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ABSTRACT OF THE DISSERTATION

Properties and solutions of a class of stochastic

programming problems with probabilistic constraints

by Kunikazu Yoda

Dissertation Director: András Prékopa

We consider two types of probabilistic constrained stochastic linear programming prob-

lems and one probability bounding problem.

The first type involves a random left-hand side matrix whose rows are independent

and normally distributed. The quasi-concavity of the constraining function needed for

the convexity of the problem is ensured if the factors of the function are uniformly

quasi-concave. A necessary and sufficient condition is given for that property to hold.

We show practical application in optimal portfolio construction.

The second type is the stochastic multidimensional knapsack problem which involves

a random left-hand side matrix with independent components and 0-1 decision variables.

We show that the problem is convex, under some condition on the parameters, for

special continuous and discrete distributions: gamma, normal, Poisson, and binomial.

Numerical experiments suggest that the problem can be solved as efficiently as its

deterministic version for moderate sized instances.

In the last problem, we formulate the linear programming problems that give im-

proved lower and upper bounds on the probability of the union of events when the

probabilities of some individual or intersections of events in a first few terms of the

inclusion-exclusion principle are 0 or very small.
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Chapter 1

Introduction

We study three topics relating to probabilistic constraints in this paper. The first two

topics concern stochastic linear programming problems with probabilistic constraints.

The first topic, presented in Chapter 2, is based on Prékopa, Yoda, and Subasi [65] that

characterizes a class of quasi-concavity when the random left-hand side matrix follows

normal distributions. The second topic, presented in Chapter 3, is based on Yoda and

Prékopa [79] that involves a stochastic version of the multidimensional knapsack prob-

lem which is considered a probabilistic constrained stochastic programming problem

with 0-1 decision variables and a random left-hand side matrix. The last topic, pre-

sented in Chapter 4, is based on Yoda and Prékopa [80] that concerns the probability

bounding problem for the union of events.

In a variety of industrial and engineering problems, such as production planning

and scheduling, logistics, financial modeling, and telecommunications network design,

there is a need to make an optimal decision under uncertainty. There are several ways

to handle uncertainty in optimization problems. The classical stochastic programming

with recourse, the stochastic programming with probabilistic constraints, and the ro-

bust optimization can be mentioned. Our choice is the stochastic programming with

probabilistic constraints, which was modeled by Prékopa [51, 53] (see also [58, 60] for

summary) in the following way:

minimize f(x) (1.0.1a)

subject to h0(x) := P (gi(x,η) ≥ 0, i = 1, . . . , r) ≥ p, (1.0.1b)

hi(x) ≥ 0, i = 1, . . . , s, (1.0.1c)

where x ∈ Rn is the decision vector, η ∈ R` is a random vector, f(x), gi(x,y), hi(x)
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are some functions, and p is a prescribed probability level, e.g., p = 0.9, 0.95, or 0.99,

chosen by the decision maker in order to model the reliability of the system. The

probability level p ensures that the state of the system remains within the allowable

subset with a probability at least as high as p regardless of outcomes of the random

parameters.

Stochastic programming with probabilistic constraints was first introduced by Charnes,

Cooper, and Symonds [11]. Their models are based on individual probabilistic con-

straints, where instead of using the constraint (1.0.1b), the following constraints are

used.

P (gi(x,η) ≥ 0) ≥ pi, i = 1, . . . , r, (1.0.2)

where pi’s are probability levels chosen by the decision maker. If random variables

gi(x,η), i = 1, . . . , r are independent of each other, then the use of (1.0.2) is appropri-

ate. Note that in this case the constraint (1.0.1b) has a simpler form:

P (gi(x,η) ≥ 0, i = 1, . . . , r) =

r∏
i=1

P (gi(x,η) ≥ 0) ≥ p, (1.0.3)

which is not the same as (1.0.2). In general, however, when random variables gi(x,η), i =

1, . . . , r are dependent, the joint probabilistic constraint (1.0.1b) must be used. Let us

look at an example of the reservoir system taken from Prékopa [58], shown in Figure

1.1, to be built to protect a downstream area from floods caused by random inflows of

water. Assume for simplicity that a flood can occur once in a year when the random

amounts of water to be retained by reservoirs 1 and 2 are ξ1 and ξ2, respectively. We

want to find optimal capacities x1 and x2 of the two reservoirs so that a flood occurs no

more frequently than once in a hundred years. The amount of water that overflows from

reservoir 1 is [ξ1−x1]+. Thus a flood can be prevented if and only if [ξ1−x1]++ξ2 ≤ x2,

which is equivalent to ξ1 + ξ2 ≤ x1 +x2, ξ2 ≤ x2. So we must use the joint probabilistic

constraint:

P

ξ1 + ξ2 ≤ x1 + x2

ξ2 ≤ x2

 ≥ 0.99,

while the individual constraints in this case are meaningless.
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Figure 1.1: Illustration of a reservoir system to protect a downstream area from floods.

Logconcavity is an important concept in stochastic programming. The notion of an

r-times positive sequence was first introduced by Fekete (see the collection of letters

between Fekete and Pólya [21]). For the case of r = 2 the definition provides us with

the same notion that we call today a logconcave sequence. The generalization to the

continuous case is straightforward. Important theoretical foundations of logconcave

measures and logconcave functions in the multivariate case are found in Prékopa [52,

53, 54, 55] (see also [58, 60] for summary). First we review logconcavity and quasi-

concavity.

Definition 1.0.1 (Logconcave function). A nonnegative function f : S 7→ R+ defined

on a convex subset S of Rn is said to be logarithmically concave (or logconcave for

short) if for all x,y ∈ S and λ ∈ (0, 1) we have

f(λx+ (1− λ)y) ≥ [f(x)]λ[f(y)]1−λ.

If f(x) > 0 for x ∈ S, then this means that log f(x) is a concave function on S.

Every concave function that is nonnegative on its domain is logconcave. The product

of logconcave functions is also logconcave.

Definition 1.0.2 (Logconcave measure: Prékopa [52]). A probability measure P defined

on the Borel sets of Rn is said to be logarithmically concave (or logconcave for short)
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if for every pair of convex subsets A,B of Rn and λ ∈ (0, 1) we have

P (λA+ (1− λ)B) ≥ [P (A)]λ[P (B)]1−λ,

where λA+ (1− λ)B = { λx+ (1− λ)y | x ∈ A, y ∈ B }.

Quasi-concavity is a generalization of concavity and it has application in microeco-

nomics and finance as utility functions and measures of risk.

Definition 1.0.3 (Quasi-concave function). A function f : S 7→ R defined on a convex

subset S of Rn is said to be quasi-concave if for all x,y ∈ S and λ ∈ (0, 1) we have

f(λx+ (1− λ)y) ≥ min(f(x), f(y)).

An alternative definition of a quasi-concave function f(x) is that the upper level

set { x | f(x) ≥ α } for any α is convex. A logconcave function is also quasi-concave.

Quasi-concavity is preserved in non-decreasing transformations (i.e. if g : Rn 7→ R is

quasi-concave and h : R 7→ R non-decreasing, then f = h ◦ g is quasi-concave). The

sum or product of quasi-concave functions on the same domain is not quasi-concave,

in general. In Chapter 2 we introduce a new class of quasi-concave functions, called

uniformly quasi-concave functions, where the sum and product (for positive functions)

of them is also a quasi-concave function.

Next we review the basic theorems for logconcavity.

Theorem 1.0.1 (Prékopa [52, 53]). If the probability measure P is absolutely continuous

with respect to the Lebesgue measure and is generated by a logconcave probability density

function then the measure P is logconcave.

Theorem 1.0.2 (Prékopa [52, 53]). If ξ ∈ Rn is a random vector, the probability

distribution of which is logconcave, then the probability distribution function F (x) =

P(ξ ≤ x) is a logconcave function in Rn.

Theorem 1.0.3 (Prékopa [53]). If g1(x,y), . . . , gr(x,y) are quasi-concave functions of

the variables x ∈ Rn,y ∈ Rm and ξ ∈ Rm is a random variable that has logconcave

probability distribution, then the function G(x) = P(g1(x, ξ) ≥ 0, . . . , gr(x, ξ) ≥ 0), x ∈

Rn is logconcave.
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Theorem 1.0.4 (Prékopa [53]). If f(x,y),x ∈ Rn,y ∈ Rm is a logconcave function,

then ∫
Rm

f(x,y)dy, x ∈ Rn

is also a logconcave function.

In many applications the functions f(x), hi(x) in (1.0.1) are linear and the stochastic

constraints gi(x,η) ≥ 0, i = 1, . . . , r have the linear form ξ−Ξx ≥ 0. The probabilistic

constraint then specializes as

h0(x) := P(Ξx ≤ ξ) ≥ p. (1.0.4)

One of Ξ ∈ Rm×n and ξ ∈ Rm is random and the other is constant. Difficulty in this

problem is that the set S := { x | h0(x) ≥ p } is nonconvex and the function h0(x) on

S is nonsmooth or even discontinuous, in general.

For the case of a constant matrix denoted by T (instead of Ξ) and a random vector

ξ, in which (1.0.4) is expressed as P(Tx ≤ ξ) ≥ p, several results are known. For

the case of continuously distributed ξ general theorems are available to ensure the

convexity of the set { x | P(Tx ≤ ξ) ≥ p } (see Prékopa [58]). The solution of problems

where ξ in (2.1.2) is a discrete random vector is more recent. The key concept here is

that of a p-efficient point, introduced in Prékopa [57] and further developed and used

in Prékopa, Vizvári, and Badics [64], Dentcheva, Prékopa, and Ruszczyński [18], and

Boros et al. [7]. See also Beraldi and Ruszczyński [4], Vizvári [74], and Luedtke, Ahmed,

and Nemhauser [48].

For the case of a random matrix Ξ = [ξ1, . . . , ξm]T and a constant vector denoted by

d = (d1, . . . , dm)T (instead of ξ), in which (1.0.4) is expressed as P(Ξx ≤ d) ≥ p, few re-

sults are known. The earliest papers dealing with this case for the normally distributed

rows are by Kataoka [40] and van de Panne and Popp [72], in which, however, Ξ has only

one (m = 1) row and to establish the convexity of the set
{
x
∣∣ P((ξ1)Tx ≤ d1) ≥ p

}
is

relatively easy. If Ξ has more than one row, then even if they are independent, it is not

easy to ensure the convexity of the set { x | P(Ξx ≤ d) ≥ p }. The first paper where

convexity theorems are presented for this case is by Prékopa [54]. The paper by Henrion
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and Strugarek [36] can be mentioned, where significant progress in this direction has

been made. An important result in the class of log-concave symmetric distribution has

been found by Lagoa, Li, and Sznaier [46].

In Chapter 2, we study the problem with a random left-hand side matrix Ξ whose

rows are independent and normally distributed, in which the probabilistic constraint

is expressed as h0(x) := P(Ξx ≤ d) ≥ p. For the convexity of the problem the quasi-

concavity of h0(x) is needed, which is ensured if the factors of h0(x) are uniformly

quasi-concave. We give a necessary and sufficient condition on the parameters of the

normal distributions for that property to hold.

In Chapter 3, our work concerns the knapsack problem, which is one of the most

fundamental combinatorial optimization problems with a wealth of applications in in-

dustries. The most basic form, the 0-1 one-dimensional single knapsack problem, can be

stated as follows: Given a set of items, each with a value and a size, determine a subset

maximizing the total value while keeping the total size within a given capacity. We con-

sider the 0-1 knapsack problem in this paper as opposed to the bounded or unbounded

knapsack problem. One generalization of the problem includes the multidimensional

knapsack problem (or multiply constrained knapsack problem), where each item has

multiple attributes (sizes), such as length, volume, weight, etc., and a knapsack has a

capacity for each attribute.

A couple of works are known for the probabilistic constrained stochastic one-dimensional

knapsack problem. Goyal and Ravi [32] showed a polynomial time approximation

scheme via a parametric LP reformulation when the random item attributes are in-

dependent and normally distributed. Fortz and Poss [23] showed that the problem can

be linearized when the random item attributes are independent and follow normal or

gamma distributions under some regularity condition. Our work can be considered as

an extension of the latter work to the multidimensional knapsack problem. While we

study the stochastic multidimensional knapsack problem, our convexity result holds

for a broader class of stochastic combinatorial optimization problems whose underlying

deterministic models are formulated by linear inequalities and 0-1 decision variables.

In Chapter 4, we consider the probability bounds on the union of random events,
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which have applications in stochastic programming with probabilistic constraints, relia-

bility of networks, and other sciences involving in stochastic systems. While computing

exact probabilities in high-dimensional spaces is often intractable, the information on

low dimensional probabilities helps to obtain good approximations.

The inclusion-exclusion principle (see de Moivre [15], da Silva [13], and Sylvester [68])

gives the exact probability of the union of events but the formula is impractical if the

number of events is large. The Bonferroni inequalities (see Bonferroni [5]) give upper

and lower bounds using only a first few terms of the inclusion-exclusion principle. These

bounds are usually very weak. The best possible (sharp) bounds using few terms (the

number of the terms is called the order of the bounds) have been found in closed forms.

