
SEMANTIC PARSING USING LEXICALIZED
WELL-FOUNDED GRAMMARS

by

GAURAV KHARKWAL

A thesis submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Computer Science

Written under the direction of

Dr. Matthew Stone

and approved by

New Brunswick, New Jersey

January, 2014

ABSTRACT OF THE THESIS

Semantic Parsing using Lexicalized Well-Founded

Grammars

By GAURAV KHARKWAL

Thesis Director:

Dr. Matthew Stone

Research in semantic parsing has focused on developing computational systems capable

of simultaneously performing syntactic, i.e. structural, and semantic, i.e., meaning-

based, analyses of given sentences. We present an implementation of a semantic pars-

ing system using a constraint-based grammatical formalism called Lexicalized Well-

Founded Grammars (LWFGs). LWFGs are a type of Definite Clause Grammars, and

use an ontology-based framework to represent syntactico-semantic information in the

form of compositional and interpretation constraints. What makes LWFGs particu-

larly interesting is the fact that these are the only constraint-based grammars that are

provably learnable. Furthermore, there exist tractable learning algorithms for LWFGs,

which make these especially useful in resource-poor language settings.

In this thesis, we present a revised parsing implementation for Lexicalized Well-

Founded Grammars. Previous work implemented semantic parsers using Prolog, a

declarative language, which is slow and does not allow for an easy extension to a

stochastic parsing framework. Our implementation utilizes Python’s Natural Language

Toolkit which not only allows us to easily interface our work with the natural language

processing community, but also allows for a future possibility of extending the parser

to support broad-coverage and stochastic parsing.

ii

Table of Contents

Abstract . ii

List of Tables . v

List of Figures . vi

1. Introduction . 1

1.1. Thesis Contributions . 2

1.2. Thesis Outline . 3

2. Related Work . 5

2.1. Shallow semantic parsing . 5

2.1.1. Statistical semantic parsing . 6

2.1.2. Formalism-based Semantic Parsing 11

3. Lexicalized Well-Founded Grammars . 15

3.1. Semantic Molecules . 15

3.2. Semantic Composition and Interpretation 18

3.3. Formal Definition . 19

3.4. Parsing Lexicalized Well-Founded Grammars 21

3.4.1. Prediction Rule . 23

3.4.2. Completion Rule . 23

3.4.3. Constraint Rule . 23

4. Revised LWFG Parser . 24

4.1. The Case for Python . 24

4.1.1. NLTK . 24

4.1.2. Scalability and long-term investment 24

4.2. Data Structures . 25

4.3. Revised Parser . 27

4.4. Implementation . 29

4.5. Complexity Analysis . 32

5. Evaluation . 36

iii

6. Future Directions . 44

7. Conclusion . 49

A. Appendices . 50

A.1. Sample Lexicon of the LWFG . 50

A.2. Sample Production rules of the LWFG 51

iv

List of Tables

3.1. Muresan’s (2006) deductive parser for LWFG 21

4.1. A revised LWFG parser where constraint and completion rules are merged

together. 27

5.1. Descriptive statistics of LWFG parser’s performance on a random sample

of sentences . 39

5.2. Descriptive statistics of baseline parser’s performance on a random sam-

ple of sentences . 39

v

List of Figures

2.1. Example LFG structures . 12

2.2. Example HPSG lexical entry . 13

3.1. Example semantic molecules for formal, proposal, and formal proposal . 16

4.1. Ambiguous parse-trees corresponding to the noun compound, football

team manager . 34

5.1. Histogram of number of sentences from the random sample used for eval-

uation as a function of sentence length 37

5.2. Derivation tree for the sentence particle boy afternoon boy door treatment

man pencil particle went . 38

5.3. Graphical representation of the descriptive statistics for the LWFG parser 40

5.4. Graphical representation of the descriptive statistics for the baseline parser 41

5.5. Ratio of mean chart size per sentence length from our LWFG parser and

the baseline CFG parser. 42

5.6. Ratio of mean parsing time per sentence length from our LWFG parser

and the baseline CFG parser. 43

6.1. An example feature forest from Miyao and Tsujii (2008) 46

6.2. Unpacked trees corresponding to the feature forest shown in Figure 6.1 . 47

vi

1

1. Introduction

A long-term goal of any research endeavor in natural language understanding is to de-

velop an autonomous system that can interpret natural language utterances. Semantic

parsing is a sub-area of natural language understanding where the specific goal is to

produce a computational system that is capable of analyzing written sentences and

generating an abstract representation of its “meaning.” Here, meaning is usually oper-

ationalized based on the intended application, but for most applications, being able to

identify “who did what to whom (when where and how)” fulfills the criterion.

In recent history, three different approaches have been taken to tackle this prob-

lem. One such attempt is called shallow semantic parsing, or semantic role labeling.

Here, instead of coming up with a detailed meaning representation of sentences, the ob-

jective is to label words and phrases with semantic roles. These semantic roles specify

the relation between the word and the predicate of the sentence (i.e., the main verb).

Work in this domain has been largely motivated by Gildea and Jurafsky (2002), who

presented a statistical machine-learning approach to developing shallow semantic pars-

ing systems. Since then, many other researchers have used similar techniques to further

develop and refine such systems (e.g., Chen and Rambow, 2003; Fleischman et al., 2003;

Xue and Palmer, 2004; Pradhan, 2006; Surdeanu et al., 2007; Toutanova et al., 2008;

Vickrey, 2010).

However, as mentioned before, the goal of shallow semantic parsing systems

is not to generate a full meaning representation of a sentence. Another approach has

therefore been to use statistical machine learning techniques to develop semantic parsers

which are capable of generating more detailed meaning representations (e.g., Ge and

Mooney, 2005; Wong and Mooney, 2007; Lu et al., 2008; Poon and Domingos, 2009;

Zettlemoyer and Collins, 2009; Kwiatkowski et al., 2010). In this approach, a set of

sentences are manually annotated with a “meaning representation language.” Subse-

quently, techniques similar to those used for statistical machine translation are used

to perform alignment between the syntactic structures and the meaning representation

structures of the sentences. Lastly, machine-learning techniques are used to develop

2

synchronous grammars to simultaneously perform a syntactic and a semantic analysis

on sentences.

One conceptual limitation of such an approach is the divorce between the un-

derlying grammatical formalism and the meaning representation language. As such,

this approach tends to be agnostic of linguistic research on semantics. Thus, another

approach often taken is to use linguistic constraint-based grammatical formalisms that

represent both syntactic and semantic properties of the language as constraints in the

grammar. Examples of such formalisms include Lexical Functional Grammar (Bresnan,

1982, 2001), Head-driven Phrase Structure Grammar (Pollard and Sag, 1987, 1994), and

Generalized Phrase Structure Grammar (Gazdar, 1985). Essentially, semantic parsing

systems built using such formalisms are simply parsing systems where a semantic in-

terpretation naturally follows from a syntactic derivation of a sentence.

1.1 Thesis Contributions

In this thesis, we present an approach to generate an abstraction of meaning given

an input sentence. Our approach utilizes an ontology-based grammatical framework

called Lexicalized Well-Founded Grammar (Muresan, 2006; Muresan and Rambow,

2007; Muresan, 2010, 2011). The framework is similar in principle to other constraint-

based grammatical formalisms, and provides an effective way of representing meaning

at a lexical level and combining these lexical meaning representations to generate a

meaning representation for the whole sentence.

What makes this formalism particularly interesting is the fact that, unlike other

such formalisms, Lexicalized Well-Founded Grammars have been shown to be provably

learnable from data (Muresan and Rambow, 2007). This, together with the fact that

there exist tractable learning algorithms for the formalism (Muresan and Rambow,

2007; Muresan, 2010), make Lexicalized Well-Founded Grammars a better choice for

applications in resource-poor settings where statistical semantic parsing is ill-suited.

The work presented in this thesis builds upon an earlier work by Muresan

(2006, 2010) to present a processing system (i.e., a semantic parser) that can generate

3

a sentence-level meaning representation given a Lexicalized Well-Founded Grammar.

Specifically, we present a revised implementation of their algorithm in an imperative

programming language. We justify our approach in two ways: 1) Using a programming

language like Python, which supports a large open-source natural language processing

community, allows us to interface our work with the rest of the community. In addition,

it allows us to use and extend other NLP resources supported by Python. 2) The nature

of the programming language will allow us to more easily extend our work to support

broad-coverage and stochastic parsing. This is unlike Prolog which would have proved

to be a challenge due to its not being naturally suited for numerical programming

We evaluate our implementation using random sentences generated using a sam-

ple Lexicalized Well-Founded Grammar. We further compared our parser with a similar

parsing system that instead uses a context-free grammar. Not unexpectedly, the CFG

parser proved much faster than ours. However, our parser was able to generate a

semantic representation for every sentence that we tested. Furthermore, our parser

provided significantly less derivations per sentence than the CFG parser (i.e., there was

less ambiguity per sentence), which is so because cases of a mismatch in grammatical

properties like number, case, etc. are detected early and removed from consideration.

1.2 Thesis Outline

The thesis is organized as follows:

• Chapter 2 presents a review of previous research on semantic parsing, and sets

up the background for this thesis.

• Chapter 3 provides a detailed review of Lexicalized Well-Founded Grammars, and

the parsing algorithm developed by Muresan (2006).

• Chapter 4 presents our implementation of the LWFG parsing algorithm. It begins

with a discussion on the motivation behind our work. That is followed by a

detailed description of the data structures used and the actual implementation.

It ends with a discussion on complexity analysis.

4

• Chapter 5 presents an empirical evaluation of our parser.

• Chapter 6 discusses directions for future research.

• Chapter 7 offers our final conclusion.

5

2. Related Work

In this chapter, we present a discussion on other attempts at developing semantic

parsers. Research in semantic parsing can be broadly classified into three categories

which are not necessarily mutually exclusive: 1) shallow semantic parsing; 2) statistical

semantic parsing; 3) formalism-based semantic parsing. We next attempt to provide a

broad overview of the three different approaches.

2.1 Shallow semantic parsing

Shallow semantic parsing is also referred to as semantic role labeling, and the task

essentially involves labeling phrases of a given sentence with semantic roles (also known

as semantic arguments). These semantic roles are often associated with a target word,

which is usually the predicate or main verb of the sentence or clause. Essentially, the

task involves identifying each entity, abstract or otherwise, and labeling it with some

information specific to the role it plays in the event described by the main verb. For

example, in the sentence the boy kissed the girl, the boy is the agent, the girl is the

patient, and the event is kiss. The choice of actual semantic role labels can often vary

depending on the task and resources at hand, and while our example used generic role

labels, it is also possible for the entities to be described more specifically. For example,

the boy may be labeled as the kisser and the girl as the kissed.

Early work on automatic semantic role labeling had mostly relied on utilizing

syntactic structures to derive semantic interpretations (e.g., Warren and Friedman,

1982; Hirst, 1983; Sondheimer et al., 1984; see Pradhan, 2006 for a review). Subsequent

work was greatly facilitated by the availability of annotated resources such as FrameNet

(Baker et al., 1998), PropBank (Palmer et al., 2005), NomBank (Meyers et al., 2004),

and VerbNet (Schuler, 2005). The availability of such resources led to a shift in the

approach towards semantic role labeling with the emphasis now being on using trained

corpora to develop statistical systems that could perform labeling accurately. The

seminal work was done by Gildea and Jurafsky (2002) in which they used about 50,000

sentences hand-annotated with roles from FrameNet to train a statistical classifier to

6

perform automatic semantic role labeling. Following their work, recent attempts have

used a conceptually similar framework to develop high-performing systems. The idea

has been to use state-of-the-art statistical techniques and clever feature-engineering to

improve upon performance (e.g., Chen and Rambow, 2003; Fleischman et al., 2003;

Xue and Palmer, 2004; Pradhan, 2006; Surdeanu et al., 2007; Toutanova et al., 2008;

Vickrey, 2010).

