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ABSTRACT OF THE DISSERTATION

Quantitative Histomorphometry of Digital Pathology as a
Companion Diagnostic: Predicting Outcome For ER+
Breast Cancers

by Ajay Nagesh Basavanhally

Dissertation Director: Anant Madabhushi

This work involves the creation of an image-based companiordiagnostic framework
that employs quantitative features extracted from whole-dide, H & E stained digital
pathology (DP) images to distinguish patients based on disase outcome, with a clini-
cal application aimed at distinguishing estrogen receptopositive (ER+) breast cancer
(BCa) patients with good and poor outcomes. Quantitative histomorphometry (QH) {
the conversion of a digitized histopathology slide into a sges of quantitative measure-
ments of tumor morphology { is a rapidly growing eld aimed at introducing advanced
image analytics into the histopathological work ow. The th rust towards personalized
medicine has led to the development of companion diagnostitools that measure gene
expression, yielding quantitative outcome predictions fo improved disease strati ca-
tion and customized therapies, e.g. Oncotype DX (Genomic Halth, Inc.) for ER+
BCa. Yet, tumor morphology is often correlated with genomic assays, suggesting that
genotypic variations in biologically distinct classes of umors lead to distinct patterns
of tumor cell morphology and tissue architecture in histopahology.

The application of this work to ER+ BCa is highly relevant to ¢ urrent clinical needs.

Current treatment guidelines recommend that the majority of women with ER+ BCa



receive chemotherapy in addition to hormonal therapy; yet,approximately half will not
bene t from chemotherapy while still enduring its harmful side e ects. Hence, there is
a clear need for the development of automated prognostic tde to identify women with
poorer outcomes who will likely bene t from chemotherapy.

The primary novel contributions of this work are (1) a color standardization sys-
tem for improving the consistency in appearance of tissue stictures across images, (2)
the identi cation of tissue structures and corresponding QH signatures with prognos-
tic value in ER+ BCa, (3) a multi- eld-of-view framework for robust integration of
prognostic information across whole-slide DP images, and4) a method for predicting
classi er performance for a large data cohort based on the ailability of limited training
data. This work will pave the way for the development of novel companion diagnhostic
systems capable of producing quantitative and reproducibd image-based risk scores.
These risk scores will play a vital role in decision support ly helping clinicians predict

patient outcome and prescribing appropriate therapies.



Preface

This dissertation represents the collective works of the athor over the course of his
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Chapter 1

Introduction

1.1 Quantitative histomorphometry and digital pathology

The rise of quantitative histomorphometrics (QH) { the conv ersion of a histopathology
slide into a series of quantitative measurements of tumor mphology { is closely coupled
with the advent of digital pathology (DP), a rapidly growing eld that includes the
computerized scanning, visualization, and analysis of tisue specimens generated by
various surgical procedures (e.g. biopsy, resection). Edr applications of quantitative
DP involved basic measurements such as cell counting, objesize measurement, and
light absorption characteristics [9]; yet the development of complex image analytics
was limited by the lack of high-resolution sensors, storagespace, and computational
throughput. Recent technological advances have led highkroughput, high-resolution,
whole-slide DP scanners to become increasingly commonplkadn the clinical setting for
both primary diagnosis and telepathology [10]. Quantitative analysis of DP specimens
is starting to gain popularity in clinical practice, but is o ften limited to identifying
staining extent in IHC-stained DP images. Routine hematoxylin and eosin (H & E)
staining, which enhances visualization of tissue di erentation and tumor morphology,
accounts for the vast majority of histopathology studies. However, the development of
robust QH tools for large-scale diagnostic and prognostic malysis of H & E stained DP

has proven to be di cult [11].

1.2 Role of QH in personalized medicine

Recent advances in personalized medicine { the idea that d&ase diagnosis and treat-

ment can be tailored to t the individual needs of each and evey patient { are rapidly



changing many aspects of patient care today. In particular,the development of molec-
ular assays that measure gene and protein expression, refed to collectively as com-
panion diagnostics have led to quantitative outcome predictions that improve disease
strati cation and allow for more customized therapies. These assays, however, suf-
fer from a number of translational drawbacks including high cost, the need for spe-
cialized facilities, and increased time to treatment. Furthermore, recent studies have
demonstrated correlations between molecular assays and toor morphology descrip-
tors, suggesting that the linkage between molecular assayand patient outcome is not
unique [12{14]. In this work, we hypothesize that the genotypic changes measured by
gene expression assays are also re ected by variations inssue morphology, which can
be characterized by QH analysis in a quantitative and reprodicible manner. Thus, a
uni ed framework able to integrate di erent types of quanti tative image features across
all aspects of whole-slide DP images will play an important ple in the development of

QH-based companion diagnostic systems.

1.3 Application of QH to breast cancer outcome prediction

The majority of the work presented in this thesis is applied to breast cancer (BCa),
which is the most common cancer diagnosis for women in the Uteéd States with an
annual incidence of invasive malignancies greater than 20000 and mortality greater
than 40,000 [15]. Measurement of estrogen receptor (ER) expssion is a routine part
of the clinical evaluation due to the availability of target ed therapies (e.g. tamoxifen).
Current treatment guidelines recommend that the vast majority of women with tumors
expressing the estrogen receptor (i.e. ER+ BCa) receive chmotherapy in addition
to the normally prescribed hormonal therapy; yet, the majority will not bene t from
chemotherapy while enduring the harmful side e ects. Hence there is a clear need
for the development of automated prognostic tools to identfy women with poorer out-
comes (i.e. more aggressive cancers) who are likely to deeithe greatest bene t from
chemotherapy.

In current clinical practice, the Oncotype DX gene expressin assay (Genomic

Health, Inc.) is commonly used to yield a quantitative Recurrence Score (RS) for lymph



node-negative (LN-), ER+ BCa patients that has shown to be carelated with disease
outcome and response to therapy [16]. In fact, an analogoushationship between QH
and disease outcome can be inferred by acknowledging the siarities between QH anal-
ysis and BCa tumor grade (e.g. characterization of tumor di erentiation and nuclear
pleomorphism). Studies have previously demonstrated thaboth high tumor grade and
high Oncotype DX RS are signi cant predictors of tumor recurrence; yet, the two pre-
dictors are not independent of one another [17]. Indeed, ges that tend to drive a high
RS, such as those associated with cell proliferation and HER ampli cation, are also
associated with high grade tumors. Further studies have als con rmed the high degree
of correlation between tumor grade and RS [12{14], suggesty that the visual infor-
mation present in standard H & E histology contains prognosic information similar to
that present in gene expression data. Our overall hypothesi is that gene expression
signatures from biologically distinct classes of tumors lad to distinct patterns of tumor
cell morphology and tissue architecture, and that these paterns can be identi ed by

the computer-aided QH analysis of histological images.

1.4 Surrogate ground truth for patient outcome in ER+ breast cancer

While the ideal ground truth for evaluation of prognostic to ols such as the one described
in this work is long-term patient outcome (i.e. recurrencefree survival), this type of
data is very di cult to obtain. In lieu of patient outcome, we employ both modi ed
Bloom-Richardson (mBR) grading [18] and Oncotype DX Recurence Score (RS) as
surrogate ground truth markers for LN-, ER+ BCa patients.

A number of prognostic criteria have been developed to charterize the disease ag-
gressiveness in invasive BCa tumors via visual analysis of B E stained histopathology,
including the Bloom-Richardson [19] and Nottingham grading schemes [18]. In partic-
ular, the Nottingham, or modi ed Bloom-Richardson (mBR), s ystem has gained popu-
larity due to the integration of descriptors that character ize large-scale tissue structure
with those that describe nuclear di erentiation [20]. The mBR grading system encom-

passes three visual signatures: degree of tubular formatip nuclear pleomorphism, and



mitotic activity. Each signature is scored semi-quantitatively on a scale of 1-3 to pro-
duce a combined mBR grade on a scale of 3-9 [18]. For prognostpurposes, patients
are commonly split into three classes corresponding to lowniBR 3-5), intermediate
(mBR 6-7), and high (mBR 8-9) grades. The Oncotype DX gene expession assay
has been clinically validated to predict the likelihood of 10-year distant recurrence and
the expected benet from adjuvant chemotherapy for LN-, ER+ BCa patients [16].
The assay, which yields a quantitative Recurrence Score (RSbetween 0 and 100, has
been shown to have the predictive power to distinguish low (F5 < 18), intermediate
(18 RS 30), and high (RS> 30) risk patients.

It is important to note that the close relationship between mBR grade and prognosis
(i.e. prediction of patient outcome) is well-known [12, 13] yet clinical usage of mBR
grade is often tempered by concerns about intra- and inter-ater variability [21{23].
Meyer et al. [23] showed that agreement between seven pathaiists is only moderately
reproducible ( =0:50 0:59), while Dalton et al. [22] further illustrated the subopti-
mal treatment that can result from incorrect mBR grading. Boiesen et al. [21] demon-
strated similar levels of reproducibility ( =0:50 0:54) across a number of pathology
departments. A possible reason for this discrepancy is thapathologists currently lack
the automated image analysis tools to accurately, e ciently and reproducibly quantify

mBR grade in histopathology.

1.5 Challenges in the development of QH methods for DP analys is

While computerized image analysis tools for DP have becomencreasingly sophisti-
cated [11], existing frameworks for automated analysis of Wole-slide DP are particu-
larly lacking. Current approaches face a number of challengs including (1) intrinsic
biological heterogeneity, (2) variable slide preparationand digitization, and (3) com-
putational limitations of large whole-slide DP images that are frequently 100 pixels in
size.

Breast cancer is known to contain intratumoral heterogenely on both the ge-

nomic [24{26] and morphologic [27, 28] levels, which are higdighted speci cally by



Figure 1.1: FOVs taken from a single histopathology slide ilustrate the high level
of intratumoral heterogeneity in ER+ BCa. The green annotation represents invasive
cancer as determined by an expert pathologist. Note the dism@anized tissue structure
of some FOVs (top, bottom) represent more aggressive cancetthan others (middle).

Gerlinger et al. as a major hurdle in the development of persoalized therapeutic
strategies [26]. In histopathology imagery, this challeng is exempli ed routinely by the

coexistence of regions containing cancerous and non-camoas tissue, di erent types

of cancer (e.g. ductal carcinomain situ and invasive ductal cancer), and levels of tu-
mor di erentiation (e.g. low and intermediate grades) on a sngle slide (Figure 1.1).
This phenomenon suggests that predictions based on just a¥eisolated elds-of-view
(FOVs) may not accurately re ect the level of disease aggresiveness in an entire DP
slide; instead, a more detailed analysis comprising a multude of FOVs may be needed
to understand the true nature of the tumor.

Apart from biological sources of heterogeneity, additiona variability is introduced
during the slide preparation and digitization processes. lack of standardization in
slide preparation leads issues such as (1) variable staininbased on stain manufacturer,
batch, and xation time and (2) tissue thickness based on blak preparation and tissue
folding. Additional variations in the whole-slide digitiz ation process can be caused
by di erences in scanning device manufacturers, illuminaton, compression, and post-

processing algorithms.



1.6 QH-based companion diagnostic framework for whole-sli de DP

analysis

The goal of this thesis is to develop an QH-based companion dgnostic framework for
the prediction of disease outcome in early stage, ER+ BCa paents using only QH

features extracted from whole-slide DP images.

1.6.1 Color standardization

The development of tools for the processing of color images bften complicated by non-
standardness { the notion that di erent image regions corresponding to the same tissue
will occupy di erent ranges in the color spectrum (Figure 1.2). In DP, these issues
are often caused by variations in slide thickness, stainingscanning parameters, and
illumination. Nonstandardness can be addressed via standdization, a pre-processing
step that aims to improve color constancy by realigning colo distributions of images
to match that of a pre-de ned template image. Unlike color normalization methods,
which aim to scale (usually linearly or assuming that the transfer function of the sys-
tem is known) the intensity of individual images, standardization is employed to align
distributions in broad tissue classes (e.g. epithelium, soma) across di erent DP im-
ages irrespective of institution, protocol, or scanner. Itensity standardization has
previously been used for addressing the issue of intensityrift in MRI images, where
similar tissue regions have di erent image intensities acoss scanners and patients. By
contrast, histopathological imagery is complicated by the (a) additional information
present in color images and (b) heterogeneity of tissue conmgsition. In this work, we
present a novel Expectation Maximization-based segmentabn-driven color standard-
ization (EMS) scheme to decompose histological images intmdependent tissue classes
(e.g. nuclei, epithelium, stroma, lumen) via the EM algorithm and align the color dis-
tributions for each class independently. In addition to the exibility o ered by this
approach, EMS is more suited for the analysis of retrospecte data because it does not

require prior information about the staining and digitizat ion processes.
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Figure 1.2: H & E stained histopathology images of (a)-(c) oppharyngeal and (e)-(g)

prostate cancers demonstrate color nonstandardness acmsissue specimens resulting
from variations in slide preparation (e.g. tissue thicknes and staining). These varia-

tions are re ected by (d), (h) corresponding histograms of the green color channel, in
which each image occupies di erent ranges of the color speaim.

1.6.2 Detection of relevant tissue structures

The identi cation of various tissue structures provides the basic building blocks for
guantifying tissue architecture and tumor morphology. While the majority of detec-
tion and segmentation tasks have focused on low-level objec (e.g. nuclei, stroma,
lumen), the detection of more complex tissue structures mayplay an important role
in extracting prognostic QH features. An important criteri on for identifying complex
objects with multiple attributes is the use of domain knowledge which re ects the pre-
cise spatial linking of the constituent attributes. Hence, simply detecting the presence
of the low-level attributes that constitute the object, even in cases where these at-
tributes might have spatial proximity to each other, may not be a robust strategy. The
O'Callaghan neighborhood [29] is an ideal vehicle for chagerizing objects comprised
of multiple attributes spatially connected to each other in a precise fashion because it
allows for modeling and imposing spatial distance and direttonal constraints on the

object attributes. In this work we apply the O'Callaghan neighborhood to the problem



of tubule identi cation on H & E stained BCa histopathology, where a tubule is char-
acterized by a central lumen surrounded by cytoplasm and a ng of nuclei around the
cytoplasm. The detection of tubules is important in ER+ BCa b ecause tubule forma-
tion is an important component of the mBR grading system, which is strongly linked
to disease aggressiveness and patient outcome. The more stiard pattern recogni-
tion approaches to detection of complex objects typically nvolve training classi ers for
low-level attributes individually. For tubule detection, the spatial proximity of lumen,
cytoplasm, and nuclei might suggest the presence of a tubuleHowever such an ap-
proach could also su er from false positive errors due to thepresence of fat, stroma,
and other lumen-like areas that could be mistaken for tubules. Instead, we identify
tubules by taking advantage of the distance and spatial consaints imposed by the
construction of O'Callaghan neighborhoods comprised of ndei around each luminal

area.

1.6.3 Extraction of prognostically relevant QH features

We explore multiple classes of QH features that characterig the (1) 2D spatial arrang-
ment of multiple nuclei, (2) textural variations within ind ividual nuclei, and (3) degree
of tubule formation in DP images, all of which re ect various aspects of the mBR grading
system. The spatial arrangement of nuclei (i.e. nuclear adgitecture) is used to model
the overall level of tissue disorder in an image. In this work we quantify this concept
by using individual nuclei as vertices for the construction of various graphs (Voronoi
graph, Delaunay triangulation, and minimum spanning tree) and, subsequently, extract
relevant statistics related to the size, shape, and length bthese graphs [30]. Another
way to quantify tissue disorder is by quantifying tubule formation, a key component
of the mBR grading system [18]. Hence, in this work we utilizeour ability to identify

tubules and de ne QH features that quantify the degree of tubule formation in BCa DP

images (Figure 1.3). Textural patterns within nuclei (i.e. nuclear texture) are used to
model the intra-nuclear variations in chromatin arrangement, which is generally more
heterogeneous in rapidly dividing, higher grade nuclei [3L In this work, we employ

second-order Haralick statistics are calculated from graylevel co-occurrence matrices
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Figure 1.3: Breast cancer histopathology images correspaing to (a) low and (b)
high tubule subscore, a key component of mBR grading. Tissuavith a low tubule
subscore has a higher proportion of nuclei arranged in tubwds and corresponds to
better outcomes.

within segmented nuclear regions [32].

Conceptually, a large number of descriptive features is higly desirable in terms
of distinguishing patients based on mBR grade. In reality, lowever, large feature sets
present problems in data classi cation such as (1) the cursef dimensionality [33], which
calls for an exponential growth in the data cohort for each adlitional feature used, (2)
the inability to identify specic features containing clas s discriminatory information,
and (3) the presence of redundant features that do not provié any additional informa-
tion to the classi er. In this work, we mitigate these challenges by employing the Min-
imum Redundancy Maximum Relevance (MRMR) feature selectio scheme [34]. Given
a a set of samples with corresponding features and class ldsethe mRMR algorithm
identi es the most relevant features by simultaneously maxmizing mutual information
between the features and class labels (i.e. maximizing relance) and (2) minimizing

mutual information between individual features (i.e. minimizing redundancy).

1.6.4 Whole-slide classi cation via the multi-FOV framewo rk

QH features extracted in this work are used in conjunction wth a novel multi- eld-

of-view (multi-FOV) classi er { a whole-slide classi er th at extracts features from a
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multitude of FOVs of varying sizes { to distinguish ER+ BCa pa tients based on pre-
dicted disease outcome [2,3,7]. The multi-FOV scheme uses ged image resolution
and extracts image features at FOVs of di erent sizes, a higly desirable attribute for
extracting QH descriptors from heterogeneous images wherigis not clear which FOV
sizes will contain class discriminatory information. First, a slide is split into FOVs of
a xed size and relevant image features are extracted. A prdrained classi er makes
an initial class decision for each FOV and the decisions for laFOVs are aggregated
to make a single class prediction for the speci ¢ FOV size. Tls procedure is repeated
for a variety of FOV sizes and the class predictions at all FOVsizes are aggregated to
arrive at a single decision for the entire slide. Hence therés no need to empirically
determine the optimal FOV size for classi cation; rather this approach extracts QH
descriptors across many FOV sizes in parallel and combinesheir class predictions to

form a meta-classi er.

1.6.5 Selecting an appropriate classi er based on limited t raining data

Although the multi-FOV approach employs a pre-trained classi er, the selection of an
optimal classi er given only a small dataset is not straightforward. Clinical trials in-
creasingly employ medical imaging data in conjunction withsupervised classi ers, where
the latter require large amounts of training data to accurately model the data. [35{37].
Yet, a classier is often selected at the start of the trial based on smaller and more
accessible datasets that are not su ciently generalizable thus yielding inaccurate and
unstable classi cation performance [37,38]. We aim to addess two common concerns
in classi er selection for clinical trials: (1) predicting expected classi er performance
for large datasets based on error rates calculated from smiak datasets and (2) the
selection of an appropriate classi er based on expected pfarmance for large datasets
that will be available in the future [39]. The selection of an optimal classi er for a
speci ¢ dataset usually requires large amounts of annotatd training data [40] since the
error rate of a supervised classi er tends to decrease as tilmng set size increases [41].
However, in clinical trials, this decision is often based onthe assumption (which may

not necessarily hold true [5]) that the relative performance of classi ers on a smaller
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dataset will remain the same as more data becomes available.

In this work, we aim to overcome the major constraints on clasier selection in
clinical trials that employ medical imaging data, namely (1) the selection of an optimal
classi er using only a small subset of the full cohort and (2) the prediction of long-
term performance in a clinical trial as data becomes availale sequentially over time.
We present a framework for comparative evaluation of classers using only limited
amounts training data by using random repeated sampling (RRS) in conjunction with
a cross-validation sampling strategy. First, the dataset 5 split into K distinct pools
where one pool is used for testing while the remainingK 1 are used for training.
A subsampling procedure is used to create multiple subsetsfovarious sizes from the
training pool. Each subset is used to train a classi er, whid is then evaluated against
the testing pool. The pools are rotatedK times to ensure that all samples are evaluated
once, after which all error rates are averaged for each traimg set size. The resulting
mean error rates are used to determine the three parametersfdahe power-law model
(rate of learning, decay rate, and Bayes error) that characerize the behavior of error

rate as a function of training set size.

