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ABSTRACT OF THE DISSERTATION

Online Non-rigid Motion and Scene Layer Segmentation

by Ali E. Elqursh

Dissertation Director: Ahmed Elgammal

In the past, different kinds of methods were devised to detect objects from videos.

Based on the assumption of stationary camera, the now ubiquitous background sub-

traction learns the appearance of the background and then subtracts it to segment the

scene. In practice such assumption is highly restrictive, and to handle moving cameras

other methods were devised. For instance, motion segmentation targets the segmen-

tation of different rigid motions in the video, while scene layer segmentation attempts

to find a segmentation of the scene into layers that are consistent in space and time.

Yet, such methods still suffers from other limitations such as the requirement of point

trajectories to span the entire frame sequence. On a different aspect, recent years have

witnessed a large increase in the proportion of videos coming from streaming sources

such as TV Broadcast, Internet video streaming, and streaming from mobile devices.

Unfortunately, most methods that process videos are mainly offline and with a high

computational complexity. Thus rendering them ineffective for processing videos from

streaming sources. This highlights the need for novel techniques that are online and ef-

ficient at the same time. In this dissertation, we first generalize motion segmentation by

showing that under a general perspective camera trajectories belonging to one moving

object form a low-dimensional manifold. Based on this, we devise two methods for on-

line nonrigid motion segmentation. The first method tries to explicitly reconstruct the
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low-dimensional manifolds and then cluster them. The second method attempts to di-

rectly separate the manifolds. We then show how motion segmentation and scene layer

segmentation can be combined in a single online framework that combines the strength

of both approaches. Finally, we propose two methods that assign figure- ground labels

to layers by combining several cues. Results show that our framework is effective in

detecting moving objects from videos captured by a moving camera.
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Chapter 1

Introduction

1.1 Overview

Detecting objects of interests is the first step in many computer vision tasks. For

example, one way to perform activity recognition is to first identify the actors in the

video and then extract the features needed to classify the activity. Yet, even with the

importance of such a step, a reliable way to detect objects from general cameras remains

elusive.

In this dissertation we address the problem of online motion and scene layer seg-

mentation. By online we mean that the result for the current frame must be available

immediately. By motion segmentation we mean that we want to segment the differently-

moving object from the scene and the background. By scene layer segmentation we

mean that we want to learn a layered representation of the differently-moving objects

such that any input frame can be composed from these learned layers.

We start by highlighting the similarities and differences between several related

computer vision problems such as motion segmentation, video segmentation, and back-

ground subtraction. We then follow with the challenges of detecting objects of interest

under realistic condition.

In computer vision there are several related yet different approaches to solve the

problem of detecting objects of interest from video. In a sense, all these approaches

attempt to achieve the same goal; that of detecting different entities in the scene.

However, such approaches vary drastically in their underlying assumptions.

1) Background Subtraction: Background subtraction is the gold standard in detect-

ing objects of interest when the camera is stationary. It is based on a simple idea; if
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one “learns” the appearance of the background, then for each input frame “subtract”

the learned background and what-ever remain are foreground objects. The simplicity

and effectiveness of this approach has led to it almost universal use in the surveillance

industry. Ironically, the key to its success - the assumption of stationary cameras - is

also its main limitation as a general object detection technique.

2) Motion Segmentation: Whereas objects can be composed of different parts with

different appearances, they typically move as a coherent region. Therefore, one can

argue, that by detecting differently moving objects in the scene one can easily detect

objects of interest in the scene. However, there exist several challenges. The observed

image motion is the result of the perspective projection of the 3D motion. Thus, the

straightforward approach of segmenting based on translational motion over two frames

typically leads to poor results. On the other hand, as will be seen in the related work

section, models using richer models, such as affine camera motion, can only segment a

very small subset of pixels; namely those that can be tracked through the entire frame

sequence. Furthermore, many methods make the assumption that objects are rigid, and

as a consequence over-segment articulated and non-rigid objects. For all those reasons,

motion segmentation is still an active area of research.

3) Video Segmentation: Rather than attempting to detect entire objects right away

one can relegate such a decision to a higher level process and attempt to find a mid-level

representation of the video. Video segmentation generalizes the idea of image segmen-

tation to the temporal domain. It attempts to find spatiotemporal regions that have

coherent motion and appearance. However, it is unclear how to use such a representa-

tion for detecting objects of interest in video.

4) Object detection: Learning models for specific objects and using these models in

detection is a standard computer vision practice. However, so far such models are object

specific and has to be learned from large corpora of pre-segmented/labeled images.

Furthermore, it is unclear how to use such detectors to detect and segment objects from

video streams. They also suffer in term of accuracy. For example, a recent evaluation

[32] on a challenging dataset showed that state of the art face detection algorithms could

only achieve 70% accuracy with more than 1 FPPI (false positive per image). Another
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recent evaluation [11] on state of the art pedestrian detection algorithms found that

such algorithms has a recall of no more than 60% for un-occluded pedestrians with

80 pixel height at a 1 FPPI (false positive per image). The performance degrades

significantly if the targets are smaller in size or occluded. This makes such algorithms

far from being useful in real-world applications.

Why detecting objects from video streams is challenging :

1) Offline vs Online: Most videos available nowadays come from video streams.

For example, TV broadcast, camera phones and cameras mounted on robots or cars.

Unfortunately, existing techniques are mostly offline. Attempts to run these techniques

online by using a sliding window approach suffers from limitations. First, there is no

way to guarantee that the result from one sliding window is consistent with the next

one. Second, the evidence for the decision at any instant comes from the information

in the current sliding window and any past information is lost.

In addition to the quantity of streamed videos, there exist a computational argument

in favor for online techniques. Most, if not all, offline techniques do not scale linearly

with the size of the video, and movie-long videos will typically take unfeasibly long

time to be processed. Furthermore, if at a future time, more data becomes available,

integrating this new data into the result requires re-running the process over the entire

video again. Thus, except for cases where videos are available offline and the detection

algorithm runs in linear time, an online method is necessary for the task of detecting

objects of interest in videos.

2) What is an Object: Another challenging question is to determine what is an

object. Although, this question may seem trivial at first, it is a far more challenging.

For example, a building may be composed of many smaller objects such as windows,

facades and doors. Or is a forest a single object? In many cases, the answer to this

question is pre-determined. For example, a car detector can only detect cars and

by using it we are implicitly restricting the kind of objects to be detected. Another

example is in background subtraction, where detected object must be moving against

a stationary background. In reality, however, we would like to segment “interesting”

objects since in practice, most videos contain one or two objects of interest at any single
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instant and it is much more efficient to identify and segment these objects.

It remains to define what an interesting object is. In existing literature, there are

several ways to do this:

a) Saliency: Saliency is a measure of how a part of the input contrast with the

rest. Saliency detection is considered to be a key attentional mechanism that facilitates

learning and survival by enabling organisms to focus their limited perceptual and cog-

nitive resources on the most pertinent subset of the available sensory data. A salient

object can be then defined as the one which covers the most salient regions. This idea

is exploited in Section 6.1 where saliency is combined with appearance and other cues

to segment the object.

b) Figure-Ground labeling of boundaries: The importance of boundaries can be

highlighted by realizing that cues such as occlusion can be observed only at boundaries.

Thus, several works have taken the path of labeling boundaries instead of regions as

figure or ground, e.g [42, 29, 52].

Both approaches suffer from limitations. While, saliency produces a measure at

each pixel, it is difficult to “cut-out” whole objects based on it. On the other hand,

figure-ground labeling at boundary typically discards cues that are region based such

as surroundedness and compactness.

3) Motion Segmentation: Early gestalt psychologists have identified common fate as

one of the most important cues that can be used for grouping features. This is evident

by the fact that due to physical constraints an object typically moves together. In

contrast, other cues such as appearance can vary within the same object. Therefore, an

effective motion segmentation technique is essential for achieving scene segmentation.

As will be seen in the related work chapter, models for motion segmentation exhibits

a natural trade-off between density and expressive power. While simple translational

model can be used to densely segment the scene, they are unable to capture the complex-

ity of perspective effects of projecting 3D motion into images or aggregate information

over multiple images. On the other hand, more flexible models, such as affine motion

models, can be only applied to trajectories, and thus provide segmentation information

over a very small subset of the pixels. Solving this challenge is key for achieving scene
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segmentation. In our work we propose using a combination of a sparse motion segmen-

tation to aggregate information over multiple frames and a dense scene segmentation

framework that propagates the motion information over the entire set of pixels.

In this dissertation we present a method for motion segmentation based on the

idea that motion trajectories lies on a low-dimensional manifold. We then show how

we can use multiple cues to assign figure/ground labels to the different motion seg-

ments. Finally, we show how we can learn a layered representation of the scene and

simultaneously segment the input frames into two layers in an online framework.

1.2 Proposed Framework

Our proposed framework is depicted in Figure 1.1. Starting from input frames taken

one frame at a time, point features are detected and tracked over multiple frames to

form trajectories. Such trajectories implicitly encode the long term motion information.

These trajectories are fed to the online motion segmentation module to segment the

trajectories into separate motion clusters. A figure/ground labeling step is used to

find the optimal assignment of figure/ground labels to each motion cluster. This is

achieve by combining several cues such as compactness, and surroundedness. Finally, a

scene layer segmentation module uses the input labeled trajectories to simultaneously

maintain appearance models for the layers and generate a segmentation of each frame.

The next three sections provide a brief introduction to the three main components

in our framework. Namely, online motion segmentation to segment different motions

in the scene, figure-ground labeling to label the different motions as belonging to figure

or ground, and scene layer segmentation to learn the appearance of the different layers

and compute the segmentation of the scene.

1.3 Online Motion Segmentation

Since the early 20th century, gestalt psychologist have identified common fate as one

of the most important cues for dynamic scene understanding. In the field of Computer

Vision, this is reflected by the vast amount of literature on motion segmentation, video
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Figure 1.1: Proposed Framework

segmentation, and tracking. Specifically, motion segmentation deals with the problem

of segmenting feature trajectories according to different motions in the scene, and is an

essential step to achieve object segmentation and scene understanding.

Recent years have witnessed a large increase in the proportion of videos coming

from streaming sources such as TV Broadcast, Internet video streaming, and streaming

from mobile devices. Unfortunately, most motion segmentation techniques are mainly

offline and with a high computational complexity. Thus rendering them ineffective for

processing videos from streaming sources. This highlights the need for novel online

motion segmentation techniques.

There exist a plethora of applications that would benefit from online motion seg-

mentation. For example, currently activity recognition is either restricted to videos

captured from stationary cameras (where existing background subtraction techniques

can be used to segment the different actors [58]), or restricted to process videos offline

using motion segmentation techniques. This is complicated even further if, after pro-

cessing, more data becomes available, with the only solution typically being to reprocess

the entire video from the beginning.
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Another domain that would benefit from online motion segmentation is that of 3D

TV processing. A real-time motion segmentation would enable performing 2D-to-3D

conversion and video re-targeting on the fly on viewers devices. Other applications

include online detection and segmentation of moving targets, and visual surveillance

from mobile platforms to name a few.

As will be demonstrated in the related work chapter, most offline motion segmen-

tation methods suffer from two problems. First, by formulating the problem as that

of factorizing a trajectory matrix has led many approaches to assume that trajectories

span the entire frame sequence. To handle the case where parts of trajectories are

missing, such approaches borrow ideas from matrix completion. However, this is only

successful up to a limit, since it assumes that at least there exist some trajectories that

span the entire frame sequences. Second, the affine camera assumption restricts the

applicability of motion segmentation to those videos where the assumption is satisfied.

For example, this is typically true when the depth of the scene is small but not other-

wise. To overcome the later problem, we assume a general perspective camera instead

of an affine camera. On the other hand, to overcome the former problem, we measure

the similarity between trajectories using a metric that depends only on the overlapping

frames.

1.4 Figure-Ground Labeling

We see the world as a 2D projection of many 3D objects on the retina. Gestalt psychol-

ogists observed that we tend to organize this clutter through a process of figure–ground

segregation—i.e., by identifying those regions of the retinal images that are object-

related (figures) for further processing, and relegating other regions to the background

[13]. They identified many factors which play a role in identifying which regions are

figure or ground. Examples of such factors include continuity, convexity, symmetry,

parallelism, surroundedness, and common fate to name a few.
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Although there is evidence that high-level object understanding can influence figure-

ground labeling, most studies have concluded that figure-ground labeling precedes high-

level processing (e.g[40, 12]). In addition, neurological evidence suggests that motion

cues plays an important role in figure-ground labeling[28]. Inspired by this evidence, it

seems promising to devise a method that combines low-level and mid-level cues from

appearance and motion to achieve figure-ground labeling from video.

