Asymptotic Normality and Significance Functions for Fixed−effect Meta−analysis

Figure 4.2: Individual and combined CDs based on asymptotic normality and significance
functions for fixed-effect meta-analysis.

The results of using exact CDs as input are very close to the previous ones of using summary

statistics, the estimated LOR is −0.7897 versus −0.7970. However, Figure 4.2 shows that
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the exact individual CDs are skewed whereas the normal individual CDs based on summary

statistics are symmetric. For example, study-08 and study-10. Thus, only the exact CDs

are able to pass the skewness from individual studies to the combined CD.

The CD-based meta-analysis framework also incorporates Bayesian methods by viewing the

prior distribution as a CD function. In Example 4.9, we suppose that prior information

does not show the new treatment is superior than the old treatment, e.g., the prior is given

by N (0, 0.01). This prior can be viewed as a CD and included in meta-analysis.

Example 4.9 (Bayesian meta-analysis) To incorporate the prior information in meta-

analysis, simply put it in the data.frame as a separate row. We use the ulcer data set with

0.5 continuity correction for studies with zero event. The results is closer to zero as a result

of incorporating the evidence in prior distribution.

> # prior information in the first row of the data frame

> ulcer.pdata.bayesian <- rbind(c(0,sqrt(0.01)), ulcer.pdata)

> study.names.bayesian <- c(’prior’, paste(’study-’,

+ formatC(c(1:41),width=2,format=’d’,flag=’0’), sep=’’))

> # bayesian meta-analysis, prior N(0,0.01).

> gm1fp.bayesian <- gmeta(ulcer.pdata.bayesian, method=’fixed-mle’,

+ gmo.xgrid=seq(-20,20,by=0.001), study.names=study.names.bayesian)

> summary(gm1fp.bayesian)

Model-Based Meta-Analysis through CD-Framework

Call:

gmeta.default(gmi = ulcer.pdata.bayesian, method = "fixed-mle",

study.names = study.names.bayesian, gmo.xgrid = seq(-20,
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20, by = 0.001))

Summary of Combined CD:

mean median stddev ci.lower ci.upper

Combined CD -0.3445117 -0.3445117 0.07822237 -0.4978241 -0.1911991

Confidence level = 0.95

Summary of Individual CDs:

mean median stddev ci.lower ci.upper

prior 0.0000000 0.0000000 0.1000000 -0.1959964 0.19599643

study-01 -1.8382795 -1.8382795 0.9266964 -3.6545713 -0.02198789

[...]

study-40 -8.4390154 -8.4390154 2.0146522 -12.3876613 -4.49036952

study-41 0.5753641 0.5753641 2.0429418 -3.4287283 4.57945657

Confidence level = 0.95

Figure 4.3 plots the combined CD based on fixed-effect model and the Bayesian method.

For Bayesian method, the combined CD is pulled closer to zero by the evidence in prior

distribution (prior CD).

plot to show prior information pull the combined CD to zero

> postscript(file=’ulcer-plot2-fix-mle-bayesian-plot.eps’,

+ paper="special", width=14, height=11, horizontal=FALSE)

> par(mfrow=c(1,1), mar=c(2,2,2,2)+0.1, mgp=c(2,1,0), oma=c(1,0,1,0))

> plot(0,0, type=’n’, xlim=c(-3,2), ylim=c(0,5.5),
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+ xlab=expression(theta), ylab=’confidence density’)

> lines(gm1fp.mle$x.grids, gm1fp.mle$combined.density, lty=1, lwd=2)

> lines(gm1fp.mle.DE$x.grids, gm1fp.mle.DE$combined.density, lty=2, lwd=2)

> lines(gm1fp.bayesian$x.grids, gm1fp.bayesian$combined.density, lty=3, lwd=2)

> title(’Bayesian Meta-analysis through CD-based Meta-analysis Framework’)

> legend(x=0.5, y=4, legend=c("fixed-mle with Normal", "fixed-mle with DE",

+ "Bayesian method"), lty=c(1,2,3), lwd=c(2,2,2), seg.len=4, bty=’n’)

> dev.off()

null device

1

The fixed-effect model assumes θi = θ, which is too restrictive in practice. Instead, the

random-effects model assumes θi ∼ N (θ, τ2), and allows heterogeneity among study-specific

means. The following example uses gmeta() function to perform random-effects model-

based meta-analysis.

Example 4.10 (conventional random-effect model) The random-effects meta-analysis can

be performed by specifying argument method=‘random-mm’ where τ2 is estimated by mo-

ment estimator (DL method), or method=‘random-reml’ where τ2 is estimated by REML

estimator. The results are close to each other, are similar as those obtained by fixed-effect

model, and match the results presented by Xie et al. (2011).

> # random-effects meta-analysis, DL estimator for tau2

> gm1rp.mm <- gmeta(ulcer.pdata, method=’random-mm’,

+ gmo.xgrid=seq(-20,20,by=0.001))

> summary(gm1rp.mm)
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Figure 4.3: The meta-analysis results from fixed-effect model and Bayesian method. The
solid, dashed and dotted curves are the combined CD densities based upon fixed-effect
model with a0(·) = Φ−1(·) and a0(·) = DE−1(·), and Bayesian method, respectively. For
Bayesian method, the combined CD is pulled closer to zero by the evidence in prior distri-
bution (prior CD).

