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ABSTRACT OF THE DISSERTATION
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Dr. Jacob Feldman

and

Dr. Manish Singh

Perceptual grouping is the process by which a set of image elements is divided into

distinct “objects” or components. In this dissertation I propose a Bayesian framework

for understanding perceptual grouping, in which the goal of the computation is to esti-

mate the organization that best explains the observed configuration of image elements.

I formalize the problem of perceptual grouping as a mixture estimation problem, where

it is assumed that the configuration of elements is generated by a set of distinct com-

ponents (or ”objects”), whose underlying parameters one seeks to estimate. In the first

part of this dissertation I will propose a simplified version of the framework and show

how it can be used to estimate the number of objects, more specifically clusters of dots,

present in the image. Across two experiments I show how the model gives an accurate

and quantitatively precise account of subjects’ numerosity judgments, while at the

same time outperforming more standard accounts for dot clustering. In the second

part of the dissertation this simplified framework is expanded to estimate a hierarchi-

cal representation of the image elements. This framework can easily be adjusted to

different subproblems of perceptual grouping. Here I will show how an instantiation

of our framework for contour integration, part decomposition, and shape completion

can account for several key perceptual phenomena and previously collected human

subject data.

ii



Acknowledgements

This research was supported by NIH EY021494 to J.F. and M.S., and NSF DGE 0549115

(Rutgers IGERT in Perceptual Science). I’m grateful to Rutgers Graduate students

John Wilder and Brian McMahan, and K.U.Leuven post-doc Naoki Kogo for their

many helpful comments and discussions. I thank Lorilei Alley for her help at various

stages of the studies presented in Chapter 2. I would also like to thank all members

from the Visual Cognition Lab that came and went during my presence here. Lastly I

would like to thank Gene Roddenberry for creating Star Trek, whose infinite amount of

episodes have allowed me to keep going on this project without burning out before the

final line was put on paper. All of this dissertation research was conducted under the

helpful mentorship of both Jacob Feldman and Manish Singh, to whom I give special

thanks.

iii



Dedication

This dissertation is dedicated to my supportive parents without whom I would never

have ended on this side of the Atlantic ocean. I would also like to express my gratitude

to my girlfriend, Jewel Lim, my friends back home in Belgium, and new friends found

here in the U.S for their support and help along the way.

iv



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Counting clusters: Bayesian estimation of the number of perceptual groups 3

2.1. Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3. Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Design and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.2. Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4. Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Stimuli and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.2. Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5. A Bayesian Model for these Tasks . . . . . . . . . . . . . . . . . . . . . . . 13

2.5.1. Model Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6. General Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3. Bayesian hierarchical grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1. Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3. The computational framework . . . . . . . . . . . . . . . . . . . . . . . . 20

v



3.3.1. An image is a mixture of objects . . . . . . . . . . . . . . . . . . . 21

3.3.2. Bayesian hierarchical grouping . . . . . . . . . . . . . . . . . . . . 22

Tree-slices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.3. The objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.1. Contours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Dot-lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Collinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Association field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Contour integration with BHG . . . . . . . . . . . . . . . . . . . . 35

3.4.2. Parts of objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Shapes and their parts . . . . . . . . . . . . . . . . . . . . . . . . . 39

Part salience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.3. Shape completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Global predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Dissociating global and local predictions . . . . . . . . . . . . . . 47

3.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.1. A framework for grouping . . . . . . . . . . . . . . . . . . . . . . 48

3.5.2. A hierarchical framework . . . . . . . . . . . . . . . . . . . . . . . 50

Structural versus spatial scale . . . . . . . . . . . . . . . . . . . . . 51

Selective organization . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5.3. A Bayesian framework . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5. Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1. Mixture Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2. Prior on Cluster Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3. Delaunay-consistent pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

vi



5.4. B-spline curve estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vii



List of Tables

2.1. Fitting results for both experiments indicating the Bayes Factor log(BFec

of the elliptical versus the circular version of the model. Positive num-

bers indicate that this particular subjects results were more likely to be

generated by the elliptical model, while negative numbers indicate a

circular assumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

viii



List of Figures

2.1. Stimulus setup and example stimuli for Exp.1 and Exp.2. A. depicts

the setup of stimuli in Exp. 1 where the 6 conditions are defined by

3(σ) and 2(N), and adaptive staircases are ran over d. B. shows an

example stimulus for Exp.1 for σ = 0.8dva, N = 20, and d = 4.0dva (con-

trast inverted). C. depicts the setup for part two of Exp 2. where we

sampled [d1,d2,d3] at random from a predetermined distribution, while

σ and N were kept fixed to 0.4dva and 30 respectively. D. shows an

example stimulus for part two of Exp.2 (from subject FE’s run) where

[d1,d2,d3] = [3.7,2.2,3.1]dva (contrast inverted). . . . . . . . . . . . . . . . 7

2.2. A. Results for Exp. 1 showing the threshold (t̂) and standard error

(SEt̂) for all conditions experiment (with red representing N = 10, and

green N = 20). B. Results for Exp 2 showing the dependency between

the modality paramete, M, and the numerical judgements as presented

by the multinomial logistic regression model. Each of the colored line

depicts the probability of a different numerocity hypothesis: red, p(K =

1|M); green, p(K = 2|M); blue, p(K = 3|M). The plots on the left depict

results from the subjects. The plots on the rights show the results of the

two model version. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3. Comparison of each of the models performance as operationalized by

the proportion of correct numerosity judgements for each of the sub-

jects. Here the average proportion correct across all subjects and 95%

confidence interval (1.96×SE) is shown for Exp. 1 (A) and Exp. 2 (B). . . 16

3.1. Explaining the BHC process. A. Tree decomposition (adapted from

Heller & Ghahramani, 2005); B. Tree slices, i.e. different grouping hy-

potheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

ix



3.2. The generative function of our model depicted as a field. Ribs sprout

perpendicularly from the curve (red) and the length they take on is

depicted by the contour plot. A. For snakes ribs are sprouted with a

µ close to zero, resulting in a Gaussian fall-off along the curve. B. For

shapes ribs are sprouted with µ > 0 resulting in a band surrounding the

curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3. Framework predictions for simple dot lattices (Kubovy & Wagemans,

1995; Kubovy, Holcombe, & Wagemans, 1998). As input the model re-

ceived the location of the dots as seen in the bottom two rows, where the

ratio of the vertical (a) over the horizontal (b) dot distance was manip-

ulated. The graph on top shows how the probability of seeing vertical

lines versus horizontal lines progressed as the ratio a/b increased. The

blue line shows this for small dot lattices of 2x2 elements, while the red

line makes predictions for a larger 5x5 dot lattice. . . . . . . . . . . . . . 30

3.4. Model’s performance on data from Feldman (2001). A/B. Sample stimuli

with likely responses (stimuli not drawn to scale). C. Pooled subject

responses plotted as a function of the model responses, where each

point depicts one of the 343 stimuli shown in the experiment. Both

indicate the probability of seeing two contours p(c1|D). Note that the

model responses are linearized using an inverse cumulative Gaussian. . 33

3.5. Association field between to line segments each containing 5 dots. A.

shows our manipulation of the distance and angle between these two

line segments. The blue line depicts the one object hypothesis while

the two green lines depict the two objects hypothesis. B. depicts the

association field for the posterior probability of p(c0|D) when put into

competition with p(c1|D), where the gradient from blue to red depicts

p(c0|D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

x



3.6. BHG results for simple dot contours. The first column shows the in-

put images and their MAP segmentation. Here, the input tokens are

numbered from left to right. The second column shows the tree decom-

position as computed by the BHG algorithm. The third column depicts

the posterior probability distribution over all tree-consistent decompo-

sitions (i.e. grouping hypotheses). . . . . . . . . . . . . . . . . . . . . . . 36

3.7. MAP grouping hypothesis for more complex dot configurations indi-

cated by the color code (each group is assigned a unique color). B.

Shows where the model has shortcomings, in that the length constraint

prefers shorter segments. This results in longer contours to be split up.

Introducing spacing as a constraint into the model might potentially

solve this issue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.8. A. The top shape is decomposed by BHG. B. The tree structure that

results from it is shown as a dendrogram. The MAP partitioning is

given by the coloured parts in the dendrogram. This corresponds to

the figure in C. Higher levels (D and E) show intuitive partitioning,

depicting the hierarchical structure of the shape in A. . . . . . . . . . . . 38

3.9. Examples of MAP tree-slices for: A. leaf on a branch, B. dumbbells, and

C. “prickly pear” from Richards, Dawson, and Whittington (1986) . . . 40

3.10. MAP skeleton as computed by the BHG for shapes of increasing com-

plexity. The axis depicts the expected complexity, DL of each of the

shapes based on the entire tree decomposition computed. . . . . . . . . . 40

3.11. Log posterior ratio as computed from the BHG between the tree consis-

tent 1 and 2 component hypotheses. A. Part protrusion, B. Part length. . 43

xi



3.12. A. Representative stimuli used in Cohen and Singh (2007) experiment

relating part-protrusion to part saliency. As part protrusion increases,

so does subjects perceived saliency of that part. The test part here is

indicated by the red part cut. B. Representing the relationship between

subject accuracy for several levels of part-protrusion and the models

computed probability of the test part p(c1|D) (error bars depict the 95%

confidence interval across subjects. The red curve depicts the linear

regression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.13. Posterior predictive based on the MAP skeleton (as computed by BHG)

for the occluded shape with a part of the boundary missing. . . . . . . . 45

3.14. A simple tubular shape was generated with different standard devia-

tions of noise on its contour. Note that for each image (A and D), the

local first and second order information at the T-junction is kept equal.

For noiseless contours the posterior predictive for the occluded part is

rather narrow (A and B), while for noisy contours the posterior predic-

tive takes on a wider form (E), depicting the uncertainty of the position

of the boundary based on the shape alone. C. Shows the relationship

between the noise on the contour and the completion uncertainty as

reflected by the posterior predictive. . . . . . . . . . . . . . . . . . . . . . 46

3.15. Prediction fields for the shape in Fig. 3.8 for three different levels of the

hierarchy. In order to illustrate how underlying objects also represent

the statistical information about the image elements they explain the

prediction/completion field was computed for each object separately

without normalization so that the highest point for each object is equalized. 50

xii



3.16. Relating structural and spatial scale in our model by means of the shape

in Fig 3.8. A. relationship between structural and spatial scale depicting

their orthogonality. The red squares depict the most probable structural

grouping hypothesis for each spatial scale. B. Showing the priors over

the variance of the riblength, σ for each spatial scale. C. Hierarchical

structure as computed by our framework depicted as a dendrogram for

each spatial scale. The most probable hypothesis is shown in color. . . . 53

5.1. Difference between checking all pairs and only Delaunay-consistent

pairs at the first initial iteration of the BHG. As the amount of data

points, N, increases the number of pairs increases differently for the

Delaunay-consistent (green), or all pairs (blue). . . . . . . . . . . . . . . . 60

xiii



1

1. Introduction

Perceptual grouping is the process by which otherwise chaotic visual “stuff” is or-

ganized into distinct and coherent objects. Although in the past 100 years of Gestalt

research many theories and models have been proposed for several subproblems of per-

ceptual grouping, no mathematically rigorous and coherent overarching framework

has achieved wide acceptance. In this dissertation I put forward such a framework

for perceptual grouping drawing its inspiration from different fields such as cognitive

science, machine learning and pattern recognition. The framework proposed seeks

to estimate the organization that best explains the observed configuration of image

elements. I formalize the problem of perceptual grouping as a mixture estimation

problem, where it is assumed that the configuration of image elements is generated by

a set of distinct “objects”.

The experiments and theory presented in this dissertation are divided into two

chapters. Even though each chapter can stand on its own both are deeply connected

by the framework underlying them.

In Chapter 2, I introduce our first steps towards understanding the problem

of perceptual grouping as a Bayesian mixture estimation problem. Here I present our

framework in a simplified form for a relatively simple grouping problem: grouping

dots into clusters. I present two experiments in which I tested subjects’ clustering

behavior by asking them how many clusters were present. I found that the model

gives an accurate and quantitatively precise account of subjects’ numerosity judgments.

Furthermore I found the model to outperform standard models for dot clustering in

the field.

In Chapter 3, I introduce a mathematically rigorous framework for percep-

tual grouping expanding on the simplified framework proposed in Chapter 2. The

framework proposed in this chapter creates a hierarchical representation of the im-

age, decomposing it into distinct objects at each level and assigning beliefs to each

of these grouping hypotheses. The generality of this framework lies in the flexibility

of the object definition. Here I tested an instantiation of the framework for a general



2

object class incorporating problems such as part-decomposition, contour integration

and shape completion. I show how the framework can account for several instant-

psychophysical findings, and previously collected human subject data. Furthermore I

show how the model has several indirect side-effects allowing us to make predictions

about previously untested stimuli, and shed light on the dichotomy between spatial

and structural scale.

