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We study a supply chain operations scheduling problem subject to both renewable
and non-renewable resources. After an operation has been completed, the non-renewable
resource is consumed whereas the renewable resource may be resumed for the next
operation. Of both the renewable and the non-renewable resources, limited amounts are
available and they need to be delivered to the locations where they are needed. The
operations have deadlines, and the availability of the renewable resources depends on the
sequence of the operations. Our problem is to find a coordinated operations schedule for
the non-renewable and renewable resources so that the total tardiness across all the
customers in the given network is minimized.

Part 1 of this dissertation presents an overview of existing solution methodologies for
integrated supply chain operations scheduling/planning problems involving production,
inventory, distribution, and routing. We take into account problems dealing with
operational decisions and classify them according to their characteristics, such as time
constraints and routing decisions that are directly related to our research problem. Various
methodologies are presented and discussed, and their possible integrations, combinations,

and extensions are discussed.



In Part 2 of the dissertation, we build a mixed integer-programming model, present a
complexity classification for our problem, and show where the borderline lies between
NP-Hardness and polynomial time solvability. We analyze the structural properties of our
problem, provide strongly polynomial-time solutions for several special cases that have
practical applications, and identify the cases that are computationally intractable. Finally,
we propose a framework of heuristic procedures for solving more general versions of this
problem.

In Part 3 of this study, we introduce a mathematical programming based rolling
horizon heuristic that is able to locate near optimal solutions within ten-minute of CPU
time for networks up to 80 customer service operations. This heuristic solves the problem
through an iterative process. In each iteration, a subset of customers and a subset of
batches of non-renewable resources, together with the travel teams (renewable resources),
are scheduled by solving a respective optimization problem of a much smaller size.
Through an extensive empirical study with over 5,000 randomly generated test cases
under various parameters, the empirical error gaps of this proposed solution approach,
when compared to the best solution obtained by a commercial optimizer within one-hour
of CPU time, are constantly within 5%.

This work can be extended in several directions. One of them is to conduct a
thorough simulation study to assess the impact of management policies on the
effectiveness of emergency logistics involving bottleneck renewable and non-renewable
resources. Another one is to design and evaluate meta-heuristics for solving a more

general version of our problem.
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Chapter 1. Introduction

A supply chain is defined as an integrated business process with bidirectional flows
of products, information, cash, and services, between tiers of suppliers, manufacturers,
logistics partners, distributors, retailers, and customers. Due to fast changes in the
marketplace and the rapid expansion of supply chains (Eksioglu et al., 2007), ensuring
highly coordinated production, inventory, and distribution over a multi-echelon supply
chain network is vital, and has an immediate impact on customer services and profit

margins. This importance will continue to increase along with the following trends:

Globalization: All functions in a supply chain network, such as procurement,
production, distribution and consumptions, have now become more globalized. Most
multi-national firms have business facilities located over multiple continents, with many
local markets to serve; face the need for emerging market penetration and the challenge
of capacity shortages and rising shipping costs; and are constantly confronting
environmental/sustainability concerns. At the same time, the promises and flexibility of
third-party logistics and subcontracting opportunities offer a great incentive to expand
supply chains globally. As supply chains expand, the need to ensure a more precise
match between demand and supply increases the importance of integrated operations

planning.

Pressure on lead time reduction and profit margin improvement: Since customer

demand for both products and services typically changes over time, time-to-market is



more important than ever in order to meet the expectations of demanding customers.
For most supply chains, production is not the only major process to be considered; there
are many other stages, such as sourcing, distribution, inventory, packaging, and order
processing that together could account for a significant portion of the lead time. A
less-coordinated supply chain process could easily diminish or eliminate the profit

margin and lead to poor customer service.

Advances in information technology: Advances in information technology during the
past two decades have significantly improved data visibility (e.g., inventory visibility and
shipping status) and information accessibility along the supply chain. Data can be
automatically collected, retrieved, and manipulated in various ways and shared by many
supply chain partners (e.g., through RFID). Furthermore, today’s computing power
allows us to solve larger-scale integrated operations planning problems relatively easily
and more rapidly, which were difficult, if not impossible, only a few decades ago when
optimization problems of a combinatorial nature were considered computationally

intractable.

Serving the needs of emerging non-commercial supply chains: A network for disaster
relief operations is a typical illustration of a non-commercial supply chain. Disaster relief
and emergency logistics (e.g., in response to Hurricane Katrina in Louisiana in 2005, the
tsunami in Japan in 2011, and Hurricane Sandy in New Jersey and New York in 2012)
usually cannot be effectively handled by a single state or a single local government.

Today’s Internet allows the need for disaster relief to be communicated cross-country and



internationally within minutes of an event, and the rapid formation of disaster relief
supply chains for quick response to people in the affected areas. A highly effective and
fully integrated production and distribution operation that pulls supplies from different
industries and states to ensure delivery of these resources to the people in an affected area

is critical to human well-being.

Among these trends in the application of integrated production and distribution
operations, emergency logistics has received least attention in academia. This dissertation
focuses on a particular topic in this area: emergency operations scheduling subject to both
renewable and non-renewable resources. When operations scheduling becomes subject to
both renewable and non-renewable resources and when the services of the customers
depend on the availability of both types of resources at the same time, the resulting
scheduling problems become very difficult (Haghani and Oh 1996). One reason is that
the execution of an operation depends on the availability of both resources, each of which
being subject to different constraints, making the problem much harder to solve relative
to its counterpart that is subject to just one type of resource. In the literature, results for
such scheduling problems involving both renewable and non-renewable resources are
limited (e.g. Ait-Kadia, Menye and Kane 2011; Bottcher et al. 1999; Can and Ulusoy

2010; Lee and Lei 2001; Nudtasomboon and Randhawa 1997).

This operations scheduling problem is commonly encountered in disaster relief
processes. During such a process, various medical supplies, such as syringes, antibiotics,

surgical blades, vaccines, and bandages (i.e., non-renewable resources) as well as medical



teams consisting of nurses, doctors, and/or first aid social workers (i.e., renewable
resources) have to be available at the same time in order to take care of the patients’
needs. One well-known case of such a challenge was the situation immediately following
Hurricane Katrina, which had a devastating effect on New Orleans in 2005. Both federal
and local governments launched their emergency response systems in order to help
affected people. However, the most critical bottleneck in the entire process was the
capacity of nurses. Even though medical kits and vaccines were delivered on time,
patients could not be treated without the availability of nurses. As a more recent example,
Hurricane Sandy, the largest Atlantic hurricane on record (http://en.wikipedia.org/
wiki/Hurricane sandy), ruined the entire stocks of medical supplies at many local
pharmacies while the demand for supplies (e.g., cardiac medicines, anti-clotting
medicines, and statins) increased significantly, which led to many tough challenges in
relief operations. The massive tornado that hit Oklahoma in late May 2013 is another
example of resource-constrained emergency operations scheduling, where the tornado
caused severe blood shortages in hospitals and shelters (http://www.thetimesnews.com
/news/top-news/the-alamance-scene-blood-needed-in-oklahoma-tornado-aftermath-1.148
471) and delayed the medical treatments despite the availability of travelling medical

teams.

Such operations scheduling problems are also fairly common in the practice of
project management, where the usage of non-renewable resources (e.g. construction
materials and lumber supplies) and renewable resources (e.g. cement mixers, engineers,

and trucks) have to be coordinated and synchronized. According to Assaf and Al-Hejji



(2006), poor communication and coordination of labor and construction supplies is one of
the main causes of delays in large construction projects. Besides, labor shortage has been

one of the most frequent causes of project delays.

The rest of this dissertation is organized as follows. We survey the existing solution
methodologies for integrated supply chain operations scheduling/planning problems
involving production, inventory, distribution, and routing in Chapter 2. We take into
account problems dealing with operational decisions and classify them according to their
characteristics, such as time constraints and routing decisions that are directly related to
our research problem. Various methodologies are presented and discussed, and their
possible integrations, combinations, and extensions are discussed. In Chapter 3, we
formally define our operations scheduling problem with renewable and non-renewable
resources, and build a solid mixed integer-programming model towards the problem.
Moreover, we present a complexity classification for our problem, and show where the
borderline lies between NP-Hardness and polynomial time solvability in Chapter 4. In the
same chapter, we also analyze the structural properties of our problem, provide strongly
polynomial-time solutions for four special cases that have practical applications, and
identify the cases that are computationally intractable. In Chapter 5, we introduce a
rolling horizon based heuristic that is able to locate near optimal solutions within
ten-minute of CPU time for networks up to 80 customer service operations. This heuristic
solves the problem through an iterative process. In each iteration, a subset of customers
and a subset of batches of non-renewable resources, together with the travel teams

(renewable resources), are scheduled by solving a respective optimization problem of a



much smaller size. Through an extensive empirical study with over 5,000 randomly
generated test cases under various parameters, the empirical error gaps of this proposed
solution approach, when compared to the best solution obtained by a commercial
optimizer within one-hour of CPU time, are constantly within 5%. Finally in Chapter 6,
we discuss several extensions in various directions. One of them is to conduct a thorough
simulation study to assess the impact of management policies on the effectiveness of
emergency logistics involving bottleneck renewable and non-renewable resources.
Another one is to design and evaluate meta-heuristics for solving a more general version

of our problem.



Chapter 2. Literature Review

In this chapter, we focus on the solution methodologies for solving various
integrated/coordinated production and distribution operations planning problems
reported in the current literature. This literature review does not focus on results related to
decisions for supply chain designs (e.g., facility location and/or facility capacity), or on
those results that only deal with a single operation such as inventory, or routing, or

production scheduling, but rather addresses issues unique to process integration.

There have been several survey papers dealing with integrated operations problems,
each with its own focus. Among these, the pioneer review by Thomas and Griffin (1996)
defines a generic structure for a supply chain network, and classifies published results at
both the strategic planning level and the operational planning level, where the latter falls
into our scope. The models related to operational planning are classified into buyer and
vendor coordination, production-distribution coordination, and inventory-distribution
coordination; up through the time of this study, most researchers, because of limitations
on computational capability, have decomposed such multi-stage problems into several
two-stage problems which are then solved separately. Erenguc et al. (1999) review the
studies on managing supply chain networks with three distinct stages consisting of
suppliers, plants, and distribution centers, and focus on the results for joint operational
decision-making across the three stages. Decisions that need to be jointly made regarding
optimizing production/distribution planning are discussed. Sarmiento and Nagi (1999)

consider integrated production/distribution planning systems at both the strategic and



tactical levels with an explicit consideration of transportation. They classify the problems
based on the type of decisions being modeled (e.g. decisions on production, distribution,
or inventory management) and on the number of locations per echelon in the model.
Three categories of two-echelon models are identified, and the differences between such
models and those in classical Inventory Routing studies are discussed. Fahimnia et al.
(2008b) review existing production /distribution planning models and provide a table
summarizing 19 papers according to problem attributes (e.g. numbers of plants,
distribution centers, and customers, multi-periods, multi-products, routing), types of
modeling approaches (e.g. mathematical programming, optimization, simulation and

combinations of these), and the solution methods applied.

There are also two recent survey papers on integrated operations planning: Mula et al.
(2010) and Fahimnia et al. (2013). Mula et al. (2010) cite 44 papers published since 1985
among the 54 references, and classify these works based on the decision levels (e.g.
strategic, tactical, and operational), modeling approach (e.g., linear programming, and
multi-objective integer linear programming), objective (e.g., total cost, and customer
satisfaction), level of information sharing (e.g., production cost, lead time, inventory
level, and demand), and solution methodologies. Fahimnia et al. (2013) cite 139 papers
related to integrated operations planning, and classify these papers by two criteria:
complexity of the network structure and solution methodologies. Interestingly, in spite
of the large number of references listed in these surveys, only 19 papers were common to
both surveys. However, there is no analysis in either survey on the relationship between

problem structures and the methodologies reported in these works.



Unlike the existing surveys, we focus here on the relationships between the problem
structures and solution methodologies. Such a survey provides information to the
researchers on the solution approaches, developed for solving problems defined over
different types of network structures, and their effectiveness. We classify the integrated
operations planning problems into four categories. For each category, we present a basic
mathematical model and, based upon the properties of the respective network structure,
analyze the existing solution methodologies. To define these categories, two attributes are
used: time constraint and routing. Most integrated operations planning problems
involve multiple time periods. For each period, the ending inventory level, production
quantity, and distribution amount must be determined. Since a continuous time scale
within a period has to be considered in some studies to describe time constraints like
arbitrary delivery deadlines or travel times, there is a need to model the time constraints
explicitly. Note that without such explicit modeling of time constraints, as many studies
in the past have done, we often have to assume that any quantity produced in one period
is delivered to customers in the same period, which leads to a gap between the models
and the real-world practice. For those studies involving direct shipment between
suppliers and customers, we allow the shipping capacity to be defined as either the
maximum outgoing flow amount or the fleet size and/or capacity of vehicles. For the
studies in which one vehicle may visit several customers in one trip, we allow vehicle
routing issues to be explicitly included in the model. We categorize the problems into

four categories in Table 2.1.



(PDPRT)

Issues in the Literature | Production | Distribution Time Routing
Problem Categories issues issues constrains issues
Production and Distribution Problem (PDP) X X
PDP with Time Constraints (PDPT) X X X
PDP with Routing (PDPR) X X X
PDP with Routing and Time Constraints
X X X X

Table 2.1. Categories of the integrated operations planning problems

10

We also refer readers to another survey by Yossiri et al. (2012), in which the authors

categorize the studies according to their inclusion of decision variables related to the flow

quantity of production, inventory, distribution and routing.

Before we give the details of 5 categories, we introduce the common assumptions

and notation used to define the four categories of problems (PDP, PDPT, PDPR, and

PDPRT). For each assumption, we then discuss its extensions or variations that are found

in literature.

Product and Time Dimension:

e We consider the multi-product problem (i.e., with multiple commodities) over a

given planning horizon of multiple time periods.

Network Structure and Material Flow:
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e The supply chain network has three stages: manufacturers, distribution centers
(DCs) and customers, as shown in Figure 2.1. Each customer has a certain
demand to be fulfilled in each period. Both manufacturers and DCs hold
inventories of products. Manufacturers produce and fill their own inventories, and

send products to DCs, which in turn send the products to customers.

Manufacturers Distribution Centers Customers

——— Component flow ——  Product flow

Figure 2.1 Network Structure and Material Flow

e Extensions or Variations in the literature:
o There exist suppliers to provide manufacturers with raw material.
o There exist third parties that serve as contract manufacturers or DCs. The
third parties usually charge higher prices than regular players.

o In some cases, manufacturers may deliver the product directly to customers.
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Production and Transportation Capacity:

e Each manufacturer has a maximum production capacity (e.g., the maximum
quantity that it is able to produce) in each period. Both manufacturers and DCs
have a maximum transportation capacity (e.g., the maximum outgoing flow
quantity) in each period.

o Extensions or Variations in the literature:

o Manufacturer’s production capacity can be increased at an additional fixed
and/or variable cost (e.g., overtime work).

o Transportation capacity can be defined by the vehicle attributes (e.g., the
fleet size, the vehicle loading capacity, the maximum number of trips, and

the total working hours in one period, etc.).

Customer Demand Fulfillment and On-time Delivery:
e All customer orders must be fulfilled on time, and no customer carries inventory.
e Extensions or Variations in the literature:
o If an order is not fulfilled on-time, it is lost (called a lost-sale).
o If an order is not fulfilled on-time, it can be fulfilled later with a penalty cost
(either as a backorder delivered in a subsequent period, or as a late

shipment within the same period).

Cost Components:

e FEach manufacturer has a fixed, and variable, cost of production, and each DC has
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a fixed, and variable, cost for handling the product. Both manufacturers and DCs
incur inventory holding costs. The shipments from manufacturers to DCs, and
from DCs to customers, result in a shipping cost.
e [Extensions or Variations in the literature:
o When raw materials are required, the purchase cost is considered.
o When a third party is involved, the respective costs (e.g., contract fees) are
included.
o If a late delivery (backorder) is allowed, the relevant penalty cost is
included.

o If a lost-sale is allowed, the shortage penalty is included.

While a representative mathematical model for each of the following sections is built
upon these basic assumptions, its variations are introduced as we discuss individual

papers.

Throughout this survey, we will use the following notation: let M={m}, B={i},
J={j} and K={k} denote the set of manufacturing facilities, the set of
distribution/transshipment centers (DCs), the set of customers, and the set of products

ordered by customers, respectively. When routing decisions are involved, let V' (m)
denote the set of vehicles of manufacturer m. Let T ={¢} denote the set of periods.
For simplicity, Vm, Vi, Vj, Vk, Vv and V¢ may be used instead of Vme M,

VieB, VjeJ, VkeK, VveV(m) and VteT.
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2.1 Production and Distribution Problem (PDP)

The production and distribution problem, or PDP, is primarily concerned with
coordinating production and outbound distributions to minimize the total costs associated
with production, inventory, and transportation over a discrete multi-period planning
horizon. Since PDP does not explicitly include the routing and shipping times, the models
for PDP involve only inventory flow balance, facility capacity and transportation capacity

constraints (e.g., see Thomas and Griffin, 1996).

To formally define the mathematical model for the PDP, we introduce the following

notation: For any given period 7, let C!, be the production capacity of manufacturer m
for product k£, C,,, be the transportation capacity from location a to location b for
(a,b)e MxBUBxJ, and dj, be the demand for product k by customer j. Let I, be

the initial inventory of product k£ at location a for ae M UBUJ . For decision

and Z*

m,t

variables, let W, respectively, be the binary variables denoting the decision

,b,t
for a flow from location a to location b for (a,b)e MxBUBxJ in period ¢, and the
decision for a production batch for product k£ by manufacturer m in period #. Let S, O, P,
and 7, each with proper superscript and subscript indices, be continuous variables
denoting the shortage amount, flow quantity, production quantity, and inventory level,
respectively. For example, Q,’;J.,t denotes the flow quantity of product k£ from
manufacturer m to DC i in period ¢ In addition, we use M||J, and B||J, to denote a

network involving only manufacturers and customers, and distribution centers and
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customers, respectively, and M||B||J to denote a network involving all three stages. A

basic PDP model can then be described as follows:

Minimize: GW,, W, .72, .S:.,0...0 B 1. 1.1 (2.1)
S.1.
Iy +P = On =10, Vm, k.t (2.2)
L4 D O =20, O = 1 Vi, k,t (2.3)
I+, 0f, -, -Si)=1},, Y, k,t (2.4)
Pl <Cy - Z) ., Ym, k,t (2.5)
D i Onii <Coiy Wi, Vm,i,t (2.6)
> L0 SC W Vi, j,t (2.7)
W W Zh 00, 85,00 000 P Ly 1,15, 20 Ymyd, j ket (2.8)

The objective function (2.1) minimizes the total operations cost, consisting of raw
materials, facility setup, production, inventory, and transportation costs. Constraints (2.2)
- (2.4) ensure the flow balances at the manufacturing facilities, DCs and customer sites,

respectively, while constraints (2.5) - (2.7) are network capacity constraints.

While special cases of PDP, such as the classical transportation problem and the
transshipment problem, can be solved in strongly polynomial time, the general version of
the PDP is difficult to solve. More precisely, the multi-product PDP defined by (2.1) -

(2.8) is strongly NP-hard, because a special case of this PDP is a multi-product
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multi-period lot-sizing problem which has been proved to be strongly NP-hard by Chen
and Thizy (1990). Therefore, a general version of PDP could require an excessive amount
of computational time to verify the solution optimality when the network size becomes

large.

In this section, we focus on the existing solution methodologies for variations of the
PDP defined by (2.1) - (2.8), and classify them into three categories. The first one is
heuristic and metaheuristic algorithms, in which a solution (or a set of solutions) is
constructed by relatively simple rules and then improved through an iterative process.
The other two are both mathematical programming-based solution approaches, and differ
in the way that a problem is relaxed: constraints relaxation approaches and variables
relaxation approaches. Note that while the routing decision is not considered in this

section, we do include those problems that assume fixed routing.

2.1.1 Heuristic and Metaheuristic Algorithms

Because of the intractability of the general PDP, feasible solutions with acceptable
quality and minimal solution time have been commonly discussed in the literature.
Representative solution approaches in this category are greedy heuristics and genetic

algorithms.

Park (2005) proposes a two-phase heuristic for solving a multi-product PDP defined

upon an M||J network to maximize the total profit. The phase I problem is formed by
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aggregating the demand of all customers in each period, defined by Dtk = Zvj' dj].‘,t

and then replacing constraint (2.4) by I, +Q' - D! =1", Vk,t, in the model, which
reduces the problem to a single-customer multi-period model and allows one to quickly

determine the values of Pan by solving a production lot-sizing problem (Fumero and

Vercellis, 1999) with constant production capacity. All unsatisfied demand is penalized as

shortage and no backorder is considered. Given P”f’,, the author then solves a distribution

problem in phase II to determine the values of QO

..;.» DY applying a bin-packing
heuristic together with local improvement procedures which consolidate partial loads by
shifting shipping periods and reducing the level of stock-out using leftover production
capacity. Through computational experiments on 21 test problems of three sizes, this
heuristic achieves an error gap, or a difference between the optimal and heuristic
solutions, of 5.6 ~ 6.8% for small-size cases and no more than 9.2% for all the test cases.

The computation time is less than 3 sec for small cases and no more than 1200 sec for

large cases.

Ahuja et al. (2007) study a two-echelon M||J single product PDP with single
sourcing constraint, which means that each customer receives shipment from at most one
supplier in each period. In addition to constraints (2.2) - (2.7), the authors also include a
constraint on inventory perishability, so that the maximum inventory time for the product
is bounded by a given constant N. Thus, at any period ¢, the ending inventory at DC i,

i e I,cannot exceed its future demand from all customers in the next N periods, or

I, < ZLZW Q. ;1on - The resulting PDP is decomposed into two sub-problems. One
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includes only binary facility-customer assignment variables, and the other includes
variables for transportation flow and inventory levels. A proposed greedy heuristic is used
to assign the facility-customer pairs, upon which a very-large-scale-neighborhood
(VLSN) search heuristic is applied to improve the quality of the solution. Extensive
tests on randomly generated problem sets are conducted, and the error gap obtained by
comparing the heuristic with the best lower bound obtained by CPLEX within 15 minutes
of CPU time is less than 3% in all cases. The authors also report that their error gaps have
a decreasing tendency as the number of customers is increased, and it is less than 0.1 %

in the largest size case. The computation time is less than 40 seconds in all cases.

Some researchers consider PDP with extensions such as fixed routes for
transportation or direct shipment. Lei et al. (2006) investigate an integrated production,
inventory and distribution routing problem encountered from the practices of after-merge
operations of a chemical company. A two-phase approach is proposed, where the Phase |
problem is defined by assuming direct shipment between manufacturing plants and
customers. The assumptions on direct shipments allow the authors to solve an
optimization problem with a significantly reduced complexity, which yields a feasible
solution to the original problem. The problem in Phase II is to improve the solution from
Phase I, and is modeled as a shortest path problem on a directed acyclic graph. An
empirical study that evaluates the computational performance of this solution approach is
also reported. Liu et al. (2008) study a multi-product packing and delivery problem with a
single capacitated truck and a fixed sequence of customer locations. The authors first

apply a network flow-based polynomial time algorithm to solve the problem assuming no
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split deliveries, and then allow the split delivery to improve the truck efficiency by using
a greedy heuristic with a time complexity of O(|J [ log|.J |). In both papers, optimal

solutions of the special cases (with restriction) are modified to obtain feasible solutions to

the original problems.

During the past two decades, the genetic algorithm (GA), inspired by the process of
natural evolution, has been quickly gaining in popularity. In Jang et al. (2002), the
problem of production and distribution planning over a three-echelon M||B||J network is
considered. Constraints similar to (2.1) - (2.7) are included and a material transform
factor I' is used to define the rate of raw materials consumption:

Iy, +P,,-> T,-0,. =1, Ymt.The proposed GA algorithm is compared with

ma-1 Ly
that obtained by CPLEX. Among randomly generated test problems, the solution time of
GA is quite stable, averaging from 334 to 546 seconds, while that required by the CPLEX
solver exhibits exponential growth with respect to problem size, from 32 to 67,854
seconds to obtain the optimal solutions. The proposed GA also demonstrates strong
performance, with an average error gap of 0.2%. Gen and Syarif (2005) propose a
GA-based approach for their M||J network. A new solution approach called the
spanning-tree-based genetic algorithm 1is presented together with the fuzzy logic
controller concept for auto-tuning the GA parameters. The proposed method is also
compared with a traditional spanning-tree-based approach. This comparison shows that
the proposed approach achieves a better result in every experiment, with an average
improvement from 0.05% to 0.65% for six different settings. Kannan et al. (2010)

develop an M||B||J network model for battery recycling. Besides production, inventory
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and transportation cost, the objective function contains additional cost factors for
recycling such as collection, disposal and reclaiming cost. The authors introduce a
heuristic-based genetic algorithm to solve the problem and compare the result with that
obtained by GAMS, a commercial solver. In experiments with different problem sizes
and heuristic parameters (population and iteration), the maximum error observed is 7.4%
compared with the results from GAMS. Moreover, the average computation time of the
GA-based approach is less than 315 seconds for the largest problem while that by GAMS

is at least 2800 seconds for the smallest problem.

2.1.2 Constraints Relaxation-Based Approaches

Another popular solution approach to PDP in the current literature is to relax a subset
of constraints in order to make the relaxed problem easier to solve. The major approach
in this regard is the well-known Lagrangean relaxation, by which difficult constraints are
placed into the objective function with coefficients called Lagrangean multipliers so that
the resulting problem is “easily solvable.” One example of such an easily solvable
problem is a network flow problem (Ahuja et al., 1993). Another important approach is
based upon problem decomposition, by which a subset of constraints is temporarily
simplified or removed from the original model to make the remaining problem
decomposable. When a Lagrangean relaxation is adapted to achieve the decomposition,
the resulting process is called Lagrangean decomposition. In constraints relaxation —
based approaches, identifying the constraints to be relaxed and ensuring that the search

converges to the optimal or near-optimal solution quickly are two critical steps for
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achieving the quality and effectiveness of such solution approaches. For example, in the
basic model defined by (2.1) — (2.8), when we relax constraint (2.3) and incorporate it in
the objective function with penalty factors, the problem is decomposed into two problems

as follows:

o Minimize: G'(w,,.7' .0\, .P\ I ) s.t. (2.2), (2.5), (2.6)
o Minimize:  G(w,,,.s" .0 .I".I) s.t. (2.4), (2.7), (2.8)

[N RE I RER 2N RSy N Ealy

where both G' and G’ include the penalty terms for violating constraint (2.3).

Yung et al. (2006) use constraints relaxation to solve a multi-product single-period
PDP, and thus the time index ¢ is dropped from all the notations, defined upon an M||J
network. Their study involves decisions on production and transportation, as well as on

lot-sizing and order quantity. The average inventory level is used to define the inventory

cost, and variables z* and x* are added to denote production lot size and shippin
m mj p pping

quantity for product k. The model contains flow balance constraints similar to (2.2) -
(2.4), and capacity constraints similar to (2.5) - (2.7). However, the objective function

includes terms P /z! as the number of production lots for product & at manufacturer m
and terms  Q, /x,. as the number of shipments of product & from  to j, which lead to a

non-linear objective function that is neither convex nor concave. In order to apply

Lagrangean relaxation, an artificial variable R, , where:

2,0y =R, 2.9)
. o . k k
is utilized, and redundant constraints Z D =Zj R, , dej —Zmij , and

0<R, <Y di are added to the model. By relaxing constraint (2.9), the original
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model is decomposed into two independent sub-models. The first one deals with joint

decisions on production and lot-sizing and thus contains variables P*, z! and the

m

aggregated transportation flow, R, . In the second model, the constraints for
transportation planning involving Q,’;j and ordering quantity x,f”. are included. By

continuously updating the Lagrangean multipliers and the artificial variables, two
sub-problems are iteratively solved. The test result is compared with that obtained by
Fmincon, a non-linear programming technique in MATLAB 6.1. Among seven problem
settings, Fmincon cannot terminate for three cases while the proposed algorithm is able to
solve all the cases. In terms of the solution performance, the proposed algorithm saves
1.5% to 8% in cost, with less CPU time, over what Fmincon achieves for all the cases

solved.

