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Enzymes in the cytochrome P450 family are responsible for much of the first-pass 

metabolism of xenobiotic compounds.  Within this family, the hepatic 3A4 isoform 

(CYP3A4) is responsible for the first-pass metabolism of over half of the drug 

compounds currently on the market.  This substrate promiscuity increases the risk of 

dangerous drug-drug interactions (DDIs), in which a drug compound inhibits the 

metabolism of other compounds by CYP3A4, leading to drug inactivity or the 

accumulation of the non-metabolized drug in the body.  These risks have led to numerous 

quantitative structure-activity relationship (QSAR) and SAR studies of CYP3A4 

inhibitors to determine the structural characteristics common to inhibitor compounds.  

Evidence of multiple binding pockets necessitates the use of a variety of probe substrates, 

resulting in different.  From the published literature and patents, we collected compounds 

with inhibition data against CYP3A4, using either 7-benzyloxy-4-

trifluoromethylcoumarin (BFC) or testosterone (TST) as the probe substrate and 

measuring inhibition as –log10(IC50) (pIC50).  We then developed QSAR models using 
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two descriptor selection methods (random forest and genetic algorithm-k nearest 

neighbors (GA-kNN) and two descriptor sets (MOE and Dragon).  The resulting eight 

models were validated via five-fold cross validation and external validation.  While the 

cross-validation results are good for all models, most models had low external 

predictivity.  By analyzing the models with the best external predictivity (those using 

Dragon descriptors and GA-kNN descriptor selection), we found several atom-type and 

P-VSA-like descriptors that showed a sizable difference in importance between the 

models from the BFC and TST data.  These descriptors reflect studies from prior QSAR 

studies on characteristics of CYP3A4 inhibitors.  Results from this study could be used to 

account for differences in in vitro inhibition screens using multiple probe substrates. 
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Introduction 

Among various hepatic enzymes that are involved in the first-pass metabolism, 

cytochrome P450 enzymes (CYPs) are the most prevalent.  CYPs are a diverse family of 

hepatic heme-thiolate proteins with 57 known human CYP genes 
1
 and are responsible for 

most of the first-pass metabolism of drug compounds in humans.  Roughly 75% of all 

marketed drugs are metabolized by CYPs 
2
.  One CYP isoform, CYP3A4, plays a critical 

role in this process by metabolizing 50-60% of those drugs
2
.  Like many other CYP 

enzymes, CYP3A4 binds molecular oxygen to its heme iron, forming an activated iron-

oxygen intermediate.  This intermediate can then perform several reactions with substrate 

molecules, including alkyl carbon hydroxylation, O- and N-dealkylations, and aromatic 

ring hydroxylation
3
.  With an active site as large as 1,386 Å

3
 

4
, CYP3A4 can 

accommodate substrates of various sizes, including macrolide antibiotics like 

cyclosporine.  When an enzyme is actively metabolizing various compounds, the 

potential for DDIs induced by relevant inhibitors must be considered.  An inhibitor of 

CYP3A4 metabolism could inhibit bioactivation of prodrugs or prevent drug's’ 

metabolism and clearance, leading to potential side effects.  To prevent DDIs induced by 

the CYP3A4 inhibitors, screening potential drug compounds for their CYP3A4 

inhibitions has become a standard practice in drug discovery. 

 Along with metabolizing large substrate molecules such as cyclosporine and 

bromocriptine, CYP3A4 also displays non-Michaelis Menten kinetics
5
 due to binding 

with multiple substrate molecules simultaneously. Lu et al. measured the CYP3A4 

metabolism rates of different substrates, such as testosterone, 7-benzyloxy-4-

trifluoromethylcoumarin (BFC), and 7-benzyloxyquinolone. The results showed little or 
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no competition between any two substrates. Thus, this study suggests three different 

substrate binding domains in the CYP3A4 active site
6
.  Galetin, Clarke and Houston 

performed a similar kinetic interaction study using midazolam, testosterone, and 

nifedipine, in which represented different CYP3A4 substrate groups. This study 

confirmed the results from Lu et al. and also suggested one substrate binding domain 

acting as an effector site
5
.  Domanski et al. studied site-directed phenylalanine/tryptophan 

mutagenesis of CYP3A4. By evaluating the mutant CYP3A4 metabolism of 

progesterone, testosterone, BFC and α-naphtoflavone, the team also confirmed an active 

pocket with three distinct binding sites
7
. 

