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ABSTRACT OF THE DISSERTATION 

Operations Scheduling 

with Renewable and Non-Renewable Resources 

by Shengbin Wang 

Dissertation Director: Dr. Lei Lei 

We study a supply chain operations scheduling problem subject to both renewable 

and non-renewable resources. After an operation has been completed, the non-renewable 

resource is consumed whereas the renewable resource may be resumed for the next 

operation. Of both the renewable and the non-renewable resources, limited amounts are 

available and they need to be delivered to the locations where they are needed. The 

operations have deadlines, and the availability of the renewable resources depends on the 

sequence of the operations. Our problem is to find a coordinated operations schedule for 

the non-renewable and renewable resources so that the total tardiness across all the 

customers in the given network is minimized.  

Part 1 of this dissertation presents an overview of existing solution methodologies for 

integrated supply chain operations scheduling/planning problems involving production, 

inventory, distribution, and routing. We take into account problems dealing with 

operational decisions and classify them according to their characteristics, such as time 

constraints and routing decisions that are directly related to our research problem. Various 

methodologies are presented and discussed, and their possible integrations, combinations, 

and extensions are discussed. 
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In Part 2 of the dissertation, we build a mixed integer-programming model, present a 

complexity classification for our problem, and show where the borderline lies between 

NP-Hardness and polynomial time solvability. We analyze the structural properties of our 

problem, provide strongly polynomial-time solutions for several special cases that have 

practical applications, and identify the cases that are computationally intractable. Finally, 

we propose a framework of heuristic procedures for solving more general versions of this 

problem. 

In Part 3 of this study, we introduce a mathematical programming based rolling 

horizon heuristic that is able to locate near optimal solutions within ten-minute of CPU 

time for networks up to 80 customer service operations. This heuristic solves the problem 

through an iterative process. In each iteration, a subset of customers and a subset of 

batches of non-renewable resources, together with the travel teams (renewable resources), 

are scheduled by solving a respective optimization problem of a much smaller size. 

Through an extensive empirical study with over 5,000 randomly generated test cases 

under various parameters, the empirical error gaps of this proposed solution approach, 

when compared to the best solution obtained by a commercial optimizer within one-hour 

of CPU time, are constantly within 5%.  

This work can be extended in several directions. One of them is to conduct a 

thorough simulation study to assess the impact of management policies on the 

effectiveness of emergency logistics involving bottleneck renewable and non-renewable 

resources. Another one is to design and evaluate meta-heuristics for solving a more 

general version of our problem. 
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Chapter 1. Introduction 

A supply chain is defined as an integrated business process with bidirectional flows 

of products, information, cash, and services, between tiers of suppliers, manufacturers, 

logistics partners, distributors, retailers, and customers. Due to fast changes in the 

marketplace and the rapid expansion of supply chains (Eksioglu et al., 2007), ensuring 

highly coordinated production, inventory, and distribution over a multi-echelon supply 

chain network is vital, and has an immediate impact on customer services and profit 

margins. This importance will continue to increase along with the following trends: 

Globalization: All functions in a supply chain network, such as procurement, 

production, distribution and consumptions, have now become more globalized.  Most 

multi-national firms have business facilities located over multiple continents, with many 

local markets to serve; face the need for emerging market penetration and the challenge 

of capacity shortages and rising shipping costs; and are constantly confronting 

environmental/sustainability concerns.  At the same time, the promises and flexibility of 

third-party logistics and subcontracting opportunities offer a great incentive to expand 

supply chains globally.  As supply chains expand, the need to ensure a more precise 

match between demand and supply increases the importance of integrated operations 

planning.

Pressure on lead time reduction and profit margin improvement: Since customer 

demand for both products and services typically changes over time, time-to-market is 
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more important than ever in order to meet the expectations of demanding customers.  

For most supply chains, production is not the only major process to be considered; there 

are many other stages, such as sourcing, distribution, inventory, packaging, and order 

processing that together could account for a significant portion of the lead time.  A 

less-coordinated supply chain process could easily diminish or eliminate the profit 

margin and lead to poor customer service.   

Advances in information technology: Advances in information technology during the 

past two decades have significantly improved data visibility (e.g., inventory visibility and 

shipping status) and information accessibility along the supply chain.  Data can be 

automatically collected, retrieved, and manipulated in various ways and shared by many 

supply chain partners (e.g., through RFID). Furthermore, today’s computing power 

allows us to solve larger-scale integrated operations planning problems relatively easily 

and more rapidly, which were difficult, if not impossible, only a few decades ago when 

optimization problems of a combinatorial nature were considered computationally 

intractable.  

Serving the needs of emerging non-commercial supply chains: A network for disaster 

relief operations is a typical illustration of a non-commercial supply chain. Disaster relief 

and emergency logistics (e.g., in response to Hurricane Katrina in Louisiana in 2005, the 

tsunami in Japan in 2011, and Hurricane Sandy in New Jersey and New York in 2012) 

usually cannot be effectively handled by a single state or a single local government. 

Today’s Internet allows the need for disaster relief to be communicated cross-country and 
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internationally within minutes of an event, and the rapid formation of disaster relief 

supply chains for quick response to people in the affected areas. A highly effective and 

fully integrated production and distribution operation that pulls supplies from different 

industries and states to ensure delivery of these resources to the people in an affected area 

is critical to human well-being. 

Among these trends in the application of integrated production and distribution 

operations, emergency logistics has received least attention in academia. This dissertation 

focuses on a particular topic in this area: emergency operations scheduling subject to both 

renewable and non-renewable resources. When operations scheduling becomes subject to 

both renewable and non-renewable resources and when the services of the customers 

depend on the availability of both types of resources at the same time, the resulting 

scheduling problems become very difficult (Haghani and Oh 1996). One reason is that 

the execution of an operation depends on the availability of both resources, each of which 

being subject to different constraints, making the problem much harder to solve relative 

to its counterpart that is subject to just one type of resource. In the literature, results for 

such scheduling problems involving both renewable and non-renewable resources are 

limited (e.g. Ait-Kadia, Menye and Kane 2011; Bottcher et al. 1999; Can and Ulusoy 

2010; Lee and Lei 2001; Nudtasomboon and Randhawa 1997). 

This operations scheduling problem is commonly encountered in disaster relief 

processes. During such a process, various medical supplies, such as syringes, antibiotics, 

surgical blades, vaccines, and bandages (i.e., non-renewable resources) as well as medical 
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teams consisting of nurses, doctors, and/or first aid social workers (i.e., renewable 

resources) have to be available at the same time in order to take care of the patients’ 

needs. One well-known case of such a challenge was the situation immediately following 

Hurricane Katrina, which had a devastating effect on New Orleans in 2005. Both federal 

and local governments launched their emergency response systems in order to help 

affected people. However, the most critical bottleneck in the entire process was the 

capacity of nurses. Even though medical kits and vaccines were delivered on time, 

patients could not be treated without the availability of nurses. As a more recent example, 

Hurricane Sandy, the largest Atlantic hurricane on record (http://en.wikipedia.org/ 

wiki/Hurricane_sandy), ruined the entire stocks of medical supplies at many local 

pharmacies while the demand for supplies (e.g., cardiac medicines, anti-clotting 

medicines, and statins) increased significantly, which led to many tough challenges in 

relief operations. The massive tornado that hit Oklahoma in late May 2013 is another 

example of resource-constrained emergency operations scheduling, where the tornado 

caused severe blood shortages in hospitals and shelters (http://www.thetimesnews.com 

/news/top-news/the-alamance-scene-blood-needed-in-oklahoma-tornado-aftermath-1.148

471) and delayed the medical treatments despite the availability of travelling medical 

teams. 

Such operations scheduling problems are also fairly common in the practice of 

project management, where the usage of non-renewable resources (e.g. construction 

materials and lumber supplies) and renewable resources (e.g. cement mixers, engineers, 

and trucks) have to be coordinated and synchronized. According to Assaf and Al-Hejji 
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(2006), poor communication and coordination of labor and construction supplies is one of 

the main causes of delays in large construction projects. Besides, labor shortage has been 

one of the most frequent causes of project delays. 

The rest of this dissertation is organized as follows. We survey the existing solution 

methodologies for integrated supply chain operations scheduling/planning problems 

involving production, inventory, distribution, and routing in Chapter 2. We take into 

account problems dealing with operational decisions and classify them according to their 

characteristics, such as time constraints and routing decisions that are directly related to 

our research problem. Various methodologies are presented and discussed, and their 

possible integrations, combinations, and extensions are discussed. In Chapter 3, we 

formally define our operations scheduling problem with renewable and non-renewable 

resources, and build a solid mixed integer-programming model towards the problem. 

Moreover, we present a complexity classification for our problem, and show where the 

borderline lies between NP-Hardness and polynomial time solvability in Chapter 4. In the 

same chapter, we also analyze the structural properties of our problem, provide strongly 

polynomial-time solutions for four special cases that have practical applications, and 

identify the cases that are computationally intractable. In Chapter 5, we introduce a 

rolling horizon based heuristic that is able to locate near optimal solutions within 

ten-minute of CPU time for networks up to 80 customer service operations. This heuristic 

solves the problem through an iterative process. In each iteration, a subset of customers 

and a subset of batches of non-renewable resources, together with the travel teams 

(renewable resources), are scheduled by solving a respective optimization problem of a 
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much smaller size. Through an extensive empirical study with over 5,000 randomly 

generated test cases under various parameters, the empirical error gaps of this proposed 

solution approach, when compared to the best solution obtained by a commercial 

optimizer within one-hour of CPU time, are constantly within 5%. Finally in Chapter 6, 

we discuss several extensions in various directions. One of them is to conduct a thorough 

simulation study to assess the impact of management policies on the effectiveness of 

emergency logistics involving bottleneck renewable and non-renewable resources. 

Another one is to design and evaluate meta-heuristics for solving a more general version 

of our problem. 
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Chapter 2. Literature Review 

In this chapter, we focus on the solution methodologies for solving various 

integrated/coordinated production and distribution operations planning problems 

reported in the current literature. This literature review does not focus on results related to 

decisions for supply chain designs (e.g., facility location and/or facility capacity), or on 

those results that only deal with a single operation such as inventory, or routing, or 

production scheduling, but rather addresses issues unique to process integration.   

There have been several survey papers dealing with integrated operations problems, 

each with its own focus. Among these, the pioneer review by Thomas and Griffin (1996) 

defines a generic structure for a supply chain network, and classifies published results at 

both the strategic planning level and the operational planning level, where the latter falls 

into our scope. The models related to operational planning are classified into buyer and 

vendor coordination, production-distribution coordination, and inventory-distribution 

coordination; up through the time of this study, most researchers, because of limitations 

on computational capability, have decomposed such multi-stage problems into several 

two-stage problems which are then solved separately. Erenguc et al. (1999) review the 

studies on managing supply chain networks with three distinct stages consisting of 

suppliers, plants, and distribution centers, and focus on the results for joint operational 

decision-making across the three stages. Decisions that need to be jointly made regarding 

optimizing production/distribution planning are discussed. Sarmiento and Nagi (1999) 

consider integrated production/distribution planning systems at both the strategic and 
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tactical levels with an explicit consideration of transportation. They classify the problems 

based on the type of decisions being modeled (e.g. decisions on production, distribution, 

or inventory management) and on the number of locations per echelon in the model. 

Three categories of two-echelon models are identified, and the differences between such 

models and those in classical Inventory Routing studies are discussed.  Fahimnia et al. 

(2008b) review existing production /distribution planning models and provide a table 

summarizing 19 papers according to problem attributes (e.g. numbers of plants, 

distribution centers, and customers, multi-periods, multi-products, routing), types of 

modeling approaches (e.g. mathematical programming, optimization, simulation and 

combinations of these), and the solution methods applied.   

There are also two recent survey papers on integrated operations planning: Mula et al. 

(2010) and Fahimnia et al. (2013). Mula et al. (2010) cite 44 papers published since 1985 

among the 54 references, and classify these works based on the decision levels (e.g. 

strategic, tactical, and operational), modeling approach (e.g., linear programming, and 

multi-objective integer linear programming), objective (e.g., total cost, and customer 

satisfaction), level of information sharing (e.g., production cost, lead time, inventory 

level, and demand), and solution methodologies. Fahimnia et al. (2013) cite 139 papers 

related to integrated operations planning, and classify these papers by two criteria: 

complexity of the network structure and solution methodologies.  Interestingly, in spite 

of the large number of references listed in these surveys, only 19 papers were common to 

both surveys. However, there is no analysis in either survey on the relationship between 

problem structures and the methodologies reported in these works.   
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Unlike the existing surveys, we focus here on the relationships between the problem 

structures and solution methodologies.  Such a survey provides information to the 

researchers on the solution approaches, developed for solving problems defined over 

different types of network structures, and their effectiveness. We classify the integrated 

operations planning problems into four categories. For each category, we present a basic 

mathematical model and, based upon the properties of the respective network structure, 

analyze the existing solution methodologies. To define these categories, two attributes are 

used: time constraint and routing.  Most integrated operations planning problems 

involve multiple time periods.  For each period, the ending inventory level, production 

quantity, and distribution amount must be determined.  Since a continuous time scale 

within a period has to be considered in some studies to describe time constraints like 

arbitrary delivery deadlines or travel times, there is a need to model the time constraints 

explicitly. Note that without such explicit modeling of time constraints, as many studies 

in the past have done, we often have to assume that any quantity produced in one period 

is delivered to customers in the same period, which leads to a gap between the models 

and the real-world practice.  For those studies involving direct shipment between 

suppliers and customers, we allow the shipping capacity to be defined as either the 

maximum outgoing flow amount or the fleet size and/or capacity of vehicles.  For the 

studies in which one vehicle may visit several customers in one trip, we allow vehicle 

routing issues to be explicitly included in the model. We categorize the problems into 

four categories in Table 2.1.  



10 

                 Issues in the Literature  

Problem Categories 

Production 

issues 

Distribution 

issues 

Time 

constrains 

Routing 

issues 

Production and Distribution Problem (PDP) X X   

PDP with Time Constraints (PDPT) X X X  

PDP with Routing (PDPR) X X  X 

PDP with Routing and Time Constraints 

(PDPRT) 
X X X X 

Table 2.1. Categories of the integrated operations planning problems  

We also refer readers to another survey by Yossiri et al. (2012), in which the authors 

categorize the studies according to their inclusion of decision variables related to the flow 

quantity of production, inventory, distribution and routing. 

Before we give the details of 5 categories, we introduce the common assumptions 

and notation used to define the four categories of problems (PDP, PDPT, PDPR, and 

PDPRT). For each assumption, we then discuss its extensions or variations that are found 

in literature.  

Product and Time Dimension:

We consider the multi-product problem (i.e., with multiple commodities) over a 

given planning horizon of multiple time periods.  

Network Structure and Material Flow:
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The supply chain network has three stages: manufacturers, distribution centers 

(DCs) and customers, as shown in Figure 2.1. Each customer has a certain 

demand to be fulfilled in each period.  Both manufacturers and DCs hold 

inventories of products. Manufacturers produce and fill their own inventories, and 

send products to DCs, which in turn send the products to customers. 

CustomersManufacturers Distribution Centers

Component flow Product flow

Figure 2.1 Network Structure and Material Flow 

Extensions or Variations in the literature:

oThere exist suppliers to provide manufacturers with raw material.  

oThere exist third parties that serve as contract manufacturers or DCs.  The 

third parties usually charge higher prices than regular players.  

o In some cases, manufacturers may deliver the product directly to customers.   
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Production and Transportation Capacity: 

Each manufacturer has a maximum production capacity (e.g., the maximum 

quantity that it is able to produce) in each period.  Both manufacturers and DCs 

have a maximum transportation capacity (e.g., the maximum outgoing flow 

quantity) in each period.  

Extensions or Variations in the literature:

oManufacturer’s production capacity can be increased at an additional fixed 

and/or variable cost (e.g., overtime work). 

oTransportation capacity can be defined by the vehicle attributes (e.g., the 

fleet size, the vehicle loading capacity, the maximum number of trips, and 

the total working hours in one period, etc.). 

Customer Demand Fulfillment and On-time Delivery: 

All customer orders must be fulfilled on time, and no customer carries inventory.

Extensions or Variations in the literature:

o If an order is not fulfilled on-time, it is lost (called a lost-sale).

o If an order is not fulfilled on-time, it can be fulfilled later with a penalty cost 

(either as a backorder delivered in a subsequent period, or as a late 

shipment within the same period). 

Cost Components:

Each manufacturer has a fixed, and variable, cost of production, and each DC has 
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a fixed, and variable, cost for handling the product. Both manufacturers and DCs 

incur inventory holding costs. The shipments from manufacturers to DCs, and 

from DCs to customers, result in a shipping cost.  

Extensions or Variations in the literature:   

oWhen raw materials are required, the purchase cost is considered. 

oWhen a third party is involved, the respective costs (e.g., contract fees) are 

included.

o If a late delivery (backorder) is allowed, the relevant penalty cost is 

included.

o If a lost-sale is allowed, the shortage penalty is included. 

While a representative mathematical model for each of the following sections is built 

upon these basic assumptions, its variations are introduced as we discuss individual 

papers.

Throughout this survey, we will use the following notation:  let M={m}, B={i},

J={j} and K={k} denote the set of manufacturing facilities, the set of 

distribution/transshipment centers (DCs), the set of customers, and the set of products 

ordered by customers, respectively. When routing decisions are involved, let )(mV

denote the set of vehicles of manufacturer m. Let }{tT  denote the set of periods.  

For simplicity, m , i , j , k , v  and t  may be used instead of Mm ,

Bi , Jj , Kk , )(mVv  and Tt .
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2.1 Production and Distribution Problem (PDP) 

The production and distribution problem, or PDP, is primarily concerned with 

coordinating production and outbound distributions to minimize the total costs associated 

with production, inventory, and transportation over a discrete multi-period planning 

horizon. Since PDP does not explicitly include the routing and shipping times, the models 

for PDP involve only inventory flow balance, facility capacity and transportation capacity 

constraints (e.g., see Thomas and Griffin, 1996).   

To formally define the mathematical model for the PDP, we introduce the following 

notation: For any given period t, let ,
k
m tC be the production capacity of manufacturer m

for product k, , ,a b tC be the transportation capacity from location a to location b for 

( , )a b M B B J , and ,
k
j td  be the demand for product k by customer j.  Let k

aI 0, be

the initial inventory of product k at location a for a M B J .  For decision 

variables, let , ,a b tW and k
tm ,Z , respectively, be the binary variables denoting the decision 

for a flow from location a to location b for ( , )a b M B B J  in period t, and the 

decision for a production batch for product k by manufacturer m in period t.  Let S, Q, P,

and I, each with proper superscript and subscript indices, be continuous variables 

denoting the shortage amount, flow quantity, production quantity, and inventory level, 

respectively. For example, k
timQ ,,  denotes the flow quantity of product k from 

manufacturer m to DC i in period t. In addition, we use M||J, and B||J, to denote a 

network involving only manufacturers and customers, and distribution centers and 
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customers, respectively, and M||B||J to denote a network involving all three stages. A 

basic PDP model can then be described as follows: 

Minimize: G( ),,,,,,,Z,, ,,,,,,..,,,,,,
k

tj
k
ti

k
tm

k
tm

k
tji

k
tim

k
tj

k
tmtjitim IIIPQQSWW      (2.1)

s.t. 

k
tmi

k
tim

k
tm

k
tm IQPI ,,,,1, ,     tkm ,,         (2.2) 

k
tij

k
tjim

k
tim

k
ti IQQI ,,,,,1, ,    tki ,,     (2.3) 
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The objective function (2.1) minimizes the total operations cost, consisting of raw 

materials, facility setup, production, inventory, and transportation costs. Constraints (2.2) 

- (2.4) ensure the flow balances at the manufacturing facilities, DCs and customer sites, 

respectively, while constraints (2.5) - (2.7) are network capacity constraints.   

While special cases of PDP, such as the classical transportation problem and the 

transshipment problem, can be solved in strongly polynomial time, the general version of 

the PDP is difficult to solve. More precisely, the multi-product PDP defined by (2.1) - 

(2.8) is strongly NP-hard, because a special case of this PDP is a multi-product 
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multi-period lot-sizing problem which has been proved to be strongly NP-hard by Chen 

and Thizy (1990). Therefore, a general version of PDP could require an excessive amount 

of computational time to verify the solution optimality when the network size becomes 

large.  

In this section, we focus on the existing solution methodologies for variations of the 

PDP defined by (2.1) - (2.8), and classify them into three categories. The first one is 

heuristic and metaheuristic algorithms, in which a solution (or a set of solutions) is 

constructed by relatively simple rules and then improved through an iterative process. 

The other two are both mathematical programming-based solution approaches, and differ 

in the way that a problem is relaxed: constraints relaxation approaches and variables 

relaxation approaches. Note that while the routing decision is not considered in this 

section, we do include those problems that assume fixed routing.   

2.1.1 Heuristic and Metaheuristic Algorithms 

Because of the intractability of the general PDP, feasible solutions with acceptable 

quality and minimal solution time have been commonly discussed in the literature.  

Representative solution approaches in this category are greedy heuristics and genetic 

algorithms.

 Park (2005) proposes a two-phase heuristic for solving a multi-product PDP defined 

upon an M||J network to maximize the total profit.  The phase I problem is formed by 
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aggregating the demand of all customers in each period, defined by j
k

tj
k
t dD ,

and then replacing constraint (2.4) by k
t

k
t

k
t

k
t IDQI 1 , tk, , in the model, which 

reduces the problem to a single-customer multi-period model and allows one to quickly 

determine the values of ,
k

m tP  by solving a production lot-sizing problem (Fumero and 

Vercellis, 1999) with constant production capacity. All unsatisfied demand is penalized as 

shortage and no backorder is considered. Given ,
k

m tP , the author then solves a distribution 

problem in phase II to determine the values of ,,,
k

tjmQ  by applying a bin-packing 

heuristic together with local improvement procedures which consolidate partial loads by 

shifting shipping periods and reducing the level of stock-out using leftover production 

capacity.  Through computational experiments on 21 test problems of three sizes, this 

heuristic achieves an error gap, or a difference between the optimal and heuristic 

solutions, of 5.6 ~ 6.8% for small-size cases and no more than 9.2% for all the test cases. 

The computation time is less than 3 sec for small cases and no more than 1200 sec for 

large cases.  

Ahuja et al. (2007) study a two-echelon M||J single product PDP with single

sourcing constraint, which means that each customer receives shipment from at most one 

supplier in each period. In addition to constraints (2.2) - (2.7), the authors also include a 

constraint on inventory perishability, so that the maximum inventory time for the product 

is bounded by a given constant N.  Thus, at any period t, the ending inventory at DC i,

,Ii cannot exceed its future demand from all customers in the next N periods, or 

, , ,1

N
i t i j t nn j

I Q . The resulting PDP is decomposed into two sub-problems. One 
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includes only binary facility-customer assignment variables, and the other includes 

variables for transportation flow and inventory levels. A proposed greedy heuristic is used 

to assign the facility-customer pairs, upon which a very-large-scale-neighborhood

(VLSN) search heuristic is applied to improve the quality of the solution.  Extensive 

tests on randomly generated problem sets are conducted, and the error gap obtained by 

comparing the heuristic with the best lower bound obtained by CPLEX within 15 minutes 

of CPU time is less than 3% in all cases. The authors also report that their error gaps have 

a decreasing tendency as the number of customers is increased, and it is less than 0.1 % 

in the largest size case. The computation time is less than 40 seconds in all cases. 

Some researchers consider PDP with extensions such as fixed routes for 

transportation or direct shipment. Lei et al. (2006) investigate an integrated production, 

inventory and distribution routing problem encountered from the practices of after-merge 

operations of a chemical company. A two-phase approach is proposed, where the Phase I 

problem is defined by assuming direct shipment between manufacturing plants and 

customers. The assumptions on direct shipments allow the authors to solve an 

optimization problem with a significantly reduced complexity, which yields a feasible 

solution to the original problem. The problem in Phase II is to improve the solution from 

Phase I, and is modeled as a shortest path problem on a directed acyclic graph. An 

empirical study that evaluates the computational performance of this solution approach is 

also reported. Liu et al. (2008) study a multi-product packing and delivery problem with a 

single capacitated truck and a fixed sequence of customer locations.  The authors first 

apply a network flow-based polynomial time algorithm to solve the problem assuming no 
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split deliveries, and then allow the split delivery to improve the truck efficiency by using 

a greedy heuristic with a time complexity of |)|log|(| 3 JJO . In both papers, optimal 

solutions of the special cases (with restriction) are modified to obtain feasible solutions to 

the original problems.  

During the past two decades, the genetic algorithm (GA), inspired by the process of 

natural evolution, has been quickly gaining in popularity. In Jang et al. (2002), the 

problem of production and distribution planning over a three-echelon M||B||J network is 

considered. Constraints similar to (2.1) - (2.7) are included and a material transform 

factor  is used to define the rate of raw materials consumption: 

, 1 , , , ,m t m t mi m i t m ti
I P Q I , ,m t . The proposed GA algorithm is compared with 

that obtained by CPLEX. Among randomly generated test problems, the solution time of 

GA is quite stable, averaging from 334 to 546 seconds, while that required by the CPLEX 

solver exhibits exponential growth with respect to problem size, from 32 to 67,854 

seconds to obtain the optimal solutions. The proposed GA also demonstrates strong 

performance, with an average error gap of 0.2%. Gen and Syarif (2005) propose a 

GA-based approach for their M||J network. A new solution approach called the 

spanning-tree-based genetic algorithm is presented together with the fuzzy logic 

controller concept for auto-tuning the GA parameters. The proposed method is also 

compared with a traditional spanning-tree-based approach. This comparison shows that 

the proposed approach achieves a better result in every experiment, with an average 

improvement from 0.05% to 0.65% for six different settings. Kannan et al. (2010) 

develop an M||B||J network model for battery recycling. Besides production, inventory 
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and transportation cost, the objective function contains additional cost factors for 

recycling such as collection, disposal and reclaiming cost. The authors introduce a 

heuristic-based genetic algorithm to solve the problem and compare the result with that 

obtained by GAMS, a commercial solver. In experiments with different problem sizes 

and heuristic parameters (population and iteration), the maximum error observed is 7.4% 

compared with the results from GAMS. Moreover, the average computation time of the 

GA-based approach is less than 315 seconds for the largest problem while that by GAMS 

is at least 2800 seconds for the smallest problem. 