Eksioglu et al. (2007) consider a variation of multi-product multi-period PDP on an
M||J network where only the production facility carries an inventory and there are no
capacity limits for inventory and transportation. The model contains flow balance

constraints:
mt1+Pk Z Qm]t mr (210)

instead of (2.1) and (2.2). Since the model does not allow shortages, it has:
> 0 =d, (2.11)

instead of (2.4), and capacity constraint (2.5) with binary indicator variables for
production. Unlike the previous solution approach, which uses redundant aggregated

variables, this approach introduces redundant disaggregated variables. The authors
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reformulate the original model by introducing a new variable war, which defines the

amount of product & from manufacturer m to customer j to satisfy demand in period 7
using the quantity produced in period #, where 7 <7 . Thus, the original variables can be

expressed by new variables as follows:

PL=> 3 Ok Vmkit 2.12)
t

O =D On.s Vm,jk.t (2.13)

k J t T k

L =20 20 D Qe » Ikt (2.14)

By using constraints (2.12) - (2.13), the original model becomes a facility location
problem. The authors then show that the linear programming (LP) relaxation of the
location model provides a tighter lower bound than the LP relaxation of the original

model. Lagrangean decomposition is applied to the resulting location problem by

k
mjtt 2

koo
mjtr *

introducing z clone or copy of

k k
Qmjtr = ijt‘r (2. 1 5)

koo
mjit *

Accordingly, redundant constraints for z

Zj:lzl Z::l Zr];jtr = dfr (2 1 6)
DDz <, 2.17)
Zpe 20 (2.18)

are then added into the model. By relaxing (2.15) using a Lagrangean multiplier, the

model is decomposed into two sub-problems. The first one containing Q) is an
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uncapacitated multi-product problem and is further decomposed into |K]| single product

sub-sub-problems which are NP-hard but solvable by dynamic programming. On the

k
mjtt

other hand, the second one containing z’ . can be modeled as an LP problem. For test

problems of large sizes, the sub-problems are solved by using the primal-dual algorithm
and the total running times vary from 4 to 87 CPU seconds with empirical error gaps no

more than 5%.

Karakitsiou and Migdalas (2008) consider a single product PDP defined on an M||J
network. The model has flow balance constraints similar to (2.2) - (2.4), and capacity

constraints similar to (2.5) - (2.7). Defining a new variable:
AEDIRO (2.19)

the inventory flow balance constraint at m is replaced by:

I +P —r =1 (2.20)

m,t—1 m,t m,t it
and the transportation capacity constraint is replaced by:

0<r,, <Cy, (2.21)
where C,, is the maximum outbound shipping quantity. Moreover, a redundant
constraint:

Dot =24, (2.22)
is added. In order to apply Lagrangean decomposition, a clone variable of 7, ,, denoted
as z,,, s introduced:

Pt = Zpy. (2.23)

so that constraint (2.20) can be replaced by:
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[m,t—l + Pm,t “Zus = ]i,t (224)
0<z,, <Cy, (2.25)

By relaxing (2.23) and using Lagrangean multipliers, the original model is

decomposed into two independent parts: the first one deals with variables P, ,, I, and

it

z  along with constraints (2.5), (2.24), and (2.25), while the second one deals with

0,,;, and r,  along with constraints (2.4), (2.19), (2.21) and (2.22). The first

sub-problem can be further decomposed, over the manufacturing facilities, into |M|
sub-sub-problems that can each be modeled as a linear programming problem. The
second sub-problem can also be further decomposed, over the time horizon, into |7]
sub-sub-problems, each as a network flow problem. In order to check the quality of the
solutions produced by the Lagrangean relaxation, the results are compared with the
optimal solution obtained by GLPK solver, a free and open source software. For six
randomly generated problems involving 30 to 1200 nodes, the empirical error gaps are no

more than 6% and the required computation time is no more than 350 seconds.

2.1.3 Variables Relaxation-Based Approaches

During the past decade, the variables relaxation-based approaches, in which a
selected subset of integer variables is relaxed so that the reduced problem can be
relatively easy to solve, have gained a significant amount of attention from researchers.

While the Lagrangean relaxation procedures aim at reducing the duality gaps, most
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variables relaxation based approaches focus on reducing the sub-optimality due to

rounding linear values to integers.

Dogan and Goetschalckx (1999) introduce a multi-product multi-period PDP model
involving strategic decisions on the network and detailed production planning on the
machine level along with deterministic seasonal customer demands. The network under
consideration includes candidates for suppliers, potential manufacturing facilities, and
DCs with multiple possible configurations and customers. The manufacturing facilities
have alternative facility types, which introduce binary variables for the facility selections,
and integer variables are used to define the number of machines used in each facility
during each period. In addition to the ending inventory, the authors also consider the
work-in-process inventory which defines part of the inventory holding cost.
Replenishment of raw material may happen more than once during each period.
Transportation flow quantities and production quantities on each machine at each facility
are also decision variables. Benders decomposition is used as the solution methodology.
In the mixed integer master problem, the status of the facilities, the production lines, and
the production and inventory quantities are determined. The reduced problem becomes a
minimum-cost transportation flow problem, and its optimal cost is added to the mixed
integer master problem to find a feasible schedule satisfying the obtained flow cost. The
search terminates when the master problem can find no lower cost solutions. For the real
life problem that motivated this study, the proposed approach saves the company an
additional 2% over the hierarchical approach, where optimal strategic and tactical

decisions are made sequentially. The Benders decomposition solution method with
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acceleration techniques utilizing disaggregated cuts, dual variables and the LP relaxation
in the initial iterations reduces the running time by a factor of 480, versus a standard

Benders decomposition algorithm.

Yilmaz and Catay (2006) consider a variation of PDP involving a single product,
multiple suppliers, multiple producers, and multiple distributors, with an option of
capacity expansion at additional fixed and variable costs. New continuous variables
representing increased capacity, and binary variables indicating capacity expansion
decisions for transportation and facility, are introduced. Only manufacturers are allowed
to carry inventory, and thus the inventory balance is only considered at the
manufacturers’ sites. Three different LP relaxation-based heuristics are used to solve the
problem, and the relaxed variables are then adjusted to O or 1 according to different
search mechanisms. The results are then compared with CPLEX solutions obtained with

a 300-second time limit.

Another representative study on variables relaxation-based approaches is performed
by Lei et al. (2009). The authors consider a single product multi-period PDP defined upon
a M||B||J network with both forward and reverse flows. Because of the need to model the

reverse flow in the supply chain network, new constraints such as
H;,  + Zw Ri,j,t - va R, =H;,, Vit
are added, where variable R refers to the reverse flow quantity, and H refers to the reverse

product inventory levels. A partial LP relaxation-based rolling horizon method is

proposed. With this approach, a given multi-period planning horizon is partitioned into



28

three intervals: the current period, the immediate next period, and a consolidated period
covering all future time periods. In the first interval, all the original constraints and the
integer requirements remain unchanged. For the second and the third intervals, only the
integer requirements on the number of truck trips between the DC and customers are
relaxed. To reduce the computational effort of each iteration, the forward and backward
demands in the third interval are equal to the sum of the forward and backward demands
of all the time periods in that interval, respectively. The ending inventories obtained from
the solution to the first interval are then fixed as the beginning inventories for the second
interval, and this process repeats by redefining intervals until all the time periods achieve
integer solutions. Randomly generated test cases are used to benchmark the
computational performance of the proposed algorithm against that obtained by the
CPLEX within one-hour CPU time. Over 70 test cases are randomly generated, and the
largest error gap observed is 0.16%, and the required computation time is less than 5
seconds; the average computation time required by CPLEX for solving these cases far

exceeds 700 CPU seconds.

2.1.4 Remarks on PDP

In general, if the particular PDP problem being studied has a relatively simple
structure, the well-known solution methodologies from the literature can often be
effectively adapted. For example, when a PDP problem is defined on a two-stage
supply chain network and the constraints are limited to those defined by (2.2) - (2.8), the

original problem can be decomposed by either a sequential decomposition or Lagrangean
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decomposition, which allows the decomposed problem to be modeled as an easy-to-solve
problem such as the lot-sizing problem, or a linear programming or network flow

problem.

While not included in this survey, it should be pointed out that in the literature, there
has also been a significant amount of work focusing on production and distribution
involving uncertainty in demand, processes, and/or supplies, for which stochastic and
fuzzy models have been applied extensively. The difference between stochastic and fuzzy
models is that a stochastic model usually follows a known probabilistic distribution,
while a fuzzy model is described by a simple distribution, such as a triangular distribution,
based on expert knowledge. Representative work in stochastic PDP can be found in
studies by Park (2005), Aliev et al. (2007), Lejeune and Ruszczynski (2007), and Liang
and Cheng (2009). Also note that while the exact methods have rarely been discussed in
the literature for solving PDP problems, they could be appropriate if the problem has a

special structure, such as that given by Wang et al. (2010).

2.2 PDP with Time Constraint (PDPT)

PDP with time constraints (PDPT) is a natural extension of the PDP model, which
explicitly takes into account production and transportation time and usually assumes a
deadline for the shipment arrival to the customer. To define the shipment arrival times,

additional notation must be introduced. Let r* be the production rate for product & at

manufacturer m. Let 7, and r, ; be the transportation times from manufacturer m to
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DC i, and from DC i to customer j, respectively. Let L., be the deadline at customer

site j in period ¢ by which time the shipment of commodities should have arrived at j;
otherwise a shortage or tardiness cost would be incurred. Let MM be a very large positive

number. The deadline constraints are defined as follows.

k

Pmt
> k
— T, T —(3—Zm’, -w

m,i,t 1 ot

YMM<L,,  ¥m,i, j k.t (2.26)

m

The basic PDPT model is defined by (2.1) - (2.8) and (2.26).

Some papers study PDPT problems involving production lead times and delivery

lead times over a multi-period planning horizon. Let /, , and [, represent lead times

from manufacturer m to DC i, and from DC i to customer j, respectively. In this case, (2.2)

- (2.4) should be replaced by the following constraints.

mtl Pk lelet_Ir/:xt’ vmak,t(2'27)
I+ 2 Oty s = Qs O = I Vi k,t (2.28)
I;?J—l + ZVle']fj,t—li,j - (df,t t) IJ D) Vi, k,t (2.29)

Due to the complexity of PDPT, using a single methodology, such as a Lagrangean
relaxation, or a simple heuristic algorithm, may not be effective enough to solve the
problem. In the literature, two major approaches have been discussed. One is
iteration-based, and starts with an initial solution (or a group of solutions), and then

continuously improves the solution (or a set of solutions) iteratively by a relatively



31

simple procedure; most metaheuristic-based algorithms belong to this category. The other
is to formulate the original problem into a mathematical model and then use optimization
software to derive the optimal or near-optimal solutions. The latter approach has typically

been used for solving some case-specific problems.

There are also several papers using simulations to deal with PDPT involving
uncertainty. Most such studies (e.g., Lee et al., 2002; Lee and Kim, 2002; and Safaei et al.,
2010) start with a deterministic version of the problem and solve it to find an initial
solution. Through simulation, the solution is evaluated and the parameters of the
respective deterministic problem are modified until the solution stabilizes. In this survey,
we only include such simulation studies that report on the approaches to solve respective

deterministic versions of the PDPT problem.

In this section, we focus on the existing solution methodologies for solving PDPT.
Two categories of solution approaches are reviewed: 1) metaheuristic and iterative
approach, and 2) mathematical modeling and the use of an optimization solver. Again,
we do not consider detailed routing decisions in this section, and hence we treat all

transportation operations as direct shipping or fixed routing.

2.2.1 Metaheuristic and Iterative Approach

Naso et al. (2007) consider the integrated problem of finding an optimal schedule for

the just-in-time (JIT) production and delivery of ready-mixed concrete with
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manufacturers and customers. The study involves a single product in a single period with
no inventory permitted. Times required for the loading, unloading and shipping
operations of each truck must be explicitly modeled. In addition, outsourcing options of
production and third-party (or overtime) trucks are permitted at an additional cost. All

decision variables are binary, where x, =1 ifjob is assigned to truck v as the r-th task:
y,; =1 if job j is produced at manufacturer m, and y, =1 if job; is outsourced. The

scheduling algorithm combines a GA and a set of constructive heuristics, which are

guaranteed to terminate in a feasible schedule for any given set of jobs.

Gebennini et al. (2009) consider a multi-period strategic and operational planning
problem for a single manufacturer that offers a single product with uncertain demand on
an M)||B||J network. Production lead times and delivery lead times are considered,
where lead time may be an integer multiple of one time period, and inventory and
stockout costs are considered with safety stock (SS) determination. Thus, the problem
to minimize the total cost is modeled as a mixed-integer non-linear programming

problem in which the objective function includes a non-linear term representing the SS

cost, ijI:r /Z 6,9, where ¢ is the inventory cost for DC i, k is safety factor to
jeJ

ieB

2

control the customer service level, &; is the combined variance at DC i serving

customer j, and 9, isa 0-1 decision variable equal to 1 if DC 7 supplies customer j in

. . . . .o . 1 . .
any time period. This non-linear term is linearized to ZZcf —k’6.9, where SS, is
ieB jeJ SS, Y

a lower bound on the optimal amount of SS carried at DC i, because the closer SS, is to
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the optimal SS level at DC i, the closer the formula is to the optimal SS cost. A
recursive procedure based on the modified linear model is developed in order to find an
admissible solution to the non-linear model and quantify the minimized global logistic
cost, while also taking the effect of safety-stock management into consideration. Since
the optimal safety-stock level is unknown, the value is initially set to a lower bound on
the effective safety-stock quantity for each DC. It is claimed that the proposed recursive
procedure converges on the global optimal solution of the original non-linear problem in

a finite number of iterations.

Yimer and Demirli (2010) address a multi-period, multi-product scheduling problem
in a multi-stage build-to-order supply chain manufacturing system with consideration of
lead times for production and delivery. For the sake of efficient modeling performance,
the entire problem is first decomposed into two sub-problems: 1) a downstream part:
from manufacturers through distributors and retailers to customers, and 2) an upstream
part: from suppliers through fabricators to manufacturers. Both sub-problems are then
formulated as MIP models with the objective of minimizing the associated aggregate
costs while improving customer satisfaction. A GA-based heuristic is proposed with a
chromosome of three parts: 1) product ID, total production quantity at each plant, and
inventory level at each DC in the period; 2) flow proportion floating values; and 3) status
values for feasibility. If a candidate solution is infeasible, it is revised by a proposed
repair heuristic. The fitness value is measured by the original objective function value
and the degree of infeasibility. Using some test instances, the best solutions obtained

from GA are of high quality compared with the lower bounds obtained from LINGO, a
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non-linear programming solver.

Sabri and Beamon (2000) develop an integrated multi-objective supply chain model
that facilitates simultaneous strategic and operational planning using an iterative method
in a four-tier network. They consider stochastic demand and capacity constraints in all
layers of the supply chain, and shortages are allowed, but penalized, while a fixed setup

production cost is incurred. Total production lead time at manufacturer m for product £ is

k
gk +Q—1'{”+lfq+6’,’; where g* 0% r* 1* and 6" are production setup time, production

P2 m>'m>"m
m

quantity, production rate, waiting time, and material delay time, respectively. @ is

determined by the bill of material of product £ and customer service level. They first find
a solution for the strategic model and then use the solution as an input to solve the
operational model. New parameters determined in solving the operational model are used
to solve the strategic model, and this iteration terminates when all binary variables no

longer change. LINGO is used in solving each sub-problem.

2.2.2 Mathematical Modeling and the Use of Optimization Solver

While some researchers try to develop effective solution methodologies to solve the
PDPT, others put more effort into the modeling process. In this subsection, we summarize
research in which the models are solved by mathematical optimization software such as
CPLEX. The common feature of the following papers is that the authors concentrate on

the models rather than the design of methodologies. The size of the computational testing



35

instances is small enough for the solver to handle, or the problem comes from real world

practice so that the solution by a solver is applicable.

Rizk et al. (2006) examine a multiple-product production—distribution planning
problem on a single manufacturer and a single destination. The manufacturer operates a
serial production process with a bottleneck stage, subject to a predetermined production
sequence. The manufacturing cost consists of the changeover cost of intermediate
products and the inventory holding cost of final products. The transportation cost is
characterized by a general piecewise linear function of transportation quantity with break

points of A, with A, =0. In the A-th interval (A, ,,A,], let v, be the slope of its
straight line, A4, be the discontinuity gap at the beginning of the interval and E, be the
ending value. Thus, the transportation costis z(A)=(E, ,+4,)+v,4,, 4, =A-A,_,.

Valid inequalities to strengthen these formulations are proposed and the strategy of

adding extra 0-1 variables to improve the branching process is examined.

Chen and Lee (2004) investigate a multi-period simultaneous optimization of
multiple conflict objectives with market demand uncertainties and uncertain product
prices in a supply chain network consisting of manufacturers, DCs, retailers and
customers. The scenario-based approach is adopted for modeling the uncertain market
demands, and the product prices are taken as fuzzy variables where the incompatible
preference on prices for different participants are handled simultaneously. The whole
model becomes a mixed-integer non-linear programming problem to compromise fair

profit distribution, safe inventory levels, maximum customer service levels, and decision
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robustness to uncertain product demands. Considering incompatible preference of
product prices for all participants will be determined by applying the fuzzy
multi-objective optimization method, non-linear MIP solvers, DICOPT and CONOPT,

are used for the numerical example.

Dhaenens-Flipo and Finke (2001) provide a multiple period model on an M||B||J
network which comes from a practical case at the European industrial division of the
manufacturer. Since switching from one product to another on a production line may take
a long time, it is assumed that at most one switching per period and per production line is
allowed. There are three aggregated products and three line types according to capability
to handle these products. All possible sequences in each manufacturing line are
enumerated, and they are used in a mixed integer programming model. The set of
available product sequences of the line m is denoted by S(m) and these sequences are
indexed by s. At this stage, the data involved concerns the total production time (B,,)

available on line m, the production time (7P} ) and cost (CP)) of product & on line m, the
changeover time (7C,,) and the cost (CC,, ) associated with the products of sequence s
on line m. Let p! be a quantity of product £ manufactured on line m, and let y,, be

1 if sequence s is chosen for the line m. Thus, we need to add following constraints:

Zym =1 for Vm (2.30)
seS(m)
pi— D v, xB,ITPf<0 for Vm,Vk (2.31)

seS(m):kes

2. PuxTP+ >y, xTC,, <B, for Vm (2.32)
k

seS(m)

The proposed MIP has constraints (2.30) - (2.32), flow balance equations similar to (2.2)
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- (2.4), and domain constraints. For problems of industrial sizes, the model is able to
provide a sub-optimal solution in less than 2 hours (23 minutes on the average) by

CPLEX.

Fahimnia et al. (2008a) survey 20 papers and define a representative mixed integer
program formulation for the integration of an aggregate production and distribution plan
on an M]||B||J network. Three production alternatives are considered: regular-time
production, overtime production, or outsourcing. They illustrate with an example to show
that considering production alternatives can give a more accurate and better schedule than

considering average production cost.

2.2.3 Remarks on PDPT

Lagrangean relaxations and decomposition-based techniques are not effective for
solving the general PDPT problems because newly added time constraints often change
the model structure significantly. The production and transportation time as well as the
incurred deadline constraints all add more complexities to the original PDP, since a
feasible solution for a PDP may violate the deadline constraint in PDPT. Even after a
PDPT is decomposed, the resulting sub-problems may still be NP-hard and therefore
make Lagrangean relaxation and decomposition-based solution approaches fail to
function effectively. Therefore, most literature results reported are either customized
solution approaches for specific PDPTs or efficient algorithms for solving some special

cases of PDPT.
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2.3 PDP with Routing (PDPR)

PDP with routing (PDPR) will be discussed in this section. Because of its
complicated structure, most papers assume a two-stage network and thus those problems
can be considered as a combination of the capacitated lot-sizing problem and the
inventory routing problem. The aim of the problem is to minimize the total cost

composed of inventory holding, production and transportation costs.

We consider a basic model defined upon a two-echelon supply chain consisting of a

set of manufacturers and a set of customers, where customer j has demand ), in period

t. For simplicity, a single product is considered and thus the superscript for product type
(k) is dropped. We assume that there is a fleet of homogenous vehicles belonging to
manufacturer m, denoted by V(m). Since the PDPR model contains routing decisions in it,
the quantity being carried by a vehicle is different from the quantity delivered to a
customer by a vehicle in a period. Thus, the following parameters and decision variables

are added to PDP:

S = Tixed cost of vehicle v of manufacturer m along (j, /) in period ¢

S = unit shipping cost for vehicle v of manufacturer m along (j, /) in period ¢
& = equals 1 if vehicle v of manufacturer m serves / immediately after j in period 7
Q.. = quantity carried by vehicle v of manufacturer m along (j, /) in period #

g, = quantity delivered by vehicle v of manufacturer m to customer j in period 7

for meM,je{imyuJ,lemoJ,teT.
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The objective function of the model consists of production, inventory and

transportation (routing) costs. The transportation cost is changed as follows:

DD D St G Do (2.33)

m veV(m) jle{m}od,j#l
Moreover, routing constraints should be included in the model. The flow

conservation constraints are:

X O 2 Q== vm,v, jyt (2.34)
le{m}uJ l+j le{m}ud,l+j
2 O =2 Ot = =2 o Vm,v,t (2.35)
jeJ jeJ jeJ

We need an inventory balance constraint for each customer.

L4, D 2dm—d, =1, V)t (2.36)

m veV(m) jeJ

Since &, represents the existence of flow on (j, /) and each customer can be served by

at most one manufacturer, we have the following constraints:

O < &y MM Vmv,t, j,leJ (2.37)

> > b sl V)t (2.38)

m veV (m)le{m}uJ l#j

We classify the relevant papers, according to their solution methodologies, into three
classes. Since the problem includes the routing decisions, all methods use decomposition.
However, each decomposed problem is solved by a different solution approach. One
approach is to use mathematical programming or simple heuristic algorithms. The other
two are to use a metaheuristic, such as a tabu search, and the approximation approach,

respectively.
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2.3.1 Mathematical Programming Approach

Fumero and Vercellis (1999) study a multiple period and multiple product problem
with a single manufacturer. They assume that there are fixed setup costs and vehicle
usage costs which occur independently from the amount of produced or carried product.
In the model, partial order serving is allowed. They decompose the problem into
production (capacitated lot-sizing) and distribution (multi-period vehicle routing)
problems by using Lagrangean relaxation, relaxing the constraints which ensure the
balance at the central plant among production, inventory and deliveries. Furthermore,
the vehicle capacity constraints are relaxed in order to simplify the solution of the routing
sub-problem. The Lagrangean dual problem is solved by using a variable target
subgradient optimization algorithm which is described in Fumero (1997). Additionally,
they employ an alternative decomposition method in which the production plan is
developed without considering the distribution plan, and then used as an input for the
distribution model. They show that the Lagrangean decomposition method outperforms

the alternative decomposition method.

Bard and Nananukul (2010) propose a hybrid methodology which is a combination
of an exact method and heuristic procedures within a branch-and-price (B&P) framework
for the problem with a single manufacturer and a single product type. The master
problem (MP) is defined by the production and inventory decisions, and the remaining

routing problem can be decomposed by period, yielding |7] sub-problems. In the
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reformulated model, each column in the MP corresponds to a feasible schedule for all
customers. They use a novel column generation heuristic and a rounding heuristic in
order to improve the algorithmic efficiency. They show that the B&P heuristic is efficient
and can derive high-quality solutions for large problems within a reasonable amount of

time.

Ruokokoski et al. (2010) consider the problem of determining a production schedule
for an uncapacitated plant, replenishment schedules for multiple customers, and a set of
routes for a single uncapacitated vehicle. The aim of the problem is to fulfill customer
demand over a finite horizon at a minimum total cost of distribution, setups, and
inventories. This paper introduces a basic mixed integer linear programming formulation
and provides exact methods through several strong reformulations of the problem.
Moreover, two families of valid inequalities, 2-matching and generalized comb
inequalities, are introduced to strengthen these formulations, and they are used within a
branch-and-cut framework. Comb inequalities are known to be facets for the traveling
salesman problem (Grotschel and Padberg, 1979) and 2-matching inequalities are
generalized comb inequalities under certain conditions. An a priori tour-based heuristic is
also provided and, with available solvers and strong formulations, excellent solutions can

be obtained within a short time, even for the largest problems.

Archetti et al. (2011) consider a production-routing system, where a manufacturer
with unlimited capacity produces one product, which is distributed to a set of retailers by

a fleet of vehicles. The objective is to determine the production policy, the customer
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replenishment policy and the transportation policy from among two different types of
policies: maximum level (ML) and order-up to level (OU), with minimum total cost. A
three-step sequential heuristic is proposed on the ML policy. In the first step, unlimited
production quantity is assumed, and the distribution part of the problem concerning
inventory at customers and delivery routes is optimized by solving a customer problem
with branch-and-cut and iteratively adding it to the solution. In the second step, the
production plan is determined by solving the classical uncapacitated lot-sizing problem,
which can be optimally solved in polynomial time. In the third step, the improvement
procedure, removing and inserting two retailers, is repeated until there is no further

improvement.

Cetinkaya et al. (2009) consider a three-layer practical supply chain problem and
develop a multi-product and multi-period model to improve the outbound supply chain of
Frito Lay North America (FLNA), consisting of a factory warehouse, multiple DCs, and a
set of customers. Some customers can receive supplies directly from the factory
warehouse, which is called direct delivery (DD). They do not consider the production
costs but the production capacities. The objective function contains the inventory
holding cost, the truck loading and dispatch cost, mileage costs, and handling costs. The
proposed solution methodology decomposes the integrated problem into two
sub-problems - inventory and routing problems - and they are iteratively solved until
either no further improvement is found or the maximum number of iterations is reached.
The routing sub-problem is solved period by period. As a preprocessing, they use

full-truck load (FTL) shipments with a route having a single destination for customers
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with large order quantities, and use less-than-truck load (LTL) shipments with truck
routes for other customers. They then use a savings algorithm proposed by Clark and
Wright (1964) and utilized by Chopra and Mendl (2001) and add an improvement step,
called the cheapest insertion heuristic, a well-known travelling salesman problem
heuristic. For inventory sub-problem, the objective function includes the corresponding
route-based setup costs and all cost terms of the overall model, except the loading and
routing parameters considered in the routing sub-problem. The CPLEX 9.0 solver is used

to solve the inventory sub-problem.

2.3.2 Metaheuristic Approach

Bard and Nananukul (2009a) consider the problem of a Bj||J network where
inventory handling at both the customer and manufacturer sites is permitted, but the
inventory level must be zero at the end of the each period, with no shortages allowed.
They solve the problem by using a two-phase approach, which is similar to the method
developed by Lei et al. (2006). In the first phase, they formulate the model as a mixed
integer program without taking into account the routing constraints. They find a feasible
solution which determines the sufficient delivery amounts for all customers using the
proposed model. The solutions derived in the first phase are used as an initial solution for
the tabu search algorithm, which is used in the second phase to solve the integrated
problem. The path relinking method is used to obtain better solutions. They show that the
lower bounds obtained from the relaxed version in the first phase are not very effective

for evaluating the proposed algorithm. However, according to the computational results,
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the proposed method can derive 10-20% better solutions, but requires more
computational effort than the GRASP (greedy randomized adaptive search procedure)

proposed by Boudia et al. (2007).

Bard and Nananukul (2009b) propose three algorithms with a B&P framework for
the Inventory Routing Problem (IRP) as a sub-problem of the integrated
production—inventory—distribution—routing problem. For less computation, a two-step
procedure is proposed: the first step involves developing a model for determining
delivery quantities for each customer in each period. The second step involves finding
actual routes in light of the current set of branching constraints with a vehicle routing
problem (VRP) tabu search method. According to computational experiments, while the
B&P algorithm generates better results than the tabu search approaches (3.6% on
average), the tabu search outperforms the B&P algorithm in terms of the computation

time (more than ten times faster on average).

