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ABSTRACT OF THE DISSERTATION

An Integrated Companion Diagnostics Assay for

Predicting Biochemical Recurrence following Radical

Prostatectomy

by George C. Lee

Dissertation Director: Anant Madabhushi

The most common treatment of prostate cancer (CaP) is via radical prostatectomy

(RP), of which 75,000 are performed in the United States each year. However, within the

current paradigm, 15-40% of RP treatments ultimately fail in the form of biochemical

recurrence (BCR) within 5 years. Gleason scoring, derived from visual inspection of

tissue morphology, has been the gold standard for distinguishing aggressive CaP for

over 40 years. Furthermore, the current initiative towards personalized health care has

attempted to utilize an integrated predictor via molecular markers such as prostate

specific antigen (PSA) to identify men with aggressive localized CaP. However, the

non-specificity of these tests has led to an over-treatment of CaP, which is responsible

for increased morbidity that is both stressful and costly for the patient.

This dissertation attempts to develop the algorithms that could pave the way for a

new class of integrated predictors, which can combine histomorphometric and molecular

features into an integrated biomarker and present the information needed for better pa-

tient care. Our overall goal was to predict BCR in CaP patients following RP treatment.

A host of novel machine learning tools were developed to create integrated diagnos-

tic tests, including dimensionality reduction (Adaptive Dimensionality Reduction with

ii



Semi-Supervision (AdDReSS)) and data integration (Supervised Multi-view Canonical

Correlation Analysis (sMVCCA)) methodologies to handle complex, non-linear, high

dimensional and heterogeneous biomedical data. Furthermore, the development and

discovery of unique discriminatory features for differentiating aggressive CaP were nec-

essary for the understanding of cancer progression and the foundation of an integrated

biomarker. Novel histomorphometric features (Co-occurring Gland Tensors (CGTs)

and Cell Orientation Entropy (COrE)) were developed to quantify important differen-

tiating image-based characteristics of CaP morphology. These methods were shown to

outperform Kattan nomogram and Gleason scoring for predicting BCR following RP.

Lastly, fusion of histomorphometry and protein expression into an integrated signature

was performed via sMVCCA, and demonstrated improved identification of men with

BCR following RP compared to histomorphometric and proteomic signatures alone.
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Chapter 1

Introduction

1.1 Overview

The future of diagnostics will not reside in the discovery of any single predictive vari-

able, but in the ability to analyze a large host of predictors. Thus, the goal of this work

is to develop the framework for integrated diagnostics to guide treatment and improve

patient outcomes. Much of the work in this dissertation has been applied towards the

prediction of aggressive prostate cancer (CaP), however the proposed data represen-

tation and integration methodologies are extensible towards a breadth of applications.

Clinicians with access to many different channels of information may see their patients

benefit from computational analysis of the multivariate data.

This dissertation is structured around the development of an integrated biomarker

which combines information from quantitative histomorphometry (QH) and protein

expression for an integrated diagnostics test of CaP recurrence following radical prosta-

tectomy (RP) treatment, as defined by biochemical recurrence (BCR). This dissertation

consists of 3 main aims summarized by Figure 1.1.

• In Aim 1, we develop machine learning tools needed to create integrated diagnostic

tests.

• In Aim 2, we develop quantitative histomorphometric features to quantify char-

acteristics of prostate tissue for predicting biochemical recurrence.

• In Aim 3, we leverage the tools from the previous aims to create an integrated

biomarker for predicting biochemical recurrence in prostate cancer patients fol-

lowing radical prostatectomy.
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Aim 1:  Machine Learning Methods for 

Integrated Companion Diagnostics

Aim 3:  Integrated Biomarker for Predicting 

Biochemical Recurrence

Aim 2:  Prostate Tissue Analysis via 

Quantitative Histomorphometry

Figure 1.1: Flowchart of the proposed thesis objectives. Aim 1 covers the development
of machine learning tools such as data representation and data integration, necessary
for creation of an integrated diagnostics test. Aim 2 represents the identification of QH
features from prostate whole mount histology. Aim 3 leverages previous methodologies
and combines quantitative histomorphometry and protein expression to construct an
integrated biomarker for predicting biochemical recurrence in CaP patients following
RP.

1.2 Prognosis of men undergoing Radical Prostatectomy treatment

for Prostate Cancer

Each year in the United States, nearly 75,000 patients diagnosed with prostate cancer

(CaP) undergo radical prostatectomy (RP) treatment [11]. In cases for which there is

no prior evidence of spread, treatment of CaP with RP has been largely successful [12].

However, for 15-40% of RP patients, biochemical recurrence (BCR) occurs within 5

years of surgery [13]. BCR is commonly defined as a detectable persistence of prostate

specific antigen (PSA) of at least 0.2 ng/ml and is suggestive of recurring aggressive CaP

necessitating further treatment [14]. Therefore, it is important to identify aggressive

recurrent cancer prior to BCR in order to provide best treatment.

Gleason grading [15,16] is a qualitative system based on the visual analysis of glan-

dular and nuclear morphology to grade CaP aggressiveness. The breakdown in gland

shape and organization represents the hallmark of aggressive CaP. The Gleason grad-

ing [15,17] system is the most commonly used system in the United States for diagnosis

of aggressivity of CaP, quantifying histological patterns of decreasing differentiation,

from 1 (most differentiated and benign) and to 5 (least differentiated and malignant).
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Gleason score (GS) is currently the gold standard for assigning CaP aggressiveness and

is one of the main predictors of BCR. Gleason scoring combines the grade of the most

common and second most common pattern, resulting in a Gleason sum ranging from 2

(least aggressive) to 10 (most aggressive).

High Gleason score 8-10 tends to be correlated with more biologically aggressive

disease and worse prognosis for long-term, metastasis-free survival [13, 18, 19]. Simi-

larly, GS 8-10 is correlated with BCR [19] and often secondary treatment is provided

to accompany RP based on the identification of high GS. Meanwhile, patients with

GS 6 typically have a very low incidence of BCR and would not indicate a need for

secondary treatment. Unfortunately, outcomes of intermediate GS 7 cancers can vary

considerably [20], and statistical tables suggest a 5-year BCR-free survival rate as low

as 43% in these men [21]. Furthermore, GS is subject to considerable inter-reviewer

variability [22], which can make accurate prognosis of disease more difficult. Therefore,

we can determine that prognostic value of GS alone for predicting BCR in RP patients

with intermediate-risk GS appears to be limited.

In addition to GS, many postoperative nomograms have been developed to incorpo-

rate additional clinical variables such as tumor staging, pre-operative PSA, or positive

surgical margins [21, 23–25]. The Kattan nomogram [23] incorporated these parame-

ters to predict 80 month BCR free survival following radical prostatectomy. Han et

al. [21] incorporated this information for Johns Hopkins Hospital (JHH) into a series

of probability tables, known as the Han Tables, based on Gleason sum, tumor stage,

and pre-operative PSA. Subsequently, the Stephenson nomogram [24] added the date

of surgery as a prognostic variable. The University of California at San Francisco built

their own risk score predictor (CAPRA) [26, 27] for postoperative CaP patients dif-

ferentiating patients into low, medium, and high risk categories, which also included

the percentage of positive biopsy cores into their risk assessment. Hinev et al. [25]

performed an independent study advocating the use of the Memorial Sloan Kettering

Cancer Center (MS-KCC) nomogram, developed by Kattan and Stephenson, suggesting

superior prediction of 5-year BCR compared to JHH predictive tables. The MS-KCC
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nomogram adds additional variables such as age and time free of cancer. These nomo-

grams represent the state-of-the-art in post-operative CaP prediction of BCR, but still

rely heavily on rudimentary clinical variables such as Gleason sum or age.

While current predictive models incorporating prominent clinical markers play an

important role in guiding CaP patients towards treatment with better outcomes, previ-

ous work has shown that clinical markers yielded just 71% classification accuracy in the

prediction of BCR [28, 29]. The technology exists for patients to obtain multi-modal,

multi-scale imaging and molecular profiles to characterize prostate cancer. Given avail-

ability of more sophisticated diagnostic modalities and the uncertainty involved in pre-

dicting BCR using current models, there is an opportunity to develop stronger predic-

tors of prostate cancer outcome.

1.3 Histologic image-based evaluation of prostate cancer

Digital pathology has allowed computer vision and image analysis tools to quantitatively

assess tissue morphology and architecture without the aid of a pathologist. Quantita-

tive histomorphometric (QH) features are computationally derived and are therefore

not subject to the intra- and inter-observer variability associated with Gleason scor-

ing [22]. In prostate histology (Figure 1.2 (a)), glandular shape and arrangement are

key characteristics of the Gleason scoring system [30]. Automated tools for gland seg-

mentation can be used as shown in Figure 1.2 (c) to capture the shape and size of glands,

while additional features to quantify various arrangements of glands can be obtained

via the construction of Voronoi and Delaunay graphs shown in Figures 1.2 (d) and (e).

In contrast to Gleason scoring, QH captures these characteristics in a repeatable, and

automated manner.

These features derived from the Gleason grading system have been leveraged to

build automated systems for Computer Aided Diagnosis capable of predicting Gleason

grade [31]. Previously, commercial QH-based prognostic tests such as Prostate Px+

and Post-Op Px (by Aureon Biosciences Inc.) [28, 32] have indicated the ability to

assess survival prognosis from CaP within 5 to 7 days via analysis of digital pathology,
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(a) (b) (c) (d) (e)

Figure 1.2: (a) Prostate whole mount histology with cancerous region (shown in green)
annotated by a pathologist. (b) Annotated region of interest with a green bound-
ing box to demonstrate QH features. (c) Gland morphology captured by automated
segmentation of the interior lumen boundary. (c) Voronoi diagram and (d) Delaunay
triangulation of gland centroids (shown in red) describe architecture.

marking the viability of QH features for predicting BCR.

1.4 Advancement of molecular markers for prostate cancer diagnos-

tics

Many prominent markers for prostate cancer that have been discovered have been

genetic-based. PCA3 has gained substantial notoriety as a new oncogene capable of pre-

dicting CaP [33]. Another notable genetic biomarker is Annexin A3 (ANXA3), which

has shown an inverse relationship to prostate cancer progression [34]. Systems such as

ConfirmMDx (by MDx HealthTM), are epi-genetics based used for identifying prostate

cancers following negative biopsies.

In addition to genetic markers, many researchers have begun to explore mass spectrometry-

based proteomic biomarkers [35–38]. Mass spectrometry is an analytical technique that

produces spectra of the masses of particles from a sample of interest. The peptide or

protein can be subsequently determined based on the spectra, as it provides an isotopic

signature of the sample.

The reasons for the interest in mass spectrometry are as follows. Firstly, given the

availability of the prostate tissue following prostatectomy, a direct snapshot of the post-

transcriptional state offers a stronger inference to the functional state of the cancer [39].

Secondly, routine clinical diagnostics have focused on immunohistochemistry (IHC) of
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formalin-fixed paraffin embedded tissue rather than nucleic acid based analysis, allow-

ing for a smoother translation into clinical practice [40]. Therefore, while genetic assays

have been successful for producing prognostic tests (ie. Mammaprint [41] and Onco-

type DX) [42,43], mass spectrometry represents a more appropriate modality for both

exploratory and prognostic purposes regarding BCR in CaP.

As such, researchers have been looking at proteomic markers for predicting CaP [36,

38,44]. Ki-67, a cell proliferation protein has been found to be correlated with Gleason

scoring [38]. More recently, CD34, a vascular protein, has been found to predictive of

BCR in prostate cancer. [45]. Furthermore, PSA and other proteomic markers [46–48]

have been shown to be predictive of BCR. It is will be of great importance to continue

to explore mass spectrometry methods to mine and identify biomarkers of BCR from

thousands of proteins.

1.5 A Call for integrated diagnostics for personalized medicine

The future of personalized medicine will be dependent on integrated diagnostics to

leverage the vast amount of medical data available to us and provide better treatments

for our patients. Recently, there has been a call to combine multiple prognostic markers

to create an integrated biomarker, with potentially greater accuracy in predicting BCR

compared to any individual marker [32, 49–52]. Clarke et al. [34] has noted in his

investigation of prostate cancer biomarkers that ‘no one marker by itself is adequate

for detecting all cases’. This suggestion has also been found in other domains such as

for the prediction of cardiovascular [53, 54] and pulmonary disease [55]. These studies

have all suggested that the integration of biomarkers from a wide-range of modalities

can provide better predictors and reduce costs and mortality [56].

However, few attempts have been made in integrated diagnostics to identify BCR in

prostate cancers. Post-Op Px has previously been developed by Aureon [57] to estimate

BCR following surgery and analyze both the prostate image and its stained immunofluo-

rescence. However, this methodology relies heavily on immunohistochemistry for which

antibodies must be developed in order to properly stain the desired protein. Although
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integrated diagnostics tests remain in its infancy, given the predictive value of imaging

and molecular profiling, the joint predictive value of emerging tests has the potential

to provide oncologists with a much more accurate assessment of patient outcomes.

1.6 Summary of the major goals of this thesis

This dissertation consists of a body of work which aims to develop the tools for an

integrated diagnostics framework in order to identify BCR in men following RP treat-

ment of CaP. Figure 1.1 illustrates the interplay between aims towards developing an

integrated diagnostic test. Investigation of quantitative histomorphometry and protein

biomarkers as well as machine learning methods for data representation and integration

are all essential components towards creating an integrated diagnostic test for biochem-

ical recurrence in prostate cancer patients following radical prostatectomy. We are able

to demonstrate in a preliminary test cohort of radical prostatectomy patients that an

integrated biomarker can yield improved classification accuracy compared to the state-

of-the-art data integration strategies and compared to QH and protein biomarkers alone

for predicting aggressive CaP.

1.7 Organization of this dissertation

The remainder of this dissertation is organized as follows. In Chapter 2, we provide

background on the technical motivations and previous work used to support the inno-

vations in this dissertation. As such, in Chapter 3, we discuss a novel dimensional-

ity reduction method, Adaptive Dimensionality Reduction with Semi-Supervision (Ad-

DReSS), for data representation. In Chapter 4, we provide theory and intuition behind

supervised Multi-view Canonical Correlation Analysis (sMVCCA) for data integration.

The machine learning methods described in the previous chapters will be integrated

towards the task of integrated diagnostics for predicting aggressive prostate cancer via

quantitative histomorphometry and protein expression. In Chapter 5, we introduce

novel developments in quantitative histomorphometry via COrE and CGT algorithms.

Background and previous work of QH and its application in prostate cancer prediction
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are provided followed by a methodological overview of COrE and CGTs. Evaluation of

these methodologies is performed by testing their ability to identify aggressive CaP in

patients with radical prostatectomies as compared to state-of-the-art predictors such

as Gleason score and Kattan nomograms.

Chapter 6 includes experimental results for using sMVCCA, the developed data

integration methodology, to build integrated biomarkers for prostate cancer from QH

features and protein expression. The integrated biomarker is subsequently used to

construct an integrated diagnostics system for predicting biochemical recurrence in

following radical prostatectomy. Lastly, in Chapter 7, we provide concluding remarks

and future directions pertaining to this work.
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Chapter 2

Technical challenges in developing an integrated

diagnostics test

Incorporation of thousands of features to predict CaP inevitably necessitates computa-

tional intervention. Development of machine learning tools will be necessary to tackle

2 main issues that will arise from attempts to create an integrated diagnostic test via

an integrated biomarker: Data Representation, Data Integration, and Classification.

2.1 Challenges in data representation of high-dimensional, non-linear

biomedical data

2.1.1 Combating the ‘curse of dimensionality’

Prediction using a large amount of features is computationally expensive and often

produces poor predictive accuracy in practice, particularly if many of these features

are redundant and uninformative [58, 59]. This has become an increasingly relevant

problem given the emergence of gene- and protein-expression profiling for disease prog-

nostication [60–62]. Attempts at analyzing several thousand dimensional gene- and

protein- profiles have been primarily motivated by two factors; (a) identification of in-

dividual informative genes and proteins responsible for disease characterization [63–66],

and (b) to classify patients into different disease cohorts [67–73]. Several researchers

involved in the latter area have attempted to use different classification methods to

stratify patients based on their gene- and protein-expression profiles into different cate-

gories [67–69,74–86]. While the availability of studies continues to grow, most protein-

and gene-expression databases contain no more than a few thousand patient samples.

Thus, the task of stratifying these patients based on the gene/protein profile is subject
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to the ‘curse of dimensionality’ problem [58, 87], owing to the relatively small number

of patient samples compared to the size of the feature space. In many cases, such as

biomedical data, where there exists a relatively sparse database of only a few hundred

patients, a low dimensional embedding representation can alleviate the problems of

the curse of dimensionality [1, 88]. For example, machine learning classifiers often are

unable to generalize a training model that can predict on the high-dimensional data

as the large feature space is difficult to generalize for future samples [89, 90]. Addi-

tionally, many of the features within the expression profile may be non-informative

or redundant, providing little additional class discriminatory information [70,71] while

increasing computing time and classifier complexity.

2.1.2 The role of feature selection for pruning the high-dimensional

feature space

Feature selection refers to the identification of the most informative features and have

been commonly utilized to precede classification in gene- and protein-expression stud-

ies [70,73,74]. For the purpose of discriminating object classes, feature selection meth-

ods [91–96] have been proposed to limit the overall size of feature set to features which

will contribute towards improved classification accuracy. However, since a typical gene

or protein microarray records expressions from thousands of genes or proteins, the cost

of finding an optimal informative subset from several million possible combinations be-

comes a near intractable problem. Further, genes or peptides that were pruned during

the feature selection process may be significant in stratifying intra-class subtypes. Due

to the existence of slightly overlapping features, the task of removing redundant features

while retaining informative features via feature selection may lack a complete solution.

2.1.3 The need for dimensionality reduction for a low dimensional

transformation

Dimensionality reduction (DR) refers to a class of methods that transforms the high-

dimensional data into a reduced subspace to represent data in far fewer dimensions.
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These low dimensional embedding representations are useful for presenting high dimen-

sional data. In Principal Component Analysis (PCA), a linear DR method, the reduced

dimensional data is arranged along the principal eigenvectors, which represent the direc-

tion along which the greatest variability of the data occurs [97]. Note that unlike with

feature selection, the samples in the transformed embedding subspace no longer rep-

resent specific gene- and protein-expressions from the original high-dimensional space,

but rather encapsulate data similarities in low-dimensional space. Even though the

objects in the transformed embedding space are divorced from their original biological

meaning, the organization and arrangement of the patient samples in low-dimensional

embedding space lends itself to data visualization and classification. Thus, if two patient

samples from a specific disease cohort are mapped adjacent to each other in an embed-

ding space derived from their respective high-dimensional expression profiles, then it

suggests that the two patients have a similar disease condition. By exploiting the entire

high-dimensional space, DR methods, unlike feature selection, offer the opportunity

to stratify the data into subclasses (e.g. novel cancer subtypes). Furthermore, by us-

ing 3 or fewer dimensions, the information can be visually interpreted by plotting the

information. Thus, the “curse of dimensionality” problem for classification combined

with a visual interpretation of data suggests that it is useful to reduce the number of

features M to an m << M feature representation in order to obtain meaningful results.

The most popular method for DR for bioinformatics related applications has been

PCA [62,98–104]. Originally developed by Hotelling [105], PCA finds orthogonal eigen-

vectors along which the greatest amount of variability in the data lies. The underly-

ing intuition behind PCA is that the data is linear and that the embedded eigenvec-

tors represent low-dimensional projections of linear relationships between data points

in high-dimensional space. Linear Discriminant Analysis (LDA) [97], also known as

Fisher Discriminant Analysis, is another linear DR scheme which incorporates data

label information to find data projections that separate the data into distinct clusters.

Multidimensional Scaling (MDS) [106, 107] reduces data dimensionality by preserving
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the least squares Euclidean distance in the low-dimensional space. Classifier perfor-

mance with linear DR schemes for biomedical data has been a mixed bag. Dawson

et al. [100] found that there were biologically significant elements of the gene expres-

sion profile that were not seen with linear MDS. Ye et al. [87] found that LDA gave

poor results in distinguishing disease classes on a cohort of 9 gene expression studies.

Truntzer et al. [101] also found limited use of LDA and PCA for classifying gene- and

protein-expression profiles of a diffuse large b-cell lymphoma dataset since the classes

appeared to be linearly inseparable. The afore-mentioned results appear to suggest that

biomedical data has a nonlinear underlying structure [100, 101] and that DR methods

that do not impose linear constraints in computing the data projection might be more

appropriate compared to PCA, MDS, and LDA for classification and visualization of

data classes in gene- and protein-expression profiles.

2.1.4 Accounting for non-linearity in biomedical data

Recently, nonlinear DR methods such as Graph Embedding [108], Isometric map-

ping (Isomap) [10], Locally Linear Embedding (LLE) [109], and Laplacian Eigenmaps

(LEM) [110] have been developed to reduce data dimensionality without assuming a

Euclidean relationship between data samples in the high-dimensional space. Shi and

Malik’s Spectral Clustering algorithm utilizes Graph Embedding [108]) to partition the

graph into clusters and segment images accordingly. Madabhushi et al. [111] demon-

strated the use of graph embedding to detect the presence of new tissue classes on high-

dimensional prostate MRI studies. The utility of this scheme has also recently been

demonstrated in distinguishing between cancerous and benign magnetic resonance spec-

tra (MRS) in the prostate [112] and in discriminating between different cancer grades

on digitized tissue histopathology [31]. Tenenbaum (Isomap) [10] presented the Isomap

algorithm for nonlinear DR and described the term ‘manifold’ for machine learning

as a nonlinear surface embedded in high-dimensional space along which dissimilarities

between data points are best represented. The Isomap algorithm estimates geodesic

distances, defined as the distance between two points along the manifold, and preserves
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the nonlinear geodesic distances (as opposed to Euclidean distances used in linear meth-

ods) while projecting the data onto a low-dimensional space. Locally linear embedding

proposed by Roweis and Saul [109] uses local weights to preserve local geometry in

order to find the global nonlinear manifold structure of the data. The geodesic dis-

tance between data points is approximated by assuming that the data is locally linear.

Recently, Belkin et al. presented the Laplacian Eigenmaps algorithm [110], which like

Spectral Clustering, Isomap, and LLE, makes local connections, but uses the Lapla-

cian to simplify determination of the locality preserving weights used to obtain the

low-dimensional data embeddings. Graph Emedding, LLE, Isomaps, and LEM, all aim

to nonlinearly project the high-dimensional data in such a way that 2 objects xa and

xb that lie adjacent to each other on the manifold are adjacent to each other in the

low-dimensional embedding space, and likewise, 2 objects that are distant from each

other on the manifold are far apart in the low-dimensional embedding space.

As previously demonstrated by Tenenbaum [10], Figure 2.1 reveals the limitations

of using a linear DR for highly nonlinear data. Figure 2.1 shows the embedding of the

swiss roll dataset shown in Figure 2.1(a) obtained by a linear DR method (MDS) in

Figure 2.1(b) and a nonlinear DR scheme (LEM) in Figure 2.1(c). MDS, which pre-

serves Euclidean distances, is unable to capture the non-linear manifold structure of the

swiss roll, but LEM is capable of learning the shape of the manifold and representing

points in the low-dimensional embedding by estimating geodesic distances. Thus, while

MDS (Figure 2.1(b)) shows overlap between the two classes that lie along the swiss roll,

LEM (Figure 2.1(c)) provides an unraveled swiss roll that separates the data classes

in two-dimensional embedding space. Table 2.1 summarizes some popular linear and

non-linear DR methods.