Model-Based Meta-Analysis through CD-Framework

Call:

gmeta.default(gmi = ulcer.pdata, method = "random-mm", gmo.xgrid = seq(-20,

20, by = 0.001))

Summary of Combined CD:
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mean median stddev ci.lower ci.upper

Combined CD -1.097574 -1.097574 0.2103224 -1.509798 -0.6853496

Confidence level = 0.95

Summary of Individual CDs:

mean median stddev ci.lower ci.upper

study-01 -1.8382795 -1.8382795 0.9266964 -4.474761 0.79820226

[...]

study-41 0.5753641 0.5753641 2.0429418 -3.861400 5.01212827

Confidence level = 0.95

> # random-effects meta-analysis, REML estimator for tau2

> gm1rp.reml <- gmeta(ulcer.pdata, method=’random-reml’,

+ gmo.xgrid=seq(-20,20,by=0.001))

> summary(gm1rp.reml)

Model-Based Meta-Analysis through CD-Framework

Call:

gmeta.default(gmi = ulcer.pdata, method = "random-reml", gmo.xgrid = seq(-20,

20, by = 0.001))

Summary of Combined CD:

mean median stddev ci.lower ci.upper

Combined CD -1.091384 -1.091384 0.2069317 -1.496963 -0.6858053
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Confidence level = 0.95

Summary of Individual CDs:

mean median stddev ci.lower ci.upper

study-01 -1.8382795 -1.8382795 0.9266964 -4.436960 0.76040118

[...]

study-41 0.5753641 0.5753641 2.0429418 -3.839042 4.98977023

Confidence level = 0.95

The gmeta package handles the random-effects model with more versatility. For exam-

ple, we can use method=‘random-tau2’ and assign a user-specified τ2 by tau2=[value

of tau2]. We can also use method=‘random-tau2’ and choose an implemented meth-

ods for estimating τ2 using tau2=[method to estimate tau2]. The available methods

include ‘DL’, ‘EB’, ‘HE’, ‘HS’, ‘ML’, ‘SJ’, ‘REML’, represents for DerSimonian-

Laird method (DerSimonian and Laird, 1986), Empirical-Bayesian method (Morris, 1983),

Hedges method (Hedges, 1983), Hunter-Schmidt method (Hunter and Schmidt, 2004),

Maximum-Likelihood estimates, Sidik-Jonkman method (Sidik and Jonkman, 2005a,b), and

Restricted Maximum-Likelihood estimates, respectively.

> # use user-specified tau2

> gm1rp.tau2 <- gmeta(ulcer.pdata, method=’random-tau2’,

+ gmo.xgrid=seq(-20,20,by=0.001), tau2=1.00)

> # use implemented method for estimating tau2

> gm1rp.tau2HS <- gmeta(ulcer.pdata, method=’random-tau2’,

+ gmo.xgrid=seq(-20,20,by=0.001), tau2=’HE’)
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# compare the estimation on tau2

> round(gm1rp.reml$tau2,4)

[1] 0.8992

> round(gm1rp.tau2HS$tau2,4)

[1] 2.4173

Figure 4.4 plots the combined CD densities based on fixed-effect model, and random-effects

model with DL and REML estimates on τ2. For random-effects models, the combined CDs

are more dispersed.

4.4.3 Robust Meta-analysis Methods

The CD combining framework also develops robust meta-analysis methods that provide a

means of protection to model misspecification, and limit the impact of outlying studies.

These methods are developed uniquely under the CD-based meta-analysis framework, by

taking the advantage of using different linkfunc, a0(·) when specifying the g(c)(·) function

in (4.10).

In particular, the method robust1 is developed under fixed-effect model for a set of large

studies. Assume a set of k studies with sample sizes n1, . . . , nk, where ni goes to infinity

at the same rate n. Let us consider the following model as an extension of conventional

fixed-effect model in (4.16) (Xie et al., 2011) :

θ̂i|(θi, si) ∼ N (θi, s
2
i ), sample size ni ∝ 1/s2

i

θ ≡ median(θi, i = 1, . . . , k), I = {i : θi = θ}, |I| > [k/2]
(4.18)
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Figure 4.4: The meta-analysis results from fixed-effect and random-effects models. The
solid, dashed and dotted curves are the combined CD densities based upon fixed-effect
model, random-effects model with DL estimate on heterogeneity, and random-effects model
with REML estimate on heterogeneity, respectively. For random-effects models, the com-
bined CDs are more dispersed.

where [·] is the function for rounding to integers. Here, the parameter θ is the true param-

eter value of the majority of the studies, i.e., a small fraction of the studies are outlying

studies with different true parameter value.

The key idea of robust1 method is down-weighting the studies far apart the majorities

by using adaptive weights, and use the median combined CDs H
(c)
R1,median(θ), or simply

H
(c)
R1 (θ), for making inference on θ. Specifically, it can be shown that θ̂

(c)
R1 = H

(c)
R1

−1
(1/2) is

a consistent and an asymptotic efficient estimator (as if I is known) for θ, as n→∞ (Xie
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et al., 2011).