The studies here are representative of a long-standing tradition of interdis-

ciplinary work between once strongly interconnected fields: cognitive science and

computer science. Inspired by recent mathematical advances in computer science I

hope to be able to shed light on the processes underlying perceptual grouping based

on one central idea: an image is a mixture of objects.
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2. Counting clusters: Bayesian estimation of the number of
perceptual groups

2.1 Abstract

Dividing a set of visual elements into groups or clusters is a basic problem of per-

ceptual organization, but the computational mechanisms underlying it are still poorly

understood. In this chapter we study how subjects group dots into clusters, and in

particular how they decide how many clusters are contained in a given display. In

two experiments, we showed subjects configurations of dots that were sampled from

either two Gaussian clusters (Experiment 1) or three Gaussian clusters (Experiment

2). In both experiments we manipulated the distances between the clusters, relative to

the spread of each cluster, in order to modulate the apparent number of clusters. We

model the results in a Bayesian framework in which the observer attempts to estimate

the mixture model, that is, the locations and parameters of the distinct sources from

which the dots were generated. redThe model gives an accurate and quantitatively

precise account of subjects’ judgments. Thus our Bayesian approach to perceptual

grouping, as one side-effect, effectively models the perception of cluster numerosity.

2.2 Introduction

Perceptual grouping is the process by which image elements are grouped into distinct

units, clusters, or objects. The problem of grouping is an inherently difficult one, in that

the visual system needs to select the “best” among an exponentially large number of

possible grouping interpretations. Yet the visual system generally converges rapidly

on an intuitive division. But despite an enormous literature (see Wagemans et al.,

2012a; Wagemans et al., 2012b, for a modern review) the computational mechanisms

underlying grouping are still poorly understood.

Perhaps the simplest case of perceptual grouping is the division of a set of

isotropic visual elements (e.g. dots) into distinct clusters. Subjects can readily judge,

for example, whether a set of dots appears to fall into two clusters or one (Fig. 2.1B).
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Perceptual segmentation is best viewed as a graded or probabilistic process, however,

rather than a binary one. In other words, the visual system represents degrees of belief

concerning various segmentation hypotheses (such as” a single cluster,” or ”two sep-

arate clusters”) based on evidence from multiple sources. Such graded representation

has been shown to manifest itself in ”global” judgments involving dot clusters, such as

overall orientation (Cohen, Singh, & Maloney, 2008) and overall location (Juni, Singh,

& Maloney, 2010). Specifically, the greater the evidence that a small sub-cluster within

the overall cluster is a distinct ”object” (i.e., arises from a different source), the less

the perceptual estimate of overall orientation of the dot cluster is influenced by its

presence (Cohen et al., 2008). Hence the graded or probabilistic nature of perceptual

segmentation has important implications for estimating overall perceptual properties

of dot clusters (and perceptual objects more generally).

Deciding whether a set of dots contains one or two clusters clearly involves the

Gestalt principle of proximity (Wertheimer, 1923), in that nearby dots are more likely to

be clustered together (Kubovy & Wagemans, 1995; Kubovy, Holcombe, & Wagemans,

1998). But the process by which dots are assigned to clusters, and the overall number of

clusters is determined, is less clear. A number of quantitative models for dot clustering

and cluster enumeration have been proposed (Van Oeffelen & Vos, 1982; Compton

& Logan, 1993; Allik & Tuulmets, 1991). These models fit human data reasonably

well, albeit after fitting a number of ad hoc parameters. Moreover these models are

very specific to the dot grouping problem, and do not generalize to other perceptual

grouping problems (see discussion below). We sought an approach to this problem

that is both more principled and more generalizable to other problems of perceptual

grouping.

In the study below, we asked subjects to judge the number of clusters in con-

figurations of dots, and show that their responses can be effectively modeled by a

Bayesian estimation procedure given a few simple assumptions about the statistical

properties of the clusters. The model predicts not only the most likely response for

each configuration, but also the degree of belief in each potential number estimate,

and hence the relative probability of the various responses. Moreover, unlike existing
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models of dot clustering, our Bayesian estimation procedure is a special case of a more

general model of perceptual grouping, namely Bayesian estimation of a mixture model

(Feldman, Singh, & Froyen, submitted), and thus can readily generalize to other types

of perceptual groups such as contours and shapes.

There is a large literature on the estimation of numerosity, both in adults (e.g.

Miller & Baker, 1968), pre-verbal infants (e.g. Gelman & Gallistel, 1978; Xu & Spelke,

2000), as well as non-human primates (e.g. Brannon & Terrace, 1998). Most of the

literature is concerned with the judgment of the number of individual items, rather

than the number of clusters as in our study. But the two problems are intertwined

because estimates of the number of items are influenced by way the items are grouped

(Frith & Frith, 1972; Vos, Van Oeffelen, Tibosch, & Allik, 1988; Franconeri, Bemis, &

Alvarez, 2009). More broadly, it can be argued that all numerosity judgments reflect

prior perceptual grouping mechanisms which determine the underlying units to count

(Feldman, 2003b).

In recent years many problems in perception have been modeled in a Bayesian

framework, in which each potential interpretation Y = {y1, . . . , yI} of the stimulus X

is associated with the posterior probability p(Y|X), which according to Bayes’ rule is

proportional to the product of the prior p(Y) and the likelihood p(X|Y) (see Kersten,

Mammasian, & Yuille, 2004; Feldman et al., 2013). To model the dot grouping problems,

we adopt the framework of mixture models (for a gentle introduction see Bishop, 2006).

Specifically, we assume that the dot configuration X = {x1,x2, . . . ,xN}was generated by

a mixture of distinct probabilistic sources

p(x) =

K∑
k=1

πkgk(x), (2.1)

in which each of the gk are distinct generative components (“objects”), each having pa-

rameters θk and being chosen with probabilityπk. As a simple assumption appropriate

for dot clusters, we assume that each source is Gaussian in form, with parameters con-

sisting of a mean µk and covariance matrix Σk, θk = (µk,Σk). In other words, we assume

that the image contains an unknown number K clusters, each of which is generated
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normally about some mean location with some spread. The observer’s goal is to esti-

mate which dots were generated from which source, and how many sources there are.

This is a simple model of situations in which data is generated in spatial proximity to

a localized source (here µk), so that closely spaced image elements are more likely to

have a common source.

The problem of estimating mixtures from data consists of estimating the θk and

πk for each of the sources gk. The difficulty lies in the fact that one does not know

which datum belongs to which source (“ownership”). These two problems mutually

depend on each other: the assignment of data to sources influences the estimation

of the parameters of the sources, and conversely, the parameter values determine

the probability that the datum arose from any particular source. These intertwined

problems also characterize perceptual grouping, where each visual element can be

regarded as belonging to any group, but the nature of the groups depends in part on

which items seem to belong to it. Within the Bayesian framework presented above

the fit of a particular mixture model, i.e. grouping interpretation yi, is represented by

p(X|yi). (For details of the estimation procedure see Appendix 5.1.)

An important application of this approach, which we test in the experiments

below, is the estimation of the number of mixture components (clusters) K̂ , where

K = {K1 . . .KI}. Since each mixture model estimate p(X|yi) is related to a particular Ki,

the subjective belief in a certain numerosity estimate p(Ki|X), is directly captured by

the belief in a certain grouping interpretation yi. One possible estimate for K̂ is the

MAP (maximum a posteriori) estimate, i.e. K̂ = argmaxK p(K|X). Estimating the full

posterior is computationally expensive because K can take on any values in [1,N].

Hence, within the scope of the current chapter we will only compute the posterior for

values ofK allowed as responses by our subjects.

In the experiments below, we create displays with variable spatial configura-

tions of dots, and ask subjects to judge the number of clusters. In Exp. 1, we constrain

the responses to 1 vs. 2, in an attempt to gauge (and then model) the subjective thresh-

old separating these two basic cases. In Exp. 2, we allow numerosities of 1, 2, or 3,

which substantially complicates the geometric relations among the clusters. In both
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experiments, the critical manipulation is the separation of the source components rel-

ative to their spreads (which is more complicated in Exp. 2 because of many variations

in relative position among 3 components). For both experiments, we run the Bayesian

model on the same configurations seen by subjects and compare its estimates to theirs.

2.3 Experiment 1

In this first experiment subjects counted clusters in very simple displays only con-

taining two clusters (similar to Cohen et al., 2008). Subjects were shown dots sampled

from two bivariate isotropic Gaussian clusters, for which we manipulated the distance

d between their underlying means, in order to manipulate the apparant number of

clusters from one to two. In the experiments below we seek the threshold for subjects

relative belief between one or two clusters. Furthermore, we tested how this threshold

changed depending on the variance of the generating Gaussian clusters, σ2. One can

easily see that larger generating variances will result in larger thresholds. Lastly we

also manipulated the number of points that were sampled, and investigate its influence

on the estimated thresholds.

2.3.1 Methods

B

d

A

d
1

d
2

d
3

C D

Figure 2.1: Stimulus setup and example stimuli for Exp.1 and Exp.2. A. depicts
the setup of stimuli in Exp. 1 where the 6 conditions are defined by 3(σ) and 2(N),
and adaptive staircases are ran over d. B. shows an example stimulus for Exp.1 for
σ = 0.8dva, N = 20, and d = 4.0dva (contrast inverted). C. depicts the setup for part two
of Exp 2. where we sampled [d1,d2,d3] at random from a predetermined distribution,
while σ and N were kept fixed to 0.4dva and 30 respectively. D. shows an example
stimulus for part two of Exp.2 (from subject FE’s run) where [d1,d2,d3] = [3.7,2.2,3.1]dva
(contrast inverted).
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Participants

Nine Rutgers University students, naive to the purpose of the experiment, participated

for course credit.

Stimuli

Each stimulus consisted of a number N of dots sampled from a mixture of two bivariate

isotropic Gaussian distributions (Eq. 2.1). Each Gaussian component was governed

by a (common) variance σ2 and a mean µk, whose values were manipulated over the

course of the experiment. The values of σ2 and N depended on the experimental

condition (Fig. 2.1A). The adaptive procedure, which manipulates the distance, d,

between the two component means, governs the position of the means relative to the

center of the screen. More precisely, displays were created by first placing means at

µ1 = [−d/2,0] and µ2 = [d/2,0], where [0,0] is the center of the screen and then applying

a random rotation to the entire display. Assuming equal weights for each of the two

components the following sampling procedure was repeated N times: first, either

of the two components was randomly selected with probability π = .5; second, the

coordinates of dot xn (with diameter 12 minutes of arc) were randomly sampled from

the bivariate isotropic Gaussian N(µk,σ
2) in such a way that xn did not overlap with

any of the other dots. These dots, which were midgray in color, were shown on a

black background with two midgray bars on top and bottom of the display to guide

the subjects fixation (Fig. 2.1B).

Design and Procedure

Subjects sat at 85 cm from a 20” LCD monitor (60 Hz, 1680pxl x 1050pxl) connected to

a Windows 7 PC, on which the displays were presented using Psychtoolbox (Brainard,

1997; Kleiner et al., 2007). Subject ran 6 randomly interleaved adaptive staircases to

estimate the distance threshold, t, between the two component means, for each of

the experimental conditions, i.e. 3(σ = [0.4,0.8,1.2]dva) x 2(N = [10,20]) (Fig. 2.1A-

B). The adaptive procedure used was the Psi method (Kontsevich, Tyler, et al., 1999)
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implemented in the Palamedes toolbox for Matlab (Kingdom & Prins, 2010; Prins &

Kingdom, 2009). redThis method estimates both the threshold (t̂) and its standard

error (SEt̂), and the slope and its standard error of the underlying psychometric curve

by selecting a value for d at each trial that minimizes the expected entropy of the

posterior distribution of the psychometric curve before that trial. Since the primary

interest of this experiment was the threshold estimates, the slope estimates are not

reported. Furthermore, each staircase ran for 100 trials, a number we found to yield

small confidence intervals for the threshold estimates, but unreliable slope estimates.

Before the main experiment subjects ran 16 randomly selected training trials to

acquaint them with the procedure. The main experiment then consisted of a total of

600 trials divided over four blocks of 150 trials each. Each block was followed by a

mandatory one minute break. Each trial started out with a fixation display consisiting

of two midgray bars on top of a black background (e.g. Fig. 2.1A without the dots) for

750 ms followed by the actual stimulus, which was shown for 250 ms. Thereafter the

subjects responded if they saw one or two clusters of dots by means of the numbers on

a numeric keyboard.

2.3.2 Results and Discussion

One out of the nine subjects that ran in this experiment was excluded because the

threshold estimates for some conditions had standard errors larger than the standard

deviation used to generate the clusters, SEt̂ > σ.1 Fig. 2.2A shows, for each subject, the

estimated threshold, t̂, and its SEt̂ (standard error) for each condition. As expected,

there is a positive trend of threshold depending on σ, where the larger the σ used

to generate the clusters, the greater the separation d required for subjects to perceive

two clusters. Since the psi-method adaptive procedure only returns an estimate of the

threshold and its standard error, we compute the significance of the positive trend for

each of the subjects (and N) by means of a t-statistic computed between the σ = 0.4dva

1This criterion was chosen because this would mean that the standard error on the threshold estimate
was larger than the standard deviation of the Gaussian process that generated the dots in that particular
condition



10

SD

t
0

100

200

300

400
AA

20 40 60

AN

20 40 60

JM

20 40 60

MS

20 40 60

NC

20 40 60

TD

20 40 60

TW

20 40 60

YN

20 40 60

Circular

20 40 60

Elliptical

20 40 60

M

v
a
lu
e

0.00

0.25

0.50

0.75

1.00
BT

2 10

FE HD JH JJ MO SV

4 6 8 2 104 6 8 2 104 6 8 2 104 6 8 2 104 6 8 2 104 6 8 2 104 6 8

TG

2 104 6 8

Circular

2 104 6 8

Elliptical

2 104 6 8

A

B

Figure 2.2: A. Results for Exp. 1 showing the threshold (t̂) and standard error (SEt̂)
for all conditions experiment (with red representing N = 10, and green N = 20). B.
Results for Exp 2 showing the dependency between the modality paramete, M, and
the numerical judgements as presented by the multinomial logistic regression model.
Each of the colored line depicts the probability of a different numerocity hypothesis:
red, p(K = 1|M); green, p(K = 2|M); blue, p(K = 3|M). The plots on the left depict results
from the subjects. The plots on the rights show the results of the two model version.

and σ = 1.2dva conditions. A two-tailed t-test then indicated that the positive trend

was significant for all subjects (t = [4.12,20.04]2, p < .001), except TW. The number of

dots (N), on the other hand, did not to have a consistent effect across σ conditions and

subjects, as can be seen in Figure 2.2A.