While PCA remains the most popular DR method for bioinformatics related appli-

cations [98,100–104], nonlinear DR methods have begun to gain popularity [62,74,111,

113]. Liu et al. [74] found high classification accuracy in the use of kernel PCA (non-

linear variant of PCA) for gene expression datasets while Weng [113] recommended
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Figure 2.1: (a) Nonlinear manifold structure of the Swiss Roll dataset [10]. Labels
from 2 classes (shown with black circles and red crosses) are provided to show the
distribution of data along the manifold. (b) The low-dimensional embedding obtained
via linear MDS on the Swiss Roll reveals a high degree of overlap between samples
from the two classes due to the use of Euclidean distance as a dissimilarity metric. The
embedding obtained via LEM on the other hand, is able to almost perfectly distinguish
the two classes by projecting the data in terms of geodesic distance determined along
the manifold.

the use of Isomap for medical data analysis. Shi and Chen [62] found that LLE out-

performed PCA in classifying 3 gene expression cancer studies. Dawson et al. [100]

compared Isomap, PCA, and linear MDS for oligonucleotide datasets, and Nilsson et

al. [114] compared Isomap with MDS in terms of their ability to reveal structures in

microarray data. In these and other related studies [62, 100, 113, 114], the nonlinear

methods were found to outperform linear DR schemes.

2.2 Challenges in data integration of high dimensional, multi-scale

medical data

2.2.1 Previous work in data integration

Disease diagnosis, more and more, routinely involves acquiring information from mul-

tiple streams and it is now widely appreciated that the quantitative integration of

different, independent channels of data into a single classifier could potentially allow

for more accurate disease prognosis and response prediction. However, some major

problems in data integration have been discovered in reconciling the large diversity in

dimensionalities and scales across the different heterogeneous modalities while simulta-

neously improving separation between the desired object classes.
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Type Citation Dimensionality Reduction Method

Linear

Hotelling (1933) [105] Principal Component Analysis (PCA)
Cox et al. (1988) [107] Multi-Dimensional Scaling (MDS)
Fisher et al. (1958) [115] Linear Discriminant Analysis (LDA)
Bingham et al (2001) [116] Random Projections (RP)

Non-linear

Hinton et al. (2002) [117] Stochastic Neighbor Embedding (SNE)
van der Maaten et al. (2008) [118] t-SNE
Tenenbaum et al. (2000) [10] Isometric Mapping (ISOMAP)
Roweis et al. [109] (2000) Locally Linear Embedding (LLE)
Brand et al. [119] (2002) Manifold Charting
Belkin et al. (2002) [110] Laplacian Eigenmaps
Shi et al. (1999) [108] Graph Embedding
Kakkonen et al. (1999) [120] Self-Organizing Maps (SOM)
Scholkopf et al. (1997) [121] Kernel PCA
Zhang et al. (2004) [122] Local Tangent Space Alignment (LTSA)
Demartines et al. (1997) [123] Curvilinear Component Analysis (CCA)

Table 2.1: Summary of linear and non-linear dimensionality reduction methods

As such, methods for combining different modules of information for classification

have been suggested [5, 124–126]. In such cases, a meta-space representation is useful

to fuse data sources into a combined feature space. Much like dimensionality reduction,

integration of independent modalities to a low dimensional integrated data representa-

tion offers the advantage of lower computational complexity in the data representation

while retaining the discriminatory information from both data sources.

A major barrier towards constructing classifiers from an integration of biomedical

data is that the information typically is of high dimensionality [88]. High throughput

mining of -omics data via mass spectrometry and DNA microarrays has allowed for the

quantification of the expression levels of tens of thousands of molecules [1]. Meanwhile,

the increasing use of digital images from radiologic and histologic imaging scans have led

to the use of computers to automatically analyze the images [31, 125]. The automated

nature of quantitative morphometry allows for calculation of hundreds of statistics to

describe the texture, shape, and organization of objects in the image [31]. A combina-

tion of data (COD) approach [124], creates a concatenated feature vector comprising

all features extracted. However, the combination of high-dimensional features further

exacerbates the ‘curse of dimensionality’ [58] problem of having too many features com-

pared to sample size, which makes building a generalizable classifier difficult. Principal

Component Analysis (PCA) [105] has been utilized to reduce the dimensionality of high
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dimensional data [98], however, for data fusion, the differences in dimensionalities can

bias the attribute vector towards a single modality [88].

Another major limitation in constructing classifiers that can leverage multiple data

streams lies in the fact that the data exists at different scales [52]. Thus, the abil-

ity to harness useful information from these high dimensional modalities is a non-trival

task, necessitating computational machine learning methodologies for heterogenous and

orthogonal data integration [52]. Another approach utilizes a combination of interpre-

tations (COI) [124], which collects weak classifier outputs from each modality, to form

a joint decision. An example of this is evidence accumulation [127], which combines

different types of information via a similarity matrices formed by multiple data cluster-

ings. However, this approach may not be able to leverage the synergy between different

modalities [5, 7].

2.2.2 A ‘meta-space’ representation for integrated diagnostics

A possible solution to overcome these representational differences is to first project

the data streams into a meta-space where all data is represented is an equal scale

and dimensionality [5]. Generalized Embedding Concatentation (GEC) [5, 7] is a data

fusion method which leverages DR methods form a homogenous meta-space. Super-

vised implementations of embedding fusion include consensus embedding (CE) [128]

and boosted embedding concatenation (BEC) [7]. CE aims to combine embeddings via

a majority voting scheme, selecting only discriminatory projections. BEC borrows from

the Adaboost classifier [129], which evaluates and weights weak embeddings prior to

fusion. However, combination of embedding space may still result in potentially noisy

or redundant features which may compromise the final fused representation [88].

2.2.3 A multi-kernel learning framework for data integration

Another possible alternative to using embeddings is via the use of high-dimensional

kernels [130]. Kernels represent a dot product representation of each modality which

can be combined to create a fused representation of heterogenous data [125]. [130] inves-

tigated different kernel representations for the purpose of combining data from amino
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acid sequences, protein complex, gene expression, and protein interactions. [126] em-

ployed a multi-kernel learning (MKL) framework which incorporates labels to model

contributions of semantic, boundary support, and contextual sources for the purpose

of object localization. [125] proposed semi-supervised multi-kernel (SeSMiK) graph em-

bedding, which combines MKL with a non-linear DR scheme, graph embedding [108],

for constructing a fused meta-space representation of multi-protocol MRI data. Semi-

supervised graph embedding subsequently incorporates class label information to achieve

greater separation of cancer and non-cancerous regions in the low dimensional, fused

data representation. However, overfitting can occur with small training samples, leading

to inaccurate weighting of the kernels and reduced classifier performance [88,131].

2.2.4 Canonical correlation analysis for integration of heterogeneous

features

To overcome issues with dimensionality, scale, and kernel-based weighting, we explore

a family of methods related to Canonical Correlation Analysis [132] which aim to an-

alyze the inter-dependencies between the data sources. CCA [132] is a multivariate

statistical method which finds a linear subspace in which correlation between two sets

of variables are maximized. In finding a correlated meta-space for data fusion, CCA

provides a representation that maximizes the signal, which is likely to be common to

data from multiple modalities/views, while minimizing noise which is more likely to

be modality specific. Previous work [133] has shown that CCA converges to linear

discriminant analysis (LDA) when class labels are transformed into a matrix and pro-

vided as one of the two views. However, CCA and LDA can only account for two sets

of variables, and thus can only maximize either signal or class separation. Regular-

ized CCA (RCCA) [134, 135], attempts to prevent overfitting in smaller data samples

by adding a small positive constant to elements within ill-conditioned matrices. How-

ever, regularization is computationally very expensive [88]. Furthermore, like CCA and

LDA, RCCA is limited in their ability to consider only two sets of variables at a time.

Multi-view (MV) CCA [136,137] extends the traditional CCA for more than two views

by finding a linear subspace which maximizes pairwise correlations between all views.
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While these methods have been useful for combining images with text [138], by find-

ing the most correlated features, its utility towards fusing heterogeneous data for the

purpose of classification has been limited since there is no guarantee that correlated fea-

tures are necessarily discriminative. Supervised RCCA (SRCCA) [88] instead utilizes

statistical tests to optimize the regularizers in order to achieve greater classification

performance compared to RCCA. However, SRCCA is also computationally expensive

due to the use of regularization. In Chapter 4, we present a new scheme entitled Su-

pervised Multi-View Canonical Correlation Analysis (sMVCCA) that simultaneously

seeks to maximize the signal from any number of heterogeneous data channels and to

find a subspace that is also discriminative of the object classes.

2.3 Classification of High Dimensional Biomedical Data

2.3.1 Supervised dimensionality reduction for object class separation

of data

While unsupervised methods of dimensionliaty reduction have been utilized for prelim-

inary analysis of data, for classification tasks, it is desirable to incorporate available

object class labels to optimize the embedding for class separation, as opposed to basing

the affinities solely based off the pre-defined similarity criterion [88,139,140]. Recently,

there has been a great deal of interest in semi-supervised dimensionality reduction

(SSDR) methods, which utilize labeled instances to improve separation of object classes

in the low dimensional embedding [141–144]. This is typically done by extending the

pairwise affinity matrix of previous DR methods to incorporate class label information,

such that if a pair of objects are of the same class, they are weighted to be more similar

and will be mapped to be closer together in the embedding. Similarly, if a pair of

objects are of different classes, they are weighted to be less similar and will be mapped

further away in the embedding. Sugiyama et al. [141] applied semi-supervised learning

(SSL) to Fisher’s discriminant analysis in order to find the linear projection that maxi-

mized object class separation. Verbeek et al. [145] utilized a method for semi-supervised

learning using Gaussian fields with locally linear embedding for object pose recognition.
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Yang et al. [142] similarly applied SSL toward manifold learning methods. Zhao [143]

presented a semi-supervised method for graph embedding which utilizes weights to si-

multaneously attract samples of the same class labels and repel samples of different

class labels given a neighborhood constraint. Zhang [144] employed a similar approach

to SSDR as Zhao, but without utilizing neighborhood constraints.

2.3.2 Constructing better classifiers via active learning

In addition to the high dimensionality and small sample size, another challenge with

building predictors for biomedical data is that very often, biomedical datasets are not

adequately labeled or annotated [55]. This is due to the significant overhead involved in

procuring well-documented biomedical datasets and also due to the fact that invariably

an expert is required to perform this task [146]. Hence, if one is attempting to build a

predictor to identify disease aggressiveness or predict long term outcome in a patient,

one would need a well curated and annotated dataset to provide training labels for

the predictor. Active learning can reduce the number of samples needed to train an

accurate predictor.

Active learning (AL) is a specific instance of semi-supervised learning, where the

learning algorithm may interactively query the desired labels from a user or other

source [147]. AL differs from random sampling, which queries training instances ran-

domly from an unlabeled pool [148]. The objective of AL is to find an optimal training

set. The benefits of using AL are twofold as 1) classifier accuracy can be improved, and

2) the number of training labels necessary to achieve a classification goal is reduced.

For example, several studies [149,150] have found that training with difficult to classify

samples can reduce generalization error. This is similar to the idea behind support

vector machines (SVMs) [151], where borderline samples can provide a decision bound-

ary which is more generalizable for classification. Chen et al. [55] showed that using

a probability based uncertainty sampling approach can reduce the number of annota-

tions for the purpose of clinical text classification. The Query by Committee (QBC)

approach [149] uses disagreement across several weak classifiers to identify hard to clas-

sify samples. Doyle et al. [146], successfully used QBC [149] to query difficult to classify



20

regions of mostly cancerous prostate tissue, which resulted in fewer manual pathologist

annotations and improved cancer classification. In [152], a geometrically based AL ap-

proach utilized SVMs to identify confounding samples, defined as those that lay closest

to the decision hyperplane. Liu et al. [148] showed how SVM-based active learning can

outperform random sampling for classifying gene expression datasets.

2.4 Novel contributions of this dissertation

We summarize the novel contributions included in this dissertation.

• Data representation via semi-supervised dimensionality reduction is an important

problem. We explore the effects and contributions afforded via active learning to

improve upon data representation of biomedical data for the purpose of classifi-

cation and object class discrimination.

• Novel quantitative histomorphometry tools for prostate cancer via co-occurring

gland tensors (CGTs) and cell orientation entropy (COrE) are detailed. Both

methods have demonstrated better predictive accuracy compared to previously

developed QH methods for prostate cancer.

• A data integration framework is proposed for leveraging the information in quan-

titative histomorphometry and protein expression levels from mass spectrometry.

An integrated histologic and proteomic biomarker can be constructed using a new

methodology, supervised multi-view canonical correlation analysis (sMVCCA), for

the purpose of creating an integrated diagnostics test. Its efficacy in predicting

biochemical recurrence is demonstrated in this work.

The development of these tools serve to create the groundwork for future integrated

companion diagnostic tests for prostate cancer and other applications and to foster the

potential of personalized medicine.
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Chapter 3

Adaptive Dimensionality Reduction with

Semi-Supervision (AdDReSS) for Classifying

Multi-attribute Biomedical Data

3.1 Overview

In this chapter, we present a novel dimensionality reduction (DR) method, AdDReSS

(Adaptive Dimensionality Reduction with Semi-Supervision), which aims to seamlessly

integrate semi-supervised dimensionality reduction (SSDR) and active learning (AL).

This allows AdDReSS to construct low dimensional data representations to improve

classification of high dimensional biomedical data while using fewer labels compared to

previous SSDR methods. The spirit of AdDReSS is embodied in Figure 3.1. The goal

is to separate these two classes in a lower dimensional embedding representation such

that each class is in a distinct region of the low dimensional embedding space.

While active learning has been used for providing fewer, optimal instances for train-

ing a classifier for biomedical classification, its extension towards learning the best

training instances for improving the quality of low dimensional embedding representa-

tions has not been heavily investigated [6, 145]. Zhang et al. [153] has suggested that

searching in a locally linear or manifold space could provide more representative points

for active learning, while Verbeek et a. [145] has suggested an integrated framework us-

ing Gaussian fields. A generalizable evaluation and extension of active learning towards

semi-supervised dimensionality reduction methods would be important for prediction

and representation of biomedical data.

AdDReSS applies the theory behind AL towards the embedding space by identifying

difficult to classify samples from the embedding representation. These samples are sub-

sequently used to train the semi-supervised agglomerative graph embedding (SSAGE)
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Figure 3.1: An example of how AdDReSS improves embedding by incorporating AL. (a)
The original embedding representation given by SSDR. (b) A support vector machine
classifier is used as an active learner. (c) samples found to be difficult to classify are
selected as candidates for training. (d) SSDR trained on the labels queried by AL
provide greater separation of object classes in the embedding.

to produce a more separable representation of the data. This process can be iterated

to further refine the embedding representation.

The major contributions and implications of this work are:

1. a novel NLDR method which seamlessly incorporates active learning and semi-

supervised learning to guide embedding construction,

2. a demonstration showing the effects of active learning towards improving embed-

dings generated via SSDR compared to random sampling,

3. a simple framework that could be extensible for other SSDR methods to create

more discriminatory low dimensional representations.

We evaluated our methodology on three relevant medical datasets (a Brain MR

Imaging dataset [154], a gene expression dataset [76], and a protein expression dataset [78]).
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These datasets were chosen to represent varied types of imaging and non-imaging

biomedical data - radiologic medical imaging, DNA microarray, and proteomic spectra.

We also use two synthetic datasets for showcasing AdDReSS: one imaging (Toy) and one

non-imaging (Swiss Roll). Our experimental design was constructed to highlight the

differences between embeddings generated via three schemes: (1) AdDReSS, an SSDR

method using active learning (2) Semi-Supervised Agglomerative Graph Embedding

(SSAGE), an SSDR method which utilizes random sampling and (3) Graph Embed-

ding (GE), an unsupervised NLDR method which does not use any label information.

The rest of this paper is organized as follows. In Section 3.2, we formalize notation

and provide an overview of an unsupervised dimensionality reduction method (Graph

Embedding), a semi-supervised dimensionality reduction method (Semi-Supervised Ag-

glomerative Graph Embedding), and an active learning strategy (Uncertainty Sam-

pling), thereby providing the theoretical background for AdDReSS. In Section 3.3,

we describe our method AdDReSS (Adaptive Dimensionality Reduction with Semi-

Supervision) in greater detail. In Section 3.4, we outline the datasets, training parame-

ters, and the evaluation measures used to compare the methodologies described in this

work. In Section 3.5, we demonstrate the performance of the comparative methodolo-

gies for each of our evaluation measures, followed by concluding remarks in Section 3.6.

3.2 Review of relevant machine learning techniques

3.2.1 Notation

We denote a set E of samples ci, cj ∈ E , i, j ∈ {1, 2, . . . , N}, where N is the number

of samples in set E . Each sample ci is represented by a 1 ×K feature vector xi ∈ X.

We can formalize a dataset X as a N ×K matrix containing K feature values for each

of N samples. The goal of dimensionality reduction is to reduce the N × K matrix,

defined by a 1×K feature vector xi ∈ X, where k < K, to a N × k matrix, where all

samples ci are defined by a 1×k eigen-feature vector yi ∈ Y . Label information may be

introduced such that `(ci) denotes the object class label of sample ci as being a positive

class +1 or negative class −1. Labels `(ci) = 0 denotes that sample ci is unlabeled.
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3.2.2 Graph Embedding

NLDR methods, such as Graph Embedding [108], can be used to reduce samples

ci originally represented as K-dimensional vectors xi ∈ X into k-dimensional vectors

yi ∈ Y , where k < K. To perform this transformation, data X is first represented as an

affinity matrix W , which describes the similarity between all pairs of objects ci, cj ∈ S

as a graph G = {V,E}, where V represents all objects ci and cj as vertices, and E

represents the edges which connect them.

Similarity is computed via the Gaussian diffusion kernel γ = e−
||xi−xj ||2

σ , which

affects the weighting of the components in W . The kernel allows for a flexible local

neighborhood constraint induced based on σ. A small σ narrows the size of the local

neighborhood such that fewer points are deemed similar, whereas a large σ increases

the size of the local neighborhood such that more points are similar. We set σ =

maxi,j ||xi − xj ||2.

Alternatively, E, the edges in the graph G, expressed via the affinity matrix, W ,

can be pruned to further constrain local neighborhoods for NLDR. E can be defined

based on a local neighborhood size determined by the number of nearest neighbors κ.

For each ci, if cj is one of the κ-nearest neighbors of ci, then we may include cj in the

set Ki and we can express the edge as E(ci, cj) = 1. The weight matrix W represents

a non-binary extension of the graph G, which takes into account the explicit similarity

between objects ci and cj in terms of xi and xj such that

W (xi,xj) =

{
γ, if cj∈Ki

0, otherwise
, (3.1)

As performed in the normalized cuts algorithm [108], the affinity matrix is normal-

ized such that

W̃ (xi,xj) =
( N∑

ii

W (xii,xj)×
N∑
jj

W (xi,xjj)
)−1

W (xi,xj). (3.2)

W̃ (xi,xj) is used to solve the eigenvalue problem

(D − W̃ )e = λDe, (3.3)
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where D is a diagonal matrix containing the trace of W̃ , and e are the eigenvectors.

The embedding Y GE is formed by taking the most dominant eigenvectors eβ, β ∈

{1, 2, . . . , k}, corresponding to the k smallest eigenvalues λβ, where k corresponds to

the dimensionality of Y GE .

3.2.3 Semi-Supervised Agglomerative Graph Embedding

Adding semi-supervised learning to DR is performed by modifying the Graph Em-

bedding algorithm to introduce the label information `(ci). A typical strategy for

introducing label information into the Graph Embedding framework is to apply an ad-

ditional set of weighting constraints to describe pairs of ci and ci with either the same

(`(ci) = `(cj)) or different (`(ci) 6= `(cj)) labels. We utilize a methodology used by

Zhao et al. [143], SSAGE, which includes a multiplier to the Gaussian diffusion kernel

γ = e−
||xi−xj ||2

σ such that the affinity matrix is now defined as

Ŵ (xi,xj) =

{γ(1+γ), if `(ci)=`(cj) and cj∈Ki
γ(1−γ), if `(ci)6=`(cj) and cj∈Ki

γ, if `(cj)=0 and cj∈Ki
0, otherwise

(3.4)

Ŵ contains the weighted similarities between ci and cj based on

1. its position in K-dimensional space via the Gaussian diffusion kernel

2. its proximity to its κ nearest neighbors

3. whether that neighbor is of the same label class or not

Ŵ is subsequently normalized via Equation 3.2 and the resulting normalized affinity

matrix undergoes eigenvalue decomposition as performed in Equation 3.3. As with GE,

the embedding Y SS for SSAGE is formed by taking the most dominant eigenvectors

eβ, β ∈ {1, 2, . . . , k}, corresponding to the k smallest eigenvalues λβ, where k is the

dimensionality of Y SS .
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3.2.4 Active Learning by Uncertainty Sampling for Identifying Am-

biguous Samples

One can identify samples for active learning by querying difficult to classify samples [55,

146,148,149,155]. While many strategies have been investigated for active learning using

different classifiers, ultimately these differences were found not to be heavily correlated

with classification performance [146]. For uncertainly sampling, a labeled set Str is first

used to train a classifier. For each sample in the unlabeled set Sts, the classifier predicts

the object class label `(ci) with a certain probability that ci belongs to that particular

object class `(c) (i.e. P (`(ci) = 1)). We can define the most ambiguous samples as those

with a probability of P (`(ci)) = 0.5. We aim to find samples ci nearest to P (`(ci)) = 0.5

via the objective function

argmin
ci∈Sts

∣∣∣P (`(ci) = 1)− 0.5
∣∣∣. (3.5)

These samples ci are assigned to set Sa. Labels `(ci), ci ∈ Sa are queried and these

ambiguous samples are added to the training set

Str = [Str ∪ Sa]. (3.6)

Learning via the updated labels `(ci), ci ∈ Str, we endeavor to improve classification

performance compared to Str 6∈ Sa.

3.3 AdDReSS: Adaptive Dimensionality Reduction with Semi-Supervision

The iterative Algorithm AdDReSS is presented below. Additionally, we employ the

synthetic Swiss Roll example presented in Figure 3.3 to guide the explanation of the

AdDReSS algorithm.

Line 0 of the algorithm refers to Model Initialization, the construction of the initial

embedding Y Ad, and is illustrated in Figure 3.3(c) which shows the application of

AdDReSS on the Swiss Roll dataset. The initialized embedding Y Ad is created using

data X via GE. In Figure 3.3(d), the revealed labels used for active learning are mapped

onto Y Ad.
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Algorithm AdDReSS

Input: X, `(Str)

Output: Y Ad

begin

0. Build initial embedding Y Ad using X, `(c) = { }

via Equation 3.3

1. while Sts 6= { }

2. Train classifier using Y Ad, `(Str)

3. Predict `(ci) in Sts using classifier model

in Step 2

4. Identify ambiguous samples from ci ∈ Sts

via Equation 3.5

5. Query labels `(ci), ci ∈ Sa

6. Update Str via Equation 3.6

7. Update embedding Y Ad using updated `(Str)

via Equation 3.4

8. end

9. return Y Ad

end

The subsequent illustrations, Figures 3.3(e) and (g), represent successive runs of

Active Learning and Model Refinement via SSDR, respectively, which are contained

within the while loop of the algorithm (lines 2-7).