 The existence of multiple binding sites results in the different effects of an 

inhibitor on different substrates.  Schrag and Wienkers observed such an effect in 

studying the inhibition of testosterone and triazolam metabolism by a variety of 

inhibitors.  They found that some flavonoids (flavanone, flavone, and 3- and 6-

hydroxyflavone), which were obtained from grapefruit juice, inhibited testosterone 

metabolism but enhanced the metabolism of triazolam
8
.  Similar results were obtained by 

Shimada et al.  In this recent study, flavone and flavanone were found to inhibit the 

formation of 4-hydroxymidazolam but enhanced the 1’-hydroxylation of midazolam by 

CYP3A4
9
. 

   Common CYP3A4 substrates tend to be large, neutral, lipophilic compounds
10

.  

The preference for lipophilic substrates is reflected in QSAR studies of CYP3A4 

inhibitors, where descriptors relating to lipophilicity abound.  Ekins et al. studied the 

inhibition of CYP3A4-mediated midazolam 1-hydroxylation by 14 compounds, using 

3D- and 4D-QSAR along with pharmacophore modeling, and developed computational 
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models for inhibitors of cyclosporine A metabolism and quinine hydroxylation based on 

prior published inhibition data.  The correlations between experimental and predicted 

Ki(apparent) values of models trained on the data sets from Ekins et al. and cyclosporine A 

metabolism inhibition are good (correlation coefficient of 0.77 for cyclosporine A data, 

0.92 for Ekins et al. data) when tested against an external set of 8 compounds. 

Pharmacophore models trained on the quinine hydroxylation inhibition data were good as 

well, with a self-correlation of 0.92.  These models all had at least one hydrophobic 

region, with models built with Ekins et al. and cyclosporine A metabolism inhibition data 

each containing three hydrophobic regions; overlap among the models showed two 

hydrophobic regions separated by hydrogen bond acceptors
11

.  A structure-activity 

relationship (SAR) study by Row et al. seems to lend weight to the pharmacophore model 

proposed by Ekins et al.  The Row et al. study compared the inhibitory potency of several 

furanocoumarin derivatives against testosterone metabolism, and found that the addition 

of an alkyl chain gives increased inhibitory potency, and shows a good fit with the 

hydrophobic region in the Ekins et al. pharmacophore model
12

. 

To date, several QSAR studies using different modeling methods and probe 

substrates have shown lipophilicity to play an important role in determining a 

compound’s inhibition of CYP3A4 activity.  Kriegl et al. used a partial least-squares 

discriminant analysis (PLS-DA) classification method to develop classification models of 

930 compounds (551 in the training set, 379 in the test set) for the inhibition of 

erythromycin metabolism. The best model, with a squared external correlation between 

predicted and experimental activities (Q
2

ext) of 0.6, showed an inverse correlation 

between a compound’s IC50 value and the number of aryl groups, as well as the 
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compound’s logP
13

.   Roy et al. made a similar finding after developing QSAR models 

for 28 compounds’ inhibition on erythromycin metabolism.  Using 5 different modeling 

methods, logP appeared as an important descriptor in all 5 models.  Their best model, a 

genetic partial least-squares model with a modified r
2
 (rm(test)

2
) of 0.581, predicted that 

effective inhibitors would have a logP value below 3.73
14

.  Riley et al., by developing a 

generalized QSAR model for 30 compounds’ inhibition of erythromycin metabolism, 

came to a similar conclusion. The inhibition potentials of these 30 compounds were 

positively correlated with their lipophilicity (measured as logD7.4)
15

.  Zuegge et al. 

developed a linear PLS classification model for inhibitors of BFC metabolism, based on a 

training set of 311 compounds.  The model correctly classified 95% of the training set 

and 90% of a semi-independent test set (compounds culled from the raw dataset (1,152 

compounds) that were not used in modeling).  Among the five most relevant descriptors 

for the model, three descriptors measured the number of aromatic atoms, bonds, and 

rings.  Additionally, the second principal component correlates with several descriptors 

that address lipophilicity (AlogP, number of aromatic bonds and rings, and paired 

lipophilic moieties
16

.  A more recent, larger QSAR study by Sun et al. screened 13,538 

compounds (6800 training, 6738 test) for inhibition of CYP3A4 metabolism of 

luciferase-based substrates, and then developed a support vector machine (SVM) model 

to classify compounds as active or inactive.  In the optimized model, with a predictive 

accuracy of 0.87, compound active rate was correlated with the number of aromatic rings 

and molecular weight
10

. 

