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ABSTRACT OF THE DISSERTATION

Measurement of the Target Single-Spin

Asymmetry in Quasi-Elastic Region from the

Reaction 3He↑(e, e′)

by Yawei Zhang

Dissertation Director: Prof. Ronald Gilman

A measurement of the inclusive target single-spin asymmetry, A
3He
y , has been per-

formed using the quasi-elastic 3He↑(e, e′) reaction with a vertically polarized 3He

target at Q2 values of 0.13, 0.46 and 0.97 GeV2. This asymmetry vanishes under

the one photon exchange assumption. But the interference between two-photon

exchange and one-photon exchange gives rise to an imaginary amplitude, so that

a non-zero Ay is allowed. The experiment, conducted in Hall A of Jefferson Lab-

oratory in 2009, used two independent spectrometers to simultaneously measure

the target single-spin asymmetry, A
3He
y .

Using the effective polarization approximation, the neutron single-spin asym-

metries, Any , were extracted from the measured 3He asymmetries. The measure-

ment is the first to firmly establish a non-vanishing Ay. Non-zero asymmetries

were observed at all Q2 points, and the final overall precision is an order of mag-

nitude improved over the existing proton data. The data provide new constraints
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on Generalized Parton Distribution (GPD) models [1] and new information on

the dynamics of the two-photon exchange process.
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Chapter 1

Introduction

In the field of science and philosophy, humans have sought answers to the most

fundamental questions: What are the fundamental building blocks of matter,

and how do they build our universe? To answer these questions, people have

come a long way, and how these questions were answered illustrates the thinking

process of scientists and philosophers. In this process, people have learned about

our universe, the composition of materials, and their various properties. However,

regarding the internal structure of matter, there are still very important challenges

that need to be resolved.

1.1 Fundamental Constituents of Matter

Physicists have discovered smaller and smaller constituents in the search for the

basic building blocks of matter. By the end of 19th century, it was generally

acknowledged that all substances are composed of atoms, and that atoms are not

only the building blocks of matter, but they are also inseparable. In 1897, British

scientist J. J. Thomson discovered the negatively charged electron, which led to

the idea that atoms have an internal structure [2]. Thomson proposed the Plum

Pudding Model [3], which postulated that atomic structure is similar to one of

the most favorite English dessert - plum pudding. Negatively charged electrons

are immersed in a sea of positive charge, which is similar to the raisins dispersed

among plum pudding.

Nearly a decade after Thomson proposed his plum pudding model, Ernest



2

Rutherford proposed the Rutherford Model [4] based on his famous gold foil ex-

periments results. Rutherford’s model suggested that the atom consists of a

nucleus and electrons, where the nucleus is a densely packed core of positive

charge and is surrounded by a negatively charged electron cloud. In 1919, using

alpha particles as projectiles, Rutherford knocked hydrogen nuclei out of atoms

of 6 elements: boron, fluorine, sodium, aluminum, phosphorus, and nitrogen. He

named them protons and predicted the existence of uncharged neutrons, which

was verified by James Chadwick in 1932 [5]. The protons and neutrons constitute

the nucleus and are commonly called nucleons.

Particle accelerator experiments in the 1950’s and 60’s showed that protons

and neutrons are part of a larger family of particles called hadrons. Today, more

than 100 hadrons have been discovered. Initially, physicists thought that all

hadrons are point-like particles, and they do not have internal structure. However,

it was soon realized that this was not the case. In order to explain hadrons, it

has been speculated [6][7] that the hadrons are composed of point-like particles

called quarks. Quarks have spin-1/2, fractional charge, and a new degree of

freedom - flavor. At present, physicists know of two basic types of building

blocks: quarks and leptons. We know there are 6 leptons and 6 quarks as well as

their antiparticles. Figure 1.1 shows the different scales of the structure of matter;

with increasing magnification of the probe, smaller and smaller structures become

visible: the nucleus, the nucleons, and finally the quarks.

1.2 Fundamental Interactions

Four fundamental interactions have been identified in our universe: the strong

interaction, electromagnetic interaction, weak interaction and gravitational inter-

action [8]. The properties of the four interactions are quite different:

• The strong interaction, or strong nuclear force, is very strong, but only over
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very short-range. Its interaction range is of the order of 10−15 m, it exists

only inside of the atomic nucleus and is responsible for holding hadrons and

the nuclei of atoms together. The strong interaction is mediated by gluons.

• The electromagnetic interaction causes electric and magnetic effects such

as the repulsion between similar electrical charges or the interaction of bar

magnets. The force is long-ranged, but the interaction force is much weaker

than the strong force. It acts only between pieces of matter carrying elec-

trical charge. The electromagnetic force is mediated by photons.

• The weak interaction is weak and has a short range. Its interaction range

is about 10−18 m and it is responsible for radioactive decays and neutrino

interactions. The weak force is mediated by the W+, W− and Z0.

• The gravitational interaction force is weak and the interaction range is in-

finite. In addition, this force is always attractive and acts on all particles

having mass in our unverse. The gravitational force is mediated by gravi-

tons - but it is the only force for which we do not have a firmly established

quantum theory.

1.3 Why Electron Scattering

There are many reasons for considering electron-nucleus scattering as a method

for exploring the structure of the nucleus and nucleons [9]:

• The electron interacts with the nucleus by means of the electromagnetic

force. The electromagnetic interaction is calculable with the well understood

theory of Quantum Electro-Dynamics (QED) [10]. One can extract detailed

information about the nuclear structure by probing the nuclear current Jµ.

On the other hand, protons and pions interact with the nucleus by means of
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the strong force, and hence, one must rely on phenomenological models to

understand the interaction at lower energies and interpret nuclear structure.

• The electromagnetic force is relatively weak compared to the strong force.

The corresponding coupling constant, α ' 1/137, is less than the charac-

teristic strength of the strong force, which is responsible for the major part

of nuclear properties. This means that electron scattering measurements do

not greatly perturb the structure of the nucleus. On the other hand, proton

and pion scattering are dominated by the strong force, which requires sep-

aration of the reaction mechanisms from the appropriate nuclear structure

problem.

• The interaction between the electron and the nucleus is carried out by means

of a virtual photon with 4-momentum q = (ω, ~q), and Lorentz invariant

Q2 = −q2 = ~q2 − ω2 ≥ 01. The energy and 3-momentum can be varied

independently. For example, one can fix the energy transfer ω and map

out the spatial distributions of the nuclear charge and current densities by

measuring the nuclear responses at different ~q.

1.4 Outline of the Dissertation

This dissertation is organized into seven chapters. Chapter 1 gives a brief his-

tory of particles and basic interactions and explains the advantage of electron

scattering experiments. Chapter 2 describes the general formalism and differ-

ent inclusive scattering processes. Chapter 3 discusses the theoretical motivation

for the measurement as well as the available world data. Chapter 4 describes

the equipment used throughout the experiment. This includes both information

about the electron beam and the equipment within Jefferson Lab’s experimental

1Note that for real photon absorption Q2 = −q2 = ~q2 − ω2 = 0.
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Hall A except the target. Chapter 5 introduces the polarized 3He target at Jef-

ferson Lab. The methods used for extracting the physics results are described

in Chapter 6, including detector calibrations, particle identification and various

corrections. Finally, the results from the measurements are presented in Chapter

7.
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Chapter 2

General Formalism

This chapter will briefly describe the theory of electron scattering. First, the kine-

matic variables will be defined. Then starting from Rutherford’s basic formula,

the necessary pieces will be added on to make it applicable to electron scatter-

ing from a nucleus. The process of inclusive electron-nucleon scattering, where

only the scattered electron is detected, will be discussed. The types of inclusive

electron scattering and the differential cross-section will be presented.

2.1 Cross-Section

The most important quantity for the description and interpretation of scattering

experiments is the cross-section.

From theory: Following [11], in a reaction, the interaction potential, which is

described by the Hamilton operator Hint, transforms the initial-state wave

function ψi into the final-state wave function ψf , and the transition matrix

element is given by:

Mfi = 〈ψf |Hint|ψi〉 =

∫
ψ∗fHintψidV. (2.1)

Using this transition matrix element, the cross-section can be written as:

σ =
2π

~ · v
|Mfi|2 · ρ(E ′) · V, (2.2)

where v is the particle velocity before scattering, V is the spatial volume

occupied by the beam particles, and ρ(E ′) is the density of the final states.



8

Target plane

θ

ΔΩ=AD/r2

AD

r

Beam

Unscattered
    Beam

Figure 2.1: Description of the differential cross-section. Only particles scattered
into the small solid angle ∆Ω are recorded by the detector of cross-sectional area
AD.

.

One can calculate the cross-section from Equation (2.2) if the interaction

potential is known. On the other hand, the transition matrix elements can

be determined by Equation (2.2) if the cross-section is known.

From experiment: As shown in Figure 2.1, for a detector at an angle θ with

respect to the incident beam, the number of particles per unit area hitting

the detector is given by the differential cross-section, which is defined as:

dσ(E, θ)

dΩ
=

number of particles scattered into solid angle dΩ per unit time

luminosity
.

(2.3)

The total cross-section σ can then be obtained by integral over the total

solid angle:

σtot(E) =

∫
4π

dσ(E, θ)

dΩ
dΩ. (2.4)

2.2 Feynman Diagram

Richard Feynman developed a relatively simple method to calculate the matrix

element M [12]. He suggested that one can simply draw a stick figure diagram
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Figure 2.2: One photon exchange
Feynman diagram for the electro-
magnetic interaction.

to represent the scattering process. The full matrix element is represented by

the sum of all possible diagrams between the initial and final states, but for

interactions which are weak, one only needs a small set of diagrams with the

least complexity and fewest interactions. In a Feynman diagram, each symbol

corresponds to a factor in the matrix element. The links between the individual

terms and the meaning of them are fixed by the Feynman rules. For instance, two

electrons interacting via the electromagnetic force are represented in Figure 2.2.

For this thesis, the diagram is read with time flowing from left to right. The

straight lines in the graph correspond to incoming or outgoing electrons and

wavy line stands for the photon. The interaction process corresponds to a photon

being emitted by one electron and absorbed by the other electron. This photon

is referred to as a virtual photon because it is neither in the initial nor in the final

state. Points where particles meet are called vertices, and energy and momentum

are conserved at each vertex. In Figure 2.2, the exchanged photon couples to the

charge of one electron at the top vertex and to that of the other electron at the

bottom vertex. For each vertex, the transition amplitude contains a factor which

is proportional to e, i.e.,
√
α.
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Figure 2.2 shows the basic means by which two electrons can interact. How-

ever, to fully describe an interaction process, even for a simple interaction like

electron-electron scattering, an infinite number of diagrams are in principle needed.

The complete set of diagrams to order α2 are shown in Figure 2.3. In QED, this

problem has a solution: the coupling constant corresponding to each photon is

α, as more and more vertices are present in a Feynman diagram, the Feynman

diagram contributes less and less to the over all cross-section. A cut off must be

made with regard to the number of Feynman diagrams to include if one wants

to use Feynman’s procedure to calculate a cross-section. In many cases, one only

needs the very first Feynman diagram. It is sufficient because the next-to-leading-

order diagrams include an extra factor of α in the cross-section, and thus these

diagrams contribute at a level that is typically several orders of magnitude smaller

to the overall cross-section.

2.3 Kinematic Variables

In inclusive electron scattering experiments, the structure of a target nucleon or

nucleus is studied with the differential cross-section in the process

l(k) +N(p)→ l(k′) +X(p′), (2.5)

where l(k) is an electron with 4-momentum k, N(p) is a nucleon or nucleus

with 4-momentum p and X(p′) is the hadronic final state with 4-momentum p′.

Before writing the cross-section for this process, it is useful to describe some

basic variables. Table 2.1 is a list of the most common kinematic variables used

in parameterizing electron scattering.



11

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n)

Figure 2.3: The complete set of Feynman diagrams to order α2. (a) elastic electron
Born diagram scattering. (b) box diagram. (c) crossed-box diagram. (d) vacuum
polarization. (e-f) electron vertex corrections. (g-j) electron self-energy diagrams.
(k-n) inelastic Bremsstrahlung amplitudes.
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Table 2.1: Important kinematic factors expressed in the lab frame. The mass of
the electron me is neglected, a fixed target is assumed, and units with ~ = c = 1
are adopted.

Parameter Description
E incident electron energy

p = (M, 0, 0, 0) target 4-momentum
(θ,φ) (polar, azimuthal) scattering angle
E ′ scattered electron energy

ω = E − E ′ energy transfer

k = (E,~k) incident electron 4-momentum

k′ = (E ′, ~k′) scattered electron 4-momentum

~q=~k-~k′ 3-momentum transfer
q = k − k′ 4-momentum transfer

Q2 = −q2 ≈ 4EE ′ sin2 θ
2

4-momentum transfer squared, assuming relativistic electrons
W 2 = (p+ q)2 = M2 + 2Mω −Q2 squared invariant mass of the final hadronic system

x = Q2

2Mω
= Q2

2p·q Bjorken scaling variable

y = q·p
k·p = ω

E
fractional energy transfer

2.4 The Rutherford and Mott Cross-Sections

Considering the case of an electron with energy E scattering off an atomic nucleus

with charge Ze, the cross-section can be calculated with the Rutherford cross-

section formula1: (
dσ

dΩ

)
Rutherford

=
4Z2α2E ′2

|~q|4
(2.6)

where ~q is the 3-momentum transfer, α is the fine structure constant and E ′ is

the energy of the scattered electron. The Rutherford formula ignores nuclear

structure and recoil, and spins of the electron and the target, so the formula is

applied to heavy nuclei and low-energy electrons. The Rutherford cross-section

formula can be modified to include spin effects. The Mott cross-section [13], which

describes the electron scattering and includes effects due to the electron spin, is

written as: (
dσ

dΩ

)∗
Mott

=

(
dσ

dΩ

)
Rutherford

· cos2 θ

2
. (2.7)

1We set ~ = c = 1, and neglect the mass me of the electron.
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The factor cos2(θ/2) prevents scattering at 180◦ from a spin-less target, thus

conserving helicity [11]. The ∗ indicates that we are still ignoring target recoil

due to the mass of heavy nuclei.

For electron scattering from a nucleus, the energy and momentum transferred

are absorbed by the recoil nucleus. For high energy electron scattering, the target

recoil can no longer be neglected. If we take the target recoil into account, we

find an additional factor of E ′/E in the Mott cross-section:(
dσ

dΩ

)
Mott

=

(
dσ

dΩ

)∗
Mott

· E
′

E
. (2.8)

Since the energy loss of the electron due to the recoil is now significant, it is no

longer possible to describe the scattering in terms of a 3-momentum transfer. In

cross-section formula, ~q2 must be replaced by the 4-momentum transfer squared,

Q2.

2.5 Nuclear Form Factors

The Mott cross-section formula can be used to estimate the cross-section for elec-

tron scattering from a point-like target with no internal structure. In scattering

experiments with nuclei or nucleons, the cross-section from the Mott formula

agrees with the experimental result only at limit of Q2 →0. At large Q2 values,

the experimental results are smaller than the cross-sections obtained from the

Mott formula due to the reduction of the virtual photon’s wavelength at large Q2

values. This means that the resolution of the probe increases and that the virtual

photon can no longer probes the nuclei or nucleons as a whole, but it can resolve

the internal structure. The spatial extent of a nucleus is described by a form

factor, and the form factor only depends on the momentum transfer Q2. Taking

into account the spatial extent of the nuclei, the cross-section becomes [11]:(
dσ

dΩ

)
exp

=

(
dσ

dΩ

)∗
Mott

· |F (Q2)|2, (2.9)
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where F (Q2) is the nuclear form factor and measures the deviation of the target

nucleus from point-like behavior. For a point-like charge, the form factor would

be a constant.

If we define a charge distribution function f by ρ(r) = Zef(r) which satisfies

the normalization condition
∫
f(r)d3r = 1, the matrix element in equation (2.1)

becomes [11]:

Mfi = 〈ϕf |Hint|ϕi〉

=

∫
ϕ∗fHintϕidV

=
Z · 4πα~3c

|~q|2 · V

∫
f(r)ei~qr/~d3r.

The integral

F (Q2) =

∫
f(r)ei~qr/~d3r (2.10)

is the Fourier transform of the charge function f(r), normalized to the total

charge. It is the form factor of the charge distribution. All information related to

the charge of the objects being studied is contained in this form factor, since in

principle, the charge distribution f(r) can be determined from the inverse Fourier

transform by:

f(r) =
1

(2π)3

∫
F (Q2)e−i~qr/~d3q. (2.11)

Besides the interaction of the electron with the nucleon charge, we also need

to consider the interaction between the electron current and the nucleon’s mag-

netic moment [14]. Two form factors are needed to characterize both the electric

and magnetic distributions of spin-1/2 nucleons: the electric form factor and the

magnetic form factor.

The form factors can also be viewed as the distributions of charge and magne-

tization in momentum space. This is important as for relativistic systems there

are ambiguities in trying to determine the rest-frame charge distribution. The
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ambiguities only affect the Fourier transform, they do not affect the formulas

relating the cross-section to the form factors.

2.6 Types of Inclusive Electron Scattering

Only the scattered electrons are detected in inclusive electron scattering, which

means the scattered electrons are detected from all possible interactions. In ex-

clusive or semi-inclusive scattering, one detects the scattered electron along with

some or all of the other particles produced, which allows one to separate out spe-

cific reaction channels. This thesis focuses only on inclusive scattering. In this

section, three types of scattering will be discussed: elastic, quasi-elastic and in-

elastic. Inelastic scattering includes both resonance production and deep inelastic

scattering. Figure 2.4 shows a typical cross-section spectrum for inclusive scat-

tering from a light nuclear target. The mass of the nucleus and nucleon are given

by MT and M , respectively. If the target is a nucleon, quasi-elastic scattering

does not exist.

2.6.1 Elastic Scattering off Nucleons

The cross-section for the scattering of an electron from a nucleon is described by

the Rosenbluth formula [16]:(
dσ

dΩ

)
=

(
dσ

dΩ

)
Mott

·
[
G2
E + τG2

M

1 + τ
+ 2τG2

M tan2 θ

2

]
, (2.12)

with τ = Q2/(4M2). Here GE and GM are called the Sachs electric and magnetic

form factors, both of which depend upon Q2. They are defined in terms of the

Dirac (F1) and Pauli form factors (F2) as

GE(Q2) = F1(Q2)− τF2(Q2) (2.13)

GM(Q2) = F1(Q2) + F2(Q2). (2.14)
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Figure 2.4: Inclusive cross-section versus Q2 and ω for scattering off a nuclear
target [15].

The measured Q2-dependence of the form factors gives us information about

the charge and magnetic distributions. For elastic scattering, the invariant mass

W is equal to the mass of the nucleon so that ω = Q2/(2M). Conservation of

energy and momentum constrain the scattered electron energy to the following:

E ′ =
E

1 + 2E
M

sin2 θ
2

. (2.15)

At Q2=0, GE coincides with the electric charge of the target, normalized to the

elementary charge e; and GM is equal to the magnetic moment of the target,

normalized to the nuclear magneton µN . The form factors are given by:

Gp
E(0) = 1 (2.16)

Gp
M(0) = µp = 2.793 (2.17)

for the proton, and:

Gn
E(0) = 0 (2.18)
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Gn
M(0) = µn = −1.913 (2.19)

for the neutron.

In order to independently determine GE(Q2) and GM(Q2), the cross-section

must be measured at fixed values of Q2, for various scattering angles with different

beam energies. The measured cross-sections are then divided by the Mott cross-

section. If we display the results as a function of ε = [1 + 2(1 + τ) tan2(θ/2)]−1,

then GE(Q2) is determined by the slope of the line, and the intercept yields

τGM(Q2). If we perform this analysis for various values of Q2, we can obtain the

Q2 dependence of the form factors.

At low Q2 (Q2 ≤ 2 GeV2), the proton electric and magnetic form factors,

along with neutron magnetic form factor, can be approximately described by a

dipole fit [11]:

Gp
E(Q2) =

Gp
M(Q2)

µp
=
Gn
M(Q2)

µn
= GD(Q2), (2.20)

where

GD(Q2) =

(
1 +

Q2

0.71GeV2

)−2

. (2.21)

The electric and magnetic form factors can be more precisely described by J.