Lines 2-6 of the algorithm represent the Active Learning component described earlier

in Section 3.2.4, where ambiguous samples are identified based on the results of a trained

classifier. Although Doyle et al. [146] have suggested that the particular choice of active

learner is not significantly correlated with classifier performance, we have chosen the

Support Vector Machine (SVM) classifier to identify the ambiguous samples for the

following reasons. Firstly, SVMs have been shown to be highly generalizable to new
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unseen testing data, suggesting that the algorithm can consistently identify ambiguous

samples [151, 155]. Secondly, SVMs have been heavily investigated and employed for

active learning [156, 157]. Finally, SVMs, like GE, operate on a kernel representation

of the data, allowing for seamless identification of ambiguous samples derived from the

kernel space in construction of the embeddings. A linear kernel was used based on the

assumption that the NLDR method GE provides a linearly separable embedding as GE

is able to account for non-linear data. We have previously shown the ability of linear

kernel SVM to separate biomedical data using low dimensional representations from

NLDR methods [1].

Figure 3.3(e) shows a visualization of the ambiguous samples found via SVM classi-

fication of Figure 3.3(d). Difficult to classify samples (shown as blue points) are found

at the intersection of the two labeled classes (Figure 3.3(f)). New labels are obtained

for these samples and added to the training set, completing the active learning phase

(lines 2-6).

Line 7 of the algorithm represents the Model Refinement component where the up-

dated label set `(Str) found via active learning is used to create an improved embedding

representation via SSDR (Figure 3.3(g)). This representation demonstrates an improve-

ment upon the previous embedding (Figure 3.3(c)). These steps of identifying samples

(Figure 3.3(e)) and generating an optimized representation (Figure 3.3(g)) may be re-

peated until there are no additional unlabeled samples available for querying or until

there is a lack of ambiguous samples to be queried.

3.4 Experimental Design

3.4.1 Embedding Parameters

The goal of these experiments is to understand the performance of AdDReSS with

respect to constructing discriminative embeddings. Embeddings Y Ad and Y SS for Ad-

DReSS and SSAGE, respectively, (refer to Sections 3.3 and 3.2.3 for more details) were

generated with 20 different randomly selected training sets Str of training samples.
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Measures designed to evaluate each embedding were calculated across multiple itera-

tions of AdDReSS Y Ad
l% corresponding to an embedding for a percentage l of revealed

labels `(ci). These trials were repeated across a range of parameters for each dataset

D1-D3 (as described in Section 3.4). Embeddings Y GE were also generated for un-

supervised GE (refer to Section 3.2.2 for more details) for comparison, but since no

label information is used, only one embedding is obtained across all label iterations

for each parameter set. Optimal κ parameters κ ∈ {2, . . . , n − 1} were selected for all

experiments.

3.4.2 Training Parameters

Each dataset is divided equally into training and testing pools, Etr and Ets, respectively,

for the purpose of an unbiased evaluation of the resulting Y . Random stratified sampling

was performed such that samples for each of Etr and Ets are randomly chosen such that

the number of positive and negative class labels `(c) is the same in both Etr and Ets.

Note that Etr and Ets are distinct from the training and testing sets Str and Sts used

for querying samples for active learning. Str and Sts are solely used for construction

of the embedding and make up the entirety of the training pool Etr, described in this

section such that Etr = [Str ∪ Sts]. Meanwhile, the labels `(Ets) in the testing pool are

used only for analysis and are not used for constructing Y .

3.4.3 Evaluation Measures

In this study, two primary methods of quantitative evaluation are used to compare

Y : Classifier Accuracy (Acc) and Silhouette Index (SI). These measures and related

measures are defined in the following sections.

Evaluation of Classification Accuracy (φAcc)

Classifier accuracy (Acc) is calculated to evaluate class separability within the embed-

ding. The labeled set Etr is used to train a classifier to predict the object class label

`(ci) for all ci ∈ Ets. If the true label value of `(ci) is of the positive class `(ci) = 1 and

the classifier predicts correctly, this result is a true positive (TP) classification. If the
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classifier predicts this result incorrectly, the result is a true negative (FP). Similarly, if

`(ci) = −1 and the classifier predicts correctly, the result is a true negative (TN). Oth-

erwise, the result is a false negative (FN). Classification Accuracy (φAcc) measures the

ability of a classifier to predict on a new set of testing data provided by the embedding

and is calculated as

φAcc =
TP + TN

TP + TN + FP + FN
. (3.7)

Specifically, a Random Forest classifier (or bagged decision tree classifiers) [158] has

been used due to its robustness and to reduce bias by selecting a different classifier than

the one used for query ambiguous samples (in our case, an SVM classifier). The Random

Forest classifier is constructed using 50 decision tree classifiers each trained on a random

third of the training pool Etr. Classification accuracy φAcc is subsequently calculated

based on the consensus of predicted labels `(ci) of the Random Forest classifier on the

independent testing pool ci ∈ Ets.

Evaluation of Object Class Separation via Silhouette Index (φSI)

Silhouette Index (SI) offers an independent measure to quantify the separation of multi-

ple classes in the embedding. SI can detect more subtle changes in the embedding with

regards to overall class separation compared to classification accuracy. The Silhouette

Index (φSI) [159] is a cluster validity measure which jointly takes into account (1) the

compactness of samples belonging to the same object class (`(ci) = `(cj)) and (2) the

separation of samples belonging to different object classes (`(ci) 6= `(cj)). The intra-

cluster compactness is measured by Ai =
∑

j,`(cj)=`(ci)
‖yi − yj‖2, which represents the

average distance of a sample ci from other samples cj of the same class in Y . Whereas,

inter-cluster separation is measured by Bi =
∑

j,`(cj)6=`(ci) ‖yi − yj‖2, the minimum of

the average distances of a sample ci from other samples in different classes. Thus, the

formulation for φSI is as follows,

φSI =

N∑
i

Bi −Ai
max[Ai, Bi]

. (3.8)
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φSI ranges from -1 to 1, where -1 demonstrates the worst, and 1 is the best possible

embedding. For each experiment, φSI is calculated using all labels `(ci), ci ∈ Etr in Y .

Evaluation of Embedding Variance via Classification Accuracy (ρAcc)

The rate of learning is affected by the initial training examples Str provided to the algo-

rithm. It is anticipated that active learning will be able to consistently identify training

instances, Sa, which will lead to improved classification, whereas random sampling will

show more varied improvement due to the variance in the specific training instances

chosen. We test the variance in φAcc of our algorithm (AdDReSS) compared to SSAGE

across all runs, each with a unique random initializations Str. Classification Variance

is computed as

ρAcc =

∑n
i (φAcci − φ̄Acc)2

n− 1
, (3.9)

where n = 20, representing the number of random initializations, and φ̄Acc refers

to the mean across n values of φAcci , φ̄Acc = 1
n

∑n
i φ

Acc
i . A lower ρAcc suggests greater

robustness to initialization via a more consistent φAcc.

Evaluation of Embedding Variance via Silhouette Index (ρSI)

Similar to ρAcc, we also aim to quantify the variance of the embedding with regards to

the Silhouette Index, which reflects the separability of the two object classes in terms

of the Euclidean distance between data points in the embedding Y . ρSI captures the

variance in the embedding Y across all runs, each with unique, random initializations,

such that Silhouette Variance is computed as

ρSI =

∑n
i (φSIi − φ̄SI)2

n− 1
, (3.10)

where N = 20, the number of random initializations, and φ̄SI refers to the mean

across n values of φSIi , φ̄SI = 1
n

∑n
i φ

SI
i . A lower ρSI suggests greater robustness to

initialization in terms of a more consistent φSI .
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Evaluation of Overall Embedding Learning Rate via Raghavan Efficiency

(φEff)

Raghavan Efficiency [160] describes the rate of learning among active learning algo-

rithms. Figure 3.8 [155] provides a visual interpretation of Raghavan Efficiency, where

the region identified by A represents the area between the the Active Learning curve and

the maximum achievable performance, and the region defined by B represents the area

between the the Active Learning curve and the Random Sampling curve. Raghavan

Efficiency is defined by a subtraction of the ratio A/B such that φEff ranges between

0 and 1 and larger values of φEff are indicative of a faster learning rate. We use φEff

to compare the overall learning rate between 1) AdDReSS vs GE, 2) SSAGE vs GE

and 3) AdDReSS vs SSAGE.

To compare the efficiency of an active learner Y Ac against random sampling Y Rd,

φEff may be expressed as

φEff (Y Ac|Y Rd) = 1− A

A+B
(3.11)

= 1−
∑tf

t=t0
φAcc(Y Rd

l=tf
)− φAcc(Y Ac

l=t)∑tf
t=t0

φAcc(Y Rd
l=tf

)− φAcc(Y Rd
l=t )

,

where t0 and tf represent the number of initial training samples used to learn Y ,

and the final number of training samples used to learn Y , respectively. The empirical

maximum accuracy refers to the highest φAcc obtained for any single iteration of Y

such that φEM = maxi,l

[
φAcci (Y Ac

l )
]
, where i ∈ {1, 2, . . . , n} denotes specific run of

Y Ac with a unique initial training set Sts.

Additionally, to compare AdDReSS and SSAGE against the same baseline compari-

son, GE, we summarized these results using percentage comparison between for 1) φEff

(Y Ad|Y GE) and 2) φEff (Y SS |Y GE). The percentage change in φEff for AdDReSS from

SSAGE can be expressed as

∆φEff =
(

1− φEff (Y Ad|Y GE)

φEff (Y SS |Y GE)

)
× 100%. (3.12)
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Evaluation of Maximum Query Efficiency (φMQE)

While Raghavan Efficiency is useful as an overall measure, there remain important

insights that cannot be surmised by the global measure. One example is the cost

savings associated with using active learning based dimensionality reduction compared

to with traditional SSDR using random sampling. Maximum Query Efficiency is the

ratio between the maximum difference in the number of labels necessary to achieve the

same classification performance and the number of potential queries such that

φMQE = max
φAcc

[ lSS − lAd
N

]
, (3.13)

where lSS and lAd refer to the mean number of labels queried by SSAGE and AdDReSS,

respectively, to achieve a classification performance φAcc. N refers to the number of

total samples ci ∈ E . A larger φMQE is indicative of greater savings in terms of labels

queried.

Evaluation of Maximum Information Gain (φMIG)

Another useful measure of active learning performance is the maximum information

gain from using a particular algorithm of choice. We define maximum information gain

as the maximum difference in classification performance φAcc at a given label query

amount l, such that

φMIG = max
l

[
¯φAcc(Y Ad
l )− ¯φAcc(Y SS

l )
]
. (3.14)

A larger φMIG refers to a larger difference between the classification performance

between embeddings constructed by AdDReSS and embeddings generated by SSAGE.

3.4.4 Dataset Description

A total of 5 datasets were used in this study. Two synthetic datasets (S1 - S2) were

utilized as examples, including 1 imaging and 1 non-imaging. Three additional datasets

(D1 - D3) were selected for experimentation. These datasets include: D1: synthetic



34

Table 3.1: Datasets used for evaluation.

SyntheticDatasets Description Features

S1: Toy Data 1500 pixels
RGB intensity (3)

30× 50 image 739 Foreground, 761 Background

S2: Swiss Roll 429 Red, 571 Black samples XYZ coordinates (3)

BiomedicalDatasets Description Features

D1: BrainWeb 5,975 total Grey Matter and White Matter pixels
Texture (6)

109× 131 image 2607 Grey Matter, 3368 White Matter

D2: Prostate Cancer 52 Tumor, 50 Normal Gene Expression (12600)

D3: Ovarian Cancer 162 Tumor, 91 Normal Protein Expression (15154)

brain image data, D2: gene-expression of prostate cancer, and D3: protein expression

of ovarian cancer. The datasets are summarized in Table 3.1.

S1: Toy Data

The synthetic toy dataset (S1) is a 30 × 50 RGB color image containing 739 and 761

pixels corresponding to the foreground circle and background respectively as shown in

Figure 3.2. The objective is to separate foreground and background pixels on a noisy

image. Each pixel is defined by three color intensity channels R,G, and B. The original

scene is defined by two types of pixels (foreground and background) which are linearly

separable in RGB space. A Gaussian noise function was added to each pixel ci and to

each color channel α such that

fα(ci) = fα(ci) +
1

σ
√

2π
e−

1
2

(
fα(ci)

σ
)2 , (3.15)

where σ = 150. The image X is then subsequently normalized such that all color

intensity values fα(c) range between 0 and 255.

Training and testing pools were created based on selecting alternative pixels from

a checkerboard pattern. This allowed for a well-represented training and testing pool

for evaluation. For initialization of N = 20 embeddings Y , we generated multiple

embeddings, each with a unique set of 50 pixels ci ∈ Str. For AdDReSS, 50 additional

pixels ci ∈ Sa were added to Str at each iteration. For SSAGE, 50 additional randomly

selected pixels ci ∈ Sts were added to Str at each iteration. In all cases, the K = 3

dimensional RGB intensity space is reduced to dimensionality k = 2.



35

S2: Swiss Roll

The synthetic Swiss Roll dataset [10] is a 1000 sample dataset defined by 3 coordinates

commonly used to test NLDR algorithms as shown in Figure 3.3(a). The points have

been separated into two classes along the manifold such that a hyperplane in 3D is

unable to separate the classes. The goal is to be able to separate these classes within

a 2D embedded space. For all results, the K = 3 dimensional RGB intensity space is

reduced to dimensionality k = 2 as shown in Figure 3.3.

D1: BrainWeb Images

Preprocessing : Synthetic brain images [154] were acquired from the Montreal Neuro-

logical Institute1. This dataset consists of proton density MRI brain volumes with

simulated levels of noise and bias field inhomogeneities. Gaussian noise artifacts were

simulated by adding to each pixel in the image, with parameters for Gaussian noise

artifacts (NO) ranging between 1% to 9% noise. Inhomogeneity artifacts were simu-

lated by multiplication of each pixel in the image with an intensity non-uniformity field.

Intensity non-uniformity (RF) was simulated at from 0, 20 and 40%. Images were ac-

quired at a slice thickness of 1mm. White matter and grey matter regions were labeled

for each of the images in the dataset. A single slice is used in this study comprising

white and grey matter alone (ignoring other brain tissue classes).

Feature Extraction: 6 texture features [161] were extracted from each image on a

per-pixel basis: contrast energy, contrast entropy, intensity variance, correlation, and

two features corresponding to information measures. These texture features represent

second-order statistics calculated from a gray level intensity co-occurrence matrix con-

structed from the gray level image intensity values. These features were previously used

to discriminate cancerous from non-cancerous prostate regions [111] and different types

of brain matter [128,162] in MRI studies. For all results, the K = 6 dimensional RGB

intensity space is reduced to dimensionality k ∈ {2, 3}.
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D2: Gene Expression of Prostate Cancer

Preprocessing : Gene expression data [76] was acquired from the Biomedical Kent-Ridge

Repositories2, consisting of high quality expression profiles from 52 prostate tumors and

50 non-tumor (normal) prostate samples. The samples are derived from oligonuleotide

microarrays containing probes for 12,600 genes.

Feature Extraction: No additional feature extraction was performed and all embed-

dings were calculated directly from the provided data. For all results, the K = 12, 600

dimensional dataset was reduced down to dimensionality k ∈ {2, 3}.

D3: Protein Expression of Ovarian Cancer

Preprocessing : The study [78], obtained from the Biomedical Kent-Ridge Repositories3

uses proteomic spectra extracted from serum to distinguish 91 neoplastic from 162 non-

neoplastic disease within the ovary. The proteomic spectra generated by SELDI mass

spectroscopy for each sample contains the relative amplitude of 15,154 intensities at

each molecular mass / charge (M/Z) identity.

Feature Extraction: No additional feature extraction was performed and all embed-

dings were calculated directly from the provided data. For all results, the K = 15, 154

dimensional protein spectra was reduced down to dimensionality k ∈ {2, 3}.

3.5 Results and Discussion

3.5.1 Synthetic Example S1: Toy Data

For S1 we illustrate the separability of our target classes achievable by AdDReSS and

two comparative DR methods, GE, which is unsupervised and SSAGE, which is su-

pervised. In Figure 3.2(a), a simple RGB image consisting of ball and background

pixels is shown. Following the addition of Gaussian noise, each pixel in Figure 3.2(a) is

plotted in a 3-dimensional RGB space (Figure 3.2(e)). Subsequently, we reduce the 3-

dimensional RGB space into a 2-dimensional embedding via GE (Figure 3.2(f)), SSAGE

(Figure 3.2(g)), and AdDReSS (Figure 3.2(h)). Figures 3.2(b), 3.2(c), and 3.2(d) repre-

sent a pixel-wise binary classification into foreground (ball) and background classes via
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Figure 3.2: (a) RGB image containing ball against colored background pixels. (e)
Image pixels plotted in 3D RGB space. Replicated k-means clustering is performed on
the reduced embeddings by (f) GE, (g) SSAGE, and (h) AdDReSS, respectively. The
resulting binary classifications (b-d) reflect the corresponding quality of embeddings
obtained via DR methods (b) GE, (c) SSAGE, and (d) AdDReSS.

GE, SSAGE, and AdDReSS, respectively. These were obtained via replicated k-means

clustering on the corresponding DR embeddings, as shown in Figures 3.2(f), 3.2(g),

and 3.2(h). We can see that there are differences between the embeddings created via

AdDReSS compared to SSAGE and GE, where SSL appears to provide an improvement

in separating the foreground and background pixels for SSAGE over unsupervised GE,

and the incorporation of active learning appears to provide an embedding with greater

separability compared to SSAGE.

3.5.2 Synthetic Example S2: Swiss Roll

Figure 3.3(a) shows the 3-dimensional representation of the Swiss Roll dataset [10]

shown with the two classes. The goal is to separate these two classes in a lower dimen-

sional embedding representation such that each class is in a distinct region of the low

dimensional embedding space. Figure 3.3 illustrates how the use of active learning is

able to improve upon the separability of the two classes for this dataset.

Difficult to classify examples are identified by the SVM classifier in embedding

space and are shown in blue in Figure 3.3(e). The newly identified objects discovered

via AL attract towards similarly labeled samples already available to SSAGE and the
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(e) Active Learning Step (f) Demonstration of Active Learning
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(g) Optimized Embedding (h) Demonstration of Optimized Embedding

Figure 3.3: (a) 3D Swiss Roll with all labels revealed. (b) 3D Swiss Roll with initial
labels `(Str) revealed. (c) Initial 2D embedding with labels. (d) Initial 2D embedding
with initial labels `(Str). (e) Ambiguous samples (in blue) are determined via active
learning. (f) Region of the Swiss Roll at the class boundary (region is shown as a box in
(e)). Note the selection of ambiguous samples (in blue) at the boundary between the two
classes (in red and green). (g) Subsequent 2D embedding incorporating newly queried
labels from the ambiguous samples. (h) Region near the class boundaries (shown as a
box from (g)) revealing the increased separation between the two classes (in red and
green) following application of the AdDReSS scheme.
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Figure 3.4: Number of instances for which labels were revealed versus mean φAcc for
AdDReSS, SSAGE, GE, and the maximum empirically derived φAcc across all runs is
shown for (a) D1, (b) D2, and (c) D3. Standard deviation of φAcc shown as error bounds
at each l.

classifier while repelling from dissimilarly labeled samples, thus creating the separation

shown in Figure 3.3(g). Thus, it is clear that the discovery of difficult to classify

labels can produce greater separation of the embedding as these samples are leveraged

by SSAGE. The use of random sampling would probabilistically provide a uniform

sampling of points in the dataset such that SSAGE could not leverage the samples at

the classification boundary, resulting in a smaller degree of separation of object classes.

3.5.3 Evaluation via Classifier Accuracy (φAcc)

Figure 3.4 shows the classification performance of AdDReSS against SSAGE and GE

on three biomedical datasets (D1 - D3), where different amounts of labeled data l are

revealed to the classifier. We notice greater φAcc for AdDReSS across all amounts of

revealed labels l. The accuracy curve corresponding to AdDReSS also approaches the

empirical maximum φAcc at a faster rate compared to SSAGE. GE is also shown for

each case as a comparison. The use of sufficient labeled instances suggests a clear ad-

vantage in employing semi-supervision for DR. Furthermore, the improved performance

of AdDReSS over SSAGE across all labeled instances reveals a measurable difference in

φAcc at a point between the minimum l = 10% and the maximum number of revealed

labels l = 50%. This is due to the fact that for small training size, l = 10%, there is a

significant overlap in Str for AdDReSS and SSAGE due to the identical initialization

Str. Similarly at l = 50%, training samples are exhausted from the pool Etr, such that
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Figure 3.5: Number of instances for which labels were revealed versus mean φSI for
AdDReSS, SSAGE, GE, and the maximum empirically derived φSI across all runs is
shown for (a) D1, (b) D2, and (c) D3. Standard deviation in φSI shown as error bounds
at each l.

Str = Etr for both AdDReSS and SSAGE. Therefore, the greatest measurable difference

between φAcc(Y Ad
l ) and φAcc(Y SS

l ) can be seen where 10% < l < 50%, reflecting the dif-

ference in the active learning and random sampling strategies towards the composition

of ci ∈ Str, and subsequently, towards the resulting embeddings Y Ad
l and Y SS

l .

3.5.4 Evaluation via Silhouette Index (φSI)

In Figure 3.5, we compared AdDReSS against SSAGE and GE in terms of φSI on

datasets (D1 - D3) by revealing different amounts of labeled data l. Compared to

φAcc, there appears to be greater separation for φSI between the semi-supervised meth-

ods compared to GE. This in turn seems to suggest that the separation of the object

classes in the embedding space is more pronounced. Furthermore, φSI(Y Ad) outper-

forms φSI(Y SS) across all l. In contrast to φAcc, the improvement in φSI tends to

continue with increasing numbers of revealed labeled information l. Only when the re-

vealed labeled information is nearly l = 50% does φSI approach its empirical maximum

φSI .

3.5.5 Evaluation of Variance (ρAcc, ρSI)

In Figure 3.6, we compare variance φAcc across varied amounts of revealed labels l for

Y Ad, Y SS and Y GE . In D1, we notice very small differences in φAcc, as ρAcc is found to

be on average less than 0.0003 for all values of l. Nevertheless, we can view significant
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differences between ρAcc of AdDReSS and SSAGE, with AdDReSS showing ρAcc <

0.0001 in all but one instance, and most instances of SSAGE showing ρAcc > 0.0001.

We notice greater differences in ρAcc for D2 and D3 in Figures 3.6(b) and (c) respectively,

as both AdDReSS and SSAGE are more sensitive to the composition of initial training

ci ∈ Str, reflected in the higher ρAcc when l < 10%. ρAcc is subsequently seen to

decrease with increasing l as more training samples are queried by the active learner.

For all experiments in D2, AdDReSS shows more consistency in φAcc as demonstrated

by lower ρAcc compared to SSAGE. Furthermore, AdDReSS shows similar ρAcc values

when compared to the unsupervised GE method, which is reflective of the precision of

the classifier. The same trends can be seen in D3 for l > 28% (Figure 3.6(c)), where

over 29 revealed labeled instances were used and AdDReSS shows lower ρAcc compared

to SSAGE.
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Figure 3.6: Variance of φAcc at selected numbers of instances for which labels were
revealed for AdDReSS, SSAGE, GE are shown for (a) D1, (b) D2, and (c) D3.
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Figure 3.7: Variance of φSI at selected numbers of instances for which labels were
revealed for AdDReSS, SSAGE, GE are shown for (a) D1, (b) D2, and (c) D3. GE
shows zero variance as labeled information does not affect the embedding for GE.
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In Figure 3.7, we demonstrate more consistent embeddings Y Ad compared to Y SS

as demonstrated by a lower ρSI . However, unlike with ρAcc, ρSI tends to increase with

increasing l. In all three datasets D1-D3, we notice SSAGE to have greater ρSI than

AdDReSS and up to 3 or 4 times greater for D1 and D3. These trends in Figures 3.5

and 3.7 are reflective of the ability of the embedding to converge more quickly with

increasing l for AdDReSS compared to SSAGE. The embedding for GE does not change

with respect to l, therefore, there is no change in φSI , and ρSI = 0 in any of the cases.