A natural question is whether subjects’ judgments are scale-invariant, meaning

that a scalar model with σ as predictor (t̂ = aσ) would be a good explanation for the

positive trend seen in the data (Fig. 2.2A). Since the psi-method only returns us with

threshold values and their standard errors, we have to take a different route to test the

scale invariance hypothesis. By dividing the thresholds by the σ of that condition, we

essentially compute the residuals of a scalar model containing σ as a predictor. This

is analogous to the computation of D′ (d-prime). If subjects were scale invariant this

value, t̂/σ, should be constant across different values of σ. By repeating the above t-

statistic based analysis on this reparametrization of t̂ we found that most subjects were

not scale invariant for both levels of N (t = [−9.13,−2.17], p < .05), with the exception

of AN in the N = 10 condition, for which we could not reject the scale invariance

2This shows the range of t-statistic values obtained across subjects. We will continue to use this
notation in later parts of the dissertation
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hypothesis. Moreover, there seems to be a negative relation between t̂/σ and σ.

2.4 Experiment 2

In Experiment 2 we increased the number of possible numerosities to 1,2, or 3. This

substantially complicates the geometric relations among the clusters. More specifically

in Exp. 1, each of the possible displays was generated by only two isotropic Gaussian

clusters, and the means governing them could hence be parametrized by the distance

between them. However in the current experiment each of the displays was generated

by three clusters, increasing the number of distances needed to define the means for the

clusters, to three. Since, manipulating these three distances in a balanced design would

have required an enormous number of trials, we choose to randomly sample the three

distances for each trial, and use these to define the (relative) cluster means. In order

to get a good sample around informative values, i.e. threshold values between two

numerosity judgements, we first ran every subject on one staircase as in Experiment

1 to find out their distance threshold t̂ for the two cluster case. The three distances

were then sampled from a Gaussian distribution with µ = t̂, and variance σ2
d (see

Methods). Furthermore in order to get a general idea about how these three distance

values influence numerosity judgements, we collapsed them into a measure of cluster

separability for each trial. This measure, also called the modality parameter (Feldman,

2012) , much like a traditional F-statistic, takes the ratio between the between cluster

standard deviation (SDµ) and the standard deviation of the clusters (referred to as σ).

Formally this measure is defined as M = (2SDµ)/σ. The larger the value of M the higher

the likelihood that more than one cluster is present.

2.4.1 Methods

Participants

Eight Rutgers University students, naive to the purpose of the experiment, participated

for course credit.
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Stimuli and Procedure

The first part of Exp.2 was identical to one staircase in Exp.1 where σ = 0.4dva and

N = 20. The threshold for t̂ acquired through this procedure was then used to generate

stimuli for the second part.

The stimuli in the second part consisted of 30 dots sampled from a mixture

of three bivariate isotropic Gaussian distributions (Eq. 2.1). Each of the components

was governed by a fixed standard deviation σ = 0.4dva and a mean µ, which was

chosen as follows. The three means µ are vertices of a triangle with edges of length

[d1,d2,d3]. Given t̂ found in the first part of the experiment these edges are sampled

from a Normal distribution, di ∼ N(t̂,σd), bounded by [0,+∞[. We set σd = d̂/1.96 so

that p(di > 0) = 0.95. All three edges were sampled in this way such that the triangle

inequality (d1 < d2 + d3) holds (Fig. 2.1C-D). The goal of this procedure was to create a

wide variety of configurations of cluster geometries. Subjects were tested in the same

environment using the same protocol as in Exp. 1. Each subject ran a total of 1000

trials, randomly generated in the fashion outlined above, split into eight blocks.

2.4.2 Results and Discussion

For each of the subjects we fitted a multinomial logistic regression model to their nu-

merosity judgements, with as independent variable the modality parameter M. By

means of a likelihood ratio-test comparing a model containing M and a unconditional

means model (containing only an intercept), we found that M was a good predictor

for all subjects’ numerosity judgements (LR = [251,907], d f = 2, p < 0.001). That is, as

in Exp. 1, subjects responses were substantially driven by the degree to which the

clusters were separated relative to their spreads. Figure 2.2B shows the multinomial

logistic regression models for each of the subjects. One can easily see that with increas-

ing values of M higher numerosity judgements become more and more likely. Note

however, although M is a good predictor for the range of stimuli tested here it is not a

universal predictor of number.
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2.5 A Bayesian Model for these Tasks

In the current experiments only a limited set of numerosities were considered, sum-

marized in the posterior p(K|X), where K = {1,2} for Exp. 1 and K = {1,2,3} for Exp.

2. The likelihood of each hypothesis p(X|Ki) was assessed by the fit of a mixture model

with K = Ki, to a given geometric configuration of dots X. The prior belief p(K ) over

all of the hypotheses was assumed to be uniform. redOne might point out that hy-

potheses containing fewer clusters should have a more favorable prior, however true,

such a trade-off between complexity and fit of the hypotheses is already embodied

by the likelihood p(X|Ki) through what is knows as Bayes Occam (see Appendix 5.1).

Together the prior and likelihood define the posterior probability for Ki:

p(Ki|X) =
p(X|Ki)p(Ki)∑

j
p(X|K j)p(K j)

. (2.2)

This posterior was computed for two version of the model. In one version, the “ellipti-

cal” model (Me), the model is free to estimate the full covariance matrix Σ for each of the

component distributions, amounting in a total of 5 parameters (µx,µy,σx,σy,σxy) to be

estimated, meaning that each cluster is assumed to be elliptical in shape. In the other

version, called the “circular” model (Mc), the model is constrained to only circular

component distributions (where σx = σy and σxy = 0), leaving only three parameters to

be estmated (µx,µy,σ). We included both model versions because it is unclear a priori

which model subjects would adopt, and they can lead to substantially diferent nu-

merosity estimates. For example, a subject assuming an elliptical model might judge

an elongated cloud of dots to comprise of one cluster, whereas one with a circular

model might prefer two clusters. (Appendix 5.2 shows how both of these assumptions

can be encompassed by a prior over the covariance matrix Σ).

We evaluate the equivalence of our model to the human data in three ways.

First, we will let the model run the same experiment as the subjects, with double the

amount of trials per staircase (i.e. 200) for Exp. 1 and a total of 1000 samples for Exp. 2.

For each trial the model computes the posterior as shown above, yielding a numerosity
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estimate by sampling from this posterior. redEven though such a decision strategy,

also referred to as probability matching, is sometimes regarded as suboptimal it appears

to be used in some perceptual tasks (Mamassian & Landy, 1998; Wozny, Beierholm,

& Shams, 2010). Secondly, we also computed how well each of the two versions

explained subject data. This was done by first computing the posterior, p(K|Xv) for

each dot-configuration Xv shown to the subjects during their run of the experiments.

Subsequently we computed how likely each of the subjects’ responses R = {r1...rv}

were generated by either of the two versions on the model. The ratio between both

likelihoods yielded the Bayes factor, BFec = p(R|Me)/p(R|Mc), indicating how much

more likely subjects’ responses were generated under the elliptical assumption versus

the circular. Finally, we compared how well our model explained the human subjects’

data to the standard CODE model (henceforth referred to as CODE1) by Van Oeffelen

and Vos (1982). The CODE model superimposes a Gaussian function fn (i.e. a Gaussian

distribution without the normalization factor) centered on each of the dots xn with a

standard deviation sn. In the standard account sn is defined as sn = dn/2, where dn is

the distance of xn to its nearest neighbor. Clusters are then found by computing the

mixture of all these Gaussians F(x) =
∑

n fn(x) and finding the contour where F(x) = 1.

The number of closed contours found is then said to be the estimated number of

clusters, which could range from [0,+ inf]. In order to compare this model to our own,

we also ran it on all the dot-configurations shown to the subjects. We then computed the

proportion of trials in which the CODE1 model gave the same response as the subject,

p(correct). Early pilot test with the standard CODE1 model showed its performance

to be severly lacking. We therefore also tested an augmented version of the CODE

model, just as one of the versions tested by Compton and Logan (1993), in which we

ensured a more global influence of the dots upon each other by setting sn = dn (further

referred to as CODE2). The percent correct of these two models was then compared to

our models percent correct which was computed as
∑

n p(rv|M).
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Experiment 1 Experiment 2
ID log(BFec) ID log(BFec)
AA -215 BT 142
AN 827 FE 1857
JM 693 HD 1519
MS 432 JH -912
NC 524 JJ -325
TD 55 MO 137
TW -92 SV 3540
YN 104 TG 869

Table 2.1: Fitting results for both experiments indicating the Bayes Factor log(BFec of
the elliptical versus the circular version of the model. Positive numbers indicate that
this particular subjects results were more likely to be generated by the elliptical model,
while negative numbers indicate a circular assumption.

2.5.1 Model Performance

As shown in Fig 2.2A, the model’s performance closely matches that of subjects

in Exp. 1. Analyzing both model versions in the same way as the subjects’ data (see

Exp. 1 for details) yielded a significant positive effect of σ (elliptical, t = {8.18,20.34}3,

p < .001; circular, t = {8.54,18.73}, p < .05). Furthermore one can clearly see that the

positive trend is different for the two versions of the model, with a shallower slope for

the circular model, and lower threshold values in general. This is a clear side effect

of the shape assumption underlying the model versions. The same scale invariance

analysis as in Exp. 1 yielded that both model versions were not scale invariant for

N = 20 (elliptical, t =−5.96, p< .001; circular, t =−5.57, p< .001), on the other hand scale

invariance could not be rejected for N = 10 (elliptical, t =−0.86; circular, t =−1.26). One

could compare each of the two model versions to the subject data by merely eyeballing

the plots shown in Fig. 2.2, and get an idea which subject held which shape assumption.

A more objective measurement is given by the Bayes factor BFec as described above.

Table 2.1 shows the logarithm of BFec for each of the subjects. Most subjects seems to

adhere to a elliptical hypothesis.

A similar close correspondence between the model and the subjects’ data was

found for Exp. 2 (Fig. 2.2B). As was the case for the subjects the modulation parameter

3t-statistic for N=10 and N=20.
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M was found to be a significant predictor for both models’ numerosity judgements, as

shown by a likelihood ratio test between a multinomial regression model containing

M as a predictor and an unconditional means model (elliptical, LR = 857, p < 0.001;

circular, LR = 907, p < 0.001). Which subject held which shape assumption is shown in

Table 2.1. Again, as in Exp. 1, most of the subjects’ data in Exp.2 was best explained

by the model making the elliptical assumption.

Our model clearly outperformed the standard CODE1 model (Fig. 2.3) in both

experiments. Specifically, CODE1 hardly ever gets the numerosity estimate right,

especially in Exp. 2. As can be seen in Fig. 2.3 augmenting the CODE model to take

into account more global aspects of the configuration clearly benifits the model CODE2,

resulting in performance close to our own models Mc and Me. The difference in overall

performance between both versions of our model was marginal.
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Figure 2.3: Comparison of each of the models performance as operationalized by the
proportion of correct numerosity judgements for each of the subjects. Here the average
proportion correct across all subjects and 95% confidence interval (1.96×SE) is shown
for Exp. 1 (A) and Exp. 2 (B).

2.6 General Discussion

In this chapter we studied how subjects group dots into clusters, and more particularly

how they decide how many clusters are present. Across a set of two experiments we
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tested numerosity judgments for clouds of dots sampled from mixtures of bivariate

Gaussian clusters. We showed that subjects numerosity judgements were substan-

tially driven by the degree to which clusters were separated relative to their spreads.

A similar result has been found using a more indirect measure in case of only two

clusters (Cohen et al., 2008). However, at least in Exp. 1 we were able to show that

this relationship was not a scalar one, indicating that subjects were not scale invari-

ant. We modelled these results in a Bayesian framework in which different grouping

hypotheses, and thus numerosity estimates, are assigned probabilities. In order to

model these grouping hypotheses we adopted a mixture model framework, that esti-

mates the posterior probability of each grouping hypothesis. We found our model to

give an accurate and quantitatively precise account of subjects’ numerosity responses.

Furthermore, we tested two versions of the model to accommodate for possible prior

assumption about cluster shape that might be held by the subjects. We found that only

a few subjects (4/16) tended to assume the clusters were constrained to take on circular

shapes, while all the others had fewer constraints on shape, i.e. they assumed elliptical

shapes.

Our model outperformed the standard CODE model (Van Oeffelen & Vos, 1982).