Due to the importance of figure-ground labeling in perceiving important aspects of

the visual input, there exist a large literature of work on figure-ground organization. On

single images, [43] proposes a shapemes descriptor to evaluate the probability of labeling

a contour as belonging to figure-ground. Conditional random fields CRF are then used

to infer global figure-ground assignments. [42] extends this work to integrate several

low-level, mid-level, and high level cues in a single CRF formulation. However, there

is no clear way to generalize such methods to video input. [52] proposes using motion

cues along with appearance cues to detect occlusion boundaries. Although, figure-

ground assignment of boundaries are used, such assignment do not enforce consistency

or completion. In contrast, we assign labels to video segments rather than boundaries

thus producing results that are always consistent. Recently, [44] proposes figure-ground

labeling for egocentric videos which is a special case of our problem.

There also exist a large literature on video segmentation and motion segmentation.

The figure-ground labeling we address is different since video segmentation and motion

segmentation attempts to segment regions that are homogeneous in color and/or motion

with no notion of what is an object, figure, or ground. Similarly, the emphasis of video

object segmentation is to segment out all objects without labeling them as figure or

ground.

Recently there have been several attempts to extend traditional background sub-

traction to the moving camera settings. [48] uses orthographic motion segmentation

over a sliding window to segment a set of trajectories. This is followed by sparse per

frame appearance modeling to densely segment images. In [39], an iterative method is

proposed that maintains block based appearance models in a Bayesian filtering frame-

work. Since such methods typically use dominant motion or occlusion cues to determine
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Figure 1.2: Automatic figure-ground labeling from video.

what is foreground and background, they do not always match our expectations about

what is figure or ground.

1.5 Online Scene Layer Segmentation

One may argue that the ultimate goal of computer vision is to learn and perceive

the environment in the same way children learn. Without access to pre-segmented

visual input, infants learn how to segment objects from background using low level

cues. Inspired by this evidence, significant effort in the computer vision community has

focused on bottom up segmentation of images and videos. This has become ever more

important with the proliferation of videos captured by moving cameras.

Our goal is to develop an algorithm for foreground/background segmentation from

freely moving camera in a online framework that is able to deal with arbitrary long

sequences. Traditional video segmentation comes in different flavors depending on the

application, but falls short of achieving this goal. In background subtraction, moving

foreground objects are segmented by learning a model of the background with the

assumption of a static scene and camera. Motion segmentation methods attempt to

segment sparse point trajectories based on coherency of motion. However, they lack

a model of the appearance of foreground or background. Video object segmentation

attempts to segment an object of interest from the video with no model of the scene

background. On the other hand, there are several segmentation techniques that attempt

to extend traditional image segmentation to the temporal domain. Such techniques are
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typically limited to segmenting a short window of time.

It is frequently the case that low-level cues may be ambiguous if one only considers

a short window of frames. Existing approaches either ignore this problem or resort

to processing the whole video offline. Offline methods can typically produce good

results on short sequences but the complexity increases rapidly as more frames need

to be processed. The key to solving this problem is to recognize that to handle long

sequences in an online way one has to learn and maintain models for the background

and foreground regions. Such models serve the purpose of compactly accumulating the

evidence over a large number frames and are essential for high level vision tasks.

1.6 Contributions

In this section we highlight the key contributions of the dissertation

1.6.1 Motion Segmentation as Manifold Separation

The first contribution of this dissertation is that we provide a simple proof for why

trajectories belonging to a rigid object form a manifold of dimension three. This gen-

eralizes the problem of affine motion segmentation from subspace separation (linear

manifold segmentation) to that of (general) manifold segmentation. It also explains

why previous approaches using spectral clustering methods produced superior results

while using simpler models.

1.6.2 Manifold Separation

After showing that the motion segmentation can be cast as a manifold separation prob-

lem, we need to devise a method for manifold separation. Unlike, subspace separation

where one can exploit the geometric constraint for motion segmentation under affine

camera assumption, separating manifolds is a much more challenging problem. Our

second contribution is to devise two different methods for manifold separation. In

the first, we explicitly reconstruct the manifolds in a low-dimensional space and then

segment them in that space. In the second we use label propagation to segment the
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manifolds without explicitly reconstructing them. Both methods are formulated as an

online framework.

1.6.3 Figure Ground Labeling using Multiple Cues

We propose two different methods for figure-ground labeling. In the first, we show how

combining saliency with other cues that discriminate between layers can be used to

segment a video into figure and ground. In the second method, we combine several

cues in a single energy function. In addition to cues that discriminate between layers,

cues such as surroundedness and compactness help to find the optimal assignment of

figure-ground labels. This method is used within our online scene layer segmentation

framework to achieve segmentation of the scene into foreground and background layers.

1.6.4 Dynamic Bayesian Model for Scene Layer Segmentation

Most motion segmentation methods produce a segmentation of the point trajectories.

Thus, segmentation information at the pixel level is mostly nonexistent. Furthermore,

there exist no model of how the different objects of the scene looks like. In chapter 6.3,

we propose a dynamic Bayesian model for scene layer segmentation. At each frame,

we maintain appearance models for the individual layers and simultaneously generate

a segmentation of each frame.

1.6.5 Online Moving Camera Background Subtraction

We propose a novel online method that learns appearance and motion models of the

scene (background and foreground) and produces segmentations of video frames. It

uses long term point trajectories, and thus is able to accumulate information over

long sequences of frames, while at the same time performs a constant computation per

frame. To achieve this, we describe a method to automatically update a low-dimensional

representation of these trajectories and incrementally update a set of clusters in a novel

coordinate free way. Rather than producing a single segmentation as an output, it uses

Bayesian filtering to maintain a belief over different labellings, and appearances of the

background and foreground. This enables our approach to recover from errors. By
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Figure 1.3: Left:(a) Automatic segmentation obtained on long sequence with fast artic-

ulated motion. Our method is able to segment the tennis ball even when no trajectories

exist on it. Right: (c) One sample from the background pixel based appearance model

learned automatically.

combining long term sparse trajectories and dense models of motion and appearance,

our method is able to achieve superior results to the state of the art. We also devised

an automatic method to determine foreground background labeling based on multiple

static and dynamic cues.

1.7 Advantages

Our method has several advantages over existing approaches. It processes frames on-

line and thus can easily handle arbitrary long videos. The use of long term trajectories

allows it to accumulate long term motion information and prevents merging of objects

that were known to move differently. Unlike affine motion segmentation, we accomplish

this without assuming an affine camera model, thus enabling automatic segmentation

of articulated and non-rigid motion. Our approach is able to handle multiple moving

objects and maintain motion and appearance models. Such models enable our approach

to learn the appearance of the foreground and background even if they are partially

occluded. For example, Fig 1.3 shows a frame of a tennis sequence and the correspond-

ing background model learned. Notice, that we are able to detect the tennis ball even

when there are no trajectories on it. Finally, our appearance models can be used by a

higher level reasoning framework to learn richer models of objects.
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1.8 Outline

Chapter 2. introduces some background materials that are used in the rest of the the-

sis. This includes Laplacian Eigenmaps for dimensionality reduction, a semi-supervised

learning method called label propagation, and graph-cuts for energy minimization.

Chapter 3. covers the related literature in the areas of video segmentation, motion

segmentation and layered scene segmentation. The traditional formulation of motion

segmentation is introduced and its limitations are discussed. In chapter. 4, we show

how the motion segmentation problem can be formulated as a manifold segmentation

problem. The challenges are introduced and we show how existing literature address

them. Chapter 5 then follows with two methods for online motion segmentation based

on manifold separation. Chapter 6, demonstrates how multiple cues can be combined to

achieve figure/ground labeling of video segments and our dynamic Bayesian model for

scene layer segmentation. Experimental results for motion segmentation, figure-ground

labeling and the entire framework is presented next in chapter 7. Finally, conclusions

are presented in chapter 8.
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Chapter 2

Background

2.1 Manifold Learning

In many areas of artificial intelligence, information retrieval, and data mining, one is

often confronted with intrinsically low-dimensional data lying in a very high-dimensional

space. Consider, for example, gray-scale images of an object taken under fixed lighting

conditions with a moving camera. Each such image would typically be represented

by a brightness value at each pixel. If there were n2 pixels in all (corresponding to

an n×n image), then each image yields a data point in Rn2 . However, the intrinsic

dimensionality of the space of all images of the same object depends on the number of

degrees of freedom of the camera. In this case, the space under consideration has the

natural structure of a low-dimensional manifold embedded in Rn2 .

There are two kinds of low-dimensional structures that can be discovered; linear and

non-linear. As can be seen in Figure. 2.1, a linear structure implies that the data lies

on a low-dimensional subspace (linear manifold) while a non-linear structure implies

that the data lies on a non-linear manifold.

Learning the manifold implies discovering the low-dimensional structure and is

therefore known also as dimensionality reduction. More formally, given k points x1,x2, . . . ,xk ∈

RR, find points y1,y2, . . . ,yk ∈ Rr , where r << R. Under certain geometric constraints

that preserves the topology of the data.

2.2 Laplacian Eigenmaps Dimensionality Reduction

Over the past, several non-linear dimensional reduction (NLDR) techniques has been in-

troduced e.g. Generalized Multidimensional Scaling[6], Local Linear Embedding (LLE)
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Figure 2.1: Left: Linear structure where data lies on a low dimensional subspace. Right:

Non-Linear structure where the data lies on a low dimensional manifold.

[47], Isometric feature mapping (ISOMAP) [54], and Laplacian Eigenmaps [2].

Given k points x1, . . . , xk in Rr,we construct a weighted graph with k nodes, one

for each point, and a set of edges connecting neighboring points. The embedding map

is now provided by computing the eigenvectors of the graph Laplacian. The algorithmic

procedure is formally stated below.

Step 1 (constructing the adjacency graph). We put an edge between nodes i and j

if xi and xj are “close.” There are two variations:

1. ε-neighborhoods (parameter ε ∈ R ). Nodes i and j are connected by an edge if

‖ xi−xj ‖2< ε where the norm is the usual Euclidean norm in Rl. Advantages:

Geometrically motivated, the relationship is naturally symmetric. Disadvantages:

Often leads to graphs with several connected components, difficult to choose ε.

2. n nearest neighbors (parameter n ∈ N). Nodes i and j are connected by an edge

if i is among n nearest neighbors of j or j is among n nearest neighbors of i. Note

that this relation is symmetric. Advantages: Easier to choose; does not tend to

lead to disconnected graphs. Disadvantages: Less geometrically intuitive.

In the second step, the weights for the edges are computed. This is typically done by

using the heat kernelWij = e−
1
λ
‖xi−xj‖2 if xi is connected to xj , andWij = 0 otherwise.
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Finally for each connected component of the graph, we compute the eigenvalues and

eigenvectors of the generalized eigenvalue problem.

Lf = λDf ,

where D is the diagonal matrix with Dii =
∑
jWij , and L = D −W is the Laplacian

matrix. Let m0, . . . mr be the eigenvectors corresponding to the r + 1 smallest eigen-

values, where r << R . By dropping the smallest eigen vectors, the coordinates of the

ith data point in the low-dimensional space yi is defined by the ith entries of eigen

vectors m1, . . . md.

yi = [m(i)
1 m

(i)
2 . . . m(i)

r ].

2.3 Label Propagation

Label propagation is a semi-supervised learning method. In semi-supervised learning

we have many data points x1, . . . , xn and a few labeled points. This is in contrast to

supervised learning where all the training points have labels. The problem in semi-

supervised learning is how to classify unseen points given the labeled examples and

unlabeled examples.

The core assumption in label propagation is the smoothness assumption. It implies

that if a point x1, is near x2 then the label (cluster) y1 of x1is expected to be similar to

the label y2 of x2. Given a graph G and a weight matrix W such that Wij is the weight

of the edge between nodes i and j, a simple idea for semi-supervised learning is to

propagate labels on the graph. Starting with nodes 1, 2, . . . , l labeled, each node starts

to propagate its label to its neighbors, and the process is repeated until convergence.

The goal is to find a labeling of the nodes that is consistent with both the initial partial

labeling and the geometry of the data induced by the graph structure.

