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The recent emergence of quantitative high-throughput experimental technology and new

biophysical knowledge may finally enable significant empirical and quantitative understand-

ing of adaptive evolution, which has been elusive for almost a century. The modern aim

is to unite classical population genetics with biophysical molecular models, and to connect

physical properties of biological molecules such as DNA, RNA and proteins with evolu-

tionary parameters. In this vein, I have studied such population models theoretically, and

applied one such model to yeast evolution.

In Chapters 2 and 3, I will discuss “universality” in population genetics, in particular

the universal applicability of a formula for the steady state distribution of phenotypes in a

population evolving in the “monomorphic regime”, which describes most organisms. I show

that this formula applies far outside the “weak selection” context it was originally developed

in, and that it is a universal feature of evolution in this regime. Such universal features

will be important components of any grand theory of adaptive evolution, and are essential

for studies of real populations where the microscopic population dynamics are generally

unknown.

I then apply this model to a particular molecular system in yeast, Transcription Factor
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binding sites, which are short DNA sequences which play an important role in gene regu-

lation. Using the functional relationship between evolutionary fitness and the phenotypic

steady state distribution, I infer the form of the selective pressure the sites experience, and

find it is consistent with a simple thermodynamic model of two-state TF-DNA binding.

I also show that the selection pressure a site experiences is decoupled from the selection

pressure on the gene it regulates. This suggests that binding sites for a given TF evolve

over a universal fitness landscape derived from simple physical interactions.
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Chapter 1

Introduction

Imagine an population of cells as they grow, die, and reproduce over time. One cell, though,

has an advantage: A single mutation somewhere along its genome causes a regulatory

protein to bind more strongly to the DNA strand, causing a cascade of effects which enable

the cell and its descendants to grow faster than other cells. What is the probability that its

descendants will thrive and dominate the population rather than die out, given the change

in binding strength? What mutants, with what binding strengths, do we expect to find in

the population after millions of years?

Questions similar to these were first considered almost a century ago by the evolutionary

geneticists Fischer, Wright, and Haldane, but the limited biophysical knowledge at the time

hampered empirical investigation. Even today, despite much progress in understanding

“neutral” or non-adaptive evolution, relatively little is known quantitatively about adaptive

evolution[4]: We have a poor understanding of the mathematical form of selective forces[5],

of the evolutionary dynamics of populations subject to these selective forces[6], and of the

nature of phenotypes and novel traits that may evolve over time. This is not for lack of

mathematical models, but because the multilocus nature and environmental dependence of

most phenotypes makes it difficult to measure the selective benefit of particular genotypes.

However, it may be possible to make progress as a result of the recent emergence of

quantitative high-throughput experimental technology, new biophysical knowledge, and the

growth of computing power and bioinformatics. In particular new data about living systems

at the molecular level may enable greater quantitative understanding of adaptive evolution.

At the molecular level, phenotypes are readily quantified and the genotype-phenotype re-

lationship is clearer, and sometimes direct: The phenotype of interest may be a physical
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property of the genetic molecule (DNA) itself! The selection pressures due to such a phe-

notype is often easily deduced, and may be incorporated into an evolutionary model.

The inverse is also true: Knowing how evolutionary forces shaped these molecular sys-

tems may give insight into their biophysics, and evolutionary data such as phylogenies and

sequence alignments can be used to infer biophysical information[7–9]. For example, cor-

related mutations in the genome can signal the existence of physical interactions in the

encoded molecules. The field of “directed evolution” [10–14], in which evolutionary forces

are harnessed to create new molecular functions, also benefits from improvements to molec-

ular evolutionary theory.

There has thus been growing interest in uniting biophysical molecular models with classi-

cal population genetics. Two particular molecular processes which have received significant

recent attention along this line are protein-DNA binding [15–20], and protein folding and

stability [21–29]. Proteins, the polypeptide chains which act as the machinery of the cell, are

generally only functional if they fold into a specific shape. Similarly, “Transcription Factor”

(TF) proteins must bind to their target DNA binding sites to fulfill their role in the cell’s

gene regulatory network. Both of these functions are necessary for the organisms’s surival,

and importantly, such selective pressure can be quantified in terms of physical parameters

such as the folding energy or binding free energy, which in turn may be parametrized in

terms of the underlying protein or DNA sequence making them amenable to quantitative

evolutionary analysis. A major goal of such research has been to connect biophysical quan-

tities, such as binding energies, to evolutionary parameters, such as selection strengths.

In this thesis, I contribute to this field first through further development of population

genetics in light of biophysics, and second by applying one such evolutionary model to the

evolution of TF binding in the yeast S. cerevisiae, a model organism.

1.0.1 Thesis Organization and Results

In Chapter 2 I provide a global view of molecular evolutionary models. I describe how

two important regimes of evolution, the monomorphic and quasispecies regimes, emerge

from many basic models of molecular evolution. I discuss the steady state distribution of

molecular phenotypes that arise in each regime given particular selection pressures, and the
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boundary between the regimes.

In chapter 3, we focus on the particular case of monomorphic evolution in the presence

of strong selection, and generalize results previously obtained only in the nearly-neutral

limit (when selection is weak or nonexistent) for particular population models. In the

neutral limit, it is known that many population genetics models exhibit shared “universal”

properties. I discuss the extent of universality outside the nearly neutral limit, and show

that it applies even far from neutrality. I also show that the monomorphic steady state

derived in Chapter 2 is often valid without a-priori assumptions of near-neutrality.

In chapter 4 we turn to TF binding sites in yeast. Using an evolutionary model for

monomorphic populations evolving over a fitness landscape, we infer the fitness landscape

as a function of TF-DNA binding energy for a collection of 12 yeast TFs given sequence

information, and show that the shape of the predicted fitness function is in broad agreement

with a simple thermodynamic model of two-state TF-DNA binding. By correlating TF-DNA

binding energies with biological properties of the sites or the genes they regulate, we are

able to rule out several scenarios of site-specific selection, under which binding sites of the

same TF would experience a spectrum of selection pressures depending on their position

in the genome. These findings argue for the existence of universal fitness landscapes which

shape evolution of all sites for a given TF, and whose properties are determined in part by

the physics of protein-DNA interactions.

Much of this work has been published in [30], or is shortly to be published in [31], and

has been developed in collaboration with Alex Morozov and Michael Manhart.

In the remainder of this chapter, I will review relevant aspects of population genetics

and biophysical models, and show how these can be united to provide a quantitative model

of molecular evolution. The idea of connecting biophysics to evolutionary models was first

proposed by Berg at al in 1987 [7], in the context of TF binding site evolution. Following

in those steps, I will first describe TF binding site biophysics, which will serve as the

biophysical system of interest throughout this thesis.



4

1 2 3 4 5 6 7 8
Position

4

3

2

1

0

1

2

3

4

A
ff

in
it

y

Figure 1.1: (Top) Crystal structure of a homolog of the TF MET32 in S. cerevissiae bound
to a segment of DNA (PDB-ID 1MEY). The DNA cartoon and “Connolly surface” of the
protein are shown. Only the protein’s binding site was crystallized, corresponding to about
50% of the full protein. (Bottom) Affinity logo for MET32, from data provided by [1]. The
height of each letter corresponds to εσii in equation 1.2. Nucleotides above the midline have
positive affinity (more negative contribution to the binding energy), and vice versa. The
consensus sequence is GTGCCACA.
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1.1 Transcription Factors and Gene Regulation

Genetic information is stored in the form of genes, which (roughly) are segments of DNA

which encode other molecules known as proteins through a 4 letter alphabet of nucleotides

“A C G T”. Each gene’s nucleotide sequence is converted by molecular machinery into a

protein polypeptide sequence through two processes known as ‘transcription’ and ‘trans-

lation’. Proteins act as the main functional entities in the cell, and carry out the many

cellular processes which determine our higher level traits.

However, the cells in our bodies produce a variety of different tissues despite despite

sharing identical genes, related species sharing many genes in common may vary greatly

in morphology, and a single individual’s traits may vary depending on its environment.

This can be explained by gene regulation: Not all genes are ‘expressed’ at any time, and

are instead toggled on and off by the cell through a system known as the gene regulatory

network. Special proteins, transcription factors (TFs), bind to DNA at specific nucleotide

sequences in the promoter regions of genes known as TF binding sites. These promoters

are arranged such that TF binding can inhibit or enhance the expression of a nearby gene,

often by physically impeding transcriptional machinery. To control the expression of a

gene, the cell produces more or less of a TF regulating that gene. TFs often regulate

the genes encoding other TFs, thus creating a complex network of regulatory interactions.

Understanding TF-mediated regulation is key to understanding the complex regulatory

networks within cells — one of the main challenges facing molecular biology.

The TF binding sites are short sequences, typically 10 base pairs (bp) in length in both

eukaryotes and prokaryotes but varying from 5 to 30bp [32]. In the eukaryote S. cerevisiae,

each TF can have 1000s of binding sites in the genome and each gene is regulated by up

to about 15 TFs which may interact cooperatively, although we shall largely ignore this

cooperativity here [33, 34]. Prokaryotes, in contrast, generally have simpler regulatory

networks, and each gene is regulated by a much smaller number of TFs [35]. Here we shall

focus on eukaryotes.
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Figure 1.2: Distribution of binding energies for binding sites of the TF MET31 in S. cere-
visiae based on data provided by [1]. (Top) Hypothetical binding probability as a function
of energy (equation 4.1) using biophysical parameters determined in Chapter 3. Here, the
chemical potential µ = −7.2 kcal/mol. (Bottom) Red curve: Distribution of binding site
energies for MET31 binding sites in the S. cerevisiae genome, cataloged by [2]. Blue Curve:
Distribution of binding energies for randomly generated sequences. The vast majority of ran-
dom sequences would be unbound, while the functional site sequences are generally bound.
The functional sequences make up a small fraction of all possible sequences, corresponding
to the low energy tail of the random site distribution. The energy here is normalized so the
mean sequence energy is 0.

1.1.1 TF Biophysics: Two State Kinetics

Each TF binds most strongly to one particular target sequence (often called the “consensus

sequence”), but it will also bind to other similar sequences with varying binding affinity.

TF binding may be understood physically, and is well approximated by a two state kinetics

model, which we shall now describe. Typically, many copies of a TF protein are present in

the cytoplasm of the cell and some proportion of them will be bound to binding sites. A TF

binding site may be either in a ‘bound’ state with free energy E or in the ‘unbound’ state

with a reference free energy of 0. In thermodynamic equilibrium, the Fermi-Dirac function

gives the probability that the site is bound to a TF[7]:

pbound(E) =
1

1 + eβ(E−µ)
, (1.1)

where β = 1/kT is the inverse temperature (≈ 1.7 (kcal/mol)−1 at room temperature), and

µ is the (concentration-dependent) chemical potential of the TF protein in solution, which

appears because there is an entropic cost to removing a TF protein from the cytoplasm of

the cell. This function is shown in the top of figure 1.2, for µ = −7.2 kcal/mol. The chemical
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potential acts as a threshold in equation 4.1: Binding sites with binding energy below the

chemical potential tend to be bound, while sites with energies above it are unbound. The

chemical potential of TFs is typically on the order of 1-10 kcal/mol [16].

In our an evolutionary analysis, it will be important to quantify the binding strength

in terms of the genetic sequence of the binding site. Indeed, the binding energy E =

E(σ) of a site can be considered a function of its nucleotide sequence, σ = (σ1, . . . , σL),

where L is the length of the site and σi ∈ {A,C,G,T}. While the function E(s) might

in principle be a complicated function of genotype, it is often well approximated by a

simple “additive energy” model. In this mean-field approximation, each nucleotide makes an

additive contribution to the total energy of the site [8]. These contributions are parametrized

by an energy matrix (EM), whose (L×4) entries εσii give the contribution to the total energy

from the nucleotide σi at position i:

E(σ) =

L∑
i=1

εσii . (1.2)

EMs can be readily generalized to more complex models of sequence-dependent energetics,

such as those with contributions from dinucleotides, or which account for alternate binding

modes or nonspecific binding [36–39]. A variety high-throughput techniques have been

developed to determine the locations of the binding sites and the specificity (and EMs) of

the TFs, including SELEX[40], ChIP-chip, ChIP-seq and DIP-seq[2, 41–43], protein binding

microarrays (PBMs)[44], and microfluidics [1, 45, 46]. See [47] for a recent overview of these

methods.

The EM encodes information about the specificity of the TF: If one particular sequence

is highly favored for binding over others, the εσii corresponding to that sequence will be much

lower, corresponding to a higher TF binding probability. This specificity can be visualized

using an affinity logo of the EM, as shown in figure 1.1[37].

Functional binding sites tend to have low binding energy (ie, a high binding affinity),

while all other regions of the genome (which consists of effectively random sequences, with

respect to TF binding) generally do not bind to the TF. This is illustrated in figure 1.2. The

distribution of random sequence energies is approximately Gaussian in the limit of large

sequence length, which is a consequence of the central limit theorem as the binding energy
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may be thought of a the sum of many randomly chosen energetic contributions. This proven

more carefully in [15]. The variance of this distribution can be shown to be [15]

χ2 =

L∑
i

∑
α

pα(εαi − ε̄i)2 (1.3)

where εαi is the matrix element for base α at position i, ε̄i =
∑

α pαε
α
i , and pα is the

background probability of nucleotide α, that is, the probability that a random nucleotide in

the genome is α. This distribution of random sequences will become important again in our

evolutionary analysis, as it is the “neutral distribution”, which we shall note as π0(E): In

a neutral evolutionary process without selection, all sequences are equally likely to evolve,

and at large times the expected distribution of evolved sequences is simply this random

distribution. It is also worth noting the large number of possible genotypes which make up

this distribution: For a sequence of length 10, there are 410 or 106 possible sequences.

Specificity is much lower in eukaryotes than in prokaryotes, and in eukaryotes a signifi-

cant number of high affinity but nonfunctional sequences appear in the genome by chance.

In figure 1.2, this can be observed through the overlap of the tail of the random sequence

distribution and the functional site distribution of energies. In multicellular eukaryotes, a

binding site for a TF (with E < µ) is expected to appear by chance approximately once

every 4kb, and an estimated 104 − 106 spurious binding sites are expected in the genome

although only 102 to 104 may be accessible due to chromatinization[48]. For this reason,

scoring sequences using an EM is not enough to know whether a sequence is a functional

binding site. Other information, such as cross-species conservation of the site, must be used

to verify functionality.

TF binding sites provide an ideal dataset for evolutionary analysis because the set of

binding sites in the genome, for a particular TF, can be seen as independent populations

evolving in parallel, each binding site realizing one possible evolutionary pathway through

time. Because of the effect of recombination (described briefly below) each binding site is

evolutionarily unlinked from other binding sites, and the sites are evolving independently

under similar selective pressures to bind to the TF, as shall be further justified in Chapter

4.

Why does the distribution of TF binding site energies take the form shown in figure



9

1.2? A naive observer might expect that evolution would drive all binding sites to the most

energetically favorable sequence, yet this is evidently not the case. What determines this

variance in energy? To explain this, we turn to population genetics.

1.2 Population Genetics

Quantitative models of evolving populations were first developed as part of the “neo-

Darwinian” or “Modern Synthesis” of Wright, Fisher and Haldane starting in the 1930s

[49–51], which united long-term, large-scale Darwinian evolution and shorter term, incre-

mental Mendelian genetics. These models describe a population composed of individuals

with varied genotypes, which reproduce, mutate and die from generation to generation. As

such a population evolves, the fraction of individuals with a particular genotype may grow

or shrink as more fit individuals outcompete less fit ones, as individuals die and reproduce

stochastically, and as their offpring “mutate”, or experience random genetic change. These

three processes are known as natural selection, genetic drift, and mutation respectively, and

they form the underlying driving forces of evolution.

Wright envisioned that populations would explore a “fitness landscape” in which indi-

viduals with higher fitness would outcompete others and the population would gradually

move towards the peaks of the landscape[50]. In the case of TF binding sites, binding must

occur in order to carry out gene regulation. We may therefore suppose that the fitness

of a binding site is proportional to the probability of TF binding, and define the fitness

landscape

f(E) = (1− f0)
1

1 + eβ(E−µ)
+ f0 (1.4)

where f0 represents the fitness cost of not binding, and f(E) then ranges from f0 to 1.

f0 accounts for the fact that many genes are non-essential, which implies that the fitness

cost of non-binding can be small. Natural selection on this fitness landscape drives the

population to evolve towards lower energy sequences, which explains why functional sites

are biased towards the low energy tail in figure 1.1.

However, in the 1960s the “Neutral” and “Nearly Neutral” theories of evolution were

developed by Kimura, Ohta and collaborators, who explained that most genetic change
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occurs as a result of genetic drift rather than selection[57, 76]. A individual in the population

may have a lucky year and reproduce more than others, despite having no fitness advantage

or even being slightly unfit. Since a large fraction of possible genetic changes are neutral,

new (but phenotypically equivalent ) genotypes will arise over time due to these stochastic

effects. The widepsread neutrality at the molecular level can be seen in figure 1.1 which

shows that many different genotypes share the same energy, for example the degeneracy is

highest near E = 0. The Neutral Theory of evolution is responsible for some of the most

important quantitative evolutionary tools today, including the ‘molecular clock’, which

allows evolutionary history to be inferred from the buildup of neutral mutations, and it

provides null models used to test for the existence of selective pressure in DNA and protein

sequences.

Genetic drift is the origin of the variance in binding energy seen in figure 1.1. The fact

that even deleterious mutants may survive through stochastic effects, combined with the fact

that there are many more possible mutants near E = 0, means that there is a statistical

mutational bias towards sequences with E = 0. Thus, we see that the distribution of

binding energies in figure 1.1 is the result of two opposing forces: Selection, which drives

the population towards low energy, and drift, which drives the population towards the most

degenerate phenotypes near E = 0. This is often referred to as the “mutation-selection”

balance, since in many cases mutations carry the population away from the fitness peaks,

opposing the selective pressure.

Other important driving forces which I shall not discuss, but which are frequently con-

sidered in population genetics, are recombination, which is a mixing of genes which occurs

during sexual reproduction, and migration or geographic effects, which may limit the spatial

spread of genotypes. Sexual organisms are generally diploid (contain 2 copies of every gene),

as opposed to haploid (with only one copy). We shall limit our attention to haploid asex-

ual organisms, which approximately describes many microorganisms. Many of the results

discussed here can nevertheless be extended to other cases.

With this example in mind, we shall discuss various quantitative models of such evolving

populations and driving forces, for arbitrary fitness landscapes. We begin here with “mi-

croscopic” population models, which are the foundation of population genetics modeling.
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1.2.1 Wright-Fisher Model

The prototypical population model is the Wright-Fischer model, which describes a popula-

tion of fixed size N . In this model, the population at generation t is generated by taking

N random samples with replacement from generation t− 1, weighted by the ‘fitness’ of the

individuals. That is, the probability of sampling genotype x from the previous generation

for the current generation is

p(x) =
1

Z
n(x)f(x) =

n(x)

N

f(x)

f̄
(1.5)

where f(x) is the fitness and n(x) is the number of individuals with genotype x, Z is a

normalization constant and f̄ =
∑

x
n(x)
N f(x) is the mean population fitness. The fitness

defined implicitly here can be though of as the logarithm of the growth rate of individuals

with genotype x, as the sampling probability implies n′(x) ∝ Np(x) ∝ n(x)f(x) and there-

fore n(x, t) ∝ n(x, 0)f(x)t ∝ n(x, 0)et log f(x) in the limit that n(x) is small relative to N .

That is, a small subpopulation of genotype x will grow exponentially at a rate log(f(x)).

The Wright-Fisher model accounts for natural selection through the fitness weighting and

for the stochastic fluctuations in n(x) (genetic drift) through the random sampling proce-

dure.

Mutation can then be incorporated by letting each individual mutate to other genotypes

with probability u each generation, in a way specified by a separate mutational model. In

the case of molecular evolution, we shall assume evolution proceeds by point mutations,

and the mutational network of genotypes takes the form of a fully connected hypercube in

which each genotype of length L is connected to 4L neighbors[53].

A special case of the Wright-Fisher model is the ‘two-allele’ population where only two

genotypes are present, which we will call ‘wild type’ and ‘mutant’. This situation commonly

arises in many populations, as shall be described in section 1.2.3. Given that the number

of mutants is n at time t, the probability of ending up with n′ mutants in generation t+ 1

due to the random sampling procedure is a binomial distribution

Π(n′|n) =

(
N

n′

)
qn

′
(1− q)N−n′

, where q ≡ n

N

fm
f̄

(1.6)

where fm is the fitness of the mutant type. Iterating this transition probability gives the

fraction of mutants over time, and eventually the mutant population will reach an absorbing
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state either at n = 0 (the mutant becomes extinct) or n = N (the mutant ‘fixes’), after

which only one genotype is present and the population no longer changes, assuming new

mutations do not occur. Calculating the fixation probability and fixation time (given an an

initial mutant fraction n0) is not trivial, and is achieved using diffusion theory, described

below.

1.2.2 Moran and Cannings Models

In an alternate model, the Moran model, a population of size N is updated through re-

placement of a single individual at a time. At each step, one individual is chosen to die,

and another is chosen to replicate. An individual’s fitness will weight the probability for

that individual to be chosen for either of these substeps.

In the two-allele case, the single time-step transition probabilities of the Moran model

are [54, 55]

Π(n+ 1|n) =
fm
f̄

n

N

(
1− n

N

)
Π(n− 1|n) =

fw
f̄

n

N

(
1− n

N

)
(1.7)

Π(n|n) = 1−Π(n+ 1|n)−Π(n− 1|n),

for mutant count n. The fixation probability of the mutant is exactly solvable in the Moran

model, and can be shown to be [55]

φ(r) =
1− fw/fm

1− (fw/fm)N
(1.8)

Like the Wright Fisher model, the Moran model captures the effects of selection and drift,

and is also easily extended to include mutation.

Generalization of the Wright-Fisher and Moran models leads to a class of population

models collectively known as the Cannings model. Like the Wright Fisher and Moran

models, the population is generated from a random sample of the previous generation for

fixed population size N , but the distribution of offspring is arbitrary (as opposed to the

binomial distribution of the WF model, for example), subject only to the condition that

the population size stays constant and that all individuals (in the neutral case) have equal

probabilities of reproducing.
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1.2.3 Regimes of Haploid Evolution

These “microscopic” population models give rise to a variety of higher-level dynamics in

common. In each model, three regimes emerge: The monomorphic, polymorphic, and

quasispecies regimes, which are illustrated in figure 1.3.

The monomorphic regime results from very low mutation rates u and small populations

N . It has been called the “succesional mutation” regime [56]. Here, mutants are so rare

that the population is usually composed of individuals with exactly the same genotype.

Rarely, a mutant appears in the population, and its descendants may either go on to fix or

go extinct (as described in the two-allele case above), long before another mutant appears.

Such fixation events are known as ‘selective sweeps’. In this regime, evolution takes the

form of a ‘substitution process’, in which the population jumps as a whole from genotype to

genotype. It is believed that many higher eukaryotes [57] and some microorganisms contain

loci that can be adequately described as monomorphic [58–61]. As a result, this regime

has been applied in settings as diverse as the evolution of transcription factor (TF) binding

sites in yeast [19, 20], viral protein evolution [25, 27], and codon usage bias (e.g., [62, 63]).

The polymorphic regime occurs for high mutation rates and large populations. Here

the population is composed of many competing genotypes, none achieving fixation before

new mutants appear. This has also been called the “concurrent mutations” regime[56].

The quasispecies regime is the large population limit of the polymorphic regime. For

very large populations composed of individuals spanning a huge number of genotypes,

stochastic effects and genetic drift become negligible relative to the subpopulation sizes

of each genotype, and evolution becomes deterministic. The quasispecies regime was first

studied in the context of populations of self-replicating RNA molecules, as might have ex-

isted near the origin of life [53]. Virus populations are also often though to evolve in the

quasispecies regime[64].

At large times, in all three regimes of evolution, the population reaches a steady state

distribution of phenotypes, which we shall write as π(E) in the case of the TF phenotype

E. In the monomorphic limit, the population jumps back and forth between a small subset

of genotypes over time, and the steady state gives the probability of finding the population



14

Fixation Time

Waiting TimeMonomorphic

Polymorphic

Quasispecies

Po
p
u
la

ti
o
n

Po
p
u
la

ti
o
n

Po
p
u
la

ti
o
n

Time

Time

Time

3 2
Energy

ti
m

e

Monomorphic

3 2
Energy

Polymorphic

3 2
Energy

Quasispecies

Figure 1.3: Simulations of a Wright-Fischer process in three different regimes. (Top) Here,
colors represent different genotypes, brightness correponds to fitness, and time increases
towards the right. Each vertical slice of each image represents the distribution of genotypes
in the population at one point in time. These regimes are obtained for different conditions on
the mutation rate u and population sizeN , and the size of the genotype space Ω, as discussed
in chapter 2. Colors for one genotype are allowed to vary slightly from one generation to the
next, for visualization reasons. The break in the monomorphic plot represents a long period
in which no mutants appeared. (Bottom) Evolution in energy-space in the three regimes
for a fitness function in the form of equation 1.4, showing populations which have reached
steady state. Each horizontal slice represents a histogram of the energy distribution at that
point in time.
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in that state at one point in time. Empirically determining this steady state distribution

requires either a time or ensemble average. In the case of TF binding sites, which we will ar-

gue evolve in the monomorphic regime, the set of binding sites in the yeast genome provides

an ensemble average, and the steady state distribution is simply the distribution shown in

figure 1.2. In the quasispecies limit, on the other hand, the distribution of genotypes in the

population stays constant over time and no averaging is necessary, but rather many samples

from the same population are required.

In Chapter 2 we shall see how, given information about the genotype-pheotype mapping

(ie, equations 1.4, 1.2 and an EM), using population genetics one can compute the expected

steady state distribution of phenotypes in each regime given a fitness landscape, and vice

versa. In the case of TF binding sites, we can measure the steady state distribution from

binding site in the genome, but we also know the expected fitness landscape 1.4 from

biophysical modeling. We can therefore test whether they are consistent with each other,

as shall be discussed in Chapter 4.

This idea of using biophysical models of TFs to predict evolutionary properties was

considered using a quasispecies model in 2002 by Gerland and Hwa [16], and independently

by Sengupta, Djordjevic and Shraiman [15]. Starting in 2003 Berg and Lässig studied TF

evolution using a monomorphic model [17], followed by a number of related studies[18–20]

which aim to infer a fitness landscape from sequence data. The work on TF binding site

evolution presented in this thesis builds on these studies.

1.2.4 Universality

Before we can embark on this program, there seems to be a problem: From among the

variety of microscopic population models described above, which of these models accurately

describes real populations? Each model may predict a different steady state distribution.

Remarkably, however, in many cases all of these models converge to a single unified quan-

titative model in what is known as the diffusion limit, which gives formulae for the fixation

probability and fixation time which are independent of the underlying population model

and mutational model[65, 66], for a large class of models [65, 67–72]. The Wright-Fisher
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and Moran models are no doubt gross simplifications of true population dynamics, but uni-

versality in the diffusion limit reassures us that predictions based on population genetics

theory may apply even in complex, unknown populations. Understanding which proper-

ties are universal will be a key initial step towards a general theory of adaptive evolution.

Universality is the subject of Chapter 3, where we will also show show that many universal

results obtained in the diffusion limit apply even far outside this limit.

Here, we shall introduce the diffusion limit and begin to derive a simple but illustrative

(and universal), result: The fixation probability of a single mutant in a population other-

wise composed of many identical individuals, corresponding to the two-allele case described

above.

1.2.5 Diffusion Theory

Diffusion theory has been used extensively in population genetics starting with Wright, but

the most significant progress is due to Kimura [73, 74]. Besides leading to a universal picture

of population genetics, diffusion theory also makes many computations mathematically

tractable, such as the aforementioned fixation probability in the Wright-Fisher two-allele

model.