J. Kelly’s fits even at high Q2 [17]. Kelly proposed a simple parametrization that

is suitable over a wide range, with only four parameters needed for each of Gp
E,

Gp
M and Gn

M . The fits take the form

G(Q2) ∝

n∑
k=0

akτ
k

1 +
n+2∑
k=1

bkτ k
, (2.22)

where τ = Q2/4M . Only two parameters are needed for Gn
E:

Gn
E =

Aτ

1 +Bτ
GD(Q2). (2.23)

The parameters determined from the fits are listed in Table 2.2.
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Table 2.2: Fit parameters from data for nucleon electromagnetic form factors
used by J. J. Kelly [17].

Quantity a0 a1 b1 b2 b3 A B
Gp
E 1 -0.24 10.98 12.82 21.97 - -

Gp
M/µp 1 0.12 10.97 18.86 6.55 - -

Gn
M/µn 1 2.33 14.72 24.20 84.1 - -
Gn
E - - - - - 1.70 3.30

2.6.2 Quasi-Elastic Scattering

For a nuclear target, quasi-elastic scattering involves the incident electron elasti-

cally scattering from one of the nucleons within the nucleus. In this process, the

nucleon is knocked out of the nucleus and can be considered initially as quasi-

free. Compared to elastic scattering from a free nucleon, the quasi-elastic peak is

shifted due to the nuclear binding energy and broadened by the Fermi motion of

the nucleons within the nucleus.

The impulse approximation assumes that the electron interacts with a single

nucleon, and the nucleon is knocked out of the nuclear system by the scatter-

ing process without any further interactions with the remaining nucleons in the

nucleus [18]. The shift of the peak is due to the energy required to remove the

nucleon from the nucleus. The nucleus is not a static object with locally fixed

nucleons, and hence the nucleons move around “quasi-freely” within the nucleus.

This motion causes a change in the kinematics compared to scattering off a nu-

cleon at rest and makes the quasi-elastic peak broad.

The Rosenbluth formula is generalized to the form:(
d2σ

dΩdE ′

)
=

(
dσ

dΩ

)
Mott

{(
Q2

~q2

)2

RL +

[
1

2

(
Q2

~q2

)2

+ tan2 θ

2

]
RT

}
, (2.24)

where RL(ω,Q2) and RT (ω,Q2) are the longitudinal and transverse virtual photon

response functions.



19

2.6.3 Resonances

Increasing the energy transfer, we leave the quasi-elastic region and encounter

inelastic scattering processes. The resonance region is the first region which is

considered to be inelastic with respect to the nucleon. Quarks within the nucleons

begin to absorb virtual photons in this region, which may lead the nucleon being

excited to a higher resonant state. The presence of these excited states clearly

shows that the nucleon is a composite system. The invariant mass of these states

is W 2 = M2 + 2Mω −Q2. For elastic scattering W = M , so

2Mω −Q2 = 0, (2.25)

while in inelastic processes W > M , and

2Mω −Q2 > 0. (2.26)

This suggests the introduction of a dimensionless parameter

x =
Q2

2Mω
, (2.27)

known as the Bjorken variable which measures the inelasticity of the process. For

elastic process x = 1, while for all other processes 0 < x < 1. The resonances

are observed in the invariant mass region between the pion production threshold

(Wπ = Mp +mπ=1.072 GeV) and the onset of deep inelastic scattering at 2 GeV.

2.6.4 Deep Inelastic Scattering

Deep inelastic scattering (DIS) is usually defined as Q2 >1-2 GeV2 and W >

2 GeV. In this region, the resonance peaks become difficult to distinguish from

each other. The DIS process can be seen as the basic process of the quasi-

elastic scattering from the quarks inside the nucleons. The Rosenbluth formula

for inelastic scattering is:(
dσ

d2ΩdE ′

)
=

(
dσ

dΩ

)∗
Mott

[
W2(ω,Q2) + 2W1(ω,Q2) tan2

(
θ

2

)]
, (2.28)
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where W1 and W2 are known as structure functions and parameterize all informa-

tion concerning the target’s unknown internal structure. W1 and W2 are usually

replaced by the two dimensionless structure functions:

F1(x,Q2) = MW1(ω,Q2) (2.29)

F2(x,Q2) = ωW2(ω,Q2). (2.30)

At large Q2, the structure functions depend weakly on Q2 at fixed values of x.

This is shown in Figure 2.5. This can be explained as the electrons are scattering

from point-like constituents (quarks) inside the nucleon.

2.7 Tensor Formulation

In the electron-nucleon scattering process, the inclusive cross-section is propor-

tional to the product of a leptonic and a hadronic tensor, Lµν and W µν , respec-

tively [20]: (
d2σ

dΩdE ′

)
=

α2

2MQ4

E ′

E
LµνW

µν . (2.31)

The leptonic tensor and hadronic tensor can be further split into symmetric (S)

parts and anti-symmetric (A) parts under parity transformation:

Lµν(k, s; k
′) = LSµν(k, k

′) + iLAµν(k, s; k
′) (2.32)

Wµν(q; p, S) = W S
µν(q; p) + iWA

µν(q; p, S), (2.33)

where s is the spin vector of the electron and S is the spin of the target nucleon.

The spin-independent symmetric part and the spin-dependent anti-symmetric

parts of lepton tensor are written as

LSµν(k; k′) = 2
(
kµk

′
ν + kνk

′
µ − gµν

(
k · k′ −m2

))
(2.34)
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Figure 2.5: The F p
2 structure function Q2-dependence for a range of Bjorken x

values [19]. For the purpose of plotting, F2 has been multiplied by 2ix , where ix
is the number of x bins, ranging from ix = 1 (x=0.85) to ix = 28 (x=0.000063).
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LAµν(k, s; k
′) = 2mεµνγδs

γ (k − k′)δ , (2.35)

where m is the mass of the lepton, gµν is the metric tensor, and εµνγδ is the

Levi-Civita tensor. The hadronic tensor can be divided into similar, but more

complicated spin-independent and spin-dependent parts, given by

W S
µν(q; p) = 2

(
−gµν +

qµqν
q2

)
F1(x,Q2)

+
2

p · q

[(
pµ −

p · q
q2

qµ

)(
pν −

p · q
q2

qν

)]
F2(x,Q2)

WA
µν(q; p, S) = 2Mεµνγδq

γ

[
Sδg1(x,Q2) +

(
Sδ − S · q

p · q
pδ
)
g2(x,Q2)

p · q

]
. (2.36)

The dimensionless quantities F1 and F2 are known as unpolarized structure func-

tions, as they do not depend on the spin of the nucleon, while g1 and g2 are spin-

dependent quantities and are therefore known as polarized structure functions.

Using Equations (2.32) and (2.33), we can write the differential cross-section as(
d2σ

dΩdE ′

)
=

α2

2MQ4

E ′

E

[
LSµνW

µν(S) − LAµνW µν(A)
]
, (2.37)

where the terms with opposite symmetry vanish due to the parity conservation

of the electromagnetic interaction.

Unpolarized cross-section The spin-independent structure functions F1 and

F2 can be determined from the unpolarized cross-section by(
d2σ

dΩdE ′

)
=

(
dσ

dΩ

)
Mott

[
2

M
F1(x,Q2) tan2 θ

2
+

1

ω
F2(x,Q2)

]
. (2.38)

Figure 2.5 shows a collection of data for the structure functions F2 as a

function of Q2 for different x.

Polarized cross-section The spin-dependent structure functions g1 and g2 can

be measured by using two different target spin orientations with respect to

the electron beam polarization: longitudinal and transverse. The electron
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has spin ↑ or ↓ either parallel or anti-parallel to the beam direction, and the

target spin ⇑ is parallel to the direction of the electron’s momentum. The

cross-section difference between the two spin states is:

∆σ‖ =
4α2

MνQ2

E ′

E

[
(E + E ′ cos θ) g1(x,Q2)− 2Mxg2(x,Q2)

]
, (2.39)

with

∆σ‖ =
d2σ↓⇑

dΩdE ′
− d2σ↑⇑

dΩdE ′
. (2.40)

For a transversely polarized target, ⇒ denotes that the target spin is per-

pendicular (while in the scattering plane) to the electron beam direction.

The polarized cross-section difference is

∆σ⊥ =
4α2

MωQ2

E ′2

E

[
g1(x,Q2) +

2E

ω
g2(x,Q2)

]
sin θ, (2.41)

with

∆σ⊥ =
d2σ↓⇒

dΩdE ′
− d2σ↑⇒

dΩdE ′
. (2.42)

The combination of measurements on longitudinally and transversely polarized

targets can be used to extract the polarized structure functions.
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Chapter 3

Two Photon Physics

In recent decades, people always study the form factors extracted from elastic

scattering experiments to obtain the nucleon and nuclear structure information.

Following the well-established formalism discussed in the last chapter, the exper-

imental cross-sections can be interpreted in terms of elastic form factors in Born

approximation (one photon exchange approximation). This approach is based on

the assumption that the corrections for two-photon processes are relatively small

and can be adequately calculated. However, as new precision data has become

available, the importance of two-photon processes can not be ignored.

3.1 The Born Approximation

The Born Approximation is a method for calculating scattering processes which

truncate Figure 2.3 after the very first Feynman diagram. Following [21], for the

electron-electron scattering as shown in Figure 2.2, the transition amplitude can

be written as:

Tfi = −i
∫
jµ(x)

(
1

q2

)
jµ(x)d4x, (3.1)

where jµ is the electron current density which can be expressed as

jµ = −eψ̄γµψ. (3.2)

When it comes to nucleons, with their internal structure, the current density

can no longer be written as Equation (3.2), which is the current density of a
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point-like particle. Instead the hadronic current is

Jµ = −eψ̄Γµψ. (3.3)

The electromagnetic hadron current operator Γµ is parameterized by the Dirac

(F1) and Pauli (F2) form factors as

Γµ(q) = γµF1(Q2) +
κ

2M
F2(Q2)iσµνqν . (3.4)

Here, κ is the anomalous magnetic moment, σµν = 1
2
[γµ, γν ], and M is the nucleon

mass. Then the transition amplitude becomes

Tfi = −i
∫
jµ(x)

(
1

q2

)
Jµ(x)d4x (3.5)

= −i
∫ (
−eψ̄γµψ

)
×
(

1

q2

)
(3.6)

×
[
−eψ̄

(
γµF1(Q2) +

κ

2M
F2(Q2)iσµνqν

)
ψ
]
d4x. (3.7)

The Born approximation assumes all higher-order processes contribute a neg-

ligible amount to the cross-section. They are viewed as radiative corrections.

Experimentally one only needs the radiative corrections to be precisely calcula-

ble. Radiative corrections to cross-sections around 15% or so are common, and

have been done for years. They include the diagrams from (b) to (n) in Fig-

ure 2.3. These diagrams were viewed as well enough understood. But the box

and cross diagrams were evaluated in the limit that one of the virtual photons was

Q2 ≈ 0. Almost all of the cross-section formalism which was presented previously

is only valid in the Born Approximation. If one wants to include higher order

diagrams, terms such as electron-nucleon scattering invariant amplitude, T , must

be modified to reflect this.
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3.2 The Importance of Two-Photon Physics

In the proton form factors measurement, very different results at large Q2 for the

ratio µpG
p
E/G

p
M were observed in two sets of experiments [21][22][23]. Two inde-

pendent methods (Rosenbluth separation [16] and polarization transfer measure-

ment) were used to measure the form factor ratio, the sensitivities to two-photon

exchange corrections at large Q2 are different. It has been proposed [24][25] that

they may be at least partially reconciled by considering the effects of two-photon

exchange on elastic electron-nucleon scattering.

Rosenbluth Method: We re-write Equation (2.12) as:

dσR = CB(Q2, ε)
[
G2
M(Q2) +

ε

τ
G2
E(Q2))

]
, (3.8)

where CB(Q2, ε) is simply a kinematic factor and ε is the photon polarization

parameter, defined as:

ε =

(
1 + 2(1 + τ) tan2

(
θ

2

))−1

. (3.9)

For a fixed Q2, one measures the cross-section for different values of ε to

determine the form factors GE and GM . Note that in Rosenbluth equation,

the cross-sections are sensitive to G2
E and G2

M , so the signs on the GE and

GM cannot be determined from Rosenbluth separations alone.

Polarization Method: One can also access the Sachs form factors using a lon-

gitudinally polarized electron beam combined with a unpolarized proton

target, ~ep → e~p, detect the polarization of the recoiling proton. In the

Born approximation, the elastic cross-section for scattering a longitudinally

polarized electron from an unpolarized proton, producing a longitudinally

polarized recoil proton is given by [26]:(
dσ

dΩ

)l
= h

(
dσ

dΩ

)
Mott

E + E ′

M

√
τ

1 + τ
tan2

(
θ

2

)
G2
M , (3.10)
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where h is the electron helicity. And the cross-section for producing a

transversely polarized recoil proton is given by [26]:(
dσ

dΩ

)t
= −h

(
dσ

dΩ

)
Mott

2

√
τ

1 + τ
tan

(
θ

2

)
GEGM . (3.11)

In the Born approximation the normal polarization is identically 0 [26]. The

ratio of the proton electric form factor to proton magnetic form factor can

be obtained by taking the ratio of the transverse to longitudinal proton

cross-sections:

Pt
Pl

= −
2M cot

(
θ
2

)
E + E ′

GE

GM

= −

√
2ε

τ(1 + ε)

GE

GM

, (3.12)

where Pl (Pt) is the polarization of the recoil proton longitudinal (trans-

verse) to the proton momentum in the scattering plane. Pl is proportional

to the longitudinal cross-section in Equation (3.10) and Pt is proportional

to the transverse cross-section in Equation (3.11).

As shown in Figure 3.1, very different results were observed in these two

sets of experiments. It was pointed out that the discrepancy in GE/GM can

be explained as a possible failure of the Born approximation when two-photon-

exchange contributions are considered [24][25][29]. Under Lorentz, parity and

charge conjugation invariance, if one neglects the mass of the electron, the T-

matrix becomes [25]:

T =
e2

Q2
ψ̄(k′)γµψ(k)× ψ̄(p′)

(
G̃Mγ

µ − F̃2
P µ

M
+ F̃3

γ ·KP µ

M2

)
ψ(p), (3.13)

where K = (k+ k′)/2 and P = (p+ p′)/2. The quantities G̃M , F̃2 and F̃3 contain

information about nucleon structure. When returning to the Born approxima-

tion, we recover the usual electric and magnetic nucleon form factors. Thus, the

generalized form factors can be written in terms of the Born form factors as:

G̃M(ω,Q2) = GBorn
M (Q2) + δG̃M (3.14)
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Figure 3.1: Ratio of proton electric form factor to magnetic form factor. Data
from the Rosenbluth separations are shown in open squares and data from the
polarization transfer measurements are shown in filled circles. The dash line is
a fit of the polarization transfer data. Figure is from [27] of data from [22], [23]
and [28].

F̃2(ω,Q2) = FBorn
2 (Q2) + δF̃2 (3.15)

F̃3(ω,Q2) = 0 + δF̃3, (3.16)

where the δ terms indicate the contribution from multi-photon exchange.

The Rosenbluth and polarization transfer expressions can now be written in

terms of these multi-photon form factors [25]:

σR
CB(Q2, ε)

' |G̃M |2

τ

{
τ + ε

|G̃E|2

|G̃M |2
+ 2ε

(
τ +
|G̃E|
|G̃M |

)
R

(
ωF̃3

M2|G̃M |

)}
, (3.17)

and

Pt
Pl
' −

√
2ε

τ(1 + ε)

{
|G̃E|
|G̃M |

+

(
1− 2ε

1 + ε

|G̃E|
|G̃M |

)
R

(
ωF̃3

M2|G̃M |

)}
, (3.18)

where R denotes the real part, and the notation G̃E = G̃M − (1 + τ)F̃2 =

GE(ν,Q2) + δG̃E has been used. Application of the correction appears to bring

the two methods into better agreement, as shown in Figure 3.2 and Figure 3.3.

The corrected results are clearly in better agreement with the data.
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Figure 3.2: Proton µGE/GM ratio obtained from the polarization transfer
measurements [22], with (filled circles) and without (open circles) two-photon-
exchange corrections [30]. The values have been offset in x axis for clarity. The
Rosenbluth separations ratio [27] (open diamonds) is shown for comparison.

Figure 3.3: Comparison of polarization transfer measurements (filled diamonds)
and Rosenbluth separations (open circles) without two-photon-exchange correc-
tions (left), with two-photon-exchange corrections from [30] (center), and with
the additional high-Q2 correction applied in [31] (right). Figure is reproduced
from [26].
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3.3 Experimental Observable for Two Photon Exchange

Polarized target: An observable which is related to two-photon exchange is the

asymmetry for elastic scattering of an unpolarized electron on a nucleon

polarized normal to the scattering plane:

Ay =
σ↑ − σ↓

σ↑ + σ↓
, (3.19)

where σ↑ (σ↓) is the cross-section for an unpolarized beam and for target

spin parallel (anti-parallel) to the normal polarization vector as defined

in Section 3.4. As [32] showed, the target normal single spin asymmetry is

related to the imaginary part introduced by two photon exchange amplitude

as

Ay =
2I
(
T ∗1γT2γ

)
|T1γ|2

, (3.20)

where I denotes the imaginary part and T1γ denotes the one-photon ex-

change amplitude.

Polarized electron: The two-photon-exchange can also be accessed by mea-

suring the electron beam asymmetry for electrons polarized normal to the

scattering plane scattering from unpolarized targets [26]. Time reversal

invariance requires that By = Ay [32]. The corresponding beam normal

asymmetry By is then defined analogously to Equation (3.19), with the

electron spin parallel or anti-parallel to the normal polarization vector.

3.4 Define Up and Down

In order to compare theoretical predictions and experimental results, it is neces-

sary that a clear definition of “up” and “down” be given as it applies to Equation

(3.19). The scattering plane is defined by the incoming and outgoing electron
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momentum, ~k and ~k′. Then n̂, which is normal to the scattering plane, is defined

as

n̂ =
~k × ~k′

|~k × ~k′|
(3.21)

If the target spin is parallel to n̂, we define it as spin up (↑), while the target spin

is anti-parallel to n̂ is defined as spin down (↓).

3.5 Existing Data

Proton data: Using an unpolarized electron beam and a polarized proton tar-

get, within the large experimental uncertainties, Ay was observed to be

consistent with zero up to Q2=0.98 GeV2 [33], as shown in Figure 3.4 (a).

There are also several measurements have been made in elastic ep scat-

tering using a polarized electron beam and an unpolarized proton target

[34][35][36][37][38][39][40], the results are shown in Figure 3.4 (b) and (c).

Neutron data: An attempt of measuring Ay in the 3He(e, e′) reaction at Q2=0.1

GeV2 was made at NIKHEF [41]. Here, Ay for quasi-elastic scattering was

found to be Ay=-0.095±0.054, which is not significantly different from zero.

Also, experiments have been performed at Jefferson Lab to measured the

target normal asymmetry of the neutron on a 3He target for deep-inelastic

scattering [42] and quasi-elastic scattering. This dissertation mainly focuses

on the later reaction.