Semantic role labeling has recently been shown to be a fairly useful compo-

nent in the natural language processing pipeline, and is often used as a pre-processing

step in many higher-level applications. For example, semantic role labeling has been

used for coreference resolution (Ponzetto and Strube, 2006), question-answering sys-

tems (Narayanan and Harabagiu, 2004; Shen and Lapata, 2007), information extraction

(Surdeanu et al., 2003; Barnickel et al., 2009; Christensen et al., 2010), and machine

translation (Boas, 2002).

However, semantic role labeling does have some limitations. Semantic roles are

sufficient to identify relations between various entities in a sentence, but they cannot

fully represent the meaning of a sentence. For example, consider the following sentence

the boys like to play, and the boy likes to play. A semantic role labeling system will

correctly identify the boys and the boy as being the entities that like to play. However,

it would be unable to notice that the boys is plural form of the boy, or that like and

likes are both forms of the same verb like, their forms differing only because of gram-

matical agreement. Thus, for applications where a complete meaning representation of

a sentence is desired, semantic role labeling systems fail to be adequate.

2.1.1 Statistical semantic parsing

Many researchers have thus undertaken significant effort to propose approaches for gen-

erating (near-) complete meaning representations for sentences. One line of work has

attempted to solve this problem by using sophisticated machine learning techniques to

train statistical systems for semantic parsing (e.g., Ge and Mooney, 2005; Wong and

Mooney, 2007; Lu et al., 2008; Poon and Domingos, 2009; Zettlemoyer and Collins,

7

2009; Kwiatkowski et al., 2010). The common thread in this line of work is to use cor-

pora containing sentences/phrases annotated with a meaning representation language,

and to use supervised or unsupervised learning methods to derive statistical systems.

These meaning representations are, more often than not, not integrated with any un-

derlying grammatical (i.e. syntactic) formalism, and thus these systems often have to

also learn an alignment between the meaning representational language and the gram-

matical formalism.

A caveat here, while these meaning representation languages tend to capture

greater semantic detail than shallow semantic representations, they also tend not be

a complete semantic representation. As such, these languages tend to be agnostic of

linguistic research in semantics, and various aspects of meaning tied to things like the

discourse, real-world ontologies, and interpretive dependencies fail to be adequately

captured. However, while these representations have theoretical limitations, they tend

to be well-suited for many applications, and thus offer a compromise between what

ought to be and what can be.

A considerably large subset of researchers, led mostly by Raymond Mooney,

have attempted to use techniques derived from statistical machine translation to de-

velop semantic parsing systems that map natural language phrases to a logical mean-

ing representational languages (e.g., Ge and Mooney, 2005; Wong and Mooney, 2006,

2007; Lu et al., 2008; Chen and Mooney, 2008; Liang et al., 2009; Kim and Mooney,

2012). Their work has largely considered domain-specific meaning representations. For

example, they have often used a corpus derived from instructions in the RoboCup tour-

nament. The instructions are coded in a formal language called CLang, an example

of which is presented below:

((bpos (penalty-area our))

(do (player-except our {4})

(pos (half our))))

The example instruction corresponds to the sentence: If the ball is in our penalty

area, all our players except player 4 should stay in our half. The common thread in

8

their work has been to first develop an alignment and then a mapping between the

underlying syntactic structure of a sentence and its logical meaning representation.

Often, the attempt is to develop a generational system that can simultaneously derive

natural language phrases and meaning representations. These systems are then trained

on annotated corpora to develop statistical semantic parsing systems.

For example, Ge and Mooney (2005) describe a system called Scissor (Semantic

Composition that Integrates Syntax and Semantics to get Optimal Representations)

that builds upon Collins’ head-driven model 2 (Collins, 1997). The system modified

Collins’ model by incorporating semantic labels into non-terminals. In addition, the

system was suitably modified to label each node of a sentence’s derivation tree with the

semantic label of the head child, along with the head word and its POS tag. Lastly, the

system was trained on a corpus of manually-annotated natural language sentences to

develop a probabilistic generative system that decodes a sentence’s meaning by finding

its most likely derivation.

The Wasp (Word Alignment-based Semantic Parsing) system of Wong and

Mooney (2006) is conceptually similar to Scissor and was constructed in two stages.

First, they used GIZA++ (Och and Ney, 2003; Brown et al., 1993) to perform an

alignment between natural language phrases and the corresponding meaning represen-

tation. Next, they constructed a synchronous context-free grammar whose rules are of

the form:

A→ 〈α, β〉

Where α is the natural language phrase and β is its corresponding meaning represen-

tational translation. Finally, Wasp is essentially a maximum-entropy model over the

synchronous context-free grammar.

Lu et al. (2008) used the same training set as Wong and Mooney (2006) to

describe a slightly different approach. Unlike earlier work that essentially relied on

using the syntactic structure of natural language sentences to define a correspondence

between the sentence and its meaning representation, their work used components of the

grammatical structure of the meaning representation language instead. They defined

9

and used hybrid trees, where meaning representation rules constitute internal nodes,

whereas natural language words/phrases constitute the leaves. They further defined a

Markovian generative process based on these hybrid trees to generate natural language

sentences using meaning representation rules. Their semantic parsing model essentially

used a joint probability distribution of generating hybrid trees given sentences and

meaning representations to estimate the likelihood of a given sentence having some

meaning representation, and chose the most likely meaning representation.

The works described earlier have all been under fully-supervised settings, where

each sentence is annotated with its corresponding meaning representation. Recent work

along similar lines has been attempting to extend these models to be able to learn from

ambiguous supervision, where sentences are annotated with a set of potential meaning

representations. For example, Chen and Mooney (2008) extended Wasp using an EM-

like retraining system that iteratively improves upon the selection of correct natural

language and meaning representation pairs. Along similar veins, Kim and Mooney

(2012) extended the hybrid tree approach of Lu et al. (2008) to handle ambiguous

supervision. Their approach is inspired by that of Liang et al. (2009), and uses a

two-step generative approach to map natural language to its meaning representation.

Their generative model first chooses an event to be described in a given world state

(comprising meaning representations), and then models the probability of getting a

natural language sentence from a meaning representation specified by the event.

Another line of work has attempted to map natural language sentences to

lambda-calculus encodings of their meaning (Zettlemoyer and Collins, 2007, 2009, 2012;

Kwiatkowski et al., 2010). Lambda-calculus encodings allow for a domain-independent

representation of meaning, and thus is more easily generalizable. For example, lambda-

calculus based meaning representation of the sentence List flights to Boston on Friday

night would be:

λx.flight(x) ∧ to(x,Boston) ∧ day(x, Friday) ∧ during(x, night)

Their approach has relied on using Combinatory Categorial Grammar (Steedman, 1996,

10

2001). CCG is a lexicalized, mildly context-sensitive grammatical formalism, and of-

fers an integrated treatment of syntax and semantics making the use of compositional

semantics based on lambda calculus. Thus, CCG is well-suited to develop a system to

map natural language to a lambda-calculus based meaning representation.

The core of CCG is the lexicon, and in its purely syntactic form, the lexicon

consists of words and their syntactic types. An example lexicon is as follows:

flights := N

to := (N\N)/NP

Boston := NP

CCG also has a set of combinatory rules which describe how adjacent syntactic

categories in a string can be recursively combined. For example, the following set of

rules are called functional application rules:

A/B B =⇒ A

B A\B =⇒ A

Thus, an intuitive interpretation of complex syntactic categories of the form

A\B and A/B is that these are categories of type A which are missing a string of type

B to the left and right respectively. The work by Zettlemoyer and Collins extends these

CCGs to incorporate lambda-calculus into the lexicon and the combinatory rules. For

example, a revised lexicon is shown below:

flights := N : λx.flight(x)

to := (N\N)/NP : λy.λf.λx.f(x) ∧ to(x, y)

Boston := NP : Boston

11

A modified example of the functional application rules is shown below:

A/B : f B : g =⇒ A : f(g)

B : g A\B : f =⇒ A : f(g)

Thus, whenever a complex category is combined with its missing type, its

lambda function is applied to the expression of the subsumed category. For example,

the derivation of the phrase flights to Boston is shown below:

flights

N : λx.flight(x)

to
(N\N)/NP : λy.λf.λx.f(x) ∧ to(x, y)

Boston
NP : boston

(N\N) : λf.λx.f(x) ∧ to(x,Boston)

N : λx.flight(x) ∧ to(x,Boston)

The work by Zettlemoyer and Collins (2007, 2012) has essentially built upon

this idea to develop a probabilistic-CCG parser that can simultaneously derive the

lambda-calculus representation of words. The basic idea is to first derive a lexicon

using an annotated corpus mapping sentences and their logical forms. Subsequently, a

log-linear model is derived to define a conditional distribution of the form P (L, T |S),

where S is the sentence, L is the logical form, and T is the sequence of steps taken

to derive L. The semantic parser chooses the most-likely parse to generate the logical

form of a given sentence. The general idea has since been refined to be able to handle

context-dependent interpretation of sentences (Zettlemoyer and Collins, 2007), and to

handle fairly-large space of possible grammars (Kwiatkowski et al., 2010).

2.1.2 Formalism-based Semantic Parsing

Another approach to generating (near-) complete meaning representations of sentences

has relied on using grammatical formalisms that have been explicitly developed for

deep language understanding. This line of work differs from the other in that there

is no divorce between the natural language grammatical structure and meaning repre-

sentational language, and as such, researchers here tend to be more open to linguistic

theories. The approach relies on using constraint-based grammatical formalisms which

directly encode syntactico-semantic constraints as features in the syntactic grammar

12

Figure 2.1: The syntactic and semantic structures from Lexical Functional Grammars
for the sentence Alex promised Sasha to leave. Example taken from Johnson (2003)

itself. These formalisms may be based on linguistic theories, such as Lexical Functional

Grammar (Bresnan, 1982, 2001), Head-driven Phrase Structure Grammar (Pollard and

Sag, 1987, 1994), and Generalized Phrase Structure Grammar (Gazdar, 1985). On the

other hand, it is also possible for the formalisms to be linguistic theory-neutral and

be purely computational tools, such as Functional Unification Grammars (Kay, 1984),

Definite Clause Grammars (Pereira and Warren, 1980), and PATR-II (Shieber et al.,

1983).

All such constraint-based formalisms differ in how they actually represent the

syntactico-semantic constraints. For example, Lexical Function Grammars often use

several different structures to represent different aspects of a sentence’s syntactic and

semantic structures. In Figure 2.1, we see two example structures for the sentence Alex

promised Sasha to leave. The structure on the left, called a c-structure, represents the

syntactic structure of the sentence (and is not unlike regular phrase structure trees),

whereas the one on the right, called an f-structure, represents the semantic structure of

the sentence using an attribute value matrix. On the other hand, Head-driven Phrase

Structure Grammars offer a very different representation, and use a lexicalist approach

to represent syntactic and semantic information. Figure 2.2 shows an example lexical

entry for the word loves. As we can see, the representation is a rich feature structure,

and HPSG parsing involves unifying such feature structures across words and phrases.