Here we focus on the two-allele case, and start from discrete population dynamics. For

any population model described above, let us model the time evolution of the number of

mutants n in a population of size N , starting from an initial mutant population n0. It is

convenient to work in terms of the population fraction of mutants x = n/N , rather than n

itself. To trace the growth of the mutant population, we seek to calculate the population

fraction x after t generations, denoted θ(x, x0; t), starting from a fraction x0 = n0/N .

We start by writing the ‘retrospective’ update equation in the discrete case,

θ(x, x0; t+ 1) =
∑
δx

φ(x, x0 + δx, t)Π(x, δx) (1.9)

where Π(x, δx) is the (model-dependent) probability of a jump in population fraction by

δx given that the mutant fraction is x. Π(x, δx) corresponds to Π(n′|n) defined above. In

words, this equation says that we can find the probability of having a population fraction

x at time t + 1, given the probability of having a fraction x at time t after starting from
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intermediate initial positions x0 + δx in one generation less, multiplied by the probability of

jumping from the starting point x0 to these intermediate starting points in one generation.

In the diffusion approach, we take the continuum limit of this update equation in time

and population fraction, giving

θ(x, x0; t+ δt) =

∫
θ(x, x0 + δx, t)Π(x, δx, δt)dδx (1.10)

where the time step is no longer 1 generation, but an infinitesimal parameter δt.

If we now treat x as a continuous variable (taking the infinite population limit) and

expand φ(x, x0 + δx, x, t) in the integral in terms of δx to second order, we obtain

θ(x, x0; t+ δt) =

∫
Π(x, δx, δt)

(
θ(x, x0, t) +

∂θ(x, x0, t)

∂x0
δx +

∂2θ(x, x0, t)

∂2x0
δ2
x

)
dδx (1.11)

θ(x, x0; t+ δt) = θ(x, x0, t) (1.12)

+
∂θ(x, x0, t)

∂x0

(∫
Π(x, δx, δt)δxdδx

)
(1.13)

+
∂2θ(x, x0, t)

∂2x0

(∫
Π(x, δx, δt)δ

2
xdδx

)
(1.14)

which is then easily rearranged into the “backwards Kolmogorov equation”,

∂θ(x, x0; t+ δt)

∂t
= M(x)

∂θ(x, x0, t)

∂x0
+
V (x)

2

∂2θ(x, x0, t)

∂2x0
(1.15)

where the moments M(x) and V (x) are given by

M(x) = lim
δt→0

1

δt

∫
Π(x, δx, δt)δxdδx (1.16)

V (x) = lim
δt→0

1

δt

∫
Π(x, δx, δt)δ

2
xdδx (1.17)

We can now solve for θ(x, x0, t) and many related quantities by solving the Kolmogorov

equation. Note that M(x) and V (x) are simply the moments (the mean and variance) of

the Π distribution, with some scaling for time.

Remarkably, the Wright-Fisher, Moran, and generalized Cannings models have the same

moments, up to scaling factors, and thus they obey the same diffusion equation, 1.15. For

the Wright-Fisher process, these moments are easily found from Π(n′|n) to be

M(x) = sx(1− x) (1.18)

V (x) =
x(1− x)

N
(1.19)
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up to O(s),where s = fm
fw
− 1 is the ‘selection coefficient’ for the mutant relative to the

population. s ranges from −1 to ∞ and s = 0 in the neutral case. This choice of moments

is often called the “WF diffusion limit”. The moments of the Moran model are the same

but multiplied by a factor of two, which may be absorbed in equation 1.15 by rescaling

the time. Thus, through diffusion theory the universality of population genetics models

becomes apparent.

Manipulation of equation 1.15 leads to the s-dependent fixation probability and fixation

time. More complete derivations are given in appendix A, here we shall simple quote the

memorable results:

• The probability that a single mutant in an otherwise homogeneous population of size

N fixes is

φ(s) =
1− e−s

1− e−Ns (1.20)

In the neutral limit when s→ 0, this fixation probability is φ = 1/N .

• The extinction time (given that the single initial mutant becomes extinct) in the

neutral case is (in number of generations)

t̄ext = 2 logN (1.21)

• The fixation time (given that the single initial mutant fixes) in the neutral case is (in

number of generations)

t̄fix = 2N (1.22)

The full s-dependent fixation times, too complex to quote here, are plotted in figure 1.4. The

interplay of genetic drift and selection are apparent: As shown in the inset, even deleterious

mutation can fix because of genetic drift. For large (positive and negative) s both fixation

and extinction happen quickly due to selection pressure, but they occur much more slowly

in the neutral case when only genetic drift is present.

Note that the moments used here were only obtained to O(s), the nearly neutral limit.

This is why the exact Moran fixation probability, equation 1.8, appears slightly different

from equation 1.20: In the small s limit, the they are the same.
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It is important to understand the nature of the approximations involved in the diffusion

limit. By taking the infinite population limit we have assumed that the change in population

fraction of the mutant, in some small unit of time, is infinitesimal. The diffusion limit will

be a poor approximation anytime the population fraction may jump by a large amount

in one generation. This can occur when the population size is very small, or when the

selection coefficient is far from 0. Thus, even without the O(s) cutoff used in calculating

the moments, diffusion theory should be understood to be valid mainly in the neutral limit.
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Figure 1.4: Properties of the two allele system with one initial mutant in the diffusion limit,
for N = 1000. (Top) The Fixation Probability of the mutant. The region near s = 0 is inset.
(Middle) The fixation time, assuming the mutant fixed. Very beneficial mutants (high s)
fix quickly, but so do very deleterious mutants if they fix at all: The very few deleterious
mutants which do fix must do so through large and immediate stochastic fluctuations, before
they are driven to extinction by natural selection. (Bottom) The extinction time, assuming
the mutant became extinct.
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Chapter 2

Regimes of Haploid Evolution

In this short chapter we shall give a more quantitative analysis of the population genet-

ics described in Chapter 1, and derive the steady state distribution of phenotypes in the

monomorphic and quasispecies regimes in the diffusion limit. These results in the monomor-

phic regime will be used in chapters 3 and 4. Previously, the steady has been derived for

particular population models, here we extend these results, and give a simple derivation in

the monomorphic case showing that it applies to all ‘reversible’ population models. This

derivation shows that the monomorphic steady state we derive is “universal”, as shall be

further described in Chapter 3.

2.0.6 Phenomenology

We shall begin with a phenomenological picture of asexual haploid evolution. In figure 2.1,

we show the results of a large set of simulations of a Wright-Fisher process for varying

population size N and mutation rate u, with a biophysically inspired fitness function from

equation 1.4 with the energy phenotype and mutational model as described in Chapter

1. As can be seen from figure 2.1B, the monomorphic regime, in which the population

contains only one genotype, occurs for low mutation rates and population sizes, while the

polymorphic regime occurs in the opposite conditions. A boundary, which we shall derive

shortly, is superimposed in white.

In figure 2.1 A we show the mean fitness in steady state for each pair of parameters. In

these simulations, high fitness generally means low energy, as illustrated in figure 2.1 C. A

number of interesting features appear:

• The mean fitness in the monomorphic regime is u-independent. Although it is not

apparent from the plot, the steady state distribution itself is also u-independent.
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Figure 2.1: For varying population size N and mutation rate u, results from simulations of
a Wright-Fisher process, evolved until steady state is reached, under a Fermi-Dirac fitness
function following 1.4 with f0 = 0.9, µ = −2, β = 1.688. (A) The mean population
fitness in steady state. The population is largely unfit when the mutation rate is high or
the population size is low, as explained in the text. The white line shows the theoretical
boundary between the monomorphic and polymorphic regimes, equation 2.26 (B) For the
same simulations, the mean number of unique genotypes in the population. (C) For N =
1000, steady state distributions for various u. The fitness function is shown above. Color
indicates the mean fitness of the population, corresponding to the color in panel A, and the
steady states shown here correspond to points along the line log10N = 3 in panel A.
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• Conversely, the steady state in the polymorphic regime is N -independent

• An ‘error catastrophe’ occurs at very high u. Random (unfit) mutants accumulate

faster than selection can weed them out, and they dominate the population. This

effect has been widely discussed in quasispecies literature[53, 75].

• A ‘fluctuation catastrophe’ occurs at very low N . Stochastic fluctuations become very

large, and one of the many possible unfit genotypes becomes likely to take over the

population by chance.

Because of the first two properties, the monomorphic and quasispecies limits are the two

important cases of asexual evolution: Knowing the steady state in the monomorphic limit

(as u → 0 ) gives the steady state everywhere in the monomorphic regime. Likewise, the

steady state in the quasispecies limit (as N →∞) gives the steady state everywhere in the

polymorphic regime. Thus the steady state can be predicted for nearly all parameter com-

binations, except near the boundary between regimes, where either limit may still provide

a good approximation.

We shall now describe, in turn, the monomorphic steady state, the boundary between

the monomorphic and polymorphic regimes, and the quasispecies steady state.

2.1 Monomorphic Evolution

2.1.1 The Substitution Process

In the monomorphic limit, the mutation rate is sufficiently low that the vast majority of

single mutations either fix or become extinct before a second mutation on the locus arises

[57]. Thus we can describe evolution of this population as a series of substitution events

in which the entire population switches from genotype σ to genotype σ′, known as the

“substitution process”. As shown in figure 1.3, two timescales are important: The waiting

time until a new mutant appears, and the fixation or extinction time of a new mutant.

The waiting time is 1/uN generations on average, as uN is the probability of a mutant

appearing per generation in the population of size N . In the monomorphic limit, u → 0,
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the u-independent fixation time thus becomes negligible relative to the waiting time, and

we therefore approximate fixation as instantaneous.

Let σ and σ′ be two genotypes (sequences of L nucleotides or amino acids) at the locus

of interest. The substitution rate from σ to σ′ can be approximated by the rate of producing

a single mutant times the probability that the mutation fixes [57, 76]:

W (σ′|σ) ≈ Nµ(σ′|σ) · φ(σ′|σ), (2.1)

where N is an effective population size, µ(σ′|σ) is the single nucleotide or amino acid

mutation rate from σ to σ′ (not to be confused with the chemical potential in TF biophysics),

which in the simplest case is related to the per-locus mutation rate as µ = u/L, and φ(σ′|σ)

is the probability that a single σ′ mutant fixes in a population of wild-type σ. We will

assume that µ is nonzero only for genotypes σ and σ′ differing by a single nucleotide or

amino acid.

Given an ensemble of populations evolving with these rates, we can define π(σ, t) to be

the probability that a population is monomorphic at the locus with genotype σ at time t.

This probability evolves over time via the master equation

d

dt
π(σ′, t) =

∑
σ∈S

[W (σ′|σ) π(σ, t)−W (σ|σ′) π(σ′, t)], (2.2)

where S is the set of all possible genotypes at the locus of interest. This Markov process

is finite and irreducible, since there is a nonzero probability of reaching any genotype from

any other genotype in finite time. Hence it has a unique steady-state distribution π̃(σ) [77]

satisfying

∑
σ∈S

[W (σ′|σ) π̃(σ)−W (σ|σ′) π̃(σ′)] = 0. (2.3)

The form of this steady-state distribution depends on the underlying population genetics

model that gives the fixation probability φ. We note that the steady state is independent

of u, as observed above, as it merely rescales W . That is, it may affect the time to reach

equilibrium, but not the equilibrium itself.
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2.1.2 The Steady State of the Substitution Process

In order to solve for the steady state in equation 2.3, we now make an important assumption:

That in steady state the probability of transitioning from genotype σ to genotype σ′ is equal

the the probability of the reverse transition. More formally, we assume that the steady state

satisfies detailed balance, also known as time reversibility (or simply ‘reversibility’), such

that

W (σ′|σ) π̃(σ) = W (σ|σ′) π̃(σ′), (2.4)

where π̃(σ) denotes the steady-state distribution. The left- and right-hand sides of this

equation are the steady-state probability currents σ → σ′ and σ′ → σ, respectively. Equa-

tion 2.4 means that these currents are exactly balanced for each pair of genotypes σ and

σ′, and hence there are no net currents, consistent with the notion that it is impossible to

distinguish the forward and backward flow of time in steady state.

As we shall see in Chapter 3, the assumption that the underlying microscopic population

model is reversible in steady state is not entirely justified. However, the Moran model is

known to be reversible, and in the diffusion limit (ie, in nearly-neutral evolution) population

models generally will also be reversible [55, 113, 114]. As shall be described in Chapter 3,

however, this assumption is well supported in most cases.

We will also assume that neutral evolution – when all genotypes are selectively neutral

relative to each other – is reversible. In the neutral model, the fixation probability φ(σ′|σ) =

1/N for all σ and σ′, and hence Eq. 2.1 shows that the neutral substitution rates are just

the mutation rates [57]: W (σ′|σ) = µ(σ′|σ). Let the steady-state distribution of the neutral

substitution process be π̃0(σ). Then reversibility of the neutral model is expressed by

µ(σ′|σ) π̃0(σ) = µ(σ|σ′) π̃0(σ′). (2.5)

Many popular neutral mutational models are reversible (see [78] for a summary), although

this condition is not guaranteed. Mutation rates are determined by complex biochemical

factors (such as replication and error-correcting machinery), so there is no obvious reason

to believe that reversibility must hold. However, reversible mutation models are much more
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suitable to analytic and computational treatment, and thus reversibility is a key feature of

many widely-used nucleotide and amino acid mutation models (e.g., [78–83]). Moreover,

[84] have shown that it is not even possible to make self-consistent estimates of substitution

rates from pairwise sequence alignments without assuming reversibility, although some work

has been done to treat this type of molecular data with irreversible models (e.g., [85]).

Under the assumptions of reversibility of both the mutational model and more generally

the population model, let us proceed. The condition of reversibility implies that

π̃(σ′)
π̃(σ)

=
W (σ′|σ)

W (σ|σ′) (2.6)

=
µ(σ′|σ)

µ(σ|σ′) ·
φ
(
f(σ′)
f(σ)

)
φ
(
f(σ)
f(σ′)

) (2.7)

=
π̃0(σ′)
π̃0(σ)

· ψ
(
f(σ′)
f(σ)

)
(2.8)

where we have invoked the reversibility of the neutral rates (Eq. 2.5) and we have defined

a new function

ψ(r) ≡ φ(r)

φ(1/r)
. (2.9)

with r = f(σ)
f(σ′) . By substituting this relation into the trivial identity (π̃(σ′′)/π̃(σ′)) ·

(π̃(σ′)/π̃(σ)) = π̃(σ′′)/π̃(σ), it follows that

ψ

(
f(σ′′)
f(σ′)

)
· ψ
(
f(σ′)
f(σ)

)
= ψ

(
f(σ′′)
f(σ)

)
, (2.10)

that is, ψ generally satisfies ψ(r1)ψ(r2) = ψ(r1r2). Therefore ψ(r) must be a simple power

law:

ψ(r) = rν , (2.11)

for some constant ν [86]. The constant ν can only depend on the population size N , since

that is the only other parameter in our population model. Now rewriting Eq. 2.8 with our

explicit form of ψ,

π̃(σ′)
π̃(σ)

=
π̃0(σ′)
π̃0(σ)

(
f(σ′)
f(σ)

)ν
, (2.12)
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we can deduce the steady state:

π̃(σ) =
1

Z
π̃0(σ) (f(σ))ν , (2.13)

where Z is a constant chosen for normalization. We finally project this equation from

genotypes to phenotypes, by summing over all genotypes with shared phenotype:

∑
σ

P(σ)=E

π̃(σ) =
∑
σ

P(σ)=E

1

Z
π̃0(σ)f(σ)ν (2.14)

π̃(E) =
1

Z
π̃0(E)f(E)ν (2.15)

This is the promised relationship from Chapter 1, and the goal of this section: A rela-

tionship between the steady state distribution π̃(E) and the fitness landscape f(E).

This steady-state formula was derived in the special case of the Moran model by [87]. We

generalize this earlier result by showing that reversibility implies the power law for ψ and

the steady-state formula of Eq. 2.13, and thus the steady-state behavior of any reversible

substitution process, not just the Moran model as studied in [87], is given by Eq. 2.13. Note

that this result, derived in the monomorphic limit, requires no additional assumptions, such

as the weak-selection diffusion approximation.

2.1.3 ν is an Effective Population Size

Before discussing the consequences of this relation, there is one more issue: The value of

ν. While here we have derived the steady state without any reference to the form of the

fixation probability, had we done so in equation 2.7, we would find that ν = 2(N − 1) if we

substitute the WF diffusion limit fixation probability (equation 1.20), or ν = N − 1 if we

substitute the exact Moran model fixation probability (equation 1.8). In these models, ν

appears to be linearly related to the census population size N .

Here we shall give an argument that ν is always linear in N in the diffusion limit, and is

a “scaling” effective population size that is of the same order as the census population size

for fixed-size models. We also show that it must be nonzero, and therefore the steady state

formula always applies in the diffusion limit. Using the definition ψ(r) = φ(r)/φ(1/r), one
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can show that

ν =
2φ′(1)

φ(1)
= 2Nφ′(1), (2.16)

where φ′(1) = dφ(r)/dr|r=1 and the neutral fixation probability must be φ(1) = 1/N . The

fixation probability in the diffusion limit is given by [73] (see appendix A)

φ(r) =

∫ 1/N
0 dx G(x, r)∫ 1

0 dx G(x, r)
, G(x, r) = exp

(
−2

∫ x

0
dy

M(y, r)

V (y, r)

)
, (2.17)

where M(x, r) and V (x, r) are the first two moments of the change in mutant fraction x

per unit time. Here we shall expand the moments in terms of r,

M(x, r) = M0(x) + (r − 1)M1(x) +O((r − 1)2)

V (x, r) = V0(x) + (r − 1)V1(x) +O((r − 1)2).

(2.18)

Since evolution under pure drift (r = 1) is unbiased, the mean change in mutant fraction

without selection is zero: M0(x) = 0. Substituting these expansions into Eq. 2.17 and

expanding to lowest order in r − 1, we obtain

φ(r) =
1

N
+ 2(r − 1)

(
1

N

∫ 1

0
dx

∫ x

0
dy

M1(y)

V0(y)

−
∫ 1/N

0
dx

∫ x

0
dy

M1(y)

V0(y)

)
+O((r − 1)2).

(2.19)

Therefore

φ′(1) = 2

(
1

N

∫ 1

0
dx

∫ x

0
dy

M1(y)

V0(y)
−
∫ 1/N

0
dx

∫ x

0
dy

M1(y)

V0(y)

)
, (2.20)

where φ′(1) = dφ(r)/dr|r=1. Note that V1(x) does not appear – the correction to the second

moment by weak selection does not affect the fixation probability expanded to the lowest

order. Thus, barring some coincidental cancellation of terms in Eq. 2.20, φ′(1) should be

nonzero as long as M1(x) is nonzero.

To argue that M1(x) 6= 0 we invoke an operational definition of selection strength.

Experimental measurements of selection strength are often made by inferring it as the

exponential growth rate of a small mutant sub-population, at least for microorganisms [88],
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so we require that the population model show this behavior. If X is the random variable

denoting the fraction of mutants in the population, its deterministic equation is

d

dt
E[X] = E[M(X, r)], (2.21)

where E[·] is the expected value operator. In the limit of weak selection (r ∼ 1) and small

mutant fraction (X � 1),

d

dt
E[X] ≈ (r − 1)E[M1(X)] ∝ (r − 1)E[X], (2.22)

assuming that M1(x) is linear in x to the lowest order. This yields exponential growth at

a rate proportional to the selection strength s = r− 1. Therefore M1(x) should be nonzero

and hence φ′(1) is nonzero.

Through equation 2.20 we can now understand the linear relationship between ν and

N . Under the appropriate rescaling of time units, the pure drift V0(x) is proportional to

1/N and M1(x) is independent of N . For example, this is true in the Wright-Fisher model

with generations as the time unit, and it also holds in the Moran model with the single

birth/death time scaled by a factor of N . Then Eq. 2.20 implies that φ′(1) ∼ O(N0),

and therefore ν ∼ O(N). This observation can be generalized to a broader class of models

in which V0(x) is proportional to 1/Ne, where Ne is the variance effective population size

[55, 89].

2.1.4 Discussion

The steady state 2.13 has a clear analogy in statistical mechanics, as it can be written in

the form of the Boltzmann distribution[87, 90]:

π(E) =
1

Z
π0(E)e−ν log 1/f(E) pi =

1

Z
gie
−βVi (2.23)

where on the right we have quoted the thermodynamic Boltzmann distribution, and one

sees that ν plays the role of the inverse temperature β, π0 plays the role of the degeneracy

or entropy g, and log 1/f plays the role of the potential V . In the ‘mutation-selection’

balance, the opposing driving forces of natural selection versus drift are thus analogous
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to the opposing driving forces of energy and entropy in many physical systems, and the

steady state distribution of phenotypes may be thought of as an equilibrium distribution.

Just as in thermodynamic equilibrium, this distribution satisfies detailed balance, it is

independent of the underlying dynamics, and the microstates are well-mixed within the

macrostates. That is, the equation is valid for any underlying (reversible) mutational model

and for any arrangement of mutational connectivity of the genotype space, and the sequences

which share the same phenotype have relative probabilities in proportion to their neutral

probabilities.

One can see that the population size ν tunes the strength of the fitness f(E) relative

to stochastic forces, thereby affecting the strength of the ‘selection’ driving force. One can

also see that the steady state is mutation rate independent, as observed in the introductory

phenomenology of this chapter.

All of these properties will serve as a contrast to the quasispecies steady state, which is

not in equilibrium.

An appealing aspect of the steady state equation is that it may be inverted, in order to

infer a fitness landscape in terms of the steady state distribution of phenotypes, which may

be measured experimentally. That is we may write [19, 20]

f(σ) =

(
Z
π̃(σ)

π̃0(σ)

)1/ν

(2.24)

Such inference will be the subject of chapter 4.

Here we will note one complication in the practical application of equation 2.24: Cal-

culating the neutral distribution π̃0(E) for a particular TF (and EM). In chapter 1 we

noted that this distribution is approximately Gaussian in the limit of large L, however, in

many cases such as TF binding sites the sequences are quite short. Thus, π̃0(E) must be

calculated by explicitly binning the energies of all possible 4L sequences, thus invoking the

genotype-phenotype mapping of the additive energy model. For short enough sequences

(L . 15 for a computer in 2013) explicit computation of π̃0 is feasible. For longer sequences

we have also developed an approximate algorithm to calculate π̃0(E) quite accurately and

efficiently, which shall not be described here but is available upon request.



31

Given π̃0(E) and the distribution of site energies π̃(E) (for which there is no computa-

tional obstacle) it is then straightforward to compute f(E) using equation 2.24.

2.2 The Boundary between Monomorphic and Polymorphic Regimes

We now turn to the boundary between the monomorphic and polymorphic regimes. In the

monomorphic regime in the neutral limit, the expected fixation/extinction time (number

of generations for a single initial mutant to either fix or go extinct) is 2 logN generations:

The mutant may fix with probability 1/N in time 2N (equation 1.21), or it may become

extinct with probability (N − 1)/N in time 2 logN (equation 1.22), and therefore the net

absorption time is

1

N
(2N) +

N − 1

N
(2 logN) ∝ 2 logN (2.25)

in the large N limit. However, the waiting time, as discussed above, is 1/uN , and the

monomorphic regime occurs as no new mutants occur while a previous mutant is still fixing,

which leads to the condition 1/uN < 2 logN . Dropping the factor of two for simplicity, we

get that the boundary between the regimes must be around

u <
1

N logN
. (2.26)

This result has been obtained by other means by [91] and [92].

In the non-neutral case this boundary gains a complicated dependence on the relative

fitness of the mutants, which has not been previously well described. If strong selection is

present, for example, mutants may fix more quickly, which decreases the fixation time and

may push the population into the monomorphic regime. In appendix B we show that in the

non-neutral case, beneficial mutants will generally fix or become extinct in between 2 logN

and 4 logN generations, while deleterious mutants fix in less than 2 logN generations. In

steady state (which involves a balance of beneficial and deleterious mutants), the deleterious

mutants dominate the average, and we argue that the fixation/extinction time in this case

will typically be slightly less than the neutral 2 logN result, in a way that depends on the

exact distribution of mutant fitnesses. Thus, even with selection, in steady state we expect

the boundary of equation 2.26 to be a good approximation of the true boundary between

the regimes.
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2.3 Quasispecies Evolution

In contrast to the monomorphic case, in which the population as a whole jumps in phenotype

space, in the quasispecies regime the population is composed of many different individuals

with varied phenotypes and fitnesses. At least at the genotype level, the time-evolution of

this population may be modeled as a Master equation, however unlike the monomorphic

time-evolution master equation (equation 2.2), which describes the time evolution of a

probability density, here we must model the evolution of the population density itself.

One important consequence of this is the presence of ‘sources’ and ‘sinks’ in the quasis-

pecies case: Subpopulations with low fitness will tend to die, while those with high fitness

grow, and thus there may be net mutational currents within the population from high fitness

to low. In the monomorphic case, in contrast, the population never dies, and there are no

absorbing states. Unlike the monomorphic case, a population in the quasispecies regime may

reach steady state but it does not reach equilibrium, and many of the important properties

of equilibrium do not apply.

As the quasispecies regime is not the focus of this thesis, we shall only give a brief

description of the steady state. In traditional quasispecies theory, first developed by [53],

one writes a Master equation for the distribution of genotypes

~x(t+ 1) = M · ~x(t) (2.27)

where ~x is a vector representing the distribution of genotypes, and M is a transition matrix.

Off diagonal elements in M represent mutation rates from one genotype to another, and M

will typically be sparse if we consider genetic sequences evolving through point mutations,

as each genotype can only mutate to 4L other genotypes. The diagonal elements of M

represent growth rates, minus the overall mutation rate away from that genotype. The

eponymous ‘quasispecies’ refers to the eigenvectors of this matrix, which represent combi-

nations of genotypes that grow together at the same rate (the eigenvalue), and might then

be though of as a single growing entity. The steady state distribution is given by the leading

eigenvector of this matrix, that is the eigenvector with the largest eigenvalue. Already from

this equation one can see that the form of the steady state is independent of population

size N as mentioned at the beginning of this chapter, since the equation is linear in x.
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2.3.1 Modeling using PDEs

Equation 2.27 is unwieldy in the context of molecular evolution because of the huge number

of possible genotypes, growing as 4L for nucleotide sequences of length L. We would like a

description in phenotype space rather than genotype space. That is, an equation describing

η(E, t), the distribution of sequences with energy E in the population at time t. Such

an approach was first developed using a diffusion approximation by [15], which we now

introduce.

2.3.2 Neutral Evolution

We begin with the simpler case of neutral evolution. The exact master equation describing

neutral evolution is

d

dt
η(x, t) = u

∑
x′∈N (x)

[η(x′, t)− η(x, t)] (2.28)

where η(x, t) represents the number of individuals with genotype x at time t, and the

sum is over the genotypes x′ which are one mutation away from genotype x (corresponding

the point mutations). As described in detail in [15], one may project this equation from

genotypes to energy in the limit that E(x)−E(x′) is small and L is large, and assuming that

sequences with the same energy are well mixed. That is, while the distribution η(E) might

be biased towards certain energies, sequences with the same energy are distributed randomly

among themselves. This assumption is not true in general, but may be approximately true

in some cases. Under this assumption, one obtains the Fokker-Planck equation

d

dt
n(E, t) = u

[
∂

∂E
En(E, t) +

∂2

∂E2
D(E)n(E, t)

]
(2.29)

The drift term is proportional to E, and represents the fact that sequences will drift

towards E = 0, as a result of the fact that the expected ’jump’ from a sequence x with

energy Ex in one generation is linear in E, as

〈∆E〉(x) = 〈E′x − Ex〉x′∈N (x) =
∑
iα

(εiα − εixi) = −Ex/L (2.30)
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The drift term D(E) is more complicated. The approach in [15] is to approximate it

near E = 0, which gives D(E) = χ2, the variance of the neutral distribution. With this

choice, the steady state solution to equation 2.29 is the Gaussian neutral distribution, as

expected.