The second order sharp lower bound was obtained by Dawson and Sankoff [14] and its

upper bound by Kwerel [44, 45] and Sathe et al. [67]. The third order sharp bounds

were obtained by Kwerel [44, 45] and Boros and Prékopa [8]. The fourth order sharp

upper bound was obtained by Boros and Prékopa [8]. While the fifth or higher order

sharp bounds have not been known in closed forms, Prékopa [56] observed that all

these bounds are the optimal objective values of binomial moment problems obtained

from the formulation by Hailperin [35]. By simply using the first few terms which are

aggregated information, we lose the information in individual events. Hailperin [35]

provided the Boolean probability bounding scheme, which was initiated by Boole [6],

utilizing the probabilities of individual and intersections of events appeared in the first

few terms. Although these bounds are much better than those from the binomial mo-

ment problems, the formulation is impractical if the number of events is large due to

the exponential number of decision variables.

Probability bounds that utilize structures of events have been studied. Hunter’s

upper bound (see Hunter [37] and Worsley [77]) uses graph structures. It was gener-

alized by Tomescu [71] and improved on by Bukszár and Prékopa [9]. Prékopa and

Gao [62] defined the linear programming problems balancing the size of the formula-

tion and the quality of bounds. Prékopa, M. Subasi, and E. Subasi [63] gave the sharp

bounds assuming unimodality of the probability distribution. Our contribution is that

we formulate the linear programming problems that give improved bounds when the
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probabilities of some individual or intersections of events are 0 or very small.
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Chapter 2

Uniform quasi-concavity in probabilistic constrained

stochastic programming

2.1 Introduction

The stochastic programming problem, termed programming under probabilistic con-

straints can be formulated in the following way:

minimize f(x) (2.1.1)

subject to h0(x) = P (gi(x, ξ) ≥ 0, i = 1, . . . , r) ≥ p

hi(x) ≥ 0, i = 1, . . . ,m,

where x ∈ Rn, ξ ∈ Rq, f(x), gi(x,y), i = 1, . . . , r, hi(x), i = 1, . . . ,m are some func-

tions and p is a fixed large probability, e.g., p = 0.9, 0.95, 0.99. In many applications

the stochastic constraints have the form ξ − Tx ≥ 0 and the probabilistic constraint

specializes as

h0(x) = P(Tx ≤ ξ) ≥ p. (2.1.2)

For the case of continuously distributed random vector ξ general theorems are avail-

able to ensure the convexity of the set determined by the probabilistic constraint in

(2.1.1). For example, if gi, i = 1, . . . , r are concave or at least quasi-concave in all

variables and ξ has a logconcave p.d.f., then the function h0(x) is logconcave and the

set { x | h0(x) ≥ p } is convex (see, e.g., Prékopa [58, 60]). This implies that if ξ has the

above-mentioned property, then the set determined by the constraint (2.1.2) is convex.

Many applications of the model with probabilistic constraint (2.1.2) have been carried

out, for the cases of some special continuous multivariate distributions such as normal,
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gamma, and Dirichlet, and problem solving packages have been developed (see, e.g.,

Prékopa [60], Deák [17], Kall and Mayer [39], and Szántai [69]).

The solution of problems where ξ in (2.1.2) is a discrete random vector is more

recent. The key concept here is that of a p-efficient point, introduced in Prékopa [57] and

further developed and used in Prékopa, Vizvári, and Badics [64], Dentcheva, Prékopa,

and Ruszczyński [18], and Boros et al. [7]. See also other methods in Beraldi and

Ruszczyński [4], Vizvári [74], and Luedtke, Ahmed, and Nemhauser [48].

For the case of a random T in the constraint (2.1.2), few results are known. The

earliest papers dealing with a random matrix T in the probabilistic constraint are

Kataoka [40] and van de Panne and Popp [72]. In these papers, however, there is only

one stochastic constraint and to establish the concavity of the set { x | P(Tx ≤ ξ) ≥ p }

is relatively easy (see, the proof of Lemma 2.2.2).

The first paper where convexity theorems are presented for the set of feasible solu-

tions and random matrix T has more than one row, is by Prékopa [54]. If T has more

than one row, then even if they are independent, it is not easy to ensure the convex-

ity of the set { x | P(Tx ≤ ξ) ≥ p }. The paper by Henrion and Strugarek [36] can be

mentioned, where significant progress in this direction has been made. The problem

is that the product or sum of quasi-concave functions is not quasi-concave, in general.

We briefly recall the results of the paper by Prékopa [54] (see also Prékopa [58] pp.

312–314).

Theorem 2.1.1 (Prékopa [54]). Let ξ be constant and T a random matrix with inde-

pendent, normally distributed rows (or columns) such that their covariance matrices are

constant multiples of each other. Then h(x) = P(Tx ≤ ξ) is a quasi-concave function

on the set { x | h(x) ≥ 1/2 }.

We introduce a special class of quasi-concave functions.

Definition 2.1.1 (Uniformly quasi-concave functions). Let h1(x), . . . , hr(x) be quasi-

concave functions on a convex set E ∈ Rn. We say that they are uniformly quasi-

concave functions if for any x,y ∈ E either

min(hi(x), hi(y)) = hi(x), i = 1, . . . , r
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or

min(hi(x), hi(y)) = hi(y), i = 1, . . . , r.

Obviously, the sum of uniformly quasi-concave functions, on the same set, is also

quasi-concave and if the functions are also nonnegative, then the same holds for their

product as well. The latter property is used in the next section, where we prove our

main result.

In this chapter we look at probabilistic constraints of the type

P(Tx ≤ b) ≥ p, (2.1.3)

where T is a random matrix that has independent, normally distributed rows and b

is a constant vector. The constraining function in (2.1.3) is the product of special

quasi-concave functions and we show that the uniform quasi-concavity of the factors

implies that the covariance matrices of the rows are constant multiples of each other.

Section 2 and 3 are devoted to this. In section 4 we show that this very special type of

probabilistic constraint is still applicable to solve portfolio optimization problems. We

present some numerical results in this respect.

2.2 Preliminary results

First we provide a necessary condition for continuously differentiable and uniformly

quasi-concave functions h1(x), . . . , hr(x) on an open convex set.

Lemma 2.2.1. If h1(x), . . . , hr(x) are continuously differentiable and uniformly quasi-

concave on an open convex set E, then any nonzero gradients ∇hi(x),∇hj(x) are pos-

itive multiples of each other, i.e., for any i, j ∈ {1, . . . , r}, there exists a positive-valued

function αij(x) = 1/αji(x) > 0 defined on Eij = { x ∈ E | ∇hi(x) 6= 0,∇hj(x) 6= 0 } =

Eji such that for all x ∈ Eij we have

∇hi(x) = αij(x)∇hj(x) (2.2.1)

Proof. We show that (2.2.1) holds for all x ∈ Eij by contradiction. Suppose that for

some x ∈ Eij we cannot find an αij(x) > 0 satisfying (2.2.1). Without loss of generality

we assume that i = 1, j = 2.
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By the Farkas Lemma, either one of the following two systems has a solution

(i) ∇h2(x)Td ≤ 0, ∇h1(x)Td > 0

(ii) ∇h1(x) = λ∇h2(x), λ ≥ 0

First, note that since ∇h1(x) 6= 0 and ∇h2(x) 6= 0, λ = 0 cannot be a solution of

(ii). Also, λ > 0 cannot be a solution of (ii), otherwise we can define α12(x) = λ > 0.

Hence, (i) has a solution d1. Similarly, since ∇h2(x) = α21(x)∇h1(x) does not hold

for any defined value of α21(x) = 1/α12(x) > 0 by the assumption, (i) with 1 and 2

interchanged has a solution d2. So we have

∇h2(x)Td1 ≤ 0, ∇h1(x)Td1 > 0,

∇h1(x)Td2 ≤ 0, ∇h2(x)Td2 > 0.

Let d := d1 − d2. Then it follows that

∇h1(x)Td > 0, ∇h2(x)Td < 0. (2.2.2)

Note that d 6= 0. By the use of finite Taylor series expansions we can write:

h1(x+ εd) = h1(x) + (∇h1(x)Td)ε+ o(ε), (2.2.3)

h2(x+ εd) = h2(x) + (∇h2(x)Td)ε+ o(ε). (2.2.4)

Since E12 is an open set, we can select ε > 0 small enough so that

∃y := x+ εd ∈ E12, y 6= x, h1(y) > h1(x), h2(y) < h2(x)

Hence h1(x), . . . , hr(x) are not uniformly quasi-concave, which is a contradiction.

For r = 1, let us consider the function

h(x) = P(Tx ≤ b), (2.2.5)

where T is a random row vector and b is a constant. The following lemma was first

proved by Kataoka [40] and van de Panne and Popp [72]. See also Prékopa [58].
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Lemma 2.2.2 (Kataoka [40] and van de Panne and Popp [72]). If T has normal

distribution, then the function h(x) is quasi-concave on the set{
x

∣∣∣∣ P(Tx ≤ b) ≥ 1

2

}
.

Let r be an arbitrary positive integer and introduce the function:

hi(x) = P(Tix ≤ bi), i = 1, . . . , r, (2.2.6)

where each row vector Ti, i = 1, . . . , r has normal distribution with mean vector µi =

E(T Ti ) and covariance matrix Ci = E((T Ti − µi)(T Ti − µi)T ), and b = (b1, . . . , br)
T is

constant.

Suppose bi > 0, i = 1, . . . , r. Let us define set E as follows:

E is convex.

E ⊃ B ⊃ {0} for some open set B. (2.2.7)

Each hi(x), i = 1, . . . , r is quasi-concave on E.

One example of such E is

E =
r⋂
i=1

{
x

∣∣∣∣ hi(x) ≥ 1

2

}
. (2.2.8)

Note that by lemma 2.2.2, hi(x) is quasi-concave on the convex set Ei = { x | hi(x) ≥ 1/2 }

and that for a sufficiently small open ball Bε(0) = { x | ‖x‖ < ε } around the origin,

hi(x) ≥ 1/2, ∀x ∈ Bε(0), thus Ei ⊃ Bε(0). Also note that the intersection of convex

sets is a convex set. If rows T1, . . . , Tr of T are independent and h1(x), . . . , hr(x) are

uniformly quasi-concave, then h(x) = P(Tix ≤ bi, i = 1, . . . , r) =
∏r
i=1 P(Tix ≤ bi) =

h1(x) · · ·hr(x) is quasi-concave on E.

Suppose bi > 0 and Ci is positive definite for i = 1, . . . , r.

hi(x) =


Φ

(
bi − µTi x√
xTCix

)
for x 6= 0,

P(0 ≤ bi) = 1 for x = 0.

(2.2.9)

Since

lim
x→0

hi(x) = lim
t→∞

Φ(t) = 1 = hi(0),
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hi(x) is continuous at x = 0. Let us calculate the gradient of hi(x) for x ∈ int (E)\{0}.

∇hi(x) = ∇Φ

(
bi − µTi x√
xTCix

)

= ϕ

(
bi − µTi x√
xTCix

)
∇bi − µ

T
i x√

xTCix

= ϕ

(
bi − µTi x√
xTCix

)
−
√
xTCixµi − (bi − µTi x)Cix/

√
xTCix

xTCix

= −ϕ

(
bi − µTi x√
xTCix

)
(xTCix)µi + (bi − µTi x)Cix

(xTCix)3/2
, (2.2.10)

where ϕ(t) is the p.d.f. of the one-dimensional standard normal distribution.

ϕ(t) =
1√
2π

exp

(
−1

2
t2
)
.

For any fixed x 6= 0, we have

lim
ε↓0
∇hi(εx)

= − lim
ε↓0

ϕ

(
bi

ε
√
xTCix

− µTi x√
xTCix

){
(xTCix)µi − (µTi x)Cix

ε
√
xTCix

+
biCix

ε2(xTCix)3/2

}

= 0.

Hence limx→0∇hi(x) = 0 and∇hi(x) is continuous at x = 0. Therefore h1(x), . . . , hr(x)

are continuously differentiable on the open convex set int (E).

2.3 The main result

In what follows we make use of the following theorem from linear algebra:

Theorem 2.3.1 (Simultaneous diagonalization of two matrices: Bellman [2]). Given

two real symmetric matrices, A and B, with A positive definite, there exists a nonsin-

gular matrix U such that

UTAU = I, UTBU = diag(λ1, λ2, . . . , λn) =



λ1 O

λ2
. . .

O λn


(2.3.1)
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In the next theorem we present our main result.

Theorem 2.3.2. Suppose bi > 0 and Ci is positive definite for i = 1, . . . , r. The

functions h1(x), . . . , hr(x) defined by (2.2.6) (in this case, (2.2.9)) are uniformly quasi-

concave on a convex set E satisfying (2.2.7) if and only if each Ci is a constant multiple

of a covariance matrix C, and

µ1

b1
= · · · = µr

br
.

Proof. Sufficiency (⇐) is obvious, so we only show necessity (⇒). It is enough to show

that C1, C2 are constant multiples of each other and that µ1/b1 = µ2/b2 for r ≥ 2.

hi(x) is continuously differentiable on the open convex set int (E). From (2.2.10) we

have for x 6= 0

xT∇hi(x) = −ϕ

(
bi − µTi x√
xTCix

)
bi√
xTCix

< 0.