2.1.2 Constraints Relaxation-Based Approaches  

Another popular solution approach to PDP in the current literature is to relax a subset 

of constraints in order to make the relaxed problem easier to solve. The major approach 

in this regard is the well-known Lagrangean relaxation, by which difficult constraints are 

placed into the objective function with coefficients called Lagrangean multipliers so that 

the resulting problem is “easily solvable.” One example of such an easily solvable 

problem is a network flow problem (Ahuja et al., 1993). Another important approach is 

based upon problem decomposition, by which a subset of constraints is temporarily 

simplified or removed from the original model to make the remaining problem 

decomposable. When a Lagrangean relaxation is adapted to achieve the decomposition, 

the resulting process is called Lagrangean decomposition.  In constraints relaxation – 

based approaches, identifying the constraints to be relaxed and ensuring that the search 

converges to the optimal or near-optimal solution quickly are two critical steps for 
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achieving the quality and effectiveness of such solution approaches.  For example, in the 

basic model defined by (2.1) – (2.8), when we relax constraint (2.3) and incorporate it in 

the objective function with penalty factors, the problem is decomposed into two problems 

as follows: 

Minimize: G1( ),,,Z, ,,..,,,
k

tm
k

tm
k

tim
k

tmtim IPQW    s.t.  (2.2), (2.5), (2.6) 

Minimize: G2( ),,,, ,,,,,,,
k

tj
k
ti

k
tji

k
tjtji IIQSW      s.t. (2.4), (2.7), (2.8) 

where both G1 and G2 include the penalty terms for violating constraint (2.3). 

Yung et al. (2006) use constraints relaxation to solve a multi-product single-period 

PDP, and thus the time index t is dropped from all the notations, defined upon an M||J

network.  Their study involves decisions on production and transportation, as well as on 

lot-sizing and order quantity. The average inventory level is used to define the inventory 

cost, and variables k
mz  and k

mjx are added to denote production lot size and shipping 

quantity for product k.  The model contains flow balance constraints similar to (2.2) - 

(2.4), and capacity constraints similar to (2.5) - (2.7). However, the objective function 

includes terms /k k
m mP z  as the number of production lots for product k at manufacturer m

and terms /k k
mj mjQ x  as the number of shipments of product k from m to j, which lead to a 

non-linear objective function that is neither convex nor concave.  In order to apply 

Lagrangean relaxation, an artificial variable mjR , where:  

k
mj mjk

Q R         (2.9)  

is utilized, and redundant constraints k
m mjk j

P R , k
j mjk m

d R , and 

0 k
mj jk

R d  are added to the model.  By relaxing constraint (2.9), the original 
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model is decomposed into two independent sub-models. The first one deals with joint 

decisions on production and lot-sizing and thus contains variables k
mP , k

mz  and the 

aggregated transportation flow, mjR . In the second model, the constraints for 

transportation planning involving k
mjQ  and ordering quantity k

m jx are included. By 

continuously updating the Lagrangean multipliers and the artificial variables, two 

sub-problems are iteratively solved. The test result is compared with that obtained by 

Fmincon, a non-linear programming technique in MATLAB 6.1. Among seven problem 

settings, Fmincon cannot terminate for three cases while the proposed algorithm is able to 

solve all the cases. In terms of the solution performance, the proposed algorithm saves 

1.5% to 8% in cost, with less CPU time, over what Fmincon achieves for all the cases 

solved.

Eksioglu et al. (2007) consider a variation of multi-product multi-period PDP on an 

M||J network where only the production facility carries an inventory and there are no 

capacity limits for inventory and transportation. The model contains flow balance 

constraints:  

, 1 , , , ,
k k k k
m t m t m j t m tj

I P Q I       (2.10) 

instead of (2.1) and (2.2). Since the model does not allow shortages, it has:  

, , ,
k k
m j t j tm

Q d        (2.11) 

instead of (2.4), and capacity constraint (2.5) with binary indicator variables for 

production. Unlike the previous solution approach, which uses redundant aggregated 

variables, this approach introduces redundant disaggregated variables. The authors 
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reformulate the original model by introducing a new variable k
mjtQ , which defines the 

amount of product k from manufacturer m to customer j to satisfy demand in period 

using the quantity produced in period t, where t . Thus, the original variables can be 

expressed by new variables as follows:   

1

J Tk k
mt mjtj t

P Q , , ,m k t        (2.12) 

1

tk k
mjt mjsts

Q Q , , , ,m j k t         (2.13) 

1 1 1

J t Tk k
mt mjsj s t

I Q , , ,m k t       (2.14) 

By using constraints (2.12) - (2.13), the original model becomes a facility location 

problem.  The authors then show that the linear programming (LP) relaxation of the 

location model provides a tighter lower bound than the LP relaxation of the original 

model. Lagrangean decomposition is applied to the resulting location problem by 

introducing k
mjtz , clone or copy of k

mjtQ :

k k
mjt mjtQ z          (2.15)   

Accordingly, redundant constraints for k
mjtz :

1 1

M k k
mjt jm t

z d        (2.16)  

1 1 1

J K T k
mjt mtj k

z C       (2.17)  

0k
mjtz          (2.18)  

are then added into the model. By relaxing (2.15) using a Lagrangean multiplier, the 

model is decomposed into two sub-problems. The first one containing k
mjtQ  is an 
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uncapacitated multi-product problem and is further decomposed into |K| single product 

sub-sub-problems which are NP-hard but solvable by dynamic programming.  On the 

other hand, the second one containing k
mjtz can be modeled as an LP problem.  For test 

problems of large sizes, the sub-problems are solved by using the primal-dual algorithm 

and the total running times vary from 4 to 87 CPU seconds with empirical error gaps no 

more than 5%.  

Karakitsiou and Migdalas (2008) consider a single product PDP defined on an M||J

network. The model has flow balance constraints similar to (2.2) - (2.4), and capacity 

constraints similar to (2.5) - (2.7). Defining a new variable: 

, , ,m t m j tj
r Q         (2.19)  

the inventory flow balance constraint at m is replaced by:  

, 1 , , ,m t m t m t i tI P r I         (2.20)  

and the transportation capacity constraint is replaced by:  

, ,0 S
m t m tr C (2.21)  

where S
tmC ,  is the maximum outbound shipping quantity. Moreover, a redundant 

constraint:

, ,m t j tm j
r d (2.22)  

is added. In order to apply Lagrangean decomposition, a clone variable of ,m tr , denoted 

as ,m tz , is introduced:  

, ,m t m tr z (2.23)  

so that constraint (2.20) can be replaced by:  
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, 1 , , ,m t m t m t i tI P z I       (2.24)  

, ,0 S
m t m tz C (2.25)   

By relaxing (2.23) and using Lagrangean multipliers, the original model is 

decomposed into two independent parts: the first one deals with variables ,m tP , ,i tI  and 

,m tz  along with constraints (2.5), (2.24), and (2.25), while the second one deals with 

, ,m j tQ  and ,m tr  along with constraints (2.4), (2.19), (2.21) and (2.22). The first 

sub-problem can be further decomposed, over the manufacturing facilities, into |M|

sub-sub-problems that can each be modeled as a linear programming problem. The 

second sub-problem can also be further decomposed, over the time horizon, into |T|

sub-sub-problems, each as a network flow problem. In order to check the quality of the 

solutions produced by the Lagrangean relaxation, the results are compared with the 

optimal solution obtained by GLPK solver, a free and open source software. For six 

randomly generated problems involving 30 to 1200 nodes, the empirical error gaps are no 

more than 6% and the required computation time is no more than 350 seconds.  

2.1.3 Variables Relaxation-Based Approaches  

During the past decade, the variables relaxation-based approaches, in which a 

selected subset of integer variables is relaxed so that the reduced problem can be 

relatively easy to solve, have gained a significant amount of attention from researchers. 

While the Lagrangean relaxation procedures aim at reducing the duality gaps, most 
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variables relaxation based approaches focus on reducing the sub-optimality due to 

rounding linear values to integers.  

Dogan and Goetschalckx (1999) introduce a multi-product multi-period PDP model 

involving strategic decisions on the network and detailed production planning on the 

machine level along with deterministic seasonal customer demands. The network under 

consideration includes candidates for suppliers, potential manufacturing facilities, and 

DCs with multiple possible configurations and customers. The manufacturing facilities 

have alternative facility types, which introduce binary variables for the facility selections, 

and integer variables are used to define the number of machines used in each facility 

during each period.  In addition to the ending inventory, the authors also consider the 

work-in-process inventory which defines part of the inventory holding cost. 

Replenishment of raw material may happen more than once during each period. 

Transportation flow quantities and production quantities on each machine at each facility 

are also decision variables. Benders decomposition is used as the solution methodology. 

In the mixed integer master problem, the status of the facilities, the production lines, and 

the production and inventory quantities are determined. The reduced problem becomes a 

minimum-cost transportation flow problem, and its optimal cost is added to the mixed 

integer master problem to find a feasible schedule satisfying the obtained flow cost. The 

search terminates when the master problem can find no lower cost solutions. For the real 

life problem that motivated this study, the proposed approach saves the company an 

additional 2% over the hierarchical approach, where optimal strategic and tactical 

decisions are made sequentially. The Benders decomposition solution method with 
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acceleration techniques utilizing disaggregated cuts, dual variables and the LP relaxation 

in the initial iterations reduces the running time by a factor of 480, versus a standard 

Benders decomposition algorithm. 

Yilmaz and Catay (2006) consider a variation of PDP involving a single product, 

multiple suppliers, multiple producers, and multiple distributors, with an option of 

capacity expansion at additional fixed and variable costs. New continuous variables 

representing increased capacity, and binary variables indicating capacity expansion 

decisions for transportation and facility, are introduced. Only manufacturers are allowed 

to carry inventory, and thus the inventory balance is only considered at the 

manufacturers’ sites. Three different LP relaxation-based heuristics are used to solve the 

problem, and the relaxed variables are then adjusted to 0 or 1 according to different 

search mechanisms. The results are then compared with CPLEX solutions obtained with 

a 300-second time limit.   

Another representative study on variables relaxation-based approaches is performed 

by Lei et al. (2009). The authors consider a single product multi-period PDP defined upon 

a M||B||J network with both forward and reverse flows. Because of the need to model the 

reverse flow in the supply chain network, new constraints such as 

tiHRRH tim timj tjiti ,,,,,,,1,

are added, where variable R refers to the reverse flow quantity, and H refers to the reverse 

product inventory levels. A partial LP relaxation-based rolling horizon method is 

proposed.  With this approach, a given multi-period planning horizon is partitioned into 
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three intervals: the current period, the immediate next period, and a consolidated period 

covering all future time periods. In the first interval, all the original constraints and the 

integer requirements remain unchanged. For the second and the third intervals, only the 

integer requirements on the number of truck trips between the DC and customers are 

relaxed. To reduce the computational effort of each iteration, the forward and backward 

demands in the third interval are equal to the sum of the forward and backward demands 

of all the time periods in that interval, respectively. The ending inventories obtained from 

the solution to the first interval are then fixed as the beginning inventories for the second 

interval, and this process repeats by redefining intervals until all the time periods achieve 

integer solutions. Randomly generated test cases are used to benchmark the 

computational performance of the proposed algorithm against that obtained by the 

CPLEX within one-hour CPU time. Over 70 test cases are randomly generated, and the 

largest error gap observed is 0.16%, and the required computation time is less than 5 

seconds; the average computation time required by CPLEX for solving these cases far 

exceeds 700 CPU seconds.  

2.1.4 Remarks on PDP 

In general, if the particular PDP problem being studied has a relatively simple 

structure, the well-known solution methodologies from the literature can often be 

effectively adapted.  For example, when a PDP problem is defined on a two-stage 

supply chain network and the constraints are limited to those defined by (2.2) - (2.8), the 

original problem can be decomposed by either a sequential decomposition or Lagrangean 
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decomposition, which allows the decomposed problem to be modeled as an easy-to-solve 

problem such as the lot-sizing problem, or a linear programming or network flow 

problem.  

While not included in this survey, it should be pointed out that in the literature, there 

has also been a significant amount of work focusing on production and distribution 

involving uncertainty in demand, processes, and/or supplies, for which stochastic and 

fuzzy models have been applied extensively. The difference between stochastic and fuzzy 

models is that a stochastic model usually follows a known probabilistic distribution, 

while a fuzzy model is described by a simple distribution, such as a triangular distribution, 

based on expert knowledge. Representative work in stochastic PDP can be found in 

studies by Park (2005), Aliev et al. (2007), Lejeune and Ruszczynski (2007), and Liang 

and Cheng (2009). Also note that while the exact methods have rarely been discussed in 

the literature for solving PDP problems, they could be appropriate if the problem has a 

special structure, such as that given by Wang et al. (2010). 

2.2 PDP with Time Constraint (PDPT) 

PDP with time constraints (PDPT) is a natural extension of the PDP model, which 

explicitly takes into account production and transportation time and usually assumes a 

deadline for the shipment arrival to the customer. To define the shipment arrival times, 

additional notation must be introduced. Let k
mr  be the production rate for product k at

manufacturer m. Let im,  and ji ,  be the transportation times from manufacturer m to 
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DC i, and from DC i to customer j, respectively. Let tjL ,  be the deadline at customer 

site j in period t, by which time the shipment of commodities should have arrived at j;

otherwise a shortage or tardiness cost would be incurred. Let MM be a very large positive 

number. The deadline constraints are defined as follows. 

tjtjitim
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tmjiimk
m

k
tm LMMWWZ

r
P

,,,,,,,,
, )3( , , , ,m i j k t  (2.26) 

The basic PDPT model is defined by (2.1) - (2.8) and (2.26). 

Some papers study PDPT problems involving production lead times and delivery 

lead times over a multi-period planning horizon. Let iml ,  and jil ,  represent lead times 

from manufacturer m to DC i, and from DC i to customer j, respectively. In this case, (2.2) 

- (2.4) should be replaced by the following constraints. 
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Due to the complexity of PDPT, using a single methodology, such as a Lagrangean 

relaxation, or a simple heuristic algorithm, may not be effective enough to solve the 

problem. In the literature, two major approaches have been discussed. One is 

iteration-based, and starts with an initial solution (or a group of solutions), and then 

continuously improves the solution (or a set of solutions) iteratively by a relatively 
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simple procedure; most metaheuristic-based algorithms belong to this category. The other 

is to formulate the original problem into a mathematical model and then use optimization 

software to derive the optimal or near-optimal solutions. The latter approach has typically 

been used for solving some case-specific problems.  

There are also several papers using simulations to deal with PDPT involving 

uncertainty. Most such studies (e.g., Lee et al., 2002; Lee and Kim, 2002; and Safaei et al., 

2010) start with a deterministic version of the problem and solve it to find an initial 

solution. Through simulation, the solution is evaluated and the parameters of the 

respective deterministic problem are modified until the solution stabilizes. In this survey, 

we only include such simulation studies that report on the approaches to solve respective 

deterministic versions of the PDPT problem.     

In this section, we focus on the existing solution methodologies for solving PDPT.  

Two categories of solution approaches are reviewed: 1) metaheuristic and iterative 

approach, and 2) mathematical modeling and the use of an optimization solver.  Again, 

we do not consider detailed routing decisions in this section, and hence we treat all 

transportation operations as direct shipping or fixed routing. 

2.2.1 Metaheuristic and Iterative Approach 

Naso et al. (2007) consider the integrated problem of finding an optimal schedule for 

the just-in-time (JIT) production and delivery of ready-mixed concrete with 
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manufacturers and customers. The study involves a single product in a single period with 

no inventory permitted. Times required for the loading, unloading and shipping 

operations of each truck must be explicitly modeled.  In addition, outsourcing options of 

production and third-party (or overtime) trucks are permitted at an additional cost. All 

decision variables are binary, where 1jvrx  if job j is assigned to truck v as the r-th task: 

1mjy if job j is produced at manufacturer m, and 1ojy  if job j is outsourced.  The 

scheduling algorithm combines a GA and a set of constructive heuristics, which are 

guaranteed to terminate in a feasible schedule for any given set of jobs.   

Gebennini et al. (2009) consider a multi-period strategic and operational planning 

problem for a single manufacturer that offers a single product with uncertain demand on 

an M||B||J network.  Production lead times and delivery lead times are considered, 

where lead time may be an integer multiple of one time period, and inventory and 

stockout costs are considered with safety stock (SS) determination.  Thus, the problem 

to minimize the total cost is modeled as a mixed-integer non-linear programming 

problem in which the objective function includes a non-linear term representing the SS 

cost,
Jj

ijij
Bi

s
i kc 2ˆˆ  where s

ic  is the inventory cost for DC i, k̂  is safety factor to 

control the customer service level, 2ˆij  is the combined variance at DC i serving 

customer j, and ij  is a 0-1 decision variable equal to 1 if DC i supplies customer j in 

any time period. This non-linear term is linearized to 
Bi Jj

ijij
i

s
i k

SS
c 22 ˆˆ1  where iSS  is 

a lower bound on the optimal amount of SS carried at DC i, because the closer iSS  is to 
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the optimal SS level at DC i, the closer the formula is to the optimal SS cost.  A 

recursive procedure based on the modified linear model is developed in order to find an 

admissible solution to the non-linear model and quantify the minimized global logistic 

cost, while also taking the effect of safety-stock management into consideration. Since 

the optimal safety-stock level is unknown, the value is initially set to a lower bound on 

the effective safety-stock quantity for each DC.  It is claimed that the proposed recursive 

procedure converges on the global optimal solution of the original non-linear problem in 

a finite number of iterations.  

Yimer and Demirli (2010) address a multi-period, multi-product scheduling problem 

in a multi-stage build-to-order supply chain manufacturing system with consideration of 

lead times for production and delivery. For the sake of efficient modeling performance, 

the entire problem is first decomposed into two sub-problems: 1) a downstream part: 

from manufacturers through distributors and retailers to customers, and 2) an upstream 

part: from suppliers through fabricators to manufacturers. Both sub-problems are then 

formulated as MIP models with the objective of minimizing the associated aggregate 

costs while improving customer satisfaction. A GA-based heuristic is proposed with a 

chromosome of three parts: 1) product ID, total production quantity at each plant, and 

inventory level at each DC in the period; 2) flow proportion floating values; and 3) status 

values for feasibility.  If a candidate solution is infeasible, it is revised by a proposed 

repair heuristic. The fitness value is measured by the original objective function value 

and the degree of infeasibility. Using some test instances, the best solutions obtained 

from GA are of high quality compared with the lower bounds obtained from LINGO, a 
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non-linear programming solver. 

Sabri and Beamon (2000) develop an integrated multi-objective supply chain model 

that facilitates simultaneous strategic and operational planning using an iterative method 

in a four-tier network. They consider stochastic demand and capacity constraints in all 

layers of the supply chain, and shortages are allowed, but penalized, while a fixed setup 

production cost is incurred. Total production lead time at manufacturer m for product k is 

k
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m l
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k
m lrQg ,,,  and k

m  are production setup time, production 

quantity, production rate, waiting time, and material delay time, respectively. k
m  is 

determined by the bill of material of product k and customer service level. They first find 

a solution for the strategic model and then use the solution as an input to solve the 

operational model. New parameters determined in solving the operational model are used 

to solve the strategic model, and this iteration terminates when all binary variables no 

longer change. LINGO is used in solving each sub-problem.  

2.2.2 Mathematical Modeling and the Use of Optimization Solver 

While some researchers try to develop effective solution methodologies to solve the 

PDPT, others put more effort into the modeling process. In this subsection, we summarize 

research in which the models are solved by mathematical optimization software such as 

CPLEX. The common feature of the following papers is that the authors concentrate on 

the models rather than the design of methodologies. The size of the computational testing 
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instances is small enough for the solver to handle, or the problem comes from real world 

practice so that the solution by a solver is applicable. 

Rizk et al. (2006) examine a multiple-product production–distribution planning 

problem on a single manufacturer and a single destination. The manufacturer operates a 

serial production process with a bottleneck stage, subject to a predetermined production 

sequence. The manufacturing cost consists of the changeover cost of intermediate 

products and the inventory holding cost of final products. The transportation cost is 

characterized by a general piecewise linear function of transportation quantity with break 

points of h  with 00 . In the h-th interval ],( 1 hh , let hv  be the slope of its 

straight line, hA  be the discontinuity gap at the beginning of the interval and hE be the 

ending value.  Thus, the transportation cost is hhhh vAEz )()( 1 , 1hh .

Valid inequalities to strengthen these formulations are proposed and the strategy of 

adding extra 0-1 variables to improve the branching process is examined.  

Chen and Lee (2004) investigate a multi-period simultaneous optimization of 

multiple conflict objectives with market demand uncertainties and uncertain product 

prices in a supply chain network consisting of manufacturers, DCs, retailers and 

customers. The scenario-based approach is adopted for modeling the uncertain market 

demands, and the product prices are taken as fuzzy variables where the incompatible 

preference on prices for different participants are handled simultaneously. The whole 

model becomes a mixed-integer non-linear programming problem to compromise fair 

profit distribution, safe inventory levels, maximum customer service levels, and decision 
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robustness to uncertain product demands. Considering incompatible preference of 

product prices for all participants will be determined by applying the fuzzy 

multi-objective optimization method, non-linear MIP solvers, DICOPT and CONOPT, 

are used for the numerical example.  

Dhaenens-Flipo and Finke (2001) provide a multiple period model on an M||B||J

network which comes from a practical case at the European industrial division of the 

manufacturer. Since switching from one product to another on a production line may take 

a long time, it is assumed that at most one switching per period and per production line is 

allowed. There are three aggregated products and three line types according to capability 

to handle these products. All possible sequences in each manufacturing line are 

enumerated, and they are used in a mixed integer programming model.  The set of 

available product sequences of the line m is denoted by S(m) and these sequences are 

indexed by s. At this stage, the data involved concerns the total production time (Bm)

available on line m, the production time ( k
mTP ) and cost ( k

mCP ) of product k on line m, the 

changeover time ( smTC ) and the cost ( smCC ) associated with the products of sequence s

on line m.  Let k
mp  be a quantity of product k manufactured on line m, and let smy  be 

1 if sequence s is chosen for the line m.  Thus, we need to add following constraints: 
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The proposed MIP has constraints (2.30) - (2.32), flow balance equations similar to (2.2) 
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- (2.4), and domain constraints. For problems of industrial sizes, the model is able to 

provide a sub-optimal solution in less than 2 hours (23 minutes on the average) by 

CPLEX. 

Fahimnia et al. (2008a) survey 20 papers and define a representative mixed integer 

program formulation for the integration of an aggregate production and distribution plan 

on an M||B||J network. Three production alternatives are considered: regular-time 

production, overtime production, or outsourcing. They illustrate with an example to show 

that considering production alternatives can give a more accurate and better schedule than 

considering average production cost.  

2.2.3 Remarks on PDPT 

Lagrangean relaxations and decomposition-based techniques are not effective for 

solving the general PDPT problems because newly added time constraints often change 

the model structure significantly. The production and transportation time as well as the 

incurred deadline constraints all add more complexities to the original PDP, since a 

feasible solution for a PDP may violate the deadline constraint in PDPT.  Even after a 

PDPT is decomposed, the resulting sub-problems may still be NP-hard and therefore 

make Lagrangean relaxation and decomposition-based solution approaches fail to 

function effectively. Therefore, most literature results reported are either customized 

solution approaches for specific PDPTs or efficient algorithms for solving some special 

cases of PDPT. 
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2.3 PDP with Routing (PDPR) 

PDP with routing (PDPR) will be discussed in this section. Because of its 

complicated structure, most papers assume a two-stage network and thus those problems 

can be considered as a combination of the capacitated lot-sizing problem and the 

inventory routing problem. The aim of the problem is to minimize the total cost 

composed of inventory holding, production and transportation costs.  

We consider a basic model defined upon a two-echelon supply chain consisting of a 

set of manufacturers and a set of customers, where customer j has demand jtd  in period 

t. For simplicity, a single product is considered and thus the superscript for product type 

(k) is dropped. We assume that there is a fleet of homogenous vehicles belonging to 

manufacturer m, denoted by V(m). Since the PDPR model contains routing decisions in it, 

the quantity being carried by a vehicle is different from the quantity delivered to a 

customer by a vehicle in a period. Thus, the following parameters and decision variables 

are added to PDP:   

v
mjltf  = fixed cost of vehicle v of manufacturer m along (j, l) in period t

v
mjltg  = unit shipping cost for vehicle v of manufacturer m along (j, l) in period t

v
mjlt  = equals 1 if vehicle v of manufacturer m serves l immediately after j in period t

v
mjltQ  = quantity carried by vehicle v of manufacturer m along (j, l) in period t

v
mjtq  = quantity delivered by vehicle v of manufacturer m to customer j in period t

for TtJmlJmjMm ,}{,}{, .
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The objective function of the model consists of production, inventory and 

transportation (routing) costs. The transportation cost is changed as follows: 

v
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v
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v
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v
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)( ,}{,

     (2.33)

Moreover, routing constraints should be included in the model. The flow 

conservation constraints are: 
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We need an inventory balance constraint for each customer.  

tjjt
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Since v
mjlt represents the existence of flow on (j, l) and each customer can be served by 

at most one manufacturer, we have the following constraints:  

MMQ v
mjlt

v
mjlt      tvm ,, , Jlj,     (2.37) 
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We classify the relevant papers, according to their solution methodologies, into three 

classes. Since the problem includes the routing decisions, all methods use decomposition. 

However, each decomposed problem is solved by a different solution approach. One 

approach is to use mathematical programming or simple heuristic algorithms. The other 

two are to use a metaheuristic, such as a tabu search, and the approximation approach, 

respectively. 
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2.3.1 Mathematical Programming Approach 

Fumero and Vercellis (1999) study a multiple period and multiple product problem 

with a single manufacturer. They assume that there are fixed setup costs and vehicle 

usage costs which occur independently from the amount of produced or carried product.  