Again, the idea in principle is to encode all necessary linguistic constraints into

the definition of the syntactic grammar itself, where constraints could be syntactic as

13

Figure 2.2: A Head-drive Phrase Structure Grammar entry for the word loves. Example
taken from Miyao and Tsujii (2008)

well as semantic. Then, given a new sentence, a rule-by-rule syntactic derivation also

leads to a simultaneous semantic analysis of the sentence. There is a rich history of

work in developing constraint-based grammars and algorithms to parse using those. In

recent history, the impetus has diverted slightly to focus on developing probabilistic

routines for parsing using these grammars (e.g., Abney, 1997; Johnson et al., 1999;

Geman and Johnson, 2002; Johnson, 2003; Miyao and Tsujii, 2002, 2005, etc.)

The pioneering work in the domain was by Abney (1997), where they proposed

a general framework for estimating probabilities for constraint-based grammars. They

noted that unlike context-free grammars which produced parse trees following syntactic

derivations, constraint-based grammars produced dags. Thus, they proposed using

Markov Random fields (or log-linear models) to estimate a probability distribution over

the grammars, as opposed to the maximum likelihood estimation (i.e., rule counting)

method often used for context-free grammars.

The idea was then carried forward by Johnson and colleagues (Johnson et al.,

14

1999; Geman and Johnson, 2002; Johnson, 2003) to develop stochastic versions of Lex-

ical Functional Grammars (LFG) (Bresnan, 1982, 2001). Johnson et al. (1999) noted

that defining probability distributions over all parses is computationally very expensive

because it requires integrating over all parses of all sentences. However, they pointed

out that for parsing purposes, it is sufficient to have a conditional distribution of parses

given their yields (i.e., the sentences). They estimated this conditional distribution

using log-linear models, following the idea of Abney (1997).

Their work was then extended by Geman and Johnson (2002) to handle broad-

coverage parsing. They built their method on earlier work by Maxwell III and Kaplan

(1995), who had developed dynamic programming routines to parse LFGs by building

“packed representations” to compactly represent a set of parses of any given sentence

instead of simply enumerating all of them. They then used those packed representations

to estimate conditional distributions of generating parses given a sentence with the help

of graphical models.

Along similar veins is the work of Miyao and Tsujii (2002, 2005) who were

working with Head-driven Phrase Structure Grammars (Pollard and Sag, 1987, 1994).

They also used log-linear models to estimate conditional distributions of parses given

a sentence. However, their work differs in the type of data structure they used to

represent multiple parses. The backbone of their approach is something they called

“feature forests.” These feature forests are more general, and less compact, than the

packed representations of Maxwell III and Kaplan (1995). They also presented an

analogue of the inside-outside algorithm (which is used for probabilistic context-free

grammars) to estimate parameters given such feature forest representations.

15

3. Lexicalized Well-Founded Grammars

Lexicalized Well-Founded Grammars (LWFGs) are a type of constraint-based grammars

introduced by (Muresan, 2006; Muresan and Rambow, 2007; Muresan, 2010, 2011),

which extend traditional context-free grammars by incorporating semantic information

into the grammar. LWFGs are functionally a type of Definite Clause Grammars (Pereira

and Warren, 1980), and underlying LWFGs are Well-Founded Grammars, which are

defined to be context-free grammars where there is a partial ordering among the non-

terminals. Such an ordering allows for an ordering of the strings derived from the

grammar, which in turn allows an ordering on the grammar rules. Essentially, such an

ordering facilitates bottom-up induction of these grammars, and as such does not affect

their generative capabilities (see Muresan and Rambow, 2007, for more information on

the grammar’s learnability).

Lexicalized Well-Founded Grammars build upon Well-Founded Grammars by

encoding semantic composition and semantic interpretation constraints at the grammar

rule level. The critical addition in LWFGs are representations called semantic molecules,

which are used to incorporate semantic information at the string level.

3.1 Semantic Molecules

A semantic molecule associated with a natural language string w is defined as w′ =
(
h
b

)
,

where:

1. h (head) encodes the syntactic, or compositional, information of the string.

2. b (body) encodes the semantic information of the string.

These semantic molecules are further classified as elementary semantic molecules

and derived semantic molecules. The former are representations associated with words

and other lexical items, whereas the latter are built by a combination of other semantic

molecules. Figure 3.1 depict examples of elementary and derived semantic molecules.

The head of a semantic molecule is a one-level (i.e. non-recursive) feature struc-

ture, which is depicted as an Attribute-Value Matrix (AVM) in Figure 3.1. Every head

16

Figure 3.1: Example semantic molecules for formal, proposal, and formal proposal

contains at least two attributes: 1) cat – which encodes the syntactic category of the

string; and 2) head – which encodes the semantic head of the string. In addition, there

are features for grammatical features such as agreement, modifier-modifiee relations,

etc. All these features are finite and defined a-priori for each syntactic category.

The body of a semantic molecule is a flat representation which Muresan (2006,

2010) have called OntoSeR (Ontology-based Semantic Representation). Essentially,

OntoSeR is a logical representation built using a set of atomic predicates. The formal

definition of an OntoSeR is as follows:

17

〈OntoSeR〉 := 〈AP 〉|〈OntoSeR〉〈lop〉〈OntoSeR〉

〈AP 〉 := 〈conceptID〉.〈attr〉 = 〈concept〉

〈AP 〉 := 〈conceptID〉〈coord〉〈conceptID〉

〈concept〉 := 〈conceptID〉|〈conceptName〉

〈conceptID〉 := 〈logicalV ariable〉

〈conceptName〉 := 〈lexicalWord〉

〈attr〉 := 〈attrID〉|〈attrName〉

〈attrID〉 := 〈logicalV ariable〉

〈attrName〉 := 〈lexicalWord〉

〈coord〉 := 〈lexicalCoord〉

〈lop〉 := ∧

Here, 〈lop〉 is the logical conjunction operation ∧. The 〈coord〉 operator is

a linguistic coordinator, such as and, or, but, etc. 〈conceptID〉 and 〈conceptName〉

denote concept identifier and concept names in the semantic model. Similarly, 〈attrID〉

and 〈attrName〉 refer to attribute slots in the semantic model, where attribute slots are

either properties or relations. The underlying OntoSeR representation for the grammar

at hand may be changed to reflect the desired level of semantic representation that is

required for the task. For example, we could encode only admissibility relations, such as

thematic roles of verbs and prepositions, at the level of lexical entries, or we could have

a more defined ontology with a hierarchy of concepts and roles, and relations among

concepts. Thus, OntoSeR can be suitably modified to be sufficiently expressive of the

desired aspects of natural language.

Figure 3.1 shows example OntoSeR representations. For example, the OntoSeR

for formal is 〈X1.isa = formal,X2.Y = X1〉. The representation encodes the meaning

of formal as a concept (X1.isa = formal), which is a value of a property of another

concept X2 in the semantic model (X2.Y = X1). In the meaning of formal proposal, we

18

see that X2 is instantiated through composition to be the concept of the noun proposal

(X2 = X3 = X). The variable Y will later be instantiated by the process of semantic

interpretation which is based on a semantic model (e.g., Y=manner).

3.2 Semantic Composition and Interpretation

For Lexicalized Well-Founded Grammars, the lexicon consists of words paired with

elementary semantic molecules. The lexicon does not specify the syntactic context

in which the word is anchored, which makes the LWFG different from certain other

lexicalized formal grammars, such as Combinatory Categorial Grammars (Steedman,

1996). The syntactic context for words is instead learned from examples, in the form

of grammatical rules and compositional constraints.

Thus, the LWFG also has a set of constraint grammar rules, which can be

recursive. The non-terminals in the grammar rules are augmented with syntagmas –

tuples of strings and their semantic molecules
(
wi,
(
hi
bi

))
. For example, a grammar rule

for a noun phrase could be:

NP
(
w,
(
h
b

))
→ Adj

(
w1,

(
h1
b1

))
, Noun

(
w2,

(
h1
b2

))
: Φc(h, h1, h2),Φi(b)

Grammar rules are also augmented with two types of constraints, one for seman-

tic composition Φc, and one for semantic interpretation Φi. The composition constraints

are applied to the heads of the semantic molecules to perform unification of the heads.

The bodies are simply concatenated through logical conjunction along with variable sub-

stitution performed using Φc constraints. The variables to be substituted are discovered

prior to the application of the unification operation. As shown in Figure 3.1, the body

of the semantic molecule for formal proposal is a concatenation of the bodies of the

adjective formal and the noun proposal. Furthermore, we can see that there has been a

variable substitution with both X2 and X3 being substituted by X (or {X2/X,X3/X}),

which we get after unifying the heads of the two semantic molecules and solving a sys-

tem of equations – which are simplified versions of “path equations” (Shieber et al.,

1983). For the grammar rule shown above, along with the semantic molecules shown in

19

Figure 3.1, the semantic composition constraints are given as: Φc(h, h1, h2) = {h.cat =

np, h.head = h1.mod, h.head = h2.head, h.nr = h2.nr, h1.cat = adj, h2.cat = noun}.

In the constraints, the part {h.head = h1.mod, h.head = h2.head} indicates that the

variable denoting the semantic head of the noun phrase formal proposal (X) should

be the same as the variable denoting the semantic head of the noun proposal (X2),

and also the same as the variable denoting the mod attribute of the adjective formal

(X1). In turn, that information gives us the variable binding {X2/X,X3/X}. In Lexi-

calized Well-Founded Grammars, all of these constraints are learned together with the

grammar rules.

Unlike semantic composition constraints, semantic interpretation constraints

are not learned. Instead, they represent the validation based on some semantic model

(the “world truth,” in some sense). In the current implementation of the Lexicalized

Well-Founded Grammars, the semantic interpretation constraints are predicates which

can either succeed or fail. When the constraint succeeds, the variables of the semantic

representation get instantiated with concepts/slots in the semantic model (see, Muresan,

2006, 2010). Continuing with our formal proposal example, the corresponding semantic

interpretation constraint Φi(b) will succeed and return 〈X1.isa = formal,X.manner =

X1, X.isa = proposal〉. On the other hand, if we had a noun phrase fair-hair proposal,

the the constraint would have failed as the phrase is nonsensical. These interpretation

constraints play an important role in the disambiguation of some linguistic phenomena,

such as PP-attachment, coordination, etc. Furthermore, unlike some current broad-

coverage grammars or statistical syntactic parsers, these constraints allow interpretation

of phenomena such as noun-noun compounds and prepositions.

3.3 Formal Definition

We can now formally define the Lexicalized Well-Founded Grammars. Essentially, an

LWFG is a 6-tuple, G = 〈Σ,Σ′, NG, RG, PG, S〉, where:

1. Σ is a finite set of terminal symbols (lexical items)

2. Σ′ is a finite set of elementary semantic molecules corresponding to the set of

20

terminal symbols. In other words, for every w ∈ Σ we have an w′ ∈ Σ′ such that

together w,w′ form a syntagma (pair of string and semantic molecule).

