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[ describe a series of four experiments studying decision under uncertainty
in the mouse and argue that their results demand a more sophisticated,
information-processing, account of mouse behavior than current popular models.
The tasks are based on the switch procedure of Balci, Freestone and Gallistel (2009),
which employs interval-timing behavior to study decision under uncertainty. I show
that: 1. Subjects respond to changes in task-relevant probabilities abruptly. 2. The
number of trials before they detect a change in probability is predicted by the
Kullback-Leibler divergence between the Bernoulli distributions of the two
probabilities. 3. Subjects are capable of decreasing their timing variability. 4.
Subjects differentiate between added exogenous temporal variability and their
endogenous timing variability. I argue that these four results are best understood in
an information-processing framework and modeling mouse behavior with
algorithms that explicitly represent abstract quantities such as probability,

exogenous variability and objective time.
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Introduction

In this thesis I report four experiments on time-based switching decisions in
mice. [ argue that the results of these experiments are relevant to a much broader
discussion about judgments and decisions in other animals, including humans. I
argue that the four experiments reported here demonstrate that:

1. Subjects detect changes in the probabilities integral to their task; rather
than gradually adapting their behavior to whatever the frequency of
events has been recently.

2. The speed with which they detect such changes is best characterized in
information-theoretic terms.

3. Subjects can make their timing behavior more precise when the task
demands it.

4. Subjects differentiate between sources of variability that are endogenous
and those that are exogenous.

[ will argue that these results support a model of the decision processes of mice that
is probabilistically sophisticated, essentially concerned with the processing of
information. This runs contrary to popular views of animal decision (and non-
conscious human decision) that suggest subjects merely imitate the performance of
a mathematically sophisticated decision-maker via the use of simple heuristics. In
this introduction, I try to place these experiments in the broad context in which I

believe they are relevant.



One central aim of this thesis is to demonstrate the virtues of an information-
processing account of animal decision-making. The dichotomy between the type of
thinking that underlies animal behavior and the type of explicit verbal reasoning
that humans are capable of is at least as old as Plato. He, and the vast majority of
thinkers following him, cast careful, deliberate reasoning as the path to truth,
happiness and The Good. By contrast then, the quick, automatic and instinctual
system that motivates animal behavior and unenlightened human behavior is
classically seen as an inferior process that we use when there is insufficient time or
mental resources for proper reasoning. In the last 35 years, research has shown this
is a fiction: a large portion of the time, human reasoning is deeply flawed. Recent
research, including this thesis, is finding that instinctual, “gut,” decisions are more
sophisticated than previously thought. This thesis shows that even mice are adept at
calculating nearly optimal behavior in scenarios that require computing subtle
probabilistic quantities and serves as an example of the use of an information-
processing framework for understanding choices evident in animal behavior.

To be clear: I will advocate a view of animal decision-making that ascribes to
animals the ability to estimate and perform calculations with complex and abstract
probabilities. I will argue that the experiments in this thesis show behavior that
cannot be explained without ascribing to our subjects (mice) a representation of
probability values, likelihoods of higher-order events and even separate
representations of uncertainty inherent in their sensory apparatus and uncertainty

due to the environment.



The cracks in human rationality

In the 1970s Kahneman and Tversky published a series of studies that
showed systematic errors in human subjects’ responses to simple questions that
dealt with uncertainty. For example, Tversky and Kahneman (1983) found that
when subjects were told about a hypothetical person, Linda, who had traits that are
typically associated with feminism, subjects rated the proposition “Linda is a bank
teller and is active in the feminist movement” as more likely than “Linda is a bank
teller.” Obviously, this is a departure from probability theory because the
conjunction of any two events A A B cannot be more likely than the probability of
either event A or B taken individually. They found this effect to be extremely robust,
even in subjects with training in statistics and even when the question was phrased
to draw subjects’ attention to the fact that in every circumstance in which Linda is a
bank teller and a feminist, she is also a bank teller (but not the other way around).
The most effective way to lower the proportion of subjects committing the
conjunction fallacy was to change from asking about which events were more
probable to asking subjects which proposition they should bet $10 on so as to
maximize the probability of winning money. Even then, over half of participants still
made the error.

Experts also made the conjunction fallacy, even in their domain of expertise.
Tversky and Kahneman gave doctors a problem formally equivalent to the Linda
problem above but about patients with a disease being more or less likely to
experience each of a set of symptoms from a list. Once again, they found that their

subjects evaluated the probability of the patient reporting symptoms A A B as more



likely than B when A A B was more typical of the disease. Thus even experts, with
training in probability and statistics, engaging in content within their realm of
expertise, making a judgment highly typical for their line of work, committed the
conjunction fallacy.

The conjunction fallacy is just one example of incorrect reasoning Tversky
and Kahneman (1974) found. Subjects also failed to take into account base-rates at
which events occur, were insensitive to sample size and reliability considerations
and were even swayed by the presentation of completely irrelevant numbers that
were clearly identified as irrelevant. They found many more departures from
correct reasoning in a wide variety of contexts, which spawned an entire field called
Judgment and Decision Making full of examples of how human reasoning can yield
illogical results.

These results do not necessarily mean that humans are deeply irrational, as
Kahneman and Tversky point out (Tversky & Kahneman, 1986). They refer to these
errors as “cognitive illusions” analogous to optical illusions. Though there are
circumstances in which our visual system consistently perceives something other
than what is actually presented, these situations do not mean that our visual system
is deeply flawed. Despite knowing about optical illusions, we rightfully trust our
visual system because the circumstances that produce illusions are rare and fragile.
When we walk around in the world, the probability of encountering illusions in
important circumstances and for an extended period of time is so low that they are

negligible.



The study of cognitive illusions may give us insight into how we made
decisions under uncertainty just as visual illusions give us insight into how the
visual system works. The bugs of the visual system give us clues as to how it
functions. If we can be aware of these quirks, we can minimize their potential for
harm. Accordingly, Kahneman and Tverksy developed Prospect Theory, which was
supposed to be the general theory that would account for the cognitive illusions
they had discovered and how they can be thought of as the aberrant cases of a
typically functional rational system.

Unfortunately, Prospect Theory (Kahneman & Tversky, 1979) and its
successor, Cumulative Prospect Theory (Tversky & Kahneman, 1992), has not
yielded a successful general account of decision-making under uncertainty. This is
for two reasons. First, the number of exceptions to its application seems to grow in
almost one-to-one correspondence with the number of studies of it. The ever-
increasing list of quirks and exceptions to effects in this area means that we are left
without a general framework in which to understand which effects take precedence
over which others in a complex decision outside of the lab.

Second, the “cognitive illusions” it describes do not seem rare and fragile. On
the contrary, as divergence from optimality in decision-making has become better
documented, there has been an explosion of marketing programs exploiting the
heuristics and biases that supposedly underpin our human reasoning. We should be
worried indeed if our much-exalted human capacity for reason is simply a mélange

of biases and heuristics that so often lead us away from good decisions.



The virtues of instinct

The picture of human reasoning painted above is bleak. At the same time,
people seem perfectly capable of making good decisions with limited information
hundreds of times a day: Which grocery store is likely to be less crowded right now?
Can I make it across the street before that car? Will this fish make me sick? The
flaws in human reasoning explored in Judgment and Decision Making are surprising
to researchers exactly because of the fact that we typically do not have difficulty the
real world despite having very incomplete information about it. If we walked
around making grievous errors with dire consequences more often than not, our
departures from normative reasoning would be unremarkable (and we might not
even live long enough to reflect on that fact).

Other experiments attest to the robustness of human decision-making,
showing that in a wide variety of tasks subjects are able to make judgments
reasonably well under uncertainty, using very simple rules of thumb or heuristics.
For example, when asked to guess which of two cities has the higher population,
subjects often choose the city that is familiar to them, which is a simple and highly
effective strategy (Gigerenzer & Goldstein, 1996). This is referred to as the
recognition heuristic and is one of the seminal findings in this area. Similarly valid
responses are also found in probabilistic judgments when the relevant probabilities
are experienced (in a sequence of trials) by the subject rather than merely described
to them (see Hertwig & Erev, 2009 for a review). This has led some researchers to
extoll the deep wisdom of the heuristics, noting that in a number of cases heuristics

can yield good solutions more reliably than more complex “normative” strategies



(Gigerenzer & Gaissmaier, 2011). As Gigerenzer and Goldstone argue (2009), this is
essentially the problem of overfitting, illustrated in Figure 1: Naively fitting a
complex model to data can cause the model to fit the noise in the data. The
additional complexity in the model gives it the freedom to fit aspects of the data that
are spurious. This makes it a better fit to the existing data but a worse predictor of
future data generated by the same process. Thus, unnecessary model-complexity

can make a model worse.
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Figure 1. Here we see a set of toy data: generated from a parabola with Gaussian noise
added. The upper panel displays the best fit to the data using a second degree
polynomial and the lower panel displays the best fit to the same data using a tenth
degree polynomial. Because the tenth degree polynomial has more degrees of freedom,
it is a better fit to the data. Nevertheless, it will be a worse predictor of future data
generated by the same process: since the generating function is approximately a
parabola, the incoming data will tend to fall on that parabola, not this strange tenth
degree polynomial. This phenomenon is called “overfitting” or “fitting the noise.”
Gigerenzer and colleagues claim that many “normative” solutions to experimental
tasks are actually non-normative in a broader context, analogous to overfitting the
data (Goldstein & Gigerenzer, 2009).

Given the traditional view that reason is the path to Truth and instinct is
likely to lead us astray, we're left with a counterintuitive pattern of results. We can
be terrifyingly irrational when asked to think about a situation described to us but
surprisingly rational when we learn probabilities through experience. This can be
seen as similar to the fact that we are able to accurately throw a ball to someone

running over an uneven surface but most of us are unable to solve the set of



differential equations that would give us the normative solution for how to do this.
Researchers studying skilled outfielders found that in attempting to catch a ball
lobbed in the air, outfielders adjust their speed so that the angle of elevation of gaze
to the ball is always at zero (McLeod & Dienes, 1996). Gigerenzer calls this the gaze
heuristic because it does not require the subject to do complex differential
equations or take into account difficult factors such as wind speed or the spin of the
ball. He argues that we actually do catch balls using this heuristic (Gigerenzer, 2004)
and that this is a prime example of how the simplicity of our instincts are actually
their strength; making us essentially rational agents armed with a Swiss army knife
of simple strategies selected by evolution for their robustness (the “adaptive
toolbox”).

There are, however, problems with this view. For one, some cornerstone
heuristics have only been shown to be strategies that could give performance
similar to human performance in quick, intuitive decisions. This is a world away
from showing that humans actually do employ these heuristics. As pointed out by
Hilbig (2010), insufficient attention has been paid to the fact that since heuristics
have a high degree of validity and human subjects do well on these tasks, some
degree of similarity in their outcomes is guaranteed.

For example, there is reason to doubt the use of the much-celebrated
recognition heuristic. Hilbig (2010) points out several studies that show that
subjects make the same choice as the recognition heuristic when it will give the
correct answer but deviate from it more often when it will give the incorrect

answer. Naturally, it would be impossible for subjects to do this if they were only
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using the heuristic without other cues as to whether it will be correct on a particular
question. Indeed, there is a sizeable body of evidence showing that subjects do not
simply use the recognition heuristic, blind to other information. Perhaps
unsurprisingly, subjects do not use this heuristic when they recognize cities because
they are merely near where they happen to be or for other coincidental reasons
such as knowing Nantucket because it is in a popular limerick (Oppenheimer, 2003).

A second problem with the “adaptive toolbox” view of rationality is that
pointing out the wisdom of intuitions and simple strategies does not get us any
closer to a unified framework in which to understand decisions. Much like the biases
found with deliberate reasoning in the previous section, the heuristics that allegedly
underpin our fast reasoning are merely listed by current theories rather than
explained. For instance, there is no satisfying explanation of the strategy selection
problem: when do subjects use which heuristic? (Glockner, Betsch, & Schindler,
2010; Newell, 2005).

The current status of the field of Decision is similar to that ascribed by Joshua
Tenenbaum (1999a) to the field of Categorization fifteen years ago: divided between
the classical view, that categories are defined by sets of necessary and sufficient
criteria (rules) and the statistical view, that categories are defined by exemplars or
prototypes (similarity). He argued that a unified approach was necessary to
understand how modules interact, why there are the number that there are, why
they operate the way they do, and what they have in common. Indeed, the hotly
contested question of whether categorization proceeds by exemplars or prototypes

has been shown to be a false dichotomy; two points on a computationally important
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spectrum (Briscoe & Feldman, 2011). It is my belief that such a general framework
is necessary in the field of Decision to unify the disparate effects and theories (or
lack thereof).

[ think this can be done under a framework very similar to the one advocated
by Tenenbaum and others (e.g. Chater, Tenenbaum, & Yuille, 2006; Griffiths, Chater,
Kemp, Perfors, & Tenenbaum, 2010; Tenenbaum, 1999a), which I will call an
Information Processing framework. I take this view in part because the tasks of
decision under uncertainty and categorization are very similar (a categorization is a
decision under uncertainty of “which category does this belong to?” and a decision
under uncertainty is implicitly a categorization of options). It is also in part because
this framework has already yielded useful results in the field, which will be

discussed below.

Decision-Making from the Perspective of Information Processing

If the classic theories of Judgment and Decision Making were unable to
explain diverse results and predict results in novel situations, it is perhaps time to
take a step back and examine their assumptions. A key assumption, particularly with
regard to models of intuitive decisions, has been that subjects are not performing
complex probabilistic calculations because this would be too complicated. I argue
that this assumption should be dropped. This is because of the usefulness of using
an Information Processing framework when studying decisions, which sometimes
entails ascribing a good deal of mathematical sophistication to our subjects. I will
take a moment to discuss this assertion because the subjects in this thesis are all

mice, which for some will make the claim of mathematical sophistication sound
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strange. | will not, however, shy away from the assertion that subjects are
performing sophisticated mathematical calculations despite the fact that they are
mice.

[ do not propose that mice secretly perform mathematical calculations with a
pen and paper while researchers aren’t looking. In the same way that a child does
not need to know the laws of biology in order to grow into an adult, an animal does
not need to consciously be aware of the mathematical formulae driving its decisions
in order to make them. In addition, making decisions under uncertainty (or as it is
more commonly known, “making decisions”) is one of the fundamental activities of
all animals. We have differing goals (don’t get eaten, run down that prey, get to the
cleaners before they close, etc.) but we’re all plagued by the fact we don’t know
everything we’d like to. If we did, there would be no purpose to learning what cues
predict favorable conditions: if dogs knew when food was coming and when it
wasn’t, any ringing of bells would be irrelevant to them. Of course, this is not the
case: conditional learning can be seen in animals from humans to even single-celled
paramecia (Armus, Montgomery, & Jellison, 2006). Making decisions with
incomplete information is more universal in the animal kingdom than having eyes,
lungs or a gender: it's what all animals do all day, every day.

It does not seem absurd, then, that animals would have a highly developed
engine for evaluating decisions under uncertainty. This thesis combines
perspectives from various disciplines—including, risk assessment, signal detection
theory, and information processing—to show how recent, more conceptually

sophisticated frameworks can yield more fruitful, simple, and predictive theories of
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how intuitive judgments work. This is obviously a vital step in developing a unified

theory of rationality and decision under uncertainty.

A brief word on complexity

This thesis will not dwell on questions of computational tractability for the
computations I use to model subject behavior. This is not because I believe this
question is unimportant but because such concerns presuppose that we understand
the more fundamental processes in the brain such as the physical basis of memory
which is itself not well understood at all (C.R. Gallistel & King, 2009). There is also
no standard against which to compare the computational complexity of more
complex calculations because there has been no definitive study of the complexity of
selecting and implementing a set of heuristics working in conjunction. Given the
number of heuristics proposed, the computational complexity of this task could be
large indeed. Not only this, but existing models of decision are completely silent on
how their inputs are calculated. They often take abstract quantities such as
“familiarity” as primitive inputs, when some kind of statistical processing is clearly
needed to get these inputs in the first place. Presuming further statistical processing
(possibly of the same basic variety) may not add much computational complexity.

In addition, an Information Processing framework is useful regardless of how
its functions are implemented. It provides us with an optimal standard against
which we can compare our data. Since subjects approach optimality in a variety of
tasks, there is a sense in which it is vacuously true that some implementation of my
modeling functions (or an approximation thereof) must be performed by the

subjects in some sense. On the other hand, if we ask whether decision under
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uncertainty proceeds by algorithms such that each constituent part can be put into a
one-to-one mapping with my model, with no shortcuts or approximations
whatsoever, we can see this is certainly false. What I will argue in this thesis is that
the functions being computed are sensitive to quantities that are abstract and subtle
such as probability values, the probability of a probability value changing or the
amount of variability that is due to the subject as opposed to the environment.
Though it is difficult to make a sharp distinction between information processing
and simple heuristics, the fact that subjects are sensitive to such abstract and
complex quantities suggests that they are approximating normative information

processing computations rather than greatly simplified heuristics.