In addition to lipophilicity, the presence of heteroatoms and heterocyclic moieties, 

in particular nitrogen-containing rings, has been found to contribute to CYP3A4 
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inhibition.  X-ray structures of CYP3A4 with ketoconazole, a potent CYP3A4 inhibitor, 

show a complex between the heme iron and the nitrogen atom in ketoconazole’s 

imidazole group
17

.  Several QSAR studies also demonstrated the importance of 

heteroatoms in their models.  The Zuegge et al. study not only found aromaticity and 

lipophilicity to be important inhibitor characteristics, it also found the total number of 

hetero and aromatic atoms to be a highly relevant descriptor.  In the Riley et al. study, 

compounds with a sterically unhindered N-heterocycle had IC50’s roughly one order of 

magnitude lower than compounds lacking such a group.  A study by Mao et al. developed 

pharmacophore models of the inhibition of CYP3A4 metabolism of four probe substrates.  

Through genetic algorithm (GA)-driven descriptor selection, the resulting model showed 

that imidazole, nitrile, and sulfonamide groups were common to inhibitors of BFC 

metabolism
18

. 

 In previous studies, normally one individual modeling approach combined with 

one type of descriptors was applied to one CYP3A4 inhibitor set. Furthermore, although 

the complexities of the CYP3A4 active site were considered, there were few studies 

performed to compare the different outcomes of the models for the inhibition effects of 

same inhibitors on various substrates of CYP3A4. In this study, we constructed 

combinatorial QSAR (combi-QSAR) models for the inhibitors of CYP3A4 metabolism of 

two substrates, BFC and testosterone (Figure 1).  Using the combination of two modeling 

approaches (k-nearest neighbor (kNN) and random forest (RF)) and two types of 

descriptors (Dragon and MOE), we successfully developed four different QSAR models 

for CYP3A4 BFC and testosterone inhibitors. Based on the modeling results, we 

compared the important chemical characteristics that contribute to the inhibition of BFC 
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metabolism and testosterone metabolism by CYP3A4. Moreover, we used our resulting 

models to predict a set of new compounds after the models were developed. 
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Methodology 

Data collection and curation 

 All data was collected from 31 papers and patents (in appendix), containing 

results of inhibition assays of CYP3A4.  All studies reported the IC50 values of the test 

compounds, and employed either testosterone (TST) or BFC as the probe substrate.  All 

IC50 values used for modeling were in µM and converted to –log10(IC50) (pIC50) to reduce 

the range of values. The SMILES structures of the compounds were screened with 

CaseUltra to remove stereochemistry and duplicate structures; this left 153 compounds 

with inhibition data against TST, and 120 compounds with inhibition data against BFC 

(hereafter called the TST set and BFC set, respectively), along with 22 compounds shared 

between the BFC and TST sets.  Scatterplots of the shared compounds’ pIC50 values for 

TST and BFC inhibition show a slight correlation between activities (R0
2
=0.53) (Figure 

2), suggesting that there are some basic structural features common to inhibitors of both 

TST 6β-hydroxylation and BFC O-debenzylation.  Figure 3 outlines the procedure we 

followed in developing and testing our models. 

Eliminating duplicate activities 

 There were some instances of duplicate activities for a single compound.  In such 

cases, we followed the flowchart in Figure 4.  Where compounds were in the TST dataset 

or in the BFC dataset but not mentioned by Stresser et al.
19

, we compared the pIC50 

values from the various source studies, as well as the mean of those values.  For activities 

within 0.1 log units of at least two other activities for the compound, we used that pIC50 
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value in building the models.  Otherwise, we did not include the compound in our 

models. 

Descriptor generation 

 For both datasets, we generated 2D descriptors using MOE (version 2011) (186 

descriptors) and Dragon (version 6) (4885 descriptors), giving a total of 4 datasets (TST-

MOE, TST-Dragon, BFC-MOE, BFC-Dragon).  MOE descriptors include physical 

properties (log P, molecular weight, molar refractivity, etc.), structural keys, E-state 

indices, and topological indices.  Dragon contains descriptors for E-state values and 

counts, constitutional and topological attributes, walk and path counts, connectivity and 

information indices, 2D autocorrelations, Burden eigenvalues, molecular properties (e.g. 

logP), Kappa, hydrogen bond donor/acceptor counts, molecular fragment counts, and a 

variety of chemical fingerprints.  Each dataset was then normalized, removing descriptors 

with a correlation > 0.9 between descriptors and a variance < 0.001 in the values of any 

one descriptor.  After normalization, we had 97 descriptors in the TST-MOE dataset, 102 

in the BFC-MOE dataset, 742 in the TST-Dragon dataset, and 802 in the BFC-Dragon 

dataset. 