Yossiri et al. (2012) develop a decomposition heuristic based on an adaptive large
neighborhood search (ALNS) for the problem defined on a network consisting of a plant
and multiple customers to minimize the total production, setup, inventory and routing
costs. In the first stage, a set of initial solutions are generated with different setup
schedules by solving two sub-problems: 1) production and distribution problem with
approximate transportation costs, and 2) routing problem; both are solved heuristically.
In the second stage, the initial solutions are improved by ALNS. When a solution is

modified by removing a customer from a route and inserting it in a different period, one
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has to identify the new delivery quantity for the customer, which may also affect the
production, inventory, and other delivery quantity decisions. It is not always necessary to
reinsert the removed nodes, because the demands can be satisfied from available
inventory and, furthermore, the removed nodes can be inserted in multiple periods. To
deal with these issues, binary variables are defined accordingly. During the
transformation process, the binary decisions concerning routing are modified according
to the cheapest insertion rule and then, with fixed binary variables concerning production

setup, the continuous variables are adjusted by solving the minimum cost flow problem.

2.3.3 Incorporating Routing Cost Approximation for Solving PDPR

When the decomposition method is applied, a PDPR problem is usually solved
through two phases. During the first phase, a reduced version of PDPR is solved, where
many studies assumed direct shipments to customers (e.g., Lei et al., 2006); and then
during the second phase, vehicle routing decisions are made to improve the solutions
obtained in the first phase. The advantage of such a phased approach is to reduce the
search complexity in each phase. However, using direct shipment to replace vehicle
routing in the first phase can sometimes also lead to a solution that is feasible but deviates

significantly from the optimal solution to the original problem.

Another alternative solution approach to PDPR 1is based on continuous
approximation models for the vehicle routing problems. Such an approach uses a

continuous approximation of the optimal routing cost in the phase-one problem instead of
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assuming direct shipments. Note that this provides an estimation of the actual routing
cost without explicitly solving the vehicle routing problem. Once the phase-one problem
is solved and the assignments of vehicles to customers are determined, the exact routing

decisions under the given vehicle assignments are made during the second phase.

Shen and Qi (2007) incorporate a continuous approximation function in their
integrated supply chain design model to estimate the optimal vehicle routing cost.

Specifically, the approximate function that they propose is

2 2 / A
V.. = E Co | 1= D, |[—
mvt Cv = qmjt mjt +( CV ) |vt| | J |

where
V. = the approximate routing cost of vehicle v of manufacturer m in period ¢
C" = the capacity of vehicle v of manufacturer m
q,; = the quantity delivered by vehicle v of manufacturer m to customer j in
period ¢

t,;, = the unit cost of a direct shipment by vehicle v of manufacturer m to

customer j in period ¢

|v,| = the number of customers served by vehicle v of manufacturer m in period ¢
A = the area where customers are scattered
® = parameter, and ® = 0.75 for Euclidean metrics

Shen and Qi (2007) numerically demonstrate the effectiveness of this approximation

function using a data set with 150 points from Christofides, Mingozzi, and Toth (1979),
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and show that this approximation function performs especially well when the number of
customers is sufficiently large. In particular, when the number of customers is more than

80, the approximation error is typically less than 5%.

When the above continuous approximation function is incorporated in the phased

approach, parameters ¢, and |v,| vary with the decision of assignments of vehicles to

customers, while all the remaining parameters are given constants. Compared to the
direct shipment assumption that is often made in the literature, this approximation
function provides a more accurate estimation of the routing cost without increasing the
problem complexity. This approach may be used as an alternative to further enhance the

performance of phased approaches.

2.3.4 Remarks on PDPR

In this section, the total cost of the PDP with routing is minimized, where the total
cost is composed of inventory holding, production and routing cost. Since the problem
includes the vehicle routing problem, it is very difficult to find the optimal solution or an
approximate solution close to the optimum. Thus, most algorithms use a decomposition
approach and metaheuristic algorithms, such as a tabu search, to solve routing
sub-problems. When there is a single manufacturer, the decomposition approach is
frequently used because the upstream problem can be regarded as a capacitated lot-sizing
problem. Moreover, after obtaining a solution, various improvement heuristics are also

often used as post-processing procedures. Since the optimal value is most likely
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unavailable, the performance of an algorithm is presented by comparing its solution with
a lower bound, or with a solution obtained by either previous approaches or an

optimization solver.

2.4 PDP with Routing and Time Constraints (PDPRT)

PDP with routing and time constraints (PDPRT) will be discussed in this section.
Time constraints appear in different forms, such as time window, due date, and exact
arrival time predetermined by customers. It can be considered as a combination of an
inventory routing problem (IRP) with time constraints and a capacitated lot-sizing

problem.

In most of the existing literature, a two-echelon supply chain which contains a single
plant and a set of geographically scattered customers is considered. Due to the
complexity of the problem, multiple manufacturers are rarely considered (see Lei et al.,
2006; and Bilgen and Gunther, 2009). Generally, the objective function contains the
production cost, the transportation cost (routing cost) and the inventory holding cost.
On the other hand, minimizing the makespan consisting of production time and
transportation time, and maximizing the satisfied demand are considered as objectives in
Geismar et al. (2008) and Armstrong et al. (2008), respectively. Although third party
vehicles are rarely considered, Lei et al. (2006) take third party transshipments into
account. We consider a representative model with a two-echelon supply chain network

consisting of a set of manufacturers and a set of customers. For the sake of simplicity,
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we assume that customer j has demand d;, with due date L, in period z.

We assume that there is a fleet of homogenous vehicles belonging to each
manufacturer. In order to deal with time constraints we need to define additional
parameters and variables. The objective function and constraints other than time

constraints are equivalent to those in the model in section 5. Thus, we focus only on time

constraints:
T = travel time of vehicle v of manufacturer m on arc (j, /) in period ¢
T, = arrival time of vehicle v of manufacturer m at customer j in period ¢

In order to guarantee due date constraints, we have the following additional constraints:

T+ T STy + MM(1-E,.,) mwv,t, jled,j#l (2.39)
T <L, Vmyv,t, leJ (2.40)

The solution methodologies used to solve this problem in the literature fall into two
different groups, according to their structures; the first one solves the problem in an
integrated manner, while the second one partitions the problem into small pieces which
are easier to solve. In these decomposition methods the solution from the first phase is
used as an input to the second phase. Using integrated methods, the solution may be

improved by an iterative process.

Chandra and Fisher (1994) solve the production and transportation scheduling
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problems in separate and integrated manners and compare those results. In their model,
the plant can produce several products in a limited time and transporters are allowed to
partially deliver to a set of customers with unlimited capacity in a period. The plant has
an unlimited production capacity and the inventory holding costs are not involved in the
total costs. First, they implement their integrated approach in small examples and show
that firms can reduce their operation costs about 3-20 % by coordinating their production
and distribution activities. Second, in the decomposed part, they assume that the
production scheduling problem can be modeled as a capacitated lot-sizing problem and
the distribution problem can be modeled as a standard multi-period local delivery routing
problem. The interface of GAMS, ZOOM/XMP, a solver, is used to solve the production
scheduling problem. They use three well-known vehicle routing heuristics - sweep
(Gilette and Miller, 1974), nearest neighbor rule (Rosencrantz et al., 1974) and feasible
insertion rule (Chandra, 1989) - in order to find an initial solution to the distribution
problem. A local improvement heuristic is used to combine the production and
distribution problems. Since the work of Chandra and Fisher (1994), many extended
studies have been conducted with various approaches including decomposition and

compounded methods.

2.4.1 Decomposition Methods

Using decomposition methods, the problem is usually partitioned into two

sub-problems - production planning and routing problems - which are solved

sequentially.
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Lei et al. (2006) investigate an integrated production, inventory and distribution
routing problem where there is no fixed cost of using a vehicle, and each transporter can
make multiple trips during each period. They use a two-phased approach that solves the
problem in two separate stages but in an integrated manner. In the first phase, they
assume that the distribution of the products from plants to customers is carried out by
direct shipment. The problem is formulated as a mixed integer programming problem,
neglecting the vehicle routing constraints, and solved by the CPLEX MIP solver. In the
second phase, they propose a heuristic transporter routing algorithm, called the Load
Consolidation (LC) algorithm, to consolidate the loads into routing decisions. The LC
algorithm determines the sequence of transporter trips and allocates the transporters to the
trips without violating the transporter capacity and available time constraints. The EOP
(Extended Optimal Partitioning) procedure is used in order to find the shortest path
among the feasible trips which are identified in the first phase. They compare the LC
algorithm and CPLEX MIP solver with 56 test problems. According to their test results,
the LC algorithm can solve the problem in less than 0.2 seconds while the CPLEX MIP

solver needs more than 2 hours to solve the overall problem.

Geismar et al. (2008) develop a two-phase heuristic to solve a single period
integrated production and transportation scheduling problem for a product with a short
life span. The first phase uses either a genetic algorithm (GA) or a memetic algorithm
(MA) to select a locally optimal permutation of a given set of customers. MAs have a

local search parameter and a relatively small population size as a result of different
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population management. In the second phase, for a given permutation of customers,
Beasley’s (1983) “first route-cluster second” method is used to simultaneously determine
the customers to be served and the vehicle routes to be used, and a linear program
formulation is used to minimize the makespan for a given set of trips. The
Gilmore-Gomory (1964) algorithm for two machine no-wait flowshops is then used to

order the subsequences of customers to form the integrated schedule.

2.4.2 Integrated Methods

Among the papers dealing with integrated methods, some papers propose
problem-specific methodologies for problem-solving, while others focus on new

modeling techniques.

Boudia and Prins (2009) examine a multi-period production distribution problem in a
two-echelon supply chain which is very close to the model proposed by Chandra and
Fisher (1994), but differs in that the limited vehicle capacity and a single product are
considered. They use a memetic algorithm with population management (MA/PM) to
handle production and distribution problems simultaneously. The proposed algorithm is
evaluated in three sets of 30 instances with 50, 100 and 200 customers over 20 periods.
They compare the proposed algorithm with two previous algorithms: the two-phase
algorithm (H1) proposed by Boudia et al. (2005) and the three-phase algorithm (H2)
based on GRASP developed by Boudia et al. (2007). They show that the memetic

algorithm can generate better solutions than GRASP, which also solves the related
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problem from an integrated perspective.

Armstrong et al. (2008) solve a similar problem with a branch-and-bound search
procedure in order to maximize the total satisfied demand by choosing a subset of
customers from the given sequence who will be served by a single vehicle. The
constraints of the problem refer to the product lifespan, the production/distribution
capacity, and the delivery time window. Since there is no inventory handling at the supply
chain members, it is important to synchronize the production and distribution planning
decisions successfully. Empirical studies on the computational effort required by the
proposed search procedure comparing to that required by CPLEX on randomly generated
test cases are summarized. A branch-and-bound search algorithm is also proposed and is

shown to outperform CPLEX with limited running time.

Bilgen and Gunther (2009) consider an integrated production and distribution
planning problem in the fast-moving consumer goods industry, with a so-called
block-planning approach, which establishes cyclical production patterns defined by setup
families. The aim is to minimize the total cost, consisting of production costs, inventory
holding costs at distribution centers, and transportation costs for FTL and LTL
transportation modes. Unlike the other related studies, they consider two types of
production setup cost - major setup costs for each block started on one of the lines (e.g.
for clean-out in the food industry), and minor setup costs for the production lots of the
individual products. They trace the time in terms of the block and lot production

completion times. Two different periods are used in this study: macro periods (e.g. weeks)
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are used for the block assignments and micro periods (e.g., days) are used for the
distribution schedule and external demand elements. They compare two different
block-planning approaches: the flexible and the rigid block which differ by their degree
of flexibility in the scheduling of the production lots. A mixed-integer linear
programming model is proposed to solve the problem and CPLEX is used as a solver.
The numerical results reveal that the flexible block-planning approach can provide

considerable cost savings compared to the rigid block-planning approach.

Bolduc et al. (2010) consider the split delivery vehicle routing problem with
production and demand calendars. They propose a simple decomposition procedure to
provide a starting solution and use a tabu search with new neighbor reduction strategies.
After the tabu iterations are completed, an improvement heuristic is applied. They
implement their procedure on a randomly generated 100 instances with 50 customers and
10 periods. The results show that the developed model is effective in terms of both

solution quality and computation time.

2.4.3 Remarks on PDPRT

In the decomposition method, there are two general approaches: the first one
considers the production problem and the routing problem separately, while the second
solves the problem including production and simplified distribution and then solves the
routing problem. For the integrated method, there are two approaches. The first is to

solve the problem simultaneously using mathematical programming with an optimization
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package, while the second is to use an iterative method in which the solution is improved
over iterations through a metaheuristic such as GA and tabu search. Even though there
is no clear dominance between the decomposed method and the composed method, the
decomposed method is always useful to find an initial feasible solution. For example,
Bolduc et al. (2010) use a decomposed method to find an initial solution and then

improve it by a tabu search algorithm in an integrated manner.

Since the problem is already complicated by including the vehicle routing problem in
it, researchers have focused on a two-echelon problem with static demand. Thus,
natural generalizations are required, such as two echelons to multiple echelons, static

demand to stochastic demand, and excluding third party to including third party.

2.5 PDP in Emergency Logistics (PDPEL)

Since the first application of PDP to emergency logistics in the 1970s, many
publications have appeared focusing on emergency operations management (Caunhye,
Nie, and Pokharel 2012). Among those that are closely related to our work, Haghani and
Oh (1996) studied the operations scheduling problem of a large-scale multicommodity,
multi-modal distribution network with time window constraints. The authors proposed
two heuristics to solve the resulting mixed integer programming (MIP) model, which
differs from the one we study here in that only non-renewable resources were considered.
Ozdamar, Ekinci, and Kucukyazici (2004) studied a similar emergency logistic planning

problem encountered during natural disasters. Since the supply—demand relationships at



56

the different locations shift during the emergency logistics process, the decision plan
including both vehicle routing problem (VRP) and network flow problem needs to be
generated frequently. A Lagrangian relaxation-based approach was used to find
approximate solutions. Yi and Kumar (2007) studied the distribution problem of a
large-scale multi-commodity, multimodal network flow model in which medical supplies
are transported to distribution centres (DCs) in disaster areas. An iterative two-phased
solution approach was proposed, where the algorithm constructs stochastic routes in the
first phase, and develops a network flow-based algorithm for the multi-commodity
dispatch in the second phase under the given vehicle routes. Nolz, Semet, and Doerner
(2011) discussed different risk measures and provided a memetic algorithm based
approach to solve a multi-objective mathematical model for the distribution of emergency
supplies after disasters. Yuan and Wang (2009) considered two models of a path selection
problem in emergency settings, and proposed a Dijkstra algorithm-based approach to
solve the single-objective model and an ant colony algorithm to solve the multi-objective
model. Afshar and Haghani (2012) studied a mathematical model based on FEMA’s
three-layer logistics structure. Their study incorporated both detailed routing for
emergency supply deliveries and location selection for operating facilities. The authors
also pointed out that a good heuristic for solving this complex problem is needed at the
next research step. Comprehensive reviews in this area can be found in the work by
Wright et al. (2006), Balcik et al. (2010), Hartmann and Briskorn (2010) and more
recently Huang, Smilowitz, and Balcik (2012) and Caunhye, Nie, and Pokharel (2012).
The survey by Caunhye, Nie, and Pokharel (2012) reviewed more than 70 papers on the

management of disaster relief operations that are performed either before or after the
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impact of a disaster. However, as indicated in Hartmann and Briskorn (2010), there still
remains a lot of work to be done on the joint allocation of both renewable and

nonrenewable resources.

It should also be noted that the distinction between renewable and non-renewable
resources is quite common in resource allocation and assignment problems (e.g.
Ait-Kadia, Menye and Kane 2011) and in resource-constrained project scheduling (e.g.
Brucker et al. 1999). In the resource assignment and project scheduling literature,
however, very few papers have dealt with both renewable and non-renewable resources,
and most of these have used heuristic approaches as solution methods. Representative
studies in this area can be categorised as follows. Resource assignment results can be
found in Ait-Kadia, Menye and Kane (2011), Bachlaus, Tiwarib, and Chan (2009),
Celano, Costa, and Fichera (2008), Eckstein and Rohleder (1998), Hwang and Kogan
(2003) and Karsu and Azizoglu (2012). Resource-constrained project scheduling with a
single type of resource can be found in Brucker and Kramer (1996), Chan, Wong, and
Chan (2006), Debels and Vanhoucke (2007), Deblaere et al. (2007), Deblaere,
Demeulemeester, and Herroelen (2011a, 2011b), Depuy and Whitehouse (2001), Klein
(2000), Ranjbar, Reyck, and Kianfar (2009), Robinson and Moses (2006), Schirmer
(2001), Tormos and Lova (2003), Vanhoucke, Demeulemeester, and Herroelen (2001b)
and Van de Vonder et al. (2006). Resource-constrained project scheduling with both
renewable and non-renewable resources can be found in Bottcher et al. (1999),
Vanhoucke, Demeulemeester, and Herroelen (2001a), Lee and Lei (2001) and

Nudtasomboon and Randhawa (1997). Some papers have dealt with multi-mode
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resource-constrained project scheduling with renewable as well as non-renewable
resources such as those by Gagnon, D’Avignona, and Boctor (2009), Can and Ulusoy
(2010) and Wong, Chan, and Chung (2012). To our knowledge, most of the
methodologies proposed in project scheduling with resource constraints are

heuristic-based approaches.

A comprehensive classification of existing results in PDPEL based on model

constraints, resource types considered, and solution methodologies is described in the

following table.
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Vanhoucke et al. (2001a) | v | N N
Vanhoucke et al. 2001b) | ¥ | N N
Wong et al. (2012) VI VI N
Yi and Kumar (2007) NN N 7
Yuan and Wang (2009) | v | N J
Our research VIV NN N

Table 2.2 Summary of Literature Review of Emergency Logistics

2.6 Discussion

In a realistic situation, such as multi-product, multi-echelon, distribution routing, the
problem under consideration has a complicated structure with a huge size. Moreover,
each problem in the literature has its unique assumptions and definitions. Various
approaches are considered and analyzed for different problems, and therefore it is very
difficult to propose an integrated view of the entire set of methodologies. In this section,
we provide three different perspectives. The first one is to classify the solution
approaches with a perspective on the decomposition framework, and solution
methodologies applied to the decomposed sub-problems. The second one is to relate the
problem structure to the utilized solution approaches. The last one is to address the

importance of applications of various PDP methodologies to emergency logistics.

2.6.1 Structure of Solution Approach
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Most problems in the literature are computationally difficult to solve optimally, and

thus different decomposition approaches are utilized. When the problem is decomposed,

the optimality of the problem may not be guaranteed, but each decomposed problem is

much easier to solve and sometimes can be solved effectively (e.g., optimally or

near-optimally) and efficiently (e.g., in polynomial time or in pseudo-polynomial time).

Moreover, after the original problem is decomposed into sub-problems, each sub-problem

can be further decomposed according to the structure of the sub-problem. The overall

framework of the solution methodology in terms of decomposition has the following

three categories.

1)

2)

3)

No Decomposition: The entire problem is solved at once.

Mathematical Decomposition: The original problem is decomposed according to
mathematical properties. Two representative decompositions are Lagrangean
decomposition and Benders decomposition. In Lagrangean decomposition, some
of constraints are relaxed by Lagrangean relaxation and the problem under
consideration can be decomposed into independent sub-problems. In Benders
decomposition, some of the variables are fixed and the problem can be
decomposed.

Heuristic Decomposition: The original problem is decomposed according to
problem-specific properties. A common way is to decompose the problem with
respect to layers. Thus, the upstream problem and the downstream problem are
separately defined. Another method is to decompose into a strategic problem and

an operational problem.



63

When the problem (or decomposed sub-problem) cannot be further decomposed, or is

going to be solved directly, several approaches are utilized. The major solution

approaches in the literature can be summarized:

1)

2)

3)

4)

Exact Algorithm Development: When the problem (or sub-problem) can be
formulated as a problem which has a known optimal algorithm in polynomial time
(or pseudo-polynomial time), it can be solved optimally. Typical examples are
Network Flow Problems, Linear Programming (LP), and Dynamic Programming.
Modeling with an Optimization Solver: Some papers describe the problem with an
exact mathematical formulation, such as Linear Programming (LP), Non-linear
Programming (NLP), and Mixed Integer Programming (MIP), and solve it with an
optimization solver. When the problem size is small enough or the problem has
unique properties, optimal solutions can be obtained in a reasonable time frame.
Various optimization solvers are found in the literature, such as CPLEX, GAMS,
AMPL, LINGO, and GLPK. In order to strengthen the formulation, additional
constraints, such as valid inequalities, can be inserted. In most cases, an
approximate solution by an optimization solver is acceptable, given the error limit
or running time limit.

Mathematical Programming Approach: When the sub-problem is still too hard
to optimally solve, there are several approaches utilizing mathematical
programming techniques. Representative methods are Lagrangean relaxation and
LP relaxation.

Metaheuristic: Metaheuristics iteratively improve a candidate solution with regard

to a given measure of quality. A metaheuristic makes few or no assumptions about
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the problem being optimized and can search very large spaces of candidate
solutions. However, it does not guarantee that an optimal solution is ever found.
The solution quality and running times are highly dependent on the setup
parameters for metaheuristic approach. Examples are Local Search (e.g., Tabu
Search, Simulated Annealing), Evolutionary Algorithms (e.g., Genetic Algorithm),
and Swarm Intelligence (e.g., Particle Swarm Optimization, Ant Colony
Optimization).

5) Problem-Specific Algorithms: According to the problem-specific property, an
algorithm can be developed only for the particular problem. In many cases, values
of variables are sequentially decided. A representative one is a greedy algorithm,
which makes a locally optimal choice at each stage with the hope of finding a
global optimum. After obtaining a solution, a local improvement procedure may

be applied.

Figure 2.2 gives an overview of the existing procedures for solving the integrated
problem. If a problem is directly solvable, it can be solved using an exact method.
Otherwise, we may try to decompose it into multiple sub-problems with minor changes
from the original problem, or try to use other solution approaches. If the problem is
decomposed, sub-problems can be solved separately and each of them is considered as an
independent problem. Then, we can iteratively check whether the sub-problems are
directly solvable or further decomposable. If the problem (or sub-problem) is not
decomposable or we do not attempt to further decompose it, several solution approaches

are applicable.
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Figure 2.2. An Overview of Existing Procedures for Solving the Integrated Problem
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Based on the above classification, the solution approaches used in the literature

surveyed in this chapter can be classified in Table 2.3. We make the following

observations:

e When the problem is solved without decomposition, the two major methodologies

are modeling with an optimization solver, and a meta-heuristic, in which the

structural property is not well-utilized.

e When a mathematical decomposition is utilized as an overall framework, the

sub-problem is always solved by mathematical programming methods for optimal
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or approximate solutions. In other words, if one would like to apply mathematical

decomposition, sub-problems should be able to be well-handled by mathematical

programming methods.

e When

problem is

heuristically decomposed,

problem-specific heuristics are frequently used.

metaheuristic and

Overall No Mathematical Heuristic

framework Decomposition Decomposition Decomposition

Sub-problem

Methodology

Modeling with Rizk et al. (2006) Sabri and Beamon (2000)

Optimization Solver Chen and Lee (2004) Cetinkaya et al. (2009)
Dhaenens-Flipo and  Finke Chandra and Fisher (1994)

(2001)
Fahimnia et al. (2008a)

Bilgen and Gunther (2009)

Exact Algorithm Armstrong et al. (2008) Yung et al. (2006) Bard and  Nananukul
Development Ruokokoski et al. (2010) Eksioglu et al. (2007) (2009b)
Karakitsiou and Migdalas Archetti et al. (2011)
(2008)
Dogan and  Goetschalckx
(1999)
Mathematical Yilmaz and Catay (2006) Fumero and Vercellis (1999) Bard and  Nananukul
Programming Lei et al. (2009) (2010)
Approach Bard and  Nananukul
(2009b)
Archetti et al. (2011)
Metaheuristic Jang et al. (2002) Ahuja et al. (2007)
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Gen and Syarif (2005)
Kannan et al. (2010)
Naso et al. (2007)
Boudia and Prins (2009)

Bolduc et al. (2010)

Yimer and Demirli (2010)
Bard and  Nananukul
(2009a)

Geismar et al. (2008)

Yossiri et al. (2012)

Problem-Specific Lei et al. (2006)
Algorithm Liu et al. (2008)
Gebennini et al. (2009)

Shen and Qi (2007)

Park (2005)

Cetinkaya et al. (2009)
Chandra and Fisher (1994)
Lei et al. (2006)

Geismar et al. (2008)

Archetti et al. (2011)

Table 2.3 Summary of Solution Approaches

2.6.2 Problem Structure and Solution Approaches

In the reviewed papers, along with their problem structure and methodologies used,

when routing is involved as a part of the decision, the problem includes a vehicle routing

problem (VRP), which is one of the well-known difficult combinatorial optimization

problems. Thus, we separately discuss the problems where routing is considered, and

those where it is not.

For the problems without routing decisions (PDP and PDPT), the methodologies for PDP

and PDPT are different.

e The major solution methodology for PDP is to use Lagrangean decomposition as

a framework and mathematical programming for the decomposed problems.

Especially when the PDP is defined on a supply chain network with two stages,



68

Lagrangean decomposition works very well, because the sub-problems can be
solved optimally. However, when PDP is defined on a network with three or more
stages, Lagrangean decomposition is rarely used.

e The major methodology of PDPT is to establish a mathematical model without
decomposition and use an optimization solver. Half of the papers dealing with
PDPT use an optimization solver, even though some mathematical models are
non-linear, while no papers use mathematical programming for overall or
decomposed problems. It may imply that the problem with time constraints can be
clearly defined in a mathematical model, but the time constraints make it difficult
to utilize the mathematical structure for mathematical programming-type

algorithm development.

For the problems with routing decisions (PDPR and PDPRT), mathematical
decomposition is rarely used, while heuristic decomposition is frequently used. When the
problem is decomposed heuristically, the upstream problem deals with production
lot-sizing and the downstream problem is defined for routing decisions. Decomposed
sub-problems are solved by various methods.

e In PDPR, one sub-problem may be modeled and solved by an optimization solver,
and the other sub-problem solved by a problem-specific heuristic. In another case,
one sub-problem is solved by mathematical programming for an approximate
solution, while the other sub-problem is solved by an exact algorithm for the

optimal solution.
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e In PDPRT, a mathematical programming approach is rarely used as the solution
methodology for decomposed problems because of the complexity of the
decomposed problems. Instead, metaheuristic and problem-specific heuristic
approaches are widely used. In both PDPR and PDPRT, the solution approaches
cannot directly give a solution close to the optimum and, thus, local improvement

heuristics are frequently used as a post-processing procedure.

In addition, we observe the following relationships between problem structure and
methodologies used:
e The mathematical programming approach works better for problems without time
constraints.
e  When the problem structure is complicated, problem-specific algorithms and local
improvement heuristics are frequently used.

e Metaheuristics can be applied for most problem structures.

2.6.3 Trends and Applications

The trend in solution approaches for modern supply chain operations is to use a
hybrid methodology, by combining the aforementioned methods and the use of a
simulation as a framework, especially for practical and large-scale problems. When a
simulation is used as a framework for solving the problem, a mathematical model is first
established by relaxing some uncertain factors and solved with a variety of approaches.

Its solution is then used as the input to the simulation model, then incorporated with
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different uncertainty sources such as demand, facility failure, delivery time, etc., and the
output of the simulation model gives feedback for the parameters of the mathematical
model to be revised accordingly. This procedure can be repeated until the obtained

solution is efficient and robust.