2.3.3 Evolution with Selection

We now wish to model quasispecies evolution with selection. In [15], the steady state with

selection was found for one particular choice of fitness function (A 0-K Fermi-Dirac fitness)

which could equivalently be modeled by imposing certain boundary conditions on the neutral

equation. However, we wish to find steady states for arbitrary fitness functions. This may

be achieved by adding a selection term to the neutral evolution equation proportional to

log f(E), in order to cause multiplicative growth/death proportional to the fitness.

d

dt
n(E, t) = u

[
∂

∂E
En(E, t) +

∂2

∂E2
D(E)n(E, t)

]
+ log(f(E))n(E, t) (2.31)

Analytical solutions to this equation, for some choice of fitness function, are difficult.

Fokker-Planck equations are also notoriously difficult to solve numerically. However, we

find a method known as Moving Finite Elements allows us to solve this equation efficiently

and accurately for arbitrary fitness functions [93]. Unlike in the monomorphic case, there

is no simple analytical formula.

As we shall not use the quasispecies steady state in later chapters, we shall stop at

this result. However, as noted above, this result assumes that the sequences with the same

energy are ‘well mixed’, which is not always the case due to the non-equilibrium nature of

the quasispecies steady state, and this result mainly applies in the large L limit. Correcting

these issues may be the subject of future work.
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Chapter 3

Strong Selection in the Monomorphic Limit

Population genetics models of the substitution process have traditionally focused on the

weak-selection regime, which is accurately described by diffusion theory. Predictions in

this regime can be considered universal in the sense that many population models exhibit

equivalent behavior in the diffusion limit, as discussed in the preceding chapters. However,

a growing number of experimental studies suggest that strong selection plays a key role in

some systems, and thus there is a need to understand universal properties of models without

a priori assumptions about selection strength.

From the theoretical perspective, a key motivation for weak-selection models is their

universality: many specific models are equivalent in the weak-selection, or diffusion, limit.

However, there is mounting experimental evidence that stronger selection may be common

in nature. Strongly deleterious mutations have long been known to exist, although they

are typically eliminated by selection so efficiently that they play little role in evolutionary

dynamics [57]. Mutations with strong selective advantage, on the other hand, may routinely

occur in organisms faced with novel environments or environmental stresses such as high

temperature [95–98], with early steps in adaptation typically exhibiting larger fitness gains

than later ones. Furthermore, several QTL-mapping experiments have demonstrated that

adaptive evolution frequently involves relatively few genetic changes with large fitness effects

(reviewed in [99–101]). Using approaches developed in the weak-selection limit to predict

the dynamics of strongly beneficial mutations (such as fixation times and the probability of

fixation) may lead to significant errors [72, 102, 103].

Models attempting to include a wider range of selection strengths are often deterministic

[53, 104] and therefore exclude populations with non-negligible genetic drift, while stochastic

theories typically demonstrate model-dependent behavior when selection becomes too strong
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[66, 105, 106], which limits their application to natural systems. Thus there is a need to

study universal properties of classes of stochastic models in which no a priori assumptions

about the strength of selection are made.

In this chapter we investigate such properties, focusing on time reversibility (i.e., detailed

balance) and the steady state of the substitution process. In Chapter 2 we introduced the

function

ψ(r) ≡ φ(r)

φ(1/r)
. (3.1)

For any time-reversible population model, such as the Moran process, we have shown in

Chapter 2 that the substitution rates obey a simple scaling law,

ψ(r) = rν . (3.2)

This result is exact in the monomorphic limit and requires no diffusion or weak-selection

approximation. Here we shall extend this analysis to population models which are irre-

versible. We find that the scaling law is an accurate approximation for sufficiently weak

selection, and in fact may hold for a large range of selection strengths beyond the classical

diffusion limit, as we show for the simple Wright-Fisher model and its extensions. Since this

scaling behavior is equivalent to time reversibility, this contradicts the belief that selection

should break reversibility [62].

We have also shown that the scaling law leads to a simple steady state distribution,

π̃(σ) =
1

Z
π̃0(σ) (f(σ))ν . (3.3)

Here, we show that strong selection plays little role in steady state, which we find to be

dominated by genetic drift and weak selection. Since evolutionary behavior in the weak

regime is known to be universal through established results based on the diffusion approx-

imation, the steady-state formula is accurate with a sizable range of selection strengths

for a large class of population models, including many irreversible ones. The wide range

of applicability of the time-reversibility condition greatly simplifies computational studies

of evolutionary dynamics in biological systems, such as probabilistic phylogenetic inference

[78]. The simple power-law form of the steady-state distribution allows inference of fitness

landscapes from genomic data in systems for which the steady state is believed to be a good

approximation, such as TF binding sites in yeast [20], as will be discussed in Chapter 4.
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Here, we shall consider reversibility in a number of population models. First, we consider

Wright-Fisher and Moran models that describe populations of fixed size N . Next, we

extend our treatment to a model in which population size varies periodically with time, and

finally consider more general models proposed by [107] which allow for different variances

in offspring number.

The function ψ defined in equation 3.1 will be of central importance in this chapter: it

will determine the existence of reversibility under selection and the form of the steady-state

distribution. We will investigate both its general properties as well as its form for specific

models. In Chapter 2 we showed that reversibility implied the scaling law 3.2 for ψ, and

we now continue this analysis.

3.0.4 The Scaling Law Implies Reversibility

We begin by showing that population models for which ψ follows the scaling law are re-

versible. Thus, we may investigate the reversibility for different models by examining ψ in

that model. Let us assume Eq. 3.2 without assuming reversibility, in which case

W (σ′|σ)

W (σ|σ′) =
π̃0(σ′)
π̃0(σ)

(
f(σ′)
f(σ)

)ν
(3.4)

based on the definition of W (σ′|σ) (equation 2.1). We can combine this with the steady-

state condition for the substitution process (Eq. 2.3) to show that

0 =
∑
σ∈S

[W (σ′|σ) π̃(σ)−W (σ|σ′) π̃(σ′)]

=
∑
σ∈S

W (σ|σ′)
[
π̃0(σ′)
π̃0(σ)

(
f(σ′)
f(σ)

)ν
π̃(σ)− π̃(σ′)

]
.

(3.5)

Clearly the distribution in Eq. 3.3 satisfies this condition, so it must be the unique steady

state. Then it is trivial to show that this steady state and Eq. 3.4 automatically satisfy the

reversibility condition (Eq. 2.4). Hence the power law implies reversibility.

Therefore, time reversibility and the scaling behavior of ψ are mathematically equivalent,

and both lead to the steady-state formula of Eq. 3.3. We will refer to these collective results

as the scaling law of the substitution process.
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3.1 The Limits of Reversibility

This means that we can concentrate our attention on determining the form of ψ, since its

scaling behavior tells us the extent to which reversibility and Eq. 3.3 hold. Obviously not

all models are reversible, so the scaling law will not hold exactly in these cases. However,

we demonstrate here that the scaling behavior of ψ is at least an approximate feature of

a large class of models, and therefore reversibility and the steady-state formula (Eq. 3.3)

provide a good approximation within a sizable range of selection strengths.

Since it will be more convenient to describe the scaling behavior of ψ on logarithmic

scales, we expand logψ(r) in a power series in log r around the neutral limit (log r = 0):

logψ(r) =
∞∑
j=0

c2j+1

(2j + 1)!
(log r)2j+1

= c1(log r)

1 +
1

c1

∞∑
j=1

c2j+1

(2j + 1)!
(log r)2j

 , (3.6)

where

ci =

(
di

d(log r)i
logψ(r)

)∣∣∣∣
r=1

. (3.7)

Note that logψ(r) is an odd function in log r, and hence there are only odd powers in the

expansion. Since c1 = 2φ′(1)/φ(1) = ν, we can write

logψ(r) = ν(log r)

1 +
1

ν

∞∑
j=1

c2j+1

(2j + 1)!
(log r)2j

 . (3.8)

Now we see that the scaling behavior of ψ is captured by the first-order term in this

expansion. As long as ν is nonzero, there will always be some neighborhood of selection

strengths around the neutral limit, r = 1, in which the scaling law holds. We give an

argument that ν 6= 0 in 2.1.3.

The argument relies on the universal nature of the diffusion approximation to a pop-

ulation model. That is, discrete population models can be approximated by a continuous

diffusion equation, and it is known that a large class of population models are equivalent
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under this approximation (e.g., [65, 67–72]). The diffusion approximation is valid for weak-

selection strengths: r − 1 = s ∼ O(N−1) [55]. Since the scaling behavior of ψ appears in

the diffusion regime, it will be shared by a large class of models.

3.1.1 The Range of Validity of the Scaling Law

There is a range of selection strengths in which the scaling approximation is valid. Specif-

ically, we wish to find the range of fitness ratios r, which we will denote as (r−1
0 , r0) with

r0 > 1, such that

ν(1∓ ε) log r < logψ(r) < ν(1± ε) log r, (3.9)

where the upper signs are valid for r > 1, the lower signs are valid for r < 1, and ε > 0 is a

small number that we choose to control the accuracy of the power law approximation. This

range is determined by the next coefficient in the expansion of Eq. 3.8,

c3

6ν
=
ν3 − 3ν2N2 + 2νN3 (N − 3φ′′(1)) + 4N5

(
3φ′′(1) + φ(3)(1)

)
12νN6

, (3.10)

where we have evaluated the derivative of logψ(r) in terms of φ(r) and substituted φ(1) =

1/N and ν = 2Nφ′(1). For small ε,

|c3|
6ν

(log r0)2 < ε −→ r0 = exp

(√
6νε

|c3|

)
. (3.11)

For any particular model, we need only compute ν and c3 to obtain the range of selection

strengths (r−1
0 , r0) for which the scaling law is a good approximation.

Even outside of this range, however, deviations from the power law likely lead to negli-

gible errors in estimating the probabilities of extremely unfit genotypes. This is a situation

encountered when the monomorphic population is in steady state on the fitness landscape,

with the majority of populations in high-fitness states from which many strongly delete-

rious but no strongly beneficial substitutions can be made. Specifically, assume that the

range of fitness ratios for which the scaling-law approximation is valid, computed from Eq.

3.11, is (r−1
0 , r0). Suppose that genotype σ1 has fitness f1 and genotype σ2 has fitness less

than f1/r0 (r0 > 1), and also assume that they are separated by a single mutation. By
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construction, the substitution from σ1 to σ2 is outside the range for which the power law

is a valid approximation. Now suppose that there is a third genotype σ3 (also separated

by a single mutation from σ1) with fitness of exactly f1/r0, so that its probability is given

by Eq. 2.13. Since ψ must be monotonically increasing, the probability of the unfit σ2 is

bounded from above by the probability of σ3:

π̃(σ2) <
1

Z
π̃0(σ3) r−ν0 fν1 . (3.12)

Then the ratio of π̃(σ2) to π̃(σ1) has an upper bound as well:

π̃(σ2)

π̃(σ1)
<
π̃0(σ3) r−ν0 fν1
π̃0(σ1) fν1

' r−ν0 , (3.13)

where the last relation holds because the neutral probabilities π̃0(σ1) and π̃0(σ3) are of the

same order of magnitude (under the reasonable assumption that mutation rates within the

locus are all of the same order). Since ν is proportional to the population size, the maxi-

mum fitness ratio r0 in the scaling region need not be very large to generate an enormous

suppression of the unfit genotype in steady state. Thus inaccuracies in the probabilities of

unfit genotypes caused by deviations from the scaling law will be negligible for all practical

purposes.

3.1.2 The Power Law is Always Valid in Steady State

Furthermore, we can explicitly show that the selection strengths of the dominant substitu-

tions in steady state are precisely those described by the diffusion approximation. Assume

that we only want to consider genotypes that have relative probabilities, with respect to

the most fit genotype, of at least δ > 0. Then the relevant fitness ratios r are constrained

by r−ν > δ or r < δ−1/ν . Since ν ∼ O(N), we expand in powers of 1/ν to obtain

r < 1− 1

ν
log δ +O(ν−2). (3.14)

In terms of s = r−1, this implies s ∼ O(ν−1) ∼ O(N−1), which is the selection strength for

which the diffusion approximation is valid [55]. Therefore the steady state of substitutions

is adequately described by the diffusion approximation and thus by the scaling law (Eqs.
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3.2 and 3.3). As a result, only the optimal genotype and slightly less fit neighboring states

have non-negligible probabilities in steady state.

The steady-state distribution of Eq. 3.3 was previously derived for the special cases of

the Moran process by [87] and for the diffusion limit of the Wright-Fisher model by [87],

[19], and [108], among others. Indeed, some form of this formula can even be found in

[49]. In Chapter 2 we generalized these results by showing that the steady-state formula

holds exactly for any reversible model, not just the Moran process, without requiring any

diffusion approximation. For irreversible models, here we have shown how this result arises

as an approximation and how weak selection dominates steady-state behavior in a wide

class of population models, justifying the application of the steady-state formula to systems

which may include mutations with large fitness effects.

3.2 Specific population models

We now verify the general results of the previous section for specific models, computing the

scaling effective population size ν and the range of selection strengths for which the scaling

law is a good approximation.

3.2.1 The Moran model

Consider a haploid population of fixed size N with two alleles, A and B, and let n denote

the number of B alleles. As discussed in Chapter 1, the fixation probability of a single

mutant in this model is given by

φ(r) =
1− fA/fB

1− (fA/fB)N
=

1− r−1

1− r−N , (3.15)

where r = fB/fA. A straightforward calculation shows that ψ(r) = φ(r)/φ(1/r) = rN−1

[87]. Hence ν = N−1 for Moran, and the scaling law holds exactly if the neutral substitution

rates are reversible (Fig. 3.1A).
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Figure 3.1: Plot of logψ(r) as a function of log r for several population models. The scaling
law appears as the straight line logψ(r) = ν log r. (A) The Moran model with N = 1000.
Here the scaling law is exact with ν = N − 1. (B) The simple Wright-Fisher model for
N = 1000, calculated using the numerical procedure from 3.2.2. The numerical calculation
is the dashed line and the scaling-law prediction is the solid line. Here the scaling law is
not exact but holds as a good approximation for a large range of selection strengths. The
scaling effective population size is ν = 2(N − 1). (C) A modified Wright-Fisher model with
population size N that varies sinusoidally as in Eq. 3.27, with N0 = 100, α = 20 and
T = 20 generations. Simulation results are shown as dots and the scaling law as a solid line.
The scaling law is an accurate approximation with ν = 2(Ne − 1), where Ne =

√
N2

0 − α2

is the harmonic mean of the census population sizes. Because explicit simulations are
required (as opposed to the numerical procedure used for the simple Wright-Fisher model),
poor statistics on deleterious fixations and beneficial extinctions restricts us to considering
smaller population sizes and ranges of selection strengths. (D) A model based on those in
[3], where the mutant and wild-type may have different variances in offspring number in
addition to different means. Here fitness is defined as µ − σ2/N , where µ is the average
number of offspring and σ2 is the variance. As in (C), we use N = 100 for numerical reasons.
The scaling law is deduced by a linear fit.
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3.2.2 The Wright-Fisher model

Next we consider the simple Wright-Fisher model for a haploid population of fixed size

N with two alleles A and B, also introduced in Chapter 1 [49, 51]. Unlike the Moran

model, the Wright-Fisher model is ill-suited to exact treatment, and hence the traditional

approach to it has been the diffusion approximation. This yields many results in the neutral

and weak-selection regimes [73, 94, 109], such as the formula for the fixation probability, as

discussed in Chapter 1.

However, there are two problems with the classical diffusion approach. The first is that

the moment functions M(x, r) and V (x, r) are typically expanded to the lowest order in r−1

for the weak-selection regime (as in 2.1.3), and so all subsequent calculations, including those

leading to the fixation probability in eq. A.1, are not strictly valid for selection strengths

beyond s = r−1 ∼ O(N−1). This expansion in selection strength, however, is not necessary,

as it is possible to carry out the diffusion approximation using the exact moments derived

from Eq. 1.6. This approach yields accurate results in the polymorphic limit, but fails to

give an accurate formula for the fixation probability. This is due to the inherent breakdown

of diffusion when the underlying discrete nature of the model becomes important, which is

especially pronounced when selection effects are strong.

Since the diffusion approach is unsuitable to describe fixation outside of a fairly narrow

range of selection strengths, we take a more accurate but numerical approach: computing

fixation probabilities directly from the discrete Markov chain defined in Eq. 1.6. Here we

pause for a moment to explain how this is achieved.

Exact Wright-Fisher fixation probability from discrete Markov chain

Studying discrete Markov chain properties of the Wright-Fisher model is not new [55].

However, previous work has typically focused on explicit results using spectral theory, with

particular emphasis placed on neutral evolution. In contrast, we will obtain an implicit

result suitable for numerical application. These results will allow investigation of the dy-

namics of the model under large selection effects that are beyond the scope of diffusion

theory.
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We can represent the transition probabilities Π(n′|n) from Eq. 1.6 as elements of an

(N + 1) × (N + 1) matrix P. We will adopt the convention in which the final state n′ is

the row index and the initial state n is the column index. Transition probabilities between

different states at different time steps are given by matrix elements of powers of P. That is,

the probability of transitioning from n to n′ in m generations is given by (Pm)n′,n. Therefore

the probability of fixation in m generations from initial state n is given by (Pm)N,n, and

the probability of fixing a single mutant in the infinite time limit is given by

lim
m→∞

(Pm)N,1 = φ(r). (3.16)

This limit can be conveniently expressed by permuting the states to group the transient

states (n = 1, . . . , N − 1) together and the absorbing states (n = 0, N) together. Define

elements of the (N − 1) × (N − 1) submatrix Aij = Π(i|j) for i, j = 1, . . . , N − 1; this

matrix describes transitions between transient states only. Next, define elements of the

2×(N−1) submatrix Bαi = Π(α|i) for α = 0, N and i = 1, . . . , N−1; this matrix describes

single-generation transitions from transient states to absorbing states. Now we permute the

indices to put P in the canonical form [110]:

P =

 A 0

B 12

 , (3.17)

where 0 is the (N − 1)× 2 zero matrix and 1k is a k×k identity matrix. We can now easily

compute the infinite time limit:

lim
m→∞

Pm = lim
m→∞

 A 0

B 12

m = lim
m→∞

 Am 0

B(1N−1 + A + · · ·+ Am−1) 12



=

 0 0

B(1N−1 −A)−1 12

 ,
(3.18)

since Am → 0 as m→∞ and
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(1N−1 −A)−1 =

∞∑
j=0

Aj . (3.19)

The fixation probability of a single mutant is given by the element of the matrix

B(1N−1 −A)−1 in the second row (corresponding to the final state n = N) and the first

column (corresponding to the initial state n = 1):

φ(r) = (B(1N−1 −A)−1)2,1. (3.20)

Alternatively, this expression can be expanded in powers of A:

φ(r) = B2,1 +
N−1∑
i=1

B2,iAi,1 +
N−1∑
i,j=1

B2,iAi,jAj,1 + · · · . (3.21)

Each term in the expansion represents the probability of fixing in a certain finite number

of generations: the first term is the probability of fixing in one generation, the second term

is the probability of fixing in two generations, etc.

For small population sizes N , Eq. 3.20 can be evaluated explicitly:

N φ(r)

2 r2

1+r2

3 r3(8r3+48r2+6r+1)
8r6+48r5+6r4+65r3+6r2+48r+8

...
...

N rNaN (r)
bN (r)

(3.22)

Empirically we observe that aN (r) is a degree N(N − 2) polynomial and bN (r) is a degree

N(N − 1) polynomial. Note that bN (r) seems to be palindromic: bN (r) = rN(N−1)bN (1/r).

In any case, the polynomials in these exact expressions grow increasingly intractable with

N , making a numerical computation of φ(r) the only option. Eq. 3.20 can be rewritten as

(1N−1 −A)TuT = BT , (3.23)

where u is the 2 × (N − 1) matrix of fixation and extinction probabilities from all initial

mutant frequencies. The resulting system of linear equations can be efficiently solved to
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Figure 3.2: Plot of φ(r), the probability that a single mutant fixes as a function of its
fitness ratio with the wild-type. For N = 1000, we compare an explicit simulation of the
Wright-Fisher model with our discrete Markov chain approach (Eq. 3.23) and Kimura’s
diffusion approximation (Eq. 1.20). The agreement between the discrete Markov chain
and the simulation is excellent, but there is noticeable disagreement with the diffusion
approximation at larger selection strengths.

find u for the arbitrary fitness ratio r. The solution agrees extremely well with explicit

simulations (Fig. 3.2).

Reversibility in the Wright-Fischer Model

This gives us an efficient numerical procedure for accurate computation of the fixation

probability, and hence the ψ function, for any N and r. Figure 3.2 compares a simulation

of φ(r) with this numerical approach along with the diffusion approximation (Eq. 1.20 ).

The numerical calculation and the simulation match very well for all selection strengths,

but there is noticeable disagreement with the diffusion result beyond the weak-selection

regime.

Now we consider the expansion of ψ(r) for the simple Wright-Fisher model. We know

from diffusion theory that ν = 2Nφ′(1) = 2(N − 1) [73]. Hence the expansion of ψ(r) has

the form

logψ(r) = 2(N − 1) log r +O((log r)3). (3.24)

Thus the power law and the steady state in Eq. 2.13 hold approximately with ν = 2(N−1).
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Figure 3.3: Plot of c3/6ν as a function of N for the simple Wright-Fisher model, obtained
numerically from φ(r) using the procedure described in 3.2.2. For realistic N values it
rapidly converges to the constant ≈ −0.0093. This small value means that the scaling-
law approximation is valid for a large range of selection strengths, and its N -independence
means that this range does not shrink as N grows, contrary to the prediction of diffusion.

As 3.2.2 shows, the form of the exact fixation probability is too complex to be useful for

analytical calculations, such as computing c3 in Eq. 3.10 to determine the range of selection

strengths for which the power-law approximation is valid. However, we can numerically

compute this next-order coefficient for a range of N using the method in 3.2.2, and Fig. 3.3

shows, remarkably, that it is N -independent for large N . Indeed, as N increases to realistic

values the coefficient converges rapidly to

c3

6ν
≈ −0.0093. (3.25)

This value is striking both because it is small and effectively N -independent. Its small-

ness means that the scaling law is valid for a large range of selection strengths in the simple

Wright-Fisher model. Indeed, for deviations from the power law of at most 5%, we set

ε = 0.05 in Eq. 3.11 and find that the fitness ratio r is constrained to be between 0.098

and 10.2. This corresponds to a selection coefficient s between −0.9 and 9.2, which are

well beyond the typical weak-selection limits of ±O(N−1). A numerical calculation of ψ, as
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shown in Fig. 3.1B, confirms this large scaling region. Indeed, using the argument leading

to Eq. 3.13, unfit genotypes that might lead to deviations from the scaling law will be

suppressed by at least a factor of r−ν0 , where (r−1
0 , r0) is the range of fitness ratios for which

the scaling law approximately holds. If we let r0 ≈ 10.2, even a very conservative N = 200

means that these unfit genotypes are suppressed by more than 10−402 relative to the most

fit genotype.

The N -independence of c3/6ν means that the size of the scaling region does not change

with N . The standard diffusion approach implies a degeneracy of N and s: Ns ∼ O(1),

so that as N increases, the range of selection strengths that are considered weak shrinks.

This is not intrinsic to the Wright-Fisher model, but is merely an emergent property in the

diffusion limit [65]. Our result, however, shows that the scaling law is valid well beyond

diffusion. In contrast, c3/6ν calculated using Kimura’s diffusion approximation (Eq. 1.20)

is given by:

c3

6ν
= −1

6
N. (3.26)

Since this coefficient grows with N , the scaling region for r shrinks as N increases. This

is consistent with the selection-drift degeneracy predicted by diffusion, but it is clearly

misleading in light of our analysis of the full Wright-Fisher model, since it would erroneously

imply that the scaling law and reversibility hold for an extremely small range of selection

strengths. This provides an example of the danger posed by extrapolating diffusion results

to arbitrary regions of parameter space: the universality of the scaling law is much stronger

than diffusion could predict. While this turns out to be unimportant for steady state, which

is dominated by weak selection, the fact that reversibility approximately holds in systems

with strong selection affects dynamical properties as well.

3.2.3 Other models

Models that share the diffusion limit with the Moran and Wright-Fisher models will also

share the scaling law. This encompasses a very wide class of exchangeable models [70, 71,

89]. For instance, many generalizations of the Wright-Fisher model with varying N are

known to have properties equivalent to the simple Wright-Fisher model with some effective



49

population size Ne [67, 69, 111]. Other generalizations, such as incorporating the effects of

subdivided populations, also lead to equivalencies [68, 72].

As an example we consider the case when N varies periodically. For periods of oscillation

smaller than fixation times, it is known that the Wright-Fisher diffusion results carry over

with an effective population size Ne equal to the harmonic mean of the census population

sizes [67, 69]. Let the transition probabilities be of the Wright-Fisher form (Eq. 1.6), but

now N changes over time according to

N(t) = N0 + α sin

(
2πt

T

)
, (3.27)

where N0 is the average size and T is the period of oscillation. The harmonic mean can be

shown to be Ne =
√
N2

0 − α2. In Fig. 3.1C, we use explicit simulations to compute ψ(r),

and we indeed find scaling behavior with ν = 2(Ne − 1). This slope, predicted through

mapping to the simple Wright-Fisher model, is also obtained by a linear fit to the explicit

simulation. Thus the scaling law still holds. For this model we do not have a computational

technique for fixation probabilities like the one used for the simple Wright-Fisher model

(3.2.2), and explicit simulations prevent accurate statistics on fixation of very deleterious

and extinction of very beneficial mutations. Nevertheless, deviations beyond this smaller

range of selection can still be shown to be negligible in steady state. As Fig. 3.1C shows,

the scaling region extends to at least r0 ≈ 1.08. Therefore any unfit genotypes leading to

deviations must be suppressed by at least a factor of r−ν0 : even for Ne = 200, this is a

suppression of 10−14.

Other models beyond the paradigms of exchangeable and Wright-Fisher-type models

may also demonstrate the scaling behavior. For instance, whereas Wright-Fisher and Moran

models typically incorporate selective advantage as a difference in the mean number of

offspring between allele types, Gillespie proposed to incorporate stochasticity at the level

of selection by allowing for different variances in offspring number [3, 107, 112]. In these

models fitness is characterized by µ−σ2/N , where µ is the mean and σ2 is the variance in the

offspring number for a given allele. Other authors have further pursued models of this type

to describe spatial variation, age structure, and demographic stochasticity, which may be

important for small populations or populations subdivided into small demes [66, 105, 106].
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For instance, we simulate a model described in [3]. Consider a haploid population of

two allele types, A and B. Each generation, every individual i produces a number of

offspring 1 + Xi, where Xi is a binomially-distributed random variable. This variable has

mean µA and variance σ2
A if i is of type A, or µB and σ2

B if i is of type B. Adding 1 to

Xi simply guarantees that there are at least N total offspring. These offspring are then

culled by sampling without replacement until there is a new generation of exactly N alleles.

We simulate this process and obtain the ψ function in Fig. 3.1D. Fitness ratios r are

defined using the fitness definition fi = µi − σ2
i /N . By repeating the simulation for several

population sizes, we observe that ν is proportional to N (for each N , ν is obtained by a

linear fit).