Modeling 

 Modeling was conducted for each dataset, using genetic algorithm k-nearest 

neighbors (GA-kNN) and random forest (RF) descriptor selection methods.  Developed 

models were tested via 5-fold cross-validation. 

GA-kNN 
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The kNN QSAR method
20

 employs the kNN classification principle and the 

variable selection procedure.  Briefly, a subset of nvar (number of selected variables) 

descriptors is selected randomly at the onset of the calculations. The nvar is set to 

different values, and the training set models are developed with leave-one-out cross-

validation, where each compound is eliminated from the training set and its pIC50 is 

predicted as the average activity of k most similar molecules where the value of k is 

optimized as well (k = 1−9). The similarity is characterized by Euclidean distance 

between compounds in multidimensional descriptor space. A genetic algorithm is used to 

optimize the selection of variables. The objective of this method is to obtain the best 

leave-one-out cross-validated (LOO-CV) correlation possible by optimizing the nvar and 

k.  Each kNN model is composed of several linear regression models, each of which 

contains some combination of descriptors that yields a model passing set thresholds. 

Additional details can be found in Zheng and Tropsha
20

. 

A genetic algorithm (GA) is designed to mimic biological processes of mutation 

and natural selection.  It starts with a pool of randomly selected descriptor sets, and 

creates regression models from these sets.  Some proportion of regression models will 

contain descriptors correlated with the desired endpoint.  Among the group of well-

correlated models, each can be modified through combination with other models in the 

group (breeding), or through the replacement of one descriptor with a randomly chosen 

alternative (mutation).  Models are then reassessed and modified again, for a set number 

of cycles or until the models converge on a solution.  More detailed information on 

genetic algorithms can be found in Goldberg
28

. 
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Following our general QSAR modeling workflow methodology
21

, all of the kNN 

models were extensively validated. The modeling compounds were divided multiple 

times into training/test sets using the Sphere Exclusion approach
22

.  The statistical 

significance of the models was characterized with R
2
 for the training sets and LOO q

2
 for 

the test sets. The model acceptability cutoff values of the LOO-CV accuracy of the 

validated and non-validated models (R
2
 and q

2
) were both set at 0.5. Models that did not 

meet both training and test set cutoff criteria were discarded. The discussion of the 

workflow used to develop validated QSAR models is given in a recent review
21

. 

The kNN program used the nearest 1-9 neighbors to a specific compound.  The 

descriptor range was between 5 and 50, scanning in steps of 5 descriptors to reduce 

modeling time.  Models had to clear a threshold of 0.5 for both R
2
 and LOO q

2
.  These 

thresholds ensured a wide variety of models would be produced for each dataset.  The 

rest of the GA-kNN modeling parameters are in Table 1. 

Random forest 

In machine learning, a RF is a predictor that consists of many decision trees and 

outputs the prediction that combines outputs from individual trees. The algorithm for 

inducing a random forest was developed by Breiman and Cutler
23

.  In this study, the 

implementation of the random forest algorithm available in R.2.15.1
28

 was used. In the 

RF modeling procedure, n samples are randomly drawn from the original data. These 

samples were used to construct n training sets and to build n trees. For each node of the 

tree, m variables were randomly chosen from the all of the available chemical 

descriptors. The best data split was calculated using the m variables for the modeling set. 
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In this study, only the defined parameters (n = 500 and m = 13) were used for model 

development.  

Testing against an external set 

 Using the PubChem BioAssay database, we collected compounds that had been 

screened for CYP3A4 inhibition of TST or BFC metabolism, only using assays that 

reported IC50 values.  We sorted these compounds by the probe substrate used, and then 

removed stereochemistry and any duplicates in the respective training dataset.  Descriptor 

generation and normalization were the same as in the original datasets, yielding 4 

external datasets complementing the 4 model training datasets. 

 RF and GA-kNN models were constructed using the whole TST or BFC modeling 

set, under the same parameters as the modeling for the 5-fold split.  These models were 

then used to predict the activities of the external compounds. 

Descriptor analyses from GA-kNN and RF models 

 Scripts in R.2.15.1 and Perl were used with the RF and GA-kNN models, 

respectively, to determine the contribution of each descriptor to the developed model.  