One of the most important applications is in emergency logistics. Today’s Internet
allows the need for disaster relief to be communicated cross-country and internationally
within minutes of an event, and the rapid formation of disaster relief supply chains for
quick response to people in the affected areas. A highly effective and fully integrated
production and distribution operation that pulls supplies from different industries and
states to ensure delivery of these resources to the people in an affected area is critical to
human well-being. Many solution methodologies can be extended in this area. For
example, during the post-disaster period, the time in the rescue process becomes the most
important issue for severely injured patients. The problem of producing and allocating
different types of resources and service operations to customers in the affected areas is a
classical example of PDPT. Therefore, all the modeling and solution methodologies can
be directly or indirectly utilized to solve the emergency logistics problem. If the routing
issue is considered (e.g., trucking routes in delivery of medical kits), methodologies for
solving PDPRT can be used. Thus, the focus of this dissertation is to apply the existing
results reviewed in this chapter to solve the emergency operations scheduling problem

that will be defined in the next chapter.
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Chapter 3. Problem Definition and the MIP Model

In this chapter, we formally define the research problem in this reseach and build up

the Mixed Integer Programming (MIP) model.

Our problem is defined upon a two-stage supply chain network (see Figure 3.1)

consisting of:

(i) A set of customers, H. The service to each customer 4, h e H , requires a
simultaneous availability of both renewable and non-renewable resources, and has an

expected service completion time d,. The service starting time at customer 4, S, is

determined by the latest arrival time of the two types of resources. A tardiness penalty

incurs whenever the actual completion time passes d,. There is an expected (i.e.,

predetermined) service duration p, at the site of customer 4. To deliver the service at

customer 4, a total of D, units of non-renewable resources are needed.

(ii) A set of distribution centers (DCs), K. Each DC k, k €K, receives a sequence of

n, batches of non-renewable resources from its upstream suppliers, and each batch is
k

defined by batch size ij, and batch arrival (release) time Ajk, 1<j< My k €K. That

is, additional ij units of non-renewable resources become available at time Ajk' The

shipping time from DC k to a certain customer / is given by 7, .
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(iii) A set of home-bases of the renewable resources (e.g., medical teams), M. Each
home-base i, i e M, dispatches a renewable resource (i.e., a team) that travels to the
customer locations to perform service operations. The route of each renewable resource

(1.e., the sequence of customer sites to be visited/served), H,, is assumed to be given in

this study. Each renewable resource departs from its base at a given time point (i.e., the

travel team release time) r;, and travels along a fixed route H, = {#,(0),4.(1),4(2),...,h(n)},

where elements A4k), k=1, 2, ..., n;, represent hospitals along the route assigned to this

renewable resource. The travel time of team i between two consecutive customer sites is

defined as T, (ki) for all ieM, 0</<n-1. In addition, we assume that the

triangle inequality holds for the travel time of both renewable and non-renewable
resources. The problem is to allocate non-renewable resources from DCs to customers
located along different routes of medical teams to support the service operations so that

the total tardiness is minimized. Let us introduce the following notations.
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Figure 3.1 Supply Network with Both Renewable and Non-renewable Resources

Model Parameters
H : Set of hospitals (i.e., customers);

K :Set of DCs;

M : Set of medical teams, or, equivalently, the set of their home-bases;

B, : Set of batches (of the non-renewable resource) that arrive at DC &, for all ke K ;
,, - The total number of hospitals;

n, : The total number of DCs;

, - The total number of medical teams;

: The total number of batches that arrive at DC &, forall k€K ;

n  : The total number of hospitals on the given route of medical team i, for all I € M,
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h(l)  :The /-th hospital on the route of team i, for all i €M, I=1,2, ..., n;
H, : The set of hospitals visited by team i, including the home-base of team i;
H, = {h(0),h(1),h(2),...h(n)}, forall ieM, and h(0)=i;
D, : The quantity of the non-renewable resource ordered by hospital 4, forall 4 e H;
p, : The given service time duration at hospital 4, for all 4 € H;
d, :Due date for completing service at hospital 4, for all heH,

A, : Release (arrival) time of the j-th batch of non-renewable resource at DC k,

keK,jeB,;
0, Quantity of the j-th batch of non-renewable resource arriving at DC £, for
allkeK,jeB,;

7. : Travel time from DC £ to hospital 4, forall ke K,heH;

kh

rhlmh’(m):Traveltime of team i from A (/) to h(l+1), forall ieM, 0<i<n -1;

. : Release time of team i at its home-base, for all i € M ;

Decision variables

Dy Quantity of non-renewable resources shipped from the j-th batch at DC k to
hospital #, forall keK,jeB,,he H;

Zyw Binary variable, Z ™ 1 if the j-th batch of DC k& supplies hospital # and Z 4~ 0

otherwise, forall k€K,jeB, ,heH,
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Auxiliary variables

S, : Starting time of service at hospital 4, forall 7 €H;

Th : Tardiness in delivering service to hospital 4, for all h e H;

With these notations, our problem, P, can be defined as the following mixed

integer-programming model.

P:  Minimize G = >, (3.1)
VYheH

Subject to

Z Z q,, =D, forall heH (3,2)
VkeK VjeB, ’

> 4, <0, forall keK,jeB, (3.3)
VheH
9 S 230, forall keK,jeB, ,heH (3.4)
(4, +7,,)2,, <5, forall keK,jeB, ,heH (3.5)
S, ontD, ot T o SS, s

O TR R ORED D forall ie M,l=0,1,..,n -1 (3.6)
Doy = 0, Sht,(O) =k

T >S +p —d, forall heH (3.7)
Z 4 €{0,1}, qjkhZO,ShZO, T,>0 forall keK,jeB heH (3.8)

In this model, the objective function (3.1) is to minimize the total tardiness across all

hospitals in the network. Constraint sets (3.2) to (3.4) are related to the non-renewable
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resource distribution. Constraint set (3.2) ensures that the demand for the non-renewable
resource at each hospital will be completely fulfilled. Constraint set (3.3) ensures that the
total shipping quantity from a given batch does not exceed the batch size. Constraint set

(3.4) establishes the relationship between variables 9 and Z g Constraint sets (3.5)

to (3.7) are time-related constraints. Constraint set (3.5) ensures that the starting time of a
service at a hospital will not be earlier than the latest arrival time of the non-renewable
resource. Constraint set (3.6) ensures that the starting time of the service at any hospital
will not be earlier than the earliest arrival time of the medical team. Constraint set (3.7)
defines the tardiness of the services, and constraint set (3.8) defines the domains of
decision variables. The design of objective function (3.1) is justified by the criticality of
achieving a fast response to serve the needs for disaster relief
(http://www.ifrc.org/PageFiles/53419/MAA0000410p.pdf,

http://www.gps.gov/applications/safety/, and Han, et al. (2011)).

In the next two chapters, we present a structrural analysis of Problem P and design a

rolling horizon based heuristic to solve P efficiently.
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Chapter 4. A Structural Analysis of Problem P

In this chapter, we discuss the computational complexity of the problem with
different parameter settings by presenting either NP-hard proofs or polynomial time
algorithms. In Section 4.1, we consider the case where there is a single DC and present a
computational complexity result. In Section 4.2, we assume that the assignment between
DCs and customers are given and fixed, and present polynomial time algorithms for two
special cases. A greedy-type algorithm is presented for the case with a variable number of
DCs and a single team, and a polynomial-time dynamic programming algorithm is
developed for the case with fixed numbers of DCs and teams. In Section 4.3, when the
assignments of DCs to customers have to be optimized, we present an NP-hard proof for
the general case and provide polynomial time algorithms for two special cases. In Section
4.4, we summarize the results obtained in terms of computational complexity. Finally, in
Section 4.5, we propose a framework of heuristic procedures for solving the more general

problems in practice and discuss future research directions.

In order to analyze the structural properties of problem P, we make a distinction
between two different environments with regard to the assignments of DCs to hospitals:

The Fixed Assignment Environment (F): This case refers to settings where the
DC-hospital assignments are fixed in advance. That is, each customer in the network has
its own designated DC for its supply of the non-renewable resource (e.g., which occurs in
real life when each hospital or shelter is supplied by a local DC during the disaster relief);

The Open Assignment Environment (O): The assignments of DCs to hospitals are
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open. A hospital does not have a designated DC for its supply of the non-renewable

resource; its designation has to be determined by the solution to the problem.

For simplicity, the cardinalities of sets |B|, |D|, |M|, and |H| are denoted as ng, np, 1y,

and ny, respectively. Furthermore, let us introduce the notation P(¢,n,,n, ), where
@ € {F,0} stands for the DC-hospital assignment environment, n, >1stands for the
total number of DCs, and n,, > 1stands for the total number of medical teams (i.e., the

renewable resources). With this notation, for example, the problem with a given and fixed

DC-Hospital assignment (¢ = F), two DCs (n, =2), and a single travel team (n,, = 1)

is denoted as P(F, 2, 1). The computational complexity of problem P depends on the

instances defined by parameters ¢, n, and n, , which will be discussed in subsequent

sections. We will make a distinction between cases with a fixed number and a variable

number of n, or n,, ,since they may result in a different computational complexity (i.e.,

one may be polynomial time solvable, while the other may be NP-hard) A fixed number is
considered here as a bounded constant. When a fixed number appears as an exponent in the
time complexity of an algorithm, the algorithm is still considered as a polynomial time
algorithm. When a variable number appears as an exponent in the time complexity of an

algorithm, the algorithm becomes an exponential time algorithm.

We note that if the triangle inequality does not hold for the travel times of the
medical teams and of the non-renewable resources, then even the simplest case with a

single DC and a single team is already NP-hard.
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Theorem 4.1. If the triangle inequality does not hold for the travel times of the medical
teams, then problem P(F, 1, 1) is NP-hard.

Proof . We start with the definition of the PARTITION Problem, which is a well-known
NP-complete problem and will be used for the reduction in the proof. = The input of
PARTITION is set §S={q,..,a,} where g 6 is a positive integer. The output of

. A -
PARTITION is set S, C S such that Z a,= Z 4=5 where 4 = Za/,.
=

ajeS\S] a].eSl
h—1
Let Hbe {1,2,...,n} with (p,,D,.d, ,w,)= O,ah,(A—a])~|—Zal,1 . We have one DC,
=1

denoted by DC 1, which has two batch arrivals with 4, =0,4,=4 and Q,=0,=4%.

We have one team that is available at time r = 4— qa,. Transportation times are

h
T =0 andT = Zal . Then, if hospital % is served by the first batch, its tardiness is
=2

Zero while if by the second batch its tardiness

h h—1
A-I—Z:czl]—[zé[—a1 —l—Zal]} = a, . Therefore, there is a partition if and
1=2

1=2

isT, = max{O,

only if there is a schedule with the total tardiness less than or equal to f O

4.1 The Single DC Case

When there is a single DC, there is clearly no difference between the fixed
assignment environment and the open assignment environment. Thus, in this section, we

determine the computational complexity of the case with a single DC and a variable
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number of teams.

Theorem 4.2. The problem with a single DC and a variable number of medical teams, i.e.,

P(F, 1, n,, ), is strongly NP-hard. “F” denotes the fixed assignment between DC and
customers, “1” means single DC and “n,, ” is the number of medical teams.

Proof. We start with the definition of 3-PARTITION Problem, which is a well-known

strongly NP-complete problem and will be used for the reduction in the proof. The

input of the 3-PARTITION problem is set S :{al,...,a3,} where 4, 1s a positive

A A 3t
integer and Z<aj <E where A:Za/. The output of 3-PARTITION is a

J=1

partition of set S into disjoint sets S,,S,,...,S, such that Z a,=4.

a/ES,.
We consider a problem instance of P(F, 1, n,, ). We have 3¢ teams and team i has two
demand points, 4(1) and 4 (2) with the following information fori=1, ..., 3¢;
=iy Dy ys Dy Way) = (A,a,.,tA3,l> ’

- (phi(Z)’Dh[(z)ﬂ dh,.(z)’ Wh[(Z)) = (0, A — 2a;, 4, 1) .
We have a single DC, denoted by DC 1, with 27 batches and batches 2 —1 and 2;

referred to as group j for j =1, ..., t. The batch information, forj =1, ..., 7, is as follows:
: (sz_l > Azj_l,l) = (Aa (J _I)As) >
Qe ) = (347 ~24.( D4 + 4).

All transportation times are zero. Note that in any feasible schedule the tardiness of

demand point 4 (1) 1is always zero.
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Suppose that there exists a 3-partition, S,,S,,...,S,. Thus, §  has exactly three elements

forj=1, ..., t. Then, we can construct a schedule where batches in Group j serve all the

demand points of the teams in §,. More precisely, batch 2 —1serves demand points
h(1) for i€, and batch 2jserves demand points /4,(2) for ie s, . The total

tardiness of the demand points of team i for ;¢ S, is exactly, 3(j—1)4’. Thus, the total

tardiness of all the demand points is 23( j—1)4’ = %t(t —1)4°. Therefore, if there
j=1

exists a 3-partition for the 3-PARTITION problem, then there exists a schedule for P(F, 1,
: : : 3 3

n,, ) with the total tardiness being less than or equal to Et t—DA".

Suppose that there exists a schedule such that the total tardiness is less than or equal to

3 3 , .

Et(t—l)A . Let S, be the set of teams whose hospitals are fully served by batch group

j but not fully served by batch group ;—1. Note that the total quantity of batch group

Jjois Q0,,10,=4 —|—<3A2 —ZA) =34>—A4 and the total required quantity of

hospitals belonging to team i is A —a;. This implies that <3j forj=1,..,¢

Us,
b=1

Thus, if hospital #,(2)1s fully served by batch group j, its tardiness is at least
. 3 - = 3 3 !/ . __
(j—1)4*— 4. Then, 1fZI:Th[(2)§5t(t—l)A , then ‘Sj‘:3 forj=1,.,1.

Suppose there exists a team j such that ZDh 0 < A , then
ie$; '

Z(D/I,-(l) + Dh[(z)) = z:(A2 — Dh,.u)) >3A4% — A. It implies that at least one of the hospitals
ie$) ieS;
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in {hl,(2) |ie Sj'} is not fully served by group i, leading to a contradiction. Suppose that

there exists team j such that ZDh_ 1 >4 then one of hospitals in {hl.(l) li e Sj'} is not

ieSj.
fully served by the first batch in group j and leads to a delay of at least one of hospitals

in{hi(2)|i GSJ',}, implyingZTh >3(j—1)A’. Therefore, the total tardiness is strictly

hes;
3t t—)A TN 3 3
greater  than 5 (-1 . Therefore, if ZlTh s Et(t—l)A , then

> D=2 a,,=4 forj=1,..,1

. ! . U
IESf IGS/.

Therefore, if there exists a schedule of P(F, 1, n,, ) with the total tardiness being less

3
than or equal to Et(t_l)/P’ then there exists a 3-partition for the 3-PARTITION

problem. Therefore, there is a 3-partition if and only if there is a schedule for P(F, 1, n,,)

3
with the total tardiness less than or equal to Et(t N4, O

We now consider two solvable cases in which there is a single DC but the DC may
receive multiple batches. For the first case, we assume each traveling team has a given tour
of length one (i.e., there is only a single hospital on each tour). Furthermore, we assume
that all renewable resources arrive at the corresponding hospitals at time zero, and that all

hospitals have an identical demand size, i.e., D, =D,,Vh,h'e H . Let 4, be j-th batch
arrival time, O, be the j-zh batch supply capacity, 7, be the shipping time from the

single DC to hospital /, ¢, be the quantity shipped from the j-#2 batch to hospital /, and
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z,, be the binary variable that is equal to 1 if hospital % is served by the j-#/ batch. In this
case, problem P is reduced to the following one (see Figure 4.1(a)):
P : Minimize ) max.{0,max _, .{(4, +7,)z,} + p,—d,}

heH

st D 4w =Dy 20,4505 4, 52,05 4,202, €{0,1}, Vhe H, jeB

38 B8 8

.III.?,,._

-
- ) |
S b9
. Ld . Ty 4
. o Be

(a) P;: Multiple Batches and Unit Tour Length (b)P,: Two-Batch and Arbitrary Tour Lengths

Figure 4.1 Examples with a Single DC Supply Process

Consider the following algorithm that solve problem P;.

Algorithm 4.1: Letw, =7, + p, —d, . Sequence all hospitals in / in a non-increasing

order ofw, , and let the new sequence be H 4= {h,h,,...,h,} . Deliver all batches from
this single DC to hospitals according to this order, i.e., use the first batch to serve/,, and

if there is a remainder then use that to serve 4, , so on so forth until all hospitals’ demands

are fulfilled.

Lemma 4.1. Algorithm 4.1 finds the optimal solution to P; in O(n,, ).
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Proof. We first show that Algorithm 4.1 brings the optimal solution with the minimum
total tardiness. If this is not true, then there must exist an optimal solution, X, that yields
a smaller total tardiness than that derived by Algorithm 1, and hence some hospital(s)’s

tardiness calculated by Algorithm 4.1 must be larger than that by X. Let hospital / be the

first such kind of hospital in sequence H*. We use batches j and j*, respectively, to
denote the last batch of the DC that fulfills the demand of hospital /# in the solution

associated with Algorithm 4.1 and X, and derive 7,(j)=max{0,4,+w,} and

T,(j") = max{0, A/* +w,} as the respective tardiness’s for hospital 4. Our discussions
above imply that T,(j)=max{0, 4, +w,} > T,(j") = max{0, Aj* +w,}

Sincew, =7, + p, —d, is a given number regardless the position of h in any sequence,

A4, > Aj* must hold to make the above inequality happen, and hence j*<j. Also, we can

find at least one hospital /2’ that precedes #in H” (i.e., w, >w,) and has the last batch
j'received from the DC in the optimal schedule I satisfy j*<j’ (otherwise, j<j*).

Since /4 and 4’ have the same demand, if we switch them in the service sequence

>, this will not affect the tardiness’s of any other hospitals. Thus, the consequent change
of the total tardiness is AT =(T, (j)+T,.(j)—(T;(G)+T.(j")), where T;(j") and

T (j") are the tardiness’s associated with hospitals 4 and %’ after the switch.

AT = (T, G+ TGN (T GH+T()) -

Considering 4. <A, and w, >w,, we have 4, +w, >4, +w,A.+w, >4,.+w,.

Therefore, the above formula implies that A7 =0 when 4, +w, <0 or Aj* +w, >0.

When 4, +w,, >0> Aj* +w,, T, (j)+T,(j")= A, +w,,. Consider the following cases.
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i. When Aj,+wh<O,Aj*+wh,<0, T, (j)+T.(j)=0,and AT =4, +w, >0;

ii. When A +w, <0, 4. +w, >0 T,f(j')+T,j§(j*):Aj*+wh, , and
AT:AJ.,—AJ,* >0;

iii. When Aj,+wh>O,Aj*+wh,<O, T, ()+To(j ) =4, +w,,and AT =w, —w,>0;

iv. When Aj,+wh>0,Aj*+Wh.>0 , Ths(j‘)+Th“.(j*)=Aj.+wh+Aj*+Wh, , and
AT:—(AJ* +w,)>0;

Summarizing the above analysis, we conclude AT >0. In other words, by switching 4
and /2’ in the sequence of optimal solution X, we always reach another optimal solution
with j*>;’ which results in a contradiction with the earlier discussions. Hence Algorithm

4.1 can solve this case optimally. Clearly Algorithm 4.1 has a complexity of O(n,,). o

The next special case includes a single DC with two batches, multiple teams, and
each team has multiple hospitals along its route. The hospitals may have different demand
sizes, but for those in the same sequence their demand sizes are non-decreasing as the
sequence order. For simplicity, we assume that the due dates of all hospitals are equal to
zero. Moreover, we assume that team traveling time between the hospitals in the same team
sequence is very small so that the renewable resource arrival time is negligible. Under this
assumption, we can see that all hospitals in the same sequence are clustered as a group, and
thus we can also assume that the non-renewable resource arrival times at all hospitals in the
same sequence are identical. Therefore, the tardiness of each hospital is completely

determined by the non-renewable resource arrival time (see Figure 4.1(b)).



86

In this case we can simplify the original MIP model by introducing the following

notations. Suppose that there are n,, teams (n,, >2) and n, hospitals, and that team /
visits a number of #n; hospitals (in set H;), team 2 visits a number of », hospitals (in set

H>),..., and team i visits a number of », hospitals (in set /1;), where z n,=ny. Let 4,
1<i<|M|

be j-th batch arrival time and O, be the j-#/ batch supply capacity, forj=1,2. Let 7, be the
shipping time from the single DC to all hospitals in team i, for i=1,2...,n,, . Let ¢, be the
quantity shipped from the j-zh batch to hospital 4, and z, be the binary variable that is

equal to 1 if customer /4 is fully served by the j-#4 batch. Based on the notations, we have

the following model for special case P,.

P, : Minimize z z [(4, +7,)z,, + (4, +7,)1-2z,)]

VieM VheH;
S.t.
theHDh < Ql +Q2;
Zj:qujh:Dh; Vl’lEH
Yoo <9 VheH, j=1,2
qjh SZJth, VhEH,J=1,2
Zin 1y 2 iy (141> VieM,[=1,2,..,n -1
q;,20; 2, €{0,1}; VheH,j=12

Note that constraint set z,, , >z, ., guarantees that non-renewable service
order must follow the order in the team sequence, and hence this constraint set can
replace constraint set (3.6) in problem P. Note also that the objective function in P is

equivalent tomin 4,n,, + z nt,— (A4, — 4) Z Z z,, - The first two terms are fixed

VieM VieM VheH,
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positive numbers, and thus the objective function here is further equivalent

to max z Z z,, » 1.6., we are trying to allocate as many hospitals as possible to the first
VieM VheH,

batch. Since only z;, is involved in the objective function, P, can be further simplified as

the following program.

max Y Y z,

VieM VheH,
s1.) Dz, <052, 22, 40, VieM, [=12,..,n,—1; z, €{0,1},Vhe H
VheH

This is a special case of Knapsack problem, and can be solved by the following

algorithm.

Algorithm 4.2: Each time allocate one hospital by the following rule. For all hospitals
sequences (visited by a given team), pick the first available hospital that has not been
served by batch 1, and among these hospitals picked up from each sequence, we choose
the one that has the smallest demand size. Let batch 1 serve this hospital. If more than
one hospitals assume the smallest demand size, randomly choose one. Keep allocating
hospitals to batch 1 by this rule until either no more hospital can be fully served or all

hospitals’ demands are fulfilled.
Since algorithm 4.2 always choose the current available hospitals that have the
smallest size and the demand sizes of hospitals are increasing in a team sequence, the

greedy type algorithm can find the optimal solution for P;.

2
Lemma 4.2. Algorithm 4.2 finds the optimal solution to P, in O("1 ).
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4.2 Multiple DCs in a Fixed Assignment Environment

In this section, we deal with multiple DCs in an environment with fixed assignments.
In particular, we consider the following two cases: (i) a variable number of DCs with a
single medical team and (ii) a fixed number of DCs with a fixed number of medical teams.

We present polynomial time algorithms for both cases.

4.2.1 A Variable Number of DCs and a Single Medical Team

We consider problem P; with a variable number of DCs, n, , and a single medical
team (»,, =1). We shall show that this problem can be solved optimally in linear time by a

greedy algorithm. Without loss of generality, we assume that the route along which the

single team visits the hospitals is specified by the indices of hospitals or (1, 2, ..., ng).

Algorithm 4.3 (Greedy Algorithm): (Given route (1,2,..., ny)) For the next hospital in

the given route of the travel team, allocate from the batches received so far at the
assigned DC an amount that is sufficient to meet the demand for the non-renewable

resource.

Lemma 4.3. In the schedule generated by the Algorithm 4.3, each hospital starts its
service at its earliest possible time.

Proof. Suppose the claim is not true. If so, there must exist a problem instance S such
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that in the schedule generated by the Greedy Algorithm some hospitals do not start the
services at earliest possible time. Let o be the schedule of instance S generated by the
Greedy Algorithm. Let hospital / be the first hospital in schedule o that does not start
the service at its earliest possible time and let DC k be the DC assigned to hospital 4.
Let o be the schedule in which hospital /# has the earliest possible start time of the

service. Let S,(c“) and S,(o) be service start times at hospital % in schedules o

and o, respectively. Then, by definition, S,(c°)>S,(c) and S,(c%)<S, (o) for

Recall that s,(c%)is either the arrival time of the non-renewable resource or the arrival
time of the renewable resource at hospital 4. If §,(c?) is determined by the arrival time
of the non-renewable resource, i.e., S,(c)=S, (c°)+p, +7,,,,then S,(c%) isthe
earliest possible start time since S, (o) is the earliest possible start time at hospital A’

for h=1---h-1 which leads to a contradiction. Thus,
S,(c°)>8, ,(6°)+p, +7,,, and s5,(c°) is determined by the arrival time of the
renewable resource at hospital 4.

Let « and S be the last batches of DC £ that serve hospital / in schedules ¢° and o,
respectively.

Thus, S, (0%) =4, +7,. If Bza, then S, (0)24, +7, 24, +7,=5,(c") would

be a contradiction. Hence, S <a.

Consider in schedule o the set of all hospitals served by DC k and precede hospital 4

and denote the set as H'. Then, there exists at least one hospital in A’ that is provided
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by batch y of DC k for some y >« . Otherwise, in schedule o, all hospitals in H'are
provided by batches preceding batch « and hospital 4 is also provided by batches
preceding batch « since A is the last batch for hospital # and B <« . However, it is
impossible to provide hospitals in H' U {h} with batches preceding batch «. Thus, we
can say that there exists at least one hospital in A’ that is provided by batch 7 of DC k
for some y>a and let h' be the last hospital in hospitals provided by batch » for

some ¥ >« . Therefore, by the triangular inequality,
h-1 h-1 G
S,(0)=8,(0)+ Z Tpant Z A + Ty + Z Toart 2 Ay + Ty 2 Ay + 75, = Si(07),
a=h' a=h'

which is a contradiction. This completes the proof. o

Theorem 4.3. Algorithm 4.3 solves problem P; with a variable np in linear time.

Proof. By Lemma 4.3, in the schedule by the Greedy Algorithm, all the hospitals start the
service at their earliest possible times. Thus, the Greedy Algorithm is optimal. It takes
O(np + ny) time to assign batch quantities to hospitals and it takes O(ny) time to calculate
start times of all hospitals. Therefore, the overall time complexity is O(np + ny). This

completes the proof. o

We now report a numerical example that is solved by the proposed algorithm 3 to
optimality. In this example, we are given ten hospitals (ny =10) and two distribution
centers (nx =2) for the non-renewable resource. DC 1 has three batches and is assigned to
serve hospitals 1, 4, 5, 7, 8, and 10, while DC 2 has two batches and is assigned to serve

hospitals 2, 3, 6, and 9. There is only one medical team that starts out at time 0 from its
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home-base location (0, 0). The parameters are described in Tables 4.1 - 4.2, where
coordinates are used to calculate the required shipping time between two locations with

speed 1.

DC k DC 1 DC 2
Coordinates in the xy
(0, 0) (1,0)
axis
Batch j 1 2 3 1 2
Batch Arrival time A4y 3 7 10 2 40
Batch Capacity O, 15 8 12 10 8

Table 4.1 Parameters for DCs and Batches (Greedy Algorithm)

Hospital Service DC Demand Penalty Cost Due Date  Duration Coordinate in

h k D, w, d, D, the x-y axis
1 1 5 2 10 3 2,0)
2 2 3 4 30 3 0, 1)
3 2 7 10 15 5 (2,2)
4 1 8 3 55 4 (1,4
5 1 9 12 20 5 2,5)
6 2 4 5 60 3 0, 8)
7 1 4 5 12 6 4,0)
8 1 3 2 18 4 1,7
9 2 2 3 50 5 (3,3)

10 1 5 1 95 4 G, 1)
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Table 4.2 Parameters for Hospitals (Greedy Algorithm)

Table 4.3 summarizes the results obtained by the proposed greedy algorithm.