3. NG is a finite set of non-terminal symbols. That is, NG ∩ Σ = ∅.

4. RG is a partial ordering relation, �, among the non-terminals.

5. PG is a set of constraint production rules. Each rule is a triplet (A, (B1, . . . , Bn),Φ),

written as A(σ)→ B1(σ1), . . . , Bn(σn) : Φ(σ̄). Here, σ̄ = (σ, σ1, . . . , σn) such that

σ = (w,w′), σi = (wi, w
′
i), 1 ≤ i ≤ n,w = w1 . . . wn, w

′ = w′1 ◦ · · · ◦ w′n. The ◦ op-

erator denotes the semantic composition operator which unifies the heads of the

semantic molecules and performs variable substitution on concatenated bodies,

as described above. All production rules have the following properties:

• The rules can be classified into one of three categories: ordered non-recursive

rules, ordered recursive rules, and non-ordered rules.

• Every non-terminal symbol is a left-hand side of at least one ordered non-

recursive rule.

• No non-terminal symbol derives an empty string.

• All non-terminals in production rules are augmented with generalized syn-

tagmas.

• All production rules are augmented with semantic composition and semantic

interpretation constraints.

• All production rules ensure grammar reversibility (this point aids grammat-

ical learning, something which we choose not to discuss in this thesis for

brevity.)

6. S ∈ NG is the start symbol and ∀A ∈ NG, S � A.

7. All substrings w that are derived from a non-terminal A have the same category

value in the head of their semantic molecules, given by the name of the non-

terminal. In other words h.cat = A, where w′ =
(
h
b

)
is the semantic molecule of

w.

21

Item form [i, j, σij , A→ α • βΦA] 1 ≤ i, j ≤ n+ 1, A ∈ NG, αβ ∈
N∗G, and ΦA can be true

Axioms [i, i+ 1, σLii+1, Bi → •] 1 ≤ i ≤ n,Bi ∈ NG, Bi → σi ∈
PG, σi = (wi, w

′
i) ∈ Σ× Σ′

Goals [i, j, σLij , A→ αΦA•] 1 ≤ i, j ≤ n+ 1, A ∈ NG

Inference Rules

Prediction
[i,j,σLij ,B→βΦB•]

[i,i,σRii ,A→•BγΦA]
〈A→ Bγ : ΦA〉

Completion
[i,j,σRij ,A→α•BγΦA][j,k,σLjk,B→βΦB•]

[i,k,σRik,A→αB•γΦA]

Constraint
[i,j,σRij ,A→α•ΦA]

[i,j,σLij ,A→αΦA•]
〈` SLDΦA〉 ΦA is satisfiable

Table 3.1: Muresan’s (2006) deductive parser for LWFG

3.4 Parsing Lexicalized Well-Founded Grammars

In this section, we now describe a parser for the Lexicalized Well-Founded Grammars,

as described by Muresan (2006). The parser can be viewed as a deductive process that

attempts to prove claims about the grammaticality of a string from assumptions about

the grammatical status of the string’s constituents, as well as the linear order between

them (Pereira and Warren, 1983). The view of parsing as a deductive process was

put forth by Shieber et al. (1995) in which rules of inference are used to derive state-

ments about the grammatical status of strings. These rules of inference act by deriving

statements using other statements which are all represented by formulas in a suit-

able formal language. The grammatical deductive system consists of a set of inference

rules and a set of axioms and goals which are given by an appropriate set of formula

schemata, 〈deductive system〉 := 〈〈formula schemata〉, 〈axioms〉, 〈inference rule〉,

〈goals〉〉, where 〈axioms〉 ∪ 〈goals〉 ⊆ 〈formula schemata〉.

The general form of a rule of inference is:

A1 . . . Ak
B

〈side conditions〉

The antecedents A1 . . . Ak and the consequent B are formula schemata, which means

22

they contain metavariables that get instantiated when the inference rule is used. A

derivation of a formula B from assumptions A1, . . . , Ak is a sequence of formulas the

end product of which is B, i.e. S1, . . . , Sn such that Sn = B. Each interim formula, Si,

is either an axiom, or there is some other rule of inference R and formulas Si1 , . . . , Sik

with i1, . . . , ik < i such that for appropriate substitutions of terms for metavariables

in R, the formulas Si1 , . . . , Sik match the antecedents of the rule R, Si matches the

consequent, and the side conditions are satisfied.

In the parsing framework, the side conditions refer to rules of a particular

grammar, and the formulas refer to string positions in the fixed string to be parsed

w = w1 . . . wn. The goal formula states whether a string is grammatical according to

the given formula. The parsing process corresponds to finding a derivation path from

the start symbol to a goal formula.

The LWFG parser described by Muresan (2006) uses a robust bottom-up active

chart parsing algorithm (Kay, 1973), and is presented as a deductive system (see Ta-

ble 3.1) To understand the parser, consider the following LWFGG = 〈Σ,Σ′, NG, RG, PG, S〉.

The parser starts with a string w and produces a syntagma σ =
(
w,
(
h
b

))
.

The parsing formula schemata are of the form [i, j, σij , A → α • βΦA], where

A → αβ : ΦA is a production rule in the grammar. The • shows how much of the

right-hand side has been recognized so far, i points to the parent node where the rule

was invoked, and j points to the position in the input that the recognition has reached.

The lexical items containing elementary semantic molecules are assumed to make a true

claim, and thus items of the form [i, i+ 1, σLii+1, Bi → •] are assumed to be axiomatic.

The goal items are of the form [i, j, σLij , A→ αΦA•], where σLij is derived from the rule

A → α : ΦA. The superscript L indicates that the syntagma is ground-derived and

belongs to the left-hand side non-terminal.

In chart parsing terminology, each item is taken to be an “edge.” The axioms

and goals are inactive edges having • at the end, whereas the rest are active edges.

There are three inference rules used to obtain the goal items:

23

3.4.1 Prediction Rule

This is the bottom-up prediction rule which adds empty active edges. The rule predicts

an active edge (i.e. an item) [i, i, σRii , A→ •BγΦA] from an inactive edge [i, j, σLij , B →

βΦB•] and a grammar rule as a side condition A→ Bγ : ΦA. The predicted syntagma

σRii =
(
wRii ,

(hRii
bRii

))
is empty, where wRii = ε is an empty string, bRii = true is the empty

semantic representation, and hRii = ∅ is the empty head. The superscript R on the

predicted syntagma indicates a partially-parsed syntagma that belongs to the right-

hand side of the rule.

3.4.2 Completion Rule

This rule corresponds to shifting the • across a non-terminal in the right-hand side of

the production rule. The rule essentially combines an active and an inactive edge to

obtain a new active edge. Thus, it has two antecedents [i, j, σRij , A → α • BγΦA] and

[j, k, σLjk, B → βΦB•], and one consequent [i, k, σRik, A→ αB•γΦA]. The rule requires no

side conditions. In terms of the syntagmas, shifting the • implies string concatenation,

conjunction of the semantic molecule bodies, and a union of the semantic molecule

heads. That is, σRik = σRij ◦ σLjk, where wRik = wRijw
L
jk (string concatenation), bRik = bRijb

L
jk

(body conjunction), and hRik = hRij ∪ hLjk (head union).

3.4.3 Constraint Rule

This rule is used to obtain inactive edges from active edges by executing the grammar

constraint ΦA, thus shifting the • across the constraint. The execution of the constraint

is in form of an SLD resolution ` ΦA which acts as the side condition. The constraint

rule also produces the ground derived syntagmas σLij , thus the goal items can only be

produced on successful application of the constraint rule.

24

4. Revised LWFG Parser

In this chapter, we describe our implementation of the LWFG Parser. Unlike Mure-

san (2006), who implemented their parser in Prolog, we chose to use Python as the

programming language of implementation. We start by first making the case for our

choice.

4.1 The Case for Python

4.1.1 NLTK

Python has an extensive open source library dedicated to natural language processing

called Natural Language Toolkit (NLTK) (Bird et al., 2009). Developing a parser for

LWFG in Python allows for an easy integration with the library, and thus eases open-

source development of the project. One limitation of Python over Prolog, at least for

this project, is the lack of an inbuilt method for SLD resolution. As mentioned earlier,

the constraint rule in the parser performs SLD resolution to verify that the semantic

composition and semantic integration constraints have been satisfied. Prolog, being

a declarative language for logic programming, makes performing an SLD resolution

simple. Python, on the other hand, does not provide a straight-forward means of doing

that. However, being an widely-used open-source project, there are other libraries that

provide easy-to-use methods for performing SLD resolution. As discussed later, we used

NLTK’s unification methods to implement constraint satisfaction.

4.1.2 Scalability and long-term investment

While Prolog is perfectly acceptable for prototype development, Python offers a much

better alternative in terms of scalability. A Python-based implementation is especially

desirable in light of a future extension to stochastic parsing. Prolog, being a logic

programming language, is not naturally suited for numerical operations, and even sim-

ple arithmetic operations are hard to perform in Prolog. Given this, using Prolog to

25

implement a stochastic LWFG parser, which would require substantial numerical com-

putations, seems unreasonable. On the other hand, Python offers no such limitations,

and a Python-based implementation of the LWFG parser should be easily extendable

to a stochastic version.

4.2 Data Structures

Taking NLTK’s grammar module as inspiration, we constructed a separate classes for

non-terminals and production rules. We represented a Lexicalized Well-Founded Gram-

mar as a class that stored its start symbol (a non-terminal) and a list of productions.

Every non-terminal was an object of a class that stored the symbol of the non-terminal,

and its corresponding syntagma, which was represented as three separate variables: the

string, the body, and the head. The body is represented as an object of a class which

implements the OntoSeR representation of Muresan (2006). The head is represented us-

ing NLTK’s feature structure class called FeatStruct. As mentioned earlier, the feature

structure is a one-level object and contains no recursive structures.

Production rule are represented by storing the left-hand side non-terminal, a

list of right-hand side non-terminals, and a set of compositional constraints. These

compositional constraints are also feature structures, but with one noticeable change.

The feature structure object contains one feature for every non-terminal in the rule.

The value of all such features is another feature structure that corresponds to the head

of that non-terminal. Every feature within the sub-structures contain values which are

initialized to variables to indicate linkage.

Recall the example used earlier of the following grammar rule:

NP
(
w,
(
h
b

))
→ Adj

(
w1,

(
h1
b1

))
, Noun

(
w2,

(
h1
b2

))
: Φc(h, h1, h2),Φi(b)

The semantic compositional constraints for the example grammar were given as:

Φc(h, h1, h2) = {h.cat = np, h.head = h1.mod, h.head = h2.head,

h.nr = h2.nr, h1.cat = adj, h2.cat = noun}

26

In our feature structure representation, the constraints are represented in the

following way:


h =



cat = np

head =?x

nr =?y


h1 =


cat = adj

mod =?x


h2 =



cat = noun

head =?x

nr =?y




Here, ?x and ?y are variables, and act as links between h.head, h1.mod, and h2.head,

and h.nr and h2.nr respectively.

We also created a representation to store a complete grammar. In the repre-

sentation, we distinguish the “lexicon” from the grammar by defining the lexicon to be

consisting of pre-terminal rules. That is, rules that expand to a terminal are labeled

as the lexicon of the grammar. These rules are distinguished from other rules because

they contain an instantiation of the semantic body (the OntoSeR representation) cor-

responding to the terminal symbol along with an instantiation of the semantic head.