1.7 Primary Goals of this thesis

In summary, the work described in this thesis comprises 4 gda that encompass the

range of tasks needed to develop a QH-based companion diagiic framework.

1. Standardization of DP images due to variations in slide peparation and scanning

hardware.

2. Detection of higher-order tissue structures in DP imageswith a speci ¢ focus on

identifying tubule formation in BCa histopathology.

3. Development of theoretical and biological intuition for a multi-FOV framework

that integrates sampling, feature extraction, and classi cation of whole-slide DP.

4. Prediction of large-scale classi er performance and opinal classier selection

based on the availability of limited training data.
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1.8 Organization of this thesis

The organization of this thesis is as follows. Chapter 2 revdws the existing literature
and details the novel contributions for each goal. Chapters3-7 describe the methods
developed and experiments used to achieve each of the primamgoals of this thesis:
(a) standardization of DP images, (b) detection and of variaus tissue structures and
subsequent feature extraction, (c) development of the multFOV framework for whole-
slide DP analysis, and (4) prediction of large-scale clasgr performance from smaller
data cohorts. In Chapter 8, we present the experimental degjn followed by results and
discussion in Chapter 9. Chapter 10 summarizes the main achvements of this work
with concluding remarks and suggested directions for futue research are presented in

Chapter 11.
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Chapter 2

Previous work and novel contributions

Although the concept of an entirely image-based decision guport framework for whole-
slide DP is a recent development, there exists a body of relent work for the individual
components of the framework. In this section, we discuss bbtthe previous approaches
to each of the primary goals laid out in Section 1 as well as thenajor novel contributions

of this work.

2.1 Approaches to standardization in medical image analysi S

The development of standardization techniques for biomedial imaging data is driven
by need to maintain intensity or color constancy across muliple images in a cohort. For
instance, computerized analysis of MR images is often comiglated by intensity drift,
where multiple images acquired from the same scanner occupyi erent ranges in the
intensity spectrum [42{44]. Methods to correct intensity drift include a piecewise inten-
sity standardization approach that employed linear interpolation to de ne landmarks
at evenly spaced percentiles of an intensity distribution §2]. The distribution for a new
test image was standardized to a pre-de nedtemplate image by shifting the intensity
distribution of the test image to match that of the template i mage between each corre-
sponding set of landmarks [42]. Madabhushi et al. [43] furtkr extended the piecewise
standardization approach by implicitly incorporating basic spatial information via the
generalized scale model. This method, however, does not éggranslate to DP images
for a number of reasons. First, their approach was limited toa connected component
labeling that (1) has no particular correspondence betweerDP images and (2) cannot
be used for tissue classes (e.g. nuclei) spread across mamgions. In addition, inten-

sity standardization employs global distribution alignment using a single histogram to
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characterize an entire image [42,43]. This type of global sindardization (GS) is un-
able to account for the heterogeneity of DP images, which cdiin broad, independent
tissue classes (e.g. stroma, epithelium, nuclei, lumen) ivarying proportions, leading
to skewed color distributions and errors in the standardizdion process [8].

Previous work in maintaining color constancy in DP images ha& traditionally em-
ployed normalization and calibration techniques. Normalization, the process by which
color distributions of images are adjusted to t a predetermined range, is performed
independently for each image using only image information eailable in the image it-
self [1, 45, 46]. For example, Ballerini et al. [46] normalied images containing non-
melanoma skin lesions by using regions of normal skin found ihin the same image.
Others have taken a more implicit approach to normalization by operating in alternate
color spaces (e.g. HSV, CIE-Lab) that are more invariant to the e ects of color vari-
ations [1,45]. Limitations of normalization include (1) the need for the presence of a
\normal" variant within an image and (2) di culties in accou nting for the non-linear
intensity variations arising from the many sources of colornonstandardness. Color cali-
bration refers to the modi cation of acquisition or visuali zation settings based on prior
knowledge of imaging parameters. For instance, Yagi et al.47] performed calibration
of computer monitors for optimal viewing of DP; yet calibration is unfeasible for the
analysis of retrospective studies on existing data cohorts Note that the larger body
of work aimed at correcting variations in illumination for i mages formed by re ective
light (e.g. digital photography) is inappropriate for DP im ages that are formed instead
by light absorption [48, 49].

2.2 Detection and segmentation of tissue structuresin H & E s tained

DP

Detection and segmentation of tissue structures in DP image are fundamental to the
subsequent extraction of quantitative, reproducible, andclinically relevant image fea-

tures. Due to the importance of characterizing tissue archiecture for the diagnosis and
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treatment of various cancers, the majority of previous workin object detection has fo-
cused on the delineation of low-level structures (e.g. nuel, stroma, lumen) [1,4,50{53].
Prior to the construction of an O'Callaghan neighborhood, we must rst identify (1) all
cancer nuclei and (2) all potential lumen areas within the image. Previous approaches
to automated nuclear detection have also relied on di erenes in staining to distinguish
nuclei from surrounding tissue, including fuzzy c-means alstering [51], adaptive thresh-
olding [50], Expectation-Maximization [4], and region-growing [1] methods. However,
these methods are often highly sensitive to initial values ad parameter selection.

The segmentation of white luminal areas is a key component ofdentifying glands
in DP images. Methods such as Bayesian classi ers [54] and #ay clustering [55] have
previously been used for lumen segmentation, but may not be @propriate since they
often require large amounts of training data or exhibit high sensitivity to initialization.
Other techniques such as region growing [52] have succesibfubeen used to identify
lumen in prostate cancer histopathology; however, they regire image intensity within
the lumen areas to be homogeneous and these methods have dutty handling sce-
narios where tissue may be interspersed within the lumen (Fjure 2.1(a)). Traditional
boundary-based active contour models are often limited by lgh sensitivity to initial
positions [53,56]. However, Xu et al. [56] employed a Hierahical Normalized Cut
(HNCut) initialized Color Gradient based Active Contour (C GAC) model to segment
luminal areas, producing improved performance over traditonal active contour methods
by incorporating a more robust initialization via HNCut [57 ] and a more informative
color gradient model.

In comparison to low-level tissue structures, there has beelimited work towards
the identi cation and characterization of complex, multi- attribute objects, e.g. tubules
and glands, comprised of two or more low-level structures. Hane et al. [55] used a
combination of fuzzy c-means clustering with spatial constaints to identify and segment
glandular structures in prostate cancer histopathology, hut these techniques are often
too sensitive to the presence of outliers. Naik et al. [54] alb segmented prostate glands
by integrating pixel-level, object-level, and domain-spei c relationships via Bayesian

classi ers. Probabilistic methods, however, require larg amounts of training data to
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Figure 2.1: Three potential lumen corresponding to (a) a lage tubule, (b) a small
tubule, and (c) adipose tissue are represented by their reggtive centroids (green circle)
and O'Callaghan neighborhoods (blue squares). By calculatg statistics describing
the arrangement of the O'Callaghan neighborhoods, (a) and lf) can successfully be
classi ed as tubules while (c) will be correctly identi ed as a non-tubule object.

accurately model the prior distribution and perform poorly when new data does not t
the trained model. Previously, Kayser et al. [58] have showrthe e ectiveness of using
O'Callaghan neighborhoods to understand the spatial relatonships between glands in
colon mucosa. By treating individual glands as vertices andmodeling the connections
between glands as edges, a variety of graph-related featwsewere found to separate

tissue classes.

2.3 Extraction of relevant QH features from DP images

In most cancers, the relationship between the visual appeance of tumor morphology
and patient outcome is governed by a grading system that chaacterizes the di erentia-
tion of a tissue specimen in a semi-quantitative manner. Heoe, it is not surprising that
computerized feature extraction approaches have focusednoreproducing the specic
attributes that comprise these grading systems.

Variations in nuclear architecture (i.e. the 2D spatial arrangement of cancer nuclei
in histopathology) are important in clinical practice because they allow pathologists to
distinguish between normal and cancerous tissues as well @b erent levels of tumor
di erentiation. In the mBR grading system for breast cancers, this is exempli ed by
characterization of tubule formation in histopathology [18]. A popular approach to

modeling nuclear architecture is via the construction of gaphs in which individual
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tissue structures (e.g. nuclei) are de ned as vertices andannected by edges. Relevant
statistics related to the size, shape, and length of these giphs are then extracted to
qguantify the image. Such graph-based features have previaly been used to accurately
distinguish variations in lymphocytic in ltration [1], ca ncer type [59], tumor grade [4,
30], and prognosis [4] in digitized BCa histopathology, as wil as hierarchical tissue
structure in glioma [60] and tumor grade in prostate [61]. Inaddition, researchers have
recently demonstrated the ability to identify high grade regions within individual BCa
histopathology slides via sparse analysis of Voronoi graph[62]. More recently, Ali et
al. used small clusters of nuclei as vertices to construct dlecluster graphs for predicting
biochemical recurrence from prostate cancer DP images [63]The applicability of graph-
based features for a wide range of diseases and classi catidasks suggests that they
are able to quantify the general large-scale patterns that e ect varying levels of tissue
organization across di erent disease states.

Textural information from nuclear regions (i.e. nuclear texture) represents the vari-
ation in chromatin arrangement [31], which is generally moe heterogeneous in rapidly-
dividing, higher grade BCa cells. The diagnostic importan@ of nuclear texture in
histopathology has been widely studied [51, 64{66]; yet reent work in di erentiat-
ing BCa grade via analysis of nuclear texture has been limitd. For example, Weyn
et al. performed a limited study that explored the ability of wavelet, Haralick, and
densitometric features to distinguish nuclei from low, intermediate, and high BCa tis-
sues [31]. More recently, Petushi et al. [51]. found that theextent of cell nuclei with
dispersed chromatin is related to BCa tumor grade. Note thatthis di ers from studies
that have relied on the extraction of textural statistics fr om entire FOVs (i.e. global
texture) [30, 45]. Doyle et al. utilized grey-level, Gabor, and Haralick texture fea-
tures extracted from entire FOVs to discriminate low and high grade tumors in both
prostate [45] and BCa [30] histopathology. In addition, Haralick features [32] (i.e.
second-order statistics calculated from a gray-level coaxurrence matrix) have previ-
ously been used in both nuclear and global textural analysidor classi cation of tumor
grade in numerous cancers, including the breast [31,51], pstate [45], and thyroid [66].

Recently, researchers have also explored the use of fractalo describe the variations
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architectural complexity of epithelial tissue with resped to the level of di erentiation

of cells in BCa tumors [67{70]. While these studies are extmmely promising, their
results are still preliminary because evaluation has genadly been limited to isolated
FOVs (e.g. individual cells in [68] and TMAs in [69]), relatively small cohorts [68], and

specialized stains [69].

2.4 Feature selection and dimensionality reduction approa ches

Existing methods developed to reduce the size of large featas sets can be split into
two broad categories: dimensionality reduction (DR) and feature selection. Linear DR
methods such as principal component analysis and multidimasional scaling perform a
linear mapping from the original feature space to a lower dinensional space, i.e. each
dimension in the reduced space is de ned by some linear comtation of the original fea-
tures. Previous research illustrating the intrinsic non-linearity of biomedical data [71]
suggests that non-linear DR methods such as locally linearmbedding, Graph Embed-
ding, or Isomaps) may be more appropriate. However, due to teB non-linear mapping
from the original feature space, it is extremely di cult to i dentify the speci ¢ features
used to create the reduced feature space. For the analysis @H features in BCa DP
imagery, DR techniques such as Graph Embedding have previaly been used for in
applications of cancer detection [30], cancer grading [30Rnd characterization of lym-
phocytic in Itration in BCa [1]. By contrast, feature selec tion methods do not identify
the best combination of features; rather, they are supervied approaches that will rank
individual features based on their ability to distinguish class labels. Techniques such
as Adaboost [72] and Minimum Redundancy Maximum Relevance34] are frequently
used for the reduction of large feature sets. Feature seleicin approaches have also been
utilized to identify of salient features in biomedical data, including the use of Adaboost
for prostate cancer detection in DP [45] and Minimum Redundancy Maximum Rele-
vance for prostate cancer detection in MRI [73], salient geas in microarray data [74],

and insight into drug interactions of various protein groups [75].



19

2.5 Sampling approaches for whole-slide DP images

Another challenge that must be addressed in the analysis of tole-slide DP is the overall
size of the data, where glass slides are routinely digitizedt high spatial resolution (up to
0.25 um/pixel) and produce very large images containing 18 pixels. Previous work in
computerized DP analysis has traditionally avoided these ssues via empirical selection
of individual FOVs at a xed size [1,4, 11, 30,51, 76]. While his approach is useful
for speci ¢ research applications, user intervention in a &inical setting may lead to (1)
poor reproducibility due to the bias introduced by varying |evels of expertise and (2)
increased cost in terms of both time to diagnosis and money. bte that manual FOV
selection is also intrinsic to tissue microarray (TMA) analysis, in which small tissue
\spots" are sampled from larger regions of interest by an exprt pathologist [77].
Some researchers have employed random sampling in an e oribtaddress the bias
associated with manual FOV selection [31,68, 78]. Howeveklassi cation results based
on randomized FOV selection may still su er from poor reproducibility, especially in
heterogeneous cancers [24,26] such as BCa where individi&Vs may not be represen-
tative of the overall tumor. More recently, Huang et al. have approached FOV selection
from a holistic perspective through the use of dynamic samphg, which incorporates
domain information into the identi cation of salient regio ns of interest [62].
Alternatively, hierarchical multi-scale (i.e. multi-res olution) classi ers have also
been used for the evaluation of large images [45, 79, 80]. Tée approaches initially op-
erate at a low spatial resolution before proceeding to incrmentally higher resolutions.
The hierarchical approach increases computational e ciercy by ensuring that only rel-
evant data is exposed to the classi er at higher resolutionsvia predictions made at the
previous level (i.e. at a lower resolution). While hierarchical analysis has previously
been applied to neuroblastoma [79] and prostate cancer [43jistopathology, limita-
tions include a serialized processing pipeline in which evaation of higher resolutions
is dependent on results rst calculated from lower resolutons. In addition, multi-scale
frameworks may have more di culty in analyzing domain-speci ¢ image architecture,

e.g. QH features describing the spatial arrangement of nuel, since it remains invariant
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to changes in scale (although our visual perception and ahily to detect objects within

the image will vary).

2.6 Classication and strati cation methods for DP analysi S

Computer decision support systems for histopathology haveutilized a variety of ap-
proaches for classi cation and strati cation of DP images. Commonly used classi ers
include Support Vector Machines [30] and Bayesian approads [45]. Similarly, strati -
cation of QH features has relied on dimensionality reductio techniques and posterior
probabilities produced by speci ¢ classi ers. For instance, Graph Embedding has pre-
viously been used in BCa DP for visualization of QH features satifying lymphocytic
in ltration [1], begin vs. malignant tissue [30], and tumor grade [30]. Evaluation on
most of these systems has been limited to small cohorts, andrpcedures for classi er
selection have been either ad hoc or based on comparison sied involving a small

number of training samples.

2.7 Prediction of error rates for large data cohorts and sele ction of

an appropriate classi er

The ability to predict the performance of a classi er as dataset size increases is crucial
to the development of decision support systems that employ P images. Traditional
power calculations aim to determine con dence in an error esmate using repeated
classi cation experiments [81], but do not readily addressthe question of how error
rate changes as more data becomes available. Also, they mayonbe ideal for ana-
lyzing biomedical data because they assume an underlying Gasian distribution and
independence between variables [82]. Repeated random salimg (RRS) approaches,
which characterize trends in classi cation performance va repeated classi cation us-
ing training sets of varying sizes, have thus become increasyly popular, especially for
extrapolating error rates in genomic datasets [39, 82, 83].Drawbacks of RRS include
(1) no guarantee that all samples will be selected at least ore for testing and (2) a

large number of repetitions required to account for the varability associated random
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sampling. In particular, traditional RRS may su er in the pr esence of highly hetero-
geneous datasets (e.g. biomedical imaging data [84]) due tihe use of xed training
and testing pools. More recently, methods such as repeatediependent design and
test (RIDT) [85] have aimed to improve RRS by simultaneously modeling the e ects of
di erent testing set sizes in addition to di erent training set sizes. This approach, how-
ever, requires allocation of larger testing sets than RRS, ereby reducing the number
of samples available in the training set for extrapolation. It is important to note that
the concept of predicting error rates for large datasets shald not confused with semi-
supervised learning techniques, e.g. active learning (AL)86], that aim to maximize
classi er performance while mitigating the costs of compilng large annotated training
datasets [38]. Since AL methods are designed to optimize dai cation accuracy during
the acquisition of new data, they are not appropriate fora priori prediction of classi er

performance using only a small dataset.

2.8 Novel contributions of this thesis

Apart from the overall innovation of an image-based companon diagnostic framework
for whole-slide, H & E stained DP images, each of the individal goals presented in this

thesis also contains novel contributions to the state-of-he-art.

2.8.1 Maintaining color constancy in tissue structures acr 0ss DP im-

ages

The rst goal of this work is to improve color constancy across a population DP images
so that speci ¢ tissue structures (e.g. nuclei, epithelium stroma) have a consistent ap-
pearance across all images. While normalization and calilation approaches are unsuit-
able for this task, we hypothesize that standardization tedqiniques are more appropriate.
However, the additional challenges posed by color standaidation over the intensity

standardization used for radiological images is not trivid. For instance, multiple DP

images for a single organ/disease type primarily contain tke same tissue structures; yet,

di erences in the proportions of these tissue structures Wi skew their corresponding
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color distributions. We will mitigate this issue by using th e Expectation-Maximization
(EM) algorithm [87] { an unsupervised clustering algorithm that separates image pixels
into a pre-determined number of Gaussian components { to paition and standardize
di erent tissue classes independently. Corresponding tisue classes across di erent im-
ages are automatically matched by minimizing pairwise disances between all classes
in a speci ed color space. Subsequently, we believe that peewise intensity standard-
ization algorithms can be applied independently for each clmr channel by constructing
histograms using pixels from each tissue class of test image and aligning it to the
corresponding tissue class in theemplate image.

Hence, the major contributions of the Expectation-Maximization segmentation-

driven color standardization scheme (EMS) are that it

" Aligns color distributions of broad tissue classes (e.g. ruclei, stroma) that are rst
partitioned via EM; by contrast, previous global methods perform standardization

using a histogram of the entire image.

" Can be used retrospectively since it is independent of scaners, staining protocols,

and institutions.

2.8.2 ldentifying tubules in breast cancer histopathology

The second goal of this work focuses on the detection of high@rder tissue struc-
tures that comprise a combination of smaller, low-level attibutes. The typical pattern
recognition approach for detecting a multi-attribute object O would be to build mul-
tiple classi ers to identify the individual attributes 1 and » independently, and to
then identify locations where 1 and , co-exist within spatial proximity of each other.
Unfortunately this approach does not apply to complex imagey where 1 and , are
more than simply within spatial proximity of each other; the y may in fact be spatially
connected to each other in a speci ¢ fashion. Thus, there is aeed for incorporating
domain knowledge to link ; and 5 so that the presence of objectO can be identi ed.
In this work, we exploit domain knowledge by leveraging the pesence of lumen (1)

surrounded by multiple nuclei ( ») to identify a tubule O. We hypothesize that the
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spatial relationship between these two objects can be charderized by the O'Callaghan
neighborhood [29], a specialized graph de ned by distanceral directional constraints,
ideal for linking 1 and » in a domain contextual manner. Subsequently, image statis-
tics quantifying the spatial arrangement of , with respect to ; can be used to train
a classi er to decide the presence (i.e. true lumen) or absame (i.e. false lumen) of an
object O. We believe that true lumen (Figure 2.1(a), (b)) will be distinguishable from
false lumen (Figure 2.1(c)) based on the proximity, order, aad spacing of the nuclei in

the O'Callaghan neighborhood for each luminal area.