In the model, partial order serving is allowed. They decompose the problem into 

production (capacitated lot-sizing) and distribution (multi-period vehicle routing) 

problems by using Lagrangean relaxation, relaxing the constraints which ensure the 

balance at the central plant among production, inventory and deliveries.  Furthermore, 

the vehicle capacity constraints are relaxed in order to simplify the solution of the routing 

sub-problem. The Lagrangean dual problem is solved by using a variable target 

subgradient optimization algorithm which is described in Fumero (1997). Additionally, 

they employ an alternative decomposition method in which the production plan is 

developed without considering the distribution plan, and then used as an input for the 

distribution model. They show that the Lagrangean decomposition method outperforms 

the alternative decomposition method.   

Bard and Nananukul (2010) propose a hybrid methodology which is a combination 

of an exact method and heuristic procedures within a branch-and-price (B&P) framework 

for the problem with a single manufacturer and a single product type.  The master 

problem (MP) is defined by the production and inventory decisions, and the remaining 

routing problem can be decomposed by period, yielding |T| sub-problems.  In the 
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reformulated model, each column in the MP corresponds to a feasible schedule for all 

customers.  They use a novel column generation heuristic and a rounding heuristic in 

order to improve the algorithmic efficiency. They show that the B&P heuristic is efficient 

and can derive high-quality solutions for large problems within a reasonable amount of 

time. 

Ruokokoski et al. (2010) consider the problem of determining a production schedule 

for an uncapacitated plant, replenishment schedules for multiple customers, and a set of 

routes for a single uncapacitated vehicle. The aim of the problem is to fulfill customer 

demand over a finite horizon at a minimum total cost of distribution, setups, and 

inventories. This paper introduces a basic mixed integer linear programming formulation 

and provides exact methods through several strong reformulations of the problem. 

Moreover, two families of valid inequalities, 2-matching and generalized comb 

inequalities, are introduced to strengthen these formulations, and they are used within a 

branch-and-cut framework. Comb inequalities are known to be facets for the traveling 

salesman problem (Grötschel and Padberg, 1979) and 2-matching inequalities are 

generalized comb inequalities under certain conditions. An a priori tour-based heuristic is 

also provided and, with available solvers and strong formulations, excellent solutions can 

be obtained within a short time, even for the largest problems.  

Archetti et al. (2011) consider a production-routing system, where a manufacturer 

with unlimited capacity produces one product, which is distributed to a set of retailers by 

a fleet of vehicles. The objective is to determine the production policy, the customer 
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replenishment policy and the transportation policy from among two different types of 

policies: maximum level (ML) and order-up to level (OU), with minimum total cost. A 

three-step sequential heuristic is proposed on the ML policy.  In the first step, unlimited 

production quantity is assumed, and the distribution part of the problem concerning 

inventory at customers and delivery routes is optimized by solving a customer problem 

with branch-and-cut and iteratively adding it to the solution.  In the second step, the 

production plan is determined by solving the classical uncapacitated lot-sizing problem, 

which can be optimally solved in polynomial time. In the third step, the improvement 

procedure, removing and inserting two retailers, is repeated until there is no further 

improvement.  

Cetinkaya et al. (2009) consider a three-layer practical supply chain problem and 

develop a multi-product and multi-period model to improve the outbound supply chain of 

Frito Lay North America (FLNA), consisting of a factory warehouse, multiple DCs, and a 

set of customers. Some customers can receive supplies directly from the factory 

warehouse, which is called direct delivery (DD). They do not consider the production 

costs but the production capacities.  The objective function contains the inventory 

holding cost, the truck loading and dispatch cost, mileage costs, and handling costs.  The 

proposed solution methodology decomposes the integrated problem into two 

sub-problems - inventory and routing problems - and they are iteratively solved until 

either no further improvement is found or the maximum number of iterations is reached.  

The routing sub-problem is solved period by period. As a preprocessing, they use 

full-truck load (FTL) shipments with a route having a single destination for customers 
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with large order quantities, and use less-than-truck load (LTL) shipments with truck 

routes for other customers. They then use a savings algorithm proposed by Clark and 

Wright (1964) and utilized by Chopra and Mendl (2001) and add an improvement step, 

called the cheapest insertion heuristic, a well-known travelling salesman problem 

heuristic. For inventory sub-problem, the objective function includes the corresponding 

route-based setup costs and all cost terms of the overall model, except the loading and 

routing parameters considered in the routing sub-problem. The CPLEX 9.0 solver is used 

to solve the inventory sub-problem. 

2.3.2 Metaheuristic Approach 

Bard and Nananukul (2009a) consider the problem of a B||J network where 

inventory handling at both the customer and manufacturer sites is permitted, but the 

inventory level must be zero at the end of the each period, with no shortages allowed. 

They solve the problem by using a two-phase approach, which is similar to the method 

developed by Lei et al. (2006). In the first phase, they formulate the model as a mixed 

integer program without taking into account the routing constraints. They find a feasible 

solution which determines the sufficient delivery amounts for all customers using the 

proposed model. The solutions derived in the first phase are used as an initial solution for 

the tabu search algorithm, which is used in the second phase to solve the integrated 

problem. The path relinking method is used to obtain better solutions. They show that the 

lower bounds obtained from the relaxed version in the first phase are not very effective 

for evaluating the proposed algorithm. However, according to the computational results, 



44 

the proposed method can derive 10-20% better solutions, but requires more 

computational effort than the GRASP (greedy randomized adaptive search procedure) 

proposed by Boudia et al. (2007). 

Bard and Nananukul (2009b) propose three algorithms with a B&P framework for 

the Inventory Routing Problem (IRP) as a sub-problem of the integrated 

production–inventory–distribution–routing problem. For less computation, a two-step 

procedure is proposed: the first step involves developing a model for determining 

delivery quantities for each customer in each period. The second step involves finding 

actual routes in light of the current set of branching constraints with a vehicle routing 

problem (VRP) tabu search method. According to computational experiments, while the 

B&P algorithm generates better results than the tabu search approaches (3.6% on 

average), the tabu search outperforms the B&P algorithm in terms of the computation 

time (more than ten times faster on average). 

Yossiri et al. (2012) develop a decomposition heuristic based on an adaptive large 

neighborhood search (ALNS) for the problem defined on a network consisting of a plant 

and multiple customers to minimize the total production, setup, inventory and routing 

costs. In the first stage, a set of initial solutions are generated with different setup 

schedules by solving two sub-problems: 1) production and distribution problem with 

approximate transportation costs, and 2) routing problem; both are solved heuristically.  

In the second stage, the initial solutions are improved by ALNS. When a solution is 

modified by removing a customer from a route and inserting it in a different period, one 
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has to identify the new delivery quantity for the customer, which may also affect the 

production, inventory, and other delivery quantity decisions. It is not always necessary to 

reinsert the removed nodes, because the demands can be satisfied from available 

inventory and, furthermore, the removed nodes can be inserted in multiple periods. To 

deal with these issues, binary variables are defined accordingly. During the 

transformation process, the binary decisions concerning routing are modified according 

to the cheapest insertion rule and then, with fixed binary variables concerning production 

setup, the continuous variables are adjusted by solving the minimum cost flow problem. 

2.3.3 Incorporating Routing Cost Approximation for Solving PDPR 

When the decomposition method is applied, a PDPR problem is usually solved 

through two phases. During the first phase, a reduced version of PDPR is solved, where 

many studies assumed direct shipments to customers (e.g., Lei et al., 2006); and then 

during the second phase, vehicle routing decisions are made to improve the solutions 

obtained in the first phase. The advantage of such a phased approach is to reduce the 

search complexity in each phase. However, using direct shipment to replace vehicle 

routing in the first phase can sometimes also lead to a solution that is feasible but deviates 

significantly from the optimal solution to the original problem. 

Another alternative solution approach to PDPR is based on continuous 

approximation models for the vehicle routing problems. Such an approach uses a 

continuous approximation of the optimal routing cost in the phase-one problem instead of 
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assuming direct shipments.  Note that this provides an estimation of the actual routing 

cost without explicitly solving the vehicle routing problem. Once the phase-one problem 

is solved and the assignments of vehicles to customers are determined, the exact routing 

decisions under the given vehicle assignments are made during the second phase. 

Shen and Qi (2007) incorporate a continuous approximation function in their 

integrated supply chain design model to estimate the optimal vehicle routing cost.  

Specifically, the approximate function that they propose is 
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where

mvtV   = the approximate routing cost of vehicle v of manufacturer m in period t

vC   = the capacity of vehicle v of manufacturer m

v
mjtq  = the quantity delivered by vehicle v of manufacturer m to customer j in 

period t

v
mjt  = the unit cost of a direct shipment by vehicle v of manufacturer m to 

customer j in period t

tv   = the number of customers served by vehicle v of manufacturer m in period t

 A   = the area where customers are scattered 

   = parameter, and = 0.75 for Euclidean metrics 

Shen and Qi (2007) numerically demonstrate the effectiveness of this approximation 

function using a data set with 150 points from Christofides, Mingozzi, and Toth (1979), 
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and show that this approximation function performs especially well when the number of 

customers is sufficiently large. In particular, when the number of customers is more than 

80, the approximation error is typically less than 5%. 

When the above continuous approximation function is incorporated in the phased 

approach, parameters v
mjtq  and tv  vary with the decision of assignments of vehicles to 

customers, while all the remaining parameters are given constants. Compared to the 

direct shipment assumption that is often made in the literature, this approximation 

function provides a more accurate estimation of the routing cost without increasing the 

problem complexity. This approach may be used as an alternative to further enhance the 

performance of phased approaches. 

2.3.4 Remarks on PDPR 

In this section, the total cost of the PDP with routing is minimized, where the total 

cost is composed of inventory holding, production and routing cost. Since the problem 

includes the vehicle routing problem, it is very difficult to find the optimal solution or an 

approximate solution close to the optimum. Thus, most algorithms use a decomposition 

approach and metaheuristic algorithms, such as a tabu search, to solve routing 

sub-problems. When there is a single manufacturer, the decomposition approach is 

frequently used because the upstream problem can be regarded as a capacitated lot-sizing 

problem. Moreover, after obtaining a solution, various improvement heuristics are also 

often used as post-processing procedures. Since the optimal value is most likely 
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unavailable, the performance of an algorithm is presented by comparing its solution with 

a lower bound, or with a solution obtained by either previous approaches or an 

optimization solver. 

2.4 PDP with Routing and Time Constraints (PDPRT) 

PDP with routing and time constraints (PDPRT) will be discussed in this section.  

Time constraints appear in different forms, such as time window, due date, and exact 

arrival time predetermined by customers. It can be considered as a combination of an 

inventory routing problem (IRP) with time constraints and a capacitated lot-sizing 

problem.  

In most of the existing literature, a two-echelon supply chain which contains a single 

plant and a set of geographically scattered customers is considered. Due to the 

complexity of the problem, multiple manufacturers are rarely considered (see Lei et al., 

2006; and Bilgen and Gunther, 2009). Generally, the objective function contains the 

production cost, the transportation cost (routing cost) and the inventory holding cost.  

On the other hand, minimizing the makespan consisting of production time and 

transportation time, and maximizing the satisfied demand are considered as objectives in 

Geismar et al. (2008) and Armstrong et al. (2008), respectively. Although third party 

vehicles are rarely considered, Lei et al. (2006) take third party transshipments into 

account. We consider a representative model with a two-echelon supply chain network 

consisting of a set of manufacturers and a set of customers.  For the sake of simplicity, 
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we assume that customer j has demand jtd  with due date jtL  in period t.

 We assume that there is a fleet of homogenous vehicles belonging to each 

manufacturer. In order to deal with time constraints we need to define additional 

parameters and variables. The objective function and constraints other than time 

constraints are equivalent to those in the model in section 5. Thus, we focus only on time 

constraints:   

v
mjlt   = travel time of vehicle v of manufacturer m on arc (j, l) in period t

v
mjtT   = arrival time of vehicle v of manufacturer m at customer j in period t

In order to guarantee due date constraints, we have the following additional constraints:  

)1( v
mjlt

v
mlt

v
mjlt

v
mjt MMTT      tvm ,, , Jlj, , j l   (2.39)

v
mlt ltT L         tvm ,, , Jl     (2.40)

The solution methodologies used to solve this problem in the literature fall into two 

different groups, according to their structures; the first one solves the problem in an 

integrated manner, while the second one partitions the problem into small pieces which 

are easier to solve. In these decomposition methods the solution from the first phase is 

used as an input to the second phase. Using integrated methods, the solution may be 

improved by an iterative process.   

Chandra and Fisher (1994) solve the production and transportation scheduling 
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problems in separate and integrated manners and compare those results. In their model, 

the plant can produce several products in a limited time and transporters are allowed to 

partially deliver to a set of customers with unlimited capacity in a period.  The plant has 

an unlimited production capacity and the inventory holding costs are not involved in the 

total costs. First, they implement their integrated approach in small examples and show 

that firms can reduce their operation costs about 3-20 % by coordinating their production 

and distribution activities. Second, in the decomposed part, they assume that the 

production scheduling problem can be modeled as a capacitated lot-sizing problem and 

the distribution problem can be modeled as a standard multi-period local delivery routing 

problem. The interface of GAMS, ZOOM/XMP, a solver, is used to solve the production 

scheduling problem. They use three well-known vehicle routing heuristics - sweep

(Gilette and Miller, 1974), nearest neighbor rule (Rosencrantz et al., 1974) and feasible 

insertion rule (Chandra, 1989) - in order to find an initial solution to the distribution 

problem. A local improvement heuristic is used to combine the production and 

distribution problems. Since the work of Chandra and Fisher (1994), many extended 

studies have been conducted with various approaches including decomposition and 

compounded methods.  

2.4.1 Decomposition Methods 

Using decomposition methods, the problem is usually partitioned into two 

sub-problems - production planning and routing problems - which are solved 

sequentially. 
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Lei et al. (2006) investigate an integrated production, inventory and distribution 

routing problem where there is no fixed cost of using a vehicle, and each transporter can 

make multiple trips during each period. They use a two-phased approach that solves the 

problem in two separate stages but in an integrated manner. In the first phase, they 

assume that the distribution of the products from plants to customers is carried out by 

direct shipment. The problem is formulated as a mixed integer programming problem, 

neglecting the vehicle routing constraints, and solved by the CPLEX MIP solver. In the 

second phase, they propose a heuristic transporter routing algorithm, called the Load 

Consolidation (LC) algorithm, to consolidate the loads into routing decisions. The LC 

algorithm determines the sequence of transporter trips and allocates the transporters to the 

trips without violating the transporter capacity and available time constraints. The EOP 

(Extended Optimal Partitioning) procedure is used in order to find the shortest path 

among the feasible trips which are identified in the first phase. They compare the LC 

algorithm and CPLEX MIP solver with 56 test problems. According to their test results, 

the LC algorithm can solve the problem in less than 0.2 seconds while the CPLEX MIP 

solver needs more than 2 hours to solve the overall problem.  

Geismar et al. (2008) develop a two-phase heuristic to solve a single period 

integrated production and transportation scheduling problem for a product with a short 

life span.  The first phase uses either a genetic algorithm (GA) or a memetic algorithm 

(MA) to select a locally optimal permutation of a given set of customers. MAs have a 

local search parameter and a relatively small population size as a result of different 
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population management. In the second phase, for a given permutation of customers, 

Beasley’s (1983) “first route-cluster second” method is used to simultaneously determine 

the customers to be served and the vehicle routes to be used, and a linear program 

formulation is used to minimize the makespan for a given set of trips. The 

Gilmore-Gomory (1964) algorithm for two machine no-wait flowshops is then used to 

order the subsequences of customers to form the integrated schedule.   

2.4.2 Integrated Methods 

Among the papers dealing with integrated methods, some papers propose 

problem-specific methodologies for problem-solving, while others focus on new 

modeling techniques.  

Boudia and Prins (2009) examine a multi-period production distribution problem in a 

two-echelon supply chain which is very close to the model proposed by Chandra and 

Fisher (1994), but differs in that the limited vehicle capacity and a single product are 

considered. They use a memetic algorithm with population management (MA/PM) to 

handle production and distribution problems simultaneously. The proposed algorithm is 

evaluated in three sets of 30 instances with 50, 100 and 200 customers over 20 periods. 

They compare the proposed algorithm with two previous algorithms: the two-phase 

algorithm (H1) proposed by Boudia et al. (2005) and the three-phase algorithm (H2) 

based on GRASP developed by Boudia et al. (2007).  They show that the memetic 

algorithm can generate better solutions than GRASP, which also solves the related 
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problem from an integrated perspective.  

Armstrong et al. (2008) solve a similar problem with a branch-and-bound search 

procedure in order to maximize the total satisfied demand by choosing a subset of 

customers from the given sequence who will be served by a single vehicle. The 

constraints of the problem refer to the product lifespan, the production/distribution 

capacity, and the delivery time window. Since there is no inventory handling at the supply 

chain members, it is important to synchronize the production and distribution planning 

decisions successfully.  Empirical studies on the computational effort required by the 

proposed search procedure comparing to that required by CPLEX on randomly generated 

test cases are summarized. A branch-and-bound search algorithm is also proposed and is 

shown to outperform CPLEX with limited running time.  

Bilgen and Gunther (2009) consider an integrated production and distribution 

planning problem in the fast-moving consumer goods industry, with a so-called 

block-planning approach, which establishes cyclical production patterns defined by setup 

families. The aim is to minimize the total cost, consisting of production costs, inventory 

holding costs at distribution centers, and transportation costs for FTL and LTL 

transportation modes. Unlike the other related studies, they consider two types of 

production setup cost - major setup costs for each block started on one of the lines (e.g. 

for clean-out in the food industry), and minor setup costs for the production lots of the 

individual products. They trace the time in terms of the block and lot production 

completion times. Two different periods are used in this study: macro periods (e.g. weeks) 
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are used for the block assignments and micro periods (e.g., days) are used for the 

distribution schedule and external demand elements. They compare two different 

block-planning approaches: the flexible and the rigid block which differ by their degree 

of flexibility in the scheduling of the production lots. A mixed-integer linear 

programming model is proposed to solve the problem and CPLEX is used as a solver. 

The numerical results reveal that the flexible block-planning approach can provide 

considerable cost savings compared to the rigid block-planning approach.  

Bolduc et al. (2010) consider the split delivery vehicle routing problem with 

production and demand calendars. They propose a simple decomposition procedure to 

provide a starting solution and use a tabu search with new neighbor reduction strategies. 

After the tabu iterations are completed, an improvement heuristic is applied.  They 

implement their procedure on a randomly generated 100 instances with 50 customers and 

10 periods. The results show that the developed model is effective in terms of both 

solution quality and computation time.  

2.4.3 Remarks on PDPRT 

In the decomposition method, there are two general approaches: the first one 

considers the production problem and the routing problem separately, while the second 

solves the problem including production and simplified distribution and then solves the 

routing problem.  For the integrated method, there are two approaches.  The first is to 

solve the problem simultaneously using mathematical programming with an optimization 
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package, while the second is to use an iterative method in which the solution is improved 

over iterations through a metaheuristic such as GA and tabu search.  Even though there 

is no clear dominance between the decomposed method and the composed method, the 

decomposed method is always useful to find an initial feasible solution.  For example, 

Bolduc et al. (2010) use a decomposed method to find an initial solution and then 

improve it by a tabu search algorithm in an integrated manner.  

Since the problem is already complicated by including the vehicle routing problem in 

it, researchers have focused on a two-echelon problem with static demand.  Thus, 

natural generalizations are required, such as two echelons to multiple echelons, static 

demand to stochastic demand, and excluding third party to including third party.  

2.5 PDP in Emergency Logistics (PDPEL)

Since the first application of PDP to emergency logistics in the 1970s, many 

publications have appeared focusing on emergency operations management (Caunhye, 

Nie, and Pokharel 2012). Among those that are closely related to our work, Haghani and 

Oh (1996) studied the operations scheduling problem of a large-scale multicommodity, 

multi-modal distribution network with time window constraints. The authors proposed 

two heuristics to solve the resulting mixed integer programming (MIP) model, which 

differs from the one we study here in that only non-renewable resources were considered. 

Ozdamar, Ekinci, and Kucukyazici (2004) studied a similar emergency logistic planning 

problem encountered during natural disasters. Since the supply–demand relationships at 
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the different locations shift during the emergency logistics process, the decision plan 

including both vehicle routing problem (VRP) and network flow problem needs to be 

generated frequently. A Lagrangian relaxation-based approach was used to find 

approximate solutions. Yi and Kumar (2007) studied the distribution problem of a 

large-scale multi-commodity, multimodal network flow model in which medical supplies 

are transported to distribution centres (DCs) in disaster areas. An iterative two-phased 

solution approach was proposed, where the algorithm constructs stochastic routes in the 

first phase, and develops a network flow-based algorithm for the multi-commodity 

dispatch in the second phase under the given vehicle routes. Nolz, Semet, and Doerner 

(2011) discussed different risk measures and provided a memetic algorithm based 

approach to solve a multi-objective mathematical model for the distribution of emergency 

supplies after disasters. Yuan and Wang (2009) considered two models of a path selection 

problem in emergency settings, and proposed a Dijkstra algorithm-based approach to 

solve the single-objective model and an ant colony algorithm to solve the multi-objective 

model. Afshar and Haghani (2012) studied a mathematical model based on FEMA’s 

three-layer logistics structure. Their study incorporated both detailed routing for 

emergency supply deliveries and location selection for operating facilities. The authors 

also pointed out that a good heuristic for solving this complex problem is needed at the 

next research step. Comprehensive reviews in this area can be found in the work by 

Wright et al. (2006), Balcik et al. (2010), Hartmann and Briskorn (2010) and more 

recently Huang, Smilowitz, and Balcik (2012) and Caunhye, Nie, and Pokharel (2012). 

The survey by Caunhye, Nie, and Pokharel (2012) reviewed more than 70 papers on the 

management of disaster relief operations that are performed either before or after the 



57 

impact of a disaster. However, as indicated in Hartmann and Briskorn (2010), there still 

remains a lot of work to be done on the joint allocation of both renewable and 

nonrenewable resources. 

It should also be noted that the distinction between renewable and non-renewable 

resources is quite common in resource allocation and assignment problems (e.g. 

Ait-Kadia, Menye and Kane 2011) and in resource-constrained project scheduling (e.g. 

Brucker et al. 1999). In the resource assignment and project scheduling literature, 

however, very few papers have dealt with both renewable and non-renewable resources, 

and most of these have used heuristic approaches as solution methods. Representative 

studies in this area can be categorised as follows. Resource assignment results can be 

found in Ait-Kadia, Menye and Kane (2011), Bachlaus, Tiwarib, and Chan (2009), 

Celano, Costa, and Fichera (2008), Eckstein and Rohleder (1998), Hwang and Kogan 

(2003) and Karsu and Azizoglu (2012). Resource-constrained project scheduling with a 

single type of resource can be found in Brucker and Kramer (1996), Chan, Wong, and 

Chan (2006), Debels and Vanhoucke (2007), Deblaere et al. (2007), Deblaere, 

Demeulemeester, and Herroelen (2011a, 2011b), Depuy and Whitehouse (2001), Klein 

(2000), Ranjbar, Reyck, and Kianfar (2009), Robinson and Moses (2006), Schirmer 

(2001), Tormos and Lova (2003), Vanhoucke, Demeulemeester, and Herroelen (2001b) 

and Van de Vonder et al. (2006). Resource-constrained project scheduling with both 

renewable and non-renewable resources can be found in Bottcher et al. (1999), 

Vanhoucke, Demeulemeester, and Herroelen (2001a), Lee and Lei (2001) and 

Nudtasomboon and Randhawa (1997). Some papers have dealt with multi-mode 
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resource-constrained project scheduling with renewable as well as non-renewable 

resources such as those by Gagnon, D’Avignona, and Boctor (2009), Can and Ulusoy 

(2010) and Wong, Chan, and Chung (2012). To our knowledge, most of the 

methodologies proposed in project scheduling with resource constraints are 

heuristic-based approaches. 

A comprehensive classification of existing results in PDPEL based on model 

constraints, resource types considered, and solution methodologies is described in the 

following table. 
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Afshar and Haghani 

(2012) 

Ahuja et al. (1990) 

Ait-Kadia et al. (2011) 

Alfieri and Brandimarte 

(1997) 

Bachlaus et al. (2009) 

Balcik and Beamon 
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(2008) 

Balcik et al. (2008) 

Ballestin and Trautmann 

(2008) 

Bottcher et al. (1999) 

Brucker and Kramer 

(1996) 

Can and Ulusoy (2010) 

Celano et al. (2008) 

Chan et al. (2006) 

Changfeng et al. (2006) 

Debels and Vanhoucke 

(2007) 

Deblaere et al. (2007) 

Deblaere et al. (2011a) 

Deblaere et al. (2011b) 

Depuy and Whitehouse 

(2001) 

Eckstein and Rohleder 

(1998) 

Fenton (2003) 

Gagnon et al. (2009) 

Haghani and Oh (1996) 

Hwang and Kogan 

(2003) 

Karsu and Azizoglu 
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(2012) 

Klein (2000) 

Lee and Lei (2001) 

Leus and Herroelen 

(2004) 

Mazzola and Neebe 

(1986) 

Mingozzi et al. (1999) 

Mokhtari et al. (2011) 

Moon et al. (2004) 

Nudtasomboon and 

Randhawa (1997) 

Nolz et al. (2011) 

Onwubolu and Mutingi 

(2001) 

Rajkumar et al. (2011) 

Ranjbar et al. (2009) 

Robinson and Moses 

(2006) 

Schirmer (2001) 

Sheu et al. (2012) 

Sheu (2007) 

Simons et al. (1999) 

Tormos and Lova (2003) 

Van de Vonder et al. 