3.6 Jefferson Lab E05-015

This dissertation reports the most recent measurement of target single-spin asym-

metries, A
3He
y , through electron scattering from a normally polarized Helium-3

target in the quasi-elastic process 3He↑(e, e′) at Q2 values of 0.13, 0.46 and 0.97

GeV2. It also reports the neutron single-spin asymmetries, Any , extracted from
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Figure 3.4: Previous asymmetry measurements from elastic electron-proton scat-
tering. (a) SLAC measured the asymmetry for scattering electrons from a polar-
ized proton target. (b) and (c) Measured electron beam asymmetry for electrons
polarized normal to the scattering plane scattering from unpolarized proton tar-
get. The error bars are statistical uncertainties.
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Group Q2 Apy Year

Frascati[34] 0.80 -0.024±0.050 1965
Orsay[35] 0.625 -0.040±0.027 1965

Stanford I[36] 0.405 -0.013±0.020 1968
Stanford II[37] 0.27 0.006±0.020 1968

SLAC[33]
0.38 -0.004±0.014

19700.59 -0.006±0.009
0.98 -0.003±0.018

MIT/Bates[38] 0.1 -15.4±5.4 ppm 2001

MAMI[39]
0.106 -8.59±0.89±0.75 ppm

2005
0.230 -8.52±2.31±0.87 ppm

JLab[40]
0.15 -4.06±0.99±0.63 ppm

2007
0.25 -4.82±1.87±0.98 ppm

Table 3.1: Summary of the Apy measurements in the past years. SLAC measured
the asymmetry for scattering electrons from a polarized proton target (unpolar-
ized electron with a polarized target). The other values were from analyzing the
polarization of the protons recoiling from an unpolarized proton target (polarized
electron with an unpolarized target).

the measured 3He asymmetries. The measurement was performed in Hall A at

Jefferson Laboratory in Newport News, VA. The rest of this dissertation will give

a detailed report on this experiment, as well as the analysis of the data and its

results.
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Chapter 4

Experimental Setup

E05-015 was conducted in Experimental Hall A of the Thomas Jefferson National

Accelerator Facility from April 24 to May 12, 2009. The purpose of the experi-

ment was to make a precision measurement of the target single-spin asymmetry,

A
3He
y (Any ), through electron scattering from a vertically polarized 3He target in

the quasi-elastic region. JLab’s continuous electron beam (Section 4.2) and the

Hall A polarized 3He target (Chapter 5) make this measurement possible. The

target was polarized normal to the scattering plane, and the scattered electrons

were simultaneously detected by the two standard Hall A High Resolution Spec-

trometers (HRSs) (Section 4.5).

4.1 Jefferson Lab

Thomas Jefferson National Accelerator Facility, also known as Jefferson Lab

(JLab), is the site of the Continuous Electron Beam Accelerator Facility (CE-

BAF). Jefferson Lab is one of 17 national laboratories funded by the U.S. De-

partment of Energy (DOE). It is located in Newport News, Virginia. The accel-

erator is able to provide a high quality electron beam up to 6 GeV, and is being

upgraded to deliver 12 GeV. Since the first beam on target in July, 1994, a wide

spectrum of physics experiments have been carried out at this facility [43]. The

accelerator together with the three experimental Halls have made CEBAF one

of the world’s leading medium energy nuclear facilities. An aerial view of the

CEBAF site, including the three experimental Halls is shown in Figure 4.1.
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Figure 4.1: An aerial view looking southwest at the Jefferson Lab CEBAF accel-
erator site and three experimental Halls.
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Figure 4.2: Sketch of CEBAF [43]. Polarized electrons are produced in the injector
and are accelerated in the two linacs. Two sets of recirculating arcs allow the beam
to go through the linacs up to five times. Once the electrons are accelerated, they
can be extracted into any of the three experimental Halls: A, B, or C.

4.2 The Continuous Electron Beam Accelerator Facility

CEBAF, which generally provides a polarized electron beam, comprises a po-

larized light source, an injector, two linacs, two re-circulation arcs and a beam

switching station to transmit the electron beam into the three experimental Halls:

A, B and C. The beam starts at the polarized electron source. It goes through

the injector and enters the linacs for acceleration up to 6 GeV. Two sets of recir-

culating arcs are used for recirculating the beam. The beam can be circulated up

to five times with each pass increasing the energy by up to 1.2 GeV. The beam

can be simultaneously sent to the three experimental Halls by a beam switchyard.

The different components of CEBAF are described in detail below.
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4.2.1 Injector

The polarized electron beam source is a photocathode, which emits electrons

when irradiated by a circularly polarized, pulsed laser at a certain energy [44].

The bunch repetition rate of the beam is determined by the laser’s pulse rate

and the helicity of the electrons is determined by the polarization of the laser.

The photocathode is made of strained gallium arsenide (GaAs); it consists of

several layers of GaAs. When the photocathode absorbs photons of an appropriate

energy, the electrons are excited to the conduction band; in the presence of a large

external electric field, the electrons then diffuse to the surface and escape from

the photocathode [45].

The laser polarization was changed every 33.3 ms, which caused a flip of the

electrons’ helicity every 33.3 ms [46]. Since E05-015 measured the target single-

spin asymmetry, the electrons do not necessarily to be polarized, the helicity of

the beam was integrated over during the analysis of the data. On the photocath-

ode, there is a constant -100 kV voltage. The constant electric field generated

by this voltage helps extract electrons and gives an energy of 100 keV to the

electrons on their way to the injector. At the injector, electrons are acceler-

ated from their initial energy of 100 keV to a final energy of 45 MeV by passing

through two quarter-cryomodules. Each quarter-crymodule consists of two super-

conducting radio-frequency (SRF) cavities. These two cryomodules are referred

to as a quarter-cryomodule, since each of the cryomodules in the main accelerator

consists of eight SRF cavities [47].

4.2.2 Linear Accelerator

The north and south SRF linear accelerators (linacs) of CEBAF are shown in

Figure 4.2. From the injector, electrons with an initial energy of 45 MeV enter

the north linear accelerator section, which consists of 20 cryomodules or 160 SRF
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cavities. The initial accelerator was designed to accelerate the electrons up to 400

MeV; however, due to the high performance of the cavities in the linacs, electrons

from the injector can now be accelerated up to 600 MeV before entering the

recirculating arc. Electrons are bent 180◦ by the recirculation arc after the north

linac and gain another 600 MeV from south linac. Due to the unique Jefferson

Lab construction, the electrons can be accelerated up to five times through same

cavities [48], which means the maximum electron energy can be up to 6 GeV.

4.2.3 Recirculating Arcs

The recirculating arcs, which bend the electron beam by 180◦, consist of a series of

dipole magnets. Electrons are separated by a magnet depending on the electron

energy and guided into five different beam pipes that go through the arc. The

lower energy electrons, which are easier to steer, are guided into the higher arcs,

while higher energy electrons are guided into the lower arcs. As a result, each

of the lines in the arc has electrons with only one specific energy. The electrons

from the five beam pipes are re-combined at the end of the arc to be put into the

next linac [48].

4.2.4 Beam Switchyard

The beam switchyard is used to extract and simultaneously send beam to up to

all three experimental Halls. The beam energy can be taken from any of the five

passes through the accelerator [48].

4.3 Experimental Hall A

Hall A [49] is the largest of Jefferson Lab’s experimental Halls. It is 174 feet

across and 80 feet tall from the floor to the highest point on its domed ceiling.

The foundation for the hall is 35 feet below ground. The layout of experiment
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Figure 4.3: Experimental Hall A layout during the E05-015. The electron beam
comes into the Hall from the left, passes beam quality monitors, and impinges on
the target at the center of the Hall. Scattered electrons were detected by the two
High Resolution Spectrometers (HRSs). Electrons that do not interact with the
target are stopped in the beam dump.

E05-015 is shown in Figure 4.3. After entering the Hall, before interacting with the

target, the electron beam passes through various instruments. These instruments

determine different properties of the beam such as beam current, beam energy,

and beam position. The electron beam interacts with the target, and the reaction

products are detected by two high resolution spectrometers, known as Left-HRS

(LHRS) and Right-HRS (RHRS) as they are located to beam left and right,

respectively. Electrons that do not interact with the target are stopped in the

beam dump. The polarized 3He target used in the experiment E05-015 was located

at the center of the Hall, known as the pivot.
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4.4 Beam Line

The Hall A beam line starts at the beam switchyard and ends at the Hall A beam

dump [49]. The beam line consists of the following components:

• arc magnets, which bend the beam into the Hall and provide for a beam

energy measurement;

• a Compton polarimeter for the beam polarization measurement;

• two beam current monitors (BCMs) between which an Unser monitor pro-

vides an absolute beam current measurement;

• a fast raster;

• the eP device for beam energy measurement;

• a Moller beam polarimeter for beam polarization measurement;

• and a number of beam position monitors (BPMs).

With the use of these devices, the properties of the beam can be precisely deter-

mined. The Compton polarimeter, eP device and Moller were not used for the

experiment E05-015.

4.4.1 Beam Energy Measurement

The beam energy is measured by the Arc measurement [49]. The principle of the

Arc measurement is that an electron in a uniform magnetic field moves in a circle

with a radius r:

r =
p

eB
, (4.1)

where B is the strength of the magnetic field, p the electron’s momentum and e

is the electron charge. In a uniform magnetic magnetic field, the momentum of
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Figure 4.4: The arc section of the beam line [15]. Eight magnets are used to
deflect the beam by 34.3◦. The position of the beam before and after the arc is
determined by the SuperHarps. The magnetic field integral of the eight bending
magnets is based on the direct field measurement of the 9th reference magnet.

the electron can be determined by:

p = eB · r = eB · l
φ

=
e

φ

∫
~B · d~l, (4.2)

where φ is the bending angle of the electron. Accordingly, the momentum of

the electron can be determined by measuring its bending angle φ and trajectory

length l after passing through a well-known magnetic field.

As shown in Figure 4.4, there are in total eight dipole magnets providing the

magnetic field in the arc. The magnets are powered in series to ensure the same

current through all of them. As the vacuum pipe runs through the arc dipole

magnets, which makes access difficult, the magnetic field is instead measured in

the 9th dipole magnet, which is also connected in series with the others but outside

the beam enclosure. The angle φ is 34.3◦, and the bending angle of the beam
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Table 4.1: Beam energy from Tiefenback measurements for different settings of
E05-015.

Pass Beam Energy (GeV)
1 1.245
2 2.425
3 3.605

is θ = π − φ. Deviations from φ can be determined by the wire scanners, also

referred to as the “SuperHarps”. The detailed information of the wire scan can be

found in [50]. The Arc method provides an accuracy of dEbeam/Ebeam ≈ 2×10−4.

However, the Arc method is an invasive technique, since during the measure-

ment process the SuperHarp wires pass through the beam. Thus it can not be

used to monitor the beam energy continuously during the production running.

For this, a non-invasive method, known as Tiefenback, for continuously monitor-

ing the beam energy is used. This method uses the Hall A arc beam position

monitors in combination with the current values of the arc magnetic field integral

to determine the beam energy. The average value for each energy setting is sum-

marized in Table 4.1. The accuracy of this approach is dEbeam/Ebeam ≈ 5× 10−4.

4.4.2 Beam Current Measurement

The complete beam current monitoring system is located 25 m upstream of the

target, as illustrated in Figure 4.3. It consists of two RF cavities and an Unser

Monitor between the cavities as shown in Figure 4.5. It provides a stable, low-

noise and non-intercepting measurement of the beam current [49].

The Unser monitor [51] is a Parametric Current Transformer, which provides

an absolute beam current measurement. It is used to calibrate the two RF cavities.

It can not be used for continuous monitoring of the electron beam current, because
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its output signal drifts significantly with time. The two RF cavity monitors

placed on either side of the Unser monitor, are called the upstream BCM and the

downstream BCM. They are typically used to provide continuous monitoring of

the electron beam current. The BCMs are stainless steel cylindrical waveguides

adjusted to the beam RF frequency of 1.497 GHz. The waveguide produces signals

proportional to the beam current as the electrons pass through the cavity. The

output from each cavity is split into two signals. The first signal goes to a digital

multimeter (DMM), which sends out the root mean squre (RMS) value of the

input signal once per second to form the sampled signal. The second signal is

an integrated signal transformed by an RMS-to-DC converter into an analog DC

signal, which is further converted to a frequency by a Voltage-to-Frequency (V-to-

F) converter. The output is then counted by the VME scalers, thereby providing

a measure of the total accumulated charge.

The output of the RMS-to-DC converter is linear for beam currents between

5 and 200 µA, but the linearity can be extended down to low beam currents by

the use of additional amplifiers. For this, two additional amplifiers are used in

front of the RMS-to-DC module with gains of ×3 and ×10. As a result, there

are in total 6 BCM outputs (u1, u3, u10, d1, d3 and d10), which are all fed

into scaler modules of each spectrometer (LHRS and RHRS) and recorded in the

data-stream.

4.4.3 Beam Position Measurement

There are two beam position monitors (BPMs) located 7.534 m and 1.286 m

upstream of the target [49]. The BPMs consist of four wire antennas coaxial with

the beam. When the electron beam passes through the inside of the antennae

array, a signal is induced that is inversely proportional to the distance between

the beam and antenna. The BPMs can determine the relative position of the

beam to within 100 µm for currents above 1 µA. They are calibrated by two
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Figure 4.5: Schematic of the Hall A beam current monitors [52]. Two BCMs are
used for the continuous monitoring of the beam current; they can be absolutely
calibrated by the Unser. Measurements are recorded in the data stream as a
part of Experimental Physics and Industrial Control System (EPICS) information
(sampled data) and as a scaler information (integrated data).
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SuperHarps adjacent to each of the BPMs. The SuperHarps perform an invasive

measurement of the beam position by scanning three thin wires: one vertically

oriented and two at ±45◦.

4.4.4 Beam Raster

Experiment E05-015 used a high pressure glass target cell, in which the pressure

can rise to ∼ 14 atm under running conditions (shown in chapter 5). The high

intensity electron beam tends to overheat and damage the target cell since the

glass window has a thickness less than 0.2 mm. In order to prevent this, a fast

raster is used. The raster uses a pair of horizontal and vertical dipoles located

23 m upstream of the target. The system generates a rectangular raster pattern

with a highly uniform distribution on the target. During the experiment, a 3 mm

× 4 mm raster was used with the 3He target cell or the reference cell (see chapter

5) as shown in Figure 4.6. The rastered beam was not used with carbon foils,

since for these there is no overheating concern.

4.5 High Resolution Spectrometers

The main equipment of Hall A is the pair of almost identical High Resolution

Spectrometers [49]. One is positioned on the left side of the beam line and is

accordingly called Left HRS, while the other one is positioned on the right side of

the beam line and called Right HRS. During E05-015, both spectrometers were

configured to detect electrons in single-arm mode. The LHRS and RHRS data

acquisition systems were synchronized during the experiment in order to increase

the statistics and as a method to cross-check results. The basic layout of each

spectrometer is shown in Figure 4.7. It comprises three quadrupole magnets and

one dipole magnet in a QQDQ configuration, with a central bending angle of 45◦

in the vertical direction and an optical length of 23.4 m. Table 4.2 shows the
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Figure 4.6: Beam position with beam raster on. Displayed is a x and y position
of the beam from the BPM while the raster was on.

main characteristics of LHRS and RHRS.

4.5.1 Detector Package

The HRS detector package, together with the data acquisition (DAQ) electronics,

is located inside a shielded hut at the top of the spectrometer. The shielded hut

is made of 10 cm thick steel frame with a 5 cm lead layer inside and a layer of

concrete outside [49]. It protects the detectors and DAQ electronics from the

radiation background in the Hall. The detector package for experiment E05-015

consists of the following detector components (Figure 4.8):

• A pair of Vertical Drift Chambers (VDCs) to provide tracking information.

• Two scintillator planes (S1 and S2m) to provide timing information and the

main trigger.

• A Cherenkov detector for particle identification.
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Figure 4.7: HRS layout [53]. The HRS uses three quadruple magnets, Q1, Q2 and
Q3, and one dipole magnet, D, to transport particles into the detector package.
The detector package for experiment E05-015 consisted of two trigger scintillator
planes, S1 and S2, a gas Cherenkov detector, and two lead-glass calorimeters
called pion rejector 1 and pion rejector 2 for left HRS, pre-shower and shower for
right HRS.
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Table 4.2: Main characteristic of the Hall A high resolution spectrometers
[49]. The resolution values are given in terms of Full Width at Half Maximum
(FWHM).

Configuration QQDQ vertical bend
Bending Angle 45◦

Optical Length 23.4 m
Momentum Range 0.3-4.0 GeV/c

Momentum Acceptance -4.5%≤ δp/p ≤4.5%
Momentum Resolution 2.0 × 10−4

Angular Range 12.5◦-150◦

Horizontal Angular Acceptance ±30 mrad
Vertical Angular Acceptance ±60 mrad

Horizontal Angular Resolution 0.5 mrad
Vertical Angular Resolution 1.0 mrad

Central Solid Angle 6 msr
Transverse Length Acceptance ±5 cm
Transverse Position Resolution 1 mm

• Two sets of lead-glass counters (Pion-Rejector 1 and Pion-Rejector 2 for

LHRS, Pre-shower and Shower for RHRS) to provide additional information

on particle identification.

Shower
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S2
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Ce
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Figure 4.8: Illustration of the left and right HRS detector packages.
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4.5.2 Vertical Drift Chambers

The Vertical Drift Chambers are used to provide tracking information for the

scattered particles [54]. Their ability to reconstruct the particle’s trajectory at

the focal plane is σx,y ≈ 100 µm (spatial resolution) and σθ,φ ≈ 0.5 mr (angular

resolution). There are two VDCs in each of the spectrometers, and each of them

is composed of two wire planes in the standard UV configuration. The wires in

the U and V planes are perpendicular to each other and lie in the laboratory

horizontal plane. Both the planes are oriented at 45◦ with respect to the nominal

particle trajectory. The distance between the two VDC planes is 335 mm and

the separation between each pair of U and V planes is 26 mm as shown in the

Figure 4.9. There are a total of 368 sense wires in each plane, which are spaced

4.24 mm apart. The wires are made of Au-plated tungsten, and each wire plane

is sandwiched between two cathode planes. The chambers are filled with a gas

mixture of argon (62%) and ethane (38%). A 4.0 kV high voltage is applied to

produce the electric field. For a typical track, the charged particle passes through

the chamber at an angle of about 45◦ and produces electron and ion pairs along

its pass. The ionized electrons drift along the electric field at a velocity of ∼ 50

µm/ms [54] and fire an average of five sensor wires. The drift distance is calculated

using the drift time, which is measured using time-to-digital converters (TDCs).

The cross-over point at which the track passes through the sense-wire plane is

determined using a linear fit of the drift distance.

4.5.3 Scintillator Planes and Trigger Electronics

There are two scintillator planes in both LHRS and RHRS [49], S1 and S2m.

These planes are used to form the triggers specific to the requirements of the

experiment.

The S1 plane consists of six scintillator paddles with two Photo-Multiplier Tubes
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Figure 4.9: Top and side view of VDCs [54]. The size of the rectangular aperture
of each chamber is 2118 mm × 288 mm. Each chamber consists of two orthogonal
planes of wires (U and V) that are inclined at an angle of 45◦ with respect to the
spectrometer’s dispersive direction. The VDCs lie in the laboratory horizontal
plane.
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Figure 4.10: Layout of the S1 scintillator counter [55]. The paddles overlap by 10
mm.

(PMTs) on each paddle with one at each end of the paddle. The active vol-

ume of each paddle is 36 cm (length) × 29.3 cm (width) × 0.5 cm (thick-

ness). As shown in Figure 4.10, the paddles are installed at a small angle

with respect to the S1 plane and overlap by 10 mm each other. S1 is de-

signed to be thin in order to minimize particle absorption and it provides

the first component of the main trigger.

The S2m plane is formed by 16 scintillator paddles with two PMTs reading

out both ends of each paddle. Each scintillator paddle has a dimension of

43.2 cm (length) × 14 cm (width) × 5.08 cm (thickness). Unlike S1, the

paddles do not overlap. Besides providing input to the trigger, S2m also

provides the timing information.
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4.5.4 Gas Cherenkov Detector

The Gas Cherenkov counter is used to distinguish electrons from other particles.

It is one of the most efficient particle identification detectors. In our case, the

detector was used to separate electrons from pions. The design and construction

of the detector for JLab was completed by INFN and Saclay [56]. The operation

of the detector is based on the Cherenkov effect. The speed of light in a medium

is:

cmedium = c0/n (4.3)

where c0 is the speed of light in vacuum and n is the refractive index of the

medium. When a particle passes through a medium with a speed larger than the

speed of light in that medium, Cherenkov radiation is emitted. The threshold

velocity can be transformed into the minimal particle momentum required for a

particular particle to emit Cherenkov light:

pthreshold =
mc0√
n2 − 1

(4.4)

It can be seen that the particle mass and refractive index determine the threshold

momentum. To meet the needs of the specific experiment, one uses media chosen

for appropriate refractive indices to generate light for the selected particle types.