3.3 Discussion

3.3.1 Universality

The notion of universality has been key to the success of population genetics. The remark-

able fact that many population models with varying degrees of complexity share the same

diffusion limit when selection is weak has proven to be a strong justification of their use

as effective phenomenological theories [65, 66]. However, in light of the growing body of

evidence that strong or at least intermediate selection may be important in some systems,

it is desirable to pursue models that make no a priori assumptions about the strength of

selection, and in particular, to find universal properties of such models. Our study shows

that strong-selection effects are negligible in the steady state of the substitution process,

and so the universality of the diffusion limit gives rise to a universal scaling law (Eq. 2.11)

which determines the steady-state distribution (Eq. 2.13). Furthermore, the scaling law

is proven to hold exactly for any reversible process (such as the Moran model), and holds

approximately for weak selection even for irreversible models. In some cases such as the

simple Wright-Fisher model, it holds for such a large range of selection strengths that devi-

ations from it are not practically important. This finding significantly generalizes previous

work of [87], [19], [108], and others.
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3.3.2 Theoretical significance of time reversibility

The existence of reversibility in the weak-selection limit is not surprising in light of diffusion

theory. Indeed, diffusion models are essentially always reversible [55, 113, 114], and diffusion

is known to adequately capture weak-selection behavior [115]. The fact that reversibility is

broken by some models and not others when selection is strong is also clear. The Moran

process, for instance, is well-known to be exactly reversible in all regimes, as are all models

with tridiagonal transition matrices [55]. The Wright-Fisher model is not exactly reversible,

and indeed we see that reversibility becomes significantly broken beyond a certain selection

strength. In general, we find that the scaling behavior of the ψ function indicates the extent

to which a model is time reversible.

But besides being a technical convenience, what is the deeper significance of reversibility?

In modern studies of population genetics and evolution, reversibility plays a crucial role in

linking the prospective and retrospective paradigms [116]. Traditional population models

are prospective: the interest is in calculating future properties given the current ones.

However, more recent approaches, especially due to the emergence of large-scale molecular

data, have led to the wide use of the retrospective paradigm, which looks backward in time

from the present. This is the essence of coalescent theory and phylogenetics [78, 117]. Time

reversibility links the prospective and retrospective paradigms and thus has been exploited,

for instance, in studies of age properties [55, 113, 118] and in phylogenetic methods [78].

An additional consequence of reversibility is the nonexistence of net probability currents

in steady state, as guaranteed by Eq. 2.4. That is, reversible Markov models will have no

net probability currents through any cycle of states, since such a current would distinguish

between forward and backward directions in time. What does this mean for evolutionary

models? Consider, for instance, a monomorphic substitution model with three alleles, A,

B, and C, in order of decreasing fitness. If the substitution process is irreversible, there

would be a net current around the loop C → B → A → C. The net currents C → B and

B → A flow from less fit to more fit alleles, but to complete the cycle, there is also a current

A→ C from a more fit allele to a less fit allele. This current must exist in any irreversible

substitution model with selection, a strange consequence of evolutionary irreversibility.
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3.3.3 Applications

Models of monomorphic populations evolving through successive substitutions on a fit-

ness landscape have important applications to molecular data, since loci in many asexual

populations are believed to be well-approximated as monomorphic [58–61]. In particular,

population genetics-based approaches allow for inference of biologically meaningful param-

eters, such as selection coefficients, as opposed to merely inferring overall substitution rates

[62]. A precise form of the steady-state distribution is critical to these applications, since

this distribution is used to weigh ancestral nodes in phylogenetic inference calculations.

Several recent studies of codon usage bias have employed population genetics-based mod-

els of substitution with selection (e.g., [62, 63, 108, 119–122]). Results for the steady-state

distribution using the standard Wright-Fisher diffusion approximation (i.e., Eq. 1.20) for

individual codons have been reported that are consistent with Eq. 2.13 in the limit of weak

selection. However, there is growing experimental evidence that big-benefit single muta-

tions may occur more often than previously thought. Studies on bacteriophages adjusting

to new environmental conditions reported fitness ratios of nearly 4 [95–98], clearly beyond

the diffusion regime. Thus, it is necessary to understand the role of these mutations in

steady state and whether the steady-state distribution predicted from weak-selection must

be modified in such systems. We have provided a theoretical framework to understand the

limits of this steady-state distribution, which provides a precise way to show that these

big-benefit mutations are negligible in steady state.

Moreover, our approach can be used to describe arbitrary fitness landscapes for the locus

under consideration, including those with a fitness function that depends on the state of

the entire DNA or protein sequence at the locus. Standard models of sequence evolution

typically assume that all nucleotides or amino acids evolve independently of each other [78].

This approximation excludes correlations among sites within a locus and the corresponding

epistatic effects, whose importance is being increasingly emphasized [22, 123–125].

As noted in Chapter 2, one application of particular interest is the ability to infer an

arbitrary fitness landscape from sequence data under the assumption of steady state, and

eq. 2.13 can be inverted to obtain the fitness function in terms of the neutral distribution
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and the steady-state distribution under selection. This is this subject of chapter 4.

3.4 Appendix I: Publication Attached

Parts of this chapter were published in [30]. The publication is attached.
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Monomorphic loci evolve through a series of substitutions on a fitness landscape. Understanding how
mutation, selection, and genetic drift drive this process, and uncovering the structure of the fitness
landscape from genomic data are two major goals of evolutionary theory. Population genetics models
of the substitution process have traditionally focused on the weak-selection regime, which is accurately
described by diffusion theory. Predictions in this regime can be considered universal in the sense that
many population models exhibit equivalent behavior in the diffusion limit. However, a growing number
of experimental studies suggest that strong selection plays a key role in some systems, and thus there is a
need to understand universal properties of models without a priori assumptions about selection strength.
Here we study time reversibility in a general substitution model of a monomorphic haploid population.
We show that for any time-reversible population model, such as the Moran process, substitution rates
obey an exact scaling law. For several other irreversible models, such as the simple Wright–Fisher
process and its extensions, the scaling law is accurate up to selection strengths that are well outside the
diffusion regime. Time reversibility gives rise to a power-law expression for the steady-state distribution
of populations on an arbitrary fitness landscape. The steady-state behavior is dominated byweak selection
and is thus adequately described by the diffusion approximation, which guarantees universality of the
steady-state formula and its applicability to the problem of reconstructing fitness landscapes from DNA
or protein sequence data.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

A key goal of evolutionary theory is to determine the role of
natural selection in the evolution of genotypes, and to infer in-
formation about selection strength from the growing abundance
of genomic data. Theoretical work on these issues takes many dif-
ferent forms, both because of the inherent differences among bio-
logical systems and because different simplifying assumptions are
necessary for the sake of mathematical tractability. One common
approximation is to consider unlinked loci in the monomorphic
limit, valid for neutral evolution once sufficiently low mutation
rates and effective population sizes ensure that genetic drift dom-
inates (Crow and Kimura, 1970). Even larger populations or those
with greater mutation rates can be nearly monomorphic if selec-
tion is significant.

If at any given time the population is dominated by a single
genotype at the locus of interest, to a good approximation such a
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University, 136 Frelinghuysen Road, Piscataway, NJ 08854, USA.

E-mail addresses: mmanhart@physics.rutgers.edu (M. Manhart),
ahalda@physics.rutgers.edu (A. Haldane), morozov@physics.rutgers.edu
(A.V. Morozov).

population evolves as a single entity on a fitness landscape (Wright,
1932) over genotype space, assuming that the evolutionary success
of a genotype can be distilled into a fitness value. The movement
of the entire population from one genotype to another is known as
the substitution process, where each substitution event consists of
a single mutation arising and then fixing instantaneously (Kimura,
1983). This picture greatly simplifies the theory, especially because
it permits fixation events to be analyzed using two-allele models
of population genetics (Crow and Kimura, 1970). Moreover, it is
believed that many higher eukaryotes (Kimura, 1983) and some
microorganisms contain loci that can be adequately described as
monomorphic (Ochman and Selander, 1984;Wick et al., 2002; Dos
Vultos et al., 2008; Achtman, 2008). As a result, this approach
has been followed in settings as diverse as the evolution of
transcription factor (TF) binding sites in yeast (Lässig, 2007;
Mustonen et al., 2008), viral protein evolution (Bloom et al., 2007;
Bloom and Glassman, 2009), and codon usage bias (e.g., McVean
and Vieira, 2001; Yang and Nielsen, 2008). These theoretical and
computational studies complement recent experimentalwork that
has begun to reconstruct empirical fitness landscapes directly
(Weinreich et al., 2006; Poelwijk et al., 2007).

Much theoretical work in population genetics has focused
on gradual models of adaptation in which evolutionary change

0040-5809/$ – see front matter© 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.tpb.2012.03.007
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proceeds through selection of alleles with very small fitness
advantage (Orr, 2005). The idea of the extremely slow rate
of phenotypic evolution was proposed by Darwin (1859) and
subsequently made popular by Fisher (1958) in the context of
the infinitesimal model. In more recent decades, experimental
evidence like the molecular clock and high levels of sequence
variation in some proteins suggested that genetic drift, and not
selection, was the key evolutionary driving force. This led to
the neutral and nearly neutral theories of molecular evolution
(Kimura, 1983; Ohta and Tachida, 1990; Ohta, 1992).

From the theoretical perspective, a key motivation for weak-
selection models is their universality: many specific models
are equivalent in the weak-selection, or diffusion, regime. This
equivalence is observed for the simple Wright–Fisher (Wright,
1931; Fisher, 1958) andMoran (Moran, 1958)models, which share
a diffusion limit with a variety of more elaborate models under the
appropriatemapping of parameters (e.g., Ewens, 1967;Maruyama,
1970; Otto and Whitlock, 1997; Möhle, 2001; Möhle and Sagitov,
2001; Whitlock, 2003; Wakeley, 2005). Even though the simple
Wright–Fisher model is undoubtedly a gross simplification of
natural populations, this universality has driven the use of its
diffusion limit (Kimura, 1955, 1962), and more generally, the use
of exchangeable models (Cannings, 1974) as plausible effective
theories in a wide variety of applications.

However, there is mounting experimental evidence that
stronger selection may be common in nature. Strongly deleterious
mutations have long been known to exist, although they are
typically eliminated by selection so efficiently that they play little
role in evolutionary dynamics (Kimura, 1983). Mutations with
strong selective advantage, on the other hand, may routinely occur
in organisms faced with novel environments or environmental
stresses such as high temperature (Wichman et al., 1999; Bull
et al., 2000; Holder and Bull, 2001; Barrett et al., 2006b), with
early steps in adaptation typically exhibiting larger fitness gains
than later ones. Furthermore, several QTL-mapping experiments
have demonstrated that adaptive evolution frequently involves
relatively few genetic changes with large fitness effects (reviewed
in Orr, 2001, 2005; Eyre-Walker and Keightley, 2007). Using
approaches developed in the weak-selection limit to predict the
dynamics of strongly beneficial mutations (such as fixation times
and the probability of fixation) may lead to significant errors
(Morjan andRieseberg, 2004;Whitlock, 2003; Barrett et al., 2006a).

Models attempting to include a wider range of selection
strengths are often deterministic (Eigen et al., 1989; Bürger, 2000)
and therefore exclude populations with non-negligible genetic
drift, while stochastic theories typically demonstrate model-
dependent behavior when selection becomes too strong (Proulx,
2000; Shpak, 2007; Parsons et al., 2010), which limits their
application to natural systems. Thus there is a need to study
universal properties of classes of stochastic models in which no a
priori assumptions about the strength of selection are made.

In this paper we investigate such properties, focusing on time
reversibility (i.e., detailed balance) and the steady state of the sub-
stitution process.We restrict ourselves to asexual haploids for sim-
plicity, which includes many populations of single-cell organisms
(Ochman and Selander, 1984; Wick et al., 2002; Dos Vultos et al.,
2008; Achtman, 2008). For any time-reversible population model,
such as the Moran process, we show that the substitution rates
obey a simple scaling law. This result is exact in the monomorphic
limit and requires no diffusion or weak-selection approximation.
For irreversible models, we find that the scaling law is an accu-
rate approximation for sufficiently weak selection, and in fact may
hold for a large range of selection strengths beyond the classical
diffusion limit, aswe show for the simpleWright–Fishermodel and
its extensions. Since this scaling behavior is equivalent to time re-
versibility, this contradicts the belief that selection should break
reversibility (McVean and Vieira, 2001).

The scaling law also gives rise to a power-law formula for the
steady-state distribution, which is exact for any reversible model.
This generalizes the work of Sella and Hirsh (2005), who obtain
this result in the special case of the Moran model. Moreover,
we find that strong selection plays little role in steady state,
which is dominated by genetic drift and weak selection. Since
evolutionary behavior in this regime is known to be universal
through established results based on the diffusion approximation,
the steady-state formula is accurate within a sizable range of
selection strengths for a large class of populationmodels, including
many irreversible ones. Thewide range of applicability of the time-
reversibility condition greatly simplifies computational studies of
evolutionary dynamics in biological systems, such as probabilistic
phylogenetic inference (Yang, 2006). Finally, the simple power-law
form of the steady-state distribution allows inference of fitness
landscapes from genomic data in systems for which the steady
state is believed to be a good approximation, such as TF binding
sites in yeast (Mustonen et al., 2008).

2. Substitution model for monomorphic populations

We consider the evolution of a single locus in themonomorphic
limit, where the mutation rate is sufficiently low that the vast
majority of single mutations either fix or become extinct before
a second mutation on the locus arises (Kimura, 1983). Thus we
can describe evolution of this locus as a series of substitution
events in which the entire population switches from genotype σ
to genotype σ ′. Since the time scale for fixation or extinction of
a mutant (during which the population is actually polymorphic) is
very short compared to the time scales of interest, we approximate
these events as instantaneous. For a locus of length L and single-
site mutation rate µ, Champagnat (2006) and Champagnat et al.
(2006) have shown that the condition necessary to guarantee a
monomorphic population is µ ≤ 1/(LN logN) for a population of
size N . However, if most mutations introduce significant selective
effects, the fixation or extinction of mutants will occur more
rapidly, weakening the condition on µ. For beneficial mutations
of selective advantage s (where 1 ≪ Ns ≪ N), Desai and Fisher
(2007) have shown that themonomorphic condition becomesµ ≤

1/(LN log(Ns)).
We will assume that the locus of interest is unlinked to the rest

of the genome (linkage equilibrium) by frequent recombination
with rateρ, which satisfiesρ ≫ NµL (Mustonen and Lässig, 2010);
here, recombination also includes homologous DNA transfer such
as that observed in bacteria. Therefore we can consider the
evolution of the locus independently from the rest of the genome.
We assume that the locus is short enough that recombination does
not occurwithin the locus itself. In general,we are interested in loci
with <103 nucleotides, which easily meet these conditions. Such
loci include short regulatory sequences of nucleotides such as TF
binding sites, and coding regions. Viruses or loci with mutation
or recombination hotspots are outside the scope of this model.
Note that while the locus of interest is unlinked to other genomic
sites, there may be epistasis among the nucleotides or amino acids
constituting the locus itself.

Let σ and σ ′ be two genotypes (i.e., sequences of L nucleotides
or amino acids) at the locus of interest. The substitution rate fromσ
to σ ′ can be approximated by the rate of producing a singlemutant
times the probability that the mutation fixes (Kimura and Ohta,
1971; Kimura, 1983):

W (σ ′
|σ) ≈ Nµ(σ ′

|σ) · φ(σ ′
|σ), (1)

where N is an effective population size, µ(σ ′
|σ) is the nucleotide

or amino acid mutation rate from σ to σ ′, and φ(σ ′
|σ) is the

probability that a single σ ′ mutant fixes in a population of wild-
type σ . Wewill assume thatµ is nonzero only for genotypes σ and
σ ′ differing by a single nucleotide or amino acid.
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Given an ensemble of populations evolving with these rates,
we can define π(σ , t) to be the probability that a population
is monomorphic at the locus with genotype σ at time t . This
probability evolves over time via the master equation

d
dt
π(σ ′, t) =


σ∈S

[W (σ ′
|σ) π(σ , t)− W (σ |σ ′) π(σ ′, t)], (2)

where S is the set of all possible genotypes at the locus of
interest. This Markov process is finite and irreducible, since there
is a nonzero probability of reaching any genotype from any
other genotype in finite time. Hence it has a unique steady-state
distribution π̃(σ ) (Allen, 2011) satisfying
σ∈S

[W (σ ′
|σ) π̃(σ )− W (σ |σ ′)π̃(σ ′)] = 0. (3)

The form of this steady-state distribution depends on the
underlying population genetics model that gives the fixation
probability φ.

Themonomorphic limit permits us to consider two-allele popu-
lation models without mutation. First, we consider Wright–Fisher
and Moran models that describe populations of fixed size N , with
the selective value of each genotype σ specified by a single pa-
rameter f (σ )which we refer to as the genotype’s fitness. Next, we
extend our treatment to a model in which population size varies
periodically with time, and finally consider more general models
proposed by Gillespie (1974) which allow for different variances
in offspring number.

An important consequence of fixed size N is that only relative
fitnesses matter. Relative fitness can be an arithmetic difference or
a ratio, depending on the parameterization. These are equivalent
under a simple exponential mapping. Note that the model is
then symmetric under either a shift or rescaling of all fitnesses,
a symmetry which is convenient to maintain at all stages of
an approximation. For instance, in the Wright–Fisher or Moran
models, it is typical to incorporate fitness as a multiplicative
weight in the transition probabilities, in which case all observable
quantities depend only on the ratio of the wild-type to mutant
fitness. In particular, the probability that a single σ ′ mutant fixes in
a population of wild-type σ must only depend on r = f (σ ′)/f (σ )
and, implicitly, on the population size N: φ(σ ′

|σ) ≡ φ(r).

3. The scaling law and steady state

Since substitution rates depend on the fixation probabilityφ(r),
we aim to use arguments from population genetics to study time
reversibility (or simply ‘‘reversibility’’), which in turn determines
the form of the steady state. Time reversibility is equivalent to
detailed balance, a sufficient but not necessary condition for steady
state:

W (σ ′
|σ) π̃(σ ) = W (σ |σ ′) π̃(σ ′), (4)

where π̃(σ ) denotes the steady-state distribution. The left- and
right-hand sides of this equation are the steady-state probability
currents σ → σ ′ and σ ′

→ σ , respectively. Eq. (4) means that
these currents are exactly balanced for each pair of genotypes
σ and σ ′, and hence there are no net currents, consistent with
the notion that it is impossible to distinguish the forward and
backward flow of time in steady state.

Throughout this paper, we will assume that neutral evolution
– when all genotypes are selectively neutral relative to each
other – is reversible. In the neutral model, the fixation probability
φ(σ ′

|σ) = 1/N for all σ and σ ′, and hence Eq. (1) shows that the
neutral substitution rates are just the mutation rates (Kimura,
1983): W (σ ′

|σ) = µ(σ ′
|σ). Let the steady-state distribution of

the neutral substitution process be π̃0(σ ). Then reversibility of the
neutral model is expressed by

µ(σ ′
|σ) π̃0(σ ) = µ(σ |σ ′) π̃0(σ

′). (5)

Many popular neutral models are reversible (see Yang, 2006, for
a summary), although this condition is not guaranteed. This issue
will be explored further in Section 5.

We now consider the reversibility of the substitution rates
under selection, Nµ(σ ′

|σ)φ(r). Let us first define the function

ψ(r) ≡
φ(r)
φ(1/r)

. (6)

Hence the ratio of the forward and backward substitution rates
between σ and σ ′ is

W (σ ′
|σ)

W (σ |σ ′)
=
µ(σ ′

|σ)

µ(σ |σ ′)
·

φ


f (σ ′)

f (σ )


φ


f (σ )
f (σ ′)

 =
π̃0(σ

′)

π̃0(σ )
· ψ


f (σ ′)

f (σ )


, (7)

where we have invoked the reversibility of the neutral rates
(Eq. (5)). Studying the properties of the ψ function is the main
focus of this paper: it will determine the existence of reversibility
under selection and the form of the steady-state distribution. We
will investigate both its general properties and its form for specific
models.

We will first assume that the substitution rates W (σ ′
|σ) under

selection are reversible, whichwewill show completely constrains
the form of ψ and the steady state under selection π̃(σ ). In this
case, W (σ ′

|σ)π̃(σ ) = W (σ |σ ′)π̃(σ ′), and hence

π̃(σ ′)

π̃(σ )
=

W (σ ′
|σ)

W (σ |σ ′)
=
π̃0(σ

′)

π̃0(σ )
· ψ


f (σ ′)

f (σ )


. (8)

It follows that

ψ


f (σ ′′)

f (σ ′)


· ψ


f (σ ′)

f (σ )


= ψ


f (σ ′′)

f (σ )


, (9)

that is,ψ generally satisfiesψ(r1)ψ(r2) = ψ(r1r2). Thereforeψ(r)
must be a simple power law:

ψ(r) = rν, (10)

for some constant ν (Roberts, 1979). The constant ν can only
depend on the population size N , since this is the only other
parameter in our populationmodel. Wewill refer to Eq. (10) as the
scaling law for ψ . Using the definition of ψ(r) (Eq. (6)), one can
show that

ν =
2φ′(1)
φ(1)

= 2Nφ′(1), (11)

where φ′(1) = dφ(r)/dr|r=1 and φ(1) = 1/N is the neutral
fixation probability.

Now rewriting Eq. (8) with our explicit form of ψ ,

π̃(σ ′)

π̃(σ )
=
π̃0(σ

′)

π̃0(σ )


f (σ ′)

f (σ )

ν
, (12)

we can deduce the steady state:

π̃(σ ) =
1
Z
π̃0(σ ) (f (σ ))ν, (13)

where Z is a normalization constant. Note that Eq. (13) can be
rewritten in the form of a Boltzmann distribution, with energy
replaced by the negative logarithm of fitness:

π̃(σ ) =
1
Z
π̃0(σ ) eν log f (σ ). (14)
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The Boltzmann form in Eq. (14) suggests a straightforward
analogy with statistical mechanics (Iwasa, 1988; Sella and Hirsh,
2005). One may think of the evolutionary model defined by
Eqs. (1) and (2) as describing an ensemble of monomorphic
populations taking random walks on a fitness landscape. The
ensemble of walkers eventually reaches steady state in genotype
space, which is given by Eq. (13) or (14). Populations will be
driven toward the peaks of the landscape by selection, which
manifests itself as the f ν factor in the steady state; this effect
becomes exponentially stronger as ν increases. This is analogous
to energy minimization in statistical mechanics. However, as in
statistical mechanics, we also expect the entropy of states to affect
the steady-state distribution, since typically there are few states
with optimal or near-optimal fitness and many states with low
fitness. This density of states is given by the neutral distribution
π̃0. The corresponding entropy (defined as − log π̃0) competes
with selection the same way energy and entropy compete in
statistical mechanics: selection favors high fitness states while
entropy favors low fitness states since there are usuallymanymore
of them. These competing forces reach some balance in the form of
a ‘‘free fitness’’ function that is maximized in the steady state, as
explored in Iwasa (1988) and Sella and Hirsh (2005).

This steady-state formula was derived in the special case of the
Moran model by Sella and Hirsh (2005). We generalize this earlier
result by showing that any reversible substitution process leads to
the power law forψ and the steady-state formula of Eq. (13). Note
that this conclusion, obtained in the monomorphic limit, requires
no additional assumptions, such as the weak-selection diffusion
approximation.

Next,we show that the power law implies reversibility.Wenow
assume Eq. (10) without assuming reversibility. Then

W (σ ′
|σ)

W (σ |σ ′)
=
π̃0(σ

′)

π̃0(σ )


f (σ ′)

f (σ )

ν
. (15)

We can combine this with the steady-state condition (Eq. (3)) to
show that

0 =


σ∈S

[W (σ ′
|σ)π̃(σ )− W (σ |σ ′)π̃(σ ′)]

=


σ∈S

W (σ |σ ′)


π̃0(σ

′)

π̃0(σ )


f (σ ′)

f (σ )

ν
π̃(σ )− π̃(σ ′)


. (16)

Clearly the distribution in Eq. (13) satisfies this condition, so itmust
be the unique steady state. The reversibility condition (Eq. (4)) is
satisfied as well, and thus the power law implies reversibility.

Therefore, time reversibility and the scaling behavior of ψ
are mathematically equivalent, and both lead to the steady-state
formula of Eq. (13). We will refer to these collective results as the
scaling law of the substitution process. This means that we can
concentrate our attention on determining the form of ψ , since
its scaling behavior tells us the extent to which reversibility and
Eq. (13) hold. Obviously not all models are reversible, so the scaling
lawwill not hold exactly in those cases. However, we demonstrate
below that the scaling behavior of ψ is at least an approximate
feature of a large class of models, and therefore reversibility and
the steady-state formula (Eq. (13)) provide a good approximation
within a sizable range of selection strengths.

Since itwill bemore convenient to describe the scaling behavior
of ψ on logarithmic scales, we expand logψ(r) in a power series
in log r around the neutral limit (log r = 0):

logψ(r) =

∞
j=0

c2j+1

(2j + 1)!
(log r)2j+1

= c1(log r)


1 +

1
c1

∞
j=1

c2j+1

(2j + 1)!
(log r)2j


, (17)

where

ci =


di

d(log r)i
logψ(r)


r=1

. (18)

Note that logψ(r) is an odd function in log r , and hence there are
only odd powers in the expansion. Since c1 = 2φ′(1)/φ(1) = ν,
we can write

logψ(r) = ν(log r)


1 +

1
ν

∞
j=1

c2j+1

(2j + 1)!
(log r)2j


. (19)

The scaling behavior of ψ is captured by the first-order term
in this expansion. As long as ν is nonzero, there will always be
someneighborhood of selection strengths around the neutral limit,
r = 1, in which the scaling law holds. We give an argument that
ν ≠ 0 in Appendix A. The argument relies on the universal nature
of the diffusion approximation to a population model. That is,
discrete population models can be approximated by a continuous
diffusion equation, and it is known that a large class of population
models are equivalent under this approximation (e.g., Ewens,
1967; Maruyama, 1970; Otto and Whitlock, 1997; Möhle, 2001;
Möhle and Sagitov, 2001; Whitlock, 2003; Wakeley, 2005). The
diffusion approximation is valid for weak-selection strengths: r −

1 = s ∼ O(N−1) (Ewens, 2004). Since the scaling behavior of
ψ appears in the diffusion regime, it is shared by a large class of
models.

The diffusion argument in Appendix A also gives us insight into
the interpretation of ν = 2Nφ′(1): it suggests that φ′(1) ∼ O(N0)
and therefore ν ∼ O(N). Thus we can interpret ν as a ‘‘scaling’’
effective population size that is of the same order as the census
population size for fixed-size models or the variance effective
population size for more general models. This is sensible in light of
the Boltzmann form of the steady state (Eq. (14)), which suggests
that 1/ν plays the role of temperature, i.e., the scale of stochastic
fluctuations.

There is a range of selection strengths in which the scaling law
is approximately valid. Specifically, we wish to find the range of
fitness ratios r , which wewill denote as (r−1

0 , r0)with r0 > 1, such
that

ν(1 ∓ ϵ) log r < logψ(r) < ν(1 ± ϵ) log r, (20)

where the upper signs are valid for r > 1, the lower signs are valid
for r < 1, and ϵ > 0 is a small number that we choose to control
the accuracy of the power law approximation. This range is
determined by the next coefficient in the expansion of Eq. (19),

c3
6ν

=
1

12ν


ν3 − 3ν2 + 2ν − 6N(ν − 2)φ′′(1)+ 4Nφ(3)(1)


, (21)

where we have evaluated the derivative of logψ(r) in terms
of φ(r) and substituted φ(1) = 1/N and ν = 2Nφ′(1). For
small ϵ,

|c3|
6ν
(log r0)2 = ϵ −→ r0 = exp


6νϵ
|c3|


. (22)

For any particular model, we need only compute ν and c3 to obtain
the range of selection strengths (r−1

0 , r0) for which the scaling law
is a good approximation.