Other rules, which expanded to non-terminals, are taken to be abstract rules, and only

contain compositional constraints. Examples of the representations for the lexicon and

the other production rules are shown in the Appendix.

Traditionally, the chart in a chart parser is implemented as a 2-d array where

a cell at index (i, j) contains states (or “edges”) whose span starts at i and ends at

j. However, we implemented the chart as a 1-d array of size n + 1, where n is the

size of the input sentence. The 0th cell corresponds to the start of the sentence, and

every other ith cell corresponds to the ith word in the sentence. Each cell i contains

states whose span ends at i. A state may be active, i.e. not yet finished, or inactive,

i.e. fully recognized. We implemented the state as a class with a production rule, an

index of the •, and chart indices representing the recognized span of the production rule

(the sequence of words from the sentence that the production rule derives; the span is

represented using two indices i and j described in Section 2.4). In addition, states also

27

Item form [i, j, σij , A→ α • β(ΦA)] 1 ≤ i, j ≤ n + 1, A ∈ NG, αβ ∈ N∗G,
and ΦA can be true

Axioms [i, i+ 1, σLii+1, Bi → •] 1 ≤ i ≤ n,Bi ∈ NG, Bi → σi ∈
PG, σi = (wi, w

′
i) ∈ Σ× Σ′

Goals [i, j, σLij , A→ α • (ΦA)] 1 ≤ i, j ≤ n+ 1, A ∈ NG

Inference Rules

Prediction
[i,j,σL

ij ,B→β•(ΦB)]

[i,i,σR
ii,A→•Bγ(ΦA)]

〈A→ Bγ : ΦA〉

Completion
[i,j,σR

ij ,A→α•Bγ(ΦA)][j,k,σL
jk,B→β•(ΦB)]

[i,k,(σR
ik

)′,A→αB•γ(Φ′
A

)]

〈σLjk satisfies ΦA〉
Φ′A := ΦA unified with ΦB

Table 4.1: A revised LWFG parser where constraint and completion rules are merged
together.

store the compositional constraints, again as feature structures.

4.3 Revised Parser

The parser described by Muresan (2006, 2010) performs SLD resolution only at the end

of the completion of an item. That is, the antecedent of the constraint rule is always of

the form: [i, j, σRij , A→ α•ΦA]. However, in our implementation, we chose to merge the

constraint and the completion step together. Thus, every time the • is moved across a

non-terminal, the composition constraints get applied, thus ensuring an early detection

of an incorrect parse.

We justify our modification thusly. Consider the following rule, V P → V NP .

The rule corresponds to a verb phrase that consists of a transitive verb and an object

noun phrase. For example, the rule should be applicable on the phrase, (John. . .) liked

apples, however the rule should also not be applicable on phrases containing intransitive

verbs, such as (John. . .) slept apples. Late application of the constraint rule means

such invalid phrases are detected only when they are fully completed. However, our

merging of the completion and the constraint rules makes the detection earlier. In

effect, that greatly reduces the number of active edges that the parser entertains during

its running, which proves invaluable when working with large grammars.

Table 4.1 shows the modified parser that we implemented. Because constraint

28

satisfaction is now performed every time an item is completed, we have modified the

notation of the items to depict the passive nature of the compositional constraints. In

simple terms, the • now only needs to cross the last non-terminal on the right-hand side

of a rule for the item to be completed. Another noticeable change is the modification of

the compositional constraints at the end of completion. Now, every completion modifies

the set of compositional constraints on the active edge to denote unification with the

syntagma of the active edge. In other words, every time the • moves across a non-

terminal, the semantic information contained in the syntagma corresponding to that

non-terminal in the inactive edge is merged with the constraints of the active edge. The

resulting variable binding is also reflected in the body of syntagma of the active edge.

As an example of the process, let us again consider the following rule:

NP → • Adj Noun

The initial set of compositional constraints are given as:


h =



cat = np

head =?x

nr =?y


h1 =


cat = adj

mod =?x


h2 =



cat = noun

head =?x

nr =?y




Now, let us consider the rule:

Adj → formal •

29

Its syntagma is given as:

w = formal, b =?x.isa = formal, ?y.hasProp =?x, h =



cat = adj

head =?x

mod =?y


When the second rule is used to complete the first, its head is unified with the

feature structure corresponding to the non-terminal Adj in compositional constraints

of the first rule. That is, we unify h of the second rule with h1 of the first rule. That

gives us a modified set of compositional constraints:


h =



cat = np

head =?x

nr =?y


h1 =



cat = adj

head =?z

mod =?x


h2 =



cat = noun

head =?x

nr =?y




The process also modifies the string of the syntagma of the left-hand side of

the active edge (NP in our example), to concatenate the original string with that

of the inactive edge. In our example, the original empty string is concatenated with

w to get formal. Furthermore, the body of the left-hand side of the active edge is

logically concatenated with the body of the inactive edge and appropriate variable

bindings are substituted. In our example, the body of NP is modified to be: ?z.isa =

formal, ?x.hasProp =?z

4.4 Implementation

The parser is detailed below:

30

• Initialization: The chart of the parser is initialized to n + 1 lists where each

list corresponds to a word in the given sentence w = w1 . . . wn (except the first,

which corresponds to the start of the sentence). States corresponding to items of

the form [i, i+ 1, σLii+1, wi → •] are inserted to the respective n lists.

Initialize-Chart(chart, words)

1 for i← 1 to Length(words) + 1

2 do chart.append([])

3 for i← 1 to Length(words) + 1

4 do AddToChart([i, i+ 1, σLii+1, words[i]→ •], chart[i])

• Prediction: Given a completed state, the predictor method generates a new

state and adds it to the chart in the ith list where i is the same as the starting

index of the completed state.

Predictor([i, j, σLij , B → β • (ΦB)])

1 for each (A→ Bγ : ΦA) ∈ Grammar

2 do AddToChart([i, i, σRii , A→ •Bγ(ΦA)], chart[i])

• Completion: Given a completed state, the completer method looks at all states

in the jth list in the chart where j is the start index of the completed state.

Of all the states in that list, any state which contains the left-hand side of the

completed state in the position just to the right of the • is selected. The new state

is generated from the selected state such that the start index is the same as that

of the selected state, the end index is the same as that of the completed state, and

the • is moved one step to the right. The semantic information is copied over the

selected state to the new state. Subsequently, the constraint rule gets applied to

unify the semantic information of the left-hand side of the completed state with

the compositional constraints of the selected state. If the constraint rule fails, the

new state is rejected, otherwise it is inserted into the chart in the kth list where

k is the end index of the completed state.

31

Completer(compState = [j, k, σLjk, B → β • (ΦB)])

1 for each [i, j, σRij , A→ α •Bγ(ΦA)] ∈ chart[j]

2 do newState = [i, k, σRik, A→ αB • γ(ΦA)]

3 if ApplyConstraint(newState, compState) == True

4 do AddToChart([i, k, σRik, A→ αB • γ(ΦA)], chart[k])

• Constraint Application: The ApplyConstraint method first unifies the head

of the completed state’s left-hand side with the compositional constraints of the

new state. The unification is done so that the head from the completed state

unifies only with the feature structure corresponding to the same non-terminal

in the new state (i.e. the non-terminal across which the • moves). We used the

unification function implemented for FeatStruct in Python’s NLTK. An unsuc-

cessful unification implies the completed state does not satisfy the compositional

constraints of the new state, and thus the method returns False. On the other

hand, if the unification is successful, a set of variable bindings is obtained. We

generate a new syntagma by storing the feature structure corresponding to the

left-hand side of the new state as its head. The body of the new syntagma is

obtained by performing a logical conjunction between the previous body and the

body from the completed state, along with an appropriate variable substitution.

The string of the new syntagma is obtained by simply concatenating the previous

string of the new state with that from the completed state.

32

ApplyConstraint(newState, compState)

1 bindings← {}

2 Φ′A ← Unify(newState.ΦA, compState.σ
L
jk.head, bindings)

3 if Φ′A = Null

4 do return False

5 σ ← newState.σRik

6 σ.head← ΦA[h]

7 σ.body ←MergeBodies(σ.body, compState.σLjk.body, bindings)

8 σ.string ← StringConcat(σ.string, compState.σLjk.string)

9 newState.σRik ← σ

10 return True

• LWFG Parser: The parser begins by initializing the chart. Subsequently, the

parser goes through the chart looks for completed states. If a state is completed,

the Completer and the Predictor methods get called. The whole process is

repeated until no new states are added to the chart.

LWFG-Parse(G,words)

1 chart← []

2 Initialize-Chart(chart, words)

3 while no new state is added to the chart

4 do for each state ∈ chart

5 do if Is-Complete(state)

6 do Completer(state)

7 Predictor(state)

8 return chart

4.5 Complexity Analysis

The underlying algorithm of the parser is a bottom-up chart parser, with the added

property of performing a feature unification at every completion step. Before analyzing

33

the algorithm for LWFGs, consider a bottom-up chart parser for a context-free gram-

mar. Each item in the chart is of the form [i, j, A → α • β], 1 ≤ i < j. For an input

sentence containing n words, there are n + 1 chart entries. In each chart entry, the

worst case maximum number of distinct states is equal to the maximum number of

dotted rules times the maximum number of distinct span values, or O(n|G|), where |G|

is the size of the grammar. The time to process a single item is given by the time to

perform the predict and the completion operations on it. In the worst case, the predict

operation creates O(|G|) states. The completion operation advances the • in all states

in some state set, and thus can take at most O(n|G|) steps. Thus, in the worst case,

the overall time per state is given by O(n|G|+ |G|) = O(n|G|). Factoring in all costs,

we can see that the overall time complexity of the algorithm is bounded in the worst

case by O(n3|G|2).

The fact that our parser is also a bottom-up chart parser might lead us to

believe that it has the same worst-case time complexity. However, because our parser

represents semantic information in every state, it suffers from an exponential worst-case

bound. To see why, let us first consider the following context-free grammar:

1. n -> nc

2. nc -> na nc

3. na -> na na

4. na -> noun

5. nc -> noun

These rules correspond to noun-compound cases where some nouns may act as adjec-

tival modifiers on other nouns. Such cases correspond to examples like government

road accident research center and England national football team manager. Now, con-

sider the phrase, football team manager. The phrase is ambiguous given the example

grammar and has two separate derivations which are shown in Figure 4.1. Thus, one

interpretation has football be a modifier on the noun phrase team manager, and the

other has football team be a compound modifier on the noun manager.

Another way of visualizing the ambiguity is by using parentheses. For example,

34

Figure 4.1: Ambiguous parse-trees corresponding to the noun compound, football team
manager

one interpretation is (football (team manager)), and the other, ((football team) man-

ager). Thus, in general, a noun-compound will have as many interpretations as there

are ways of parenthesizing it. It is well known that number of ways of parenthesizing

n factors is equal to the nth Catalan number Cn, which is given by:

Cn =
(2n)!

n!(n+ 1)!

Using Stirling’s approximation for n!, we can also show that Cn = O(n−3/24n). Thus,

the number of derivations corresponding to ambiguous noun-compounds grow exponen-

tially.