The Hall A gas Cherenkov detectors are filled with CO2 gas under atmospheric

pressure, with a refractive index n = 1.00041. This sets the threshold momen-

tum for electrons to 0.017 GeV/c, for pions to 4.8 GeV/c, and for protons to

32 GeV/c. Within the momentum acceptance of the HRSs, only electrons can

emit Cherenkov light, which allows us to be able to distinguish them from other

particles. The HRS Chrenkov detectors are positioned between the S1 and S2m

plates. The detectors are 1 m long with a 250 cm × 80 cm wide surface area. As

shown in Figure 4.11, each Cherenkov has 10 spherical mirrors arranged as a 2

(transverse) × 5 (dispersive) array.
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Figure 4.11: Cherenkov detector schematic [56].

Although pions do not directly produce any Cherenkov light in the detec-

tor, they can still interact with the atoms in the detector and create secondary

electrons, which can emit Cherenkov light and produce signals in the analog-to-

digital converters (ADCs). But the secondary electrons do not necessarily move

in the same direction as the scattered electrons, and therefore the emitted light

is not efficiently collected by the mirrors. The summed ADC signals for the sec-

ondary electrons are mostly at the single photo-electron peak. On the other hand,

the scattered electrons emit Cherenkov light producing multiple photo-electrons.

During the experiment, the average number of photo-electrons for each PMT was

∼ 7.

4.5.5 Lead Glass Counters

Two sets of lead glass counters are used for providing additional information

for particle identification [49]. They are often referred to as the pion rejector

layer 1, layer 2 for LHRS and pre-shower, shower for RHRS. Together with the

Gas Cherenkov detector, the lead glass helps in separating electrons from pions.

The principle of the lead glass counter is that when an energetic particle passes

through dense material, it can generates cascades of photons and e+-e− pairs,
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Figure 4.12: Configuration of electromagnetic calorimeters.

which generate more photons. The emitted photons can be detected by PMTs.

Electrons develop a large signal due to an electromagnetic shower in the lead-

glass, whereas the pions do not develop signals as strong as the electrons because

of their comparatively longer mean free path.

For the LHRS, the construction of both layers of the pion rejector is the

same. Each layer is composed of 17 short blocks and 17 long blocks of lead glass,

forming a 2 (transverse) × 17 (dispersive) array. This is shown in Figure 4.12 left

side. Therefore, both the layers are composed of 34 blocks and each block has a

dimension of 30 (35) cm (length) × 14.5 cm (width) × 14.5 cm (thickness). The

gap between two blocks in the first layer is covered by the blocks in the second

layer. For the RHRS, pre-shower layer consists of two columns, each with 24

lead glass blocks with dimensions of 35 cm (length) × 10 cm (width) × 10 cm

(thickness). The shower layer is composed of five columns each with 16 blocks

with dimensions of 15 cm (length) × 15 cm (width) × 35 cm (thickness).
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Figure 4.13: HRS single arm trigger scheme.

4.5.6 Trigger System

Table 4.3 shows triggers for E05-015. The Hall A system generally uses up to eight

different triggers. They are electronic pulses, which are formed when a particle

hits one or more detectors of the spectrometer(s). From the combination of these

signals, one can decide whether they correspond to a certain physical process,

and whether they should be recorded or not. Figure 4.13 shows the form of the

HRS main trigger (T1/T3).

4.5.7 Scaler Modules

The raw signals from the PMTs on different detectors, as well as from the Beam

Current Monitors (BCM), are counted by the scalers. For E05-015, depending

upon the helicity states of the incoming electron beam and the target spin, five
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Table 4.3: Triggers used during E05-015.

Trigger Type Description
T1 RHRS singles (S1 and S2m)
T2 RHRS efficiency (S1/S2m/Gas Cherenkov)
T3 LHRS singles (S1 and S2m)
T4 LHRS efficiency (S1/S2m/Gas Cherenkov)
T5 -
T6 -
T7 -
T8 Pulser (1024 Hz clock)

scaler modules were configured [52]: four scalers were gated as (+ +), (+ -), (-

+) and (- -), where the first quantity is the target spin state and the second one

is the beam helicity. The last one was not gated by beam helicity or target spin

state and was referred to as the ungated scaler. These five scalers were also gated

with the run gate, i.e., they counted only when the run was started and stopped

counting as soon as the run was ended.
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Chapter 5

Polarized 3He Target

Polarized 3He can be used as an effective neutron target. The free neutron lifetime

is very short, approximately 881 s [57]. Hence, a stable high-density neutron

target is unavailable. Physicists have instead used light nuclei such as deuterium

or 3He to study the properties of neutron. The 3He nucleus is composed of two

protons and one neutron. The ground state of the 3He wave function is dominated

by the S-state [58][59], in which the two protons are anti-aligned, so to first order

the spin direction of the 3He nucleus depends on the neutron spin direction.

Therefore, a polarized 3He target is an effective polarized neutron target.

5.1 Spin-Exchange Optical Pumping (SEOP)

The level splitting of 3He 1S and 2P states is very large, and existing lasers are

not able to provide enough power to polarize 3He. Thus the direct polarization

of dense 3He targets is not feasible. Only through indirect methods, such as spin-

exchange optical pumping, can these targets be polarized. The spin-exchange

optical pumping mechanism can be divided into two steps according to their time

sequence. The first step is optically pumping alkali atoms to produce polarized

electrons. The second step is for the polarized electrons to transfer their polar-

ization to the 3He nuclei by a spin-exchange interaction.
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Figure 5.1: A diagram explaining optical pumping. (1)Rb atoms in a magnetic
field are exposed to circularly polarized laser light. (2) The valence electron is
excited from the 5S1/2 to 5P1/2 state. (3) The electron decays by emitting a
photon into either the mJ = −1/2, where it repeats steps (2) and (3), or into the
mJ = +1/2 where (4) it remains.

5.1.1 Optical Pumping

The polarized electrons are generated by optically pumping alkali atoms of 85Rb.

85Rb has nuclear spin I = 5/2, and the valence electron is in a 5S1/2 ground

state, with intrinsic spin S = 1/2, angular momentum L = 0, and total angular

momentum J = 1/2. When the alkali atoms are placed in a magnetic field, the

valence ground state 5S1/2 level will split into two sub-states, mJ = ±1/2. The

number of alkali atoms with valence electrons in each of the two sub-states n±

obeys the normal Boltzmann distribution. For example, at room temperature T

≈ 300 K, with magnetic field B ≈ 30 G, the ratio of the alkali atoms in the two

sub-states is n+/n− = exp(2µeB/kBT ) ≈ 1.00001; the number of alkali atoms in
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the two sub-states are substantially equal. In order to polarize alkali electrons,

one must find a way to increase the number of alkali atoms in one state (e.g.,

mJ=+1/2), while reducing the number of atoms in the other state (e.g., mJ=-

1/2). Optically pumping alkali atoms is a two-step process. (1) Assuming that

the laser is left-hand circularly polarized (σ+), according to the selection rule

∆mJ = +1, only electrons in mJ = −1/2 can absorb photons and be excited

to mJ = +1/2 to be state 5P1/2; (2) An electron in an excited state emits non-

polarized light (σ0), decaying to the state 5S1/2. The probability of decay to

the mJ = −1/2 and mJ = +1/2 states is 50% to each. After multiple cycles of

excitation and decay, optical pumping can produce alkali atoms that are close to

100% in the state 5S1/2, mJ = +1/2, as shown in Figure 5.1.

5.1.2 Spin Exchange

In 1960, Bouchiat et al. [60] found that alkali atoms can transfer their electron

polarization to 3He nuclei. Binary collisions between atoms dominate in the

angular momentum transfer, and the Hamiltonian can be expressed as [61]:

~H(R) = ~HSR + ~HSE = γ(R) ~N · ~S + α(R)~I · ~S (5.1)

where R is the distance between the two atoms. The first term of the formula

represents the interaction between electron spin ~S and the angular momentum

of 3He-alkali system, and the second term is the interaction between the electron

spin ~S with the 3He nuclear spin I.

It was found that the spin-exchange efficiency for K is one order of magnitude

higher than that of Rb [62][63]. Even so, the available lasers could not provide

enough power to polarize K electrons. A method of Hybrid Spin-Exchange Optical

Pumping of 3He was proposed [64] in order to achieve a high polarization. The

hybrid alkali atoms are Rb and K. Polarized Rb atoms transfer their polarization

to the K atoms, and finally to the 3He nucleus, as shown in Figure 5.2. The spin
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Figure 5.2: Spin exchange in a Rb-K hybrid cell.

exchange cross-section between Rb and K is pretty large, and the spin-exchange

rate is much faster than the Rb spin-relaxation rates. Therefore, in a Rb-K mixed

system, K vapor has an electron polarization approximately equal to that of the

Rb vapor.

5.2 Target Setups

A schematic of the E05-015 polarized 3He target set-up is shown in Figure 5.3. It

contains (1) the target cell, including pumping chamber, transfer tube and target

chamber (Section 5.2.1); (2) the laser system, including lasers and optical elements

(Section 5.2.2); (3) the magnet system, including Helmholtz coils, RF coils and

the power supplies (Section 5.2.3); (4) heating and temperature measurement

system, including heating pipe, heaters and Resistive Temperature Devices (RTD)



61

Figure 5.3: A schematic of the vertically polarized 3He target [42]. Note that the
Horizontal Helmholtz coils are not shown in this figure.

temperature sensors and temperature instruments (Section 5.2.4); (5) the NMR

measurement system, including pick-up coils and the corresponding electronics

system (Section 5.3); (6) the EPR measurement system, including the EPR coils,

photodiode and the corresponding electronics system (Section 5.4).

5.2.1 Characterizing the 3He Cell

The 3He gas was contained in a hand-blown glass cell, which was made of GE180

aluminosilicate glass. Before the cell was sealed, it was filled with a small amount
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Table 5.1: Characteristics of 3He cell used in E05-015.

Name Dominic
Filled at W&M
Vpc (cm3) 183.1
Vtt (cm3) 5.2
Vtc (cm3) 74.2

n0 (amagat) 10.9
Lifetime (hour) 20

N2 (amagat) 0.125

of N2 gas and a mixture of rubidium and potassium metal. The main character-

istics of the cell used in this experiment are summarized in Table 5.1. The cell

consists of the following three parts:

Pumping chamber (pc): a three-inch sphere with a typical wall thickness of ≈

4 mm. During the polarization process, the pumping chamber was heated

to ≈ 270 ◦C in order to vaporize the alkali metal.

Transfer tube (tt): a ≈ 9 cm long tube connecting the pumping and target

chambers. During the experiment, polarized 3He gas diffused from the

pumping chamber to the target chamber at a rate of around 1 cell volume

per hour [52] through the transfer tube.

Target chamber (tc): a 40 cm long glass tube with an typical diameter of 1.9

cm. During the experiment, the electron beam passed through the glass

windows and interacted with the polarized 3He nuclei within the target

chamber. The target chamber was cooled with 4He cooling jets on both glass

windows. During the experiment, the 3He density in the target chamber was

≈ 14.8 amagat1.

1An amagat is a density unit, 1 amagat is the gas density at 1 atm (= 101.325 kPa) and 0
◦C (= 273.15 K).
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Figure 5.4: Setup for the pressure broadening measurement.

• Target Density: Knowledge of the 3He target density is crucial for the ex-

traction of a target polarization and cross-sections. The target-cell density

was measured by observing the collisional absorption broadening of the D1

and D2 lines of the alkali metal Rubidium (Rb) in the presence of 3He gas,

which acts as a high pressure perturbation of these lines. More details can

be found in [65]. The instrumental setup that was used during these mea-

surements is illustrated in Figure 5.4. The main equipment used in the

density measurement was:

– One laser: New Focus Inc., λ range: 790 nm - 801 nm; power: 0.1 mW

- 6.5 mW.

– Two lock-in amplifiers: Stanford Research System Inc., SR844-200

MHz RF lock-in amplifier.

– Two photo-receivers: New Focus, Inc. Large-area visible photo-receiver.

Model 2031.

– One wave-meter: Burleigh Inc. WA-1100.
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Table 5.2: Parameters for the pressure broadening measurement.

Parameters Description Setting Value
Wavelength Start (nm) Starting point of a wavelength scan 793.30
Wavelength Stop (nm) Ending point of a wavelength scan 796.30

DC Motor Step Size (nm) The incremental wavelength step 0.15
PZT Step Size (%) Percentage of a DC motor step 2.5

Average Data Average data points per PZT setting 6
Filename Accumulated data file Arbitrary

Power (mW) Diode Power 6

The laser beam goes through the two windows on the oven, and hits the

photodiode. With the target cell placed inside the oven, the laser beam goes

through the two windows of the target cell as well. A lens was placed before

the photodiode to focus the laser after it went through the oven windows

to efficiently collect the transmitted light. Both photodiodes were on low

sensitivity to make sure they can read the signal. Generally we started the

oven temperature from 65 - 80 ◦C (depending on the target cell), and took

several scans (10 - 15) at different temperatures. The temperature range

should be at least 15 ◦C in order to make sure our density scans do not have

a temperature dependence. However, in order to keep our Photo-Diodes

within their linear range, the intensity of the signal should be no less than

0.1 mV, which prevented us from going to higher temperature. Parameters

used in pressure broadening measurements are listed in Table 5.2. Figure 5.5

shows the scan result of the cell Dominic at 95 ◦C.

The basic shape of the Rb D1 spectral profile has the form of a Lorentzian:

S(ν) =
A [1 + 0.6642 · 2πTd(ν − νc)]

(ν − νc)2 + (γ/2)2
+B (5.2)

where A and B are fit parameters, Td is the collision time, ν is the frequency

of the laser light, νc is the central value of the resonance, and γ is the FWHM

of the signal. There are two contributions to the measured width of the

absorption lines: the main one comes from the broadening due to collisions
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Figure 5.5: Illustration of the density scan figure for the cell Dominic at 95 ◦C.
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Table 5.3: Pressure broadening coefficients [66].

Parameters 3He N2

D1 full width (GHz/amg) 18.7± 0.3 17.8± 0.3
D2 full width (GHz/amg) 20.8± 0.2 18.1± 0.3

with 3He. A roughly 1% contribution comes from the N2 density, which is

only about 0.1 amagat. The relevant proportionality constants as well as

their temperature dependence are very well known; they are summarized

in Table 5.3. In this calculation, one takes into account the temperature

dependence of the constants which has the following form [66]: T 0.05±0.05

for a D1 width and T 0.53±0.06 for a D2 width. By measuring and fitting the

absorption spectra, we found the 3He density in the cell Dominic is ≈ 10.92

amagat. More details on extracting the cell density from the line width can

be found in [65].

• Wall Thickness: The objective of the wall thickness study is to determine

the thickness of the target cell glass. During the experiment, the incoming

and outgoing electrons lose energy when they pass through the cell windows

and walls. Knowledge of the cell’s thicknesses is mandatory to perform the

radiative corrections (Section 6.8.1). In this study, several data scans were

completed to measure the glass thickness of the polarized 3He target and

the reference cells. The cells that were used during the experiment were:

– Reference cell: GMB2

– 3He cell: Dominic

When two or more coherent light sources interfere with each other, they

produce a series of alternating bright or dark fringes as a result of their con-

structive or destructive interference, which depends on the relative phase of

the interacting waves. The measurement of a transparent thin film thickness

is conducted by detecting reflected laser light from the front and the back
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surface of the film. The incident laser scatters from the glass producing

waves that reflect from the front surface and others that refract and then

reflect from the back surface. A constructive or destructive interference oc-

curs when the wave refracted from the back surface through the film and

then interferes with the reflected wave from the front surface. The type of

interference depends on the optical path length difference and hence, the

relative phase of the interacting waves. The instrumental setup that was

used during these measurements is illustrated in Figure 5.6. The instru-

ments are the same as used in the density measurement, except for adding

an iris and removing the oven. The tunable diode laser was used to pro-

duce a continuous laser beam. The laser light is split into two beam paths.

The laser beam, as is shown in Figure 5.6, goes through a beam splitter

that removes approximately 10% of the beam to be read by a wave-meter.

The latter is used to measure the laser’s wavelength. The second beam

goes through the optical chopper to the second beam splitter. The optical



68

chopper causes the laser signal to oscillate at 1.4 kHz, and thus, the lock-in

amplifier can cleanly read the signal from background. Roughly 30% of the

light from the second splitter is sent to the first photo-receiver. However,

the other 70% is reflected off the cell glass into an optical iris, and then,

to the second photo-receiver. The optical iris is used to help focus on the

small interference pattern required by the measurement. The signal from

the two photo-receivers is sent into two lock-in amplifiers to the computer,

where it gets processed and analyzed by a LabView program.

The cell’s orientation and position are shown in Figure 5.7, where W1 (W2)

is the upstream (downstream) window. In the wall and windows thickness

measurements, one needs to make sure that all the optical components and

LabView program parameters are set correctly. The important parameters

of this program are the Diode-Controller (DC) motor step size, the percent-

age of the DC motor step size (PZT) and the start-stop wavelength window.

The DC step motor allows one to monitor the incremental wavelength step.

It was set to 0.15 nm during the entire measurement. The second PZT

parameter was changed from 5% to 15% between the wall and windows

measurements. However, the start-stop wavelength window was varied re-

spectively between 3 nm to 10 nm for each wall and window thickness scan.

Using these settings, the scan of each measured cell’s wall (window) point

took roughly 15 - 16 (17 - 18) minutes.

What makes this task tricky is the effort required to find a good interference

image, either with an Infra-Red (IR) card or a scope before proceeding with

any measurement. These two tools were used to make sure that the laser

shines on the required glass point. Thus, a good tuning of the cell’s position

makes finding the interference spot much easier, especially if the cell is

positioned in the transverse plan relative to the incident laser direction.

However, a slight planar movement of the cell is mandatory to keep the
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Figure 5.7: An example of measured positions in wall thickness measurements.

Figure 5.8: An example picture of the interference pattern.
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angle between the incident and the rejected light roughly around 20◦. Since

the angle is the main systematic uncertainty of this measurement, it is

important to keep it under this limit to reduce its introduced error. A

distinct interference spot can be found after several redundant movements

of the cell, as shown in Figure 5.8. Thus, the iris is used to focus on either

the largest dark or light stripes of the interference pattern. Once we are

satisfied with the spot selection, the LabView program is launched to record

and analyze the scanned data. It is important before starting a new data

scan to record the position and angle information of the last measured point.

This was done manually using a ruler and a protractor. The associated

uncertainty with these manual measurements fluctuates respectively within

the range of 0.75 cm and 2 degrees for the position and angle. Once the

angle is recorded, Snell’s law can be used to calculate the refraction angle.

The intensity of light reflected from a flat surface is given by:

Ir =
η

1− η
I0 (5.3)

where

η =
4
(
n−1
n+1

)2

1−
(
n−1
n+1

)2 sin2

(
2πnd cos θ

λ

)
(5.4)

Here, n is the index of refraction, λ is the wavelength of the laser, θ is the

angle of the reflection and d is the thickness of the surface. The results of

the wall thickness can be found in Appendix A.

5.2.2 Lasers and Optics

Three COMET lasers with a narrow wavelength line-width of ≈ 0.2 nm were used

during the experiment, significantly improved the target polarization over previ-

ous experiments. With these three COMET lasers, a maximum polarization of ≈

70% was achieved in the pumping chamber during the experiment. The currents



71

Table 5.4: Laser parameters used throughout the experiment.

Laser Diode Current (A) Power (W) Diode Temperature (◦C)
JLab1 35.0 25 26
JLab2 34.0 25 20

Rutgers 35.9 25 25

and the corresponding powers of the COMET lasers used in the experiment are

listed in the Table 5.4. The lasers were installed and interlocked in the laser room

behind the Counting House on the accelerator site at Jefferson Lab. Three 75-m

long fibers guided the laser light from the laser room to the hall. One end of

the fiber was connected to the output of the COMET laser, the other end was

connected to a 5-to-1 combiner. A 5-to-1 combiner has five separate fibers as

inputs and one output. During the entire period of production data taking, three

75 m fibers were connected to one 5-to-1 combiner with a typical power loss of ≈

6% [52].