Even outside of this range, however, deviations from the power
law likely lead to negligible errors in estimating the probabilities
of extremely unfit genotypes. This is a situation encounteredwhen
the monomorphic population is in steady state on the fitness
landscape, with the majority of time spent in locally optimal
high-fitness states from which many strongly deleterious but
no strongly beneficial substitutions can be made. Specifically,
assume that the range of fitness ratios for which the scaling-
law approximation is valid, computed from Eq. (22), is (r−1

0 , r0).
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Suppose that genotype σ1 has fitness f1 and genotype σ2 has fitness
less than f1/r0 (r0 > 1), and also assume that they are separated by
a singlemutation. By construction, the substitution from σ1 to σ2 is
outside the range forwhich the power law is a valid approximation.
Now suppose that there is a third genotype σ3 (also separated by a
single mutation from σ1) with fitness of exactly f1/r0, so that its
probability is given by Eq. (13). Since ψ must be monotonically
increasing, the probability of the unfit σ2 is bounded from above
by the probability of σ3:

π̃(σ2) <
1
Z
π̃0(σ3) r−ν

0 f ν1 . (23)

Then the ratio of π̃(σ2) to π̃(σ1) has an upper bound as well:

π̃(σ2)

π̃(σ1)
<
π̃0(σ3) r−ν

0 f ν1
π̃0(σ1) f ν1

≃ r−ν
0 , (24)

where the last relation holds because the neutral probabilities
π̃0(σ1) and π̃0(σ3) are of the same order of magnitude (under the
reasonable assumption that mutation rates within the locus are
all of the same order). Since ν is proportional to the population
size, the maximum fitness ratio r0 in the scaling region need not
be very large to generate an enormous suppression of the unfit
genotype in steady state. Thus inaccuracies in the probabilities of
unfit genotypes caused by deviations from the scaling law will be
negligible for all practical purposes.

Furthermore, we can explicitly show that the selection
strengths of the dominant substitutions in steady state are
precisely those described by the diffusion approximation. In steady
state, it is sufficient to consider genotypes that have relative
probabilities, with respect to the most fit genotype, of at least
δ > 0. Then the relevant fitness ratios r are constrained by r−ν > δ
or r < δ−1/ν . Since ν ∼ O(N), we expand in powers of 1/ν to
obtain

r < 1 −
1
ν
log δ + O(ν−2). (25)

In terms of s = r − 1, this implies s ∼ O(ν−1) ∼ O(N−1), which
is the selection strength for which the diffusion approximation is
valid (Ewens, 2004). Therefore the steady state of substitutions
is adequately described by the diffusion approximation and thus
by the scaling law (Eqs. (10) and (13)). As a result, only the
optimal genotype and slightly less fit neighboring states have non-
negligible probabilities in steady state.

The steady-state distribution of Eq. (13) was previously derived
for the special cases of theMoran process by Sella and Hirsh (2005)
and for the diffusion limit of theWright–Fisher model by Sella and
Hirsh (2005), Lässig (2007), and Li (1987), among others. Indeed,
some form of this formula can even be found in Wright (1931).
We have generalized these results by showing that the steady-
state formula holds exactly for any reversible model, not just the
Moran process, without requiring any diffusion approximation. For
irreversible models, we have shown how this result arises as an
approximation, and determined its range of validity. Surprisingly,
weak selection dominates steady-state behavior in a wide class
of population models, justifying application of the steady-state
formula to systemswhichmay includemutationswith large fitness
effects.

4. Specific population models

We now verify the general results of the previous section for
specific models, computing the scaling effective population size ν
and the range of selection strengths for which the scaling law is a
good approximation.

4.1. The Moran model

Consider a haploid population of fixed size N with two alleles,
A and B, and let n denote the number of B alleles. The single time-
step transition probabilities of the Moran model are then (Moran,
1958; Ewens, 2004)

Π(n + 1|n) =
fB
f̄

n
N


1 −

n
N


Π(n − 1|n) =

fA
f̄

n
N


1 −

n
N


(26)

Π(n|n) = 1 −Π(n + 1|n)−Π(n − 1|n),

where fA, fB are fitnesses of alleles A and B and f̄ = (n/N)fB + (1−

n/N)fA is the average fitness. In this case the probability of fixing a
single mutant is (Ewens, 2004)

φ(r) =
1 − r−1

1 − r−N
, (27)

where r = fB/fA. A straightforward calculation shows that ψ(r) =

φ(r)/φ(1/r) = rN−1 (Sella and Hirsh, 2005). Hence ν = N − 1 for
Moran, and the scaling law holds exactly if the neutral substitution
rates are reversible (Fig. 1A).

4.2. The Wright–Fisher model

Next we define the simple Wright–Fisher model for a haploid
population of fixed size N with two alleles A and B of fitness fA
and fB, respectively (Wright, 1931; Fisher, 1958). Given that there
are n alleles of type B in the current generation, the probability of
having n′ B alleles in the next generation is (Rouzine et al., 2001;
Ewens, 2004)

Π(n′
|n) =


N
n′


qn

′

(1 − q)N−n′

, where q ≡
n
N

fB
f̄
. (28)

Unlike the Moran model, the Wright–Fisher model is ill-suited to
exact treatment, and hence the traditional approach to it has been
the diffusion approximation. The diffusion theory yields many
results in the neutral and weak-selection regimes (Kimura, 1955,
1957, 1962), such as the formula for the fixation probability:

φ(r) =
1 − e2(1−r)

1 − e2N(1−r)
, (29)

where r = fB/fA. However, there are two problems with the
classical diffusion approach. The first is that the moment functions
M(x, r) and V (x, r) are typically expanded to the lowest order in
r − 1 for the weak-selection regime (as in Appendix A), and so
all subsequent calculations, including those leading to the fixation
probability in Eq. (29), are not strictly valid for selection strengths
beyond s = r − 1 ∼ O(N−1). This expansion in selection strength,
however, is not necessary, as it is possible to carry out the diffusion
approximation using the exact moments derived from Eq. (28).
This approach yields accurate results in the polymorphic limit,
but fails to give an accurate formula for the fixation probability.
This is due to the inherent breakdown of diffusion when the
underlying discrete nature of themodel becomes important, which
is especially pronounced when selection effects are strong.

Since the diffusion approach is unsuitable to describe fixation
outside of a fairly narrow range of selection strengths, we take
a more accurate but numerical approach: computing fixation
probabilities directly from the discrete Markov chain defined in
Eq. (28) (Appendix B). The end result is an efficient numerical
procedure for accurate computation of the fixation probability,
and hence the ψ function, for any N and r . Fig. 2 compares a
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A C

B D

Fig. 1. Plot of logψ(r) as a function of log r for several population models. The scaling law appears as the straight line logψ(r) = ν log r . (A) The Moran model with
N = 1000. Here the scaling law is exact with ν = N − 1. (B) The simple Wright–Fisher model for N = 1000, calculated using the numerical procedure from Appendix B.
The numerical calculation is the dashed line and the scaling-law prediction is the solid line. Here the scaling law is not exact but holds as a good approximation for a large
range of selection strengths. The scaling effective population size is ν = 2(N − 1). (C) A modified Wright–Fisher model with population size N that varies sinusoidally as in
Eq. (33), with N0 = 100, α = 20 and T = 20 generations. Simulation results are shown as dots (with each dot an average over 108 independent runs), and the scaling law as

a solid line. The scaling law is an accurate approximation with ν = 2(Ne − 1), where Ne =


N2
0 − α2 is the harmonic mean of the census population sizes. Because explicit

simulations are required (as opposed to the numerical procedure used for the simpleWright–Fishermodel), poor statistics on deleterious fixations and beneficial extinctions
restricts us to considering smaller population sizes and range of selection strengths. (D) A model based on those in Gillespie (1975), where the mutant and wild-type may
have different variances in offspring number in addition to different means. Here fitness is defined as µ− σ 2/N , where µ is the average number of offspring and σ 2 is the
variance. As in (C), we use N = 100 for numerical reasons. The scaling law is deduced by a linear fit.

Fig. 2. Plot of φ(r), the probability that a single mutant fixes as a function of
its fitness ratio with the wild-type. For N = 1000, we compare an explicit
simulation of the Wright–Fisher model with our discrete Markov chain approach
(Eq. (B.8)) and Kimura’s diffusion approximation (Eq. (29)). The explicit simulation
data is averaged over 106 independent runs. The agreement between the discrete
Markov chain and the simulation is excellent, in contrast with the noticeable
disagreement between the simulation and the diffusion approximation at larger
selection strengths.

simulation of φ(r) with this numerical approach along with the
diffusion approximation (Eq. (29)). The numerical calculation and
the simulationmatch verywell for all selection strengths, but there
is noticeable disagreement with the diffusion result beyond the
weak-selection regime.

Now we consider the expansion of ψ(r) for the simple
Wright–Fisher model. We know from diffusion theory that ν =

2Nφ′(1) = 2(N − 1) (Kimura, 1962). Hence the expansion ofψ(r)
has the form

logψ(r) = 2(N − 1) log r + O((log r)3). (30)

Thus the power law and the steady state in Eq. (13) hold
approximately with ν = 2(N − 1). As Appendix B shows, the
form of the exact fixation probability is too complex to be
useful for analytical calculations, such as computing c3 in
Eq. (21) to determine the range of selection strengths for which
the power-law approximation is approximately valid. However,
we can numerically compute this next-order coefficient for a range
of N using the method in Appendix B to obtain derivatives of
fixation probabilities for Eq. (21). Fig. 3 shows, remarkably, that the

Fig. 3. Plot of c3/6ν as a function ofN for the simpleWright–Fishermodel, obtained
numerically from φ(r) using the procedure described in Appendix B. For realistic N
values it rapidly converges to the constant ≈−0.0093. This small value means that
the scaling-law approximation is valid for a large range of selection strengths, and
its N-independence means that this range does not shrink as N grows, contrary to
the prediction of diffusion theory.

next-order correction is independent of N for large N . Indeed, as
N increases to realistic values, the next-order coefficient rapidly
converges to a small value of

c3
6ν

≈ −0.0093. (31)

Its smallnessmeans that the scaling law is valid for a large range
of selection strengths in the simple Wright–Fisher model. Indeed,
for deviations from the power law of at most 5%, we set ϵ = 0.05
in Eq. (22) and find that the fitness ratio r is constrained to be
between 0.098 and 10.2. This corresponds to a selection coefficient
s between −0.9 and 9.2, well beyond the typical weak-selection
limits of ±O(N−1). A numerical calculation of ψ confirms this
large scaling region (Fig. 1B). Indeed, using the argument leading to
Eq. (24), unfit genotypes that might exhibit deviations from the
scaling law will be suppressed by at least a factor of r−ν

0 , where
(r−1

0 , r0) is the range of fitness ratios for which the scaling law
approximately holds. If we let r0 ≈ 10.2, even a very conservative
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N = 200means that these unfit genotypes are suppressed bymore
than 10−402 relative to the most fit genotype.

The N-independence of c3/6ν means that the size of the scaling
region does not change with N . The standard diffusion approach
implies a degeneracy of N and s: Ns ∼ O(1), so that as N increases,
the range of selection strengths that are considered weak shrinks.
This is not intrinsic to the Wright–Fisher model, but is merely
an emergent property in the diffusion limit (Wakeley, 2005). Our
result, however, shows that the scaling law is valid well beyond
diffusion. In contrast, c3/6ν calculated using Kimura’s diffusion
approximation (Eq. (29)) is given by:
c3
6ν

= −
1
6
N. (32)

Since this coefficient grows with N , the scaling region for r
shrinks as N increases. This is consistent with the selection-drift
degeneracy predicted by diffusion, but it is clearly misleading in
light of our analysis of the full Wright–Fisher model, since it would
erroneously imply that the scaling law and reversibility hold for
an extremely small range of selection strengths. This provides an
example of the danger posed by extrapolating diffusion results to
arbitrary regions of parameter space: the universality of the scaling
law is much stronger than diffusion could predict. While this turns
out to beunimportant for steady state,which is dominated byweak
selection, the fact that reversibility approximately holds in systems
with strong selection affects dynamical properties as well.

4.3. Other models

Models that share the diffusion limit with the Moran and
Wright–Fisher models will also share the scaling law. This
encompasses a wide class of exchangeable models (Cannings,
1974; Möhle, 2001; Möhle and Sagitov, 2001). For instance, many
generalizations of the Wright–Fisher model with varying N are
known to have properties equivalent to the simple Wright–Fisher
model with some effective population size Ne (Ewens, 1967; Otto
and Whitlock, 1997; Sjödin et al., 2005). Other generalizations,
such as incorporating the effects of subdivided populations, also
lead to equivalencies (Maruyama, 1970; Whitlock, 2003).

As an example we consider the case whenN varies periodically.
For periods of oscillation smaller than fixation times, it is known
that the Wright–Fisher diffusion results carry over with an
effective population size Ne equal to the harmonic mean of the
census population sizes (Ewens, 1967; Otto and Whitlock, 1997).
Let the transition probabilities be of the Wright–Fisher form
(Eq. (28)), with N changing over time according to

N(t) = N0 + α sin

2π t
T


, (33)

where N0 is the average size and T is the period of oscillation. The

harmonic mean can be shown to be Ne =


N2
0 − α2. In Fig. 1C,

we use explicit simulations to compute ψ(r), and we indeed
find scaling behavior with ν = 2(Ne − 1). This slope, predicted
through mapping to the simple Wright–Fisher model, is also
obtained by a linear fit to the explicit simulation. Thus the scaling
law still holds. For this model we do not have a computational
technique for fixation probabilities like the one used for the simple
Wright–Fishermodel Appendix B, and explicit simulations prevent
accurate statistics on fixation of very deleterious and extinction
of very beneficial mutations, limiting us to a smaller range of
selection strengths. Nevertheless, deviations beyond this smaller
range can still be shown to be negligible in steady state. As Fig. 1C
shows, the scaling region extends to at least r0 ≈ 1.08. Therefore
any unfit genotypes leading to deviations must be suppressed by
at least a factor of r−ν

0 : even for Ne = 200, this is a suppression
of 10−14.

Other models beyond the paradigms of exchangeable and
Wright–Fisher-type models may also demonstrate the scaling
behavior. For instance, whereas Wright–Fisher and Moran models
typically incorporate selective advantage as a difference in the
mean number of offspring between allele types, Gillespie proposed
to incorporate stochasticity at the level of selection by allowing
for different variances in offspring number (Gillespie, 1974, 1975,
1977). In thesemodels fitness is characterized byµ−σ 2/N , where
µ is the mean and σ 2 is the variance of the offspring number
for a given allele. Other authors have extended models of this
type to describe spatial variation, age structure, and demographic
stochasticity, which may be important for small populations or
populations subdivided into small demes (Proulx, 2000; Shpak,
2007; Parsons et al., 2010).

Here we simulate a model described in Gillespie (1975).
Consider a haploid population of two allele types, A and B. Each
generation, every individual iproduces a number of offspring 1+Xi,
where Xi is a binomially-distributed random variable. This variable
has mean µA and variance σ 2

A if i is of type A, or µB and σ 2
B if i is of

type B. Adding 1 to Xi simply guarantees that there are at least N
total offspring. These offspring are then culled by samplingwithout
replacement until there is a new generation of exactly N alleles.
We simulate this process to obtain theψ function (Fig. 1D). Fitness
ratios r are defined using the fitness definition fi = µi −σ

2
i /N . For

each i, XA or XB is generated from the binomial distribution B(n, pA)
or B(n, pB), respectively, where n = 10 and pA and pB are given by
the desired fitness ratio r (pA+pB = 1). By repeating the simulation
for several population sizes, we observe that ν is proportional to N
(for each N , ν is obtained by a linear fit, one of which is shown in
Fig. 1D).

5. Discussion

5.1. Universality

The notion of universality has been key to the success of
population genetics. The remarkable fact that many population
models with varying degrees of complexity share the same
diffusion limit when selection is weak has proven to be a strong
justification of their use as effective phenomenological theories
(Wakeley, 2005; Parsons et al., 2010). However, in light of the
growing body of evidence that strong or at least intermediate
selection may be important in some systems, it is desirable to
pursue models that make no a priori assumptions about the
strength of selection, and in particular, to find universal properties
of such models. Our study shows that strong-selection effects
are negligible in the steady state of the substitution process,
so that the universality of the diffusion limit gives rise to a
universal scaling law (Eq. (10)) which determines the steady-state
distribution (Eq. (13)). Furthermore, the scaling law is proven to
hold exactly for any reversible process (such as the Moran model),
and holds approximately within a sizable range of selection
strengths even for irreversible models. In some cases such as the
simple Wright–Fisher model, this range is so large that deviations
from it are not practically important. This finding significantly
generalizes previous work of Sella and Hirsh (2005), Lässig (2007),
Li (1987), and others.

5.2. Theoretical significance of time reversibility

The existence of reversibility in the weak-selection limit is not
surprising in light of diffusion theory. Indeed, diffusion models are
essentially always reversible (Watterson, 1977; Levikson, 1977;
Ewens, 2004), and diffusion is known to adequately capture weak-
selection behavior (Kurtz, 1981). The fact that reversibility is
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broken by some models and not others when selection is strong
is also clear. The Moran process, for instance, is well-known to be
exactly reversible in all regimes, as are all models with tridiagonal
transitionmatrices (Ewens, 2004). TheWright–Fisher model is not
exactly reversible, and indeed we see that reversibility becomes
significantly broken beyond a certain selection strength. In general,
we find that the scaling behavior of the ψ function (Eq. (6))
indicates the extent to which a model is time reversible.

But besides being a technical convenience, what is the deeper
significance of reversibility? In modern studies of population
genetics and evolution, reversibility plays a crucial role in linking
the prospective and retrospective paradigms (Ewens, 1990).
Traditional population models are prospective; the interest is in
calculating future properties given the current ones. However,
more recent approaches, especially due to the emergence of large-
scale molecular data, have led to the wide use of the retrospective
paradigm, which looks backward in time from the present. This
is the essence of coalescent theory and phylogenetics (Kingman,
1982; Yang, 2006). Time reversibility links the prospective and
retrospective paradigms and thus has been exploited, for instance,
in studies of age properties (Watterson, 1976, 1977; Ewens, 2004)
and in phylogenetic methods (Yang, 2006).

An additional consequence of reversibility is the nonexistence
of net probability currents in steady state, as guaranteed by
Eq. (4). That is, reversible Markov models will have no net
probability currents through any cycle of states, since such
a current would distinguish between forward and backward
directions in time. What does this mean for evolutionary models?
Consider, for instance, a monomorphic substitution model with
three alleles, A, B, and C , in order of decreasing fitness. If the
substitution process is irreversible, there would be a net current
around the loop C → B → A → C . The net currents C → B and
B → A flow from less fit to more fit alleles, but to complete the
cycle, there is also a current A → C from a more fit allele to a less
fit allele. This current must exist in any irreversible substitution
model with selection, a strange consequence of evolutionary
irreversibility.

5.3. Applications

Models of monomorphic populations evolving through succes-
sive substitutions on a fitness landscape have important applica-
tions to molecular data, since loci in many asexual populations are
believed to be well-approximated as monomorphic (Ochman and
Selander, 1984; Wick et al., 2002; Dos Vultos et al., 2008; Acht-
man, 2008). In particular, population genetics-based approaches
allow for inference of biologically meaningful parameters, such as
selection coefficients, as opposed to merely inferring overall sub-
stitution rates (McVean and Vieira, 2001). A precise form of the
steady-state distribution is important in these applications, since
it can be used to weigh ancestral nodes in phylogenetic inference
calculations.

Several recent studies of codonusage bias have employedpopu-
lation genetics-basedmodels of substitutionwith selection (e.g., Li,
1987; Bulmer, 1991; McVean and Charlesworth, 1999; McVean
and Vieira, 1999, 2001; Nielsen et al., 2007; Yang and Nielsen,
2008). Results for the steady-state distribution using the standard
Wright–Fisher diffusion approximation (Eq. (29)) for individual
codons have been reported that are consistent with Eq. (13) in the
limit of weak selection. However, there is growing experimental
evidence that big-benefit single mutations may occur more often
than previously thought. Studies on bacteriophages adjusting to
new environmental conditions reported fitness ratios of nearly 4
(Wichman et al., 1999; Bull et al., 2000; Holder and Bull, 2001; Bar-
rett et al., 2006b), clearly beyond the diffusion regime. Thus, it is
necessary to understand the role of thesemutations in steady state

and whether the steady-state distribution predicted from weak-
selectionmust bemodified in such systems. Our theoretical frame-
work has enabled us to show that mutations with large fitness
ratios are negligible in steady state.

Throughout this work we have assumed reversibility of the
underlying mutation process. Reversible models are much more
suitable to analytic and computational treatment, and thus
reversibility is a key feature of many widely-used nucleotide
and amino acid mutation models (e.g., Jukes and Cantor, 1969;
Kimura, 1980; Tamura and Nei, 1993; Felsenstein, 1981; Yang,
2006; Felsenstein, 2011). Moreover, Rodríguez et al. (1990) have
shown that it is not even possible tomake self-consistent estimates
of substitution rates from pairwise sequence alignments without
assuming reversibility, although somework has been done to treat
this type of molecular data with irreversible models (e.g., Barry
and Hartigan, 1987). Nevertheless, mutation rates are determined
by complex biochemical factors (such as replication and error-
correctingmachinery), so there is no obvious reason to believe that
reversibility must hold.

Our approach can be used to describe arbitrary fitness land-
scapes for the locus under consideration, including those with a
fitness function that depends on the state of the entire DNA or
protein sequence at the locus. Standard models of sequence evo-
lution typically assume that all nucleotides or amino acids evolve
independently of each other (Yang, 2006). This approximation
excludes correlations among sites within a locus and the corre-
sponding epistatic effects, whose importance is being increasingly
emphasized (DePristo et al., 2005; Bershtein et al., 2006;Weinreich
et al., 2006; Poelwijk et al., 2007).

One application of particular interest is the ability to infer
an arbitrary fitness landscape from sequence data under the
assumption of steady state. Indeed, Eq. (13) can be inverted to
obtain the fitness function in terms of the neutral distribution
and the steady-state distribution under selection (Lässig, 2007;
Mustonen et al., 2008):

log

π̃(σ )

π̃0(σ )


= ν log f (σ )− log Z . (34)

Here the left-hand side depends only on genotype distributions
that can, in principle, be obtained from sequence data. Since
the scaling effective population size ν and normalization Z are
unknown in real systems, Eq. (34) gives logarithmic fitness up to
an overall scaling and shift.

The application of Eq. (34) requires an ensemble of loci that have
reached evolutionary steady state. To assess this assumption, we
estimate the time required to reach steady state in our substitu-
tion model. As discussed in Section 2, the monomorphic limit re-
quiresµ ≤ 1/(LN logN) for neutral evolution (Champagnat, 2006;
Champagnat et al., 2006). Assuming that deleterious substitutions
donot affect equilibration towards steady state (due to exponential
suppression of their substitution rates), equilibration times will be
dominated by neutral evolution. Eq. (1) then implies that the neu-
tral substitution rate is equal to the mutation rate.

For sequences consisting of L nucleotides, we can model
the locus genotype space as the vertices of a hypercube in 2L
dimensions, since two bits encode a single nucleotide. A random
walk on a hypercube of dimension d with standard connectivity
reaches steady state on the order of d log d steps (Levin et al.,
2009). However, since the nucleotide sequence space hypercube
is more connected, we may take 2L log(2L) as an upper bound on
the required number of steps. Combining this with the minimum
average time to make a single neutral substitution step, LN logN ,
we estimate that evolutionary steady state will be reached on the
order of

(LN logN)× (2L log(2L)) generations. (35)
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For small genomic loci (L = O(10) nucleotides) in microbial
organisms with generation times of approximately 10−4 years, an
effective population size N ∼ 106 yields an estimated time to
reach steady state of about a million years, a reasonable value on
evolutionary timescales. Moreover, the presence of selection, the
additional connectivity of genotype space compared to a standard
hypercube, and a smaller effective population size N will further
shorten this timescale.

Moreover, the genotype space may be projected onto a lower-
dimensional subspace. Previous work has described models of TF
binding site evolution in S. cerevisiae in which the distribution
of binding sites has been projected onto free energies of TF-
DNA binding (Berg and Lässig, 2003; Berg et al., 2004; Lässig,
2007; Mustonen et al., 2008). The steady state is expected to
be reached more quickly in the one-dimensional energy space
than in the high-dimensional genotype space (Mustonen et al.,
2008). Mustonen et al. (2008) also find that energy distributions
of binding sites for the same TF in different yeast species
are remarkably similar despite significantly different divergence
times, suggesting that these distributions have indeed reached
evolutionary steady state.

This previous work, however, has relied purely on the
diffusion approximation of the Wright–Fisher model. Such an
approximation is not obviously valid in this application, since
strong-selection effects are expected from binding site biophysics:
single base pair mutations may be sufficient to completely inhibit
TF binding (Sarai and Takeda, 1989; Lehming et al., 1990),
potentially causing misregulation of an essential gene. We have
demonstrated in this work that strong selection does not affect the
steady state. The universality of the steady-state distribution then
justifies application of Eq. (34) to genomic data such as collections
of TF binding sites. Current work is in progress to apply these
results to evolution of regulatory sites in yeast, exploring the
biophysical origins of the underlying fitness landscapes.
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Appendix A. The scaling law in the weak-selection limit

Here we present an argument that the leading-order behavior
of ψ(r) is always a power law in the diffusion limit. Since ν =

2Nφ′(1), this is equivalent to showing that φ′(1) ≠ 0, which
means that the fixation probability must be locally linear around
the neutral limit r = 1. The fixation probability in the diffusion
approximation is given by Kimura (1962):

φ(r) =

 1/N
0 dx G(x, r) 1
0 dx G(x, r)

,

G(x, r) = exp


−2
 x

0
dy

M(y, r)
V (y, r)


,

(A.1)

whereM(x, r) and V (x, r) are the first twomoments of the change
in mutant fraction x per unit time. Define expansions of the
moments:

M(x, r) = M0(x)+ (r − 1)M1(x)+ O((r − 1)2)
V (x, r) = V0(x)+ (r − 1)V1(x)+ O((r − 1)2).

(A.2)

Since evolution under pure drift (r = 1) is unbiased, the mean
change in mutant fraction without selection is zero: M0(x) =

0. Substituting these expansions into Eq. (A.1) and expanding to
lowest order in r − 1, we obtain

φ(r) =
1
N

+ 2(r − 1)


1
N

 1

0
dx
 x

0
dy

M1(y)
V0(y)

−

 1/N

0
dx
 x

0
dy

M1(y)
V0(y)


+ O((r − 1)2). (A.3)

Therefore

φ′(1) = 2


1
N

 1

0
dx
 x

0
dy

M1(y)
V0(y)

−

 1/N

0
dx
 x

0
dy

M1(y)
V0(y)


, (A.4)

where φ′(1) = dφ(r)/dr|r=1. Note that V1(x) does not appear—
the correction to the second moment by weak selection does not
affect the fixation probability expanded to the lowest order. Thus,
barring some coincidental cancelation of terms in Eq. (A.4), φ′(1)
should be nonzero as long asM1(x) is nonzero.

To argue that M1(x) ≠ 0, we invoke an operational definition
of selection strength. Experimental measurements of selection
strength are often made by inferring it as the exponential growth
rate of a small mutant sub-population, at least for microorganisms
(Lenski and Elena, 2003), so we require that the population model
show this behavior. If X is the random variable denoting the
fraction of mutants in the population, its deterministic equation
is

d
dt

E[X] = E[M(X, r)], (A.5)

where E[·] is the expected value operator. In the limit of weak
selection (r ∼ 1) and small mutant fraction (X ≪ 1),

d
dt

E[X] ≈ (r − 1)E[M1(X)] ∝ (r − 1)E[X], (A.6)

assuming that M1(x) is linear in x to the lowest order. This yields
exponential growth at a rate proportional to the selection strength
s = r − 1. Therefore M1(x) should be nonzero and hence φ′(1) is
nonzero, establishing the power-law behavior of ψ(r) in the limit
of weak selection.

Eq. (A.4) suggests an interpretation of ν. Under the appropriate
rescaling of time units, the pure drift V0(x) is proportional to 1/N
and M1(x) is independent of N . For example, this is true in the
Wright–Fisher model with generations as the time unit, and it also
holds in the Moran model with the single birth/death time scaled
by a factor of N . Then Eq. (A.4) implies that φ′(1) ∼ O(N0), and
therefore ν ∼ O(N). This observation can be generalized to a
broader class of models in which V0(x) is proportional to 1/Ne,
whereNe is the variance effective population size (Cannings, 1974;
Ewens, 2004).