The case for Information Processing

Most importantly, the experimental data have been highly encouraging for
this approach. This section will very briefly survey some of the success of Bayesian
models in describing human behavior from a variety of modalities and experimental
methods. The goal here is not an exhaustive review but rather a few key examples
that show the power of these models in diverse domains, especially non-verbal ones
because those will be the focus of this thesis.

Bayesian models have been used to great effect in modeling human
categorization (Tenenbaum, 1999b). As mentioned above, this is a topic deeply
related to decision under uncertainty. For example, a hierarchical Bayesian model
has been used to reconstruct phylogenetic trees from lists of traits each animal has
and then to classify new animals (sets of traits like “has fur,” “lays eggs,” etc.) which

made impressively similar classifications to subjects, including intuitive mistakes
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such as classifying a whale as a fish (Kemp, Perfors, & Tenenbaum, 2007). Though
particularly evocative, this result is not atypical for Bayesian models of human
learning (for a review, see Tenenbaum, Kemp, Griffiths, & Goodman, 2011).

They have also been effective in modeling subjects’ ability to make
reasonable predictions in everyday situations: subjects appear to have a reasonable
prior distribution on data they have encountered only in passing and appear to
combine independent sources of information with these priors and with one
another so as to make accurate predictions about commonplace quantities. Since
this is the essence of Bayesian updating, Bayesian decision-making is an effective
framework for understanding these effects. First, Griffiths and Tenenbaum (2006)
showed that subjects have reasonable prior probabilities on common everyday
quantities. When asked to predict human life spans or the box-office take of movies,
subjects showed that they had priors similar to the actual distributions of these
values, as would be useful for Bayesian inference. Later, they showed that subjects
also appear to be Bayesian in their ability to use information to make predictions
about the future. In one experiment, subjects were asked for their “gut feeling”
about how often subway trains run when given varying numbers of observations for
when the next train would come. One day they showed up at the station and it was
103 seconds to the next train, another day 61 seconds, etc. In this and similar
experiments, subjects were able to combine multiple sources of information,
combine information with their priors and properly treat independent observations
to make predictions, which is the essence of Bayesian inference (Griffiths &

Tenenbaum, 2011).
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Human performance similar to that of an ideal Bayesian subject has also been
found in nonverbal, intuitive, domains. For example, Trommershauser, Maloney, &
Sandy (2003) tested subjects in a task that required them to quickly (within 750ms)
touch an area on a touch screen. The touch screen displayed a set of penalty and
reward areas where if the subject touched them, they would gain or lose the number
of points indicated (and at the end of the session points paid out as 25 cents per
1000 points, to make this experiment more easily comparable to existing work on
the choosing of lotteries). Because the subjects had to make this decision quickly,
their pointing had a certain amount of noise. When the reward and penalty areas
overlapped, choosing where to aim one’s point became a nontrivial task: aim too
close to the center of the reward area and one risks accidentally hitting the penalty
area but aim too close to the “safe” edge of the reward area and one risks missing
the reward area altogether. Subject performance was well predicted by a Bayesian
optimal planner that chose a point of aiming based on the reward/loss function
presented on the screen as well as the subject’s pointing variability.

In an experiment that can be thought of as a human analogue of Experiment
1 in this thesis, subjects were asked to observe draws from a Bernoulli distribution
(essentially, coin flips) whose variable (the bias of the coin) might change without
warning (C. Gallistel, Krishan, Liu, Miller, & Latham, 2013). They were asked to
estimate the value of the Bernoulli distribution. Their estimates were better
modeled by a Bayesian optimal learner than by adjust-as-you-go heuristic models.
That was because subjects made decisive and substantial changes in their estimates

rather than gradually adjusting to changes.
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Of course, just as [ pointed out with reference to ecologically-valid heuristics,
performing at the same level as a given strategy is not sufficient evidence for the
claim that subjects are actually using that strategy. So, in order to more rigorously
test whether subject behavior is consistent with Bayesian models, Maloney and
Mamassian (2009) re-analyzed data from the afore-mentioned pointing experiment
to examine subjects’ ability to transfer information from one task to another. If
subjects are performing a Bayesian calculation when performing non-verbal
pointing tasks, they are combining a prior function, a likelihood function and a gain
function to calculate an approximately optimal response. If instead they are using
some fast and frugal heuristic, they will have shortcut one or more of these steps in
favor of a simpler solution and therefore will not have learned the prior, likelihood
and gain functions separately. They should therefore not be expected to be able to
transfer knowledge of these functions to speed up their acquisition of a task that
involves only some of them.

The authors noted that in the training phase, subjects engaged in exactly the
same task as during the experimental phase except that the reward function was
different-though the penalty areas were displayed, they were not yet active so had
no effect on the gain function and therefore no effect on subject behavior (subjects
learned to point at the center of the reward areas). After several hundred trials,
subjects learned to respond within the short time window they were allowed and
their motor variability decreased and stabilized. When they moved to the
experimental task there was no such learning curve: there was no trend in their

aiming points when sessions began nor through the rest of the session. This means
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that when confronted with a task with already known prior and likelihood
functions, subjects did not have to re-learn or even readjust their behavior when a
new reward function was introduced. It is difficult to see how subjects would be
able to plug in a new reward function if their behavior was being directed by simple
strategies, be they adaptive heuristics or maladaptive biases.

We have now seen the usefulness of Bayesian models in categorization,
probability change detection and movement planning. Note that these are three
areas that run the gamut from “reason” to “instinct.” Categorization has filled
volumes by great minds from Aristotle to Frege and beyond. Detecting probability
changes requires subjects to go from an experience of a stochastic variable over a
number of trials to a verbalized response. Pointing at a high-value area on screen
within 750ms of seeing the display seems to me about as “instinctual” as one can get
since there isn’t enough time to deliberate and even the mode of response is
nonverbal. Although choosing a point to aim at in this case is equivalent to choosing
from many possible lotteries (J. Trommershauser, Maloney, & Landy, 2008), in
which subjects are notoriously prone to error, subjects seem to have no trouble
aiming at approximately optimal points. In all these situations and many more,
subjects perform roughly on par with relevant Bayesian ideal observers. They also
transfer information between tasks and combine information from priors and
independent observations. This means that subjects are essentially doing some kind

of Bayesian analysis in these diverse cases.
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The project at hand

Gigerenzer’s caution against overfitting and fragile strategies is a valid point
but his presentation of algorithms as being either complex and fragile or simple and
robust, is overly simplistic. More conceptually sophisticated models can actually be
computationally simpler, especially when applied to large and complicated
problems. This might be the case, for example, if one is choosing between a set of
simple rules (of as-of-yet unknown size) with unknown interactions between them
and a sophisticated system that is easily scalable to a large class of problems and
may (by nesting) even help you discover the structure of the problem at hand (e.g.
Kemp & Tenenbaum, 2008).

The purpose of this thesis is to bolster the case for Bayesian models of
decision by demonstrating the usefulness of an Information Processing framework
in the animal decision and timing domains. I will establish four basic results that I
hope will demonstrate the usefulness of this approach even for decisions under
uncertainty by mice:

1. Mice detect changes in probability.

2. The number of trials before this detection is predicted by the
information-theoretic Kullback-Leibler divergence.

3. Agiven subject’s timing precision is not constant and can be increased
by making the temporal discrimination task more difficult.

4. Subjects distinguish between variability that originates from them

and variability that is from the world.



20

These results serve to demonstrate that mice have the capacity for a
necessary component of Bayesian inference (detecting probabilities), are driven by
information-theoretic quantities, and can learn and respond to exogenous (as
opposed to endogenous) variability. The thinking behind this is that if mice can be
shown to approximate Bayesian reasoning then surely it is time for a new, more
conceptually sophisticated (which may indeed be computationally simpler)
understanding of human decision.

The debate over our notion of rationality has deep intellectual and far-
reaching practical implications, as outlined in the suddenly popular books on this
topic. Some argue that our uniquely human, careful and deliberate reasoning is
actually worse in many situations than our fast and automatic instincts (Gigerenzer,
2007; Gigerenzer & Selten, 2002; Gladwell, 2007, etc.). Thinking Fast and Slow
(Kahneman, 2011) offers a different basic interpretation of the data: that because
our instincts are mere approximations of optimal solutions, we must be even more
careful and deliberate in our thinking to reach correct conclusions.

[ believe that the work applying Bayesian models to categorization is very
encouraging for the prospects of understanding human deliberate decisions. It may,
therefore, help to explain deviations from optimality rather than simply cataloguing
mistakes. Now, [ present what I take to be strong evidence that even decisions under
uncertainty by mice are similarly sophisticated and best understood in the same
framework: they are sensitive to abstract, information-theoretic quantities and
adjust to changes in these quantities abruptly; as if by calculating their behavioral

shift and then executing it, rather than gradually tweaking some internal parameter.
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[ take this to be a step toward understanding rationality, what cognitive capacities

we share with animals and therefore by contrast what it means to be human.
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General Method

This thesis involves a number of variations on the same basic task, all of
which used mice as subjects. The variations are described in the experiments in
subsequent chapters but each experiment manipulated some parameter in our
interval-timing task, which we refer to as the Switch task. The most important
response-variable for all of the experiments was the time at which subjects switch
from poking in one hopper to another (the switch latency). Each experiment used
this single measure to investigate subjects’ models of their environment. [ now
proceed to describe the general experimental protocol and apparatus. The ways in
which each experiment departed from the basic switch task are described in the

Methods section of those experiments.

Subjects were first trained to interact with their environment (matching and
autoshaping procedures, below) and then tested in one of the variations of the
switch task. All tasks were active for two periods per day, one around “dawn” and
the other near “dusk” (as determined by the onset and offset of the house lights in

their boxes).

Apparatus

The subjects’ cages contained three feeding hoppers on the same wall. The
two on the ends were designated the “short-side” and “long-side” hoppers and the

“control hopper” was in the middle (See Figure 2). Subjects ran in the 24-hours-per-
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day, 7-days-per-week automated testing system and were analyzed by the Time Stamp
analysis system both described in Gallistel ez al. (2010) and Gallistel et al. (2013). Using
these systems, subjects had 24-hour access to their test chamber, which was a Classic
Modular Test Chamber for Mouse from Med Associates (dim: 15.9 cm x 14.0 cm x 12.7
cm) fit with three Pellet Receptacles for use with Pellet Detection, also from Med
Associates. These receptacles were our feeding hoppers, which recorded pokes by the
subject and were the place where pellets were delivered. In the experimental procedures
subjects subsisted entirely from earned pellets, which were 20 mg Purina grain-based
from WF Fisher and Son, Inc. The experiments used different species of mice because
they were piggybacked on other experiments, which were genetic screeners. The species
are indicated in the Methods section of each Experiment. Because of the high level of
performance on our tasks, we have no reason to believe that genetic manipulations

impaired performance.

As mentioned above, subjects lived in the testing environment 24 hours per day,
subsisting entirely off food earned in the experiment, and their actions were cataloged
and time-stamped as they occurred. Analyses were performed in quasi-real time (twice
per day) to keep track of their daily progress in learning the task and adapting to new

conditions.

Training: Matching and Autoshaping

Subjects were first trained on a matching task, in which the feeders
connected to the two feeding hoppers (the long and the short hoppers) were armed

at random intervals so that poking in the hoppers would release a pellet. Next, the



24

subjects underwent an autoshaping procedure, in which they initiated trials using
the control hopper, after which one of two feeding hoppers lit up and a reinforcer
was delivered after a set delay. The delay for the left (short) side and right (long)
sides were typically easily distinguishable, such as 3s vs. 9s in Experiment 1. This
prepared subjects for the primary task: the interval-timing task we call the switch

procedure.

Primary task: Switch

In the Switch task, the control hopper was illuminated when the subject
could start a trial, which occurred after an exponentially-distributed delay following
the end of the previous trial (during the active phases). A poke to the illuminated
control hopper extinguished the light there and began a trial. Once a trial began, an
unsignaled draw from a Bernoulli distribution determined whether the trial was a
“short trial” or a “long trial.” The uncertainty about whether the trial would be short
or long was an exogenous stochastic variable, which we manipulated in several of

the experiments.
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Figure 2. The experimental environment. In the Switch task, a trial proceeded as
follows: 1) Light in the Trial-Initiation Hopper signaled that the mouse could initiate a
trial. 2) Mouse approached and poked into the Trial-Initiation Hopper, extinguishing
the light there and turning on the lights in the two feeding hoppers (trial onset). 3)
Mouse went to the short-latency hopper and poked into it. 4) If, after the short feed
latency (e.g. 3 s) had elapsed since trial onset and poking in the short-latency hopper
did not deliver a pellet, mouse switched to the long-latency hopper, where it got a
pellet there in response to the first poke there after the long feed latency (e.g. 9s had
elapsed). Lights in both feeding hoppers extinguished either at pellet delivery or when
an erroneously timed poke occurred. Erroneously timed pokes are referred to as “time-
outs” because they occurred when the subject poked at the long-side hopper during a
short trial after the short-side hopper was armed or when the subject continued to
poke at the short-side hoper on a long trial after the long-side hopper was armed.
Short trials lasted about the short feed duration and long trials about the long feed
duration, whether reinforced or not: If the mouse was poking in the short hopper at
the end of a short trial, it got a pellet and the trial ended. If it was poking in the long
hopper, it did not get a pellet and the trial ended at the short feed latency. Similarly,
long trials ended at approximately the long feed latency: If the mouse was poking in
the long hopper, it got a pellet; if in the short hopper, it did not. A switch latency is the
latency of the last poke in the short hopper before the mouse switches to the long
hopper. Only the switch latencies from long trials were analyzed.

On a short trial, whether or not a subject was given a pellet was determined
by which hopper he poked in first after the short feed latency had elapsed: if this
first poke was on the short-side hopper, the subject was reinforced and the trial
ended; otherwise the trial simply ended without reinforcement. On a long trial,
reward was determined by the first poke after the long feed latency had elapsed: if

this first poke was on the long-side hopper, the subject was reinforced; otherwise
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the trial ended (Figure 3). Subjects had no way of knowing which trial type they
were in until the trial had ended, but they quickly learned a strategy that allowed
them to get most of the possible reinforcers: poke at the short-side hopper until the
short feed latency had elapsed and then switch to poking at the long-side hopper
(Figure 2). If the subject had not been reinforced on the short side after the short
feed latency has elapsed, the subject knew it was in a long trial so had only to start
poking on the long side before the long feed latency has elapsed. The uncertainty
about how much time had elapsed since the start of the trial-upon which the
decision to switch from the short to the long hopper depends-was the endogenous

stochastic variable and the main variable of interest in most of the experiments

below.
Coin Flip
t
l P(short)y P(long)=1-p
Both Lights On Both Lights On

Short Feed Latency Elapse® l
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Figure 3. The basic switch procedure laid out visually. In each trial, a coin of weight p
was flipped to determine if it was a long or a short trial. Both hopper lights came on
until the first poke after the feed latency elapsed. On a short trial, if the first poke after
the short feed latency elapsed was to the short-side hopper, the subject got a pellet.
Otherwise, the trial ended without reinforcement. On a long trial, if the first poke after
the long feed latency elapsed was to the long-side hopper, the subject got a pellet.
Otherwise, the trial ended without reinforcement. Both lights were extinguished at the
end of a trial.
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This strategy may be thought of as the subject starting each trial under the
assumption that the current trial is a short one. As time passed without being
reinforced on the short side, the subject had increasing evidence that the short feed
latency had elapsed and therefore that the trial was a long one. The subject could
then switch when sufficiently confident that the trial was a long one. This strategy
depended crucially on the criterion one sets on one’s confidence that the short
interval has already elapsed that motivates a switch to the long hopper. Since mice
are not perfect timers, whatever decision criterion the subjects used to decide when
to switch, their behavior produced a distribution of switch times. So, while
switching at any time between the short and long feed latencies would ensure a
reinforcer on every trial, aiming to switch at a time very close to short feed latency
was a risky proposition: it would be easy to overestimate the time elapsed and
switch too early, thereby missing the reinforcer were it a short trial. Similarly
aiming too close to the long feed latency would risk switching too late and missing
the reinforcer, were it a long trial. Thus, we can think of the subject as engaged in
signal detection: attempting to tell whether its own sense that the short feed latency had
elapsed was due to the noise inherent in its timing mechanism or if it was veridical. To
frame the problem in Bayesian terms, the optimal target switch time was the time at
which the posterior probability that the current trial was a long one exceeded the

posterior probability that the current trial was a short one.