Thus ∇hi(x) 6= 0 for x 6= 0. We know limx→0∇hi(x) = 0. Let E′ := int (E) \

{0}. Then E′ = { x ∈ int (E) | ∇hi(x) 6= 0, i ∈ {1, . . . , r} }. From Lemma 2.2.1 and

(2.2.10), there is a positive function α12(x) > 0 such that for all x ∈ E′ we have

(xTC1x)µ1 + (b1 − µT1 x)C1x = α12(x)
{

(xTC2x)µ2 + (b2 − µT2 x)C2x
}

(2.3.2)

For small ε > 0 and x ∈ E′, let us replace x with εx ∈ E′ in (2.3.2) and divide by ε

for both sides of the equation.

ε(xTC1x)µ1 + (b1 − εµT1 x)C1x = α12(εx)
{
ε(xTC2x)µ2 + (b2 − εµT2 x)C2x

}
(2.3.3)

Taking the limit of the both sides of (2.3.3) as ε→ 0 we obtain

b1C1x = (lim
ε→0

α12(εx))b2C2x. (2.3.4)

Since 0 < xTC1x <∞, 0 < xTC2x <∞ for x ∈ E′, the limit

lim
ε→0

α12(εx) =
b1x

TC1x

b2xTC2x
=: α′12(x) (2.3.5)

exists and 0 < α′12(x) <∞. Thus we have

b1C1x = α′12(x)b2C2x for x ∈ E′. (2.3.6)
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Since C1 and C2 are symmetric and C2 is positive definite, from Theorem 2.3.1 there

is a nonsingular matrix U such that

UTC1U = D, UTC2U = I,

whereD = diag(λ1, . . . , λr) is a diagonal matrix. Let y := U−1x and F :=
{
U−1x

∣∣ x ∈ E′ }.

Since U is nonsingular, F is a neighborhood of the origin 0, and 0 /∈ F .

For all y ∈ F we have by multiplying UT from left to (2.3.6)

b1Dy = α′12(Uy)b2y

⇒ b1


λ1y1

...

λryr

 = α′12(Uy)b2


y1
...

yr


which implies that

0 < α′12(x) = α′12(Uy) =
b1λ1
b2

= · · · = b1λr
b2

=: α′12

is constant. Therefore we have from (2.3.6)

C1 = α′12
b2
b1
C2. (2.3.7)

Let us plug (2.3.7) into (2.3.2).

xTC2x
(
α′12b2µ1 − α12(x)b1µ2

)
+
{

(α′12 − α12(x))b1b2 −
(
α′12b2µ1 − α12(x)b1µ2

)T
x
}
C2x = 0. (2.3.8)

Multiplying (2.3.8) by xT from left we obtain{
α′12 − α12(x)

}
b1b2x

TC2x = 0 ⇒ α12(x) = α′12. (2.3.9)

If we substitute (2.3.9) into (2.3.8), we get

xTC2x(b2µ1 − b1µ2) = xT (b2µ1 − b1µ2)C2x. (2.3.10)

Let us introduce w := UT (b2µ1 − b1µ2). Since x = Uy we have

(yTy)w = (yTw)y

⇒


w1

...

wr

 =
y1w1 + · · ·+ yrwr
y21 + · · ·+ y2r


y1
...

yr

 (2.3.11)
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Since (2.3.11) holds for y = ε[0, 1, . . . , 1]T , . . . ,y = ε[1, . . . , 1, 0]T ∈ F for some small

ε > 0, it follows that

w1 = 0, . . . , wr = 0 ⇒ w = 0 ⇒ µ1

b1
=
µ2

b2
. (2.3.12)

2.4 Application in portfolio optimization

In this section we look at a probabilistic constrained stochastic programming problem,

where the probabilistic constraint is of type (2.1.2). We assume that T has independent,

normally distributed rows and the factors in the product
∏K
k=1 P(Tkx ≤ bk) are uni-

formly quasi concave. The problem is special, but still can be applied, e.g., in portfolio

optimization.

Consider n assets and K consecutive periods. Let us introduce the following nota-

tions: for k = 1, . . . ,K

Tk : random loss during the k-th period

µk = E[T Tk ] : expected loss

Ck = E[(T Tk − µk)(T Tk − µk)T ] : covariance matrix of Tk .

We assume that Tk, k = 1, . . . ,K are independent and normally distributed random

vectors and µk ≤ 0, k = 1, . . . ,K. We also assume that the time window of the K

periods is relatively short and a linear trend for the expectations prevails. Formally,

our assumptions are:

µ1 = µ and µk+1 = αµk, k = 1, . . . ,K − 1 (2.4.1)

C1 = C and Ck+1 = α2Ck, k = 1, . . . ,K − 1. (2.4.2)

For the first period, we consider the portfolio optimization problem formulated by
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Kataoka [40]:

(Problem 1): minimize b

subject to Φ

(
b− µTx√
xTCx

)
≥ p

n∑
j=1

xj = 1

xj ≥ 0 for j = 1, . . . , n.

For the k-th period (k ∈ {2, . . . ,K}), we consider the following problem.

(Problem k): minimize b1

subject to

k∏
i=1

Φ

(
bi − µTi x√
xTCix

)
≥ p

n∑
j=1

xj = 1

bi+1 = α bi for i = 1, . . . , k − 1

xj ≥ 0 for j = 1, . . . , n

b1 ≥ 0 .

A related model is presented in Yoda and Prékopa [78], where individual probabilis-

tic constraints are taken for more than one part of the distribution.

By Theorem 2.3.2 the functions h1(x), . . . , hK(x) defined by (2.2.9) are uniformly

quasi-concave on the convex set

E := ∩Kk=1 { x | hk(x) ≥ 1/2 } = ∩Kk=1

{
x
∣∣ bk ≥ µTk x } =

{
x
∣∣ bK ≥ µTKx } ,

and hence h(x) =
∏K
k=1 hk(x) is quasi-concave on E. Since the set

{ x | h(x) ≥ p, x ∈ E }

is convex, the set of feasible solutions of (Problem k) is convex.

Below we present a numerical example for the application of the above model. We

take the initial expectations and covariance matrix from past history data but then

proceed to obtain those values in accordance with the assumption formulated in the

model.
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Numerical Example.

Assets “Dow, S&P500, Nasdaq, NYSECI, 10YrBond” are obtained from Yahoo!

Finance (http://finance.yahoo.com) and assets “Oil, Gold, Silver, EUR/USD” are

obtained from Dukascopy (http://www.dukascopy.com). We consider the expected

values and the covariance matrix of the daily losses of the nine assets in May 2009. The

data is shown in Table 2.1 and Table 2.2.

We assume that in the consecutive periods the expected returns are increased by

1% (α = 1.01) and the covariances are increased by α2 = (1.01)2. The values of the

nine assets obtained by the use of (Problem k), k = 1, . . . , 5 are given in Table 2.3.

http://finance.yahoo.com
http://www.dukascopy.com
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Table 2.1: Expected losses in May 2009.

Gold Silver Nasdaq S&P500 Oil EUR/USD 10YrBond Dow NYSECI

-1.253 -3.008 -0.149 -0.711 -1.379 -0.82 -1.052 -0.546 -1.069

Table 2.2: Covariance Matrix in May 2009.

Gold Silver Nasdaq S&P500 Oil EUR/USD 10YrBond Dow NYSECI

Gold 5.159 7.228 -1.437 1.492 3.989 2.764 -5.25 1.198 2.231
Silver 7.228 19.441 -0.785 6.454 10.143 4.94 -5.198 5.343 9.061

Nasdaq -1.437 -0.785 15.084 11.202 1.562 0.974 -0.767 9.754 12.424
S&P500 1.492 6.454 11.202 16.238 10.709 4.223 -4.735 14.794 20.058

Oil 3.989 10.143 1.562 10.709 21.249 4.087 -5.719 10.043 15.451
EUR/USD 2.764 4.94 0.974 4.223 4.087 4.375 -3.255 3.764 5.996
10YrBond -5.25 -5.198 -0.767 -4.735 -5.719 -3.255 38.003 -4.564 -4.928

Dow 1.198 5.343 9.754 14.794 10.043 3.764 -4.564 13.981 18.446
NYSECI 2.231 9.061 12.424 20.058 15.451 5.996 -4.928 18.446 25.706
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Table 2.3: Values of nine assets, May 2009.

Gold Silver Nasdaq S&P500 Oil EUR/USD 10YrBond Dow NYSECI

(Problem 1) 0.5246 0.0422 0.1267 0 0.0102 0.1433 0.1531 0 0
(Problem 2) 0.5350 0 0.1342 0 0.0103 0.1718 0.1487 0 0
(Problem 3) 0.5266 0 0.1379 0 0.0076 0.1804 0.1475 0 0
(Problem 4) 0.5218 0 0.1399 0 0.0063 0.1849 0.1471 0 0
(Problem 5) 0.5188 0 0.1414 0 0.0053 0.1878 0.1467 0 0
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Chapter 3

Convexity and solutions of the stochastic

multidimensional knapsack problem with probabilistic

constraints

3.1 Introduction.

The knapsack problem is one of the most fundamental combinatorial optimization prob-

lems with a wealth of applications in industries. The most basic form, the 0-1 one-

dimensional single knapsack problem, can be stated as follows: Given a set of items,

each with a value and a size, determine a subset maximizing the total value while keep-

ing the total size within a given capacity. The problem is NP-complete to solve exactly,

although there is a pseudo-polynomial time algorithm and a fully polynomial-time ap-

proximation scheme (FPTAS) (see, e.g., Korte and Vygen [43]). One generalization of

the problem includes the multidimensional knapsack problem (or multiply constrained

knapsack problem), where each item has multiple attributes (sizes), such as length,

volume, weight, etc., and a knapsack has a capacity for each attribute. This variant

with a fixed dimension (≥ 2) was shown to be NP-complete, and more strongly, has no

FPTAS unless P = NP by Gens and Levner [29] and Korte and Schrader [42] (see also

Kellerer et al. [41]). Another generalization includes the multiple knapsack problem,

which is also NP-complete.

In real-life problems we often have to deal with uncertainty. Parameters cannot

be predicted exactly but rather estimated probabilistically. Therefore, it is sometimes

more desirable to model these parameters with random variables. In this chapter,

we study the multidimensional (single) knapsack problem where the item attributes

are independent random variables. Under the assumption we need a new principle to

formulate the problem and our choice is the probabilistic constrained formulation.
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The knapsack problem has been studied for more than a century. A broad overview

of the theoretical and the practical results can be found in Kellerer et al. [41]. The deter-

ministic model for the multidimensional knapsack problem has been studied extensively

since the 1950s (see Fréville [24] and Fréville and Hanafi [25] for a comprehensive sur-

vey). A few works are known for the use of the probabilistic constrained stochastic

programming model for the knapsack problem with random item attributes, which

can be considered as a special case for the general stochastic programming problem

with probabilistic linear constraints. If the randomness is in the technology matrix,

then the problem is typically nonconvex. There are some exceptions. If the random

variables follow normal distributions, the probabilistic constraints can be rewritten as

quadratic constraints for the random matrix with one row (see Kataoka [40], van de

Panne and Popp [72], and Prékopa [58]). For the random matrix with more than one

row, the first paper where convexity theorems are presented is by Prékopa [54] and

an important progress was made by Henrion and Strugarek [36]. Recently, Zymler et

al. [81] developed tractable semidefinite programming based approximations by using

moment information of the distributions. The use of moment information is also found

in Prékopa [59] and Mádi-Nagy and Prékopa [49]. A couple of works are known for

the probabilistic constrained stochastic one-dimensional knapsack problem. Goyal and

Ravi [32] showed a polynomial time approximation scheme via a parametric LP refor-

mulation when the random item attributes are independent and normally distributed.

Fortz and Poss [23] showed that the problem can be linearized when the random item

attributes are independent and follow normal or gamma distributions under some regu-

latory condition. Our work can be considered as an extension of the latter work to the

multidimensional knapsack problem. While we study the stochastic multidimensional

knapsack problem, our convexity result holds for a broader class of stochastic combi-

natorial optimization problems whose underlying deterministic models are formulated

by linear inequalities and 0-1 decision variables.

Applications of the multidimensional knapsack problem include, but are not limited

to, cargo loading (see Bellman and Dreyfus [3]), cutting stock (see Gilmore and Go-

mory [31]), capital budgeting (see Lorie and Savage [47] and Weingartner [75]), project
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selection (see Petersen [50]), resource allocation in distributed data processing (see

Gavish and Pirkul [28]), computer systems design (see Ferreira et al. [22]), daily man-

agement of a satellite (see Vasquez and Hao [73]), and combinatorial auctions (see de

Vries and Vohra [16] and Rothkopf et al. [66]). See also a survey paper by Wilbaut et

al. [76].

This chapter is organized as follows. In section 3.2, we formulate the probabilistic

constrained model for the multidimensional knapsack problem and present our main

theorem. In section 3.3, we prove the theorem showing convexity of a relaxed feasible set

of the problem for four distributions. Section 3.4 illustrates computational experiments.