The laser light coming out of the 5-to-1 combiner was circularly polarized

by passing through optical components. The setup of the optical components is

shown in Figure 5.9. The laser light from the 5-to-1 combiner is divergent light

with a wavelength of 795 nm. A lens focusses the light to be parallel. A beam

splitter was used to separate S and P waves from the incident unpolarized light

coming out of the focusing lens. The S wave was allowed to pass through the

quarter wave plate to reflect back from a mirror and pass through the quarter

wave plate again. Therefore, after being reflected from the mirror and passing

through the quarter wave plate twice, the S wave becomes a P wave and passes

through the beam splitter again. On the other hand, the P wave light is incident

on a second mirror and is reflected. Then both P waves pass through two quarter

wave plates separately so that the linearly polarized P waves became circularly

polarized. The quarter wave plates were calibrated to proper angles so that the
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Figure 5.9: A schematic diagram of the optics setup.

linearly polarized P waves would be circularly polarized in the same direction

(either left circularly polarized or right circularly polarized).

5.2.3 Magnet System

The polarized 3He target system at Jefferson Lab has three pairs of Helmholtz

coils: the Horizontal Small Coils, the Horizontal Large Coils and the Vertical

Coils. The three coils are oriented in three mutually orthogonal directions as

shown in Figure 5.10. They can provide a 3-dimensional magnetic field with an

average strength of 25 G and a typical gradient of 10-30 mG/cm in the region

of the 3He cell [52]. The magnitude and direction of the holding magnetic field

were controlled by the electrical currents in these coils. The basic characteristics

of these coils are shown in Table 5.5. The set current in each pair of coils that

generated the vertical field is listed in Table 5.6. The direction of the holding

field was measured to a precision of better than 0.5◦ using a compass system. A
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Table 5.5: Basic characteristics and power supplies of Helmholtz coils.

Coil Name Hori. Small Hori. Large Vertical
Inner Diameter (m) 1.27 1.45 1.83
Number of Turns 256 272 355

Resistance (Ω) 3 3 4.4

detailed discussion about the compass measurements can be found in [67].

The RF coils provide an RF field with f=91 kHz and B=100 mG, which were

used to flip the 3He spin.

5.2.4 Oven, Heater, and Airflow System

The pumping chamber was enclosed in an oven and kept at a high temperature

in order to evaporate the alkali atoms in the 3He cell. The oven used in the

Table 5.6: Current set points for each coil for generating 25 G holding field in
vertical direction.

Field ISmall (A) ILarge (A) IVertical (A)
Vertical 0.329 -0.958 14.093
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Figure 5.11: A front view of the target ladder.

experiment was made of a material called CS85 [52]. It had an inlet and an

outlet for the circulation of compressed air. The air blown into the oven from

the inlet was heated by two heaters. After circulating in the oven, the air exited

from the outlet. Both the inlet and the outlet piping were enclosed in a tube

that supported the oven and were wrapped with insulation. A RTD was attached

inside the oven to read the temperature. Throughout the experiment, the oven

temperature was kept stable at 230 ◦C with fluctuations within 2 ◦C.

5.2.5 Target Ladder

During the experiment, a target ladder was mounted on the oven to allow five

different target positions as shown in Figure 5.11. The ladder can move with the

oven vertically to move the chosen target in the electron beam position. The five

target positions are the following:

Polarized 3He target cell position: This position was for the 40-cm long po-

larized 3He target chamber, which was used for the main production data
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in the experiment. The cell was glued to the oven bottom plate with RTV2.

A solid BeO foil with carbon foils target position: Seven carbon foils, equally

spaced and covering the 40-cm length of the target chamber, were used for

spectrometer optics calibration. The beryllium oxide (BeO) foil was used

to make the beam spot visible to locate the center of the target.

A “hole” target position: This was the central carbon foil but extended in

height with a hole in it. It was used for fine position alignment.

Empty target position: This position was mostly used for beam tuning.

Reference cell target position: This position was for different calibrations such

as the elastic calibration, background studies, etc. The reference cell was

filled with either nitrogen, hydrogen or helium-3 gas in accordance with the

purpose of the studies.

5.2.6 Cell Temperature and Density During E05-015

Using the ideal gas law, the density of the target chamber is determined by:

ntc = n0[1 +
Vpc
Vtot

(
Ttc
Tpc
− 1)]−1, (5.5)

where n0 is the density at room temperature, Vpc is the internal volume of the

pumping chamber, Vtot is the total internal volume of the cell, Ttc is the average

target chamber temperature and Tpc is the average temperature of the pumping

chamber. Similarly, the density of the pumping chamber is determined by:

npc = n0[1 +
Vtc
Vtot

(
Tpc
Ttc
− 1)]−1, (5.6)

where Vtc is the internal volume of the target chamber.

2Room Temperature Vulcanizing silicone.
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Figure 5.12: RTD positions on the 3He target. RTD 1-5 are evenly positioned on
the target chamber and RTD 6-7 are on the pumping chamber.

The cell temperature was measured with seven RTDs with their locations

shown in Figure 5.12. The target chamber temperature, Ttc, was calculated by

simply taking an average of RTD 1-5. The pumping chamber also has two RTDs

on it. However, these two RTDs only reflect the interior temperature of the cell

when the lasers are off. When the lasers are on, there is a thermal gradient

between the inner part of the cell and the edge of the pumping chamber. In

order to measure the average internal pumping chamber temperature when the

lasers are on, a separate measurement using the NMR system (Section 5.3) was

performed. This measurement compares the NMR signal height when the lasers

are on and when the lasers are off. More details about the temperature test can

be found in [68]. Analysis of the measurements found that the difference between

the RTD reading and the internal temperature of the pumping chamber was ≈ 16

◦C. Using the temperature test results, the interpolated temperature to each 3He

run taken during the experiment is illustrated in Figure 5.13, and the interpolated

density to each 3He run is illustrated in Figure 5.14.
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Figure 5.13: Temperature in the cell during E05-015. (a) Temperature in the
pumping chamber. (b) Temperature in the target chamber.
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Figure 5.14: Density in the cell during E05-015. (a) Density in the pumping
chamber. (b) Density in the target chamber.
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5.3 Nuclear Magnetic Resonance (NMR) Polarimetry

NMR polarimetry determines the target polarization by measuring the 3He NMR

signal during spin reversal of the 3He nuclei through the adiabatic fast passage

(AFP) [69] technique. During the experiment, the spins of the 3He nuclei were

reversed every 20 minutes, and an NMR measurement was recorded during each

flip. Therefore, the polarization was determined and recorded every 20 minutes.

5.3.1 AFP Process

When a particle with spin ~I is put into a uniform magnetic field ~B0, the particle

will rotate around ~B0. The rotation equations are as follows:

~M = γ~I (5.7)

~L = ~M × ~B0 (5.8)

d~I

dt
= ~L, (5.9)

where ~M is the magnetic moment, γ is the gyro-magnetic ratio and ~L is the

angular momentum. Combine the equations yields

d ~M

dt
= γ

(
~M × ~B0

)
. (5.10)

Adding an additional small field ~B1, which is perpendicular to ~B0 and rotates

around with an angular frequency ω in the opposite direction to ~B0, changes

Equation (5.10) to

d ~M

dt
= γ ~M × ( ~B0 + ~B1). (5.11)

Now this equation is in the laboratory frame of reference. To simplify, let us

consider a rotating frame of reference, S’, rotating with an angular velocity -~ω
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with respect to the laboratory frame. In S’ frame, ~B0 = B0ŷ, −~ω = −ωŷ and

~B1 = B1ẑ, and we can write the motion of the magnetic moment in the rotating

frame S’ as:

d ~M

dt
= γ ~M × ( ~B0 −

~ω

γ
+ ~B1) (5.12)

= γ ~M ×
[(
B0 −

ω

γ

)
ŷ +B1ẑ

]
. (5.13)

Now if we compare Equation (5.11) and Equation (5.13), an effective field Be can

be given by

~Be =

(
B0 −

ω

γ

)
ŷ +B1x̂. (5.14)

The target spin ~S is primarily oriented parallel to the holding field ~B0. During the

AFP process, the magnetic field
(
B0 − ω

γ

)
is slowly changed from

(
B0 − ω

γ

)
<<

−B1, passes zero and ends at
(
B0 − ω

γ

)
>> B1. If the change is slow enough,

the target spin will follow the direction of ~Be and reverse its direction.

5.3.2 NMR Measurement

During the experiment, the rotation field B1 was generated by RF coils. This

field was perpendicular to ~B0 with an angular frequency of |ω|. There are two

types of AFP techniques used to introduce a time dependent
(
B0 − ω

γ

)
. Both

were used in E05-015.

AFP field sweep: If the holding field is swept and the frequency is kept con-

stant, the usual AFP condition requires a sweep rate of 1.2 G/s. In this

case, the holding field is swept from 25 G to 32 G and then back with the

resonance at 28 G, which corresponds to a transition frequency of 91 kHz.

During the experiment, field sweep NMR was done a few times as part of

our calibration process. This allowed us to compare the pumping chamber

polarization with the target chamber polarization.
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Figure 5.15: A typical NMR frequency sweep signal.

AFP frequency sweep: For frequency sweep, the holding field is kept constant

and the RF was swept from 77 kHz to 85 kHz through the resonance at

ω0=81 kHz and back. The sweep rate was 4 kHz/s to satisfy the AFP

conditions. During the production running, only frequency sweep measure-

ments were performed due to their lower signal to noise ratio.

A typical NMR signal using the frequency sweep method is shown in the

Figure 5.15. The height of the signal from the lock-in amplifier is proportional to

the 3He polarization. The function used to fit the signals is:

SNMR = A· B1√
(B0 − ω

γ
)2 +B2

1

+ Background, (5.15)

where S is the signal in the pick-up coils and A is the amplifier.
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5.4 Electron Paramagnetic Resonance (EPR) Polarimetry

The method of Electron Paramagnetic Resonance (EPR) measures the absolute

polarization of the 3He nuclei in the pumping chamber. Besides the magnetic field

generated by the magnetic coils, polarized 3He can generate a weak magnetic field.

This weak magnetic field can shift the frequency of the rubidium or potassium

Zeeman resonance. The polarization of 3He can be determined by measuring the

resonance frequency shift, i.e.,

νEPR = ν0 ±∆νEPR, (5.16)

where ν0 ∝ B0, ∆νEPR ∝ PHe.

The first step in understanding electron paramagnetic resonance is to under-

stand the level splitting of the Rb. Rb has a single electron in the outer shell

(5S1/2), and its interaction Hamiltonian with a magnetic field ~B is given by [15]:

Ĥ = Ag~I · ~S + geµBSyBy −
µI
I
IyBy, (5.17)

where the first term is the vector compling between the electron spin ~S and

the nuclear spin ~I, the second term is the coupling of the electron spin to the

magnetic field By, and the third term is the coupling of the nuclear spin to the

magnetic field By. Solutions of Equation (5.17) give the eigenstates of Rb atoms,

which are labeled by the quantum number F = I ± S. In this case, F = 2

and F = 3. In a magnetic field, a state F splits into 2F + 1 sublevels labeled

by mF . For F = 2, mF=-2, -1, 0, 1, 2 and for F = 3, mF=-3, -2, -1, 0, 1, 2,

3 as shown in Figure 5.16. The Zeeman splitting between (F=3, mF=-3) and

(F=3, mF=-2) or between (F=3, mF=3) and (F=3, mF=2) is described by the

Electron-Paramagnetic Resonance frequency νEPR, which is proportional to the

magnetic field ~B. In order to cancel the large component ν0, which is generated

by the main holding field, the 3He spins are reversed by AFP and the frequency

shift ∆νEPR was measured directly during an EPR measurement. By flipping
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Table 5.7: Parameters used in extracting polarization from EPR signals.

Parameters Description Value Unit
2∆ν Frequency difference From the experiment Hz
µ0 Vacuum permeability 4π × 10−7 N/A2

dνEPR

dB
Constant from atomic physics experiments See the content Hz/T

κ0 Constant from atomic physics experiments See the content T is in ◦C
µ3He Magnetic moment of 3He 1.075× 10−26 J/T
npc

3He density in pumping chamber From the experiment Amagat

the 3He spin with AFP frequency sweep, the frequency shifts (2∆νEPR) can be

measured to a precision of δ(∆νEPR)/(∆νEPR) ≈ 0.2%.

The transition frequency between the Rb sublevels is proportional to the ex-

ternal magnetic field, which is in our case defined as B0+∆B3He. Using an RF coil,

the resonance frequency can be found for the external field B0 +∆B3He, and then,

by flipping the 3He spins, one can access the resonance frequency for the other

external field B0 −∆B3He. Therefore the target’s polarization is proportional to

the resonance frequency shift (2∆ν):

P3He =
1

κEPR

∆ν, (5.18)

where κEPR is:

κEPR =
2µ0

3

dνEPR

dB
κ0µ3Henpc. (5.19)

Substituting Equation (5.19) into Equation (5.18) yields:

∆ν =
2µ0

3

dνEPR

dB
κ0µ3HenpcP3He, (5.20)

where the individual parameters are listed in Table 5.7.

A recent measurement of κ0 was carried out by Babcock, et al. [70]. In

their measurement, κ0(T ) is reported as two parts: a static value (κ0) and a

temperature dependent piece (κ′0) with:

κ0(T ) = κ0(Tref) + κ′0(T − Tref), (5.21)
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where Tref is a given reference temperature. For Rb and K at Tref = 200◦C, the

κ0 are:

κRb0 (T ) = 6.39 + 0.00914(T − 200), (5.22)

and

κK0 (T ) = (5.99± 0.11) + (0.0086± 0.0020)(T − 200). (5.23)

The target pumping chamber temperature during the experiments is approxi-

mately 270 ◦C. At these high temperatures, the uncertainty on κK0 due to the

temperature dependence is 2.3%. When the systematic uncertainty on the refer-

ence value is combined, the total systematic uncertainty on κK0 is 3.0%.

To fifth order in magnetic field, the derivative of the frequency with respect

to the field is given by [50]:

dν±
dB

=
gIµN − gSµB

h[I]

5∑
n=0

bn
xn

[I]n
, (5.24)

where

x = (gIµN − gSµB)
B

hνhfs
(5.25)

[I] = 2I + 1 (5.26)

b0 = 1 (5.27)

b1 = ∓4I (5.28)

b2 = 6I(2I − 1) (5.29)

b3 = ∓8I(4I2 − 6I + 1) (5.30)

b4 = 10I(2I − 1)(4I2 − 10I + 1), (5.31)

and

b5 = ∓12I(16I4 − 80I3 + 80I2 − 20I + 1). (5.32)

The individual parameters used in the calculation are listed in Table 5.8.
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Table 5.8: Parameters used in dνEPR

dB
calculation.

Parameters Description Value Unit

gI K g-factor 0.2601 -
Rb g-factor 0.5412 -

µN nucler magneton 5.051× 10−27 J/T
gS electron g-factor 2.0023 -
µB Bohr magneton 9.275× 10−24 J/T
h Plank’s constant 6.626× 10−34 Js
I K nuclear spin 1.5 ~

Rb nuclear spin 2.5 ~
νhfs K 461.719× 106 Hz

Rb 3035.732× 106 Hz

5.5 Polarization Results from EPR Measurement

A typical EPR online measurement is shown in Figure 5.17. During E05-015, five

EPR calibration measurements were done. Using Equation (5.20), the polariza-

tion results were extracted as shown in Figure 5.18.

5.6 Calibration of NMR with EPR

For each AFP sweep during the EPR measurements, an NMR measurement was

performed using the identical settings as the AFP spin flips for production running

as shown in Figure 5.17. The NMR calibration constant, C, can be extracted as

Ci = PEPR,i/SNMR,i, (5.33)

where PEPR,i is the EPR polarization evaluated for the ith flip and SNMR,i is the

NMR signal height. This value is 2.39±0.05 %/mV for this experiment.

5.7 Polarization Gradients

As is described in Section 5.2.1, the 3He target cell is divided into three parts:

the pumping chamber, the transfer tube and the target chamber. During this
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Figure 5.17: An example of an online EPR measurement.
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Figure 5.18: EPR polarization results from the calibration measurements.
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experiment, NMR polarimetry, calibrated by EPR measurements, measured the

pumping chamber polarization, Ppc, every 20 minutes. However, the electron

interacted with the polarized 3He gas in the target chamber, the polarization of

which is Ptc. Experiment design requirements did not allow pick up coils around

the target chamber, so the polarization in the target chamber could not be directly

monitored. 3He gas was polarized in the pumping chamber, and diffused to the

target chamber by the transfer tube, so the polarization in the pumping chamber

and the target chamber are different. The polarization gradient between the two

chambers is quantified as Ptc/Ppc. In order to obtain the polarization in the

target chamber, the polarization in the pumping chamber must be corrected for

this polarization gradient. The gradient will be discussed in the next section using

a two-chamber polarization model.

5.7.1 Two Chamber Polarization Model

The polarization dynamics can be described by a two-chamber model [71][72]:

dPpc
dt

= dpc(Ptc − Ppc) + γSE(PA − Ppc)− ΓpcPpc (5.34)

dPtc
dt

= dtc(Ppc − Ptc)− ΓtcPtc, (5.35)

where PA, Ppc and Ptc are the polarizations of alkali, pumping chamber and target

chamber, respectively, γSE is the spin-exchange rate in the pumping chamber, Γpc

and Γtc are the 3He spin relaxation rates in each chamber due to effects other

than spin-exchange and diffusion.

During E05-015, almost all data were taken near the maximum 3He polariza-

tion. When the 3He target is pumped for a long enough time, the polarization

in the pumping chamber and target chamber reaches an equilibrium state, the

polarization inside the two chambers does not change with time, and the left side

of Equation (5.34) and Equation (5.35) are zero. The solution to Equation (5.34)
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and Equation (5.35) can be written as [52]:

P∞pc = PA γSEfpc

γSEfpc + Γpcfpc + Γtcftcdtc
dtc+Γtc

(5.36)

P∞tc = P∞pc
dtc

dtc + Γtc
, (5.37)

where fpc (ftc) is the fraction of 3He nuclei in the pumping (target) chamber. From

Equation (5.37), one can see that the polarization gradient Ptc/Ppc, is determined

by two parameters, dtc and Γtc.

5.7.2 Diffusion Rate dtc

From previous work [15], the diffusion rate dtc can be written as:

dtc =
Att
VtcLtt

DtcK (5.38)

K =
(2−m)(t− 1)

t2−m − 1
(5.39)

t =
Tpc
Ttc

, (5.40)

where Att is the cross-sectional area of the transfer tube, Ltt is the length of the

transfer tube, and Vtc is the internal volume of the target chamber. Dtc is the

diffusion constant, which can be described with a model based on a classical gas

of hard spheres [71]

Dtc = D0

(
Ttc
T0

)m−1
n0

ntc
, (5.41)

where D0 = 2.789±0.007 cm2/s is the diffusion constant of 3He gas at T0 = 353

K and m = 1.705±0.003 describes the temperature dependence of the diffusion

constant. For E05-015, the typical value of dtc is (1.8 hour)−1, with an uncertainty

estimated as δdtc/dtc ≈ 17%.
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5.7.3 Target Chamber Life Time

Spin relaxation in the target chamber arises from several processes [52]:

Γtc = Γhe + Γwall + Γbeam + ΓAFP + Γ∆B. (5.42)

The various terms are the following:

Γhe (Nuclear dipolar interaction): the depolarizing interactions due to the

coupling between two adjacent 3He nuclei. This number was calculated by

Newbury, et. al. [73] as

Γhe =
n

(744 amagat · hour)
(5.43)

at 23 ◦C, where n is the density of 3He. Based on Newbury’s study, an

empirical formulas including the temperature dependence was proposed by

J. Singh [71] to calculate Γhe as:

Γhe =
n

(744 amagat · hour)·f(T )
, (5.44)

where f(T ) is a function of temperature:

f(T ) = c0·
(
T

T0

)c1
+ c2 + c3·

(
T

T0

)
+

c4

1 + c5· TT0
. (5.45)

The parameters can be found in Table 5.9. When T=T0 = 23 ◦C, f(T)=1.