The estimates based on robust1 method is not consistent under the random-effects model,

even as k →∞. Therefore, robust2 method is developed under random-effects model for

producing consistent estimates of θ given a large number of k studies, where the study-

specific parameter values come from a contaminated distribution. Let us consider the

following model as an extension of conventional random-effects model in (4.17) (Huber,

1964; Xie et al., 2011):

θ̂i|(θi, si) ∼ N (θi, s
2
i ) and θi|(θ, τ) ∼ (1− ε)N (θ, τ2) + εDε(θ), i = 1, . . . , k, (4.19)

where Dε(·) is some unknown contaminating population. If ε ≡ 0, model (4.19) degenerates

to the conventional random-effects model (4.17). If not, it implies that the parameter value

of some studies comes from contaminated distribution Dε(·), which is not appropriately

accounted in the conventional random-effects model.

Let θ0 and θ∗ be the population mean of the target distribution N (θ, τ2) and the con-

taminated distribution (1 − ε)N (θ, τ2) + εDε(θ), respectively. Then, θ∗ = θ0 if ε = 0

or Dε(·) is symmetric around θ0. The robust2 method is in essential equivalent to

solve an M-estimating equation
∑k

i=1wi{Hi(θ) − 1/2} = 0. It takes a0(t) = t and thus

g(c)(u1, . . . , uk) =
∑k

i=1wiui, which leads to the combined aCD function, HR2(θ). Specif-

ically, it can be shown that θ̂
(c)
R2 = H

(c)
R2

−1
(1/2) is a consistent estimator of θ∗ as k → ∞.

Further, in the case of no contamination, the asymptotic relative efficiency of H
(c)
R2 (·) com-

pared to the Fisher efficient CD H(c)(·) in (4.13) is
√

3/π = 0.9972 as k →∞ and sample

sizes n→∞, assuming all ni goes to infinity at the same rate n (Xie et al., 2011).

In practice, the performance of robust1 and robust2 are relative close to each

other. The gmeta() function can perform these robust meta-analysis by choosing
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method=‘fixed-robust1’, method=‘fixed-robust2’, method=‘random-robust1’, or

method=‘random-robust2’, as illustrated in the following example.

Example 4.11 (robust meta-analysis methods) Apply the robust meta-analysis on the ul-

cer data set, we obtain similar results as the conventional fixed-effect and random-effects

meta-analysis obtained in the previous examples. This implies that the data in the original

data set are consistent to each other, and no outlying study exists.

# robust meta-analysis methods

> gm1fp.robust1 <- gmeta(ulcer.pdata, method=’fixed-robust1’,

+ gmo.xgrid=seq(-20,20,by=0.001))

> summary(gm1fp.robust1)

Model-Based Meta-Analysis through CD-Framework

Call:

gmeta.default(gmi = ulcer.pdata, method = "fixed-robust1",

gmo.xgrid = seq(-20, 20, by = 0.001))

Summary of Combined CD:

mean median stddev ci.lower ci.upper

Combined CD -1.179134 -1.179134 0.1467666 -1.466792 -0.8914757

Confidence level = 0.95

Summary of Individual CDs:

mean median stddev ci.lower ci.upper
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study-01 -1.8382795 -1.8382795 0.9266964 -3.6545713 -0.02198789

[...]

study-41 0.5753641 0.5753641 2.0429418 -3.4287283 4.57945657

Confidence level = 0.95

>

> gm1rp.robust2 <- gmeta(ulcer.pdata, method=’random-robust2’,

+ gmo.xgrid=seq(-20,20,by=0.001))

> summary(gm1rp.robust2)

Model-Based Meta-Analysis through CD-Framework

Call:

gmeta.default(gmi = ulcer.pdata, method = "random-robust2",

gmo.xgrid = seq(-20, 20, by = 0.001))

Summary of Combined CD:

mean median stddev ci.lower ci.upper

Combined CD -1.073812 -1.072808 0.2170723 -1.505937 -0.647466

Confidence level = 0.95

Summary of Individual CDs:

mean median stddev ci.lower ci.upper

study-01 -1.8382795 -1.8382795 0.9266964 -4.436960 0.76040118

[...]

study-41 0.5753641 0.5753641 2.0429418 -3.839042 4.98977023
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Confidence level = 0.95

Figure 4.5 plots the combined CDs densities based on conventional and robust methods.

It is obvious that the combined CDs from robust methods are slightly wider and thus less

efficient than the corresponding ones from conventional methods, which is the trade off for

robustness.

To demonstrate the robustness property, we construct a contaminated data set by artifi-

cially creating some outlying studies. In particular, six studies (study-05,13,14,22,35,41)

have θ̂i > 0.5, which are in favor of the old treatment and contradict to the overall conclu-

sion. We make the situation even worse by multiplying these θ̂is by a factor of 10. As a

result, these six studies are “outlying” studies far apart from the majorities.

> # construct a contaminated data set

> ulcer.pdata.cntm <- cbind(

+ ifelse(ulcer.theta>0.5, 10*ulcer.theta, ulcer.theta), ulcer.sigma)

Example 4.12 (robust meta-analysis method - continued) Apply the conventional and ro-

bust methods to the original and contaminated data set.