(2006) 
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Vanhoucke et al. (2001a) 

Vanhoucke et al. (2001b) 

Wong et al. (2012) 

Yi and Kumar (2007) 

Yuan and Wang (2009) 

Our research 

Table 2.2  Summary of Literature Review of Emergency Logistics

2.6 Discussion  

In a realistic situation, such as multi-product, multi-echelon, distribution routing, the 

problem under consideration has a complicated structure with a huge size. Moreover, 

each problem in the literature has its unique assumptions and definitions. Various 

approaches are considered and analyzed for different problems, and therefore it is very 

difficult to propose an integrated view of the entire set of methodologies. In this section, 

we provide three different perspectives. The first one is to classify the solution 

approaches with a perspective on the decomposition framework, and solution 

methodologies applied to the decomposed sub-problems. The second one is to relate the 

problem structure to the utilized solution approaches. The last one is to address the 

importance of applications of various PDP methodologies to emergency logistics. 

2.6.1 Structure of Solution Approach 



62 

Most problems in the literature are computationally difficult to solve optimally, and 

thus different decomposition approaches are utilized. When the problem is decomposed, 

the optimality of the problem may not be guaranteed, but each decomposed problem is 

much easier to solve and sometimes can be solved effectively (e.g., optimally or 

near-optimally) and efficiently (e.g., in polynomial time or in pseudo-polynomial time).  

Moreover, after the original problem is decomposed into sub-problems, each sub-problem 

can be further decomposed according to the structure of the sub-problem.  The overall 

framework of the solution methodology in terms of decomposition has the following 

three categories. 

1) No Decomposition: The entire problem is solved at once. 

2) Mathematical Decomposition: The original problem is decomposed according to 

mathematical properties. Two representative decompositions are Lagrangean

decomposition and Benders decomposition. In Lagrangean decomposition, some 

of constraints are relaxed by Lagrangean relaxation and the problem under 

consideration can be decomposed into independent sub-problems.  In Benders 

decomposition, some of the variables are fixed and the problem can be 

decomposed.  

3) Heuristic Decomposition: The original problem is decomposed according to 

problem-specific properties. A common way is to decompose the problem with 

respect to layers.  Thus, the upstream problem and the downstream problem are 

separately defined. Another method is to decompose into a strategic problem and 

an operational problem.  
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When the problem (or decomposed sub-problem) cannot be further decomposed, or is 

going to be solved directly, several approaches are utilized.  The major solution 

approaches in the literature can be summarized: 

1) Exact Algorithm Development: When the problem (or sub-problem) can be 

formulated as a problem which has a known optimal algorithm in polynomial time 

(or pseudo-polynomial time), it can be solved optimally. Typical examples are 

Network Flow Problems, Linear Programming (LP), and Dynamic Programming.  

2) Modeling with an Optimization Solver: Some papers describe the problem with an 

exact mathematical formulation, such as Linear Programming (LP), Non-linear 

Programming (NLP), and Mixed Integer Programming (MIP), and solve it with an 

optimization solver. When the problem size is small enough or the problem has 

unique properties, optimal solutions can be obtained in a reasonable time frame. 

Various optimization solvers are found in the literature, such as CPLEX, GAMS, 

AMPL, LINGO, and GLPK. In order to strengthen the formulation, additional 

constraints, such as valid inequalities, can be inserted.  In most cases, an 

approximate solution by an optimization solver is acceptable, given the error limit 

or running time limit.  

3) Mathematical Programming Approach:  When the sub-problem is still too hard 

to optimally solve, there are several approaches utilizing mathematical 

programming techniques. Representative methods are Lagrangean relaxation and 

LP relaxation.   

4) Metaheuristic: Metaheuristics iteratively improve a candidate solution with regard 

to a given measure of quality. A metaheuristic makes few or no assumptions about 
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the problem being optimized and can search very large spaces of candidate 

solutions. However, it does not guarantee that an optimal solution is ever found. 

The solution quality and running times are highly dependent on the setup 

parameters for metaheuristic approach. Examples are Local Search (e.g., Tabu 

Search, Simulated Annealing), Evolutionary Algorithms (e.g., Genetic Algorithm), 

and Swarm Intelligence (e.g., Particle Swarm Optimization, Ant Colony 

Optimization). 

5) Problem-Specific Algorithms: According to the problem-specific property, an 

algorithm can be developed only for the particular problem. In many cases, values 

of variables are sequentially decided.  A representative one is a greedy algorithm, 

which makes a locally optimal choice at each stage with the hope of finding a 

global optimum. After obtaining a solution, a local improvement procedure may 

be applied.  

Figure 2.2 gives an overview of the existing procedures for solving the integrated 

problem. If a problem is directly solvable, it can be solved using an exact method.  

Otherwise, we may try to decompose it into multiple sub-problems with minor changes 

from the original problem, or try to use other solution approaches.  If the problem is 

decomposed, sub-problems can be solved separately and each of them is considered as an 

independent problem. Then, we can iteratively check whether the sub-problems are 

directly solvable or further decomposable. If the problem (or sub-problem) is not 

decomposable or we do not attempt to further decompose it, several solution approaches 

are applicable.  
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Figure 2.2. An Overview of Existing Procedures for Solving the Integrated Problem

Based on the above classification, the solution approaches used in the literature 

surveyed in this chapter can be classified in Table 2.3. We make the following 

observations:

When the problem is solved without decomposition, the two major methodologies 

are modeling with an optimization solver, and a meta-heuristic, in which the 

structural property is not well-utilized.  

When a mathematical decomposition is utilized as an overall framework, the 

sub-problem is always solved by mathematical programming methods for optimal 
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or approximate solutions. In other words, if one would like to apply mathematical 

decomposition, sub-problems should be able to be well-handled by mathematical 

programming methods.   

When the problem is heuristically decomposed, metaheuristic and 

problem-specific heuristics are frequently used.  

Overall 

framework 

No  

Decomposition

Mathematical  

Decomposition

Heuristic  

Decomposition

Sub-problem 

Methodology

   

Modeling with 

Optimization Solver 

Rizk et al. (2006) 

Chen and Lee (2004) 

Dhaenens-Flipo and Finke 

(2001)

Fahimnia et al. (2008a) 

Bilgen and Gunther (2009) 

 Sabri and Beamon (2000) 

Cetinkaya et al. (2009) 

Chandra and Fisher (1994)

Exact Algorithm 

Development 

Armstrong et al. (2008) 

Ruokokoski et al. (2010) 

Yung et al. (2006) 

Eksioglu et al. (2007) 

Karakitsiou and Migdalas 

(2008)

Dogan and Goetschalckx 

(1999)

Bard and Nananukul 

(2009b)

Archetti et al. (2011) 

Mathematical

Programming 

Approach 

Yilmaz and Catay (2006) 

Lei et al. (2009) 

Fumero and Vercellis (1999) Bard and Nananukul 

(2010)

Bard and Nananukul 

(2009b)

Archetti et al. (2011) 

Metaheuristic Jang et al. (2002)  Ahuja et al. (2007) 
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Gen and Syarif (2005) 

Kannan et al. (2010) 

Naso et al. (2007) 

Boudia and Prins (2009) 

Bolduc et al. (2010) 

Yimer and Demirli (2010) 

Bard and Nananukul 

(2009a) 

Geismar et al. (2008) 

Yossiri et al. (2012) 

Problem-Specific 

Algorithm 

Lei et al. (2006) 

Liu et al. (2008) 

Gebennini et al. (2009) 

Shen and Qi (2007) 

 Park (2005)  

Cetinkaya et al. (2009) 

Chandra and Fisher (1994) 

Lei et al. (2006) 

Geismar et al. (2008) 

Archetti et al. (2011) 

Table 2.3 Summary of Solution Approaches

2.6.2 Problem Structure and Solution Approaches 

In the reviewed papers, along with their problem structure and methodologies used, 

when routing is involved as a part of the decision, the problem includes a vehicle routing 

problem (VRP), which is one of the well-known difficult combinatorial optimization 

problems. Thus, we separately discuss the problems where routing is considered, and 

those where it is not.  

For the problems without routing decisions (PDP and PDPT), the methodologies for PDP 

and PDPT are different.   

The major solution methodology for PDP is to use Lagrangean decomposition as 

a framework and mathematical programming for the decomposed problems.  

Especially when the PDP is defined on a supply chain network with two stages, 
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Lagrangean decomposition works very well, because the sub-problems can be 

solved optimally. However, when PDP is defined on a network with three or more 

stages, Lagrangean decomposition is rarely used. 

The major methodology of PDPT is to establish a mathematical model without 

decomposition and use an optimization solver. Half of the papers dealing with 

PDPT use an optimization solver, even though some mathematical models are 

non-linear, while no papers use mathematical programming for overall or 

decomposed problems. It may imply that the problem with time constraints can be 

clearly defined in a mathematical model, but the time constraints make it difficult 

to utilize the mathematical structure for mathematical programming-type 

algorithm development.  

For the problems with routing decisions (PDPR and PDPRT), mathematical 

decomposition is rarely used, while heuristic decomposition is frequently used. When the 

problem is decomposed heuristically, the upstream problem deals with production 

lot-sizing and the downstream problem is defined for routing decisions. Decomposed 

sub-problems are solved by various methods.   

In PDPR, one sub-problem may be modeled and solved by an optimization solver, 

and the other sub-problem solved by a problem-specific heuristic. In another case, 

one sub-problem is solved by mathematical programming for an approximate 

solution, while the other sub-problem is solved by an exact algorithm for the 

optimal solution.   
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In PDPRT, a mathematical programming approach is rarely used as the solution 

methodology for decomposed problems because of the complexity of the 

decomposed problems. Instead, metaheuristic and problem-specific heuristic 

approaches are widely used. In both PDPR and PDPRT, the solution approaches 

cannot directly give a solution close to the optimum and, thus, local improvement 

heuristics are frequently used as a post-processing procedure. 

In addition, we observe the following relationships between problem structure and 

methodologies used: 

The mathematical programming approach works better for problems without time 

constraints.

When the problem structure is complicated, problem-specific algorithms and local 

improvement heuristics are frequently used.  

Metaheuristics can be applied for most problem structures.  

2.6.3 Trends and Applications 

The trend in solution approaches for modern supply chain operations is to use a 

hybrid methodology, by combining the aforementioned methods and the use of a 

simulation as a framework, especially for practical and large-scale problems. When a 

simulation is used as a framework for solving the problem, a mathematical model is first 

established by relaxing some uncertain factors and solved with a variety of approaches.  

Its solution is then used as the input to the simulation model, then incorporated with 
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different uncertainty sources such as demand, facility failure, delivery time, etc., and the 

output of the simulation model gives feedback for the parameters of the mathematical 

model to be revised accordingly. This procedure can be repeated until the obtained 

solution is efficient and robust.  

One of the most important applications is in emergency logistics. Today’s Internet 

allows the need for disaster relief to be communicated cross-country and internationally

within minutes of an event, and the rapid formation of disaster relief supply chains for 

quick response to people in the affected areas. A highly effective and fully integrated 

production and distribution operation that pulls supplies from different industries and 

states to ensure delivery of these resources to the people in an affected area is critical to 

human well-being. Many solution methodologies can be extended in this area. For 

example, during the post-disaster period, the time in the rescue process becomes the most 

important issue for severely injured patients. The problem of producing and allocating 

different types of resources and service operations to customers in the affected areas is a 

classical example of PDPT. Therefore, all the modeling and solution methodologies can 

be directly or indirectly utilized to solve the emergency logistics problem. If the routing 

issue is considered (e.g., trucking routes in delivery of medical kits), methodologies for 

solving PDPRT can be used. Thus, the focus of this dissertation is to apply the existing 

results reviewed in this chapter to solve the emergency operations scheduling problem 

that will be defined in the next chapter. 
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Chapter 3. Problem Definition and the MIP Model 

In this chapter, we formally define the research problem in this reseach and build up 

the Mixed Integer Programming (MIP) model. 

Our problem is defined upon a two-stage supply chain network (see Figure 3.1) 

consisting of: 

(i) A set of customers, H. The service to each customer ,h h H , requires a 

simultaneous availability of both renewable and non-renewable resources, and has an 

expected service completion time hd . The service starting time at customer ,h Sh , is 

determined by the latest arrival time of the two types of resources. A tardiness penalty 

incurs whenever the actual completion time passes hd . There is an expected (i.e., 

predetermined) service duration hp  at the site of customer h. To deliver the service at 

customer h, a total of Dh  units of non-renewable resources are needed. 

(ii) A set of distribution centers (DCs), K. Each DC k, k K , receives a sequence of 

nBk
batches of non-renewable resources from its upstream suppliers, and each batch is 

defined by batch size Qjk , and batch arrival (release) time Ajk , 1 j nBk
, k K . That 

is, additional Qjk units of non-renewable resources become available at time Ajk . The 

shipping time from DC k to a certain customer h is given by kh .
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(iii) A set of home-bases of the renewable resources (e.g., medical teams), M. Each 

home-base i, i M , dispatches a renewable resource (i.e., a team) that travels to the 

customer locations to perform service operations. The route of each renewable resource 

(i.e., the sequence of customer sites to be visited/served), Hi , is assumed to be given in 

this study. Each renewable resource departs from its base at a given time point (i.e., the 

travel team release time) ri, and travels along a fixed route Hi {hi (0),hi (1),hi (2),...,hi (ni )},

where elements hi(k), k=1, 2, …, ni, represent hospitals along the route assigned to this 

renewable resource. The travel time of team i between two consecutive customer sites is 

defined as hi (l )hi (l 1) , for all i M , 0 l ni 1 . In addition, we assume that the 

triangle inequality holds for the travel time of both renewable and non-renewable 

resources. The problem is to allocate non-renewable resources from DCs to customers 

located along different routes of medical teams to support the service operations so that 

the total tardiness is minimized. Let us introduce the following notations.   
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Figure 3.1 Supply Network with Both Renewable and Non-renewable Resources 

Model Parameters 

H : Set of hospitals (i.e., customers);  

K : Set of DCs;  

M : Set of medical teams, or, equivalently, the set of their home-bases;  

kB : Set of batches (of the non-renewable resource) that arrive at DC k, for all k K ;

Hn  : The total number of hospitals; 

Kn  : The total number of DCs; 

Mn  : The total number of medical teams; 

kBn  : The total number of batches that arrive at DC k, for all k K ;

in  : The total number of hospitals on the given route of medical team i, for all i M;
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hi (l)  : The l-th hospital on the route of team i, for all i M;, l=1, 2, …, ni;

Hi  : The set of hospitals visited by team i, including the home-base of team i;

H i {hi (0), hi (1), hi (2),..., hi (ni )} , for all i M , and hi (0) i ;

Dh  : The quantity of the non-renewable resource ordered by hospital h, for all h H ;

p h
 : The given service time duration at hospital h, for all h H ;

hd  : Due date for completing service at hospital h, for all h H ;

Ajk  : Release (arrival) time of the j-th batch of non-renewable resource at DC k,

, kk K j B ;

Qjk
 : Quantity of the j-th batch of non-renewable resource arriving at DC k, for 

all , kk K j B ;

kh
 : Travel time from DC k to hospital h, for all ,k K h H ;

hi ( l )hi ( l 1)
: Travel time of team i from hi (l) to hi (l 1) , for all i M , 0 l ni 1 ;

ri
   : Release time of team i at its home-base, for all i M ;

Decision variables 

qjkh
 : Quantity of non-renewable resources shipped from the j-th batch at DC k to 

hospital h, for all , ,kk K j B h H ;

z jkh : Binary variable, z jkh= 1 if the j-th batch of DC k supplies hospital h and z jkh= 0 

otherwise, for all , ,kk K j B h H ;
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Auxiliary variables 

Sh  : Starting time of service at hospital h, for all h H ;

Th  : Tardiness in delivering service to hospital h, for all h H ;

With these notations, our problem, P, can be defined as the following mixed 

integer-programming model. 

P: Minimize G = 
h

h H
T              (3.1) 

Subject to 

q jkh
j Bkk K

Dh      for all h H        (3,2)

qjkh
h H

Qkj       for all , kk K j B       (3.3)

qjkh z jkhQjk       
for all , ,kk K j B h H     (3.4)

(Ajk kh )z jkh Sh      
for all , ,kk K j B h H     (3.5) 

Shi (l ) phi (l ) hi (l )hi (l 1) Shi (l 1) ,

phi (0) 0, Shi (0) ri

for all i M , l 0,1,..., ni 1 (3.6)

Th Sh ph dh       for all h H        (3.7) 

z jkh {0,1}, qjkh 0, Sh 0, Th 0 for all , ,kk K j B h H     (3.8)

In this model, the objective function (3.1) is to minimize the total tardiness across all 

hospitals in the network. Constraint sets (3.2) to (3.4) are related to the non-renewable 
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resource distribution. Constraint set (3.2) ensures that the demand for the non-renewable 

resource at each hospital will be completely fulfilled. Constraint set (3.3) ensures that the 

total shipping quantity from a given batch does not exceed the batch size. Constraint set 

(3.4) establishes the relationship between variables qjkh  and z jkh . Constraint sets (3.5) 

to (3.7) are time-related constraints. Constraint set (3.5) ensures that the starting time of a 

service at a hospital will not be earlier than the latest arrival time of the non-renewable 

resource. Constraint set (3.6) ensures that the starting time of the service at any hospital 

will not be earlier than the earliest arrival time of the medical team. Constraint set (3.7) 

defines the tardiness of the services, and constraint set (3.8) defines the domains of 

decision variables. The design of objective function (3.1) is justified by the criticality of 

achieving a fast response to serve the needs for disaster relief 

(http://www.ifrc.org/PageFiles/53419/MAA0000410p.pdf, 

http://www.gps.gov/applications/safety/, and Han, et al. (2011)). 

In the next two chapters, we present a structrural analysis of Problem P and design a 

rolling horizon based heuristic to solve P efficiently. 
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Chapter 4. A Structural Analysis of Problem P 

In this chapter, we discuss the computational complexity of the problem with 

different parameter settings by presenting either NP-hard proofs or polynomial time 

algorithms. In Section 4.1, we consider the case where there is a single DC and present a 

computational complexity result. In Section 4.2, we assume that the assignment between 

DCs and customers are given and fixed, and present polynomial time algorithms for two 

special cases. A greedy-type algorithm is presented for the case with a variable number of 

DCs and a single team, and a polynomial-time dynamic programming algorithm is 

developed for the case with fixed numbers of DCs and teams. In Section 4.3, when the 

assignments of DCs to customers have to be optimized, we present an NP-hard proof for 

the general case and provide polynomial time algorithms for two special cases. In Section 

4.4, we summarize the results obtained in terms of computational complexity. Finally, in 

Section 4.5, we propose a framework of heuristic procedures for solving the more general 

problems in practice and discuss future research directions. 

In order to analyze the structural properties of problem P, we make a distinction 

between two different environments with regard to the assignments of DCs to hospitals: 

The Fixed Assignment Environment (F): This case refers to settings where the 

DC-hospital assignments are fixed in advance. That is, each customer in the network has 

its own designated DC for its supply of the non-renewable resource (e.g., which occurs in 

real life when each hospital or shelter is supplied by a local DC during the disaster relief);  

The Open Assignment Environment (O): The assignments of DCs to hospitals are 



78 

open. A hospital does not have a designated DC for its supply of the non-renewable 

resource; its designation has to be determined by the solution to the problem. 

For simplicity, the cardinalities of sets |B|, |D|, |M|, and |H| are denoted as nB, nD, nM,

and nH, respectively.  Furthermore, let us introduce the notation P( , ,D Mn n ), where 

{ , }F O stands for the DC-hospital assignment environment, 1Dn stands for the 

total number of DCs, and 1Mn stands for the total number of medical teams (i.e., the 

renewable resources). With this notation, for example, the problem with a given and fixed 

DC-Hospital assignment ( ),F  two DCs ( 2),Dn and a single travel team ( Mn = 1) 

is denoted as P(F, 2, 1).  The computational complexity of problem P depends on the 

instances defined by parameters , Dn  and Mn , which will be discussed in subsequent 

sections. We will make a distinction between cases with a fixed number and a variable

number of Dn  or Mn , since they may result in a different computational complexity (i.e., 

one may be polynomial time solvable, while the other may be NP-hard) A fixed number is 

considered here as a bounded constant. When a fixed number appears as an exponent in the 

time complexity of an algorithm, the algorithm is still considered as a polynomial time 

algorithm. When a variable number appears as an exponent in the time complexity of an 

algorithm, the algorithm becomes an exponential time algorithm.  

We note that if the triangle inequality does not hold for the travel times of the 

medical teams and of the non-renewable resources, then even the simplest case with a 

single DC and a single team is already NP-hard. 
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Theorem 4.1. If the triangle inequality does not hold for the travel times of the medical 

teams, then problem P(F, 1, 1) is NP-hard.  

Proof . We start with the definition of the PARTITION Problem, which is a well-known 

NP-complete problem and will be used for the reduction in the proof.   The input of 

PARTITION is set 1,..., nS a a where ja  is a positive integer.  The output of 

PARTITION is set 1S S  such that  where .

Let H be {1,2,...,n} with .  We have one DC, 

denoted by DC 1, which has two batch arrivals with 11 120,A A A  and 11 12 2
AQ Q .

We have one team that is available at time r1 A a1
.  Transportation times are 

0hh  and .  Then, if hospital h is served by the first batch, its tardiness is 

zero while if by the second batch its tardiness 

is . Therefore, there is a partition if and 

only if there is a schedule with the total tardiness less than or equal to A
2 .

4.1 The Single DC Case 

When there is a single DC, there is clearly no difference between the fixed 

assignment environment and the open assignment environment. Thus, in this section, we 

determine the computational complexity of the case with a single DC and a variable 
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number of teams.  

Theorem 4.2. The problem with a single DC and a variable number of medical teams, i.e., 

P(F, 1, Mn ), is strongly NP-hard. “F” denotes the fixed assignment between DC and 

customers, “1” means single DC and “ Mn ” is the number of medical teams.  

Proof. We start with the definition of 3-PARTITION Problem, which is a well-known 

strongly NP-complete problem and will be used for the reduction in the proof.  The 

input of the 3-PARTITION problem is set 1 3,..., tS a a  where ja  is a positive 

integer and 
4 2j
A Aa  where .  The output of 3-PARTITION is a 

partition of set S into disjoint sets 1 2, ,..., tS S S  such that .

We consider a problem instance of P(F, 1, Mn ). We have 3t teams and team i has two 

demand points, (1)ih  and (2)ih  with the following information for i = 1, …, 3t ;

- 3
(1) (1) (1) (1)( , , , ) , , ,1

i i i ih h h h ip D d w A a tA ,

- 2
(2) (2) (2) (2)( , , , ) 0, 2 , ,1

i i i ih h h h ip D d w A a A .

We have a single DC, denoted by DC 1, with 2t batches and batches 2 1j  and 2 j

referred to as group j for j = 1, …, t. The batch information, for j = 1, …, t, is as follows: 

- 3
2 1 2 1,1, , ( 1)j jQ A A j A ,

- 2 3
2 2 ,1, 3 2 ,( 1)j jQ A A A j A A .

All transportation times are zero. Note that in any feasible schedule the tardiness of 

demand point (1)ih  is always zero.  
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Suppose that there exists a 3-partition, 1 2, ,..., tS S S . Thus, jS has exactly three elements 

for j = 1, …, t. Then, we can construct a schedule where batches in Group j serve all the 

demand points of the teams in jS . More precisely, batch 2 1j serves demand points 

(1)ih  for  and batch 2 j serves demand points (2)ih  for ji S .  The total 

tardiness of the demand points of team i for  is exactly, 33( 1)j A . Thus, the total 

tardiness of all the demand points is . Therefore, if there 

exists a 3-partition for the 3-PARTITION problem, then there exists a schedule for P(F, 1, 

Mn ) with the total tardiness being less than or equal to 33 ( 1)
2

t t A .

Suppose that there exists a schedule such that the total tardiness is less than or equal to 

33 ( 1)
2

t t A . Let  be the set of teams whose hospitals are fully served by batch group 

j but not fully served by batch group 1j . Note that the total quantity of batch group 

j  is 2 2
1,2 ,2 3 2 3j jQ Q A A A A A  and the total required quantity of 

hospitals belonging to team i  is 2
iA a . This implies that  for j = 1, …, t.

Thus, if hospital (2)ih is fully served by batch group j, its tardiness is at least 

3( 1)j A A .  Then, if , then  for j = 1,.., t.

Suppose there exists a team j such that  , then 

. It implies that at least one of the hospitals 
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in  is not fully served by group i, leading to a contradiction. Suppose that 

there exists team j such that  then one of hospitals in  is not 

fully served by the first batch in group j and leads to a delay of at least one of hospitals 

in , implying . Therefore, the total tardiness is strictly 

greater than 33 ( 1)
2

t t A . Therefore, if , then 

 for j = 1, …, t.

Therefore, if there exists a schedule of P(F, 1, Mn ) with the total tardiness being less 

than or equal to 33 ( 1)
2

t t A , then there exists a 3-partition for the 3-PARTITION 

problem. Therefore, there is a 3-partition if and only if there is a schedule for P(F, 1, Mn )

with the total tardiness less than or equal to 33 ( 1)
2

t t A .

We now consider two solvable cases in which there is a single DC but the DC may 

receive multiple batches. For the first case, we assume each traveling team has a given tour 

of length one (i.e., there is only a single hospital on each tour). Furthermore, we assume 

that all renewable resources arrive at the corresponding hospitals at time zero, and that all 

hospitals have an identical demand size, i.e., ' , , 'h hD D h h H . Let jA  be j-th batch

arrival time, jQ  be the j-th batch supply capacity, h  be the shipping time from the 

single DC to hospital h, jhq  be the quantity shipped from the j-th batch to hospital h, and 
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jhz  be the binary variable that is equal to 1 if hospital h is served by the j-th batch. In this 

case, problem P is reduced to the following one (see Figure 4.1(a)): 

1 : max .{0, max .{( ) } }

. . ;  ;  ;  0;  {0,1}, ,

j B j h jh h h
h H

jh h jh j jh jh j jh jhj h

P Minimize A z p d

s t q D q Q q z Q q z h H j B

(a) P1: Multiple Batches and Unit Tour Length    (b)P2: Two-Batch and Arbitrary Tour Lengths 

Figure 4.1 Examples with a Single DC Supply Process 

Consider the following algorithm that solve problem P1.