When augmenting the standard CODE model to take into account more global aspects

of the dot configurations its performance came close to our own models. Moreover, the

approach proposed here has several benefits over such traditional approaches. First of

all the current model is not only applicable to Gaussian dot clusters, but is a framework

that is generalizable to other problems in perceptual grouping. The current model

assumed that each of the components was Gaussian in form. A byproduct of imposing

such a monotonically decreasing density function is that more closely elements are

more likely to be generated from a common source, i.e. grouped together. Thus in

essence our model is a version of the Gestalt principle of proximity. In other words the

Gestalt principle of proximity be can thought of as a heuristic to solve a mixture model

with Gaussian components. In a more general sense Gestalt principles can be seen as

heuristics to solving mixture models with different classes of component distributions

(Feldman et al., submitted). For example above Bayesian framework could be extended
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to other problems in perceptual organization such as contour integration, where edges

are generated from underlying contours. Secondly, unlike the CODE model, a Bayesian

approach has the advantage of being able to assign different degrees of belief to different

grouping hypotheses, allowing us to model the often intermediate judgements present

in subjects data. redThird, Bayesian inference makes optimal use of the information

and assumptions available to the observer (Jaynes, 2003).

The current chapter puts forward an approach showing the interconnection

between perceptual grouping and numerosity estimation. We claim that perceptual

grouping precedes numerosity estimation, in that accurate numerosity judgments re-

quire an image to be segmented into distinct objects. These objects can be clusters as

in the current chapter, or the dots themselves as in traditional numerosity literature.

The framework we propose shows how a model for perceptual grouping can make

numerosity judgements for Gaussian clusters as objects, but as discussed above can

easily be extended to different objects by changing the class of component distributions.

We hope the framework will pave the road for more principled models of numerosity

estimation driven by principles of perceptual grouping.
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3. Bayesian hierarchical grouping

3.1 Abstract

Perceptual grouping is the process in which image elements are grouped into distinct

units or “objects”. We propose a Bayesian framework for grouping in which the

goal of the computation is to estimate the hierarchical representation that explains the

observed configuration of the image elements. We formalize the problem of perceptual

grouping as a mixture estimation problem, where it is assumed that the configuration

of image elements is generated by a set of distinct components (or “objects”). This

framework can easily be adjusted to different subproblems of perceptual grouping by

changing the object definitions. In the current chapter we discuss an instantiation of

our framework for contour integration, part decomposition, and shape completion. We

show how the framework can account for several perceptual phenomena, as well as

account for human subject data from previous experiments for these specific grouping

problems. In the end the framework proposed here gives us insight in how image

elements are grouped together into distinct objects.

3.2 Introduction

Perceptual grouping is the process in which image elements are grouped into distinct

clusters or objects. The problem of grouping is inherently difficult because the sys-

tem has to choose the best grouping interpretation among many. Specifically, as the

number of image elements N increases, the number of possible grouping interpreta-

tions increases exponentially with N. Despite the many studies on different aspects of

perceptual grouping (for review see Wagemans et al., 2012a; Feldman et al., 2013) the

mechanisms underlying them are poorly understood.

Many different models have been proposed for subproblems of perceptual

grouping, such as contour integration (e.g. Field, Hayes, & Hess, 1993; Geisler, Perry,

Super, & Gallogly, 2001; Ernst et al., 2012), completion (e.g. Van Lier, 1999; Kalar,

Garrigan, Wickens, Hilger, & Kellman, 2010) and figure-ground organization (e.g.
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Sajda & Finkel, 1995; Craft, Schütze, Niebur, & von der Heydt, 2007; Froyen, Feldman, &

Singh, 2010). Even other problems in visual perception such as part decomposition can,

as we will show below, be cast as a perceptual grouping problem (e.g. Siddiqi & Kimia,

1995; Singh, Seyranian, & Hoffman, 1999). However, often these models describe the

underlying mechanism in terms of somewhat underdetermined and poorly understood

Gestalt principles or heuristics. Even though these models can make predictions

about human perceptual grouping within their particular focus, they fail to assign

subjective beliefs to these grouping hypotheses. Such is important to make quantitative

predictions about subject behavior. Furthermore most of these models are tailored to

a specific subproblem of perceptual grouping. Hence they are not easily generalized

to other problems within perceptual grouping.

redIn this chapter we propose a mathematically rigorous and generalized

framework for perceptual grouping resulting in a formal definition of perceptual

grouping. More specifically we will discuss a specific instantiation of it for contour

integration, shape completion, and part-decomposition.

3.3 The computational framework

In recent years Bayesian models have been developed to explain a variety of problems

in visual perception. In these models each possible interpretation C = {c1 . . .cJ} of an

image D is related to a posterior p(C|D), which according to Bayes rule is proportional

to the product of a prior p(C) and likelihood p(D|C) (for review see Kersten et al., 2004;

Feldman et al., 2013)1. In recent papers we proposed that in order to model grouping

problems, in particular dot clustering, a mixture model framework can be adopted

to compute the probability of a particular grouping hypothesis p(cj|D) (Feldman et

al., submitted, and Chapter 2). Such a model has been shown to give quantitative

and accurate predictions of human subjects judgments in the case of dot clustering

(Chapter 2).

1Note that the notation in this chapter is slightly different from Chapter 2, due to the more elaborate
mixture model definitions that will be adopted
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3.3.1 An image is a mixture of objects

Let D = {x1 . . .xN} denote the image data with each representing a 2-dimensional vector

inR2. A mixture density is a probability distribution that is composed of the weighted

sum of K components or objects labeled {1 . . .K},

p(xn|φ) =

K∑
k=1

p(xn|θk)p(cn = k|p) (3.1)

where cn ∈ c = {c1 . . .cN} are the object assignments, p is a parameter vector of a multi-

nomial distribution with p(cn = k|p) = pk, θk are the parameters of the kth object, and

φ = {θ1, . . . ,θK,p}. Even though often each of these objects takes on simple form, the

resulting mixture can be highly complex and irregular in structure. The problem of

mixtures is to represent such a complex dataset as the result of a combination of ho-

mogeneous objects (McLachlan & Basford, 1988). Depending on the task at hand these

objects can take on different forms. In a case as simple as clustering dots, the image

data could be said to be generated by a mixture of Gaussian objects with a mean, µk

and covariance matrix Σk (Chapter 2). However for more complex classes of grouping

problems such as contour integration or part-decomposition different types of objects

will have to be defined. In case of contour integration we will define that an image as

a mixture of contours, while in case of part-decomposition we will define a shape as a

mixture of parts. Below we will describe a generalized object class that can easily be

tailored to generate image data as if it were a part, a contour, or a cluster.

To obtain a full Bayesian formulation of mixture models we define a prior over

the object parameters p(θ|β) and over the mixing distribution p(p|α). The former prior

defines, on top of the object definition p(x|θ), what our prior beliefs are about what

the objects look like before even seeing the image D. The latter prior is the natural

conjugate prior for the mixing distribution, the Dirichlet distribution with parameter

α. When α > 1 there is a bias towards more objects each explaining a small number of

image data, while when 0 < α < 1 there is a bias towards fewer objects each explaining

a large number of image data. Using these two priors we can rewrite the mixture

model in Eq. 3.1 to compute the probability of a particular grouping hypothesis cj. The



22

likelihood of a particular grouping hypothesis is computed by marginalizing over the

parameters θk, p(D|cj,β) =
∫ ∏N

n=1 p(xn|θcn)
∏K

k=1 p(θk|β)dθ. This results in,

p(cj|D,α,β) ∝ p(D|cj,β)p(cj|α), (3.2)

where p(cj|α) =
∫

p(cj|p)p(p|α)dp is a Dirichlet integral. redNote that rewriting the

mixture model in this way decomposes the right-hand side of the equation into two in-

tuitive factors: a likelihood depicting how well the current grouping hypothesis cj fits

the data D given object prior β; and a prior depicting the complexity of this grouping

hypothesis cj, i.e. assigning the image data to the objects in this way, given the mixing

prior α. Unfortunately the posterior over all possible assignments cj is intractable even

for a fixed number of components K (Gershman & Blei, 2012). For many clustering

problems, such as perceptual grouping we often do not know which grouping hypoth-

esis cj to test or the number of objects that are present. For such cases we will need to

generalize the above finite mixture model formulation to allow for an infinite number

of objects. In other words, the number of objects is now considered a free parameter.

One can easily see that in that case estimating the posterior over grouping hypothe-

ses becomes even less tractable. Several approximation methods have been proposed

to compute this posterior, such as Markov-Chain Monte Carlo (McLachlan & Peel,

2004) or variational methods (Attias, 2000). In the current chapter we choose a method

that conforms with the idea that perceptual organization is hierarchical, the Bayesian

Hierarchical Clustering method as proposed by Heller and Ghahramani (2005).

3.3.2 Bayesian hierarchical grouping

The idea that perceptual organization tends to be hierarchical is hardly novel (e.g.

Pomerantz, Sager, & Stoever, 1977; Palmer, 1977; Baylis & Driver, 1993; Lee & Mumford,

2003; Marr & Nishihara, 1978). Formally a hierarchical structure corresponds to a

tree where the root node represents the image data at the most global level, i.e. the

grouping hypothesis postulates that all image data is generated by one underlying

object. Subtrees then describe finer and more local relations between image data,
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all the way down to the leaves, which explain only one image datum xn (i.e. one

object for each datum). Even though this formalism has become popular over the

recent years (Amir & Lindenbaum, 1998; Shi & Malik, 2000; Feldman, 1997b, 2003a),

no formal framework has been proposed on how to build this tree structure for a

particular image. Within the field of machine learning many different methods have

been proposed for hierarchically clustering data (for overview see Bishop, 2006). In

this chapter a method that integrates the idea of understanding grouping as a mixture

model problem with the idea of hierarchical clustering is adapted to the setting of

perceptual grouping.

The Bayesian hierarchical clustering algorithm (BHC) is similar to traditional

agglomerative clustering methods (Heller & Ghahramani, 2005), with its main dif-

ference being in how the algorithm uses a Bayesian hypothesis test to decide when

to merge clusters. Here we will, in a general manner, explain the workings of this

algorithm. Given the dataset D = {x1 . . .xN}, the algorithm is initiated with N trees Ti

each containing one data point Di = {xn}. At each stage the original BHC algorithm

would consider merging all possible pairs of trees. Then, by means of the statistical test

explained below it is decided which two trees Ti and T j to merge, resulting in a new

tree Tk, with its associated merged dataset Dk = Di∪D j (Fig. 3.1A). However, testing

all possible pairs in the context of perceptual grouping is rather intractable, hence to

increase performance we propose the following. In our implementation of the BHC we

only consider pairs of trees that have data points near each other as defined by Delau-

nay triangulation, i.e. Delaunay-consistent pairs. Doing so substantially reduces the

number of pairs to be tested. redSpecifically while the original approach in its initial

phase would have a complexity of O(N2), our approach reduces this initial complexity

to O(N log(N)) (also see App. 5.3).

In considering each merge the algorithm compares two hypotheses in a Bayesian

hypothesis testing framework. The first hypothesisH0 is that all the data in Dk is gen-

erated by only one underlying object p(Dk|θ), with unknown parameters θ. In order to

evaluate the probability of the data given this hypothesis p(X|H0) we introduce priors

over the objects as described above p(θ|β), in order to integrate over the to be estimated
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parameters θ,

p(Dk|H0) =

∫
θ

∏
xn∈Dk

p(xn|θ)p(θ|β) (3.3)

For simple objects such as Gaussian clusters this integral can be computed analytically.

In case of more complex objects this integral becomes less tractable (see App. 5.4).

The second hypothesis, H1, is the sum of all possible partitionings of Dk into

two or more objects. However, as already mentioned above such computation is

intractable. Therefore the BHC algorithm circumvents this problem by restricting itself

to partitionings that are consistent with the tree structure of the two to be merged trees

Ti and T j. For example for the tree structure as in Fig. 3.1A the possible tree-consistent

partitionings are shown Fig. 3.1B. As you can see many possible partitionings are not

considered. So, the probability of the data under H1 can be computed by taking the

product over the subtrees p(Dk|H1) = p(Di|Ti)p(D j|T j). Below we will define p(Di|Ti),

and it will become clear how this sum over all partitionings can easily be computed

recursively as the tree is built.

In order to get the marginal likelihood of the data under the tree Tk we need

to combine p(Dk|H0) and p(Dk|H1). In this way we get the probability of the data inte-

grated across all possible partitions, including the one object hypothesisH0. Weighting

these hypotheses by a prior on all data Dk being explained by one object p(H0), we get

our definition for computing p(Di|Ti) when building the tree,

p(Dk|Tk) = p(H0)p(Dk|H0) + (1−p(H0))p(Di|Ti)p(D j|T j). (3.4)

Note that p(H0) is also computed bottom-up as the tree is built and is based on a

Dirichlet process prior (Eq. 3.6, for details see Heller & Ghahramani, 2005). We will

discuss this prior in further depth below. Given the above equation, the probability of

the merged hypothesis p(H0|Dk) can easily be found by means of,

p(H0|Dk) =
p(H0)p(Dk|H0)

p(Dk|Tk)
(3.5)
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This probability is then computed for all the Delaunay-consistent pairs. The pair

with the highest probability of merging is then merged. In this way the algorithm

greedily builds the tree until all data is merged into one cluster. We will refer to our

implementation of the BHC for perceptual grouping as Bayesian hierarchical grouping

(BHG).

A B
Dk

Di

Dj

Tk

Ti

Tj

Figure 3.1: Explaining the BHC process. A. Tree decomposition (adapted from Heller
& Ghahramani, 2005); B. Tree slices, i.e. different grouping hypotheses.