These results are suggestive of a embedding representation Y Ad which is more stable

than Y SS , and is robust to the specific ci ∈ Str used to initialize AdDReSS.

3.5.6 Evaluation via Raghavan Efficiency (φEff)

C
la
ss
if
ic
a
ti
o
n
 A
cc
u
ra
cy

Number of Revealed Labels

A

B

Active LearningRandom SamplingEmpirical Max
Figure 3.8: Illustration describing Raghavan efficiency. A refers to the area between
the Active Learning curve and the empirically-derived maximum accuracy, and B refers
to the area between the Random Sampling curve and the Active Learning curve.

In Figure 3.9, we show the overall differences in efficiency between each pair of

methods (1) AdDReSS vs SSAGE, 2) AdDReSS vs GE, and 3) SSAGE vs GE) em-

ployed for this study via φEff . In all cases, AdDReSS outperforms SSAGE in terms

of φEff . φEff (Y Ad|Y SS) is more pronounced when k = 2 for all datasets, suggesting
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Figure 3.9: φEff for k ∈ {2, 3} shows the comparative efficiency between AdDReSS
and GE, SSAGE and GE, and AdDReSS and SSAGE for (a) D1, (b) D2, and (c) D3.

Table 3.2: Percent improvement in Raghavan efficiency via AdDReSS over SSAGE

D1 D2 D3 Mean

k = 2 +1.94% +18.09% +11.53% +10.52%
k = 3 +11.49% +172.41% +40.95% +74.95%

Mean +6.71% +95.25% +26.24% +42.73%

that AdDReSS is more efficient when fewer dimensions are involved. These trends are

consistent to what is seen in Figure 3.4, where AdDReSS shows greater φAcc for varying

proportions of revealed labels l.

The improvement in efficiency afforded by AdDReSS compared to SSAGE is sum-

marized in Table 3.2 using GE as the baseline. Table 3.2 shows the percentage increase

between φEff (Y Ad|Y GE) and φEff (Y SS |Y GE) for all datasets D1-D3. Overall, the

mean percentage improvement in φEff across all datasets was found to be +10.52%

for k = 2 and +74.95% for k = 3 from using AdDReSS instead of SSAGE, suggesting

that AdDReSS appears to outperform SSAGE as the number of dimensions begins to

increase.

3.5.7 Evaluation via Maximum Information Gain (φMIG)

In Figure 3.10, we show the maximum amount of information gain that can be achieved

via AdDReSS compared to SSAGE for each dataset. For D1, φMIG = 0.0208, which

means there is a maximum improvement in φAcc of over 2% (from 0.8340 to 0.8548) due

to AdDReSS compared to SSAGE. This improvement in φAcc via Y Ad is equivalent to 60

additional correctly classified samples for D1 compared to Y SS . In Figure 3.10(b), when
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Figure 3.10: φMIG shows areas of maximum information gain (shown as a dashed black
line) in terms of the difference in φAcc between AdDReSS and SSAGE for (a) D1, (b)
D2, and (c) D3.
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Figure 3.11: φMQE describes the maximum efficiency in terms of queried labels given
the same φAcc (shown as a dashed black line) between AdDReSS and SSAGE for (a)
D1, (b) D2, and (c) D3.

l = 46% (47 labels revealed), D2 shows φMIG = 0.0608, with over an 8% improvement

in φAcc when using AdDReSS compared to SSAGE. For D3, φMIG = 0.0465, with an

improvement from 0.8764 to 0.9228 in terms of φAcc and the best improvement is found

when l < 30% (less than 72 labels revealed). The results for φMIG suggest a faster rate

of learning when using AdDReSS compared to SSAGE.

3.5.8 Evaluation via Maximum Query Efficiency (φMQE)

Figure 3.11 illustrates the number of fewer labels required for AdDReSS to achieve

the same classification performance φAcc as SSAGE. For D1, φMQE = 0.0698, which

reflects the fact that AdDReSS requires an average of 417 fewer labels than SSAGE to

achieve φAcc = 0.8462. Stated another way, SSAGE required the use of an additional

6.98% of the labels l(ci), ci ∈ E , to achieve the same performance as AdDReSS. For
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D2, φMQE = 0.1748. While an average of 25 revealed labeled instances were used to

achieve φAcc = 0.74 for AdDReSS, SSAGE required an average of 43 revealed labeled

instances in order to achieve the same φAcc. Similarly, for D3, φMQE = 0.1730, such

that AdDReSS required, on average, 74 labels to achieve φAcc = 0.9244 while SSAGE

required nearly the entire training pool, Etr, of 126 labels, as shown in Figure 3.11(c).

Overall, for D1 − D3, AdDReSS required an average of 45% (and up to 56%) fewer

labels to be queried compared to SSAGE to achieve the desired classification accuracy.

3.6 Summary

With the rapid profusion of high dimensional biomedical data, there is a need for ‘big

data’ analytics to efficiently and accurately analyze this data. This analysis very often

involves developing classifiers for predicting disease aggressiveness, patient outcome,

or appropriate treatment options. Recently, there has been a profusion of compan-

ion diagnostic tests in the context of personalized medicine where most of these tests

employ a combination of molecular markers. To overcome the curse of dimension-

ality, there is a need for representing these high dimensional biomedical datasets in

reduced dimensional spaces, which are more amenable to classification. In this work,

we presented a novel nonlinear dimensionality reduction methodology, Adaptive Dimen-

sionality Reduction with Semi-Supervision (AdDReSS), which attempts to seamlessly

integrate active learning into semi-supervised dimensionality reduction (SSDR) to yield

low dimensional data representations of high dimensional data. These representations

yield greater classification accuracy and class separability while using fewer class labels.

AdDReSS attempts to address the problems of classifying ‘big data’ and the very real

problem of often not having class labels or annotations with which to train a classifier.

Our scheme employs the use of active learning to query fewer labels which contribute

the most towards building low dimensional embeddings with high object class separa-

bility and classification performance. We quantified the differences between AdDReSS

and SSAGE on problems involving imaging and non-imaging channels from 3 distinct

biomedical datasets (MR brain imaging, prostate gene expression, and ovarian pro-

teomic spectra) and 2 synthetic examples (a toy image and swiss roll data). Based on
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the results assessed over 8000 experiments, we make the following observations:

• AdDReSS has a greater predictive potential compared to SSAGE and GE based

on classification accuracy when different numbers of instances have their labels

revealed.

• AdDReSS achieved a higher Silhouette Index compared to SSAGE and GE, sug-

gestive of an embedding with greater separation between the object classes.

• In comparisons of overall efficiency, AdDReSS learns at a faster rate of convergence

to the maximum possible accuracy compared to SSAGE and GE, measured by a

42.73% increase in Ragahavan efficiency.

• The potential savings in terms of the number of labels to be queried to achieve the

same classification accuracy was shown to be up to 56% for AdDReSS compared

to SSAGE across the datasets considered.

• AdDReSS was also found to be more robust to randomized training set initial-

ization, in that it appeared to have a lower variance in terms of classification

accuracy and Silhouette Index compared to SSAGE in the datasets considered.

Out findings suggest that active learning has a measurable effect on SSAGE and that

AdDReSS could be a powerful data analysis and classification tool for high dimensional

biomedical data, especially in scenarios where partial or incomplete annotations and

class labels are available.
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Chapter 4

Supervised Multi-view Canonical Correlation Analysis for

joint correlation and label guided data integration

4.1 Overview

4.2 Multi-modal data integration methods for imaging and non-imaging

biomedical data

In this chapter, we introduce methods of data integration and present a methodol-

ogy, supervised Multi-view Canonical Correlation Analysis (sMVCCA), which aims to

integrate infinite views of high dimensional data to provide a more amenable data

representation for classification of disease.

The following sections are organized as follows. First, we discuss useful background

regarding the implementation of data integration methodologies which may be used or

referenced in later parts of the dissertation. These methods include the use of Principal

Component Analysis (PCA) as a method for data integration (Section 4.2.1), General-

ized Embedding Concatenation (GEC) (Section 4.2.2), as well as methods for Canon-

ical Correlation Analysis (CCA), Regularized CCA (RCCA) and Supervised RCCA

(SRCCA) in Sections 4.2.3-4.2.5. Finally, we review a pairwise multi-view canonical

correlation analysis (MVCCA) approach which we then extend to derive supervised

MVCCA (sMVCCA) in Chapters 4.3 and 4.4, respectively. Table 4.1 provides relevant

notation for this chapter.

4.2.1 Principal Component Analysis (PCA) for data integration

PCA [105] provides a low dimensional representation of the data by rotation of the coor-

dinates to a set of orthogonal basis vectors called principal components. The principal
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Table 4.1: Summary of Notation for Chapter 4

Symbol Description

xm data matrix of modality m ∈ {1, . . . ,M}
f feature f j in xm = [f1

m, f
j
m, . . . , f smm ]

X data matrix of all modalities [x1,xm,xM ], R(n1+n2+...+nM )×s1+sm+...+nM

n number of samples
s1 and s2 number of features for modalities 1 and 2, and s is the total number of

features across all m
g number of object classes
Yg signifies a particular object class label
W Object class label

γ1, γ2 regularization parameters
I1 and I2 Identity matrices of Rs1×s1 and Rs2×s2 respectively

Cmt Correlation Matrix between modality m and modality t, m, t ∈
{1, . . . ,M}

C̄ Summed Correlation Matrix
C̄d Diagonal Summed Correlation Matrix

Ĉ Summed Correlation Matrix with label encoding

Ĉd Diagonal Summed Correlation Matrix with label encoding
Y label matrix

components represent the axes which demonstrate the greatest amount of variance in

the data. Given two multi-dimensional modalities of information x1 and x2, x1 ∈ Rn×s1

and x2 ∈ Rn×s2 , where n is the number of samples in the dataset, and s1 and s2 are the

number of features in x1 and x2, respectively. PCA is performed on the concatenated

data matrix, X = [x1x2] ∈ Rn×(s1+s2) [163]. X̄ ∈ Rn×(s1+s2) is then obtained by

subtracting the mean from each feature for a certain sample such that the resultant X̄

contains features of 0 mean. Eigenvalue decomposition of X̄ [105] is shown below as

X̄T X̄ = V ΣV T (4.1)

where Σ ∈ R(s1+s2)×(s1+s2) is diagonal matrix containing the singular values for the

eigenvectors in V ∈ R(s1+s2)×(s1+s2) The singular values in the diagonal of Σ denote

the variance of X̄ and determines the principal components based on the corresponding

eigenvectors. The embedding components corresponding to the largest largest d singular

values are selected for the low dimensional PCA representation of the original data.
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4.2.2 Generalized Embedding Concatentation

Generalized Embedding Concatenation (GEC) [5] is an extension of the Generalized Fu-

sion Framework which makes use of multiple embeddings for homogeneous meta-space

representation of the features corresponding to each modality. The intermediate ’meta-

space’ is of equivalent scaling and dimensionality for each modality considered allowing

for the representation of 2 or more modalities into a single integrated embedding. The

‘meta-space’ representation is achieved for each modality m, xm via transformation by

Principal Component Analysis to eigenvectors Em = [e1, e2, . . . , ed]. To account for

multiple scales Em is transformed by

Êim =
eij −mini[E

i
j ]

maxi[Eij ]−mini[Eij ]
, i ∈ {1, 2, ..., s1 + s2} (4.2)

for each Ej , j ∈ {1, 2, ..., n} to yield normalized embedding vectors. ‘Meta-space’ fusion

is then accomplished via concatenation of Êm. such that E = [Ê1, . . . , Êm, . . . , ÊM ].

The joint space is reduced by PCA on E to obtain the joint low-dimensional represen-

tation ε1, . . . , εd.

4.2.3 Canonical Correlation Analysis

Provided n data samples from two modalities, m ∈ {1, 2}, comprising s1 and s2 features,

respectively: {x1,x2}i, i ∈ {1, 2, ..., n},x1 = [f1
1 , f

j
1 , . . . , f

s1
1 ]T ,x2 = [f1

2 , f
j
2 , . . . , f

s1
2 ]T .

Canonical Correlation Analysis (CCA) seeks a pair of transformations w1 and w2 such

that correlation of x1 and x2 in the transformed space is maximized,

argmax
w1,w2

wT
1 C12w2√

wT
1 C11w1wT

2 C22w2

, (4.3)

where C12 =
∑M

i xi1x
iT
2 , C11 =

∑M
i xi1x

iT
1 , C22 =

∑M
i xi2x

iT
2 , and U = wTX is the

CCA projection of XT .
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4.2.4 Regularized Canonical Correlation Analysis

RCCA [134, 135] corrects for instability in x1 and x2 by using regularization on the

covariance matrices C11 and C22 to remove singularity in these terms. Correlation

matrices C12 and C21 are unaffected, while the matrices C11 and C22 become C11+γ1I1

and C22 + γ2I2. RCCA can be solved via the generalized eigenvalue problems [164]

C12(C22 + γ2I2)−1C21 = λ(C11 + γ1I1)w1 (4.4)

and

C21(C11 + γ1I1)−1C12 = λ(C22 + γ2I2)w2. (4.5)

The regularization parameters are subsequently selected as described in Golugula

et al. [88]. wi
1 and wi

2 refer to the weights obtained from RCCA when samples xi1 and

xi2 are removed, where i ∈ {1, 2, . . . , n}. γ1 and γ2 are varied across θ1 ≤ γ1, γ2 ≤ θ2

and chosen by grid search [165] optimization of the following cost function [166]:

max
γ1,γ2

∣∣∣∣∣corr([xi1w
i
1]ni=1, [x

i
2w

i
2]ni=1

)∣∣∣∣∣ (4.6)

where corr(·, ·) refers to the Pearson’s correlation coefficient [167]. Equation 4.2.4

illustrates a leave one out cross-validation step to find the combination of γ1, γ2 and

omitted xi gives the maximum correlation. γ1 and γ2 are chosen using the embedding

component with the highest associated eigenvalue λ and then adjusted for the remaining

dimensions [166].

4.2.5 Supervised Regularized Canonical Correlation Analysis

Supervised Regularized Canonical Correlation Analysis (SRCCA) [88] is an extension

of RCCA, which chooses γ1 and γ2 using a supervised feature selection method rather

than optimization via correlation. We define Y1 and Y2 as the object classes 1 and 2

respectively. Furthermore, we define µ1, µ2, σ21, σ22, and n1, n2 as the set of means,
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variances, and sample sizes for each class W1 and W2. The projections U = x1w1

and U = x2w2 can be split across its samples corresponding to their labels Y1 and Y2,

where UY1 and UY2 , respectively, represent the η1 +η2 = n total samples in the dataset.

These UY1 and UY2 can then be used to calculate the discriminatory contribution of

each feature given the samples of the two classes. For this work, SRCCA was optimized

with the non-parametric Wilcoxon Rank Sum Test (SRCCA-WRST) to choose the

regularization parameters, γ1 and γ2, as it was found to perform the best in [88]. For

each feature in U , the value for each sample is sorted in ascending order and is used to

calculate a discriminatory score

max
γ1,γ2

{( η2∑
i=1

bi −
η2(η2 + 1)

2

)
,
(
η1η2 −

η2∑
i=1

bi −
η2(η2 + 1)

2

)}
, (4.7)

where bi denotes the rank of sample i ∈ Y. Similar to RCCA, for SRCCA, γ1 and γ2 are

selected using the embedding representation which results in the most discriminatory

WRST score, and subsequently adjusted for the remaining dimensions.

4.3 Multi-View Canonical Correlation Analysis (MVCCA)

Multi-view CCA (MVCCA) builds upon CCA (refer to Section 4.2.3 for an overview of

CCA) by accounting for situations where data samples can be described by greater than

two modalities. Since the joint correlation of three or more variables does not formally

exist, an alternative solution is to sequentially consider the correlations of each pair

of samples [136]. However, this approach is suboptimal and requires an inefficient

iterative optimization. An alternative pairwise MVCCA approach is described here

which maximizes the sum of the correlations between all pairs of modalities.

Given n data samples, each comprising s = s1+s2+. . .+sM features: {x1, ...x2, ...,xs}

from M modalities, m ∈ {1, 2, ...,M}, this implementation of pairwise MVCCA seeks

a set of linear transformations {w1 ∈ Rs1×1,w2 ∈ Rs2×1, ...,wM ∈ RsM×1} such that

the sum of the correlations across all pairs of modalities is maximized,

argmax
{w1,...wm...,wM}

M∑
m=1

M∑
t=1,t6=m

wT
mCmtwt√

wT
mCmmwmwT

t Cttwt

, (4.8)
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where Cmt =
∑M

i ximxiTt , Cmm =
∑M

i ximxiTm , Ctt =
∑M

i xitx
iT
t . The scaling of w

does not affect the argmax solution, allowing Eq. 4.8 to be written as:

argmax
w1,...,wm

M∑
m=1

M∑
t=1,t 6=M

wT
mCmtwt (4.9)

s.t. wT
1 C11w1 = 1, . . . ,wT

MCMMwM = 1.

We define w = [wT
1 wT

2 ...w
T
M ]T , w ∈ R(s1+s2+...+sM )×1, such that Eq. 4.9 can be

rewritten in compact matrix form:

argmax
w

wT C̄w

s.t wT C̄dw = 1 and wT
1 C11w1 = . . . = wT

MCMMwM ,

where

C̄ =



0 C12 · · · C1M

C21 0
. . .

...

...
. . .

. . . C(M−1)M

CM1 · · · CM(M−1) 0


,

C̄d =



C11 0 · · · 0

0 C22
. . .

...

...
. . .

. . . 0

0 · · · 0 CMM


. (4.10)

For the general situation W ∈ R(s1+s2+...+sM )×n, 1 ≤ n ≤ min(s1, s2, . . . , sM ), the

corresponding objective function of pairwise MVCCA becomes

argmax
W

trace(WT C̄W)

s.t WT C̄dW = I

wT
1 C11w1 = . . . = wT

MCMMwM ,

where I is an n×n identity matrix and W = [wT
1 wT

2 ... wT
M ]T . Thus, MVCCA can be

formulated into a simple optimization problem for obtaining the weights w, for which

we will show a non-iterative solution in the following section.
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4.4 Supervised Multi-View Canonical Correlation Analysis (sMVCCA)

4.4.1 Formulation

When used for classification, the MVCCA representation does not guarantee better class

separation. We hereby present supervised MVCCA (sMVCCA), which incorporates

label information to improve upon classification compared to MVCCA. It has been

shown that when correlating data samples with corresponding class labels, we obtain

the LDA projection as the solution [168]. sMVCCA leverages this idea with pairwise

MVCCA, defining data X ∈ Rn×(s1+...+sm+...+sM ) and class labels encoded as Y ∈ Rn×g,

where g is the number of object classes. Furthermore, sMVCCA redefines the general

weight matrix W for multi-modality data in MVCCA as Wx = [wT
1 wT

2 . . .w
T
M ] and

treats Wy = [wT
Y1

wT
Y2
. . .wT

Yg ] as a special weight matrix for the label information.

This yields the following objective function of optimizing the weights w.

argmax
Wx,Wy

trace(WT
x C̄Wx) + 2trace(WT

xXTYWy)

= trace(
[

WT
x WT

y

] C̄ XTY

YTX 0

 Wx

Wy

)

= trace(ŴT ĈŴ)

s.t .

[
WT

x WT
y

] C̄d 0

0 YTY

 Wx

Wy

 = I

⇔ ŴT ĈdŴ = I (4.11)

WT
1 C̄11W1 = . . . = WT

MC̄MMWM = WT
y YTYWy. (4.12)

4.4.2 Optimization

(A) sMVCCA is optimized based on Ĉd. When Ĉd is non-singular, we solve sMVCCA

in two steps:
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1. Ignoring the constraint in Equation (4.12), we have

argmax
Wx,Wy

trace(ŴT ĈŴ) (4.13)

s.t. ŴT ĈdŴ = I.

The solution W∗ of this reduced problem consists of the eigenvectors of the d-

largest eigenvalues of a generalized eigenvalue system:

ĈŴ = ĈdŴΛ. (4.14)

where Λ is the diagonal matrix containing eigenvalues. Since Ĉd is non-singular,

we can simply solve

Ĉ−1
d ĈŴ = ŴΛ. (4.15)

Since Ĉ−1
d Ĉ is non-symmetric, we use SVD decomposition to get the largest

eigenvalues and eigenvectors. As compared to direct eigendecomposition, SVD is

numerically more stable.

2. We apply the constraint in Equation 4.12 to normalize W∗:

W∗∗
m = W∗

m(W∗T
m C̄mmW∗

m)−
1
2 ,∀m ∈ {1, ...,M}. (4.16)

(B) For dimensionality reduction, it is common that feature dimension is larger than

the number of samples. In this case Ĉd will be singular. Solving sMVCCA with

Equation (4.14) will then be numerically unstable. To avoid the problem, we impose a

regularization term to make Ĉd non-singular:

ĈŴ = λ(Ĉd + γI)Ŵ. (4.17)

where γ is a small hyperparameter to balance the regularization term, e.g. γ = 0.05

as in RCCA discussed in Section 4.2.4. Then we can use the solution in (A) to solve

sMVCCA.

4.4.3 Encoding of Y

The extended form of Eqn 4.15 is C̄−1
d C̄ C̄−1

d C̄

C̄−1
yy C̄yx 0

 Wx

Wy

 =

 Wx

Wy

Λ,
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which corresponds to  C̄−1
d C̄Wx + C̄−1

d C̄xyWy = WxΛx

C̄−1
yy C̄yxWx = WyΛy.

. (4.18)

As compared to the two-view CCA between data X and labels Y, which is posed as C̄−1
xx C̄Wy = WxΛx

C̄−1
yy C̄yxWx = WyΛy.

, (4.19)

Eqn 4.18 considers C̄−1
d C̄Wx to couple the correlations within X with the correlations

between X and Y. When Y is encoded as

Y = c



1n1 0n1 0n1 · · · 0n1

0n2 1n2 0n2 · · · 0n2

0n3 0n3 1n3 · · · 0n3

...
...

...
...

...

0ng 0ng 0ng · · · 1ng


n×g

(4.20)

where n is the number of samples, g is the number of classes and c a constant, the

projection direction Wx of two-view CCA is equivalent to performing LDA [133], and

the constant c has no influence on Wx. In sMVCCA, from Eqn 4.18 we can easily

derive  WT
x C̄Wx + Λy = Λx

Wy = C̄−1
yy C̄yxWxΛ

−1
y

. (4.21)

Plugging Eqn. 4.21 into the first equation of Eqn. 4.18 leads to

C̄−1
d C̄Wx + C̄−1

d C̄xyC̄
−1
yy C̄yxWx(Λx −WT

x C̄Wx)−1 = WxΛx (4.22)

Since C̄xyC̄
−1
yy C̄yx is independent of the value of c, c has no affect on determining Wx.

Therefore, we can use 1-of-Class (by setting c = 1) encoding of Y for sMVCCA. Al-

ternatively, we can emphasize samples close to the classification boundary by adopting

the Soft-1-of-Class strategy [168].

4.5 Extension of sMVCCA via Spearman Rank

Previous work on CCA has focused highly on correlation to provide an optimal embed-

ding, as opposed to classification performance, and thus Pearson correlation has been
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used as the standard for optimization. However, to the best of the author’s knowl-

edge, Spearman correlation [169] has not been investigated for CCA. For Spearman

calculation, we provide a transformation of each feature fj ∈ X to a ranked feature f̂j ,

such that all values f̂j ∈ X̂ is an integer in the set {1, . . . , n}. This input is used for

Equation 4.9 such that Cmt =
∑M

i x̂jmx̂iTt , Cmm =
∑M

i x̂jmx̂iTm , Ctt =
∑M

i x̂jt x̂
iT
t .