Appendix B. Exact Wright–Fisher fixation probability from
discrete Markov chain

Studying discreteMarkov chain properties of theWright–Fisher
model is not new (Ewens, 2004). However, previous work has
typically focused on explicit results using spectral theory, with
particular emphasis placed on neutral evolution. In contrast, we
will obtain an implicit result suitable for numerical application.
These results will allow investigation of the dynamics of themodel
under large selection effects that are beyond the scope of diffusion
theory.

We can represent the transition probabilities Π(n′
|n) from

Eq. (28) as elements of an (N+1)×(N+1)matrix P. Wewill adopt
the convention in which the final state n′ is the row index and the
initial state n is the column index. Transition probabilities between
different states at different time steps are given by the matrix
elements of powers of P. That is, the probability of transitioning



M. Manhart et al. / Theoretical Population Biology 82 (2012) 66–76 75

from n to n′ in m generations is given by (Pm)n′,n. Therefore the
probability of fixation by generation m from initial state n is given
by (Pm)N,n, and the probability of fixing a single mutant in the
infinite time limit is given by

lim
m→∞

(Pm)N,1 = φ(r). (B.1)

This limit can be conveniently expressed by permuting the
states to group the transient states (n = 1, . . . ,N−1) together and
the absorbing states (n = 0,N) together. Define elements of the
(N−1)×(N−1) submatrixAij = Π(i|j) for i, j = 1, . . . ,N−1; this
matrix describes transitions between transient states only. Next,
define elements of the 2 × (N − 1) submatrix Bαi = Π(α|i) for
α = 0,N and i = 1, . . . ,N − 1; this matrix describes single-
generation transitions from transient states to absorbing states.
Now we permute the indices to put P in the canonical form
(Kemeny and Snell, 1960):

P =


A 0
B 12


, (B.2)

where 0 is the (N − 1) × 2 zero matrix and 1k is a k × k identity
matrix. We can now easily compute the infinite time limit:

lim
m→∞

Pm
= lim

m→∞


A 0
B 12

m
= lim

m→∞


Am 0

B(1N−1 + A + · · · + Am−1) 12


=


0 0

B(1N−1 − A)−1 12


, (B.3)

since Am
→ 0 asm → ∞ and

(1N−1 − A)−1
=

∞
j=0

Aj. (B.4)

The fixation probability of a single mutant is given by the
element of the matrix B(1N−1 − A)−1 in the second row
(corresponding to the final state n = N) and the first column
(corresponding to the initial state n = 1):

φ(r) = (B(1N−1 − A)−1)2,1. (B.5)

Alternatively, this expression can be expanded in powers of A:

φ(r) = B2,1 +

N−1
i=1

B2,iAi,1 +

N−1
i,j=1

B2,iAi,jAj,1 + · · · . (B.6)

Each term in the expansion represents the probability of fixing
in a certain finite number of generations: the first term is the
probability of fixing in exactly one generation, the second term is
the probability of fixing in exactly two generations, etc.

For small population sizes N , Eq. (B.5) can be evaluated
explicitly:

N φ(r)
2 r2

1+r2

3 r3(8r3+48r2+6r+1)
8r6+48r5+6r4+65r3+6r2+48r+8

...
...

N rN aN (r)
bN (r)

(B.7)

Empirically we observe that aN(r) is a degree N(N −2) polynomial
and bN(r) is a degreeN(N−1) polynomial. Note that bN(r) appears
to be palindromic: bN(r) = rN(N−1)bN(1/r). Unfortunately, the

polynomials in these exact expressions grow increasingly in-
tractable withN , making a numerical computation of φ(r) the only
option. Eq. (B.5) can be rewritten as

(1N−1 − A)TuT
= BT , (B.8)

where u is the 2 × (N − 1) matrix of fixation and extinction
probabilities from all initial mutant fractions. The resulting system
of linear equations can be efficiently solved to find u for the
arbitrary fitness ratio r . The solution agrees extremely well with
explicit simulations (Fig. 2).
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Chapter 4

Yeast TF Evolution

Most traditional studies of molecular evolution rely on simplified models of fitness land-

scapes, or reconstruct the landscapes empirically based on limited experimental data [5].

However, fitness landscapes are fundamentally shaped by complex molecular interactions

involving DNA, RNA, proteins, and other molecular species present in the cell. Thus we

should be able to cast these landscapes in terms of biophysical properties such as binding

affinities, molecular stabilites, and degradation rates.

Here we consider evolution of TF binding sites in the yeast S. cerevisiae, using the results

of the previous chapters. We apply the model of monomorphic evolution according to a

substitution process described in chapters 2 and 3 to a collection of 25 S. cerevisiae TFs

for which models of TF binding affinity and specificity were built using high-throughput

in vitro measurements of TF-DNA interactions [1]. Our goal is study how energetics of

protein-DNA interactions affects the structure of the fitness landscape. That is we infer

fitness landscapes as a function of TF binding energy, from observed distributions of TF

binding sites in the yeast genome, and rationalize it in terms of a two-state thermodynamic

model of TF-DNA binding, as described in Chapter 1. Our analysis sheds light on the

genome-wide importance of TF-DNA interactions in regulatory site evolution.

This evolutionary model makes a number of important assumptions, which we shall test

for yeast populations: We have assumed the population is monomorphic, in steady state,

and that the collection of binding sites in the genome are under similar selection pressures

— that is that universal biophysical constraints rather than site-specific selective pressures

dominate evolution of regulatory sites. We test the relationship between TF binding energies

and various biological properties, such as the essentiality of the corresponding gene [127].

We find no clear relationship between physical and biological properties of TF sites, which
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indicates that evolution of site energetics is largely insensitive to site-specific biological

functions and is therefore driven by global biophysical constraints.

4.1 Biophysical model of binding site evolution

Here we shall briefly review the evolutionary model developed in earlier chapters.

As discussed in Chapter 1, the probability of a binding site to be TF-bound is given by

the Fermi-Dirac function of the free energy E of TF-DNA interaction [7]:

pbound(E) =
1

1 + eβ(E−µ)
, (4.1)

where β is the inverse temperature (≈ 1.7 (kcal/mol)−1 at room temperature) and µ is the

chemical potential, a function of the TF concentration. Note that pbound(E) ≈ e−β(E−µ) if

E � µ, resulting in a Boltzmann-like exponential distribution. Under the additive energy

model, the energy of a sequence is given by

E(σ) =

L∑
i=1

εσii (4.2)

where εσii are the elements of an ‘energy matrix’ (EM) representing the energetic contribu-

tion of individual nucleotides to the binding energy.

In practice, energy matrices are sometimes expressed as position-specific affinity matrices

(PSAMs) or position weight matrices (PWMs), which specify the probability of binding

rather than the free energy contribution of nucleotides at each position in a binding site.

When the total energy E is greater than the chemical potential µ, pbound(E) ≈ e−β(E−µ),

and hence the affinities are related to the energies by an exponential. We use EMs rather

than PSAMs/PWMs since EMs are more general: they are applicable to binding on the

non-exponential regime of pbound(E) (when E − µ < 0) and also are readily generalized to

more complex models of sequence-dependent energies, such as those with contributions from

dinucleotides. While we will use data for the additive model only, our general framework is

straightforwardly applicable to more complex cases given appropriate energetic data.

As discussed in chapters 1 to 3, the evolution of a TF binding site may be modeled

as a substitution process, assuming the population is monomorphic, that is that u �

(LNe logNe)
−1, where u here is the per-nucleotide mutation rate (probability of mutation
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per base per generation), L is the number of bases in the locus, and Ne is an effective

population size [128]. We will assume that the locus of interest is unlinked to the rest

of the genome (linkage equilibrium) by frequent recombination with rate ρ, which satisfies

ρ� NµL [52]. Therefore we can consider the evolution of the locus independently from the

rest of the genome, so hitchhiking and polymorphism elsewhere can be neglected. We also

assume that the locus is short enough that recombination does not occur within the locus

itself. In general, we assume lengths of L ∼ O(10) to realistically meet these conditions.

Thus the collection of binding sites for a particular TF are independent loci evolving in

parallel.

As discussed in Chapter 3, in evolutionary steady state, the probability that the popu-

lation has binding energy E at the locus is given by

π(E) =
1

Z
π0(E)F(E)ν . (4.3)

where F(E) is the multiplicative fitness (defined so that the total fitness of a set of indepen-

dently evolving loci is a product of fitnesses of each one), π0(E) is the neutral distribution

of sequences (steady state under no selection), and Z is a normalization constant. As pre-

viously discussed, this equation is is applicable to a wide class of population models. As

discussed in Chapter 2, the exponent ν is a “scaling” effective population size which is closely

related to the standard variance effective population size Ne. For example, ν = 2(Ne − 1)

in the Wright-Fisher model and ν = Ne−1 in the Moran model of population genetics [55].

Conceptually, both ν with Ne measure the strength of genetic drift [57].

The neutral distribution π(0) is approximately a Gaussian distribution of energy in the

limit of long sequence lengths, and can be seen as an entropic bias leading the steady state

distribution π(E) towards the peak of this Gaussian, at high energies. On the other hand,

the term f(E)ν biases the steady state towards low energies where the fitness is highest.

Thus, the final position of the steady state is determined by the balance between these

driving forces of selection and entropy.

We assume that a site contributes fitness 1 to the organism when it is bound, and fitness

f0 < 1 otherwise. Then the fitness contribution, averaged over the bound and unbound
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states of the TF-DNA complex, is given by

F(E) =
1 + f0e

β(E−µ)

1 + eβ(E−µ)
. (4.4)

as discussed in Chapter 1, equation 1.4.

We may invert Eq. 4.3 it to obtain the fitness function in terms of the observed steady-

state distributions π(σ) and π0(σ), or π(E) and π0(E) in energy space [19]:

log

(
π(E)

π0(E)

)
= ν logF(E)− logZ. (4.5)

Thus given a distribution of evolved binding site sequences π and a neutral distribution π0,

we can use Eq. 4.5 to infer the logarithm of the fitness landscape up to an overall scale and

shift. Moreover, given a specific functional form of F(E), such as the Fermi-Dirac fitness

in Eq. 4.4, we can perform a maximum likelihood fit of the observed sequence distribution

to infer values of parameters β, µ, ν, and f0. Indeed, this is our goal.

Degeneracies in the parameter space of this model are an important issue. When 1−f0 �

1, F(E)ν contains an approximate degeneracy in terms of ν(1 − f0) ≡ γ, i.e., all fitness

functions with constant γ are approximately equivalent. This is a general property of a

model where fitness is an average over two possible phenotypes. Consider a general fitness

function

F(σ) = p(σ) + f0(1− p(σ)), (4.6)

where one phenotype has fitness 1 and occurs with probability p(σ), and the other phe-

notype has fitness f0 and occurs with probability 1 − p(σ). In the case of binding sites,

the phenotypes are TF-bound and TF-unbound, and p(σ) is a Fermi-Dirac function pro-

jected from the genotype σ to the energy (Eq. 4.1). The steady-state distribution (Eq. 4.3)

depends on the quantity F(σ)ν , which can be written as:

F(σ)ν = (1− 1

ν
γ(1− p(σ)))ν ≈ e−γ(1−p(σ)) (4.7)

if γ(1 − p(σ)) � ν or, since 0 ≤ 1 − p(σ) ≤ 1, if 1 − f0 � 1. Therefore in this limit,

the steady-state distribution π(σ) depends only on the parameter γ and not on f0 and ν

separately.
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This degeneracy in the steady-state distribution is not surprising in light of the under-

lying population genetics. The quantity 1− f0 is the selection coefficient s between the two

phenotypes of the system, e.g., the bound and unbound states of the TF binding site. As

discussed above, the quantity ν is an effective population size, which sets the strength 1/ν

of genetic drift. When s� 1 and ν � 1, steady-state properties of the population depend

only on the strength of selection relative to the strength of drift [55, 65], Ns, or in our

model, ν(1 − f0) = γ. Note that only the absolute magnitude of the selection coefficient

s = 1− f0 is required to be small for this degeneracy to hold; the selection strength relative

to drift Ns = γ may still be large.

4.1.1 Selection strength and its dependence on biophysical parameters

We now consider how changes to biophysical parameters of the model affect the strength

of selection on binding sites. The selection coefficient for a mutation with small change in

energy ∆E is

s(E) =
F(E + ∆E)

F(E)
− 1 ≈ d logF

dE
∆E. (4.8)

Therefore we can characterize local variations in the strength of selection by considering

s̃(E) = |d logF/dE|, the per-unit-energy local selection coefficient. For the Fermi-Dirac

landscape, we obtain

s̃(E) =

∣∣∣∣ ddE logF(E)

∣∣∣∣ =
β(1− f0)z

(1 + z)(1 + f0z)
, where z = eβ(E−µ). (4.9)

We use the absolute value here since the sign of the selection coefficient is always unam-

biguous, as the Fermi-Dirac function decreases monotonically with energy.

We can also ask how variations in β affect the local strength of selection. Variation of

s̃(E) with β depends qualitatively on both E − µ and whether f0 is zero or nonzero. In

Fig. 4.1 we show logF(E), s̃(E), and the derivative

∂s̃

∂β
=

z(1− f0)

(1 + z)2(1 + f0z)2
[(1− f0z

2) log z + (1 + z)(1 + f0z)]. (4.10)
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Figure 4.1: Fitness and selection strength plots as functions of energy E−µ (measured with
respect to chemical potential µ) and inverse temperature β. Top row uses f0 = 0; bottom
row uses f0 = 0.99. (A,D) Logarithm of Fermi-Dirac fitness versus energy for several values
of β; note that the high-energy tail looks distinctly different when f0 is nonzero. (B,E) Per-
unit-energy selection strength s̃ versus energy for several values of β; note that the relative
ordering of selection strength curves depends on the value of E−µ. (C,F) Sign of derivative
of selection strength with respect to β, as a function of E−µ and β. Black boundary in (C)
is the curve β(E − µ) = logW (e−1) ≈ −1.278, where W is the Lambert W-function; the
boundaries in (F) are the curves β(E−µ) = log z∗1 ≈ −1.541 and β(E−µ) = log z∗2 ≈ 1.545,
where z∗1 , z∗2 are the solutions to ∂s̃/∂β = 0 (Eq. 4.10) with f0 = 0.99.

For f0 = 0 (Fig. 4.1A–C), increasing β increases selection strength for E − µ ≥ 0. Here

the fitness function drops to zero exponentially, and increasing β steepens the exponential

drop. However, for E−µ < 0, the effect of changing β depends on the value of β. For large

β, increasing β actually decreases selection strength; this is because β sets the rate at which

the Fermi-Dirac function converges to unity, and hence increasing β flattens the landscape

in that region. However, for sufficiently small β, the threshold region is large enough that

increasing β still increases selection. The boundary between positive and negative values

of ∂s̃/∂β are the solutions of the equation ∂s̃/∂β = 0: β(E − µ) = logW (e−1) ≈ −1.278,

where W is the Lambert W-function (Fig. 4.1C).

This situation changes qualitatively in the regime E − µ > 0 when f0 6= 0 (Fig. 4.1D-

F). In this case, for sufficiently large β, increasing β weakens selection. This is different
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in the case of nonzero f0 because on the high-energy tail, the fitness is converging to

a nonzero number f0, and thus selection becomes asymptotically neutral. Hence, when

f0 6= 0, increasing β only strengthens selection very close to E − µ = 0. Using Eq. 4.10,

the boundaries in Fig. 4.1F are given by the solutions of (f0z
2− 1) log z = (1 + z)(1 + f0z).

This equation can be solved numerically to obtain two solutions, z∗1 < 1 and z∗2 > 1. The

boundaries in Fig. 4.1F are thus given by the curves β(E − µ) = log z∗1 for E − µ < 0 and

β(E − µ) = log z∗2 for E − µ > 0.

4.2 Assessment of model assumptions

Two main assumptions inherent in our evolutionary model are monomorphism and steady

state. Here, we assess how violating these assumptions affects inference of evolutionary

parameters β, µ, ν, and f0. To test this, we generate simulated data sets of binding

site sequences evolving under a haploid asexual Wright-Fisher model with the Fermi-Dirac

fitness function (Eq. 1.4).

4.2.1 Methods: A model system to check the assumptions of monomorphism

and steady state

We consider a haploid asexual Wright-Fisher process [55]. The population consists of Ne =

1000 organisms, each with a single locus of L nucleotides. The new generation is created

by means of a selection step and a mutation step. In the selection step, sequences from the

current population are sampled with replacement, weighted by their fitness, to construct a

new population of size Ne. In the mutation step, each position in all sequences is mutated

with probability u. For simplicity, the mutation rates between all pairs of nucleotides are

the same.

We characterize the difference between the distribution expected by our model, πexp

(Eq. 4.3), and the distribution observed in simulations, πobs, using the total variation dis-

tance (TVD):

∆(πexp, πobs) =
1

2

∑
x

|πexp(x)− πobs(x)|. (4.11)
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The TVD ranges from zero for identical distributions to unity for completely non-overlapping

distributions. We calculate the TVD for the distributions in energy space, where the sum in

Eq. 4.11 is over discrete energy bins (we bin the observed sequences by energy by dividing

the range from the minimum to the maximum sequence energy for a particular EM into

100 bins of equal size).

We begin by randomly generating the EM parameters εσii . Each εσii in the EM is sampled

from a uniform distribution and then rescaled such that the distribution of all sequence

energies has standard deviation of 1.0. This is achieved by dividing all entries in the EM

by a factor χ:

χ2 =

L∑
i=1

∑
α∈{A,C,G,T}

π0(α)(εαi − ε̄i)2 (4.12)

where εαi is the EM element for base α at position i, L = 10 is the binding site length, ε̄i =∑
α∈{A,C,G,T} ε

α
i is the average energy contribution at position i, and π0(α) is the background

probability of nucleotide α (0.25, ∀α in our simulations). It can be shown that χ is the

standard deviation of the random sequence energy distributution, which is approximately

Gaussian [15]. We generate the EM once and use it in all subsequent simulations and

maximum likelihood fits.

We perform the Wright-Fisher simulations in a range of mutation rates from u = 10−6

to u = 10−1 with a “non-lethal” Fermi-Dirac fitness function (Eq. 1.4 with f0 = 0.99,

β = 1.69 (kcal/mol)−1, and µ = −2 kcal/mol). We run 105 simulations for each mutation

rate for 100/u + 1000 steps, enough to reach steady state. Each simulation starts from a

monomorphic population with a randomly chosen sequence. We construct the steady state

distribution for each mutation rate by randomly choosing a single sequence from the final

population of each simulation. Collected across all simulations, these are used to construct

a distribution of sequences at each mutation rate. Additionally, we record the average final

number of unique sequences at each mutation rate.

We perform another set of Wright-Fisher simulations with the same fitness function

and EM as above, and u = 10−6. We run 105 simulations, each starting from the same

monomorphic population with a specific sequence of E ≈ 0. At regular intervals in each
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simulation, we record a randomly chosen sequence from the population. Collected across all

simulations, these are used to construct a distribution of sequences at each point in time.

4.2.2 The effect of polymorphism

To test the effects of polymorphism on the accuracy of our predictions, we perform a set

of simulations for a range of mutation rates u. Each simulation in the set follows the

Wright-Fisher process to the steady state. We construct the observed distribution πobs by

randomly choosing a single sequence from the final population of each simulation, which

may not be monomorphic for larger u (Fig. 4.2A). From πobs, we infer the fitness landscape

as a function of energy using Eq. 4.5 (Fig. 4.2B).

Additionally, for each u we record the average number of unique sequences present in

the population at equilibrium, and compute the total variation distance (TVD; Eq. 4.11)

between πobs and the monomorphic prediction (Fig. 4.2C). As expected, at low mutation

rates the steady-state distribution and the fitness function match monomorphic predictions

well. At higher mutation rates, the TVD starts to increase and Eq. 4.3 overestimates

the fitness of low-affinity sites. The population becomes distinctly polymorphic in this

limit. With very high mutation rates, πobs approaches the neutral distribution π0 since

the population is largely composed of newly generated mutants which have not experienced

selection.

A condition for monomorphism in a neutrally evolving population is u� (LNe logNe)
−1

[128]. Indeed, in the monomorphic limit the expected time between new mutations, (LNeu)−1,

must be longer than the expected time over which fixation occurs, which is O(Ne) genera-

tions with probability 1/Ne for mutants that fix, and O(logNe) with probability (Ne−1)/Ne

for mutants that go extinct. Thus the total expected time before the mutant either

fixes or goes extinct is O(logNe) generations for Ne � 1 [129]. Thus we must have

(LNeu)−1 � logNe or, equivalently, u � (LNe logNe)
−1. Using Ne = 1000 and L = 10

as in our simulations yields u� 1.4× 10−5 in the monomorphic limit, consistent with the

results in Fig. 4.2C.

We also infer parameters β, µ and γ with a maximum likelihood fit. As expected, all

parameters converge to the exact values in the monomorphic limit (Fig. 4.3A–C). When the
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Figure 4.2: The monomorphic limit and steady state of a Wright-Fisher model of population
genetics. In (A)–(C) we show results from simulations at various mutation rates, using a fit-
ness function with f0 = 0.99, β = 1.69 (kcal/mol)−1, and µ = −2 kcal/mol. Each mutation
rate data point is an average over 105 independent runs, as described in Methods. Colors
from green to orange correspond to increasing mutation rates. (A) Observed steady-state
distributions πobs(E) for various mutation rates. The steady state π(E) predicted using
Eq. 4.3 is shown in grey. (B) Fitness functions F(E) predicted using observed distributions
πobs(E) in Eq. 4.5. The exact fitness function is shown in gray. Inferred fitness functions are
matched to the exact one by using the known population size Ne, and setting the maximum
fitness to 1.0 for each curve. (C) For each mutation rate, the total variation distance (TVD)
∆ between πobs(E) and π(E), and the average number of unique sequences in the popula-
tion Nunique (the degree of polymorphism) are shown. The predicted bound (NeL logNe)

−1

on mutation rate required for monomorphism is shown as a dashed line. In (D)–(F) we
show simulations in the monomorphic regime which have not reached equilibrium, with the
same parameters as in (A)–(C) and u = 10−6. Colors from blue to red correspond to the
increasing number of generations. In (F), TVD ∆ is calculated in energy space as described
in Methods.
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Figure 4.3: Fitted parameters of the Fermi-Dirac function from Wright-Fisher simulations.
In (A)–(C) the fitted values of µ, β and γ = ν(1− f0) are shown as functions of mutation
rate u. For each mutation rate, we generate 200 random samples of 500 sequences from the
105 sequences generated in simulations used in Fig. 4.2A–C. We fit the parameters of the
fitness function on each sample separately by maximum likelihood (see Methods). Shown
are the averages (points) and standard deviations (error bars) over 200 samples at each
mutation rate. The exact values used in the simulation are represented by horizontal green
lines. The predicted bound (NeL logNe)

−1 on mutation rates required for monomorphism
is shown as a vertical dashed line. In (D)–(F) the fitted values of µ, β, and γ are shown as
functions of the number of generations t, for the equilibration simulations used in Fig. 4.2D–
F. The sampling procedure, the maximum likelihood fit, and the representation of parameter
predictions are the same as in (A)–(C).
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population is not truly monomorphic, µ and β tend to be underestimated on average, with

larger variation in inferred values (larger error bars in Fig. 4.3A,B). For γ, polymorphism

has no clear bias on the average inferred value, although it also appears to increase the

variation.

4.2.3 Evolutionary steady state

We perform another set of simulations to test the accuracy of our predictions in a population

that has not yet reached steady state. We use the same fitness landscape and population

size, but fix u to 10−6, within the monomorphic limit. At each point in time (measured

as the number of generations), we construct πobs as described in Methods (Fig. 4.2D), and

infer the fitness function (Fig. 4.2E). We also compute the TVD between the observed

distribution πobs and the steady-state prediction (Fig. 4.2F). With time, πobs converges to

the steady state (Eq. 4.3) and the TVD decays to zero, enabling accurate reconstruction of

the fitness function in the threshold region (although it still diverges from the exact function

in the high-energy tail, where few sequences are available at steady state). The equilibration

time is expected to be proportional to u−1, or 106 generations; indeed, Fig. 4.2F places

the equilibration timescale at about 4 × 106 generations. As the population equilibrates,

accurate inference of the fitness function parameters becomes possible (Fig. 4.3D-F). We

see that parameters inferred from a population out of steady tend to underestimate µ and

γ and overestimate β.

The application of Eq. 4.5 requires an ensemble of loci that have reached evolutionary

steady state. To assess this assumption, we estimate the time required to reach steady

state in our substitution model. As discussed in Sec. 2.1.1, the monomorphic limit requires

µ � 1/(LN logN) for neutral evolution [91, 92], or µ � 1/(LN log(Ns)) in the presence

of beneficial mutations with a typical selection coefficient s, 1 � Ns � N [56]. Assuming

that deleterious substitutions are negligible with regard to reaching steady state (due to

exponential suppression of their substitution rates), equilibration will be dominated by

neutral evolution. Equation 2.1 then implies that the neutral substitution rate is equal to

the mutation rate, which is much less than 1/(LN logN) per generation.

For sequences consisting of L nucleotides, we can model the locus genotype space as
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the vertices of a hypercube in 2L dimensions, since two bits encode a single nucleotide. A

random walk on a hypercube of dimension d with standard connectivity reaches steady state

on the order of d log d steps [130]. However, since the nucleotide sequence space hypercube

is more connected, we may take 2L log(2L) as an upper bound on the required number of

steps. Combining this with the average time to make a single neutral substitution step,

LN logN , we estimate that evolutionary steady state will be reached in

(LN logN)× (2L log(2L)) generations. (4.13)

For small but nontrivial genomic loci (L = O(10) bp) in microbial organisms with generation

times of approximately 10−4 years, an effective population size N ∼ 106 yields an estimated

time to reach steady state of about a million years, a reasonable value on evolutionary

timescales. Moreover, the presence of selection, the additional connectivity of genotype

space compared to a standard hypercube, and a smaller effective population size N will

further shorten this timescale.

Moreover, the genotype space may be projected onto a lower-dimensional subspace.

Previous work has exploited this projection to describe evolution of TF binding sites in S.

cerevisiae, in which the distribution of binding sites has been projected onto free energies

of TF-DNA binding [17–20]. The steady state is expected to be reached more quickly in

the one-dimensional energy space than in the high-dimensional genotype space [20]. [20]

also find that energy distributions of binding sites for the same TF in different yeast species

are remarkably similar despite significantly different divergence times, suggesting that these

distributions have indeed reached evolutionary steady state.

This previous work, however, has relied purely on the diffusion approximation of the

Wright-Fisher model. Such an approximation is not obviously valid in this application, since

strong-selection effects are expected from binding site biophysics: single base pair mutations

may be sufficient to inhibit TF binding [131, 132], potentially causing misregulation of an

essential gene. We have demonstrated in this work that strong selection does not affect the

steady state. The universality of the steady-state distribution then justifies application of

Eq. ?? to genomic data such as collections of TF binding sites. Current work is in progress

to apply these results to evolution of regulatory sites in yeast, exploring the biophysical
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origins of the underlying fitness landscapes.

4.3 Transcription factor binding sites in yeast

How well does S. cerevisiae satisfy the assumptions of our evolutionary model? S. cerevisiae

is not a purely haploid organism but goes through both haploid and diploid stages. In S.

paradoxus, most of the reproduction is haploid and asexual with 1000 generations spent in

the haploid stage for each generation in the diploid stage, and heterozygosity is low [133].

Based on the analysis of yeast genomes, wild yeast populations show extremely limited

outcrossing and recombination and are geographically distinct [134]. Thus, S. cerevisiae

may be regarded as haploid to a reasonable approximation, with recombination during the

diploid stages unlinking the loci. This is consistent with our model, which assumes a haploid

population and independent evolution of binding sites.