Tree-slices

During the construction of the tree one can simply find the MAP decomposition by

splitting the tree once p(H0|Dk) < .5. However, especially in perceptual grouping, we

are more often interested in the distribution over all the possible grouping hypoth-

esis that were considered. In order to do so we need to build the entire tree, and

subsequently take what are called tree slices at every level in the tree (Fig. 3.1B), and

compute their respective probabilities p(cj|D,α,β). Since the BHC model employs in-

finite clustering rather than finite clustering, the Dirichlet prior as explained above is

no longer applicable to compute this quantity. We therefore turn to its infinite variant,

the Dirichlet Process prior (similar to the Chinese restaurant process). This process

was independently discovered by Anderson (1991) in the context of categorization.

Formally this prior is defined as
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p(cj|α) =
Γ(α)αK∏K

k=1 Γ(nk)
Γ(N +α)

, (3.6)

where nk is the number of datapoints explained by object with index k. Inserting Eq. 3.6

into Eq. 3.2 we can easily compute the posterior distribution across all tree-consistent

decompositions of data D:

p(cj|D,α,β) ∝ p(cj|α)
K∏

k=1

p(Dk|β) (3.7)

where p(Dk|β) is the marginal likelihood over θ for the data in cluster k of the current

grouping hypothesis.

Prediction

For any grouping hypothesis, we can compute the probability of a new point x∗ given

the data D. This distribution is called the posterior predictive p(x∗|D,cj). As in Eq. 3.1,

the new data is generated from a mixture model governed by K components as present

in this particular grouping hypothesis. More specifically new data is generated as a

weighted sum of predictive distributions p(x∗|Dk) =
∫

p(x∗|θ)p(θ|Dk,β) (where Dk is the

data associated with object k),

p(x∗|D,cj) =

K∑
k=1

p(x∗|Dk)πk. (3.8)

Here πk is the posterior predictive of the Dirichlet process prior defined as πk = (α+

nk)/
∑K

i=1(α+ ni) (see Bishop for a derivation). Using this approach the framework we

propose for perceptual grouping is able to make predictions about missing parts of

shapes, as for example is the case in amodal completion. Several examples of this will

be shown in the results section.

3.3.3 The objects

In the general framework presented above the objects can take on any form. For simple

dot clustering problems we can assume Gaussian objects, governed by a mean, µk and
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a covariance matrix Σk. We have previously shown that such a representation accu-

rately and quantitatively predicts subject cluster enumeration judgments (Chapter 2).

However, more complex grouping problems such as part-decomposition and contour

integration call for a more elaborate object definition. In the current instantiation of

the framework the objects are represented as B-spline curves G = {g1 . . . gK} (Figure 3.2),

each governed by a parameter vector qk. Given this underlying curve, datapoints xn

are generated perpendicular to the curve as follows,

p(xn|θk) =N(dn|µk,σk), (3.9)

where dn = ‖xn− gk(n)‖ is the distance between the datapoint xn and its perpendicular

projection to the curve gk(n) (also referred to as the riblength), µk is the mean riblength,

and σk is the variance on the riblength for this component. Put together the parameter

vector for each component is defined asθk = {µk,σk,qk}. One can easily see in Figure 3.2,

how by formulating the generative function as such it can be adapted to generate either

image data coming from a contour like object (Fig. 3.2A) when µk = 0. On the other

hand when µk > 0 the image data is generated with some distance from the curve, as

if an axis was generating a part (Fig. 3.2B). Furthermore given an object with µk = 0,

and a larger variance σk the image data generated will look like dots generated from

a cluster. redNote that the generative function is symmetric along the underlying

curve (Fig. 3.2), which results in the object class indirectly incorporating a symmetry

constraint (e.g. Kanizsa & Gerbino, 1976; Machielsen, Pauwels, & Wagemans, 2009)

when estimating said underlying curve for a given set of data D.

As noted above in Bayesian mixture models we furthermore need to define

a prior on these parameters p(θ|β). Given the definition of our objects we introduce

two sets of priors for the object parameters θ. A first set is introduced on the shape

of the underlying curve gk. Specifically, a bias towards short curves was introduced

by means of a prior on the arclength of the curve, as computed by Fk1 =
∫
‖g′k‖

2,

Fk1 ∼ exp(λ1). Furthermore a bias towards straight curves was introduced by means of

the total curvature along the curve as computed by Fk2 =
∫
‖g′′k ‖

2, Fk2 ∼ exp(λ2). Both
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A B

Figure 3.2: The generative function of our model depicted as a field. Ribs sprout
perpendicularly from the curve (red) and the length they take on is depicted by the
contour plot. A. For snakes ribs are sprouted with a µ close to zero, resulting in a
Gaussian fall-off along the curve. B. For shapes ribs are sprouted with µ > 0 resulting
in a band surrounding the curve.

values were computed numerically (see Appendix 5.4). A second set of priors was

introduced onto the function that generated the datapoints from this curve (Eq. 3.9).

We introduced a Normal-inv(χ2) distribution as the conjugate prior for the normal

distribution with parameters {µ0,κ0,ν0,σ0}. µ0 is our prior belief of the mean riblength

and κ0 defines how strongly we believe this; σ0 is our prior belief of the variance of the

riblength, and ν0 defines how strongly believe this. Putting all this together the object

hyperparameter vector is defined as β = {µ0,κ0,ν0,σ0,λ1,λ2}. Together the generative

function (Eq. 3.9) and the object prior define the object class. The object hyperparameter

vector then governs our belief about what we think an object looks like within this

particular object class, and is what makes this particular object class flexible enough to

account for different spatially defined perceptual grouping problems.

We proposed a mathematically rigorous and coherent framework for under-

standing perceptual grouping based on one central idea: an image is a mixture of objects.

In what follows we will show how the specific instantiation of the framework dis-

cussed here can account for several perceptual phenomena and human subject data in

domains such as contour integration, part decomposition and shape completion.
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3.4 Results

We will show how our model explains many known findings in contour integra-

tion, part decomposition and shape completion by means of comparisons to instant-

psychophysics and previously collected human subject data. On top of that the model

is able to make novel predictions within these different fields of perceptual grouping,

hopefully sparking new experiments and findings in the future.

3.4.1 Contours

As already mentioned one of the perceptual grouping problems our computational

framework is able to handle is the integration of dots into contours. Before we can run

the model on different stimuli within this class, we need to define what we assume a

contour looks like. In other words we need to set the hyperparameters β that define

the objects. In the case of contours we can assume that the mean riblength is very close

to zero, that is edges are generated as a Gaussian falloff from the actual curve. This

is reflected in the hyperparameters by setting µ0 = 0 and κ = 1×104. Furthermore we

can say that the variance on the riblength ought to be rather small because contours

are long and narrow objects (σ0 = .01; ν0 = 20). The remaining two parameters, λ1 and

λ2, are the ones governing the actual shape of the contours. It are these parameters

that indirectly reflect the Gestalt principles of proximity (λ1) and good continuation

(λ2). These parameters were set to values that gave intuitive results for the examples

below (λ1 = 0.16; λ2 = 0.05). Finally we set the parameter of the dirichlet prior to

α = 0.1. Naturally, alternative setting of these parameters may be appropriate for other

contexts.

In what follows we will illustrate our framework on contours. We will first

introduce dot-lattices in which only proximity is often said to be important, and show

how they can be understood as being part of the same class as other contour integration

problems. Afterwards we will show how the model can explain the formation of the

classic association field, even though its definition is not explicitly included in the

model. With these sanity checks in hand we than show how the BHG approach is able
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to segment scenes of simple and complex edge configurations into intuitive contours,

without any prior knowledge about what grouping hypotheses to test. Furthermore

we will compare our frameworks contour grouping judgments to human subject data

previously collected by Feldman (2001).

Dot-lattices
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Figure 3.3: Framework predictions for simple dot lattices (Kubovy & Wagemans, 1995;
Kubovy et al., 1998). As input the model received the location of the dots as seen in the
bottom two rows, where the ratio of the vertical (a) over the horizontal (b) dot distance
was manipulated. The graph on top shows how the probability of seeing vertical lines
versus horizontal lines progressed as the ratio a/b increased. The blue line shows this
for small dot lattices of 2x2 elements, while the red line makes predictions for a larger
5x5 dot lattice.

Ever since Wertheimer (1923), researchers have used dot lattices to study group-

ing, and more specifically the Gestalt principle of proximity (e.g. Zucker, Stevens, &

Sander, 1983; Kubovy & Wagemans, 1995). A dot lattice is a collection of dots arranged

on a grid-like structure (e.g. Fig. 3.3), with for example vertical spacing |a| and horizon-

tal spacing |b|. These two lengths and the angle between them defines the dot lattice.

For the example discussed here the angle was kept to π/2. Mathematical formulations
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of how grouping is established within these lattices have been proposed before, of

which the most notable is the pure-distance law (Kubovy & Wagemans, 1995; Kubovy

et al., 1998). This formulation however only characterizes the local grouping strength

as present between nearby dots. This works well within the context of equally spaced

lattices because the computation of this grouping strength is the same for each dot.

However, it neglects possible context influences from the overall lattice structure, such

as the size of the lattice.

In order for our model to make predictions about lattice interpretations, we

first need to realize that these simple structures are a simplification of the contour

integration problem. Given this, we can set up the hypothesis space of possible

grouping interpretations. In order to keep it simple for the example in Fig. 3.3, we

only consider two hypotheses: rows (horizontal contours) versus columns (vertical

contours). The posterior distribution over these hypotheses can easily be computed

using Eq. 3.7. The results for a 2 by 2 and a 5 by 5 lattice can be seen in Fig. 3.3,

where the larger the ratio of |a|/|b| becomes the more probable the vertical contours

hypothesis, consistent with empirical findings (Kubovy & Wagemans, 1995). Since the

model does not base this posterior solely on the spacing between nearby dots, we can

make more sophisticated predictions about the influence of the entire lattice structure.

Specifically, we predict that the size of the grid matters. As can be seen by studying

the psychometric curves in Fig. 3.3, the larger the grid, the higher we predict the

sensitivity of the subjects to be. There are two reasons why our model makes this

prediction. First of all with larger grids there are more dots per contour, essentially

increasing the certainty of that particular contour interpretation. Secondly larger grids

also have more contours increasing the evidence for a particular percept (horizontal

versus vertical). This prediction, however, even though not yet tested directly, is in line

with a similar finding in figure-ground perception. For classic figure-ground stimuli

with alternating convex and concave regions Peterson and Salvagio (2008) showed that

the more regions were present the stronger the bias became towards seeing the convex

regions as figural.
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Collinearity

Apart from the proximity cue, good continuation is another important Gestalt principle

involved in contour integration. The visual system’s tendency to group dots into

approximately collinear segments has been studied in some detail (Smits, Vos, & Van

Oeffelen, 1985; Smits & Vos, 1987; Feldman, 1997b, 2001). Here we will show how the

model is also sensitive to collinearity of dot patterns by comparing its performance to

human subject data. Feldman (2001) conducted an experiment in which subjects saw

dot patterns consisting of six dots (e.g. Fig. 3.4A and B) and were asked to indicate

if they saw one or two contours. To model the data from this experiment we simply

ran our model on all the stimuli and computed the probability for the two alternative

grouping hypotheses: (c0) all dots are generated by one underlying contour, or (c1)

the dots were generated by two contours. The latter hypothesis encompasses several

hypotheses, that is all possible ways that these six dots could be subdivided into two

contours. Here we only took into account those hypotheses that would not alter the

order of the dots. In other words we only considered hypotheses: {(1), (2,3,4,5,6)},

{(1,2), (3,4,5,6)}, {(1,2,3), (4,5,6)}, {(1,2,3,4), (5,6)}, and {(1,2,3,4,5), (6)}. Summing the

probability for these hypotheses together yields the probability for c1. We then compare

the posterior probability p(c1|D) to the pooled subject responses for all 343 stimuli

shown in the experiment. We found a monotonic relationship between the model

and the subject responses. Because this relation was sigmoidal, we used an inverse

cumulative Gaussian to linearize this relationship (Fig. 3.4). The framework responses

and subject responses were highly correlated (LRT = 375.06, d f = 1, p< .001, R2 = 0.6650;

BF = 1.1764e + 79) 2.
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Linearized model predictions
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Figure 3.4: Model’s performance on data from Feldman (2001). A/B. Sample stimuli
with likely responses (stimuli not drawn to scale). C. Pooled subject responses plotted
as a function of the model responses, where each point depicts one of the 343 stimuli
shown in the experiment. Both indicate the probability of seeing two contours p(c1|D).
Note that the model responses are linearized using an inverse cumulative Gaussian.
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Figure 3.5: Association field between to line segments each containing 5 dots. A. shows
our manipulation of the distance and angle between these two line segments. The blue
line depicts the one object hypothesis while the two green lines depict the two objects
hypothesis. B. depicts the association field for the posterior probability of p(c0|D) when
put into competition with p(c1|D), where the gradient from blue to red depicts p(c0|D)

Association field

The interaction between the principles of good continuation and proximity has been

well studied by Field et al. (1993), who propose an association field linking nearby ele-

ments for oriented edge segments. A closely related idea, co-circular support neighbor-

hoods, was proposed earlier in the context of contour refinement in computer vision

(Zucker, 1985; Parent & Zucker, 1989). Contrary to the classic association field our

model does not concern itself with oriented edges. Nevertheless, similar interactions

are present in case of dot patterns and an association field like pattern can be seen to

emerge in our model (Fig. 3.5). Given two segments each consisting of five dots we

manipulate the distance, D, and the angle, θ, between the two segments (Fig. 3.5A).