Using ranked features may provide better optimization compared to the original

features as Pearson correlation may reject features which otherwise have high predictive

value but are simply scaled non-linearly as illustrated in Figure 4.1, where unranked

X and Y represent features f jX and f jY , respectively while ranked X and Y represent

features f̂ jX and f̂ jY respectively. Thus, the use of Spearman rank correlation allows

for a less stringent definition of correlation which is more robust to non-linearity and

outliers, while retaining the intrinsic discriminatory properties of the original features

as Pearson correlation.
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Figure 4.1: Comparison of Pearson correlation versus Spearman rank correlation on
(a,b) non-linear data and (c,d) data with outliers. For these datasets, Spearman corre-
lation gives a higher optimization showing ρ = 1 and ρ = 0.939 for Spearman compared
to r = 0.916 and r = 0.731 for Pearson. Note that the discriminatory properties are
retained in both unranked and ranked representations of features X and Y. Thus, the
use of Spearman rank can provide better optimization while retaining the ability to
discriminate the object classes.
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Chapter 5

Novel Strategies in Quantitative Histomorphometry

5.1 Overview

In this chapter, we showcase our work in quantitative histomorphometry for automated

analysis of prostate cancer tissue. In Section 5.2, we provide background on QH as it

pertains to the diagnosis and prediction of aggressive prostate cancer. We subsequently

introduce our methodologies, Cell Orientation Entropy (COrE) and Co-occurring Gland

Tensors (CGTs) and demonstrate their efficacy as compared to previous work in two

separate validation cohorts of post-operative prostate cancer patients in Chapters 5.4

and 5.9, respectively.

5.2 Role of Quantitative Histomorphometry in Prostate Cancer

The recent advent of digital whole slide scanners has allowed for the development of

quantitative histomorphometry (QH), sophisticated computerized image analysis tools

for automated scoring of digitized histology images. Gleason scoring (GS), while predic-

tive, is subject to considerable inter-reviewer variability [22] due to the qualitativeness

of its evaluation, a problem that is alleviated via QH. Additionally, the automated na-

ture of QH is valuable to pathologists, as the grading of a single patient biopsy typically

involves the inspection of at least 20 slides. The inspection of many high resolution

whole slides for aggressive prostate cancer can become a laborious task.

Quantitative histomorphometry (QH) has been utilized successfully in a wide range

of applications from cancer detection to prognosis [30, 170, 171]. Monaco et al. has

utilized markov random fields for detection of prostate cancer on whole mount histol-

ogy [170]. To differentiate Gleason pattern 3 from Gleason pattern 4 on prostate needle
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biopsies, Doyle et al. has been extracting architectural features of nuclei [30]. Further-

more, Veltri et al. [171] has calculated nuclear roundness variance for the prediction of

progression following RP.

Prevoiusly, analysis of image pixel intensity has been explored for quantifying CaP [146,

172]. For the purpose of automated CaP grading, Jafari-Khouzani et al. [172] exam-

ined the role of image texture features based on co-occurrence matrices. Other texture

features such as mean pixel intensity and Gabor filters [146] have also been used to pre-

dict CaP. However, these features are based on pixel intensity and lack direct biological

significance.

Attempts to segment specific structures relevant for CaP have been widespread. In

addition to color and texture, Tabesh et al. [173] also investigated structural morphology

to evaluate prostate histopathology in terms of GS. In [174], morphological descriptors

such as gland size and perimeter ratio were shown to distinguish benign and malignant

histological regions. In [171], Veltri et al. investigated nuclear morphology using a

descriptor called nuclear roundness variance. Cell morphology was found to exceed

GS for predicting CaP aggressiveness. However, complex spatial relationships between

structures are not investigated.

To model tissue architecture, much work has been done in constructing graphs

networks around specific structures in the tissue [174–177]. Voronoi- and Delaunay-

based graph tessellations have been suggested to describe the architecture of various

structures in CaP histology [175]. Previously, Doyle et al. [174] had shown Minimum

Spanning Trees, in addition to Voronoi, Delaunay features to be a strong predictors

of Gleason grade. However, these features are derived from fully connected graphs,

whose edges traverse across epithelial and stromal regions. By connecting globally,

fully connected graphs tend to dilute the contribution of the tumor morphologic features

specific to the cancer epithelium.

Given that global graphs are not sensitive to local organization, which may be criti-

cal for characterizing tumor aggressiveness, the analysis of smaller, local subgraphs may

provide a useful alternative. Unlike global graphs (e.g. Voronoi and Delaunay) that

aim to capture a global architectural signature for the tumor, subgraph construction
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can allow for quantification of local interactions within flexible localized neighborhoods.

Bilgen et al. [176] extracted features from different types of local cell graphs for classi-

fication breast tissue. Furthermore, Ali et al. [177] examined cell cluster graphs for the

prediction of biochemical recurrence in prostate tissue microarrays.

5.3 A need for novel quantitative histomorphometry for predicting

aggressive prostate cancer

There remains evidence that we have not yet reached the potential for predicting aggres-

sive prostate cancer from quantitative histomorphometry. There remain updates to the

classification of Gleason patterns within the International Society of Urological Pathol-

ogy (ISUP) for the purpose of improving differentiation of aggressive CaP [16]. Fur-

thermore, novel methodologies in segmentation [178] and feature extraction [177, 179]

from histological images continue to be made which improve upon the state-of-the-art.

The following chapters represent two methods of quantitative histomorphometry

developed for the purpose of evaluating prostate cancer histology. In Chapter 5.4, we

describe the method of Cell Orientation Entropy and evaluate its predictive value on

prostate tissue microarrays. In Chapter 5.9, we describe the method of Co-occurring

Gland Tensors in Localized Subgraphs and evaluate its predictive value on prostate

whole slides.

5.4 Cell Orientation Entropy (COrE) for Predicting Biochemical Re-

currence in Prostate Tissue Microarrays

In the following sections, we present a new set of quantitative histomorphometric (QH)

features called cell orientation entropy (COrE), which aim to capture the local direc-

tional information of epithelial cancer cells. CaP is fundamentally a disease of glandu-

lar disorganization and the resulting breakdown in nuclei orientation is related to its

grade [16]. Epithelial cells align themselves with respect to the glands, and thus dis-

play a coherent directionality. However, cancerous prostate glands are less well formed,

resulting in a more chaotic organization and orientation of the surrounding nuclei.
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COrE attempts to model this difference between cancerous and benign regions via

a novel scheme, unique to digital pathology image analysis. We believe this work to be

the first rigorous attempt to quantitatively model cell orientation and explore the link-

age between cell orientation and CaP aggressiveness. Firstly, while previous work has

focused on global graph networks for characterizing tumor architecture, COrE employs

subgraphs to construct local cell networks and thereby quantify second order statistics

based on co-occurrence matrices of cell orientations. Secondly, while co-occurrence ma-

trices are commonly used to describe image textures [161], by quantifying second order

statistics of image intensities, this is the first instance of the use of the co-occurrence

matrix to evaluate local, higher order interactions of nuclear orientations. These second

order local statistical features of nuclear orientation yield a rich set of descriptors for

distinguishing the different CaP tumor classes.

5.5 Cell Orientation Entropy (COrE)

5.5.1 Automated Cell Segmentation

We employed an energy based segmentation scheme presented in [178] to detect and

segment a set of cell/nuclei γi, p ∈ {1, 2, . . . , n}, where n is the total number of nuclei

found. This segmentation scheme is a synergy of boundary and region-based active

contour models that incorporates shape priors in a level set formulation with auto-

mated initialization based on watershed. The energy functional of the active contour is

comprised of three terms. The combined shape, boundary and region-based functional

formulation [178] is given below:

F = βs

∫
Ω

(φ(x)− ψ(x))2|∇φ|δ(φ)dx︸ ︷︷ ︸
Shape+boundaryforce

+ βr

∫
Ω

ΘinHψdx +

∫
Ω

ΘoutH−ψdx︸ ︷︷ ︸
Regionforce

(5.1)

where βs, βr > 0 are constants that balance contributions of the boundary based shape

prior and the region term. {φ} is a level set function, ψ is the shape prior, δ(φ) is the

contour measure on {φ = 0}, H(.) is the Heaviside function, Θr = |I − ur|2 + µ|∇ur|2

and r ∈ {in, out}.
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The first term is the prior shape term modeled on the prostate nuclei, thereby

constraining the deformation achievable by the active contour. The second term, a

boundary-based term detects the nuclear boundaries from image gradients. The third

term drives the shape prior and the contour towards the nuclear boundary based on

region statistics.

5.5.2 Calculating Cell Orientation

To determine the directionality for each cell γi, we perform principal component analysis

on a set of boundary points [xi, yi] to obtain the principal components Z = [z1, z2].

The first principal component z1 describes the directionality of the cell in the form

of the major axis z1 =< zx1 , z
y
1 >, along which the greatest variance occurs in the

nuclear boundary. The principal axis z1 is converted to an angle θ̄(γi) ∈ [0◦180◦]

counterclockwise from the vector < 1, 0 > by θ̄(γi) = 180◦

π arctan(
zy1
zx1

).

5.5.3 Local Cell Subgraphs

Pairwise spatial relationships between cells are defined via sparsified graphs. A graph

G = {V,E}, where V represents the set of n nuclear centroids γi, γj ∈ V , i, j ∈

{1, 2, . . . , n} as nodes, and E represents the set of edges which connect them. The

edges between all pairs of nodes γi, γj are determined via the probabilistic decaying

function

E = {(i, j) : r < d(i, j)−α, ∀γi, γj ∈ V }, (5.2)

where d(i, j) represents the Euclidean distance between γi and γj . α ≥ 0 controls the

density of the graph, where α approaching 0 represents a high probability of connecting

nodes while α approaching ∞ represents a low probability. r ∈ [0, 1] is an empirically

determined edge threshold.
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Table 5.1: Representative COrE features

COrE Feature (Θ) Description

Entropy
∑

a,b−C(a, b) log(C(a, b)))
Energy

∑
a,b C(a, b)2

Correlation
∑

a,b
(a−µa)(b−µb)C(a,b)

σaσb
Contrast (variance)

∑
a,b |a− b|2C(a, b)

5.5.4 Calculating Second Order Statistics for Cell Orientation

The objects of interest for calculating COrE features are the cell directions given by

a discretization of the angles θ̄(γi), such that θ(γi) = ω × ceil( θ̄ω ), where ω is a dis-

cretization factor. Neighbors defined by the local cell subgraphs G, allow us to define

neighborhoods for each cell. For each γi ∈ V , we define a neighborhood Ni, to include

all γj ∈ V where a path between γi and γj exists in graph G.

An N×N co-occurrence matrix C subsequently captures angle pairs which co-occur

in each neighborhood Ni, such that for each Ni,

CNi(a, b) =

Ni∑
γi,γj

N∑
a,b=1

{
1, if θ(γi)=a and θ(γj)=b

0, otherwise
(5.3)

where N = 180
ω , the number of discrete angular bins. We then extract second order sta-

tistical features (Contrast energy, Contrast inverse moment, Contrast average, Contrast

variance, Contrast entropy, Intensity average, Intensity variance, Intensity entropy, En-

tropy, Energy, Correlation, Information measure 1, Information measure 2) from each

co-occurrence matrix CNi(a, b). Selected formulations are described in Table 5.1. Mean,

standard deviation, and range of Θ across all Ni constitute the set of 39 COrE features.

5.6 Experimental Design

5.6.1 Prostate Cancer Tissue Microarray Data

While COrE is extensible towards the histological analysis of other pathological diseases,

we have chosen prostate cancer (CaP) as a test case for this initial work. Our dataset

comprised of histologic image samples in the form of tissue microarray (TMA) cores

from 19 CaP patients who experienced BCR within 10 years of RP, and from 20 patients
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.1: Prostate TMAs pertaining to (a)-(f) BCR and (g)-(l) NR case studies.
Nuclei are used as nodes for calculation of (b),(h) Delaunay graphs. Automated seg-
mentation (d),(j) defines the nuclear boundaries and locations from the TMA image.
(e),(k) Cell orientation vectors are calculated from the segmentated boundaries (il-
lustrated via different boundary colors). (c),(i) Subgraphs are formed by connecting
neighboring cells. COrE features calculate contrast in the cell orientation (with dark
regions showing more angular coherence and bright regions showing more disorder).
Summation of the co-occurrence matrices provide a visual interpretation of disorder,
where (f) shows brighter co-occurrence values in the off-diagonal cells, suggesting higher
co-occurrence of nuclei of differing orientations compared to (l).



65

Table 5.2: Summary of 151 nuclear morphologic features

Cell Morphology # Description

100 Area Ratio, Distance Ratio, Standard Deviation of Dis-
tance, Variance of Distance, Distance Ratio, Perimeter Ratio,
Smoothness, Invariant Moment 1-7, Fractal Dimension, Fourier
Descriptor 1-10 (Mean, Std. Dev, Median, Min / Max of each)

Cell Architecture Description

Voronoi Diagram 12 Polygon area, perimeter, chord length: mean, std. dev.,
min/max ratio, disorder

Delaunay Triangulation 8 Triangle side length, area: mean, std. dev., min/max ratio,
disorder

Minimum Spanning Tree 4 Edge length: mean, std. dev., min/max ratio, disorder

Nearest Neighbors 27 Density of nuclei, distance to nearest nuclei

who did not (NR). Patients were matched for GS 7 and tumor stage 3A. CaP tissue

included in the TMAs were selected and reviewed by an expert pathologist. For this

study, each of 39 patients was represented by a single randomly selected 0.6mm TMA

core image, chosen from a set of 4 TMA cores taken for that patient.

5.6.2 Comparative Methods for Evaluating COrE

We compared the efficacy of COrE features with previously studied nuclear features.

The shape of individual nuclei has previously been shown to be prognostic of GS [31,

171]. The set of 100 cell morphology features representing mean, standard deviation of

nuclear size and shape are summarized in Table 5.2.

Nuclear/cell architecture refers to the spatial arrangement of cells in cancerous and

benign tissue. 51 architectural image features describing the nuclear arrangement were

extracted as described in [31]. Voronoi diagrams, Delaunay Triangulation and Mini-

mum Spanning Trees were constructed on the digital histologic image using the nuclear

centroids as vertices (See Table 5.2).

For all feature sets, the nuclear segmentations from Section 2.1 were used to calculate

the cell boundaries and centroids. In total, we investigated the performance of 4 feature

cohorts: (1) 100 features describing cell morphology, (2) 51 features describing cell

architectures, (3) 39 features describing cell orientation entropy (COrE), and (4) the

combined feature set spanning cohorts (1-3).
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5.6.3 Random Forest Classifier

In this study, we demonstrate the efficacy of including COrE features for improving

classification accuracy and area under the receiver operating characteristic curve (AUC)

in predicting BCR in CaP patients from prostate TMAs. Randomized 3-fold cross

validation was performed on the top 10 most informative features selected via Student

t-test for each of 4 feature cohorts defined in Section 3.2. Classification was performed

using a random forest classifier.

5.7 Results and Discussion

5.7.1 Comparison with Nuclear Morphology and Architecture

Figure 5.1 reveals the ability of the COrE features to capture the differences in angular

disorder across localized cell networks and illustrates the differences between the BCR

and NR cases in terms of the COrE features.

In Table 5.3, we can summarize the performance of feature descriptors describing

cell architecture and cell morphology which appear to have a maximum BCR prediction

accuracy of 79.9%. However, by inclusion of novel cell orientation entropy (COrE)

features, the overall classifier accuracy improves to 82.7%. Similar improvements are

also observed in terms classification AUC. This reflects the utility of COrE features as

a valuable prognostic measurement for predicting BCR in conjunction with previously

described nuclear morphologic features.

Classifier improvement following inclusion of COrE features suggests that many of

the new COrE features are non-correlated with previously defined cell architectural

and morphological feature sets. This distinction is illustrated in Figure 5.1, where

we observe the differences between COrE features compared with those obtained from

Voronoi and Delaunay graphs. These graphs span across stromal and epithelial regions,

while COrE features are limited to subgraphs in localized regions. It is also important

to note that the combination of COrE and nuclear morphologic features clearly and

significantly outperform the clinical standard of pathologist grade, which classified all

cases as GS 7.
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Table 5.3: 100 runs of 3-fold Random Forest Classification

Architecture Morphology COrE Arch + Morph + COrE

Accuracy 71.2 ± 4.2% 79.9 ± 3.7% 74.6 ± 4.1% 82.7 ± 3.1%

AUC 0.641 ± 0.054 0.773 ± 0.042 0.688 ± 0.063 0.809 ± 0.037
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Figure 5.2: Kaplan-Meier curves, (a) COrE + Morph + Arch (All QH), (b) Gleason
Sum + QH, (c) Tumor Stage + QH, and (d) All QH + Gleason Sum + Tumor Stage,
illustrate the outcome (biochemical recurrence) of patients stratified into high-risk and
low-risk groups via a Random Forest Classifier using both QH and clinical features.
These results suggest the use of independent and synergistic QH features which can be
used in conjunction with clinical features for improved cancer prediction.

5.7.2 Comparison with Gleason Scoring and Tumor Stage

We compared the classification accuracy of COrE and previously investigated QH meth-

ods (Morphological and Architectural features) against Gleason Sum and Tumor Stage.

Kaplan-Meier survival curves (Figure 5.2) illustrate the difference in the BCR-free sur-

vival outcomes in the predicted high-risk and low risk BCR groups determined via 100

runs of 3-fold Random Forest classifier. Patients predicted to have BCR were placed in

the high-risk group, while patients predicted as NR were placed in the low-risk group.

Log-rank test determines the significance of the difference between high-risk and low-

risk curves (lower p-values represent greater differences in BCR-free survival).

Figure 5.3 demonstrates the successive contribution of these non-overlapping fea-

tures to offer better prediction of BCR when combined together. Gleason sum and

tumor stage provide lower AUC compared to QH features. However, by integrating

Gleason sum and tumor stage to the QH features, better classification AUC can be

achieved, suggesting that these features capture information that is not present in
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Figure 5.3: Our results suggest improvement in classification performance via QH mea-
sures over traditional clinical features (Gleason Sum and Tumor Stage). Furthermore,
combining QH and clinical features is shown to yield better classification than each
feature type individually.

Gleason sum and tumor staging. This is supported via the Kaplan-Meier curve cor-

responding to Figure 5.2, showed the largest separation of BCR and NR shown via a

p-value of 0.0006.

5.8 Summary

In this work, we presented a new feature descriptor, cell orientation entropy (COrE),

for quantitative measurement of local disorder in nuclear orientations in digital pathol-

ogy images. We demonstrated high accuracy and improvement in predicting BCR in

39 CaP TMAs via the use of COrE features. While COrE features did not outper-

form other quantitative histomorphometric measurements such as nuclear shape and

architecture significantly, the combination of nuclear shape, architectural and COrE

features boosted classifier accuracy in identifying patients at risk for BCR following

radical prostatectomy. More significantly, the combination of COrE and other image

based features significantly outperformed pathologist derived GS, which is 50% for GS

7, and is further known to have at best moderate inter-observer agreement (κ = 0.47-

0.7) [22].
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5.9 Co-occurring Gland Tensors in Localized Subgraphs: Quantita-

tive Histomorphometry for Postoperative Prediction of Biochem-

ical Recurrence in Prostate Cancer Patients with Intermediate-

Risk Gleason Scores

In the following sections, we present a new quantitative histomorphometric attribute,

co-occurring gland tensors (CGT), that aims to capture the directional information in

localized gland networks to characterize differences in gland orientation between (a)

malignant and benign regions and (b) CaP patients who do and do not experience

biochemical recurrence following RP, from excised histopathology sections. We briefly

summarize our methodology as follows.

For CGTs, a segmentation algorithm is first employed to individually segment gland

boundaries from digitized pathology sections. To each gland, we ascribe a tensor that

reflects the dominant orientation of the gland based off the major axis as shown in

Figure 5.4(a). A subgraph is then constructed to link together glands proximal to each

other into a gland network as illustrated in Figure 5.4(b). The subgraphs, unlike the

graphs for Voronoi, Delaunay and minimum spanning trees that have been previously

used to characterize global glandular architecture [8], allows for characterization of

local gland arrangement. Use of local subgraphs prevent graph edges from traversing

heterogeneous tissue regions such as stroma and epithelium.

The co-occurrence matrix, previously used to characterize image intensity textures,

is used to capture second-order statistics of gland orientations within each gland network

in the image. Hence each co-occurrence matrix captures the frequency with which

orientations of two glands proximal to each other co-occur. Co-occurrence features

such as entropy are extracted from the co-occurrence matrix associated with each gland

network and captures the degree to which orientations are similar or divergent to each

other. Hence a neighborhood with a high entropy value would reflect a high degree

of disorder among gland orientations while a low entropy value reflects that the gland

tensors appear to be aligned roughly in the same direction.

Given that we expect to see glandular tensor disorder in (a) malignant versus benign
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(a) (b)

Figure 5.4: (a) Angular calculation of the gland tensor converts z1 to an angle between
0◦ to 180◦. (b) Subgraphs connect the centroids of neighboring glands into gland
networks.

regions and (b) biochemical recurrence cases versus non-recurrence cases, second-order

statistical tensor features like entropy represent a novel, reproducible, and interpretable

way to characterize disease appearance on histopathology. Unlike first order statistics of

tensors, the co-occurring gland tensor features are able to implicitly capture the cyclical

properties of gland orientation. The use of local subgraphs generated by a probabilistic

decaying function help define local gland networks within which the CGT features can

be extracted and analyzed.

In this work, we demonstrate the utility of CGT features on the following classifi-

cation tasks:

1. Differentiating cancerous and non-cancerous prostate tissue regions, and

2. Distinguishing CaP patients with and without biochemical recurrence following

radical prostatectomy.

The remainder of this chapter is structured as follows. We introduce the method-

ology for Co-occurring Gland Tensors in Localized Subgraphs (CGTs) in Section 5.10.

In Section 5.11, we explain the Experimental Design, outlining datasets, workflow, and

comparative methodologies used in the study. Experiments and Results are explained

in Section 5.12 followed by Concluding Remarks in Section 5.13.
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5.10 Quantitative Histomorphometry via the method of Co-occurring

Gland Tensors (CGTs)

5.10.1 Notation

For this work, we are interested in predicting biochemical recurrence in prostate cancer

patients via the analysis of histological slices of the excised prostate following radical

prostatectomy. We define a patient Pi, i ∈ {1, 2, . . . , np}, where np is the number

of patients in the study cohort. To predict BCR on a CaP patient Pi, we analyze a

digitized histology image Ri, i ∈ {1, 2, . . . , nr}. Ri is composed of pixels ċ from which

features can be extracted to represent a patient Pi or region Ri. We define features

as f = [f1, f2, . . . , fnf ], where nf is the number of features extracted from each Ri

and nr is the number of images investigated. f extracted from Ri is used to train a

classifier CCGT , which is used to predict the outcome `(Pi) ∈ {−1,+1} of patient Pi,

where -1 denotes a patient Pi whom did not experience BCR and +1 denotes that

Pi did experience BCR. Alternatively, CCGT can be trained for other prediction tasks

distinguishing between cancerous regions from normal regions Ri.

5.10.2 Calculating Gland Tensors

To determine the directionality for each gland γi, we perform principal component

analysis [105] on a set of boundary points γbi to obtain the principal components Z =

[z1, z2]. The first principal component z1 describes the directionality of the gland in

the form of the major axis z1 =< zx1 , z
y
1 >, along which the greatest variance occurs

in the glandular boundary. The principal axis z1 represents a 1st order tensor, which

is converted to an angle θ̄(γi) ∈ [0◦180◦] calculated counterclockwise from the vector

< 1, 0 > by θ̄(γi) = 180◦

π arctan(
zy1
zx1

). A depiction of the calculated angles is shown in

Figure 5.4(a).