Formally, let Yl denotes the labels for the labeled nodes. Furthermore, let Ŷ =

(Ŷl, Ŷu) denotes the estimated node labels, with Ŷl, and Ŷu corresponding to the la-

beled and unlabeled nodes respectively. Yl and Ŷ are encoded using a one-hot encoding

such that each row of Y is a vector with 1 at the location corresponding to the label

of the node and zero otherwise. A general labeling cost function that is used in label
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propagation is

C(Ŷ) =
∥∥∥Ŷl −Yl

∥∥∥2
+ µŶTLŶ + µε

∥∥∥Ŷ∥∥∥2
,

where L = D −W, Dii =
∑
i,i 6=jWij denotes the graph Laplacian. The first term in

the cost function encourages the consistency with the initial labeling. The second term

encourages consistency with the graph structure. It can be shown that the second term

can be rewritten as ŶTLŶ = 1
2
∑
i,jWi,j(ŷi − ŷj)2. The last term is a regularization

term to prevent degenerate situations, for instance, when the graph G has a connected

component with no labeled sample. µ and ε are two constants that control the relative

importance of the terms. In the limit case when µ → 0, matching the old labels is

enforced Ŷl = Yl and ŶTLŶ is minimized.

Several algorithms that minimize variations of the cost function has been proposed

[68, 69]. However, we are interested in an algorithm with a probabilistic interpretation.

Specifically, [69] presents an algorithm that uses Markov random walks on the graph

with transition probabilities from i to j defined by,

pij = Wij∑
kWik

,

in order to estimate probabilities of class labels. In a matrix form P = D−1W, where

Dii =
∑
j,j 6=iWij . Given the partition of the nodes into labeled and unlabeled nodes,

the matrix P can be written in matrix form as

P =

Pll Plu

Pul Puu

 .
The algorithm then works as follows: it assigns to a node xi the probability of arriving

to a positively labeled example, when performing a random walk starting from xi and

until a label is found. This probability can be written as

P (yend = 1|i) =
n∑
j=1

P (yend = 1|j)pij .

In matrix form this can be written as

Yu = (Pul|Puu)

Yl

Yu
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which implies

Yu = (I−Puu)−1PulYl.

Here we abuse the notation and let yi denote the probability vector instead of the actual

inferred label. The label for a node zi can be then obtained by D

zi = argmaxj yij .

2.4 Graph cuts for Energy Minimization

Many computer vision problems can be formulated as the minimization of an energy

function which has both unary and pairwise terms. Typically, the unary term cap-

tures the evidence at different locations. The pairwise smoothness term captures the

interaction between neighboring locations. The major difficulty with the minimization

of energy functions lies in the enormous computational cost. Typically these energy

functions have many local minima (i.e they are non-convex). However, under certain

constraints on the energy function Graph cuts is a technique that can be used to mini-

mize them [5, 4, 3].

Suppose G = (V, E) is a directed graph with V denoting the set of vertices and E the

set of edges. Further more, assume that the graph has non-negative edge weights that

has two special vertices (terminals), namely the source and the sink which are denoted

by s, and t respectively. A s− t cut or simply a cut is a partition of the nodes into two

sets S, T . The cost of the cut is the sum of the weights of all the edges (p, q) such that

p ∈ S and q ∈ T .

c(S, T ) =
∑

p∈S,q∈T
w(p, q).

The min-cut is then defined as the cut that minimizes the cut cost above. A key result

of combinatorial optimization is that finding the min-cut is equivalent to finding the

maximum flow from the source s to the sink t. The maximum flow is the maximum

“amount of water” that can be sent from the source to the sink by interpreting graph

edges as directed “pipes” with capacities equal to edge weights. The theorem of Ford

and Fulkerson [21] states that a maximum flow from s to t saturates a set of edges in

the graph dividing the nodes into two disjoint parts S; T corresponding to a minimum
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cut. Thus, min-cut and max-flow problems are equivalent. In fact, the maximum flow

value is equal to the cost of the minimum cut.

Let us describe the set of functions that can be minimized using graph cuts. Let

{x1, . . . , xn}, xi ∈ {0, 1} be a set of binary-valued variables. Define the class F2 to be

functions that can be written as a sum of functions of up to two binary variables at a

time,

E(x1, . . . , xn) =
∑
i

Ei(xi) +
∑
i<j

Ei,j(xi, xj)

Define the class F3 to be functions that can be written as a sum of functions of up to

three binary variables at a time,

E(x1, . . . , xn) =
∑
i

Ei(xi) +
∑
i<j

Ei,j(xi, xj) +
∑
i<j<k

Ei,j,k(xi, xj , xk)

Kolmogorov et al. [37], shows that a necessary and sufficient condition to be able to

minimize function in F2 is that it satisfies the regularity condition. i.e.

Ei,j(0, 0) + Ei,j(1, 1) ≤ Ei,j(0, 1) + Ei,j(1, 0).

Furthermore, a function E in F3 is regular if all projections of E of two variables are

regular.

In summary, graph cuts gives us a polynomial time algorithm to minimize energy

functions when they satisfy the regularity condition. There are many applications of

graph cuts in computer vision. In our work, we use graph cuts in Section 6 to find the

optimal solution for the figure ground labeling problem in the offline setting. We also

use it again in section 6.3to achieve continuous initialization of our online scene layer

segmentation.
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Chapter 3

Related Work

Due to the importance of video segmentation as a preprocessing step for many vision

applications, there exist a large literature on the topic. In the most general setting

video segmentation encompasses all methods that produce a segmentation of the video.

However, in the Computer Vision literature, many problems can be classified as a special

case of video segmentation. For example, background subtraction refers to segmenting

the video when the video is captured from a stationary camera. On the other hand,

scene layer segmentation attempts to learn a set of layers with an explicit ordering such

that each video frame can be re-composed from these layers.

3.1 Motion Segmentation

Motion segmentation refers to the problem of segmenting a video based on motion. It

comes in different flavors depending on what is begin segmented and what cues are used

to achieve the segmentation. First, there are approaches that segment a set of extracted

point trajectories using motion information alone. We refer to these as sparse motion

segmentation algorithms since they only use the motion information at sparse locations

to segment them (Not to be confused with algorithms that use sparsity). Second, there

are algorithms that segment the entire set of pixels based on motion information in

addition to static cues such as color or texture to produce the segmentation. Finally,

there are hybrid algorithms that either use sparse motion segmentation with static

cues or dense motion segmentation using only motion. Table 1. organizes the different

groups based on density and cues. In this dissertation, unless otherwise noted, we take

the term motion segmentation to refer to sparse motion segmentation.

Many approaches for motion segmentation are based on the fact that trajectories
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Figure 3.1: Flavors of Motion Segmentation

generated from rigid motion and under affine projection spans a 4-dimensional subspace.

First introduced by [55], this geometric constraint has been used extensively especially

in the case of independent motion. Most notably in [9], the problem is reduced to sorting

of a matrix called shape interaction matrix with entries that represent the likelihood of

a pair of trajectories belonging to the same object. In [36] the problem is reformulated

as an instance of subspace separation, making the connection explicit.

Approaches to motion segmentation (and similarly subspace separation) can be

roughly divided into four categories: statistical, factorization-based, algebraic, and

spectral clustering. Statistical methods alternate between assigning points to subspaces

and re-estimating the subspaces. For example, in [26] the Expectation-Maximization

(EM) algorithm was used to tackle the clustering problem. Robust statistical methods,

such as RANSAC [20], repeatedly fits an affine subspace to randomly sampled trajec-

tories and measures the consensus with the remaining trajectories. The trajectories

belonging to the subspace with the largest number of inliers are then removed and the

procedure is repeated.

Factorization-based methods such as [55, 36, 30] attempt to directly factorize a

matrix of trajectories. These methods work well when the motions are independent.

However, it is frequently the case that multiple rigid motions are dependent, such as

in articulated motion. This has motivated the development of algorithms that han-

dle dependent motion. Algebraic methods, such as GPCA [59] are generic subspace

separation algorithms. They do not put assumptions on the relative orientation and

dimensionality of motion subspaces. However, their complexity grows exponentially
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with the number of motions and the dimensionality of the ambient space.

Spectral clustering-based methods [67, 7, 41], use local information around the tra-

jectories to compute a similarity matrix. It then use spectral clustering to cluster the

trajectories into different subspaces. One such example is the approach by Yan et al.

[67], where neighbors around each trajectory are used to fit a subspace. An affinity

matrix is then built by measuring the angles between subspaces. Spectral clustering is

then used to cluster the trajectories. Similarly, sparse subspace clustering [16] builds an

affinity matrix by representing each trajectory as a sparse combination of all other tra-

jectories and then applies spectral clustering on the resulting affinity matrix. Spectral

clustering methods represent the state-of-the-art in motion segmentation. We believe

this can be explained because the trajectories do not exactly form a linear subspace.

Instead, such trajectories fall on a non-linear manifold.

With the realization of accurate trackers for dense long term trajectories such as

[46, 53] there have been great interest in exploiting dense long term trajectories in

motion segmentation. In particular, Brox et al. [7] achieves motion segmentation by

creating an affinity matrix capturing similarity in translational motion across all pairs of

trajectories. Spectral clustering is then used to over-segment the set of trajectories. A

final grouping step then achieves motion segmentation. More recently, Fragkiadaki et al.

[23] proposes a two step process that first uses trajectory saliency to segment foreground

trajectories. This is followed by a two-stage spectral clustering of an affinity matrix

computed over figure trajectories. The success of such approaches can be attributed in

part to the large number of trajectories available. Such trajectories help capture the

manifold structure empirically in the spectral clustering framework.

Our approach is also based on building an affinity matrix between all pairs of tra-

jectories, however we process frames online and do not rely on spectral clustering.

Deviating from the spectral clustering, is the idea of using non-linear dimensionality

reduction (NLDR) techniques followed by clustering to achieve motion segmentation

[24].
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3.1.1 Layered Motion Segmentation

Layered Motion Segmentation refers to approaches that model the scene as a set of

moving layers [60]. Layers have a depth ordering, which together with mattes and

motion parameters models how an image is generated. Let nl denote the number of

layers, the ith layer can be characterized by an appearance Ai and optionally a matte

Li. To generate a frame at time t, the appearance of the ith layer is first transformed

according to the transformation parameters M t
i using f(Ai, Li,M t

i ). The transformed

appearances are then overlaid in the order specified by the depth of each layer di.

Different variations are possible using different parameterizations of the variables or by

including additional variables that describe, for example, lighting effects at each frame.

maps

It is obvious that if one knowns the assignment of pixels to different segments, it

is trivial to estimate the appearance and transformation parameters. Similarly, if one

knows the appearance and transformation parameters it is easy to assign pixels to

segments. Since initially we know neither of them, this is an instance of a chicken-and-

egg problem.

Wang et al. [60] used an iterative method to achieve layered motion segmentation.

For every pair of frames they initialize using a set of motion models computed from

square patches from the optical flow. Next, they iterate between assigning pixels to mo-

tion models and refining the motion models. This process is repeated until the number

of pixel reassignments is less than a threshold or a maximum number of iterations is

reached. Using the support maps for each segment, all pixels belonging to one segment

are wrapped into a reference frame and combined using median filter. A final counting

step is used to establish depth ordering based on the assumption that occluded pixels

appear in fewer frames.

Originally used for optical flow [33], mixture models were also used to probabilis-

tically model the image generation process. Weiss et al. [63] used Expectation Maxi-

mization (EM) algorithm to update the model parameters. In the E-step, the system

updates the conditional expectation of Li given the fixed parameters. This is done by



24

computing the residual of observed measurement and the predicted appearance given

the motion parameters M t
i . In the M-step, the model parameters Ai, M t

i are updated

based on these “soft” assignments. To incorporate spatial constraints in the mixture

model, two methods were proposed. In the first, the images are pre-segmented based on

static cues, and assignment in the E-step is based on the residual of all the pixels in each

segment. In the second, a MRF prior is imposed on the labels Li. The motion model

of ith layer is represented by the six parameters of an affine transformation. Although

the approach reasons about occlusions by assigning pixels to the correct model, it does

not infer the depth ordering of different layers. Torr et al.[56] extend the approach

by modeling the layers as planes in 3D and integrating priors in a Bayesian frame-

work. Both approaches rely on a key frame for estimation, and therefore can handle

a few number of frames. Flexible sprites [34] are another variation of layered motion

segmentation where transformations are restricted to a discrete set of predetermined

transformations. A Gaussian model for pixel-wise appearance and mattes is used. A

variational optimization is then used to learn the parameters of the probabilistic model.