Algorithm 4.1: Let wh h ph dh . Sequence all hospitals in H in a non-increasing 

order of wh , and let the new sequence be H A {h1,h2 ,...,hN } . Deliver all batches from 

this single DC to hospitals according to this order, i.e., use the first batch to serveh1 , and 

if there is a remainder then use that to serve h2 , so on so forth until all hospitals’ demands 

are fulfilled. 

Lemma 4.1. Algorithm 4.1 finds the optimal solution to P1 in O( Hn ).
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Proof. We first show that Algorithm 4.1 brings the optimal solution with the minimum 

total tardiness. If this is not true, then there must exist an optimal solution, , that yields 

a smaller total tardiness than that derived by Algorithm 1, and hence some hospital(s)’s 

tardiness calculated by Algorithm 4.1 must be larger than that by . Let hospital h be the 

first such kind of hospital in sequence HA . We use batches j and j*, respectively, to 

denote the last batch of the DC that fulfills the demand of hospital h in the solution 

associated with Algorithm 4.1 and , and derive Th ( j) max{0, Aj wh}  and 

*
*( ) max{0, }h hj

T j A w  as the respective tardiness’s for hospital h. Our discussions 

above imply that *
*( ) max{0, } ( ) max{0, }h j h h hj

T j A w T j A w .

Since wh h ph dh  is a given number regardless the position of h in any sequence, 

*j j
A A  must hold to make the above inequality happen, and hence j*<j. Also, we can 

find at least one hospital h’ that precedes h in HA  (i.e., wh ' wh ) and has the last batch 

j’ received from the DC in the optimal schedule  satisfy j*<j’ (otherwise, j j *).  

Since h and h’ have the same demand, if we switch them in the service sequence 

, this will not affect the tardiness’s of any other hospitals. Thus, the consequent change 

of the total tardiness is * * * *
' '( ( ) ( ')) ( ( ') ( ))s s

h h h hT T j T j T j T j , where Th
s ( j ')  and 

*
' ( )s

hT j  are the tardiness’s associated with hospitals h and h’ after the switch. 

* * * *
' '( ( ) ( ')) ( ( ') ( ))s s

h h h hT T j T j T j T j .

Considering Aj* Aj '  and wh ' wh , we have Aj ' wh ' Aj ' wh , Aj* wh ' Aj* wh .

Therefore, the above formula implies that T 0  when Aj ' wh ' 0  or * 0hj
A w .

When *' ' 0j h hj
A w A w , * * *

' ' '( ) ( ')h h j hT j T j A w . Consider the following cases. 
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i. When *' '0, 0j h hj
A w A w , *

'( ') ( ) 0s s
h hT j T j , and T Aj ' wh ' 0 ; 

ii. When *' '0, 0j h hj
A w A w , *

*
' '( ') ( )s s

h h hj
T j T j A w , and 

*' 0j j
T A A ;

iii. When *' '0, 0j h hj
A w A w , *

' '( ') ( )s s
h h j hT j T j A w , and T wh ' wh 0 ;

iv. When *' '0, 0j h hj
A w A w , *

*
' ' '( ') ( )s s

h h j h hj
T j T j A w A w , and 

*( ) 0hj
T A w ;

Summarizing the above analysis, we conclude T 0 . In other words, by switching h

and h’ in the sequence of optimal solution , we always reach another optimal solution 

with j*>j’, which results in a contradiction with the earlier discussions. Hence Algorithm 

4.1 can solve this case optimally. Clearly Algorithm 4.1 has a complexity of O( Hn ).

The next special case includes a single DC with two batches, multiple teams, and 

each team has multiple hospitals along its route. The hospitals may have different demand 

sizes, but for those in the same sequence their demand sizes are non-decreasing as the 

sequence order. For simplicity, we assume that the due dates of all hospitals are equal to 

zero. Moreover, we assume that team traveling time between the hospitals in the same team 

sequence is very small so that the renewable resource arrival time is negligible. Under this 

assumption, we can see that all hospitals in the same sequence are clustered as a group, and 

thus we can also assume that the non-renewable resource arrival times at all hospitals in the 

same sequence are identical. Therefore, the tardiness of each hospital is completely 

determined by the non-renewable resource arrival time (see Figure 4.1(b)).  
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In this case we can simplify the original MIP model by introducing the following 

notations. Suppose that there are Mn  teams ( 2Mn ) and Hn  hospitals, and that team 1

visits a number of n1 hospitals (in set H1), team 2 visits a number of n2 hospitals (in set 

H2),…, and team i visits a number of in hospitals (in set Hi), where 
1 | |

i H
i M

n n . Let jA

be j-th batch arrival time and jQ  be the j-th batch supply capacity, for j=1,2. Let i  be the 

shipping time from the single DC to all hospitals in team i, for i=1,2…, Mn . Let jhq  be the 

quantity shipped from the j-th batch to hospital h, and jhz  be the binary variable that is 

equal to 1 if customer h is fully served by the j-th batch. Based on the notations, we have 

the following model for special case P2.

2 1 1 2 1

1 2

1,2

: [( ) ( )(1 )]

. .
;

;                                      

;                                      , 1, 2

;           

i

i h i h
i M h H

hh H

jh hj

jh jh H

jh jh j

P Minimize A z A z

s t
D Q Q

q D h H

q Q h H j

q z Q

1 ( ) 1 ( 1)

                                 , 1, 2

;                                        , 1, 2,..., 1

0;  {0,1};                                 , 1, 2
i ih l h l i

jh jh

h H j
z z i M l n

q z h H j

Note that constraint set 1 ( ) 1 ( 1)i ih l h lz z  guarantees that non-renewable service 

order must follow the order in the team sequence, and hence this constraint set can 

replace constraint set (3.6) in problem P. Note also that the objective function in P2 is 

equivalent to 2 2 1 1min ( )
i

H i i h
i M i M h H

A n n A A z . The first two terms are fixed 
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positive numbers, and thus the objective function here is further equivalent 

to 1max
i

h
i M h H

z , i.e., we are trying to allocate as many hospitals as possible to the first 

batch. Since only z1h is involved in the objective function, P2 can be further simplified as 

the following program. 

1

1 1 1 ( ) 1 ( 1) 1

max

. . ; , , 1, 2,..., 1;  {0,1},
i

i i

h
i M h H

h h h l h l i h
h H

z

s t D z Q z z i M l n z h H

 This is a special case of Knapsack problem, and can be solved by the following 

algorithm. 

Algorithm 4.2: Each time allocate one hospital by the following rule. For all hospitals 

sequences (visited by a given team), pick the first available hospital that has not been 

served by batch 1, and among these hospitals picked up from each sequence, we choose 

the one that has the smallest demand size. Let batch 1 serve this hospital. If more than 

one hospitals assume the smallest demand size, randomly choose one. Keep allocating 

hospitals to batch 1 by this rule until either no more hospital can be fully served or all 

hospitals’ demands are fulfilled. 

Since algorithm 4.2 always choose the current available hospitals that have the 

smallest size and the demand sizes of hospitals are increasing in a team sequence, the 

greedy type algorithm can find the optimal solution for P2.

Lemma 4.2. Algorithm 4.2 finds the optimal solution to P2 in O(
2

Hn ).
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4.2 Multiple DCs in a Fixed Assignment Environment 

In this section, we deal with multiple DCs in an environment with fixed assignments. 

In particular, we consider the following two cases: (i) a variable number of DCs with a 

single medical team and (ii) a fixed number of DCs with a fixed number of medical teams. 

We present polynomial time algorithms for both cases. 

4.2.1 A Variable Number of DCs and a Single Medical Team 

We consider problem P3 with a variable number of DCs, Kn , and a single medical 

team ( Mn =1). We shall show that this problem can be solved optimally in linear time by a 

greedy algorithm. Without loss of generality, we assume that the route along which the 

single team visits the hospitals is specified by the indices of hospitals or 1, 2, …, nH .

Algorithm 4.3 (Greedy Algorithm): (Given route 1,2,…, nH ) For the next hospital in 

the given route of the travel team, allocate from the batches received so far at the 

assigned DC an amount that is sufficient to meet the demand for the non-renewable 

resource.

Lemma 4.3. In the schedule generated by the Algorithm 4.3, each hospital starts its 

service at its earliest possible time. 

Proof.  Suppose the claim is not true. If so, there must exist a problem instance S such 
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that in the schedule generated by the Greedy Algorithm some hospitals do not start the 

services at earliest possible time. Let G be the schedule of instance S generated by the 

Greedy Algorithm. Let hospital h be the first hospital in schedule G  that does not start 

the service at its earliest possible time and let DC k be the DC assigned to hospital h.

Let  be the schedule in which hospital h has the earliest possible start time of the 

service.  Let ( )G
hS  and ( )hS  be service start times at hospital h in schedules G

and , respectively.  Then, by definition, ( ) ( )G
h hS S  and ( ) ( )G

h hS S  for 

1, , 1h h .

Recall that ( )G
hs is either the arrival time of the non-renewable resource or the arrival 

time of the renewable resource at hospital h. If ( )G
hS  is determined by the arrival time 

of the non-renewable resource, i.e., 1 1 1,( ) ( )G G
h h h h hS S p , then ( )G

hS  is the 

earliest possible start time since ( )G
hS  is the earliest possible start time at hospital h

for 1, , 1h h , which leads to a contradiction.  Thus, 

1 1 1,( ) ( )G G
h h h h hS S p  and ( )G

hs  is determined by the arrival time of the 

renewable resource at hospital h.

Let  and  be the last batches of DC k that serve hospital h in schedules G  and ,

respectively.  

Thus, ( )G
h k khS A .  If , then ( ) ( )G

h k kh k kh hS A A S  would 

be a contradiction.  Hence, .

Consider in schedule  the set of all hospitals served by DC k and precede hospital h

and denote the set as H . Then, there exists at least one hospital in H  that is provided 



90 

by batch  of DC k for some . Otherwise, in schedule , all hospitals in H are

provided by batches preceding batch  and hospital h is also provided by batches 

preceding batch  since  is the last batch for hospital h and . However, it is 

impossible to provide hospitals in H h  with batches preceding batch . Thus, we 

can say that there exists at least one hospital in H  that is provided by batch  of DC k

for some  and let h  be the last hospital in hospitals provided by batch  for 

some . Therefore, by the triangular inequality,  

1 1

, 1 , 1( ) ( ) ( )
h h

G
h h a a k kh a a k kh k kh h

a h a h
S S A A A S ,

which is a contradiction. This completes the proof. 

Theorem 4.3. Algorithm 4.3 solves problem P3 with a variable nD in linear time. 

Proof. By Lemma 4.3, in the schedule by the Greedy Algorithm, all the hospitals start the 

service at their earliest possible times. Thus, the Greedy Algorithm is optimal. It takes 

O(nB + nH) time to assign batch quantities to hospitals and it takes O(nH) time to calculate 

start times of all hospitals. Therefore, the overall time complexity is O(nB + nH). This 

completes the proof. 

We now report a numerical example that is solved by the proposed algorithm 3 to 

optimality. In this example, we are given ten hospitals (nH =10) and two distribution 

centers (nK =2) for the non-renewable resource. DC 1 has three batches and is assigned to 

serve hospitals 1, 4, 5, 7, 8, and 10, while DC 2 has two batches and is assigned to serve 

hospitals 2, 3, 6, and 9. There is only one medical team that starts out at time 0 from its 
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home-base location (0, 0). The parameters are described in Tables 4.1 - 4.2, where 

coordinates are used to calculate the required shipping time between two locations with 

speed 1. 

DC k DC 1 DC 2  

Coordinates in the xy 

axis 
(0, 0) (1, 0) 

Batch j 1 2 3 1 2

Batch Arrival time kjA 3 7 10 2 40 

Batch Capacity   kjQ 15 8 12 10 8 

Table 4.1  Parameters for DCs and Batches (Greedy Algorithm) 

Hospital 

h

Service DC 

k

Demand 

hD

Penalty Cost

wh

Due Date 

hd

Duration 

hp

Coordinate in 

the x-y axis 

1 1 5 2 10 3 (2, 0) 

2 2 3 4 30 3 (0, 1) 

3 2 7 10 15 5 (2, 2) 

4 1 8 3 55 4 (1, 4) 

5 1 9 12 20 5 (2, 5) 

6 2 4 5 60 3 (0, 8) 

7 1 4 5 12 6 (4, 0) 

8 1 3 2 18 4 (1, 7) 

9 2 2 3 50 5 (3, 3) 

10 1 5 1 95 4 (5, 1) 
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Table 4.2 Parameters for Hospitals (Greedy Algorithm) 

Table 4.3 summarizes the results obtained by the proposed greedy algorithm.  

Table 4.3 Results Generated with the Greedy Algorithm

Finally, we obtain the optimal objective function value of * 712.65G . By tracking 

the solution, we have,  

*
1,1,1 5,q *

1,1,4 8,q *
1,1,5 2,q *

2,1,5 7,q *
2,1,7 1,q *

3,1,7 3,q *
3,1,8 3,q *

3,1,10 5q  and 

Hospital Service

DC
kjhq Last

Batc

h

Last Batch 

Arrival

Time 

Team 

Arrival

Time 

Service

Starting 

Time 

Due 

Date

Tardiness Penalt

y Cost 

j

h k 1 2 3 j kj khA h hs hd hT h hw T

1 1 5 1 5.00 2.00 5.00 10.00 0.00 0.00 

2 2 3  - 1 3.41 10.24 10.24 30.00 0.00 0.00 

3 2 7  - 1 4.24 15.47 15.47 15.00 5.47 54.70 

4 1 8 1 4.12 22.71 22.71 55.00 0.00 0.00 

5 1 2 7 2 12.39 28.12 28.12 20.00 13.12 157.44 

6 2  4 - 2 48.06 36.73 48.06 60.00 0.00 0.00 

7 1 1 3 3 14.00 60.00 60.00 12.00 54.00 270.00 

8 1 3 3 17.07 73.62 73.62 18.00 59.62 119.24 

9 2  2 - 2 43.61 82.09 82.09 50.00 37.09 111.27 

10 1 5 3 15.10 89.92 89.92 95.00 0.00 0.00 
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*
1,1,2 3q , *

1,2,3 7q , *
2,2,6 4q , *

2,2,9 2q . All the other variables are equal to zero. 

4.2.2 Fixed Numbers of DCs and Teams in a Fixed Assignment Environment 

We consider the problem P4 with a fixed number of DCs, nK, and a fixed number of 

teams, nM, (i.e., multiple, but fixed number of teams, each one having a predetermined 

route). We shall prove that this problem can be solved via dynamic programming in 

polynomial time. Recall that H i {hi (0),hi (1),hi (2),..., hi (ni )}  is defined to be the 

sequence of hospitals, or the given route, served by team i, i=1, …, nM and hi (0) i .

Before presenting the polynomial time algorithm, we need to introduce a useful 

lemma that is critical for proving the time complexity of the proposed dynamic 

programming algorithm.  

Lemma 4.4. The starting time of service at hospital hi(l)  is always of the form   

for some u = 0,1,..., l ,

where k(hi (u))  is the DC that serves hi(u) , v(hi (u))  is the last batch that serves hi(u) ,

( ( )), ( ( ))i iv h u k h uA  is the arrival time of batch v(hi (u))  at DC k(hi (u))  with ( (0)), ( (0))i iv h k h iA r

and phi (0) = 0 ,  is the travel time from DC k(hi (u))  to hospital hi(u) , and  

is the travel time from the base of team i to hi(1) .

Proof. The starting time of the service at hospital hi(l) is  
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either the arrival time of non-renewable resource at the hospital, which is some batch 

arrival time at DC ( ( ))ik h l  plus the travel time between DC ( ( ))ik h l  and hospital 

hi(l) ,

or the service starting time at the hospital visited right before hi(l) plus the service 

duration at the previous hospital and the travel time between the previous hospital 

and the current hospital.  

In fact, we have ( ) ( ( )), ( ( )) ( ( )), ( ) ( 1) ( 1) ( 1), ( )max{ , }
i i i i i i i i ih l v h l k h l k h l h l h l h l h l h lS A s p .

Then, ( 1)ih lS  can be considered recursively.  Thus, we consider the first hospital 

hi(u) among hospitals served by the same team (team i) such that there is no idle time of 

team i between hospital hi(u) and hospital hi(l) .

Now we consider three cases in terms of u.

If u = l , then the service starting time at hospital hi(l)  is determined by the 

arrival time of the non-renewable resource. 

So ( ) ( ( )), ( ( )) ( ( )), ( )i i i i ih l v h l k h l k h l h lS A .

If , then the service starting time at hospital hi(l)  is the service 

starting time at hospital hi(u) plus the total service duration and the outgoing 

travel times from hospitals hi(u) , hi(u+ 1) , …, ( 1)ih l . The service 

starting time at hospital hi(u) is determined by the arrival time of the 

non-renewable resource. 

Thus, .
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If 0u , then the service starting time at hospital hi(u) is determined by the 

arrival time of team i at hi(1) .

Thus, .

The formula in the lemma contains all three cases.  This completes the proof. 

In order to solve this problem, we construct an acyclic graph where a node represents 

a partial schedule. Let node 1 2 1 2 1 2( , ,..., | , ,..., , , ,..., )D M Mn n nj j j u u u S S S  denote a partial 

schedule with the first iu  hospitals in iH  being fully served by the first kj  batches 

from DC k for all k K  and the starting time of the service at ( )i
ih u  being iS  for 

all i M . For simplicity, the node is denoted as | ,k i ij u S .  Let ( , )i l  be the 

index of the DC that ( )ih l  is served by.  

Node | ,k i ij u S  for all k
kj B , uj

i 1,2,...,ni , i M , is referred to as valid

only when ( )
1 1 ( , ) 1

ki
M

i

n ju

h l vk
i l i l k v

D Q  for all k K , implying that the total demand 

quantity of the hospitals covered does not exceed the total batch quantity under 

consideration. From now on, we only consider valid nodes.  

By Lemma 4.4, when iu  is given, the set of possible values of is  has 

cardinality
( , )ii i Bi u

O H B O H n .  Thus, the total number of nodes is bounded 

by
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2

1 1 1

D M M
D M M

n n n
n n n

k i i B B H
k i i

O B H H n O n n .

| ,k i ij u S  has outgoing arcs connecting other nodes and they can be classified into 

two cases. For ease of notation, the connected node is denoted as 

| ,k i ij u S which stands for 

1 2 1 2 1 2, ,..., , ,..., , , ,...,D M Mn n nj j j u u u S S S  . 

Case (i): for i M , let k  be ( , 1)ii u . Then, the outgoing arc to 

| ,k i ij u S  is defined when 

- ( )( 1)
1 1 ( , ) 1

ki
M

i ii

n ju

h l vkh u
i l i l k v

Q D Q ;

- k kj j  for all k D ;

-
for

1 for  

i i

i i

u u i i

u u i i
;

-

, ( 1) ( ) ( ), ( 1),

for

max ,  for  i i i ik
i i i i

i i

i i
k h u h u h u h uj k

S S i i

S A S p i i

and its length is
( 1) ( 1) ( 1)

max 0,i i i
i i i

i
h u h u h u

w S p d .

Case (ii): for k D , the outgoing arc to | ,k i ij u S  is defined when  
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-
for

1 for  

k k

k k

j j k k

j j k k
;

- i iu u for all i M ;

- i iS S for all i M ,

and its length is zero.  

Since each node has at most K MO n n  outgoing arcs, the total number of arcs is 

bounded by 2K M Mn n n
K M B HO n n n n , which turns out 2K M Mn n n

B HO n n  when Dn

and Mn are considered fixed constants. 

The origin is (0,0,..., 0 | 0,0,..., 0,0,0,..., 0) . Since we have to cover all hospitals we define 

a dummy destination node and connect all nodes such that i
iu n  with zero length for 

all i M . Then the shortest path from the origin to the destination identifies the 

schedule for dispatching from batches to hospitals.  

Since the shortest path problem defined on an acyclic graph ( , )G N A from the origin 

to all the nodes can be solved in O A  time (Ahuja et al., 1990) where N and A are

the node set and the arc set, respectively, the problem can be solved in 2( )K M Mn n n
B HO n n

time.  

Theorem 4.4. Problem P4 with Kn and Mn fixed can be solved in 2( )K M Mn n n
B HO n n .

We present a numerical example that is solved by our proposed Dynamic
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Programming algorithm to optimality. In this example, we are given four hospitals ( Hn =

4), two distribution centers ( Kn = 2), and two travel teams ( Mn = 2). Each DC has two 

batches ( 1 2 2B B ). DC 1 is located at (0, 0) and serves hospitals 1 and 3, while DC 2 

is located at (0, 5), and serves hospitals 2 and 4. Team 1 starts from base (0, 0) and serves 

hospitals 1 and 2, while Team 2 starts from base (5, 5) and serves hospitals 3 and 4. Both 

teams start at time 0. The parameters are given in Tables 4.4-4.5, where coordinates are 

used to calculate the transportation time between locations assuming a speed of 1.

DC k DC 1 DC 2 

Coordinates in the x-y axis  (0, 0)  (0, 5) 

Batch j 1 2 1 2

Batch Arrival time kjA  3 7  2 8 

Batch Capacity      kjQ  15 20  25 10 

Table 4.4 Parameters for DCs and Batches (Dynamic Programming)

Hospita

l

h

Demand 

hQ

Penalty Cost 

wh

Due Date 

hd

Duration 

ph

Coordinate in 

the x-y axis 

1 10 5 10 3 (2, 0) 

2 20 5 10 3 (0, 1) 

3 15 10 10 5 (2, 5) 

4 10 5 15 3 (0, 8) 

Table 4.5 Parameters for Hospitals (Dynamic Programming) 
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According to Tables 4.4 and 4.5, the transportation times are as follows: 

1,1 2, 1,3 5.4, 2,2 4, 2,4 3 and 
1(0),1 2,h 1,2 2.2, h2 (0),3 3, 3,4 3.6

The optimal solution is 1,1,3 2,1,2 1,2,1 2,2,4 1z z z z , (See Figure 4.2) and the optimal 

objective function value is 105. 

Figure 4.2 A Numerical Example for the Proposed Dynamic Programming Algorithm 

4.3 Multiple DCs in an Open Assignment Environment 

0,0|0,0,0,0

1,0|0,0,0,0

0,1|0,0,0,0

1,1|0,0,0,0

2,0|0,0,0,0

1,0|1,0,5,0

1,0|0,1,0,8.4

0,2|0,0,0,0

1,1|0,1,0,8.4

2,0|0,1,0,8.4

2,0|1,0,5,0

1,1|1,0,5,0

2,1|0,0,0,0

2,0|0,1,0,12.4

2,0|1,0,9,0

1,2|0,0,0,0

2,1|0,1,0,8.4

1,2|0,1,0,8.4

1,1|0,2,0,17

2,0|1,1,9,8.4

2,1|1,0,5,0

2,0|1,1,5,12.4

1,2|1,0,5,0

1,1|2,0,10.2,0

2,2|0,0,0,0

2,1|1,0,9,0

2,1|0,1,0,12.4

2,0|1,1,9,12.4

2,2|0,1,0,8.4

2,1|1,1,9,8.4

2,1|0,2,0,17

1,2|0,2,0,17

2,2|1,0,5,0

2,1|2,0,10.2,0

2,1|1,1,5,12.4

1,2|2,0,12,0

1,2|2,0,10.2,0

2,2|1,0,9,0

2,2|0,1,0,12.4

2,1|2,0,14.2,0

2,1|1,1,9,12.4

2,1|0,2,0,21

2,2|1,1,9,8.4

2,2|0,2,0,17

2,1|2,1,14.2,8.4

2,1|1,2,9,17

2,2|2,0,12,0

2,2|1,1,5,12.4

2,2|2,0,10.2,0

2,1|2,1,10.2,12.4

2,1|1,2,5,21

2,2|2,0,14.2,0

2,2|1,1,9,12.4

2,2|0,2,0,21

2,1|2,1,14.2,12.4

2,1|1,2,9,21

2,2|2,1,14.2,8.4

2,2|1,2,9,17

2,2|2,1,12,12.4

2,2|1,2,5,21

2,2|2,1,10.2,12.4

2,2|2,1,14.2,12.4

2,2|1,2,9,21

2,2|2,2,14.2,17

2,2|2,2,12,21

2,2|2,2,10.2,21

2,2|2,2,14.2,21
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In this section, we consider the case with multiple DCs in an open assignment 

environment. We first show that even with a single team and any fixed number of DCs, 

the problem is already NP-hard. Then we consider two special cases with variable 

numbers of DCs and medical teams, and show that both of these two special cases can be 

solved in polynomial time. 

Theorem 4.5 The problem with two DCs and a single medical team in an open 

assignment environment, i.e., P(O, 2, 1), is NP-hard.  

Proof. In this proof, we will use a reduction to the PARTITION Problem (which had been 

defined earlier in the proof of Theorem 4.1).  Let H be {1,2,...,n} with 

( , , , ) 0, ,0,1h h h h hp D d w a . We have two DCs, each having two batch arrivals with the 

following information: 1 20,k kA A A  and 1 2 2
A

k kQ Q . All transportation times are 

zero. If the demand at hospital h is satisfied at time 0, then its tardiness is zero, while if 

the demand is satisfied at time A, then its tardiness is A. Therefore, there is a partition if 

and only if there is a schedule with a total tardiness of zero. 

Based on the theorem above, we can state that the problem with a single team and a 

fixed number of DCs is NP-hard. 

Theorem 4.6 The problem with a single team and a variable number of DCs in an open 

assignment environment, i.e., P(O, Kn , 1), is strongly NP-hard. 