Γwall (Wall relaxation): the depolarization effect due to collisions between the

3He nucleus and the cell glass wall. The average wall relaxation for both

chambers can be written as:

Γwall =
1

τ coldlifetime

− Γcoldhe , (5.46)

where τ coldlifetime is the life time with the target cell at room temperature

and τ coldhe is the 3He nuclear dipolar interaction at room temperature. The
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Table 5.9: The constants used in Equation (5.45).

parameter value
c0 1.2319E+0
c1 2.8591E-1
c2 -2.1793E-1
c3 -1.4426E-2
c4 5.3315E-1
c5 1.2376E+3
T0 296.15 K

life time was measured after the experiment in the target lab as shown in

Figure 5.19. On the other hand, if one assumes the glass relaxation in both

chambers is the same, Γwall for both chambers will be proportional to their

surface area to volume ratio S/V [52]. The difference between Γwall and

Γwall,S/V was used as the uncertainty of Γwall and was estimated as 40%.

Γbeam (Beam depolarization): Ionization increases the nuclear spin relaxation

in the target chamber as shown in Figure 5.20. The beam depolarization

effect was extracted with

offP
∞
pc

onP∞pc
≈ 1 + Γbeam · ntc

npc
· τ, (5.47)

where offP
∞
pc (onP

∞
pc ) is the polarization in the pumping chamber after equi-

librium is reached in the pumping chamber and target chamber when beam

off (on). τ is the spin up time with the beam off, which was measured during

the experiment as shown in Figure 5.21. It was found that Γbeam = I/346

(hour·µA), where I is the average beam current. By varying the input

parameters, an uncertainty of 40% was determined.

ΓAFP (AFP loss): During the production time, an AFP spin flip was performed

every 20 min. The spin loss for each AFP was measured by performing many

(∼10) AFPs in a short time (several minutes). It was found that ΓAFP ≈

0.56%/20 minutes.
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Figure 5.19: Target spin down curve at room temperature.
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Figure 5.20: Beam depolarization effect.
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Figure 5.21: Spin up measurement for the cell Dominic.

Γ∆B (Magnetic field gradient): Relaxation due to the magnetic field gradient

[74][75] is given by

Γ∆B = D
| ∆Bx |2 + | ∆By |2

B2
z

, (5.48)

where D ≈ 0.2 cm2/s is the 3He self-diffusion coefficient. The value of Γ∆B

≈ (103 hour)−1, which is very small and was neglected during our analysis.

5.7.4 Polarization Gradient Result

Based on Equation (5.37), the polarization gradient can be calculated with

P∞tc
P∞pc

=
1

1 + Γtc

dtc

(5.49)

Γtc = Γwall + Γtche + Γbeam + ΓAFP + Γ∆B, (5.50)

The results in P∞tc /P
∞
pc = 0.845, with an uncertainty of 4.3%.
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Figure 5.22: Target polarization versus spin flip.

5.8 Target Performance

The 3He polarization in the target chamber is shown in Figure 5.22. The average

3He polarization in pumping chamber (Ppc) and target chamber (Ptc) are:

< Ppc >= 60.6%± 0.5% (average stat. per NMR)± 2.2% (sys.) (5.51)

< Ptc >= 51.4%± 0.4% (average stat. per NMR)± 2.9% (sys.). (5.52)

The systematic uncertainties of the target polarization are summarized in Ta-

ble 5.10.
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Table 5.10: Systematic uncertainty budget for the target polarization.

Items Rel.Pol.Error

Pumping Chamber

K-3He EPR κ0 2.8%
Pumping chamber density 2.1%

EPR signal fit 0.6%
NMR signal fit 0.8%

Target Chamber

Diffusion rate 2.7%
Target chamber intrinsic life time 2.8%

Beam depolarization 1.7%
Spin flip loss 0.4%

Total 5.6%
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Chapter 6

Data Analysis

The purpose of the data analysis is to extract the 3He single-spin asymmetry, A
3He
y ,

from 3He↑(e, e′) quasi-elastic scattering and to extract the corresponding neutron

asymmetry An
y from A

3He
y . A flow chart of the data analysis is shown in Figure 6.1.

Using the standard Hall A analyzer package [76], developed by the Hall A staff

and users, and the detector calibration database from the previous experiments,

the raw data were processed and converted to ROOT files, which contain the

reconstructed events from the detectors and scaler information. These primary

ROOT files were used to check the scalers (Section 6.2) and calibrate the detectors

(Section 6.3.3). Then, new ROOT files were created using updated calibration

databases. By applying tracking and particle identification cuts to the raw data

(Section 6.4), one can obtain the target-spin dependent electron counts: N↑ and

N↓. These counts were then normalized to the accumulated charge C and detector

live-time L gated by their respective target-spin states. These are referred to as

the yields. The raw target single-spin asymmetry was formed from these two

numbers (Equation (6.1)). The raw target single-spin asymmetry was further

corrected for target polarization, nitrogen dilution (Section 6.7) and radiative

corrections (Section 6.8). The result of the above analysis provides the physics

asymmetry from polarized 3He in the quasi-elastic region. The corresponding

neutron single-spin asymmetry was extracted from the measured 3He asymmetry

using the effective polarization approximation (Section 6.9).
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Figure 6.1: The data analysis flow chart.
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6.1 Asymmetry Extraction

6.1.1 Raw Asymmetry Araw

The raw target single spin asymmetry is defined as:

Araw =
σ↑ − σ↓
σ↑ + σ↓

=
Y↑ − Y↓
Y↑ + Y↓

, (6.1)

where σ↑(↓) is the cross section of the target polarization vector in the vertically

up (down) direction and Y↑(↓) is the yield of the corresponding target state. The

yield is defined as

Y =
N

C · L
, (6.2)

where N is the number of events, C is the charge and L is the live-time. The live-

time corrections include detector and electronics efficiencies as well as computer

live time. Also implicit here is that other parameters are either independent of or

uncorrelated to polarization direction so that differences average out. Examples

of such parameters include spectrometer magnetic fields, target thickness, beam

emittance, and beam position on target.

The uncertainty of the raw target single spin asymmetry is:

δAraw =
2a(N↓δN↑ +N↑δN↓)

(N↑ + aN↓)2
(6.3)

=
2a
√
N2
↓N↑ +N2

↑N↓

(N↑ + aN↓)2
, (6.4)

where a =
C↑L↑
C↓L↓

.

6.1.2 3He Experimental Asymmetry A
3He
exp

The yield, Y , is comprised of three main parts: 3He yield (Y
3He), N2 yield (Y N2)

and empty target cell yield (Y empty). Equation (6.1) can therefore be rewritten
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as

Araw =
Y

3He
↑ + Y N2 + Y empty − (Y

3He
↓ + Y N2 + Y empty)

Y
3He
↑ + Y N2 + Y empty + (Y

3He
↓ + Y N2 + Y empty)

(6.5)

=
Y

3He
↑ − Y 3He

↓

Y
3He
↑ + Y

3He
↓
·
(

1− Y N2 + Y empty

Y 3He + Y N2 + Y empty

)
(6.6)

= A
3He
exp · (1− f), (6.7)

where A
3He
exp is the experimental asymmetry of 3He and

f =
Y N2 + Y empty

Y 3He + Y N2 + Y empty
(6.8)

is the dilution factor from N2 and glass. Taking the 3He target polarization P

into account, the expression of A
3He
exp in terms of the raw asymmetry, Araw, is given

by

A
3He
exp =

Araw
(1− f) · P

. (6.9)

6.1.3 3He Experimental Asymmetry in the Quasi-Elastic

Region Aqe
exp

In addition, the 3He yield can also be divided into two separate parts: the elastic

radiative tail (Y ert) and quasi-elastic (Y qe) contributions:

A
3He
exp =

Y
3He
↑ − Y 3He

↓

Y
3He
↑ + Y

3He
↓

(6.10)

=
Y ert
↑ + Y qe

↑ − (Y ert
↓ + Y qe

↓ )

Y ert
↑ + Y qe

↑ + Y ert
↓ + Y qe

↓
(6.11)

= (1−Rert)Aqeexp +RertAertexp, (6.12)

where

Aertexp =
Y ert
↑ − Y ert

↓

Y ert
↑ + Y ert

↓
(6.13)

Aqeexp =
Y qe
↑ − Y

qe
↓

Y qe
↑ + Y qe

↓
, (6.14)
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and

Rert =
Y ert

Y 3He
. (6.15)

The expression of Aqeexp in terms of the 3He experimental asymmetry, A
3He
exp , is given

by

Aqeexp =
A

3He
exp −RertAertexp

1−Rert
. (6.16)

6.1.4 Prescale Factor Correction

For E05-015, the singles triggers were taken with prescale factors, p. For p >

1, this leads to a change in the statistical uncertainties of asymmetries. The

derivation can be found in [77].

S =

√
1− L·r(1− 1

p
), (6.17)

where L is the live-time, r is the acceptance for useful events and p is the prescale

factor.

6.2 Scaler Consistency Check

During the experiment, scalers were used to record the accumulated charges and

the raw number of trigger counts. The LHRS and RHRS were both used to

collect the data, and all the important scaler signals were sent to both arms to

be counted as a cross-check, which means there are two copies for the important

scalers. The spectrometers were synchronized so that they would have the same

run time for each production run pair. Then, ideally, the reading of a certain

scaler from the left-arm should be the same as that from the right-arm. Since

the signals were read out by different scaler modules. By comparing the scaler

counts, we can easily identify problems.
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As we mentioned in Chapter 5, in each HRS, five scaler modules were installed

to record five types of scaler readings. The “ungated” scaler represents the reading

independent of the target spin and beam helicity states and the “gated” scalers

represent four types of scaler readings (++, +-, -+, –) from the possible combi-

nations of target spin states (+ and -) and beam helicity states (+ and -). In this

analysis, these important scalers were checked:

• main triggers: RHRS trigger t1 and LHRS trigger t3.

• charges: u1, u3, u10, d1, d3, d10 and Unser.

• clocks: 1 kHz and 103.7 kHz.

The results of the scaler consistency check are summarized in Table 6.1. It was

found that the ungated scaler was the most reliable one. Therefore, the ungated

scaler was used to determine the target spin dependent scalers according to the

target spin state recorded for each event.

6.3 Calibration

The production running for the experiment was divided into three run periods

based on different beam energies (1.245, 2.425 and 3.605 GeV), corresponding to

different Q2 points. All calibrations were done separately for these run periods

except for the BCM calibration. In the following sections, only LHRS calibrations

will be presented, since the procedures for the RHRS calibration were the same

as those for LHRS.

6.3.1 Beam Current Monitor Calibration

The accumulated scaler counts of the BCM scalers corresponds to the collected

charge, with the scaler rate corresponding to the electron beam current. The
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Table 6.1: Summary of the scaler consistency check results. “
√

” means consistent
between LHRS and RHRS copies (scaler asymmetries < 2 × 10−4), “×” means
not consistent and it is not known which copy was bad, “Right” means the right
HRS copy was bad.

E=1.245 GeV
(Target,Beam) t1 t3 u1 u3 u10 d1 d3 d10 Unser clk fclk

Ungated
√ √ √ √ √

× ×
√ √ √ √

++ × × × × × × × × × × ×
+ - ×

√ √ √ √
× ×

√ √ √ √

- +
√ √ √ √ √

× ×
√ √

×
√

- -
√ √ √ √ √

× ×
√ √

×
√

E=2.425 GeV
(Target,Beam) t1 t3 u1 u3 u10 d1 d3 d10 Unser clk fclk

Ungated
√

Right
√ √ √

×
√ √ √ √ √

++ × × × × × × × × × × ×
+ -

√ √ √ √ √
×

√ √ √ √ √

- +
√ √ √ √ √

×
√ √ √ √ √

- -
√ √ √ √ √

× ×
√ √

×
√

E=3.605 GeV
(Target,Beam) t1 t3 u1 u3 u10 d1 d3 d10 Unser clk fclk

Ungated
√

Right
√ √ √

×
√ √ √ √ √

++ ×
√ √ √ √

×
√ √ √

×
√

+ - ×
√ √ √ √

×
√ √ √ √ √

- +
√ √ √ √ √

×
√ √ √

×
√

- -
√ √ √ √ √

× ×
√ √

×
√
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Table 6.2: Summary of calibration constants ki and offsets bi for all six BCMs.

BCM Signal Calibration Constant Offset
i ki bi

u1 2067.7 396.1
u3 6370.9 490.0
u10 19394.0 930.1
d1 2172.3 170.2
d3 6712.8 212.0
d10 21036.1 548.6

beam current and charge can be obtained from the BCM scaler counts by:

Ii =
dCi
dt

=
Ni

t
− bi
ki

(6.18)

Ci = Iit =
Ni − bit

ki
, (6.19)

where i=1, 3, 10 is the gain factor (Section 4.4.2), C is the charge, t is the time

period for each run and Ni is the BCM scaler counts for each gain factor. The

calibration constants ki and BCM offsets bi were determined as described below.

The electron beam current from the injector is precisely measured. The value

was written into the Hall A data-stream as an EPICS variable (IBC0L02). Dur-

ing the beam current calibrations, the electron beam was only delivered to Hall

A, and the beam current is adjusted in a step-function pattern between zero and

various values. During this time, the beam current value from the injector point

and the corresponding scaler counts for every BCM signal were recorded in the

data-stream. Using Equation (6.18) with all the information above, the calibra-

tion constants ki and offsets bi were determined. Figure 6.2 shows the off-line

calibration of the u3 BCM with the signal from “IBC0L02”. The same procedure

was used in calibrating all 6 BCMs (u1, u3, u10, d1, d3 and d10) and the results

are shown in Table 6.2.
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Figure 6.2: The calibration of the u3 BCM with the beam current value from
the injector (IBC0L02). (a) The “IBC0L02” reading vs. the clock. (b) The u3r,
rates of u3, vs. the clock from the scalers. Constant fits were used to determine
the reading of “IBC0L02” and u3r at fixed beam currents. (c) The results from
the previous two fits were fit with Equation (6.18).
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Figure 6.3: A schematic of three coordinate systems in common use in Hall A
(top view). Electron beam is from left to right side in the figure.

6.3.2 Optics Reconstruction

The HRS optics calibration for experiment E05-015 was carried out by G. Jin [78]

from University of Virginia. The goal was to reconstruct the target coordinate

variables from the focal-plane variables.

Coordinate Systems

The trajectory of a particle can be described in different coordinate systems de-

scribed in the following:

• Hall Coordinate System (HCS): The origin is defined as the center of the

Hall. ẑ points downstream along the beam, x̂ is to the left side of the beam

and ŷ is vertically up. Note that the center of the Hall is not necessarily

the center of the target.

• Target Coordinate System (TCS): The origin is defined as the center of the

target. ẑ is parallel to the spectrometer central ray, ŷ is horizontal and

points to the left (large angle) side of the spectrometer, and x̂ is vertically
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down. Ideally, the central ray of the spectrometer should cross the Hall

center, but in reality it does not. The deviation is surveyed to determine

the pointing offset of the spectrometer.

• Detector Coordinate System (DCS): The origin is at the u1 plane of the 1st

chamber, at intersection of wires u1-184 and v1-184. It defines the position

and direction of the trajectory of a particle at the VDC planes by the

detector coordinate variables xdet, ydet, θdet and φdet.

• Focal Plane Coordinate System (FCS): It is obtained by rotating the DCS

around its ŷ axis by an angle δ, which is the angle between local central ray

and the ẑ axis of the DCS.

Calibrations

The details of the calibration procedure can be found in [78]. A brief summary

of the process is presented as below:

The multi-foil carbon target is used to generate scattered particles at several

distinct z positions in the hall coordinate system. The target consists of seven C

foils, which are spaced evenly along the 40 cm long target range. This is necessary

because, as we mentioned in chapter 5, the 3He target we used was a 40-cm

long target instead of a point target. The reaction vertex zreact was calibrated

with reference to the carbon foil positions from the survey report. As shown in

Figure 6.4, it provides a clear reaction point position along the ẑ direction in the

HCS.

The sieve slit plate (0.5 cm thick tungsten) was used to calibrate the direction

of the trajectory of a particle, i.e., out-of-plane angle θtg and in-plane angle φtg. In

Hall A, each HRS is equipped with a set of sieve collimators placed ∼ 1.1 m away

from the target center along the spectrometer central ray. Each sieve collimator

has a pattern of 49 holes (7 × 7) that have a radius of 1 mm and are spaced 25
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Figure 6.4: LHRS reconstructed vertex position. The reconstructed multi-foil
carbon positions are shown in red. The dotted black lines show the actual position
of the carbon foils. The blue line shows the evacuated reference cell data for
comparison. At the left side of the plot, a slanted BeO foil is also shown.
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Figure 6.5: The schematic on the left shows the orientation of the sieve pattern
used to calibrate the HRS. The plot on the right shows data with the sieve plate
in after the calibration was completed.

mm apart vertically and 12.5 mm apart horizontally. Two of the holes have a

radius of 2 mm and are placed in an asymmetric pattern such that the direction

of the sieve can be easily determined at the focal plane. A sieve pattern diagram

and the corresponding calibration result diagram are shown in Figure 6.5.

6.3.3 Detector Calibration

Gas Cherenkov Detector: As mentioned in Section 4.5.4, there are 10 PMTs

in each Cherenkov detector. The calibration aligns the single photon-

electron peak of each PMT to a certain ADC channel (200 in this case).

The purpose of this alignment was to make sure that all the events that
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were not electrons, and thus were assumed to be mostly pions, were lo-

cated at one specific ADC channel. The electrons, which were usually at

high ADC channels, can then be cleanly separated from the non-electrons.

Figure 6.6 shows the spectrum of the sum of all ten PMTs of the LHRS

Cherenkov detector after calibration for the different run periods. For differ-

ent run periods, a few coefficients were slightly adjusted to fit the detector

performance best in each run period, although most coefficients were stable

in the entire production data set.

Lead-Glass Calorimeter: During the calibration, the pion peaks in the ADCs

for pion rejecter 1 were aligned to channel 100, and for pion rejecter 2 were

aligned to channel 200. Figure 6.7 shows the energy deposited in the pion

rejecter layer 1 vs. the energy deposited in the pion rejecter layer 2 after

calibration. A clear separation of pions and electrons was achieved by using

a 2-D cut as shown in Figure 6.7.

6.4 Event Selection

The events used in the asymmetry extraction were filtered through a series of cuts.

The purpose of this was to select good electron events from all of the recorded

events.

Beam Trip Cut: During the data collection, sometimes the beam current sud-

denly dropped to zero due to transient difficulties in the accelerator referred

to as beam trips. Afterward the beam current is slowly ramped back to the

set value. These beam trip periods were simply cut out and discarded in

the analysis. An example of a beam trip cut is shown in Figure 6.8.

Trigger Type Cut: For each detected event, the trigger-type variable reports

which triggers were present. For the left HRS, a cut on the main left HRS
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Figure 6.6: Spectra for the LHRS Gas Cherenkov detector after calibration. (a)
E=1.245 GeV (b) E=2.425 GeV (c) E=3.605 GeV. The 10 PMT spectra are
summed together. The single photon-electron peak is marked with a red line.
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Figure 6.7: Energy deposited in the pion rejecters after calibration. (a) E=1.245
GeV (b) E=2.425 GeV (c) E=3.605 GeV.
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Figure 6.8: An example of beam trip cut. The events between the red lines were
cut out and discarded during the analysis.
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trigger t3 was placed, and for the right HRS, a cut on the main right HRS

trigger t1 was made. The programming code used was of the following form:

LHRS: DL.evtypebits &(1 << 3) == (1 << 3)

RHRS: D.evtypebits &(1 << 1) == (1 << 1).

Spectrometer Acceptance Cut: Simplified cuts were used to remove events

far away from the central acceptance, since in these events there can be

re-scattering at the edges of the acceptance. The cuts for the left HRS at

E=1.245 GeV, shown in Figure 6.9, were placed on six 2-D projections of

the 4-D acceptance space.