5.10.3 Defining Local Gland Subgraphs

Pairwise spatial relationships between glands are defined via sparsified graphs. A

graph G = {V,E}, where V represents the set of ng gland centroids γci , γ
c
j ∈ V ,
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i, j ∈ {1, 2, . . . , ng} as nodes, and E represents the set of edges which connect them.

The edges between all pairs of {γci , γcj} are determined via a probabilistic decaying

function

E = {(i, j) : r < d(i, j)−α,∀γci , γcj ∈ V }, (5.4)

where d(i, j) represents the Euclidean distance between γci and γcj . α ≥ 0 controls the

density of the graph, where α approaching 0 represents a high probability of connecting

nodes while α approaching ∞ represents a low probability. r ∈ [0, 1] is an empirically

determined edge threshold. An example of a resulting glandular subgraph network is

shown in Figure 5.4(b).

5.10.4 Constructing Tensor Co-occurrence Matrices

The objects of interest for calculating CGT features are the gland tensors given by

a discretization of the angles θ̄(γi), such that θ(γi) = ω × ceil( θ̄ω ), where ω is a dis-

cretization factor. Neighbors defined by the local gland subgraphs G, allow us to define

neighborhoods for each gland. For each γci ∈ V , we define a neighborhood Ni, to include

all γcj ∈ V where a path between γci and γcj exists via E in the graph G.

An N ×N tensor co-occurrence matrixM subsequently captures gland tensor pairs

which co-occur within each neighborhood Ni, such that for each Ni,

MNi(a, b) =

Ni∑
γi,γj

N∑
a,b=1

{
1, if θ(γi)=a and θ(γj)=b

0, otherwise
(5.5)

where N = 180
ω , the number of discrete angular bins. An example of a tensor co-

occurrence matrix is shown in Figures 5.5(d) and (l)

5.10.5 Calculating Second Order Statistics

We subsequently extract second order statistical features Θ (Contrast energy, Con-

trast inverse moment, Contrast average, Contrast variance, Contrast entropy, Intensity

average, Intensity variance, Intensity entropy, Entropy, Energy, Correlation, and two

measures of information) from each tensor co-occurrence matrix MNi(a, b). Selected
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 5.5: (a) and (i) show annotated histological CaP regions pertaining to a BCR
(a)-(h) and a NR (i)-(p) case study, respectively. (b,j) Automated gland segmentation
of gland boundaries. (c,k) Subgraphs connect neighboring glands. An enlarged view
of the boxed region in (a) and (i) respectively, illustrates (e,m) segmented glands, (f,n)
gland tensors, and (g,o) gland network subgraphs. (f,n) Arrows denote the directionality
of each gland. Boundary colors (blue to red) correspond to angles θ ∈ [0◦ 180◦]. (g,o)
Localized gland networks define the region of each tensor co-occurrence matrix. (d,l)
Summed tensor co-occurrence matrices denote the frequency in which two glands of
two directionalities co-occur across all neighborhoods (white is greater co-occurrence).
Diagonal co-occurrence values omitted to provide better contrast in the off-diagonal
components. (h,p) Colormap of the gland subgraphs correspond to the intensity average
in each neighborhood.
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Table 5.4: Representative CGT features

CGT Feature (Θ) Description

Entropy
∑

a,b−M(a, b) log(M(a, b)))

Energy
∑

a,bM(a, b)2

Correlation
∑

a,b
(a−µa)(b−µb)M(a,b)

σaσb
Contrast (variance)

∑
a,b |a− b|2M(a, b)

formulations for Θ are described in Table 5.4 to characterize information from each

gland network Ni and a visualization of the mean intensity measure of each Ni on

histology is shown in Figure 5.5.

5.10.6 Differentiation of BCR and NR cases via CGT

Figure 5.5 shows two representative studies: a BCR and NR case. For the BCR case, we

can see greater disorder in the gland orientation via the tensor plot in Figure 5.5(f). The

tensor-based colormap for BCR characterizes the disorder in BCR cases, as the glands

appear as a large spectrum of colors, denoting different directionalities. Conversely, for

the NR case, (Figure 5.5(n)), the colormap is more consistent, suggesting less variance

in the gland directionality.

We can confirm these differences in Figures 5.5(d,l) via the contrasted tensor co-

occurrence matrix. The brightness of the off-diagonal elements of the matrix demon-

strate greater co-occurrences of differentially oriented gland tensors for the BCR case

(Figure 5.5(d)) compared to the NR case (Figure 5.5(l)).

These differences in the tensor co-occurrence matrices are detected by the second

order statistics, as Figure 5.5(h,p) demonstrates different color patterns based on the

value of the statistics in each subgraph. Figure 5.5(h) shows demonstrates a higher

mean intensity value reflected by the brighter co-occurrence matrix, while Figure 5.5(p)

shows a lower blue color pattern across the glands.

It can be observed in Figures 5.5(c,k) that subgraphs capture local gland neigh-

borhoods, by eliminating noise from stromal areas which separate the glandular areas.

Furthermore, CGTs introduce more biological information (gland tensors) compared to

texture features, which only focus on grayscale pixel intensity.
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Figure 5.6: Annotation of a region of interest (shown in green) on prostate histopathol-
ogy is performed by a pathologist. QH analysis is performed only in these regions.

Table 5.5: Overview of Clinical Datasets

Clinical Variables PA Cohort A (np = 20) PB Cohort B (np = 20) P Total Cohort (np = 40)

Pathological Gleason Score

3+3 4 (20%) 1 (5%) 5 (12.5%)

3+4 7 (35%) 17 (85%) 24 (60%)

4+3 7 (35%) 2 (10%) 9 (22.5%)

3+5 1 (5%) - (-) 1 (2.5%)

4+4 1 (5%) - (-) 1 (2.5%)

Pathologic Stage

pT2 8 (40%) 12 (60%) 20 (50%)

pT3a 9 (45%) 6 (30%) 15 (37.5%)

pT3b 3 (15%) 2 (10%) 5 (12.5%)

5.11 Experimental Design

5.11.1 Data Acquisition and Data Description

The datasets (obtained from the Hospital at the University of Pennsylvania) were com-

prised of 40 CaP patients who had undergone RP treatment, selected for identified as

having Gleason scores 6-8 and pathologic stage pT2-pT3. Of these patients, 20 were

diagnosed with BCR (BCR) within 5 years of RP, and 20 had no recurrence (NR).

The data was collected from two independent sources: Cohort A (PA) from the

department of Pathology and Laboratory Medicine at the University of Pennsylvania

(n = 20) and Cohort B (PB) from the department of Clinical Epidemiology and Bio-

statistics at the University of Pennsylvania (n = 20). A further breakdown of the data

is summarized in Table 5.5.
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(a) Gland Segmentation
(b) Calculate Tensors

(c) Gland Network Localization
(d) Construct Tensor Co-occurrence Matrix

(e) Derive CGT Features via Second Order Statistics
(f) CGT-based Classifierf = [f1, f2, … fnf]F12 > 0.01 F133 > 0.54F50 < 0.23 F3 > 0.8F51 < 0.66 F193 > 0.76F95 < 0.32

Figure 5.7: Workflow for building a CGT-based classifier. (a) Gland segmentation is
performed on a region of interest. CGT methodology (highlighted within the dashed
lines) leverages the gland segmentation to compute CGT features. (b) Tensor calcula-
tion and (c) subgraph computation is performed on the segmented image. (d) tensor
co-occurrence matrix aggregates co-occurring gland tensors in localized gland networks.
(e) mean, standard deviation and range of second order statistics (shown as different
colored gland networks) create a set of CGT features for the region. (f) A CGT-based
classifier can then be built using the features obtained from (e). Alternatively, another
QH-based classifier can be built via the extraction of a different set of QH features.
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For all patients, following RP, the excised prostate was sliced, stained with hema-

toxylin and eosin (H&E), and digitized at a resolution of 0.5 µm per pixel or 20x

magnification using an Aperio R© Whole Slide scanner. For each digitized image, CaP

regions were annotated by a pathologist as shown in Figure 5.6. 56 cancer regions

were annotated across 40 patients, 28 from BCR patients and 28 from NR patients.

24 regions pertaining to non-cancerous regions from 20 CaP patients in Cohort B were

annotated as controls.

5.11.2 CGT Extraction Workflow

The CGT feature extraction workflow provides a template for building the classifier

CCGT to predict on a patient Pi or region Ri. The workflow begins with the identifica-

tion and segmentation of glandular boundaries from the image show in Section 5.11.2.

Next is the calculation of features f from the segmentations. Finally, a classifier CCGT

is constructed from CGT features f .

Identification of Glandular Boundaries

An automatic region-growing based prostate gland segmentation algorithm [170] is used

to detect and segment glandular boundaries on the histological image as illustrated in

Figure 5.8. Segmentation is performed using the luminance channel in CIELAB color

space. Using the luminance channel, gland lumens appear as contiguous, high intensity

pixel regions bound by sharp, well-defined edges. To identify glands, the luminance

image is convolved with a Gaussian kernel at multiple scales σg ∈ {0.025, 0.05, 0.1, 0.2}

mm to account for multiple gland sizes. The peaks of the resulting smoothed luminance

images are used as seeds for a region growing procedure briefly outlined below.

1. A 12σg×12σg bounding box is initialized around each initial seed pixel, which rep-

resents the current region (CR), with 8-connected pixels surrounding CR, denoted

as the current boundary (CB).

2. Next, the pixel in CB with the highest intensity is removed from CB and incor-

porated into CR. The 8 surrounding pixels of this new CR pixel, which are not
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Internal 

Boundary (IB)

Current Boundary

(CB)

Current Region 

(CR)

Bounding Box

Figure 5.8: Schematic for region growing.

already in CR, are incorporated into CB.

3. The boundary strength is identified at each iteration as shown in Figure 5.8. We

define the internal boundary (IB) as all CR pixels adjacent to CB. Boundary

strength is defined as the mean intensity of the pixels in IB minus the mean

intensity of the pixels in CB.

4. Steps 2 and 3 are repeated until the algorithm attempts to add a pixel outside

the bounding box.

5. The optimal region is defined as region CR at the iteration where maximum

boundary strength was achieved.

Overlapping regions are subsequently resolved by removing the region with the

lowest boundary strength. An example of our results can be seen in Figure 5.7(b).

CGT Feature Extraction

Based on the segmentation in Section 5.11.2, CGT features are calculated as described

in Section 5.10. Mean, standard deviation, and range of Θ across all Ni constitute the

set of 39 CGT features f ∈ {f1, f2, . . . , f39}. A list of other potential QH features f

which can be extracted either directly from the image region or segmentation of the

image region is discussed in Section 5.11.3.
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Table 5.6: Summary of Comparative Quantitative Histomorphometric (QH) features

Feature Type (QH) Description nf
Gland Morphology (M) Area Ratio, Distance Ratio, Standard Deviation of Distance, Vari-

ance of Distance, Distance Ratio, Perimeter Ratio, Smoothness,
Invariant Moment 1-7, Fractal Dimension, Fourier Descriptor 1-10
(Mean, Std. Dev, Median, Min / Max of each)

100

Voronoi Diagram (V ) Polygon area, perimeter, chord length: mean, std. dev., min/max
ratio, disorder

12

Delaunay Triangulation
(D)

Triangle side length, area: mean, std. dev., min/max ratio, disor-
der

8

Minimum Spanning Tree
(MST )

Edge length: mean, std. dev., min/max ratio, disorder 4

Glandular Density (GD) Density of glands, distance to nearest gland 27

Co-occurrence Texture (T ) Contrast energy, Contrast inverse moment, Contrast average, Con-
trast variance, Contrast entropy, Intensity average, Intensity vari-
ance, Intensity entropy, Entropy, Energy, Correlation, 2 measures
of information: mean, std. dev.

26

(a) (b) (c) (d) (e)

Figure 5.9: (a) QH features are extracted from an annotated region on a digitized
prostate histology slide following radical prostatectomy. Quantitative histopathology
feature extraction is performed on (a) the annotated region. Graphs for (b) Voronoi,
(c) Delaunay, and (d) Minimum Spanning Trees as well as (e) a texture image feature
are shown from the area denoted by a blue box in (a).

Building a CGT-based classifier

A subset of P or R described by f is used for training a Random Forest classifier CCGT .

This process is described in Section 5.11.4 and can be used to create other classifiers

CQH from other QH features f .

5.11.3 Comparative Methodologies

Quantitative Histomorphometry (CQH)

We provide a brief summary of the comparative QH methodologies listed in Table 5.6.
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Gland Morphology (M): Morphological descriptors [146] are extracted from the seg-

mented glandular boundaries obtained in Section 5.11.2. Statistics such as the area

ratio, perimeter ratio, and distance ratio are derived from the gland boundary informa-

tion and the mean, standard deviation, median, and minimum to maximum ratio are

calculated across all glands. These features are summarized in Table 5.6.

Voronoi Diagram (V ): Glandular architecture [146] can be characterized via the con-

struction of graphs G = {V,E}, where V represents the set of vertices and E rep-

resents the set of edges which connect them. Voronoi diagrams divide each Ri into

non-overlapping polygons, each associated with a gland γi, where each edge bisects 2

neighboring gland centroids γci and γcj , where i, j ∈ {1, 2, . . . , ng} and ng is the num-

ber of glands in image Ri. An example is shown in Figure 5.9(b). Statistics such as

the area, perimeter and chord length are recorded for each polygon and the average,

standard deviation, disorder, and minimum to maximum ratio are calculated across all

polygons in the image.

Delaunay Triangulation (D): Delaunay triangulation divides the image Ri into trian-

gles whose edges connect the gland centroids γci and γcj as vertices. An example is

shown in Figure 5.9(c). Delaunay triangulation is related to the Voronoi diagram in

that for each polygon in the Voronoi diagram, there is an accompanying edge which

connects its gland centroid γci with γcj of an adjacent polygon. Edge length and area are

computed for each triangle and the mean, standard deviation, minimum to maximum

ratio, and disorder statistics are calculated across all triangles.

Minimum Spanning Tree (MST ): Minimum Spanning Trees (MST) are another graph

representation where all gland centroids γci are connected with a minimum total edge

weight defined as argmin
E

∑
i,j Eij × d(i, j), where d(i, j) is the Euclidean distance be-

tween γci and γcj . An example is shown in Figure 5.9(d). The average, standard de-

viation, disorder, and minimum to maximum ratio statistics are calculated across all

edges in the graph.
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Gland Density (GD): Gland density features encompass two types of features. The

first set of features denotes the number of γcj which lie within a 10, 20, 30, 40, and 50

pixel radius of each γci . The second set of feature denotes the distance between each γci

and its 3, 5, and 7 nearest centroids γcj . The average, standard deviation, and disorder

of each of these features are computed across all glands.

Image Co-occurrence Textures (T ): Second order co-occurrence features [161] are calcu-

lated from a symmetric co-occurrence matrix which aggregates the frequency in which

two pixel intensities co-occur within a pre-determined window distance around each

pixel ċ. The size of the co-occurrence matrix is determined by the maximum possible

intensity value in the image, which for 8-bit images is 28 = 256. A window distance of 1

pixel was chosen. For each ċ, contrast energy, contrast inverse moment, contrast aver-

age, contrast variance, contrast entropy, intensity average, intensity variance, intensity

entropy, entropy, energy, correlation, and two information measures are computed from

the co-occurrence matrix. The mean and standard deviation across all ċ are used to

build a single set of texture features f for each image Ri.

Prostate Cancer Prediction Tools (CPT )

We provide a brief summary of the comparative CaP prediction tools listed in Table 5.7.

Kattan Nomogram (K): The Kattan nomogram [23] was one of the earliest prostate

cancer postoperative prediction tools to be developed for predicting biochemical failure

following radical prostatectomy. Clinical predictors for the Kattan nomogram include

1) Pre-operative PSA, 2) Gleason Sum, 3) Primary Gleason score, 4) Surgical Margins,

5) Prostate Capsular Invasion, 6) Seminal Vesicle Invasion (SVI), and 7) Lymph Node

Involvement. A raw score s, 0 ≤ s ≤ 300 (higher score pertains to higher risk of BCR)

is derived from these predictors and risk for each Pi is assessed in terms of an 84 month

BCR-free probability.
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Table 5.7: Summary of Postoperative CaP Prediction Tools

Prediction Tool
(PT)

Clinical Variables

Kattan (K) 1) Pre-operative PSA, 2) Gleason Sum, 3) Primary Gleason score, 4) Sur-
gical Margins, 5) Prostate Capsular Invasion, 6) Seminal Vesicle Invasion
(SVI), and 7) Lymph Node Involvement

Stephenson (S) 1) Year of Radical Prostatectomy, 2) Surgical Margins, 3) Extraprostatic
Extension, 4) Seminal Vesicle Invasion (SVI), 5) Lymph Node Involvement,
6) Primary Gleason, 7) Secondary Gleason, and 8) Pre-operative PSA

UCSF-CAPRA
(CAPRA)

1) Age, 2) Pre-operative PSA, 3) Primary Gleason, 4) Secondary Gleason,
5) Tumor Stage, and 6) Percent Positive Biopsy Cores

MS-KCC (MSK) 1) Pre-Treatment PSA, 2) Age, 3) Primary Gleason Grade, 4) Secondary
Gleason Grade, 5) Gleason Sum, 6) Year of Prostatectomy, 7) Months Free
of Cancer, 8) Surgical Margins, 9) Extra Capsular Extension, 10) Seminal
Vesicle Involvement, and 11) Lymph Node Involvement

Stephenson Nomogram (S): The Stephenson nomogram [24] was developed along with

Michael Kattan to incorporate the year of surgical intervention for predicting BCR.

Based on 1) Year of Radical Prostatectomy, 2) Surgical Margins, 3) Extraprostatic

Extension (EPE), 4) Seminal Vesicle Invasion (SVI), 5) Lymph Node Involvement, 6)

Primary Gleason, 7) Secondary Gleason Scores, and 8) Pre-operative PSA. A raw score

s, 0 ≤ s ≤ 240, (higher score pertains to higher risk of BCR) is derived from these clin-

ical features. Risk for each Pi is assessed in terms of an 80 month BCR-free probability

based on the raw score.

Cancer of the Prostate Risk Assessment (UCSF-CAPRA) (CAPRA): The University

of California in San Francisco (UCSF) developed a risk assessment tool for predicting

BCR in CaP patients following radical prostatectomy. Their scoring system, Can-

cer of the Prostate Risk Assessment test (CAPRA) [26, 27], is based on overall score

s ∈ {0, 1, . . . , 10}, where 10 represents the highest risk of BCR. Clinical predictors for

CAPRA include 1) Age, 2) Pre-operative PSA, 3) Primary Gleason, 4) Secondary Glea-

son scores, 5) Tumor Stage, and 6) Percent Positive Biopsy Cores.

Memorial Sloan-Kettering Cancer Center (MS-KCC) Nomogram (MSK): One of the
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most popular nomograms with contributions from Kattan and Stephenson is the MS-

KCC nomogram [23,24]. The MS-KCC nomogram incorporates 1) Pre-Treatment PSA,

2) Age, 3) Primary Gleason Grade, 4) Secondary Gleason Grade, 5) Gleason Sum, 6)

Year of Prostatectomy, 7) Months Free of Cancer, 8) Surgical Margins, 9) Extra Cap-

sular Extension, 10) Seminal Vesicle Involvement, and 11) Lymph Node Involvement.

Risk score s, 0 ≤ s ≤ 1, for each Pi, is assessed in terms of its 10-year BCR-free

probabilities.

5.11.4 Evaluation Measures

Random Forest Classifier

For all experiments, Random Forests (Bagged Decision Tree classifiers) [180] were used

to train a predictor C from each feature set f or score s. The resulting C is subsequently

used to classify each patient Pi as either `(Pi) = +1 or `(Pi) = −1 or each region as

either `(Ri) = +1 or `(Ri) = −1, where +1 and -1 refer to the positive and negative

classes for each classification task, further described in Section 5.12.

Classification Accuracy

The predictive value of each classifier is evaluated via classification accuracy φAcc and

via the area under the receiver operating characteristic curve (AUC) φAUC . If the

true label value of `(Ri) is of the positive class `(Ri) = +1 and the classifier predicts

correctly, this result is a true positive (TP) classification. If the classifier predicts this

result incorrectly, the result is a true negative (FP). Similarly, if `(Ri) = −1 and the

classifier predicts correctly, the result is a true negative (TN). Otherwise, the result is

a false negative (FN). Classification Accuracy (φAcc) measures the ability of a classifier

to predict on a new set of testing data provided by the features f or scores s and is

calculated as

φAcc =
TP + TN

TP + TN + FP + FN
. (5.6)
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Receiver Operating Characteristic

φAUC represents an overall measure of a classifier’s predictive value, independent of

the decision threshold, based on the receiver operative characteristic (ROC) curve. The

ROC curve is constructed by computing 1−φSpec and φSens at each decision threshold

where φSpec and φSens are defined as

φSens =
TP

TP + FN
, (5.7)

and

φSpec =
TN

TN + FP
. (5.8)

The AUC represents the area under the ROC curve, where an AUC of 1 pertains to

a perfect classifier, and an AUC of 0.5 pertains to a classifier which is no better than

random guessing.

The Wilcoxon Rank Sum Test [181] was subsequently utilized to determine statis-

tical significance between classifications for each C compared to CCGT .

Kaplan-Meier Analysis

Kaplan-Meier analysis [182] is used to compare the BCR-free survival time between

two groups. In this study, the two groups are determined by a predictor C, which

predicts that a patient `(Pi) ∈ {−1,+1}, will either experience biochemical recurrence

(BCR) or not (NR). When plotted onto time versus BCR-free survival rate, the BCR

free survival rate of the group will decrease at the time when each Pi develops BCR.

Thus, we expect the curve for the set of patients P predicted to have BCR to drop

quickly while the set of patients predicted to have the label NR to remain BCR-free

with no drop in the curve. The quantitative difference between the survival outcome

can be determined via the logrank test [183]. The non-parametric test yields a p-value,

where lower p-values denote greater significance between the survival distributions.
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5.12 Experimental Results

We compared the ability of predictors built using CGT features CCGT against other

predictors CQH and CPT to differentiate different categories of CaP patients P and

regions R via the following experiments:

1. Identifying Cancerous (+1) versus Non-Cancerous (-1) Regions (R)

2. Distinguishing Biochemical Recurrence (+1) and Non-recurrence (-1) using Can-

cerous Regions (R)

3. Predicting Biochemical Recurrence versus Non-Recurrence in CaP Patients fol-

lowing RP (P)

4. Comparing BCR prediction of Patients CaP patients following RP (PB) via CGTs

versus CaP Prediction Tools

5. Receiver Operating Characteristics (ROC) analysis on comparing BCR prediction

of CaP patients following RP (PB) via CGTs versus CaP Prediction Tools

6. Kaplan-Meier Analysis comparing BCR prediction of CaP patients following RP

(PB) via CGTs versus CaP Prediction Tools

Each experiment and accompanying results are described in detail below.