Hospital Service G Last LastBatch Team Service Due Tardiness Penalt

DC Batc Arrival  Arrival Starting Date y Cost
J h Time Time Time

h k {2 @ | Ay + 74, T s, d, r, w,T,
1 1 5 1 5.00 2.00 5.00 10.00 0.00 0.00
2 2 3 - 1 341 10.24 10.24 30.00 0.00 0.00
3 2 7 -1 4.24 1547 1547 15.00 5.47 54.70
4 1 8 1 4.12 2271 22.71 55.00 0.00 0.00
5 1 2 7 2 12.39 28.12  28.12  20.00 13.12 157.44
6 2 4 - 2 48.06 36.73 48.06 60.00 0.00 0.00
7 1 1 3 3 14.00 60.00 60.00 12.00 54.00 270.00
8 1 3 3 17.07 73.62 73.62 18.00 59.62 119.24
9 2 2 - 2 43.61 82.09 82.09 50.00 37.09 111.27
10 1 5 3 15.10 89.92 89.92 95.00 0.00 0.00

Table 4.3 Results Generated with the Greedy Algorithm

Finally, we obtain the optimal objective function value of G' = 712.65 . By tracking

the solution, we have,

* * * * * * * *
Giis =3 Gua= 8, 915 = 2, Gois =71 Goy7= 1, 9317 = 3, ;18 =3, G100 =3 and
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4>=3, ¢23=7, ¢rs5="4, ¢r,,=2. Allthe other variables are equal to zero.

4.2.2 Fixed Numbers of DCs and Teams in a Fixed Assignment Environment

We consider the problem P4 with a fixed number of DCs, ng, and a fixed number of
teams, n,, (i.e., multiple, but fixed number of teams, each one having a predetermined
route). We shall prove that this problem can be solved via dynamic programming in

polynomial time. Recall that H, = {h(0),4,(1),h,(2),....,h(n,)} 1is defined to be the

sequence of hospitals, or the given route, served by team i, i=1, ..., nyy and h,(0)=i.

Before presenting the polynomial time algorithm, we need to introduce a useful
lemma that is critical for proving the time complexity of the proposed dynamic

programming algorithm.

Lemma 4.4. The starting time of service at hospital /(/) is always of the form

-1

Sh[(l) = Av(hi(u)),k(h’.(u)) + Tk(h,(u)),hl.(u) + Z(ph,(s) + Th‘.(s),hl.(s+l))for some u=0,L,...7,
S=u

where k(h,(u)) is the DC that serves 7.(u), v(h,(u)) is the last batch that serves /,(u),
A, ki 18 the arrival time of batch v(h,(u)) at DC k(h(u)) with A, o) 10,0y =7

and Proy = 0, is the travel time from DC k(h,(u)) to hospital /(u), and

T k()

T (l)is the travel time from the base of team i to /4,(1).

Proof. The starting time of the service at hospital /() is



94

— either the arrival time of non-renewable resource at the hospital, which is some batch

arrival time at DC k(4,(/)) plus the travel time between DC k(4,(/)) and hospital
h(l),
— or the service starting time at the hospital visited right before /(/)plus the service

duration at the previous hospital and the travel time between the previous hospital
and the current hospital.

In fact, we have S, , = max{d,, .o+ TeonannnsSnon + Pran + Thanmnt -
Then, S, can be considered recursively. Thus, we consider the first hospital
h(u) among hospitals served by the same team (team ) such that there is no idle time of

team i between hospital /,(u) and hospital £.(/).
Now we consider three cases in terms of u.
— If u= [, then the service starting time at hospital /() is determined by the

arrival time of the non-renewable resource.

SoS, . =4

(1) v (R (1),k (i (1) + Tk *

— Ifl<u <, then the service starting time at hospital /(/) is the service
starting time at hospital / (u) plus the total service duration and the outgoing
travel times from hospitals A (u), h(u+1), ..., h(/—1). The service

starting time at hospital /(u)is determined by the arrival time of the

non-renewable resource.

-1
Thus, Sh %) Av(h,.(u)),k(h,(u)) k(h () () T (ph (s) h,-(S)J’,-(S“))'

S=u
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— If u=0, then the service starting time at hospital /(u)is determined by the

arrival time of team i at h(1)

-1

Thus, Sh,.(z) =L Ty omm T (ph © T Ty |-

s=1

The formula in the lemma contains all three cases. This completes the proof. ©

In order to solve this problem, we construct an acyclic graph where a node represents

a partial schedule. Let node (j',j°,..., ;™ |u',u*,..,u™ ,S",S%,...,8™) denote a partial
schedule with the first #' hospitals in H, being fully served by the first j* batches
from DC k for all ke K and the starting time of the service at /.(u') being S for
all ie M . For simplicity, the node is denoted as <jk |ui,Si>. Let x(i,/) be the
index of the DC that 4,(7) is served by.

Node <jk |ui,Si> for all j* € B, , u; e{l,2,...,ni }, ie M, is referred to as valid

ny o ul

]
only when »'> > D, , <> 0, for all keK, implying that the total demand

i=l I=1 x(i,l)=k v=1
quantity of the hospitals covered does not exceed the total batch quantity under

consideration. From now on, we only consider valid nodes.

By Lemma 4.4, when u is given, the set of possible values of s has

cardinality O (|H J|x|B

.y )|) (|H |><n ) Thus, the total number of nodes is bounded

by
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of {111 F01m) =0 0n, ).
k=1 i=1 i=l

< i lu,S i> has outgoing arcs connecting other nodes and they can be classified into

two cases. For ease of notation, the connected node is denoted as

' ,(S ! ),>which stands for

Case (i): for ieM , let k be «x(i,u'+1) . Then, the outgoing arc to

!

<(j" J1(u') (s )> is defined when

i

U

My j;
"Gt 21: > 2 Dy = Z:, O
P -

I=1 x(i,l)=k

- (]k =j* forall ke D;
{(S’) =5 for i#i

!
i _ — i .=
(S ) —max{Aj;J; +T1€,h,(u"+1>’ S +ph,(u")+Th,.(u"),h,(uf+1)} for i=i

u') =u'+1 for i=i

.)'
(ui)’ =u for i#i
(')

and its length is W, i -max{O,(S ) +p%(ui+l)—d}v(u,+])}.

Case (ii): for & e D, the outgoing arc to <(jk )’ | (u’) ,(Si )'> is defined when
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(jk) = j* for k#k
(jk),:j"+1 for k:l;’

!

- (ui) =y forall ie M ;

!

- (8) =S forall ienm,

and its length is zero.

Since each node has at most O(nK +nM) outgoing arcs, the total number of arcs is
bounded by O((nk +ny, ) ny "o, ) , which turns out O(nB"“"M nHZ"M) when n,
and n,, are considered fixed constants.

The origin is (0,0,...,0]0,0,...,0,0,0,...,0) . Since we have to cover all hospitals we define

a dummy destination node and connect all nodes such that u' =n, with zero length for

all ie M . Then the shortest path from the origin to the destination identifies the
schedule for dispatching from batches to hospitals.

Since the shortest path problem defined on an acyclic graph G = (N, 4) from the origin

to all the nodes can be solved in O(|A|) time (Ahuja et al., 1990) where Nand A are

the node set and the arc set, respectively, the problem can be solved inO(n," " n,*")

time.
Theorem 4.4. Problem P, with 1, and »,, fixed can be solved in O(n,"™ ™ n,*™).

We present a numerical example that is solved by our proposed Dynamic
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Programming algorithm to optimality. In this example, we are given four hospitals (#, =

4), two distribution centers (», = 2), and two travel teams (»,, = 2). Each DC has two
batches (|Bl| = |Bz| =2). DC 1 is located at (0, 0) and serves hospitals 1 and 3, while DC 2

is located at (0, 5), and serves hospitals 2 and 4. Team 1 starts from base (0, 0) and serves
hospitals 1 and 2, while Team 2 starts from base (5, 5) and serves hospitals 3 and 4. Both
teams start at time 0. The parameters are given in Tables 4.4-4.5, where coordinates are

used to calculate the transportation time between locations assuming a speed of 1.

DCk DC 1 DC2
Coordinates in the x-y axis (0, 0) 0, 5)
Batch j 1 2 1 2
Batch Arrival time 4, 3 7 2 8
Batch Capacity Oy 15 20 25 10

Table 4.4 Parameters for DCs and Batches (Dynamic Programming)

Hospita Demand Penalty Cost Due Date Duration Coordinate in
1 0, w, d, P, the x-y axis
h
| 10 5 10 3 (2,0)
2 20 5 10 3 0, 1)
3 15 10 10 5 2,9
4 10 5 15 3 (0,8)

Table 4.5 Parameters for Hospitals (Dynamic Programming)
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According to Tables 4.4 and 4.5, the transportation times are as follows:

7,=2,7,=547,,=47,=3 and 7, ), =2,7,=22,1 3= 3, 7,,=3.6

The optimal solution is z,,;=2,,, =Z,, =Z,,, =1, (See Figure 4.2) and the optimal

objective function value is 105.

Figure 4.2 A Numerical Example for the Proposed Dynamic Programming Algorithm

4.3 Multiple DCs in an Open Assignment Environment
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In this section, we consider the case with multiple DCs in an open assignment
environment. We first show that even with a single team and any fixed number of DCs,
the problem is already NP-hard. Then we consider two special cases with variable
numbers of DCs and medical teams, and show that both of these two special cases can be

solved in polynomial time.

Theorem 4.5 The problem with two DCs and a single medical team in an open
assignment environment, i.e., P(O, 2, 1), is NP-hard.
Proof. In this proof, we will use a reduction to the PARTITION Problem (which had been

defined earlier in the proof of Theorem 4.1). Let H be {1,2,..,n} with
(p,.D,.d,,w,)= (O,ah,O,l). We have two DCs, each having two batch arrivals with the
following information: 4,, =0,4,,=A4 and Q,, =Q,, =4. All transportation times are

zero. If the demand at hospital 4 is satisfied at time 0, then its tardiness is zero, while if
the demand is satisfied at time A4, then its tardiness is A. Therefore, there is a partition if

and only if there is a schedule with a total tardiness of zero. [

Based on the theorem above, we can state that the problem with a single team and a

fixed number of DCs is NP-hard.

Theorem 4.6 The problem with a single team and a variable number of DCs in an open

assignment environment, 1.., P(O, n, , 1), is strongly NP-hard.

Proof. In this proof, we will use a reduction to 3-PARTITION (which had been defined
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earlier in the proof of Theorem 4.1). Let H be {1,2,...,3t}
with(p,,D,.d,,w,) = (O,ah,O,l). We have ¢DCs, each having two batch arrivals with
the following information: 4, =0,4,,=4 and Q, =Q,, = 4. All transportation times

and all processing times are zero. If the demand at hospital / is satisfied at time 0, then its
tardiness value is zero, while if it is satisfied at time A then its tardiness value is 4.
Because of the single sourcing constraint, each demand point can be served by only one
DC and thus the first batch of each DC can serve at most 3 demand points. Thus, there is

a 3-partition if and only if there is a schedule with the total tardiness being zero. [

Now, we consider two special cases with variable », and », that are strongly

polynomial time solvable.

The first case can be denoted as P(O,n,,n,, ) with D, =D, n, <n, ,and with n,
and n,, being variable. That is, each team may visit at most one hospital, and the hospital

order sizes for non-renewable resources are identical. In this case, the respective problem,

P(O,n,,n, ) with D, =D and n, <n,, , can be solved in strongly polynomial time.

While different DCs may receive their batches from upstream suppliers at different points

in time, we do assume that Z " Z L 042 Z ., D,. LetPs denote this problem.
j p

Let D be the common order size of all hospital and let 7, be the team arrival time at

hospital 4. Since the sizes of hospitals’ demands for non-renewable resources are all

identical, the outgoing quantity from a DC at a certain time moment is always a multiple
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of D. Now consider the following algorithm.

Algorithm 4.4 (Transportation Algorithm)
Step 1. Let
A=0

For j=1to |Bk|

+A ’ ’
bkj:{ijD Ja ij:D'bkja A:ij+A_ij

where b, denotes the maximum number of orders that the j-th batch at DC £ (plus

residuals from previous batches) may fulfill.

Step 2. Formulate the following optimization problem:
 Supplier (k, /) refers to the j-th batch of DC k that has a capacity of b, , for all
keK,jeB,;
e Customer (/) refers to hospital / that has a unit demand size, for all 7€ H ;
e The edge cost between supplier (k, j) and customer (%) is the resulting tardiness if

a unit of non-renewable resource is delivered from supplier (£, j) to customer (%),

which is defined as

Cin =W, -max{max{Ajk +7,,,0,0+p,—4d,, 0} ;

e Let x,,be a binary variable, and x,, =1 if supplier (k, j) is assigned to serve

customer (/), and 0 otherwise, which leads to the following model:
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Minimize ) > > Cx @.1)
keK jeB, heH
Subjectto D" x,, <b, forall kekK,jeB, (4.2)
heH
DY x =1 forall he H (4.3)
keK jeB,
X €{0,1} forall keK,jeB, ,heH (4.4)

The constraint matrix (4.2) - (4.4) is totally unimodular. Therefore, the problem defined
by (4.1) - (14.4) can be solved to optimality by relaxing binary variables X, to

continuous variables in [0, 1] as a transportation problem, which has the computational

complexity of OUV*(logU +V1ogV)) where U and V are the cardinalities of the

supplier set and the demand set, respectively (Brenner, 2008). Since U = 2|Bk| =1,

keD

and |V| =n,, , the following theorem holds.

Theorem 4.7 Problem Ps can be solved in O(IlenH2 (logn, +n, logn,)) time.

Special case defined by Ps refers to the situation where the orders for the
non-renewable resource are all identical and where each medical team visits only one
hospital. Such a situation occurs in practice when the hospitals’ orders for non-renewable

resources are fulfilled, for example, by the truckload and when there are sufficient
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medical teams on the ground, each being assigned to serve a designated hospital with
many patients. During the recent flooding relief from hurricane Isaac

(http://www.memphis-umc.net/news/detail/1663), full truckloads were dispatched to

various sites of Louisiana (http://www.therepublic.com/view/story/c5070625abc
14340a3065b5ede228ef6/OK--Isaac-Relief-Supplies). Campbell et al. (2008) also
reported unit-sized demand in the vehicle routing problem encountered during relief

efforts.

Let us now consider another polynomial time solvable case where each DC serves at

most one team (and thus all the demand points that team visits) for », <n,. The

resulting problem is then to find the best matching between the set of DCs and the set of
teams. Let Pg denote this problem. For the sake of simplicity, we may assume that
n, =n, by adding »n, —»n, dummy teams with zero demand. Let ¢, be the cost of
assigning DC k to serve the given route of team i, and x, be the binary decision

variable which equals to 1 if DC £ is assigned to serve the given route of team i and 0

otherwise. Then ¢, can be calculated as follows.

Step 1.If Y O, <> D, then ¢, =co. DONE

JjeBy heo;

Step 2. ¢, =0
Jj< 1, tempQ «-Q,,, tempT <—max{1;,A1k + 71(,0[(1)}

For h=1to |0’l.|
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While (tempQ < Qo-,-(h))
J<it1
tempQ < tempQ + O,
tempT < max {tempT, Ay + T 5y }
€€ Cy T W, ;) MAX {tempT T Poiny ~ da,- (h)> O}
tempT «— tempT + P, ;) +7; )6 1)

tempQ <« tempQ — Qo‘ "

Given {c,| forall ie M,k e K}, we formulate and solve the following problem.

Minimize ) )" c,.x,, (4.5)
keK ieM
Subjectto D x, =1 forall ie M (4.6)
keK
> x, =1 forall ke K (4.7)
ieM
x,; €1{0,1} forall ie M, ke K (4.8)

This is the well known assignment problem and the time complexity of solving an
assignment problem is known to be O(|V]’) where V is the vertex set by Munkres (1957).

Therefore, our problem can be solved in O(#, )
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Theorem 4.8 Problem Pg can be solved in O(», %) time.

Note that problem Pg can be found in practices where each medical team has its own
dedicated supplier (i.e., DC) that provides non-renewable resources and transportation
vehicles to support the travel team with relief operations. For example, during the disaster
relief of Haiti earthquake, AmeriCares dispatched over 200 medical teams together with
various medical supplies, representing the US support to the Haiti survivors

(http://www.americares.org /whatwedo/mop/). When each disaster area is served by one

U.S. medical team together with the medical supplies of AmeriCares, the assumptions of

P6 hold.

4.4 Overview of Complexity Results

We have studied the operations scheduling problem involving both renewable and
non-renewable resources. To gain an understanding regarding the structural properties of
the problem, we made a distinction between two cases: the DC-hospital assignments are
either given and fixed (F), or open (O) and to be optimized. Under the various conditions,
we identify NP-hard cases along with complexity proofs and polynomial time solvable
cases along with time complexity analysis. We summarize the results in the following

tables.

1 Fixed Variable
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T P(O(n,))
Lemma 4.1
P(O(n,*))
Lemma 4.2
. P(O( nB+ nH )) P (O(HBWDHW nHZnM ) )
Fixed
T Theorem 4.4
. P(O(ny+n,))
Variable Open
Theorem 4.3

P: Polynomial time solvable (complexity), NP: NP-hard. SNP: Strongly NP-hard

Table 4.6 Complexity Framework of Problem P(F,n, ,n,, )

e 1 Fixed Variable
Py
P (O(nB”"MnHZ"M ) )
Theorem 4.4
| P(O(ny+n,)) P(O(n,,))
Theorem 4.3 Lemma 4.1
P(O(n,))

Lemma 4.2

Variable

P: Polynomial time solvable (complexity), NP: NP-hard. SNP: Strongly NP-hard

Table 4.7 Complexity Framework of Problem P(O,n, ,n,,)

4.5 Conclusion
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The results obtained in this chapter, especially those that are proven to be polynomial
time solvable, can be used to design heuristics for solving more general versions of this
problem. While the results throughout this paper assumed predetermined routes of the
medical teams (i.e., the renewable resources), routing decisions are allowed in practice. If
we relax the non-renewable resource requirement constraints, then the remaining problem
is similar to a Vehicle Routing Problem (VRP) with tardiness costs; this implies that well
known VRP heuristic algorithms can be used to find reasonable solutions for the routes of
the medical teams. The next step is to determine the DC-hospital assignment. Due to the
combinatorial nature of the single sourcing constraint, this step also needs a heuristic
approach. For each given route, we regard the team’s arrival time as the due date for the
non-renewable resource’s arrival at each hospital. We now define and solve a
transportation problem in which supply nodes are batches in DCs and demand nodes are
hospitals. Even though the optimal solution of the transportation problem does not satisfy
the single sourcing constraints, we may derive a feasible DC-hospital assignment by
adjusting such optimal solutions. After the routing and the DC-hospital assignments have
been determined, the results in this study can be utilized. When the numbers of DCs and
teams are relatively small, we can apply the dynamic programming algorithm in Theorem
4.4. Otherwise, we can make a sequence of teams and repeatedly apply the results of

Theorem 4.3 and obtain a greedy solution.

A second heuristic approach for a general version of this problem can be described as
follows. We can make the decisions with regard to the DC assignments and the batch

assignments simultaneously when the problem is more restricted. For example, when a
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medical team visits only one hospital and/or when a DC is dedicated to supply a set of
hospitals served by the same medical team, we can apply Theorems 4.7 and 4.8,
respectively. Even if the problem does not satisfy such a restricted property, we may
simplify the problem first, solve the simplified problem optimally and adjust the solution
obtained in order to ensure feasibility of the original problem. We may assume that a part of
the problem satisfies the restricted property and produce an optimal solution for that part.

By applying this procedure repeatedly, we can obtain a heuristic solution.

We may also consider a third heuristic procedure by integrating the routing decisions
with the allocation of resources. We already mentioned in the introduction that when the
amount of non-renewable resource available at time zero is sufficient, then the problem
turns out to be equivalent to a parallel machine scheduling problem with sequence
dependent setup times and release dates and with the total weighted tardiness as objective.
Lee and Pinedo (1997) proposed an algorithm that computes the priority levels of all yet
to be scheduled jobs, assigns the job with the highest priority and repeats this procedure
until all jobs are scheduled. The main difference between the parallel machine scheduling
problem and our problem is that we have to consider also the non-renewable resources.
According to Lee and Pinedo (1997), when evaluating the priority levels, we have to take
all the parameters such as the weights, due dates, and release dates into account. Then we
can modify the algorithm by approximating the release date of a job with the maximum
value of the original release date and the earliest possible non-renewable resource arrival
time. After a job has been scheduled and all parameters have been updated, we can repeat

the procedure.
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The following table summarizes the three heuristic approaches for the general version

of our multi-resource operations scheduling problem.

Sub-Problems Approach 1 Approach 2 Approach 3
Routing
Revised version of a
Decision VRP heuristic VRP heuristic
. Heuristic for Parallel
Machine Scheduling
DC Assignment Transportation
with Sequence
N Problem heuristic = Theorems 4.7 and
Dependent Setup
Batch Theorems 4.3 and 4.8
Times
Assignment 4.4

Table 4.8 Heuristic Approaches for a General Problem
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Chapter 5. A Rolling-Horizon Based Heuristic for Solving P

In this chapter, we first lay out the theoretical background for Rolling-Horizon (RH)
heuristic for solving Problem P in section 5.1. The RH heuristic is formally stated in
details in section 5.2, followed by section 5.3 where empirical study is carried out to

evaluate the effectiveness of RH heuristic.

5.1 The Single Batch Problem

If each DC receives only a single batch from its upper stream supplier, problem P can
be reduced to a variation of a network flow problem (Ahuja, et al., 1993). To see this, first

assume that each traveling team is assigned to visit only a single hospital (i.e., the case with

unit tour length). Let A4, be the arrival (or release) time of the single batch at DC £, let O,
be the respective batch size, let 7, be the release time of team /% (since each team is
uniquely assigned to each hospital, we may use % to denote both hospital /# and the team
assigned to serve h), let 7, be the travel time from the team base to hospital 4, let 7,, be
the shipping time from DC & to hospital 4, let g,, be the quantity shipped from DC & to
hospital /2, and let z,, be the binary variable that is equal to 1 if hospital 4 is served by DC

k. Under these assumptions, problem P is reduced to the following (also see Figure 5.1(a)):
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P, : Minimize z max.{0,max,_..{(4, +7,,)z,}+p,—4d,,1,+7,+p,—d,}
YheH

st ) @ =0 D 4w <0 4y S 2,00 4, 20; 2, €{0,1}, Vhe H, ke K

Lemma 5.1. P; can be solved in 0((2 n, )nf{(log(z n, )+n,logn,)).
kekK

kek
Proof. Problem P; is equivalent to the known Time Minimizing Transportation Problem
(TMTP) if we define ¢, = max.{0,max,_..{(4, +7,)z,}+p,—4d,.1,+7,+p,—d,}.1tis
known that TMTP is solvable in strongly polynomial time (Sonia and Puri, 2004). Brenner

(2008) proposed an algorithm for solving such  problems at

O my " (log(Y my ) +ny, logn,)). 0

keK keK
= 8 .i_-,g
I = 4 l il
o i A
v
i
..
(a) Single-Batch with Unit-Tour Length. (b) Single-Batch with Tour Length <2

Figure 5.1 Examples of the Multiple-DC Single-Batch Process

We now consider the case where each DC receives only a single batch of
non-renewable resources, and the tour length of each team is no more than two. Problem P

is then reduced to the following one, or Pg (see Figure 5.1(b)), in which <A4',~> denotes

the two consecutive locations visited by a team. If / stands for the first hospital (or the only
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hospital) on a given medical team’s route, then /4’ represents the respective team base or a

dummy hospital, and we haves, =r,p, =0 and 7,,=7,.

F, - Minimize Z 1,

VheH

S.t.
ZVkeK D = D
ZVheH Gy < Qk;

T < 2O

(A +Tp)Z0 <S5
S, +p,+7,,<S,,
T,2s,+p,—d,;
9 20; z, €40,1};

Yhe H
VkeK

VheH,kekK
VheH,keK
Vhe H h'e MUH
VYhe H
VheH,keK

The following process transforms a given Pg into the Min-Cost Max-Flow Problem.

Step 1: Define Nodes

1.

2.

Establish the source and sink nodes of the network.

Each node in the first layer of the network represents the single batch received at

each DC. Since a total of 7, DCs are involved in the problem, we have », nodes

in this layer.

The nodes in the second layer of the network represent the decomposed batches

from DCs to different hospitals. Each DC may serve all hospitals, with different

service quantity that could be even zero. Considering the problem has », DCs and

n, hospitals, n,n, nodes exist in this layer.

Each hospital corresponds to multiple nodes in the third layer of the network, each

of which represents a demand fulfillment scenario in order to serve this hospital:
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a.The first hospital along the route of each medical team corresponds to 7,
nodes (each of which represents a scenario that the latest batch this hospital
receives is from the DC with the k-th latest arrival time among all DCs,
1 <k < n, Specifically, the first node among the n, nodes represents the
scenario that the supplies come from all DCs; the second node among the
n, nodes represents the scenario that the supplies come from all DCs
except the one that has the latest arrival time; the third node corresponds to
the scenario that the supplies come from all except the two DCs with the
latest arrival time, ..., and the last (7, -th) node represents the scenario that
the supplies only come from the DC that has the earliest arrival time. Note
that the flow into any of these nodes can be zero. Since a total of n,,
medical teams are serving hospitals, we have a total of #n,, such hospitals
that are scheduled at the beginning of their routes. Therefore, there exist
n,n,, this kind of nodes in the third layer of this network.

b. If a medical team visits two hospitals in its route, then the second hospital

corresponds to n,”

nodes. This is because for this type of hospitals, the
service scenario relies on not only the flow patterns (7, ) of non-renewable

resources as we introduced above in part i, but also that of the medical
teams (The team may arrive at this hospital after it fulfills the demand at the

first hospital in its route with any of the n, service scenarios we
introduced in part i above). Therefore, a total of n,’(n, —n,,) nodes exist

for such hospitals.
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Step 2: Define Edges, and the corresponding capacities and costs

1.

The capacity of the edge from the source node to any node in the first layer
(Batches of DCs) is just the single batch size, and the cost is zero because no
tardiness is involved here.

The capacity of the edge from any node in the first layer to the sink node is infinite,
but the cost is very large, such that only unused supply will be allowed to go this
way.

The capacity and cost of the edge from any node in the first layer to any node in the
second layer are infinite and zero, respectively.

The capacity of the edge from any node in the second layer to any node in the third
layer is infinite, but the costs are different. For any hospital /4, suppose it receives

the batch from DC k; first, that from DC k; second, ..., and that from DC knk the

last.
a.If hospital / is the first hospital served by a medical team in its route, based on

our discussions at Step 1.d part 1, it has #, associated nodes in the third

layer. In addition, all inbound flows to the first node associated with

hospital # have cost max.{0,7, +7, +p,~d,, 4 +7, ,+p,—d,} (the

second and third elements in this maximum function, respectively,
represent the tardiness at hospital /# caused by the medical team and the
non-renewable  resources), those to its second node have

costmax.{0,7 +7, +p,—d,, 4, +7, ,+p,—d,},..., and those to the

K-1

last node have cost max.{0,7, + 7, + p,—d,, 4, +7,,+ p,—d,}.
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b. If hospital % is the second hospital served by a medical team in its route,

2

based on our discussions at Step 1.d part i, it has »,” associated nodes in

the third layer, which we use {ny}, 1<s,1<n, , to denote. Then the inbound
flows to node Ay have

max.{0,max{r,+7,,4  +7, , }+p. +t7,,+p —d,

nK7t+l anHl
cost _

A, +7, h+ph—dh}

5. For each hospital, outbound flows from its corresponding nodes in the third layer
will first be collected at a temporary node, before arriving at the sink node. All the

related edges have zero cost and infinite capacity except the edge between the
temporary node and the sink, whose capacity is equal to the demand, D,, of the

hospital.

By the above transformation process, the following result holds.

Lemma 5.2. Problem Pg can be solved in O(n;’ﬂf{(log n, +logn,)).

Proof. Since an equivalent min-cost max-flow problem can be constructed based on Pg and
the min-cost max-flow problem is known to be solvable in O(m log n (m + n log n)),
according to Orlin (1993), where n=n, +n.n, +nen,, +n.> (n, —n,,)and

m=n, +n.n,, +n. n, +nn,n, +2n(n, —n,)+n’n,(n, —n,).