> # fixed-effect meta-analysis on original data set

> gm1fp.mle <- gmeta(ulcer.pdata, method=’fixed-mle’,

+ gmo.xgrid=seq(-20,20,by=0.001))

> gm1fp.robust1 <- gmeta(ulcer.pdata, method=’fixed-robust1’,

+ gmo.xgrid=seq(-20,20,by=0.001))

> gm1fp.robust2 <- gmeta(ulcer.pdata, method=’fixed-robust2’,
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Figure 4.5: The meta-analysis results from conventional and robust fixed-effect and
random-effects models. The top figure plots the combined CDs densities based on fixed-
effect model, where the solid and dashed curves draw the results from conventional and
robust methods, respectively. The bottom figure plots the combined CDs densities based
on random-effects model, where the solid and dashed curves draw the results from con-
ventional and robust methods, respectively. The combined CDs from robust methods are
slightly wider and thus less efficient than the corresponding ones from conventional meth-
ods, which is the trade off for robustness.

+ gmo.xgrid=seq(-20,20,by=0.001))

>

> # fixed-effect meta-analysis on contaminated data set

> gm2fp.mle <- gmeta(ulcer.pdata.cntm, method=’fixed-mle’,

+ gmo.xgrid=seq(-20,20,by=0.001))
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> gm2fp.robust1 <- gmeta(ulcer.pdata.cntm, method=’fixed-robust1’,

+ gmo.xgrid=seq(-20,20,by=0.001))

> gm2fp.robust2 <- gmeta(ulcer.pdata.cntm, method=’fixed-robust2’,

+ gmo.xgrid=seq(-20,20,by=0.001))

>

> # random-effect meta-analysis on original data set

> gm1rp.reml <- gmeta(ulcer.pdata, method=’random-tau2’,

+ gmo.xgrid=seq(-20,20,by=0.001), tau2=tau2REML)

> # user-specified tau2

> tau2REML <- gm1rp.reml$tau2

> gm1rp.robust1 <- gmeta(ulcer.pdata, method=’random-robust1’,

+ gmo.xgrid=seq(-20,20,by=0.001), tau2=tau2REML)

> gm1rp.robust2 <- gmeta(ulcer.pdata, method=’random-robust2’,

+ gmo.xgrid=seq(-20,20,by=0.001), tau2=tau2REML)

>

> # random-effect meta-analysis on contaminated data set

> gm2rp.reml <- gmeta(ulcer.pdata.cntm, method=’random-tau2’,

+ gmo.xgrid=seq(-20,20,by=0.001), tau2=tau2REML)

> gm2rp.robust1 <- gmeta(ulcer.pdata.cntm, method=’random-robust1’,

+ gmo.xgrid=seq(-20,20,by=0.001), tau2=tau2REML)

> gm2rp.robust2 <- gmeta(ulcer.pdata.cntm, method=’random-robust2’,

+ gmo.xgrid=seq(-20,20,by=0.001), tau2=tau2REML)

The results of the conventional fixed-effect or random-effects meta-analysis methods are

significantly influenced by the outlying studies in the contaminated data set. For example,

the estimate of θ and its associated 95%CI, based on random-effects model, moves from
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−1.0914(−1.4970,−0.6858) to −0.0985(−0.5041, 0.3071). Thus, the superiority conclusion

for the new treatment is no longer valid. The fixed-effect model provides similar results.

> summary(gm1rp.reml)

Model-Based Meta-Analysis through CD-Framework

Call:

gmeta.default(gmi = ulcer.pdata, method = "random-tau2",

gmo.xgrid = seq(-20, 20, by = 0.001), tau2 = tau2REML)

Summary of Combined CD:

mean median stddev ci.lower ci.upper

Combined CD -1.091384 -1.091384 0.2069317 -1.496963 -0.6858053

Confidence level = 0.95

Summary of Individual CDs:

mean median stddev ci.lower ci.upper

study-01 -1.8382795 -1.8382795 0.9266964 -4.436960 0.76040118

[...]

study-41 0.5753641 0.5753641 2.0429418 -3.839042 4.98977023

Confidence level = 0.95

>

> summary(gm2rp.reml)

Model-Based Meta-Analysis through CD-Framework
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Call:

gmeta.default(gmi = ulcer.pdata.cntm, method = "random-tau2",

gmo.xgrid = seq(-20, 20, by = 0.001), tau2 = tau2REML)

Summary of Combined CD:

mean median stddev ci.lower ci.upper

Combined CD -0.09849573 -0.09849573 0.2069316 -0.5040743 0.3070829

Confidence level = 0.95

Summary of Individual CDs:

mean median stddev ci.lower ci.upper

study-01 -1.8382795 -1.8382795 0.9266964 -4.436960 0.76040118

[...]

study-41 5.7536414 5.7536414 2.0429418 1.339235 10.16804747

Confidence level = 0.95

On the other hand, the robust methods resist to the impact of outlying studies. For exam-

ple, the random-robust2 method obtains −1.0738(−1.5059,−0.6475) when applying to the

original data set, and −1.0096(−1.4987,−0.5086) when applying to the contaminated data

set. The other methods, fixed-robust1, fixed-robust2, and random-robust1 all give

similar results as the random-robust2 method.