We then pit two grouping hypotheses against each other: (c0) all dots are generated by

only single underlying contour, or (c1) both segments are generated by two separate

2Both the Bayes factor (BF) and the likelihood ratio (LRT) were computed by comparing a regression
model in which the linearized framework responses were taken as a predictor versus an unconditional
means model only containing an intercept.
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contours. The posterior probability p(c0|D) is shown in Fig. 3.5B. As one can see the

bigger the angle between the two segments, and/or the further they are apart from each

other the less probable the grouping hypothesis c0 becomes, where the gradient from

blue to red depicts p(c0|D).

Contour integration with BHG

In all three of the examples above we were able to set the grouping hypotheses before-

hand. However in many cases we do not know what the alternative hypotheses are.

It is for those cases that we will use the BHG to come up with a posterior distribution

over possible grouping hypotheses. We first ran our framework on a set of simple edge

configurations (Fig 3.6). One can see that the framework decomposes these into intu-

itive segments at each step in the hierarchy. Fig. 3.6A gives an illustration of how the

MAP (maximum-a-posteriori) hypothesis is that all edges are generated by the same

underlying contour, while the hypothesis one step down segments it into two intuitive

segments. The latter hypothesis, however, is less likely under the current generative

function and the assumptions of what we set to be a contour (i.e. the hyperparameter

settings). Another example of an intuitive hierarchy can be seen in Fig. 3.6D, where

the MAP estimate consists of three segments. The decomposition one level up (the 2

contour hypothesis) then groups the two segments that are abutting together. Again

this hypothesis was found to be less likely given our assumptions. These simple cases

show that the model can build up an intuitive grouping hypothesis space. To show

that our frameowrk generalizes to more complex edge configuration we ran it on the

stimuli shown in Fig. 3.7. The MAP grouping hypotheses are what one would expect

in these cases. In Fig. 3.7B the longer segment was broken into two parts. Although

this seems rather non-intuitive, it is what follows from the current features present in

the model and the assumptions we set up above. Specifically, we included a penalty

for the length of the curve in the form of λ1. This penalty was given to the global

configuration, i.e. the entire curve. Previous models, on the other hand have modelled

the effect of the distances between two nearby dots (e.g. Geisler et al., 2001). As shown

before (Feldman, 1997a), if follows from our simulation that in order to fully capture
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Figure 3.6: BHG results for simple dot contours. The first column shows the input
images and their MAP segmentation. Here, the input tokens are numbered from left
to right. The second column shows the tree decomposition as computed by the BHG
algorithm. The third column depicts the posterior probability distribution over all
tree-consistent decompositions (i.e. grouping hypotheses).
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A B

Figure 3.7: MAP grouping hypothesis for more complex dot configurations indicated
by the color code (each group is assigned a unique color). B. Shows where the model
has shortcomings, in that the length constraint prefers shorter segments. This results
in longer contours to be split up. Introducing spacing as a constraint into the model
might potentially solve this issue.

the complexity of contour integration the spacing of the dots along the contours has to

be taken into account in some way.

3.4.2 Parts of objects

One way of representing shapes is by means of their parts. Many heuristics have been

proposed for decomposing shapes into parts based on the geometry of the shape: the

minima rule (Hoffman & Richards, 1984), the short-cut rule (Singh et al., 1999), and

limbs and necks (Siddiqi & Kimia, 1995). Unfortunately these heuristics all have their

exceptions and complex interactions with each other. Recently, Jiang, Dong, Ma, and

Wang (2013), combined all these rules together to get around these limitations. Nev-

ertheless one unifying theory of part-decomposition is lacking, and the mechanisms

underlying it are not well understood. Like many before us (Blum, 1973; Singh &

Feldman, 2008; Singh, Feldman, & Froyen, in preparation) we propose that skeletal

computation could potentially be such a theory. Here we say that a skeleton is an

ensemble of axes, each representing a part of the shape. The traditional approach to

computing skeletons is the Medial Axis Transform (MAT) by Blum (1973). However,
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Figure 3.8: A. The top shape is decomposed by BHG. B. The tree structure that results
from it is shown as a dendrogram. The MAP partitioning is given by the coloured
parts in the dendrogram. This corresponds to the figure in C. Higher levels (D and E)
show intuitive partitioning, depicting the hierarchical structure of the shape in A.
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the computation of the MAT suffers from several problems such as spurious axes stem-

ming from its sensitivity to boundary noise. Therefore a more probabilistic approach

of skeletal computation is needed, similar to the MAP skeleton by Feldman and Singh

(2006). Our framework supplies such a probabilistic theory by recasting the problem

of part-decomposition as a grouping problem. Within our framework a shape is said

to be generated from a mixtures of axes, where each axis represents a part and the

ensemble of axes is called the skeleton of the shape.

In order for our model to analyse shapes we begin by preprocessing shapes in

the following way. We assume that the edges of the shape are detected and that figure-

ground is established, i.e. the shape needs to be explained from the inside. We create

a discrete approximation of the shape D = {x1 . . .xN} by subsampling the outline of the

shape. Next, we need to set up the hyperparameters so they reflect our assumption

about what a part looks like. The main difference with the hyperparameters for the

contours is that we now do not want the mean riblength to be zero. That is in case

of parts we assume that the mean riblength can be assigned freely with a slight bias

towards shorter mean riblengths to incorporate the idea that parts are more likely to be

narrow (µ0 = 0; κ0 = .001). The remaining generative parameters were set to reflect that

parts should preferably have smooth non-noisy boundaries (σ0 = .001; ν0 = 10). The

hyperparameters biasing the shape of the axes themselves were set to identical values

as in the contour integration case (λ1 = .16; λ2 = .05). Finally the mixing hyperparameter

was set to α = .001.

Shapes and their parts

We ran the full BHG model on a simple multipart shape shown in Fig. 3.8A. The model

finds the most probable part decomposition (Fig. 3.8B), and the entire structural hi-

erarchy of this particular shape (Fig. 3.8C). In other words the BHG finds the entire

description of the shape at different levels of the structural hierarchy, and does so intu-

itively (Fig. 3.8D and E). The MAP part decomposition for several shapes of increasing

number of parts is shown in Fig. 3.10. Fig. 3.9C shows the algorithm’s robustness to
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A B C

Figure 3.9: Examples of MAP tree-slices for: A. leaf on a branch, B. dumbbells, and C.
“prickly pear” from Richards et al. (1986)

316.0699 431.9103 557.259 706.6281 865.5287

DL

Figure 3.10: MAP skeleton as computed by the BHG for shapes of increasing complex-
ity. The axis depicts the expected complexity, DL of each of the shapes based on the
entire tree decomposition computed.
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contour noise. This shape, the “prickly pear” taken from Richards et al. (1986) is espe-

cially interesting because different noise is added to different parts of the shape, which

cannot be correctly handled by smoothing techniques. Note that each axis represents a

part. As a consequence a particular grouping hypothesis generates a mixture of parts

and not the shape per se (see Fig. 3.15). Hence, some additional post-processing in the

form of smoothing and pruning of internal structures might be required to recover the

shape.

As a side-effect of how we recast the problem of part-decomposition, ligature

regions are not present, and the framework thus correctly handles difficult cases such

as a leaf on a stem, and dumbbells (Fig. 3.9A-B), while still maintaining the hierarchical

structure of the shapes (such as Siddiqi, Shokoufandeh, Dickinson, & Zucker, 1999). A

ligature is often referred to as the “glue” that binds two axes together (e.g. connecting

the leaf to its stem in Fig. 3.9A). Such regions have been identified before (August,

Siddiqi, & Zucker, 1999b) to cause internal instability in the MAT (Blum, 1967), dimin-

ishing their usefulness for object recognition. In contrast to our approach past models

had to cope with this problem by explicitly identifying and deleting such regions (e.g.

August et al., 1999b).

Apart from the part decomposition we would like to say something about the

complexity of the shape which is known to influence shape detectability (Wilder, 2013).

In other words we would like to compute the description length (DL) of the shape.

This value reflects the complexity of expressing the hypothesis in an optimal code

(Rissanen, 1989). In order to compute the DL of the shape we first need to integrate

over the entire grouping hypothesis space C = {c1 . . .cJ}:

p(D|α,β) =
1
J

J∑
j=1

p(D|β,c j)p(c j|α) (3.10)

The DL is then defined as DL = − log(p(D|α,β)). Fig. 3.10 shows how with increasing

perceptual shape complexity this value also increases. This metric is universal to our

framework and can be used to express the complexity of any image given any object

definition, such as depicting the complexity of an image consisting of contours. In
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other words the DL expresses the complexity (or description length) of a stimulus

given our assumptions of what an object in it ought to look like.

Part salience

Hoffman and Singh (1997) proposed that the representation of a part is graded, and

the visual saliency of a part is modulated by the sharpness of its boundaries and

several geometric factors such as: its size relative to the entire object, and its degree

of protrusion (defined as the ratio of its perimiter and the width at the base of the

part). Within our framework we define saliency of a part by comparing two group-

ing hypotheses: the grouping hypothesis where the part was last present within the

computed hierarchy c1, and the hypothesis one step up in the hierarchy where the

part ceases to exist c0. In the examples that follow we defined part saliency as the log

ratio between posterior probabilities of these hypotheses, indicating how much more

likely it is for the part to be present versus absent. Naturally, depending on the task

at hand part saliency can be operationalized differently by means of both hypotheses.

Fig. 3.11 shows how our model captures part-saliency. Our model found that both for

increasing part-length (Fig. 3.11A) and part-protrusion (Fig. 3.11B), the log posterior

ratio increases monotonically.

To more systematically show how our model captures part saliency, we compare

our model’s performance to human subject data. Cohen and Singh (2007) showed

empirically that several geometric factors contribute to part-saliency. Here we will

focus on their experiment concerning part-protrusion. In this experiment subjects

where shown a randomly generated shape, from one of 12 levels of part-protrusion

(3[base widths]x4[part lengths]), after which they were shown a test part depicting a

part of this shape (see Fig. 3.12A). They were then asked to indicate in which of four

display quadrants this part was present in the shape. The authors found that subject’s

accuracy for this task increased with increasing part-protrusion of the test part. For

each of the 12 levels of part-protrusion subjects were shown 50 randomly generated

shapes. In order for us to compare our models performance to the subject accuracy we

ran our model on 20 shapes for each level of part-protrusion. We then looked for the
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Figure 3.11: Log posterior ratio as computed from the BHG between the tree consistent
1 and 2 component hypotheses. A. Part protrusion, B. Part length.
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presence of the test part in the hierarchy generated by our model. Given this we can

then compute the posterior probability of this test part as follows:

p(c1|D) =
p(D|β,c1)p(c1|α)

p(D|β,c0)p(c0|α) + p(D|β,c1)p(c1|α)
(3.11)

Fig. 3.12 shows a monotonically increasing relation between the subject’s accuracy and

the probability of the test part as computed by our model. Because this relationship

was sigmoidal we used an inverse cumulative gaussian to linearize it. Our model’s

computed probability of the test part was found to be a good predictor of subject’s

accuracy( LRT = 74.75, d f = 1, R2 = 0.4050; BF = 4.2376e + 14)3.

linearized p(test part)
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c
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c
c
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c
y

protru
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A

0.4

0.6

0.8

1.0
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B

Figure 3.12: A. Representative stimuli used in Cohen and Singh (2007) experiment
relating part-protrusion to part saliency. As part protrusion increases, so does subjects
perceived saliency of that part. The test part here is indicated by the red part cut.
B. Representing the relationship between subject accuracy for several levels of part-
protrusion and the models computed probability of the test part p(c1|D) (error bars
depict the 95% confidence interval across subjects. The red curve depicts the linear
regression.

3Both the Bayes factor (BF) and the likelihood ratio (LRT) were computed by comparing a regression
model in which the linearized framework responses were taken as a predictor versus an unconditional
means model only containing an intercept.
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3.4.3 Shape completion

Completion refers to the integration of contour elements that are separated by gaps,

caused by occlusion. For contour completion the visual system needs to solve two

problems (Takeichi, Nakazawa, Murakami, & Shimojo, 1995). First it needs to derter-

mine if these contour elements need to be grouped together (grouping problem), and

subsequently what the shape of contour is inside this gap (shape problem). Here we

will focus on the latter problem and show how our model can make specific predic-

tions about the shape of the contour. Nevertheless as we shall touch on it briefly,

the framework also contains properties that make it possible to address the grouping

problem.

Global predictions

A

B

C

D

Figure 3.13: Posterior predictive based on the MAP skeleton (as computed by BHG)
for the occluded shape with a part of the boundary missing.