Most of these approaches either uses expectation-maximization or variational inference

to learn the model parameters.

Wills et al. [65], noted the importance of spatial continuity prior for learning lay-

ered models. Given an initial estimate, they learn the shape of the regions using the

α-expansion algorithm [5], which guarantees a strong local minima. However, their

method does not deal with multiple frames. Kumar et al. [38] proposes a method

that models spatial continuity, while representing each layer as composed of a set of

segments. Each segment is allowed to transform separately thus enabling the method

to handle nonrigid objects by segmenting them into multiple segments distributed over

multiple layers. This flexibility comes at the expense of a less semantically meaningful

representation.

A common theme of most layered models is the assumption that the video is available

before hand. Such assumption prevents the use of such approaches for processing videos

from streaming sources. In addition, typically the computational complexity increases

exponentially with the length of the videos. In contrast, in our work we propose a
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method that learns layered models in an online framework.

3.2 Background Subtraction

The problem of segmenting videos captured by a stationary camera into a static back-

ground and moving foreground objects became known as background subtraction. The

term evolved from the traditional way to solve the problem; after learning the appear-

ance of the background, the background is subtracted from the input image to highlight

moving objects.

Traditionally, background subtraction methods [66, 51, 14] attempt to achieve fore-

ground segmentation by assuming that any motion in the video data is due to moving

objects. In [50], a Gaussian mixture model is used to learn the appearance of each

background pixel. Given enough samples for each pixel, the parameters for the mix-

ture model can be learned using a variant of Expectation-Maximization. To be able to

update the model online, a variation of online K-means is used. Elgammal et al. [15]

uses kernel density estimation (KDE) to model the appearance of the background.

The success of these algorithms has led to their ubiquitous use in surveillance sys-

tems, where the assumption of a stationary camera is always satisfied. Due to the

assumption of a stationary camera, this severely limits their use in videos shot by a

moving camera. Several attempts to relax this assumption have led to methods that

compensate for the motion of the camera [31, 45]. These methods use a homography

or a 2D affine transform to compensate for the motion. This allows them to handle

scenes that can be approximated by a plane or when the camera rotates but does not

translate.

3.3 Moving Camera Background Subtraction

More recently, there has been several attempts to extend background subtraction tech-

niques to the moving camera case. This setting is more challenging for several reasons.

First, as the camera is moving, the background is no longer stationary in the image
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frame and per-pixel appearance models are not applicable any more. Second, the tradi-

tional definition of foreground as moving objects no longer apply. Finally, background

regions with large depth variation may be self occluding and regions of the background

may appear and disappear as the camera moves.

Sheikh et al. [48] use orthographic motion segmentation over a sliding window to

segment a set of trajectories. This is followed by sparse per frame appearance modeling

to densely segment images. The use of orthographic motion segmentation means that

motion information outside the sliding window is lost and the sparse appearance model-

ing fails to capture object boundaries when appearance information is ambiguous. Due

to the dependence on long term trajectories only, regions with no trajectories may be

disregarded as background altogether. Finally, the method fails if the assumption of

orthographic projection is not satisfied. In [39], a method is proposed that maintains

block based appearance models in a Bayesian framework. To update the appearance

models, the method iterates between estimating the motion of the blocks and inferring

the labels of the pixels. Once converged, the appearance models are used as priors for

the next frame and the process continues. Due to the iterative nature of the approach,

the method is susceptible to reach a local minimum. Although motion information

between successive frames is estimated, it is only used to estimate the labels in the

current frame and does not carry on to future frames. In contrast, we maintain motion

information via long term trajectory and maintain a belief over different labellings in a

Bayesian filtering framework.

3.4 Video Segmentation

Image segmentation aims to group perceptually similar pixels into regions. Video seg-

mentation generalizes this concept, and attempts to group pixels into spatiotemporal

regions that exhibit coherence in both appearance and motion.

It is important to note the distinction between object segmentation and video seg-

mentation. In practice, one can identify objects that moves coherently but are composed

of multiple regions with different appearances. Similarly, articulated objects may be
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formed of multiple regions of different motions with common appearance. Typically, a

video segmentation technique produces an over-segmentation of such objects.

Several existing approaches for video segmentation are formulated as clustering of

pixels from all frames. First, multidimensional features are extracted representing pho-

tometric and motion properties. Then clustering is used to gather evidence of pixel

groupings in the feature space. Such clustering can be done using Gaussian mixture

models [25], mean-shift [61, 10], and spectral clustering [22].
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Chapter 4

Motion Segmentation via Manifold Separation

4.1 Introduction

Existing work in Motion Segmentation has largely assumed that cameras are affine. This

assumption leads to the following formulation for the motion segmentation problem. Let

X = [X1X2 . . . XN ] be a 4 × N matrix representing a set of N points in 3D using a

homogeneous coordinate system. Similarly, let M = [M1 . . .MF ]T be the 2F ×4 matrix

formed by vertically concatenating F camera matrices. Such model is only valid if

the object on which the 3D points lie is rigid, where the motion of the object can be

represented as motion of the camera with respect to a stationary object. Under the

assumption of affine cameras, such camera matrices can be specified by the first two

rows of the projection matrix. Taking the product of the two matrices X and M, we

get a matrix W where each column represent the projected locations of a single 3D

point over F frames. The columns of W represent the trajectories in 2D image space.

W = MX



x1
1 . . . xN1

y1
1 yN1
...

...

x1
F xNF

y1
F yNF


=



M1

M2
...

MF


[
X1X2 . . . XN

]

Since the rank of a product of two matrices is bounded by the smallest dimension,

the rank of the matrix of trajectories W is at most 4. Trajectories generated from a

single rigidly moving object lies on a subspace of dimension 4.
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In general when there are multiple moving objects, the columns of the trajectory

matrix W will be sampled from multiple subspaces. The motion segmentation problem

can be formulated as that of subspace separation, i.e. assign each trajectory to one of

the subspaces and estimate the subspaces.

4.2 Motion Segmentation as Manifold Separation

In this section we show how the problem of motion segmentation can be cast as a

manifold segmentation problem. This is demonstrated in two steps. First, we show how

trajectories in the three-dimensional space form a three-dimensional manifold. Next,

we show how the projection of these trajectories to 2D image coordinates also form a

three-dimensional manifold.

Let X be an open set of points in 3D comprising a single rigid object. Together

with the Euclidean metric it forms a three-dimensional manifold. The motion of the

object at times t = 2, . . . , F can be represented by rigid transformations f2(x), . . . fF (x)

respectively with x =
[
x y z

]T
is a 3D point in the camera coordinate system. The

space of trajectories can be therefore defined by the set

Γ(f) = {(x1, . . . ,xF ) ∈ R3F : xi = fi(x1) i 6= 1},

with subspace topology. Let π1 : R3F → R3 denote the projection of a point (x1, . . . ,xF ) ∈

R3F onto the first factor. Let φ : Γ(f) → X be the restriction of π1to Γ(f). Since

f2, . . . , fF are continuous maps and φ is a restriction of a continuous map, φ is also

continuous. It is also a homeomorphism because it has a continuous inverse. This

implies that the space of trajectories is a manifold of dimension three.

Furthermore, we can show that projecting the 3D trajectories into the image coor-

dinates also induces a smooth manifold. Let g(x) = f
z

[x y]T be the camera projection

function that projects a point in the camera coordinate system to image coordinates,

where f is the camera focal length. g(x) is continuous at all points except at points

with z = 0. Let Ω(f) = Γ(f)\{x1 . . .xF : zi 6= 0} be the subset of Γ(f) where all

points satisfy this constraint, it follows that G(x1, . . . ,xF ) = (g(x1), . . . , g(xF )) is also

a smooth continuous map over Ω(f). It is therefore easy to show that G(Ω) is also a
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smooth manifold of dimension three.

Note that even though we know that trajectories in image space form a smooth

manifold, we do not have an analytical manifold. However, under the assumption that

the manifold is densely sampled, empirical methods can be used to model the manifold.

In addition, note that each distinct motion in the scene will generate one manifold. In

this dissertation we rely on label propagation and dense trajectory tracking to solve the

manifold separation problem.
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Chapter 5

Online Motion Segmentation

For motion segmentation to be truly online, one have to satisfy two requirements.

First, the amount of computation time per frame should not depend on the length

of trajectories. This is to prevent the algorithm taking longer and longer with each

additional frame. Second, motion information from an arbitrary number of frames

needs to be aggregated.

In this chapter we devise two methods for online motion segmentation. Both meth-

ods are based on the idea that constructing a similarity (affinity) matrix between tra-

jectories can be done in constant time given a distance metric that can be incrementally

computed. In Section 5.1, we provide a metric that satisfies this constraint and use it

to construct the affinity matrix.

Both methods then use the computed affinity matrix together with the segmen-

tation from the previous frame to update the motion segmentation result and thus

achieving online motion segmentation segmentation. The first method uses dimension-

ality reduction to compute a low-dimensional representation of the input trajectories.

The segmentation result from the previous frame is used to initialize the clustering

of trajectories in that space. The details of this method is presented in Section 5.2.

The second method, formulates the online motion segmentation as a label propagation

problem. The label propagation takes into account the graph structure in the current

frame as well as the labels of the trajectories in the previous frame. The details of the

approach is presented in Section 5.3.
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5.1 Online Affinity Computation

As identified in Chapter 4, trajectories belonging to a single object lie on a three-

dimensional manifold. However, such manifolds are not static as they are a function of

the motion of the object, which changes over time. To model such dynamic manifolds

without resorting to resolving for each frame, we design a distance metric that can be

computed incrementally. Such computation has to be done in time independent of the

length of the trajectories. In addition, the metric must capture the similarity in spatial

location and motion. The intuition is that if two trajectories are relatively close to each

other and move similarly, then they are likely to belong to the same object. In this

subsection we show how one such metric can be computed incrementally.

We start by introducing some notation. A trajectory Ta = {pia = (xia, yia) : i ∈ A}

is represented as a sequence of points pia that spans frames in the set A. For simplicity

we reserve superscripts for frame references and subscripts for trajectory identification.

The motion of a trajectory between frames i and j in the x and y direction is denoted

by ui:ja = xja − xia and vi:ja = yja − yia.

Given two trajectories Ta and Tb we define two distance metrics d1:t
M (Ta, Tb) and

d1:t
S (Ta, Tb) representing the difference in motion and spatial location up to time t re-

spectively. In a way similar to [7], the distances are defined as the supremum of distances

over pairs of frames. The max function helps “remember” large differences in motion

and spatial location. Formally,

d1:t
M (Ta, Tb) = max{i−∆,i}⊂Xd

i
M (Ta, Tb), (5.1)

d1:t
S (Ta, Tb) = maxi∈Xd

i
S(Ta, Tb), (5.2)

where X = {x : x < t, x ∈ A∩B} is the set of overlapping frames up to time t and ∆ is

a user defined parameter, which controls the amount of smoothing used in computing

motion difference. Distances over frames are defined as

diM (Ta, Tb) = (ui−∆:i
a − ui−∆:i

b )2

(σiMu)2 + (vi−∆:i
a − vi−∆:i

b )2

(σiMv)2 ,

and

diS(TA, TB) =‖ pia − pib ‖ /σ2
S .
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Figure 5.1: Trajectories in the image and their corresponding embedding coordinates. Each cluster is marked

with a different color. Black dots are short trajectories not yet added to the embedding. The foreground cluster

is marked with two red concentric circles around its trajectories. (Best viewed in color).

(σiMu)2, and (σiMu)2 are two parameters that control the weighting of motion distances

while σ2
S controls the weighting of the spatial distance. We compute (σiMu)2, and (σiMu)2

adaptively for each frame as the variance of ui−∆:i
a and vi−∆:i

a over all trajectories. For

n trajectories, we can collect all pairwise frame distances into two n × n matrices

∆Dt
M = [dtM (Ti, Tj)], and ∆Dt

S = [dtS(Ti, Tj)]. It follows that we can compute the total

distance between trajectories up to time t, Dt, incrementally from Dt−1 and ∆Dt by

taking the maximum of the two. To convert distances to affinities W we use

Wt = exp(−(Dt
M + Dt

S)). (5.3)

5.2 Motion Segmentation via Repeated Dimensionality Reduction

We model each trajectory up to time t as a single point in a low dimensional embed-

ding space. The coordinate of each trajectory in this space is continuously updated.