Switch behavior

Balci (2007) found that the primary component of these switch distributions

is normal and centered near the optimal decision criterion given that subject’s
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timing accuracy (coefficient of variation). Thus, if we interpret the distribution of
switch times as the subject’s noisy attempts to switch at a specific time, the time
they have selected is approximately optimal, as given by the description above. The
timing of their switches was centered around t such that t is the intersection of the
two weighted normal distributions:

pxN(t,S*CV)=1A—p)*N(t,L*CV)
where IV is the Gaussian distribution function, p is the probability of a short trial,
CV is the subject’s coefficient of variation in timing tasks (and thus S * CV is the
variance in their timing distribution for the short feed latency), S is the short feed
latency and L is the long feed latency (See Figure 4 for an example and Experiment 1
for further discussion).

Note that the optimal target switch time, ¢, depended on all four of these

quantities:

1) If the base rate of short trials, p, were high, it would have been more
important that the criterion not cause too many premature switches and
thereby miss a large portion of the short trials, which meant a later ¢ (and
conversely for low p).

2) As CV increased the variance of the long-trial distribution grew faster
than the variance of the short-trial distribution (since S < L). The
relative increase in the width of the long-trial distribution meant that
their intersection moved left, meaning that as CV increased t decreased.

3) The short and long feed latencies had an obvious and direct impact on t:

the larger the value of S, the larger t must have been to not miss large
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portions of short trials and the smaller the value of L, the lower t must

have been to not miss large portions of long trials.

0.2

3xp(t|S)

0.1

Conditional Probability

Figure 4. The conditional probability distributions of the subjective times of
reinforcement, t,., on short and long trials, p(t,|S) and p(£,|L), scaled by the prior
probabilities, p(S) and p(L) = 1 — p(S). The optimal subjective time at which to
switch was when the posterior odds were equal (heavy short vertical lines at the points
where the distributions intersect). Increasing the prior odds of a short trial (lower
panel) shifted this optimum to the right (toward later times). In accord with the well-
established scalar variability in subjective elapsed times, the standard deviations of the
distributions were proportional to their means.

Models of the data

As mentioned above, most of the experiments in this dissertation focused on
analyses of a single quantity, called the switch latency. This is the amount of time
from the start of a long trial until the subject leaves the short hopper for the long

hopper. These switch latencies can be seen as samples from a distribution that, as
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we have just laid out, depends on many abstract quantities such as the base rate of
short trials and the CV of the subject’s timing behavior. For the most part, the
distribution of switch latencies turned out to be approximately Gaussian but with a
small additional component.

This offers a natural interpretation of the observed behavior: the mean of the
normal distribution corresponds to the mouse’s target switch time (the time at
which the mouse, on any given trial, reaches its decision criterion to switch sides)
and the standard deviation is a measure of the noise that comes from the mouse’s
systems of measuring time and enacting their decision to switch once the decision is
made.

The addition to the Gaussian distribution was a typically small portion of
switches that occurred even before the short latency had expired (see Figure 5 for
an example). For the most part, this dissertation focuses on the analysis and
interpretation of the Gaussian component of the data. Thankfully, these impulsive
switches were typically few in number and easily separated from the Gaussian
component. In some experiments, the impulsive switches have been best modeled
by an exponential distribution while in others they have been best fit by a Weibull
distribution. In either case, none of the results discussed below have depended on
such choices of modeling. While these impulsive switches may be of interest to those
studying cognitive control, they were only analyzed here so they could be set aside,

so as to clarify the analysis of the Gaussian component.
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Count

bl

Figure 5. Sample distribution of switch latencies from a single subject in a single
session. The data were censored at the long latency (green vertical line) and we see a
small portion of switch latencies lower than the short latency, which we call
“impulsive” switches. These are discussed further in Experiment 3 but for the most part
they were few in number and easily separable from the Gaussian component of the
data so were not a large concern for the experiments presented here. Still, they may be
of interest to those studying impulsivity and control and warrant further study on
their own.
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Preview of experimental results

The experiments below expand on Balci (2007) by manipulating these
quantities and examining their effect on the distribution of switch times subjects
produced. Experiment 1, which was my published masters thesis (Kheifets &
Gallistel, 2012b), shows that subjects shifted their behavior in response to a new p
soon after it was put in effect and that this behavioral shift was abrupt, rather than
gradual. This result greatly constrains the possible models of timing behavior by
ruling out optimization techniques that proceed by gradual, trial-and-error

adjustment. Experiment 2 examined smaller changes in p and shows that the
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number of trials required for subjects to make such a behavioral shift is best
understood in terms of the Kullback-Leibler divergence between the p before and
the p after. This is a quantity central to information theory but with some
counterintuitive properties such as asymmetry, which we see borne out in our data.
Experiment 3 manipulated the long feed latency to show that subjects were capable
of more precise timing when the task is made more difficult. Finally, Experiment 4
made the short and long feed latencies variable rather than constant. This raises
deep theoretical issues about the nature of temporal perception. Most importantly,
it shows that subjects treat variability in their environment differently from
variability in their temporal perception system: they differentiate between

endogenous and exogenous sources of variability.
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Experiment 1: Abruptness

Introduction

This experiment is designed to answer one simple but important question:
when the probability of an event changes in a mouse’s environment, is the resulting
change in behavior abrupt or is it gradual? As [ will argue below, subjects’
performance on the switch task speaks volumes about their ability to represent and
manipulate abstract information, rather than use simple heuristics, to calculate
approximately optimal responses. | will spend a great deal of time setting up the
mathematical background of this experiment and discussing the implications of the
present data because subsequent experiments will build on this one. This
experiment and the interpretation of its results lay the foundation for the rest of the
dissertation.

Adapting to changing probabilities in one’s environment is a ubiquitous
problem for all animals. This is an especially difficult task in comparison to, say,
adapting to a change in temperature because probabilities are not directly
observable. It is only through repeated observation of similar events (several flips of
the same coin) that we can estimate hidden variables such as the probability of a
heads. Estimating probability, however, is just the beginning of the problem facing
animals both in the wild and in our task.

Factors influencing the probability of an event are constantly changing, so

that one must also update one’s probability estimate. So, whenever an animal
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observes a string of surprising events it must infer whether its model of the world is
outdated or if this is just random stochastic variation. Doubtless, animals
successfully navigate the world with its many, changing, hidden variables. I argue
that their performance in detecting and responding to changes in the values of a
hidden variable cannot be explained by reinforcement models which gradually tune
behavior to maximize reward. Rather, they seem to detect changes and abruptly
change their behavior to align with a new estimate of the hidden variable. This is
like a probabilistic analogue of the results in the matching domain from Gallistel,
Mark, King, & Latham (2001), in which rats responded to sudden changes in their
rate of reward suddenly and about as quickly as an ideal Bayesian detector.

In the switch task, optimal performance requires estimating the probability
of each trial type and noticing when that probability changes. In fact, each response
from an optimal agent can be seen as an estimate of what that optimal agent takes
the probability of a given trial type to be. Without signaling subjects, I changed the
probabilities of the trial types and then quantified the response to this change. One
can see from a scatter of the raw data (Figure 6 below), that subjects responded to
changes in the probability of trial type shortly after the change occurred. The bulk of
the analyses below consist in quantifying what is clear in Figure 6 below-the
distribution of switch latencies shifts soon after a change in probability and the
shifts are abrupt.

The changes from the old to the new distributions are also abrupt, making
them indistinguishable from step changes. This suggests the explicit detection of the

change in probability, followed by the computation of a new decision criterion (a
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new target switch time), which requires an enduring representation of the subject's
temporal uncertainty together with a new estimate of the probability of a short trial.
The abruptness of the adjustments does not appear to be consistent with the
gradual attainment of a new dynamic equilibrium through "hill-climbing," as in
simple reinforcement-learning models. To achieve the observed degree of
abruptness, the learning rate parameter must be set very high, but then a
reinforcement-learning model would track the stochastic noise in the sequence of
short and long trials, which the mice do not do.

The current study deals with the switch timing task which, to review, is
influenced by a hidden Bernoulli process: each trial is a “short” or “long” trial as
determined by an unsignaled flip of a coin of weight p. On short trials, subjects are
rewarded for not acting too early and on long trials, they are rewarded for not
acting too late. This means that the weight of the coin has an impact on the ideal
temporal decision criterion for an ideal subject: the higher the probability of a short
trial, the later an ideal subject with limited timing precision should set its temporal
decision criterion. If short trials are more likely, it is important to minimize the risk
of acting too early even at the expense of increasing the probability of acting too
late, since acting too late is not penalized on short trials. This calculation can be
understood in the framework of signal detection theory, which is a branch of

information processing.

Two separate levels of signal detection
1. One type of signal detection occurs at the trial-level. On a straightforward

view of how a rational agent would perform this task, each trial would begin with
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the agent taking the probability of a short trial to be the recently observed
proportion of short trials. As time elapsed and the agent waited at the short-side
hopper, the agent’s confidence would climb that three seconds had elapsed since the
beginning of the trial. Since three seconds elapsing without being fed and the
current trial being a short one are mutually exclusive, each moment would be
increasingly strong evidence that the current trial was not a short one. A rule about
when to switch sides easily follows (which the reader will recognize from the
General Method discussion): switch sides iff.
pxN(t,S,S«CV)=A—p)*N(t,L,L*+CV)
where V' is the Gaussian distribution function, p is the probability of a short trial,
CV is the subject’s coefficient of variation in timing tasks (and thus S * CV is the
variance in their timing distribution for the short feed latency), S is the short feed
latency and L is the long feed latency. This rule essentially says “when the base rate
of a long trial times the evidence that this is a long trial exceeds the same quantity
for short trials, switch sides.” This is a normative strategy for this task: the switches
will be close to the moment at which it becomes more likely that the current trial is
a long one, thereby maximizing the number of correct trials.

Again, if the subject knew the exact trial time with certainty this would be
trivial: the Gaussian distributions above would instead be Dirac delta functions,
which evaluated to 1 at L and S respectively. The subject would then switch at
exactly L seconds and never risk missing any trials. Because subjects are not perfect
timers, this is instead a signal detection task: at each moment the subject’s

representation of how much time has past is in part due to the signal (the
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representation of time elapsed does go up with actual time) and in some part due to
noise. A rational agent must therefore attempt to tell whether its own sense that the
short latency has elapsed is due to the noise inherent in its timing mechanism or if it
is because it has actually elapsed.

2. A second signal detection problem occurs on the inter-trial level: is the
recent sequence of trials drawn from the same distribution that has been generating
the trial sequences thus far or has the distribution changed? By the end of each trial,
the subject knows whether that trial was a long or a short one: either by being fed or
by timing out. That still leaves open the question of what Bernoulli distribution that
trial was drawn from. If the subject has seen a lot of long trials and then sees a
streak of short trials, this could either be an unlikely set of draws from the same
distribution or draws from a new distribution.

How convincing must a streak be in order to be understood as a change in
distribution!? If an agent wrongly labels streaks as genuine changes, their switch
behavior is likely to be erratic; tracking the noise in their stimulus. If an agent
wrongly dismisses genuine changes as streaks, they will be slow to adjust to changes
and therefore will miss trials due to operating with bad estimates of the base rate of
short trials. In order to constrain the possible ways in which subjects might be
performing this signal detection, | examine a) how rapidly mice detect a substantial
change in the base rate and b) how abruptly they adjust to this change.

[ found that the distribution of switch latencies (the number of seconds from

the beginning of a trial to the time when they switch from poking on the short side

! We assume subjects place equal utility on false positive and false negative.
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to the long side) depended strongly on the probability of a long versus a short trial,
as found by Balci et al. (2009), and this dependence was as the signal detection
framework would suggest: An increase in the probability of a short trial translated
the distribution of switch latencies in the direction of longer latencies, and vice

versa.

Method

Subjects were six female C57/BL6 mice from Harlan Laboratories, aged
approximately 8 weeks. They were run in the 24-hours-per-day, 6-days-per-week
automated testing system and were analyzed by the Time Stamp analysis system
both described in Gallistel et al. (2010), trained using the matching and autoshaping
procedures described in the General Method section. The active periods for the
switch procedures were 9pm-11pm and 4am-8am, in which subjects performed the
switch task with short feed latency 3s, long feed latency 9s and the probability of a
short trial setto .1, .3,.5,.7 or .9 depending on the session. The abruptness with
which subjects shifted their timing behavior in response to a new probability value
and the latency of this shift were the measures of primary interest in this

experiment.

Results

Depending on p, the optimal switch point for a mouse changed: if long trials
were more likely, not switching too late became more important for reward
maximization than the danger of switching too early. So, when long trials became

more frequent, the optimal switch time occurred earlier, which can be seen in
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Figure 6: the scatter plot of the subjects’ responses (black circles) responds to the
change in the probability of trial type (density of red crosses above vs. below)
shortly after the trial at which the change occurs (black dashed line). It is worth
noting that the majority of the analyses in this paper will be aimed at making more
rigorous what is visible to the naked eye in this plot of the raw data: the behavioral
shift in response to the change in the stimulus comes shortly after the change and is

abrupt.

10?”;;;; o n;u ’" ”
SY 5t -

$ o heS oy w bono W

800

0 :

> L %ﬂ."”mu;fﬂ Plo ®  ongo 0D
8 2000 2500
0]

© e
J ©0 @ nﬂ ) ’ o
§ 2500

=

()]

coog | o° e 08 o

150

Trial Number

Figure 6. Scatter plot of switch latencies for five subjects. Each black dot represents the
latency of a switch on a long trial and the blue lines represent the median of these
latencies in a given session. The red crosses that appear in lines above and below the
black dots mark long and short trials, respectively. The vertical lines mark session
boundaries at which the relative frequencies of the short and long trials changed. Note
the change in density of the lines of red crosses that occur at these boundaries. Note
further that when the density increases on the top line (and decreases on the bottom),
the distribution of black dots shifts downward, away from the denser red crosses.
Similarly, when the density of red crosses increases in the bottom line and decreases in
the top line, the distribution of black dots shifts upward, again, away from the denser
line of red crosses. The seemingly unprovoked changes marked by large orange dots
were caused by unilateral feeder malfunctions.
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Figure 7. The cumulative distribution of switch times from a single subject under two
different probabilities of a long trial (.9 on the left and .1 on the right). All switches
between the “temporal goalposts” (3s and 9s) are reinforced, but one sees a strong
shift toward shorter wait times when the probability of needing to switch (probability
of a long trial) is high.

[ found that mice shifted their target switch time in accordance with the
change in the optimal switch time (one sees a distribution shift to the left when the
probability of a long trial increases, as in Figure 7) and that this change was both
abrupt and followed shortly after the change in p. First, I replicated the findings of
Balci et al. (2009), in that the subjects showed statistically significant differences in
the means of the distributions of their switch times when the probability of a short
trial was manipulated.

Also in line with the findings of Balci et al. (2009), I found that subjects
missed very few of their possible reinforcers. Each plot in Figure 8 shows two

functions of a subject’s decision criterion and their timing precision. First, it shows
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the pair of values that best describe the subject’s behavior in that session (these are
the roughly concentric circles). Second, it shows the proportion of total rewards
possible that would be received for each pair of values from a hypothetical subject
that went through the same sequence of trials (these are the upside-down u curves).
In order to get above 99% of the possible rewards, a subject must have a mean-CV
pair that falls below the lowest red curve. Note that as a hypothetical subject’s
timing becomes more precise (points closer to the x-axis) the subject can freely vary
its decision criterion without greatly changing its expected reward. In the
degenerate case, when precision is perfect, subjects could put their decision
criterion anywhere in the three-to-nine second range and still get all of the rewards.
Conversely, the worse a subject’s timing precision, the narrower the range of mean
values that will produce a given level of proficiency.

Despite the fact that many subjects exhibit temporal precision that would
allow fairly large variability while still staying within the range of values that would
garner 95% of all possible rewards, subjects tend to have decision criteria close to
the mode of the expected value function at their level of precision (the x-value for
the top of the closest upside-down u function). This suggests that they are able to
perform at near-optimal levels, even when doing so has little impact on their net
reward-a calculation that requires sensitivity to one’s own uncertainty/variability.

A subject’s sensitivity to its own variability has not been well explored in the
animal literature but has been demonstrated in humans. In a series of experiments,
subjects were asked to quickly hit a goal area on a touch screen while avoiding

penalty areas. Subjects successfully chose near-optimal targets, which depended on
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the their motor variability: they did not go after small targets surrounded by large
penalties when doing so was beyond their pointing precision (Behrens, Woolrich,
Walton, & Rushworth, 2007; ]J. Trommershauser et al., 2008; ]. Trommershauser et
al., 2003).