Most past models that make predictions about the shape of the occluded por-

tion of the contour have based their predictions solely on local contour information

(Williams & Jacobs, 1997; Fantoni & Gerbino, 2003; Ben-Yosef & Ben-Shahar, 2012). That

is, they only used the position and the orientation of the contour at the point where it

disappears behind the occluder (called the inducers). Such models, however, can not
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Figure 3.14: A simple tubular shape was generated with different standard deviations
of noise on its contour. Note that for each image (A and D), the local first and second
order information at the T-junction is kept equal. For noiseless contours the posterior
predictive for the occluded part is rather narrow (A and B), while for noisy contours
the posterior predictive takes on a wider form (E), depicting the uncertainty of the
position of the boundary based on the shape alone. C. Shows the relationship between
the noise on the contour and the completion uncertainty as reflected by the posterior
predictive.

explain the non-local influences on shape completion found in some studies (Fulvio &

Singh, 2006; Sekuler, Palmer, & Flynn, 1994; Van Lier, Van der Helm, & Leeuwenberg,

1995). Our model on the other hand, much in the same spirit as August, Siddiqi, and

Zucker (1999a), can make prediction based on the entire shape of which a part is miss-

ing due to occlusion. By first computing the hierarchical representation of the shape

(given the object definitions setup for part-decomposition) with the missing boundary

segment, we then compute the posterior predictive (Eq. 3.8) based on the best grouping

hypothesis, i.e. MAP tree-slice. The predictions our model makes however are proba-

bilistic. Therefore when plotting these predictions we choose not to plot one particular

completion interpretation, but rather a field within which a infinite number of possible

contours lie. Note that the predictions made here are only based on the global shape

and do not take into account the location nor orientation of the local inducers. That

is, when inferring a particular contour between those inducers, the prediction field

here should be understood as a global shape prior and should be combined with a
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good-continuation constraint on that contour. For example for a simple case in which

a circle is occluded by a square the model makes a prediction that a contour must lie

along a circular path with the same arc as the rest of the circle (Fig. 3.13A). When more

parts are present, the model can still make predictions (Fig. 3.13B). Furthermore, even

in cases where there is not even enough information present for local models to create a

boundary, our model can readily make a prediction (Fig. 3.13D). Finally the model can

also handle cases in which the grouping problem also needs to be solved (Fig. 3.13C).

This essentially follows directly from our framework. The grouping problem in our

case reduces to a problem of grouping axial fragments on either side of an occluder.

The rules for grouping them are present in the hyperparameters defining our object

assumptions. Specifically, as was the case for contour integration λ1 and λ2 indirectly

encode proximity and good continuation, in this case of an axis, and α encodes our

prior belief of grouping two parts together into one objects.

Dissociating global and local predictions

Many of the predictions made by our model in the above paragraph could also easily

be accounted for by a model using local fragments only. However, often global and

local predictions will give vastly different shape completions. In the past researchers

have found cases in which the shape of the completed shape influences our perceived

completion. For example Sekuler et al. (1994) found that the presence of certain sym-

metries in the completed shape facilitates that specific shape completion. More general

Van Lier et al. (1995, 1994) found the regularity of the completed shape as formulated in

their regularity-based framework to influence perceived shape completion. The shapes

in Fig. 3.14, containing so-called fuzzy regularities, further illustrate the necessity for

global accounts (Van Lier, 1999). As we keep the inducer orientation and position

constant we can increase the complexity of a tubular shape’s contour (Fig. 3.14A and

D). It is clear that a model based merely on local inducers would predict the contour

to look exactly the same in both cases. In other words the complexity of the shape’s

contour does not add to the uncertainty of the estimation of the shape completion. On

the other hand in our framework the global shape is taken into account, resulting in
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the uncertainty of the shape completion to go up with the complexity of the contour

(Fig. 3.14B, E, and C). This prediction is interesting in that it could potentially dissociate

which of the two kinds of information are more important, or more particularly how

both types of information are combined to form our percept.

3.5 Discussion

In the current chapter we put forward a mathematically rigorous and principled frame-

work for understanding perceptual grouping. We tested an instantiation of this frame-

work for several key problems in perceptual grouping: contour integration, part de-

composition and shape completion. The framework has several properties that makes

it stand out when compared to other models. First of all we will discuss how the

framework is able to deal with perceptual grouping in general by means of defining

the appropriate objects. Secondly we will discuss the hierarchical nature of the model

and how it relates to structural scale and the notion of selective organization.

3.5.1 A framework for grouping

The framework presented in the current chapter is one for understanding perceptual

grouping. Within this framework we follow ideas we have proposed in other pa-

pers (Feldman et al., submitted, and Chapter 2), and recast the problem of perceptual

grouping as a mixture estimation problem, such that an image is said to be a mixture of

objects. redIn our model we define objects based on what organization decomposes the

image into distinct components. The question then remains what kind of underlying

mechanisms structure otherwise complex and heterogeneous image data into an orga-

nization consisting of coherent objects (Feldman, 2003b). No one unified answer arises

from the perceptual grouping literature. Many different grouping cues (e.g. proximity,

closure, convexity, ...) have been presented resulting in several different object classes

(e.g. contours, shapes, ...). Several of these cues are often needed to define certain

classes of objects, raising the need for one all overarching organizing principle. One

such famous principle is Pragnanz (Wertheimer, 1923), also referred to as “goodness of
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form”. redAs some researchers before us (e.g. Ommer & Buhmann, 2003; Song & Hall,

2008) the current framework proposes a formal definition of this idea. The framework

itself gives us the machinery to understand how grouping is established independent

of what objects we are creating, establishing a universal (Bayesian) “language” for

grouping principles to “speak” to each other. Within our framework we compute the

posterior probability of several grouping interpretations, defining the “goodness” of a

certain decomposition of the image into object-like components.

The flexibility of our framework lies in the object definition. The definition of

objects, and indirectly the grouping cues underlying them, consists of two components.

A first component is the object class, which is defined by the generative (likelihood)

function, p(D|θ). This component defines how image elements were generated given

the underlying object. In our instantation of the framework we proposed an object class

for spatial grouping problems. The class proposed is a rather general one in that the

definition makes a statement about the fact that image elements need to be generated

perpendicular at a certain distance from the underlying objects (curved) shape gov-

erned by a Gaussian fall-off centered around some mean distance. As discussed above

this object class can be made to generate contour fragments, dot clouds, and edges of

a shape. A second component of our object definition are the priors on the parameters

governing this generative function, p(θ|β). These priors define our assumption about

what we think objects within this class look like, and are what makes an object class

able generate several different objects. Specifically, it unifies several formerly distinct

object classes (such as contours, dot clusters, and shapes) under a common object class.

That is, within our proposed object class contours are merely elongated shape, and

dot clusters are shapes with image elements present in their interior. Together both

components define all objects in our framework. How both components are defined

can be task dependent, i.e. depending on the object(ive) of the task. redOne can

imagine different object definitions, such as the Gaussian objects used in Chapter 2, or

other spatial features that can be introduced such as dot-spacing as proposed in the

contour integration section. Furthermore, objects can be defined that go beyond the

spatial domain, including features such as color, texture, and contrast. As long as one
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can define both components, the framework’s machinery can be put to work to group

image elements based on these definitions.

3.5.2 A hierarchical framework

structural scale

coarse fine

A B C

Figure 3.15: Prediction fields for the shape in Fig. 3.8 for three different levels of the
hierarchy. In order to illustrate how underlying objects also represent the statistical
information about the image elements they explain the prediction/completion field was
computed for each object separately without normalization so that the highest point
for each object is equalized.

Our framework constructs a hierarchical representation of the image elements

based on the object definitions and assumption set. Hierarchical approaches to per-

ceptual grouping have been plentiful (e.g. Pomerantz et al., 1977; Palmer, 1977; Baylis

& Driver, 1993; Lee & Mumford, 2003). At the coarsest level of representation our ap-

proach represents all the image elements as one object. For shapes this is similar to the

notion of a model axis by Marr and Nishihara (1978), providing only coarse information

such as size and orientation, about the shape (Fig. 3.15A). An axis in our account,

or object in general, can be seen as the more classical shape primitive. However, our

objects are highly flexible with not only “memory” about the shape of the primitive

(i.e. object), but also the statistical information about the image elements it explains

(Fig. 3.15). That is given the object we can generate the image elements and make
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predictions about missing parts of the image (Fig. 3.13). The further down the hier-

archy we go, the more detail of the image will become visible, that is more and more

objects will be come visible. Furthermore note that the prediction fields become more

and more narrow depicting that the objects are fitting more and more details about the

shape (Fig. 3.15).

Structural versus spatial scale

In the literature two different types of scales can be distinguished. On the one hand

structural scale describes the structural organization of the image based on perceptual

grouping rules (Palmer, 1977; Feldman, 2003b). In essence it describes a tree structure

of how the image can be parsed from the root node representing image as one object

to its leave nodes where each image element is represented by itself. How this tree is

constructed then depends on the grouping rules that were instated. On the other hand,

more popularly, images are analyzed using different spatial scales. Spatial scales are

often defined as a hierarchy of receptive fields of increasing size, taking in more and

more global image information while climbing up the hierarchy. This type of scale has

been used to explain several problems in perceptual grouping such as figure-ground

(e.g. Jehee, Lamme, & Roelfsema, 2007), and shape representation (e.g. Burbeck &

Pizer, 1994)

redIn the past these different notions of scale have been equated with each

other because grouping more image elements together into one object is sometimes

regarded as to analyzing the image at a larger spatial scale. However, the two notions

of scale approach the problem of perceptual grouping from rather orthogonal points of

view. Specifically, when moving through different spatial scales we in essense change

the way we look at the image elements, i.e. we change the way we analyze them. This

on the other hand is not true when we build a structural hierarchy. In that case we look

at the image in exactly the same way, i.e. keeping the spatial scale fixed, and apply

the same grouping principles as we climb up the hierarchy. This distinction becomes

more apparent in our framework than in any of the hierarchical approaches proposed

before.



52

In our framework spatial scale can be incorporated into the object definitions.

More specifically in for our current object class we can manipulate spatial scale by

changing the prior of the variance over the riblength, σ. Making this prior’s mode shift

to larger values of σ ensures that objects will be more tolerant to noise in the image

elements. Fig. 3.16B shows three different priors depicting three different spatial scales.

Structural scale then is defined by the hierarchical structure built up by our framework.

Fig. 3.16C show how for each different spatial scale the hierarchical structure built

up changes considerably. For the finest spatial scale used here, we find a structural

hierarchy that builds up including the three to one intuitive object hypotheses, with the

three part hypothesis being the most probable (Fig. 3.16A). On the other hand at coarser

spatial scales the parts found in the structural hierarchy are different, and the three

parts as found in the finer spatial scale are not even present anymore. Furthermore the

most probable hypothesis now is the two part hypothesis. This example clearly shows

that structural and spatial scale are related to each other, and describe different (and

orthogonal) components of the mechanism underlying perceptual grouping. Spatial

scale refers to how the image is analyzed, or our assumptions about the objects, while

structural scale refers to the structural hierarchy build up given a particular spatial

scale.

Selective organization

The way our framework builds hierarchical representations of the image and consid-

ers grouping hypotheses is also consistent with the notion of selective organization

(Palmer, 1977). Selective organization refers to the fact that some subsets, or objects,

are represented while other are not. In our model only N grouping hypotheses are

considered while the total amount of possible grouping hypotheses c, is exponential

in N. A grouping hypotheses picked at a particular level is directly dependend on the

grouping hypotheses choosen at lower levels. In other words all grouping hypothe-

ses are tree-consistent hypotheses. In this way a clean and unambiguous hierarchical

structure is built up by our model. Furthermore this results in some grouping hy-

potheses not being represented by the hierarchy. Such selective organization has been
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Figure 3.16: Relating structural and spatial scale in our model by means of the shape
in Fig 3.8. A. relationship between structural and spatial scale depicting their orthog-
onality. The red squares depict the most probable structural grouping hypothesis for
each spatial scale. B. Showing the priors over the variance of the riblength, σ for each
spatial scale. C. Hierarchical structure as computed by our framework depicted as a
dendrogram for each spatial scale. The most probable hypothesis is shown in color.
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given some empirical support in the past (Palmer, 1977; Cohen & Singh, 2007), where

objects that were not represented in the hierarchy were harder to retrieve.

3.5.3 A Bayesian framework

The Bayesian approach used here has several substantial advantages over traditional

approaches toward perceptual grouping. First of all a Bayesian approach allows us to

assign different degrees of belief (or probabilities) to different grouping hypotheses, in

effect capturing the often intermediate responses present in subject data. Specifically,

previous non-probabilistic models often only converge on one particular grouping

hypothesis (e.g. Williams & Jacobs, 1997), or are unable to assign beliefs to different

grouping hypotheses (e.g. Compton & Logan, 1993). Secondly, the rationale behind

Bayesian inference includes it making optimal use of the available information and the

assumption held by the observer (Jaynes, 2003). In other words the framework makes

optimal use of the image elements present and assumptions as defined by the object

priors to construct the posterior distribution over the grouping hypotheses. Note

that we did not make any claim about how decisions are drawn from this posterior

distribution. However one can easily add a loss function on top of this distribution to

come up with a Bayesian optimal decision (Maloney, Mamassian, et al., 2009).. On the

other hand subjects might also be sampling from this posterior rather than selecting

their response based on minimizing their loss. Even though such a decision strategy,

also called probability matching, is sometimes regarded as suboptimal it appears to be

used in some perception tasks (Wozny et al., 2010). Although our framework does not

commit to either, it is can easily be made consistent.

3.6 Conclusion

In this chapter we presented a novel mathematically rigorous and coherent framework

for understanding perceptual grouping. Within our framework we defined an image

as a mixture of objects, and thus reformulated the problem of perceptual grouping as

a mixture estimation problem. Our framework’s generality stems from the freedom
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that is given to the object definitions. In its current instantiation we defined an ob-

ject class that unites problems such as part-decomposition, contour integration, dot

clustering and shape completion. Other object classes can be defined depending on

the task at hand and easily plugged into our framework. Apart from its generality

our framework stands out in that it generates a hierarchical representation of the im-

age. We tested our framework’s workings for several key perceptual phenomena in

the fields of part-decomposition, contour integration and shape completion. Further-

more we showed that the framework accounts for human subject data from previously

conducted experiments in contour integration and part decomposition.
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4. Conclusions

Dividing a set of visual elements into distinct coherent objects is a basic problem of per-

ceptual grouping. The problem of perceptual grouping is inherently difficult because

the visual system has to find the optimal grouping interpretation among a large set of

possible interpretations. Many models have been proposed for several subproblems

of perceptual grouping such as contour integration, figure-ground, and many others.