2.8.3 Sampling and consensus classi cation strategy for wh ole-slide

DP analysis

The third goal of this work is to develop an e ective strategy for the sampling, fea-
ture extraction, and classi cation of whole-slide DP images. Due to the limitations of
arbitrary, randomized, and hierarchical FOV selection, we hypothesize that a multi-
eld-of-view (multi-FOV) framework, which automatically integrates image features
from multiple FOVs at various sizes, will lead to accurate chssi cation of whole-slide
DP images [2,3,7]. Clinicians implicitly incorporate multiple FOVs of di erent sizes
during visual analysis; yet, the selection of an optimal FOV (i.e. image patch) size for
computerized analysis of whole-slide DP slides is not strghtforward. For example, in
Figure 2.2(a), while the smallest FOV simply looks like necptic tissue, the medium-
sized FOV would be accurately classi ed as ductal carcinomain situ (DCIS). At the
other end of the spectrum, the largest FOV (i.e. entire imagé containing both DCIS
and invasive cancer would be classi ed ambiguously since iis too heterogeneous. It
is important to note that a multi-FOV framework di ers from t raditional multi-scale
(i.e. multi-resolution) classi ers that operate on a xed F OV at multiple spatial resolu-
tions [45,79,80] (Figure 2.2(b)). We believe the multi-FOV approach confers a number
of advantages in both theory and practice, including the (1) integration of image in-
formation from a multitude of FOVs of dierent sizes and (2) p otential for e cient
parallelized implementation via concurrent analysis of dierent FOV sizes. In addition,

we believe that the multi-FOV framework will be extensible to other types of DP (e.g.
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(a) (b)

Figure 2.2: (a) The multi-FOV framework presented in this paper operates by main-
taining a xed scale while analyzing several FOV sizes. (b) @nversely, a multi-scale
framework would operate by analyzing a xed FOV at di erent s patial resolutions.

immunohistochemically (IHC) stained slides), allowing far the integration of di erent

types of prognostic information from multi-parametric histopathological studies.

Speci cally, the main novel contributions are:

" A multi- eld-of-view (multi-FOV) classi er able to apply  a single operator across
a multitude of elds of view at dierent sizes in order to extr act relevant QH

information,

" The incorporation of a robust feature selection scheme into the multi-FOV frame-

work to independently identify salient image features at eah FOV size,

" An image-based classi er that comprehensively analyzes wole-slide DP images

rather than arbitrarily or randomly selected FOVs, and

~ A multi-parametric extension to the multi-FOV framework t hat incorporates
image-based features from other types of histological studs (e.g. IHC staining)

to achieve an improved prediction of disease outcome.

The fourth goal of this work is to overcome the major constrants on classier
selection in decision support systems that employ medicalnhaging data. We address

crucial questions that arise early in the development in a chssi cation system, namely:
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" Given a small pilot dataset, can we predict the error rates associated with a

classi er assuming that a larger data cohort will become avilable in the future?

~ Will the relative performance between multiple classi er s hold true as data cohorts

grow larger?

Due to the heterogeneous nature of medical imaging data [226], we believe that the
traditional RRS-based approach originally used to model gae microarray data [82] will
be inadequate for modeling classi er performance. This isxempli ed in Figure 2.3 by
the variability exhibited by the calculated (black boxes) and extrapolated (blue curves)
error rates resulting from the use of di erent training and t esting pools from the same
dataset. However, we hypothesize that the RRS framework cate extended for robust

application to medical imaging data. The speci ¢ novel contributions of this work are:

~ More stable learning curves by the incorporation of cross~alidation into the RRS
scheme, which ensures that all samples are used at least onfier both classi er

training and testing,

" A direct comparison of performance across multiple classiers as dataset size

increases, and

" Enabling a power analysis of classi ers operating on the pixel level (as opposed to
patient/sample level), which cannot be currently done via ¢andard sample power

calculators.
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Figure 2.3: Application of traditional repeated random sampling (RRS) to heteroge-
neous medical data yields highly variable calculated (blak boxes) and extrapolated
(blue curves) mean error rates. Each set of error rates is dered from an independent
RRS trial that employs di erent training and testing pools f or the classi cation of can-
cerous and non-cancerous prostate cancer histopathologyiava naive Bayes classi er.
The yellow star represents the leave-one-out cross-validion error (i.e. the expected
lower bound on error) produced by a larger validation cohort
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Chapter 3

EM-based segmentation-driven color standardization of
DP images

3.1 Specic notation for this chapter

For all methods, an image scene, = (C;f) is a 2D set of pixelsc 2 C and f is the
associated function that assigns RGB values. In addition, he function g is used to
assign intensity values (from the HSI color space) for evalation purposes. A subscene
D, C ,is de ned as a portion of the image scené, as identi ed by the Expectation-
Maximization (EM) algorithm, which is used to partition G, into components. Addi-

tional notation and symbols are de ned in Appendix A.

3.2 EM-based Partitioning of Broad Tissue Classes

The EM framework is employed to rst partition each image int o broad tissue classes.
First, the pixels in each image sceneC, are modeled as a Gaussian mixture of
components, whereK 2 f1;2;:::; g. We optimize the model parameter set =
f &; k:pk :8Kg, comprising the mean , covariance i, and a priori probability
pk atiteration i. The mixture is initialized to  © via -means clustering of RGB values
over all c2 C. The Expectation step calculates the posterior probability

PN k)
= pPkN k).
p (K jf () i PRN(F(O)] | ]

where N (f(¢)] k; k) represents the value of Gaussian componenK at RGB value

f(c). The Maximization step usesp' to calculate *1 = f I*1; 1*1:pi*l g [87].

P
: K jf)f
i+1 = _Pw
K c2c P(KJF)
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=

Figure 3.1: EM-based standardization (EMS) rst decomposes the test and template
images into a pre-determined number of components via the Bxectation Maximiza-

tion algorithm. The distribution for each component in the t est image is aligned inde-
pendently to the corresponding component in the template inage. The standardized
components are subsequently recombined to create a standdized test image.

- eeKIDE O ()T
‘ c2c PIK)

- 1 X .
pit = P(Kijf)
J Jc2C

The EM algorithm converges whenk(L™*1 L ")=L'k < , whereL' is the log likelihood of
the Gaussian mixture model with parameters ' and =10 ° determined empirically.
The appropriate class K = argmaxy p(Kjf(c)) is found for each pixel c 2 C by
identifying the maximum posterior probability over all K 2 f1;2;:::; g. Hence, we
are able to de ne a subset of pixeldDk  C corresponding to tissue clasK from image

sceneG,.
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3.3 Determining Correspondence of Tissue Classes from Di e rent Im-

ages

Since the EM algorithm performs tissue partitioning in an unsupervised manner, corre-
spondence between tissue classes is not guaranteed acrossrént images. For instance,
the background (i.e. white) regions may coincide with the rst EM component in one
image and the nal component in a second image. In this work, he identi cation of a
corresponding tissue class between two images is performeditomatically. Let mean
RGB values k.a and g be dened for tissue classK in image scenesG and G,
respectively. The rst pair of matching tissue classes is i@&nti ed by minimizing the

pairwise Euclidean distances between mean RGB values suclhat

argmin K ja jibK:
ij2f ;25 g

The matching tissue classes are set aside and this processsisbsequently repeated

times until all tissue classes have been matched.

3.4 EM-based Segmentation-Driven Color Standardization ( EMS) for
Digital Pathology Images

We rst describe the generalized scheme for color standardation using landmark-based
piecewise linear interpolation [42] followed by an explanton of the EMS approach,
which aligns color distributions of the broad tissue classeg identi ed by the EM algo-

rithm in Section 3.2.

3.4.1 Generalized Color Standardization

Let Do CzandDy C ycorrespond to sub-scenes in test imag€, and template image

respectively. Pixel values from the test image in the rangerfnin ; r10] are interpolated to
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Algorithm 1 GeneralizedStandardization()
Input: Template image Dy. Test image D4 to be standardized.
Output:  Standardized imageDs.

: for RGB channelsi 2 f R;G;Bgin D, and Dy do
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Interpolate pixel values from range [ min ; r10] t0o range [Smin ; S10]. Repeat for all
sets of adjacent landmarks.

end for

. Recombine standardized RGB channels to construct standarized imageD.

o g

match the corresponding landmarks §min; S10] in the template image. After repeating
this process for all sets of adjacent landmarks in all color ltannels, the standardized

pixels are recombined to construct a standardized test scenD.

3.4.2 Class-Specic Color Standardization of Broad Tissue Classes

Algorithm 2 shows how EMS extends the generalized standardation approach by incor-
porating prior domain knowledge of tissue composition in DP First, the EM algorithm is
applied to partition each image into tissue classes (Section 3.2) and corresponding tis-
sue classes between test and template images are automatilyamatched (Section 3.3).
For each tissue class, pixels from the test and template imags are standardized us-
ing the piecewise linear interpolation method presented inAlgorithm 1. Subsequently,
standardized pixels from all tissue classes are recombindd create a standardized test

image.

3.5 Experimental Design

3.5.1 Data Cohort

The EM-based color standardization scheme is evaluated oniditized H & E stained
histopathology images from independent prostate (N=19) amd oropharyngeal (N=26)
cohorts, in which each image was taken from a di erent patiert (Table 3.1). All images
were digitized via a whole slide scanner at a spatial resolitn of 1 um/pixel and cropped

to be 500 500 pixels in size. Both cohorts were empirically determind to have =4
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Algorithm 2 EMbasedStandardization()

Input: Template image G,. Test image G, to be standardized. Number of EM
components .

Output:  Standardized imageC.

1. Apply EM algorithm to partition pixels from both G, and G, into  tissue classes.

2: Pair matching tissue classes betweeft, and G,.

3: for K 2f1,2;:::; gdo

4. De ne sub-scenesDX C , and DX C corresponding to EM componentK .

5. Perform GeneralizedStandardization() usingDX and DE as test and template
images, respectively (Alg. 1).

6: end for

7: Create standardized imageQ) = fCX : 8K 2 f1;2;:::; gg by recombining stan-

dardized sub-scenes from all components of the test image.

Cohort # images Staining Resolution Size

Prostate 19

H&E 1pm/pixel 500 500 pixels
Oropharyngeal 26

Table 3.1: A description of the prostate and oropharyngeal @ta cohorts used in this
chapter.

broad tissue classes corresponding to nuclei, epitheliungtroma, and background (i.e.
white space). In addition, one image from each cohort is deghated as a template
image to which all other (test) images are aligned (Figure ). It is important to note

that a single \ideal" template image does not exist for all applications; instead, the
template is selected based on its performance in terms of thdesired task (e.g. nuclear

segmentation).

3.5.2 Comparative Strategy: Global Standardization

In addition to the comparison against unstandardized imags, the ability of EMS to
align color distributions is evaluated against global stardardization (GS). GS is a
straightforward approach to color standardization that does not account for the hetero-
geneous tissue structure in DP images. Instead of partitiolng each image into multiple
tissue classes, a single histogram is constructed from allixels in a test image and

aligned to the entire histogram from the template image. Spei cally, the GS approach
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can be considered a modi ed application of GeneralizedStagiardization() from Algo-
rithm 1 using entire image scenesG, and G, used as the test and template images,

respectively.

3.5.3 Performance Evaluation Measures
Qualitative Segmentation Consistency Across Images

A qualitative evaluation of color standardization in DP ima ges is performed by observ-
ing the consistency of tissue segmentation across severahages in a cohort [43]. For
image G,, we segment pixels corresponding to nucleD = fc:c 2 C;g(c) 2 [0; ]g,
where is a threshold in the intensity channel g from the hue-saturation-intensity
(HSI) color space. Given intensities that occupy the rangeg(c) 2 [0; 255], thresholds of
= 115 for the prostate cohort and = 145 for the oropharyngeal cohort were selected
empirically for their ability to provide a basic nuclear segmentation in their respective
template images (Figure 3.2). Visually, images from a standrdized cohort should yield
a more consistent segmentation of nuclei (in comparison tohe template image) than

the original set of unstandardized images.

Quantitative Evaluation via Normalized Median Intensity

The segmentation results from Section 3.5.3 can also be evalted quantitatively via
normalized median intensity (NMI), which is employed to characterize color constancy
from a segmented region across all images in a dataset. Usirlge segmented nuclear
region D 2 C for an image G;, NMI is de ned as

g(D)

median m :

where g(D) is the set of intensities for all pixels isolated by the thresholding process.
Intensity values across all images in a cohort are considetieto be more consistent as
(1) the standard deviation and (2) the coe cient of variatio n (i.e. standard deviation

divided by mean) of NMI decreases.
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Figure 3.2: The template images selected for (a) prostate ah (b) oropharyngeal co-
horts are shown along with segmented nuclei (green outline) (c), (d) Corresponding
green color channel distributions are shown along with a dded green line denoting the
location of the empirically-selected threshold used to sagent the nuclei.

Quantitative Evaluation via Histogram Landmark Distance

Another measure of improved standardization is the distane between corresponding

(Figure 3.3), whereby histograms are considered to have impved alignment as the
mean landmark distance decreases. Using the notation de rek in Algorithm 1, the

mean histogram landmark distance between a test imagel, and template image G,
can be dened as (a;b) = %P i2f 10.::00g KIj  Sjk, wherer; and s; are corresponding

distance = f (a;b):8a;b2fl;:::;Hg;a6 bgis calculated between all histograms

and mean distance is reported for the cohort.
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Figure 3.3: Histograms representing a single EM componentra shown for template
(black) and test (red) images both (a) before standardizaton and (b) after EMS has

as landmarks for histogram alignment during the standardization process.

3.6 Results and Discussion

3.6.1 Qualitative Evaluation of Consistency in Nuclear Seg mentation

Qualitative evaluation is performed by visualizing the e ect of standardization on seg-
mentation of nuclei in the test images (Figure 3.4). The incamsistent segmentation
results between the template images (Figures 3.2(a), (b)) ad unstandardized test im-
ages (Figures 3.4(a), (d)) clearly demonstrates the inhenat color nonstandardness that
a ects DP images. A more consistent segmentation of nuclearegions is visible after GS
(Figures 3.4(b), (e)) and is further improved by the application of EMS (Figures 3.4(c)-
(). The improvement seen by employing EMS suggests that gearation of tissue classes
may be vital to the development of algorithms for the segmenétion of primitives (e.g.

nuclei).

3.6.2 Quantitative Evaluation of Segmentation Consistenc y via NMI

The qualitative results presented in Figure 3.4 are also evaated quantitatively by cal-
culating the normalized median intensity (NMI) of the segmented regions [42]. In terms
of NMI, EMS produces improved color constancy compared to tle original images, with
considerably lower NMI standard deviation (SD) of 0.0054 vs 0.0338 and NMI coef-
cient of variation (CV) of 0.0062 vs. 0.0393 in the prostate cohort (Table 3.2). In
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(d) (e) )

Figure 3.4: H & E stained test images for (a)-(c) prostate and(d)-(f) oropharyngeal
cancers are shown. Segmented nuclei (green outline) are stio for images that are (a),
(d) unstandardized (b), (e) globally standardized (GS), and (c), (f) standardized via
EMS.

addition, EMS yields more consistent results than GS, demostrating an order of mag-
nitude improvement in SD and CV of 0.0305 and 0.0354, respeisely. All corresponding

results for the oropharyngeal cohort show similar improvenent after standardization.

3.6.3 Quantitative Evaluation of Histogram Landmark Align ment

The performance of EMS is further supported by histograms ofthe green color channel
(from the RGB color space) for both prostate and oropharyngal cohorts (Figure 3.5
and 3.6). Examining the prostate cohort, it is visually clear that unstandardized images
have highly misaligned color distributions for both the global histogram (Figure 3.5(a))
and for the EM component corresponding to nuclei (Figures &(d)). While both GS

and EMS yield improved alignment over unstandardized imags, a closer examination
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Prostate Oropharyngeal
SD CVv SD CcVv

Original  0.0338 0.0393 0.0261 0.0302
GS 0.0305 0.0354 0.0166 0.0193
EMS 0.0054 0.0062 0.0034 0.0039

Table 3.2: Standard deviation (SD) and coe cient of variati on (CV) of normalized
median intensity (NMI) is calculated across all images in the prostate and oropharyngeal
cohorts.

of the GS distributions suggests that higher pixel values (&noted by the black dashed
rectangle in Figure 3.5(b)) frequently su er from poor alignment. This is because GS
is unable to account for the large variations in the amount ofwhite space (e.g. luminal
areas, adipose tissue, slide background) across histopailogy images. By contrast,
EMS does not su er from this issue (Figures 3.5(c)) since it @rtitions the white regions

in each image and aligns their distributions independently The histograms in Figure 3.6
suggest that similar results and trends hold true for the orgpharyngeal cohort.

The improved alignment of EMS distributions over both unstandardized and GS dis-
tributions is con rmed quantitatively by calculating the h istogram landmark distance
for individual EM components (Figures 3.5(d)-(f)). Using the EM component corre-
sponding to nuclei in the prostate histopathology images, BMS yields a signi cantly
lower mean landmark distance of 2.25, compared to 54.8 and 2I7 for unstandardized
and GS distributions, respectively (Figures 3.5(d)-(f)). The signi cance of this com-
parison is veri ed by application of the non-parametric Wil coxon rank-sum test [88] in
conjunction with a null hypothesis that pairwise histogram landmark distances between
unstandarized images are not di erent from the distances ciulated from standardized
images (Table 3.3). Similarly, oropharyngeal images (Figues 3.6(d)-(f)) demonstrate
signi cantly lower distances for EMS (4.2) compared to unstandardized (27.3) and GS
(8.8) distributions, suggesting that EMS is able to more acarately account for the
di erent proportions of tissue types (e.g. nuclei, epithelium, stroma, lumen) present in

histopathology imagery.
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Cohort Unstandardized vs. GS Unstandardized vs. EMS GS vs. EIS
Prostate < 0:0001 < 0:0001 < 0:0001
Oropharyngeal 00645 < 0:0001 < 0:0001

Table 3.3: P-values from application of the Wilcoxon rank-sim test to pairwise his-
togram landmark distances between all images in the prosta and orophryngeal co-
horts. All reported p-values have undergone Bonferroni carection for multiple com-

parisons [89].

Mean landmark

Mean landmark Mean landmark
distance: 2.25

distance: 54.8 distance: 27.1

)

Figure 3.5: Distributions of the green color channels are stwn for all images in the
prostate cohort. Results are shown for (a), (d) unstandardied, (b), (e) GS, and (c), (f)
EMS images. Alignment is shown for histograms representinga)-(c) entire images and
(d)-(f) an individual EM component (i.e. tissue class) along with the mean pairwise
landmark distance over all images. In each gure, the histogam of the template image
is represented by a thick black line and misalignment assoated with GS is highlighted

by a black box with dashed line.
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Figure 3.6: Distributions of the green color channels are sbwn for all images in the

oropharyngeal cohort. Results are shown for (a), (d) unstadardized, (b), () GS, and

(c), (f) EMS images. Alignment is shown for histograms reprasenting (a)-(c) entire
tissue dass) along with the

images and (d)-(f) an individual EM component (i.e.
mean pairwise landmark distance over all images. In each gte, the histogram of
the template image is represented by a thick black line and nsalignment associated

with GS is highlighted by a black box with dashed line.
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Chapter 4

Detection and segmentation of clinically relevant tissue
structures in breast cancer DP

4.1 Specic notation for this chapter

Given an image scené€ = ( C; g) comprised of a 2D pixel gridC and vectorial function g

assigning the RGB color space, let pixel®” 2 C ando 2 C correspond to the centroids

respectively, in C. In addition, we de ne parameters for the distance T, and directional
T constraints of the O'Callaghan neighborhood. Other commoty used notation can

be found in Appendix A.