Trajectories belonging to the background are expected to lie on a low-dimensional man-

ifold (background manifold) while trajectories belonging to the foreground objects lie

on separate manifolds. This arises due to the similarity in spatial location and motion

between neighboring trajectories. Fig 5.1. shows a set of trajectories in the image space

and their corresponding manifolds in the embedding space. In the embedding space we

model each trajectory manifold using a Gaussian Mixture Model (GMM), where each

patch of the manifold is modeled with a multivariate Gaussian. This representation is
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continuously updated in a coordinate free manner.

Given the affinity matrix, a lower dimensional representation is computed using

Laplacian Eigenmaps [2]. Let D be the n × n matrix with elements Dii =
∑
jWij .

Laplacian eigenmaps is obtained by an eigen decomposition of the normalized Laplacian

ΓTΛΓ = D
−1
2 (D−W)D

−1
2 and keeping the eigenvectors v0, . . . ,vm corresponding to

the m+ 1 smallest eigenvalues and then ignoring v0. The eigenvectors then defines the

coordinates of the trajectories in a lower dimensional space.

This representation of the trajectories has two advantages. First, the distance of

non-overlapping trajectories can be measured in the embedding space. Second, if part

of an object goes out of view, its trajectories in the embedding space remain valid and

can be used to enforce the existence of a cluster at that location.

For the first frame, each trajectory is assigned a cluster number by fitting a GMM

of R components. In subsequent frames, after computing the new embedding coordi-

nates, we associate trajectories extending from the previous frame with their old cluster

assignment. Given this assignment, the parameters of a new GMM model can be es-

timated and optimized by running a few iterations of the EM algorithm on the whole

set of trajectories. The intuition is that as the distance matrix is updated and the new

embedding computed, the spatial relationship of trajectories in the embedding will not

change abruptly. Due to the incremental nature of the algorithm, the good initializa-

tion prevents the algorithm from being stuck in a local minima. The result of this step

is a set of trajectories with their associated cluster labels.

As the embedding space is updated, the number of clusters may also need to be

updated. This happens when an object enters or exits the field of view. During the EM

iterations if a cluster ends up with zero trajectories, we simply remove the cluster and

decrease the number of clusters by 1. To handle increasing the number of clusters, the

probability of each trajectory is computed given the GMM parameters. If the number

of trajectories with low probability is more than a threshold, we assign these trajectories

to a new cluster and perform EM until convergence.



35

5.3 Motion Segmentation using Label Propagation

We propose an approach that achieves online motion segmentation by segmenting a set

of manifolds through dynamic label propagation and cluster splitting. Starting from an

initialization computed over a fixed number of frames, we maintain a graph of pairwise

similarity between trajectories in an online fashion. To move to the next frame we

propagate the label information from one frame to the next using label propagation.

The label propagation respects the computed graph structure while taking into account

the previous labeling.

To see why label propagation is well suited for the manifold separation problem,

consider the simple two moons example shown at the top of Figure 5.2. Separating

the two moons can be cast as a manifold separation problem. However, when applying

spectral clustering on this example, due to the proximity, one cluster leaks over the

other cluster. On the other hand, with proper initialization, label propagation is able to

successfully segment the two moons. As explained in the next sections, the initialization

comes from previous frames.

To handle cases where new evidence suggests that one cluster comes from two dif-

ferently moving objects, we evaluate each cluster and measure a normalized cut cost of

splitting the cluster. This process is then repeated for each subsequent frame. Figure

5.3 shows frames 40 and 150 of the sequence marple7 and the segmentation by our ap-

proach. Miss Marple is correctly tracked throughout the sequence even when affected

by occlusion as in frame 40.

Given the segmentation of trajectories at frame t−1 the goal is to obtain an updated

labeling at frame t. To accomplish this we have two address several scenarios. First, new

trajectories may be introduced into the distance matrix, and second, motion information

from existing trajectories may necessitate splitting or merging existing clusters. In

addition, in the former case, new trajectories may belong to existing objects or they

may belong to new objects. In this section, we describe how these two cases are handled

in our framework.

First we address how new information can be integrated to update our cluster labels
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(a) Spectral Clustering

(b) Label Propagation

Figure 5.2: Spectral Clustering vs Label propagation. Colors represent the different clusters

and the black circle represent the supervised labels.
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Figure 5.3: Frames 40, and 150 from the marple7 sequence and the corresponding

segmentation obtained by our online approach.
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while assuming that no new objects has entered the scene. At each frame, we assume

extended trajectories have a probability distribution over different segment labels. The

inferred label is defined as the label with the maximum probability. One way to proceed

is to use these as supervised labels and attempt to label new trajectories based on a

classifier learned over the labeled samples. There are several problems with this solution.

First, existing labels are not revised and thus errors cannot be recovered from. Second,

classifier do not take into account the graph structure we have available in hand.

To solve these problems, we use labels for existing trajectories as prior knowledge

and attempt to label both trajectories extended from previous frames and new trajecto-

ries while taking the graph structure into account. We attach to each node (trajectory)

in the current frame a dongle node corresponding to the trajectory label in the previous

frame. Let Puu be the transition probabilities obtained from the affinity matrix Wt ,

the new transition matrix for the augmented graph is

P =

Pll Plu

Pul P′uu

 =

0 ηI

I (1− η)Puu

 .
Applying Markov random walks on this graph gives Yu = (I − (1 − η)Puu)−1Yl.

Since the labeled nodes are actually the previous frame labels, this equation becomes

Yt = (I− (1− η)Puu)−1Yt−1. (5.4)

The parameter 0 ≤ η ≤ 1 controls how strongly previous labels affect future labels. In

the extreme case, when η = 0, the graph structure is the dominant term. Using label

propagation in this manner effectively takes into account the uncertainty in previous

labels. Applying the above iteration we get a new probability distribution for each node

and the segment labels are obtained by

zl = argmaxj yij

Although, it may seem like an overkill to re-apply label propagation for each incom-

ing frame, there are two reasons why this is not the case. First, by using the previous

labels as anchoring points we avoid leaking the labels across clusters such as in spectral

clustering (Figure 5.2). Second, in practice equation (5.4) is solved iteratively [8] and
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by using the previous frame labels as an initial solution we are able to converge in a

few iteration.

Once the new labels are obtained, we need to evaluate if a new object has entered

the scene, or if an object that was previously not moving started moving. Note, that

label propagation only propagates existing labels and does not introduce new ones.

If a new object enters the scene, there must be an associated set of new trajectories.

These new trajectories would inevitably receive some label by the label propagation,

and introduce high intra-cluster variation within that associated cluster. Similarly,

if an stationary object starts moving this will lower the affinities between the object

trajectories and the rest of the trajectories in the same cluster. The task is therefore

to go over the clusters one at a time and see if any of them requires splitting. This can

be accomplished by computing an optimal binary cut using normalized cut and then

evaluate the normalized cut cost. If the cost is above a threshold then we keep the

cluster intact.

To perform the cut we use the method of [49]. First, we extract the sub-matrix

Wc corresponding to the cluster to be evaluated. We then solve the generalized eigen-

value problem Dc −Wc = λDcy. Next, we extract the eigen-vector corresponding

to the second smallest eigen-value, and evaluate the normalized cut cost for different

thresholds. The normalized cut cost is expressed as yT (Dc −Wc)y
yTDcy

, where y is the

thresholded eigen-vector. The vector y that minimizes the normalized cut cost is then

selected as the best cut. The normalized cut cost is a value between 0 and 1. In our

approach, if the cut cost is bellow a threshold τ we split the cluster.

5.4 Initialization

Our framework assumes that for a frame at time t we know the labels of the trajectories

at time t−1. There are two ways to boot strap the system. First, we could use an offline

motion segmentation method, which does not depend on the affine camera assumption

to generate the initial labels. Another approach is to assign all the trajectories a single

label initially and allow our cluster splitting process to discover the number classes
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over time. In our experiments we take the later approach and show that even without

initialization, our approaches are able to detect the moving objects in the scene. In

Figure5.4 we show how starting from an initial assignment of a single cluster, the label

propagation process is able to segment the two persons in the scene.

5.5 Conclusion

In the previous chapter, we showed how motion segmentation can be cast as a manifold

separation problem. Based on this, we presented two approach that achieves online mo-

tion segmentation without sacrificing the accuracy of state of the art methods. Whereas,

the first approach is based on the idea of explicitly reconstructing the manifold in a

low dimensional space, the second uses label propagation on a dynamically changing

graph to implicitly segment the manifold. The approaches are able to maintain labels

and recover from errors as more information becomes available. As will be shown in the

experiments (Section 7.1), compared to offline approaches, we show competitive results

on a benchmark dataset.

We are motivated in our approaches by several applications that require online

processing. For example, real-time motion segmentation can be used to perform video

re-targeting on-the-fly on viewers devices. Even when the videos are available offline,

processing movie-long videos would take in the order of weeks using existing offline

approaches.
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Figure 5.4: Initialization on the marple6 sequence. From top to bottom frames, 100, 160, 260

and their corresponding segmentations. At frame 1, all trajectories are given the same label and

there is hardly any motion in the scene. After frame 100, the man leaning on the wall starts to

move and is automatically segmented from the background cluster. Similarly, after frame 160

the person coming closer to the camera is also detected and popped out from the background.
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Chapter 6

Scene Layer Segmentation

Scene layer segmentation refers to the problem of simultaneously segmenting and learn-

ing a layered representation of the input video. The problem of scene layer segmentation

is closely related to that of figure-ground labeling. Learning a representation of the dif-

ferent layers implicitly assigns a depth ordering of the different layers. The figure and

ground regions can be then inferred from the assigned depth values. On the other hand,

by labeling different regions of the image as figure and ground, the task of finding a

scene layer representation becomes much easier.

The rest of this Chapter is organized as follows. In Section 6.1, we show how

combining multiple cues to find a segmentation of short video sequences into figure

and ground regions. This motivates our approach which given motion clusters at each

frames, assigns figure-ground labels to them (Section 6.2). We then propose a Bayesian

scene layer segmentation approach that, using the labeled motion clusters, computes a

two-layered representation of the scene in an online framework (Section 6.3).

6.1 Figure-Ground Labeling via Cue Aggregation

In this section we propose a method that achieves figure-ground labeling from video

sequences. We combine saliency, motion, and color features into a single energy function

which we optimally optimize. By using saliency, our labeling more closely match what

we typically consider figure and at the same time combines many low-level cues in the

process. On the other hand, motion and color similarity help disambiguate figure and

ground in regions where the saliency cue is least confident.
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Preprocessing

Video  segmentation

Tracking

Input Video
Figure-Ground

LabelingFeature Extraction

Saliency Colors

Motion

Figure 6.1: Main stages of our approach.

6.1.1 Approach

Our approach consists of several stages; see Figure 6.1. In the first stage, we preprocess

the video by applying video segmentation and dense trajectory tracking (Subsection

6.1.1). Next we compute a saliency, motion, and color features for each video segment

(Subsection 6.1.1). Finally, we formulate an energy function that integrates saliency,

motion and color features and find the optimal assignment of figure-ground labels by

minimizing it (Subsection 6.1.1).

Preprocessing

In order to obtain robust features, we aggregate information over a large number of

voxels in the video. This is achieved by applying the hierarchical video segmentation

approach of [27] to efficiently obtain a video segmentation. The result of this step is a

set of segments V = { V1, . . . , VN } with each segment Vi represented with a set of

video voxels Vi = {(x, y, t)}.

Next, in preparation to computing motion features, we extract dense trajectories

using large displacement optical flow (LDOF) [53]. Denoting trajectory j by Tj , we

assign each trajectory to a segment v(Tj) by first finding the segment to which each

point along the trajectory belongs to and then selecting the mode of this list.

Feature Extraction

Rather than computing many local feature and determine what features are discrim-

inative for figure-ground labeling, we use state of the art saliency method of [35] to
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integrate many low and mid-level image features and produce a saliency map. Such

maps are computed for each individual frame and then used to compute a saliency

feature for each video segment. Let S represent the saliency volume. We define the

saliency of a segment si as the mean saliency of all the voxels belonging to the segment

si =
∑

(x,y,t)∈Vi S(x, y, t)
|Vi|

.