3.2 Formulation of the problem.

First let us consider the deterministic problem. We are given a set of n items with

values v1, v2, . . . , vn. Each item has m attributes such as weight, time, budget, etc. and

item j consumes wij > 0 units of resource for attribute i. We have a single knapsack

with m capacities Wi > 0 , i = 1, . . . ,m for the m attributes, respectively. The goal is

to select a subset of items (to be placed into the knapsack) maximizing the total value

while keeping the capacities, which can be formulated as follows:

maximize

n∑
j=1

vjxj (3.2.1a)

subject to
n∑
j=1

wijxj ≤Wi for i = 1, . . . ,m (3.2.1b)

xj ∈ {0, 1} for j = 1, . . . , n. (3.2.1c)

Now suppose the attributes are random variables denoted by ξij ’s (in place of wij ’s),

and formulate the problem as a probabilistic constrained stochastic programming, where

constraints (3.2.1b) are replaced by the following joint probabilistic constraint:

P

 n∑
j=1

ξijxj ≤Wi for i = 1, . . . ,m

 ≥ q. (3.2.2)

Here q ∈ (0, 1) is a fixed probability level, e.g., 0.9, 0.95, 0.99.
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Assuming the random variables ξij ’s are independent, the joint probabilistic con-

straint (3.2.2) can be written as follows:

m∏
i=1

P

 n∑
j=1

ξijxj ≤Wi

 ≥ q. (3.2.3)

Here we only need independence of the random vectors (ξi1, ξi2, . . . , ξin), i = 1, . . . ,m,

that is, random variables of different attributes in the same item or in different items

are independent but those of the same attribute in different items may be dependent.

Here let us mention a property of random variables as follows:

Definition 3.2.1 (Associated random variables: Esary et al. [20]). We say random

variables ξ1, . . . , ξn are associated if

Cov[f(ξ), g(ξ)] ≥ 0

for all nondecreasing functions f and g for which E[f(ξ)], E[g(ξ)], and E[f(ξ)g(ξ)]

exist, where ξ = (ξ1, . . . , ξn).

To give an example, consider ξi := η0+ηi, i = 1, . . . , n where η0, η1, . . . , ηn are inde-

pendent random variables. The random variables ξ1, . . . , ξn are associated by Theorem

2.1 (Independent random variables are associated) and Property P4 (Nondecreasing

functions of associated random variables are associated) in Esary et al. [20].

Note that even if we can’t assume the random variables are independent, which is

often the case in real-life applications, if we can assume they are associated, we have

the following inequality (see Esary et al. [20]):

P

 n∑
j=1

ξijxj ≤Wi for i = 1, . . . ,m

 ≥ m∏
i=1

P

 n∑
j=1

ξijxj ≤Wi

 .

Then the probabilistic constraint (3.2.3) ensures the joint probabilistic constraint (3.2.2).

The probabilistic constrained stochastic programming model for the multidimensional
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knapsack problem with independent random item attributes is formulated as follows:

maximize
n∑
j=1

vjxj (3.2.4a)

subject to

m∏
i=1

P

 n∑
j=1

ξijxj ≤Wi

 ≥ q (3.2.4b)

xj ∈ {0, 1} for j = 1, . . . , n. (3.2.4c)

Let us denote x = (x1, . . . , xn) and

Fi(x) := P

 n∑
j=1

ξijxj ≤Wi

 . (3.2.5)

The feasible set of the problem is as follows:{
x ∈ Zn

∣∣∣∣∣
m∏
i=1

Fi(x) ≥ q, xj ∈ {0, 1} for j = 1, . . . , n

}
.

By relaxing the integrality of xj ’s, we consider the following relaxed feasible set:

S :=

{
x ∈ Rn

∣∣∣∣∣
m∏
i=1

Fi(x) ≥ q, xj ∈ [0, 1] for j = 1, . . . , n

}
. (3.2.6)

The set S is convex if Fi(x) is logconcave for every i ∈ {1, . . . ,m}. The following

remark, which is easy to prove, will be used to show the logconcavity of Fi(x) for some

special distributions in section 3.3.

Remark 3.2.1. Let h be a linear function. A composite function f(x) = g(h(x)) is a

logconcave function of x ∈ Rn if g(t) is a logconcave function of t ∈ R.

In all of our cases studied in this chapter, Fi(x) has the form

Fi(x) = gi(hi(x))

with gi(t) defined on R and hi(x) = cTi x defined on Rn, where ci ∈ Rn is a constant

vector. So we only have to show that gi(t) is logconcave to ensure the logconcavity of

Fi(x) and hence the convexity of S.

Here we need to define some notations to present our main theorem. We denote by

ϕ(t) and Φ(t), the p.d.f. and the c.d.f., respectively, of the standard normal distribution:

ϕ(t) :=
1√
2π

exp

(
− t

2

2

)
, Φ(t) :=

∫ t

−∞
ϕ(u)du. (3.2.7)
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Theorem 3.2.1. The relaxed feasible set S in (3.2.6) is convex if for each i ∈ {1, . . . ,m}

the independent random variables ξij , j = 1, . . . , n follow one of the following distribu-

tions:

• The gamma distribution ξij ∼ Γ(pij , θi) with shape pij > 0 and scale θi > 0.

• The normal distribution ξij ∼ N (µij , λi µij) with mean µij > 0 and variance

λiµij > 0 satisfying

4Wi

λi
≥ −γ2i +

[
1 +

√
1 + γi(γi + ϕ(γi)/Φ(γi))

γi + ϕ(γi)/Φ(γi)

]2
(3.2.8a)

where

γi :=
Wi − νi√
λiνi

, νi :=
n∑
k=1

µik. (3.2.8b)

• The Poisson distribution ξij ∼ Pois(λij) with parameter λij > 0.

• The binomial distribution ξij ∼ B(nij , pi) with the number of trials nij ∈ N and

the success probability in each trial pi ∈ (0, 1).

No special form of the parameters is necessary for the Poisson distribution. For the

other three distributions, those special forms are encountered when, for instance, each

random variable ξij , j ∈ {1, . . . , n} is the sum of varying number of independent and

identically distributed (i.i.d.) random variables. (We need one more condition (3.2.8)

for the normal distribution.) Recall the sum of i.i.d. gamma/normal/Bernoulli random

variables is a gamma/normal/binomial random variable. For the case of the binomial

distribution, we may consider a practical example where each item has varying number

of identical components with the same failure rate and a random item attribute refers

to the total number of failed components. We may consider similar examples for the

gamma and the normal distributions.
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3.3 Convexity of the stochastic multidimensional knapsack problem.

3.3.1 Convexity result for the gamma distribution.

In this section we consider a case where the independent random variable ξij in (3.2.4)

has the gamma distribution

ξij ∼ Γ(pij , θi)

with shape pij > 0 and scale θi > 0 for some i ∈ {1, . . . ,m} and all j = 1, . . . , n. The

probability density function (pdf) of ξij is as follows.

f(y) =
1

Γ(pij)θi
ypij−1 exp

(
− y
θi

)
for y > 0,

where we defined the gamma function:

Γ(p) :=

∫ ∞
0

tp−1e−tdt for p > 0. (3.3.1)

Note that Var(ξij) = θi E(ξij) = pijθ
2
i . Since xj ∈ {0, 1}, it follows that for x 6= 0,∑n

j=1 ξijxj is a sum of independent gamma random variables with the common scale

θi and thus has the gamma distribution

n∑
j=1

ξijxj ∼ Γ (pi(x), θi) ,

where we defined pi(x) :=
∑n

j=1 pijxj . Let P (p, λ) denote the lower regularized gamma

function:

P (p, λ) :=

∫ λ

0

tp−1e−t

Γ(p)
dt for p ≥ 0, λ ≥ 0. (3.3.2)

For any fixed λ > 0, we define P (0, λ) = limp→0+ P (p, λ) = 1. The function in the joint

probabilistic constraint:

Fi(x) = P

 n∑
j=1

ξijxj ≤Wi

 = P

(
pi(x),

Wi

θi

)
(3.3.3)

is defined for x ≥ 0. The logconcavity of P (p, λ) in the following lemma together with

Remark 3.2.1 ensures the logconcavity of Fi(x) in (3.3.3), which proves Theorem 3.2.1

for the case of the gamma distribution.
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Lemma 3.3.1. For any fixed λ > 0, the function P (p, λ) defined by (3.3.2) is strictly

decreasing and strictly logconcave for p ≥ 0.

Proof. First we prove the decreasing property. It follows by theorem 4.8.2 in Prékopa [58]

that

1− P (p, λ) =

∫ ∞
λ

tp−1e−t

Γ(p)
dt

is strictly increasing for p ≥ 0. Hence P (p, λ) is strictly decreasing for p ≥ 0.

Next we prove the logconcavity by showing the second derivative of lnF (k, λ) is

negative. Simple calculation shows that for p > 0

d2

dp2
lnP (p, λ) =

∫ λ

0
tp−1(ln t)2e−tdt∫ λ

0
tp−1e−tdt

−


∫ λ

0
tp−1(ln t)e−tdt∫ λ

0
tp−1e−tdt


2

−


∫ ∞
0

tp−1(ln t)2e−tdt∫ ∞
0

tp−1e−tdt

−


∫ ∞
0

tp−1(ln t)e−tdt∫ ∞
0

tp−1e−tdt


2 .

(3.3.4)

Let us introduce a random variable X that has the following continuous and strictly

logconcave p.d.f.:

g(x) :=
epxe−e

x

Γ(p)
for x ∈ R,

where p > 0 is now a constant. Note that

g(x) > 0,

∫ ∞
−∞

g(x)dx =

∫ ∞
0

tp−1e−t

Γ(p)
dt = 1,

d2 ln g(x)

dx2
= −ex < 0.

The second derivative (3.3.4) can be written as∫ lnλ

−∞
x2g(x)dx∫ lnλ

−∞
g(x)dx

−


∫ lnλ

−∞
xg(x)dx∫ lnλ

−∞
g(x)dx


2

−


∫ ∞
−∞

x2g(x)dx∫ ∞
−∞

g(x)dx

−


∫ ∞
−∞

xg(x)dx∫ ∞
−∞

g(x)dx


2


= E(X2|X ≤ lnλ)− E2(X|X ≤ lnλ)−
[
(E(X2)− E2(X)

]
= E(X2|X ≤ v)− E2(X|X ≤ v)−

[
E(X2)− E2(X)

]
. (We denote v := lnλ)
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Since the random variable X has a continuous and strictly logconcave p.d.f. g(x), it

follows by theorem 2.2 and 2.3 in Prékopa [61] that

E(X2|X ≤ v)− E2(X|X ≤ v)

is strictly increasing in v. We have proved that for any v ∈ R, the following inequality

holds:

E(X2|X ≤ v)− E2(X|X ≤ v) < E(X2)− E2(X),

which implies d2 lnP (p, λ)/dp2 < 0. Hence P (p, λ) is strictly logconcave for p ≥ 0.

3.3.2 Convexity result for the normal distribution.

In this section we consider a case where the independent random variable ξij in (3.2.4)

has the normal distribution

ξij ∼ N (µij , λi µij)

with mean µij > 0 and variance λiµij > 0 satisfying (3.2.8) for some i ∈ {1, . . . ,m}

and all j = 1, . . . , n. The pdf of ξij is as follows.

f(y) =
1√

2πλi µij
exp

(
−(y − µij)2

2λi µij

)
for y ∈ R

Note that Var(ξij) = λi E(ξij) = λiµij . The condition (3.2.8) is satisfied if νi is smaller

than the threshold determined by Wi and λi (see (3.3.17)). Since xj ∈ {0, 1}, it follows

that for x 6= 0,
∑n

j=1 ξijxj is a sum of independent normal random variables and thus

has the normal distribution

n∑
j=1

ξijxj ∼ N

 n∑
j=1

µijxj ,

n∑
j=1

λiµijx
2
j


= N (µi(x), λiµi(x)) , (∵ x2j = xj)

where we defined µi(x) :=
∑n

j=1 µijxj . Let us introduce a function:

Gi(µ) := Φ

(
Wi − µ√
λiµ

)
for µ ≥ 0. (3.3.5)
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We define Gi(0) = limµ→0+Gi(µ) = 1. The function in the joint probabilistic con-

straint:

Fi(x) = P

 n∑
j=1

ξijxj ≤Wi

 = Gi(µi(x)) (3.3.6)

is defined for x ≥ 0.

The following lemma about ϕ(x)/Φ(x) is required to prove the logconcavity of Gi(µ).

Most of (i) and (ii) are well-known, but we present them for completeness.

Lemma 3.3.2. Let us denote ρ(x) := ϕ(x)/Φ(x). For x ∈ R, we have the following:

(i) ρ(x) is positive, strictly decreasing, strictly logconcave, and strictly convex.

lim
x→−∞

ρ(x) =∞. lim
x→∞

ρ(x) = 0.

(ii) x+ ρ(x) is positive and strictly increasing.

lim
x→−∞

(x+ ρ(x)) = 0. lim
x→∞

(x+ ρ(x)) =∞.