Now, one might ask why parsers for context-free grammars do not suffer from

worst-case exponential performance. The reason is because enumeration of derivation

trees is usually not considered a part of the parsing process. Instead, it is perfectly

acceptable for a parser to only store pointers that may later be used to enumerate all

possible derivation trees. For our example phrase, football team manager, the bottom-

up chart parser will only have one state corresponding to the highest level nc node

(nc1 in Figure 4.1), namely [0, 3, nc→ na nc •]. Depending on the implementation, the

parser may also store pointers to two different na and nc pairs that combine to get this

state. Thus, the use of pointers to eliminate redundancy allows context-free parsers to

perform in tractable time.

Importantly, parsers for context-free grammars are able to eliminate redundancy

35

because context-free grammars do not encode any semantic information at the state-

level. In our example, at the highest-level nc node, we do not know whether football

is a modifier on the noun-compound team player or football team collectively modifies

player. On the other hand, any semantic parser that encodes semantic information

must differentiate between the two interpretations, and thus has to represent the two

states separately. This crucial difference means that the chart size of parsers for such

grammars has a worst-case exponential bound. In turn, this affects the overall time

complexity of such parsers as well, making them perform at worst-case exponential

time. Because our parser also represents semantic information at the state level (in the

form of ΦA), it suffers from the same theoretical upper-bound.

Crucially, the exponential bound applies to the LWFG chart parser only because

all possibilities are being entertained. Currently, our parser does not include semantic

interpretation constraints, which act as filters that select only those possibilities that are

plausible (see Section 3.2). If we go back to the example phrase, football team manager,

only one of the two possibilities is plausible: ((football team) manager) (depicted as the

right parse tree in Figure 4.1) Applying the interpretation constraints at the rule-level

(i.e. after every completion step) would allow the parser to weed out implausible parses.

Thus, in practice, a complete LWFG parser with semantic interpretation constraints is

expected to be tractable.

36

5. Evaluation

In this chapter, we discuss empirical evaluations to test the correctness of our parser. To

that end, we first constructed a mid-sized grammar, consisting of 477 production rules,

of which 351 were pre-terminal rules (see Appendix for a sample from the grammar). It

is important to keep in mind that the number of pre-terminal rules does not equal the

number of words in the lexicon. As seen in the sample grammar in the Appendix, there

are often pre-terminal rules that expand to the same word, differing in the semantic

representation for that word.

We created a random sentence generator that randomly expanded non-terminals,

starting from the start state, till a complete sentence was formed. At each non-terminal,

all possible productions were equally likely to be expanded (in other words, there was

a uniform distribution over them), but care had to be taken to ensure that only sen-

tences that the grammar would allow are constructed by ensuring that compositional

constraints are satisfied at every expansion. The generator also recorded the syntac-

tic derivation used to generate a sentence, which we used that derivation as the “gold

standard” to evaluate our parser against.

The random sentence generator was then used to create a list of 7500 sentences,

with the constraint that the sentences were all of length at most 10. Later evaluations

confirmed that the parser can in fact parse sentences of greater length. Figure 5.1 shows

a histogram of the number of sentences as a function of the number of words. As can

be seen, the random sentence generator tended to prefer producing sentences of shorter

length. We believe this is a property of the grammar itself, and we did not investigate

this further. Furthermore, 104 of the 477 productions were never used to generate a

sentence, out of which 72 were pre-terminal productions. Thus, the effective size of the

grammar was 373, with the number of pre-terminal productions equaling 279.

Our parser was able to parse all of the 7500 sentences. In addition, for each

sentence, the parser was able to derive the parse that matched its gold standard. We

recorded statistics on time taken to parse, number of derivations, and the size of the

chart for each sentence.

37

Figure 5.1: Histogram of number of sentences from the random sample used for evalu-
ation as a function of sentence length

While our parser was able to effectively parse all sentences, there were certain

cases that took a considerably large amount of time to parse. One example sentence

that was troublesome for the parser was: particle boy afternoon boy door treatment

man pencil particle went. Of course, the sentence does not make much sense, but

that is simply because interpretation rules were not applied to generate these random

sentences. The parse tree depicting the derivation that produced this sentence is shown

in Figure 5.2. As the example shows, this sentence falls into the class of sentences that

cause an exponential blowup in the chart size and parsing time for semantic parsers

(see Section 4.5). Because there are 9 nouns preceding a verb, and because all of the

initial 8 nouns act as adjectival modifiers, the total number of ways of interpreting this

sentence is given by the 9th Catalan number, which is 1430. Indeed, our parser was

able to identify all 1430 derivations, but took just over 6 hours to find them all and

finished with a chart size of 50103 states.

Again, this is not a problem specific to our parser or grammar, but is a general

issue that all semantic parsers face. Regardless, such cases severely skew the statistical

measures of the parameters under investigation. Thus, for our analyses, we discarded

sentences on which the parser took more than 1000 seconds. In total, we had to discard

38

Figure 5.2: Derivation tree for the sentence particle boy afternoon boy door treatment
man pencil particle went

13 sentences (.2% of our data). The mean values for each recorded statistic as a function

of the number of words are reported in Table 5.1. In addition, Figure 5.3 shows graphical

representations of the means and the standard errors for the measures.

To facilitate a meaningful comparison with a baseline, we implemented a bottom-

up chart parser for context-free grammars. Recall here that our parser is also essentially

a bottom-up active chart parser, differing only in the type of grammar used and the

incorporation of constraint-satisfaction in the derivation process. Thus, a comparison

with an equivalent parser using a context-free grammar is justified. We constructed

a context-free grammar by simply removing the compositional constraints from each

rule, along with the semantic bodies for pre-terminal rules. The baseline parser was

compared on the same set of 7500 sentences, and like earlier, we collected parsing times,

39

#Words Mean Time (secs) Mean #Derivations Mean Chart Size

2 0.3420549 1.018910 60.3611

3 0.7653398 1.993579 104.6346

4 1.0821767 1.888610 136.2320

5 1.2620939 2.155909 158.9438

6 2.6118709 3.075117 253.1502

7 4.9626584 5.742236 366.2112

8 13.4548850 13.905000 568.1500

9 36.0161328 39.632812 1064.3359

10 58.9704111 85.544444 1564.8889

Table 5.1: Descriptive statistics of LWFG parser’s performance on a random sample of
sentences

#Words Mean Time (secs) Mean #Derivations Mean Chart Size

2 0.01220441 1.847366 78.57587

3 0.02733859 2.583771 125.35552

4 0.06110721 4.675042 177.11307

5 0.08834870 4.321039 210.87091

6 0.21986621 9.298122 317.02113

7 0.36189752 14.565217 399.02484

8 0.55855001 21.870000 479.19500

9 0.98085937 64.890625 606.86719

10 1.39517779 93.444444 702.67778

Table 5.2: Descriptive statistics of baseline parser’s performance on a random sample
of sentences

40

(a) Parsing time

(b) Number of derivations

(c) Chart Size

Figure 5.3: Graphical representation of the descriptive statistics for the LWFG parser

41

(a) Parsing time

(b) Number of derivations

(c) Chart Size

Figure 5.4: Graphical representation of the descriptive statistics for the baseline parser

42

Figure 5.5: Ratio of mean chart size per sentence length from our LWFG parser and
the baseline CFG parser.

number of derivations, and chart sizes per sentence. The 13 sentences that we had dis-

carded in the evaluation of our LWFG parser were again discarded for the evaluation

of the baseline. The performance of that parser is reported in Table 5.2, and shown

graphically in Figure 5.4.

As we can clearly see, the use of a context-free grammar results in a greater

number of derivations. This difference is expected because our parser rejects syntactic

derivations that do not conform to semantic composition constraints. Additionally, the

baseline parser was considerably faster than our parser. This disparity is also expected

because the baseline parser does not need to store multiple copies of similar states that

differ based on the underlying semantic information. Furthermore, the baseline parser

does not need to perform constraint application at every completion step which also

carries a lot of overhead. As expected, the growth rate of the chart size as a function

of sentence length is higher for our parser than the baseline (see Figure 5.5).

To facilitate a comparison between the parsing times of our parser with the

baseline, we plotted the ratio of mean parsing times per sentence length from the two

parsers. The results are shown in Figure 5.6. As we can see from the graph, our parser

suffers a parsing time penalty when the sentences are small and when they are long,

43

Figure 5.6: Ratio of mean parsing time per sentence length from our LWFG parser and
the baseline CFG parser.

but performs relatively better for mid-length sentences. We believe these penalties

correspond to the two factors that make our parser slower than an equivalent CFG

parser. For short sentences, the chart sizes are in fact smaller for our parser because

the grammar discards states that do not satisfy compositional constraints. In those

cases, the large parsing time penalty is due to the additional constraint-application

step which has a significant overhead. On the other hand, for longer sentences, the

chart sizes are significantly larger for our parser because of the increased overhead of

storing state-wise semantic information. This contributes to a significant penalty in

parsing time which is bound to only increase further as the number of sentences are

increased due to the worst-case exponential bound.

Regardless, the takeaway is still promising. Our parser was able to correctly

parse all 7500 sentences, and was able to produce semantic information corresponding

to them. In the future, we wish to evaluate our parser using a larger grammar and

wider-range of sentences. It would also be interesting to see how our parser stacks

against other semantic parsers.

44

6. Future Directions

Apart from implementational improvements, there are a number of possibilities to ex-

tend upon the work presented in this thesis, and in this chapter, we discuss some of

them. The first goal is to implement coordinating conjunctions (such as, and, or, but,

etc.) The current implementation is unable to handle those, largely due to the difficulty

in mapping natural language conjunctions with their logical counterparts. For example,

and is often used to imply order in sentences such as in sentences like, they got married

and had a child. This means the semantic content of conjunctions needs to be carefully

defined using contextual cues.

A more technical reason why our current implementation cannot handle con-

junctions is because a unification framework does not easily conform with logical oper-

ations. For example, in the sentence the boys and the girl ate the cake, it is clear that

the subject of the verb ate is the boys and the girl, and its semantic head is going to

be a unified version of the heads of the boys and the girl. However, the way unification

is implemented currently, such an operation would fail because the boys and the girl

do not agree based on their grammatical number. Also, if the sentence was the boys

or the girl ate the cake, the semantic head of the subject would need to indicate the

possibility that either one of the boys and the girl could be the agent of the verb ate.

Simple unification is unable to handle that requirement.

Another extension that we wish to incorporate is for the parser to be able

to handle semantic interpretation constraints. As discussed earlier, these semantic

interpretation constraints are currently predicates which can either succeed or fail, and

are applied after the parser generates a complete parse. On succeeding, these constraints

instantiate the semantic representations with concepts or slots in the semantic model

(see Section 3.2). We wish to incorporate these constraints to the parser itself, so that

we can detect nonsensical sentences at an early stage itself.

Additionally, the use of interpretation constraints will also allow the parser

to perform efficiently by not storing nonsensical phrases. As discussed earlier, the

LWFG parser suffers from having to store different states for all possibilities when

45

parsing an ambiguous input. Using interpretation constraints, the parser will be able

to discard implausible structures early, which should significantly reduce the chart size.

Consequently, this should reduce overall parsing time.