Saliency maps are relatively noisy and without considering the relations between video

segments, figure-ground labeling is inaccurate at regions where saliency is least confi-

dent. Therefore, we compute color features and motion features for each video segment

and use them to measure the similarity between any pair of video segments.

Since video segments represent regions with homogeneous color, we use the mean

color ci of a segment as a color feature. To compute it we first convert the colors to

Lab color-space and then compute the mean over all voxels belonging to each segment.

The Lab color-space is robust to changes in lightness and is able to capture chromatic

similarity under a wide range of lighting conditions.

ci =
∑

(x,y,t)∈Vi c(x, y, t)
|Vi|

.

To compute the motion features mi we first transform each trajectory into a vector

of relative motions between frames. This effectively removes the dependency on the

starting location. Next for each segment we compute the mean relative motion vector

mi. Since for some segments we may have no trajectories occupying a pair of frames

we define oi as an indicator vector such that element [oi]j = 1 if and only if there exist

trajectories in segment i overlapping frames j, and j + 1.

Optimization

To incorporate the pairwise relations between the segments, we first define a graph

structure over the segments. With each node representing a segment Vi we define the

set of neighbors N (Vi) as the set of segments which shares any boundary with Vi.

However, it is not infrequent that a ground region is surrounded by figure or vice versa.

To solve this we augment the set of neighbors with other segments which are similar in
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color. Formally, we cluster the color features from all the segments into k clusters using

k-means. For each segment in a cluster we augment its neighbors with other segments

in the same cluster.

To achieve figure-ground labeling we look for a labeling L = [l1 . . . lN ] that satisfies

the following criteria. First, figure is salient while ground is non-salient. Second, the

appearance and motion of neighboring segments with the same label vary smoothly.

We formulate an energy function which encapsulates this criteria as

E(L) =
∑
Vi∈V
|N (Vi)|f(li) +

∑
Vi

∑
Vj∈N (Vi)

g(li, lj), (6.1)

where f is a unary term which measures how well the label satisfies the saliency feature

of the segment, and g is a smoothness term that measures compatibility of segments with

the same label. By weighting with the number of neighbors we are able to adaptively

weight the unary term in such a way that it avoids the bias due to a large number of

neighbors. The unary potential f is defined as

f(li) = (−lisi + (1− li)(1− si)).

Here we penalize low saliency for figure segments (li = 1) and high saliency for ground

(li = 0). The smoothness term g is a combination of two terms gc, and gm which measure

color and motion compatibility respectively

g(li, lj) = λgc(li, lj) + (1− λ)gm(li, lj).

λ is a parameter that measures the relative importance of each term. The terms gc,

and gm are defined as

gc(li, lj) =


0 li 6= lj

exp(−1
2(ci − cj)TΣ−1

c (ci − cj)) li = lj

,

where Σc is a diagonal covariance matrix.

gm(li, lj) =


0 li 6= lj

exp(−‖(mi −mj)� oi � oj‖2
2(oTi oj)σ2

m

) li = lj

,
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where � denotes the element wise multiplication, and σm is a parameter that controls

how strongly dissimilarity is penalized. Both gc and gm penalizes large color or motion

differences between neighboring segments with the same label.

The global minimum of the energy function (6.1) can be found using graph cuts

[37]. The obtained labels induces a final labeling F = ∪li=1Vi.

6.1.2 Conclusion

We presented an approach that accurately computes figure-ground labeling from video

sequences. By leveraging saliency information together with color and motion cues, it

produces labeling that encapsulate salient regions while respecting the natural group-

ing of objects together. We demonstrated its efficacy by evaluating it on challenging

sequences that contain both nonrigid and fast motion. In the future we would like to

create a benchmark video dataset for figure-ground labeling of video sequences based

on user input.

6.2 Figure-Ground Labeling of Point Trajectories

Given the motion segmentation method presented in 5.2, a motion segmentation cluster

represents a part of an object or a part of the background. In this step we proceed by la-

beling these clusters either foreground or background and thus achieving figure/ground

separation.

The problem of figure/ground separation is well studied in psychology of vision.

In the case of a single image, the definition of figure/ground can be quite ambiguous.

Among the most important factors psychologist studies pointed out to determine fig-

ure/ground are: Surroundedness, Size , Orientation, Contrast, Symmetry, Convexity,

and Parallelism of the contour. Dynamic figure/ground processing seems to be far less

ambiguous compared to single image figure/ground processing. The proposed approach

uses motion grouping based on trajectory analysis (common fate), compactness, sur-

roundedness, and spatial closeness. By combining multiple cues, the approach is much

more robust than previous approaches which typically assumes that background is the
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cluster with largest number of trajectories.

Formally, an energy function is defined over labellings L = {l1, . . . lR}, where li ∈

{0, 1} (0≡foreground, 1≡background) is the label given for each cluster. The energy

function encapsulates the evidence from multiple cues.

El(L) = αC
∑
i

φC(li) + αA
∑
(i,j)

φA(li, lj) + αB
∑
(i,j)

φB(li, lj) + αSφS(L)

The first term of the energy function φC(li) = (1− li) · (max(var(x)
var(y) ,

var(y)
var(x))− 1.5) is a

unary potential that measures the compactness of each cluster in the spatial domain.

Foreground objects are more likely to be elongated in the horizontal or vertical direction

while background clusters are more spread. The remaining pairwise potentials are

only defined for clusters with trajectories that are spatially close in the frame. We

define a pairwise potential φA(li, lj) = −liljξAffine + (li(1− lj) + lj(1− li))ξAffine which

encourages affine motion compatibility between two clusters with background labels and

discourages compatibility between foreground and background clusters. The affinity

term ξAffine = exp(−var(AffErr)) is computed by estimating an affine subspace out of

the trajectories in both clusters and then measuring the variance of the error AffErr

in projecting these trajectories on the subspace. For this computation we only use

trajectories over a small window of frames. φB(li, lj) = −liljξEmbed + (li(1 − lj) +

lj(1− li))ξEmbed tests for the existence of a clear boundary in the embedding space by

penalizing distant clusters labeled as background, and close foreground and background

clusters. The affinity ξEmbed is defined as exp(−min∀xi,xj‖xi − xj‖), where xi is an

embedding coordinate of a trajectory in cluster i and xj is an embedding coordinate

of a trajectory in cluster j. Finally, φS(L) computes a measure surroundedness of the

foreground. Let F, and B denote the set of points belonging to the foreground and

background clusters respectively. Then φS(L) = 1 − |F∈ConvexHull(B)|
|F | . αC , αA, αB, αS

are coefficients the determine the relative importance of each term. Since the number

of clusters is typically small < 10, the optimal assignment for the labeling can be found

by evaluating all possible assignments and finding the minimum.
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Figure 6.2: Graphical model.

6.3 Bayesian Scene Layer Segmentation

6.3.1 Overview

We begin by introducing some notation. Our Bayesian filtering framework is repre-

sented by the graphical model in Fig 6.2(a). At time t our state consists of a tuple

st = (At,Mt, Lt). At = {Ab,t, Af,t} represents the appearance models of the back-

ground and foreground respectively. Similarly,Mt = {Mb,t,Mf,t} are the motion mod-

els for the background and foreground. Finally, Lt = {lit : lit = {b, f}, i = 1 . . . N}

where N is the number of pixels, is a pixel wise labeling of the image pixels at time

t. For convenience, let φ(i) = (x, y) be the function that transforms pixel indices to

coordinates.

We adopt a camera centric representation for both the appearance and motion

models. Let k = {b, f} denote which layer the variable belongs to. Let aik,t denote a

random variable representing the appearance of the ith pixel of layer k at time t. Let

mi
k,t = [uik,t vik,t]T denote a random variable representing the reverse motion of pixel i

of the kth layer between frames t and t − 1. By grouping these random variables by
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layer we get Ak,t = {aik,t : i = 1 . . . N} and Mk,t = {mi
k,t : i = 1 . . . N}.

We have two sources of observations, frames It and sparse labeled motion vectors

Pt. Let Iit denote the color of the ith pixel. The labeled sparse motion vectors at frame

t is a set Pt = {pj,t : j = 1 . . .M} of tuples pj,t = (qj,t, wj,t, lj,t), where q is the pixel

location, wj,t = [u v]T denotes the motion vector and lpj,t = {f, b} denotes its layer.

In our model, foreground and background are represented as two layers of pixels.

Each layer moves according to the motion vectors in the corresponding motion model.

To generate a frame, pixels from the background and foreground are selectively selected

based on the labels. Formally, the dynamics of the system can be described by the

following equations.

Lt = Ω(Mf,t, Lt−1), At = g(At−1,Mt), (6.2)

Ωi(Mf,t, Lt−1) = l
j(i,f)
t−1 , gik(Ak,t−1,Mk,t) = a

j(i,k)
k,t−1, (6.3)

where j(i, k) = φ−1(φ(i) +mi
k,t), i = 1 . . . N . The function Ω = [Ωi], i = 1, . . . , N takes

as input the labels at time t − 1 and motion model of the foreground and produces

the labels at time t. Simply put, the label of ith pixels at time t is the same as the

label of a pixel j(i, f) which is mi
f,t pixels away in the previous frame. Similarly the

function g = [gik], i = 1 . . . N , k = {f, b} takes as input the motion model of each layer

and moves the appearance models accordingly. Together, these functions describe a

process by which the new appearances of the foreground and background are generated

given the motion of each pixel of each layer. The observation model can be similarly

described by

It = h(At, Lt), Pt = z(Mt), (6.4)

hi(At, Lt) = aik,t + εI , k = lit, εI ∼ N (0,ΣI)

zj(Mt) = (j,mj
k + εP , k) for j ∈ 1 . . . N, εP ∼ N (0,ΣP )

The function h = [hi], i = 1 . . . N describes how the image is generated given the

appearance models and the labels. If the label of pixel i is f , then the observed ap-

pearance is the same as the appearance of pixel i in the foreground model aif,t plus
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some white noise with covariance ΣI and vice versa. The function z = [zj ], j = 1 . . . N

describes how labeled sparse motion vectors Pt are generated given the motion model.

The observed sparse motion vector is simply the pixel index, the motion vector from the

corresponding motion model with an added white noise with covariance ΣP , and the

label of the vector. Without loss of generality, we observe Pt for a subset of pixels only.

Since our Bayesian filtering framework assumes that the observation Pt is available, we

describe later how to compute a sparse set of motion trajectories and their associated

labels.

Our algorithm can be summarized in the following steps. Using the first few frames

in the video sequence we perform initialization (Subsection 6.3.3). For each consecutive

frame afterwards, we maintain a low-dimensional representation of the sparse trajecto-

ries and cluster them (Section 5.2). Next, we use multiple cues to label each cluster

as foreground or background, and thus obtain Pt (Section 6.2). From the clustered

sparse trajectories, the motion modelsMt are inferred. Finally, compute the updated

appearance models At and labels Lt given the frame It, the previous frame appearance

models At−1, labels Lt−1, and the inferred motion modelMt (Section 6.3.2).

6.3.2 Motion Estimation and Bayesian Filtering

Motion Estimation

Given the labeled sparse trajectories, we estimate the motion model for each layer

by the marginal posterior probability p(mi
k,t|pj,t : j = 1 . . .M, lj,t = k). However, not

all pixels in a layer are associated with a trajectory and, without any assumption,

inferring the motion is therefore an ill-posed problem. In reality however, background

objects are rigid and foreground objects are articulated. This implies the motion of

nearby pixels to be smooth.

For each layer, we construct a pairwise MRF with a set of vertices V = {mj
k,t : j =

1, . . . , N}. The set of edges E = {(i, j) : j ∈ N (i)} represents pairwise neighborhood

relationships on a grid structure defined over the image. The joint posterior probability

with respect to Mk,t is given by



51

p(Mk,t|Pt) ∝
∏

(i,j)∈E

Φ(mi
k,t,m

j
k,t)

∏
i∈{qj,t:j=1...M}

Ψ(mi
k,t, Pj,t), (6.5)

where
Φ(mi

k,t,m
j
k,t) = N (mi

k,t −mj
k,t|0,Σm), Ψ(mi

k,t, Pj,t) = N (mi
k,t|wj,t,Σp) (6.6)

Σm, Σp are two bandwidth matrix that represent the strength of the relationship be-

tween neighboring pixels and covariance of the observed motion vectors respectively.