4.2 Isolating the hematoxylin stain using color deconvolut ion

Color deconvolution [90] is used to convert an image from théRGB color spaceg to a
new color spaceg de ned by hematoxylin H, eosinE, and backgroundK (i.e. white)
channels (Figures 4.1(b), (c)). The relationship between olor spacesy and g is de ned

asg = Ag, where the transformation matrix is given by

2 3
Hr He Hs
A = E éR éG éB ; 4.1)
Kr Ke Kg

whereHr, Hg, and B denote the pre-de ned, normalized red, green, and blue vales,

respectively, for theH channel. The second and third rows oA are de ned analogously
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for the E and K channels, respectively. In this work, the pre-de ned values in A are
selected based on published values by Ruifrok and Johnstorf()]. The intensity of
a pixel ¢ in the new color space is de ned asg(c) = A 1(c)g(c), where g(c) and
g(c) are 3 1 column vectors. The extent of hematoxylin staining in image sceneC
(i.e. the hematoxylin channel) is subsequently de ned asH(C) = fH(c) : 8¢c 2 Cg
(Figure 4.1(d)).

4.3 Detection of nuclei in H & E stained DP using color deconvo lution

Centroids of individual nuclei are identi ed by applying mo rphological opening to the
hematoxylin channel identi ed in Section 4.2 and thresholding the result (Figures 4.1(e)-
(9)). Note that this method does not detect each and every nuteus in an image.
Previous work Ali et al. [63] as well additional work presened in Appendix C suggest
that perfect identi cation of each and every nucleus may notbe crucial for distinguishing
patients with good and poor outcome. Hence, we present a higthroughput method
that identi es a su cient number of nuclei to re ect the clin ically relevant variations

in nuclear architecture.

4.4 Segmentation of nuclei in H & E stained DP using the color g ra-

dient based geodesic active contour

To segment nuclear regions, the hematoxylin channel idented in Section 4.2 is used
to initialize a color gradient based geodesic active contou(CGAC) model developed
by Xu et al. [91]. The CGAC approach represents an improvemenover the traditional

GAC model by employing a color gradient (g(c)) = m for edge detection rather
than the more common grayscale gradient [92]. The nal boundries of the CGAC
segmentation are used to de ne a mask denoting nuclear regis (Figure 4.1(j)). Note
that we aim to segment only nuclei belonging to epithelial cds while avoiding the

darker nuclei representing lymphocytes and broblasts.
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4.5 Segmentation of potential luminal areas in H & E stained D P
using hierarchical normalized cuts initialized color grad ient based

geodesic active contour

Similar to the segmentation of nuclear regions performed inSection 4.4, the CGAC
model [95] is used to segmented potential luminal (i.e. whie colored) areas. However, in
this case, a robust initialization of the CGAC model is provided by using the hierarchical
normalized cuts (HNCut) algorithm to detect white areas wit hin the image. The HNCut
scheme [57] pyramidally traverses and reduces the color spa of an image using a
combination of the mean shift clustering [96] and normalizel cuts [97] algorithms. This
approach e ciently and accurately segments all potential lumen objects in the image,
requiring minimal user interaction in the form of a color swatch (i.e. a few pixels)
selected from the object of interest (i.e. white luminal aren). HNCut is particularly
well suited to identifying potential luminal areas since white areas in DP images do not
su er from variability; hence, a color swatch taken from one image can likely be used

for all other images as well (Figures 4.5(a)-(d)).

4.6 Tubule detection in breast cancer using O'Callaghan nei ghbor-

hoods

4.6.1 Construction of the O'Callaghan neighborhood

The O'Callaghan neighborhood is de ned as the subset of ephtelial nuclei most closely
surrounding a potential lumen area. Formally, given a set ofpotential lumen L and
epithelial nuclei N, a neighborhood of nucleiN- N is de ned around each potential
lumen centroid 0 2 L. The construction of the O'Callaghan neighborhood foro can

be summarized by the following steps.
Step 1 Find the nucleus o] 2 N nearest too and include itin N .
Step 2 De ne the distance constraint T, (Section 4.6.2) usingo}.

Step 3 Update direction constraint T (Section 4.6.2) based on all nuclei irN .
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Step 4 Find the next nearest nucleus too and additto N if it satis es the constraints

outlined in Steps 2 and 3.
Step 5 Repeat Steps 3 and 4 until allo” 2 N have been considered.

Step 6 Extract features describing the spatial arrangement of nicleiin N~ with respect

to o (Table 4.1).

4.6.2 Spatial constraints

Epithelial nuclei are added to an O'Callaghan neighborhoodon the basis of two spatial
constraints. First, a distance constraint ensures that ony nuclei within close proxim-
ity to the potential lumen area are included. Instead of de ning a xed radius, the
O'Callaghan neighborhood excludes distant nuclei based oa relative distance that is
proportional (by a factor of T;) to the distance between the potential lumeno and the
nearest cancer nucleu®] (Figure 4.3(a)). Formally, given the centroids for a potential
lumen o 2 L and its nearest neighboring nucleuso} 2 N, a nucleuso 2 N will be
included in the neighborhoodN ~ if

ko o'k

ko ok Tr; (4.2)

wherek k represents the L2 norm andj 21 1;2;:::;Ng.

Second, a direction constraint ensures that the O'Callagha neighborhood will be
representative of the arrangement of nuclei in a tubule, i.e only one nucleus in each
direction will be considered. To determine whether a new nuleus should be added to
the neighborhood, we need to ensure that it does not lie \behid" any of the nuclei
already included in the neighborhood. Given potential lumen 0 2 L and a nucleus in
its O'Callaghan neighborhood o 2 N, we say that nucleuso] 2 N is \behind" o if
the angle ¢ between vectors!oi”o‘ and !oi”oﬂ is less than the pre-de ned threshold T

(Figure 4.3(b)). Formally, given centroids for a potential lumen o 2 L and a nucleus

o 2 N within its neighborhood N, the nuclear centroid o' 2 N will be included in
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N if
ko ofk?+ ko' o'k? ko o'k? o7 43
ko o'k kol d'k ’ (*3)
wherei;j;k 2f1;2;:::;Ngandi 6 | 6 k.
4.6.3 Detection and segmentation of nuclear and luminal str uctures

To detect tubule formation in BCa histopathology, we must r st nd the constituent
objects in the form of epithelial nuclei and potential lumen areas. Centroids of allN nu-

clei in Care identi ed via color deconvolution (as described in Sedbn 4.3) and recorded

images are shown (Figures 4.4(a)-(d)) along with their respctive hematoxylin channels

(Figures 4.4(e)-(h)) and resulting nuclear centroids (Figures 4.4(i)-(m)).

Similarly, centroids of all L potential lumen regions are identi ed using HNCut-

(d) show the initialization achieved by the HNCut algorithm for four di erent BCa
histopathology images. Further re nement by the CGAC model yields nal segmenta-

tion boundaries (Figures 4.5(e)-(h)).

4.6.4 O'Callaghan neighborhood-based features for distin guishing po-

tential lumen belonging to tubule and non-tubule structure S

A total of 22 features are extracted to quantify the spatial arrangement of nuclei N
around each potential lumen centroido (Table 4.1). Note that the number in paren-
thesis for the following subsection titles re ects the number of features in the feature

class.

Number of nuclei in O'Callaghan neighborhood (1)

Potential lumen areas that do not belong to tubules often hawe fewer nuclear neighbors
that fall within the O'Callaghan constraints. Thus, the num ber of O'Callaghan nuclear

neighborsjN j is calculated as a feature value for eaclo .
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Feature # Feature Name Description
1 Number of nuclei  Number of nuclei in neighborhood
2-6 Distance to nuclei Distance between each nuclei in neidpor-
hood and the lumen centroid
7-10 Circular t Fit circles to nuclei and measure deviation

of nuclei from edge circle
11-13 Angle  between Angle between two vectors connecting the

adjacent nuclei lumen centroid to two adjacent nuclei in
neighborhood
14-16 Distance between Distance between adjacent nuclei in neigh-
adjacent nuclei borhood
17-22 Elliptical t Fit ellipse to nuclei and measure evenness

in spatial distribution of nuclei

Table 4.1: The 22 features used to quantify the O'Callaghan eighborhood for each
potential lumen.

Distance between nuclei and lumen centroid (5)

To quantify the evenness in the distribution of nuclei about the lumen centroid o , the
Euclidean distanced(o ;0') = ko ok is calculated betweeno and each neighboring

nucleusa! 2 N . The set of distances for allo” 2 N is de ned as

D(0)= nd(o\;oi”):8i2f1;2;:::;Ngos (4.4)

The mean, standard deviation, disorder, maximum, and rangeof D yield ve feature

values for eacho .

Circular t (4)

Since tubule formation is often characterized by the arrangment of nuclei in a circular
pattern around a lumen area, we extract features to quantify the circularity of N .
First, a circle O(o ;r) is constructed with center at lumen centroid o and radius r.
The Euclidean distanceF (0 ;0;0) = kd(o;0") rk is calculated between a nuclear

centroid o and the constructed circle O with radius r. The set of distances for all
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o' 2 N is de ned as

N n . (0}
F(0;0)= F(0;0';0):82f12:::;Ng : (4.5)

In this paper, the mean of F (o ; O) is calculated as a feature value, where circle®(o ;r)
with radius r 2 f max(D); min(D); mean(D); median(D)g are constructed, yielding four

features for eacho .

Angle between adjacent nuclei in neighborhood (3)

Another key property of tubules is that nuclei are arranged & regular intervals around

the white lumen area, which can be quanti ed by examining theangles between adjacent
.

nuclei in the tubule. Thus, for each potential lumen centroid o, let o o' be the vector

I,
from lumen centroid o to neighboring nuclei o". We denote o o' as the vector from

]
o to an adjacent neighboring nucleusoj”. The set of angles between adjacent nuclei
o'; o' 2 N is de ned as

8 N 9

< oo o ojn o =

Az_aI’CCOS@—!\—!\—AZ&;j 211,2;:::;Ng;i 6 . (4.6)

' ko o'k o0 ’

The mean, standard deviation, and disorder ofA are calculated to yield three feature

values for eacho .

Distance between adjacent nuclei in neighborhood (3)

Another way to ensure that nuclei are arranged at regular intervals is by calculating

the distancesB between adjacent neighboring nucleiof'; of' 2 N, such that

n (0]
B = ka oj”k:8i;j2fl;2;:::;Ng;i6j 4.7)

Since the magnitude and variation in these distances shoulte small for nuclei belonging
to tubules, the mean, standard deviation, and disorder ofB are calculated to yield three

feature values for eacho .
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Elliptical t (6)

In the preparation of 2D planar histopathology slides, if a tubule is sectioned at an
obligue angle, the resulting lumen and nuclei appear to forman elliptical pattern (Fig-
ure 4.6). This phenomenon is modeled by constructing an eftise that best ts all
nuclei in N~ using the method described in [98]. Since tubules are inhenly symmet-
rical structures, it is reasonable to expect a similar numbe of nuclei on all sides of the
lumen area. To this end, nuclei in the O'Callaghan neighbortood are separated into
groups on either side of major axisN * N and N N (Figure 4.6). The value
iN *j j N jis calculated as a feature to capture the balance of nuclearistribution
on either side of the major axis. Five additional features ae calculated, including the
lengths of the major and minor axes as well as statistics caldated from the distances

between nuclei and the elliptical t.

4.6.5 Experimental design
Dataset

In this study a total of 1226 potential lumen from 105 images {rom 14 patients) was
considered. All samples were taken from H & E stained BCa hisipathology images
digitized at 20x optical magni cation (0.5 um/pixel). For e ach image, an expert pathol-
ogist provided ground truth annotations delineating locations of all tubules. A total of

22 O'Callaghan features (Section 4.6.4) were calculated tdescribe the spatial arrange-

ment of cancer nuclei inN .

Di erentiating potential lumen belonging to tubules and no n-tubules

At the individual tubule level, we evaluate the ability of th e O'Callaghan features to
classify each potential lumen as either a tubular lumenY (o) = ! 1 or a non-tubular
lumen Y(0o) = ! ,. Over a set of 50 cross-validation trials, the mean ROC curveand
the mean area under the ROC curve (AUC) were calculated. In adition, the mean
and standard deviation of the classi cation accuracy (at the ROC operating point) are

calculated over all trials.
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K-fold cross-validation via the random forest classi er

In this work, randomized 3-fold cross-validation is used inconjunction with a random
forest classi er [99] to evaluate the ability of the 22 O'Callaghan features to distinguish
tubular and non-tubular lumen. The K-fold cross-validation scheme [41], commonly
used to overcome the bias from arbitrary selection of trainhg and testing samples, rst
randomly divides the dataset into K subsets. The samples in K1 subsets are used for
training a classi er, while those from the remaining subsetare tested. This process is
repeated K times while rotating the subsets to ensure that dl samples are evaluated
exactly once. The random forest is a meta-classi er that use bootstrap sampling
to aggregate a large number of independent C4.5 decision tes and achieve a stable
classi cation result [99]. The output of each C4.5 decisiontree is probabilistic, denoting

the likelihood that a potential lumen is a tubule.

4.6.6 Results and discussion

The capability of our system to identify tubules is directly related to the identi cation of
both tissue structures (i.e. epithelial nuclei and potential lumen). As demonstrated in
Figures 4.4(i)-(k) and Figures 4.5(e), (g), and (h), the cobr deconvolution and HNCut-
CGAC algorithms are able to quickly and accurately detect cancer nuclei and potential
lumen areas. However, Figure 4.5(m) suggests that false pitise errors (i.e. potential
lumen incorrectly identi ed as tubules) occur when nuclei are not detected correctly.
Similarly, Figure 4.5()) illustrates the false negative emors (i.e. potential lumen incor-
rectly identi ed as non-tubules) that occur when HNCut-CGA C does not identify a
potential lumen in the image.

The mean ROC curve resulting from 50 trials of cross-validaion (Figure 4.7(a))
along with an associated AUC value of @1 0:0027 suggest that the O'Callaghan
features are able to accurately distinguish tubular lumen fom non-tubular lumen. This
is further con rmed by a classi cation accuracy of 0:86 0:0039 and a positive predictive
value of 089 0:014 at the ROC operating point over all 50 cross-validation tials

(Table 4.2).
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Experiment Accuracy Positive Predictive Value

Tubule Detection 0:86 0:0039 089 0:014

Table 4.2: Mean and standard deviation of classi cation acaracy and positive pre-
dictive values over 50 cross-validation trials. The data cdort contained 1226 potential
lumen areas and 22 features describing the O'Callaghan ndiporhood around each
potential lumen.

(@) (b) (c)

(d) (e) () @)

(h) @) ) (k)

Figure 4.1: (a) A high grade histopathology image with its (b) hematoxylin and (c)
eosin channels separated by color deconvolution. The gredrox in (b) denotes an inset
providing more detailed visualization of the nuclear detetion and segmentation process
in (d)-(k). For nuclear detection, (d) the intensity of the h ematoxlyin channel undergoes
(e) morphological opening and (f) thresholding. (g) The cetroids of the individual
nuclei are later used for graph construction. The nuclear sgmentation process also
uses (d) the intensity of the hematoxylin channel, applying (h) morphological erosion,
() thresholding, and (j) the color gradient based active cantour model (CGAC), to
achieve (k) a nal segmentation result that is used for extraction of nuclear texture.
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[]

Figure 4.2: A owchart detailing the methodological steps for our tubule detection
system. Given (a) an original H & E stained histopathology image, low-level structures
in the form of (b) epithelial nuclei and (c) potential lumen areas are rst detected. (d)
An O'Callaghan neighborhood is constructed around each pantial lumen area and
(e) image features are extracted to quantify the spatial lirkage between the low-level
structures. The features are then presented to (f) a trainedclassi er, which distinguishes
true lumen areas (i.e. tubules) from false lumen areas (i.enon-tubules).

_________
/"
-

(b)

Figure 4.3: The O'Callaghan neighborhood is de ned by both @) distance and (b)
direction constraints. In both schematics, the centroid of the potential lumen area
o (green squares), the centroids of nuclei that are disqualied by the constraints (red
circles), and centroids of remaining nuclei that are still under consideration for inclusion
in the neighborhood (blue circles) are illustrated. The digance constraint excludes
nuclei outside a radiusd T, based on the distanced betweeno and nearest neighboring
nucleusof. Given that nucleus o already included in the neighborhood, the direction
constraint excludes nucleusoy since angle > T , whereT is a pre-de ned threshold.

Note that nucleus o' may still be included since j <T .
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@) 0 (k) V)

Figure 4.4: Automated nuclear detection is performed for (3-(d) histopathology image
patches by rst using color deconvolution to isolate the coresponding (e)-(h) hema-
toxylin stain channel. Morphological opening is applied tothe hematoxylin stain chan-
nel to isolate individual nuclear centroids ((i)-(m)).
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Figure 4.5: Segmentation of potential lumen is performed \a two main steps. First,
(a)-(d) a rough initial segmentation is achieved using the HNCut algorithm. This result
is re ned by the CGAC model and (e)-(h) a nal segmentation is extracted. In (i)-(m),
the centroids of only potential lumen classi ed as tubules @reen circles) are shown along
with the surrounding nuclei (blue squares) that comprise their respective O'Callaghan

neighborhoods.

Figure 4.6: The centroid of a a potential lumeno (green circle) is shown with the
centroids of the nuclei in its O'Callaghan neighborhoodN  (blue squares). The ellipse
(dashed black line) that best ts N is shown along with its major axis (solid black
line). The nuclei on either side of the major axis are separad into the groups N *

and N .
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Figure 4.7: A mean ROC curve generated by averaging individal ROC curves from 50
trials of 3-fold cross-validation produces an AUC value of @1 0:0027 for di erentiating
potential lumen into tubular and non-tubular structures.
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Chapter 5

Extraction of quantitative histomorphometric image
features in breast cancer DP

This chapter describes the extraction of gquantitative image features to characterize
nuclear architecture fya , nuclear texture fyt, and tubule density frp in H & E stained
breast cancer DP images. In addition, we detail the extracton of vascular densityfyp,
i.e. the quanti cation of microvessel formation, in CD34 IHC-stained DP images as a

means of incorporating

5.1 Specic notation for this chapter

For image sceneC, we dene o” 2 C and o 2 C as centroids of nuclei and potential

de ned as the sets of allN nuclei and L potential lumen, respectively, in C. The subset
of nuclei identi ed as belonging to true lumen is de ned asR  N. Other commonly

used notation can be found in Appendix A.

5.2 Quanti cation of nuclear architecture via graph-based features

Utilizing individual nuclei as vertices for the construction of graphs allows for the

guanti cation of tissue architecture. We de ne the complete, undirected graph G =

of epithelial nuclear centroids, E is the set of edges connecting the nuclear centroids
such that f(0;;0) 2 E : 80;0 2 N; i;j 2f1;2,:::;Ng; i 6 jg, and W is a set of
weights proportional to the length of eachE 2 E. To extract information about the

arrangement of nuclei, we construct subgraphs represent the Voronoi graph Gyg,
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Delaunay triangulation Got, and minimum spanning tree Gyst . In addition, statistics

describing the number and density of nuclei are calculated mlectly from N.

5.2.1 Voronoi graph

The Voronoi graph Gy = (N;Evs; W vs) (Figure 5.1(d)) is a spanning subgraph of

N [100]. Each pixelc 2 C is linked with the nearest centroid 0 2 N (via Euclidean
distance) and added to the associated polygo®® 2 P. The mean, standard deviation,
minimum/maximum (min/max) ratio, and disorder (i.e. stand ard deviation divided by
the mean) are calculated for the area, perimeter length, ancchord length over all P,

yielding a set of 13 features {yg ) for each sceneC (Table 5.1).