The R script determined the importance of each variable in the model (based on the 

descriptor’s position within the decision trees), while the Perl script counted the 

occurrence of each descriptor in the kNN models for each dataset, as a proxy 

measurement for descriptor importance. 

Applicability Domain (AD) 

 While QSAR models can predict activities of any compound for which chemical 

descriptors can be computed, reliable predictions are unlikely if the model is tasked with 

predicting compounds dissimilar from those in the modeling set.  The concept of AD is 
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used to avoid this scenario.  In this paper, the applicability domain (DT) was defined by 

the following equation: 

    ̅     

Here, ȳ is the average Euclidean distance squared between each compound in the external 

set and its k nearest neighbors in the training set (in this paper, we set k=1).  σ represents 

the standard deviation of these distances, and Z is a parameter to control the significance 

level; increasing the value of Z increases the allowed distance threshold and potentially 

encompasses more compounds in the AD.  For this study, we varied Z from 0 to 1 for 

each of the models developed.  We opted to look at a range of applicability domains, as 

opposed to two or three AD sizes, in order to get a more complete picture of each 

model’s performance.  Figure 10 shows the resulting R
2
 and MAE measurements for each 

model.  Since ADs varied by both descriptor set and probe substrate set, the graphs are 

broken down according to those conditions. 
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Results and discussion 

Database Overview 

 From the available literature and patents, we compiled two databases, both 

containing inhibition data against CYP3A4 in the form of pIC50.  The databases differed 

in the probe substrates used in the assay; the BFC database used 7-BFC as the probe 

substrate to test inhibitory potency, while the TST database used testosterone instead.  A 

single-factor ANOVA test of the activity distributions in the BFC (n=120) and TST 

(n=153) databases shows a statistically insignificant difference in the mean activity 

values (F=0.84, P=0.35).  This suggests that the activity distributions (Figure 5) of the 

databases are unlikely to skew the modeling results. 

Applicability domains for external sets 

 Since our training and test datasets are structurally diverse, using an applicability 

domain on our test set ensured that we would be predicting compounds with similar 

structural features as our training set.  Figure 10 shows the coverage for the various z-

values in the applicability domain measurements, and the R
2
 and mean absolute error 

(MAE) measurements after plotting the predicted vs. actual activities of those test 

compounds within the applicability domain. 

For both TST and BFC test sets, Dragon descriptors generally yielded greater R
2
 

values and lower MAE values than MOE descriptors at the same z-value.  This could be 

due to the greater structural detail provided by the number of Dragon descriptors; this 

could also explain the lower coverage in BFC and TST test sets with Dragon descriptors 
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compared to MOE descriptors.  Coverage of the external set remained low for the TST 

models (between 32-35% over most values of z).  However, at similar coverage levels in 

the BFC test sets, performance was much poorer.  This suggests that the TST external set 

contained a greater number of compounds that were highly similar to those in the 

corresponding training set. 

In the BFC test set, both the RF and kNN models yielded poor external 

predictions with MOE descriptors; MAE values are greater than R
2
 values over all 

applicability domains.  With Dragon descriptors, the kNN model yielded fairly accurate 

predictions with applicability domains where z ≤0.4.  Above that z-value, MAE increases 

drastically and R
2
 falls. 

In the TST test set the AD coverage for Dragon and MOE models (and by 

extension the R
2
 and MAE values for the models) stayed constant over most of the z-

value range.  In the AD for the MOE models, the size of the AD stayed constant from z=0 

to z=0.7.  From z=0.8 and up, R
2
 values for the RF and kNN models dropped below 

MAE for both modeling methods.  For the Dragon models, the AD was much more 

stable.  From z=0 to z=0.1, coverage increased slightly but with little effect on the R
2
 or 

MAE of the models.  From z=0.1 to z=1, there was no increase in the AD. 

Model characteristics 

 Figure 6 shows the R
2
 values for the generated models in the internal 5-fold cross-

validation.  Cross-validation statistics showed a greater R
2
 correlation coefficient in 

models trained on the BFC database than those models trained on the TST database 

(R
2
=0.62-0.72 for BFC, R

2
=0.37-0.61 for TST), whereas the mean absolute error (MAE) 
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appears to be lower in the TST models than the BFC models (MAE=0.69-0.9 

(mean=0.78) for BFC, MAE=0.57-0.8 (mean=0.64) for TST).  Comparing modeling 

methods for both BFC and TST databases, random forest models had greater R
2
 values 

and lower MAE values compared to kNN models.  Models using Dragon descriptors 

consistently showed increased R
2
 values and reduced MAE values when compared to the 

corresponding models using MOE descriptors.  For both TST and BFC models, the 

consensus predictions performed better than the individual models, with the highest R
2
 

values and lowest MAE values (consensus BFC: R
2
=0.72, MAE=0.65; consensus TST: 

R
2
=0.61, MAE=0.55).  To test the significance of the improvement of the consensus 

prediction over the individual models’ predictions, single-factor ANOVA tests were 

conducted for the R
2
 and MAE values of the BFC and TST models, all with α=0.05.  