The claim holds'"!. ¢

Figure 5.2 illustrates an example of solving Pg as a min-cost max-flow problem. In this



117

example, we are given two DCs (each having a single batch), two medical teams, and three
hospitals (where hospitals 1 and 3 are assigned to the team with tour length two, while
hospital 2 is assigned to the other team with a unit tour length). Note that hospitals 1 and 2
are the first hospitals on the routes of medical teams 1 and 2, respectively. Layer 1 has two
nodes, each of which represents a DC. Layer 2 has six nodes, each of which represents a
unique batch-hospital assignment pair. Layer 3 has eight nodes, each of which defines a
possible scenario of allocating non-renewable resources from the two DCs to an individual
hospital. The total number of scenarios associated with hospital 3 is squared because it is
the second hospital in the service route, and how it is served depends on the service

scenarios of hospital 1 as well.

Min-Cost Max-Flow Problem

Hospital 1
*Batch—l—lospﬂi 4'
v' Assignment |
" | ' Hospital 2
¢ Q1w — @
| . y ‘
Batches of DCs ' ,'
: ‘ Batch-Hospital
N Assi t Hosoital 3
To sink ‘. SSlgnmel “ osplaQ
A ¥ N N

Figure 5.2 Flow Chart of an Example Min-Cost Max-Flow Problem'

While Lemmas 5.1 and 5.2 assume each DC receives only a single batch from its

! Note that, the case with multiple batches assigned to each DC can also be solved as a min-cost max-flow problem,
however, at a much higher level of computational complexity.
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upper stream supplier, we can show that, in a more general situation with multiple batches
to each DC, as long as the minimum batch size is no less than the maximum of order

sizes, i.e., min,_, ., O, >max,_, D,, the following result holds.

Lemma 5.3. If min,_, , , O, >max,, D, then there exists an optimal solution to

problem P,%" ={Z;kh,q;kh,5;,Th*}, such that each hospital /% receives non-renewable

resources from at most two consecutive batches that originate from the same DC. —

Proof. Suppose in an optimal schedule S’, there is at least one hospital, say A, that
receives supplies from more than two batches from the same DC, k. Let /* and ;” denote
the first and last batches, respectively, that serve A from this DC, and j“<jb-] . Let

Do and . denote the quantities shipped to & from batches j* and j”, respectively. We
can then reassign the shipping quantity o from batch j, originally serving hospital A,

to serve other hospital(s) originally assigned to batch j°-7, and then allocate an equivalent

quantity ¢= Do from batch ;- to serve h (note that the assumption
min, . ;. Oy 2max, , D, ensures O,  >q,, and therefore such a reassignment is

always feasible). This adjustment is illustrated in Figure 3. Doing so does not change the
tardiness of hospital 2 while making the tardiness of other hospital(s) originally served by
/-1 no more than that in the original optimal solution . This implies that the new
solution is still optimal. Repeating this process will reach an improved solution such that
each hospital receives supplies from at most two consecutive batches from the same DC.

0
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Figure 5.3. An Illustrative Example of Lemma 5.3

5.2 A Rolling-Horizon (RH) Heuristic for Solving P

We propose a rolling-horizon based greedy heuristic algorithm for solving P. The
design of this solution approach is motivated by the results of Lemmas 5.1 and 5.2; if
each DC has only one or two batches of non-renewable resources to allocate and if the
tour of each traveling team covers very few hospitals, then the reduced problem becomes

easier to solve.

Similar to the approach used in most existing rolling horizon based heuristics (e.g.,
de Araujo et al. (2007), Beraldi et al. (2008), Lei et al. (2009), and Li et al. (2010)), our
algorithm also follows an iterative process to search for a feasible solution to the original
problem P. Each iteration starts with a given (heuristically constructed) sequence of

hospitals that have not yet been served (i.e., the first iteration starts will all n,
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hospitals). During each iteration, we construct a sub-problem (see Figure 4 below) that

focuses on the next two batches to be allocated from each DC and the next N hospitals in

the given sequence, N <n,, being a search parameter. Let Q, be the collection of the
first available batches across all DCs, and Q, be the collection of the second available
batches across all DCs, where n, >/ Q, [2|Q, |. Let Q=0Q, U Q,. We then solve this

two-batch N-hospital sub-problem with objective function (3.1) optimally.

~

5 L
AT

‘ 4

-
-
S

I
— |
N
.
N

WE

Figure 5.4 A Graphical Illustration of a Two-Batch N-Hospital (N=7) Sub-Problem

Solved by the RH Algorithm during the Search Process

Such a sub-problem contains a significant less number of integer variables, and can
be solved quickly using GUROBI (a commercial optimizer) typically within few CPU
seconds. After a sub-problem is solved, we permanently fix the resource allocation of the

batches in set Q,, while release the batches in set Q, together with the hospitals

supplied by the batches in Q, to the next iteration. For those hospitals whose orders are
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only partially supplied from the batches in set Q,, we update their order sizes by

subtracting the partial shipment received in the current iteration, and then release such
hospitals with revised order sizes to the next iteration. We also update the travel team
service completion time at the respective hospitals, and then go to the next iteration. The
iteration process repeats itself until all the hospitals are served, and yields a new feasible

solution to the original problem P. The sequence (i.e., a permutation of 7, hospitals) at

which hospitals receive the supplies from DCs in this new feasible solution to P is then
used as the initial hospital sequence for the next round to generate another feasible
solution. The search terminates when the newly obtained feasible solution no longer
improves the previous one. Let RH denote this rolling horizon based heuristic. The details

of the algorithm are described below.

Algorithm RH ({Input: An initial sequence &,and an initial objective

Sfunction value G}
Step 1. Construct a sub-problem, consisting of the next two batches from
each DC and the next N customers in sequence O, where parameter N is

determined by

z D, < ZQl,k +Q2,k < z D,

IShsN keK ISh<N+1

so that the total demand of the next N hospitals in o, does not exceed the
total supplies of the next two batches of the n, DCs. Let Q, be the

collection of the first available batches cross all the DCs, and Q, be the

collection of the second available batches cross all the DCs. Solve the



two-batch N-hospital sub-problem optimally against objective function (1).

Note that the hospital service starting times, S,, for those hospitals

included in the sub-problem, may be different from those obtained

previously.

Step 2. Permanently fix the non-renewable resource allocation of the

batches in set Q,, delete such batches from further consideration, and
release the batches in set Q, to the next iteration. For hospitals whose
orders have been fully supplied by the batches in set Q,update their
service starting times and team departure times, and then permanently
remove such hospitals from sequence o,. For those hospitals whose
orders are partially supplied by the batches in set Q,, update their order

sizes by subtracting the partial shipment received in the current iteration

and then release such hospitals, together with their revised order sizes, to

the next iteration (i.e., keep such hospitals in o).

Step 3. If o, # J,return to Step 1. Otherwise, a new feasible solution is

obtained which defines a new sequence o and a new objective function G.

If G>G,, which means the newly obtained feasible solution does not
improve the previous solution, terminate the search with the best feasible
solution obtained so far. Otherwise, replace o, by o, and G,by G,

return to Step 1 for the next loop.

122
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The flowchart of algorithm RH is given in Figure 5.5. The search starts with a given
hospital sequence constructed upon the optimal solution of a linear programming (LP)

relaxation of P with binary variables z,,,VkeK,je B,,he H relaxed from {0,1} to
[0,1]. Let o,denote this initial hospital sequence, and |o, |=#,,. Note that by rounding
up the values of relaxed binary variables, {z,,},in this LP solution, we can obtain an

initial feasible solution to P, which will be improved through the remaining search

process.

Obtain an initial sequence of #7217 hospitals by LP relaxation of P
and an initial objective function based on the sequence

) 4

3 Construct and solve a sub-problem with the next two batches in
each DC (sets Q. and ) and the next N selected hospitals.

) 4

Fix the non-renewable resource allocation of batches in set Q,
remove these batches, and release batches in set Q..

—

Update the service starting times and team departure times for
hospitals that are fully served by batches in set Q., remove these
hospitals, and update the demand size for others.

) 4

Is the current sequence empty?

‘ Yes

[ Obtain a new sequence and a new objective function

-

Is the new objective function better than the current one?

‘ No

[ Terminate the search with the current best feasible solution

Figure 5.5 A Flowchart of the Search Process by the Proposed RH Algorithm

It should be pointed out that the proposed algorithm RH does not aim at solving the

emergency operations scheduling problem for the entire disaster relief process. Instead, it
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aims at driving a quick solution for a given group of hospitals, each with a specific

demand on the non-renewable resources, at a particular time point of the relief process.

While an analytical error bound of the RH algorithm to the original problem P is
difficult to derive, it can be constructed under certain assumptions on a simplified network.
One example of this is given in Lemma 5.4, where we show the error gap between the
optimal solution and the solution obtained by the RH algorithm is bounded from above by
the maximum inter-arrival time of two consecutive batches at the DC. We derive the error
bound for a simplified network (see Figure 5.6) with a single DC, four batches of unit
(identical) batch sizes, two traveling teams, each visits two hospitals, and a total of four
hospitals with unit demand quantity, which equals to the batch size, on non-renewable
resource. Let’s denote this special case as Py9. Without loss of generality, we assume
that A <A4,<A;<A4, , Wy > Wy, W > W, and
w, 2wy (Where w, =7, + p, —d, ,h=1,2,3,4). Let v, =7, +p, +7,,,+p,—d, for
h=2,4 : By triangular inequality, we

havevh =Tt Pt T, t D~ d,>p, ,+T,+p,—d,=p,,+w,.
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Figure 5.6 Special Case Py

Lemma 5.4. For any given instance of Py, the gap between the optimal objective function
value 7~ and the objective function value achieved by RH, T is bounded by the

maximum  inter-arrival  time  between  two  consecutive  batches, i.e.,

|TRH -7 |S maXlSiS3(A A-)'

i+l 4
Proof. By the assumption of case Py, Qj =D, ,Vj,Vh. Therefore, the DC only delivers its

supplies to a hospital after the shipment to the immediate predecessor of that hospital is
fulfilled (see Lemma 4.3). The optimal assignment of batches to hospitals is thus a
permutation of hospital set H={1, 2, 3, 4} with each hospital served by exactly one batch
from the DC. Let 77 be a permutation of H.

The optimal objective value can now be expressed as
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T" = Min.{T(7)|V 7} = min{

max{0,4, + w,} + max{0,4, + w,, 4, +v,} + max{0,4; + w,} + max{0,4, +w,, 4, +v,},
max{0,4, +w,} + max{0,4; +w,,4, +v,} + max{0,4, + w,} + max{0,4, +w,, 4, +v,},
max{0,4, +w,} + max{0,4, + w,,4, +v,} + max{0,4, + w,} + max{0,4, +w,, 4, +v,},
max{0,4, +w,} + max{0,4, +w,,4, +v,} + max{0,4, + w,} + max{0,4, +w,, 4, +v,},
max{0,4, +w,} + max{0,4, + w,, 4, +v,} + max{0,4, + w,} + max{0,4, +w,, 4, +v,},
max{0,4, + w,} + max{0,4, +w,,4, +v,} + max{0,4, + w;} + max{0,4, +w,, 4, +v,},

}

To observe the error gaps by Algorithm RH, we have three exclusive but complete cases.
Case l.w, >w, 2w, >w,.

Let the initial solution be the non-increasing order of w, ’s, i.e., {1, 2, 3, 4}. Since our
algorithm considers two batches each time, the first subproblem involves batches 1 and 2,
and hospitals 1 and 2. By Lemma 4.1, the optimal schedule for this subproblem is
{1>1,2—>2} . Next we fix the assignment of batch 1 with hospital 1, and relax batch 2.
The second subproblem involves batch 2 and 3, and hospitals 2 and 3. Since hospitals 2
and 3 are not in the same route, and by Lemma 4.1 and the assumption, the optimal
schedule is {2 — 2,3 — 3} . Next we fix the assignment of batch 2 with hospital 2, and
relax batch 3. The third subproblem involves batch 3 and 4, and hospitals 3 and 4. Since
hospitals 3 and 4 are in the same route, and by Lemma 4.3, the optimal schedule is
{3—3,4—>4} . The algorithm terminates here because the current solution is exactly
the same as the initial solution. So the delivery schedule determined by our algorithm is

{1-51,2—>2,3—>3,4—>4} . Hence, the objective function value is as follows.

T =max{0, 4, +w,} + max{0, 4, + w,, 4 +v,} + max {0, 4, + w,} + max {0, 4, + w,, 4, +v,}
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Note in  this case, the optimal objective  function value is

T" = min{

T'=max{0,4, +w,} + max{0,4, + w,, 4, +v,} + max{0, 4, + w,} + max{0, 4, + w,, 4, +v,},
T? =max{0,4, + w,} + max{0,4, + w,, 4, +v,} + max{0,4, + w;} + max{0,4, +w,, 4, +v,},
T =max{0,4, + w,} + max{0,4, + w,, 4, +v,} + max{0, 4, + w,} + max{0, 4, +w,, 4, +v,},

}

Note TR =T, By the proof of Lemma 4.1, we  have
max{0,4, + w,,4, +v,} + max{0,4, + w;} <max{0,4, + w,,4, +v,} + max{0,4, + w;} ,
and

max{0,4, +w,,4, +v,} + max{0,4; + w;} <max{0,4, +w,,4, +v,} + max{0,4, + w,} .
So the gap between 7% and T"is

|TRH -7 I<|max{0, 4, + w,, 4, +v,} —max{0,4, +w,, 4, +v,}|
<A -4, <max (4, - 4)

i+1

9

and the gap between 7™ and T°is

| T*" —T7 < max {0, 4, +w,, 4, +v,} —max {0, 4, +w,, 4, +v,} |
Smax{d; —A4,, 4, — A} <max,_, (4, - 4) .

i+l
Therefore, the gap between T and

T satisfies| T*" —T" |< max{|T* —T* |,|T* —T° |} <max,__,(4,, —4).

i+l 4
Case2. w, 2w, 2w, 2w,.
Use the same argument as in case I, the delivery schedule determined by our algorithm is

{1, 3, 2,4}. Hence, the objective function value is as follows.
T"" = max{0,4, +w,} + max{0,4, + w,, 4 +v,} + max{0,4, + w,} + max{0,4, + w,, 4, +v,}

By similar approach as in case 1, we also have|T*" —T" |< max,_,_,(4,,, — 4,).

i+l A

Case3. w, 2w, >w, 2w,.
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Use the same argument as in case I, the delivery schedule determined by our algorithm is
{I, 3, 4, 2}. Hence, the objective function value is as follows.

T* = max {0, 4, +w,} + max {0, 4, + w,, 4 +v,} + max {0, 4, + w,} + max {0, 4, + w,, 4, +v,} By

. . . RH *
similar approach as in case 1, we also have| 7™ —T" |< max,__,(4,,, — 4,).

i+l 4

Thus, in all three cases, our bound is valid. This concludes the proof. o

5.3 Empirical study

To observe the empirical performance of the proposed RH approach, we randomly
generated 5,420 test cases under various parameter values, which are summarized in

Table 1 below.

Parameters Range of the Parameter Value
The total number of hospitals/customers (n,,; ) [10,80]
The total number of DCs (n,. ) 2,3

The average number of batches at each DC (n 5, ) |' n, / ”K—‘

The total number of travel teams (n,, ) 3,4,5

Hospital order size (Dy,) Uniform (20, 30), Uniform (20,

70), Uniform (20, 100)

Hospital service time duration (pp) Dy/20units/hour
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Team release time from the base (r;) Uniform (0, 2)

Hospital specified service completion time (dy) Uniform (5, 100)

Table 5.1 Parameters Used in the Empirical Study for the RH Algorithm

In the experiments, we considered two types of networks: those with 2 DCs (n, =2)
and those with 3 DCs (n, =3). For each type of network, the network size was defined

by the total number of hospitals (or customer demand points). We first generated
hospitals’ order quantities for non-renewable resources, and then generated the number of
batches at DCs, with each batch size randomly sampled from a uniform distribution
between 100 units and 150 units. For each given set of parameter values, we randomly

generated 30 test cases. The total number of medical teams varied from n, =3
ton,, =5, with n,, =4 for most test cases. The hospitals in the network generated for

each test case were then randomly assigned to the routes of travel teams. The time
intervals between every two consecutive batches at a DC were randomly sampled from a
uniform distribution between 6 and 12 time units. Finally, the arrival time of the first
batch of non-renewable resources to a DC was randomly sampled from a uniform
distribution between 0 and 2 time units. The nodes in the supply chain network (i.e., DCs,
home bases of travel teams, and hospitals) were randomly scattered over an area of 2,500
square miles, proportional to the scale of 2011 Tohoku earthquake and Tsunami (see
Figure 5.7 below). The estimated travel/shipping time between each pair of locations in
the network is calculated by Euclidean distance divided by a speed of 25 miles per time

unit.
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_:dg Customers (Hospitals or Shelters)
S Distribution  Center

$ Medical Team Base

Non-Renewable

Resource Allocation

Renewable Resource
Visiting Sequences

Figure 5.7 Tohoku earthquake and Tsunami, background map: Miyagi Prefecture, Japan

(Source: martinjapan.blogspot.com/2011/03/extreme-flooding-along-coast-due-to.html).

For most test cases, the commercial GUROBI solver failed to find the optimal
solution within one-hour CPU time limit (on a Dell desktop, Intel Core ™ 2 Duo CPU,
E8400 with 3 GB RAM). For such cases, we used the best feasible GUROBI solutions
obtained within the time limit as a surrogate for the optimal solution. In contrast, the
proposed search algorithm, RH, terminated with the best feasible solutions obtained
within 1 or 2 minutes of CPU time for networks with less than 40 hospitals, and within 8
to 12 minutes for larger networks covering up to 80 hospitals. For each test case, we
collected two performance measures: the required CPU time to terminate the search, and

the empirical error gap defined as

*

|G -G

|
Gap =
P G

*

where G stands for the minimum total tardiness obtained using the commercial solver,



131

GUROBI, to solve problem P defined by (1) - (8), and G stands for the total

tardiness of the operation plan obtained by the proposed search algorithm RH.

Figures 5.8 and 5.9 present the empirical error gap distributions against the number

of hospitals when n, =2, and n, =3, respectively, and n,, =4, under a high level of

variability in hospital demand (defined by Uniform (20, 100)). As the results show, the
proposed RH algorithm was able to find a feasible solution (i.e., an operation plan) that
was within 5% from the optimal or the surrogate of optimal solution for all the 4,200
randomly generated test cases. We can also observe that the error gap increased as the
network size increased. This is because of the myopic nature of the rolling-horizon based
greedy heuristic (i.e., in each iteration - we found and then fixed the optimal solution to a

sub-problem, which may not however

3
Namber of Hospituls

Figure 5.8 Error Gap Distribution under High Level of Variability in Customer Demand

(n]( :2)
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be global optimal). We also note that when the network sizes were relatively small (e.g.
n,, <40), the empirical error gap was fairly reasonable (e.g., within 3% cross all the test
cases) as we can see from Figures 5.8 and 5.9. Similar error gap distributions were also

observed when the variability levels of hospital demand on non-renewable resources

were low or moderate (see Figures 5.10 and 5.11).
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Awverage Empanical Error Gaps under Different Levels of Demand Vanabiity

k=2

=4
—— Dh = uniff20, 30)
sl ~5— Dh = nifi20, 70)
—F— Dk = wniff 20, 100}

Error Gap (%)

Mumber of Hospitals

Figure 5.10 Average Empirical Error Gaps under Different Levels of Demand Variability

(I/IK =2)

ALverage Empirical Errer Gaps under Different Levels of Demand Variability

k=3

nu=4
—F Db = wrdf¥20, 30)
sl —— Dih = {20, T0)
—+— Db = wniff 20, 100

Error Gap (%)

MNumber of Hospitals

Figure 5.11 Average Empirical Error Gaps under Different Levels of Demand Variability
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In Figure 5.12, we report the required solution time (in CPU seconds) by the

proposed RH algorithm and that by the commercial solver GUROBI when the total

number of DCs in a network equals to n, =2, and n, =3, respectively. As the results

show, the required computational effort by the RH algorithm was significantly less than

that required by GUROBI.

Comp d Effort Requred by the RH Algoriton and th by GUROE]

BT

] 0 1] ] a4 [ ] ]

Mureber of Hospitals

i Recured by the BE Algoriben and that by GURCED

Figure 5.12 Computational Effort Required by the RH Algorithm and that by GUROBI

Figure 5.13 Average Error Gap (%) against the Number of Travel Teams
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We can see that GUROBI failed to find the optimal solution within 1 CPU hour when

the network size goes beyond #,, = 60. In contrast, the proposed RH algorithm was able

to terminate with a quality feasible solution within few minutes of CPU time in all the

experiments even when n, =80. It should be pointed out that, when the network
contains n, =3 distribution centers, the proposed algorithm RH does take a longer time
to terminate relative to the n, =2 case. This is because, when », =3, each randomly

generated test case has more batches of non-renewable resources to be scheduled during
the search process. When the number of batches increases, the number of iterations in
each round also increases. In Figure 5.13, we report error gap comparisons under
different numbers of travel teams involved in the emergency operations. While we can
observe a trend of increasing error gaps when network size goes up, we also see that,

when n, =2 for the same network size (i.e., the same value of 7, ), the involvement of

more travel teams (which requires us to allocate non-renewable resources among more
routes) tends to lead to large error gaps. This is caused by a higher probability of
introducing more scheduling errors by heuristically assigning non-renewable resources
among more teams. However, when supply increases or becomes more sufficient, i.e.,

n, =3, the errors are mitigated and offset, which results in a relatively balanced errors

among different teams.

We also studied the potential impact of pre-positioning inventory at DCs before the
arrival of a disaster. In particular, we examined the relationship between the total
tardiness and the sizes of the batches pre-positioned at DCs (as a percentage of the total
demand) at time zero. The amount of non-renewable resources pre-positioned at each DC

at time zero can be interpreted as safety stock used to mitigate the potential risks caused
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by disasters (see Tomlin (2006) and Qi (2013)), and the more received by DCs at time
zero, the stronger the magnitude of inventory mitigation. To study the impact of inventory

pre-positioning, we experimented with networks determined by parameters n, =50,
n,=2 or 3, n,=4, and D, =Uniform(20,100) for all h in A. The total amount of

inventory pre-positioned at time zero across all the DCs was set at 5%, 10%, 15%, 20%,
25%, 30%, 35%, 40%, 45%, 50%, 55%, and 60% of the total demand to the
non-renewable resources, respectively. For each set of parameter values, we randomly
generated 10 test cases, and report the resulting average total tardiness in Figure 5.14. As
we can see, there is a tremendous drop in the resulting tardiness as the amount of
pre-positioned inventory increases from 0% to 40% of the total customer demand to the
non-renewable resources. This indicates that a sufficient inventory of non-renewable
resources to be pre-positioned before the arrival of a disaster could make a fundamental
difference in the resulting tardiness since the service to each hospital is now only
controlled by a single resource (i.e., the travel team), instead of both resources. We also

observe a faster decrease in total tardiness when n, =3. This implies a natural trade-off

between the number of DCs and the total response/transportation time.

D = wif[20,100) g Y

Figure 5.14 The Impact of Pre-positioning Inventory Before the Arrival of a Disaster



137

Chapter 6. Future Extensions

There are two major extensions of this research. The first one is to conduct a
thorough simulation study to assess the impact of management policies on the
effectiveness of emergency logistics involving bottleneck renewable and non-renewable
resources. The second one is to design and evaluate meta-heuristics for solving a more

general version of problem P.

6.1 A Simulation Study for Assessing the Impact of Management Policies

Effective emergency logistics requires both resources and management. One
important topic in this regard, from both academic research and practices point of view is
the development of effective disaster relief management policies. One of such policies is
the deployment of mobile distribution centers that allow truck trailers to carry the
non-renewable resources and distribute the supplies among the demand points (e.g.,
hospitals, shelters, schools, etc.) on real time to minimize the patient waiting time. We
have performed some preliminary simulation studies in this regard, which can be

summarized as follows.

We extend problem P to a multi-period one (the set of period is defined as 7 with
the total number of all periods is given as |7]). This multi-period problem is defined as

follows.
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(1). In each period #, ¢ €T, the expected service completion time for each customer 4,
heH,is d,, . The service processing at customer 4, is p, , which is linear function of
the customer’s non-renewable resource demand, O,,. O,, is determined in the
following way. At the end of each period, each customer / observes a forecasting demand
for the next period, Q,,. The actual demand Q,, is a stochastic function of O, .
Note in this setting, (,, can be zero, i.e., there is no demand for some hospitals in some

periods.

(i1). We have two types of DCs, regular and mobile. Each regular DC k, k€ K,has a

fixed location, and receives at most one batch of non-renewable resources from its

upstream suppliers in each period 7. Each batch is defined by a batch size, Q,,, and a
forecasting batch arrival time, 4,, k€K . The actual demand 4, is a stochastic

function of A4;,. Starting from time 4, ,, the total quantity of non-renewable resources
that are available for delivery to customers equal to Q,, plus those leftover from

previous batches at DC k. The mobile DC kj has an initial location in one period, and

moves to the location of the most urgent customer with smallest &,, among all that

have demand in the next period, at the end of the current period. The distribution time

from a certain DC to a certain customer 4, is given by 7, (same value for all periods).

The allocation rule from DC to customer is a greedy type heuristic: starting from the

customers which has the earliest due date in the current period, for each customer A,



139

sequence all the DCs including the mobile one in an increasing order based on 7, . Let

the nearest DC serve it, if that DC doesn’t have enough batch supply, let the second
nearest DC serve it, if both DCs couldn’t fulfill it, let the third nearest one serve it, so on
so forth. After one customer is fully served, we move to the next customer with the
earliest due date. This process terminates when either all customers are served or all DCs

have no stock left.

(ii1). Each team i, i € M, departs from its base at time 0 in each period, and visits and
serves the nearest customer among all that have demand. After serving one customer, the
team should visit the next customer that has demand and is nearest to its current location
(the location of the incumbent). Each team continues to visit customers until the expected
arrival time at a certain customer exceeds the maximal length of a period. At the end of
each period, the team should come back to its base. The travel time between any two

customer sites in the same team is given by 7z, ,. (same value for all periods).

We aim to compare the scenario where there exists a mobile DC that travels on
site freely and the scenario where all DCs are regular DCs. The second scenario is served
as comparison base that can be used to evaluate the potential cost savings and
effectiveness of our first scenario. The numbers of DCs in the two scenarios are the same.
The measure for the comparison is the total tardiness across all hospitals over all periods.

Our simulation procedure is described as follows.

Simulation Procedure:




Input:
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The initial locations of team bases, regular and mobile DCs, and customers were

randomly generated in a 10*10 square area (adjusted by traveling time). The length of

each period is 24 hours, and the total number of periods in one simulation run is |7]=100.

Note 7, and r,, can be computed by the distance between two corresponding

locations. For example, 7, =\/(xh -x,) +(y,—»,)" where x and y represent x-axis

and y-axis coordinates of customers /# and /’. The forecasting demands are generated by

two ways. One way is a hybrid of a uniform distribution and a Poisson distribution. The

other way is a uniform distribution multiplied by a triangle function centered at /=50. The

other parameter distributions and value ranges are summarized in Table 6.1.

Parameters

Range and Distribution of the Parameter

Value

Coordinates of bases, DCs, and

customers

Uniform (0, 10)

The total number of customers (n,,)

20, 30

The total number of Regular DCs (n, )

2,3

Number of Mobile DC




The total number of travel teams (n v )

3,4

Forecasting demand size ( Q; )

Uniform (0, 30)* Poisson(t, 50),

Uniform (0, 30)*(1-|1-2*/|T]|)

Actual demand size ( Qh’, )

O, + Normal(0,5)

Hospital service time duration (p;)

Qh, t/ 5

Batch size (QOy,)

Uniform (0, 200)

Forecasting batch arrival time (4, ,)

Uniform (0, 12)

Actual batch arrival time (A, ,)

A, , + Normal(0,3)

Customer service completion time (d},,)

Uniform (6, 18)

Table 6.1 Parameters Used in the Empirical Study for the RH Algorithm

The flow chart that illustrates this simulation process is as

141
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Generate initial locations of bases, DCs. and customers randomly.
Generate the distribution time between different locations.
Generate the forecasting customer demand, initial batch quantity,
forecasting batch arrival time, and customer expected completion
time.