(iii) ρ(x)(x+ ρ(x)) ∈ (0, 1) is strictly decreasing.

lim
x→−∞

ρ(x)(x+ ρ(x)) = 1. lim
x→∞

ρ(x)(x+ ρ(x)) = 0.

(iv) 1/(x+ ρ(x)) is positive, strictly decreasing, and strictly convex.

Proof. (i) Clearly ρ(x) = ϕ(x)/Φ(x) > 0. We have ρ′(x) = (ln Φ(x))′′ < 0 since Φ(x) is

strictly logconcave. We prove in (ii) the strict logconcavity of ρ(x), which is equivalent

to the strict increasing property of x+ρ(x) because (ln ρ(x))′ = −(x+ρ(x)). We prove

in (iii) the strict convexity of ρ(x), which is equivalent to the strict decreasing property

of ρ(x)(x + ρ(x)) because ρ′(x) = −ρ(x)(x + ρ(x)). The proof of the limits are easily

derived by l’Hôpital’s rule.

(ii) We can express x+ ρ(x) = −(ln Φ(x))′′/ρ(x) > 0 since Φ(x) is strictly logcon-

cave. Alternatively, we can express

x+ ρ(x) =
xΦ(x) + ϕ(x)

Φ(x)
=

∫ x
−∞(tΦ(t) + ϕ(t))′dt

Φ(x)
=

∫ x
−∞Φ(t)dt

Φ(x)
=

1(
ln
∫ x
−∞Φ(t)dt

)′ .
(3.3.7)
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Since
∫ x
−∞Φ(t)dt is an integral of a strictly logconcave distribution function, it is strictly

logconcave. Hence the denominator of (3.3.7) is a strictly decreasing function. The

proof of the limits are easily derived by l’Hôpital’s rule.

(iii) First we prove

0 < ρ(x)(x+ ρ(x)) < 1. (3.3.8)

The left inequality is obvious from the positivities in (i) and (ii). Since x + ρ(x) is

strictly increasing by (ii), it follows that 0 < (x + ρ(x))′ = 1 − ρ(x)(x + ρ(x)), which

proves the right inequality. Then the proof of the limits are easily derived by l’Hôpital’s

rule. To prove the strict decreasing property we show the following inequality:

f(x) := − 1

ρ(x)
(ρ(x)(x+ ρ(x)))′

= (x+ ρ(x))2 + ρ(x)(x+ ρ(x))− 1 > 0 for x ∈ R.
(3.3.9)

Either f(x) > 0 for all x ∈ R or there exists x0 ∈ R such that f(x0) ≤ 0. We show the

latter case doesn’t hold by contradiction. Assume it holds. By the definition of f(x) in

(3.3.9) we have the following implication:

f ′(x) = 2(x+ ρ(x))(1− ρ(x)(x+ ρ(x)))− ρ(x)((x+ ρ(x))2 + ρ(x)(x+ ρ(x))− 1) ≤ 0

⇒ f(x) ≥ 2

ρ(x)
(x+ ρ(x))(1− ρ(x)(x+ ρ(x))) > 0 (∵ positivities in (i) and (ii), (3.3.8)),

(3.3.10)

which implies that f ′(x0) > 0. Since f(x) is continuously differentiable, there exists

x1 < x0 such that f(x1) < f(x0) ≤ 0. Since limx→−∞ f(x) = 0 and f(x1) < 0, there

exists x2 ∈ (−∞, x1) such that f(x1) < f(x2) < 0 and f ′(x2) < 0, which contradicts

(3.3.10).

(iv) The positivity and the decreasing property follows directly from (ii). To prove

the strict convexity we show the following inequality:

g(x) := (x+ ρ(x))3
(

1

x+ ρ(x)

)′′
= 2(1− ρ(x)(x+ ρ(x)))2 − ρ(x)(x+ ρ(x))f(x)

= 2(1− ρ(x)η(x))2 − ρ(x)η(x)f(x) > 0 for x ∈ R,

(3.3.11)
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where we defined η(x) := x + ρ(x) and used f(x) = η(x)2 + ρ(x)η(x) − 1 defined in

(3.3.9). Either g(x) > 0 for all x ∈ R or there exists x0 ∈ R such that g(x0) ≤ 0. We

show the latter case doesn’t hold by contradiction. Assume it holds. By the definition

of g(x) in (3.3.11) we have the following implication:

g′ = ρ
[
4(1− ρη)f + f2 − 2η2(1− ρη) + ρηf

]
≤ 0

⇒ g ≥ 2(1− ρη)2 + 4(1− ρη)f − 2η2(1− ρη) + f2

= 2(1− ρη)f + f2 > 0 (∵ (3.3.8), (3.3.9)),

(3.3.12)

which implies that g′(x0) > 0. Since g(x) is continuously differentiable, there exists

x1 < x0 such that g(x1) < g(x0) ≤ 0. Since limx→−∞ g(x) = 0 and g(x1) < 0, there

exists x2 ∈ (−∞, x1) such that g(x1) < g(x2) < 0 and g′(x2) < 0, which contradicts

(3.3.12).

The logconcavity of Gi(µ) in the following lemma together with Remark 3.2.1 en-

sures the logconcavity of Fi(x) in (3.3.6), which proves Theorem 3.2.1 for the case of

the normal distribution.

Lemma 3.3.3. The function Gi(µ) defined by (3.3.5) is strictly decreasing for µ ≥ 0.

It is logconcave for µ ∈ [0, νi] if and only if the condition (3.2.8) is satisfied.

Proof. We prove the decreasing property for x ≥ 0 and the logconcavity for x ∈ [0, ν]

of the function:

F (x) := Φ

(
a√
x
− b
√
x

)
for x ≥ 0,

where a, b, ν > 0 for simplicity of the notation. We define F (0) = limx→0+ F (x) = 1.

Note that Gi(µ) = F (µ) with a = Wi/
√
λi, b = 1/

√
λi, and ν = νi. Let us denote

g(x; a, b) := ax−1/2 − bx1/2 and ρ(z) :=
ϕ(z)

Φ(z)
. (3.3.13)

First we prove the decreasing property of F (x) = Φ(g(x; a, b)). Clearly Φ(z) is strictly

increasing for z ∈ R. The following shows that g(x; a, b) is strictly decreasing for x > 0.

g′(x; a, b) = −1

2
(ax−

3
2 + bx−

1
2 ) < 0 for x > 0.
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It follows that Φ(g(x; a, b)) is strictly decreasing for x ≥ 0.

Next we prove the logconcavity. The function F (x) = Φ(g(x; a, b)) is logconcave for

x ∈ [0, ν] if and only if for all x ∈ (0, ν],

0 ≥ (lnF (x))′′ =

(
ϕ(g)g′

Φ(g)

)′
=
(
ρ(g)g′

)′
= ρ(g)

[
g′′ − (g + ρ(g))(g′)2

]
⇔ g + ρ(g) ≥ g′′

(g′)2
=
x

1
2 (3a+ bx)

(a+ bx)2
. (3.3.14)

By solving the quadratic equation

g = ax−1/2 − bx1/2 (in (3.3.13)) ⇔ b(x1/2)2 + gx1/2 − a = 0

with respect to x1/2 > 0, we have

x
1
2 =

√
g2 + 4ab− g

2b
. (3.3.15)

By using (3.3.15), the condition (3.3.14) for a and b is equivalent to

2
√
g2 + 4ab+ g

g2 + 4ab
≤ g + ρ(g) for all x ∈ (0, ν].

This is equivalent to

√
g2 + 4ab ≤

1−
√

1 + g(g + ρ(g))

g + ρ(g)
(3.3.16a)

or√
g2 + 4ab ≥

1 +
√

1 + g(g + ρ(g))

g + ρ(g)
(3.3.16b)

for all x ∈ (0, ν]. Note that 1 + g(g + ρ(g)) = (g + ρ(g))2 + 1 − ρ(g)(g + ρ(g)) > 0 by

Lemma 3.3.2 (iii). No a, b exists under (3.3.16a), for instance when g(g + ρ(g)) > 0,

which holds for sufficiently small x > 0. Since both sides of (3.3.16b) are positive, the

condition (3.3.16b) can be expressed as

4ab ≥ −g2 +

[
1

g + ρ(g)
+
√
h(g)

]2
= −g2 +

1

(g + ρ(g))2
+

2
√
h(g)

g + ρ(g)
+ h(g). (3.3.17)

Here we defined

h(z) :=
1 + z(z + ρ(z))

(z + ρ(z))2
= 1 +

1− ρ(z)(z + ρ(z))

(z + ρ(z))2
(> 0 by (3.3.8) in Lemma 3.3.2 (iii))

= 1−
(

1

z + ρ(z)

)′
,
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which is decreasing for z ∈ R by Lemma 3.3.2 (iv). The sum −g2 + 1/(g + ρ(g))2 in

(3.3.17) is decreasing in g because

−(z + ρ(z))3

2

(
−z2 +

1

(z + ρ(z))2

)′
= (z + ρ(z))4 − ρ(z)(z + ρ(z))3 + {1− ρ(z)(z + ρ(z))}

> (z + ρ(z))4 − {1− ρ(z)(z + ρ(z))}2

(∵ (3.3.11) in Lemma 3.3.2 (iv))

> 0. (∵ (3.3.8),(3.3.9) in Lemma 3.3.2 (ii),(iii))

By Lemma 3.3.2 (ii), g+ ρ(g) is increasing in g. Thus the right-hand side of (3.3.17) is

decreasing for g ∈ R and hence it is increasing for x > 0, regardless of a and b. So the

condition (3.3.14) for a and b is equivalent to

4ab ≥ −g(ν; a, b)2 +

[
1 +

√
1 + g(ν; a, b){g(ν; a, b) + ρ(g(ν; a, b))}

g(ν; a, b) + ρ(g(ν; a, b))

]2
. (3.3.18)

Therefore F (x) is logconcave for x ∈ [0, ν] under the condition for a and b in (3.3.18).

3.3.3 Convexity result for the Poisson distribution.

In this section we consider a case where the independent random variable ξij in (3.2.4)

has the Poisson distribution

ξij ∼ Pois(λij),

with parameter λij > 0 for some i ∈ {1, . . . ,m} and all j = 1, . . . , n. The probability

mass function (pmf) of ξij is as follows.

f(k) =
λkij
k!
e−λij for k = 0, 1, . . .

Note that Var(ξij) = E(ξij) = λij . Since xj ∈ {0, 1}, it follows that for x 6= 0,∑n
j=1 ξijxj is a sum of independent Poisson random variables and thus has the Poisson

distribution

n∑
j=1

ξijxj ∼ Pois (λi(x)) ,
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where we defined λi(x) :=
∑n

j=1 λijxj . Let Q(p, λ) denote the upper regularized gamma

function:

Q(p, λ) := 1− P (p, λ) =

∫ ∞
λ

tp−1e−t

Γ(p)
dt for p ≥ 0, λ ≥ 0. (3.3.19)

Here Γ(p) and P (p, λ) are defined by (3.3.1) and (3.3.2), respectively. It is well known

that

N∑
k=0

λk

k!
e−λ = Q(N + 1, λ)

for any nonnegative integer N . The function in the joint probabilistic constraint:

Fi(x) = P

 n∑
j=1

ξijxj ≤Wi

 = Q(bWic+ 1, λi(x)) (3.3.20)

is defined for x ≥ 0. The logconcavity of Q(p, λ) in the following lemma together with

Remark 3.2.1 ensures the logconcavity of Fi(x) in (3.3.20), which proves Theorem 3.2.1

for the case of the Poisson distribution.

Lemma 3.3.4. For any fixed p ≥ 1, the function Q(p, λ) defined by (3.3.19) is strictly

decreasing and logconcave for λ ≥ 0.

Proof. First we prove the decreasing property. It follows that for λ > 0,

dQ(p, λ)

dλ
= −λ

p−1e−λ

Γ(p)
< 0.

Hence Q(p, λ) is strictly decreasing for λ ≥ 0.

Next we prove the logconcavity. Let us introduce the following continuous and

logconcave p.d.f.:

f(y) :=
yp−1e−y

Γ(p)
for y ≥ 0.

Note that

f(y) ≥ 0,

∫ ∞
0

f(y)dy = 1,
d2

dy2
ln f(y) = −p− 1

y2
≤ 0.

It follows from Theorem 4.2.4 in Prékopa [58] that

1−
∫ λ

−∞
f(y)dy =

∫ ∞
λ

f(y)dy =

∫ ∞
λ

yp−1e−y

Γ(p)
dy = Q(p, λ)

is logconcave for λ ≥ 0.
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3.3.4 Convexity result for the binomial distribution.

In this section we consider a case where the independent random variable ξij in (3.2.4)

has the binomial distribution

ξij ∼ B(nij , pi)

with the number of trials nij ∈ N and the success probability in each trial pi ∈ (0, 1)

for some i ∈ {1, . . . ,m} and all j = 1, . . . , n. The pmf of ξij is as follows.

f(k) =

(
nij
k

)
pki (1− pi)nij−k for k = 0, 1, . . . , nij

Note that Var(ξij) = pi E(ξij) = nijp
2
i . Since xj ∈ {0, 1}, it follows that for x 6= 0,∑n

j=1 ξijxj is a sum of independent binomial random variables with the common success

probability pi and thus has the binomial distribution

n∑
j=1

ξijxj ∼ B (ni(x), pi) ,

where we defined ni(x) :=
∑n

j=1 nijxj . Let I(p; a, b) denote the regularized beta func-

tion:

I(p; a, b) :=

∫ p
0 y

a−1(1− y)b−1dy∫ 1
0 y

a−1(1− y)b−1dy
.