There appeared to be no significant difference in R
2
 values among the models from both 

the TST and BFC databases (TST: F=0.6, P=0.69; BFC: F=0.06, P=0.99), but the models 

from the TST database showed a significant difference in MAE values (F=6.45, P<0.05) 

with the kNN-Dragon model having the lowest MAE.  No such difference was seen in the 

MAE values for the BFC models (F=0.82, P=0.50). 

Structure-assay analysis 

 When using our models to predict our test compounds’ activities, performance 

was markedly lower than in cross-validation (compare R
2
 and MAE values for 

corresponding models between Figure 6 and Figure 10).  While this could be due to 

several test compounds being outside of the AD of the training sets, we considered that 

the issue might be with the test compounds’ structural neighbors in the training sets.  

Specifically, the training compounds most similar to the test compounds might have 
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performed differently in other CYP inhibition assays than the test compounds.  If this 

were the case, the discrepancy in assay results could account for the incorrect predictions 

in our models. 

 We first converted all continuous pIC50 values (both experimental and predicted) 

to a binary format: 0 (inactive) if the activity was less than 0, and 1 (active) if the activity 

was 0 or greater.  Using BFC and TST consensus predictions, we first determined which 

test compounds were predicted incorrectly.  For each of those compounds, we determined 

the nearest structural neighbor(s) in the corresponding training set, using Dragon 

descriptors and a maximum z-cutoff of 2.05.  For those test compounds with at least one 

training compound within the z-cutoff range, we used an in-house Perl script to obtain 

PubChem Bioassay ID numbers and outcomes for compounds in the BFC and TST 

training and test sets, using assays that tested 5 or more compounds.  From those assays, 

we looked at those that turned up in corresponding training and test sets to identify CYP 

inhibition assays. 

 For the BFC training and test sets, we identified four shared assays measuring 

CYP inhibition, two of which were specifically for CYP3A4 inhibition.  In the BFC test 

set (n=156), 73 binary predictions were incorrect.  Of that number, 11 compounds had no 

close structural neighbor in the training set, effectively putting them outside of the 

model’s AD.  Thirty-four compounds differed from their training set neighbors in the 

outcomes of at least one CYP inhibition assay, suggesting that incorrect predictions for 

those test compounds could be due to different assay outcomes in their neighbors in the 

training set. 
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 Interestingly for the TST test set, we found no shared assays between the training 

and test set, for CYP inhibition or otherwise.  This is likely due to the parameters chosen 

for the assay search, specifically the number of compounds tested; while lowering the 

number of compounds per assay could garner more assays, it’s unlikely that any of those 

assays would contain compounds from both training and test sets. 

Descriptor analysis 

 For the mechanism analysis, we used the kNN-Dragon models of the BFC and 

TST databases, analyzing the frequency of descriptors in each model then comparing 

descriptor frequencies between models. Dragon descriptors contain more diverse sub-

structure features compared to MOE descriptors, and the R
2
 values for the kNN models 

exceeded those of the corresponding RF models, for both the BFC and TST databases. 

Figure 7 shows the frequency of all descriptors used over both BFC and TST 

models.  In the frequency comparison, we decided to analyze descriptors with a 

combined frequency of 30% or greater.  This cutoff ensured that the number of 

descriptors would not be too extensive, and that the descriptors with high frequency in 

one or both of the models would be included in the analysis. 

 Figure 8 shows the difference in descriptor frequencies between the BFC and TST 

models.    Several of the descriptors shown are atom-type descriptors specifying carbons 

one to two bond lengths away from highly electronegative heteroatoms.  Two atom type 

descriptors, H-048 and H-049, show high relative frequency in the BFC and TST models, 

respectively.  Both descriptors characterize the hydrogen of a CH group, with the carbon 

bonded to varying numbers of heteroatoms in a variety of hybridizations
24

.  The two 



18 
 

vi 

descriptors differ in the number of heteroatom bonds present; CH groups under the H-049 

descriptor possess more heteroatom bonds than those CH groups under the H-048 

descriptor.  In Figure 8, H-049 is seen to appear only in the TST model and H-048 

appears more often in the BFC model. 