Since both unary and pairwise potentials are Gaussian, this is an instance of Gaussian

Belief Propagation (GaBP)[64]. It follows that the joint distribution can be written as

p(Mk,t|Pt) ∝ e−
1
2m

TV m+mT b, where m = [m1
u,m

1
v . . . , m

N
u ,m

N
v ] is the vector of random

variables and V, b are the inverse covariance matrix and shift vector respectively. It

is straightforward to write down V, b from (6.6). The marginal posterior probability

p(mi
k,t|Pt) = N (µik,t,Σi

k,t) for i = 1 . . . N , k = {b, f} can be obtained in closed form as

µik,t = {V −1b}i, Σi
k,t = {V −1}ii.

Bayesian Filtering

Our ultimate goal is to estimate Lt given all observations. This can be accomplished

by Bayesian filtering. In the first step we predict the appearance models and labels

given the motion models. In the second step we update the prediction using the most

recent observation. For brevity we will drop the dependence on past observations for

the remainder of this section.

Prediction We first predict the appearance model given the motion models. Since our

model satisfies the Markov assumption, only the marginal appearance model from the

previous time step is needed. The prediction step for the appearance models can be

expressed as

p(aik,t|Pt) =
N∑
j=1

[
∑

mi
k,t
∈N2

p(aik,t|mi
k,t, a

j
k,t−1)p(mi

k,t|Pt)] p(a
j
k,t−1) (6.7)

where (6.7)1 is derived from marginalizing over the motion model. From (6.2),(6.3) we

can derive p(aik,t|mi
k,t, a

j
k,t−1) = δ(aj(i,k)

k,t−1 − aik,t), where j(i,mi
k,t) = φ−1(φ(i) + mi

k,t).

Equation (6.7) thus becomes

1Strictly speaking the summation in (6.7),(6.8), and (6.9) contains also an integration over the pixel
areas which is neglected here for brevity.
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p(aik,t|Pt) =
∑

mi
k,t
∈N2

p(mi
k,t|Pt)p(a

j(i,mi
k,t

)
k,t−1 ), (6.8)

The summation in equation (6.8) will lead to an exponential increase in the number

of samples needed to represent the appearance. Thus by approximating p(mi
k,t|Pt) =

N (µik,t,Σi
k,t) with p(mi

k,t|Pt) = δ(µik,t −mi
k,t) in (6.8) we can avoid this problem and

obtain p(aik,t|Pt) ≈ p(a
j(i,µik,t)
k,t−1 ). Therefore, we use nonparametric density estimation to

represent the probability density of the appearance models. Specifically, for each layer,

the density of each pixel is represented by a set of NKDE color samples in rgs2 color

space. At any instance, if the color samples for a pixel will exceed NKDE , we discard

the oldest color sample. The bandwidth of the KDE is chosen adaptively using the

method in [14].
To predict the labels we similarly have

p(lit = f |Pt) =
∑

mi
f,t
∈N2

p(mi
f,t|Pt)p(l

j(i,mi
f,t

)
t−1 = f). (6.9)

This summation is evaluated exactly and takes into account the uncertainty in the

motion vectors.

Update In this step the new observation is incorporated by updating the marginal

priors of the appearance model and labels. It turns out that if we want to avoid

maintaining a joint belief space of labels and appearance models, updating both the

appearance and labels is a chicken and egg problem. Given the label at a pixel one

can easily update the corresponding appearance model. On the other hand, if the

appearance of a pixel is known, marginal posterior probability of the labels can be

computed easily.

We address this by taking the former approach. Given the predicted label prior and

appearance models a MAP estimate of the labels is inferred. Next the inferred labels

are used to update the corresponding appearance model. In practice we have found

that this approach yields excellent results while avoiding the complexity of maintaining

a joint belief space. Note that the marginal posterior over the labels is maintained for

the next prediction stage.

2rgs can be computed from RGB by s = R+G+B,r=R/s ,g=G/s
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p(lit = k|Iit , Pt) ∝ p(Iit |lit = k)p(lit|Pt) =
ˆ
ai

k

p(Iit |lit, aik,t)p(aik,t|Pt) daik,t p(lit|Pt) (6.10)

Since we previously approximated the posterior probability of motion model (by

discarding the uncertainty) in the prediction of the appearance model, the correct

appearance can be anywhere in a neighborhood around the current pixel. We therefore

replace p(Iit |lit = k) in (6.10) with
∑
j p(Iit |l

j
t ) · N (φ(j) − φ(i)|0,Σi

k,t), where Σi
k,tis the

uncertainty in the motion model at pixel i.
A pairwise MRF, defined over a grid structure over the pixels, is used to enforce

smoothness on the labels

p(Lt|It) ∝
∏

(i,j)∈E

Φ(lit, ljt )
∏
i

Ψ(lit),

where Φ(lit, l
j
t ) = N (Iit − I

j
t |0,Σl)(lilj + (1 − li)(1 − lj)) and Ψ(lit) = li · p(lit|Iit , Pt) +

(1 − li)(1 − p(lit|Iit , Pt)). Σl is a bandwidth matrix that represents the strength of the

relationship between neighboring pixels. The globally optimal solution liMAP can be

found efficiently via graph cuts[3].

Finally, updating the corresponding appearance model is done by simply adding the

observed frame pixel color Iit to the set of samples of the corresponding pixel in layer

liMAP .

6.3.3 Continuous Initialization

In the first few frames, the appearance models of some pixels will not have the min-
imum number of samples needed to compute the appearance likelihood. Therefore, a
method must be devised to initialize the appearance models of these pixels. From the
incremental trajectory clustering we obtain a set of sparse labels ljs at a subset of the
pixels j ∈ S. To propagate these labels we construct a pairwise MRF with a set of ver-
tices V = {lit : i = 1, . . . , N}. The set of edges E = {(i, j) : j ∈ N (i)} represents a grid
structure defined over pixel neighborhood in the image. The joint posterior probability
with respect to Lt is given by

p(Lt|It) ∝
∏

(i,j)∈E

Φ(lit, ljt )
∏
i∈S

Ψ(lit, lis), (6.11)

where Φ(lit, l
j
t ) = (li(1 − lj) + (1 − li)lj) · N (Iit − I

j
t |0,Σl) and Ψ(lit, lis) = (lilis + (1 −

li)(1 − lis)) , Σl is a bandwidth matrix that represents the strength of the relation

ship between neighboring pixels. The MAP estimate can be computed efficiently by
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Graph Cut [3]. This labeling defines a segmentation of the image into foreground and

background pixels. For each pixel which does not have the minimum number of KDE

samples, depending on the inferred label li of each pixel, the color Ii of the pixel is

added to the foreground or background appearance model.

6.3.4 Conclusion

We introduced a method that accurately models appearance and motion to achieve

robust moving camera background subtraction. Unlike previous approaches, it merges

the best of both worlds, long term trajectories to accurately model long term motion

dependencies and a Bayesian filtering framework to reason about pixel level appearance

models for foreground and background regions. This is achieved in a online framework

without sacrificing the accuracy and with a constant processing time per frame. The

output is not only the final segmentation per frame but in addition the pixel based

background and foreground model. Such models, we believe, are essential for high

level reasoning. We evaluated the approach on benchmark sequences as well as on two

challenging sequences and demonstrated that the method produces superior results.
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Chapter 7

Experiments

Here we provide quantitative and qualitative evaluations of the different approaches

provided in this dissertation. In Section 7.1 we present online motion segmentation

results for the approach described in Section 5.3. In Section 7.2, we provide experimen-

tal results for the figure/ground labeling approach describe in Section 6.1. Although

we have presented two approaches for motion segmentation, the approaches that uses

repeated dimensionality reduction is intended to be used in conjunction with Bayesian

scene layer segmentation. Results for the combined system are presented in Section 7.3.

7.1 Online Motion Segmentation

In this section we evaluate our online motion segmentation algorithm (Chapter 5) on

the Berkeley motion segmentation dataset introduced in [7]. The dataset consists of

26 sequences that include rigid and articulated motion. The ground truth for the

dataset is provided as frame annotations for 189 frames and the dataset comes with an

evaluation tool. However, it is important to note that the evaluation tool was designed

for offline algorithms. For instance, it assumes that each trajectory is assigned a single

label throughout the sequence and will thus penalize a trajectory which is assigned an

incorrect label at the beginning of a video sequence even if the label is corrected at

a latter frame. Similarly, if an object is stationary and then moves, the approach is

penalized for not segmenting the object while it is stationary. This puts our algorithm

at a disadvantage, since it is impossible to detect motion before it occurs. In real

applications this can be easily mitigated via a look ahead process, where the decision is

delayed by letting the algorithm run several frames ahead. For the sake of consistency

we report error measures using the same evaluation tool.
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Trajectory tracking is done using LDOF [53] but the approach is not limited to it.

As demonstrated by the Middlebury benchmark [1], there now exists several real-time

implementations of accurate optical flow that runs on the GPU. For example, [62].

The evaluation tool of [7] yields 5 measures for each sequence, which are then av-

eraged across all sequences. The 5 measures are density, overall error, average error,

over-segmentation error and the number of segments with less than 10% error which

we abbreviate as lt10. The density measures the percentage of labeled trajectories to

the total number of pixels. A higher number indicates better coverage of the image.

Algorithms that require full trajectories over a sliding window reduces the density. The

overall error is the total number of correctly labeled trajectories over the number of la-

beled trajectories. The tool automatically computes an assignment of clusters to ground

truth regions and may assign several clusters to the same region. The average clustering

error is the average of the ratio of mislabeled trajectories to the number of trajectories

for each region. Since the tool may assign multiple segments to the same ground truth

region, the tool also reports an over-segmentation error defined as the number of seg-

ments merged to fit the ground truth regions. Additionally the tool reports the number

of regions covered with less than 10% error with one region subtracted per sequence to

account for the background.

In our experiments we set the parameters to the following values; ∆ = 3, σS = 300,

η = 0.1, and τ = 1× 10−3. The value for σS was set high enough to capture similarity

between different parts of the background when a foreground object splits it into two

disjoint regions. The remaining parameters were set empirically.

We compare our algorithm to the offline algorithms of [7], RANSAC, GPCA [59],

and LSA [67]. The code for RANSAC, GPCA, and LSA was obtained from the Hopkins

dataset [57]. It is important to note that [7] is used as a representative of offline spectral

clustering algorithms. For the case where we run over more than 10 frames we compare

with a baseline online algorithm that uses RANSAC over a sliding window. As noted

in [7], other motion segmentation algorithms do not scale efficiently with number of

trajectories. For example, over only 10 frames from the people1 sequence, GPCA

takes 2963 seconds, and LSA [67] 38614 seconds. It is therefore infeasible to run these
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Figure 7.1: Effect on increasing the windows size on the sliding window RANSAC Results.

Top Left: frame 40 of the cars4 sequence. Top Right, Bottom Left to Right: the segmentation

with sliding window values of 10, 20, and 30 respectively. As the sliding window size increase,

less trajectories span the entire window. (Best seen in color).

algorithms on a sliding window.

The RANSAC baseline is always given the total number of ground truth regions in

the sequence. Even though increasing the window size may have improved the results,

this would have been achieved by reducing the density drastically as it becomes harder

to find trajectories that span the entire window. Figure 7.1 shows the effect of increasing

the window size on the density and segmentation.

Table 7.1 presents the quantitative results of running our approach on the dataset

introduced in [7]. We perform three sets of experiments. In the first, we compare our

approach to [7], RANSAC, GPCA, and LSA over the first 10 frames while excluding

the first frame. This experiment is designed to quantify the performance of the algo-

rithm with respect to traditional motion segmentation algorithms that require the set
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of trajectories to span the entire sequence. In the second, we evaluate the approach over

the first 200 frames. To avoid bias in the result due to initialization, we evaluate on

ground truth frames starting on or after the 50th frame. This experiment is designed to

quantify the performance of the algorithm on long sequences. Such sequences, represent

the typical use case of an online algorithm. Finally, in the third set of experiments we

evaluate over the entire set of sequences and ground truth annotation images.

Over 10 frames we out-perform GPCA, RANSAC, and LSA while achieving com-

parable results to results [7]. In fact, if we restrict ourselves to longer sequences we

outperform [7] as can be seen in the second experiment. This indicates that our online

approach outperforms traditional approaches while maintaining competitive accuracy.