5.2.2 Delaunay triangulation

The Delaunay graph Gt = (N;Ept ;W pt) (Figure 5.1(e)) is a spanning subgraph of
G and the dual graph of G, [100]. It is constructed such that if Pj;P; 2 P share a
side, wherei;j 2f1;2;:::;Ng, their nuclear centroids 0;;0, 2 N are connected by an
edge 0i;0) 2 Epr. The mean, standard deviation, min/max ratio, and disorder are
calculated for the side length and area of all triangles inGyt, Yielding a set of 8 features

(for) for each sceneC (Table 5.1).

5.2.3 Minimum spanning tree

A spanning tree Gyst = (N;EmsT ;W msT) refers to any spanning subgraph ofG [100].
The total weight W yst for each subgraph is determined by summing all individual
weights W 2 W mst. The minimum spanning tree st (Figure 5.1(e)) is the spanning
tree with the lowest total weight such that @MST =argmin g, 26 hW MSTI . The mean,
standard deviation, min/max ratio, and disorder of the branch lengths in Gyst yield a

set of 4 features {ust) for each sceneC (Table 5.1).
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(a) (b) ()

(d) (e) )

Figure 5.1: (a) Given an H & E stained image, (b) the (b) hemataxylin staining is
isolated via color deconvolution and (c) thresholded to deéct centroids of individual
nuclei. The nuclei are used as vertices for the constructioof (d) Voronoi, (e) Delaunay
triangulation, and (f) minimum spanning tree graphs, from which 50 features describing
nuclear architecture are extracted.

5.2.4 Nuclear Statistics

The global density JNTJ of nuclei is calculated for each scen&, where jCj represents
the number of pixels (cardinality) in C. For any nuclear centroid o, 2 N, we de ne a
corresponding nuclear neighborhood (o)) = fo : kog ok> < ;0; 2 N;0 6 00,
where 2 f10;20;:::;509 and k k» is the L2 norm. The mean, standard deviation,
and disorder of (q;);80; 2 N are calculated. Additionally we estimate the minimum
radius suchthatj (q)j2f 3;5;7g and calculate the mean, standard deviation, and

disorder over all o 2 N. A total of 25 nuclear statistics (fns) are extracted for each

sceneC (Table 5.1).
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Type Name

Total area of polygons
Polygon area: mean, std dev, min/max ratio, disorder

VD (13) ) . . .
Polygon perimeter: mean, std dev, min/max ratio, disorder
Polygon chord length: mean, std dev, min/max ratio, disorder
DT (8) Triangle side length: mean, std dev, min/max ratio, disorder

Triangle area: mean, std dev, min/max ratio, disorder

MST (4) Edge length: mean, std dev, min/max ratio, disorder

Nuclear density

Distance to 3 nearest nuclei: mean, std dev, disorder

Distance to 5 nearest nuclei: mean, std dev, disorder

Distance to 7 nearest nuclei: mean, std dev., disorder
NS (25) # nuclei in 10 um radius: mean, std dev, disorder

# nuclei in 20 um radius: mean, std dev, disorder

# nuclei in 30 um radius: mean, std dev, disorder

# nuclei in 40 um radius: mean, std dev, disorder

# nuclei in 50 um radius: mean, std dev, disorder

Table 5.1: The 50 nuclear architecture features used in thipaper, derived from Voronoi
(VG), Delaunay triangulation (DT), and minimum spanning tr ee (MST) graphs, as well
as nuclear statistics (NS).

5.3 Quanti cation of nuclear texture via Haralick co-occur rence fea-

tures

Using the nuclear mask to restrict analysis to the desired rgion, Haralick co-occurrence
features [32,45] are extracted from each image. First, themage is transformed from
the RGB color space to the HSI color space since the latter is wre similar to the
manner in which humans perceive color [101]. At each relevdrpixel, a co-occurrence
matrix is constructed to quantify the frequency of pixel int ensities in a xed neighbor-
hood. A set of 13 Haralick features [32] are extracted from tkb co-occurrence matrices
(Contrast Energy, Contrast Inverse Moment, Contrast Average, Contrast Variance,
Contrast Entropy, Intensity Average, Intensity Variance, Intensity Entropy, Entropy,
Energy, Correlation, and two Information Measures of Corrdation), from which the

mean, standard deviation, and disorder statistics are calalated for each image (see
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Figure 7.2 for examples of nuclear texture responses). Thitask is repeated for each
of the three channels in the HSI color space, resulting in a t@al of 117 nuclear texture

featuresfyT (C) for each image scene.

5.4 Tubule density in breast cancer DP images

The ability to distinguish low and high tubule density (Figu re 1.3) in H & E stained BCa
histopathology is a key component of the mBR grading system ad, hence, predicting
patient outcome. Using the class predictions (i.e. tubule! ;1 or non-tubule ! ,) for
individual lumen 2 f! ;;! »g calculated in Section 4.6.6, we are able to evaluate the
degree of tubule formation across the entire image. We de ndubule density for each

image as the fraction of nuclei arranged in tubules

fp = —=; (5.1)

whereQ = fN :0 2 N; (0)= ! g represents the set of all nuclei contained within
the O'Callaghan neighborhoods of true lumen,N is the set of all nuclei in the image,

and ] j denotes set cardinality.

5.5 Vascular density in CD34 IHC-stained DP

The CD34 protein is a popular indicator of angiogenesis andhence, tumor growth and
metastasis [102]. Previously, both qualitative [103] and gantitative [104] assessments of
CD34 IHC stained slides have characterized IHC staining vidhotspots", i.e. manually
selected FOVs; yet, the pitfalls associated with manual FOV selection (described in
Section 2.5) suggest that hotspot-based predictions may rtaaccurately represent CD34
expression in an entire slide. In this work, we quantify angogenic activity by isolating
the brown diaminobenzidine (DAB) compound signifying CD34 expression and use it

to calculate the density of vascular formation via the following steps.

Step 1 Color deconvolution [90] is used to split the image into chanels representing

the DAB and hematoxylin stains (Figures 5.2(b), (c), (f), (9)).
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@ (b) (© (d)

€) ) ©) (h)

Figure 5.2: (a), (e) CD34 IHC stained images are separated io (b), (f) hematoxylin
and (c), (g) DAB channels via color deconvolution. The DAB channel is thresholded
to isolate (d), (h) segmented regions expressing the CD34 ptein.

Step 2 The DAB channel is thresholded to produce a set of brown pixks correspond-

ing to angiogenic vessels (Figures 5.2(d), (h)).

Step 3 Vascular density (fyvp) is de ned as fraction of brown pixels within region of

cancer extent from an image.

5.6 Feature selection via Minimum Redundancy Maximum Relev ance

We mitigate the limitations of large feature sets by employing the Minimum Redun-
dancy Maximum Relevance (MRMR) feature selection scheme f3. Given a feature set
f, the mMRMR scheme identi es a subsetf f that maximizes \relevance" and mini-
mizes \redundancy" between individual features. In practice, featuref; is incrementally

included in f based on the criteria
2 3

X
fi =argmax 41 (fj;Y) ———  1(f;;fi)3; (5.2)
fj2f f JfJ 1fi2f
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where | is mutual information, Y is the class label associated with a given sample,
and jfj represents the cardinality of selected feature set. In thisvork, relevant features
are isolated from both nuclear architecturefya  fna and nuclear texture fyt T

feature sets based on their ability to distinguish BCa histgathology slides with low,

intermediate, and high mBR grades.
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Chapter 6

Multi- eld-of-view sampling and classi cation framework

6.1 Specic notation used in this chapter

For all methods, an image scene€C= ( C;q) is de ned as a 2D set of pixelsc 2 C with

associated vectorial functiong assigning the RGB color space and class lab&f (C) 2

is constructed, whered,, C;m2f1;2;:::;M( )gis a square FOV with edge length
of pixels andM ( ) is the total number of FOVs for a given . We de ne f(d,,) as the
function that extracts features from each d,,. Grid construction and feature extraction

are repeated likewise for each 2 T.

6.2 Theory of multi- eld-of-view classi cation

A consensus predictor over multiple FOV sizesis de ned a#d (D;f)= E [H(D ; ; f)],
whereD = fD : 2 Tgis the collective data over all FOV sizes,H(D ; ;f) is a
meta-prediction at FOV size 2 T, and E is the expectation of H(D ; ;f) at FOV
size 2 T. The mean squared error of classication at an individual FOV size is
givenbye = E [Y H(D ;; f)]2 and the error of the consensus predictor is given

by ea =[Y H(D;f)%
Proposition 1. Given independent classi ers at FOV sizes 2 T, e  ea.

Proof.

EY H@D;;fH?

0]
I

H .
Y2 2YE [H(D ;;:f)]+ E H?D ; ;f)I
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Figure 6.1: A owchart outlining the methodological steps of the multi-FOV classi er

in terms of its application to di erentiating mBR grade in ER + BCa histopathology.
First, (a) a histopathology slide is rst divided into (b) FO Vs of various sizes. (c)
Image features that quantify mBR grade phenotype are extrated from each FOV and
(d) a feature selection scheme is used to identify salient ftures at each FOV size. (e)
Pre-trained classi ers are used to predict (f) mBR grade foreach FOV (illustrated by
red and green squares). (g) Predictions for individual FOVsare aggregated to achieve a
class predictionH ( ) for an entire FOV size . (h) Class predictions from FOV sizes are
combined to achieve a nal classi cation result for the entire ER+ BCa histopathology
slide.

o _
Since E H3(D ; ;f)I [E [H(D ;;II?;

Y 2 2YE [H(D ;;f)]+[E [H(D ;;H]?
Y 2 2YH(D:;f)+ H?*D;f)
[Y H(D;f)?

€a

O

Note that the consensus classi er for multiple FOV sizes is snilar to Bagging [105].
In this approach, independent predictors at di erent FOV si zes are used as the \weak"
learners and combined to build the \strong" consensus restl To this end, Proposition
1 ensures that the consensus erroes will always be less than the mean errore of

individual FOV size classi ers.
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Algorithm 3 MultiFOV()
Input: Image C. FOV sizesT = fty;ty;:::;tng. Classier h(d,; ; f) foreach 2 T.
Output:  Multi-FOV classi cation H (D ;f) for image C.

1: for all 2T do

2. Fom C dene M( ) FOVs D =fd1;d2;:::;dM()g.

3:  Extract features f from d,,; 8m2f1;2;:::;M( )g.

4: Initial classi cation h(d; ; f) of eachd,,.

5. For Iglll FOvs D at size , make class prediction H(D ; ;f) =
Wy mar (A 5 1),

6: end for

7 Achss all FOV sizes 2 T, make multi-FOV prediction H(D;f)
& ,rH(D ;i f).

6.3 Implementation of multi-FOV classi er for whole-slide DP images

The multi-FOV framework (Figure 6.1) is designed to classily large, heterogeneous
images in an automated and unbiased fashion as described inlgorithm 3 [2,3,7]. For
a single slideC, a pre-trained classi er h(d,,; ; f) 2 f 0;1gis rstused to assign an initial
class prediction for each individual FOV d,, with associated featuresf. Predictions are
aggregated (i.e. mean prediction) for all FOVsD at a single size 2 T to achieve a
combined prediction H (D ; ; f). Subsequently, the multi-FOV classi cation H(D;f),
whereD = fD :8 2 Tgis the collective data over all FOV sizes, is achieved via
a consensus prediction across all FOV sizes. In this work, e@ensus is achieved via

averaging ofH(D ; ;f);8 2 T.

6.4 Multi-parametric extension for additional channels of histopatho-

logical data

The multi-FOV framework is readily extensible to additional types of DP images, al-
lowing for the integration of prognostic information from a variety of complementary
histolgical sources [2]. In this work, we show how two chanre of histopathological
data from the same tumor (e.g. H & E stained histology and IHC-stained histology)

can be combined via the following steps.
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Step 1 Perform MultiFOV() (Algorithm 3) for the rst data channel and save result-

ing class decisionH 1 2 f 0; 1g.

Step 2 Perform MultiFOV() (Algorithm 3) for the second data channel and save

resulting class decisionH, 2 f 0; 1g.

Step 3 Generate a decision-level predictiond = Hi”~ H, 2 f0;1g based on the
independent class predictions. Note that the” operation is de ned as \logical
AND", whereby A =1 if both H; =1 and H, = 1. Conversely, A = 0 if either
Hi=0o0r H,=0.

6.5 Experimental validation of multi-FOV framework

The theory set forth in Proposition 1, which suggests that the error rate of the multi-
FOV classi er will always be less than a majority of the error rates from its constituent
FOV sizes, is evaluated in the context of distinguishing mBRgrade from DP images of

ER+ breast cancers.

6.5.1 Data cohort of ER+ breast cancers

Anonymized BCa histopathology slides were obtained from 1@ patients (46 low mBR,
60 intermediate mBR, 20 high mBR) at the Hospital of the University of Pennsylva-
nia (Philadelphia, PA) and The Cancer Institute of New Jersey (New Brunswick, NJ).
All slides were digitized via a whole slide scanner at 10x mag cation (1 um/pixel
resolution). Each slide is accompanied by (1) an annotationcorresponding to regions
containing IDC and (2) mBR grade as determined by an expert pahologist. Note
that commonly accepted clinical cuto s are used to de ne the low (MBR 3-5), in-
termediate (MBR 6-7), and high (mBR 8-9) grade classes usedsaground truth in
this work. The multi-FOV framework is evaluated via a series classi cation tasks
to distinguish DP slides with low vs. high mBR grade, low vs. hntermediate mBR
grade, and intermediate vs. high mBR grade. In addition, a wide range of FOV sizes
T = £400Q 2000 100Q 500, 250gum was selected to capture di erent aspects of tissue

morphology [2,3,7].
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FOV size () low vs. high low vs. intermed. intermed. vs. high

250 0.79 0.054 0.65 0.043 0.51 0.029
500 0.79 0.041 0.67 0.041 0.56 0.053
1000 0.82 0.027 0.69 0.051 0.61 0.044
2000 0.80 0.057 0.69 0.023 0.57 0.073
4000 0.73 0.072 0.62 0.044 0.58 0.011
multi-FOV 0.88 0.028 0.73 0.032 0.74  0.04

Table 6.1: Mean and standard deviation classi cation accugacies (over 20 trials of 3-
fold cross-validation) are reported for individual FOV sizes and the multi-FOV classi er
using features describing nuclear architecture.

6.5.2 Experimental design and results

The multi-FOV framework is applied as illustrated in Figure 6.1 using 50 image features
that characterize nuclear architecture (fya described in Section 5.2). In order to avoid
issues associated with a high-dimensional feature space, fBatures are selected inde-
pendently at each FOV size via the mRMR algorithm (Section 56). Classi cation is
performed using the random forest classi er [99] in conjuntion with randomized 3-fold
cross-validation. The cross-validation scheme is used to itigate bias in the selection of
training and testing samples by randomly dividing the dataset into 3 partitions. Data
from two partitions are used for feature selection and classer training, while the par-
tition is used for evaluation. This process is repeated 3 tines so that all samples are
evaluated exactly once. In this study, the mean and standarddeviation of classi cation
accuracy for individual FOV sizes (H) and the multi-FOV result ( H) are reported over

20 trials of cross-validation (Table 6.1).

6.5.3 Discussion

The classi cation results shown in Table 6.1 clearly demonsate the ability of the multi-

FOV approach to outperform the majority of individual FOV si zes. In fact, application
of the Wilcoxon rank-sum test [88] shows that the multi-FOV classi er performs signi -
cantly better (p < 0:0001) than all individual FOV sizes for distingushing both patients

with low vs. high and intermediate vs. high mBR grades. Simihrly, the multi-FOV
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classi er for distinguishing patients with low vs. interme diate mBR grade performed
signi cantly better than all FOV sizes except for = 1000, which yielded a p-value
of 0.0745. Note that all p-values have been corrected for mtiple comparisons using
the conservative Bonferroni method [89]. Hence, these refis serve as experimental
validation of the theoretical concepts behind the multi-FOV framework presented in

Section 6.2.
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Chapter 7

Predicting and comparing large-scale classi er
performance with limited training data

7.1 Commonly used notation in this chapter

For all experiments, a datasetD is divided into independent training N D and a
testing T D pools, whereN\T = ;. Note that the datasets D1, D,, and D3
de ned here are used only in this chapter and are di erent from the datasets employed
in Chapters 8 and 9. The class label of a sample& 2 D is denoted by Y; 2 f! 1;! »g.
A set of training set sizesN = fny;ny;:::;nyg, where 1 n jNj andj j denotes
set cardinality. Additional parameters for the extended RRS approach presented in
this chapter include T, subsets for the subsampling test,T, randomized subsets for the
permutation test, and K folds for cross-validation sampling. Other commonly used

notation can be found in Appendix A.

7.2 Subsampling Test to Calculate Error Rates for Multiple T raining

Set Sizes

The estimation of classi er performance rst requires the construction of multiple clas-
si ers trained on repeated subsampling of the limited datagt. For each training set size
n 2 N, a total of T1 subsetsS 2 R" T! are created by randomly sampling the training
poolN. Foreachn2 N andi 2f1;2;:::;T1g, the subsetS;(n) 2 S is used to train a
corresponding classi erH;(n). Each H;(n) is evaluated on the entire testing setT to

produce an error ratee(n). The mean error rate for eachn 2 N is calculated as

e(n) = T—ll & (n): (7.1)
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Figure 7.1: A owchart describing the methodology used in this chapter. First, a

dataset is partitioned into training and testing pools using a K -fold sampling strategy.

Each of the K training pools undergoes repeated random sampling (RRS),ni which

error rates are calculated at di erent training set sizes via a subsampling procedure. A
permutation test is used to identify statistically signi ¢ ant error rates, which are then
used to extrapolate learning curves and predict error ratedfor larger datasets.

7.3 Permutation Test to Evaluate Statistical Signi cance o f Error

Rates

To ensure the statistical signi cance of the mean error rates e(n) calculated in Equa-
tion 7.1, the performance of training setS;(n) is compared against the performance of
randomly labeled training data. For each Sj(n) 2 S, a total of T, random training sets
S 2 R" ™t T2 gre created in which each sample is assigned a randomized stalabel
Y 2flqy;120 Foreachn 2 N,i 2f1,2:::;T10, andj 2f1;2;:::;Tog, the subset
Sij (n) 2 Sis used to train a corresponding classi erd;; (n). Each B (n) is evaluated

on the entire testing setT to produce an error rate &; (n). For eachn, a p-value

Pn= —— : (e(n) &;(n)); (7.2)
i=1j=1

where (z)=1if z 0 and 0 otherwise. P, is calculated as the fraction of randomly-
labeled classi erslfii;j (n) with error rates e;;j (n) exceeding the mean error ratee(n); 8n 2
N. The mean error rate e(n) is deemed to be valid for model- tting only if P, <
0:05, i.e. there is a statistically signi cant di erence betweene(n) and f&; (n);8i 2

f1,2;:::;T10;8] 2f1;2,:::;Togg Hence, the set of valid training set sizesM = fn :
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n 2 N;P, < 0:059 includes only thosen 2 N that have passed the signi cance test.

7.4 Cross-Validation Strategy for Selection of Training an d Testing

Pools

The selection of training N and testing T pools from the limited dataset D is governed
by a K -fold cross-validation strategy. In this work, the dataset D is partitioned into
K =4 pools in which one pool is used for evaluation while the remining K 1 pools
are used for training to produce mean error ratesec(n), wherek 2f1;2;:::;Kg. The
pools are then rotated and the subsampling and permutation &sts are repeated until all
pools have been evaluated exactly once. This process is regied over R cross-validation
trials, yielding mean error rates ex., (n) wherer 2 f 1;2;:::;Rg. For all training set sizes
that have passed the signi cance test, i.e. 8n 2 M, power law curves are generated

from a comprehensive mean error rate

11X X
e(n) = KR &cr (N); (7.3)
k=1r=1
calculated over all cross-validation foldsk 2 f 1;2;:::;K ganditerationsr 2f 1;2;:::;Rg.