4

At period t, rezlize the actual demand of each customer and the
actual batch arrival time at each regular and mobile DC.

L4

Allocate each team to serve customers within 2 period.
Allocate DCs to fulfill customers.

' )

‘ Atthe end of period t calculate the customers’ tardiness. update ‘

DCs’ stock, move the teams back to the base and position the
mobile DC to the customer who has the most urgent forecasting
demand in the next period.

v

[ Ist=|T|?
' Yes

[ Terminate the simulation run with statistics }

follows.

Figure 6.1 A Flowchart of the Simulation Process of Evaluation of Mobile DC

In the experiments, we considered two types of networks: the smaller networks

have 2 regular DCs, 1 mobile DC, 3 travel teams (1, ,=3), and 20 hospitals (»,,=20), and
the larger networks have 3 regular DCs, 1 mobile DC, 4 teams (7, =4), and 30 hospitals
(n,,=30). In each setting, we randomly run the simulation 100 times for each of two

different customer forecasting demand distributions. Figures 2 to 5 present the simulation
results based on different networks. We used the average tardiness per customer per
period as the comparison measure between the scenario with mobile DC and the one with
only regular DCs. We can observe that in all network settings, the scenario with mobile
DC consistently provided lower level of average tardiness than that with only regular

DCs. The average tardiness savings for each of the four cases are summarized in Table

6.2 below.



Cases

Tardiness Savings

Possion Distribution with n,=n, =3 16.62%
andn, =20

Possion Distribution with n,=n, =4 14.28%
and n, =30

Triangle Distribution with 18.35%
n,=n, =3and n,k =20

Triangle Distribution with 17.07%

nK:nM|:4 and n, =30

Table 6.2 The Average Tardiness Savings for Four Different Cases

Avernge
Turdiness

Avernge Tardhness Comgparrson for Demaned with Posswon Distnbution
IK1=|M]=3 and |H]=20

Figure 6.2 Average Tardiness Comparison for Demand with Poisson Distribution with
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=4 and |H|=30

|K]=|M]

ion with

[M]=3 and |H|=20

K]

3 and nH=20

n,=n, =

Average Tardiness Companson for Demand with Possion Distnbution
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= = = — — Tath Mkl I
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Figure 6.3 Average Tardiness Comparison for Demand with Poisson Distribut

4 and nH=30

ne=n,=

Average Tardiness Comparison for Demand with Triangle Distribution

Without Molde DC|

=~ Wik MobikeDC

Average
Tardiness

Simulation Run
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Figure 6.4 Average Tardiness Comparison for Demand with Triangle Distribution with

n.=n, =3 and n, =20

10 = Average Tardiness Comparison for Demand with Triangle Distribution
Without Moble DC
ek |K|=|M]=4 and |H]=30

With Mobde DC

Average
Tardiness

Simulation Run

Figure 6.5 Average Tardiness Comparison for Demand with Triangle Distribution with

nK:nM=4 and nH=30

There are other management policies can be included in such simulation study.
The other two policies to be evaluated are a). the non-renewable resources
inventory-positioning before the hit of an natural disaster, and b). Using selected
hospitals as transshipment depots for the non-renewable resources. Managerial insights
generated from such simulation studies will have great values to support the practices of

disaster relief operations.

6.2. Designing Meta-heuristics for Solving General Versions of Problem P
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Real life emergency logistics are usually more complicated than those being
studied in academic literature. To make a solution approach to become a valuable tool to
support the day-to-day operations in practice, meta-heuristics have a significant role in
this regard. It will be interesting to design such meta-heuristics that are able to derive
operations schedules for the problems beyond the one we studied in this dissertation, such
as those that including last minute change in batch arrival times, cancellation of hospital
orders, random travel times, deviation in travel team release times, and stochastic hospital
service times, etc.

When such more general scenarios are taking into the problem definition,
mathematical programming based approaches are no longer sufficient enough, and
meta-heuristics are the resort. In the current literature, there is a significant lack of studies
on design meta-heuristics for complex emergency logistics operations scheduling.
Examples of such meta-heuristics including hierarchical heuristics that allocate the
non-renewable resources after the operations schedule of travel teams has been developed
and cluster heuristics that partition the customer demand points into clusters and then
schedule the operations for serving each cluster to minimize the tardiness of serving the
customer group. Designing such meta-heuristics is certainly another interesting extension

of this dissertation research.



[1].

[6].

[9].

[12].

147

Bibliography

Afshar, A., and A. Haghani. 2012. “Modeling Integrated Supply Chain Logistics in
Real-time Large-scale Disaster Relief Operations.”Socio-Economic Planning Sciences 46

(4): 327-338.

. Ahuja, R.K., Huang, W., Romeijn, H.E. and Morales, D.R. (2007) A heuristic approach to

the multi-period single-sourcing problem with production and inventory capacities and

perishability constraints. INFORMS Journal on Computing 19(1) 14-26.

. Ahuja, R.K, Magnanti, T.L. and Orlin, J.B. (1993) Network Flows: Theory, Algorithms, and

Applications, Prentice Hall, Englewood Cliffs, N.J.

. Ahuja, R. K., K. Mehlhorn, J. Orlin, and R. E. Tarjan. 1990. “Faster Algorithms for the

Shortest Path Problem.” Journal of the ACM 37 (2): 213-223.

. Ait-Kadia, D., J.-B. Menye, and H. Kane. 2011. “Resources Assignment Model in

Maintenance Activities Scheduling.” International Journal of Production Research 49 (22):
6677-6689.

Aliev, R.A., Fazlollahi, B., Guirimov, B.G. and Aliev, R.R. (2007) Fuzzy-genetic approach
to aggregate production—distribution planning in supply chain management. Information

Sciences 177(20) 4241—4255.

. Alfieri, A., and P. Brandimarte. 1997. “Job Shop Scheduling with Delay-Renewable

Resources: A Comparison of Decomposition Strategies.” International Journal of

Production Research 35 (7): 1807-1823.

. Archetti, C., Bertazzi, L., Paletta, G. and Speranza, M.G. (2011) Analysis of the maximum

level policy in a production-distribution system. Computers and Operations Research
38(12) 1731-1746.
Armstrong, R., Gao, S. and Lei, L. (2008) A zero-inventory production and distribution

problem witha fixed customer sequence. Annals of Operations Research 159(1) 395—414.

. Assaf, S. A., and S. Al-Hejji. 2006. “Causes of Delay in Large Construction Projects.”

International Journal of Project Management 24 (4): 349-357.

. Bachlaus, M., M. K. Tiwarib, and F. T. S. Chan. 2009. “Multi-objective Resource

Assignment Problem in a Product-Driven Supply Chain Using a Taguchi-based DNA
Algorithm.” International Journal of Production Research 47 (9): 2345-2371.
Balcik, B., and B. M. Beamon. 2008. “Facility Location in Humanitarian Relief.”



[23].

[24].

[25].

148

International Journal of Logistics: Research and Applications 11 (2): 101-121.

. Balcik, B.,, B. M. Beamon, and K. Smilowitz. 2008. “Last Mile Distribution in

Humanitarian Relief.” Journal of Intelligent Transportation Systems 12 (2): 51-63.

. Balcik, B., B. M. Beamon, C. C. Krejci, K. M. Muramatsu, and M. Ramirez. 2010.

“Coordination in Humanitarian Relief Chains: Practices, Challenges and Opportunities.”

International Journal of Production Economics 126 (1): 22-34.

. Ballestin, F., and N. Trautmann. 2008. “An Iterated-local-search Heuristic for the

Resource-constrained Weighted Earliness-Tardiness Project Scheduling Problem.”

International Journal of Production Research 46 (22): 6231-6249.

. Bard, J.F. and Nananukul, N. (2009a) The integrated production—inventory—distribution

—routing problem. Journal of Scheduling 12(3) 257—280.

. Bard, J.F. and Nananukul, N. (2009b) Heuristics for a multiperiod inventory routing

problem with production decisions. Computers and Industrial Engineering 57(3) 713—723.

. Bard, J.F. and Nananukul, N. (2010) A branch-and-price algorithm for an integrated

production and inventory routing problem. Computers and Industrial Engineering 37(12)

2202-2217.

. Beasley, J.E. (1983) Route-first cluster-second methods for vehicle routing. Omega 11(4)

403—-408.

. Beraldi, P., Ghiani, G., Grieco, A., and Guerriecro, E., 2008. Rolling-horizon and

fix-and-relax heuristics for the parallel machine lot-sizing and scheduling problem with

sequence-dependent set-up costs. Computers & Operations Research, 35(11), 3644-3656.

. Berman, O. and Wang, Q. (2006) Inbound logistic planning: minimizing transportation and

inventory cost. Transportation Science 40(3) 287-299.

. Bilgen, B. and Giinther, H.-O. (2010) Integrated production and distribution planning in the

fast moving consumer goods industry: a block planning application. OR Spectrum 32(4)
927-955.

Bolduc, M.-C., Laporte, G., Renaud, J. and Boctor, J.J. (2010) A tabu search heuristic for
the split delivery vehicle routing problem with production and demand calendars. European
Journal of Operational Research 202(1) 122—130.

Bottcher, J., A. Drexl, R. Kolisch, and F. Salewski. 1999. “Project Scheduling under
Partially Renewable Resource Constraints.” Management Science 45 (4): 543-559.

Boudia M., Louly, M.A.O. and Prins, C. (2005) Combined optimization of production and
distribution. In: International Conference on Industrial Engineering and Systems

Management (IESM’05, Marrakech, Morocco) Mons, Belgium, Extended version to appear



[35].

[36].

[37].

[38].

149

in Production Planning and Control.

. Boudia, M., Louly, M.A.O. and Prins, C. (2007) A reactive GRASP and path relinking for

a combined production—distribution problem. Computers and Operations Research 34(11)

3402-3419.

. Boudia, M. and Prins, C. (2009) A memetic algorithm with dynamic population

management for an integrated production—distribution problem. European Journal of

Operational Research 195(3) 703-715.

. Brenner, U. 2008. “A Faster Polynomial Algorithm for the Unbalanced Hitchcock

Transportation Problem.” Operations Research Letters 36 (4): 408—413.

. Brucker, P., and A. Kramer. 1996. “Polynomial Algorithms for Resource-constrained and

Multiprocessor Task Scheduling Problems.”European Journal of Operational Research 90

(2): 214-226.

. Brucker, P., A. Drexl, R. Mohring, K. Neumann, and E. Pesch. 1999.

“Resource-Constrained Project Scheduling: Notation, Classification, Models, and

Methods.” European Journal of Operational Research 112 (1): 3-41.

. Campbell, A. M., D. Vandenbussche, and W. Hermann. 2008. “Routing for Relief Efforts.”

Transportation Science 42 (2): 127-145.

. Can, A., and G. Ulusoy. 2010. Multi-Project Scheduling with 2-Stage Decomposition.

Technical Report. Sabanci University. ID: SU FENS 2011/0010.

. Caunhye, A., X. Nie, and S. Pokharel. 2012. “Optimization Models in Emergency

Logistics: A Literature Review.” Socio-Economic Planning Sciences 46 (1): 4—13.

. Celano, G., A. Costa, and S. Fichera. 2008. “Scheduling of Unrelated Parallel

Manufacturing Cells with Limited Human Resources.” International Journal of Production
Research 46 (2): 405-427.

Cetinkaya, S., Uster, H., Easwaran, G. and Keskin, B.B. (2009) An integrated outbound
logistics model for Frito-Lay: Coordinating aggregate-level production and distribution
decisions. Interfaces 39(5) 460—475.

Chan, F. T. S., T. C. Wong, and L. Y. Chan. 2006. “Flexible Job-shop Scheduling Problem
under Resource Constraints.” International Journal of Production Research 44 (11):
2071-2089.

Chandra, P. (1989) On coordination of production and distribution decisions. Ph.D.
Dissertation, Department of Decision Sciences, The Wharton School, University of
Pennsylvania, Philadelphia, PA.

Chandra, P. and Fisher, M.L. (1994) Coordination of production and distribution planning.



[48].

[49].

[50].

[51].

150

European Journal of Operational Research 72(3) 503—517.

. Changfeng, Y., Z. Dinghua, P. Wenli, and B. Kun. 2006. “Research on Resources

Optimization Deployment Model and Algorithm for Collaborative Manufacturing
Process.” International Journal of Production Research 44 (16): 3279-3301.

. Chen, C.L. and Lee, W.C. (2004) Multi-objective optimization of multi-echelon supply

chain networks with uncertain product demands and prices. Computers and Chemical

Engineering 28(6-7) 1131-1144.

. Chen, Z.L. (2010) Integrated production and outbound distribution scheduling: Review and

extensions. Operations Research 58(1) 130—148.

. Chen, W.-H. and Thizy J.-M. (1990) Analysis of relaxations for the multi-item capacitated

lot-sizing problem. Annals of Operations Research 26(1) 29-72.

. Chopra, S. and Meindl, P. (2001) Supply chain management: strategy, planning, and

operations. Prentice Hall, Upper Saddle River, NJ.

. Christofides, N., Mingozzi, A. and Toth, P. (1979) The vehicle routing problem. In

Christofides, N., Mingozzi, A., Toth, P. and Sandi, C. (eds.) Combinatorial Optimization.
Wiley, Chichester.

. de Araujo, S., Arenales, M., and Clark, A., 2007. Joint rolling-horizon scheduling of

materials processing and lot-sizing with sequence-dependent setups. Journal of Heuristics,

13 (4), 337-358.

. Debels, D., and M. Vanhoucke. 2007. “A Decomposition-based Genetic Algorithm for the

Resource-Constrained Project-Scheduling Problem.” Operations Research 55 (3): 457—469.

. Deblaere, F., E. Demeulemeester, W. Herroelen, and S. Van de Vonder. 2007. “Robust

Resource Allocation Decisions in Resource-Constrained Projects.” Decision Sciences 38
(1): 5-37.

Deblaere, F., E. Demeulemeester, and W. Herroelen. 2011a. “Reactive Scheduling in the
Multi-Mode RCPSP.” Computers and Operations Research 38 (1): 63-74.

Deblaere, F., E. Demeulemeester, and W. Herroelen. 2011b. “Proactive Policies for the
Stochastic Resource-Constrained Project Scheduling Problem.” European Journal of
Operational Research 214 (2): 308-316.

Demirkol, E.and Uzsoy, R., 2000. Decomposition methods for reentrant flow shops with
sequence-dependent setup times.Journal of Scheduling, 3 (3), 155-177.

Depuy, G. W., and G. E. Whitehouse. 2001. “A Simple and Effective Heuristic for the
Resource Constrained Project-Scheduling Problem.” International Journal of Production

Research 39 (14): 3275-3287.



[56].

[59].

[60].

[61].

[62].

[63].

[64].

151

. Dhaenens-Flipo, C. and Finke, G. (2001) An integrated model for an industrial production

distribution problem. IIE Transactions 33(9) 705—715.

. Dogan, K and Goetschalckx, M. (1999) A primal decomposition method for the integrated

design of multi-period production-distribution systems. IIE Transactions 31(11)

1027-1036.

. Eckstein, A. L. H., and T. R. Rohleder. 1998. “Incorporating Human Resources in Group

Technology/Cellular Manufacturing.” International Journal of Production Research 36 (5):

1199-1222.

. Eksioglu, S.D., Eksioglu, B. and Romeijn, H.E. (2007) A Lagrangean heuristic for

integrated production and transportation planning problems in a dynamic, multi-item
two-layer supply chain. IIE Transactions 39(2) 191-201.

Erenguc, S.S., Simpson, N.C. and Vakharia, A.J. (1999) Integrated production /distribution
planning in supply chains: An invited review. European Journal of Operational Research

115(2) 219-236.

. Fahimnia, B., Luong, L. and Marian, R. (2008a) An integrated model for the optimisation

of a two-echelon supply network. Journal of Achievements in Materials and Manufacturing

Engineering 31(2) 477—-484.

. Fahimnia, B., Luong, L. and Marian, R. (2008b) Optimization/simulation modeling of the

integrated production-distribution plan: an innovative survey. WSEAS Transactions on
Business and Economics 5(3) 52—65.

Fahimnia, B., Farahani, R.Z., Marian, R. and Luong, L. (2013) A review and critique on
integrated production-distribution models and techniques. Journal of Manufacturing
Systems 32(1) 1-19.

Fenton, G. 2003. “Coordination in the Great Lakes.” Forced Migration Review, September,
23-24.

Fumero, F. and Vercellis, C. (1997) Integrating distribution, machine assignment and
lot-sizing via Lagrangean Relaxation. International Journal of Production Economics 49(1)
45-54.

Fumero, F. and Vercellis, C. (1999) Synchronized development of production, inventory,
and distribution schedules. Transportation Science 33(3) 330—340.

Gagnon, M., G. D’Avignona, and F. Boctor. 2009. An Algorithm for the MRCPS Problem
with Renewal and Non-Renewal Resource Types. Quebec: Faculty of Business
Administration, Laval University.

Gebennini, E., Gamberini, R. and Manzini, R. (2009) An integrated



[74].

[75].

[76].

[77].

152

production—distribution model for the dynamic location and allocation problem with safety

stock optimization. International Journal of Production Economics 122(1) 286—304.

. Geismar, H.N., Laporte, G., Lei, L. and Sriskandarajah, C. (2008) The integrated

production and transportation scheduling problem for a product with a short lifespan.

INFORMS Journal on Computing 20(1) 21-33.

. Gen, M.S. and Syarif, A. (2005) Hybrid genetic algorithm for multi-time period

production/distribution planning. Computers and Industrial Engineering 48(4) 799—809.

. Gillet, B. and Miller, L. (1974) A heuristic algorithm for the vehicle dispatch problem.

Operations Research 22(2) 340—349.

. Gilmore, P. and Gomory, R. (1964) Sequencing a one-state variable machine: A solvable

case of the traveling salesman problem. Operations Research 12(5) 675-679.

. Groétschel, M. and Padberg, M.W. (1979) On the symmetric travelling salesman problem I:

Inequalities. Mathematical Programming 16(1) 265-280.

. Haghani, A., and S. C. Oh. 1996. “Formulation and Solution of a Multi-commodity,

Multi-modal Network Flow Model for Disaster Relief Operations.” Transportation

Research Part A: Policy and Practice 30 (3): 231-250.

. Hartmann, S., and D. Briskorn. 2010. “A Survey of Variants and Extensions of the

Resource-Constrained Project Scheduling Problem.” European Journal of Operational

Research 207 (1): 1-14.

. Huang, M., K. Smilowitz, and B. Balcik. 2012. “Models for Relief Routing: Equity,

Efficiency and Efficacy.” Transportation Research Part E 48 (1): 2—18.

. Hwang, N.-C., and K. Kogan. 2003. “Dynamic Approach to Human Resources Planning

for Major Professional Companies with a Peak-Wise Demand.” International Journal of
Production Research 41 (6): 1255-1271.

Inman, R. and Jones, P., 1993. Decomposition for Scheduling Flexible Manufacturing
Systems. Operations Research, 41 (3), 608-617.

Jang, Y.-J., Jang, S.-Y., Chang, B.-M. and Park, J. (2002) A combined model of network
design and production/distribution planning for a supply network. Computers and
Industrial Engineering 43(1-2) 263—-281.

Kannan, G., Sasikumar, P. and Devika, K. (2010) A genetic algorithm approach for solving
a closed loop supply chain model: A case of battery recycling. Applied Mathematical
Modeling 34(3) 655-670.

Karakitsiou, A. and Migdalas, A. (2008) A decentralized coordination mechanism for

integrated production—transportation—inventory problem in the supply chain using



[87].

[88].

[89].

[90].

[91].

. Klein, R. 2000. “Project Scheduling with Time-varying Resource Constraints.

153

Lagrangian relaxation. Operational Research 8(3) 257-278.

. Karsu, O., and M. Azizoglu. 2012. “The Multi-Resource Agent Bottleneck Generalized

Assignment Problem.” International Journal of Production Research 50 (2): 309-324.

2

International Journal of Production Research 38 (16): 3937-3952.

. Lee, C.-Y., and L. Lei. 2001. “Multiple-Project Scheduling with Controllable Project

Duration and Hard Resource Constraint: Some Solvable Cases.” Annals of Operations

Research 102 (1-4): 287-307.

. Lee, K., Lei, L., Pinedo, M. and Wang, S., 2013. (2013): Operations scheduling with

multiple resources and transportation considerations, International Journal of Production

Research, DOI: 10.1080/00207543.2013.781283

. Lee, Y.H., Kim, S.H. and Moon, C. (2002) Production-distribution planning in supply

chain using a hybrid approach. Production Planning and Control 13(1) 35—46.

. Lee, Y.H. and Kim, S.H. (2002) Production-distribution planning in supply chain

considering capacity constraints. Computers and Industrial Engineering 43(1-2) 169—190.

. Lee, Y. H., and M. Pinedo. 1997. “Scheduling Jobs on Parallel Machines with Sequence

Dependent Setup Times.” European Journal of Operational Research 100 (3): 464-474.

. Lei, L., Liu, S., Ruszczynski, A. and Park, S. (2006) On the integrated production,

inventory, and distribution routing problem. IIE Transactions 38(11) 955-970.

. Lei, L., Zhong, H. and Chaovalitwongse, W.A. (2009) On the integrated production and

distribution problem with bidirectional flows. INFORMS Journal on Computing 21(4)
585-598.

Lejeune, M.A. and A. Ruszczynski. (2007) An efficient trajectory method for probabilistic
production—inventory—distribution problems. Operations Research 55(2) 378—394.

Leus, R., and W. Herroelen. 2004. “Stability and Resource Allocation in Project Planning.”
IIE Transactions 36 (7): 667—682.

Li, Z. and Ierapetritou, M., 2010. Rolling horizon based planning and scheduling
integration with production capacity consideration. Chemical Engineering Science, 65 (22),
5887-5900.

Liang, T.F. and Cheng, H.W. (2009) Application of fuzzy sets to manufacturing
/distribution planning decisions with multi-product and multi-time period in supply chains.
Expert Systems with Applications 36(2) 3367—3377.

Liu, S., Lei, L. and Park, S. (2008) On the multi-product packing-delivery problem with

fixed route. Transportation Research Part E-Logistics and Transportation Review 44(3)



154

350-360.

[92]. Mausser, H. and Lawrence, S., 1997. Exploiting block structure to improve
resource-constrained project schedules. Glover, F., Osman, I., and Kelley, J., eds.
Metaheuristics: State of the Art. Kluwer.

[93]. Mazzola, J.,, and A. Neebe. 1986. “Resource-Constrained Assignment Scheduling.”
Operations Research 34 (4): 560-572.

[94]. Mingozzi, A., M. A. Boschetti, S. Ricciardelli, and L. Bianco. 1999. “A Set Partitioning
Approach to the Crew-Scheduling Problem.” Operations Research 47 (6): 873—888.

[95]. Mokhtari, H., I. N. K. Abadia, and A. Cheraghalikhani. 2011. “A Multi-Objective Flow
Shop Scheduling with Resource-Dependent Processing Times: Trade-Off between
Makespan and Cost of Resources.” International Journal of Production Research 49 (19):
5851-5875.

[96]. Moon, C., J. S. Kim, and M. Gen. 2004. “Advanced Planning and Scheduling Based on
Precedence and Resource Constraints for E-Plant Chains.” International Journal of
Production Research 42 (15): 2941-2955.

[97]. Mula, J., Peidro, D., Diaz-Madronero, M. and Vicens, E. (2010) Mathematical
programming models for supply chain production and transport planning. European Journal
of Operational Research 204(3) 377-390.

[98]. Munkres, J. 1957. “Algorithms for the Assignment and Transportation Problems.” Journal
of the Society of Industrial and Applied Mathematics 5 (1): 32—38.

[99]. Naso, D., Surico, M., Turchiano, B. and Kaymak, U. (2007) Genetic algorithms for
supply-chain scheduling: A case study in the distribution of ready-mixed concrete.
European Journal of Operational Research 177(3) 2069—2099.

[100]. Nolz, P. C., F. Semet, and K. F. Doerner. 2011. “Risk Approaches for Delivering Disaster
Relief Supplies.” OR Spectrum 33 (3): 543-569.

[101]. Nudtasomboon, N., and S. Randhawa. 1997. “Resource-Constrained Project Scheduling
with Renewable and Non-Renewable Resources and Time-Resource Tradeoffs.”
Computers & Industrial Engineering 32 (1): 227-242.

[102]. Orlin, J., 1993. A Faster Strongly Polynomial Minimum Cost Flow Algorithm. Operations
Research,41 (2), 338-350.

[103]. Onwubolu, G. C., and M. Mutingi. 2001. “Optimizing the Multiple Constrained Resources
Product Mix Problem Using Genetic Algorithms.” International Journal of Production
Research 39 (9): 1897-1910.

[104]. Ozdamar, L., E. Ekinci, and B. Kucukyazici. 2004. “Emergency Logistics Planning in



155

Natural Disasters.” Annals of Operations Research 129 (1-4): 217-245.

[105]. Palpant, M., Artigues, C. and Michelon, P., 2004. LSSPER: Solving the
resource-constrained project scheduling problem with large neighborhood search. Annals
of Operations Research, 131 (1-4), 237-257.

[106]. Park, Y.B. (2005) An integrated approach for production and distribution planning in
supply chain management. International Journal of Production Research 43(6) 1205—1224.

[107]. Rajkumar, M., P. Asokan, N. Anilkumar, and T. Page. 2011. “A GRASP Algorithm for
Flexible Job-Shop Scheduling Problem with Limited Resource Constraints.” International
Journal of Production Research 49 (8): 2409-2423.

[108]. Ranjbar, M., B. D. Reyck, and F. Kianfar. 2009. “A Hybrid Scatter Search for the Discrete
Time/Resource Trade-Off Problem in Project Scheduling.” European Journal of
Operational Research 193 (1): 35-48.

[109]. Rizk, N., Martel, A. and D'Amours, S. (2006) Multi-item dynamic production —distribution
planning in process industries with divergent finishing stages. Computers and Operations
Research 33(12) 3600—3623.

[110].Robinson, K. R., and S. A. Moses. 2006. “Effect of Granularity of Resource Availability
on the Accuracy of Due Date Assignment.” International Journal of Production Research
44 (24): 5391-5414.

[111]. Rosencrantz, D.J., Steams, R.E. and Lewis, P.M. (1974) Approximate algorithms for the
TSP. Proceedings 15th IEEE Symposium on Switching and Automata Theory 33—42.
[112]. Ruokokoski, M., Solyali, O., Cordeau, J.-F., Jans, R. and Sural, H. (2010) Efficient
formulations and a branch-and-cut algorithm for a production-routing problem. GERAD

Tech. Rep. G-2010-66, HEC Montreal, Canada.

[113]. Sabri, E.H. and Beamon, B.M. (2000) A multi-objective approach to simultaneous strategic
and operational planning in supply chain design. Omega 28(5) 581-598.

[114]. Safaei, A.S., Husseini, S.M.M., Farahani, R.Z., Jolai, F. and Ghodsypour, S.H. (2010)
Integrated multi-site production-distribution planning in supply chain by hybrid modeling.
International Journal of Production Research 48(14) 4043—4069.

[115]. Sarmiento, A. M. and Nagi, R. (1999) A review of integrated analysis of production
distribution systems. IIE Transactions 31(11) 1061-1074.

[116]. Schirmer, A. 2001. “Resource-Constrained Project Scheduling: An Evaluation of Adaptive
Control Schemes for Parameterized Sampling Heuristics.” International Journal of
Production Research 39 (7): 1343-1365.

[117].Shen, Z.M. and Qi, L. (2007) Incorporating inventory and routing costs in strategic



156

Location models. European Journal of Operational Research 179(2) 372-389.