Single-factor ANOVA analysis was performed on the values of the descriptors 

listed in Figure 8, comparing the TST and BFC databases for significant differences in 

the mean values of the descriptors.  Table 2 reveals that both H-048 and 049 atom counts 

are significantly greater in the TST database (H-048: F=7.48, p<0.01; H-049: F=28.19, 

p<0.01).  This suggests that the frequency of H-049 in the TST models might be due to 

the descriptor’s increased frequency in the training compounds, while the increased 

frequency of H-048 in the BFC model likely results from an outsize contribution of that 

descriptor to the model’s predictions. 

 Another pair of atom type descriptors, C-033 and C-042, characterizes carbon 

atoms with one single bond and one aromatic single bond; a C-033 atom shares an 

aromatic single bond with a heteroatom, while a C-042 atom shares both a single and 

aromatic single bond with heteroatoms.  The C-033 descriptor is more frequent in the 

BFC model, while the C-042 descriptor is more frequent in the TST model.  Table 2 

shows counts of both descriptors to be significantly greater in the TST database (C-033: 

F=21.04, p<0.01; C-042: F=9.47, p<0.01).  The significant differences in descriptor 

counts and frequencies in the two models suggest that the increased frequency of the C-

033 descriptor in the BFC model is not a result of that descriptor’s abundance in the 

training set, unlike the frequency of the C-042 descriptor in the TST model.  Both of the 

atom type descriptors mentioned above, C-033 and H-048, are characterized by aliphatic 
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and aromatic bonds to heteroatoms.  Prior QSAR studies of CYP3A4 inhibition
16,18

 have 

found heteroatoms and aromatic heterocycles to be strong contributors to a compound’s 

inhibitory activity against CYP3A4.  Additional SAR studies have found that 

heterocycles such as furans
25

 and unhindered N-heterocycles
15

 lead to a substantial 

increase in CYP3A4 inhibition.  Fitting with these prior findings, C-033 atom types are 

more prevalent in strong inhibitors from our BFC database. 

 Two other descriptors, P_VSA_LogP_6 and P_VSA_v_3, are concerned with the 

amount of a molecule’s surface area with properties (in this case LogP and volume) in a 

specific range
26

.  P_VSA_LogP_6 (the total surface area with a calculated LogP between 

0.25 and 0.5) shows a relatively high frequency in the BFC model and no significant 

difference in the mean values in the BFC and TST databases (F=1.79, p=0.18).  

P_VSA_v_3 also shows a high frequency in the BFC model, but its mean value is also 

significantly greater in the BFC database (F=4.37, p<0.05).  This would suggest that an 

increased hydrophobic area is a key contributor to the inhibition of BFC metabolism.  

Other QSAR studies have identified some measure of hydrophobicity as key in 

determining inhibitory potential against CYP3A4, whether it’s LogP
13

 or the number of 

aromatic rings or bonds
10,16

.  Prior molecular dynamics simulations with CYP3A4 and 

progesterone indicated several van der Waals contacts between progesterone’s steroid 

core and the side chains of Arg105, Phe108, Ile120, Ile301, and Phe304
27

.  Based on 

these findings, we anticipated descriptors for hydrophobicity to occur more frequently in 

the TST model due to the role that van der Waals contacts play in progesterone binding.  

Graphing the distribution of P_VSA_LogP_6 values in the BFC database (Figure 9), both 

weak and strong inhibitors show reduced surface area with a LogP between 0.2 and 0.25.  
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Our models would suggest that hydrophobic interactions are of equal or greater 

importance in BFC metabolism than in TST metabolism.  Inhibitors of BFC could form 

van der Waals contacts with side chains that usually bind with the benzyl ring or 

coumarin nucleus of BFC. 

  Comparing the GA-kNN models developed for inhibitors of TST or BFC 

metabolism by CYP3A4, we found several structural descriptors that differ in importance 

between models.  These findings could be applied to future in-vitro CYP3A4 inhibition 

screens to account for any differences in inhibition with multiple substrates.  Similarly, 

developing and comparing CYP models using different probe substrates would give a 

more complete understanding of the mechanisms involved in CYP inhibition. 
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Table 1: Parameters for construction of genetic algorithm-k nearest neighbors.  

Parameter values and conditions are listed in the program's command line and the log 

files generated by the models. 