> summary(gm1rp.robust2)
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Model-Based Meta-Analysis through CD-Framework

Call:

gmeta.default(gmi = ulcer.pdata, method = "random-robust2",

gmo.xgrid = seq(-20, 20, by = 0.001), tau2 = tau2REML)

Summary of Combined CD:

mean median stddev ci.lower ci.upper

Combined CD -1.073812 -1.072808 0.2170723 -1.505937 -0.647466

Confidence level = 0.95

Summary of Individual CDs:

mean median stddev ci.lower ci.upper

study-01 -1.8382795 -1.8382795 0.9266964 -4.436960 0.76040118

[...]

study-41 0.5753641 0.5753641 2.0429418 -3.839042 4.98977023

Confidence level = 0.95

>

> summary(gm2rp.robust2)

Model-Based Meta-Analysis through CD-Framework

Call:

gmeta.default(gmi = ulcer.pdata.cntm, method = "random-robust2",

gmo.xgrid = seq(-20, 20, by = 0.001), tau2 = tau2REML)
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Summary of Combined CD:

mean median stddev ci.lower ci.upper

Combined CD -1.009601 -1.011652 0.2489081 -1.498723 -0.5086346

Confidence level = 0.95

Summary of Individual CDs:

mean median stddev ci.lower ci.upper

study-01 -1.8382795 -1.8382795 0.9266964 -4.436960 0.76040118

[...]

study-41 5.7536414 5.7536414 2.0429418 1.339235 10.16804747

Confidence level = 0.95

Figure 4.6 plots results from all methods on both original data set and contaminated data

set. The top three figures plot the results of fixed-effect methods. In particular, part (a)

plots the results of fixed-mle method, where the solid and dashed curves are combined CD

densities using the original and contaminated data set, respectively. It is obvious that the

results are impacted by the outlying studies, and the combined CD is pulled closer to zero

significantly when applying to the contaminated data set. Further, part (b) and (c) plot

the results of fixed-robust1 and fixed-robust2 methods. The combined CDs using the

original and contaminated data set are drawn by solid and dashed curves, and are close

to each other. Thus, the robust methods limit the impact of outlying studies. Likewise,

part (d), (e), (f) plot the results of random-reml, random-robust1, and random-robust2

methods. The solid and dashed curves are combined CD densities using the original and
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contaminated data set, respectively. Once again, the conventional meta-analysis method

results are undermined by the outlying studies, whereas the robust meta-analysis methods

results are not.

4.4.4 Meta-analysis of 2x2 Tables

The CD combining framework includes the Mantel-Haenszel and Peto’s method for 2x2

tables as a special case (Yang et al., 2012b). As a consequence, the gmeta() function can

also perform meta-analysis on 2x2 tables using Mantel-Haenszel or Peto’s method. Let us

consider a set of k studies, where the results of each study are reported as 2x2 table in

Table 4.1. Assume

Xi ∼ Binomial(ni, p1), Yi ∼ Binomial(mi, p2), i = 1, . . . , k. (4.20)

Then, the Mantel-Haenszel method provides an overall estimate on odd ratio (OR), Ψ =

p1/(1− p1)

p2/(1− p2)
, and the Peto’s method provides an overall estimate on LOR, θ = log(Ψ).

Example 4.13 (meta-analysis of 2x2 tables - Mantel-Haenszel and Peto’s method) To

use gmeta() function for meta-analysis of 2x2 tables, the input must be organized as a

4× k data.frame or matrix. In particular, each row of the data.frame or matrix represents

outcomes from a single study, in the order of (Xi, ni, Yi,mi), following the notation in

Table 4.1.

> ulcer.2x2dt <- cbind(ulcer.o[,1], ulcer.o[,1]+ulcer.o[,2],

+ ulcer.o[,3], ulcer.o[,3]+ulcer.o[,4])

The type of input must be specified as 2x2 table using gmi.type=‘2x2’. The Mantel-

Haenszel method can be called using method=‘Mantel-Haenszel’ or method=‘MH’, and
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Figure 4.6: The meta-analysis results from conventional and robust meta-analysis methods.
The top three figures plot the results of fixed-effect methods. In particular, part (a) plots
the results of fixed-mle method, where the solid and dashed curves are combined CD
densities using the original and contaminated data set. It is obvious that the results are
impact by the outlying studies, and the combined CD is pulled closer to zero significantly
when applying on the contaminated data set. Further, part (b) and (c) plot the results of
fixed-robust1 and fixed-robust2 methods. The combined CD using the original and
contaminated data set are drawn by solid and dashed curves, and are close to each other.
Thus, the robust methods limit the impact of outlying studies. Likewise, part (d), (e), (f)
plot the results of random-reml, random-robust1, and random-robust2 methods. The
solid and dashed curves are combined CD densities using the original and contaminated
data set, respectively. Once again, the conventional meta-analysis method results are
undermined by the outlying studies, whereas the robust meta-analysis methods results are
not.
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the Peto’s method can be invoked using method=‘Peto’.