Comparing with RANSAC over longer sequences exposes the main problem with any

online approach that is based on a sliding window. Information outside the sliding win-

dow is not remembered and it is therefore common to merge objects that were known

to move differently.

Finally, over the entire dataset, we achieve online performance at the cost of slightly

worser performance than [7]. These errors can possibly be further reduced if we employ

a look-ahead process where the decision for a trajectory is delayed for several frames.

Figure 7.2 shows the result of applying our method to the marple2 sequence. At

frame 50, the method had already recovered from the bad initialization and is segment-

ing Miss Marple correctly. Finally as Miss Marple reappears from behind the column,

our method re-detects the segment.

Table 7.2. compares the running time of different algorithms over the first 10 frames

of the marple1 sequence. Although the method of [7] uses 19 seconds for the first 10

frames, applying it on a sliding window would require 19 sec. per frame. On the other

hand, our non-optimized Matlab implementation takes around 3 seconds per frame.

Table 7.3 further shows that the computational time is dominated by updating the

n × n distance matrix and computing the affinity matrix. We believe that real-time

performance can be easily achieved since such operations can be easily parallelized on

the GPU.
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Density Overall

Error

Average

Error

Overseg lt10

First 10 frames (26 sequences)

Ours 3.43% 9.69% 29.93% 0.31 21

[7] 3.43% 7.49% 25.92% 0.46 20

RANSAC 3.37% 14.4% 29.87% 0.73 13

GPCA 3.37% 17.86% 28.64% 0.85 7

LSA 3.37% 19.69% 39.76% 0.92 6

Frames 50 - 200 frames (7 sequences)

Ours 3.26% 6.77% 33.44% 2.57 6

[7] 3.43% 8.32% 37.29% 3.14 6

RANSAC 2.43% 28.3% 45.46% 1.42 0

All frames (26 sequences)

Ours 3.22% 9% 32.89% 2.30 16

[7] 3.31% 6.82% 27.34% 1.77 27

RANSAC 2.28% 16.04% 42.6% 1.15 9

Table 7.1: Evaluation results on the Berkeley Dataset

Algorithm Tracks Time (seconds)

Our method 4625 29

Brox et al. [7] 4699 19

GPCA 4625 1345

LSA 1012 1996

Table 7.2: Computation Time over 10 frames from marple1 sequence
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Figure 7.2: Result of our approach on the marple2 sequence. First Column: frames 50, 110, 135,

170, 200 of the sequence. Second Column: segmentation results. The third column shows ground truth

frames associated with the frames. Starting from a incorrect initialization, our approach is able to

automatically detect the person in the scene. Clusters maintain their labels under partial occlusion

as can be seen with the background segment between frames 110 , 135. However, when a segment is

totally occluded its label is lost and is assigned a new label once it is dis-occluded. (Best seen in color.)
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track dist aff lblprop Total

34 1521 1169 403 3027

Table 7.3: Computation time over different stages on a single frame from marple1 . The

stages are: tracking (track) , distance matrix update (dist), affinity matrix (aff) and label

propagation (lblprop). Times are in msec. The number of trajectories is 4427. Optical flow

computation used in tracking is not included.

7.2 Figure/Ground Labeling

In this section we evaluate the figure/ground labeling approach proposed in (Chapter

6) on videos from the occlusion boundary detection dataset from [52]1. This dataset

consists of 30 short video sequences (approximately 10-20 frames each). Each exhibits

very brief camera motion, instantaneous motion of objects in the scene, or a combination

of the two. However, since the dataset was created with the emphasis of boundary

detection, the ground truth provided is for individual object segmentations and not for

figure-ground segmentation. We resort to qualitative evaluation of the method on these

sequences. To evaluate the approach on rapid motion we also use the yunakin sequence

from the Youtube dataset [27]. For all sequences we choose the following values for our

parameter settings Σc = diag(100, 15, 15), λ = 1
2 , σm = 2, k = 5.

To our knowledge there exist no prior work on figure-ground labeling for videos

in the general setting. To demonstrate the efficacy of our approach, we compare our

approach with a baseline which does not use motion or color features. Instead, it uses a

smoothness prior that encourages spatial smoothness. Figure. 7.3 shows the results on

3 sequences (rocking horse, walking legs, and post) from [52] and the yunakin sequence

from Youtube dataset [27]. For each video we show one frame from the sequence, the

video segmentation result, color features, saliency features, result of the baseline, and

the result of the approach.

Comparing the results of the baseline and the approach shows that the baseline

1More results are available at
http://www.cs.rutgers.edu/~elqursh/figgrnd/
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suffers from missing parts (rocking horse), no figure (walking legs, post), or no ground

(yunakin). It indicates that saliency information is not enough to determine figure-

ground assignment of video segments. This can be explained in part by the fact that

saliency gives a rough estimate of where attention is focused in the image and does not

define a grouping of regions into figure. In addition, regions close to object boundaries

are usually affected by the existence of a salient region besides it. Our approach is able

to successfully obtain the correct labeling in all of the sequences. Errors in the results

can be attributed to inaccurate video segmentation along the boundary (walking legs,

post), or small segments close to the object that has a high saliency feature (walking

legs).

7.3 Scene-Layer Segmentation

In this section we evaluate our scene-layer segmentation method (Section 6.3). We

evaluate our algorithm qualitatively and quantitatively on five challenging sequences2.

Our results are compared to state-of-the-art algorithms that use dense point trajectories

[48], and belief propagation and Bayesian filtering [39]3. We also compare the results of

our approach with and without the label prior. Parameter settings for all experiments

are provided in the appendix.

Feature Tracking

We use LDOF [53] to track dense feature points over pairs of frames. We divide the

image into equal blocks and then subsample these trajectories to keep an almost equal

number of tracks in each block. This allows us to avoid excessive bias in the cluster-

ing step (Subsection 5.2) due to high concentration of trajectories in highly textured

areas. New trajectories are automatically incorporated up to a maximum number of

trajectories per frame T fmax. In addition, the total number of trajectories maintained

is set to not exceed Tmemory
max after which we drop trajectories with the oldest ending

frame number. Note that at any instant of time we do not store the full trajectories

2Project page: http://www.cs.rutgers.edu/~elqursh/projects/bsmc/
3We have requested the code and results from the authors but we did not receive a response, results

for their approach are reported verbatim from the paper.
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Figure 7.3: Figure-Ground labeling results on 4 sequences. (First row) First frame of the

sequence. (2nd row) color coded video segments. (3rd row) Color features. (4th row) Saliency

features. (5th row) labeling results using saliency only. (6th row) labeling results using saliency,

color, and motion.
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but rather maintain a low dimensional representation.

We use the following values for the parameters

• Affinity matrix computation λM = 40, λS = 100.

• Initial number of clusters R = 5.

• Figure/Ground Labeling αC = 1, αA = 1, αB = 1, αS = 1.

• Motion EstimationΣm = 0.52I2×2, Σp = I2×2.

• Bayesian filtering NKDE = 10, Σl = 10
255


1

1

255



• Initialization Σl = 10
255


1

1

255


• Trajectory limits T fmax = 2000, Tmemorymax = 2000.

Results

The first three videos - cars1, people1 and people2 - comes from the Hopkins 155

dataset [57]. Manually annotated ground truth for a subset of frames, around one

every 10 frames, is provided by Brox et al [7]. A characteristic of these sequences is

that they are short and the objects are always on motion. These sequences are used as

a benchmark to compare with other approaches.

Table 7.4. shows quantitative comparison on the first three benchmark sequences4.

The row labeled ours-1 is our approach with the label prior, while ours-2 is our approach

without the label prior. Without the label prior we do not rely on the predicted labels

in inferring the new labels. We compare our methods to [48] and [39]. On cars1,

people2 our approach ranks 1st in F1-score while in people1 we rank a close second.

The reason our approach performs worser on the people1 sequence is that with at

4Let TP, FP, and FN denote true positives, false positives, and false negatives. Then Prec =
TP/(TP + FP ), Rec = TP/(TP + FN), F1 = 2 · (Prec ·Rec)/(Prec+Rec).
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Table 7.4: Performance comparisons with other methods

cars1 people1 people2

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Ours-1 0.84 0.99 0.91 0.94 0.85 0.89 0.69 0.88 0.77

Ours-2 0.85 0.97 0.90 0.97 0.88 0.92 0.87 0.88 0.88

[48] 0.63 0.99 0.77 0.78 0.63 0.70 0.73 0.83 0.78

[39] 0.92 0.84 0.88 0.95 0.93 0.94 0.85 0.89 0.86

tennis drive

Prec. Rec. F1 Prec. Rec. F1

Ours-1 0.86 0.92 0.89 0.55 0.96 0.70

Ours-2 0.90 0.81 0.85 0.60 0.67 0.63

[48] 0.27 0.83 0.40 0.02 0.66 0.04

most 2000 trajectories there are no trajectories from the hips downwards and thus the

motion of the legs is not captured by the trajectories. As can be seen from the first

row of Figure. 7.5, after initialization the foreground appearance model captures the

top portion and it takes a few more frames for it to recover from this error. Figures

7.4, 7.5, 7.6, and 7.7 shows qualitative results on these sequences.

To evaluate the performance of the proposed approach on long sequences with fast

motion, two other sequences are used - tennis and drive. The tennis sequence is 466

frames long and also comes with ground truth from [7]. The tennis player pauses at

times to wait for the ball, while at others moves fast to intercept it. Due to the fast

motion and homogeneous ground color not all objects have trajectory points as seen in

Fig.1.3(b). Finally, the drive sequence is 456 frames and was manually annotated with

ground truth. This sequence is challenging since cars keep entering and exiting the field

of view at different points in the video and due to the forward motion. Figs. 7.4, 7.8

shows qualitative results on the tennis and drive sequences. Thanks to the accurate

background model, our method is able to capture the cars on the other side of the road

Fig. 7.8.
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Figure 7.4: Results on cars1 sequence using our method (First row), our method without

label prior (Second row), using [48](Third row). For visualization purposes, background

regions are darkened while foreground regions maintain their colors. (Best viewed in

color).



67

Figure 7.5: Results on people1 sequence using our method (First row), our method

without label prior (Second row), using [48](Third row). For visualization purposes,

background regions are darkened while foreground regions maintain their colors. (Best

viewed in color).
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Figure 7.6: Results on people2 sequence using our method (First row), our method

without label prior (Second row), using [48](Third row). For visualization purposes,

background regions are darkened while foreground regions maintain their colors. (Best

viewed in color).
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Figure 7.7: Results on tennis sequence using our method (First row), our method

without label prior (Second row), using [48](Third row). For visualization purposes,

background regions are darkened while foreground regions maintain their colors. (Best

viewed in color).
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Figure 7.8: Results for drive 1 sequence using our method (Left) and [48](Right). [48]

fails on this sequence since it highly deviates from the orthographic projection assump-

tion. Our approach successfully segments the new car as soon as it enters the fields

of view at frame 76. Notice also, how cars approaching in the opposite direction are

successfully segmented.
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Chapter 8

Conclusions

The work presented in this dissertation has provided a solution to the problem of

object detection from video. Existing approaches were either not applicable or not

effective in solving this problem. For example, while background subtraction is limited

to stationary cameras, object detectors required training and suffered from low accuracy.

In addition, existing approaches typically only produced a segmentation of the video

but no models that can be used for higher level reasoning.

Our framework also addresses several key challenges in object detection from video.

By formulating motion segmentation as a manifold separation problem we got rid of

the affine camera assumption. On the other hand, our distance metric can be computed

online and can handle trajectories of any length. In the context of figure/ground label-

ing, we showed how multiple cues can be combined to achieve figure/ground labeling.

Finally, we solved the trade off between the density of the motion segmentation and

the accuracy of the motion models by propagating the sparse motion information using

our dynamic Bayesian model. In addition, we maintain dense appearance models of the

layers.

There still exist several open areas of research. In the context of motion segmen-

tation, one area for improvement is to use the geometric structure of the manifolds to

segment them. For example, the curvature of the manifold can be used to avoid combin-

ing separate manifolds in such a way that there is a discontinuity in the manifold. In the

context of figure/ground labeling, there exist a big role for semantics in the assignment

of figure/ground labels. For example, people and cars are typically foreground.

We are motivated in our approach by several applications that require online pro-

cessing. For example, real-time motion segmentation can be used to perform video
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re-targeting on-the-fly on viewers devices. Even when the videos are available offline,

processing movie-long videos would take in the order of weeks using existing offline

approaches.
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