 

  

Modeling parameter Value Modeling parameter Value 

Training/test set cutoff 

0.5 (for training R
2
 

and LOO q
2
) 

Elitism On 

# nearest neighbors used 1-9 Elite individuals ratio 0.01 

Model type Continuous Tournament group size 3 

Neighbor choice and weighting 

Minkowski-kind 

weighting w/ relative 

squared distances 

Min. diversion 10
-3

 

Vote sharing 

Extra neighbors share 

votes 
Convergence condition 

10 generations w/ 

diversion ≤ min. 

Test set check 

R
2
 used as check for 

test set 
Crossover mode Uniform 

Applicability domain z-cutoff 

0.5 (Euclidean 

distance
2
) 

Parent selection Tournament 

Neighbors in applicability 

domain 

≥ 1 Crossover/mutaton rate 0.8/0.7 

Unbalanced prediction penalty 0 Max. generations 300 

Solution size penalty term 0.1 Population size 200 
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Table 2: Mean Values and ANOVA Test Results for Selected Descriptors from BFC 

and Testosterone Training Sets 

 

  

 
Descr

iptor 

C-

042 

Nssss

C 

DLS

_cons 

nRCON

R2 

P_VSA_L

ogP_6 

P_VS

A_v_3 

H-

048 

H-

049 
C-033 

 
BFC 

mean 
0.11 0.78 0.80 0.28 8.09 151.03 0.29 0.38 0.12 

 
TST 

mean 
0.26 0.54 0.79 0.10 9.95 138.27 0.52 0.99 0.41 

ANOVA 

(single-

factor) 

F 9.47 5.40 0.31 4.67 1.79 4.37 7.48 28.19 21.04 

P-

value 
0.00 0.02 0.58 0.03 0.18 0.04 0.01 0.00 0.00 
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Figure 1: Structures of the probe substrates BFC (left) and testosterone (TST) (right), used to 

measure CYP3A4 inhibition.  Below the line drawings are pharmacophore maps of each structure 

(created with MOE).  Orange globes and green spheres are hydrophobic regions, blue spheres are 

hydrogen-bond acceptors, and gray spheres act as hydrogen-bond donors and acceptors. 



24 
 

vi 

-2 0 2

-2

0

2
B

F
C

-e
x

p
. 

(p
IC

5
0
)

TST-exp. (pIC
50

)

 

Figure 2: pIC50 values of compounds present in both TST and BFC training sets.  

The correlation between the activities (R
2
=0.52) suggests some common features among 

inhibitors, as well as features that make a given compound a more potent inhibitor against 

CYP3A4 oxidation of one substrate.  
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Figure 3: Flowchart for model development and testing.  
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Figure 4: Flowchart for Compounds with Duplicate Activities.  The Stresser et al. 

(2000) paper is used as a standard because it is an early study of 7-BFC as a probe 

substrate, and the authors’ parent company (Gentest) is a manufacturer of CYP3A4 

inhibition screens that use 7-BFC as a probe substrate. 

  

Compound with multiple activities 

Compare pIC
50

 values from sources 

Compound in 

Gentest paper 

(Stresser et 

al., 2000)? 

Activity within 

0.1 log units of 2 

other activities?  

Discard Use 

Use Gentest 

data 

BFC 

TST 

No 

Yes 

Yes No 
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Figure 5: Distribution of activity values in training and test sets 
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Figure 6: 5-fold cross-validation results for BFC and TST models.  Graph shows 

correlation coefficient (R
2
) and mean absolute error (MAE) for each model.  BFC and 

TST consensus data are obtained by taking the mean of each compound’s predicted 

activity from all BFC or TST models. 
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Figure 7: Total importance of all descriptors in BFC and TST Dragon kNN models.  

For the kNN models, the frequency with which a descriptor appears in a model is used as 

a proxy measurement for the descriptor’s importance.  In this graph, descriptor 

importance is obtained by adding the frequency of each descriptor in the BFC and TST 

Dragon kNN models. 
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Figure 8: Descriptor importance for selected descriptors in the BFC and TST 

Dragon kNN models 
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Figure 9: Distribution of P_VSA_LogP_6 descriptor values in BFC training set 
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Figure 10: Model performance against test sets, graphed across a range of 

applicability domains.  Graphs are separated by probe substrate and descriptor set.  Each 

individual graph measures the R
2
 and MAE values for the kNN and RF models.  The z-

value determines the size of the applicability domain, with coverage directly correlated. 
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