> # Mantel-Haenszel’s odds ratio meta-analysis on 2x2 table

> gm1dt.MH <- gmeta(ulcer.2x2dt, gmi.type=’2x2’, method=’MH’,

+ gmo.xgrid=seq(-20,20,by=0.001))

> summary(gm1dt.MH)

Exact Meta-Analysis Approach through CD-Framework

Call:

gmeta.default(gmi = ulcer.2x2dt, gmi.type = "2x2", method = "MH",

gmo.xgrid = seq(-20, 20, by = 0.001))

Summary of Combined CD:

mean median stddev ci.lower ci.upper

Combined CD 0.3370037 0.3370037 0.03746689 0.26357 0.4104375

Confidence level = 0.95

Summary of Individual CDs:

mean median stddev ci.lower ci.upper

study-01 0.15909091 0.15909091 0.14742897 -0.129864570 0.44804639

study-02 0.72727273 0.72727273 0.49641843 -0.245689511 1.70023497

[...]

study-05 Inf Inf Inf NaN Inf

study-06 0.00000000 0.00000000 NaN NaN NaN

[...]
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study-11 0.00000000 0.00000000 NaN NaN NaN

[...]

study-25 0.00000000 0.00000000 NaN NaN NaN

[...]

study-28 0.00000000 0.00000000 NaN NaN NaN

study-29 0.00000000 0.00000000 NaN NaN NaN

[...]

study-34 0.00000000 0.00000000 NaN NaN NaN

[...]

study-40 0.00000000 0.00000000 NaN NaN NaN

study-41 NaN NaN NaN NaN NaN

Confidence level = 0.95

> # on log odds ratio scale

> log(c(gm1dt.MH$combined.mean,gm1dt.MH$combined.ci))

[1] -1.0876612 -1.3334363 -0.8905316

>

> # Peto’s log odds ratio meta-analysis on 2x2 table

> gm1dt.Pt <- gmeta(ulcer.2x2dt, gmi.type=’2x2’, method=’Peto’,

+ gmo.xgrid=seq(-20,20,by=0.001))

> summary(gm1dt.Pt)

Exact Meta-Analysis Approach through CD-Framework

Call:

gmeta.default(gmi = ulcer.2x2dt, gmi.type = "2x2", method = "Peto",

gmo.xgrid = seq(-20, 20, by = 0.001))
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Summary of Combined CD:

mean median stddev ci.lower ci.upper

Combined CD -1.132064 -1.132064 0.1093015 -1.346291 -0.9178366

Confidence level = 0.95

Summary of Individual CDs:

mean median stddev ci.lower ci.upper

study-01 -1.5938462 -1.5938462 0.7765803 -3.1159155 -0.07177678

study-02 -0.3090374 -0.3090374 0.6713267 -1.6248135 1.00673875

[...]

study-40 -3.9411765 -3.9411765 0.4814913 -4.8848822 -2.99747079

study-41 NaN NaN Inf NaN NaN

Confidence level = 0.95

The results are similar as the results of fixed-effect and random-effects model-based meta-

analysis. The Inf and NaN reflect the uncertainty introduced by the zeros – it is impossible

to evaluate how extreme the OR or LOR will be on one or two sides when studies have zero

event.

The Mantel-Haenszel and Peto’s method can perform meta-analysis on 2x2 tables and

handle studies with zero event without continuity corrections. However, both methods are

based on large sample theory, such as the asymptotic normality of the sample distribution

of the summary statistics OR or LOR. Thus, both methods fail when the studies sample
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sizes are small. Further, studies with zero-zero event, e.g. study-41 in ulcer data set, do not

contribute to the estimation in Mantel-Haenszel method at all. Thus, the method in essen-

tial excludes those studies. Such approach often lead to bias and loss of efficiency (Nissen

and Wolski, 2007; Tian et al., 2009; Liu et al., 2013).

To use all information without assuming asymptotic normality and without artificial conti-

nuity corrections, an exact meta-analysis method, developed uniquely under the CD com-

bining framework, was proposed for estimating the overall LOR of 2x2 tables (Liu et al.,

2013). The key idea is to use significance functions based on mid-p adaptation of Fisher’s

Exact Test (4.7) for constructing individual CDs, with some further adjustments for im-

proving efficiency. In particular, it can be shown that the the proposed method, ‘exact1’,

ensures correct Type I error rate and improves efficiency, when the Mental-Haenszel and

Peto’s methods failed (Liu et al., 2013).

Example 4.14 (meta-analysis of 2x2 tables - exact method for LOR) The exact meta-

analysis method of 2x2 tables for LOR can be called using method=‘exact1’.

> # exact 1 (LOR): Liu et al. 2012

> gm1dt.e1 <- gmeta(ulcer.2x2dt, gmi.type=’2x2’, method=’exact1’,

+ gmo.xgrid=seq(-20,20,by=0.001))

> summary(gm1dt.e1)

Exact Meta-Analysis Approach through CD-Framework

Call:

gmeta.default(gmi = ulcer.2x2dt, gmi.type = "2x2", method = "exact1",

gmo.xgrid = seq(-20, 20, by = 0.001))
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Summary of Combined CD:

mean median stddev ci.lower ci.upper

Combined CD -1.239827 -1.240056 0.1270008 -1.485981 -0.9882136

Confidence level = 0.95

Summary of Individual CDs:

mean median stddev ci.lower ci.upper

study-01 -1.7911586 -1.7313392 0.9660527 -3.9201201 -0.009971508

study-02 -0.3098157 -0.3068812 0.6981395 -1.6933698 1.058949659

[...]