Finally, there was virtually no overlap between 95% confidence intervals
under different short-trial probabilities. This underscores that the behavioral shifts
were substantial with respect to our confidence intervals on mouse behavior.

Subjects made large shifts in their switch behavior and they did so abruptly.
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Figure 8. Each subject’s behavior (black concentric circles) falls near the expected
reward contour (upside-down u-shaped curves) that yields 99% of the total rewards
possible in the task. That is to say, the subjects were reinforced 99% of the times that
they were given the opportunity to be. Such ceiling-level performance was typical on
all the transitions. Assuming that subjects cannot influence their timing variability, the
y-position of their behavior is fixed and they merely select the x-component.

Also similar to Balci et al. (2009), I typically found between 5-10% impulsive
switches in these data (trials in which subjects switched sides even before the short
latency had expired). This was a significantly higher rate than could be explained by

inaccuracies in a subject’s internal timer. I interpret this as meaning, for a small
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portion of trials, subjects were simply not doing the task but rather switching sides
immediately”. This will be discussed in later experiments but in general I do not see
this as any more cause for concern than throwing out trials in a psychophysical task
when undergraduate subjects are suspected to be not on-task. These impulsive
switches are easily separated from the Gaussian portion of the data and analyses
focus on this Gaussian component. The purpose of identifying these trials is simply
so they do not muddy estimates of the Gaussian parameters.

Returning to the main purpose of this experiment, the question of "how
quickly do the mice react to the change in p?" splits up into two more specific
questions: 1. how many trials does the mouse need to detect the change in the p
value? and 2. Once the change begins, how abrupt or gradual is it? The answer to the
first question speaks to how good the mice are at detecting changes in probability;
the second speaks to the method by which they change their decision criterion:
gradually trial-by-trial or determining a new target value and abruptly switching to
it.

In order to answer these questions, I considered two-parameter
(corresponding, roughly, to location and abruptness) models of the change.
considered several forms for the model of the transition (Gaussian, Weibull and
linear-see Figure 9) but they were all essentially similar: we know the animal's
behavior at the beginning and we know it at the end, the question is just how the

behavior transitions from one pattern to the other. The different forms of functions

? Like the trials in which subjects failed to do the timing task by simply switching immediately,
there were also a few sessions with slightly more timeout trials than could be accounted for by stochastic
variability. These were taken to be trials at which the mouse was “asleep at the wheel” and these were
excluded. These were too few in number, however, to materially affect the analyses discussed here.
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yielded similar results so I will discuss only the linear class of model for simplicity's

sake.
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Figure 9. In the range of values plausible for these analyses, the form of the transition
function had negligible impact in the range of parameter values that were plausible.
The transitions were too arupt to discriminate between the forms tested: linear (top)
Gaussian (middle) and Weibul (bottom).

Linear start — x ] J
L(x) =
) Hduratlon
Cumulative Gaussian G(x) = ¢(x|start + dur/2,dur * 2)
Cumulative Weibull W(x) = start + W (x|start, dur)

The linear model states that, given trials 1 to M (in which p-value has
changed somewhere) the animal's behavior is drawn from exponential-Gaussian
distribution1 for trials 1 through k1 and the animal's behavior is drawn from

exponential-Gaussian distribtion2 for trials k2 through M. The behavior between k1
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and k2 is drawn from an exponential-Gaussian distribution whose parameters
change linearly from those of distribution1 to those of distributionZ2.

The majority of p-value changes show the same result: the animal's behavior
seems completely shifted to distribution2 by the time one has just a few
measurements (switch latencies on long trials) from that animal. Looking at a
contour plot of the likelihoods for various pairs of location and gradualness, one can
see that both values are low, meaning that the change is centered shortly after the
change in stimulus and is completed rapidly. Figure 10 shows the marginal
distributions of such a plot.

Indeed, across subjects and sessions, there is variation in how wide the
confidence intervals are (this is often tighter when we have a high percentage of
long trials because we can only take measurements at long trials, which means more
data with which to constrain the model in the low range of values) but typically the
peak of the marginal likelihood functions are close to zero (in the case of the start of
the transition, it is often too low to be taken at face-value for a priori reasons). This
means that the most likely model for the data observed is one in which subjects
begin the change in their behavior shortly after the actual change and complete the

change in their behavior in a small number of trials.
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Figure 10. The marginal distributions on the location likelihood (number of trials after
actual change in stimulus probability at which linear transition begins) and duration
of the behavioral shift (span of trials from start to end of linear transition function) for
a sample of eight transitions.

Looking at the marginal likelihood of various transition durations, one sees
that the log-likelihood at zero is higher than typical likelihood for other transition
durations. This suggests that a simpler, one-parameter, model actually does a better
job of explaining this data: the transition is a single step and the only free parameter
is where that step occurs. We test this claim below and the Bayes factors of this test
can be seen in Figure 14.

All these analyses were also conducted using a 10-parameter model: one in
which the four parameters for the expgauss distribution before the transition, the
four for distribution after the transition and the location and abruptness of the

transition were all allowed to vary. I used Metropolis-Hastings MCMC to sample
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from the likelihood function of this 10-parameter model and found that the
maximally likely values for the start and duration of the transition were the same in
the 10-parameter model as in the 2-parameter model - integrating out the other 8
parameters which represented the distributions before and after the change, did not
change the overall shape of the marginal likelihood functions for the two
parameters of interest’. The likelihood functions derived from the 2-parameter
model were essentially the same as those obtained by applying the 10-parameter
model and averaging out the other 8 parameters.

Importantly, my basic conclusions do not rest on particular method of
examining the likelihood function. Whether one looks at the maxima of the marginal
distributions, their expectations, etc. one reaches the conclusions that behavioral
shifts occur soon after the change in probability and are completed within a small
number of trials. This is illustrated in Figure 11, where one can see that over half the
behavioral shifts have a duration of approximately 20 trials or less and start

approximately 10 trials after the probability change.

* | also confirmed that the maximally likely exponential-Gaussian distributions obtained by fitting
the 10-parameter to the switch behavior before and after the change were the same as the exponential-
Gaussian distributions we obtained by fitting each data set individually.
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Figure 11. Cumulative distribution of locations (number of trials after actual change in
probability of a long trial) and durations of the behavioral shifts. The CDFs are shown
using various criteria for the cut-off point: Maximally likely start/duration, the lowest
start/duration with at least ¥ the maximum likelihoods, 1/5 maximum, 1/20
maximum and the expectation of the likelihood distribution. The % max and
expectation criteria seem to best summarize the data for our purposes, but none of our
analyses hinge on chosing one criterion over the others.

Discussion

One can imagine proficient performance on the switch task from two basic
types of machines: machines that use trial-and-error to find viable target switch
times and machines that calculate near-optimal switch criteria given the data
available to them. These data suggest that subjects engaged in the second type of
behavior because of four basic empirical findings about the shifts in their switch

latencies:
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1. Behavioral shifts occur shortly after the stimulus probability change (as
soon as there is objective evidence that there is been a change, see Figure
12).

2. Behavioral shifts are completed in few trials; many shifts are completed so
rapidly that the transition can't be distinguished from a step.

3. Behavioral shifts are accurate. They are often closer to the optimal value
than could be expected to be found with the limited amount of feedback
subjects received from missed pellets.

4. Behavioral shifts are based on detecting changes.

[ will now elaborate on each of these findings.

Shifts occur shortly after changes

Speaking to the first point, we have seen that the marginal likelihood
distributions are skewed in favor of shifts that begin shortly after the objective
changes in the probability of a long trial. This shift latency, however, is difficult to
interpret in isolation. Is 10 trials until the behavioral shift a lot or a little? Does that
mean that subjects are quick at picking up changes in p or slow? These questions
demand that our data be put in context and an Information Processing framework
provides us with ideal observers to provide this context. To answer these questions,
we can examine, given the particular sequence of long and short trials a subject saw
on a given transition, the objective odds that a change has occurred at the trial that
subject began its shift in behavior.

Figure 12 plots the objective odds that a probability change had occurred at

the trial when subjects began to shift their behavior. This is plotted for various
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criteria for determining at which trial the behavioral shift began to emphasize again
that the value of this criterion does not greatly impact our interpretation. We see
that over half of changes begin by the trial at which the objective odds reach 3:1.
This supports the assertion that behavioral shifts begin nearly as soon as there is
substantial evidence that a change has occurred-that learning occurs quickly when
trials are surprising. This is in line with the Bayesian re-analysis of classical
behavioral data by Courville, Daw, & Touretzky (2006) which showed that in a
variety of classical tasks such as Pavlovian conditioning, experiencing surprising
events (defined in the objective, statistical sense) predicted the acquisition of the

change in task parameters.
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Figure 12. The cumulative distribution of the objective odds that a change had
occurred as of the estimated start of a transition. The different colors are for different
estimates of the start (maximum likelihood, expectation, and confidence limits of
increasing stringency--see legend). Expectation and ¥ maximum likelihood seem to
best capture the central tendency of the data but again, the basic interpretation does
not depend on particular choices of this criterion.

Note that a significant number of shifts begin before there is even strong
evidence that p has changed (approximately 30% of shifts begin at or before the
odds of a change are less than or equal to 1:1). Keep in mind, however, that the
estimates at the low end of the scale are especially volatile because of the confluence
of two factors: the model being poorly constrained in the low shift latency values
(where it is most likely) and the abruptness with which odds rise after a change.

In some cases, the estimates of the start of the transitional shift are so low

(and therefore unconstrained by the data in that range) that the best estimate for
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the start of the change are before substantial evidence has accrued that the change
had occurred. Because of the rapid rate at which the odds grow, estimating the start
of the transition even a small number of trials early can cause the odds at the start
to be very low indeed. Likewise, estimating a few trials late can cause the odds to be
very high, which is why we see the starts of transitions with sometimes well over

10”74 odds in favor of there having been a change. See Figure 13 for examples.
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Figure 13. The likelihood function for the location of the start of the behavioral shift
superimposed with the objective odds that a change in probability occurred (based on
the sequence of trials leading up to the current one). Estimates for the start of the
behavioral shift are in dashed lines for various decision criteria: ¥ maximum
likelihood (blue), 5 maximum likelihood (cyan), 1/20 maximum likelihood (red), and
the expectation of the likelihood function (green). Note that the abruptness of the rise
in the odds that an objective change has occurred means that we see high variability in
the odds when a behavioral shift is estimated to start. This is especially true when the
location of the start is in the neighborhood of the sharp increase in odds.

Shifts were abrupt
Once behavioral shifts begin, they are completed quickly. The marginal

likelihood functions for the gradualness parameter favor shifts so abrupt as to
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nearly be indistinguishable from a step. If we compare the hypothesis that subjects
make step-like shifts to the hypothesis that they made gradual shifts (uniform prior
over the range of plausible gradualnesses) we see that the Bayes factor favors a step

change 10:1 for approximately 75% of changes.
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Figure 14. Cumulative distribution of the odds on the null (values larger than 1 favor a
step change, rather than a gradual one). The odds favor of a step change for 75% of
transitions, with over 50% of transitions favored over 100:1.

Speaking to the larger point of this thesis, these results support a model of
subject behavior that explicitly represents the probability of a long vs. a short trial
and a subject’s own timing precision. We see in Figure 7 that approximately optimal
selection of one’s decision criterion depends both on the frequency of long vs. short
trials and on the subject’s timing precision. The fact that subjects’ observed
temporal decision criterion was close to the optimal for their level of timing

precision suggests that their decision criterion is set as a function of these variables
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(probability of a short trial and subject timing variability). This means that the

variables must be represented by the subject.

Shifts Not Based on Differential Feedback

Fundamentally, reinforcement models base behavior on the subject’s level of
reinforcement. Such models cannot account for the change in behavior we observe
for two reasons. First, for many changes, subjects shifted their behavior with little
difference in their level of reinforcement. That is to say, the rate of pellet loss shortly
after the change in the probability of a long trial (solid lines in Figure 16), when
subjects are adapting to the change in their stimulus probability, is nearly
indistinguishable from the rate of pellet loss leading up to that change (dashed lines
in Figure 16). Reinforcement learning models therefore have no difference in the
level of reinforcement received by the subject to motivate the observed shift in

behavior.
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Figure 15. The number of trials to the midpoint of the behavioral shift, n, is determined
by the criterion used for the start and duration of the shift as in Figure 11. One can
then look at the n trials after the change in probability to find the number of
reinforcers missed while the subject adjusts to the new probability of a long trial. We
can then compare this number with the number of reinforcers missed in the n trials
leading up to the change in probability (when the subject is already adjusted to the
previous value) to see if that number is typically different from the number missed
while the subject gathers evidence that a change has occurred and shifts its behavior
accordingly. These two values are compared in Figure 16 for varying criteria on the
start and duration of the behavioral shift.

Keep in mind that their behavior does shift and this is in response to a
change in probability: it becomes closer to optimal given their level of timing
precision, as can bee seen in Figure 8. The level of reinforcement, however, does not
drive the behavioral shift. If we imagine the expected gain function for a given
probability value as a broad hill sitting on top of the mean-CV plane, when the
probability changes, the hill jumps to a new location. The new hill is also rather
broad, so the old position of the subject, near the top of the old hill, is not much
lower on the new hill. Still, they shift their behavior so as to stay on top of the new
hill. This analysis shows that even when subjects are getting nearly every reward
possible, they are able to adjust their behavior to stay comfortably on top of the hill

of expected rewards.
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Second, as Figure 16 shows, in 30% of cases the subjects were half way
through their behavioral change before a single reinforcement was missed. Since
these shifts in behavior preceded even a one-pellet difference in the level of reward,
the level of reward could not contain any information about the existence of changes
that would then drive the shifts in behavior. Adjust-as-you-go heuristic methods of
learning cannot explain learning in these circumstances because the adjustments
are made based on feedback from the environment. Parameter tuning by trial-and-
error cannot account for the present data because subjects had so few trials that
would inform their tuning before their behavior changed-keeping in mind that they
do not switch at all on short trials and so get no feedback on the appropriateness of
their target switch time.

On the basis of these data, a transition is typically half complete after 15
trials (fully complete after 20) (Figure 11). In that number of trials, subjects are
likely to have missed only 2-3 pellets (Figure 16). Most impressively, in many cases
the transition was half complete before the subject missed a single reinforcer. This
is a knock-down argument against learning by differential reinforcement in these

cases because no reinforcements have been missed.
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Figure 16. Cumulative distribution of the number of pellets missed after the probability
value changed but before the animal was half way through its behavioral shift, using
various likelihood criteria for the start and duration of the behavioral shift. Note that
typically very few pellets were missed before the subject shifted its behavior: in a
sizable number of cases, not a single pellet was missed. Moreover, the number of pellets
missed over this period (solid lines) is almost indistinguishable from the number
missed during the (same number of) trials before the shift (dashed lines). This
underscores how quickly behavioral shifts are made relative to the feedback the
subject receives about the consequences of its behavior.

Shifts Are Based on Detecting Changes

If heuristics that rely on the level of reinforcement to drive behavior cannot
explain the present data, subjects must be using models that explicitly represent the
task parameters instead. Dayan (2012) makes a similar distinction between model-
based control as opposed to model-free control. Dayan characterizes this difference

as how much of behavior is driven by inference as opposed to experience. In our
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case, it is perhaps more useful to characterize the distinction as how much of the
world must be represented by an agent.

We have shown that an agent cannot exhibit the behavior we have observed
by merely doing calculations on changes in its rate of reward; it must represent
some estimate of the probability of a long vs. a short trial. I argue that the quick and
decisive behavioral shift we see is the result of a model-based control process that
represents not only the probability of a long vs. a short trial but also the changes in
this value. This is as opposed to simpler models that adjust to changes in probability
quickly by using an estimate of long trial frequency that is only impacted by the last
few trials (discussed below). This argument underscores the abstract and complex
calculations that underlie subjects’ behavior.