Let us define a continuous function:

J(z; c, p) :=


I(1− p; z − c, c+ 1) for z > c

1 for z ≤ c
, (3.3.21)

where c > −1 and p ∈ (0, 1). It is well known that

0 < J(z; c, p) < 1 for z > c, lim
z→c+

J(z; c, p) = 1, lim
z→∞

J(z; c, p) = 0.

It is well known (and easy to prove, e.g., by induction) that

min(N,n)∑
k=0

(
n

k

)
pk(1− p)n−k = J(n;N, p)

for any nonnegative integers n and N . The function in the joint probabilistic constraint:

Fi(x) = P

 n∑
j=1

ξijxj ≤Wi

 = J (ni(x); bWic, pi) (3.3.22)
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is defined for x ≥ 0. The logconcavity of J(z; c, p) in the following lemma together with

Remark 3.2.1 ensures the logconcavity of Fi(x) in (3.3.22), which proves Theorem 3.2.1

for the case of the binomial distribution.

Lemma 3.3.5. For any fixed c ≥ 0 and p ∈ (0, 1), the function J(z; c, p) defined by

(3.3.21) is decreasing and logconcave for z ∈ R.

Proof. First we prove the decreasing property. Let us designate f(y, z; c) := yc(1 −

y)z−c−1. For z > c, the derivative of J(z; c, p) = I(1 − p; z − c, c + 1) = 1 − I(p; c +

1, z − c) =
∫ 1
p f(y, z; c)dy/

∫ 1
0 f(y, z; c)dy is calculated as follows:

dJ(z; c, p)

dz
=

d

dz

∫ 1
p f(y, z; c)dy∫ 1
0 f(y, z; c)dy

= J(z; c, p)

(∫ 1
p f(y, z; c) ln(1− y)dy∫ 1

p f(y, z; c)dy
−
∫ 1
0 f(y, z; c) ln(1− y)dy∫ 1

0 f(y, z; c)dy

)
. (3.3.23)

The derivative with respect to p of the first term in the parenthesis in (3.3.23) is

d

dp

∫ 1
p f(y, z; c) ln(1− y)dy∫ 1

p f(y, z; c)dy

=
f(p, z; c)(∫ 1

p f(y, z; c)dy
)2 [∫ 1

p
f(y, z; c) (ln(1− y)− ln(1− p)) dy

]

< 0.

(∵ f(p, z; c) > 0, f(y, z; c) > 0 and ln(1− y)− ln(1− p) < 0 on y ∈ (p, 1))

Thus the first term in the parenthesis in (3.3.23) is a strictly decreasing function of p,

which implies J(z; c, p) is strictly decreasing for z ≥ c and hence decreasing for z ∈ R.

Next we prove the logconcavity. For z > c, the second derivative of ln J(z; c, p) is

calculated as follows:

d2

dz2
ln J(z; c, p) =∫ 1

p f(y, z; c) {ln(1− y)}2 dy∫ 1
p f(y, z; c)dy

−

(∫ 1
p f(y, z; c) ln(1− y)dy∫ 1

p f(y, z; c)dy

)2

−

∫ 1
0 f(y, z; c) {ln(1− y)}2 dy∫ 1

0 f(y, z; c)dy
−

(∫ 1
0 f(y, z; c) ln(1− y)dy∫ 1

0 f(y, z; c)dy

)2
 .

(3.3.24)
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Let us introduce a random variable X that has the following continuous and logconcave

p.d.f.:

g(x) =
(1− e−x)ce−x(z−c)∫∞

0 (1− e−y)ce−y(z−c)dy
for x ≥ 0, (3.3.25)

where c ≥ 0 and z > c are fixed. Note that

g(x) ≥ 0,

∫ ∞
0

g(x)dx = 1,
d2 ln g(x)

dx2
= − ce−x

(1− e−x)2
≤ 0.

Then by changing variable of integration by x = ln 1/(1 − y), the second derivative

(3.3.24) can be written as∫∞
ln 1/(1−p) x

2g(x)dx∫∞
ln 1/(1−p) g(x)dx

−

(∫∞
ln 1/(1−p) xg(x)dx∫∞
ln 1/(1−p) g(x)dx

)2

−

[∫∞
0 x2g(x)dx∫∞
0 g(x)dx

−
(∫∞

0 xg(x)dx∫∞
0 g(x)dx

)2
]

= E(X2|X ≥ ln 1/(1− p))− E2(X|X ≥ ln 1/(1− p))−
[
E(X2)− E2(X)

]
= E(X2|X ≥ v)− E2(X|X ≥ v)−

[
E(X2)− E2(X)

]
. (We denote v := ln 1/(1− p))

Since the random variable X has a continuous and logconcave p.d.f. g(x), it follows by

theorem 2.1 in Prékopa [61] that

E(X2|X ≥ v)− E2(X|X ≥ v)

is decreasing in v. We have proved that for any v > 0 the following inequality holds:

E(X2|X ≥ v)− E2(X|X ≥ v) ≤ E(X2)− E2(X),

which implies d2 ln J(z; c, p)/dz2 ≤ 0, and thus J(z; c, p) is logconcave for z ≥ c. We

prove that J(z; c, p) is logconcave for all z by verifying that the following inequality is

satisfied.

J(µz1 + (1− µ)z2; c, p) ≥ J(z1; c, p)
µJ(z2; c, p)

1−µ (3.3.26)

The fact that (3.3.26) is satisfied for z1, z2 ≥ c follows from the logconcavity of J(z; c, p)

for z ≥ c so that we have two cases left. For any z1, z2 < c, the equality clearly holds

(both sides are 1) for (3.3.26). For any z1 < c, z2 ≥ c, we have

J(µz1 + (1− µ)z2; c, p) ≥ J(µc+ (1− µ)z2; c, p) (∵ J(z; c, p) is decreasing in z)

≥ J(c; c, p)µJ(z2; c, p)
1−µ (∵ J(z; c, p) is logconcave for z ≥ c)

= J(z1; c, p)
µJ(z2; c, p)

1−µ.
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Therefore, J(z; c, p) is logconcave for z ∈ R.

3.4 Solutions and computational examples.

3.4.1 Solutions

We introduce a known solution to convex mixed-integer nonlinear programming (MINLP)

problems to briefly explain how convexity of the relaxed problem helps to find a glob-

ally optimal integer solution. DICOPT [34] is a program for solving MINLP problems

based on extensions of the outer approximation method. The method generates ac-

cumulating tangent hyper-planes of the relaxed problem improving successively linear

approximation of nonlinear convex functions that underestimate the objective function

and overestimate the feasible region for the case of convex problems. The discrete opti-

mization is performed via a mixed-integer linear programming (MILP), which provides

a lower bound (in the case of minimization) on the objective function which increases

monotonically as iterations proceed due to the accumulation of linear approximations.

3.4.2 Execution times and quality of solutions.

We carried out an experiment to measure the CPU times for computing optimal so-

lutions of the problems and to compare the solutions from the deterministic model

and the stochastic models. There are a number of open source and commercial solvers

for MINLP available today. We used GAMS [27] (release 24.1.2, 64-bit) as a mod-

eling system with DICOPT as an MINLP solver. We selected CPLEX [38] (version

12.5.1.0) as an MILP solver and SNOPT [30] (version 7.2-12) as a nonlinear program-

ming (NLP) solver both called internally from DICOPT in solving subproblems. GAMS

has built-in support for various special math functions including the regularized gamma

function, the regularized beta function, and the standard normal c.d.f., which cover

all of our cases. It also has support for derivatives of those functions used by NLP

solvers. In the case of the Poisson distribution, due to errors in computing the ex-

act derivatives of the regularized gamma function by GAMS, we selected as an NLP

solver KNITRO [10] (version 8.1.1), which has an option to compute derivatives by
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finite-difference approximations. This, however, can seriously degrate the performance

and the likelyhood of converging to a solution. The experiment was carried out on the

NEOS Server [12, 19, 33], where each job was run on a processor clocked at 2.79 GHz

with the maximum memory limit of 400 MB. Both absolute and relative MIP tolerance

options in the solver were set to 0 so we obtained the exact optimal 0-1 solutions un-

der the system’s accuracy in fractional calculations. A time limit of three hours was

imposed in solving a problem.

We performed tests on instances created from the data files for multidimensional

knapsack problems in OR-Library [1]. Since the original data was prepared for the

deterministic model, we needed to generate test data for the stochastic models. Each

instance in the original data consists of:

item value vj , item attribute wij , capacity Wi for i = 1, . . . ,m, j = 1, . . . , n.

Test data was prepared in the following way. We used the same

item value vj , capacity Wi for i = 1, . . . ,m, j = 1, . . . , n

as those in the original data and the common probability level q = 0.9 for all instances.

The parameters for the distributions of random item attribute ξij were generated from

wij as follows.

ri randomly generated in [0.05, 0.10]

Gamma [ξij ∼ Γ(pij , θi)] : θi = ri, pij = wij/θi

Normal [ξij ∼ N (µij , λiµij)] : λi = ri, µij = wij

Poisson [ξij ∼ Pois(λij)] : λij = wij

Binomial [ξij ∼ B(nij , pi)] : pi = 1− ri, nij = bwij/pie

In the above generation the mean E[ξij ] is equal to wij (approximately in the case of

the binomial distribution) and the variance Var[ξij ] is 5 to 10% of the mean (except for

the Poisson distribution where the variance is equal to the mean). For each original

instance we generated four test instances corresponding to gamma, normal, Poisson,

and binomial, in each of which all items follow the same type of distribution.
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Table 3.1 shows the CPU time for finding an optimal solution. The first column is

the instance name, the second and the third columns the size of the instance, and the

fourth through the eighth columns the CPU times, each of which is the median of five

runs, for the deterministic model (in column “Det”) and the four stochastic models (in

columns “Γ”, “N”, “Pois”, “B”). Tables 3.2 and 3.3 compare the optimal objective

values (“obj” columns) and the probabilities satisfying the joint knapsack constraints

(“jkc%” columns) by using the optimal solutions on the deterministic model and the

stochastic models.
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Table 3.1: CPU times (in seconds) for computing optimal solutions.

CPU time

Instance m n Det Γ N Pois B

1-1 10 6 0.012 0.036 0.026 0.107 0.070
1-2 10 10 0.013 0.031 0.030 0.231 0.045
1-3 10 15 0.014 0.042 0.037 0.278 0.045
1-4 10 20 0.015 0.035 0.051 0.347 0.059
1-5 10 28 0.016 0.037 0.045 0.889 0.097
1-6 5 39 0.019 0.066 0.102 1.889 0.152
1-7 5 50 0.019 0.116 0.155 0.672 0.398
2-WE01 5 30 0.016 0.028 0.028 1.060 0.046
2-WE06 5 40 0.015 0.032 0.044 0.369 0.049
2-WE10 5 50 0.023 0.041 0.053 0.235 0.068
2-PB4 2 29 0.016 0.040 0.038 0.058 0.040
2-PB5 10 20 0.047 0.058 0.081 4.238 0.095
2-PB6 30 40 0.032 0.128 0.119 1.397 0.204

cb1-10 5 100 0.92 11.18 11.11 3.57 10.87
cb1-20 5 100 0.85 0.39 0.39 2.25 0.40
cb1-30 5 100 1.76 0.68 0.84 4.45 0.55
cb2-10 5 250 3.32 43.80 43.85 110.04 45.92
cb2-20 5 250 29.35 104.72 101.13 44.00 23.13
cb2-30 5 250 26.93 9.81 5.39 21.24 4.54
cb3-10 5 500 1850.82 225.02 186.61 2538.41 207.92
cb3-20 5 500 783.11 144.88 86.04 1128.51 68.36
cb3-30 5 500 888.81 110.85 115.05 1545.49 79.91
cb4-10 10 100 5.88 45.49 43.03 14.14 102.90
cb4-20 10 100 12.65 21.58 27.28 11.30 22.74
cb4-30 10 100 3.27 13.89 15.35 3.39 12.03
cb5-10 10 250 6336.91 3852.86 3748.23 7198.34 4211.01
cb5-20 10 250 1479.26 1173.38 945.91 8332.73 1153.43
cb5-30 10 250 523.66 8136.13 8557.09 1.54 7341.99
cb7-10 30 100 40.12 395.83 384.33 134.55 355.68
cb7-20 30 100 57.77 118.59 132.74 146.41 129.56
cb7-30 30 100 51.52 329.71 347.56 7.55 518.70
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Table 3.2: Objective values and probabilities (in %) satisfying the joint knapsack constraints (part 1).