7.5 Estimation of Power Law Model Parameters

The power law model [82] describes the relationship betweeerror rate and training set
size

e(n)= an + b; (7.4)

where e(n) is the comprehensive mean error rate (Equation 7.3) for traning set size
n, a is the learning rate, and is the decay rate. The Bayes error rateb is de ned
as the lowest possible error given an in nite amount of training data [41]. The model
parametersa, , andbare calculated by solving the constrained non-linear mininization
problem
Mi
min  (anmS +b e(n))?; (7.5)
&0 m=1

wherea; ;b 0.
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7.6 Extension of Error Rate Prediction to Pixel- and Voxel-| evel Data

Application of the model presented in this work to patient-level medical imaging data,
where each patient is described by a single set of features relatively well-understood.
Yet disease classi cation in radiological data (e.g. MRI) occurs at the pixel-level, in
which each patient has pixels from both classes (e.g. disead and non-diseased states)
and each pixel is characterized by a set of features. The metidology presented in
this work can be extended to such pixel- or voxel-level data § rst selecting training
set sizesN at the patient-level. De nition of the K training and testing pools as
well as creation of each subsampled training se§j(n) 2 S are also performed at the
patient-level. Training of the corresponding classi er H;(n), however, is performed at
the pixel-level by aggregating pixels for all patients in Sj(n). A similar aggregation is
done for all patients in the testing pool T. By ensuring that all pixels from a given
patient remain together, we are able to perform extrapolation of pixel-wise data while
avoiding the classi cation bias that occurs when pixels fran a single patient span both

training and testing sets.

7.7 Experimental Design

Our methodology is evaluated on 3 classi cation tasks tradtionally a ected by limita-
tions in the availability of imaging data (Table 7.1). All ex periments have a humber
of parameters in common, includingT; = 50 subsampling trials, T, = 50 permutation
trials, K = 4 cross-validation folds, and R = 10 cross-validation trials. In addition,
all experiments employ thek-nearest neighbor (kNN), naive Bayes (NB), and Support
Vector Machine (SVM) classi ers. A more detailed description of each classi er is pre-
sented in Appendix B. In each experiment, validation is perbrmed via leave-one-out
(LOO) classi cation on a larger dataset, which allows us to maximize the number of
training samples used for classi cation while yielding the expected lower bound of the

error rate.
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Samples (train /

Notation Description valid.)
D, Prostate: Cancer detection on histopathology 100 / 500
D, Breast: Cancer grading on histopathology 46 / 116
D3 Prostate: Cancer detection on MRS 16/ 34

Table 7.1. List of the breast cancer and prostate cancer datsets used in this study.
For D3, training and testing sets are selected at the patient-leve while classi cation
is performed at the metavoxel-level by using all metavoxelsfrom both classes for a
speci ed patient.

7.7.1 Experiment 1: Identifying Cancerous Tissue in Prosta te Cancer

Histopathology

Automated systems for detecting prostate cancer on biopsymecimens have the potential
to act as (1) a triage mechanism to help pathologists spend ks time analyzing samples
without cancer and (2) an initial step for decision support systems that aim to quan-
tify disease aggressiveness via automated Gleason gradifig8]. Dataset D1 comprises
hematoxylin and eosin (H & E) stained needle-core biopsiesfqrostate tissue digitized
at 20x optical magni cation on a whole-slide digital scannea. Regions corresponding to
prostate cancer were manually delineated by a pathologist ad used as ground truth.
Slides were divided into non-overlapping 30 30-pixel tissue regions and converted to
a grayscale representation. A total of 927 features includig rst-order statistical, Har-
alick co-occurrence [32], and steerable Gabor lter featues were extracted from each
image [45] (Table 7.2). Due to the small number of training sanples used in this study,
the feature set was rst reduced to two descriptors via the mnimum redundancy max-
imum relevance (MRMR) feature selection scheme [34], prinvdly to avoid the curse of
dimensionality [41]. A relatively small dataset of 100 imag regions, with training set
sizesN = f25;30; 35;40;45;50; 559, was used to extrapolate error rates (Table 7.1).
LOO cross-validation was subsequently performed on a largedataset comprising 500

image regions.
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Features Parameters

Texture: Gray-level (Average, Median,
Standard Deviation, Range, Sobel, window sizes:f3;5; 79
Kirsch, Gradient, Derivative)

Texture: Haralick co-occurrence (Joint

Entropy, Energy, Inertia, Inverse Dier-

ence Moment, Correlation, Measurements

of Correlation, Sum Average, Sum Vari- window sizes:f 3;5; 79
ance, Sum Entropy, Dierence Average,

Di erence Variance, Dierence Entropy,

Shade, Prominence, Variance)

window sizes:f 3;5; 79
frequency shift: f0;1;:::;79

: : . a2 e 7
orientations: f0; T R ¢

Texture: steerable Gabor Iter responses
(cosine and sine components combined)

Table 7.2: A summary of all features extracted from prostatecancer histopathology
images in datasetD;. All textural features were extracted separately for red, geen,
and blue color channels.

7.7.2 Experiment 2: Distinguishing High and Low Tumor Grade in

Breast Cancer Histopathology

Nottingham, or modi ed Bloom-Richardson (mBR), grade is routinely used to charac-
terized tumor di erentiation in breast cancer (BCa) histop athology [18]; yet, it is known
to su er from high inter- and intra-pathologist variabilit y [23]. Hence, researchers have
aimed to develop quantitative and reproducible classi cation systems for di erentiating
mBR grade in BCa histopathology [3]. DatasetD, comprises 2000 2000 image regions
taken from H & E stained histopathology specimens of breast issue digitized at 20x
optical magni cation on a whole-slide digital scanner. Ground truth for each image
was determined by an expert pathologist to be either low (mBR< 6) or high (mBR
> 7) grade. First, boundaries of 30-40 representative epith@l nuclei were manually
segmented in each image region (Figure 7.2). Using the segmted boundaries, a total
of 2343 features were extracted from each nucleus to quangifboth nuclear morphol-
ogy and nuclear texture (Table 7.3). A single feature vectorwas subsequently de ned
for each image region by calculating the median feature vales of all constituent nu-

clei. Similar to Experiment 1, mRMR feature selection was ugd to isolate the two
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Figure 7.2: Examples of (a), (b) low mBR grade and (c), (d) high mBR grade BCa
histopathology images from datasetD, shown with boundary annotations (green out-
line) for exemplar nuclei. A variety of morphological and textural features are extracted
from the nuclear regions, including (e)-(h) the Sum Varianae Haralick textural response.

most important descriptors. Error rates were extrapolated from a small dataset com-
prising 45 images with training set sizesN = f20; 22, 24; 26; 28; 30; 32g, while LOO
cross-validation was subsequently performed on a larger daset comprising 116 image

regions (Table 7.1).

7.7.3 Experiment 3: ldentifying Cancerous Metavoxels in Pr ostate

Cancer Magnetic Resonance Spectroscopy

Magnetic resonance spectroscopy (MRS), a metabolic non-iaging modality that ob-
tains the metabolic concentrations of speci ¢ molecular makers and biochemicals in the
prostate, has previously been shown to supplement MRI in thaletection of prostate can-
cer [106,107]. These include choline, creatine, and citrat and changes in their relative
concentrations (choline/citrate or [choline+creatine)/ citrate]), which have been shown
to be linked to presence of prostate cancer [108]. Radiologfis typically assess presence

of prostate cancer on MRS by comparing ratios between choli@, creatine, and citrate
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Features Parameters

Morphological (Area, Major Axis Length,
Minor Axis Length, Eccentricity, Convex
Area, Filled Area, Equivalent Diameter,
Solidity, Extent, Perimeter, Area Overlap, {
Average Radial Ratio, Compactness, Con-
vexity, Smoothness, Std. Dev. of Distance
Ratio, Fourier Descriptors (6 rotations))

Texture: Gray-level (Average, Median,
Standard Deviation, Range, Sobel, window sizes:f3;5; 79
Kirsch, Gradient, Derivative)

window size: 3

osets: f0;1;:::;79

directions: clockwise, counter-
clockwise

Texture: Local binary patterns

Texture: Laws (pairwise convolution of
Level, Edge, Spot, Wave, Ripple lters)

Texture: steerable Gabor Iter responses
(cosine and sine components are separate
features)

{

window sizes:f 3;5; 99

: : . . 2 e 6
orientations: f0; 0 120 120

Table 7.3: A summary of all features extracted from breast cacer histopathology
images in datasetD,. All textural features were extracted separately for red, geen,
and blue color channels from the RGB color space and the hueaguration, and intensity
color channels from the HSV color space.

peaks to prede ned normal ranges. DatasetD3; comprises 34 1.5 Tesla T2-weighted
MRI and MRS studies obtained prior to radical prostatectomy, where the ground truth
was de ned (as cancer and benign metavoxels) via visual inggction of MRI and MRS
by an expert radiologist [107] (Figure 7.3). Six MRS features were de ned for each
metavoxel by calculating expression levels for each metaliite as well as ratios between
each pair of metabolites. Similar to Experiment 1, mRMR feature selection was used to
identify the two most important features in the dataset. Err or rates were extrapolated
from a dataset of 16 patients using training set sizedN = f2;4;6; 8; 10; 129, followed by

LOO cross-validation on a larger dataset of 34 patients (Talke 7.1).



74

(a) (b)

Figure 7.3: (a) A study from dataset D3 showing an MR image of the prostate with
MRS metavoxel locations overlaid. (b) For ground truth, each MRS spectrum is la-
beled as either cancerous (red and orange boxes) or benignlle boxes). Green boxes
correspond to metavoxels outside the prostate for which MRSspectra were suppressed
during acquisition.

7.7.4 Comparison with Traditional RRS via Interquartile Ra nge

This experiment employs datasetD; and experimental parameters used in Experiment
1 within the traditional RRS approach. However, since traditional RRS does not use
cross-validation, a total of Ty = T; K R subsampling procedures are used to ensure
that same number of classi cation tasks are performed for bth approaches. Evalua-
tion is performed via (1) comparison of the learning curves letween the two methods
and (2) the interquartile range (IQR), a measure of statistical variability de ned as
the di erence between the 25th and 75th percentile error raes from the subsampling

procedure.

7.8 Results and Discussion

7.8.1 Experiment 1. Distinguishing Cancerous and Non-Canc erous

Regions in Prostate Histopathology

Error rates predicted by NB and SVM classi ers are similar to those from their LOO
error rates of 0.1312 and 0.1333 (Figures 7.4(b), (c)). In amparison to the learning
curves, the slightly lower error rate produced by the validdion set is to be expected since
the LOO classi cation is known to produce an overly optimistic estimate of the true

error rate [109]. The KNN classi er appears to overestimateerror considerably compared
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Figure 7.4: Learning curves (blue line) generated for datast D1 using mean error
rates (black squares) calculated from (a) kNN, (b) NB, and (9§ SVM classi ers. Each
classi er is accompanied by curves for the 25th (green daslikline) and 75th (red dashed
line) percentile of the error as well as LOO error on the valichtion cohort (yellow star).

(d) A direct classi er comparison is made in terms of the meanerror rate predicted by
each learning curve in (a)-(c).

to the LOO error of 0.1560, which is not surprising because kN is a non-parametric
classi er that is expected to be more unstable for heterogeeous datasets (Figure 7.4(a)).
Comparison across classi ers suggests that both NB and SVM il outperform kNN as
dataset size increases (Figure 7.4(d)). Although the di erences between the mean NB
and SVM learning curves are minimal, the 25th and 75th percetile curves suggest
that the prediction made by NB is more stable and has lower vaiance than the SVM

prediction.
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7.8.2 Experiment 2: Distinguishing Low and High Grade Cance rin
Breast Histopathology

Learning curves from kNN and NB classi ers yield predicted eror rates similar to their
LOO cross-validation errors (0.1552 for both classi ers) & shown in Figures 7.5(a),
(b). By contrast, while error rates predicted by the SVM classi er are reasonable
(Figure 7.5(c)), they appear to underestimate the LOO error of 0.1724. One reason for
this discrepancy may be the class imbalance present in the Vidation dataset (79 low
grade and 37 high grade), since SVM classi ers have been demstrated to perform
poorly on datasets where the positive class (i.e. high gragds underrepresented [110].
Similar to Dy, a comparison between the learning curves re ects the sup@rity of both
NB and SVM classi ers over the kNN classi er as dataset sizemcreases (Figure 7.5(d)).
However, the relationship between the NB and SVM classi ersis more complex. For
small training sets, the NB classi er appears to outperformthe SVM classi er; yet, the
SVM classi er is predicted to yield lower error rates for larger datasets 6 > 60). This
suggests that the classi er yielding the best results for the smaller dataset may not

necessarily be the optimal classi er as the dataset increas in size.

7.8.3 Experiment 3: Distinguishing Cancerous and Non-Canc erous

Metavoxels in Prostate MRS

Similar to dataset D4, the LOO error for both the NB and SVM classi ers (0.2248 and
0.2468, respectively) fall within the range of the predicta error rates (Figures 7.6(b),
(c)). Once again, the KNN classi er overestimates the LOO eror (0.2628), which is most
likely due to the high level of variability in the mean error r ates used for extrapolation
(Figure 7.6(a)). While both NB and SVM classi ers outperfor m the kNN classi er,

their learning curves show a clearer separation between thextrapolated error rates for
all dataset sizes, suggesting that the optimal classi er skected from the smaller dataset

will hold true as even as dataset size increases (Figure 7 d)).
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Figure 7.5: Learning curves (blue line) generated for datast D, using mean error
rates (black squares) calculated from (a) kNN, (b) NB, and (9§ SVM classi ers. Each
classi er is accompanied by curves for the 25th (green daslikline) and 75th (red dashed
line) percentile of the error as well as LOO error on the valication cohort (yellow star).

(d) A direct classi er comparison is made in terms of the meanerror rate predicted by
each learning curve in (a)-(c).

7.8.4 Comparison with Traditional RRS

The quantitative results in Table 7.4 suggest that employing a cross-validation sampling
strategy yields more consistent error rates. Traditional RRS yielded a mean IQR (QR)
of 0.0297 across alh 2 N ; whereas our approach demonstrated a lowelQR of 0.0070.
Furthermore, a closer look at the learning curves for these meor rates (Figure 7.7)
suggests that traditional RRS is sometimes unable to accurely extrapolate learning
curves. This phenomenon is most likely due to the high level bheterogeneity in medical
imaging data and demonstrates the importance of rotating the training and testing pools

to avoid biased error rates that do not generalize to larger dtasets.
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Figure 7.6: Learning curves (blue line) generated for datast Dz using mean error
rates (black squares) calculated from (a) kNN, (b) NB, and (§ SVM classi ers. Each
classi er is accompanied by curves for the 25th (green daslikline) and 75th (red dashed
line) percentile of the error as well as LOO error on the valication cohort (yellow star).

(d) A direct classi er comparison is made in terms of the meanerror rate predicted by
each learning curve in (a)-(c).

n=25 n=30 n=35 n=40 n=45 n=50 n=55 IQR

P25 0.0833 0.0833 0.0417 0.0417 0.0417 0.0417 0.08%30

No CV 297
P75 0.1250 0.0833 0.0833 0.0833 0.0833 0.0833 0.0833
With CV P25 { { 0.1563 0.1579 0.1538 0.1514 0.15220.0070
P75 { { 0.1609 0.1657 0.1618 0.1596 0.1588

Table 7.4: A comparison between 25th (P25) and 75th (P75) pesentile error rates for
dataset D; using traditional RRS (No CV) and our approach (With CV), wit h mean
interquartile range (IQR) shown across alln. Missing values correspond to error rates
that did not achieve signi cance in the permutation test.
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Figure 7.7: Learning curves generated for dataseD; using (a) traditional RRS and
(b) cross-validated RRS in conjunction with a Naive Bayes chssi er. For both gures,
mean error rates from the subsampling procedure (black squas) are used to extrapolate
learning curves (solid blue line). Corresponding learningcurves for 25th (green dashed
line) and 75th (red dashed line) percentile of the error are &0 shown. The error rate
from leave-one-out cross-validation is illustrated by a ydow star.



80

Chapter 8

Experimental design

8.1 Commonly used notation in this chapter

Datasets used in this chapter are de ned asD1, D,, and D3 (Table 8.1). Note that,
although they share a common notation, these datasets are uplated to the datasets

used in Chapter 7.

8.2 Experiment 1. Multi-FOV classi cation using nuclear ar chitec-

ture

This experiment employs the cohort of 126 ER+ BCa DP slides D1) previously pre-
sented in Section 6.5.1 (Table 8.1). The goals of this expement are twofold: (1)
multi-FOV classi cation of whole-slide ER+ BCa DP images and (2) identi cation of

the salient QH features able to distinguish low, intermedidae, and high mBR grade
at di erent FOV sizes. First, image features describing nudear architecture fya are
extracted as described in Section 5.2. A multi-FOV classi & is constructed for fya
and evaluated in terms of its ability to distinguish patient s with low, intermediate, and
high mBR grade. Since the multi-FOV classi er (Chapter 6) utilizes a trained classi-
er, it is susceptible to the arbitrary selection of trainin g and testing data. A 3-fold
cross-validation scheme is used to mitigate this bias by sjiting the data cohort into

3 subsets in a randomized fashion, from which 2 subsets are e for training and the
remaining subset is used for evaluation. The subsets are sabquently rotated until a
multi-FOV prediction H (D ;fna) is made for each slide. The multi-FOV predictions for
all slides are thresholded to create receiver operating chiacteristic (ROC) curves using

the respective mBR grades as ground truth. The entire crossalidation procedure is
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Dataset D4 Dataset D» Dataset D3
Ground truth mBR grade Oncotype DX tubule subscore from
mBR grade
Classes Low (46) Low (9) Low (20)
(# samples) Intermed. (60) Intermed. (11) Intermed. & High (85)
High (20) High (9)
Staining H&E H&E H&E
CD34 IHC
Resolution 1 um/pixel 1um 0.5um
Size whole-slide whole-slide 500500 pixel FOVs

Table 8.1: A summary of the datasets used in this chapter.

repeated 20 times, with the mean and standard deviation of tle area under the ROC
curve (AUC) reported. Note that, since the most relevant FOV sizes are not known
a priori, we consider a wide range of FOV size3 = f400Q 200Q 100Q 500, 250gum to
capture as many variations in tumor morphology as possible.

The inclusion of feature selection in the multi-FOV framewark allows us to gain a
deeper understanding of the QH features that are most relevat to quantifying tumor
morphology and stratifying disease aggressiveness. In thiexperiment, we rank the
mMRMR-selected QH featuresfya at each FOV size and explore trends in the selected
features across di erent FOV sizes. In addition, we examindhe e ect of each additional

salient feature on on the cumulative accuracy of the multi-FOV classi er.

8.3 Experiment 2: Multi-FOV classi cation using nuclear te xture

Similar to the procedure outlined in Experiment 1, we employ Dataset D, to evaluate
the ability of image features characterizing nuclear textue fyr to distinguish whole-
slide ER+ BCa histopathology based on mBR grade using the mui-FOV framework.
Parameter settings, feature selection, and experimentalesults are reported as described

in Section 8.2.
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8.4 Experiment 3: Comparison of multi-FOV framework to clas Si-

cation across multiple image resolutions

Although this thesis focuses on the combination of FOVs of dierent sizes, the ability to
integrate image information at various spatial resolutions is also important for the char-
acterization of digitized histopathology slides [45]. Forcomparison to the multi-FOV
approach, a multi-resolution classi er is constructed ushg Dataset D; by re-extracting
each FOV of size =1000um at spatial resolutions of 2 f 0:25; 0:5; 1; 2; 4gum/pixel.
A consensus multi-resolution prediction is achieved for eeh histopathology slide in a
manner analogous to the multi-FOV approach (Chapter 6), exept that data is aggre-

gated over all spatial resolutions rather than FOV sizes.