We know that subjects must use an estimate of the probability of a long trial
and that getting an estimate of probability from experience requires some sort of
averaging. If this averaging places significant weight on trials in the distant past, the
model will not be able to respond to a change in probability as quickly as subjects
did. So, I checked, for various small memory sizes m, whether my results could be
simulated by a simple strategy that based switch time off of the frequency of long
trials in the last m. These simple strategies are not reinforcement strategies because
they are based on an estimate of the probability of a long trial but they do not
explicitly represent a change in this probability. Rather, they adjust to a change
quickly by not allowing anything more than a few trials back to influence behavior.
Thus, the change in the stimulus causes the behavioral shift without the subject’s

having to represent that a change occurred.
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To test whether such a strategy could explain the present data, [ sorted all
switches by the frequency of long trials preceding them and then compared, via
Bayes factor, whether the switches seemed to be drawn from the same distribution
or from different distributions. I did this for several sizes of memory (1, 3, 5) with
little difference in the results. I found (Figure 17) that the Bayes factor favored the
null hypothesis (that both sets were drawn from the same distribution) roughly
90% of the time. This shows that switch behavior cannot be driven solely by the
frequency of long trials in the last few. In particular, it shows that the animal is not
simply adjusting its switch point based on whether the last trial was long or short
(this is the degenerate case, when memory size is 1). It is the amount that recent
history diverges from more distant history that signals a change and is the key

component to adjusting to changes quickly in the way that these subjects did.
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Figure 17. Cumulative distribution of the weight of the evidence in favor of the
alternative hypothesis: that in comparing two groups of switch times (one with k long
trials preceding it and one with j long trials preceding it where k # j) the two groups
were drawn from different distributions. The analysis is repeated with memory sizes 1,
3 and 5. The distributions clearly favor the null hypothesis.

If the switch behavior is not simply determined by the recent frequency of
long trials, this variable cannot be what is driving the shift in switch behavior after a
change in probability. Of course I do not claim that something beyond the sequence
of long and short trials (i.e. the stimulus) that drives the subject’s behavior. Rather,
the simple models are missing a necessary feature: the ability to detect a change in
probability. This requires more than probability estimation; it requires storing a
probability value and comparing that value to a recent probability estimate-
determining the evidence that the current value is truly different from the historical

value.
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Summary

[ replicated the findings of Balci et al. (2009) in that the mice were near-
optimal at the task and showed highly significant changes in their behavior in
response to the change of the hidden variable. [ expanded their analysis to quantify
how long the change in behavior took after the change in the hidden variable.

Subjects detected changes in the underlying probability of a long trial soon
after they occurred-which are what Dayan (2012) takes to be one of the hallmarks
of model-based control. They then adjusted to that change rapidly, suggesting that
subjects entertained distinct options for temporal decision criteria and moved to
one or another when sufficient evidence had been accumulated, rather than
gradually tuning their decision criterion to maximize their reward.

Behavior shifted quickly and abruptly, making it distinct from exploratory
behavior. The changes were also made with very little negative feedback with which
they might have judged one criterion against another. Their criteria were near
optimal given the timing precision they displayed, despite the fact that the reward
curves were often fairly flat at these precision levels. This means that they selected
near-optimal criteria even when doing so did not have much effect on their
earnings.

Finally, observed performance could not be simulated by simple models that
did not take into account the subject’s uncertainty or detect changes in probability.
This pattern of results suggests a computational system that represents the relative

probabilities of the two types of trials, evidence that a probability has changed and
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the system’s own uncertainty. These results are expanded upon in the experiments

below.
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Experiment 2: Behavioral shift latency is predicted by Kullback-

Leibler divergence

Introduction

Experiment 1 showed that subjects shifted their behavior almost
immediately in response to large changes in probability. This experiment expanded
on that result by testing specific predictions about how the size of a probability
change impacts the number of trials it takes for the subject to begin to shift their
behavior. I will refer to this quantity as the shift latency. (Note the difference
between switch latency and shift latency: the shift latency is the number of trials
after a probability change that we see a shift in the distribution of switch latencies.)
Naturally, we would expect larger probability changes to be responded to more
quickly.

One principled way of measuring the difference between Bernoulli
distributions (the probability of a short trial before the change vs. after) is the
Kullback-Leibler divergence. The Kullback-Leibler divergence is a fundamental
quantity in probability theory and information theory: it can be thought of as a kind
of expected difference between two distributions (in our case, two Bernoulli
distributions). More precisely, it is the information lost when one distribution is
used to approximate another. If, for example, one thinks of a system optimized for
distribution Q that now is made to operate over inputs from distribution P, the KL

divergence is a measure of the inefficiency of that system (as opposed to one that
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was actually optimized for P). In the case of our experiments, KL divergence can be
viewed as the expected number of bits conveyed in each successive trial if you
believe the probability of a short trial is p; and it is actually p,. It is the rate at which
evidence of a change is expected to accumulate.

Formally, the KL divergence from P to Q is defined to be

Dia(P 11 Q) += EiP(0)-log, o3

The motivation for this measure and its use are obvious from this definition: for
each possible signal (i) it is the information gained on P (i) as opposed to Q (i) (the
binary log of the quotient of the densities at i) weighted by the actual probability of
seeing signal i. In this way, even large differences between the two distributions
have minimal impact if the differences are on inputs that are extremely unlikely. On
the other hand, substantial differences between P and Q on a likely input will have
substantial impacts on the KL divergence.

While the definition of this measure is intuitive, it has unintuitive
consequences; for example asymmetry. If we take Q to be the true distribution as
opposed to P, we end up with a different weighting of the difference of the logs. If Q
is very different from P, this can lead to a very different KL divergence. Coming back
again to our specific case, this means that in some cases the evidence that the
probability value has changed will accumulate more quickly when the change is
from p, to p, than vice versa. If subjects are using some criterion for the amount of
evidence that must be accumulated that the probability value has changed before
they shift their behavior, this should mean that we see shorter shift latencies for one

change than for the opposite change.



67

Method

Because we generally only observe switches on long trials (subjects are
usually fed on a short trial before they attempt to switch) and because the KL
divergence between two Bernoulli distributions is symmetric around 0.5
(Dg(B(.2) I B(.1)) = Dk, (B(.8) Il B(.9))) I decided to explore the half of the
probability spectrum that would give us mostly long trials while still giving us a
large asymmetry. This leaves us with a very simple question: do subjects show a
shorter shift latency in response to the probability of a short trial being changed
from 0.5 to 0.1 (Dg,(B(.5) Il B(.1)) = 0.74) than in response to a change from 0.1 to
0.5 (D, (B(.1) Il B(.5)) = 0.53)? Conversely, we can also ask whether two changes
with the same KL divergence would be reacted to in a similar timeframe, so
compared the change with the smaller KL divergence above (0.1 to 0.5) to a change
smaller in absolute magnitude but with approximately equal KL divergence: from
0.5 to0 0.15 (Dg (B(.5) | B(.15)) = 0.49).

Subjects were seven male C57BL/6j mice from Jackson Laboratories aged 6
weeks. As in Experiment 1, they underwent the same training and procedure
described in the General Methods section: matching, autoshaping and switch. There
were only two differences in procedure from Experiment 1. One, the long and short
latencies were 4s and 12s during training and 4s and 8s during testing. Two, the
proportion of short trials used in the switch sessions: alternating between 0.5 and
0.1 at first and then 0.5 and 0.15. Subjects were run at a given probability value until
they had executed approximately 500 trials, at which point the probability value

would change automatically, mid-session. This resulted in 5 +/- 1 alternations
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between the probability values 0.5 and 0.1 and approximately 4 +/- 1 alternations

between the probability values 0.5 and 0.15.

Results

Just as in Experiment 1, for each probability change the data were fit before
and after the change. This time, however, we used a Weibull-Gaussian mixture
distribution rather than an exponential-Gaussian as in (Balci, 2007) because it
better fit some of our datasets. As before, the results were qualitatively the same
using either fit. A few example fits can be seen in Figure 18.
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Figure 18. Four examples of switch behavior before (blue) and after (black) a change
in probability. The smooth curves are the Weibull-Gaussian fits and the jagged curves
are the raw data.
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Again as in Experiment 1, a two-parameter linear transition function was fit
to the shift from the switch behavior before the change to the switch behavior after
the change. Once again, the two parameters of this transition function were the shift
latency and the number to trials to completion (gradualness) of the shift. I then
examined the marginal likelihood function for the shift latency. Since we were
interested in estimating the shift latency rather than choosing between two
alternative models (as in Experiment 1) we took our summary statistic of the
marginal distribution to be the expectation of the distribution. The summary of
these shift latencies for all subjects can be seen in Figure 19. One can verify that the
same pattern is also on the subject-level (and therefore not an artifact of averaging

across subjects) by looking at the same data divided by subject in Figure 20.
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Figure 19. CDFs of the expectations on the shift latencies. As we would expect,
transitions with a larger KL-divergence are responded to more quickly (Dg, (B(.5) |l
B(.1)), in red). The other two transitions are not distinguishable but they also have
approximately equal KL-divergences, so that is to be expected.
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Figure 20. Expectations of the shift latencies divided by subject. Note that in all but one
case, we see the same asymmetrical pattern as in the previous figure: subjects
responded to a change from 0.5 to 0.1 more quickly than in the opposite direction.

The distribution for best estimates (expectations) for the shift latencies
depends on DKL in the way one would expect: we see that the distribution changing
from 0.50 to 0.10 has the shortest latencies, corresponding to the fact that
Dk (B(.5) Il B(.1)) = 0.74 is larger than Dy, (B(.1) Il B(.5)) = 0.53 because of the
asymmetry in DKL. Finally, notice that the distribution when we move from 0.10 to
0.50 is intertwined with the distribution when we move from 0.50 to 0.15, which is
predicted by the fact that Dy (B(.1) Il B(.5)) = 0.53 is close to Dk (B(.5) Il
B(.15)) = 0.49.

It's worth noting that there wasn’t a noticeable asymmetry with the values
0.5 and 0.15 despite the fact that Dy, (B(.15) Il B(.5)) = 0.39. One possibility for the
lack of an asymmetry in the shift latencies when there was a difference in the KL
divergence is simply that our method was not fine-grained enough to pick up on this

small a distinction. The overlap is shown in Figure 21.
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Figure 21. CDF of shift latency expectations for the smaller asymmetry: p=0.50 and
p=0.15. Though there is an asymmetry in the KL-divergences of about 0.1, we do not
see a noticeable change in the shift latency.

Discussion

We find that large differences in Kullback-Leibler divergence did predict
faster responses to a change in p. When framed in this way, the finding seems
blindingly obvious: Kullback-Leibler divergence is a measure of the expected rate of
accumulation of evidence for a change when a system was drawing from
distribution Q but is now drawing from P. If we make basic assumptions about the

criteria by which subjects decide they’'re dealing with a new distribution (see
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General Discussion), it is almost self-evident that the larger the KL divergence of a
change, the fewer trials it will take to pick up on that change. Those basic

assumptions, however, are not made by most theories of animal learning.

Symmetry in other theories

[t is not clear what assumptions are necessary to apply popular associative
(e.g. Van Hamme & Wasserman, 1994) and temporal difference (e.g. Sutton, 1988)
models of learning to the present task. These models operate by competition
between the set of possible responses or predictions: the response that receives the
highest level of activation from the environmental conditions is selected and
executed. The learning with respect to each possible response is considered to be
independent of one another. For example, an increase in the weight of the response
“poke at the right hopper” does not affect the weight of the response “poke at the
short hopper” (but of course the same experience can cause both of those weights to
change). If we consider each possible target switch time as a possible response
competing to be executed, it would seem that the weights of the possible responses
would need to be related to one another. For example, learning that a target switch
time of 6s is a bad choice should also impact the weighting of the target switch time
of 5.9s. If instead we model the responses in competition as “poke at the short
hopper” and “poke at the right hopper” and think of the associative weights as
changing over the course of the trial, it is unclear how these weight are changing
without reinforcement.

Rather than make large assumptions about how to apply these models to the

current task, [ will simply point out that their mechanism for parameter estimation
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does not behave asymmetrically as our subjects do. As shown in Experiment 1, near-
optimal performance on this task requires an estimate of the probability of a short
vs. a long trial. Both of the models mentioned above use leaky integrators to
estimate such quantities. At each trial, the estimate of a probability is the sum of a
geometric series. The coefficients of each term is either one or zero depending on
whether it was a long or short trial and the rate of decay is a constant determined
experimentally. For example, if a subject had seen a sequence S of trials that was
short-short-short-long-short, its estimate of the probability of a short trial would

be*:
ﬁ(S)z(l—r)*Zai*riz(1—r)*(1*r4+1*r3+1*r2+0*r1+1*r°)

This leaky integrator varies about the probability value of the Bernoulli sequence it
is input. Further, if the probability value is changed at some point in the sequence
the old trials will continue to decay, eventually making a negligible contribution to
the estimate of the probability value. The leaky integrator will therefore eventually
vary about the new probability value. [ will now show that the expected value of this
leaky integrator does not depend on whether the sequence starts with p; and goes
to p, or vice-versa.

Given a sequence of K trials drawn from p, (ay, a,, ... ag), followed by N trials

drawn from p, (by, b, ... by), the value of the leaky integrator is

N-1 N+K—1
;5(51_,2)=(1—r)*2bi*ri+(1—r)* z a; 7'
i=0 i=N

* This equation is sometimes presented without the normalizing constant (1 — r) in front. | have
normalized so that the weights sum to one here.



75

The difference from the true final probability is then

N—-1 N+K-1
PS12) =P = (L= ) bsri+ (1=1)x > apxri=p,
i=0 i=N

,rl

Since the terms — sum to 1, we can multiply by this special case of 1

N+K-1 N+K-1

N-1
S =P =(=1) ) brle (=) Y apl=p-1) ) r
i=0 i=N i=0

N-1 N-1 N+K-1 N+K-1
=1-7) (Z birt — ) port+ z a;rt — z pzri>
i=0 i=0 i=N i=N

The expected value of this difference (using the closed form of the sum of a

geometric series) is then

E(®(S1-2) — p2)

. 1— 7N 1—7N PN _ pN+K #N _ pN+K
=1 —-r)*|p: {—, Peq_ TP, ~ P2,
= (P —p) (" -V

Now if instead we reversed the probabilities so that it is instead K trials
drawn from p, (b, b, ... by) followed by N trials drawn from p; (a4, a,, ... ax), the

value of the leaky integrator is

N-1 N+K-1

Sy = (1—r)*2airi +(1—71)= z b;rt
i=N

i=0
and using the same simplifications as before, expected value and the true
probability is
E(®(S251) — p1) = (pz —p) (" —rV*K)

Which is just the additive inverse of the same quantity for the transition in the other
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direction:
E(®(S152) = p2) = —E(@D(S2-1) — 1)
This means that whether the transition is in one direction or the other, the leaky

integrator is expected to converge to the new probability value at the same rate.

Asymmetry and Bayes

Nearly any Bayesian model of animal behavior accords with our results here
because of the deep connection between Bayesian frameworks and information
theory, as explained in the General Discussion. Still, few researchers employing such
models have made predictions like the one in this experiment because their
hypotheses are often not framed in information-theoretic terms. To reinforce these
results, further experimentation should be done using KL divergence as a predictor
of how quickly animals will detect changes. Bernoulli distributions are relatively
simple univariate distributions but there is no reason not to apply the logic of this
experiment to more complex distributions, since KL-divergence makes no
assumptions about the two distributions being compared or even that they are the
same type of distribution. This experiment is and example of an information-
theoretic quantity being used to make a specific, unintuitive and yet correct
prediction about animal behavior. I take this as evidence that animal learning is best

understood in the lexicon of information theory.
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Experiment 3: Squeezing temporal goalposts

Introduction

Experiment 1 established that subjects were proficient at detecting changes in
probability and near ceiling at choosing a target switch latency that maximizes their
rewards. This experiment explores the limits of this timing behavior by narrowing
the short and long feed latencies (the “temporal goalposts” from Figure 2 of
Experiment 1). Our immediate goal, then, is to establish an upper bound for the
maximum timing precision of our subjects: we know they can discriminate 3s and 9s
intervals with one level of variability, but do not yet know their variability when
discriminating 4s and 6s intervals. At first, this may seem a technical question
however, it informs larger theoretical issues.

There has been debate in the timing literature about whether there is a single
timing mechanism or if different mechanisms work at different timescales (Gibbon,
1999; Lewis & Miall, 2009) and also about possible neural implementations of such
systems-even though the behavioral properties of the system being described are
not well understood (Buhusi & Meck, 2005). One of the cornerstones of this debate
is whether subjects show a different coefficient of variation at different timescales.
This is because the coefficient of variation in the output of a system is taken to be a
physiologically meaningful property of that system (C. R. Gallistel et al., 2013).

That is to say, the signature of variability could tell us a considerable amount

about the calculation being implemented (Cordes, Gelman, Gallistel, & Whalen,
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2001) and therefore what physical processes could be implementing it. On a larger
scale, insights into the signature of variability aid arguments as to whether or not
there is a single mechanism for representing all quantities, be they spatial, temporal
or numerical (Walsh, 2003). Finally, framing timing problems in an information-
theoretic context can aid us in deriving theories of the underlying computations, just
as there has been promising work framing working memory capacity in
information-theoretic terms (Brady, Konkle, & Alvarez, 2009).