VDC Single Track Cut: One and only one track should exist as shown in Fig-

ure 6.10 for the HRS spectrometers, thus Ntrack=1. The programming code

used was of the following form:

LHRS: L.tr.n==1

RHRS: R.tr.n==1.

Vertex z Cut: The vertex cut was applied to exclude events from the glass

target windows at ± 20 cm. The position of the reaction vertex along

the beam direction is given by the variable zreact, which was calibrated

individually for each spectrometers. To determine the best possible position

of the cuts, the 3He target cell data was compared to the empty target cell

data. The comparison is presented in Figure 6.12 (a). We first found the

position of the two glass windows and their width (σ), then reduced the cut

one σ at a time to compare the glass wall contamination to the 3He events.

The results are shown in Figure 6.12 (b). According to this analysis, the

optimal cut was ≈ 3σ away from the cell walls as shown in Figure 6.11:

LHRS: zup+3σup ≤ ReactPt L.z ≤ zdown-3σdown

RHRS: zup+3σup ≤ ReactPt R.z ≤ zdown-3σdown,
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Figure 6.9: Left HRS geometry cuts (red lines) at E=1.245 GeV.
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Figure 6.10: An example of track number.

Table 6.3: Summary of parameters used for vertex cuts. All quantities in units
of m.

Spectrometer zup σup zdown σdown

LHRS -0.186 0.010 0.205 0.010
RHRS -0.195 0.011 0.196 0.010

where zup and zdown represent the position of the upstream and downstream

cell windows, while σup and σdown are their reconstructed root-mean-square

widths. A summary of the parameters used for the vertex cuts is shown in

Table 6.3.

Gas Cherenkov Detector Cut: Electrons generate Cerenkov light leading to

signals in the Cherenkov detector, whereas hadrons do not generate real sig-

nals, though low-level noise can be present. Thus cuts on the left Cherenkov

ADC > 400 and the right Cherenkov ADC > 350 were placed.

LHRS: L.cer.asum c > 400
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Figure 6.11: An example of the vertex cut.

Table 6.4: Summary of parameters used for pion rejecter/shower cut.

LHRS RHRS
E (GeV) ki bi ki bi

1.245 1.1 600 0.8 600
2.425 1.3 800 0.8 800
3.605 1.3 1600 1.2 1600

RHRS: R.cer.asum c > 350.

Lead-Glass Shower Detector Cut: This is a combination cut on the digitized

calibrated ADC signals of pion rejecter layer 1 and pion rejecter layer 2.

LHRS: L.prl1.e+ki·L.prl2.e > bi

RHRS: R.ps.e+ki·R.sh.e > bi,

where ki and bi are summarized in Table 6.4.
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Figure 6.12: (a) Comparison of the data from 3He target cell and empty target
cell. (b) The glass contamination vs. σ cut.
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Table 6.5: Summary of the binning of the energy transfer ω (in MeV) in E05-015.

E (GeV) bin#1 bin #2 bin #3 bin #4
1.245 Elastic (35.0, 65.0) (65.0, 95.0) (95.0, 125.0)
2.425 (120.0, 180.0) (180.0, 240.0) (240.0, 300.0) (300.0, 360.0)
3.605 (370.0, 450.0) (450.0, 530.0) (530.0, 610.0) (610.0, 690.0)

6.5 DAQ Live-Time

To monitor the electronics dead time, an electronic dead time pulse (EDTP) signal

was plugged into each trigger type to simulate a real trigger, and this signal was

also recorded in the data stream. The live-time is calculated with

L =
Naccepted

EDTP

N scaler
EDTP

, (6.20)

where Naccepted
EDTP is the number of events recorded in physics data stream for EDTP

signal and N scaler
EDTP is the number of counts recorded in scalers for this trigger

(EDTP signal).

6.6 Data Binning and Kinematics

In this analysis, four data bins were used. Binning was done using the recon-

structed energy transfer of the particle (ω). Within each ω bin, each event has a

set of reconstructed kinematic variables. The final central ω values for each bin

were determined by averaging over all events in the bin. A summary of the ω

ranges for each kinematics point is given in Table 6.5.

6.7 Nitrogen and Glass Dilution Factor

As we mentioned in Section 5.2, a small amount of nitrogen was filled in the 3He

cell as a buffering gas. Electrons are not only scattered by the 3He nuclei but also

by the glass windows of the target cell and the N2 nuclei. The dilution corrections
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from the N2 and glass backgrounds is therefore introduced in order to extract the

physics quasi-elastic asymmetry:

f =
Y N2 + Y empty

Y 3He + Y N2 + Y empty
(6.21)

In order to determine the dilution factor, a reference cell was used in the experi-

ment.

f ≈

(
Y N2

ref − Y
empty

ref

)
· n

N2
prod

n
N2
ref

+ Y empty
ref

Y
3He

prod + Y N2
prod + Y empty

prod

(6.22)

=

Y N2
ref ·

n
N2
prod

n
N2
ref

+ Y empty
ref ·

(
1− n

N2
prod

n
N2
ref

)
Y

3He
prod + Y N2

prod + Y empty
prod

, (6.23)

where nN2

ref(prod) is the N2 density in the reference (production) cell. During the

experiment, N2 and empty reference cell runs were taken periodically to determine

Y N2
ref /n

N2
ref and Y empty

ref .

The pressure of the reference cell was measured in psig1. The density, in units

of amagats, is calculated from the pressure taking into account the temperature

with

n =

(
p+ p0

p0

)(
T0

T

)
, (6.24)

where n is the density in amagat, p is the pressure of the cell (in units of psig),

p0 is 1 atm (or 14.7 psia). T is the temperature of the reference cell, and T0 is

273.15 K. During experiment E05-015, the reference cell was held at a temperature

310-315 K. Table 6.6 shows the nitrogen and glass dilution factors for the three

different kinematic settings calculated from this method. The main systematic

uncertainty is contributed by the following:

• a relative 10% uncertainty in N2 filling density in the production cell;

• an uncertainty in the filling pressure of the reference cell of ±1 psig;

• an uncertainty in the reference temperature of ±2 K;

1pound-force per square inch gauge.
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Table 6.6: Summary of the nitrogen and glass dilution factors.

E=1.245 GeV
ω(MeV) f-LHRS f-RHRS
Elastic 0.064±0.007 0.041±0.004

(35.0, 65.0) 0.105±0.011 0.103±0.012
(65.0, 95.0) 0.074±0.009 0.070±0.008
(95.0, 125.0) 0.080±0.010 0.113±0.014
(35.0, 125.0) 0.085±0.010 0.090±0.011

E=2.425 GeV
ω(MeV) f-LHRS f-RHRS

(120.0, 180.0) 0.133±0.011 0.131±0.013
(180.0, 240.0) 0.069±0.006 0.067±0.006
(240.0, 300.0) 0.060±0.005 0.056±0.005
(300.0, 360.0) 0.081±0.007 0.074±0.007
(120.0, 360.0) 0.069±0.006 0.065±0.006

E=3.605 GeV
ω(MeV) f-LHRS f-RHRS

(360.0, 440.0) 0.085±0.008 0.081±0.008
(440.0, 520.0) 0.063±0.006 0.060±0.006
(520.0, 600.0) 0.067±0.006 0.063±0.006
(600.0, 680.0) 0.084±0.008 0.079±0.008
(360.0, 680.0) 0.070±0.007 0.066±0.007
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6.8 Monte Carlo Simulation

In order to extract the physics asymmetry, one needs to correct the experimental

asymmetry for radiative corrections (RC). In our case, the factor Rert introduced

in Section 6.1.3 needs to be calculated from the RC procedure. In this analysis,

Monte Carlo simulation programs were built to:

• simulate the elastic radiative tail under the quasi-elastic spectrum and ob-

tain the elastic tail dilution factor Rert.

• find the radiative corrected kinematics for the quasi-elastic asymmetry.

6.8.1 Radiative Corrections

Radiative corrections are divided into two types: external and internal. The

external corrections are due to the electron interacting with materials in its path.

Internal corrections result from inherent complications in electron scattering such

as the vacuum polarization (Figure 2.3 (d)) and vertex correction (Figure 2.3 (e)

and (f)).

External Radiative Correction: Before scattering from the polarized 3He tar-

get, the electron loses energy by passing through different materials in its

path. At the reaction vertex, the electron energy is less than the energy the

electron had when it entered the Hall. After scattering, the electron also

passes through materials, which results in additional energy loss before it

is detected. This means that the scattered electron energy at the vertex is

higher than what is actually detected. The external radiative corrections

are applied to determine the true kinematics of the reaction. The majority

of the external radiative correction is from energy loss from bremsstrahlung

(electron straggling), but a small amount is also from energy loss due to

ionization. Detail discussion about the energy loss can be found in [79] and
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Figure 6.13: Schematic drawing of materials in particle’s path before and after
scattering.

[80]. A schematic drawing of the materials in electron’s path is shown in Fig-

ure 6.13. The properties of materials the electrons pass through are shown

in Table 6.7. The external radiative corrections were applied to each event

in the Monte Carlo leading to a corrected distribution in the experiment.

Internal Radiative Correction Considering a typical (e, e′) scattering, most

theoretical work calculates only the Born approximation, and not the higher

order diagrams in Figure 2.3. However, in the experiment the higher order

Feynman diagrams also contribute to this process. Thus, before carrying
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Table 6.7: Properties of radiation materials before and after scattering. ρ is the
density, X0 is the radiation length, L is the thickness of the material. The total
thickness is in units of radiation lengths.

material before scattering
ρ L X0 ρ · L/X0

(g/cm3) (g/cm2) (cm)
Be 1.848E+00 2.540E-02 6.519E+01 7.200E-04

4He 1.664E-04 2.286E+01 9.432E+01 4.033E-05
Glass 2.760E+00 1.390E-02 2.684E+01 1.429E-03
3He 1.654E-03 1.990E+01 7.107E+01 4.631E-04

Total 2.652E-03

material after scattering
ρ L X0 ρ · L/X0

(g/cm3) (g/cm2) (cm)
3He 1.654E-03 3.207E+00 7.107E+01 7.464E-05

Glass 2.760E+00 5.746E-01 2.684E+01 5.909E-02
4He 1.664E-04 7.905E+01 9.432E+01 1.395E-04

Kapton 1.420E+00 2.540E-02 4.058E+01 8.889E-04
Air 1.210E-03 5.123E+01 3.666E+01 1.691E-03

Total 6.188E-02

out a comparison between the theoretical result and the experimental re-

sult, experimentalists perform “radiative corrections” on their experimental

data. In our case we considered the corrections from the diagrams shown

in Figure 6.14. Diagrams (a) and (b) are internal bremsstrahlung; they in-

volve emission of real photons. Diagrams (c) and (d) show that the incident

or scattered electron emit a virtual photon, and then the virtual photon

is re-absorbed by the incident or scattered electron, which results in the

re-normalization of the electron mass. Diagram (e) shows the incident elec-

tron emit a virtual photon and then the virtual photon is re-absorbed by the

scattered electron, and gives rise to the vertex re-normalization. Diagram

(f) shows the exchanged virtual photon creates a virtual positron-electron

pair; it is called vacuum polarization. The diagrams where the virtual or

emitted photons attach to the proton legs are smaller in magnitude due to

the heavier proton mass, and are neglected.
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Figure 6.14: Second order Feynman diagrams considered for internal radiation
correction.
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Figure 6.15: Comparison between data and simulation for both the elastic and
quasi-elastic spectrum at E=1.245 GeV.

6.8.2 Elastic Radiative Tail Dilution Factor

With a precise knowledge of the 3He elastic form factors and quasi-elastic spectral

functions, we can calculate the elastic radiative tail dilution factor to a high

precision, which is necessary for extracting the physics quasi-elastic asymmetry

from the raw asymmetry as shown in Equation (6.16). During the simulation, we

first calculate the 3He Born cross-section using the 3He elastic form factors, then

we “radiate” this cross-section in order to compare with the data spectrum. The

comparison can be seen in Figure 6.15. The elastic radiative tail dilution factors

for each bin are shown in Table 6.8. For E=2.425 GeV and E=3.605 GeV data,

the elastic radiative tail dilutions are negligible.
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Table 6.8: Summary of the elastic radiative tail dilution factors for E=1.245
GeV. For E=2.425 GeV and E=3.605 GeV data, the elastic radiative tail dilution
factors are negligible.

E=1.245 GeV
ω(MeV) Ret

Elastic -
(35.0, 65.0) 0.072
(65.0, 95.0) 0.018
(95.0, 125.0) 0.018
(35.0, 125.0) 0.031

6.8.3 Quasi-Elastic Asymmetry Radiative Correction

The radiative corrected kinematics for quasi-elastic asymmetry are summarized

in Table 6.9, where ωexp−central represents the central ω value of the experiment

and ωcorr−central represents the central ω value of the Born cross-section.

6.9 Proton Dilution Factor

In the extraction of the neutron single spin asymmetry from the measured 3He

asymmetry in the QE region, the common approach is to use the effective nucleon

polarization:

σ
3He = σn + 2σp (6.25)

∆σ
3He = Pn ·∆σn + Pp · 2σp, (6.26)

where σ
3He, σn, and σp is the 3He cross-section, neutron cross-section and proton

cross-section, respectively. The effective neutron and proton polarizations in 3He

are given by Pn=0.86+0.036
−0.02 and Pp=-0.028+0.009

−0.004 [81]. Following this approach, the

asymmetry of 3He can be expressed using the asymmetry of the proton (Ap) and
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Table 6.9: Radiative correction to quasi-elastic asymmetry.

E=1.245 GeV
ω(MeV) ωexp−central ωcorr−central

Elastic - -
(35.0, 65.0) 54.6 54.2
(65.0, 95.0) 80.4 79.7
(95.0, 125.0) 105.4 104.3
(35.0, 125.0) 81.8 78.4

E=2.425 GeV
ω(MeV) ωexp−central ωcorr−central

(120.0, 180.0) 168.1 167.8
(180.0, 240.0) 219.4 217.9
(240.0, 300.0) 269.9 267.7
(300.0, 360.0) 316.5 315.5
(120.0, 360.0) 265.8 255.0

E=3.605 GeV
ω(MeV) ωexp−central ωcorr−central

(360.0, 440.0) 419.1 418.0
(440.0, 520.0) 487.5 485.0
(520.0, 600.0) 560.4 558.5
(600.0, 680.0) 623.7 623.3
(360.0, 680.0) 549.7 534.7
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Table 6.10: Rosenbluth cross-sections for nucleons.

Q2 E (GeV) θe′(
◦) E’ (GeV) σ |p ( fm2

sr
) σ |n ( fm2

sr
) fn

0.127 1.245 17 1.167 1.017×10−2 1.077×10−3 0.050
0.460 2.425 17 2.170 1.001×10−3 2.651×10−4 0.117
0.967 3.605 17 3.070 1.506×10−4 5.695×10−5 0.159

the neutron (An) as

A
3He
y = Pn · fn · An

y + Pp · (1− fn) · Ap
y , (6.27)

where the neutron factor is defined as fn = σn/σ
3He.

Following Equation (6.27), the neutron asymmetry was extracted from the

3He asymmetry using the effective polarization approximation, given by

An
y =

A
3He
y

fn · Pn
−

(1− fn) · Pp · Ap
y

fn · Pn
, (6.28)

where the neutron factor fn was simply calculated using the Kelly parametrization

[17] in identical kinematics with:

fn =
σn

σ3He
=

σn

2σp + σn
. (6.29)

The parameters are shown in Table 6.10. For the E=1.245 GeV data, since the

Q2 is very low, final state interactions are much more important. Hence, models

are needed to calculate fn. A theoretical estimate [82] is fn=0.042.

Apy (Any ) was predicted to be 0.01% (0.16%), 0.24% (-0.15%) at the first two

kinematic settings (E=1.245 GeV and E=2.425 GeV) by Andrei Afanasev [83],

using the elastic intermediate state calculation. For the last kinematic setting

(E=3.605 GeV), Apy (Any ) was predicted by Afanasev to be 0.62% (-1.35%) using

the elastic intermediate state calculation plus a GPD model calculation.
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6.10 Systematic Uncertainties

This section summarizes the systematic uncertainties that are associated with the

target single-spin asymmetry measurement.

Pion Contamination from PID Cuts: The purpose of the PID analysis was

to reject as many pions as possible, while maintaining a high electron ef-

ficiency. Even with good PID cuts, a small amount of pions can make it

through the cuts. The combination of Cherenkov and pion rejecter PID

cuts typically reduces the pion to electron ratio by a factor of 10−4 [84].

Using this factor, the pion contamination to the electron asymmetry can be

calculated by the following [85]:

∆A = 10−4Aπ. (6.30)

The same cuts that were applied to the electron asymmetry determination

were also used to evaluate the pion asymmetry, except for the Cherenkov

cut and pion rejectors cut. In pion selection, the Cherenkov was cut at

channel 0, which means the event had no signal in the Cherenkov detector.

No cut was put on the pion rejector for pion selection. We found that the

pion correction to the electron asymmetry is very small for all kinematics

and hence has been neglected.

Systematic uncertainty from scalars (charge and live-time): As described

at the beginning of this chapter, for each target spin state, the yield (Y )

is weighted by the charge (C) and live-time (L), which are calculated from

the scalar information. Since there are two copies for each type of scaler

and they have been checked for consistency, either of them can be used to

calculate the charge and live-time. Moreover, for the charge, all u1, u3,

u10, d1, d3, and d10 can be used in the calculation. In general, the left-arm

copy was used for the left-arm data, while the right-arm copy was used for
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the right-arm data. However, these copies can be exchanged to recalculate

the charge and live-time, which are then used to recalculate the asymmetry.

The difference between the original asymmetry and the recalculated asym-

metry is quoted as a systematic uncertainty from the scalers as shown in

the tables from Table 6.11 to Table 6.16.

Target Orientation: During experiment E05-015, the target magnetic field di-

rection was not exactly “normal” to the reaction plane but was offset by

a small angle (θ, φ). Compass calibration measurements provided a pre-

cise direction of the holding magnetic field. During the measurement, two

different compasses were used: a vertical compass was used to determine

the vertical angle φ, while a horizontal compass was used to determine the

azimuthal angle θ of the magnetic field. The compass data was analyzed by

Miha Mihovilovic [67] from the University of Ljubljana. It was found that

φ=1.1◦±0.30◦ for vertical + field direction and 179.4◦±0.30◦ for vertical

- field direction. The systematic uncertainty from target misalignment is

considered small, and not included in the error budget.

Target Polarization: Form Table 5.10, the systematic uncertainty from the

target polarization is 5.6% relative. It is the main contributor to the overall

systematic uncertainty.

Density Fluctuation Target density fluctuations can affect the particle detec-

tion rates, and hence introduce a false asymmetry. This asymmetry is

3.6×10−5.

Glass and Nitrogen Dilution: The systematic uncertainties from the glass and

nitrogen dilution are summarized in Table 6.6.

Difference from LHRS results and RHRS results: LHRS results and RHRS

results were combined to get the final 3He asymmetry. The difference of
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LHRS and RHRS results is quoted as a systematic uncertainty, i.e., |δA| =

||ALHRS|−|ARHRS||
2

.

3He→n: The difference of fn obtained from the Kelly form factor parameteriza-

tion and from Deltuva’s model [82] were quoted as a systematic uncertainty

for the E=1.245 GeV data. Also, a 100% uncertainty was assumed for Apy.

Each of these uncertainties contribute to the overall uncertainty as:

(δAsys)2 = (δAC)2 + (δALT )2 + (δAori.)
2 + (δAdens.)

2

+

(
∂A

∂f

)2

(δf)2 +

(
∂A

∂P

)2

(δP )2

+

(
∂A

∂fn

)2

(δfn)2 +

(
∂A

∂Apy

)2 (
δApy

)2
.

Table 6.11: LHRS A
3He
y systematic uncertainty budget at E=1.245 GeV.