Proof. In this proof, we will use a reduction to 3-PARTITION (which had been defined 
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earlier in the proof of Theorem 4.1). Let H be {1, 2,...,3 }t

with ( , , , ) 0, ,0,1h h h h hp D d w a . We have t DCs, each having two batch arrivals with 

the following information: 1 20,k kA A A  and 1 2k kQ Q A . All transportation times 

and all processing times are zero. If the demand at hospital h is satisfied at time 0, then its 

tardiness value is zero, while if it is satisfied at time A then its tardiness value is A.

Because of the single sourcing constraint, each demand point can be served by only one 

DC and thus the first batch of each DC can serve at most 3 demand points. Thus, there is 

a 3-partition if and only if there is a schedule with the total tardiness being zero. 

Now, we consider two special cases with variable Kn and Mn  that are strongly 

polynomial time solvable. 

 The first case can be denoted as P( , ,K MO n n ) with hD D , H Mn n  , and with Dn

and Mn being variable. That is, each team may visit at most one hospital, and the hospital 

order sizes for non-renewable resources are identical. In this case, the respective problem, 

P( , ,K MO n n ) with hD D and H Mn n , can be solved in strongly polynomial time.  

While different DCs may receive their batches from upstream suppliers at different points 

in time, we do assume that .jk hk j h
Q D  Let P5 denote this problem. 

Let D be the common order size of all hospital and let h  be the team arrival time at 

hospital h. Since the sizes of hospitals’ demands for non-renewable resources are all 

identical, the outgoing quantity from a DC at a certain time moment is always a multiple 
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of D.  Now consider the following algorithm. 

_____________________________________________________________________

Algorithm 4.4 (Transportation Algorithm)

Step 1. Let 

0

For j = 1 to  kB

jk
kj

Q
b

D
, jk kjQ D b , jk jkQ Q

where bkj denotes the maximum number of orders that the j-th batch at DC k (plus 

residuals from previous batches) may fulfill.  

Step 2. Formulate the following optimization problem: 

Supplier (k, j) refers to the j-th batch of DC k that has a capacity of bkj , for all 

, kk K j B ;

Customer (h) refers to hospital h that has a unit demand size, for all h H ;

The edge cost between supplier (k, j) and customer (h) is the resulting tardiness if 

a unit of non-renewable resource is delivered from supplier (k, j)  to customer (h),

which is defined as

max max{ , } ,  0jkh h jk kh h h hC w A p d ;

Let jkhx be a binary variable, and 1jkhx  if supplier (k, j) is assigned to serve 

customer (h), and 0 otherwise, which leads to the following model:
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Minimize 
k

jkh jkh
k K j B h H

C x           (4.1) 

Subject to jkh kj
h H

x b    for all , kk K j B     (4.2) 

1
k

jkh
k K j B

x   for all h H      (4.3) 

{0,1}jkhx    for all , ,kk K j B h H   (4.4) 

_______________________________________________________________________

The constraint matrix (4.2) - (4.4) is totally unimodular. Therefore, the problem defined 

by (4.1) - (14.4) can be solved to optimality by relaxing binary variables jkhx  to 

continuous variables in [0, 1] as a transportation problem, which has the computational 

complexity of 2( (log log ))O UV U V V  where U and V are the cardinalities of the 

supplier set and the demand set, respectively (Brenner, 2008). Since k B
k D

U B n

and HV n , the following theorem holds. 

Theorem 4.7 Problem P5 can be solved in 2( (log log ))B H B H HO n n n n n  time.  

 Special case defined by P5 refers to the situation where the orders for the 

non-renewable resource are all identical and where each medical team visits only one 

hospital. Such a situation occurs in practice when the hospitals’ orders for non-renewable 

resources are fulfilled, for example, by the truckload and when there are sufficient 
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medical teams on the ground, each being assigned to serve a designated hospital with 

many patients. During the recent flooding relief from hurricane Isaac 

(http://www.memphis-umc.net/news/detail/1663), full truckloads were dispatched to 

various sites of Louisiana (http://www.therepublic.com/view/story/c5070625abc 

14340a3065b5ede228ef6/OK--Isaac-Relief-Supplies). Campbell et al. (2008) also 

reported unit-sized demand in the vehicle routing problem encountered during relief 

efforts.  

Let us now consider another polynomial time solvable case where each DC serves at 

most one team (and thus all the demand points that team visits) for M Kn n . The 

resulting problem is then to find the best matching between the set of DCs and the set of 

teams. Let P6 denote this problem. For the sake of simplicity, we may assume that 

M Kn n by adding K Mn n dummy teams with zero demand. Let kic  be the cost of 

assigning DC k to serve the given route of team i, and kix  be the binary decision 

variable which equals to 1 if DC k is assigned to serve the given route of team i and 0 

otherwise.  Then kic  can be calculated as follows.  

_____________________________________________________________________

Step 1. If 
k i

jk h
j B h

Q D , then kic .  DONE 

Step 2. 0kic

j  1, tempQ 1kQ , tempT 1 , (1)max ,
ii k kr A

For h = 1 to i
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 While (tempQ < ( )i hQ )

j j + 1 

  tempQ  tempQ + jkQ

  tempT , ( )max tempT,
ijk k hA

kic ( ) ( ) ( )max tempT ,  0
i i iki h h hc w p d

tempT  tempT + ( ) ( ), ( 1)i i ih h hp

tempQ  tempQ ( )i hQ

________________________________________________________________________

Given { kic | for all KkMi , }, we formulate and solve the following problem. 

Minimize ki ki
k K i M

c x           (4.5) 

Subject to 1   ki
k K

x   for all i M     (4.6) 

     1ki
i M

x   for all k K     (4.7) 

     {0,1}kix   for all ,i M k K    (4.8) 

This is the well known assignment problem and the time complexity of solving an 

assignment problem is known to be O(|V|3) where V is the vertex set by Munkres (1957). 

Therefore, our problem can be solved in O( Kn 3).  
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Theorem 4.8 Problem P6 can be solved in O( Kn 3) time. 

Note that problem P6 can be found in practices where each medical team has its own 

dedicated supplier (i.e., DC) that provides non-renewable resources and transportation 

vehicles to support the travel team with relief operations. For example, during the disaster 

relief of Haiti earthquake, AmeriCares dispatched over 200 medical teams together with 

various medical supplies, representing the US support to the Haiti survivors  

(http://www.americares.org /whatwedo/mop/). When each disaster area is served by one 

U.S. medical team together with the medical supplies of AmeriCares, the assumptions of 

P6 hold. 

4.4 Overview of Complexity Results 

We have studied the operations scheduling problem involving both renewable and 

non-renewable resources. To gain an understanding regarding the structural properties of 

the problem, we made a distinction between two cases: the DC-hospital assignments are 

either given and fixed (F), or open (O) and to be optimized. Under the various conditions, 

we identify NP-hard cases along with complexity proofs and polynomial time solvable 

cases along with time complexity analysis.  We summarize the results in the following 

tables. 

Mn

Kn
1 Fixed Variable 

1 P(O( Bn + Hn )) P ( 1 2M Mn n
B HO n n ) SNP
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P(O( Hn ))

Lemma 4.1 

P(O( 2
Hn ))

Lemma 4.2 

Theorem 4.2 

Fixed
P(O( Bn + Hn )) P ( 2D M Mn n n

B HO n n )

Theorem 4.4 

SNP

Variable 
P(O( Bn + Hn ))

Theorem 4.3 
Open

SNP

P: Polynomial time solvable (complexity), NP: NP-hard. SNP: Strongly NP-hard 

Table 4.6 Complexity Framework of Problem P( , ,K MF n n )

Mn

Kn
1 Fixed Variable 

1
P(O( Bn + Hn ))

Theorem 4.3 

P ( 1 2M Mn n
B HO n n )

Theorem 4.4 

P(O( Hn ))

Lemma 4.1 

P(O( 2
Hn ))

Lemma 4.2 

SNP

Theorem 4.2 

Fixed
NP 

Theorem 4.5 

NP SNP

Variable 
SNP

Theorem 4.6 

SNP SNP

P: Polynomial time solvable (complexity), NP: NP-hard. SNP: Strongly NP-hard 

Table 4.7 Complexity Framework of Problem P( , ,K MO n n )

4.5 Conclusion 
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The results obtained in this chapter, especially those that are proven to be polynomial 

time solvable, can be used to design heuristics for solving more general versions of this 

problem. While the results throughout this paper assumed predetermined routes of the 

medical teams (i.e., the renewable resources), routing decisions are allowed in practice. If 

we relax the non-renewable resource requirement constraints, then the remaining problem 

is similar to a Vehicle Routing Problem (VRP) with tardiness costs; this implies that well 

known VRP heuristic algorithms can be used to find reasonable solutions for the routes of 

the medical teams. The next step is to determine the DC-hospital assignment. Due to the 

combinatorial nature of the single sourcing constraint, this step also needs a heuristic 

approach. For each given route, we regard the team’s arrival time as the due date for the 

non-renewable resource’s arrival at each hospital. We now define and solve a 

transportation problem in which supply nodes are batches in DCs and demand nodes are 

hospitals. Even though the optimal solution of the transportation problem does not satisfy 

the single sourcing constraints, we may derive a feasible DC-hospital assignment by 

adjusting such optimal solutions. After the routing and the DC-hospital assignments have 

been determined, the results in this study can be utilized. When the numbers of DCs and 

teams are relatively small, we can apply the dynamic programming algorithm in Theorem 

4.4. Otherwise, we can make a sequence of teams and repeatedly apply the results of 

Theorem 4.3 and obtain a greedy solution. 

A second heuristic approach for a general version of this problem can be described as 

follows. We can make the decisions with regard to the DC assignments and the batch 

assignments simultaneously when the problem is more restricted. For example, when a 
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medical team visits only one hospital and/or when a DC is dedicated to supply a set of 

hospitals served by the same medical team, we can apply Theorems 4.7 and 4.8, 

respectively. Even if the problem does not satisfy such a restricted property, we may 

simplify the problem first, solve the simplified problem optimally and adjust the solution 

obtained in order to ensure feasibility of the original problem. We may assume that a part of 

the problem satisfies the restricted property and produce an optimal solution for that part. 

By applying this procedure repeatedly, we can obtain a heuristic solution. 

We may also consider a third heuristic procedure by integrating the routing decisions 

with the allocation of resources. We already mentioned in the introduction that when the 

amount of non-renewable resource available at time zero is sufficient, then the problem 

turns out to be equivalent to a parallel machine scheduling problem with sequence 

dependent setup times and release dates and with the total weighted tardiness as objective. 

Lee and Pinedo (1997) proposed an algorithm that computes the priority levels of all yet 

to be scheduled jobs, assigns the job with the highest priority and repeats this procedure 

until all jobs are scheduled. The main difference between the parallel machine scheduling 

problem and our problem is that we have to consider also the non-renewable resources. 

According to Lee and Pinedo (1997), when evaluating the priority levels, we have to take 

all the parameters such as the weights, due dates, and release dates into account. Then we 

can modify the algorithm by approximating the release date of a job with the maximum 

value of the original release date and the earliest possible non-renewable resource arrival 

time. After a job has been scheduled and all parameters have been updated, we can repeat 

the procedure.  
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The following table summarizes the three heuristic approaches for the general version 

of our multi-resource operations scheduling problem.   

Sub-Problems Approach 1 Approach 2 Approach 3 

Routing

Decision VRP heuristic VRP heuristic 
Revised version of a 

Heuristic for Parallel 

Machine Scheduling 

with Sequence 

Dependent Setup 

Times 

DC Assignment Transportation 

Problem heuristic Theorems 4.7 and 

4.8Batch 

Assignment 

Theorems 4.3 and 

4.4

Table 4.8 Heuristic Approaches for a General Problem



111 

Chapter 5. A Rolling-Horizon Based Heuristic for Solving P 

In this chapter, we first lay out the theoretical background for Rolling-Horizon (RH) 

heuristic for solving Problem P in section 5.1. The RH heuristic is formally stated in 

details in section 5.2, followed by section 5.3 where empirical study is carried out to 

evaluate the effectiveness of RH heuristic.  

5.1 The Single Batch Problem 

If each DC receives only a single batch from its upper stream supplier, problem P can 

be reduced to a variation of a network flow problem (Ahuja, et al., 1993). To see this, first 

assume that each traveling team is assigned to visit only a single hospital (i.e., the case with 

unit tour length). Let Ak  be the arrival (or release) time of the single batch at DC k, let kQ

be the respective batch size, let rh  be the release time of team h (since each team is 

uniquely assigned to each hospital, we may use h to denote both hospital h and the team 

assigned to serve h), let h  be the travel time from the team base to hospital h, let kh  be 

the shipping time from DC k to hospital h, let khq  be the quantity shipped from DC k to 

hospital h, and let khz  be the binary variable that is equal to 1 if hospital h is served by DC 

k. Under these assumptions, problem P is reduced to the following (also see Figure 5.1(a)):  
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7 : max.{0,max .{( ) } , }

. . ;  ;  ;  0;  {0,1}, ,

k K k kh kh h h h h h h
h H

kh h kh k kh kh k kh khk K h H

P Minimize A z p d r p d

s t q Q q Q q z Q q z h H k K

Lemma 5.1. P7 can be solved in O(( nBk
)

k K

nH
2 (log( nBK

k K

) nH lognH )) .

Proof. Problem P7 is equivalent to the known Time Minimizing Transportation Problem 

(TMTP) if we define max.{0,max .{( ) } , }h k K k kh kh h h h h h ht A z p d r p d . It is 

known that TMTP is solvable in strongly polynomial time (Sonia and Puri, 2004). Brenner 

(2008) proposed an algorithm for solving such problems at 

2(( ) (log( ) log ))
k KB H B H H

k K k K
O n n n n n .    

(a) Single-Batch with Unit-Tour Length.       (b) Single-Batch with Tour Length  2 

Figure 5.1 Examples of the Multiple-DC Single-Batch Process 

We now consider the case where each DC receives only a single batch of 

non-renewable resources, and the tour length of each team is no more than two. Problem P 

is then reduced to the following one, or P8 (see Figure 5.1(b)), in which hh ,'  denotes 

the two consecutive locations visited by a team. If h stands for the first hospital (or the only 
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hospital) on a given medical team’s route, then h’ represents the respective team base or a 

dummy hospital, and we have 'h is r , ' 0hp  and 'h h ih .

8 :

. .
;                    

;                    

;                                             ,
( )

h
h H

kh hk K

kh kh H

kh kh k

k kh

P Minimize T

s t
q Q h H

q Q k K

q z Q h H k K
A

' ' '

;                                    ,
,                                   , '

;                    
0;  {0,1};                    

kh h

h h h h h

h h h h

kh kh

z S h H k K
s p S h H h M H
T s p d h H
q z               ,h H k K

The following process transforms a given P8 into the Min-Cost Max-Flow Problem. 

Step 1: Define Nodes 

1. Establish the source and sink nodes of the network.  

2. Each node in the first layer of the network represents the single batch received at 

each DC. Since a total of Kn  DCs are involved in the problem, we have Kn  nodes 

in this layer. 

3. The nodes in the second layer of the network represent the decomposed batches 

from DCs to different hospitals. Each DC may serve all hospitals, with different 

service quantity that could be even zero. Considering the problem has Kn  DCs and 

Hn  hospitals, K Hn n  nodes exist in this layer. 

4. Each hospital corresponds to multiple nodes in the third layer of the network, each 

of which represents a demand fulfillment scenario in order to serve this hospital:  
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a.The first hospital along the route of each medical team corresponds to Kn

nodes (each of which represents a scenario that the latest batch this hospital 

receives is from the DC with the k-th latest arrival time among all DCs, 

1 Kk n Specifically, the first node among the Kn  nodes represents the 

scenario that the supplies come from all DCs; the second node among the 

Kn  nodes represents the scenario that the supplies come from all DCs 

except the one that has the latest arrival time; the third node corresponds to 

the scenario that the supplies come from all except the two DCs with the 

latest arrival time, …, and the last ( Kn -th) node represents the scenario that 

the supplies only come from the DC that has the earliest arrival time. Note 

that the flow into any of these nodes can be zero. Since a total of Mn

medical teams are serving hospitals, we have a total of Mn such hospitals 

that are scheduled at the beginning of their routes. Therefore, there exist 

K Mn n  this kind of nodes in the third layer of this network. 

b. If a medical team visits two hospitals in its route, then the second hospital 

corresponds to 2
Kn  nodes.  This is because for this type of hospitals, the 

service scenario relies on not only the flow patterns ( Kn ) of non-renewable 

resources as we introduced above in part i, but also that of the medical 

teams (The team may arrive at this hospital after it fulfills the demand at the 

first hospital in its route with any of the Kn  service scenarios we 

introduced in part i above). Therefore, a total of 2 ( )K H Mn n n nodes exist 

for such hospitals. 
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Step 2: Define Edges, and the corresponding capacities and costs 

1. The capacity of the edge from the source node to any node in the first layer 

(Batches of DCs) is just the single batch size, and the cost is zero because no 

tardiness is involved here. 

2. The capacity of the edge from any node in the first layer to the sink node is infinite, 

but the cost is very large, such that only unused supply will be allowed to go this 

way.

3. The capacity and cost of the edge from any node in the first layer to any node in the 

second layer are infinite and zero, respectively. 

4. The capacity of the edge from any node in the second layer to any node in the third 

layer is infinite, but the costs are different.  For any hospital h, suppose it receives 

the batch from DC k1 first, that from DC k2 second, …, and that from DC 
Knk the

last.

a.If hospital h is the first hospital served by a medical team in its route, based on 

our discussions at Step 1.d part i, it has Kn  associated nodes in the third 

layer.  In addition, all inbound flows to the first node associated with 

hospital h have cost max .{0, , }
n nK Ki ih h h k k h h hr p d A p d  (the 

second and third elements in this maximum function, respectively, 

represent the tardiness at hospital h caused by the medical team and the 

non-renewable resources), those to its second node have 

cost
1 1

max .{0, , }
n nK Ki ih h h k k h h hr p d A p d ,…, and those to the 

last node have cost 
1 1

max .{0, , }i ih h h k k h h hr p d A p d .
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b. If hospital h is the second hospital served by a medical team in its route, 

based on our discussions at Step 1.d part ii, it has 2
Kn  associated nodes in 

the third layer, which we use {nst}, 1 s,t Kn , to denote.  Then the inbound 

flows to node nst have

cost
max.{0,max{ri ih ' , AknK t 1 knK t 1h '} ph ' h 'h ph dh ,

AknK s 1 knK s 1h
ph dh}

.

5. For each hospital, outbound flows from its corresponding nodes in the third layer 

will first be collected at a temporary node, before arriving at the sink node. All the 

related edges have zero cost and infinite capacity except the edge between the 

temporary node and the sink, whose capacity is equal to the demand, hD , of the 

hospital. 

By the above transformation process, the following result holds.  

Lemma 5.2. Problem P8 can be solved in O(nK
6nH

4 (lognK log nH )).

Proof. Since an equivalent min-cost max-flow problem can be constructed based on P8 and 

the min-cost max-flow problem is known to be solvable in O(m log n (m + n log n)),

according to Orlin (1993), where 2 ( )K K H K M K H Mn n n n n n n n n and

m= 2 2 2 32 ( ) ( )K K M K H K H M K H M K H H Mn n n n n n n n n n n n n n n .

The claim holds[1].

Figure 5.2 illustrates an example of solving P8 as a min-cost max-flow problem. In this 
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example, we are given two DCs (each having a single batch), two medical teams, and three 

hospitals (where hospitals 1 and 3 are assigned to the team with tour length two, while 

hospital 2 is assigned to the other team with a unit tour length). Note that hospitals 1 and 2

are the first hospitals on the routes of medical teams 1 and 2, respectively. Layer 1 has two 

nodes, each of which represents a DC. Layer 2 has six nodes, each of which represents a 

unique batch-hospital assignment pair. Layer 3 has eight nodes, each of which defines a 

possible scenario of allocating non-renewable resources from the two DCs to an individual 

hospital. The total number of scenarios associated with hospital 3 is squared because it is 

the second hospital in the service route, and how it is served depends on the service 

scenarios of hospital 1 as well. 

Hospital 1 

Hospital 2 

Hospital 3 

Batches of DCs 

Batch-Hospital 
Assignment 

Batch-Hospital 
Assignment 

Min-Cost Max-Flow Problem 

To sink 

Figure 5.2 Flow Chart of an Example Min-Cost Max-Flow Problem1

While Lemmas 5.1 and 5.2 assume each DC receives only a single batch from its 

1 Note that, the case with multiple batches assigned to each DC can also be solved as a min-cost max-flow problem, 
however, at a much higher level of computational complexity. 
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upper stream supplier, we can show that, in a more general situation with multiple batches 

to each DC, as long as the minimum batch size is no less than the maximum of order 

sizes, i.e., ,min max
kk K j B kj h H hQ D , the following result holds. 

Lemma 5.3. If ,min max
kk K j B jk h H hQ D  then there exists an optimal solution to 

problem P, * * * * *{ , , , }jkh jkh h hz q S T , such that each hospital h receives non-renewable 

resources from at most two consecutive batches that originate from the same DC.  

Proof. Suppose in an optimal schedule S’, there is at least one hospital, say h, that 

receives supplies from more than two batches from the same DC, k. Let ja and jb denote 

the first and last batches, respectively, that serve h from this DC, and ja<jb-1. Let 

aj kh
q and bj kh

q  denote the quantities shipped to h from batches ja and jb, respectively. We 

can then reassign the shipping quantity aj kh
q  from batch ja, originally serving hospital h,

to serve other hospital(s) originally assigned to batch jb-1, and then allocate an equivalent 

quantity q= aj kh
q  from batch jb-1 to serve h (note that the assumption 

,min max
kk K j B jk h H hQ D ensures

1,b aj k j kh
Q q and therefore such a reassignment is 

always feasible). This adjustment is illustrated in Figure 3. Doing so does not change the 

tardiness of hospital h while making the tardiness of other hospital(s) originally served by 

jb-1 no more than that in the original optimal solution S’. This implies that the new 

solution is still optimal. Repeating this process will reach an improved solution such that 

each hospital receives supplies from at most two consecutive batches from the same DC. 
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Time

……………..

……………..

h h’

ja ja+1 jb-1 jb

…………….. ……….

qjakh

qjbkh

Exchange

Figure 5.3. An Illustrative Example of Lemma 5.3 

5.2 A Rolling-Horizon (RH) Heuristic for Solving P 

We propose a rolling-horizon based greedy heuristic algorithm for solving P. The 

design of this solution approach is motivated by the results of Lemmas 5.1 and 5.2; if 

each DC has only one or two batches of non-renewable resources to allocate and if the 

tour of each traveling team covers very few hospitals, then the reduced problem becomes 

easier to solve.   

Similar to the approach used in most existing rolling horizon based heuristics (e.g., 

de Araujo et al. (2007), Beraldi et al. (2008), Lei et al. (2009), and Li et al. (2010)), our 

algorithm also follows an iterative process to search for a feasible solution to the original 

problem P. Each iteration starts with a given (heuristically constructed) sequence of 

hospitals that have not yet been served (i.e., the first iteration starts will all Hn
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hospitals). During each iteration, we construct a sub-problem (see Figure 4 below) that 

focuses on the next two batches to be allocated from each DC and the next N hospitals in 

the given sequence, ,HN n  being a search parameter. Let 1  be the collection of the 

first available batches across all DCs, and 2  be the collection of the second available 

batches across all DCs, where 1 2| | | |Kn . Let = .21  We then solve this 

two-batch N-hospital sub-problem with objective function (3.1) optimally. 

Figure 5.4 A Graphical Illustration of a Two-Batch N-Hospital (N=7) Sub-Problem 

Solved by the RH Algorithm during the Search Process

Such a sub-problem contains a significant less number of integer variables, and can 

be solved quickly using GUROBI (a commercial optimizer) typically within few CPU 

seconds. After a sub-problem is solved, we permanently fix the resource allocation of the 

batches in set 1 , while release the batches in set 2 together with the hospitals 

supplied by the batches in 2  to the next iteration. For those hospitals whose orders are 

Subproblem solved 
in each iteration  

1
2
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only partially supplied from the batches in set 1 , we update their order sizes by 

subtracting the partial shipment received in the current iteration, and then release such 

hospitals with revised order sizes to the next iteration. We also update the travel team 

service completion time at the respective hospitals, and then go to the next iteration. The 

iteration process repeats itself until all the hospitals are served, and yields a new feasible 

solution to the original problem P. The sequence (i.e., a permutation of Hn  hospitals) at 

which hospitals receive the supplies from DCs in this new feasible solution to P is then 

used as the initial hospital sequence for the next round to generate another feasible 

solution. The search terminates when the newly obtained feasible solution no longer 

improves the previous one. Let RH denote this rolling horizon based heuristic. The details 

of the algorithm are described below. 

_____________________________________________________

Algorithm RH {Input: An initial sequence 0 and an initial objective 

function value 0G }

Step 1. Construct a sub-problem, consisting of the next two batches from 

each DC and the next N customers in sequence 0 , where parameter N is

determined by 

    1, 2,
1 1 1

h k k h
h N k K h N

D Q Q D

so that the total demand of the next N hospitals in 0 does not exceed the 

total supplies of the next two batches of the Kn  DCs. Let 1  be the 

collection of the first available batches cross all the DCs, and 2  be the 

collection of the second available batches cross all the DCs. Solve the 
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two-batch N-hospital sub-problem optimally against objective function (1). 

Note that the hospital service starting times, hS , for those hospitals 

included in the sub-problem, may be different from those obtained 

previously.

Step 2. Permanently fix the non-renewable resource allocation of the 

batches in set ,1  delete such batches from further consideration, and 

release the batches in set 2  to the next iteration. For hospitals whose 

orders have been fully supplied by the batches in set ,1 update their 

service starting times and team departure times, and then permanently 

remove such hospitals from sequence 0 . For those hospitals whose 

orders are partially supplied by the batches in set ,1  update their order 

sizes by subtracting the partial shipment received in the current iteration 

and then release such hospitals, together with their revised order sizes,  to 

the next iteration (i.e., keep such hospitals in 0 ).

Step 3. If ,0 return to Step 1. Otherwise, a new feasible solution is 

obtained which defines a new sequence and a new objective function G.