Deterministic solution Stochastic solutions

jkc% Γ N Pois B

Instance m n obj Γ N Pois B obj jkc% obj jkc% obj jkc% obj jkc%

1-1 10 6 3800 93.8 94.0 50.3 98.5 3800 93.8 3800 94.0 3300 93.6 3800 98.5
1-2 10 10 8706.1 52.4 52.3 34.8 52.0 8577.8 99.9 8577.8 99.9 8577.8 91.1 8577.8 99.9
1-3 10 15 4015 78.8 79.0 22.4 75.0 3915 90.3 3915 99.4 3605 90.2 3945 90.6
1-4 10 20 6120 28.0 27.8 21.9 30.2 6030 95.7 6030 95.8 5780 90.6 6040 90.8
1-5 10 28 12400 35.9 35.8 23.4 44.5 12310 93.3 12310 93.4 11930 91.1 12310 94.7
1-6 5 39 10618 23.1 23.0 10.5 24.6 10456 91.4 10456 91.6 9949 90.0 10456 92.6
1-7 5 50 16537 13.0 12.9 9.3 20.2 16330 90.7 16330 90.9 15816 90.1 16358 90.4
2-WE01 5 30 4554 96.2 96.2 57.9 97.2 4554 96.2 4554 96.2 4424 97.8 4554 97.2
2-WE06 5 40 5557 57.5 57.3 43.8 70.4 5533 96.9 5533 97.0 5442 93.3 5533 98.8
2-WE10 5 50 6339 93.0 93.1 52.6 96.1 6339 93.0 6339 93.1 6226 95.1 6339 96.1
2-PB4 2 29 95168 67.1 67.0 41.4 80.7 93183 92.1 93183 92.4 87627 91.9 94461 93.0
2-PB5 10 20 2139 93.0 93.1 15.1 95.7 2139 93.0 2139 93.1 1948 91.1 2139 95.7
2-PB6 30 40 776 78.7 78.7 18.2 77.0 765 99.9 765 99.9 732 99.7 765 99.9
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Table 3.3: Objective values and probabilities (in %) satisfying the joint knapsack constraints (part 2).

Deterministic solution Stochastic solutions

jkc% Γ N Pois B

Instance m n obj Γ N Pois B obj jkc% obj jkc% obj jkc% obj jkc%

cb1-10 5 100 24411 74.7 74.7 27.6 74.7 24315 98.3 24315 98.3 24024 97.1 24315 98.1
cb1-20 5 100 44554 57.6 57.6 11.7 59.4 44511 99.0 44511 99.0 44107 95.2 44511 99.1
cb1-30 5 100 59965 25.8 25.7 10.6 26.5 59915 95.5 59915 95.5 59466 95.1 59915 95.7
cb2-10 5 250 58959 16.8 16.8 5.7 17.8 58785 92.6 58785 92.6 58329 93.8 58785 93.4
cb2-20 5 250 107058 10.8 10.8 6.1 10.8 106891 93.5 106891 93.5 106326 93.4 106900 90.6
cb2-30 5 250 154668 10.8 10.8 4.9 10.1 154517 90.4 154517 90.4 153929 92.2 154517 90.1
cb3-10 5 500 120717 7.6 7.6 4.1 7.4 120490 90.1 120490 90.1 119851 91.4 120490 90.2
cb3-20 5 500 219719 6.4 6.4 3.8 5.8 219476 91.7 219476 91.7 218663 91.9 219476 91.0
cb3-30 5 500 299910 4.4 4.4 3.4 4.5 299661 90.6 299661 90.6 298864 90.8 299663 90.1
cb4-10 10 100 22702 79.9 79.9 31.3 77.5 22567 90.2 22567 90.3 22273 96.6 22551 99.6
cb4-20 10 100 41207 63.0 63.0 4.4 63.7 41096 95.2 41096 95.2 40721 98.2 41096 95.6
cb4-30 10 100 60633 89.5 89.5 23.5 89.0 60515 94.7 60515 94.7 60133 96.7 60515 94.5
cb5-10 10 250 59208 18.6 18.6 3.3 18.1 59064 94.7 59064 94.8 58527 95.3 59064 94.3
cb5-20 10 250 106723 7.2 7.2 1.5 6.4 106558 91.6 106558 91.6 105880 94.8 106558 91.3
cb5-30 10 250 149704 10.8 10.8 1.3 10.4 149485 90.9 149485 91.0 148377 99.8 149485 90.6
cb7-10 30 100 20983 54.0 54.0 20.7 55.1 20862 99.4 20862 99.4 20506 99.0 20862 99.5
cb7-20 30 100 41700 48.5 48.5 12.1 51.2 41620 94.9 41620 95.0 41056 99.0 41620 94.7
cb7-30 30 100 60603 61.8 61.8 10.0 60.1 60471 98.9 60471 98.9 53662 99.9 60471 93.6
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We see that solutions can be computed instantly for smaller sized problems (n ≤ 50)

while it can take minutes to hours to solve larger sized problems (n ≥ 100). We

observe that solving a stochastic version of the problem is not much more difficult,

easier for some instances, than solving the deterministic version. In such instances,

though, further numerical tests suggest that solving a stochastic version needs more

time as a test instance is generated with smaller variances of the random variables

and we set a higher probability level q, in which case the problem becomes closer

to the deterministic version. The objective function value of a stochastic solution is

worse by a few percentages than that of the deterministic solution but the probability

satisfying the joint knapsack constraint with the stochastic solution is no less than

q = 0.9 ensured by the model while it is much lower, often less than 0.5 for larger sized

problems, with the deterministic solution. We have to treat the results from the Poisson

distribution separately from other distributions because we used a different NLP solver

with derivatives computed by approximations, which may be the reason that solutions

of some instances are not optimal computed in unusually small times such as in ’cb5-30’

and ’cb7-30’.

3.4.3 Project selection problem.

We illustrate a numerical example of a project selection problem. Suppose we are given

a set of n = 5 projects. For each project j ∈ {1, 2, . . . , 5}, the following parameters are

given. Its estimated profit is vj . It consumes m = 4 types of resources. The random

amount ξ1j consumed for the resource 1 follows the gamma distribution with shape p1j

and scale θ1. The random amount ξ2j consumed for the resource 2 follows the normal

distribution with mean µ2j and variance λ2µ2j . The random amount ξ3j consumed for

the resource 3 follows the Poisson distribution with parameter λ3j . The random amount

ξ4j consumed for the resource 4 follows the binomial distribution with number of trials

n4j and success probability p4. Note that the random amounts ξij follow the same type

of distribution in the same resource but follow different types of distributions in different

resources. All random amounts ξij (i = 1, . . . , 4 and j = 1, . . . , 5) are assumed to be

independent. The capacities of the total amount of consumption for the four resource
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types are W1, . . . ,W4, respectively. The parameters cj , p1j , µ2j , λ3j , N4j ,Wi are shown

in Table 3.4. The parameters µ2j , λ2, and W2 satisfy the condition (3.2.8). We want

Table 3.4: Parameters for the projects.

Project Profit Resource 1 Resource 2 Resource 3 Resource 4
Γ(p1j , θ1) N (µ2j , λ2µ2j) Pois(λ3j) B(n4j , p4)

j vj p1j θ1 µ2j λ2 λ3j n4j p4

1 560 210.0 86.0 24.0 50
2 500 490.0 153.0 41.0 100
3 170 350.0 0.09 112.0 0.12 37.0 210 0.02
4 230 140.0 91.0 31.0 160
5 140 270.0 98.0 53.0 152

Capacity W1 = 150.0 W2 = 203.0 W3 = 78 W4 = 10

to find a subset of the projects that maximizes the total estimated profit while keeping

the capacity constraints with a high probability. With the probability level q = 0.9, we

can formulate the stochastic multidimensional knapsack problem as follows:

maximize
5∑
j=1

vjxj

subject to lnP

 5∑
j=1

p1jxj ,
W1

θ1

+ ln Φ

W2 −
∑5

j=1 µ2jxj√
λ2
∑5

j=1 µ2jxj


+ lnQ

bW3c+ 1,

5∑
j=1

λ3jxj

+ ln J

 5∑
j=1

n4jxj ; bW4c, p4

 ≥ ln 0.9,

xj ∈ {0, 1} for j = 1, . . . , 5,

where functions P ,Φ,Q,J are defined by (3.3.2),(3.2.7),(3.3.19),(3.3.21), respectively.

The problem is a convex MINLP due to our results and we can use the same software

package as before to solve it. The optimal solution is x = (1, 0, 0, 1, 0). So the best

choice is to select the projects 1 and 4.
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Chapter 4

Improved bounds on the probability of the union of

events, some intersections of which are empty

4.1 Introduction

Computing the probability of the union of events is important in reliability theory,

stochastic programming, and other sciences concerned with stochastic systems. In re-

liability theory, consider a communication network with nodes and arcs, each with a

probability of a failure. The node-to-node reliability of a pair of nodes is the proba-

bility of the union of events, each of which occurs when a path between the two nodes

consists of arcs without failures. The all-terminal reliability is the probability of the

union of events, each of which occurs when a spanning tree of the network consists

of arcs without failures. In probabilistic constrained stochastic programming, a joint

probabilistic constraint for random variables X1, . . . , Xn specifies a lower bound on

P(X1 ≤ z1 ∩ · · · ∩Xn ≤ zn) = 1− P(X1 > z1 ∪ · · · ∪Xn > zn), which involves the prob-

ability of the union of events. Although it is hard to compute the exact probability of

the union of a large number of events, we can compute an approximation of it by using

the information about individual events or intersections of a small number of events.

Let {A1, A2, . . . , An } be a set of arbitrary events in some probability space and

introduce the notation for the probability of the intersections of its subsets.

pI := P

⋂
j∈I

Aj

 for I ⊂ {1, . . . , n} . (4.1.1)

Let S0 := 1 by definition and define

Sk :=
∑

I⊂{1,...,n}
|I|=k

pI for k = 1, 2, . . . , n. (4.1.2)
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The classical inclusion-exclusion principle (see de Moivre [15] for the concept and the

first appearance in a paper in da Silva [13] and later in Sylvester [68]) gives the proba-

bility of the union of events as follows:

P(A1 ∪ · · · ∪An) = S1 − S2 + · · ·+ (−1)n−1Sn. (4.1.3)

However, this formula is impractical if the number of events n is large, in which case

the calculation of Sk is intractable unless k is close to 1 or n due to
(
n
k

)
sums in (4.1.2).

We can still approximate the bounds using a few Sk’s. The Bonferroni inequalities (see

Bonferroni [5]) states that for m ≤ n,

P(A1 ∪ · · · ∪An)


≥

≤

 S1 − S2 + · · ·+ (−1)m−1Sm


if m is even

if m is odd

. (4.1.4)

These bounds are usually very weak unless m is large.

The best possible (sharp) bounds using only a few Sk’s have been found in closed

forms. The number of Sk’s used is called the order of the bound. The second order sharp

lower bound based on S1, S2 was obtained by Dawson and Sankoff [14] and its upper

bound by Kwerel [44, 45] and Sathe et al. [67]. See also Galambos [26] and Prékopa [56].

The third order sharp bounds based on S1, S2, S3 were obtained by Kwerel [44, 45] and

Boros and Prékopa [8]. The fourth order sharp upper bound based on S1, S2, S3, S4 was

given by Boros and Prékopa [8].

While the fifth or higher order sharp bounds have not been known in closed forms,

Prékopa [56] observed that all these bounds are the optimal objective values of the

binomial moment problems (also regarded as aggregated linear programming problems)

obtained from the formulation by Hailperin [35]. See Prékopa [56] for the structures of

the dual feasible bases of the problems and Boros and Prékopa [8] for the property of the

optimal solution of their dual problems. Let ν designate the random number of events

among A1 . . . , An that occur. Then we have the following relations (see Takács [70] and

Prékopa [58]):

E
[(
ν

k

)]
= Sk for k = 0, 1, . . . , n, (4.1.5)
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which can also be written as

n∑
i=0

(
i

k

)
vi = Sk for k = 0, 1, . . . , n, (4.1.6)

where vi := P(ν = i) for i = 0, 1, . . . , n. The value Sk is called the k-th binomial

moment of ν. If only S1, . . . , Sm are known, the sharp lower and upper bounds on the

probability of the union are given by the minimization and maximzation, respectively,

of the binomial moment problem as follows (see Hailperin [35] and Prékopa [56]):

min(max)

n∑
i=1

xi

subject to

n∑
i=1

(
i

k

)
xi = Sk for k = 1, . . . ,m

xi ≥ 0 for i = 1, . . . , n.

(4.1.7)

In practice, however, we are usually not given the values of S1, . . . , Sm but we calculate

them by (4.1.2) from pI ’s, which are in many cases easily calculated for small |I|.

By simply using the aggregated information S1, . . . , Sm, we lose the information in

individual events. If pI , I ⊂ { 1, . . . , n } , 1 ≤ |I| ≤ m are known, the sharp lower

and upper bounds on the probability of the union are given by the minimization and

maximization, respectively, of the Boolean probability bounding scheme (also regarded

as disaggregated linear programming problems), which was initiated by Boole [6] and

provided by Hailperin [35], as follows:

min(max)
∑

∅6=J⊂{1,...,n}

xJ

subject to
∑

∅6=J⊂{1,...,n}

aIJxJ = pI for I ⊂ { 1, . . . , n } , 1 ≤ |I| ≤ m,

xJ ≥ 0 for ∅ 6= J ⊂ {1, . . . , n},

(4.1.8)

where we defined

aIJ =


1 if I ⊂ J

0 otherwise

.