[ have thus far taken the coefficient of variation (standard deviation divided
by mean) to be a key measure of how precisely subjects can control their switch
behavior>. This is because a variety of experiments have showed the variability in
timing tasks seems to generally be proportional to the interval being timed, a
property known as scalar variability (C. Gallistel, King, & McDonald, 2004; Gibbon,
1977; Lewis & Miall, 2009). The fact that the coefficient of variation is constant is
often viewed as unsurprising as it can be thought of as the analog of a Weber
fraction in other areas of quantity estimation (Getty, 1975) although see (Lewis &
Miall, 2009)). This property can be seen in a variety of modalities and in a variety of
animals, even the yaw-gauge in houseflies (Rieke, Warland, De Ruyter van
Steveninck, & Bialek, 1997). In many cases, this property can be seen as the

consequence of sensory adaptation to keep within the dynamic range of the

’In keeping with the majority of the human timing literature, | here operate under the
assumption that for each subject, the CV does not vary with the duration of the interval being timed. In
fact, this kind of scalar variability (Buhusi & Meck, 2005; Gibbon, 1977) is the entire reason CV is discussed
in interval timing in the first place. After meta-analysis by Gibbon, Malapani, Dale, & Gallistel (1997)
suggested that CVs might differ for different ranges of intervals, this assumption has come into question. |
continue under this assumption, however, because there has been no consensus on even the direction of
the effect of interval length on CV and there does seem to be a consensus that the effect would not be
appreciable in the 4s to 12s range (Lewis & Miall, 2009). | will return to this assumption in the next
experiment.
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communication pathway. This is analogous to scientific notation for numbers, which
can represent a wide range of values with merely two digits, using one digit to
represent the scale and the second to represent the measurement 0-9. Using this
strategy, however, yields the same relative precision at all scales.

In this experiment, I squeezed the “temporal goalposts” (short and long feed
latencies) to make the task more difficult and get a better upper bound on timing
accuracy in this task. Subjects started on a very easily discernible pair of short and
long intervals (4s vs 12s) and then experienced lower long feed latencies in
subsequent sessions. I believe this experiment provides a new lower bound for the
coefficient of variation for mice in interval timing tasks (one that is on par with
typical human performance).

Because the primary goal of this experiment is to test the limits of how
precisely subjects could time their switches, [ focus my analyses on the Gaussian
component of the Weibull-Gaussian distribution as the long latency decreases. As
one would expect, the means lowered as the long latency decreased (Figure 23).
Since the relative frequency of long and short trials was not manipulated in this
experiment, the optimal target switch latency for a subject depended solely on the
short and long latencies and the subject’s timing accuracy. Ignoring the Weibull
component of switch behavior, recall that the probability of missing a pellet is the
probability of missing a pellet by switching too early when in a short trial plus the
probability of switching too late when in a long trial:

r(W) = W (S|, CV % ) * Pspore + (1 = N (LI, CV * 1)) * Piong-

Since to probability of short and long trials are fixed at %2 each in this experiment,
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this equation can be simplified to:
r(W) = N(S|u, CV @) + (1 = N (LI, CV * ).
The target switch time that minimizes the risk of losing a pellet for a given CV

decreases approximately linearly as the long latency decreases (Figure 22).
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Figure 22. Optimal target switch time as a function of the long latency (short latency is
fixed at 4 seconds). Note that for any of the plausible CVs, the curves are approximately
linear: the lowering of the longest acceptable switch time means that subjects must
aim to switch earlier.

Method

Subjects for this experiment were 21 female L1-knockout mice (L1CAMKi, 10
homozygous and 11 heterozygous) obtained from Schachner University, Hamburg.
These mice were originally obtained to examine possible deficits caused by this
knockout but their performance in relevant measures did not exclude them from

study here. In fact, counter to what one would expect, the heterozygous mice were
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better timers in many cases than wild type littermates. The genetics of this are not
the focus of this experiment and all relevant effects were seen in both groups, so |
have collapsed over type in the analyses below.

Subjects experienced the same matching, autoshaping and switch procedures
described in Experiment 1 except for the feed latencies: for the duration of the
experiment, the short feed latency was fixed at 4 seconds while the long feed latency
was initially 12 seconds and then varied as our experimental manipulation in

subsequent sessions. The long feed latency values were 12s, 8s, 7s, and 6s.

Results

Unsurprisingly, we indeed see the Gaussian means steadily decreased as we
decreased the long latency, as seen in Figure 23 (though the means were higher than
the optimal target switch latencies in Figure 22 above). Note that a decrease in the
mean requires an even larger decrease in standard deviation in order to lower the
CV. So, when we see a lowering of the CVs (Figure 24) as we decrease the long
latency, this represents not only a tightening of the standard deviation, but a

tightening disproportionate to the lowering of the mean.
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Figure 23. CDFs of the means and standard deviations of the Gaussian components of
the switch behavior and the corresponding coefficients of variation (SD/mean). These
are displayed both before and after throwing out sessions in which the subject was not
on-task at least 50% of trails. The observed mean switch times decreased as the long
latency decreased, in accordance with the optimal behavior outlined above. Subjects
seem to be able to decrease their CV when required to do so (though the 8s and 7s
cases do not display very different CVs, the effect is in the correct direction and all
other comparisons are clear), but performance breaks down (for SD but not mean) in
the 6s condition.

We now come to the main result of this experiment: CVs decreased as long
latency decreased (Figure 23, right panels). Before we may conclude that this
represents the subjects actually timing more precisely, we must rule out a few
alternative explanations. One we have already ruled out is that the decrease in CV is
caused by the mean increasing: we have seen that the mean is in fact decreasing.
Again, if the CV is decreasing despite the fact that the mean is also decreasing, the

standard deviation must be decreasing more rapidly than the mean is decreasing.
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Another possible explanation for our results is a practice effect, which can
improve the estimation of temporal intervals, as with musicians (Grondin & Killeen,
2009). While it is true that I decreased the long latencies sequentially, meaning that
subjects were more experienced when they reached sessions with lower long
latencies, the CVs here are lower than in the previous experiments (even ones in
which subjects experienced far more trials such as Experiment 1). So, it seems
practice alone cannot explain the decrease in CVs we see in these data. [ also
checked this by looking for differences between the first half of trials within a
session as compared to the second half from the same session. I failed to find any
reliable difference there.

It therefore merely remains to check that the decrease in standard deviation
is not due to some artifact of the fitting algorithm used. The primary candidate for
this type of artifact would be a situation in which the fitting algorithm selectively
narrowed the switch latencies it ascribed to the Gaussian component of the mixture
distribution. Recall that some switch latencies are ascribed to the Weibull portion of
the distribution and these are taken to be “not on-task” because they are switches in
which the subject almost immediately switches to the long hopper, apparently
without timing an interval. Similarly, some proportion of the long trials that the
subject misses by waiting too long at the short hopper are also “not on-task” for the
opposite reason: the subject has started grooming, went back into the home cage,
etc. So, the primary way in which the decrease in CV could be a product of the fitting

algorithm would be if the algorithm classified too many trials as not on-task and
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chose abnormally steep portions of the distribution to estimate the standard
deviation of the Gaussian distribution.

A natural way to limit this possibility would be to throw out all sessions in
which the fitting algorithm ascribed a high proportion of the trials to be not on-task.
Undoubtedly, this will also exclude sessions that have been fit accurately, but this
technique should be sufficient for assuaging worries that the observed effect is due
to fitting artifacts. Unfortunately, this also eliminates the majority of sessions in the
6s condition because subjects timed-out on a large portion of trials in these sessions.
While it is understandable that timing performance would break down with such
narrow temporal goalposts (like making the goal too small in soccer), this means
that a large portion of the distribution of switch times is extrapolated (e.g. Figure

24).
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Figure 24. Example session excluded because of too many time-out trials. In this
session, the subject timed out over 55% of long trials (stayed at the short-side hopper
for six seconds). The shape of the uncensored distribution allows us to extrapolate the
rest of the fit function but basing conclusions on so much extrapolation can be difficult.

Discussion

The most theoretically important result is clear: subjects display a different
coefficient of variability in their timing when their task is made more demanding.
Thus, a subject’s CV isn’t fixed, even in this limited temporal range, as has
traditionally been assumed (Gibbon, 1977). The details of our interpretation,
however, depend somewhat on whether or not we include sessions in which the
subject timed out a large portion of trials.

If we do not exclude such sessions, the afore-mentioned result can be seen in
all four conditions of our experiment: the CVs from the 12s, 8s, 7s and 6s long

latency conditions progressively lower. This means that timing is not subject to
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Weber’s law which asserts that a given subject’s accuracy (as a proportion of the
quantity to be estimated) is constant. The dramatic increase in the number of time-
out trials in this condition, however, suggests that the 6s long latency condition may
be the limit of how far this task may be pushed to yield lower CVs.

On the other hand, if we do exclude sessions in which half or more of the long
trials were timed-out, we face a difficult problem. Any reasonable criterion for the
proportion of time-outs tolerated eliminates a large number of sessions. Even the
lax criterion of requiring that half the long trials not be time-outs excludes nearly
half of the sessions in the 12s condition and the 6s condition (though virtually none
in the 8s and 7s conditions). This isn’t necessarily a problem in itself. For example,
in the 12s condition the elimination of these trials does not change the shape of the
distribution of means or standard deviations (the blue lines in plots 3 and 6 of
Figure 23 are similar despite the fact that one is comprised of half as much data). We
interpret this to mean that the excluded trials were simply ones in which the subject
hadn’t yet grasped the task: the thrown-out sessions were representative in their
distribution of parameters.

In the 6s condition, however, the trials excluded have a large impact on the
shape and location of the distribution of standard deviations (though not of means):
the thrown-out sessions were largely ones with low standard deviations. This
means that after these sessions are excluded, the SD and CV distributions for the 6s
condition overlap heavily with the other conditions. The most obvious

interpretation of these data is that excluding the sessions with too many time-outs
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has revealed the true behavior in the 6s condition: performance simply breaks down
and one sees a high variability in CVs.

The problem with this interpretation of the data is that the means in the 6s
condition were not similarly impaired. The exclusion of the sessions in question did
not lead to a change in the shape of the distribution of means, which is tightly
centered around ~5.5s. If we believe that timing behavior in the 6s condition is
indeed more variable than in, say, the 7s condition, we must accept that this is an
instance in which the standard deviation of time estimates becomes decoupled from
the interval being estimated.

Under either interpretation of switch behavior in the 6s condition, it seems
clear that subjects are capable of influencing the coefficient of variation in their
timing when the task requires it. Further study is required to see if this result
generalizes to other modalities of quantity estimation and what task parameters
motivate subjects to influence their CV. The truly remarkable result here is that one
can find a reliable change in the CV of a single subject, not at “break points” in the
timing mechanism (where one physical process takes over for another, better suited
to a different scale as (Gibbon et al., 1997) suggested might occur at 0.1s and 1.5s)

but rather in order to adapt to the task before them.
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Experiment 4: Variable feed latency

Intro

A key aspect of the analyses Experiments 1 and 3 was the amount of
variability in the switch latencies. I see this as analogous to results in motor
planning that similarly show humans are sensitive to their own motor variability
when planning where to point (J. Trommershauser et al., 2008). The studies on
motor planning have been careful to differentiate between various sources of
variability. For example, when quickly pointing at a target on a touch screen, there is
some variation in the locations actually touched because of variability endogenous
to the motor system. This is also variation in the point recorded by the touch screen
when a given point is actually touched. There is also variation in the point recorded
by the touch screen when a given point is actually touched. This is exogenous to the
motor system but is nevertheless relevant in motor planning when the subject’s
performance is based on the endpoint recorded. Trommershauser, Gepshtein,
Maloney, Landy, & Banks (2005) artificially increased this exogenous variability and
found that subjects learned to account for the artificially inflated total variability so
as to reach near-optimal pointing targets. The design of the current experiment
similarly added exogenous variability to the system being studied but yielded
different results.

The adjustment subjects made to their timing behavior did not yield optimal

responses for the new, combined level of timing variability. They did, however,
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respond to the increase in exogenous variability in a way that suggests that they are
sensitive to the variability in their timing mechanism itself, not merely the total
variability in the durations apparently experienced. I will argue that this implies
that subjects distinguish between variability in their measurements and variability
in the durations they are measuring.

Note that just as with the end points recorded by a touch screen, the set of
duration measurements that a subject stores in memory has two distinct sources of
variability: endogenous variability, which is the variability of the timing systems we
have discussed at length thus far, and exogenous variability, which is the variability
in the durations themselves. Because our long and short feed latencies have been
constant thus far (at least within each session) this issue has not yet come up: the
short feed latencies have been (for example) 4s with negligible variability, so the
variability in the recorded interval measurements has been identical to the
variability of the timing system. This experiment added variability to the intervals
being timed, thereby increasing the variability in the interval measurements
recorded by the subject, and explored how this exogenous variability changes
subject behavior. Specifically, I argue for the somewhat surprising result that
models of timing must represent these two sources of variability separately rather
than simply keeping track of a combination of the two (recorded duration
measurements).

The most common models of timing (e.g. Gibbon, 1977; Meck, 2003) make no
distinction between exogenous and endogenous sources of variability. [ will make a

case study of the failure of Scalar Expectancy Theory (SET) (Gibbon, 1977) to
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explain the results of this experiment because it is still the most influential model of
timing. My comments, however, will be easily applicable to the broad swath of
models that do not distinguish between endogenous and exogenous variability.
These include popular behavioral models such as The Behavioral Theory of Timing
(Killeen & Fetterman, 1988), Learning to Time (Machado, 1997) and memory-trace

models such as the Multiple Time Scales model of Staddon and Higga (1999).

The problem

First, I will set lay out how difficult dealing with timing variability is and how
SET treats it. Time is a unique and inherently tricky domain as has been noted by
physicists and philosophers alike (for a nice review, see Montemayor, 2012). For
one thing, timing stimuli can only be presented once. While one can examine the
same object from different angles and in different contexts (though admittedly,
never again in exactly the same way), a duration can only be experienced once. Since
variability is necessarily a property of a set of observations, determining the
variability of a class of durations can be difficult as opposed to determining the
variability in the lengths of a set of objects. One can have a shoemaker generate a
hundred shoes of the same size and compare their lengths to get a sense of that
shoemaker’s variability but one cannot perform such a side-by-side comparison of
the amount of time taken to make each shoe directly to one another.

Estimating the variability of one’s own timing system is a particularly tricky
instance of this problem: one can measure the length of an object multiple times to
determine the variability of the measurement process but there is no clear analogue

in the temporal domain. Since direct comparison of asynchronous intervals is not
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possible, indirect comparison is necessary to establish the temporal variability of a
process. This is not problematic for humans because we have objective duration-
measuring processes so reliable® that we can consider time to be a uniform and
continuous objective quantity at the scale we are considering.

That is to say, we do not need to worry about our standards of time: even a
cheap quartz watch provides such accurate and reliable timing that its variations
are completely negligible on our timescale, so give us a temporal gold standard. We
know that seven ticks of the second hand of our watches are equivalent, so we can
compare asynchronous intervals by noting how many ticks each of them took. Mice,
however, do not own quartz watches.

If direct comparison of asynchronous durations is not possible, calculating
the variability of a set of them requires the assumption that time behaves the same
way during one duration as during another. This requires a concept of objective
time: it is essentially using an allocentric time coordinate system. I will argue that
mice distinguish between endogenous and exogenous timing variability and that
they therefore implicitly encode times as an allocentric temporal coordinate. In a
very real sense, then, the decision-making system I am studying operates under the
assumption that time is independent of their perception.

It is easy to see why the vast majority of theories of timing would not posit
such a sophisticated concept of objective time. Mice do not have meetings to get to

at 3pm, so it is not obvious why they would need to know the variability of their

®It's rather tricky to rigorously define what makes a reliable and accurate temporal standard but
I here take it to mean something akin to “gives approximately the same result repeatedly when used to
measure processes that also are considered to be good temporal standards.”
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timing. Why they would calculate their temporal variability is not immediately
obvious given the simple day-to-day foraging we imagine is the primary problem
mice face. For a wide variety of tasks, one could make do with an egocentric
temporal map with no need for an allocentric temporal representation. Further, it’s
not obvious how they would keep track of objective time even if doing so would be
advantageous. They do not have timekeepers that keep objective time in nature;
even the amount of daylight in a 24-hour period varies greatly over the course of a
year. The lack of temporal gold standards, like the ticking of a quartz watch, in

nature poses a puzzle about how mice could keep track of objective time.