If ,0GG which means the newly obtained feasible solution does not 

improve the previous solution, terminate the search with the best feasible 

solution obtained so far. Otherwise, replace 0  by , and 0G by G,

return to Step 1 for the next loop.  
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_____________________________________________________

The flowchart of algorithm RH is given in Figure 5.5. The search starts with a given 

hospital sequence constructed upon the optimal solution of a linear programming (LP) 

relaxation of P with binary variables , , ,jkh kz k K j B h H  relaxed from {0,1} to 

[0,1]. Let 0 denote this initial hospital sequence, and 0| | .Hn  Note that by rounding 

up the values of relaxed binary variables, },{ kjhz in this LP solution, we can obtain an 

initial feasible solution to P, which will be improved through the remaining search 

process.  

Obtain an initial sequence of nH hospitals by LP relaxation of P 
and an initial objective function based on the sequence

Construct and solve a sub-problem with the next two batches in 
each DC (sets 1 and 2) and the next N selected hospitals. 

Fix the non-renewable resource allocation of batches in set 1,
remove these batches, and release batches in set 2.

Update the service starting times and team departure times for 
hospitals that are fully served by batches in set 1, remove these 

hospitals, and update the demand size for others. 

Is the current sequence empty? 

Obtain a new sequence and a new objective function  

Is the new objective function better than the current one? 

Terminate the search with the current best feasible solution 

Yes 

No 

No 

Yes

Replace the current 
sequence by the new one 
and update the current 
objective function 

Figure 5.5 A Flowchart of the Search Process by the Proposed RH Algorithm

It should be pointed out that the proposed algorithm RH does not aim at solving the 

emergency operations scheduling problem for the entire disaster relief process. Instead, it 
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aims at driving a quick solution for a given group of hospitals, each with a specific 

demand on the non-renewable resources, at a particular time point of the relief process. 

While an analytical error bound of the RH algorithm to the original problem P is 

difficult to derive, it can be constructed under certain assumptions on a simplified network. 

One example of this is given in Lemma 5.4, where we show the error gap between the 

optimal solution and the solution obtained by the RH algorithm is bounded from above by 

the maximum inter-arrival time of two consecutive batches at the DC. We derive the error 

bound for a simplified network (see Figure 5.6) with a single DC, four batches of unit 

(identical) batch sizes, two traveling teams, each visits two hospitals, and a total of four 

hospitals with unit demand quantity, which equals to the batch size, on non-renewable 

resource. Let’s denote this special case as P9. Without loss of generality, we assume 

that A1 A2 A3 A4 , w1 w2 ,w3 w4 ,  and 

w1 w3 (where h h h hw p d ,h 1,2,3,4 ). Let 1 1 1,h h h h h h hv p p d  for 

h 2,4 . By triangular inequality, we 

have 1 1 1, 1 1h h h h h h h h h h h h hv p p d p p d p w .
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Figure 5.6 Special Case P9

Lemma 5.4. For any given instance of P9, the gap between the optimal objective function 

value T *  and the objective function value achieved by RH, ,RHT is bounded by the 

maximum inter-arrival time between two consecutive batches, i.e.,

*
1 3 1| | max ( )RH

i i iT T A A .

Proof. By the assumption of case P9, Qj Dh , j, h. Therefore, the DC only delivers its 

supplies to a hospital after the shipment to the immediate predecessor of that hospital is 

fulfilled (see Lemma 4.3). The optimal assignment of batches to hospitals is thus a 

permutation of hospital set H={1, 2, 3, 4} with each hospital served by exactly one batch 

from the DC. Let be a permutation of H.  

The optimal objective value can now be expressed as  
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To observe the error gaps by Algorithm RH, we have three exclusive but complete cases. 

Case 1. w1 w2 w3 w4 .

Let the initial solution be the non-increasing order of wh ’s, i.e., {1, 2, 3, 4}. Since our 

algorithm considers two batches each time, the first subproblem involves batches 1 and 2, 

and hospitals 1 and 2. By Lemma 4.1, the optimal schedule for this subproblem is 

{1 1,2 2} . Next we fix the assignment of batch 1 with hospital 1, and relax batch 2. 

The second subproblem involves batch 2 and 3, and hospitals 2 and 3. Since hospitals 2 

and 3 are not in the same route, and by Lemma 4.1 and the assumption, the optimal 

schedule is {2 2,3 3} . Next we fix the assignment of batch 2 with hospital 2, and 

relax batch 3. The third subproblem involves batch 3 and 4, and hospitals 3 and 4. Since 

hospitals 3 and 4 are in the same route, and by Lemma 4.3, the optimal schedule is 

{3 3,4 4} . The algorithm terminates here because the current solution is exactly 

the same as the initial solution. So the delivery schedule determined by our algorithm is 

{1 1,2 2,3 3,4 4} . Hence, the objective function value is as follows. 

1 1 2 2 1 2 3 3 4 4 3 4max{0, } max{0, , } max{0, } max{0, , }RHT A w A w A v A w A w A v

T * Min.{T ( )| } min{
max{0, A1 w1} max{0, A2 w2 , A1 v2} max{0, A3 w3} max{0, A4 w4 , A3 v4 },
max{0, A1 w1} max{0, A3 w2 , A1 v2} max{0, A2 w3} max{0, A4 w4 , A2 v4 },
max{0, A1 w1} max{0, A4 w2 , A1 v2} max{0, A2 w3} max{0, A3 w4 , A2 v4 },
max{0, A2 w1} max{0, A4 w2 , A2 v2} max{0, A1 w3} max{0, A3 w4 , A1 v4 },
max{0, A3 w1} max{0, A4 w2 , A3 v2} max{0, A1 w3} max{0, A2 w4 , A1 v4 },
max{0, A2 w1} max{0, A3 w2 , A2 v2} max{0, A1 w3} max{0, A4 w4 , A1 v4 },
}
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Note in this case, the optimal objective function value is 

T * min{
T 1 max{0, A1 w1} max{0, A2 w2 , A1 v2} max{0, A3 w3} max{0, A4 w4 , A3 v4 },
T 2 max{0, A1 w1} max{0, A3 w2 , A1 v2} max{0, A2 w3} max{0, A4 w4 , A2 v4 },
T 3 max{0, A1 w1} max{0, A4 w2 , A1 v2} max{0, A2 w3} max{0, A3 w4 , A2 v4 },
}

Note 1.RHT T  By the proof of Lemma 4.1, we have 

max{0, A2 w2 , A1 v2} max{0, A3 w3} max{0, A3 w2 , A1 v2} max{0, A2 w3} ,

and

max{0, A2 w2 , A1 v2} max{0, A3 w3} max{0, A4 w2 , A1 v2} max{0, A2 w3} .

So the gap between RHT  and T 2 is 

2
4 4 3 4 4 4 2 4

3 2 1 3 1

| | | max{0, , } max{0, , } |
max ( )

RH

i i i

T T A w A v A w A v
A A A A

,

and the gap between RHT and T 3 is  

3
4 4 3 4 3 4 2 4

3 2 4 3 1 3 1

| | | max{0, , } max{0, , } |
max{ , } max ( )

RH

i i i

T T A w A v A w A v
A A A A A A

.

Therefore, the gap between RHT and

T * satisfies * 2 3
1 3 1| | max{| |, | |} max ( )RH RH RH

i i iT T T T T T A A .

Case 2. w1 w3 w2 w4 .   

Use the same argument as in case I, the delivery schedule determined by our algorithm is 

{1, 3, 2, 4}. Hence, the objective function value is as follows. 

T RH max{0, A1 w1} max{0, A3 w2 , A1 v2} max{0, A2 w3} max{0, A4 w4 , A2 v4}

By similar approach as in case 1, we also have *
1 3 1| | max ( )RH

i i iT T A A .

Case 3. w1 w3 w4 w2 .   
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Use the same argument as in case I, the delivery schedule determined by our algorithm is 

{1, 3, 4, 2}. Hence, the objective function value is as follows. 

1 1 4 2 1 2 2 3 3 4 2 4max{0, } max{0, , } max{0, } max{0, , }RHT A w A w A v A w A w A v By

similar approach as in case 1, we also have *
1 3 1| | max ( )RH

i i iT T A A .

Thus, in all three cases, our bound is valid. This concludes the proof.   

5.3 Empirical study 

To observe the empirical performance of the proposed RH approach, we randomly 

generated 5,420 test cases under various parameter values, which are summarized in 

Table 1 below.  

Parameters Range of the Parameter Value

The total number of hospitals/customers ( Hn ) [10,80]

The total number of DCs ( Kn ) 2, 3 

The average number of batches at each DC (
kBn ) /H Kn n

The total number of travel teams ( Mn ) 3, 4, 5  

Hospital order size (Dh) Uniform (20, 30), Uniform (20, 

70), Uniform (20, 100) 

Hospital service time duration (ph)  Dh/20units/hour
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Team release time from the base (ri) Uniform (0, 2) 

Hospital specified service completion time (dh) Uniform (5, 100) 

Table 5.1 Parameters Used in the Empirical Study for the RH Algorithm 

In the experiments, we considered two types of networks: those with 2 DCs ( 2Kn )

and those with 3 DCs ( 3Kn ). For each type of network, the network size was defined 

by the total number of hospitals (or customer demand points). We first generated 

hospitals’ order quantities for non-renewable resources, and then generated the number of 

batches at DCs, with each batch size randomly sampled from a uniform distribution 

between 100 units and 150 units. For each given set of parameter values, we randomly 

generated 30 test cases. The total number of medical teams varied from 3Mn

to 5Mn , with 4Mn for most test cases. The hospitals in the network generated for 

each test case were then randomly assigned to the routes of travel teams. The time 

intervals between every two consecutive batches at a DC were randomly sampled from a 

uniform distribution between 6 and 12 time units. Finally, the arrival time of the first 

batch of non-renewable resources to a DC was randomly sampled from a uniform 

distribution between 0 and 2 time units. The nodes in the supply chain network (i.e., DCs, 

home bases of travel teams, and hospitals) were randomly scattered over an area of 2,500 

square miles, proportional to the scale of 2011 T hoku earthquake and Tsunami (see 

Figure 5.7 below). The estimated travel/shipping time between each pair of locations in 

the network is calculated by Euclidean distance divided by a speed of 25 miles per time 

unit.  
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Figure 5.7 T hoku earthquake and Tsunami, background map: Miyagi Prefecture, Japan 

(Source: martinjapan.blogspot.com/2011/03/extreme-flooding-along-coast-due-to.html).

For most test cases, the commercial GUROBI solver failed to find the optimal 

solution within one-hour CPU time limit (on a Dell desktop, Intel Core ™ 2 Duo CPU, 

E8400 with 3 GB RAM). For such cases, we used the best feasible GUROBI solutions 

obtained within the time limit as a surrogate for the optimal solution. In contrast, the 

proposed search algorithm, RH, terminated with the best feasible solutions obtained 

within 1 or 2 minutes of CPU time for networks with less than 40 hospitals, and within 8 

to 12 minutes for larger networks covering up to 80 hospitals. For each test case, we 

collected two performance measures: the required CPU time to terminate the search, and 

the empirical error gap defined as  

*

*

| |RHG GGap
G

where *G  stands for the minimum total tardiness obtained using the commercial solver, 
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GUROBI, to solve problem P defined by (1) - (8), and RHG  stands for the total 

tardiness of the operation plan obtained by the proposed search algorithm RH.

Figures 5.8 and 5.9 present the empirical error gap distributions against the number 

of hospitals when 2Kn , and 3Kn , respectively, and 4Mn , under a high level of 

variability in hospital demand (defined by Uniform (20, 100)). As the results show, the 

proposed RH algorithm was able to find a feasible solution (i.e., an operation plan) that 

was within 5% from the optimal or the surrogate of optimal solution for all the 4,200 

randomly generated test cases. We can also observe that the error gap increased as the 

network size increased. This is because of the myopic nature of the rolling-horizon based 

greedy heuristic (i.e., in each iteration - we found and then fixed the optimal solution to a 

sub-problem, which may not however  

Figure 5.8 Error Gap Distribution under High Level of Variability in Customer Demand 

( 2Kn )
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Figure 5.9 Error Gap Distribution under High Level of Variability in Customer Demand 

( 3Kn )

be global optimal). We also note that when the network sizes were relatively small (e.g.

40Hn ), the empirical error gap was fairly reasonable (e.g., within 3% cross all the test 

cases) as we can see from Figures 5.8 and 5.9. Similar error gap distributions were also 

observed when the variability levels of hospital demand on non-renewable resources 

were low or moderate (see Figures 5.10 and 5.11).  
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Figure 5.10 Average Empirical Error Gaps under Different Levels of Demand Variability 

( 2Kn )

Figure 5.11 Average Empirical Error Gaps under Different Levels of Demand Variability 
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( 3Kn )

In Figure 5.12, we report the required solution time (in CPU seconds) by the 

proposed RH algorithm and that by the commercial solver GUROBI when the total 

number of DCs in a network equals to 2Kn , and 3Kn , respectively. As the results 

show, the required computational effort by the RH algorithm was significantly less than 

that required by GUROBI.  

Figure 5.12 Computational Effort Required by the RH Algorithm and that by GUROBI 

Figure 5.13 Average Error Gap (%) against the Number of Travel Teams 
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We can see that GUROBI failed to find the optimal solution within 1 CPU hour when 

the network size goes beyond 60Hn . In contrast, the proposed RH algorithm was able 

to terminate with a quality feasible solution within few minutes of CPU time in all the 

experiments even when 80Hn . It should be pointed out that, when the network 

contains 3Kn distribution centers, the proposed algorithm RH does take a longer time 

to terminate relative to the 2Kn case. This is because, when 3Kn , each randomly 

generated test case has more batches of non-renewable resources to be scheduled during 

the search process. When the number of batches increases, the number of iterations in 

each round also increases. In Figure 5.13, we report error gap comparisons under 

different numbers of travel teams involved in the emergency operations. While we can 

observe a trend of increasing error gaps when network size goes up, we also see that, 

when 2Kn for the same network size (i.e., the same value of Hn ), the involvement of 

more travel teams (which requires us to allocate non-renewable resources among more 

routes) tends to lead to large error gaps. This is caused by a higher probability of 

introducing more scheduling errors by heuristically assigning non-renewable resources 

among more teams. However, when supply increases or becomes more sufficient, i.e., 

3Kn , the errors are mitigated and offset, which results in a relatively balanced errors 

among different teams. 

We also studied the potential impact of pre-positioning inventory at DCs before the 

arrival of a disaster. In particular, we examined the relationship between the total 

tardiness and the sizes of the batches pre-positioned at DCs (as a percentage of the total 

demand) at time zero. The amount of non-renewable resources pre-positioned at each DC 

at time zero can be interpreted as safety stock used to mitigate the potential risks caused 
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by disasters (see Tomlin (2006) and Qi (2013)), and the more received by DCs at time 

zero, the stronger the magnitude of inventory mitigation. To study the impact of inventory 

pre-positioning, we experimented with networks determined by parameters 50Hn ,

2Kn or 3, 4Mn , and (20,100)hD Uniform  for all h in H. The total amount of 

inventory pre-positioned at time zero across all the DCs was set at 5%, 10%, 15%, 20%, 

25%, 30%, 35%, 40%, 45%, 50%, 55%, and 60% of the total demand to the 

non-renewable resources, respectively. For each set of parameter values, we randomly 

generated 10 test cases, and report the resulting average total tardiness in Figure 5.14. As 

we can see, there is a tremendous drop in the resulting tardiness as the amount of 

pre-positioned inventory increases from 0% to 40% of the total customer demand to the 

non-renewable resources. This indicates that a sufficient inventory of non-renewable 

resources to be pre-positioned before the arrival of a disaster could make a fundamental 

difference in the resulting tardiness since the service to each hospital is now only 

controlled by a single resource (i.e., the travel team), instead of both resources. We also 

observe a faster decrease in total tardiness when 3Kn . This implies a natural trade-off 

between the number of DCs and the total response/transportation time. 

Figure 5.14 The Impact of Pre-positioning Inventory Before the Arrival of a Disaster
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Chapter 6. Future Extensions 

There are two major extensions of this research. The first one is to conduct a 

thorough simulation study to assess the impact of management policies on the 

effectiveness of emergency logistics involving bottleneck renewable and non-renewable 

resources. The second one is to design and evaluate meta-heuristics for solving a more 

general version of problem P.  

6.1 A Simulation Study for Assessing the Impact of Management Policies 

Effective emergency logistics requires both resources and management. One 

important topic in this regard, from both academic research and practices point of view is 

the development of effective disaster relief management policies. One of such policies is 

the deployment of mobile distribution centers that allow truck trailers to carry the 

non-renewable resources and distribute the supplies among the demand points (e.g., 

hospitals, shelters, schools, etc.) on real time to minimize the patient waiting time. We 

have performed some preliminary simulation studies in this regard, which can be 

summarized as follows. 

We extend problem P to a multi-period one (the set of period is defined as T with 

the total number of all periods is given as |T|). This multi-period problem is defined as 

follows. 
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(i). In each period t, t T , the expected service completion time for each customer ,h

h H , is ,h td . The service processing at customer h, is hp , which is linear function of 

the customer’s non-renewable resource demand, ,h tQ . ,h tQ  is determined in the 

following way. At the end of each period, each customer h observes a forecasting demand 

for the next period, ,h tQ . The actual demand ,h tQ  is a stochastic function of , 1h tQ .

Note in this setting, ,h tQ  can be zero, i.e., there is no demand for some hospitals in some 

periods.

(ii). We have two types of DCs, regular and mobile. Each regular DC k, ,k K has a 

fixed location, and receives at most one batch of non-renewable resources from its 

upstream suppliers in each period t. Each batch is defined by a batch size, , ,k tQ  and a 

forecasting batch arrival time, ,k tA , k K . The actual demand ,k tA  is a stochastic 

function of ,k tA . Starting from time ,k tA , the total quantity of non-renewable resources 

that are available for delivery to customers equal to ,k tQ  plus those leftover from 

previous batches at DC k. The mobile DC k0 has an initial location in one period, and 

moves to the location of the most urgent customer with smallest ,h td  among all that 

have demand in the next period, at the end of the current period. The distribution time 

from a certain DC to a certain customer h, is given by kh  (same value for all periods).

The allocation rule from DC to customer is a greedy type heuristic: starting from the 

customers which has the earliest due date in the current period, for each customer h,
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sequence all the DCs including the mobile one in an increasing order based on kh . Let 

the nearest DC serve it, if that DC doesn’t have enough batch supply, let the second 

nearest DC serve it, if both DCs couldn’t fulfill it, let the third nearest one serve it, so on 

so forth. After one customer is fully served, we move to the next customer with the 

earliest due date. This process terminates when either all customers are served or all DCs 

have no stock left. 

(iii). Each team i, i M , departs from its base at time 0 in each period, and visits and 

serves the nearest customer among all that have demand. After serving one customer, the 

team should visit the next customer that has demand and is nearest to its current location 

(the location of the incumbent). Each team continues to visit customers until the expected 

arrival time at a certain customer exceeds the maximal length of a period. At the end of 

each period, the team should come back to its base. The travel time between any two 

customer sites in the same team is given by , 'h h  (same value for all periods).  

We aim to compare the scenario where there exists a mobile DC that travels on 

site freely and the scenario where all DCs are regular DCs. The second scenario is served 

as comparison base that can be used to evaluate the potential cost savings and 

effectiveness of our first scenario. The numbers of DCs in the two scenarios are the same. 

The measure for the comparison is the total tardiness across all hospitals over all periods. 

Our simulation procedure is described as follows. 

Simulation Procedure:
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Input:

The initial locations of team bases, regular and mobile DCs, and customers were 

randomly generated in a 10*10 square area (adjusted by traveling time). The length of 

each period is 24 hours, and the total number of periods in one simulation run is |T|=100. 

Note kh  and , 'h h  can be computed by the distance between two corresponding 

locations. For example, 2 2
, ' ' '( ) ( )h h h h h hx x y y  where x and y represent x-axis 

and y-axis coordinates of customers h and h’. The forecasting demands are generated by 

two ways. One way is a hybrid of a uniform distribution and a Poisson distribution. The 

other way is a uniform distribution multiplied by a triangle function centered at t=50. The 

other parameter distributions and value ranges are summarized in Table 6.1. 

Parameters Range and Distribution of the Parameter 

Value

Coordinates of bases, DCs, and 

customers 

Uniform (0, 10) 

The total number of customers ( nH
) 20, 30 

The total number of Regular DCs ( nK
) 2, 3 

Number of Mobile DC 1
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The total number of travel teams ( nM
) 3, 4 

Forecasting demand size ( ,h tQ ) Uniform (0, 30)* Poisson(t, 50), 

Uniform (0, 30)*(1-|1-2*t/|T||) 

Actual demand size ( ,h tQ ) , 1 (0,5)h tQ Normal

Hospital service time duration (ph) Qh,t/5

Batch size (Qkt) Uniform (0, 200)  

Forecasting batch arrival time ( ,k tA ) Uniform (0, 12) 

Actual batch arrival time ( ,k tA ) , (0,3)k tA Normal

Customer service completion time (dh,t) Uniform (6, 18) 

Table 6.1 Parameters Used in the Empirical Study for the RH Algorithm 

The flow chart that illustrates this simulation process is as 
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follows.

Figure 6.1 A Flowchart of the Simulation Process of Evaluation of Mobile DC 

In the experiments, we considered two types of networks: the smaller networks 

have 2 regular DCs, 1 mobile DC, 3 travel teams ( nM
=3), and 20 hospitals ( nH

=20), and 

the larger networks have 3 regular DCs, 1 mobile DC, 4 teams ( nM
=4), and 30 hospitals 

( nH
=30). In each setting, we randomly run the simulation 100 times for each of two 

different customer forecasting demand distributions. Figures 2 to 5 present the simulation 

results based on different networks. We used the average tardiness per customer per 

period as the comparison measure between the scenario with mobile DC and the one with 

only regular DCs. We can observe that in all network settings, the scenario with mobile 

DC consistently provided lower level of average tardiness than that with only regular 

DCs. The average tardiness savings for each of the four cases are summarized in Table 

6.2 below. 
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Cases Tardiness Savings 

Possion Distribution with nK
= nM

=3 

and nH
=20 

16.62% 

Possion Distribution with nK
= nM

=4 

and nH
=30 

14.28% 

Triangle Distribution with

nK
= nM

=3 and nH
=20 

18.35% 

Triangle Distribution with

nK
= nM

|=4 and nH
=30 

17.07% 

Table 6.2 The Average Tardiness Savings for Four Different Cases 

Figure 6.2 Average Tardiness Comparison for Demand with Poisson Distribution with 
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nK
= nM

=3 and nH
=20

Figure 6.3 Average Tardiness Comparison for Demand with Poisson Distribution with 

nK
= nM

=4 and nH
=30
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Figure 6.4 Average Tardiness Comparison for Demand with Triangle Distribution with 

nK
= nM

=3 and nH
=20

Figure 6.5 Average Tardiness Comparison for Demand with Triangle Distribution with 

nK
= nM

=4 and nH
=30

There are other management policies can be included in such simulation study. 

The other two policies to be evaluated are a). the non-renewable resources 

inventory-positioning before the hit of an natural disaster, and b). Using selected 

hospitals as transshipment depots for the non-renewable resources. Managerial insights 

generated from such simulation studies will have great values to support the practices of 

disaster relief operations. 

6.2. Designing Meta-heuristics for Solving General Versions of Problem P 
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Real life emergency logistics are usually more complicated than those being 

studied in academic literature. To make a solution approach to become a valuable tool to 

support the day-to-day operations in practice, meta-heuristics have a significant role in 

this regard.  It will be interesting to design such meta-heuristics that are able to derive 

operations schedules for the problems beyond the one we studied in this dissertation, such 

as those that including last minute change in batch arrival times, cancellation of hospital 

orders, random travel times, deviation in travel team release times, and stochastic hospital 

service times, etc.   

When such more general scenarios are taking into the problem definition, 

mathematical programming based approaches are no longer sufficient enough, and 

meta-heuristics are the resort. In the current literature, there is a significant lack of studies 

on design meta-heuristics for complex emergency logistics operations scheduling. 