[118]. Sheu, J.-B. 2007. “A Coordinated Reverse Logistics System for Regional Management of
Multi-Source Hazardous Wastes.” Computers & Operations Research 34 (5): 1442—1462.

[119]. Sheu, C., L. J. Krajewski, and G. Cai. 2012. “A Heuristic for Designing Manufacturing
Focus Units with Resource Considerations.” International Journal of Production Research
50 (6): 1608—1623.

[120]. Simons, J. V., Jr., M. D. Stephens, and W. P. Simpson, III. 1999. “Simultaneous versus
Sequential Scheduling of Multiple Resources Which Constrain System Throughput.”
International Journal of Production Research 37 (1): 21-33.

[121]. Sonia and Puri, M., 2004. Two Level Hierarchical Time Minimizing Transportation
Problem. Sociedad de Estadistica e InvestigacionOperativa, 12 (2), 301-330.

[122]. Sprecher, A., 2002. Network decomposition techniques for resource constrained project
scheduling. Journal of the Operational Research Society, 53 (4), 405-414.

[123]. Thomas, D.J. and Griffin, P.M. (1996) Coordinated supply chain management. European
Journal of Operational Research 94(1) 1-15.

[124]. Tormos, P., and A. Lova. 2003. “An Efficient Multi-Pass Heuristic for Project Scheduling
with Constrained Resources.” International Journal of Production Research 41 (5):
1071-1086.

[125]. Van de Vonder, S., E. Demeulemeester, W. Herroelen, and R. Leus. 2006. “The Trade-Off
between Stability and Makespan in Resource-Constrained Project Scheduling.”
International Journal of Production Research 44 (2): 215-236.

[126]. Vanhoucke, M., E. Demeulemeester, and W. Herroelen. 2001a. “An Exact Procedure for
the Resource-Constrained Weighted Earliness—Tardiness Project Scheduling Problem.”
Annals of Operations Research 102 (1-4): 179-196.

[127]. Vanhoucke, M., E. Demeulemeester, and W. Herroelen. 2001b. “On Maximizing the Net
Present Value of a Project under Renewable Resource Constraints.” Management Science
47 (8): 1113-1121.

[128]. Wang, H.Y., Liu, D.-C., Xing, T. and Zheng, L. (2010) A dynamic model for serial supply
chain with periodic delivery policy. International Journal of Production Research 48(3)
821-834.

[129]. Wong, C. S., F. T. S. Chan, and S. H. Chung. 2012. “A Joint Production Scheduling
Approach Considering Multiple Resources and Preventive Maintenance Tasks.”
International Journal of Production Research 51 (3): 883—-896.

[130]. Wright, P., M. Liberatore, and R. Nydick. 2006. “A Survey of Operations Research Models



157

and Applications in Homeland Security.” Interfaces 36 (6): 514-529.

[131].Yi, W., and A. Kumar. 2007. “Ant Colony Optimization for Disaster Relief Operations.”
Transportation Research Part E: Logistics and Transportation Review 43 (6): 660—672.

[132]. Yilmaz, P. and Catay, B. (2006) Strategic level three-stage production distribution planning
with capacity expansion. Computers and Industrial Engineering 51(4) 609—620.

[133]. Yimer, A.D. and Demirli, K. (2010) A genetic approach to two-phase optimization of
dynamic supply chain scheduling. Computers and Industrial Engineering 58(3) 411-422.

[134]. Yossiri, A., Cordeau, J.-F. and Jans, R. (2012) Optimization-based adaptive large
neighborhood search for the production routing problem. Transportation Science
DOI:10.1287/trsc.1120.0443.

[135]. Yuan, Y., and D. Wang. 2009. “Path Selection Model and Algorithm for Emergency
Logistics Management.” Computers & Industrial Engineering 56 (3): 1081-1094.

[136]. Yung, K.-L., Tang, J., Ip, A.W.H. and Wang, D. (2006) Heuristics for joint decisions in

production, transportation, and order quantity. Transportation Science 40(1) 99—-116.



Appendix I. Matlab MIP Code for Problem P

function Y= bigurobi(H,K,M,Nb,Q _h,n i,p h,Q kj,A kj,d h,tau kh,tau h)
var z,q,s, T
nz= K*Nb*H;
Al=zeros(H,2*nz+2*H);
b1=Q h';
for h=1:H
X= zeros(1,H); X(h)=1;
Al(h,:)= [zeros(1,nz),repmat(X,1,Nb*K),zeros(1,2*¥H)];

end

A2= zeros(Nb*K,2*nz+2*H);
b2= reshape(Q_kj,K*Nb,1);
for j= 1:Nb
for k= 1:K
X=zeros(1,nz);
X((H*Nb*(k-1)+(-1)*H+1):(H*Nb*(k-1)+j*H))= ones(1,H);
A2((j-1)*K+k,:)= [zeros(1,nz),X,zeros(1,2*H)];
end

end

A3=zeros(nz,2*nz+2*H);
b3= zeros(nz,1);
for k= 1:K

for j= 1:Nb

for h=1:H
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m= (k-1)*Nb*H+(j-1)*H+h;
A3(m,m)=-Q_kj(k,j);
A3(m,m+nz)=1;
end
end
end
A4= zeros(nz,2*nz+2*H);
b4= zeros(nz,1);
for k=1:K
for j=1:Nb
for h=1:H
m= (k-1)*Nb*H+(j-1)*H+h;
A4(m,m)=A Kkj(k,j)+tau_kh(k,h);
A4(m,2*nz+h)= -1;
end
end
end
A5= zeros(H,2*nz+2*H);
b5= zeros(H,1);
if H>1
for h=1:(H-1)
AS5(h,(2*nz+h):(2*nz+h+1))=[1,-1];
b5(h)=-p_h(h)-tau_h(h+1);
end

end
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if M>1
for m=1:(M-1)
AS5(n_i(m),:)= zeros(1,2*nz+2*H);
A5(n_i(m),2*nz+n_i(m)+1)=-1;
b5(n_i(m))=-tau_h(n_i(m)+1);
end
end
A5(H,2*nz+1)=-1; % tau Ol<=s_1
b5(H)= -tau_h(1);
A6= zeros(H,2*nz+2*H);
b6=(p_h-d_h)}
for h=1:H
A6(h,2*nz+h)=-1;
A6(h,2*nz+H+h)=1;
end
A7= [zeros(nz),diag(ones(1,nz)),zeros(nz,2*H)];
A8= [zeros(H,2*nz),diag(ones(1,H)),zeros(H)];
A9= [zeros(H,2*nz+H),diag(ones(1,H))];
b7= zeros(nz+2*H,1);
try
clear model,;
model. A= sparse([A1;A2;A3;A4;A5;A6;A7;A8;A9]);
model.obj= [zeros(1,2*nz+H),ones(1,H)];
model.rhs= [b1;b2;b3;b4;b5;b6;b7];
model.sense= [repmat('='",1,H),repmat('<’,1,Nb*K+2*nz+H),repmat(">',1,3*H+nz)];

model.vtype= [repmat('B',1,nz),repmat('C',1,nz+2*H)];
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model.modelsense= 'min’;
clear params;
params.outputflag = 0;
result = gurobi(model, params);
%disp(result.objval)
%disp(result.x)

catch gurobiError

fprintf('Error reported\n');

end

Y= [result.objval,result.x"];

End
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Appendix II. Matlab RH Code for Problem P

tic;
7= zeros(51,H0);
Y= cogurobi(H0,K0,M0,Nb0,Q hO,n_i0,p h0,Q kjO,A kjO,d hO,tau khO,tau hO);
Z(1,:)= Y((2*K0*Nb0*H0+2):(2*K0*Nb0*HO0+HO0+1));
%Z(1,:)=d_ho0;
T= zeros(1,50);
for N=1:50
H= H0; K= K0; M= M0; Nb= Nb0;
Q h=Q hO;n_i=n_i0; p_ h=p hO;
Q kj=Q kjO; A kj=A kj0;d h=d hoO;
tau_kh=tau_khO; tau h=tau_hoO;
A kjl=A kj(:,1:2);
Q kj1=Q kj(:,1:2);
K1=K; Nbl=2;
n=I;
Z h=7(N,:);
while H>1

[Z hs,index]= sort(Z_h);

x=0; 1=1;

while x< sum(sum(Q_kj1)) && i<=length(index)

x=x+Q h(index(1));
i=i+1;
end

Hl=1i-2; MI1=M;



if i>length(index) && x< sum(sum(Q_kj1))
H1=1i-1;

end

X=1:H; index1= X(Z_h<=Z hs(H1));

Q h1=Q h(index1);

n_il=zeros(1,M);

for i=1:M
n_il(i)= sum(index1<=n_i(1));

end

p_hl=p h(indexl);

d hl1=d h(index1);

tau_khl=tau kh(:,index1);

tau_hl=tau h(index1);

nzl=KI1*Nbl*HI,

n_i10=n_il;

if length(unique(n_i10))< length(n_i10)
M1=MIl-(length(n_i10)-length(unique(n_i10)));
n_i10=unique(n_i10);

end

ifn_i10(1)==0
Ml1=MIl-1;
n_i10=n_i10(2:end);

end

Y= bigurobi(H1,K1,M1,Nb1,Q hl,n il0,p h1,Q kjl,A kjl,d hl,tau khl,tau hl);

z kjh1=Y(2:(nz1+1));
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q_kjh1=Y((nz1+2):(2*nz1+1));

s h1=Y((2*nz1+2):(2*nz1+H1+1));

T h1=Y((2*nzl1+H1+2):end);

Q _kjI=Q kj(:,(n+1):(n+2));

A kjl=A kj(:,(nt+1):(nt+2));

for h=1:H1

end

for k=1:K1

Q h1(h)=Q hl(h)-q kjh1((k-1)*Nb1*H1+h);

end

index2= sort([index1(Q_h1>0.001),X(Z_h>Z_hs(H1))]);

H= length(index?2);

if H~=0

Q_h(index1)=Q hl;
Q_h=Q_h(index2);
index1= index1(Q_h1<0.001);
d h=d h(index2);
Z_h=7 h(index2);
tau_kh= tau_kh(:,index2);
tau_h2=tau_h(index2);
n_i2= zeros(1,M);
fori= 1:M

n_i2(i)= sum(index2<=n_i(i));
end

Z1= Z(N+1,Z(N+1,:)==0);

if length(unique(n_i2))== length(n_i2) &&

n i2(1)~=0
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if sum(index1<=n_i(1))~=0 && index1(1)==1

tau_h2(1)=
tau_h2(1)+s_h1(max(index1(index1<index2(1))))+p_hl(max(index1(index1<index2(1))));

Z1(index1(index1<index2(1)))=s_hl(index1(index1<index2(1)));
end
if sum(index1<=n_i(1))~=0 && max(index1>index2(1) & index1<=n_i(1))==
index3= index1(index1>index2(1) & index1<=n_i(1));
index4= index2(index2<= n_i(1));
Z1(index3)=-1;
for ii= 1: (length(index4)-1)
if index4(ii+1)-index4(ii)>1

tau_h2(ii+1)= tau_h2(ii+1)+sum(tau_h(index3(index3<index4(ii+1) &
index3>index4(ii))))+sum(p_h(index3(index3<index4(ii+1) & index3>index4(ii))));

end
end
end
if M>1
fori= 1:(M-1)
if sum(index1<=n_i(i+1))~= sum(index1<=n_i(i))
if max(index1(index1<index2(n_i2(i)+1))>n_i(i))==1
tau_h2(n_i2(i)+1)=
tau_h2(n_i2(i)+1)+s_h1(max(index1(index1<index2(n_i2(i)+1)))-(n_i(i)-
n_il(i)))+p_hl(max(index1(index1<index2(n_i2(i)+1)))-(n_i(i)-n_i1(i)));

Z1(index1(index1<index2(n_i2(i)+1) & index1>n_i(i)))=
s_h1(index1(index1<index2(n_i2(i)+1)& index1>n_i(i))-(n_i(i)-n_i1(i)));

end

if max(index1>index2(n_i2(i)+1) & index1<=n_i(i+1))==1
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index3= index1(index1>index2(n_i2(i)+1) &
index1<=n_i(i+1));

index4= index2(index2>n_i(i) & index2<=n_i(i+1));
Z1(index3)=-1;
for ii= 1: (length(index4)-1)
if index4(ii+1)-index4(ii)>1
tau_h2(n_i2(i)+ii+1)=
tau_h2(n_i2(i)+ii+1)+sum(tau_h(index3(index3<index4(ii+1) &
index3>index4(ii))))+sum(p_h(index3(index3<index4(ii+1) & index3>index4(ii))));
end
end
end
end
end
end
n_i=n_i2;
Ml1=M;
elseif length(unique(n_i2))== length(n i2) && n i2(1)==0
Ml=M-1;
if sum(index1<=n_i(1))~=0
Z1(index1(index1<=n_i(1)))=s_hl(index1(index1<=n_i(1)));
end
for i= 1:M1
if sum(index1<=n_i(i+1))~= sum(index1<=n_i(i))
if max(index1(index1<index2(n_i2(i)+1))>n_i(i))==
tau_h2(n_i2(i)+1)=

tau_h2(n_i2(i)+1)+s_hl(max(index1(index1<index2(n_i2(i)+1)))-(n_i(i)-n_il(i)))+p_hl(max(ind
ex1(index1<index2(n_i2(i)+1)))-(n_i(i)-n_il(i)));
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Z1(index1(index1<index2(n_i2(i)+1) & index1>n_i(i)))=
s_h1(index1(index1<index2(n_i2(i)+1)& index1>n_i(i))-(n_i(i)-n_i1(i)));
end
if max(index1>index2(n_i2(i)+1) & index1<=n_i(i+1))==1
index3= index1(index1>index2(n_i2(i)+1) & index1<=n_i(i+1));
index4= index2(index2>n_i(i) & index2<=n_i(i+1));
Z1(index3)=-1;
for ii= 1: (length(index4)-1)
if index4(ii+1)-index4(ii)>1
tau_h2(n_i2(i)+ii+1)=
tau_h2(n_i2(i)+ii+1)+sum(tau_h(index3(index3<index4(ii+1) &
index3>index4(ii))))+sum(p_h(index3(index3<index4(ii+1) & index3>index4(ii))));
end
end
end
end
end
n_i=n_i2(2:end);
elseif length(unique(n_i2))~= length(n_i2) && n_i2(1)~=0
M1= M-(length(n_i2)-length(unique(n_i2)));
if sum(index1<=n_i(1))~=0 && index1(1)==

tau_h2(1)=
tau_h2(1)+s_h1(max(index1(indexl<index2(1))))+p_hl(max(index1(indexl<index2(1))));

Z1(index1(index1<index2(1)))=s_h1(index1(indexl<index2(1)));
end
if sum(indexl<=n_i(1))~= 0 && max(index1>index2(1) & indexl<=n_i(1))==1

index3= index1(index1>index2(1) & index1<=n_i(1));
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index4= index2(index2<=n_i(1));
Z1(index3)=-1;
for ii= 1: (length(index4)-1)

if index4(ii+1)-index4(ii)>1

tau h2(ii+1)= tau h2(ii+1)+sum(tau_h(index3(index3<index4(ii+1)
& index3>index4(ii))))+sum(p_h(index3(index3<index4(ii+1) & index3>index4(ii))));

end
end
end
[n_i2,tt]= unique(n_i2);
ifMl==
if sum(index1<=n_i(2))~= sum(index1<=n_i(1))

Z1(index1(index1>n_i(1)))=
s_hl(index1(index1>n_i(1))-(n_i(1)-n_il(1)));

end
else
n_it=n_i(tt); n_ilt=n_il(tt);
for i= 1:(M1-1)
if sum(index1<=n_it(i+1))~= sum(index1<=n_it(i))
if max(index1(index1<index2(n_i2(i)+1))>n_it(i))==1
tau h2(n_i2(1)+1)=

tau_h2(n_i2(i)+1)+s_hl(max(index1(index1<index2(n_i2(i)+1)))-(n_it(i)-n_ilt(i)))+p_hl(max(in
dex1(index1<index2(n_i2(i)+1)))-(n_it(i)-n_ilt(i)));

Z1(index1(index1<index2(n i2(i)+1) & index1>n _it(i)))=
s_hl(index1(index1<index2(n_i2(i)+1)& index1>n_it(i))-(n_it(i)-n_ilt(i)));

end
a= 1:length(n_i);

al=n_i(a(n_it(i)==n_i)+1);
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if max(index1>index2(n_i2(i)+1) & index1<=al)==
index3= index1(index1>index2(n_i2(i)+1) & index1<=al);
index4= index2(index2>n_it(i) & index2<= al);
Z1(index3)= -1;
for ii= 1: (length(index4)-1)
if index4(ii+1)-index4(ii)>1
tau_h2(n_i2(i)+ii+1)=
tau_h2(n_i2(i)+ii+1)+sum(tau_h(index3(index3<index4(ii+1) &
index3>index4(ii))))+sum(p_h(index3(index3<index4(ii+1) & index3>index4(ii))));
end
end
end
end
end
if tt(1)>1

Z1(index1(index1>n_i(1) & index1<=n_i(tt(1))))=
s_hl(index1(index1>n_i(1) & index1<=n_i(tt(1)))-(n_i(1)-n_il(1)));

end
for j=1:(length(tt)-1)
if tt(G+1)-tt(G)>1

Z1(index1(index1>n_i(tt(j)+1) & index1<=n_i(tt(j+1))))=
s_hl(index1(index1>n_i(tt(j)+1) & index1<=n_i(tt(G+1)))-(n_i(tt()+1)-n_il(tt(j)+1)));

end
end
end
n_i=n_ i2;
else

MI1=M-1-(length(n_i2)-length(unique(n_i2)));
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[n_i2,tt]= unique(n_i2);
if sum(index1<=n_i(1))~=0
Z1(index1(index1<=n_i(1)))=s_hl(index1(index1<=n_i(1)));
end
n_it=n_i(tt); n_ilt=n_il(tt);
for i= 1:M1
if sum(index1<=n_it(i+1))~= sum(index1<=n_it(i))
if max(index1(index1<index2(n_i2(i)+1))>n_it(i))==
tau_h2(n_i2(i)+1)=
tau_h2(n_i2(i)+1)+s_hl(max(index1(index1<index2(n_i2(i)+1)))-(n_it(i)-n_ilt(i)))+p_hl(max(in
dex1(index1<index2(n_i2(i)+1)))-(n_it(i)-n_ilt(i)));

Z1(index1(index1<index2(n_i2(i)+1) & index1>n_it(i)))=
s_hl(index1(index1<index2(n i2(i)+1)& index1>n_it(i))-(n_it(i)-n_ilt(i)));

end
a= l:length(n 1i);
al=n_i(a(n_it(i)==n_i)+1);
if max(index1>index2(n_i2(i)+1) & index1<=al)==
index3= index1(index1>index2(n_i2(i)+1) & index1<=al);
index4= index2(index2>n_it(i) & index2<= al);
Z1(index3)= -1;
for ii= 1: (length(index4)-1)
if index4(ii+1)-index4(ii)>1
tau_h2(n_i2(i)+ii+1)=
tau_h2(n_i2(i)+ii+1)+sum(tau_h(index3(index3<index4(ii+1) &
index3>index4(ii))))+sum(p_h(index3(index3<index4(ii+1) & index3>index4(ii))));
end

end

end
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end

end
if tt(1)>1

Z1(index1(index1>n_i(1) & index1<=n_i(tt(1))))=s_hl(index1(index1>n_i(1)
& index1<=n_i(tt(1)))-(n_i(1)-n_il1(1)));

end
for j=1:(length(tt)-1)
if tt(j+1)-tt(j)>1

Z1(index1(index1>n_i(tt(j)+1) & index1<=n_i(tt(j+1))))=
s_hl(index1(index1>n_i(tt(j)+1) & index1<=n_i(tt(G+1)))-(n_i(tt(j)+1)-n_il(tt(G)+1)));

end
end
n_i=n_i2(2:end);
end
tau_h=tau h2;
p_h=p_h(index2);
Z(N+1,Z(N+1,:)==0)= Z1,
M=M1;
n=n+1;
else
Z1=Z(N+1,Z(N+1,:)==0);
Z1(index1)=s hl;
Z(N+1,Z(N+1,:)==0)= Z1,
end

end
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if H==
Y= bigurobi(H,K,M,Nb1,Q h,n i,p h,Q kjl1,A kjl,d h,tau kh,tau h);
Z(N+1,Z(N+1,:)==0)= Y (2*K*Nb1+2);
end
if max(Z(N+1,:)==-1)==
for i= 2:HO
if Z(IN+1,1)==-1
Z(N+1,i)= Z(N+1,i-1)+p_hO(i-1)+tau_h0(i);
end
end
end
T(N)= sum(max(Z(N+1,:)+p_h0-d_h0,0));
end
Time= toc;
[a,b]= min(T);
minsumT= a;
minZ= Z(b+1,:);
Time
minsumT

minZ
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Appendix III. Matlab Managerial Insight Code for Problem P

HO= 50 ; MO=4; Nb0O=30; KO0=3;
n_i0=[12,24,37,50];
x=0:0.1:0.6;
y= zeros(10,length(x));
for ii=1:10
Q hO=rand(1,H0)*80+20;
p_h0=Q_h0/20;
Q_kjO=rand(K0,Nb0)*50+50;
A kjO= cumsum(rand(K0,Nb0)+5,2)-5;
d_hO= rand(1,H0)*HO;
d_hO(1:n_i0(1))=sort(d_hO(1:n_i0(1)));
for i=2:M0
d_hO((n_i0(i-1)+1)m_i0(@i))= sort(d_hO((n_i0(i-1)+1):n_i0(i)));
end
xh= sort(rand(1,H0))*100; yh= rand(1,H0)*100;
xk= sort(rand(1,K0))*100; yk= rand(1,K0)*100;
xm= sort(rand(1,M0))*100; ym= rand(1,M0)*100;
tau_khO= zeros(K0,HO0);
for k=1:K0
for h=1:HO
tau_khO(k,h)= sqrt((xh(h)-xk(k))"2+(yh(h)-yk(k))"2)/50;
end
end

tau_hO= zeros(1,HO0);
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tau_hO(1)= sqrt((xm(1)-xh(1))"2+(ym(1)-yh(1))"2)/50;
for h=2:H0
tau_hO(h)= sqrt((xh(h)-xh(h-1))"2+(yh(h)-yh(h-1))"2)/50;
end
for m=1:(M0-1)

tau_hO(n_i0(m)+1)=
sqrt((xm(m+1)-xh(n_i0(m)+1))"2-+(ym(m+1)-yh(n_i0(m)+1))"*2)/50;

end
y(ii, 1)= fiter2(H0,K0,M0,Nb0,Q hO,n i0,p h0,Q kjO,A kjO,d hO,tau khO,tau h0);
for i=2:length(x)
per=x(i);
g= per*sum(Q_h0);
r=rand(1,K0);
Q kjo(:,1)= g*r/sum(r);
y(ii,i)= fiter2(HO,KO,MO,Nb0,Q hO,n i0,p h0,Q kjO,A kjO,d hO,tau khO,tau h0);
end
y(ii,:)= y(ii,:)/y(ii, 1);
end
ybar= sum(y,1)/ii;
plot(x,ybar)
xlabel('x")
ylabel('ybar")

title('graph')
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Appendix IV. Matlab Simulation Code

T=100;

hos.number = 20;
team.number = 3;
dc.number = 3;
dcMidx = 3;

hos.loc = 10*rand(2,hos.number);
dc.loc = 10*rand(2,dc.number);
team.loc = 10*rand(2,team.number);

dc.Q=zeros(dc.number, T);
dc.A=zeros(dc.number, T);
dc.Acon=zeros(dc.number,T);
for k=1:dc.number
for t=1:T % number of periods
dc.Q(k,t)=fix(200*rand);
de.A(k,t)=fix(12*rand);
dc.Acon(k,t) = max(0,dc.A(k,t)+normrnd(0,3*rand)); %confirmed arrival time
end
end

hos.Q = zeros(hos.number,T);
hos.p = zeros(hos.number, T);
hos.d = zeros(hos.number, T);
hos.Qcon = zeros(hos.number, T);

for h=1:hos.number
for t=1:T
%hos.Q(h,t)=fix(rand*30)*(1 - 2*abs(0.5-t/T));% demand of hospital h at period t,
integer
hos.Q(h,t)=fix(rand*30)*poisspdf(t,50);
hos.d(h,t)=fix(6+12*rand); % due date of hospital h at period t, integer
hos.p(h,t)=hos.Qcon(h,t)/5; % processing time of hospital h at period t
end
end

tau_mh=zeros(team.number,hos.number);
tau_kh=zeros(dc.number,hos.number);

teamO = team,;
dc0 =dc;
hosO = hos;

for runtype = 0:1



team = teamO;
dc = dcO0;
hos = hos0;

hos.stock = zeros(hos.number,1);
dc.stock = zeros(dc.number, 1);
tardiness = ones(hos.number, T)*24;

if runtype ==

disp('"With mobile DC, Average tardiness is');
end
if runtype ==

disp(‘"Without mobile DC, Average tardiness is');
end

fort=1:T

if runtype ==
if t>1
[~,hidx] = max(hos.Q(:,t));
dc.loc(:,dcMidx) = hos.loc(:,hidx);
dc.Acon(dcMidx,t) = fix(6*rand);
end
end

dc.stock = dc.stock + dc.Q(:,t);
for h=1:hos.number

hos.Qcon(h,t) = max(1,hos.Q(h,t)+normrnd(0,5));
end
hos.t = zeros(hos.number, 1);%latest batch arrival time
hos.isServed = zeros(hos.number,1);
hos.isServed(hos.Qcon(:,t)==0) = 1;
tardiness(hos.isServed == 1,t) = 0;
team.t = zeros(team.number, 1);

for k=1:dc.number
for h=1:hos.number
tau_kh(k,h)=sqrt( (dc.doc(1,k)-hos.loc(1,k))"2
(dc.loc(2,k)-hos.loc(2,k))*2 );
end
end

[~,hosOrder] = sort(hos.d(:,t));
for h = hosOrder'
[~,dcOrder] = sort(tau_kh(:,h));
for k = dcOrder’
if hos.stock(h) >= hos.Qcon(h,t)
break;
end
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trans = min(hos.Qcon(h,t) - hos.stock(h),dc.stock(k));

if trans > 0
dc.stock(k) = dc.stock(k) - trans;
hos.stock(h) = hos.stock(h) + trans;
hos.t(h) = max(hos.t(h),dc.Acon(k,t)+tau_kh(k,h));
end
end

if hos.stock(h) < hos.Qcon(h,t)
if t<T
hos.Q(h,t+1) = hos.Q(h,t+1)+hos.Qcon(h,t);
end
end
end

hos.isServed(hos.Qcon(:,t)>hos.stock) = -1;

flag=1;
while flag ==

for m=1:team.number
for h=1:hos.number
tau_mh(m,h)=sqrt((team.loc(1,m)-hos.loc(1,h))"2+
((team.loc(2,m)-hos.loc(2,h)))"2 );
end
end

for m = 1:team.number

if sum(hos.isServed==0) == 0
flag = 0;
break;

end

serveldx = find(hos.isServed==0);
[~, idx] = min(tau_mh(m,serveldx));
h = serveldx(idx);

team.loc(:,m) = hos.loc(:,h);
team.t(m) = team.t(m) + tau_mh(m,h);
team.t(m) = max(hos.t(h), team.t(m));

if hos.p(h,t) + team.t(m) < 24
team.t(m) = team.t(m) + hos.p(h,t);
hos.stock(h) = hos.stock(h) - hos.Qcon(h,t);
hos.isServed(h) = 1;
tardiness(h,t) = max(0,team.t(m)-hos.d(h,t));
else
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end

end

end

team.t(m) = 24;
end

end

if flag =

break;%eall the hospital are served
end
%other wise, check team
flag = 0;
for m = 1:team.number

if team.t(m) < 24

flag=1;

end

end

tardiness_t = sum(tardiness, 1);
tardiness h = sum(tardiness,2);
tardiness_m(runtype +1) = mean(tardiness(:));
disp(tardiness m(runtype+1));

hos.Q;

hos.Qcon;
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