A long-term goal of our project is to be handle large grammars to enable broad-

coverage parsing. The current implementation can handle small to mid-sized grammars,

but more work needs to be done to enable sizes capable of parsing general text. As

mentioned earlier, other work on constraint grammar parsing has attempted to solve this

problem by using dynamic programming techniques and creating packed representations

of parses (e.g., Maxwell III and Kaplan, 1995; Miyao and Tsujii, 2002). The packed

representation of Maxwell III and Kaplan (1995) combines sets of parses by identifying

“features” of the parse structures, where features are usually structures that combine

to generate a complete parse structure, such as chart edges. They then defined the

packed representation as R = (F ′, X,N, α), where:

• F ′ ⊇ F(y) is a finite set of features,

• X is a finite vector of variables,

• N isa finite set of conditions on X called no-goods, and

• α is a function that maps each feature f ∈ F ′ to a condition αf on X.

Here, the “variables” X act as non-linguistic attributes defined only for the

packed representations which identify which parse a set of features corresponds to. The

conditions on X are functions from X to {0, 1}, where X defines the range of X. The

no-goods are used to identify parses. A vector of values x satisfies a no-goods N iff

N(x) = 1, where N(x) =
∏
η∈N η(x). Each x that satisfies the no-goods identifies a

parse ω(x) = {f ∈ F ′|αf (x) = 1}. In addition, each parse is uniquely identified by

a vector of values. That is: ∀x, x′ ∈ X if N(x) = N(x′) = 1 and ω(x) = ω(x′) then

x = x′. Finally, a packed representation R represents the set of parses Ω(R) that are

identified by values that satisfy the no-goods, i.e. Ω(R) = {ω(x)|x ∈ X , N(x) = 1}.

A slightly different approach is that of Miyao and Tsujii (2002, 2005) who

defined feature forests to represent a set of parses. A feature forest is defined as a tuple

46

Figure 6.1: An example feature forest from Miyao and Tsujii (2008)

〈C,D, r, γ, δ〉, where:

• C is a set of conjunctive nodes,

• D is a set of disjunctive nodes,

• r is the root node: r ∈ C,

• γ : D 7→ 2C is a conjunctive daughter function,

• δ : C 7→ 2D is a disjunctive daughter function

Essentially, a feature forest represents a set of trees of conjunctive nodes in a

packed form. Each conjunctive node corresponds to an entity in a parse tree. On

the other hand, disjunctive nodes are used to enumerate multiple possibilities. The

two daughter functions are used to represent immediate relations of conjunctive and

disjunctive nodes. As should be easy to tell from the function definitions, every con-

junctive node can only have disjunctive children, and vice versa. Furthermore, only

conjunctive nodes can act as leaf nodes. Additionally, with every feature forest, there

is an associated feature function defined over the set of conjunctive nodes:

fi : C 7→ R

A feature forest can be “unpacked” to produce the constituent trees, by enumer-

ating the alternatives at disjunctive nodes. For example, Figure 6.1 shows an example

feature forest, and Figure 6.2 shows its unpacked trees.

47

Figure 6.2: Unpacked trees corresponding to the feature forest shown in Figure 6.1

We wish to use either one of the two or a similar technique for LWFGs. On

a higher-level examination, feature forests seem to be the more promising of the two

and offer a slightly more general framework. Another aspect that makes feature forests

promising is the fact that the authors, Miyao and Tsujii (2002, 2005), have also discussed

a dynamic programming algorithm to estimate a probability distribution over the set

of feature forests. Their algorithm is analogous to the inside-outside algorithm used for

probabilistic context-free grammars.

This brings us to another of our long-term goals, which is to develop a stochas-

tic framework for LWFGs. As discussed earlier, one appealing aspect of LWFGs is

that their learnability is guaranteed and tractable, which makes them well-suited for

resource-poor settings. However, for languages that do not suffer from a dearth of re-

sources, it is desirable to use the available information on the relative frequencies of

various constructions and usages. For ambiguous sentences, being able to determine

which interpretation is most likely is particularly interesting, and currently LWFGs are

unable to utilize such information.

There are many directions in which we can go to develop a stochastic LWFG. At

the moment, the feature forest framework of Miyao and Tsujii (2002, 2005) seems most

promising because of its general nature. The challenge is to not just use feature forests

to define a probability distribution over parse fragments (which are called “features” by

both Miyao and Tsujii (2002, 2005) and Maxwell III and Kaplan (1995)), but to also

define a probability distribution over various semantic interpretation constraints. As

mentioned earlier, in the current description of the LWFG, the semantic interpretation

constraints are predicates that can either succeed or fail. A failure implies the interpre-

tation of the given sentence is not valid in the defined semantic model (“world truth”).

Instead of simply saying that a sentence is implausible, we would like the parser to be

48

able to quantify the degree of implausibility of various interpretations.

49

7. Conclusion

In this thesis, we have described a new semantic parser for natural languages that

simultaneously performs a syntactic and an ontology-based semantic analysis on sen-

tences. Our implementation was derived from that of Muresan (2006) who described

a bottom-up chart parser for an constraint-based grammatical framework called Lex-

icalized Well-Founded Grammar (Muresan, 2006, 2010). Our work extends theirs by

revising the parsing algorithm to detect semantic violations early, thus reducing the

number of derivations that the parser entertains while parsing. In addition, our parser

is implemented using Python’s NLTK library (Bird et al., 2009) which allows for an

easy integration with the open-source NLP community. Furthermore, our choice of an

imperative language like Python, unlike a declarative language like Prolog, allows for a

greater scope of scalability to larger-sized grammars for broad-coverage parsing. Lastly,

our choice will facilitate a more straight-forward extension to a stochastic implementa-

tion of the LWFG framework.

50

A. Appendices

A.1 Sample Lexicon of the LWFG

det -> "a"

[h=[nr=sg ,cat=det ,mod=?x]]

?x.det=a

det -> "an"

[h=[nr=sg ,cat=det ,mod=?x]]

?x.det=an

det -> "the"

[h=[nr=?anon1 ,cat=det ,mod=?x]]

?x.det=the

verb -> "like"

[h=[head=?x,vtype=norm ,headS=?y,val=tv ,vf=bse ,cat=verb ,headC=?z,

aux=no ,voice=act ,vft=nf]]

?x.agt=?y,?x.pnt=?z,?x.is_a=like

verb -> "like"

[h=[head=?x,vtype=norm ,headS=?y,val=tv ,vf=bse ,neg=no ,cat=verb ,pf

=no,pg=no,aux=no ,headC=?z,voice=act ,vft=nfin]]

?x.vft=bse ,?x.pnt=?z,?x.is_a=like ,?x.agt=?y

verb -> "like"

[h=[head=?x,vtype=norm ,headS=?y,val=tv ,vf=no ,neg=no ,cat=verb ,

pers =[? anon12 ,n3],pf=no,pg=no,headC =?z,aux=no,tense=pr,nr=sg,

voice=act ,vft=fin]]

?x.tense=pr ,?x.agt=?y,?x.pnt=?z,?x.is_a=like

verb -> "like"

[h=[head=?x,vtype=norm ,headS=?y,val=tv ,vf=no ,neg=no ,cat=verb ,

pers =[? anon13 ,? anon13],pf=no,pg=no,headC =?z,aux=no,tense=pr,

nr=pl ,voice=act ,vft=fin]]

?x.tense=pr ,?x.agt=?y,?x.pnt=?z,?x.is_a=like

adj -> "short"

[h=[head=?x,cat=adj ,mod=?y]]

?x.is_a=short ,?y.Has_prop =?x

adj -> "small"

[h=[head=?x,cat=adj ,mod=?y]]

?x.is_a=small ,?y.Has_prop =?x

noun -> "boys"

[h=[nr=pl ,cat=noun ,head=?x,mod=?y]]

?x.is_a=boys ,?y.Has_prop =?x

noun -> "boys"

[h=[case =[?anon80 ,ng],count=y,modr=no ,hum=y,det=no ,head=?x,cat=

noun ,pers =[? anon79 ,3],nr=pl,gen=male]]

?x.is_a=boys

noun -> "boy"

[h=[nr=sg ,cat=noun ,head=?x,mod=?y]]

?x.is_a=boy ,?y.Has_prop =?x

51

noun -> "boy"

[h=[case =[?anon84 ,ng],count=y,modr=no ,hum=y,det=no ,head=?x,cat=

noun ,pers =[? anon83 ,3],nr=sg,gen=male]]

?x.is_a=boy

A.2 Sample Production rules of the LWFG

sbj -> n

[h=[case=[n,ng],head=?d,hum=?h,cat=sbj ,pers =[?e,?f],nr=?g,dets=y

,stype=s], h1=[case=[n,ng],head=?d,hum=?h,cat=n,pers =[?e,?f],

nr=?g]]

n -> a n

[h2=[case =[?k,?l],count=?o,head=?e,hum=?m,det=no ,modr=?g,cat=n,

pers =[?h,?i],nr=?j,gen=?n], h=[case =[?k,?l],count =?o,head=?e,

hum=?m,det=no ,modr=?g,cat=n,pers =[?h,?i],nr=?j,gen=?n], h1=[

cat=a,mod=?e]]

a -> adj

[h=[head=?d,cat=a,mod=?e], h1=[head=?d,cat=adj ,mod=?e]]

n -> nc

[h=[case =[?j, ?k], cat=’n’, count=?n, det=?f, gen=?m, head=?d,

hum=?l, modr=?e, nr=?i, pers =[?g, ?h]], h1=[case =[?j, ?k],

cat=’nc’, count=?n, det=?f, gen=?m, head=?d, hum=?l, modr=?e,

nr=?i, pers =[?g, ?h]]]

nc -> na nc

[h=[case =[?l, ?m], cat=’nc’, count=?p, det=?h, gen=?o, head=?e,

hum=?n, modr=?g, nr=?k, pers =[?i, ?j]], h1=[cat=’na’, mod=?e,

nr=’sg’], h2=[case =[?l, ?m], cat=’nc’, count =?p, det=?h, gen

=?o, head=?e, hum=?n, modr=?g, nr=?k, pers =[?i, ?j]]]

nc -> noun

[h=[case =[?i, ?j], cat=’nc’, count=?m, det=’no’, gen=?l, head=?d

, hum=?k, modr=?e, nr=?h, pers =[?f, ?g]], h1=[case =[?i, ?j],

cat=’noun’, count=?m, det=’no’, gen=?l, head=?d, hum=?k, modr

=?e, nr=?h, pers =[?f, ?g]]]

na -> na na

[h=[cat=’na’, head=?e, mod=?g, nr=’sg’], h1=[cat=’na’, mod=?e,

nr=’sg’], h2=[cat=’na’, head=?e, mod=?g, nr=’sg’]]

na -> noun

[h=[cat=’na’, head=?d, mod=?e, nr=’sg’], h1=[cat=’noun’, head=?d

, mod=?e, nr=’sg’]]

52

Bibliography

Abney, S. (1997). Stochastic attribute-value grammars. Computational Linguistics,
23:597–617.

Baker, C. F., Fillmore, C. J., and Lowe, J. B. (1998). The berkeley framenet project. In
Proceedings of the 17th international conference on Computational linguistics-Volume
1, pages 86–90. Association for Computational Linguistics.

Barnickel, T., Weston, J., Collobert, R., Mewes, H.-W., and Stümpflen, V. (2009).
Large scale application of neural network based semantic role labeling for automated
relation extraction from biomedical texts. PLoS One, 4(7):e6393.

Bird, S., Klein, E., and Loper, E. (2009). Natural Language Processing with Python.
O’Reilly Media Inc.

Boas, H. C. (2002). Bilingual framenet dictionaries for machine translation. In LREC.