Source Format Elastic (35.0, 65.0) (65.0, 95.0) (95.0, 125.0) (35.0, 125.0)
Charge |δAexp/Aexp| 3.0% 1.8% 1.8% 1.0% 1.5%

Livetime |δAexp/Aexp| 3.2% 1.9% 2.0% 1.1% 1.6%
Density Fluctuation |δAexp| 3.6×10−5 3.6×10−5 3.6×10−5 3.6×10−5 3.6×10−5

Nitrogen Dilution |δAexp/Aexp| 0.7% 1.2% 1.0% 1.1% 1.1%
Target Polarization |δAexp/Aexp| 5.6% 5.6% 5.6% 5.6% 5.6%

Total |δAexp/Aexp| 10.4% 7.7% 7.8% 6.4% 7.1%

Table 6.12: RHRS A
3He
y systematic uncertainty budget at E=1.245 GeV.

Source Format Elastic (35.0, 65.0) (65.0, 95.0) (95.0, 125.0) (35.0, 125.0)
Charge |δAexp/Aexp| 1.8% 1.0% 1.0% 1.0% 1.0%

Livetime |δAexp/Aexp| 1.8% 1.0% 1.0% 1.0% 1.0%
Density Fluctuation |δAexp| 3.6×10−5 3.6×10−5 3.6×10−5 3.6×10−5 3.6×10−5

Nitrogen Dilution |δAexp/Aexp| 0.4% 1.3% 0.9% 1.6% 1.2%
Target Polarization |δAexp/Aexp| 5.6% 5.6% 5.6% 5.6% 5.6%

Total |δAexp/Aexp| 7.7% 6.4% 6.3% 6.5% 6.4%
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Table 6.13: LHRS A
3He
y systematic uncertainty budget at E=2.425 GeV.

Source Format (120.0, 180.0) (180.0, 240.0) (240.0, 300.0) (300.0, 360.0) (120.0, 360.0)
Charge |δAexp/Aexp| 0.4% 1.3% 1.2% 2.8% 1.3%

Livetime |δAexp/Aexp| 0.9% 3.0% 2.7% 6.5% 3.0%
Density Fluctuation |δAexp| 3.6×10−5 3.6×10−5 3.6×10−5 3.6×10−5 3.6×10−5

Nitrogen Dilution |δAexp/Aexp| 1.3% 0.6% 0.5% 0.8% 0.6%
Target Polarization |δAexp/Aexp| 5.6% 5.6% 5.6% 5.6% 5.6%

Total |δAexp/Aexp| 5.9% 6.8% 6.6% 10.0% 6.8%

Table 6.14: RHRS A
3He
y systematic uncertainty budget at E=2.425 GeV.

Source Format (120.0, 180.0) (180.0, 240.0) (240.0, 300.0) (300.0, 360.0) (120.0, 360.0)
Charge |δAexp/Aexp| 0.3% 0.9% 1.3% 2.5% 1.2%

Livetime |δAexp/Aexp| 0.3% 0.9% 1.3% 2.5% 1.2%
Density Fluctuation |δAexp| 3.6×10−5 3.6×10−5 3.6×10−5 3.6×10−5 3.6×10−5

Nitrogen Dilution |δAexp/Aexp| 1.5% 0.6% 0.5% 0.8% 0.6%
Target Polarization |δAexp/Aexp| 5.6% 5.6% 5.6% 5.6% 5.6%

Total |δAexp/Aexp| 5.8% 5.9% 6.3% 7.8% 6.2%

Table 6.15: LHRS A
3He
y systematic uncertainty budget at E=3.605 GeV.

Source Format (360.0, 440.0) (440.0, 520.0) (520.0, 600.0) (600.0, 680.0) (360.0, 680.0)
Charge |δAexp/Aexp| 1.4% 0.9% 1.0% 1.2% 1.0%

Livetime |δAexp/Aexp| 4.2% 2.7% 2.9% 3.7% 3.0%
Density Fluctuation |δAexp| 3.6×10−5 3.6×10−5 3.6×10−5 3.6×10−5 3.6×10−5

Nitrogen Dilution |δAexp/Aexp| 0.9% 0.6% 0.6% 0.9% 0.8%
Target Polarization |δAexp/Aexp| 5.6% 5.6% 5.6% 5.6% 5.6%

Total |δAexp/Aexp| 7.6% 6.5% 6.6% 7.2% 6.7%

Table 6.16: RHRS A
3He
y systematic uncertainty budget at E=3.605 GeV.

Source Format (360.0, 440.0) (440.0, 520.0) (520.0, 600.0) (600.0, 680.0) (360.0, 680.0)
Charge |δAexp/Aexp| 0.5% 1.2% 0.9% 1.1% 1.0%

Livetime |δAexp/Aexp| 0.5% 1.2% 0.9% 1.1% 1.0%
Density Fluctuation |δAexp| 3.6×10−5 3.6×10−5 3.6×10−5 3.6×10−5 3.6×10−5

Nitrogen Dilution |δAExp/AExp| 0.9% 0.6% 0.6% 0.9% 0.7%
Target Polarization |δAExp/AExp| 5.6% 5.6% 5.6% 5.6% 5.6%

Total |δAExp/AExp| 5.8% 6.3% 6.0% 6.2% 6.1%
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Table 6.17: Combined A
3He
y systematic uncertainty budget.

Source Format E=1.245 GeV E=2.425 GeV E=3.605 GeV
Table 6.11&Table 6.12

|δAExp| 0.8×10−4 1.2×10−4 1.3×10−4Table 6.13&Table 6.14
Table 6.15&Table 6.16

LHRS-RHRS Difference |δAExp| 2.4×10−4 0.4×10−4 0.2×10−4

Total |δAExp| 2.6×10−4 1.3×10−4 1.3×10−4

Table 6.18: Neutron asymmetry systematic uncertainty budget.

Source Format E=1.245 GeV E=2.425 GeV E=3.605 GeV

A
3He
y |δAExp| 2.6×10−4 1.3×10−4 1.3×10−4

fn |δAexp/Aexp| 16.0% - -
Apy |δAexp/Aexp| 100% 100% 100%

Total |δAexp| 8.4×10−3 1.3×10−3 0.9×10−3
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Chapter 7

Results and Conclusions

The results from experiment E05-015 will be presented in this chapter. Following

the asymmetry extraction steps as described in Section 6.1, we first present the

raw 3He asymmetry results, Arawy , from LHRS and RHRS in Section 7.1. Then

the 3He asymmetry, A
3He

y , will be presented in Section 7.2. This asymmetry is

corrected by the target polarization and nitrogen dilution factors. The 3He asym-

metries from LHRS and RHRS are combined in Section 7.3. After subtracting

the radiative elastic tail, the 3He asymmetry in quasi-elastic region, Aqey , will be

presented in Section 7.4. Since the elastic tail contribution in E=2.425 GeV and

E=3.605 GeV is very small and we neglect it in our analysis. The Aqey results for

E=2.425 GeV and E=3.605 GeV are the same as the A
3He

y results as presented

in Section 7.3. Using the effective polarization method, the neutron asymmetries

are extracted and presented in Section 7.5. Finally, we conclude this dissertation

in Section 7.6.
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7.1 Raw Asymmetry (Araw
y )

3He raw asymmetries, Arawy , defined by Equation (6.1), are given in Table 7.1 and

Table 7.2 for the LHRS and the RHRS, respectively.

Table 7.1: LHRS Arawy results summary.

E=1.245 GeV
ω(MeV) < ω(MeV) > Araw

y (%) Stat. (%)

Elastic 25.8 0.023 0.041
(35.0, 65.0) 54.2 -0.038 0.026
(65.0, 95.0) 79.7 -0.037 0.019
(95.0, 125.0) 104.3 -0.066 0.026
(35.0, 125.0) 78.4 -0.045 0.010

E=2.425 GeV
ω(MeV) < ω(MeV) > Araw

y (%) Stat. (%)

(120.0, 180.0) 167.8 -0.259 0.082
(180.0, 240.0) 217.9 -0.086 0.026
(240.0, 300.0) 267.7 -0.096 0.019
(300.0, 360.0) 315.5 -0.038 0.030
(120.0, 360.0) 255.0 -0.086 0.014

E=3.605 GeV
ω(MeV) < ω(MeV) > Araw

y (%) Stat. (%)

(360.0, 440.0) 418.0 -0.066 0.060
(440.0, 520.0) 485.0 -0.107 0.024
(520.0, 600.0) 558.5 -0.097 0.020
(600.0, 680.0) 623.3 -0.076 0.028
(360.0, 680.0) 534.7 -0.094 0.013
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Table 7.2: RHRS Arawy results summary.

E=1.245 GeV
ω(MeV) < ω(MeV) > Araw

y (%) Stat. (%)

Elastic 25.8 -0.039 0.040
(35.0, 65.0) 54.2 0.067 0.028
(65.0, 95.0) 79.7 0.071 0.020
(95.0, 125.0) 104.3 0.065 0.026
(35.0, 125.0) 78.4 0.068 0.010

E=2.425 GeV
ω(MeV) < ω(MeV) > Araw

y (%) Stat. (%)

(120.0, 180.0) 167.8 0.333 0.093
(180.0, 240.0) 217.9 0.124 0.027
(240.0, 300.0) 267.7 0.083 0.019
(300.0, 360.0) 315.5 0.042 0.029
(120.0, 360.0) 255.0 0.090 0.014

E=3.605 GeV
ω(MeV) < ω(MeV) > Araw

y (%) Stat. (%)

(360.0, 440.0) 418.0 0.183 0.063
(440.0, 520.0) 485.0 0.077 0.024
(520.0, 600.0) 558.5 0.109 0.020
(600.0, 680.0) 623.3 0.082 0.027
(360.0, 680.0) 534.7 0.097 0.013
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7.2 3He Experimental Asymmetry (A
3He
y )

Using Equation (6.9), we made nitrogen dilution and target polarization correc-

tions for the 3He raw results, Arawy , to obtain the 3He asymmetries, A
3He

y , which

are presented in Table 7.3 and Table 7.4 for the LHRS and the RHRS, respec-

tively. The tabulated asymmetries are also shown in Figure 7.1, and also shown

summed over the quasifree peak in Figure 7.2. It can be seen that the asymme-

tries measured in the two arms are consistent with each other with the expected

sign change from the two spectrometers being on opposite sides of the beam line.

Table 7.3: LHRS A
3He
y results summary.

E=1.245 GeV

ω(MeV) < ω(MeV) > A
3He
y (%) Stat. (%) Sys. (%)

Elastic 25.8 0.048 0.085 0.005
(35.0, 65.0) 54.2 -0.081 0.058 0.006
(65.0, 95.0) 79.7 -0.078 0.040 0.006
(95.0, 125.0) 104.3 -0.140 0.056 0.009
(35.0, 125.0) 78.4 -0.096 0.022 0.007

E=2.425 GeV

ω(MeV) < ω(MeV) > A
3He
y (%) Stat. (%) Sys. (%)

(120.0, 180.0) 167.8 -0.583 0.185 0.034
(180.0, 240.0) 217.9 -0.180 0.054 0.012
(240.0, 300.0) 267.7 -0.200 0.040 0.013
(300.0, 360.0) 315.5 -0.083 0.064 0.008
(120.0, 360.0) 255.0 -0.181 0.028 0.012

E=3.605 GeV

ω(MeV) < ω(MeV) > A
3He
y (%) Stat. (%) Sys. (%)

(360.0, 440.0) 418.0 -0.142 0.129 0.011
(440.0, 520.0) 485.0 -0.221 0.050 0.014
(520.0, 600.0) 558.5 -0.205 0.041 0.014
(600.0, 680.0) 623.3 -0.160 0.059 0.012
(360.0, 680.0) 534.7 -0.197 0.027 0.013
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Table 7.4: RHRS A
3He
y results summary.

E=1.245 GeV

ω(MeV) < ω(MeV) > A
3He
y (%) Stat. (%) Sys. (%)

Elastic 25.8 0.079 0.081 0.006
(35.0, 65.0) 54.2 0.146 0.062 0.009
(65.0, 95.0) 79.7 0.147 0.041 0.009
(95.0, 125.0) 104.3 0.143 0.057 0.009
(35.0, 125.0) 78.4 0.146 0.021 0.009

E=2.425 GeV

ω(MeV) < ω(MeV) > A
3He
y (%) Stat. (%) Sys. (%)

(120.0, 180.0) 167.8 0.750 0.209 0.044
(180.0, 240.0) 217.9 0.259 0.057 0.015
(240.0, 300.0) 267.7 0.172 0.039 0.011
(300.0, 360.0) 315.5 0.090 0.062 0.007
(120.0, 360.0) 255.0 0.188 0.028 0.012

E=3.605 GeV

ω(MeV) < ω(MeV) > A
3He
y (%) Stat. (%) Sys. (%)

(360.0, 440.0) 418.0 0.389 0.135 0.022
(440.0, 520.0) 485.0 0.161 0.050 0.010
(520.0, 600.0) 558.5 0.222 0.041 0.013
(600.0, 680.0) 623.3 0.177 0.058 0.011
(360.0, 680.0) 534.7 0.201 0.027 0.012
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Figure 7.1: 3He asymmetries from LHRS and RHRS plotted versus energy transfer
ω. The elastic radiative tail is not subtracted in this plot. The error bars represent
the statistical uncertainties.
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Figure 7.2: 3He asymmetries from LHRS and RHRS as a function of 4-momentum
transfer squared (Q2). The elastic radiative tail is not subtracted in this plot. The
error bars represent the statistical uncertainties.
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7.3 Combined LHRS and RHRS A
3He
y

The 3He results presented in Section 7.2 are combined in this section, with the

combined results presented in Table 7.5. A
3He
y from LHRS and RHRS are weighted

by their statistics in order to get the combined asymmetries.

Table 7.5: A
3He
y results summary.

E=1.245 GeV

ω(MeV) < ω(MeV) > A
3He
y (%) Stat. (%) Sys. (%)

Elastic 25.8 0.063 0.059 0.016
(35.0, 65.0) 54.2 -0.115 0.042 0.033
(65.0, 95.0) 79.7 -0.113 0.029 0.035
(95.0, 125.0) 104.3 -0.142 0.040 0.009
(35.0, 125.0) 78.4 -0.120 0.015 0.026

E=2.425 GeV

ω(MeV) < ω(MeV) > A
3He
y (%) Stat. (%) Sys. (%)

(120.0, 180.0) 167.8 -0.672 0.140 0.092
(180.0, 240.0) 217.9 -0.221 0.039 0.042
(240.0, 300.0) 267.7 -0.186 0.028 0.018
(300.0, 360.0) 315.5 -0.086 0.045 0.008
(120.0, 360.0) 255.0 -0.185 0.020 0.013

E=3.605 GeV

ω(MeV) < ω(MeV) > A
3He
y (%) Stat. (%) Sys. (%)

(360.0, 440.0) 418.0 -0.268 0.093 0.125
(440.0, 520.0) 485.0 -0.191 0.035 0.032
(520.0, 600.0) 558.5 -0.214 0.029 0.016
(600.0, 680.0) 623.3 -0.168 0.041 0.014
(360.0, 680.0) 534.7 -0.199 0.019 0.013
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7.4 3He Experimental Asymmetry in the Quasi-Elastic

Region (Aqe
y )

Equation (6.16) was used to correct the results presented in Section 7.3 for

E=1.245 GeV by the elastic tail dilution factor. The 3He asymmetries in the

quasi-elastic region after the correction are presented in Table 7.6. Recall that

the elastic peak is small and the tail correction is insignificant for the higher beam

energies. All beam energies are plotted in Figure 7.3.

Table 7.6: Summary of Quasi-Elastic A
3He
y results for E=1.245 GeV data.

E=1.245 GeV

ω(MeV) < ω(MeV) > A
3He
y (%) Stat. (%) Sys. (%)

Elastic 25.8 0.063 0.059 0.016
(35.0, 65.0) 54.2 -0.129 0.045 0.036
(65.0, 95.0) 79.7 -0.116 0.030 0.036
(95.0, 125.0) 104.3 -0.146 0.041 0.009
(35.0, 125.0) 78.4 -0.126 0.015 0.027
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Figure 7.3: 3He asymmetries in the quasi-elastic region are shown versus energy
transfer ω. The error bars indicate the statistical uncertainties only. The system-
atic uncertainties are indicated by the band below the data.
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Figure 7.4: 3He asymmetries summed over the quasi-elastic region plotted versus
4-momentum transfer squared (Q2). The error bars indicate the statistical uncer-
tainties only. The systematic uncertainties are indicated by the band below the
data.
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7.5 Neutron Asymmetry in the Quasi-Elastic Region (An
y)

The neutron asymmetry, Any , was extracted using Equation (6.28) from the quasi-

elastic 3He results presented in Table 7.6 (E=1.245 GeV) and in Table 7.5 (E=2.425

GeV and E=3.605 GeV). The Any results are presented in Table 7.7 and plotted

in Figure 7.5.

Table 7.7: Summary of results for the neutron asymmetry Any .

E (GeV) Any (%) Stat. (%) Sys. (%)

1.245 -2.93 0.35 0.84
2.425 -1.84 0.20 0.13
3.605 -1.45 0.14 0.09
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Figure 7.5: The neutron asymmetry Any as a function of 4-momentum transfer
squared (Q2). The error bars indicate the statistical uncertainties only. The
systematic uncertainties are indicated by the band below the data.
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7.6 Conclusions and Outlook

E05-015 has performed the first measurement of the target single-spin asymme-

try, A
3He
y , in the quasi-elastic region using a normally polarized 3He target. We

have presented a detailed description of the instrumentation and the detectors,

as well as the 3He target, that were used in the experiment. The procedures in-

volved in calibrating the detectors and determining the target polarization have

been discussed. The physics asymmetry analysis, which includes the selection of

good events from the data using different cuts to determine the background and

the false asymmetries, has been presented. A procedure to extract the neutron

information from the measured 3He asymmetries has been described. Finally, the

asymmetries resulting from this experiment have been presented.

Negative asymmetries were observed at all Q2 points for 3He↑(e, e′). Combin-

ing data from all ω-x bins, including both statistical and systematic uncertainties,

we have observed for 3He:

• a negative asymmetry with 4.1 σ significance at Q2=0.13 GeV2.

• a negative asymmetry with 7.8 σ significance at Q2=0.46 GeV2.

• a negative asymmetry with 8.6 σ significance at Q2=0.97 GeV2.

and for the neutron:

• a negative asymmetry with 3.2 σ significance at Q2=0.13 GeV2.

• a negative asymmetry with 7.7 σ significance at Q2=0.46 GeV2.

• a negative asymmetry with 8.7 σ significance at Q2=0.97 GeV2.

The final precision for Any is an order of magnitude improved over the existing

proton data, as shown in Figure 7.6. The results are inconsistent with calculations

by Afanasev [83] (Section 6.9) using only the elastic nucleon intermediate state,
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but agree for the last kinematic setting (Q2=0.97 GeV2) with calculations with

an elastic nucleon intermediate state plus GPD model contributions.

Ay provides a direct probe of the imaginary component of the 2γ exchange

amplitude. It is hoped that the results from E05-015 will stimulate theoretical

efforts to understand 2γ exchange, in particular the hadron structure dependent

parts of the box and crossed-box diagrams neglected in the standard treatments

of radiative corrections.
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Figure 7.6: Neutron asymmetries of this work compared with the available proton
asymmetry results. The error bars indicate the statistical uncertainties only.
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Appendix A

Wall Thickness Measurement Results

The following tables contain the wall thickness of the different measured cells.
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Table A.1: The reference cell GMB2 wall thickness.

Position JLab Results (mm) UVA Results (mm)
A 1.679 1.58
B 1.699 1.66
C 1.702 1.67
D 1.712 1.51
E 1.591 1.61
F 1.610 1.48
G 1.547 1.70
H 1.533 1.78
I 1.514 1.61
J N/A 1.63

Average 1.621±0.075 1.62±0.08
W1 0.141 0.151
W2 0.134 0.132

Table A.2: The 3He cell Dominic wall thickness.

Position JLab Results (mm) UVA Results (mm)
A 1.691 1.55
B 1.702 1.62
C 1.716 1.64
D 1.691 1.67
E 1.656 1.67
F 1.598 1.62
G 1.710 1.72
H 1.695 1.63
I 1.662 1.63
J 1.654 1.75

Average 1.638±0.035 1.65±0.05
W1 0.139 0.132
W2 0.154 0.150
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