5.12.1 Experiment 1: Identifying Cancerous versus Non-Cancerous

Regions R

Design: 80 regions Ri were annotated by expert pathologists pertaining to 56 cancer-

ous regions and 24 non-cancer regions. All features f were extracted across the entire

annotated region. We compare the efficacy of CGT features with previously studied QH

features for the purpose of differentiating cancerous regions (+1) from non-cancerous

regions (-1) on prostate histology. Comparison between QH features is done by creating

classifiers CQH from each set of QH features, whereQH ∈ {M,V,D,MST,GD, T,CGT}

For evaluation, 100 iterations of randomized 3-fold cross validation was performed using
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Figure 5.10: Comparison of CQH in terms of mean (a) φAcc and (b) φAUC (with error
bounds denoting standard deviation) for distinguishing cancerous and non-cancerous
tissue in 80 regions Ri over 100 runs of Random Forest with randomized 3-fold cross
validation

a Random Forest classifier to classify each Ri as either Cancerous or Non-cancerous for

each set of QH features f .

Results: As shown in Figure 5.10, CGT features improve in distinguishing cancer versus

non-cancer regions R compared to 6 other QH features (previously described). Mean

and standard deviation for φAcc and φAUC are shown in Table 5.8. CGT shows sta-

tistically significant (p < 0.05) improvement in terms of φAcc and φAUC compared to

all QH features as shown in Table 5.8. Our results suggest CGTs as an improvement

over existing QH methodologies for differentiating cancerous regions from non-cancer

regions on CaP histology.

5.12.2 Experiment 2: Identifying Regions R associated with Biochem-

ical Recurrence

Design: 56 cancer regions Ri were annotated, 28 from BCR patients and 28 from NR

patients. All features f were extracted across the entire annotated cancer region. We

compare the efficacy of CGT features with previously studied QH features (Table 5.6)

for the purpose of differentiating cancerous regions R extracted from patients who will

develop BCR (+1) from patients who will not (-1), following RP. Classifiers CQH , where
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Figure 5.11: Comparison of CQH in terms of mean (a) φAcc and (b) φAUC (with
error bounds denoting standard deviation) for identifying BCR from 56 cancer regions
corresponding to 40 patients over 100 runs of Random Forest with randomized 3-fold
cross validation

QH ∈ {M,V,D,MST,GD, T,CGT} were built for each QH feature. To identify re-

gions associated with BCR, patient controlled classification was performed such that

multiple regions Ri from a single patient Pi were either all in the training set or all

in the testing set for all classifications. For evaluation, 100 iterations of randomized

3-fold cross validation was performed using Random Forest to classify each Ri as either

belonging to BCR or NR patients.

Results: In Figure 5.11, CGT is shown to outperform 6 QH features for the task of

identifying regions R belonging to BCR patients for both φAcc and φAUC . Statistically

significant (p < 0.05) improvement in both φAcc and φAUC was shown for CGT over

all QH features as shown in Table 5.9. As demonstrated in Table 5.9, many of the QH

features perform only slightly better than guessing, with AUC values near 0.5.This is

not surprising given that many of these QH features are modeled after characteristics

of Gleason grade, which is often unable to distinguish BCR in CaP patients with GS

6-8. CGTs represent a new type of feature, using gland tensors to describe glandular

disorganization, that is not explicitly captured by any previous QH feature.



88

0.5

0.55

0.6

0.65

0.7

0.75

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

 

 
Morphology
Voronoi
Delaunay
MST
Gland Density
Texture
CGT

0.5

0.55

0.6

0.65

0.7

0.75

C
la

ss
ifi

ca
tio

n 
A

U
C

 

 
Morphology
Voronoi
Delaunay
MST
Gland Density
Texture
CGT

(a) (b)

Figure 5.12: Comparison of CQH in terms of mean (a) φAcc and (b) φAUC (with error
bounds denoting standard deviation) for predicting BCR in 40 patients P over 100 runs
of Random Forest with randomized 3-fold cross validation

5.12.3 Experiment 3: Identifying CaP Patients P with Biochemical

Recurrence

Design: 40 men with CaP who had undergone RP were selected, 20 of whom had BCR

and 20 of whom did not. For each patient, the largest annotated cancer region for

each of the 40 patients Pi was selected to represent each Pi. We compare the efficacy

of CGT features with previously studied QH features (Table 5.6) for the purpose of

differentiating patients P who will develop BCR (+1) from patients who will not (-1),

following RP. Classifiers CQH , where QH ∈ {M,V,D,MST,GD, T,CGT}, were built

for each QH feature. For evaluation, 100 iterations of randomized 3-fold cross validation

was performed using Random Forest to predict BCR for each Pi.

Results: In Figure 5.12, CGTs are shown to outperform each of the 6 other QH features

in predicting BCR in 40 CaP patients P in terms of φAUC and φAcc. These results were

statistically significant (p < 0.05) as shown in Table 5.10. Furthermore, the results in

Table 5.10 are consistent with the results from Table 5.9, where regions Ri are classified

as belonging to a patient P with BCR (+1) or NR (-1). These results suggest the use of

CGTs over other QH features for identifying BCR in CaP patients from CaP histology.
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Table 5.8: Mean and Standard Deviation of (a) φAcc and (b) φAUC of CQH for distin-
guishing cancer from non-cancer in 80 regions Ri over 100 runs of Random Forest with
randomized 3-fold cross validation. Associated Wilcoxon Rank Sum Test p-values for
φAcc and φAUC of CQH compared to CCGT is provided.

Gland Morphology Voronoi Delaunay Minimum Spanning Tree Gland Density Texture CGT

φAcc 96.80± 1.21% 90.14± 2.28% 92.04± 1.33% 94.23± 1.72% 96.26± 1.45% 96.08± 0.87% 99.06± 0.76%

p-value 3.2183e-28 2.1923e-35 1.0692e-35 7.0137e-35 8.3012e-31 4.6573e-35 -

φAUC 0.9816± 0.0087 0.9126± 0.0239 0.9252± 0.0192 0.9488± 0.0195 0.9629± 0.0152 0.9459± 0.0058 0.9951± 0.0077

p-value 7.1411e-23 2.2052e-34 2.2058e-34 3.9028e-34 7.4428e-31 2.1993e-34 -

Table 5.9: Mean and Standard Deviation of (a) φAcc and (b) φAUC of CQH for pre-
dicting 56 cancerous regions Ri corresponding to BCR patients and NR over 100 runs
of Random Forest with randomized 3-fold cross validation. Associated Wilcoxon Rank
Sum Test p-values for φAcc and φAUC of CQH compared to CCGT are shown below.

Gland Morphology Voronoi Delaunay Minimum Spanning Tree Gland Density Texture CGT

φAcc 62.34± 3.92% 62.91± 4.39% 64.34± 3.48% 63.20± 3.39% 62.93± 3.72% 59.87± 4.04% 71.61± 3.67%

p-value 2.1162e-29 3.9107e-26 6.5838e-26 4.7951e-29 7.8734e-29 4.5267e-32 -

φAUC 0.5554± 0.0399 0.5612± 0.0408 0.5586± 0.0391 0.5479± 0.0372 0.5470± 0.0346 0.5894± 0.0624 0.6583± 0.0532

p-value 3.4576e-26 1.4102e-24 1.217e-25 3.1953e-28 5.4087e-29 2.1755e-13 -

Table 5.10: Mean and Standard Deviation of (a) φAcc and (b) φAUC of CQH for
predicting BCR in 40 CaP patients P following RP over 100 runs of Random Forest
with randomized 3-fold cross validation. Associated Wilcoxon Rank Sum Test p-values
for φAcc and φAUC of CQH is shown.

Gland Morphology Voronoi Delaunay Minimum Spanning Tree Gland Density Texture CGT

φAcc 59.20± 4.07% 64.47± 4.72% 64.82± 4.66% 64.62± 3.95% 64.60± 3.60% 68.80± 4.15% 73.18± 5.02%

p-value 5.418e-10 1.2662e-08 1.1547e-10 1.7115e-11 8.4514e-10 6.9014e-28 -

φAUC 0.5817± 0.0567 0.5600± 0.0472 0.5657± 0.0414 0.5594± 0.0430 0.5550± 0.0429 0.6017± 0.0568 0.6693± 0.0711

p-value 8.4424e-08 3.6478e-06 1.453e-07 4.0656e-09 4.9759e-11 0.012387 -
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Figure 5.13: Comparison of CCGT with CPT in terms of mean (a) φAcc and (b) φAUC

(with error bounds denoting standard deviation) for predicting BCR in 20 patients in
PB over 100 runs of Random Forest with randomized 3-fold cross validation
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5.12.4 Experiment 4: Cross-validation within patient cohort PB:

Design: Of the 40 patients Pi, only 20 patients PBi had associated clinical variables

for nomogram prediction. We defined the group with additional clinical variables as

Cohort B (PB), and the original group as Cohort A (PA). The breakdown for both

cohorts are described in Table 5.5. For calculating QH features, the largest annotated

cancer region was selected to represent each Pi. f extracted from Ri is used to train

a classifier CQH , which is used to predict the outcome `(Pi) ∈ {−1,+1} of patients Pi.

Comparatively, prostate cancer prediction tools (e.g. nomograms) also predict patient

outcome `(Pi), in terms of BCR.We calculated scores s for each of the nomograms

based on the clinical variables discussed in Table 5.7. These nomogram scores are used

to represent each of the patients PBi in the same way that f is used to represent each

PBi . A classifier built from these prediction tools is denoted as CPT . Classifiers CPT and

CCGT are built from s and f respectively. For evaluation, 100 iterations of randomized

3-fold cross validation was performed using Random Forest to predict BCR for each PBi .

Results: In Figure 5.13(a), the performance of CCGT was evaluated against CaP predic-

tion tools CPT , where PT ∈ {K,S,CAPRA,MSK}. CGTs show improvement over 4

state-of-the-art prostate cancer nomograms, demonstrating 85% classification accuracy

compared to 59% accuracy for the MS-KCC nomogram, which had the second highest

φAcc (Table 5.11). In Table 5.11, CGTs show statistically significant improvement in

φAUC over all nomograms, and outperforms the Stephenson and CAPRA nomograms

(φAUC = 0.79 for CGTs compared to φAUC = 0.72 for Stephenson and φAUC = 0.66

for CAPRA). These results suggest that CGTs have a greater predictive value than

the state-of-the-art post-operative nomograms. Furthermore, this improvement can be

obtained using only features present on CaP histology, whereas nomograms require

additional clinical information such as pre-operative PSA, surgical margins, seminal

vesicle invasion, and lymph node involvement.
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Table 5.11: Mean and Standard Deviation of (a) φAcc and (b) φAUC for predicting
BCR in PB. over 100 runs of Random Forest with randomized 3-fold cross validation.
Associated Wilcoxon Rank Sum Test p-values for φAcc and φAUC of CPT compared to
CCGT for predicting BCR are shown.

CaP Predictor Kattan Stephenson CAPRA MS-KCC CGT

φAcc 58.30± 4.83% 54.75± 4.34% 52.90± 3.19% 59.45± 5.41% 85.75± 4.89%

p-value 4.2558e-35 3.3989e-35 1.3793e-35 5.2764e-35 -

φAUC 0.6246± 0.0929 0.7199± 0.0935 0.6579± 0.0906 0.6182± 0.0764 0.7959± 0.0591

p-value 5.1173e-25 6.0125e-10 2.1506e-21 7.2366e-29 -

5.12.5 Experiment 5: Receiver Operating Characteristic (ROC) anal-

ysis of PB:

Design: To increase the size of the testing set to 20 patients, we performed a study

using two independent cohorts PA and PB. Analysis via the calculation of the Receiver

Operating Characteristic (ROC) curve is used to determine the overall performance

across all classification thresholds of each classifier C.

For the CGT features, we perform the classification on PB by creating a classifier

CCGT trained from PA. For the Random Forest classifier, each prediction `(PBi ) is

given a fuzzy decision value p̂ between -1 and 1. Nomograms do not require further

training beyond the original fitting done in the original study from which the nomo-

gram was developed. Each nomogram is designed to predict BCR risk based on a score

s. By setting decision thresholds at different p̂ and s for CQH and CPT respectively,

we obtained sensitivity and specificity scores at each threshold. The area under the

ROC curve (φAUC) is subsequently calculated for each CQH and CPT to compare their

performance on PB.

Results: In Figure 5.14, we show reciever operating characteristic (ROC) curves for

an independent cohort PB for CPT , PT ∈ {K,S,CAPRA,MSK} and CCGT . CCGT

demonstrates a clear improvement over 4 state-of-the-art nomograms CPT , showing an

AUC of 0.76 compared to AUCs near 0.5 for all CPT . The weak performance on this

independent cohort highlights the difficulty of modern nomograms to predict BCR for

men with intermediate-risk GS scores and suggests that the addition of QH features

could improve upon the current nomogram standards.
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Figure 5.14: Comparison of Receiver Operating Characteristic (ROC) Curves for CCGT
versus 4 postoperative CaP nomograms CPT in an independent 20 patient cohort PB.

5.12.6 Experiment 6: Kaplan-Meier analysis of PB:

Design:Kaplan-Meier analysis of 20 patients in PB demonstrates the difference in BCR

free survival time associated with each predictor CPT , PT ∈ {K,S,CAPRA,MSK}

and CCGT . Similar to the previous experiment in Section 5.12.5, CCGT is trained from

PA and CPT does not require additional training. Each C predicts labels `(PBi ) ∈

{−1,+1} (BCR or NR) for each PBi , and a BCR-free survival curve based on the time

to recurrence information of each PBi is generated from each of the resulting predicted

BCR and NR groups. The logrank test was used to determine a p-value associated with

the difference between the survival curves. A lower p-value indicates greater differences

in the BCR-free survival between the predicted BCR and NR groups.

Results: In Figure 5.15, we show Kaplan-Meier survival curves based on the predicted

BCR and NR groups of each C. Based on the logrank test (shown in Table 5.12), patients

were best differentiated via CCGT , with a p-value of 0.0016 compared to 0.0596 for the

MS-KCC nomogram, which had the next lowest p-value. The superior differentiation in

the survival curves afforded by CCGT is indicative of its value over current nomograms.
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Table 5.12: Logrank test p-values for comparison of Kaplan-Meier survival curves of
PB stratified into BCR and NR groups by each C

CaP Predictor Kattan Stephenson CAPRA MS-KCC CGT

p-value 0.18458 0.29343 0.42146 0.059585 0.0016624

CCGT represents the only predictor which show statistically significant differentiation

(p < 0.05) in the survival outcomes of its predicted patient cohorts.

5.13 Summary

We presented a novel set of QH features using co-occurring gland tensors (CGT) cal-

culated on local subgraphs. CGTs represent a novel combination of subgraphs, gland

tensors, and tensor co-occurrence matrices to quantify the local disorder in the gland

tensors on prostate cancer (CaP) histopathology. Following 4 sets of experiments on 40

Gleason score 6-8, CaP patients following RP, we found CGT features demonstrated

a statistically significant (p < 0.05) improvement in classification accuracy compared

to 6 comparison QH features. Furthermore, we found CGTs to outperform 4 state-of-

the-art postoperative nomograms for predicting BCR in CaP patients. Complemen-

tary Kaplan-Meier analysis of the independent cohort of prostate cancer patients with

intermediate-risk pathological Gleason scores (via the logrank test) demonstrated that

only the CGTs showed a statistically significant (p < 0.05) difference in the survival

distributions of the predicted cohorts. While we attempted to account for bias from

clinical variables by comparing our work with state-of-the-art nomograms which use

these variables, we acknowledge the need to validate our results on additional data on

even more constrained cohorts to control for the clinical variables.
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Figure 5.15: Comparison of Kaplan-Meier BCR-free survival curves differentiated via
(a) Kattan nomogram, (b) Stephenson nomogram, (c) UCSF-CAPRA, (d) MS-KCC
nomogram, and (e) CGT classifiers on an independent 20 patient cohort PB. Lower
p-values are indicative of better predictors of BCR.
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Chapter 6

Evaluation of Supervised Multi-view Canonical

Correlation Analysis for an integrated histologic and

proteomic biomarker

In this work, we leverage the sMVCCA framework (described in Section 4) to build

an integrated biomarker which combines quantitative image features derived from tis-

sue histopathology along with proteomic features obtained via mass spectrometry. A

classifier built from the integrated biomarker is used to identify patients at risk for

5 year biochemical recurrence following radical prostatectomy. The main steps in-

volved in building this classifier include (1) feature extraction of histological image and

proteomic features (Figs. 6.1(a)-(d)), (2) sMVCCA for an integrated biomarker repre-

sentation (Fig. 6.1(e)), and (3) building a classifier from the integrated biomarker to

distinguish patients at risk for BCR within 5 years from those who are not (Fig. 6.1(f)).

Results were compared with other QH measures and CaP prediction models.

Some content of this chapter is taken from [88], on which the author of the disserta-

tion is the second author. This content describes the acquisition of the proteomic and

histologic data as well as the extraction of histologic features, which was subsequently

analyzed by the author as part of his thesis research.

6.1 Data Acquisition and Data Description

40 patients with biopsy confirmed CaP underwent RP at the Hospital at the University

of Pennsylvania (HUP). Following radical prostatectomy, the resected prostate was

sectioned with a meat cutter into histological slices for analysis. Pathological Gleason

score and detailed cancer annotations were provided by pathologists at HUP.
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Cases Classes Features

40 Biochemical recur-
rence (BCR) vs. Non-
biochemical recurrence
(NR)

Proteomic: 650 expression values of proteins such as heat
shock protein and Ras regulated proteins;
Histomorphometric: 242 features extracted from high resolu-
tion images of the dominant tumor nodule

Table 6.1: Brief description of the UPENN prostate cancer dataset and features ex-
tracted from each modality.

Numerous works have demonstrated the utility of QH features for Gleason scor-

ing [31,173] and prostate cancer prognosis [171,175].

A representative slice containing the most dominant tumor nodule in each specimen

was digitized at 20x magnification (0.5µm per pixel) using a whole slide digital scanner.

Mass spectrometry was performed on the same dominant tumor nodule to identify a

set of proteins corresponding to the annotated tumor region in the digital image. BCR

was indicated by a PSA of at least 0.2 ng/mL. Among all the patients, 21 experienced

biochemical recurrence (BCR) within 5 years of surgery while the other 19 did not have

BCR.

6.1.1 Proteomic Feature Extraction and Selection

Prostate slides were deparaffinized, and rehydrated as described in [184]. Tumor areas

previously defined on a serial H&E section were collected by needle dissection, and

formalin cross-links were removed by heating at 99 degrees Celsius. The FASP (Filter-

Aided Sample Preparation) method [185] was then used for buffer exchange and tryptic

digest. After peptide purification on C-18 StageTips [186], samples were analyzed using

nanoflow C-18 reverse phase liquid chromatography/tandem mass spectrometry (nLC-

MS/MS) on a LTQ Orbitrap mass spectrometer. A top-5 data-dependent methodol-

ogy was used for MS/MS acquisition, and data files were processed using a label free

MaxQuant peptide identification package [187] that uses extracted ion chromatograms

to calculate protein abundance. The resulting 650 dimensional feature vector was ob-

tained consisting of quantifiable proteins found across at least 50% of the studies and is

used to characterize each patient’s protein expression profile following surgery. Missing

values were replaced by data imputation as described in [188].
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(a) (b) (c) (d) (e)

(f)

Figure 6.1: (a) Prostate histology with cancerous region annotated by a pathologist.
(b) Area of QH feature extraction (with zoom window to demonstrate QH features) (c)
Gland morphology captured by automated segmentation of the interior lumen bound-
ary. (d) Voronoi diagram and (e) Delaunay triangulation of gland centroids (shown in
red) describe architecture. (f) 2D liquid chromatography and mass spectrometry profile
allows for a high sensitivity detection and quantification of proteins.
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6.1.2 Histomorphometric Feature Extraction

For the assessment of prostate whole-mount histology, analysis of glands are of partic-

ular interest as their shape and arrangement have been found to be highly correlated

with cancer aggressiveness [189,190]. Based on the segmentation and the annotated re-

gions on the digital images (Figure 6.1), we extracted a total of 242 histomorphometric

features from gland morphology, architecture, to distinguish aggressive CaP. We briefly

describe the image segmentation and feature extraction process below.

Gland Segmentation

Prior to extracting image features, we employ an automatic region-growing gland seg-

mentation algorithm presented by [191]. The boundaries of the interior gland lumen

and the centroids of each gland, allow for extraction of 1) morphological and 2) archi-

tectural features from histology as described briefly below. More extensive details on

these methods are available in our other publications [170].

Glandular Morphology

The set of 100 morphological features [51] consists of the average, median, standard

deviation, and min/max ratio for gland area, maximum area, area ratio, estimated

boundary length, standard deviation of distance, variance of distance, distance ratio,

perimeter ratio, smoothness, fractal dimension, as well as descriptors of invariant mo-

ments and Fourier transforms. (See Table 6.1). These features have been shown previ-

ously to distinguish Gleason grades on H&E stained prostate histopathology [174].

Architectural Feature Extraction

51 architectural image features were extracted in order to quantify the arrangement

of glands present in the prostate section (See Table 6.1). Previously, these features

were shown to be useful in discriminating between different Gleason grades of CaP

histopathology [174]. Voronoi diagrams, Delaunay triangulation [175] and minimum

spanning trees were constructed on the digital histologic image using the gland centroids
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as vertices, the gland centroids having previously been identified via the scheme in [170].

Co-occurring Gland Tensors

Co-occurring gland tensors (CGTs) [8] represent a novel type of feature which computes

an approximation of disorder in glandular orientation on the histology. Following gland

segmentation, graph orientations for each gland are computed from the principal axis of

the segmented gland boundaries. Angles are subsequently obtained from the principal

axes and quantized across 0 to 180 degrees. To capture local distributions in gland

directionality, we apply a spatial constraint defined by a probabilistic decaying function.

13 second order statistical features are subsequently extracted from tensor co-occurrence

matrices which aggregate orientation information from each neighborhood. The mean,

standard deviation and range of these second order features result in 39 CGT features.

Gland Subgraphs

26 features [177] used to calculate cell cluster graphs in orophareangyal and prostate

cancers as well as breast cancer [176] were used to characterize the glands in prostate

cancer. Based on the probabilistic decay function to generate local subgraphs between

the glandular centroids, features such as eccentricity and connected component coeffi-

cients are extracted from the resulting local subgraphs.

Intensity Texture

Second order co-occurrence features [31, 161] are calculated from a symmetric co-

occurrence matrix which aggregates the frequency in which two pixel intensities co-

occur within a pre-determined window distance around each pixel. The size of the

co-occurrence matrix is determined by the maximum possible intensity value in the im-

age, which for 8-bit images is 28 = 256. A window distance of 1 pixel was chosen. For

each pixel, contrast energy, contrast inverse moment, contrast average, contrast vari-

ance, contrast entropy, intensity average, intensity variance, intensity entropy, entropy,

energy, correlation, and two information measures are computed from the co-occurrence

matrix. The mean and standard deviation of these features across all pixels are used
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to build a set of 26 intensity texture features f for each image.

6.2 Methods of Evaluation

6.2.1 Feature Selection via Wilcoxan Rank Sum Test

Features extracted from the various modalities are summarized in Table 6.1. An

nested cross-validated feature selection scheme is used independent of the classification

folds. The cross-validated classification folds are used as an ’outer loop’ to eliminate

overfitting and bias in the feature selection process [192,193]. Wilcoxon rank sum test

(WRST) was then used to select features in each modality [93]. Features with p-value

≤ 0.05 were considered to be statistically significant in differentiating the object classes

and were selected as discriminatory. This process was repeated n-1 times using n-2

samples for a leave-one-out consensus selection of features to compute each WRST.

The intersection of features found to be p ≤ 0.05 across at least 2/3 of the n-1 sets were

used as the feature subset for each classification fold. Through this process, n sets of

features were obtained for each classification fold.

6.2.2 Embedding Construction

For each dimensionality d ∈ {1, 2, . . . , 10}, n embeddings were constructed from n

feature subsets identified in Section 6.2.1. Labels used for training the embedding was

limited to the training label set available for the classifier and feature selection process

Str /∈ Sts. No testing labels contributed to the construction of the n ∗ d embeddings.