Examples of such meta-heuristics including hierarchical heuristics that allocate the 

non-renewable resources after the operations schedule of travel teams has been developed 

and cluster heuristics that partition the customer demand points into clusters and then 

schedule the operations for serving each cluster to minimize the tardiness of serving the 

customer group. Designing such meta-heuristics is certainly another interesting extension 

of this dissertation research. 
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Appendix I. Matlab MIP Code for Problem P 

function Y= bigurobi(H,K,M,Nb,Q_h,n_i,p_h,Q_kj,A_kj,d_h,tau_kh,tau_h) 

var z,q,s,T 

nz= K*Nb*H;     

A1= zeros(H,2*nz+2*H); 

b1= Q_h'; 

for h= 1:H 

  X= zeros(1,H); X(h)=1; 

  A1(h,:)= [zeros(1,nz),repmat(X,1,Nb*K),zeros(1,2*H)]; 

end

A2= zeros(Nb*K,2*nz+2*H); 

b2= reshape(Q_kj,K*Nb,1); 

for j= 1:Nb 

    for k= 1:K 

        X= zeros(1,nz); 

        X((H*Nb*(k-1)+(j-1)*H+1):(H*Nb*(k-1)+j*H))= ones(1,H); 

        A2((j-1)*K+k,:)= [zeros(1,nz),X,zeros(1,2*H)]; 

    end 

end

A3= zeros(nz,2*nz+2*H); 

b3= zeros(nz,1); 

for k= 1:K 

    for j= 1:Nb 

        for h= 1:H 
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            m= (k-1)*Nb*H+(j-1)*H+h; 

            A3(m,m)= -Q_kj(k,j); 

            A3(m,m+nz)= 1; 

        end 

    end 

end

A4= zeros(nz,2*nz+2*H); 

b4= zeros(nz,1); 

for k= 1:K 

    for j= 1:Nb 

        for h= 1:H 

            m= (k-1)*Nb*H+(j-1)*H+h; 

            A4(m,m)= A_kj(k,j)+tau_kh(k,h); 

            A4(m,2*nz+h)= -1; 

        end 

    end 

end

A5= zeros(H,2*nz+2*H); 

b5= zeros(H,1); 

if H>1 

    for h=1:(H-1) 

        A5(h,(2*nz+h):(2*nz+h+1))= [1,-1]; 

        b5(h)= -p_h(h)-tau_h(h+1); 

    end 

end
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if M>1 

    for m=1:(M-1) 

        A5(n_i(m),:)= zeros(1,2*nz+2*H); 

        A5(n_i(m),2*nz+n_i(m)+1)= -1; 

        b5(n_i(m))= -tau_h(n_i(m)+1); 

    end 

end

A5(H,2*nz+1)= -1;   % tau_01<= s_1 

b5(H)= -tau_h(1); 

A6= zeros(H,2*nz+2*H); 

b6= (p_h-d_h)'; 

for h= 1:H 

    A6(h,2*nz+h)= -1; 

    A6(h,2*nz+H+h)= 1; 

end

A7= [zeros(nz),diag(ones(1,nz)),zeros(nz,2*H)]; 

A8= [zeros(H,2*nz),diag(ones(1,H)),zeros(H)]; 

A9= [zeros(H,2*nz+H),diag(ones(1,H))]; 

b7= zeros(nz+2*H,1); 

try

    clear model; 

    model.A= sparse([A1;A2;A3;A4;A5;A6;A7;A8;A9]); 

    model.obj= [zeros(1,2*nz+H),ones(1,H)]; 

    model.rhs= [b1;b2;b3;b4;b5;b6;b7]; 

    model.sense= [repmat('=',1,H),repmat('<',1,Nb*K+2*nz+H),repmat('>',1,3*H+nz)]; 

    model.vtype= [repmat('B',1,nz),repmat('C',1,nz+2*H)];       
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    model.modelsense= 'min'; 

    clear params; 

    params.outputflag = 0; 

    result = gurobi(model, params); 

    %disp(result.objval) 

    %disp(result.x) 

catch gurobiError 

fprintf('Error reported\n'); 

end

Y= [result.objval,result.x'];   

End
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Appendix II. Matlab RH Code for Problem P 

tic;        

Z= zeros(51,H0);   

Y= cogurobi(H0,K0,M0,Nb0,Q_h0,n_i0,p_h0,Q_kj0,A_kj0,d_h0,tau_kh0,tau_h0); 

Z(1,:)= Y((2*K0*Nb0*H0+2):(2*K0*Nb0*H0+H0+1));

%Z(1,:)= d_h0;        

T= zeros(1,50);  

for N= 1:50 

H= H0; K= K0; M= M0; Nb= Nb0; 

Q_h= Q_h0; n_i= n_i0; p_h= p_h0; 

Q_kj= Q_kj0; A_kj= A_kj0; d_h= d_h0;  

tau_kh= tau_kh0; tau_h= tau_h0; 

A_kj1= A_kj(:,1:2); 

Q_kj1= Q_kj(:,1:2); 

K1= K; Nb1= 2; 

n=1;

Z_h= Z(N,:); 

while H>1 

    [Z_hs,index]= sort(Z_h); 

    x=0; i=1; 

    while x< sum(sum(Q_kj1)) && i<=length(index) 

        x= x+Q_h(index(i)); 

        i=i+1; 

    end 

    H1= i-2;   M1=M; 
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    if i>length(index) && x< sum(sum(Q_kj1)) 

        H1= i-1; 

    end  

    X= 1:H; index1= X(Z_h<=Z_hs(H1)); 

    Q_h1= Q_h(index1); 

    n_i1= zeros(1,M); 

    for i=1:M 

        n_i1(i)= sum(index1<=n_i(i)); 

    end     

    p_h1= p_h(index1); 

    d_h1= d_h(index1); 

    tau_kh1= tau_kh(:,index1); 

    tau_h1= tau_h(index1); 

    nz1= K1*Nb1*H1; 

    n_i10= n_i1; 

    if length(unique(n_i10))< length(n_i10)  

        M1= M1-(length(n_i10)-length(unique(n_i10)));

        n_i10= unique(n_i10); 

    end 

    if n_i10(1)== 0 

        M1= M1-1; 

        n_i10= n_i10(2:end); 

    end 

    Y= bigurobi(H1,K1,M1,Nb1,Q_h1,n_i10,p_h1,Q_kj1,A_kj1,d_h1,tau_kh1,tau_h1); 

    z_kjh1= Y(2:(nz1+1)); 
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    q_kjh1= Y((nz1+2):(2*nz1+1)); 

    s_h1= Y((2*nz1+2):(2*nz1+H1+1)); 

    T_h1= Y((2*nz1+H1+2):end); 

    Q_kj1= Q_kj(:,(n+1):(n+2)); 

    A_kj1= A_kj(:,(n+1):(n+2)); 

    for h=1:H1 

        for k=1:K1 

            Q_h1(h)= Q_h1(h)-q_kjh1((k-1)*Nb1*H1+h); 

        end 

    end 

    index2= sort([index1(Q_h1>0.001),X(Z_h>Z_hs(H1))]);       

    H= length(index2);  

    if H~=0 

        Q_h(index1)= Q_h1; 

        Q_h= Q_h(index2); 

        index1= index1(Q_h1<0.001); 

        d_h= d_h(index2); 

        Z_h= Z_h(index2); 

        tau_kh= tau_kh(:,index2); 

        tau_h2= tau_h(index2);   

        n_i2= zeros(1,M); 

        for i= 1:M 

            n_i2(i)= sum(index2<=n_i(i)); 

        end 

        Z1= Z(N+1,Z(N+1,:)==0);  

        if length(unique(n_i2))== length(n_i2) &&  n_i2(1)~= 0  



165 

 
            if sum(index1<=n_i(1))~= 0  &&  index1(1)==1 
 
                tau_h2(1)= 
tau_h2(1)+s_h1(max(index1(index1<index2(1))))+p_h1(max(index1(index1<index2(1)))); 
 
                Z1(index1(index1<index2(1)))= s_h1(index1(index1<index2(1))); 
 
            end 
 
            if sum(index1<=n_i(1))~= 0  &&  max(index1>index2(1) & index1<=n_i(1))==1 
 
                index3= index1(index1>index2(1) & index1<=n_i(1)); 
 
                index4= index2(index2<= n_i(1)); 
 
                Z1(index3)= -1; 
 
                for ii= 1: (length(index4)-1) 
 
                    if index4(ii+1)-index4(ii)>1 
 
                        tau_h2(ii+1)= tau_h2(ii+1)+sum(tau_h(index3(index3<index4(ii+1) & 
index3>index4(ii))))+sum(p_h(index3(index3<index4(ii+1) & index3>index4(ii)))); 
 
                    end 
 
                end 
 
            end 
 
            if M>1 
 
                for i= 1:(M-1) 
 
                    if sum(index1<=n_i(i+1))~= sum(index1<=n_i(i)) 
 
                        if max(index1(index1<index2(n_i2(i)+1))>n_i(i))==1 
 
                            tau_h2(n_i2(i)+1)= 
tau_h2(n_i2(i)+1)+s_h1(max(index1(index1<index2(n_i2(i)+1)))-(n_i(i)-
n_i1(i)))+p_h1(max(index1(index1<index2(n_i2(i)+1)))-(n_i(i)-n_i1(i))); 
 
                            Z1(index1(index1<index2(n_i2(i)+1) & index1>n_i(i)))= 
s_h1(index1(index1<index2(n_i2(i)+1)& index1>n_i(i))-(n_i(i)-n_i1(i))); 
 
                        end 
 
                        if max(index1>index2(n_i2(i)+1) & index1<=n_i(i+1))==1 
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                            index3= index1(index1>index2(n_i2(i)+1) & 
index1<=n_i(i+1)); 

                            index4= index2(index2>n_i(i) & index2<= n_i(i+1)); 

                            Z1(index3)= -1; 

                            for ii= 1: (length(index4)-1) 

                                if index4(ii+1)-index4(ii)>1 

                                    tau_h2(n_i2(i)+ii+1)= 
tau_h2(n_i2(i)+ii+1)+sum(tau_h(index3(index3<index4(ii+1) & 
index3>index4(ii))))+sum(p_h(index3(index3<index4(ii+1) & index3>index4(ii)))); 

                                end 

                            end 

                        end        

                    end 

                end 

            end           

            n_i= n_i2;  

            M1= M; 

        elseif length(unique(n_i2))== length(n_i2) &&  n_i2(1)== 0 

            M1= M-1; 

            if sum(index1<=n_i(1))~= 0 

                Z1(index1(index1<=n_i(1)))= s_h1(index1(index1<=n_i(1)));  

            end 

            for i= 1:M1 

                if sum(index1<=n_i(i+1))~= sum(index1<=n_i(i)) 

                    if max(index1(index1<index2(n_i2(i)+1))>n_i(i))==1 

                        tau_h2(n_i2(i)+1)= 
tau_h2(n_i2(i)+1)+s_h1(max(index1(index1<index2(n_i2(i)+1)))-(n_i(i)-n_i1(i)))+p_h1(max(ind
ex1(index1<index2(n_i2(i)+1)))-(n_i(i)-n_i1(i))); 
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                        Z1(index1(index1<index2(n_i2(i)+1) & index1>n_i(i)))= 
s_h1(index1(index1<index2(n_i2(i)+1)& index1>n_i(i))-(n_i(i)-n_i1(i))); 
 
                    end 
 
                    if max(index1>index2(n_i2(i)+1) & index1<=n_i(i+1))==1 
 
                        index3= index1(index1>index2(n_i2(i)+1) & index1<=n_i(i+1)); 
 
                        index4= index2(index2>n_i(i) & index2<= n_i(i+1)); 
 
                        Z1(index3)= -1; 
 
                        for ii= 1: (length(index4)-1) 
 
                            if index4(ii+1)-index4(ii)>1 
 
                                tau_h2(n_i2(i)+ii+1)= 
tau_h2(n_i2(i)+ii+1)+sum(tau_h(index3(index3<index4(ii+1) & 
index3>index4(ii))))+sum(p_h(index3(index3<index4(ii+1) & index3>index4(ii)))); 
 
                            end 
 
                        end 
 
                    end                          
 
                end 
 
            end  
 
            n_i= n_i2(2:end); 
 
        elseif length(unique(n_i2))~= length(n_i2) &&  n_i2(1)~= 0 
 
            M1= M-(length(n_i2)-length(unique(n_i2))); 
 
            if sum(index1<=n_i(1))~= 0  &&  index1(1)==1 
 
                tau_h2(1)= 
tau_h2(1)+s_h1(max(index1(index1<index2(1))))+p_h1(max(index1(index1<index2(1)))); 
 
                Z1(index1(index1<index2(1)))= s_h1(index1(index1<index2(1))); 
 
            end 
 
            if sum(index1<=n_i(1))~= 0  &&  max(index1>index2(1) & index1<=n_i(1))==1 
 
                index3= index1(index1>index2(1) & index1<=n_i(1)); 
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                index4= index2(index2<= n_i(1)); 

                Z1(index3)= -1; 

                for ii= 1: (length(index4)-1) 

                    if index4(ii+1)-index4(ii)>1 

                        tau_h2(ii+1)= tau_h2(ii+1)+sum(tau_h(index3(index3<index4(ii+1) 
& index3>index4(ii))))+sum(p_h(index3(index3<index4(ii+1) & index3>index4(ii)))); 

                    end 

                end 

            end 

            [n_i2,tt]= unique(n_i2); 

            if M1==1       

                if sum(index1<=n_i(2))~= sum(index1<=n_i(1)) 

                    Z1(index1(index1>n_i(1)))= 
s_h1(index1(index1>n_i(1))-(n_i(1)-n_i1(1)));   

                end 

            else 

                n_it= n_i(tt);   n_i1t= n_i1(tt);  

                for i= 1:(M1-1)       

                    if sum(index1<=n_it(i+1))~= sum(index1<=n_it(i)) 

                        if max(index1(index1<index2(n_i2(i)+1))>n_it(i))==1 

                            tau_h2(n_i2(i)+1)= 
tau_h2(n_i2(i)+1)+s_h1(max(index1(index1<index2(n_i2(i)+1)))-(n_it(i)-n_i1t(i)))+p_h1(max(in
dex1(index1<index2(n_i2(i)+1)))-(n_it(i)-n_i1t(i)));

                            Z1(index1(index1<index2(n_i2(i)+1) & index1>n_it(i)))= 
s_h1(index1(index1<index2(n_i2(i)+1)& index1>n_it(i))-(n_it(i)-n_i1t(i))); 

                        end 

                        a= 1:length(n_i); 

                        a1= n_i(a(n_it(i)==n_i)+1); 
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                        if max(index1>index2(n_i2(i)+1) & index1<=a1)==1 

                            index3= index1(index1>index2(n_i2(i)+1) & index1<=a1); 

                            index4= index2(index2>n_it(i) & index2<= a1); 

                            Z1(index3)= -1; 

                            for ii= 1: (length(index4)-1) 

                                if index4(ii+1)-index4(ii)>1 

                                    tau_h2(n_i2(i)+ii+1)= 
tau_h2(n_i2(i)+ii+1)+sum(tau_h(index3(index3<index4(ii+1) & 
index3>index4(ii))))+sum(p_h(index3(index3<index4(ii+1) & index3>index4(ii)))); 

                                end 

                            end 

                        end        

                    end 

                end 

                if tt(1)>1 

                    Z1(index1(index1>n_i(1) & index1<=n_i(tt(1))))= 
s_h1(index1(index1>n_i(1) & index1<=n_i(tt(1)))-(n_i(1)-n_i1(1)));  

                end     

                for j=1:(length(tt)-1) 

                    if tt(j+1)-tt(j)>1 

                        Z1(index1(index1>n_i(tt(j)+1) & index1<=n_i(tt(j+1))))= 
s_h1(index1(index1>n_i(tt(j)+1) & index1<=n_i(tt(j+1)))-(n_i(tt(j)+1)-n_i1(tt(j)+1)));  

                    end 

                end 

            end         

            n_i= n_i2; 

        else 

            M1=M-1-(length(n_i2)-length(unique(n_i2)));  
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            [n_i2,tt]= unique(n_i2); 

            if sum(index1<=n_i(1))~= 0 

                Z1(index1(index1<=n_i(1)))= s_h1(index1(index1<=n_i(1)));  

            end 

            n_it= n_i(tt);   n_i1t= n_i1(tt);            

            for i= 1:M1                      

                if sum(index1<=n_it(i+1))~= sum(index1<=n_it(i)) 

                    if max(index1(index1<index2(n_i2(i)+1))>n_it(i))==1 

                        tau_h2(n_i2(i)+1)= 
tau_h2(n_i2(i)+1)+s_h1(max(index1(index1<index2(n_i2(i)+1)))-(n_it(i)-n_i1t(i)))+p_h1(max(in
dex1(index1<index2(n_i2(i)+1)))-(n_it(i)-n_i1t(i)));

                        Z1(index1(index1<index2(n_i2(i)+1) & index1>n_it(i)))= 
s_h1(index1(index1<index2(n_i2(i)+1)& index1>n_it(i))-(n_it(i)-n_i1t(i))); 

                    end 

                    a= 1:length(n_i); 

                    a1= n_i(a(n_it(i)==n_i)+1); 

                    if max(index1>index2(n_i2(i)+1) & index1<=a1)==1 

                        index3= index1(index1>index2(n_i2(i)+1) & index1<=a1); 

                        index4= index2(index2>n_it(i) & index2<= a1); 

                        Z1(index3)= -1; 

                        for ii= 1: (length(index4)-1) 

                            if index4(ii+1)-index4(ii)>1 

                                tau_h2(n_i2(i)+ii+1)= 
tau_h2(n_i2(i)+ii+1)+sum(tau_h(index3(index3<index4(ii+1) & 
index3>index4(ii))))+sum(p_h(index3(index3<index4(ii+1) & index3>index4(ii)))); 

                            end 

                        end 

                    end        
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                end 

                

            end 

            if tt(1)>1 

                Z1(index1(index1>n_i(1) & index1<=n_i(tt(1))))= s_h1(index1(index1>n_i(1) 
& index1<=n_i(tt(1)))-(n_i(1)-n_i1(1)));  

            end    

            for j=1:(length(tt)-1) 

                if tt(j+1)-tt(j)>1 

                    Z1(index1(index1>n_i(tt(j)+1) & index1<=n_i(tt(j+1))))= 
s_h1(index1(index1>n_i(tt(j)+1) & index1<=n_i(tt(j+1)))-(n_i(tt(j)+1)-n_i1(tt(j)+1)));  

                end 

            end 

            n_i= n_i2(2:end); 

        end 

        tau_h= tau_h2; 

        p_h= p_h(index2); 

        Z(N+1,Z(N+1,:)==0)= Z1;  

        M=M1;             

        n=n+1; 

    else 

        Z1= Z(N+1,Z(N+1,:)==0);    

        Z1(index1)= s_h1; 

        Z(N+1,Z(N+1,:)==0)= Z1; 

    end 

end
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if H== 1 

   Y= bigurobi(H,K,M,Nb1,Q_h,n_i,p_h,Q_kj1,A_kj1,d_h,tau_kh,tau_h); 

   Z(N+1,Z(N+1,:)==0)= Y(2*K*Nb1+2); 

end

if max(Z(N+1,:)==-1)==1 

    for i= 2:H0 

        if Z(N+1,i)==-1 

            Z(N+1,i)= Z(N+1,i-1)+p_h0(i-1)+tau_h0(i); 

        end 

    end 

end

T(N)= sum(max(Z(N+1,:)+p_h0-d_h0,0)); 

end

Time= toc;           

[a,b]= min(T);      

minsumT= a; 

minZ= Z(b+1,:); 

Time 

minsumT 

minZ 
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Appendix III. Matlab Managerial Insight Code for Problem P 

H0= 50 ; M0= 4; Nb0= 30;  K0= 3; 

n_i0= [12,24,37,50];  

x= 0:0.1:0.6; 

y= zeros(10,length(x)); 

for ii=1:10 

    Q_h0= rand(1,H0)*80+20;     

    p_h0= Q_h0/20;        

    Q_kj0= rand(K0,Nb0)*50+50;     

A_kj0= cumsum(rand(K0,Nb0)+5,2)-5;    

    d_h0= rand(1,H0)*H0;      

    d_h0(1:n_i0(1))=sort(d_h0(1:n_i0(1))); 

    for i=2:M0 

        d_h0((n_i0(i-1)+1):n_i0(i))= sort(d_h0((n_i0(i-1)+1):n_i0(i))); 

    end 

    xh= sort(rand(1,H0))*100; yh= rand(1,H0)*100;   

    xk= sort(rand(1,K0))*100; yk= rand(1,K0)*100; 

    xm= sort(rand(1,M0))*100; ym= rand(1,M0)*100; 

    tau_kh0= zeros(K0,H0); 

    for k=1:K0 

        for h=1:H0 

            tau_kh0(k,h)= sqrt((xh(h)-xk(k))^2+(yh(h)-yk(k))^2)/50; 

        end 

    end 

    tau_h0= zeros(1,H0);  



174 

    tau_h0(1)= sqrt((xm(1)-xh(1))^2+(ym(1)-yh(1))^2)/50; 

    for h=2:H0 

        tau_h0(h)= sqrt((xh(h)-xh(h-1))^2+(yh(h)-yh(h-1))^2)/50; 

    end 

    for m=1:(M0-1) 

        tau_h0(n_i0(m)+1)= 
sqrt((xm(m+1)-xh(n_i0(m)+1))^2+(ym(m+1)-yh(n_i0(m)+1))^2)/50; 

    end 

    y(ii,1)= fiter2(H0,K0,M0,Nb0,Q_h0,n_i0,p_h0,Q_kj0,A_kj0,d_h0,tau_kh0,tau_h0); 

    for i=2:length(x) 

        per= x(i); 

        q= per*sum(Q_h0); 

        r= rand(1,K0); 

        Q_kj0(:,1)= q*r/sum(r); 

        y(ii,i)= fiter2(H0,K0,M0,Nb0,Q_h0,n_i0,p_h0,Q_kj0,A_kj0,d_h0,tau_kh0,tau_h0); 

    end 

    y(ii,:)= y(ii,:)/y(ii,1); 

end

ybar= sum(y,1)/ii; 

plot(x,ybar) 

xlabel('x') 

ylabel('ybar') 

title('graph') 
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Appendix . Matlab Simulation Code

T = 100; 

hos.number = 20; 
team.number = 3; 
dc.number = 3; 
dcMidx = 3; 

hos.loc = 10*rand(2,hos.number); 
dc.loc = 10*rand(2,dc.number); 
team.loc = 10*rand(2,team.number); 

dc.Q=zeros(dc.number,T); 
dc.A=zeros(dc.number,T); 
dc.Acon=zeros(dc.number,T); 
for k=1:dc.number 
    for t=1:T % number of periods 
        dc.Q(k,t)=fix(200*rand); 
        dc.A(k,t)=fix(12*rand); 
        dc.Acon(k,t) = max(0,dc.A(k,t)+normrnd(0,3*rand)); %confirmed arrival time 
    end 
end

hos.Q = zeros(hos.number,T); 
hos.p = zeros(hos.number,T); 
hos.d = zeros(hos.number,T); 
hos.Qcon = zeros(hos.number,T); 

for h=1:hos.number 
    for t=1:T 
        %hos.Q(h,t)=fix(rand*30)*(1 - 2*abs(0.5-t/T));% demand of hospital h at period t, 
integer
        hos.Q(h,t)=fix(rand*30)*poisspdf(t,50); 
        hos.d(h,t)=fix(6+12*rand); % due date of hospital h at period t, integer 
        hos.p(h,t)=hos.Qcon(h,t)/5; % processing time of hospital h at period t 
    end 
end

tau_mh=zeros(team.number,hos.number); 
tau_kh=zeros(dc.number,hos.number); 

team0 = team; 
dc0 = dc; 
hos0 = hos; 

for runtype = 0:1 
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    team = team0; 
    dc = dc0; 
    hos = hos0; 

    hos.stock = zeros(hos.number,1); 
    dc.stock = zeros(dc.number,1); 
    tardiness = ones(hos.number,T)*24; 

    if runtype == 0 
        disp('With mobile DC, Average tardiness is'); 
    end 
    if runtype == 1 
        disp('Without mobile DC, Average tardiness is'); 
    end 

    for t = 1:T 

        if runtype == 0 
            if t>1 
                [~,hidx] = max(hos.Q(:,t)); 
                dc.loc(:,dcMidx) = hos.loc(:,hidx); 
                dc.Acon(dcMidx,t) = fix(6*rand); 
            end 
        end 

        dc.stock = dc.stock + dc.Q(:,t); 
        for h=1:hos.number 
            hos.Qcon(h,t) = max(1,hos.Q(h,t)+normrnd(0,5)); 
        end 
        hos.t = zeros(hos.number,1);%latest batch arrival time 
        hos.isServed = zeros(hos.number,1); 
        hos.isServed(hos.Qcon(:,t)==0) = 1; 
        tardiness(hos.isServed == 1,t) = 0; 
        team.t = zeros(team.number,1); 

        for k=1:dc.number 
            for h=1:hos.number 
                tau_kh(k,h)=sqrt( (dc.loc(1,k)-hos.loc(1,k))^2 + 
(dc.loc(2,k)-hos.loc(2,k))^2 ); 
            end 
        end 

        [~,hosOrder] = sort(hos.d(:,t)); 
        for h = hosOrder' 
            [~,dcOrder] = sort(tau_kh(:,h)); 
            for k = dcOrder' 
                if hos.stock(h) >= hos.Qcon(h,t) 
                    break; 
                end 
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                trans = min(hos.Qcon(h,t) - hos.stock(h),dc.stock(k)); 

                if trans > 0 
                    dc.stock(k) = dc.stock(k) - trans; 
                    hos.stock(h) = hos.stock(h) + trans; 
                    hos.t(h) = max(hos.t(h),dc.Acon(k,t)+tau_kh(k,h)); 
                end 
            end 

            if hos.stock(h) < hos.Qcon(h,t) 
                if t<T 
                    hos.Q(h,t+1) = hos.Q(h,t+1)+hos.Qcon(h,t); 
                end 
            end 
        end 

        hos.isServed(hos.Qcon(:,t)>hos.stock) = -1; 

        flag = 1; 
        while flag == 1 

            for m=1:team.number 
                for h=1:hos.number 
                    tau_mh(m,h)=sqrt((team.loc(1,m)-hos.loc(1,h))^2+ 
((team.loc(2,m)-hos.loc(2,h)))^2 ); 
                end 
            end 

            for m = 1:team.number 

                if sum(hos.isServed==0) == 0 
                    flag = 0; 
                    break; 
                end 

                serveIdx = find(hos.isServed==0); 
                [~, idx] = min(tau_mh(m,serveIdx)); 
                h = serveIdx(idx); 

                team.loc(:,m) = hos.loc(:,h); 
                team.t(m) = team.t(m) + tau_mh(m,h); 
                team.t(m) = max(hos.t(h), team.t(m)); 

                if hos.p(h,t) + team.t(m) < 24  
                    team.t(m) = team.t(m) + hos.p(h,t); 
                    hos.stock(h) = hos.stock(h) - hos.Qcon(h,t); 
                    hos.isServed(h) = 1; 
                    tardiness(h,t) = max(0,team.t(m)-hos.d(h,t)); 
                else 
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                    team.t(m) = 24; 
                end 

            end 

            if flag == 0 
                break;%all the hospital are served 
            end 
            %other wise, check team 
            flag = 0; 
            for m = 1:team.number 
                if team.t(m) < 24 
                    flag = 1; 
                end 
            end 
        end 

    end 

    tardiness_t = sum(tardiness,1); 
    tardiness_h = sum(tardiness,2); 
    tardiness_m(runtype +1) = mean(tardiness(:)); 
    disp(tardiness_m(runtype+1)); 
    hos.Q; 
    hos.Qcon; 
end
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