Although these disaggregated problems (4.1.8) give much better bounds than those

from the aggregated problems (4.1.7), they are impractical if the number of events n is

large due to the exponential number (2n − 1) of decision variables xJ ’s.
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Probability bounds that utilize structures of individual and intersections of events

have been studied improving on those from the aggregated problems but avoiding the

exponential size in the disaggregated problems. The first significant result is Hunter’s

upper bound (see Hunter [37] and Worsley [77]):

P(A1 ∪ · · · ∪An) ≤ S1 −
∑

(i,j)∈T

pij , (4.1.9)

where T is the heaviest spanning tree of the n-node complete graph with each edge

(i, j) assigned the weight pij . Hunter’s bound was generalized by Tomescu [71] and

improved on using special hypergraph structures by Bukszár and Prékopa [9]. Prékopa

and Gao [62] defined the linear programming problems which are obtained by partial

aggregation and disaggregation, balancing the size of the problem and the quality of

bounds. Prékopa, M. Subasi, and E. Subasi [63] gave the sharp bounds where the

probability distribution of the occurrences of events is unimodal with known mode.

Section 4.2 presents our main result. We formulate the linear programming problems

that give improved lower and upper bounds on the probability of the union of events

when some pI ’s are known to be 0 or very small. Section 4.3 presents a numerical

example comparing the bounds from our work with those obtained from the binomial

moment problem.

4.2 Improved bounds by the maximum independent set problem and

its extension

We provide improved bounds on the probability of the union of events using structures

of individual and intersections of events. Suppose we are given all pI for 1 ≤ |I| ≤ m.

First let us consider the case for m = 2. In practice, some event occurs only when

another event occurs and some pair of events never occurs together. If an event Ai

occurs only when another event Aj occurs:

Ai ⊂ Aj ⇔ P(Ai ∩Aj) = P(Ai) (pij = pi) , (4.2.1)

then we can eliminate the event Ai to reduce the size n of the problem. The following

remark is obvious.
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Remark 4.2.1. For a set of n events, probabilities of individual or intersections of

events pI ’s defined by (4.1.1) and binomial moments Sk’s defined by (4.1.2) have the

following properties.

(i) pI ≥ pJ for any I ⊂ J ⊂ { 1, . . . , n }.

(ii) If pI = 0 for some I ⊂ { 1, . . . , n } then Sn = 0.

Suppose some pair of events (Ai, Aj) never occurs together:

Ai ∩Aj = ∅ ⇔ P(Ai ∩Aj) = pij = 0. (4.2.2)

If there are one or more such pairs, then the minimum order ` exists such that S` =

S`+1 = · · · = Sn = 0 because of Remarks 4.2.1 (ii). We can find a good upper bound

on ` by solving the maximum independent set (MIS) problem as follows. Consider an

undirected graph G = (V,E) of n = |V | nodes corresponding to the n events A1, . . . , An,

respectively. Create an edge between two nodes Ai and Aj if P(Ai ∩ Aj) = 0. An

independent set (or stable set) is a set of nodes, no two of which are adjacent. The size

of an independent set is the number of nodes it contains. The MIS problem is to find

a largest independent set for a given graph. Any set of nodes (events) whose size is

greater than the maximum contains at least one pair of adjacent nodes (events) whose

union is empty. So the probability of the union of the events in the set is 0. Thus

all binomial moments whose order are higher than the maximum are 0. The integer

programming formulation of the MIS problem is as follows:

maximize
∑
u∈V

xu

subject to xu + xv ≤ 1 for (u, v) ∈ E,

xu ∈ {0, 1} for u ∈ V.

(4.2.3)

The problem is NP hard so it is unlikely we can find the exact solution efficiently.

But we only need an upper bound, which can be obtained by solving the following LP
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relaxation of the problem (4.2.3) expressed in a different way:

maximize
n∑
i=1

xi

subject to xi + xj ≤ 1 for {i, j} ⊂ {1, . . . , n} where pij = 0,

xi ≥ 0 for i = 1, . . . , n.

(4.2.4)

Next let us consider the general case for m ≤ n. Suppose some tuple of events

(Ai1 , . . . , Aik) never occurs together:

Ai1 ∩ · · · ∩Aik = ∅ ⇔ P(Ai1 ∩ · · · ∩Aik) = pi1,...,ik = 0. (4.2.5)

If there are one or more such tuples, then we can obtain a better upper bound on the

minimum order ` by solving the following LP which extends the problem (4.2.4):

maximize

n∑
i=1

xi

subject to
∑
i∈I

xi ≤ k − 1 for I ⊂ {1, . . . , n}, |I| = k where pI = 0

for k = 2, . . . ,m,

xi ≥ 0 for i = 1, . . . , n.

(4.2.6)

The IP version (xi ∈ {0, 1} instead of xi ≥ 0) of this problem means that we find the

maximum number of events that include no tuple of events with size up to m whose

intersections are empty. Let U denote the optimal objective value of the problem (4.2.6).

We have the following conditions:

Sk = 0 (or more precisely, pI = 0 for I ⊂ {1, . . . , n}, |I| = k)

for k = bUc+ 1, . . . , n.

(4.2.7)

Improved lower and upper bounds based on the binomial moment problem (4.1.7) are
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given by the optimal objective values of the minimization and maximization, respec-

tively, of the following LP:

min(max)
n∑
i=1

xi

subject to
n∑
i=1

(
i

k

)
xi = Sk for k = 1, . . . ,min(m, bUc),

n∑
i=1

(
i

k

)
xi = 0 for k = bUc+ 1, . . . , n,

xi ≥ 0 for i = 1, . . . , n.

(4.2.8)

Since the solution of this problem gives xi = 0 for i = bUc + 1, . . . , n, we can simplify

the formulation:

min(max)

bUc∑
i=1

xi

subject to

bUc∑
i=1

(
i

k

)
xi = Sk for k = 1, . . . ,min(m, bUc),

xi ≥ 0 for i = 1, . . . , bUc.

(4.2.9)

Similarly, improved lower and upper bounds based on the Boolean probability bound-

ing scheme (4.1.8) are given by the optimal objective values of the minimization and

maximization, respectively, of the following LP:

min(max)
∑

J⊂{1,...,n}
1≤|J |≤bUc

xJ

subject to
∑

J⊂{1,...,n}
1≤|J |≤bUc

aIJxJ = pI for 1 ≤ |I| ≤ min(m, bUc),

xJ ≥ 0 for J ⊂ {1, . . . , n}, 1 ≤ |J | ≤ bUc.

(4.2.10)

While the number of decision variables xJ ’s is still exponential, the reduction from the

original problem is exponentially large.

Now let us consider a more general case where the probabilities of some intersections

of events are very small instead of 0. Suppose some tuple of events (Ai1 , . . . , Aik) occurs

jointly with a very low probability no greater than a fixed ε ≥ 0:

P(Ai1 ∩ · · · ∩Aik) = pi1,...,ik ≤ ε. (4.2.11)
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Then consider the following LP similar to (4.2.6):

maximize
n∑
i=1

xi

subject to
∑
i∈I

xi ≤ k − 1 for I ⊂ {1, . . . , n}, |I| = k where pI ≤ ε

for k = 2, . . . ,m,

xi ≥ 0 for i = 1, . . . , n.

(4.2.12)

Let Uε denote the optimal objective value of the problem (4.2.12). Because of Remark

4.2.1 (i), we have the following conditions:

Sk ≤ ε
(
n

k

)
(or more precisely, pI ≤ ε for I ⊂ {1, . . . , n}, |I| = k)

for k = bUεc+ 1, . . . , n.

(4.2.13)

Improved lower and upper bounds based on the binomial moment problem (4.1.7) are

given by the optimal objective values of the minimization and maximization, respec-

tively, of the following LP:

min(max)
n∑
i=1

xi

subject to
n∑
i=1

(
i

k

)
xi = Sk for k = 1, . . . ,min(m, bUεc),

n∑
i=1

(
i

k

)
xi ≤ ε

(
n

k

)
for k = bUεc+ 1, . . . , n,

xi ≥ 0 for i = 1, . . . , n.

(4.2.14)

The formulation based on the Boolean probability bounding scheme using ε and Uε is

impractical since it contains an exponential number of constraints.

4.3 Numerical examples

Consider a unit square
{

(x, y) ∈ R2
∣∣ 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

}
on a plain. For each i ∈

{1, . . . , n}, select uniformly randomly two distinct x-values xi1, xi2 where 0 ≤ xi1 <

xi2 ≤ 1 and two distinct y-values yi1, yi2 where 0 ≤ yi1 < yi2 ≤ 1 on the unit square.

Let us assign the probability of the event Ai as the area of the rectangle defined by
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{
(x, y) ∈ R2

∣∣ xi1 ≤ x ≤ xi2, yi1 ≤ y ≤ yi2 }:

P(Ai) = (xi2 − xi1)(yi2 − yi1). (4.3.1)

The joint probability of two events Ai, Aj is the area of the intersection of the two

rectangles associated with them.

P(Ai ∩Aj) =


(min(xi2, xj2)−max(xi1, xj1))(min(yi2, yj2)−max(yi1, yj1))

if min(xi2, xj2) > max(xi1, xj1) and min(yi2, yj2) > max(yi1, yj1)

0 otherwise

(4.3.2)

Similarly, the joint probability of three or more events is the area of the intersection

of the rectangles associated with them. A certain number of joint probabilities are ex-

pected to be 0 in this example. We compute lower and upper bounds on the probability

of the union of the events A1, . . . , An. Table 4.1 compares the bounds obtained from

our results (4.2.6) and (4.2.9) and those obtained from the binomial moment problem

(4.1.7).
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Table 4.1: Lower and upper bounds on the union of events.

Our result Binomial moment problem

m = 2 m = 3 m = 4 m = 2 m = 3 m = 4
n Exact LB UB LB UB LB UB LB UB LB UB LB UB

10 0.7283 0.5750 1 0.6472 0.7941 0.7117 0.7559 0.5750 1 0.6182 0.7941 0.7117 0.7712
15 0.9409 0.8173 1 0.8523 1 0.9112 0.9855 0.8173 1 0.8309 1 0.9112 1
20 0.7950 0.6271 1 0.6746 0.8782 0.7760 0.8478 0.6271 1 0.6485 0.8782 0.7760 0.8630
30 - 0.6250 1 0.6654 1 0.7411 0.9934 0.6250 1 0.6434 1 0.7411 1
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[33] W. Gropp and J. Moré. Optimization environments and the NEOS server. Ap-
proximation Theory and Optimization, pages 167–182, 1997.

[34] I. Grossmann, J. Viswanathan, A. Vecchietti, R. Raman, and E. Kalvelagen. DI-
COPT. Engineering Research Design Center, Carnegie Mellon University, Pitts-
burgh, PA and GAMS Development Coporation, Washington D.C. Available in
http://www.gams.com.

[35] T. Hailperin. Best possible inequalities for the probability of a logical function of
events. The American Mathematical Monthly, 72(4):343–359, 1965.

[36] R. Henrion and C. Strugarek. Convexity of chance constraints with independent
random variables. Computational Optimization and Applications, 41(2):263–276,
2008.

[37] D. Hunter. An upper bound for the probability of a union. Journal of Applied
Probability, pages 597–603, 1976.

[38] International Business Machines Corporation. IBM ILOG CPLEX V12.1: User’s
Manual for CPLEX.

[39] P. Kall and J. Mayer. Stochastic Linear Programming: Models, Thoery, and Com-
putation. Springer, 2005.

[40] S. Kataoka. A stochastic programming model. Econometrica: Journal of the
Econometric Society, 31(1–2):181–196, 1963.

[41] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer-Verlag,
2004.

[42] B. H. Korte and R. Schrader. On the existence of fast approximation schemes.
In O. L. Mangasarian, R. R. Meyer, and S. M. Robinson, editors, Nonlinear Pro-
gramming, volume 4, pages 415–437. Academic press, 1981.

[43] B. H. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms,
chapter 17. Springer-Verlag, 2008.

[44] S. M. Kwerel. Bounds on the probability of the union and intersection of m events.
Advances in Applied Probability, pages 431–448, 1975.

[45] S. M. Kwerel. Most stringent bounds on aggregated probabilities of partially spec-
ified dependent probability systems. Journal of the American Statistical Associa-
tion, 70(350):472–479, 1975.

http://www.gams.com


63

[46] C. M. Lagoa, X. Li, and M. Sznaier. Probabilistically constrained linear programs
and risk-adjusted controller design. SIAM Journal on Optimization, 15(3):938–
951, 2005.

[47] J. H. Lorie and L. J. Savage. Three problems in rationing capital. The Journal of
Business, 28(4):229–239, 1955.

[48] J. Luedtke, S. Ahmed, and G. L. Nemhauser. An integer programming approach
for linear programs with probabilistic constraints. Mathematical Programming,
122(2):247–272, 2010.
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