Are natural populations of S. cerevisiae within the mutation rate limits required for

monomorphism? The mutation rate for S. cerevisiae has been estimated to be 0.22× 10−9

mutations per bp per cell division [133]. Assuming loci of length L = 10, this sets a

bound on the effective population size Ne of 2.7 × 107, below which the population will

be monomorphic. This is roughly equal to the estimated effective population size of S.

cerevisiae of ≈ 107 individuals [133], based on the analysis of neutral regions in the yeast

genome. Thus it is plausible that S. cerevisiae population sizes are below or near the

limit for monomorphism, justifying the use of Eq. 4.3. Furthermore, in S. cerevisiae and

S. paradoxus the proportion of polymorphic sites in a population has been found to be

about 0.001 [133, 135, 136], generally with no more than two alleles segregating at any one

site [133]. According to this estimate, we expect about 1% of binding sites of length 10 bp

to be polymorphic, corresponding to an average polymorphism of 1.01 in Fig. 4.2C.

For S. cerevisiae, the equilibration time estimate is u−1 ≈ 5× 109 generations, or about

2 × 106 years for an estimated 8 generations per day [137]. This is several times less

than the 5–10 million years of divergence time for the most recent speciation event, with

S. paradoxus [138]. Thus steady state may plausibly be reached for a fast-reproducing

organism like S. cerevisiae over evolutionary times scales.
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4.3.1 Site-specific selection

Besides the assumptions of monomorphism and steady state, we also require a set of binding

sites evolving under universal selection constraints if we are to infer the fitness landscape

using Eq. 4.5. A collection of sites binding to the same TF is an obvious candidate, since

these sites all experience the same physical interactions with the TF. However, it is possible

that selection is site-specific: rather than evolving on the same fitness landscape, different

sites for the same TF may be under different selection pressures depending on which genes

they regulate, their position on the chromosome, etc. For example, genes under strong

selection might require very reliable regulation, so that their upstream binding sites are

selected for tight binding to TFs. In less essential genes, the requirement of high-affinity

binding might be relaxed. Before directly applying the evolutionary model, we investigate

several of these site-specific scenarios to determine if any are supported by the data. We

perform several direct tests of site-specific selection by searching for correlations between

site TF-binding energies and other properties of the site or the gene it regulates.

4.3.2 Methods

Binding site and EM data

We obtain curated binding site locations for 125 TFs from Ref. [2], which provides a posterior

probability that each site is functional based on cross-species analysis. We only consider

sites with a posterior probability above 0.9. Fro this analysis, we use the Saccharomyces

Genome Database R53-1-1 (April 2006) build of the S. cerevisiae genome.

We obtain position-specific affinity matrices (PSAMs) for a set of 26 TFs from an in

vitro microfluidics analysis of TF-DNA interactions [1]. This study provides PSAMs for

each TF determined using the MatrixREDUCE package [46]. We convert the elements of

the PSAM wiα to EM elements using εiα = − log(wiα)/β, where β = 1.69 (kcal/mol)−1 at

room temperature. For each of these 26 TFs, genomic sites are available in Ref. [2]. We

neglect PHO4 since it does not have any binding sites above the 0.9 threshold of Ref. [2],

leaving us with 25 TFs for which both EM and a set of genomic binding sites are available.

We align the binding site sequences from Ref. [2] to the corresponding EMs, choosing the
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alignment that produces the lowest average binding energy for the sites.

Essentiality data

The Yeast Deletion Database classifies genes as essential, tested (nonessential), and un-

available, which number 1156, 6343, and 529 respectively [127, 139]. For each essential or

tested gene, we determine all TF binding sites less than 700 bp upstream of the gene’s tran-

scription start site (on either strand), which we designate as the sites regulating that gene.

Growth rates for nonessential knockout strains are provided under YPD, YPDGE, YPG,

YPE, and YPL conditions, relative to wild-type. We choose the lowest of these growth

rates to represent the fitness effect of the knockout.

To measure the rate of nonsynonymous substitutions, we align the non-mitochondrial,

non-retrotransposon ORFs taken from the Saccharomyces Genome Database R64-1-1 (Febru-

ary 2011) build [165] of S. cerevisiae to those of S. paradoxus using ClustalW [166]. We

measure the rate of nonsynonymous mutations using PAML [167]. We ran PAML with a

runMode of -2 (pairwise comparisons) and the CodonFreq parameter (background codon

frequency) set to 2; we also tested CodonFreq set to zero and obtained very similar results.

We find the rate of nonsynonymous substitutions to be 0.04, and a Spearman rank cor-

relation of −0.16 (p = 10−27) between growth rate of knockouts and the nonsynonymous

substitution rate of the knocked-out gene. This is consistent with the results of Ref. [146],

which found the rate of substitutions to be 0.04 and the rank correlation between growth

rate and substitution rate to be −0.19 (p = 10−35).

To compare binding energy to evolutionary conservation, we calculate the mean Ham-

ming distance between S. cerevisiae sites and corresponding sites in S. paradoxus [2]. To

test for significance in the difference of mean energies and Hamming distances of sites reg-

ulating essential and nonessential genes, we use a null model which assumes that the sites

were randomly categorized into essential and nonessential. We randomly choose a subset of

the sites in our dataset to be “nonessential,” equal in size to the number of sites regulating

nonessential genes as classified by the Yeast Deletion Database. By repeating this proce-

dure 107 times, we build a probability distribution for the difference in the means of the

nonessential and essential groups. The p-value is the probability of obtaining a difference
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in the means greater than the empirically measured value.

4.3.3 Results

We classify fitness effects of genes using knockout lethality, which is available in the Yeast

Deletion Database [127, 139]. This database classifies genes as either essential or nonessen-

tial based on the effects of gene knockout, and provides growth rates for nonessential gene

knockouts under a variety of experimental conditions. We divide binding sites of each

TF in our data set into two groups: those regulating essential genes and those regulating

nonessential genes.

In Fig. 4.4A we compare mean binding energies of sites regulating essential genes with

those regulating nonessential genes for each TF. Using a null model as described in Methods,

we find no significant difference (at p = 0.05 level) between the two groups of sites for any

TF except RPN4, for which p = 0.03 and the difference in mean energies is 0.24 kcal/mol,

and PDR3, for which p = 0.002 and the difference in mean energies is 2.3 kcal/mol. The

mean p-value of the null model over all TFs is 0.38. In Fig. 4.4B we compare the variance of

the energy of the sites regulating essential and nonessential genes; sites regulating essential

genes may be selected for more specific values of binding energy if precise regulation is

required. We find no overall trend: for some TFs sites regulating essential genes have more

energy variation than those regulating nonessential genes, but for other TFs the situation

is reversed.

For the sites regulating nonessential genes, we also correlate the site binding energy

with the growth rate of a strain in which the regulated gene was knocked out (Table C.1,

column B). The Spearman rank correlation between each site’s binding energy and the

regulated gene’s effect on growth rate produces a mean p-value of 0.51. We find no significant

correlation for any TF at p = 0.05 level except MSN2, with p = 0.046.

It is possible that regulation of highly-expressed genes may be more tightly controlled.

Indeed, gene expression level is weakly, though significantly, correlated with gene essential-

ity [140]. We compare the binding energy of sites to the overall expression level of their

regulated genes measured in mid-logphase yeast cells cultured in YPD [140] (Table C.1,

column C), and again find no correlation using the Spearman rank correlation except for
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Figure 4.4: Tests of site-specific selection. We divide binding sites for each TF into two
groups: those regulating essential and nonessential genes. (A) Comparison of mean binding
energies of sites regulating essential (Ēessential) and nonessential genes (Ēnonessential) for
each TF in the data set. Vertical and horizontal error bars show the standard error of
the mean in each group. Points lacking error bars have only one sequence in that group.
(B) Comparison of variance in binding energies for sites regulating essential (Vessential) and
nonessential (Vnonessential) genes. (C) Mean Hamming distance between corresponding sites
in S. cerevisiae and S. paradoxus for sites regulating essential versus nonessential genes.
Vertical and horizontal error bars show the standard error of the mean in each group. In
(A)–(C), 25 TFs were used; black diagonal lines have slope one. (D) Normalized histogram
of TF binding site sequence entropies, divided into 16 essential and 109 nonessential TFs,
for 125 TFs in Ref. [2].
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DAL80 (p = 0.034), with mean p-value of 0.54.

Another measure of the selection pressures on genes is their rate of evolution as measured

by KA/KS , the ratio of nonsynonymous to synonymous mutations in a given gene between

species. According to the neutral theory of evolution, genes which evolve slowly must

be under higher selective pressure, and therefore the sites regulating them might likewise

experience stronger selective pressures. As described in Methods, we measure the KA/KS

ratio between S. cerevisiae and S. paradoxus protein coding sequences, and compare it

to the binding energy of the sites regulating those genes (Table C.1, column D). We find

very weak Spearman rank correlations for ATF2, RPN4, GAT1 and CAD1 all roughly with

p = 0.02. We find no other significant correlation at the p = 0.05 level, with a mean p-value

of 0.42.

Similarly, one might expect sites regulating essential genes to be more conserved. How-

ever, we find that the average Hamming distance between corresponding binding sites in

S. cerevisiae and S. paradoxus [2] is no different for sites regulating essential genes than for

those regulating nonessential genes, as shown in Fig. 4.4C. Using the null model described

in Methods, most TFs are above p = 0.05 with the exceptions of YAP7 (p = 0.04) and

PDR3 (p = 0.003), with an average p-value of 0.27.

We can also consider how the essentiality of the TFs themselves affects the sequences of

their binding sites; for example, essential TFs may constrain their binding sites to a more

conserved sequence motif. We divide 125 TFs from Ref. [2] which had 10 or more sequences

and for which essentiality information was available into 16 essential and 109 nonessential

TFs using the Yeast Deletion Database [127, 139], and calculate the sequence entropy of

binding sites for each TF. The distribution of sequence entropies in Fig. 4.4D shows no

significant difference between essential and nonessential TFs (p = 0.9 for the null model).

Finally, it is possible that sites experience different selection pressures depending on

their distance to the transcription start site (TSS). Again, we find no significant correlations

between binding energy and distance to the TSS: Spearman rank correlation yields mean p-

value of 0.59 and all p-values above 0.05 (Table C.1, column E). Overall, our findings are in

broad agreement with a previous report [20], which suggested that site-specific selection can

be ruled out because of the significant variation in binding affinity between orthologous sites
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of different species, which is consistent with the variance predicted by a model including

only drift and site-independent selection.

4.4 Inference of biophysical fitness landscapes

The above analysis indicates that the evolution of binding site energies does not depend

significantly on site-specific effects, suggesting that more universal principles govern the

observed distribution of sites binding a given TF. Thus, we can fit a single fitness function

to a collection of TF-bound sites via Eqs. 4.3 and 4.5. Of the 25 TFs considered in the

previous section, here we focus on 12 TFs with > 12 unique binding site sequences.

First we derive the neutral distribution π0(E) of site energies based on mono- and

dinucleotide frequencies obtained from intergenic regions of the S. cerevisiae genome. It

has been suggested that L-mers not functioning as regulatory sites (e.g., located outside

promoters) may be under evolutionary pressure not to bind TFs [141]; however, consistent

with previous reports [20, 142], we find that sequences sampled from the intergenic regions

of the genome are close to the neutral distribution expected from mono- and dinucleotide

frequencies, except for the expected enrichment at low energies due to functional binding

sites. This distribution is shown in Fig. 4.5A for REB1 and in table C.2, column B for all

other TFs.

Assuming the observed set of binding site energies for a TF adequately samples the

distribution π(E), we can use our estimate of the neutral distribution π0(E) in Eq. 4.5

to reconstruct the fitness landscapes as a function of TF binding energy up to an overall

scale and shift (Fig. 4.6). Although the fitness functions may be noisy due to imperfect

sampling of π(E), they nevertheless provide important qualitative insights. In particular, in

all landscapes fitness decreases monotonically as binding energy increases, indicating that

stronger-binding sites are more fit. Moreover, we observe no fitness penalty for binding too

strongly, at least within the range of energies spanned by π(E).

Methods: Neutral binding site energy distributions

We construct the neutral probability π0(σ) of a sequence σ of length L as
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Figure 4.5: Parametric inference of REB1 fitness landscape. (A) From top to bottom: REB1
EM [1], the sequence logo obtained from the EM by assuming a Boltzmann distribution at

room temperature at each position in the binding site (πi(σi) = πi0(σi)e
−βεσii /Zi), and the

sequence logo based on the alignment of REB1 genomic sites. (B) Histogram of energies
of intergenic sites calculated using the REB1 EM (dashed line). The neutral distribution
of sequence energies expected from the mono- and dinucleotide background model (solid
line; see Methods for details). The histogram shows the distribution of functional sites [2].
The color bar on the bottom indicates the percent deviation between the two distributions
(red is excess, green is depletion relative to the background model). (C) Fitness function
inference. Dots represent data points (as in Fig. 4.6); also shown are the unconstrained
fit to the Fermi-Dirac function of Eq. 1.4 (“UFD”; solid red line), constrained fit to the
Eq. 1.4 with f0 = 0.99 (“CFD”; dashed black line), and fit to an exponential fitness function
(“EXP”; dashed green line). (D) Histogram of binding site energies and its prediction based
on the three fits in (C) (Eq. 2.15).
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π0(σ) = π0(σ1)

L∏
i=2

π0(σi−1, σi), (4.14)

where π0(σi) is the background probability of a nucleotide σi, and π0(σi−1, σi) is the back-

ground probability of a dinucleotide σi−1σi. These probabilities are determined from mono-

and dinucleotide frequencies in the intergenic regions of the S. cerevisiae genome (build

R61-1-1, June 2008). We project π0(σ) into energy space using Eq. 4.2 to obtain π0(E),

the neutral distribution of binding energies for sequences of length L.

If intergenic sequences evolve under no selection with respect to their TF-binding energy,

the neutral distribution of site energies should closely match the actual distribution of L-

mer sequences obtained from intergenic regions. Table C.1, column B shows that these two

distributions match very well except at the low-energy tail, which is enriched in functional

binding sites. Note that accounting for dinucleotide frequencies is important; mononu-

cleotide frequencies alone are insufficient to reproduce the observed distribution [142].

4.5 Fermi-Dirac landscapes and model selection

For each TF we perform a maximum-likelihood fit of the binding site data to the distribution

in Eq. 4.3 with the Fermi-Dirac landscape of Eq. 1.4 (Fig. 4.5, Table S2; see Methods for

details). The model of Eq. 1.4 has four fitting parameters: β, µ, ν, and f0. However, as

shown in Sec. 4.1, in the 1 − f0 � 1 limit the fitness function depends on γ = ν(1 − f0)

rather than f0 and ν separately. Thus we also carry out constrained “non-lethal” Fermi-

Dirac fits in which f0 is fixed at 0.99. Although the inverse temperature β and the chemical

potential µ have unambiguous physical meanings in the binding probability of Eq. 4.1, we

will interpret the fits more broadly to define a class of fitness landscapes with “effective” β

and µ, which may not be equal to their physical counterparts. The input to each fit is a

collection of genomic TF binding sites {σ} [2] and the energy matrix from high-throughput

in vitro TF-DNA binding assays [1], which allows us to assign a binding energy E(σ) to

each site.
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4.5.1 Methods: Maximum-likelihood fits of fitness function parameters

For a given TF, let S = {σ} be the set of binding site sequences, and θ = (β, µ, f0, ν) the

parameters of the fitness function (Eq. 1.4). The log-likelihood is given by

logL(S|θ) =
∑
σ∈S

log π(σ|θ) =
∑
σ∈S

log

(
1

Z(θ)
π0(σ)(F(σ|θ))ν

)
, (4.15)

where F is the fitness function, and Z(θ) =
∑

σ π0(σ)(F(σ|θ))ν is the normalization.

Because the log-likelihood function has degenerate or nearly-degenerate regions in the

parameter space of θ, we carry out its maximization in two steps. We first obtain a global

map of the likelihood by calculating the function over a mesh of points in parameter space,

over the domain β ∈ (0.1, 10), µ ∈ (−20, 0), ν ∈ (10−3, 105), and f0 ∈ (4.5× 10−5, 1− 4.5×

10−5). We then maximize the likelihood using conjugate-gradient ascent which starts from

the approximate global maximum on the mesh.

4.5.2 Results

TF f0 γ = ν(1− f0) β (kcal/mol)−1 E − µ
REB1 0.999 18.3 0.801 ≈ 0
ROX1 0.992 403 0.426 > 0

MET32 0.974 132 0.248 > 0
RPN4 4.77× 10−9 0.72 3.84 ≈ 0

MET31 1.85× 10−10 0.547 4.63 ≈ 0
PDR3 0.789 4.53× 103 0.534 > 0
YAP7 6.01× 10−6 1.26 1.13 ≈ 0
BAS1 2.09× 10−3 144 0.246 < 0
STB5 0.167 168 0.301 < 0
AFT1 3.11× 10−13 0.617 16.4 ≈ 0
CUP9 0.976 243 0.338 > 0
MCM1 0.998 83.8 0.25 > 0

Table 4.1: Summary of unconstrained Fermi-Dirac landscape fits to TF binding site data.
Columns show maximum-likelihood value of f0, γ = ν(1 − f0), and β. The last column
shows whether most binding site energies E are lower than the inferred chemical potential
µ, near it, or above it (see Table S2 for details).

A summary of maximum-likelihood parameter values for all TFs is shown in Tables 4.1

and C.2, column D. The variation of log-likelihood with fitting parameters is shown in Table
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C.2, columns G and H. Six of the TFs (REB1, ROX1, MET32, PDR3, CUP9, and MCM1)

are in the 1−f0 � 1 regime where only γ can be inferred unambiguously. Indeed, non-lethal

Fermi-Dirac fits with f0 = 0.99 yield very similar values of log-likelihood and γ (Table S2,

column D). In all of these cases, γ is considerably greater than 1, implying that selection

is strong compared to drift, and the effective population size is large (the s � 1, Nes � 1

regime in population genetics).

Five TFs (RPN4, MET31, YAP7, BAS1, and AFT1) have very small values of f0 (Ta-

ble 4.1), indicating that on average, removing their binding sites is strongly deleterious to

the cell. In these cases, the degeneracy is broken and the global maximum occurs in the

vicinity of f0 = 0 (Table S2, column H, insets). Since 1 − f0 ≈ 1, ν ≈ γ, a small value in

four out of five cases (Table 4.1). Given the strength of selection, small effective population

sizes (which indicate that genetic drift is strong) are necessary to reproduce the observed

variation in binding site sequences. Finally, sites for STB5 have an intermediate value of

f0 = 0.167, which means they are under strong selection but are not necessarily essential.

Since the constrained Fermi-Dirac fits have one less adjustable parameter, it is more

consistent to do model selection on the basis of the Akaike information criterion (adjusted

for finite-size samples) [143] rather than log-likelihoods:

AIC = 2(k − logL) +
2k(k + 1)

n− k − 1
, (4.16)

where k is the number of fitting parameters, L is the likelihood, and n is the number of

data points. For each model we can calculate the AIC, which accounts for both the benefits

of higher log-likelihood and the costs of additional parameters.

Table 4.2 shows the AIC differences between the unconstrained Fermi-Dirac fits (UFD,

k = 4) and the constrained Fermi-Dirac fits with f0 = 0.99 (CFD, k = 3) for each TF.

Positive AIC differences indicate that UFD is more favorable. We also calculate the Akaike

weights w ∝ e−AIC/2, which give the relative likelihood that a given model is the best [143].

For the six TFs in the 1 − f0 � 1 regime, the constrained Fermi-Dirac fits perform

somewhat but not drastically better than the unconstrained Fermi-Dirac fits. Indeed, the
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TF
AICCFD

−
AICUFD

AICEXP

−
AICUFD

wUFD wCFD wEXP

REB1 −2.022 35.832 0.267 0.733 4.42× 10−9

ROX1 −2.159 35.051 0.254 0.746 6.21× 10−9

MET32 −2.246 10.550 0.245 0.754 0.001
RPN4 17.672 33.683 1.000 1.45× 10−4 4.85× 10−8

MET31 2.807 11.778 0.801 0.197 0.002
PDR3 −1.750 79.244 0.294 0.706 1.82×10−18

YAP7 −1.988 10.783 0.270 0.729 0.001
BAS1 −2.466 6.007 0.223 0.766 0.011
STB5 −2.737 −7.143 0.025 0.097 0.878
AFT1 −1.104 7.265 0.362 0.628 0.010
CUP9 −2.284 1.689 0.219 0.687 0.094
MCM1 −3.351 −0.167 0.135 0.719 0.146

Table 4.2: Comparison of fitness function models. For each TF, shown are the AIC differ-
ences between the unconstrained Fermi-Dirac fit (“UFD”), the constrained Fermi-Dirac fit
with f0 = 0.99 (“CFD”), and the exponential fit (“EXP”). Also shown are Akaike weights
w, which indicate the relative likelihood of each model.

Akaike weights for the constrained Fermi-Dirac fits exceed the full fits for these TFs con-

sistently by about a factor of e ≈ 2.7, since their raw likelihoods are essentially equivalent

and they only differ in the number of fitted parameters k. Out of the five TFs for which

f0 ≈ 0, YAP7, BAS1, and AFT1 fit slightly better to the constrained Fermi-Dirac, sug-

gesting that their fitted values of f0 are not significant. For RPN4 and MET31, the AIC

analysis shows preference for the fits with low f0. This preference is especially strong for

RPN4 (Table 4.2). Both RPN4 and MET31 are listed as nonessential in the Yeast Deletion

Database [127, 139], suggesting an inconsistency in our analysis.

The fits to the Fermi-Dirac fitness landscapes also provide estimates of the effective

inverse temperature β and the effective chemical potential µ (Table 4.1). The inferred values

of β can be compared to the physical value at room temperature, βph = 1.69 (kcal/mol)−1.

Nine of the TFs (REB1, ROX1, MET32, PDR3, YAP7, BAS1, STB5, CUP9, MCM1) have

β’s lower than the physical value, while in the other three (RPN4, MET31, AFT1) β > βph.

In most TFs the fitted inverse temperature β is far from its physical counterpart, although

in several cases the likelihood function is fairly flat in the vicinity of the peak, indicating

that a wider range of β values is admissible (Table S2, column G).
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The inferred value of µ relative to the distribution of energies E of the binding sites tells

us which qualitative regime of the Fermi-Dirac fitness landscape the sites lie in. For five TFs

(ROX1, MET32, PDR3, CUP9, MCM1), E−µ > 0, and the sites reside on the exponential

tail. Interestingly, 1 − f0 � 1 for all of these TFs. For another group of five TFs (REB1,

RPN4, MET31, YAP7, AFT1), E − µ ≈ 0, so that the sites lie on the sharp threshold

between fully bound and fully unbound states. In this regime, changing the energy of the

site through mutations may lead to a large change in its occupancy by the TF. Finally, for

two TFs (BAS1, STB5), E − µ < 0, and the sites lie on the high-fitness plateau. Note that

in most of the E − µ > 0 and E − µ < 0 cases, values of µ within a large range fit the data

equally well, as long as the binding energies of all sites are well to the right or to the left of

the chemical potential (Table S2, column G).

What does β 6= βph say about the nature and strength of selection? We address this

question using the local selection coefficient, s̃(E) = |d logF/dE| (Eq. 4.9). The magnitude

of the selection coefficient depends qualitatively on both E − µ and whether f0 is zero or

nonzero (Fig. 4.1). For five of the TFs (ROX1, MET32, PDR3, CUP9, MCM1), f0 6= 0, β <

βph, and E−µ > 0. Thus these TFs are in a regime where decreasing β strengthens selection

(Fig. 4.1F). In other words, selection is stronger for these binding sites than expected from

purely biophysical considerations. For RPN4, MET31, and AFT1, f0 ≈ 0, β > βph, and

E ≈ µ. Hence ∂s̃/∂β > 0, and selection is again stronger than expected. BAS1 and STB5

exhibit β < βph and lie on the high fitness plateau (E − µ < 0), and thus selection is

also stronger than expected. In contrast, YAP7 and REB1 exhibit β < βph and lie on the

threshold E − µ ≈ 0, and hence selection is weaker than expected in these two cases.

4.6 Exponential fitness landscape

Next, we consider a purely exponential fitness landscape of the form F(E) = eαE . The

reasons for including this case are threefold. First, exponential fitness emerges in the limit

E−µ� 0 of the Fermi-Dirac landscape, the regime into which many of the TF binding sites

fall. Second, the fitness landscapes in Fig. 4.6 appear close to linear on the logarithmic scale,

implying that to a good approximation fitness depends exponentially on energy. Third, the

model has just one fitting parameter.
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The steady-state distribution π(σ) with exponential fitness is given by

π(σ) =
1

Z
π0(σ)eναE(σ)

=

L∏
i=1

πi0(σi)

Zi
eναε

σi
i ,

(4.17)

where E(σ) is given by Eq. 4.2, π0(σ) is the neutral probability of sequence σ, πi0(σi) is

the background probability of nucleotide σi at position i, and Zi is a single-site partition

function: π0(σ)/Z =
∏L
i=1 π

i
0(σi)/Zi. Here we assumed that the background probability

of a sequence is a product of probabilities of its constituent nucleotides. In this case,

sites decouple and the distribution of sites π(σ) completely factorizes. The assumption

of factorization underlies the common practice of inferring EMs from log-odds scores of

observed genomic binding sites [8]. The log-odds score of a nucleotide σi is defined as

S(σi) = log
pσii

πi0(σi)
= −βεσii − logZi, (4.18)

where pσii is the probability of seeing base σi ∈ {A,C,G,T} at position i within the set of

known sites, β is an effective inverse temperature, and Zi is the normalization constant.

Eq. 4.18 shows that the log-odds score, which is computed using observed nucleotide prob-

abilities, is equivalent to εσii (up to an overall scale and shift) under the assumption of

site-independence.

We can quantitatively compare the exponential fitness landscape with the unconstrained

and constrained Fermi-Dirac landscapes using the Akaike information criterion, Eq. 4.16.

The AIC analysis shows that the exponential landscape is significantly poorer than the

Fermi-Dirac landscape in all cases except STB5 (Table 4.2). This observation provides

statistical support for the fitness landscapes of Fermi-Dirac type, and for the non-lethality

of deleting most TFs (the exponential fitness decays to zero rather than a nonzero f0 found

in most of our Fermi-Dirac fits).
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4.7 Discussion

In this work, we have considered how fitness of a single-cell eukaryote S. cerevisiae is affected

by interactions between TFs and their cognate genomic sites. Changing the energy of a site,

or creating new sites in gene promoters may change how genes are activated and repressed,

which in turn alters the cell’s chances of survival. Under the assumptions of a haploid

monomorphic population in which evolution of binding sites has reached steady state, the

fitness landscape as a function of TF binding energy can be inferred from the distribution of

TF binding sites observed in the genome, using a biophysical model which assigns binding

energies to sites. We use a simple EM model of TF-DNA energetics in which the energy

of each position in the site is independent of all the other positions. The EM parameters

are inferred from a high-throughput data set in which TF-DNA interactions were studied

in vitro using a microfluidics device [1]. We consider two types of fitness functions: Fermi-

Dirac, which appears naturally from considering TF binding as a two-state process (Eq. 4.1),

and exponential, which is motivated by the observation that for many TFs, fitness appears

to fall off linearly with energy in log-space.

A single fitness landscape for all genomic binding sites of a given TF can only exist in

the absence of site-specific selection. Indeed, it is possible that TF sites experience different

selection pressures depending on the genes they regulate: for example, sites in promoters of

essential genes may be penalized more for deviating from the consensus sequence. In this

case, the fitness function is an average over all sites which evolve under different selection

constraints: as an extreme example, consider the case where each site i has a Fermi-Dirac

fitness function (Eq. 1.4) with different parameters µi, βi, and f0,i. The resulting observed

distribution of energies would then be the average of the distributions predicted by Eq. 2.15:

π(E) =
1

Z
π0(E)〈F(E;µi, βi, f0i)

ν〉i ≡
1

Z
π0(E)F(E; µ̄, β̄, f̄0)ν̄ , (4.19)

which defines the “average” fitness function with effective parameters µ̄, β̄, f̄0, ν̄. Thus

the fit can be carried out even in the presence of site-dependent selection, but the fitted

parameters correspond to fitness functions of individual sites only in an average sense.