8.5 Experiment 4: Multi-parametric multi-FOV classi cati on using

nuclear architecture and microvessel density

This experiment employs DatasetD,, where each study includes both H & E-stained
and CD34 IHC-stained slides. Image features describing nlear architecture fya and
the density of vascular formationfyp are extracted as described in Sections 5.2 and 5.5,
respectively. Here, we make the distinction betweerylobal vascular density (i.e. fraction
of DAB-stained pixels in entire slide) from local vascular density (i.e. fraction of brown
pixels from a smaller FOV (of size 2 T), the latter of which is used within the multi-
FOV framework. Parallel multi-FOV classi ers are constructed for fya and fyp similar
to Experiment 1, except for slightly di erent FOV sizes of Tya = 250 500 100Q 2000y
and Typ = 250500 1000y, respectively. The multi-FOV classiers H(D;fna) and
H(D;fvp) are evaluated both individually and as a fused classi erA (Section 6.4) in
terms of their ability to distinguish patients with low, int ermediate, and high Oncotype

DX Recurrence Scores.
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8.6 Experiment 5. Quantifying degree of tubule formation in breast

cancer DP

In this experiment, the degree of tubule formation fp (as de ned in Section 5.4) is
extracted from each image in DatasetD3, which comprises 105 FOVs taken from 14
patients. All images were taken from H & E stained BCa DP images digitized at 20x
optical magni cation (0.5 um/pixel). For each image, an expert pathologist provided
ground truth via the subscore characterizing the extent tubule formation (ranging from
1 to 3) from the mBR grading system [18], where lower scores cmspond to well-
di erentiated tumors with better outcomes and vice versa. In this work, we evaluate
the ability of fyp to operate as an e ective diagnostic indicator by classifyng each
image as having either a low (subscore 1) or high (subscore 2 8) degree of tubule
formation. The ability of fp distinguish between low (subscore 1) and high (subscores
2 and 3) degrees of tubule formation was evaluated by threshding ftp. The singular
feature frp is subsequently thresholded to form an ROC curve and an AUC vaie is
reported along with classi cation accuracy and positive predictive value (PPV) at the

ROC operating point.
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Chapter 9

Results and discussion

9.1 Commonly used notation in this chapter

The Datasets D, D,, and D3 used in this chapter are the same as the ones de ned in
Table 8.1 (Chapter 8)). Note that they are di erent from the d atasets considered in

Chapter 7.

9.2 Quantitative evaluation and comparison of multi-FOV cl assi ca-

tion in Experiments 1 and 2

Quantitative results from Experiments 1 (Section 8.2 and 2 Section 8.3) suggest that
predictions made by nuclear architecture H(D ;fna) and nuclear texture H(D;fnt)

both perform well in characterizing mBR grade in entire ER+ B Ca histopathology
slides (Figure 9.1). Speci cally, nuclear architecture appears to yield higher area un-
der the curve (AUC) values than nuclear texture (AUC of 0.93 and 0.86) in terms of
discriminating low vs. high mBR grade. By contrast, both nuclear architecture and
nuclear texture yield similar results for distinguishing low vs. intermediate (AUC of

0.72 and 0.68) and intermediate vs. high mBR grade (AUC of 0.1 and 0.74) slides,
respectively.

To mitigate the challenges associated with large feature ge (as discussed in Sec-
tion 1.6.3), the ROC curves in Figure 9.1 were constructed usg feature subsets selected
by the mRMR algorithm described in Section 5.6. For each expement, Tables 9.1-9.5
show the features selected at each FOV size along with the cumtative classi cation
accuracy of the multi-FOV approach with the inclusion of each additional feature. Note

that some experiments, e.g. nuclear architecture for low vs high grading (Table 9.1)
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True Positive Rate

Figure 9.1: Mean receiver operating characteristic (ROC) arves over 20 trials of 3-fold
cross-validation for multi-FOV classi ers distinguishin g (a) low vs. high mBR grade,
(b) low vs. intermediate mBR grade, and (c) intermediate vs. high grade mBR grade.
For each task, ROC curves are shown for both nuclear architedare and nuclear texture
feature sets along with associated AUC values.

and nuclear texture for intermediate vs. high grading (Table 9.6), demonstrate consider-
able improvement in classi cation accuracy with the addition of relevant features while
other experiments, e.g. nuclear texture for low vs. intermeliate grading (Table 9.5),

reach a plateau with the selection of only one or two features

9.2.1 Trends in salient nuclear architecture features sele cted across

di erent FOV sizes

In addition to improved classi cation accuracy, the featur e selection process also reveals
the speci ¢ features that best distinguish low and high grace cancers. For example, Ta-
ble 9.1 suggests that the average number of neighboring nuglin a 10 um radius around
each nucleus is the most discriminating feature in smaller BVs (1000 um, 500 um, and
250 um), but has lesser importance in larger FOV sizes of 20Q0m and 4000 um, where
it is ranked third and fourth, respectively. Conversely, graph-based features derived
from the VG and DT appear to play a greater role in larger FOVs, where variations
in VG chord length, DT side length, and DT area are more important than nearest
neighbor statistics. This pattern is further reinforced in the features selected for dis-
tinguishing low vs. intermediate grades (Table 9.2) and inermediate vs. high grades

(Table 9.3).
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9.2.2 Trends in salient nuclear texture features selected a cross di er-

ent FOV sizes

By examining the Haralick co-occurrence features selectedor nuclear texture (Ta-
bles 9.4-9.6), the dominant role of contrast statistics (epecially variance and entropy)
is immediately apparent. In addition, the information measure of correlation is shown
to have importance for discriminating smaller FOVs ( 2 f 250,500y) and data across
all three channels (hue, saturation, and intensity) appearto be equally relevant in terms

of meaningful feature extraction.

9.3 Experiment 3: comparison between multi-resolution and multi-

FQV classi ers

Using all selected features from each classi cation task (&bles 9.1-9.6), the multi-
FOV approach is further evaluated via comparison to a multi-resolution scheme. A
comparison of AUC values between the two methods (Table 9.7)suggests that the
aggregation of image features at multiple elds-of-view (ie. multi-FOV classi er) is

able to outperform the aggregation of image features at mulple spatial resolutions (ie.
multi-resolution classi er) for the grading of BCa histopathology slides. For nuclear
architecture fya, the superiority of the multi-FOV approach in terms of di er entiating

low vs. high grades (AUC = 0:93 0:012), low vs. intermediate grades (AUC =
0:72 0:037), and intermediate vs. high grades (AUC = Q71 0:051) is expected
since the spatial arrangement of nuclei is invariant to chames in image resolution.
In addition, the ability of a nuclear textural features fyt to perform comparably to
nuclear architecture in distinguishing low vs. high grades(AUC = 0:84 0:036) and
low vs. intermediate grades (AUC = 0:67 0:074) is also unsurprising since textural
representations of nuclei will reveal di erent types of class discriminatory information

at various image resolutions. These results suggest that aimtelligent combination of

the multi-FOV and multi-resolution approaches may yield improved classi cation of

tumor grade in whole-slide BCa histology.
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9.4 Experiment 4: multi-parametric multi-FOV classi cati on of H &

E and CD34 IHC-stained DP

9.4.1 \Validation of multi-FOV approach for distinguishing Oncotype

DX RS via microvessel density

Similar to the experimental validation used in Section 6.5,the ability of the multi-FOV
classi er to outperform classi cation at individual FOV si zes is borne out by the local
vascular density (Figure 9.2), which is able to distinguishentire CD34 IHC stained slides
with good vs. poor, good vs. intermediate, and intermediatevs. poor Oncotype DX RS
values with classi cation accuracies of 082 0:04, 075 0:06, 086 0:04, respectively,
and positive predictive values (PPV) of 0:82 0:06, 676 0:06, 087 0:06, respectively.
Figure 9.2 demonstrates that multi-FOV classi ers perform as well as (and usually
better than) individual FOV sizes in terms of both classi cation accuracy and PPV.
Two-sample t-tests are performed to con rm the signi cance of this comparison using
alternative hypotheses asserting that the multi-FOV class er outperforms individual
FOV sizes in terms of classi cation accuracy. For good vs. por outcome, we were
able to reject the null hypothesis for all FOV sizes with p < 0:05 (Table 9.8). Note
that all p-values have been corrected for multiple comparisns using the Bonferroni
approach [89].

By contrast, global vascular density produces correspondig classi cation accuracies
of 0:60 0:08, @40 0:11, 046 0:07 and PPV of 082 0:09, 076 0:07, and Q72 0:11,
respectively (Figure 9.2), which is consistently worse tha the multi-FOV classi er used
in conjunction with local vascular density. The superior peformance of the multi-FOV
classi er is likely due to its ability to capture local varia tions in vascular density and

robustness to intra-slide heterogeneity.
9.4.2 Validation of multi-FOV approach for distinguishing Oncotype
DX RS via nuclear architecture

Figure 9.3 shows that the architectural features (in conjurction with the multi-FOV

classi er) are able to discriminate H & E stained slides with good vs. poor, good vs.
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Figure 9.2: (a) Classi cation accuracy and (b) positive predictive values for the multi-

FOV framework using local vascular density from 29 CD34 IHC $ained histopathology
slides over 10 trials of 3-fold cross-validation. Note thatthe bar colors represent di erent
FOV sizes as indicated. For comparison, global vascular desity was also calculated
directly from each slide and evaluated.

intermediate, and intermediate vs. poor Oncotype DX RS at chssi cation accuracies
of 91 0:04, @72 0:.06, 071 0:11, respectively, and positive predictive values of
0:92 0:.06,074 0:12,068 0:11, respectively. The argument in favor of the multi-FOV
classi er is even stronger here than with the IHC-stained images (Section 9.4.1), where
it shows signi cantly increased performance over individual FOV sizes (Figure 9.3).
Again, p-values from two-sample t-tests are used to show thiathe multi-FOV classi er
signi cantly outperforms 3 out of 4 individual FOV sizes wit h p< 0:05 when comparing
good vs. intermediate outcomes and withp < 0:10 for 2 of 4 FOV sizes when comparing

intermediate vs. poor outcomes.

9.4.3 Evaluation of fused classier resulting from multi-p arametric

combination of H & E and IHC-stained DP

Performing a decision-level combination of vascular dengt and nuclear architecture
(Section 6.4) produces classi cation accuracies of:01 0:02, 76 0:05, 083 0:08
and PPV of 0:94 0:10, 085 0:11, 092 0:13, for distinguishing good vs. poor, good

vs. intermediate, and intermediate vs. poor RS values, resgctively (Table 9.9).
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Figure 9.3: (@) Classi cation accuracy and (b) positive predictive values for the multi-
FOV framework using architectural features from 29 H & E stained histopathology slides
over 10 trials of 3-fold cross-validation. Note that the barcolors represent di erent FOV
sizes as indicated.

The fact that vascular density and nuclear architecture exgdoit such disparate as-
pects of cancer biology (i.e. angiogenesis and tissue morplogy, respectively) suggests
that the two feature classes are complimentary and integraion will yield improved clas-
si cation. Experiment 3 shows that a decision-level combiration of the two feature sets
maintains high levels of classi cation accuracy while impoving positive predictive val-
ues (Table 9.9) over the corresponding multi-FOV classi ers from Experiments 1 and 2

(Figures 9.2 and 9.3).

9.5 Experiment 5: distinguishing mBR tubule subscore via qu anti -

cation of tubule density

Experiment 5 (Section 8.6 evaluates the e cacy of our tubule density (de ned in Sec-
tion 5.4) as a diagnostic indicator for BCa histopathology by using it to distinguish
between ER+ breast cancers with low (1) and high (2 and 3) mBR wubule subscores.
In Figure 9.4, we demonstrate visually that images determired by an expert pathologist
to have low and high degrees of tubule formation are clearly eparable byfp. This is
further re ected by thresholding fp, which yields an ROC curve with AUC of 0.94.

A classi caton accuracy of 0.89 and positive predictive valie of 0.91 were calculated at
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Figure 9.4: A graph showing the fraction of nuclei arranged m tubular formation fp
(y-axis) for each histopathology image (x-axis). The image are arranged by pathologist-
assigned scores (i.e. ground truth) denoting degree of tudar formation (ranging from
1-3), which is a component of the mBR grading system. The dottd line represents
the operating point (ftp = 0:105) optimally distinguishing low (subscore 1) and high
(subscores 2 and 3) degrees of tubule formation with classtation accuracy of 0.89 and
positive predictive value of 0.91.

the ROC operating point where fp = 0:105 (Figure 9.5). Our results are also con-
rmed by an unpaired, two-sample t-test which suggests thatimages with low and high
degrees of tubular formation are indeed drawn from di erent underlying distributions

(i.e. rejects the null hypothesis) with a p-value less than 00001.
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Figure 9.5: A ROC curve generated by thresholdingfrp produces an AUC value of
0.94 for distinguishing ER+ breast cancer DP images based orow and high mBR
tubule subscores.
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Rank Feature Description Cum. Acc.

4000 VG chord length: min/max ratio
2000 DT side length: min/max ratio
1 1000 # nuclei in 10 um radius: mean 0:85 0:033
500 # nuclei in 10 um radius: mean
250 # nuclei in 10 um radius: mean

4000 DT area: min/max ratio
2000 DT area: disorder
2 1000 # nuclei in 10 um radius: disorder 0:86 0:056
500 DT area: min/max ratio
250 Dist. to 5 nearest nuclei: disorder

4000 VG area: min/max ratio
2000 # nuclei in 10 um radius: mean
3 1000 DT area: min/max ratio 0:88 0:038
500 # nuclei in 10 um radius: disorder
250 DT area: min/max ratio

4000 # nuclei in 10 uym radius: mean
2000 MST edge length: min/max ratio
4 1000 MST edge length: min/max ratio 0:91 0:023
500 DT side length: min/max ratio
250 Dist. to 7 nearest nuclei: disorder

4000 VG perimeter: min/max ratio
2000 # nuclei in 10 um radius: disorder
5 1000 DT side length: min/max ratio 0:91 0:015
500 Dist. to 7 nearest nuclei: disorder
250 DT side length: min/max ratio

Table 9.1: Selected nuclear architecture features at varigs FOV sizes for low vs. high
mBR grade classi cation.
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Rank Feature Description Cum. Acc.

4000 VG perimeter: min/max ratio
2000 DT area: disorder
1 1000 DT area: disorder 0:71 0:0042
500 # nuclei in 10 um radius: disorder
250 DT side length: min/max ratio

4000 VG chord length: min/max ratio
2000 DT side length: min/max ratio
2 1000 VG chord length: min/max ratio 0:71 0011
500 Dist. to 7 nearest nuclei: disorder
250 # nuclei in 10 um radius: mean

4000 DT area: disorder
2000 # nuclei in 10 um radius: mean
3 1000 # nuclei in 10 um radius: mean 0:73 0:028
500 Dist. to 5 nearest nuclei: disorder
250 Dist. to 3 nearest nuclei: disorder

4000 MST edge length: min/max ratio
2000 VG perimeter: min/max ratio
4 1000 VG perimeter: min/max ratio 0:74 0:037
500 DT area: min/max ratio
250 # nuclei in 10 um radius: disorder

Table 9.2: Selected nuclear architecture features at varias FOV sizes for low vs.
intermediate mBR grade classi cation.



Rank

Feature Description Cum.

Acc.

4000

2000

1 1000
500
250

VG area: min/max ratio

DT area: disorder

DT area: disorder 0:70
VG area: std. dev.

DT area: min/max ratio

0:035

4000

2000

2 1000
500
250

DT area: disorder

VG perimeter: min/max ratio

VG chord length: min/max ratio  0:71
# nuclei in 10 ym radius: mean

Dist. to 7 nearest nuclei: disorder

0:054

4000

2000

3 1000
500
250

DT side length: min/max ratio

# nuclei in 10 ym radius: mean

MST edge length: min/max ratio 0:72
DT area: disorder

# nuclei in 40 um radius: mean

0:048

4000

2000

4 1000
500
250

VG chord: min/max ratio

DT side length: min/max ratio

DT side length: min/max ratio 0:73
DT area: min/max ratio

# nuclei in 10 ym radius: mean

0:056

94

Table 9.3: Selected nuclear architecture features at varios FOV sizes for intermediate
vs. high mBR grade classi cation.
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Rank Feature Description Cum. Acc.

4000 Val: Contrast variance - std. dev.
2000 Hue: Contrast variance - mean
1 1000 Sat: Contrast variance - std. dev. 0:80 0:047
500 Val: Contrast variance - std. dev.
250 Val: Contrast entropy - disorder

4000 Sat: Contrast variance - std. dev.
2000 Sat: Contrast variance - mean
2 1000 Hue: Contrast variance - mean 0:81 0:.044
500 Hue: Info. measure 1 - std. dev.
250 Hue: Info. measure 1 - std. dev.

4000 Hue: Contrast variance - std. dev.
2000 Hue: Contrast variance - std. dev.
3 1000 Val: Contrast variance - std. dev. 0:84 0:040
500 Val: Contrast entropy - disorder
250 Val: Contrast average - std. dev.

Table 9.4: Selected nuclear texture features at various FO\sizes for low vs. high mBR
grade classi cation.
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Rank Feature Description Cum. Acc.

4000 Hue: Contrast variance - disorder
2000 Sat: Contrast variance - mean
1 1000 Val: Contrast average - std. dev. 0:69 0:024
500 Sat: Contrast variance - std. dev.
250 Sat: Info. measure 1 - std. dev.

4000 Val: Contrast variance - std. dev.
2000 Val: Contrast variance - std. dev.
2 1000 Sat: Contrast inv. moment - std. dev. 0:69 0:027
500 Sat: Info. measure 1 - std. dev.
250 Sat: Contrast variance - std. dev.

4000 Val: Contrast entropy - disorder
2000 Sat: Contrast average - std. dev.
3 1000 Hue: Intensity average - disorder 0:70 0:024
500 Val: Info. measure 1 - std. dev.
250 Sat: Contrast inv. moment - std. dev.

Table 9.5: Selected nuclear texture features at various FO\sizes for low vs. interme-
diate mBR grade classi cation.



Rank Feature Description Cum. Acc.

4000 Hue: Contrast variance - std. dev.
2000 Hue: Contrast variance - mean

1 1000 Sat: Contrast variance - std. dev. 0:68 0:082
500 Val: Contrast variance - std. dev.
250 Val: Contrast variance - std. dev.
4000 Hue: Contrast variance - mean
2000 Val: Contrast entropy - disorder

2 1000 Hue: Contrast variance - mean 0:75 0:044
500 Sat: Contrast variance - std. dev.
250 Sat: Contrast variance - std. dev.
4000 Sat: Contrast variance - mean
2000 Hue: Contrast variance - std. dev.

3 1000 Hue: Contrast variance - std. dev. 0:74 0:040
500 Val: Contrast entropy - disorder
250 Hue: Info. measure 1 - std. dev.
4000 Sat: Contrast variance - std. dev.
2000 Sat: Contrast variance - mean

4 1000 Val: Contrast variance - std. dev. 0:74 0:030
500 Sat: Contrast inv. moment - std. dev.
250 Sat: Contrast inv. moment - std. dev.
4000 Hue: Contrast variance - disorder
2000 Sat: Contrast variance - std. dev.

5 1000 Sat: Contrast variance - mean 0:75 0:035
500 Val: Entropy - std. dev.
250 Val: Contrast entropy - disorder
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Table 9.6: Selected nuclear texture features at various FO\sizes for intermediate vs.
high mBR grade classi cation.
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Experiment Feature Set Mult-FOV  Multi-Res.

. fna 0:93 0:012 086 0:035
Low vs. high
fnT 0:86 0:036 084 0:036
Low vs. intermed. fna 0:72 0:037 Q67 0:049
fnT 0:68 0:.028 Q67 0:.074
f 0:71 0:.051 Q65 0:054
Intermed. vs. high NA
fnT 0:74 0:.036 Q066 0:075

Table 9.7: Area under the ROC curve (AUC) values for the compaison of low, inter-
mediate, and high grade cancers using both multi-FOV and muti-resolution classi ers.