Furthermore other problems in visual perception such as part-decomposition can as I

showed be understood as a grouping problem. However, these models often describe

the mechanisms underlying perceptual grouping by means of poorly understood and

unprincipled Gestalt principles or heuristics. Though these models can make valid

predictions for the subproblem of their focus, they often fail to assign degrees of belief

to these grouping interpretation. Hence, (1) they fail to capture the often probabilistic

nature of human behavior and (2) they fail to generalize beyond the subproblem they

were tailored towards.

In this dissertation I proposed a mathematically rigorous and coherent frame-

work for understanding perceptual grouping. Within this framework I formulate the

problem of perceptual grouping as a mixture estimation problem, where it is assumed

that the image elements are generated by a set of distinct objects. Intrinsic to the

problem of mixture models is the simultaneous estimation of the parameters of the

objects (“what do the objects look like?”) and assigning each element to an object

(“ownership”). In this dissertation I proposed two different operationalizations of this

central idea. In the second chapter I implemented a simplified framework instantiated

for the rather simple problem of dot clustering. Here the objects were assumed to be

Gaussian dot clusters. The third chapter expanded on this to create a more elaborate

framework estimating a hierarchical representation of the image data. The advantage

of this approach to the simplified approach in Chapter 2 is that the alternative grouping

hypotheses are not set by hand, but rather are generated by the framework itself. Fur-

thermore we proposed a general object class which enabled the current instantiation

of the framework to handle problems such as contour integration, part decomposition,
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shape completion and dot clustering.

We showed that each of the framework’s operationalizations quantitatively pre-

dicted subjects behavior and was able to account for several perceptual phenomena. In

Chapter 2 I conducted two experiment in which I showed subjects dots generated from

two Gaussians (experiment 1) or three Gaussians (experiment 2). In both experiments

I manipulated the distances between the clusters in order to modulate the apparent

number of clusters. Subjects were then asked to indicate how many clusters were

present. I found the framework in Chapter 2 to give accurate and quantitative precise

account of subjects’ numerosity judgments. In Chapter 3 I found the expanded frame-

work to account for several perceptual phenomena specific to contour integration, part

decomposition and shape completion. Furthermore the framework was found again

to give an accurate and quantitative precise account for subjects’ contour integration

and part decomposition behavior recorded in previously conducted experiments.

The framework proposed here can be instantiated for several different grouping

problems given the appropriate object definitions. All this generality is based on

only one central idea: an image is a mixture of objects. I hope that this generality will

sprout further application of the framework across different subproblems of perceptual

grouping. Furthermore I hope that the strong predictive power of the framework

will sprout many new experiments and insights about the mechanisms underlying

perceptual grouping.
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5. Appendix

5.1 Mixture Estimation

In this section we outline how we computed p(X|yi), where yi is related to a mixture

with Ki components. First of all let us reformulate Eq. 2.1 as follows:

p(xn|φ, yi) =

K∑
k=1

πkp(xn|θk), (5.1)

where φ = {π1, ...,πK,θ1, ...,θK}. We assumed the image elements were sampled from a

bivariate Gaussian, θk = {µk,Σk}. To evaluate the data under the above mixture model

we need to specify some prior over the parameters of the model, p(φ, yi). We now have

the ingredients to compute the probability of the data X under the grouping hypothesis

yi:

p(X|yi) =

∫
φ

p(X|φ, yi)p(φ|yi)dφ. (5.2)

This computes gives the probability that the data was generated from a mixture model

with Ki clusters. Because the computation of this marginal likelihood for each trial

would take considerable computation combined with the large number of trials we

ran in these experiments, we opted to approximate it as follows. We first estimated the

parameter combination φ̂ that best explained the data X by means of the Expectation-

Maximization procedure Dempster, Laird, and Rubin, 1977. These parameter estimates

then yield us, L̂(yi|X), the likelihood of the data given these parameters. This in turn

can be used to approximate the actual marginal likelihood p(X|yi) by means of the

Schwartz criterion:

log(p(X|yi)) ≈ log(L̂(yi|X))−
pi

2
log(N), (5.3)

where pi is the number of parameters estimated for the mixture model yi and N is the

number of data-points. A similar approach was used by Pelleg and Moore (2000) to

compute the relative strength of different clustering interpretations as estimated by the
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K-means algorithm. The number of parameters pi is simply the sum of K− 1 cluster

probabilities (π), and K×P. P is the number of parameters estimated for each cluster,

depending on the flavor of the model we tested. The elliptical version consisted of

a two-dimensional mean, and a full covariance matrix, amounting to a total of P = 5

parameters. The circular version also had a two-dimensional mean, but only a circular

covariance matrix (i.e. only one variance estimate), amounting to a total of P = 3

parameters.

5.2 Prior on Cluster Shape

Note that in the estimation procedure depicted in Appendix 5.1 we have ignored

the prior on the parameters p(φ|β) introduced above. In our current approach we

essentially assumed an uninformative prior on all the parameters. One might think

of the two model versions proposed in the paper as two different priors over the

covariance matrix Σk. More specifically both versions make different assumptions

about the shape of the clusters. We can easily show how such assumptions can be

incorporated as priors on Σk estimates by rewriting the covariance matrix as,

Σk =

 σx,k σxy,k

σxy,k σy,k

 (5.4)

can also be written as,

σx,k =
cos2αk

2Mk
+

Mk sin2αk
2Rk

σy,k =
sin2αk
2Mk

+
Mk cos2αk

2Rk

σxy,k =
sin2αk

4Mk
+

Mk sin2αk
4Rk

.

(5.5)

In this set of equations αk defines the orientation of the cluster relative to the x-axis.

The size of the cluster is defined by Mk, which essentially is the variance σx the cluster

would have if it had orientation αk = 0. Finally the shape of the cluster is defined

by Rk as the ratio σx/σy the cluster would have if it had orientation αk = 0. In this

way one can see that assumption of the shape could be defined as a prior over Rk.

In the current paper we only tested two shape assumptions. The elliptical version
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essentially assumes Rk ∼ uni f () as its prior, while the circular variant assumes a dirac

delta Rk ∼ δ(1).

5.3 Delaunay-consistent pairs
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Figure 5.1: Difference between checking all pairs and only Delaunay-consistent pairs
at the first initial iteration of the BHG. As the amount of data points, N, increases the
number of pairs increases differently for the Delaunay-consistent (green), or all pairs
(blue).

Bayesian Hierarchical Clustering is a pairwise clustering method, where at each

iteration merges between all possible pairs of trees Ti and T j are considered. Given

a dataset D = {x1 . . .xN} the algorithm is initiated with N trees Ti each containing one

data point Di = {xn}. redAs N increases the number of pairs to be checked during

this first iteration increases quadratricaly with N, or more specifically as follows from

combinatorics #pairs = (N2
−N)/2 (Fig. 5.1), resulting in a complexity of O(N2). In each

of the following iterations the hypothesis for merging only needs to be computed for

pairs between existing trees and newly merged trees from iteration t− 1. However,
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computing the hypothesis for merging p(Dk|H0) for each possible pair is computation-

ally expensive. Therefore, in our implementation of the BHC, we propose to limit the

pairs checked to a local neighbourhood as defined by the Delaunay Triangulation. In

other words a data point xn is only considered to be merged with data point xm if it is

a neighbour of that point. To initialize the BHC algorithm we compute the Delaunay

Triangulation over the dataset D. Given this we can then compute a binary neighbour-

hood vector bn of length N for each datapoint xn indicating which other datapoints xn

shares a Delaunay edge with. Together these vectors form a sparse symmetric neigh-

bourhood matrix. In contrast when all pairs were considered this matrix would consist

of all ones except for zeros along the diagonal. Using this neighbourhood matrix we

can then define which pairs are to be checked at the first iteration. The amount of

pairs checked at this initial stage is considerable lower than when all pairs are to be

considered. Specifically when simulating the amount of Delaunay-consistent pairs

checked at this first iteration on a randomly scattered dataset, the amount of pairs

increased linearly with N (Fig 5.1). redThis results, when combined with the complex-

ity of Delaunay triangulation O(N log(N)), in a complexity of O(N log(N)). In all of

the following iterations the neighbourhood matrix is updated to reflect how merging

trees, also causes neighbourhoods to merge. In order to implement this we created a

second matrix, D, called the token-to-cluster matrix of size N× [(N−1) + N]. The rows

indicate the datapoints, and the columns the possible clusters they can belong to. N for

belonging to themselves, and N− 1 for each of the to be merged clusters throughout

the iteration. Given this matrix and the neighbourhood matrix we can then define

which pairs to test in each of the iterations following the initial one. redNote, when all

Delaunay consistent paris have been exhausted, our implementation will return test

all pair-wise comparisons.

5.4 B-spline curve estimation

Within our approach it is necessary to compute the marginal p(D|β) =
∫
θ

p(D|θ)p(θ|β).

For simple objects such as Gaussian clusters this can be solved analytically. However,
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for the more complex objects discussed here, integrating over the entire parameter

space becomes rather intractable. The parameter vector for our objects looks as follows

θ = {q,µ,σ}. Again integrating over the Gaussian part of the parameter space (µ and

σ) is again straightforward and can be computed analytically. On the other hand

integrating over all possible B-spline curves as defined by the parameter vector q is

intractable for our purposes. We therefore choose to pick the parameter vector q that

maximizes Eq. 5.9, while at the same time integrating over the Gaussian components.

In what follows we will describe how we estimate the B-spline curve for a given dataset

D.

B-spline curves were chosen for their versatility in taking many possible shapes

by only defining a few parameters. Formally a parametric B-spline curve is defined as

g(t) =

M∑
m=1

Bm(t)qm (5.6)

, where Bm are the basisfunctions and qm are the weigths assigned to these (also called

the control-points). The order of the B-spline curve is defined by the order of the

basisfunctions, here cubic splines were used. In the simulations above the number

of basisfunctions and control points was set to M = 6. This number was choosen

because it was a good compromise between the amount of parameters that govern the

B-spline and the flexibility to take a wide range of shapes. From this curve we state

that datapoint are generated perpendicular according a Gaussian likelihood function

over the distance between a point on the curve g(tn) and the projected datapoint xn

(see Eq. 3.9).

Given a dataset D = {x1 . . .xn}we would like to compute the marginal p(D|β). In

order to do so we first need to define the prior, p(θ|β) and likelihood function p(D|θ)

inside the integral:

p(D|θ) =

N∏
n=1

N(‖g(tn)−xn‖|µ,σ), (5.7)

p(θ|β) = exp(F1|λ1)exp(F2|λ2)N inv(χ2)(µ,σ|µ0,κ0,σ0,ν0). (5.8)
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The likelihood function is the same as the generative function defined in Eq. 3.9. The last

factor in the prior is the conjugate prior to the Gaussian distribution in the likelihood

function, the Normal-inv(χ2), allowing for analytical computation of the marginal over

parameters µ and σ. The first two factors define the penalties on the first and second

derivative of the curve respectively (we will show below how these are computed).

Unfortunately these are not conjugate priors to the distribution over different curves.

Hence, integrating over all possible curves would have to be done numerically and

is computationally intractable. Therefore when computing the marginal we choose to

only integrate over the Gaussian components of the parameter vector θ and select q as

to maximize,

p(D|β,q) =

∫
µ,σ

N∏
n=1

p(xn|µ,σ,q)p(θ|β)dµdσ (5.9)

In order to maximize this function we followed a simple expectation-maximization (E-

M) like algorithm traditional to parametric B-spline estimation (for a review see Flöry,

2005). This algorithm consists of two stages. In the first stage (similar to expectation

stage in E-M) each data point xn is assigned a parameter value tn such that g(tn) is the

closest point on the B-spline curve to xn. That is xn’s perpendicular projection to the

curve g. Finding these parameter values tn is also called footpoint computation (the

algorithm for this stage is described in Flöry, 2005). In the second, maximization stage,

we maximize the function in Eq. 5.9 given these [xn, tn] pairs using the derivative-free

optimization function fminsearch as implemented in MATLAB. Computing the value

for the above function given a specific value of q first of all involved computing the

values for F1 and F2 in order for us to compute the prior on the curve shape. Both

values are formally defined as,

Fi =

∫
t
‖Dig(t)‖2dt, (5.10)

where i stands for the ith derivative. This integral was computed numerically by

computing the ith derivative of g(t) at 1000 equally sampled points along the curve. The

integral over the Gaussian components of Eq. 5.9 could easily be computed analytically.
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Specifically with dn = ‖g(tn)− xn‖ is a proposal parameter vector, this integral can be

computed as follows

p(D|β,q) =
Γ(νn/2)
Γ(ν0/2)

√
κ0

κn

(v0σ0)v0/2

(vnσn)vn/2

1
πn/2 exp(F1|λ1)exp(F2|λ2) (5.11)

with,

µn =
κ0µ0+Nd̄

κn
,

σn = κ0 + N,

νn = ν0 + N,

σn = 1
νn

[ν0σ0 +
∑

n(dn− d̄)2 + Nκ0
κ0+N (µ0− x̄)2],

(5.12)

where d̄ = 1
n
∑

n dn. The two stages just described are then repeated until convergence

of the function in Eq. 5.9.
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