study-05 Inf Inf Inf -0.4680651 Inf

study-06 -Inf -Inf Inf -Inf 1.040483624

[...]

study-11 -Inf -Inf Inf -Inf -0.332826382

[...]

study-25 -Inf -Inf Inf -Inf -1.631226137

[...]

study-28 -Inf -Inf Inf -Inf -2.098344052

study-29 -Inf -Inf Inf -Inf -0.940709896

[...]

study-34 -Inf -Inf Inf -Inf -0.160331137

[...]

study-40 -Inf -Inf Inf -Inf -5.239567140

study-41 NaN -Inf Inf -Inf Inf
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Confidence level = 0.95

Figure 4.7 makes an extended forest plot of individual and combined CDs (confidence

curves) based on Peto’s method and exact1 method for meta-analysis of 2x2 tables. The

exact1 method appropriately accounts the impact of zero event, where the confidence curves

go to infinity without decreasing at the sides having zero event, see the confidence curves

for study-05 and study-06.
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Figure 4.7: Individual and combined CDs (confidence curves) based on Peto’s method and
exact1 method for meta-analysis of 2x2 tables. The exact1 method appropriately accounts
the impact of zero event, where the confidence curves go to infinity without decreasing at
the sides having zero event, see the confidence curves for study-05 and study-06.
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The risk difference (RD), ∆ = p1−p2, is another measurement often used in clinical trials.

It might be preferred for including studies with zero event, since the sample estimates of

LOR are not meaningful when either arm has zero event. An exact meta-analysis method

of 2x2 tables for RD is proposed by Tian et al. (2009). Hereafter, the Tian’s method. It

provides correct Type I error rate, and includes studies with zero event without artificial

continuity corrections.

The CD combining framework includes the Tian’s method as a special case, by taking

a0(u) =
∑J

j=1 w̃j(I(u > 1− ηj)− ηj) in (4.10), where 0 ≤ η1, . . . , ηJ ≤ 1 are the confidence

levels and w̃j are weights associated with those confidence levels (Yang et al., 2012a). For

example, ηj = 0.1 + 0.85× (j− 1)/19 and w̃j = {ηj(1− ηj)}−1, j = 1, . . . , 20, are suggested

by Tian et al. (2009).

Example 4.15 (meta-analysis of 2x2 tables - exact method for RD) The exact meta-

analysis method of 2x2 tables for RD (the Tian’s method) can be called using

method=‘exact2’. The vector ηj , j = 1, . . . , J can be specified by eta=seq(0.10, 0.95,

length=20), and weights associated with each confidence level is, in default, w̃j =

{ηj(1− ηj)}−1. These confidence levels associated weights, w̃j, are not allowed to change.

> # exact 2 (RD): Tian et al. 2009

> gm1dt.e2o <- gmeta(ulcer.2x2dt, gmi.type=’2x2’, method=’exact2’,

+ gmo.xgrid=seq(-1,1,by=0.001), eta=seq(0.10, 0.95, length=20))

> summary(gm1dt.e2o)

Exact Meta-Analysis Approach through CD-Framework

Call:
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gmeta.default(gmi = ulcer.2x2dt, gmi.type = "2x2", method = "exact2",

gmo.xgrid = seq(-1, 1, by = 0.001), eta = seq(0.1, 0.95,

length = 20))

Summary of Combined CD:

mean median stddev ci.lower ci.upper

Combined CD -0.1816916 -0.1800597 0.02646488 -0.2396198 -0.1215608

Confidence level = 0.95

Summary of Individual CDs:

mean median stddev ci.lower ci.upper

study-01 -0.37509270 -0.386095745 0.19755120 -0.69071037 -0.0209623136

study-02 -0.07953751 -0.103013552 0.20736116 -0.44624424 0.2850587896

[...]

study-25 -0.84767957 NA NA NA -0.5607693668

[...]

study-40 -0.97171083 NA NA NA -0.9143694415

study-41 0.01685562 -0.004672469 0.10196604 -0.17018078 0.2815502333

Confidence level = 0.95

In the previous example, the argument eta takes a vector of values between 0 and 1 to

indicate the levels of confidence intervals used in the analysis. The CD combining method,

‘exact2’, can let the number of confidence intervals used in Tian’s method goes to infinity,

e.g., J →∞, by taking eta=‘Inf’. This is also the default value of argument eta.
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> gm1dt.e2 <- gmeta(ulcer.2x2dt, gmi.type=’2x2’, method=’exact2’,

+ gmo.xgrid=seq(-1,1,by=0.001), eta=’Inf’)

> summary(gm1dt.e2)

Exact Meta-Analysis Approach through CD-Framework

Call:

gmeta.default(gmi = ulcer.2x2dt, gmi.type = "2x2", method = "exact2",

gmo.xgrid = seq(-1, 1, by = 0.001), eta = ’Inf’)

Summary of Combined CD:

mean median stddev ci.lower ci.upper

Combined CD -0.2227558 -0.2214107 0.0182077 -0.2636318 -0.04452226

Confidence level = 0.95

Summary of Individual CDs:

mean median stddev ci.lower ci.upper

study-01 -0.37509270 -0.386095745 0.19755120 -0.69071037 -0.0209623136

study-02 -0.07953751 -0.103013552 0.20736116 -0.44624424 0.2850587896

[...]