FOV size Good vs. Poor Good vs. Intermed. Intermed. vs. Poor

Vascular density in IHC stained histopathology

1000 0.0288 0.2250 0.9042
500 0.0123 0.1011 1.0000
250 0.0129 0.2313 0.1101
Nuclear architecture in H & E stained histopathology

2000 0.0570 0.0666 1.0000
1000 0.0267 0.0066 0.1575
500 0.0429 0.0003 0.0657
250 <0.0001 <0.0001 0.0027

Table 9.8: Bonferroni-corrected p-values produced by two-sided t-tests with a null
hypothesis that classi cation results from the multi-FOV a pproach are equivalent to
results from individual FOV sizes from both IHC stained and H & E stained histopathol-
ogy slides. The alternative hypothesis asserts that the mul-FOV classi er performs
better than individual FOV sizes.

Good vs. Poor Good vs. Intermed. Intermed. vs. Poor

Accuracy (91 0:022 Q76 0:051 083 0:076
PPV 0:94 0:10 085 011 092 0:13

Table 9.9: Classi cation accuracies and positive predictve values (PPV) for comparing
good, intermediate, and poor Oncotype DX scores via the muitFOV framework using
a combination of vascular density and architectural features over 10 trials of 3-fold
cross-validation.
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Chapter 10

Concluding Remarks

In this thesis we have presented a QH-based companion diagstic framework contain-
ing tools for the quantitative prediction of disease outcorre in early stage, ER+ BCa
patients using only QH features extracted from whole-slideH & E stained DP images.

Speci ¢ goals accomplished in this work include:

"~ Color standardization of H & E stained DP images by accounting for di ering

proportions of tissue structures,

" Detection of tubule formation in ER+ BCa histopathology by using O'Callaghan
neighborhoods to enforce domain constraints between nudl@and lumen followed

by the de nition of tubule density as a QH descriptor,

" A robust multi-FOV framework for sampling and combining cl ass predictions

across FOVs at di erent sizes, and

" Robust method for predicting large-scale classi er performance and performing

classi er comparison studies using limited training data.

The following paragraphs detail the major ndings for each tasks considered in this
work.

First, we present a EM-based segmentation-driven standarization (EMS) algo-
rithms employs an independent and localized approach to ceoecting nonstandardness
that accounts for the varying proportions of di erent tissu e classes (e.g. epithelium,
stroma, nuclei) in H & E stained DP. EMS will enable the creation of more robust
object detection and segmentation methods, which are becoimg increasingly elaborate

and time-consuming in an e ort to account for the highly vari able appearance of tumor
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morphology in H & E stained DP. To this end, we performed a segrentation of nuclei

in H & E stained DP images simply by thresholding the intensity channel and showed
that images corrected by EMS vyield a more consistent segmeation result than both

unstandardized data and a more naive global standardizatia technique. An additional

benet of EMS over other approaches is its ability to operate on retrospective data
where information about staining process or scanning systas is unavailable.

Improved detection and segmentation of low-level tissue ojects (e.g. nuclei, lumen)
will allow for the identi cation of more complex histologic al structures such as glands
and lumen. In this work, we presented a method for the systenu incorporation of do-
main knowledge via the O'Callaghan neighborhood to identif tubules by constraining
the spatial relationship between two sets of low-level objets (nuclei and lumen). In ad-
dition, a novel feature set comprising 22 O'Callaghan neighorhood-based descriptors
was created to distinguish tubules from confounding structires in BCa DP images. The
accurate delineation of tubules led to the subsequent de rtion and extraction of tubule
density, a QH descriptor which was shown to be a good predictor of tuble subscore in
mBR grading.

The majority of QH features developed for histopathologicd imagery are designed
for operation on small FOVs. Instead of random or arbitrary sampling of FOVs from
whole-slide DP, we presented a multi-FOV framework that emgdoys a multitude of
FOVs at various FOV sizes, thus eliminating the need fora priori determination of
an optimal FOV size. The superiority of this method over classi cation at individual
FOV sizes was demonstrated both theoretically and experimetally in the context of
distinguishing low, intermediate, and high risk ER+ BCa pat ients. Furthermore, the
ability to incorporate feature selection into the mult-FOV framework allowed us to gain
deeper insight into the speci ¢ aspects of tumor morphologythat are related to patient
outcome. Additionally, we showed the extensibility of the multi-FOV framework to
include complementary information from other histopatholgical sources by creating a
fused predictor that combined: (1) nuclear architecture descriptors extracted from H &

E stained DP and (2) vascular density markers extracted fromCD34 |IHC-stained DP.
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The selection of an appropriate classi er for QH-based comanion diagnostics sys-
tems is crucial, especially in the context of clinical trials where the classi er must be
selecteda priori with the limited availability of training data. Existing ap proaches for
extrapolating classi er performance from small datasets b larger cohorts, e.g. repeated
random sampling (RRS), may su er from high variability due t o the heterogeneous na-
ture of biomedical imaging data. In this work, we presented @& extension to RRS that
was shown to increase the robustness (i.e. generalizabifi of predicted classi er per-
formance by using cross-validation sampling to ensure thatall samples are used for
both training and testing the classi ers. We were also able b demonstrate an exten-
sion of our approach to pixel- and voxel-level studies wherelata from both classes is
found within each patient study, a concept that has previoudy been unexplored in this

regard.
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Chapter 11

Future Work

The research presented in this thesis yields numerous pathfor future work. In the
context of the work presented in this thesis, the logical nex steps would involve evalu-
ation against a large cohort of ER+ breast cancer patients acompanied by long-term
survival data (i.e. true patient outcome).

More generally, the QH-based companion diagnostic systenof ER+ breast cancers
presented in this work can be augmented in a number of ways. Fanstance, the multi-
FOV framework currently operates on regions of invasive dutal carcinoma (IDC) as
identi ed by an expert pathologist. Another example is the detection of mitotic nuclei
(an important component of mBR grading) in H & E stained histo logy, a task which
has proven to be extremely challenging for computerized algrithms. Automating such
tasks would greatly enhance the accuracy, e ciency, and rolustness of personalized
diagnostics for breast cancer patients.

While the primary application of the multi-FOV framework is for the outcome
prediction of ER+ breast cancer patients, the methods devebped are generalizable
to other elds of interest that require a single class predidion to be achieved through
analysis of large heterogeneous images. In terms of DP, theainework can potentially
be extended to (1) tissue from any organ of interest and (2) ap number of staining
protocols or multispectral images containing prognostic nformation. Other potential
extensions to the multi-FOV framework include intelligently learning which FOV sizes
are more important for predicting patient outcome and weighting them appropriately.

On a larger scale, the relationship between quantitative inaging signatures extracted

from the analysis of histological and radiological imageryis currently being explored
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in the nascent eld of radiohistomorphometrics. In future work, correlating and in-
tegrating the salient QH features identi ed in this work wit h prognostically-relevant
radiological imaging signatures may yield new insights inb predicting disease outcome

and lead to improved personalized diagnostic solutions.
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Chapter 12
Appendices
Appendix A: Glossary of notation, symbols, and abbreviatio ns com-
monly used in this thesis
DP digital pathology
QH guantitative histomorphometry
CAD computer-aided diagnosis
BCa breast cancer
ER+ estrogen receptor-positive
LN- lymph node-negative
IDC invasive ductal carcinoma
mBR modi ed Bloom-Richardson (grading system)
ODX Oncotype DX (genomic assay)
RS (Oncotype DX) Recurrence Score
H&E hematoxylin and eosin (staining)
IHC immunohistochemical (staining)
FOV eld-of-view
ROC receiver operating characteristic (curve)
EM Expectation-Maximization
RGB red-green-blue (color space)
HSI hue-saturation-intensity (color space)
AUC area under the ROC curve
EMS EM-based standardization
GS global standardization

NMI normalized median intensity
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GAC geodesic active contour
CGAC color gradient-based geodesic active contour
DR dimensionality reduction
NLDR non-linear dimensionality reduction
MRI magnetic resonance imaging
MRS magnetic resonance spectroscopy

GE graph embedding

MRMR minimum redundancy maximum relevance (feature seledbn)

VG Voronoi graph

DT Delaunay triangulation (graph)
MST minimum spanning tree (graph)
RRS repeated random sampling
KNN k-nearest neighbor (classi er)

NB naive Bayes (classi er)
SVM Support Vector Machine (classi er)
LOO leave-one-out (cross-validation)
IQR interquartile range

Image scene

2D set of pixels inC

c Single pixel in C
g(c) Function assigning single color channel value tac
g(c) 2 R® Function assigning 3-dimensional color values (e.g. redrgen-blue) to c
Y(O Class label of sampleC
f Image feature for a sample

f Set of image features for a sample
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Appendix B: Description of three exemplar classi ers

This appendix comprises the three fundamentally di erent classi ers (k-nearest neigh-
bor (kNN), Naive Bayes (NB), and Support Vector Machine (SVM)) primarily used in

Chapter 7. For all methods described below, let us de ne a trining sampleA 2 A and
testing sampleB 2 B with corresponding feature setsF(A), F(B) and ground truth

labels Y (A), Y(B).

k-Nearest Neighbor Classi er

For each testing sample, thekNN classi er identi es the nearest training sample
A1 = argmin D(F(A); F(B)); (12.1)
A

where D( ; ) is a user-speci ed distance metric. This process is repeat until the k

for all k training samples.

Naive Bayes Classi er

The naive Bayes classi er is a simple approach to statistichinference that relies on
the application of Bayes' theorem under the assumptions th& (1) a su cient amount

of training data is available and (2) its constituent features are independent [41]. For
binary classi cation, let us de ne the likelihood of observing class! 1 given feature set

F as
P(! 1)p(Fj! 1) .
P(! )p(Fj' 1)+ P(! 2)p(Fj! 2)’

where P(! 1), P(! 2) are the prior probabilities of occurrence of the two classs, and

P(!41F) =

(12.2)

p(Fj! 1), p(Fj! 2) are the a priori class conditional distributions of F. Using all training
set samplesfA : A 2 A;Y(A) = !1gin class! 1, a priori distributions p(F;(A)j! 1)
are generated for each featurd; 2 F. Due to the relatively small amount of train-

ing data used in this work, kernel density estimation (KDE) is employed to ensure
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that each p(F;i(A)j! 1) is smooth and continuous [111]. Assuming independence be-
tween the features allows the distributions to be collapsedsuch that p(F(A)j! 1) =
Qi p(Fi(A)j! 1). The a priori probability p(F(A)j! 2) is similarly generated using sam-
plesfA : A 2 A;Y(A) = !,9. Testing sample B is said to be correctly classi-
ed if the maximum a posteriori decision is equal to the ground truth label, i.e.

Y(B) =argmax, 1 ,.1,4 P (! )p(F(B)j! ).

Support Vector Machine Classi er

The SVM classi er operates by projecting training data onto a higher-dimensional space
and constructing a hyperplane to maximize the distance beteen marginal samples in
the two object classes [112]. Evaluation is subsequently prmed by projecting a test-
ing sample into the same space and ascertaining its locatiorelative to the hyperplane.
In this paper, the projection is de ned by calculating the radial basis function (RBF)
kernel

( Ap;Ap) = e KF(AD) F(A2)KS (12.3)

between all pairs of training samplesA1;A, 2 A, where is a user-de ned scaling

parameter. The general form of the SVM prediction function is

X
(B)= Y(A)( B;A )+ b; (12.4)
=1
where A 2 A represents a marginal training sample (i.e. support vecto), b is the
hyperplane bias estimated over all support vectors, and s the slack variable that
governs the tradeo between minimizing training error and maximizing margin [112].
The output of the SVM classi er ( B) represents the distance from testing sampleB

to the hyperplane, which is determined to be classi ed corretly if Y(B) =sign[( B)].
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Appendix C: Manifold learning approach to strati cation of ER+ breast

cancers with good and poor outcomes

During the course of this thesis, a di erent type of QH-baseddecision support system
was considered for distinguishing patients with low vs. hidgn mBR grade and low vs.
high Oncotype DX RS. This system involves (1) manual selectin of a single represen-
tative FOV from a whole-slide H & E stained DP image, (2) detedion of individual
epithelial nuclei in the FOV, (3) extraction of graph-based QH features quantifying
nuclear architecture, (4) reduction of the feature space v& dimensionality reduction,
and (5) classi cation into either low or high RS classes. Whle this approach is e ective
for stratifying patients based on disease outcome, it was timately deemed unfeasible

for outcome prediction for the following reasons.

" Manual FOV selection : This system requires a single representative FOV to be

selected from the entire DP slide. This is undesirable for adrge-scale analysis
because it requires manual intervention and does not accouror heterogeneity in

the tumor morphology throughout the slide.

~ Dimensionality reduction : Unsupervised dimensionality reduction techniques can

reveal the underlying manifold of a data set; however, they & highly dependent
on the data used and their shape may change dramatically whemlata is either
added or removed. Additionally, the inability to ascertain exactly which features
are used to generate the low-dimensional manifold makes itictult gain an ap-

preciation of the biological process driving the changes inumor morphology.
Notation used in this appendix
Notation common throughout this thesis can be found in Apperdix A. Other symbols
used in this appendix are independent of the notation used irthe rest of the thesis.

Nuclear detection and graph-based features extraction

In this work, detection of individual nuclei is performed by rst dividing an image into

four tissue classes via the Expectation-Maximization (EM) algorithm (as described in
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@) (b) (©) (d)

Figure 12.1. (a) An ER+ BCa DP image shown along with correspanding (b) EM-
based segmentation of epithelial nuclei. (c) The segmentaén is subsequently smoothed
and (d) the centroids of individual nuclei are identi ed by m orphological and connected
component operations.

Section 3.2). The EM component that best represents epithel nuclei (Figure 12.1(b))
is selected manually and smoothed (Figure 12.1(c)) to redug intra-nuclear intensity
variations. Morphological and connected component operabns are then applied to
identify individual objects corresponding to nuclei and the corresponding set of nuclear
centroids is found for each image (Figure 12.1(d)).

Detected nuclear centroids are then used for the constructin of Delaunay triangu-
lation (Figure 12.2(b), (e)) and minimum spanning tree (Figure 12.2(c), (f)) graphs as
described in Sections 5.2.2 and 5.2.3, respectively. A toteof 12 features quantifying

nuclear architecture f (C) are extracted from each imageC as shown in Table 5.1.

Dimensionality reduction via graph embedding

We use graph embedding (GE) to transform the nuclear architeture feature set into a
low-dimensional embedding [30].

Given images G, and G,, a confusion matrix W(a;b) = exp( k f(G) f(G)ks) 2
RN N whereN is the total number of images, is rst constructed 8a;b2f 1;2;::::Ng.
The optimal embedding vector fis obtained from the maximization of the function,

" #
fI(A W )0

E(f)=2(N 1) trace :
(f9=2(N 1) N

P
where A(a;a) = ,W(a;b). The low-dimensional embedding space is de ned by the
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(a) (b) ()

(d) (e) )

Figure 12.2: (a), (d) Low and high grade ER+ BCa samples are shwn with corre-
sponding (b), (e) Delaunay triangulation and (c), (f) minim um spanning tree graphs
overlaid.

eigenvectors corresponding to the smallest eigenvalues of & W )f°= AfC Speci-
cally, reducing the high-dimensional feature space to a thee-dimensional (3D) sub-space
allows us to evaluate (both quantitatively and qualitative ly) the discriminability of the
image-derived features in distinguishing samples with dierent cancer grade patterns

and hence di erent prognoses.

Evaluation via a Support Machine Vector classi er in conjun ction with

randomized cross-validation

A support vector machine (SVM) classi er [112] is constructed as described in Ap-
pendix B (with the exception of using a linear kernel [41] raher than the RBF kernel).
Training and testing samples are selected via randomized -fold cross-validation al-
gorithm, whereby the dataset is divided randomly into K subsets. The samples from

K 1 subsets are used for training and the remaining subset is ed for evaluation.
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For each of theK folds, the subsets are rotate to ensure that each sample isadsi ed
once. The entire cross-validation scheme is repeated for Q0trials, over which mean

and standard deviation of classi cation accuracy are repoted.

Geodesic distance-based projection from 3D to 1D

The 3D GE manifold can be \unwrapped" into a 1D (linear) space simply by selecting
the image G at one end of the manifold as an anchor point and using the Euallean
distance metric to nd the next nearest image on the 3D manifdd. By using G, as the
new anchor point, this process is repeated until all images &ve been included. Thus
the geodesic distances between all imagégsembedded on the manifold are determined
and GE is again employed to project the data down to a 1D line. B uncovering
the grade (outcome) labels of the samples on this 1D projeabn and their relative
locations, an image-based recurrence score can be deterrathto distinguish between
low, intermediate, and high BCa grades (and hence outcomes)For any new image G,
projected onto this line, the relative distance of G, from poor, intermediate, and good

outcome samples on the trained manifold will enable predidbn of prognosis forG,.

Experimental results and discussion
Dataset

A total of 37 H & E stained breast histopathology images were ollected from a cohort
of 17 patients and scanned into a computer using a high resotion whole slide scanner
at 20x optical magni cation. Each image is accompanied by a orresponding Oncotype

DX Recurrence Score and mBR grade as determined by an expertaphologist.

Distinguishing low vs. high mBR grade

SVM classi ers trained via 100 trials of 3-fold cross-validation on the original f and re-
duced (3D) f°feature sets were able to distinguish high and low grade BCaiktopathol-
ogy images with classi cation accuracies of /5 0:06 and Q84 0:05, respectively

(Table 12.1). These results suggest that GE has embedded theriginal feature set
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Dataset Ground truth Automated Detection Manual Detection

{0 RS 084 0.03 a72 0:05
Grade 084 0:.05 086 0:05
¢ RS 085 0:03 a72 0:06
Grade 075 0:.06 085 0:05

Table 12.1: Mean and standard deviation of classi cation acuracy are reported across
100 trials of 3-fold cross-validation evaluating the abilty of the original f and low-

dimensionalffeature sets to distinguish between both Oncotype DX Recurence Score
(RS) and mBR grade labels. Results are presented for experiamts using both auto-

matically and manually delineated BCa nuclei.

without any signi cant loss of information. The success of the architectural features is
con rmed qualitatively by the clear separation between high and low BC grade on the

3D manifold (Figure 12.3(a)).

Distinguishing low vs. high Oncotype DX RS

Replacing the grade labels with the RS labels, the SVM traind via 3-fold cross-
validation on f and foyielded classi cation accuracies of 5 0:03 and 084 0:03,
respectively (Table 12.1). This suggests the existence of i@lationship between molecu-
lar prognostic assays such as Oncotype DX and the spatial aangement of histological
structures in BCa histopathology. The 3D manifolds in Figures 12.3(a), (b) reveal a
similar underlying biological strati cation that exists i n mBR grade and Oncotype DX
RS, in turn suggesting that the QH features employed to charaterize mBR grade could
recapitulate the prognostic capabilities of Oncotype DX. The curvilinear 3D manifold
on which the di erent BC grades (low to high) reside in a smooth continuum that may

potentially o er insight into BCa biology as well.

Creating an image-based assay using 1D projection

Figures 12.3(c), (d) represent the 1D projections of the 3D manifolds shown in Fig-
ures 12.3(a), (b), respectively. The manifolds reveal a smath, continuous progression
from low to medium to high levels in terms of both RS and histobgical (grade) for

all ER+ BCa samples considered. The similarity between the D manifolds (Figures
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Figure 12.3. Graph Embedding plots of architectural features show clear separation
of di erent (a) BC grades and (b) RS labels. The embeddings ae projected into a 1D
line, where (c) mBR grade and (d) RS are characterized by a sigle score.

12.3(c), (d)) suggest that our QH-based approach can be usetb generate a prognostic

assay to predict survival scores in much the same way as Onogie DX.
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