Bresnan, J. (1982). Control and complementation. In Bresnan, J., editor, The mental
representation of grammatical relations, pages 282–390. Cambridge, MA.

Bresnan, J. (2001). Lexical-functional syntax. Blackwell, Malden, MA.

Brown, P. F., Pietra, V. J. D., Pietra, S. A. D., and Mercer, R. L. (1993). The
mathematics of statistical machine translation: Parameter estimation. Computational
linguistics, 19(2):263–311.

Chen, D. L. and Mooney, R. J. (2008). Learning to sportscast: a test of grounded
language acquisition. In Proceedings of the 25th international conference on Machine
learning, pages 128–135. ACM.

Chen, J. and Rambow, O. (2003). Use of deep linguistic features for the recognition and
labeling of semantic arguments. In Proceedings of the 2003 conference on Empirical
methods in natural language processing, pages 41–48. Association for Computational
Linguistics.

Christensen, J., Soderland, S., Etzioni, O., et al. (2010). Semantic role labeling for open
information extraction. In Proceedings of the NAACL HLT 2010 First International
Workshop on Formalisms and Methodology for Learning by Reading, pages 52–60.
Association for Computational Linguistics.

Collins, M. (1997). Three generative, lexicalised models for statistical parsing. In Pro-
ceedings of the 35th Annual Meeting of the Association for Computational Linguistics
and 8th Conference of the European Chapter of the Association for Computational
Linguistics, pages 16–23.

Fleischman, M., Kwon, N., and Hovy, E. (2003). Maximum entropy models for framenet
classification. In Proceedings of the 2003 conference on Empirical methods in natural
language processing, pages 49–56. Association for Computational Linguistics.

Gazdar, G. (1985). Generalized phrase structure grammar. Harvard University Press.

53

Ge, R. and Mooney, R. J. (2005). A statistical semantic parser that integrates syntax
and semantics. In Proceedings of the Ninth Conference on Computational Natural
Language Learning, pages 9–16. Association for Computational Linguistics.

Geman, S. and Johnson, M. (2002). Dynamic programming for parsing and estimation
of stochastic unification-based grammars. In Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics, pages 279–286. Morgan Kaufmann.

Gildea, D. and Jurafsky, D. (2002). Automatic labeling of semantic roles. Computational
linguistics, 28(3):245–288.

Hirst, G. (1983). A foundation for semantic interpretation. In Proceedings of the 21st
annual meeting on Association for Computational Linguistics, pages 64–73. Associa-
tion for Computational Linguistics.

Johnson, M. (2003). Learning and parsing stochastic unification-based grammars. In
Proceedings of the 16th Annual Conference on Learning Theory and 7th Kernel Work-
shop, COLT, pages 671–683, Washington, DC, USA.

Johnson, M., Geman, S., Canon, S., Chi, Z., and Riezler, S. (1999). Estimators for
stochastic “unification-based” grammars.

Kay, M. (1973). The mind system. In Rustin, R., editor, Natural Language Processing,
pages 155–188. Algorithmics Press, New York.

Kay, M. (1984). Functional unification grammar: A formalism for machine translation.
In Proceedings of the 10th International Conference on Computational Linguistics
and 22nd annual meeting on Association for Computational Linguistics, pages 75–
78. Association for Computational Linguistics.

Kim, J. and Mooney, R. J. (2012). Unsupervised pcfg induction for grounded language
learning with highly ambiguous supervision. In Proceedings of the 2012 Joint Con-
ference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pages 433–444. Association for Computational Linguis-
tics.

Kwiatkowski, T., Zettlemoyer, L., Goldwater, S., and Steedman, M. (2010). Inducing
probabilistic ccg grammars from logical form with higher-order unification. In Pro-
ceedings of the 2010 conference on empirical methods in natural language processing,
pages 1223–1233. Association for Computational Linguistics.

Liang, P., Jordan, M. I., and Klein, D. (2009). Learning semantic correspondences with
less supervision. In Proceedings of the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference on Natural Language Processing
of the AFNLP: Volume 1-Volume 1, pages 91–99. Association for Computational
Linguistics.

Lu, W., Ng, H. T., Lee, W. S., and Zettlemoyer, L. S. (2008). A generative model for
parsing natural language to meaning representations. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language Processing, pages 783–792. Associ-
ation for Computational Linguistics.

54

Maxwell III, J. T. and Kaplan, R. M. (1995). A method for disjunctive constraint
satisfaction. In Dalrymple, M., Kaplan, R. M., Maxwell III, J. T., and Zaenen, A.,
editors, Formal Issues in Lexical-Functional Grammar, number 47 in CLSI Lecture
Notes Series, chapter 14, pages 381–481. CSLI Publications.

Meyers, A., Reeves, R., Macleod, C., Szekely, R., Zielinska, V., Young, B., and Grish-
man, R. (2004). The nombank project: An interim report. In HLT-NAACL 2004
workshop: Frontiers in corpus annotation, pages 24–31.

Miyao, Y. and Tsujii, J. (2002). Maximum entropy estimation for feature forests. In
Proc. of HLT, volume 2.

Miyao, Y. and Tsujii, J. (2005). Probabilistic disambiguation models for wide-coverage
hpsg parsing. In Proceedings of the 43rd Annual Meeting on Association for Compu-
tational Linguistics, pages 83–90. Association for Computational Linguistics.

Miyao, Y. and Tsujii, J. (2008). Feature forest models for probabilistic hpsg parsing.
Computational Linguistics, 34(1):35–80.

Muresan, S. (2006). Learning constraint-based grammars from representative examples:
Theory and applications. PhD thesis, Columbia University, NY.

Muresan, S. (2010). A learnable constraint-based grammar formalism. In Proceedings
of the 23rd International Conference on Computational Linguistics (COLING 2010).

Muresan, S. (2011). Learning for deep language understanding. In Proceedings of
the Twenty-Second international joint conference on Artificial Intelligence-Volume
Volume Three, pages 1858–1865. AAAI Press.

Muresan, S. and Rambow, O. (2007). Grammar approximation by representative sub-
language: A new model for language learning. In Annual Meeting – Association for
Computational Linguistics, volume 45, page 832.

Narayanan, S. and Harabagiu, S. (2004). Question answering based on semantic struc-
tures. In Proceedings of the 20th international conference on Computational Linguis-
tics, page 693. Association for Computational Linguistics.

Och, F. J. and Ney, H. (2003). A systematic comparison of various statistical alignment
models. Computational linguistics, 29(1):19–51.

Palmer, M., Gildea, D., and Kingsbury, P. (2005). The proposition bank: An annotated
corpus of semantic roles. Computational Linguistics, 31(1):71–106.

Pereira, F. C. and Warren, D. H. (1983). Parsing as deduction. In Proceedings of the
21st annual meeting on Association for Computational Linguistics, pages 137–144.
Association for Computational Linguistics.

Pereira, F. C. N. and Warren, D. H. D. (1980). Definite clause grammars for language
analysis – a survey of the formalism and a comparison with augmented transition
networks. Artificial Intelligence, 13(3):231–278.

Pollard, C. and Sag, I. A. (1987). Information-based syntax and semantics. Number 13
in CSLI Lecture Note Series. Chicago University Press, Chicago.

55

Pollard, C. and Sag, I. A. (1994). Head-driven phrase structure grammar. The Univer-
sity of Chicago Press, Chicago.

Ponzetto, S. P. and Strube, M. (2006). Exploiting semantic role labeling, wordnet
and wikipedia for coreference resolution. In Proceedings of the main conference on
Human Language Technology Conference of the North American Chapter of the Asso-
ciation of Computational Linguistics, pages 192–199. Association for Computational
Linguistics.

Poon, H. and Domingos, P. (2009). Unsupervised semantic parsing. In Proceedings of
the 2009 Conference on Empirical Methods in Natural Language Processing: Volume
1-Volume 1, pages 1–10. Association for Computational Linguistics.

Pradhan, S. S. (2006). Robust semantic role labeling. PhD thesis, University of Colorado.

Schuler, K. K. (2005). VerbNet: A broad-coverage, comprehensive verb lexicon. PhD
thesis.

Shen, D. and Lapata, M. (2007). Using semantic roles to improve question answering.
In EMNLP-CoNLL, pages 12–21.

Shieber, S., Uszkoreit, H., Pereira, F., Robinson, J., and Tyson, M. (1983). The for-
malism and implementation of patr-ii. In Grosz, B. and Stickel, M., editors, Research
on Interactive Acquisition and Use of Knowledge, pages 39–79. Menlo Park, CA.

Shieber, S. M., Schabes, Y., and Pereira, F. C. (1995). Principles and implementation
of deductive parsing. The Journal of Logic Programming, 24(1):3–36.

Sondheimer, N. K., Weischedel, R. M., and Bobrow, R. J. (1984). Semantic interpre-
tation using kl-one. In Proceedings of the 10th International Conference on Com-
putational Linguistics and 22nd annual meeting on Association for Computational
Linguistics, pages 101–107. Association for Computational Linguistics.

Steedman, M. (1996). Surface structure and interpretation, volume 30. MIT press
Cambridge, MA.

Steedman, M. (2001). The syntactic process. The MIT press.

Surdeanu, M., Harabagiu, S., Williams, J., and Aarseth, P. (2003). Using predicate-
argument structures for information extraction. In Proceedings of the 41st Annual
Meeting on Association for Computational Linguistics-Volume 1, pages 8–15. Asso-
ciation for Computational Linguistics.

Surdeanu, M., Màrquez, L., Carreras, X., and Comas, P. (2007). Combination strategies
for semantic role labeling. J. Artif. Intell. Res.(JAIR), 29:105–151.

Toutanova, K., Haghighi, A., and Manning, C. D. (2008). A global joint model for
semantic role labeling. Computational Linguistics, 34(2):161–191.

Vickrey, D. (2010). Learning Structured Probabilistic Models for Semantic Role Labeling.
PhD thesis, Stanford University.

Warren, D. S. and Friedman, J. (1982). Using semantics in non-context-free parsing of
montague grammar. Computational Linguistics, 8(3-4):123–138.

56

Wong, Y. W. and Mooney, R. J. (2006). Learning for semantic parsing with statisti-
cal machine translation. In Proceedings of the main conference on Human Language
Technology Conference of the North American Chapter of the Association of Com-
putational Linguistics, pages 439–446. Association for Computational Linguistics.

Wong, Y. W. and Mooney, R. J. (2007). Learning synchronous grammars for seman-
tic parsing with lambda calculus. In Annual Meeting-Association for computational
Linguistics, volume 45, page 960.

Xue, N. and Palmer, M. (2004). Calibrating features for semantic role labeling. In
EMNLP, pages 88–94.

Zettlemoyer, L. S. and Collins, M. (2007). Online learning of relaxed ccg grammars for
parsing to logical form. In In Proceedings of the 2007 Joint Conference on Empir-
ical Methods in Natural Language Processing and Computational Natural Language
Learning (EMNLP-CoNLL-2007. Citeseer.

Zettlemoyer, L. S. and Collins, M. (2009). Learning context-dependent mappings from
sentences to logical form. In Proceedings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP: Volume 2-Volume 2, pages 976–984. Association for
Computational Linguistics.

Zettlemoyer, L. S. and Collins, M. (2012). Learning to map sentences to logical
form: Structured classification with probabilistic categorial grammars. arXiv preprint
arXiv:1207.1420.