Popular treatments

Most models of animal timing avoid this problem by simply not representing
endogenous variability. Take as a primary example, SET. SET models timing
behavior using a pacemaker-accumulator, a memory and a comparator. The
pacemaker is a sort of metronome, much like the pulsing in a cesium beam clock.
The amount of time it takes to pulse is usually assumed to be short and Poisson-
distributed with relatively low variability deviation. Because the accumulated pulses
of such a process would be binomial-distributed, which does not accord with
Weber’s law, the pacemaker is further assumed to run at a variable rate from trial-
to-trial, which ensures scalar variability. At the start of each trial, the pacemaker-
accumulator is zeroed and pulses begin to accrue for the duration of the trial, until
the subject is reinforced. The final reading from the accumulator is then recorded to
memory. In future trials, the decision of whether or not to respond at a given time is

made by comparing the current reading of the accumulator against a sample from
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memory of how many pulses were accrued before reinforcement. Typically, this
decision process is simple, as in “respond if the ratio of the current reading to the
sampled reading is greater than b” for some constant b. Only the perceived duration
is stored with no further calculation.

The variability in the subjects timing behavior comes from the fact that the
decision criterion is a comparison of the current perceived duration against a
sample from memory. Since there is variance in the stored perceived durations, this
(plus the endogenous variability acting on the current duration) causes the
variability in the subject’s timing behavior. When we add variability to the intervals
being timed we will be adding variability to the perceived durations and therefore
should, according to SET, see increased variability in timing behavior.

Other popular models of animal timing also make no distinction between
exogenous and endogenous variability because they are (just as in SET) not
explicitly represented. The Behavioral Timing (BeT) model operates by an internal
pacemaker switching the subject from one behavioral state to another. When setting
up this model, Killeen and Fetterman (1988) explicitly point out that their model
makes no reference to the subjective perception of time or internal scales of it.
Because of this, it obviously cannot represent endogenous variability in the timing
of intervals and therefore cannot be sensitive to it. More specifically, the addition of
variability to the time of reinforcement would increase the probability of being
reinforced when in various different states. That would mean more states becoming
associated with reinforcement and therefore greater variability in timing behavior.

This is exactly the opposite of what our data show in many cases below. [ will now
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touch on how the Learning to Time and Multiple Time Scales models similarly
predict greater timing variability because they do not explicitly represent
endogenous variability.

The Learning to Time model is similar in that activation spreads serially
from one “active state” to the next without the subject explicitly representing time
or recording intervals. When a trial begins, the first state in the subject’s chain of
states becomes active and as time passes, activation goes from one state to the next.
The intermediate states may or may not trigger specific behaviors, while the
terminal state does trigger the operant behavior. The strength of the connection
between a state and a behavior changes as in typical models of learning by
association: chains of states that earn reinforcement are strengthened while those
that fail to earn reinforcement are weakened. This model is also would increase
variability in its output when timing variable intervals.

For memory trace models, such as the Multiple-Time-Scale (MTS) model,
timing behavior is explained as the comparison of memory traces, similar to the
leaky integrator described in Experiment 2. In this model, whenever an event is
experienced, a memory is created with a given strength. As time progresses, the
memory weakens by some proportion at each instant. Provided that one can recover
the initial strength of the memory (the simplest case would be in which all
memories initially have the same strength and this is hard-coded), animals could
then mimic timing behavior without actually having an internal timer by associating
a behavioral response with a below-threshold memory trace of the stimulus onset.

For example, if a feeder is armed two minutes after a signal light coming on, the
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subject would learn to associate poking in the hopper when it has a weak memory
trace for the light coming on (weakened by two minutes of decay) with a
reinforcement. Then, when the reinforcer is delivered, the strong trace of the
“reinforcer delivered” memory would become associated with not poking in the
hopper because such attempts would go unreinforced until the signal light had come
on again for two minutes. Thus, memory strength would cause the subject to cycle
through various behaviors associated with different memory strengths, making the
subject appear to be timing the interval without use of an internal clock.

Once again, this theory predicts that increasing feed latency variability would
also increase timing variability. If a memory trace is not strengthened regularly, but
rather only approximately regularly, the time at which the trace of being reinforced
drops below threshold will also become more variable. This would then mean that
we should expect to see increased variability in the timing behavior of subjects.

[ find a number of interesting and unexpected results; the one of most
obvious theoretical import is that in many cases increasing the variability in the
intervals lowers subject timing variability. [ will argue that this means that either
subjects are using some other quantity as a gold standard or they have a built-in
method for assessing their timing variability independent of stored perceived trial

times.

Method

The setup of this experiment is largely similar to Experiment 3 above except
rather than manipulating the value of the long feed latency, we used variable long

and short feed latencies. Subjects were first trained on the standard matching,
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autoshaping and switch paradigms with feed latencies 3s and 9s. After this, they
were introduced to Gaussian-distributed short and long feeding latencies. Subjects
who were still struggling with the task were given latencies with mean still 3s and
9s respectively but whose CVs were manipulated. Once subjects were proficient at
the task, they experienced feed latencies with means at 4s and 8s whose CVs were
manipulated.

Since timing behavior is generally Gaussian-distributed, we also made the
feed latencies Gaussian-distributed. If, as SET would predict, timing behavior is
Gaussian-distributed because the stored perceived durations are Gaussian-
distributed, adding Gaussian variability to the durations being timed should be
computationally indistinguishable from the animal’s endogenous variability
increasing by the same amount. The distribution of perceived durations should look
like the animal was having particular difficulty timing that day. This is because the
noise distribution was a Gaussian with mean zero and the sum of two Gaussians
when one has mean zero is a Gaussian with the same non-zero mean and variance
that is the sum of the two variances. If the distributions of the exogenous and
endogenous variability were of different forms, it might be possible to separate the
two after the fact by methods similar to those we have used to separate the
impulsive switch behavior from the timing behavior. Of course, SET does not predict
any such parsing of the perceived durations.

Subjects were 29 male mice of species C57BL/6]. They were approximately 7
weeks old when the experiment began. Of those, 5 were excluded from analysis

because they never achieved proficiency on the training tasks.
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The probability of a long trial was again fixed at 50% so as not to bias
animals to one side or the other. We manipulated two variables in this experiment:
the location of the Gaussian-distributed feed latencies (short, long or both sides)
and the CV of the Gaussian distribution used (0.1, 0.2 or 0.35). Thus, there were 9
possible conditions: three levels of CV in three possible locations (Figure 25). With
even a modest number of sessions, the number of possible orders of conditions
grows quickly, so we could not explore the effect of order exhaustively. Instead, we
chose a few paradigmatic orders to explore. They were: increasing the CV (a single
subject might see 0.1L, 0.2L, 0.35L), decreasing (e.g. 0.35R, .2R, .1R), or manipulating
only the location (e.g..1L,.1R, .1B). No significant effect of the order chosen was

found so all reported analyses were performed collapsing across order.
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Figure 25. Distributions of switch latencies in each condition. Note the difficulty of the
task in the CV = 0.35 condition: there is a huge overlap between the distribution of
short and long arm latencies. In this case, it wasn’t uncommon to have long arm
latencies that were shorter than some of the longer short arm latencies.

Results

Two things are immediately obvious by inspection of the CDFs of the switch
latency CVs (Figure 26): First, the CVs are noticeably lower than in the constant 4s
vs. 8s condition (taken from Experiment 3). In every case, the conditions with
variable arm latencies have a distribution of CVs that are to the left of the constant

arm latency condition. This is especially true when variability was only added to the
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short arm latency. In addition, increasing arm latency variability from 0.1 to 0.2
seems to always decrease timing CVs, though there does not seem to be further
improvement when moving from the 0.2 to the 0.35 level. Second, for each
variability location, the level of the variation does not seem to have a large impact

on the timing accuracy.
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Figure 26. Cumulative distributions (across subjects) of the coefficients of variation in
the distributions of switch latencies as functions of level of variation in the feed
latencies (colors within plots) and which latency varied (between plots). Random
variation in the objective durations reduces the coefficient of variation in timed
switches rather than increasing it as would be expected on any model that, like SET,
does not distinguish objective variation in duration from subjective variation. This
result holds regardless of the location of the variation (short-only, long-only or both
sides) and the level of variation.
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The result of primary theoretical import is that adding variability to the arm
latencies lowers the variability in the timing of the switches. I will argue that this
means that subjects are separately representing endogenous and exogenous sources
of variability. This will be the primary result of this experiment and I believe it
demonstrates the level of representation subjects use to make decisions under
uncertainty.

There are, however, a number of surprising results in the details of our data
that merit exploration. First, it is surprising that the switch latency CVs are higher
when the feed latency CVs are 0.35 than when they are 0.2. As we saw in Experiment
3, making the timing task more difficult by squeezing the temporal goalposts
resulted in subjects lowering their switch latency CVs. In the current experiment,
the standard switch task is also made more difficult: a given level of timing precision
in the constant 4s vs 8s condition would lead to more missed trials in the 4s vs 8s
variable condition. The higher the variability in the arm latencies, the more expected
missed trials. In the range of values most of our subjects fall into, the same switch
behavior in the constant feed latency condition would lead to 2-3 times as many
missed trials in our highest variability condition (feed latencies vary by 0.35 of their
mean). We see that switch latency CVs decrease when the feed latency CVs increase
from O to 0.1 and again from 0.1 to 0.2 but not from 0.2 to 0.35. This may be
attributable to a breakdown in performance because of the difficulty of this
condition.

Second, the means also do not respond as expected: the means of the timing

behavior does not track the optimal mean for the increased level of variability. We
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calculated the optimal mean for each session to be the mean that would maximize
the number of reinforced trials given the subjects’ CV for that session. If we restrict
our attention to the “both” location, we see from a scatter of the optimal means
against the observed means (Figure 27, left panels) that as the variability of the feed
latencies increases, the observed means drift away from the optimal means. As we
can see from the CDFs of the same data (Figure 27, right panels), the spread of the
observed means does not increase. When the variability of the feed latencies is
increased, the means of the switch latencies creep upward even as the optimal

means decrease.
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Figure 27. Left column. Scatter plot of observed mean switch latencies versus optimal
mean switch latencies and the identity line (dashed black) around which the data
would cluster if the means of the switch latencies were approximately optimal. The
level of jitter in the objective feed latencies increases from top plot to bottom plot.
Right column. Cumulative distributions of observed mean switch latencies (blue) and
optimal mean switch latencies. Notice that the blue plots shift rightward as one goes
from top to bottom, whereas the black shift leftward. All sessions shown here varied
the feed latency at both hoppers and sessions are grouped by the level of variation
(top: CV = 0.1 middle: CV = 0.2 bottom: CV = 0.35).

So, plainly subjects are not simply optimizing their behavior for the new,
combined level of variability. They also aren’t systematically lowering their CVs as
the task becomes more difficult in some locations (higher variability conditions).
When we look at the timing latency CVs in comparison to their means (Figure 28),
we find that a) when only the long feed latency varies (middle row) we do see
basically flat CVs (scalar variability), but when the short or both feed latencies vary,

we see a negative correlation between mean and CV, and b) it appears to be
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approximately the same correlation in all those cases. If this is a reliable effect, we
are seeing decreasing relative variability, rather than scalar variability. Of course,
this trend cannot continue indefinitely because we are reaching the bottom of
plausible CVs for our subjects. Thus an exponential fit is theoretically more plausible
and accounts for more of the variance than a linear one (Figure 29). I cannot think of
a plausible model that predicts the pattern we see here, in which the CVs are

negatively correlated with the means.
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Figure 28. Mean-CV pairings sorted by condition with regression lines and confidence
intervals. Again, we see that the level of variation does not matter as much as the
location of the variation. In addition, we see that when the left side or both sides are
variable, there is a negative correlation between the mean and the CV of the switch

behavior.

So, while the long-only conditions show a weak positive correlation between

CV and mean (all three just under 0.3), the other six conditions display negative

correlations. Taking these six as a group, the trend remains strong (Figure 29) with

a negative correlation over 0.6. Clearly, these two sets of conditions (right-only

variability on one hand and left-and-both sides variable on the other) are being

treated differently by subjects.
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Figure 29. Mean-CV pairings for all conditions with short or both feed latencies

variable. These data suggest that CV may not be independent of the interval being
timed but rather negatively correlated with it in this range of values. The fit of the
exponential function appears to account for more of the data with an R? of 0.45 as

opposed to 0.37 for the linear.

Discussion

Primary Result

The primary result from this experiment is clear: adding extrinsic variability

does not increase the variability in switch latencies, as predicted by popular

theories of interval timing; rather it decreases it. Increasing the variability of the

durations being timed increases the variability of the subject’s record of durations
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experienced yet one does not see an increase the variability of timing behavior, as
illustrated in Figure 30. In order to account for this result, models of timing must

separately represent exogenous and endogenous variability.

Behavior with constant arm latencies
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Figure 30. The top panel shows an idealized version of the timing behavior from the
constant 4s vs 8s arm latency condition from Experiment 3. The CV shown is the
median CV displayed in that data set: CV=0.175. The bottom two panels show the
behavior SET predicts for variable arm latencies and an idealized version of the
behavior we observed (in this example, the arm latency CV is 0.2). The CV in timing
behavior displayed for SET is the sum of the CV in the top panel (typical observed CV
from constant arm latencies) and the arm latency CV (CV=0.375). Finally, the idealized
version of the behavior actually observed is the median CV observed from all “both
variable” sessions. Note that the failure of SET’s prediction does not depend on any of
these particular choices: The CV predicted by SET is considerably higher than any CV
observed in this entire experiment

This task is doubly difficult when we take into account the fact that subjects
make this distinction even when both arm latencies are given the same CV because
the sum of two Gaussians, one with mean zero, is another Gaussian (with variance

equal to the sum of the two component variances). Since timing behavior is
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Gaussian-distributed, the addition of Gaussian-distributed variability to the events
in subjects’ environment should not change the form of the distribution of perceived
durations. Nevertheless, this experiment suggests that subjects are able to
dissociate endogenous from exogenous variability in exactly this case. The two most
obvious accounts of how they might be doing this are unsatisfactory for different
reasons.

One possible explanation of how subjects learn their timing variability is that
subjects are comparing their timing to a different gold standard than trial duration.
Because of the sparseness of their environment, the only plausible external gold
standard would be the dark/light cycle in their text boxes. This is problematic for
two reasons: First, the dark/light cycle does not seem to be a good gold standard in
the wild because it fluctuates greatly with the season. Second, the timescale is 7,200
times that of the intervals they are timing in our experiment (light/dark changes
every 12 hours). One would imagine that there might be practical difficulties with
using a temporal gold standard nearly four orders of magnitude larger than the
intervals being timed.

It therefore seems more plausible that subjects estimate their endogenous
variability by taking multiple simultaneous measurements from internal timing
mechanisms. Many popular theories of timing posit some kind of internal timing
mechanism. Setting aside the details of how this timing mechanism works (see
General Discussion section), taking readings from concurrently running timing

mechanisms would allow subjects to estimate their endogenous timing variability.
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This is a straight-forward solution to the problem of estimating endogenous

variability and is therefore a strong candidate for further testing.

Secondary Results: Some Puzzles

The fact that timing means drift away from optimality as CVs are increased
(at least in “both-variable” conditions, Figure 28) is another indicator that subjects
are not behaving as SET and other popular theories would predict: simply
optimizing their behavior based on the perceived stimulus durations. If they were,
they would not be optimizing well. This is not a satisfying account of their behavior,
however, because their behavior does not simply become more variable, it steadily
drifts in the opposite direction from optimality without becoming more diffuse. Any
viable model of this behavior should account for the precise but inaccurate nature of
their responding.

The result that CVs and means were negatively correlated when the short
latency was variable (whether or not the long latency was variable) suggests that in
some cases we may be seeing decreasing variation rather than constant variation.
The wildly surprising aspect of this is that mean and CV are negatively correlated.
While this result is deeply interesting for the psychophysics of timing, it
unfortunately also does not paint a clear picture of how animals might be separating

exogenous from endogenous variability.

Conclusion
The question of how subjects differentiate their timing variability from

external variability is perhaps less conceptually important than the fact that they
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did make this distinction. This echoes findings in previous experiments presented in
this dissertation showing that mice are not simply employing low-level hill-climbing
strategies but rather have a rich representation of the problems they are attempting
to solve. These subjects made a clear distinction between the variability in their
timing system and the variability of the durations of the events they are timing. In a
very real way, mice have a concept of objective time as opposed to their perceived
time: an allocentric temporal encoding. The mouse’s timing mechanism is built
under the assumption that when an interval elapses and no mouse is around to

observe it, it still exists.
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General Discussion

We have established four main results:

1. Subjects shift their timing behavior abruptly in response to a change
in the probability of a short trial.

2. The number of trials before this behavioral shift is predicted by the
information-theoretic Kullback-Leibler divergence.