study-25 -0.84767957 NA NA NA -0.5607693668

[...]

study-40 -0.97171083 NA NA NA -0.9143694415

study-41 0.01685562 -0.004672469 0.10196604 -0.17018078 0.2815502333

Confidence level = 0.95
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Figure 4.8 shows an extended forest plot of the individual and combined CDs for RD from

the Tian’s method. The left part uses confidence curves, and the right part uses confidence

densities. The confidence densities based on the Tian’s method are often ragged since the

distribution G(c)(·) is acquired by simulation.
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Figure 4.8: Extended forest plot of the individual and combined CDs for RD from the
Tian’s method. The left part uses confidence curves, and the right part uses confidence
densities. The confidence densities based on the Tian’s method are often ragged since the
distribution G(c)(·) are acquired by simulation.
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4.4.5 Final Remarks

The gmeta() function is versatile, advanced users can build their own CDs for individ-

ual studies, and use any available methods, for example, method=‘random-robust2’, for

the combination. The user can also add subjective opinions by assigning user-specified

weights to individual studies, using weight=[a vector of weights (real value), one

for each study]. In this way, the default weights will be overrode. In summary, the

key idea of using CD combining framework for meta-analysis resides in selecting a suitable

function g(c)(u1, . . . , uk).

4.5 Further Work

The ultimate goal of the gmeta package is providing a simple unified meta-analysis ap-

proach. The unification is supported by the combining of independent CDs. This CD

combining framework unifies all commonly used meta-analysis methods, including p-values

combinations, fixed-effect and random-effects model-based meta-analysis, Mantel-Haenszel

method, and Peto’s method, under the same structure. It develops robust meta-analysis

methods that provide a means of protection to model misspecification, and limit the impact

of outlying studies. It also covers two recently developed exact meta-analysis methods for

combining 2x2 tables with rare events (Tian et al., 2009; Liu et al., 2013).

For the further developments, adding user specified g(c)(·) function is one important fea-

ture for providing more flexibility. The current version implements g(c)(·) in form of (4.10),

where the function a0(·) is specified by argument linkfunc and the weights wi are speci-

fied by argument weight. The available choices for linkfunc are ‘inverse-normal-cdf’,

and ‘inverse-laplace-cdf’. The option ‘inverse-normal-cdf’ in general leads
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to Fisher efficiency, whereas the option ‘inverse-laplace-cdf’ would lead to Ba-

hadur efficiency in most cases. Adding additional options for a0(·) can bring other

useful results in the same structure. For example, linkfunc=‘identity’ can lead

to robust results – same as the ‘robust2’ methods currently implemented. Then,

method=‘fixed-robust2’ (method=‘random-robust2’) can be removed and instead is

called by using method=‘fixed-mle’ (method=‘random-mm’) with linkfunc=‘identity’.

However, in this way, the gmeta() function is more powerful in the sense that the user

can mix the linkfunc with other model assumptions and user-specified weights. Another

example would be linkfunc=‘logit’, i.e., a0(u) = log( u
1−u), which leads to results similar

as the Tian’s method with J →∞.

The computation complexity is another issue. Advanced meta-analysis methods, like the

exact methods, take 2-3 minutes for combining the 41 studies in the ulcer data set, using

the author’s personal computer (Intel R©E7500 CPU, 2.93GHz). Translate the R code to

C code can improve the computational efficiency. The translation is done for the p-value

combination approaches. For other approaches, it is still undergoing.

At last, it is promising to add the ability to perform multivariate meta-analysis, and provide

simultaneous inference on a vector of dependent parameters. The CD combining framework

is generalized to multivariate cases, and correspondingly, efficient and robust multivariate

meta-analysis methods are developed through the combining of independent multivariate

CDs (Yang et al., 2013a,b). Implementation of such methods would be a good starting

point.
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Chapter 5

Concluding Remarks

In this dissertation, we develop new statistical methodologies for combining information

from independent sources. These methods use confidence distributions as the combining

tools, and support the development of efficient and new robust multivariate meta-analysis

approaches. The confidence distribution combining method naturally includes the conven-

tional point estimators combining methods as special cases. The new robust meta-analysis

approaches can withstand to the impact of potential outlying studies and provide protec-

tions to model misspecification during the combining step of the meta-analysis.

In Chapter 2, we use the confidence distribution random vectors as the combining tool to

develop a multivariate confidence distribution combining method. This method leads to

the asymptotic efficient meta-analysis method under the standard fixed-effect and random-

effects model. However, it is limited as not ready to develop other new methods, e.g., the

robust meta-analysis methods. Thus, in Chapter 3, we directly combine multivariate nor-

mal confidence distribution functions, by using an equivalent set of univariate confidence

distribution functions of each multivariate confidence distribution. This combining method

is broad to include the the previous method as special cases and support the development of

two new robust multivariate meta-analysis method. In the additional Chapter 4, we intro-

duce a user-friendly R package gmeta, which realizes the unified univariate meta-analysis

framework through combining confidence distributions proposed in Xie et al. (2011).
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As a concluding remark, we want to point out that the confidence distribution combining

method is very broad and flexible, which might be a potential approach to solve other open

meta-analysis problems, e.g., meta-analysis of dependent studies.
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