In order to gauge the importance of site-specific selection in TF binding site evolution, we
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have performed several statistical tests aimed at discovering correlations between binding

site energies and biological properties of the sites and the genes they regulate. These

tests considered gene essentiality, growth rates of strains with nonessential genes knocked

out, gene expression levels, KA/KS ratios based on alignments with S.paradoxus, and the

distance of the site to the TSS. The results of these tests indicate that for a given TF, the

evolution of regulatory sites is largely independent of the properties of regulated genes and

the specific biological functions of the sites.

Previously, low correlations have been observed between essentiality and conservation

of protein and coding sequences [144–150], which has fueled considerable speculation as it

contradicts the prediction of the neutral theory of evolution that higher selection pressures

lead to lower evolutionary rates. It has also been found that the growth rate of strains with

nonessential genes knocked out is significantly (though weakly) correlated with conservation

of those genes [151]. It has therefore been suggested that selection pressures are so strong

that only the most nonessential genes experience significant genetic drift [144]. Previous

studies have also found that gene expression levels are a more reliable (though still very

weak) predictor of selection pressures than essentiality [148], but we do not find this to

be the case for TF binding sites, nor do we observe a significant correlation between gene

expression levels and TF binding energies.

These results are highly consistent with results showing that for the majority (67%) of

binding sites, site occupancy is uncorrelated with gene expression [152], and results showing

only a 3% overlap between binding sites determined by ChIP-chip analysis and regulatory

interactions determined through mRNA expression microarrays [153]. It has been suggested

that this is evidence for the decoupling of TF binding and gene expression in eukaryotes [48].

Available data does not rule out the possibility of time-dependent selection in combi-

nation with forms of site-dependent selection we have not accounted for. In this scenario,

the variation in site binding affinity is not due to genetic drift, but to variable selection

pressures across sites and over time, such that the sites are strongly tuned to particular

binding energies which change from locus to locus. Indeed, there is evidence that there is

frequent gain and loss of TF binding sites and that the gene regulatory network is highly

dynamic [154–160]. There is also evidence that TF binding site motifs themselves change
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over time, through cross species comparison of motifs for certain TFs [161].

4.7.1 Turnover

It is possible that rapid turnover of binding sites in eukaryotes may be due to evolution

acting on whole promoters rather than individual binding sites. Many promoters contain

multiple binding sites for a single TF, and it may be that while individual binding sites

are lost and gained frequently, the overall binding affinity of a promoter to a TF may be

held constant [162–164]. Our evolutionary model can account for this scenario using a

promoter-level fitness function. Here we show a toy model demonstrating this.

Consider a promoter with two possible binding sites, as illustrated in figure 4.7. Each

binding site may bind to a TF according to the familiar Fermi-Dirac function, but we

additionally assume that transcriptional machinery will bind to the promoter as a whole as

well, such that the binding energy is proportional to the total number of bound TFs. That

is, the fitness of a promoter with two sites with binding energies E1 and E2 is

f(E1, E2) = F ( ε[F (E1, µ) + F (E2, µ)] , µ′)

where F (E,mu) = 1/(1 + e−β(E−µ)) is the Fermi -Dirac binding probability, µ is the

chemical potential of the TF, µ′ is the chemical potential of the transciptional machinery,

and ε is the binding energy of the transcriptional machinery to a single TF.

As illustrated in figure 4.7, only some of the binding sites will be functional. For low

population sizes, selection pressure is weak and only one of the two binding sites is typically

bound, while both are bound for larger populations.

Thus, although individual binding sites may appear or disappear, the overall binding

affinity of the promoter for the transcriptional machinery may stay constant.

4.7.2 Conclusion

Out of 12 TFs with sufficient binding site data, five have f0 ≈ 0, indicating a large fitness

penalty for deleting such sites. This conclusion is strongly supported by the AIC differences

between unconstrained and non-lethal Fermi-Dirac fits for only one TF, RPN4 (Table 4.2).
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E1 E2

Figure 4.7: (Top) Illustration of a promoter with two binding sites, with binding energies
E1 and E2. (Middle) For the fitness function defined in equation 4.7.1
, the distribution of phenotypes (E1, E2) forN = 100 andN = 1000, using the monomorphic
steady state equation. For N = 100 typically only one site is bound at a time. For N = 1000
both sites are bound. (Bottom) For promoter with 10 binding sites, the number of bound
sites as a function of population size.
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RPN4 is classified as nonessential in the Yeast Deletion Database. It may be that this

misclassification is due to a mismatch between genomic sites, in which the core GCCACC

motif is preceded by TTT, and the EM in which the binding energies upstream of the core

motif are non-specific. We also classify REB1 and MCM1 binding sites as nonessential,

although knocking out these TFs is lethal in yeast. This discrepancy may be due to a

minority of essential sites being averaged with the majority of nonessential sites to produce

a single fitness function, as described above. In addition, although a penalty for deleting

any single site may be small, the cumulative penalty for deleting all sites (or, equivalently,

deleting the TF) may be lethal. Overall, on the basis of AIC we classify 8 out of 12 TFs

correctly (Table 4.2).

We find that in 10 out of 12 cases, fitting an exponential fitness function is less sup-

ported by the data than fitting a Fermi-Dirac function (Table 4.2). This is interesting since

constructing a position-specific weight matrix by aligning genomic sites is a common prac-

tice which implicitly assumes factorization of exponential fitness and independence of each

position in the binding site. Our results indicate epistasis among positions and show the

limitations of this approximation.

Finally, we find that depending on the TF the distribution of TF binding energies may

fall on the exponential tail, across the threshold region, or on the saturated plateau where

the sites are always occupied (Table 4.1). In the first two categories, variation of TF

concentration in the cell will lead to graded responses, which may be necessary to achieve

precise and coordinated gene regulation. In the third regime, TF binding is robust but not

dynamic. We also find that the fitted inverse temperature β is typically not close to the

value based on room temperature (Table 4.1). This observation suggests selection pressures

in addition to those dictated by the energetics of TF binding to its cognate sites.
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Appendix A

Diffusion Theory

The Probability of Fixation of a single Mutant

Using the backwards Kolmogorov equation we may obtain the probability of fixation of

a single mutant. In the continuum limit, we may do this by setting the final population

fraction x to 1 in equation 1.15, and we define the fixation probability after t steps as

u(x0, t) = θ(1, x0, t), and ultimate fixation probability u(x0) = limt→∞ θ(1, x0, t). At large

times the mutant must either fix or become extinct, and the fixation probability becomes

constant in time, allowing us to set ∂u(x0)
∂t = 0. Substituting this into the Kolmogorov

equation, we find the fixation probability must satisfy

M(x0)
∂u(x0)

∂x0
+
V (x0)

2

∂2u(x0)

∂2x0
= 0 (A.1)

ith boundary conditions u(0) = 0 and u(1) = 1. The solution is found by elementary

methods, rearranging as

d

dx0

(
log

du(x0)

dx0

)
= −2M(x0)

V (x0)
, (A.2)

and one then easily obtains

u(x0) =

∫ x0
0 G(x)dx∫ 1
0 G(x)dx

(A.3)

using an integrating factor

G(x) = e
−

∫ 2M(x)
V (x)

dx
. (A.4)

To get the fixation of a probability of a single mutant, one evaluates the result with

x0 = 1/N . Substituting the moments for the Wright-Fisher model, one obtains

u(p) =
1− e−sNp
1− e−sN (A.5)

and setting p = 1/N , for one initial mutant, gives the result for θ(s) = u(1/N) quoted at

the start of this section.
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The Time to Fixation of a single Mutant

Although we shall not derive it in full, similar methods give the number of generations until

fixation or extinction.

The fixation time is most conveniently derived by writing

t̄fix =
T (x0)

u(x0)
with T (x0) =

∫ ∞
0

t
∂u(x0, t)

∂t
dt (A.6)

where T can be though of as a sum of fixation times weighted by the probability ∂u(x0,t)
∂t that

the mutant fixes in a short interval dt around time t, and therefore t̄fix is the normalized

sum, giving the average fixation time for the cases where the mutant fixes.

By differentiating then integrating the backwards Kolmogorov equation with respect to

time, one can obtain a differential equation for T (x0), which, with appropriate boundary

conditions, leads to the solution

t̄fix =

∫ 1

p
ψ(x′)u(x′)(1− u(x′))dx′ +

1− u(p)

u(p)

∫ p

0
ψ(x′)u2(x′)dx′ (A.7)

where

ψ(x) =
2
∫ 1

0 G(x′)dx′

G(x)V (x)
(A.8)

Through a similar procedure one also obtains the extinction time

t̄ext =
1− u(p)

u(p)

∫ 1

p
ψ(x′)(1− u(x′))2dx′ +

∫ p

0
ψ(x′)u(x′)(1− u(x′))dx′ (A.9)

The Wright-Fisher moments M(x) and V (x) may now be substituted to obtain the WF

diffusion limit. The result is too complicated to state here, but it is used in Chapter 2. In

the s = 0 (neutral) case, however, this result simplifies to

t̄fix = 2(N − 1)N log
N

N − 1
≈ 2N (A.10)

t̄ext =
2N logN

N − 1
≈ 2 logN (A.11)

The form of the s-dependent fixation and extinction times are shown in figure 1.4.
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Appendix B

Monomorphic-Polymorphic Boundary with Selection

Here we describe the dependence of the fixation/extinction time on the fitness of a single

mutant in a monomorphic population, where the mutant’s fitness is fm and the population’s

is fp. We shall do so using Kimura’s theory, which is valid in the ’diffusion limit’, that is,

when the change in frequency of an allele per generation is small. This approximation may

break down for small populations and strong selection.

It will be convenient to relate their fitnesses through the selection coefficient s = fm/fp−

1, which ranges from −1 to ∞. The fixation/extinction time is calculated as 〈t(s,N)〉 =

Pfixtfix +Pexttext using Kimura’s theory for haploid populations. The result is shown in Fig

S1 for N=1000. As can be seen, it deviates from the actual Wright-Fisher result partly due

to the small population and for large s, but is useful as a rough approximation. The full

result is

〈t(s,N)〉 =
e−2s

(e2ns − 1)s
((e2s + e2s(n+1) − 2e2ns)γ

+(e2ns − 1) Ei(2s)

+(e2ns − e4ns) Ei(−2s(n− 1))

+(e4ns − e2s(n+1)) Ei(−2ns)

+(1− e2s) Ei(2ns)

+e2s(n+1) log(2|s|n(n− 1))

+e2s log(2|s|n/(n− 1))

−2e2ns log(2|s|n))

(B.1)

.

Given this function, and given a distribution of mutant selection coefficients g(s), it is

then possible to calculate the total expected fixation/extinction time
∫
g(s)〈t(s)〉ds, which
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Figure B.1: Expected fixation/extinction time for N=1000. In the neutral limit, this 15.8
generations (black dot). The kimura large-N maximum is the black line. Different compu-
tations shown in legend.

Figure B.2: Contributions to the total fixation time from mutants that go extinct, and these
that fix. (ie, Pfix(s)tfix(s) ) for N=500
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can then be compared to the waiting time in a substitution process to obtain a bound

between the polymorphic and monomorphic regimes. For example, for N = 1000 and

assuming g(s) is a Gaussian with mean 0 and standard deviation of 0.2, the average fixa-

tion/extinction time is 14.8 generations.

However, even if we are ignorant of the form of g(s) we can still set some bounds on the

expected fixation/extinction time in the diffusion limit. We shall examine the large-N limit

of the fixation/extinction time, which is more tractable, and which gives fixation/extinction

times of

2− 2e−2s

s
logN for s > 0

2 logN for s = 0

1

s
(e−2s Ei(2s)− log(−2s)− γ) for s < 0

(B.2)

where Ei is the exponential integral function. The large-s limit of the s > 0 case

reproduces the strong selection result from Desai & Fisher of 1
s logNs. Note that this latter

result is only a good approximation to Kimura’s diffusion result for large s, however for

such large selection the diffusion result deviates significantly from the true value.

In this large N limit, the maximum fixation/extinction time is 4 logN , which occurs for

the small s limit of the s > 0 case. This 4 logN result provides an upper bound for the

fixation time for all non-neutral evolution, for any N .

The lower bound on the fixation time is more complicated. The fixation time is less

than the neutral fixation time in two cases: For deleterious mutants, which typically quickly

become extinct, and for highly fit mutants which fix very quickly.

In the latter case for very high s, the fixation time becomes small due to the large

selective pressure driving the mutants to fixation. It becomes less than the neutral fixation

time when (2− 2e−2s)/s < 1, which gives s > 0.8, or fm > 1.8fp. Thus, we expect that all

beneficial mutants will fix or become extinct between 2 logN and 4 logN generations, as

long as their fitness is no more than 1.8 times the population’s fitness. We shall assume such

extremely fit mutants cannot occur. This result depends on the diffusion limit which we

know breaks down for such strong selection, however judging from the exact WF calculation,

it is an underestimate, and ignoring such extremely fit mutants is justified.
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Deleterious mutants with s < 0, on the other hand, generally go extinct quickly, faster

than the neutral fixation time of 2 logN , and in the limit of large N they nearly immediately

become extinct compared to the neutral fixation time. In the context of the monomorphic-

polymorphic regime boundary, this means their effect on dynamics is often negligible and

the population will be effectively monomorphic despite their presence. However, if there

are a large number of them they may still contribute to the average fixation time.

If the number of deleterious mutants is not too large compared to the number of beneficial

mutations ones, they can be ignored completely. This may be the case in evolution out-of-

equilibrium. We can account for this scenario by rescaling the mutation rate to u′ = upb

where pb =
∫∞

0 g(s)ds is the fraction of a beneficial mutations. Thus, in this case in

the large N limit the monomorphic/polymorphic regime boundary is between the upper

bound of 4pbN logN = 1 and the lower bound of 2pbuN logN = 1. This will be a good

approximation as long as
∫ 0
−∞ g(s)〈t(s)〉ds is small relative to

∫∞
0 g(s)〈t(s)〉ds, keeping in

mind that t(s) ∼ logN for s¿0 and ∼ 1 for s¡0.

However, in monomorphic steady state the number of beneficial substitutions must be

equal to the number of deleterious substitutions, and since the deleterious mutants are

unlikely to fix there must be many more of them. We can make a rough argument that the

contribution of deleterious mutants will dominate the fixation/extinction time, based on

the known fact that the ratio Pfix(r)/Pfix(1/r) ≈ rN , where r = fm/fp. That is, beneficial

mutants are more likely than deleterious ones to fix by a typical factor of rN , and therefore

there must be rN times as many deleterious mutants in steady state as beneficial ones. This

assumes the strength of deleterious mutants is similar to the strength of beneficial ones (as

would happen for an EM model). If expected fixation/extinction time for the s < 0 case is

weighted by this factor of rN compared to the s > 0 case (which only grows as logN) it

will dominate the average. Thus we expect the average fixation time to be slightly less than

2 logN , since the s < 0 fixation/extinction time is always less than the neutral 2 logN , and

in the steady state we also expect most substitutions to be near neutral (except for unusual

configurations of genotype-space).

We demonstrate this for a particular choice of g(s) appropriate for steady state: The

condition on g(s) in steady state is that
∫
sg(s)Pfix(s)ds = 0, that the average s is 0. This
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Figure B.3: Plot of the mean s vs the fixation/extinction time, as we vary σ for the choice
of g(s) described in the text.
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condition is obtained by assuming that the population is in a state with fitness f0, requiring

that the average ∆f = ff − f0 due to a substitution to be 0, and rewriting in terms of s.

One way to satisfy this constrain is with g(s) ∝ k(s)/Pfix(s) for any even function k(s).

Here we choose k(s) to be a Gaussian parametrized by its standard deviation σ and we

calculate the mean fixation/extinction time and the mean s for varying σ. The result is

show in fig xx. As expected, the average fixation/extinction time is less than the neutral

time, and follows the s < 0 fixation/extinction time closely.
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Appendix C

Yeast Selection Tests and Fits

Table C.1: Full summary of tests for correlations between TF-DNA binding energies and

growth rates after knockouts of genes regulated by the TF, expression levels of regulated

genes, KA/KS ratios for regulated genes, and distances between TF sites and the TSS of

the regulated gene.

Table C.2: Full summary of parametric fits of fitness landscapes to TF binding site data.



(A) Dataset (B) Growth Rate (C) Expression Level (D) (E) TSS Distance

REB1 (essential TF)

Total sites: 749
Unique sites: 235

Essential Noness.

Total Data 211 481

Expr Data 199 419

192 371

-12.538 -12.634

0.338 0.466

0.911 0.845

ROX1 (nonessential TF)

Total sites: 93
Unique sites: 58

Essential Noness.

Total Data 17 68

Expr Data 16 63

17 49

-11.566 -11.769

0.083 0.828

0.712 0.875

MET32 (nonessential TF)

Total sites: 68
Unique sites: 39

Essential Noness.

Total Data 5 59

Expr Data 4 47

4 49

-9.738 -8.66

3.917 1.136

0.377 0.25

RPN4 (nonessential TF)

Total sites: 188
Unique sites: 38

Essential Noness.

Total Data 70 103

Expr Data 67 87

65 79

-9.773 -10.016

0.297 0.696

0.226 0.169

MET31 (nonessential TF)

Total sites: 77
Unique sites: 35

Essential Noness.

Total Data 10 60

Expr Data 9 51

10 49

-8.65 -8.318

0.434 0.74

0.151 0.0

PDR3 (nonessential TF)

Total sites: 73
Unique sites: 31

Essential Noness.

Total Data 5 53

Expr Data 5 48

5 36

-7.524 -5.214

3.794 1.495

0.298 1.2

YAP7 (nonessential TF)

Total sites: 36
Unique sites: 22

Essential Noness.

Total Data 13 23

Expr Data 13 22

11 18

-9.936 -9.076

2.575 2.865

0.182 0.583

 Ratio

 Data

 = -0.034, p = 0.460  = -0.024, p = 0.552  = 0.003, p = 0.949  = -0.018, p = 0.614

 Data

 = 0.151, p = 0.227  = 0.086, p = 0.449  = -0.238, p = 0.054  = 0.029, p = 0.779

 Data

 = -0.134, p = 0.318  = 0.108, p = 0.449  = -0.030, p = 0.832  = 0.004, p = 0.977

 Data

 = -0.013, p = 0.899  = -0.137, p = 0.090  = 0.199, p = 0.017  = 0.157, p = 0.032

 Data

 = 0.079, p = 0.554  = 0.091, p = 0.490  = 0.056, p = 0.673  = 0.004, p = 0.976

 Data

 = -0.173, p = 0.219  = 0.015, p = 0.913  = -0.008, p = 0.958  = -0.138, p = 0.245

 Data

 = 0.200, p = 0.361  = -0.017, p = 0.924  = -0.012, p = 0.949  = 0.187, p = 0.274
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BAS1 (nonessential TF)

Total sites: 41
Unique sites: 21

Essential Noness.

Total Data 5 30

Expr Data 5 25

5 28

-8.926 -7.792

0.896 6.49

0.214 0.2

STB5 (nonessential TF)

Total sites: 28
Unique sites: 19

Essential Noness.

Total Data 5 20

Expr Data 5 18

5 14

-9.918 -9.893

0.317 0.116

0.222 0.4

AFT1 (nonessential TF)

Total sites: 42
Unique sites: 18

Essential Noness.

Total Data 5 31

Expr Data 4 30

5 23

-11.423 -11.475

0.006 0.036

0.417 0.4

CUP9 (nonessential TF)

Total sites: 58
Unique sites: 13

Essential Noness.

Total Data 11 43

Expr Data 11 32

11 31

-11.607 -11.681

0.141 0.494

0.139 0.1

MCM1 (essential TF)

Total sites: 18
Unique sites: 13

Essential Noness.

Total Data 2 15

Expr Data 2 12

2 12

-8.58 -9.252

0.0 9.927

0.8 2.0

CIN5 (nonessential TF)

Total sites: 19
Unique sites: 12

Essential Noness.

Total Data 2 15

Expr Data 2 10

2 12

-13.683 -13.841

0.046 1.139

0.5 1.0

GAT1 (nonessential TF)

Total sites: 88
Unique sites: 11

Essential Noness.

Total Data 8 71

Expr Data 8 63

7 61

-10.048 -10.036

0.041 0.035

0.362 0.429

 Data

 = 0.211, p = 0.264  = -0.046, p = 0.809  = -0.025, p = 0.889  = 0.051, p = 0.752

 Data

 = 0.116, p = 0.625  = -0.154, p = 0.484  = 0.232, p = 0.339  = 0.004, p = 0.983

 Data

 = -0.005, p = 0.981  = 0.011, p = 0.951  = -0.145, p = 0.461  = -0.024, p = 0.879

 Data

 = -0.045, p = 0.774  = -0.029, p = 0.855  = -0.078, p = 0.624  = 0.140, p = 0.294

 Data

 = -0.437, p = 0.104  = 0.488, p = 0.076  = 0.526, p = 0.053  = 0.166, p = 0.511

 Data

 = -0.006, p = 0.984  = 0.006, p = 0.986  = 0.171, p = 0.559  = -0.228, p = 0.349

 Data

 = 0.228, p = 0.058  = -0.163, p = 0.175  = 0.269, p = 0.026  = -0.059, p = 0.585
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MSN2 (nonessential TF)

Total sites: 141
Unique sites: 8

Essential Noness.

Total Data 19 108

Expr Data 17 97

15 87

-8.216 -8.433

1.577 2.218

0.097 0.059

CAD1 (nonessential TF)

Total sites: 28
Unique sites: 8

Essential Noness.

Total Data 3 25

Expr Data 3 23

3 20

-8.635 -7.91

3.585 1.571

0.2 0.0

ACE2 (nonessential TF)

Total sites: 45
Unique sites: 6

Essential Noness.

Total Data 7 29

Expr Data 7 26

6 23

-10.954 -11.023

0.094 0.065

0.0 0.0

YAP3 (nonessential TF)

Total sites: 38
Unique sites: 6

Essential Noness.

Total Data 8 30

Expr Data 8 24

8 24

-13.503 -13.718

0.199 0.535

0.276 0.0

GCN4 (nonessential TF)

Total sites: 9
Unique sites: 5

Essential Noness.

Total Data 1 8

Expr Data 1 5

1 8

-16.442 -14.357

0.0 1.736

0.429 2.0

MATA2 (nonessential TF)

Total sites: 13
Unique sites: 4

Essential Noness.

Total Data 1 10

Expr Data 1 9

1 7

-8.639 -8.69

0.0 0.011

0.444 1.0

YAP1 (nonessential TF)

Total sites: 6
Unique sites: 4

Essential Noness.

Total Data 0 6

Expr Data 0 6

0 5

-9.143 nan

nan 2.114

0.6 nan

 Data

 = -0.194, p = 0.046  = -0.020, p = 0.834  = -0.032, p = 0.750  = -0.014, p = 0.873

 Data

 = 0.022, p = 0.917  = -0.167, p = 0.415  = 0.496, p = 0.016  = 0.165, p = 0.403

 Data

 = -0.075, p = 0.698  = 0.031, p = 0.865  = -0.284, p = 0.135  = 0.082, p = 0.591

 Data

 = -0.083, p = 0.664  = -0.111, p = 0.546  = 0.103, p = 0.574  = -0.085, p = 0.611

 Data

 = -0.125, p = 0.768  = 0.580, p = 0.228  = -0.345, p = 0.363  = 0.017, p = 0.965

 Data

 = -0.207, p = 0.593  = -0.435, p = 0.209  = 0.247, p = 0.555  = 0.399, p = 0.177

 Data

 = -0.530, p = 0.280  = -0.441, p = 0.381  = 0.667, p = 0.219  = 0.706, p = 0.117
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CBF1 (nonessential TF)

Total sites: 49
Unique sites: 3

Essential Noness.

Total Data 7 40

Expr Data 7 36

6 32

-8.048 -8.06

0.001 0.002

0.132 0.143

DAL80 (nonessential TF)

Total sites: 44
Unique sites: 3

Essential Noness.

Total Data 4 35

Expr Data 4 30

4 31

-10.969 -11.245

0.0 0.202

0.294 0.0

AFT2 (nonessential TF)

Total sites: 118
Unique sites: 2

Essential Noness.

Total Data 17 82

Expr Data 15 70

15 63

-13.45 -13.505

0.01 0.016

0.099 0.0

SKO1 (essential TF)

Total sites: 12
Unique sites: 2

Essential Noness.

Total Data 1 11

Expr Data 1 10

1 9

-7.525 -7.801

0.0 0.343

0.0 0.0

 Data

 = -0.316, p = 0.053  = -0.037, p = 0.816  = -0.220, p = 0.185  = -0.080, p = 0.586

 Data

 = 0.151, p = 0.395  = -0.364, p = 0.034  = 0.277, p = 0.107  = -0.190, p = 0.217

 Data

 = 0.062, p = 0.586  = 0.047, p = 0.671  = -0.257, p = 0.023  = 0.061, p = 0.510

 Data

 = 0.000, p = 1.000  = 0.299, p = 0.372  = 0.406, p = 0.244  = 0.000, p = 1.000

99



100

Table C.1: Full summary of tests for site-specific selection. For 25 TFs we com-
pute TF-DNA interaction energies (in kcal/mol) for each site. Columns from left to right:
(A) Essentiality of the TF according to the Yeast Deletion Database; total number of bind-
ing sites for each TF; total number of sites with unique sequences. The table lists how
many essential and nonessential genes are regulated by each TF, and how many of these
genes have gene expression and S. paradoxus KA/KS ratio data. We also report the mean
energy Ē and the variance V of essential and nonessential sites, and mean Hamming dis-
tance d̄ between S. cerevisiae and S. paradoxus sites regulating essential and nonessential
genes. (B) Growth rate in strains with gene knockouts versus energy of TF binding sites
regulating the knockout genes. (C) Gene expression versus energy of TF sites regulating
the genes. (D) Ratio of nonsynonymous to synonymous substitutions (KA/KS) in genes
versus energy of their TF regulatory sites. (E) Distance between each binding site and the
closest transcription start site (TSS) versus the energy of the site. For (B)–(E) we report
the Spearman rank correlation ρ between each property and site energy, along with the
p-value.
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Table C.2: Summary of fitness landscape fits to TF binding site data. We consider
12 TFs which have more than 12 unique binding site sequences. Each row corresponds
to a TF, ranked in the decreasing order of the number of unique binding site sequences.
Columns, from left to right: (A) Summary of TF binding site data. (B) Same as Fig. 5B.
(C) Same as Fig. 5A. (D) Fitted values of fitness landscape parameters and maximized
log-likelihoods for the unconstrained fit to the Fermi-Dirac function of Eq. 7 (“UFD”),
constrained fit to the Eq. 7 with f0 = 0.99 (“CFD”), and fit to an exponential fitness
function (“EXP”). (E) Same as Fig. 5D. (F) Same as Fig. 5C. (G) Left panel: Log-likelihood
of the unconstrained Fermi-Dirac model as a function of the effective chemical potential µ.
For reference, the distribution of functional binding site energies (same as in (B)) is shown
on top. Right panel: Log-likelihood as a function of the effective inverse temperature β. For
reference, the inverse room temperature 1.69 (kcal/mol)−1 is shown as the vertical dashed
line. To create the log-likelihood plots, either µ or β were held fixed while all the other
parameters were re-optimized. (H) Heatmap of log-likelihood as a function of log ν and
− log(1− f0) (note that ν(1− f0) = γ = constant corresponds to a straight line with slope
1 in these coordinates). For likelihoods that have a maximum near f0 = 0, insets show
a zoomed-in view. To create the log-likelihood heatmaps, both ν and f0 were held fixed
while all the other parameters were re- optimized. Note that in F and H, the maximum
values do not always match those listed in D because we employ an additional round of
conjugate-gradient ascent after locating the approximate maximum on the grid.
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[18] J. Berg, S. Willmann, and M. Lässig, “Adaptive evolution of transcription factor

binding sites,” BMC Evol Biol, vol. 4, p. 42, 2004.



106
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