3. Timing CVs are not constant and can be lowered by making the
temporal discrimination task more difficult (squeezing the “temporal
goalposts”).

4. Subjects treat additional exogenous timing variability differently than
the endogenous variability natural to their timing mechanism.

All four of these results suggest that animal timing and decision behavior be
treated in a conceptually better-founded way than has been done thus far. All four
suggest that timing and decision behavior is better understood as a system that is
solving a specific set of information-theoretic problems: What is the distribution of
the events I am engaging with? How is it changing? How can I make the best use of
the information available to me? [ will now briefly summarize and expand on the

basic results before moving on to future directions.
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Summary of results

Result 1: behavioral shifts are abrupt

We have seen in Experiment 1 that subjects shift their timing behavior
abruptly, not gradually. Since it has been shown that subjects optimize their timing
behavior with respect to the probability of a short trial (Balci et al.,, 2009) we
constrain the possible methods by which they perform this optimization by noting
that subjects change their behavior all at once, rather than gradually. Specifically, we
rule out a wide class of differential reinforcement methods, since many subjects
shift before they have missed even a single reinforcer. If subjects were simply noting
which strategies for switching yielded more reinforcers, this would be impossible.

This result suggests that subjects are internally representing probability and
risk to keep track of what switch strategies are unnecessarily risky, even when they
have not yet led them astray. One does not need to drive off the edge of the road several

times to develop the behavior of driving comfortably away from the edge of the road.

Result 2: KL-Divergence predicts behavioral shift latency

Experiment 2 showed that Kullback-Leibler divergence predicts behavioral shift
latency (the number of trials from the change in the probability of a short trial to a change
in timing behavior). More specifically, transitions from 0.5 probability of a short trial to
0.1 probability causes a behavioral shift fewer trials than a transition in the opposite
direction using the very same probabilities. Associative theories of learning do not
predict this result. I have already argued this is the case based on a priori mathematical

considerations. To further demonstrate this I will now argue the same point via numerical
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simulation. Assume a model has a memory of the last N trials as either being long (1) or
short (0) and its output is driven by a geometrically-discounted summary of this memory
as in

M= Z?]:oé‘i * -1
Yo 6

where t,, is the record of the nth trial. Note that when we change the probability of a long
trail (the expected value of t;) the expected value of the summary M changes as more
trials at the new probability value are experienced. The changes are dramatic at first
because the more recent trials are more heavily weighted. Changes in M do not have the
same asymmetric properties as the Kullback-Leibler divergence. If we consider a
memory full of N trials generated with probability p;of a long trial into which we begin
introducing trials generated with probability p,, M will shift from p;to p,. The changes
in M will be quick at first and then gradual because the most recent trials are the most
heavily weighted. If we compare this to a change from p, to p;, we can see that the
magnitude of the change expected after seeing k trials at the new probability value is the
same going from p, to p, or vice versa, as in Figure 31. This means that he convergence
of M to the actual value is symmetrical and therefore behavior based on M, as predicted
by typical associative theories of learning, should also be expected to be symmetrical. On
the other hand, Kullback-Keibler divergence, which is the speed of convergence of a

Bayesian model (see below), is asymmetrical, in line with our data.
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Figure 31. Expected change in M after it has experienced a given number of trials at
the new probability. The change (apart from sign) is symmetrical whether going from
probability 0.9 to 0.5 or vice versa. This is different from the behavior of the Kullback-
Leibler divergence and from our data.

Beyond than arguing against associative theories of learning this result suggests
that an information-theoretic framework is necessary to understand the change detection
that our subjects are performing. This asymmetry in change detection is highly
counterintuitive but is an elementary prediction of a basic examination of this problem in
information-theoretic terms. That is to say, if we understand subjects to be evaluating the
probability that the environment has changed from one distribution to another via
anything like a Bayes factor or likelihood ratio, these asymmetries naturally emerge.

Take as a toy example a model in which a subject is deciding whether an
incoming stream of data are being generated by distribution A or distribution B when
they are in fact being generated by distribution A. For simplicity’s sake, let’s assume that

these are the only two possibilities and the subject knows it. All plausible methods of
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comparing these two hypotheses are at their core a ratio of the likelihoods of the data
given distribution A and the data given distribution B. For our toy example, let us take a
toy decision criterion: declare that A is the true distribution iff.

P(D|A)
P(DIB)

for some constant criterion k. Taking logs of both sides, this is equivalent to

P(D|A)
log, k < log, (W)

The right-hand side of this, the quantity we are comparing to a constant in order to make
our decision changes as each new datum comes in. From a god’s-eye view, the
expectation for how much this quantity will change with the next datum is the log of the
ratio of the two distributions (evaluated over their entire support) weighted by the

probability of getting each value:

P(ilA
Aratio = Zi log, (%) - P(i]A)

= > o (3 )40
i B(i)
= Dy (A Il B)
where i ranges over the entire support.

So, we see that in this simple example, the KL divergence is the amount we
expect the log-likelihood ratio to change each trial. If, in turn, subjects’ decisions are
driven by the change in log-likelihood ratio, we naturally expect the asymmetries we
have found in the speed with which they shift their behavior. Such calculations,
however, are only possible in models that explicitly represent probabilities and are

capable of performing symbolic computations. If the subject is not detecting changes
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but rather simply operating on a best estimate of the current probability based on
the frequency of long trials in the last N, we would not expect to see such
asymmetries.

An information-theoretic framework also naturally nests to incorporate higher-
level effects not considered here. For example, one might use the distribution of trials-
experienced-before-change to predict how far off the next change is likely to be as in
Gallistel, Mark, King, & Latham (2001) or use the distribution of distributions
experienced to more as seen in quickly categorize a new condition. In procedures more
sensitive to the location of a behavioral shift, accounts of this kind also provide an

optimal standard to which subject performance can be compared.

Result 3: Timing CVs can be lowered when the timing discrimination is difficult

When we lowered the long feed latency, thereby squeezing the “temporal
goalposts” to make the task more difficult, subjects increased the accuracy of their
timing relative to the interval being timed. This is a violation of Weber’s law, which
has been taken to be a fundamental property of interval timing (Gibbon & Church,
1984). It is possible that Weber’s law still holds for timing behavior in sufficiently
well-motivated mice but this has yet to be tested. This could easily be done using a
paradigm similar to Experiment 3 but varying the short and long feed latencies over
a wider range of values. Experiment 3 has given us data on the CV for one difficult
discrimination (4s vs. 6s): a test for Weber’s law would be to see whether we see the
same CV for equally difficult discriminations with different absolute magnitudes (8s

vs. 12s, 16s vs. 24s, etc.).
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Result 4: Subjects distinguish exogenous and endogenous sources of variability

Subjects responded differently to exogenous variability than they did to the
variability endogenous to their timing mechanism. As discussed above, this cannot
be accounted for by most currently popular theories of timing. This is because these
popular theories typically do not represent uncertainty explicitly, which is a natural
feature of information processing theories. The results of this experiment show that
mice are sensitive to such uncertainty; in many conditions decreasing their timing
variability when the variability in their stimuli increases. This result is interesting in
itself but perhaps most interesting because it demands models of animal behavior
that are more sophisticated than has historically been popular.

As argued in the Discussion section of this experiment, these data suggest
that subjects estimate their timing variability not in reference to some temporal
gold standard. This could be achieved by simultaneously taking readings from
several independent timing mechanisms. An initially appealing option is to model
this as simply being several copies of the accumulator model that underpins SET
and many other models of animal timing. This account, however, is ultimately
unattractive for theoretical reasons: it compounds theoretical problems already
facing models such a SET. Accumulator models such as the one in question
essentially function as stopwatches: when an interval starts, the subject begins
accumulating pulses and when it ends, the subject takes a reading. This requires
that subjects know when an interval begins. This may not always be possible when
the subject does not know in advance which cues predict the event in question.

When a new event happens, it seems difficult to give an account of how many
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accumulators a subject would need to start and how it would know when to reset
them.

If one needs to keep track of several overlapping durations, as no doubt
animals must do in the wild, the problem of how many timers to set grows
exponentially with the number of possibly interconnected events the subject is
keeping track of. Worse yet, subjects would be incapable of using a past event as a
temporal marker if they didn’t realize it was a temporal marker at the time: if you
learn at lunch that breakfast time predicts dinner time then you haven'’t set the
appropriate timer and therefore are completely incapable of predicting when dinner
will be served. Applying this kind of knowledge retroactively can be seen in so-
called “backward conditioning” (Arcediano & Miller, 2002).

A slight modification of this is to use constantly running timers rather than
accumulators. This is like the difference between using the system clock on a
computer versus using a stopwatch. A system clock can be used as a stopwatch by
simply recording the time at the beginning of an interval, recording the time at the
end of an interval and then taking the difference of the two to find the duration of
the interval. Moreover, by simply keeping a record of the times of various events,
one can recover arbitrary temporal differences at any point in the future. This
means that subjects do not need to start and stop a wide variety of timers in order to
keep track of multiple overlapping intervals. A single timestamp record, combined
with the ability to perform calculations with timestamps, allows subjects to recover

temporal differences as needed.
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If subjects had a modest number of such timers, they could estimate their
timing variability without reference to a temporal gold standard. Our data do not
speak to whether each timer would need to have its own timestamp record or
whether a single record could be kept that would be some kind of average of the
readings from the clocks. The former would allow subjects to calculate how their
variability changed over time whereas the latter would only allow for an estimate of
the current timing variability.

Doubtless, one objection to this account is that it does not follow Weber’s
law. This is because it has increasing relative temporal precision as time increases. If
one is reading start and stop times off an internal clock, timing a 9s interval one day
into one’s life means taking the difference of a start measurement of 86,400s and a
stop measurement of 86,409s. A month into one’s life, timing the same interval
means taking a start measurement of 2,592,000s and a stop measurement of
2,592,009s. There are very few systems in nature in which absolute precision does
not decrease with the quantity being measured; in which the difference between 1
and 2 units has as big an effect as the difference between 101 and 102 units.

The system clocks theory does appear to necessitate both constant timing
precision and a memory for storing timestamps beyond what is typically assumed to
be available to subjects. In reply to these facts I can only repeat, as I pointed out in
the introduction, that the physical bases of memory and timing are not well
understood and therefore should not limit the theory of the computations
underlying behavior. In this sense, it is in the spirit of information processing

theories of behavior: storing and computing over raw information as necessary. It is



119

uncontroversial that training from many trials in the past can affect behavior, as in
rapid reacquisition of a learned behavior, in which an association that has been
learned and then trained-out through extinction is then relearned more rapidly than
in the initial learning phase. This relearning is clearly sped up by the initial learning
phase despite the fact that this happened many trials ago. Under the system clocks
theory, this is because past examples are remembered whereas in popular
behavioral theories such as memory trace models, this is because of the residual
effect of previous trials on one or two variables.

For this reason, it is possible that the system clocks theory combined with
information processing calculations could better handle patterns of behavior such
as spontaneous recovery that are awkward to fit into popular theories that change
parameters incrementally, as discussed above. A still-unpublished but elegant and
insightful development of this line of thinking has been produced (Wilkes, 2013)
that predicts many of the results (including counter-intuitive ones) of classical

conditioning from basic information-theoretic principles.

Take-home messages
[ will now attempt to take these results as a group and place them back in the
context I originally put them in. [ will move from the context of theories of animal

behavior to the broader context of decision under uncertainty.

We are observing an information-processing machine
[ argue that these results show that animals even in as simple as mice,

behavior is driven by sophisticated information-theoretic calculations. They are
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fundamentally not engaged in guess-and-check, hill-climbing or other simple
strategies. These calculations represent abstract properties of the environment,
such as the probability of an event, and calculate near-optimal responses using
those representations.

[ would like to stress again that I don’t believe that animals are engaged in
the same type of mental activity a freshman probability student is engaged in when
she performs a calculation for an exam. Speaking of mice calculating probabilities
can often lead to this kind of picture that [ believe is rightfully regarded as incorrect.
Computers, however, also aren’t engaged in the same kind of mental activity as that
freshman and yet we are happy to say that they are capable of calculating a
probability or detecting a change.

In a similar way, many researchers are comfortable talking about the visual
system performing complex calculations (performing a Fourier decomposition on
shapes to transform a retinal display into blips that the brain will interpret as
shapes). I believe that it is in this sense that the brain is also performing complex
Bayesian analyses on the probabilities and events we encounter. Gut feelings don’t
just come from nowhere: they are the product of deep and meaningful analysis.

At the same time, [ do not wish to suggest that the non-verbal reasoning is
somehow perfect. Doubtless, animals make mistakes in their decisions under
uncertainty. For example, subjects drifted away from optimality as exogenous
variability increased in Experiment 4. [ do, however, think the results above
underscore that their reasoning is an information-processing machine that works

under uncertainty and with noisy signals and is therefore best understood in an
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information-processing framework. This view is not so outlandish when one
considers the fact Bayesian inference is merely the formalization of the complex
problems animals have faced in the wild since time immemorial: making decisions
based on limited information with varying degrees of reliability.

[ have therefore focused on questions about how a system could calculate
appropriate behavioral responses and what inputs and variables it would need to do
so. | have shown that the above data cannot be explained by theories that have
primarily aimed to explain how behavior could be timed to coincide with temporal
regularities in a stimulus. Rather, the data support theories capable of much more

calculation.

Animals calculating is nothing new

These results are certainly not the first to suggest that animals are capable of
calculating responses rather than locally tweaking their behavior. Two examples are
particularly salient in the given context. One example is the time-left experiment of
Gibbon and Church (Gibbon & Church, 1981). In this experiment, rats were given a
choice between a standard fixed-interval of 15s to reinforcement at one lever and
the time left to reinforcement at an elapsing comparison interval of 60s. When the
fixed interval was initiated early in the course of the comparison interval, subjects
greatly preferred responding at that lever. When the fixed interval was initiated late
in the course of the comparison interval, subject greatly preferred the comparison
interval. When the fixed interval was initiated halfway through the comparison
interval, subjects were roughly indifferent. Gibbon and Church interpreted this

result as preference being driven by which lever would be ready to deliver a
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reinforcer first. This decision appears to require that the subjects be able to subtract
times so as to calculate which lever will be armed sooner.

The second example is the fact that the number of trials required to acquire a
conditioned response in Pavlovian autoshaping (for a variety of species and
preparations) depends linearly on the ratio of the time the subject is exposed to the
experimental apparatus and the CS-US interval. To explain this and similar
informationally-driven results, Gallistel and Gibbon (2000) posited Rate Estimation
Theory (RET). RET relies on the ability of the subject to perform calculations over
times of occurrence and is motivated by considering at what point the
unconditioned stimulus becomes a significantly better predictor of the
unconditioned stimulus than merely being in the test environment. It explicitly
computes the predictivity of the conditioned stimulus, which is the intellectual

foundation for the information-processing framework advocated here.

Not picking sides: Gigerenzer and Kahneman

I do not think the results of this dissertation contribute to a view of decision
in line with Kahneman'’s but neither do they support a view in line with
Gigerenzer’s. | think they subvert the classical idea that non-verbal reasoning (the
kind of which even animals are capable) is simpler than the conscious, verbally-
based reasoning that we engage in when we make a pros and cons list in buying a
new stereo or taking a new job. In a broad sense, this aligns with the view that our
instincts are smarter than previously thought and to be trusted. At the same time, it
goes against Gigerenzer’s view of the non-conscious mind as useful because of its

great simplicity, which [ see as a kind of “noble savage” view of the non-conscious
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mind. I see no evidence here for an adaptive toolbox of highly specialized heuristics.
Rather, I see evidence for a sophisticated program that is nevertheless robust
because it deals with unreliable and incomplete information and explicitly takes that
into account.

The reason for trusting gut feelings is not merely their simplicity but the fact
that they are the product of sophisticated yet still robust calculations. The work in
this dissertation does not speak to the biases and cognitive traps that appear to
plague conscious decision-making except to underscore what a puzzle they are
given that non-conscious reasoning can be so accurate and robust. The way in which
our intuitions interact with our conscious mind seems to me a fertile field for
exploration. These issues touch on deep questions about what consciousness is and
what it is for and therefore what it is to be human.

[ believe the results above are most important because of the deep questions
they suggest looking forward: If even mice are capable of near-optimal Bayesian
inference, how much more is the human mind capable of? Why are we so often led
astray by the traps and biases catalogued by Kahneman and Tversky and
colleagues? What makes our reasoning different from that of animals? If animals are

capable of this type of calculation, how different are we really?
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