For RCCA and SRCCA, regularization parameters γ1 and γ2 were selected via grid

search optimization intervals θ1 = 0.005 to θ2 = 0.2 with 80 evenly spaced intervals.

6.2.3 Classification via Random Forest

n-fold cross validation of Random Forest classifiers [180] were used to evaluate the

performance of sMVCCA with the following comparative strategies: (i) PCA, (ii) GEC,
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(iii) CCA (iv) RCCA, (v) MVCCA, (vi) SRCCA, (vii) selected histomorphometric

features, and (viii) selected proteomic features.

For each fold, feature selection was performed as described in Section 6.2.1. Subse-

quently, for each fold, an embedding Ei is created as described in Section 6.2.2. Lastly,

we can evaluate the embedding by training n classifiers Ci on each of n embeddings Ei

and Stri for the purpose of predicting the label Y of each corresponding Stsi . The result

of the n classifications is used to create the area under the receiver operating character-

istic curve (AUC) [194] is used to evaluate the overall performance of each data fusion

method for generating embeddings which can be used as an integrated biomarker for

BCR.

6.2.4 Kaplan-Meier Analysis of biochemical recurrence free survival

rates

Additional Kaplan-Meier analysis [182] was performed on 30 samples (15 BCR, 15 NR)

where time to recurrence information was available. Kaplan-Meier curves demonstrate

the resulting survival outcome of the predicted object class groups. In this study, the

object class groups Y are predicted via the classifiers constructed from each of eigenvec-

tors E or features as described previously. An optimal prediction would demonstrate a

large difference in the survival outcome between the predicted groups. When plotted

onto time versus BCR-free survival rate, the BCR free survival rate of the group will

decrease at the time after surgery when each patient develops BCR. Thus, we expect

the curve for the set of patients predicted to have BCR to trend towards 0 quickly while

curve pertaining to the set of patients predicted to have the label NR to maintain 100%

BCR-free survival. This difference in time and outcome between the two predicted

subject groups can be quantified via the log-rank test [183], where p ≤ 0.05 qualifies as

a statistically significant difference between outcomes of the two predicted cohorts.

6.2.5 Computational Run Time

We have also examined the computational run times for generating the embeddings

from the features. For each data fusion method, mean and standard deviation across
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Figure 6.2: Mean and standard deviation of classification AUC achieved by 40 Random
Forest classifiers in sMVCCA, SRCCA, MVCCA, RCCA, CCA, PCA and GEC reduced
space via n-fold cross validation across dimensionality d ∈ {1, 2, . . . , 10}.

Method SRCCA MVCCA RCCA CCA PCA GEC Histomorphometric Proteomic

sMVCCA-Pearson 0.3689 0.0338 0.0267 0.0415 0.0163 0.0025 3.3794e-06 0.7599

sMVCCA-Spearman 0.0143 0.0009 0.0003 0.0005 0.0003 1.1552e-05 1.1811e-09 0.0311

Table 6.2: p-values comparing AUC values d ∈ {1, 2, . . . , 10} for sMVCCA-Pearson
and sMVCCA-Spearman with comparative data fusion methodologies and Imaging and
Proteomic features alone via Student t-test. Significant p-values (p < 0.05) are shown
in bold.

40 embeddings and 10 dimensionalities. Experiments were run on a quad-core i7-3770

CPU with a clock speed of 3.4 GHz and programs were written on MATLAB R©.

6.3 Results and Discussion

6.4 Classification of BCR and NR CaP patients

In terms of classification AUC, sMVCCA consistently outperformed other unsupervised

and supervised methods across dimensions d ∈ {1, 2, . . . , 10} as shown in Figure 6.2.

The breakdown of mean classification performance by dimensionality is shown in Ta-

ble 6.1. We can make several observations upon inspection of this information. Firstly,
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Figure 6.3: Histomorphometric and Proteomic Data Fusion via sMVCCA, SRCCA,
MVCCA, RCCA, CCA, PCA and GEC: Mean AUC for each dimensionality d ∈
{1, 2, . . . , 10} in predicting BCR. Mean classification of the selected histomorphome-
tric and proteomic features are shown for reference.

we can recognize a clear difference in sMVCCA-Spearman compared to most other data

fusion methods. While sMVCCA-Pearson, SRCCA, and MVCCA are able to outper-

form sMVCCA-Spearman for specific dimensionalities, sMVCCA-Spearman is shown

to be the most consistent. Secondly, There is a noticable decline in overall classifica-

tion AUC across all data fusion methods for d > 6. Given the noticable consensus

across data fusion methods, we can deduce that there is an optimal dimensionality

for constructing a classifier. Due to the use of ranked features combined with labeled

information, sMVCCA-Spearman is able to uncover discriminatory features with fewer

dimensions, as maximum AUC is achieved at d = 4. sMVCCA-Pearson and SRCCA

also illustrate strong performance but with greater dimensions, where maximum AUC

is achieved at d = 6 for both these methods.

Statistical significance via the Wilcoxon Rank Sum Test is shown in Table 6.2.

sMVCCA-Spearman showed statistically significantly (p < 0.05) better classification

AUC compared to all other data fusion methods and individual modalities alone.

sMVCCA-Pearson also displayed significantly better classification performance against

all other unsupervised methods, but was not statistically significantly better than SR-

CCA and proteomic data alone.
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Figure 6.4: 3-D Embedding plots by Principal Component Analysis of the best per-
forming (a) Histomorphometric Features and (b) PCA of Proteomic Features show the
distribution of CaP patients with BCR (red squares) and NR (green circles). 3-D em-
bedding plots pertaining to the highest classification AUC of the integrated histomor-
phometric and proteomic features via (c) MVCCA, (d) SRCCA, (e) sMVCCA-Pearson,
and (f) sMVCCA-Spearman reveal potential manifestations of an integrated biomarker
for BCR.

We hypothesize that sMVCCA-Pearson and SRCCA do not account for the non-

linearity in correlations between histology and proteomic features, while sMVCCA-

Spearman’s use of ranked features is able to better account for the outliers seen in

the 3D representation of histomorphometric features via PCA in Figure 6.4(a). 3-D

embedding plots are shown for visualization purposes in Figure 6.4. The separability

illustrated in these features are consistent with the classification results reported in

Figure 6.2, as MVCCA (Figure 6.4(c))and SRCCA (Figure 6.4(d)) do not demonstrate

significantly better separation compared to proteomic features alone (Figure 6.4(b)).

However, Figure 6.4(f) is reflective of sMVCCA-Spearman’s superior classification per-

formance, illustrating the separation of CaP patients with BCR and NR.
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Figure 6.5: Kaplan-Meier Analysis of Prostate Cancer Patient Outcome as determined
via the classification dictated by (a) Histomorphometric Features, (b) Proteomic Fea-
tures, (c) sMVCCA-Pearson, and (d) sMVCCA-Spearman

6.5 Comparing biochemical recurrence free surival rates via Kaplan-

Meier Analysis

Figure 6.5 shows the BCR-free survival outcome of the patients predicted via Random

Forest classifiers built on different sets of features. Histomorphometric and proteomic

features do not show statistically significant separation in the predicted BCR and pre-

dicted NR outcomes shown via the log rank p-values of 0.567 and 0.086 respectively

However, sMVCCA shows better stratification of outcome via lower p-values, with the

integrated features produced via sMVCCA-Pearson showing p = 0.010 and sMVCCA-

Spearman showing p = 0.057. While sMVCCA-Pearson produced a statistically sig-

nificant stratification, sMVCCA-Spearman did not, with a p-value just above the 0.05

significance threshold. Although sMVCCA-Spearman was not able to stratify patients

early on (t < 20 months) following RP, it has the same number of false positives as

sMVCCA-Pearson after 20 months following RP, demonstrating better predictive value

when compared to histmorphometric and proteomic features alone. As the p-value is

just above the 0.05 significance threshold, it is possible that additional samples in the

future could improve the p-value here.

6.6 Computational Run Time

Figure 6.6 shows the comparative computation run times of sMVCCA, SRCCA, MVCCA,

RCCA, and CCA for generating the embeddings across all experiments in this study.
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Figure 6.6: Comparison of Mean and Standard Deviation of Computational Run Times
for generating embeddings via data fusion methods sMVCCA, SRCCA, MVCCA,
RCCA, and CCA across all dimensionalities d ∈ {1, 2, . . . , 10}

SRCCA and RCCA have the longest run times due to its expensive regularization

procedure. Our experiments with SRCCA and RCCA took at least 2 orders of mag-

nitude (100 times) longer compared to the other methods. Both sMVCCA-Pearson

and sMVCCA-Spearman finish in less than an order of magnitude longer compared

to MVCCA and CCA, but offer superior classification performance. These differences

were found to be statistically significant across all runs.

6.7 Summary

We presented a novel supervised multi-view canonical correlation analysis method that

is able to construct an integrated biomarker for identifying patients at risk for bio-

chemical recurrence. Via sMVCCA, we were able to consistently predict BCR (mean

of 0.74 AUC) at a statistically significantly (p < 0.05) higher rate compared to pre-

vious data fusion methods and compared to using histomorphometric and proteomic

features alone. We demonstrate improved computational run times compared to previ-

ous supervised data fusion methods such as SRCCA. Additionally, our method is able

to integrate data from any number of modalities to a joint subspace that is robust
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to modality specific noise. We acknowledge some limitations in this study including

the lack of additional views which MVCCA and sMVCCA are able to handle. How-

ever, we have demonstrated improvement in terms of classification and computational

performance against the state-of-the-art SRCCA which has only been able to utilize 2

views.
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Chapter 7

Concluding Remarks and Future Work

The motivation for an integrated diagnostics system stems from the deficiencies of single

modality markers to adequately predict aggressive CaP. This work aimed to address the

various challenges involved in building an improved predictor of biochemical recurrence

following radical prostatectomy. The aims addressed include the following:

1. Challenges in data representation can be alleviated via dimensionality reduction.

We developed a novel methodology (AdDReSS), which provides a superior low

dimensional representation using active learning compared to random sampling of

labeled training instances. AdDReSS was validated via classification, Silhouette

cluster index, and learning efficiency.

2. Quantitative histomorphometry can improve upon Gleason scoring, the current

gold standard for predicting aggressive prostate cancer. We contributed 2 QH

methodologies, COrE and CGTs, which represent a new way of measuring the

disorder of cells and glands, respectively, within the prostate tissue. These meth-

ods were validated on multiple cohorts of radical prostatectomy patients from

different medical institutions and compared with state-of-the-art predictors of

biochemical recurrence.

3. Integrated diagnostics represent the future for personalized medicine, and devel-

oping methods for combining useful prognostic markers is necessary to realize

better prediction rates. sMVCCA was developed to take into account both the

inter-modal dependencies (as measured by correlation) as well as their predictive

value to create a low dimensional integrated biomarker. This was tested on a his-

tological and proteomic data cohort which demonstrated the value of combining
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two predictive modalities to produce an even stronger predictor. sMVCCA was

shown to outperform previous data integration strategies in this task as shown

via superior classification AUC and Kaplan-Meier p-values.

These methods represent significant contributions towards creating integrated diag-

nostics. Data representation, integration, and automated analysis of histological images

are all vital components for future diagnosis of disease and prognosis of treatment out-

comes. Although, we demonstrated many of these algorithms in the context of an

integrated biomarker for prostate cancer, although the machine learning methods de-

veloped are extensible towards many potential applications beyond disease prediction.

Despite promising initial results, improved quantitation of proteins on an expanded

QH-protein prostate cancer dataset has the potential to greatly improve the quality of

the current study. With regards to biochemical recurrence prediction, patients in this

dissertation were classified based on whether or not biochemical recurrence was found,

but did not heavily take into consideration censored data for classification. Time to

recurrence is an important attribute of aggressive CaP and modeling the distinction

between censored patient information and non-recurrence could lead to more accu-

rate predictions of treatment failure [195]. For example, Cordon-Cardo et al. utilized

a modified support vector machine called SVRc which takes into account censored

data, [28, 196]. Future work will aim to take advantage of time to recurrence informa-

tion beyond post-classification survival analysis.

We had also begun to explore race-specific biomarkers. However, our current cohort

was limited to only 3 African American patients with radical prostatectomy. There-

fore, expanding on this cohort would be imperative towards validation of race specific

biomarkers. Additionally, future work in quantitative histomorphometry would involve

expansion of the validation study using a radical prostatectomy cohort from an inde-

pendent institution, and in general, increasing the overall number of patients involved

in the study.
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Furthermore, correlation of QH-protein pairs may allow for the development of QH-

based protein surrogates. QH-based protein surrogates would allow for the identifica-

tion of protein concentrations from digital pathology without tissue extraction. Current

methods for detecting proteins spatially are expensive may be difficult to quantify. Im-

munohistochemistry requires the development of specific antibodies for the staining of

each identified protein. Hyperspectral imaging is capable of examining every spectra for

protein signatures, but remains under development. Imaging mass spectrometry [197]

captures an exact spatial location of molecules but is expensive. Once highly correlated

QH-protein pairs are identified, classifiers built on correlated QH features can be used

to predict protein concentrations in prostate tissue.

The proposed avenues of research in disease prognosis stemming from this disser-

tation are very exciting and will provide us with the knowledge to understand and

properly treat the most malignant diseases of today. Fulfillment of these goals will

realize the future of integrated diagnostics and personalized healthcare.
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Chapter 8

Appendices

Appendix A: Overview of Feature Selection Methods

A feature selection or pruning step can be used to identify a set of informative features

F̂ (xi) = [fû(xi)|û ∈
{

1, 2, ..., M̂
}

] where M̂ < M for each sample xi ∈ D, given the

labels Y ∈ {−1, 1} of n samples across the two paired object classes 1 and 2.

Student’s t-test

The feature pruning method described in [60,74,92] is based on t-statistics used to model

Gaussian distributions. For all xi ∈ D and for a specific feature u ∈ {1, 2, ...,M}, the

mean fµ+
u , fµ−u and variance fσ

2+
u , fσ

2−
u of the features for the +1 or -1 class were

computed. Hence

fµ+
u =

1

n+

∑
xa∈Dj

Y (xa)=+1

fu(xa), (8.1)

fσ
2−

u =
1

n−

∑
xb∈Dj

Y (xb)=−1

(fu(xb)− fµ−u )
2
. (8.2)

The values of fµ+
u , fµ−u , fσ

2+
u , fσ

2−
u were then used to calculate the information content

of each feature as

T (fu) =
fµ+
u − fµ−u√
fσ

2+
u
n+

+ fσ
2−

u
n−

. (8.3)

We can select the features with the greatest significance via the p-value associated

with the T -statistic given for each feature. An arbitrary significance threshold p < 0.05
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is commonly used to prune features fu shown to provide statistically significant p < 0.05

differences between the Gaussian distributions of the labels modeled via fu.

Wilcoxon Rank Sum Test

Wilcoxon rank-sum test (also known as the Mann-Whitney U test) [181] is a non-

parametric statistical hypothesis test often used as an alternative to the paired Student’s

t-test.

The data, fu, can be split using its labels into the n1 samples that belong to Y (xa) =

1 and the n2 samples that belong to class Y (xb) = −1, where n1 + n2 = n. These two

partitions can then be used to calculate the discrimination level between the samples

of the two classes

U = min

{( n2∑
i=1

bi −
n2(n2 + 1)

2

)
,
(
n1n2 −

n2∑
i=1

bi −
n2(n2 + 1)

2

)}
, (8.4)

where bi represents the rank of the sample i ∈ Y (xi). U can subsequently be used to

consult significance tables and obtain a p-value where p < 0.05 can be interpreted as a

significant difference between the medians of Y (xa) = −1 and Y (xa) = +1 for fu [181].

Appendix B: Overview of Machine Learning Classifiers

Support Vector Machines (SVMs)

Support vector machines (SVMs) were first introduced by Cortes and Vapnik [151] and

are based on the structural risk minimization (SRM) principle from statistical learning

theory. The SVM attempts to minimize a bound on the generalization error (error

made on test data). SVM-based techniques focus on “borderline” training examples

(or support vectors) that are most difficult to classify. The SVM projects the input

training data Gφ(xi), for xb ∈ STrj , onto a higher-dimensional space using the linear

kernel defined in Equation 8.5 as

Π(Gφ(xa), G
φ(xb)) = [Gφ(xa)]

TGφ(xb) + b, (8.5)



113

where b is the bias estimated on the training set STrj ⊂ D. The general form of the

SVM is given by

CSVM =

ns∑
β=1

ξβY (xb)Π(Gφ(xa), G
φ(xb)), (8.6)

where xβ, for β ∈ {1, 2, ..., ns} denotes the number of support vectors and the model

parameter ξ is obtained by maximizing the following objective function.

Λ(ξ) =

ns∑
β=1

ξβ −
1

2

ns∑
β,γ=1

ξβξγY (xβ)Y (xγ)Π, (8.7)

subject to the constraint
∑ns

β=1 ξβY (xβ) = 0 and 0 ≤ ξβ ≤ ω, where β, γ ∈ {1, 2, ..., ns},

and where the parameter ω controls the trade-off between the empirical risk (training

errors) and model complexity.

C4.5 Decision Trees (C4.5)

A special type of classifier is the decision tree, which is trained using an iterative

selection of individual features fu(xa) that are the most salient at the each node in the

tree [198]. One of the most commonly used algorithms for generating decision trees is

the C4.5 rules proposed by Quinlan [198]. The rules generated by this approach are

in conjunctive form such as “if A and B then C ” where both A and B are the rule

antecedents, while C is the rule consequence. Every path from the root to the leaf is

converted to an initial rule by regarding all the conditions appearing in the path as the

conjunctive rule antecedents while regarding the class label Y (xa) xa ∈ D, held by the

leaf as a rule consequence. Tree pruning is then done by using a greedy elimination rule

which removes antecedents that are not sufficiently discriminatory. The rule set is then

further refined by the way of the minimum description length (MDL) principle [199] to

remove those rules that do not contribute to the accuracy of the tree.
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Appendix C: Correlation Study between histologic and proteomic biomark-

ers

Recently, studies to connect morphometric features in pathology with molecular data

has become of particular interest for our understanding of disease [200]. Furthermore,

discovery of correlated histomorphomic and proteomic features could allow for the iden-

tification of proteins via an image-based histologic signature.

Following removal of the prostate via radical prostatectomy, QH features extracted

from cancer regions annotated by a pathologist can be correlated with corresponding

protein expression levels taken from the same regions.

Investigating correlated QH-protein pairs in biochemical recurrence

cohorts

We examined Spearman’s rank correlation between 242 QH and 650 protein expression

pairs under three cohorts:

1. linked CaP patients (n = 21) who have experienced BCR following RP

2. linked CaP patients (n = 19) who have not experienced BCR following RP.

3. all linked CaP patients (n = 40) who have undergone RP

Investigation into QH-protein correlations in these cohorts may provide valuable

biological insight towards the phenotypical and molecular mechanisms involved in bio-

chemical recurrence and progression of prostate cancer.

The breakdown in distribution of patients for this study is shown in Figure 5.5.

In Figure 8.1, we show the top correlated QH-protein expression pairs for each of

the cohorts investigated. High correlation was discovered across all three cohorts and

the overall results are shown in Chapter 8.
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Figure 8.1: Top correlated QH-protein expression pair for (a) patients who experienced
BCR, (b) patients who did not experience BCR, (c) all patients undergoing radical
prostatectomy

Discussion of top correlated QH-protein pairs across CaP patients with

failed radical prostatectomies

Calponin-1 is a thin flament-associate protein involved in the regulation of smooth

muscle contraction1. Tuxhorn et al. [201] found that while calponin staining was found

in normal tissue, there was decreased staining of calponin found in Gleason 3 prostate

cancer tissue (p < 0.001). Ramaswamy et al [202] noted in a study of molecular

signatures associated with metastasis, that many of the gene-expression signatures were

derived from non-epithelial components of the tumor, as is the case with calponin.

Its positive correlation with the perimeter to area ratio of the gland is related to a

breakdown in the glands. Smaller glands have a greater perimeter to area ratio, sug-

gesting that loss of calponin is related to the reduced structural integrity of the glands.

Involvement in the BCR cohort further suggests that calponin may be essential in pre-

venting extracapsular spread of CaP. Figure 8.2 demonstrates the ability of Calponin-1

to predict time to recurrence via a R2 = 0.4655 Spearman correlation.

1Information found via the UniProt (Universal Protein Resource) repository
http://www.uniprot.org/uniprot/P51911
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Figure 8.2: Predictive value of (a) Calponin-1, (b) membrane primary amine oxidase,
and (c) Min/Max distance ratio of glands is shown via correlation with time to recur-
rence following radical prostatectomy.

Discussion of top correlated QH-protein pairs across CaP patients with suc-

cessful radical prostatectomies

Fibrinogen has a dual functionality in yielding monomers that become fibrin as well a

role in platelet aggregation2. Fragments of fibrinopeptide A and fibrinogen alpha-chain

have been noted for the identification of cancer specific features, including prostate can-

cer. [203]. The non-specificity of this fragment for prostate cancer versus other cancers

and its inclusion in the NR cohort suggests that this protein is not a discriminator of

the progression of CaP but rather a discriminator of cancer and normal tissue.

Discussion of top correlated QH-protein pair across all patients undergoing

radical prostatectomy

Experts at the Hospital of University of Pennsylvania (HUP) have suggested that there

may be biological significance of membrane primary amine oxidase based on its ap-

pearance as a high correlation QH-protein pair and the glandular patterns found in

histological staining of membrane primary amine oxidase. This protein is also known

by copper amine oxidase, semicarbazide-sensitive amine oxidase (SSAO), VP97, or vas-

cular adhesion protein 1, and plays a role in monoamine oxidase activity3.

2Information found via the UniProt (Universal Protein Resource) repository
http://www.uniprot.org/uniprot/P02671

3Information found via the UniProt (Universal Protein Resource) repository
http://www.uniprot.org/uniprot/Q16853
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Monoamine oxidase A has been found to be one of the most highly differentially

overexpressed genes between high Gleason grade 4 and 5 and Gleason 3, suggesting a

role in the progression of prostate cancer [204,205]. Furthermore, it has been found to

be positively correlated with preoperative PSA levels and high grade Gleason 4 and 5

prostate cancers [206]. Its significance with regards to the min/max distance ratio, a

descriptor of the variance in glandular morphology, suggests that this pattern could be

used to identify presence of primary membrane amine oxidase via analysis of routine

H& E stained whole slides.

Summary of correlation study

It is interesting to note that the top correlated QH-protein pairs in these cohorts were

related to glandular morphology, where the shape of the glands are the hallmark for

prostate cancer and the basis of Gleason grading. The results of this correlation study

suggest that in a preliminary cohort, we were able to capture previously studied proteins

via quantitative histomorphometry via a high correlation coefficient R2 > 0.8 for BCR

and NR cohorts, and R2 > 0.7 for the entire study as show in Table 8.3.

To summarize:

• 15 QH-protein pairs found with correlation R2 > 0.8 across BCR cases only

• 65 QH-protein pairs found with correlation R2 > 0.8 across NR cases only

• 1 QH-protein pair found with correlation R2 > 0.7 across all 40 CaP cases

The top QH-protein pair found across all studies (Morph: Min/Max Distance Ratio

and SSAO expression) showed not only correlation to each other, but was also correlated

with time to recurrence following surgery as illustrated in Figure 8.2. Morph: Min/Max

Distance Ratio showed a Spearman correlation of R2 = 0.4118 and while SSAO showed

R2 = 0.4208 with time to recurrence.
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Figure 8.3: The most correlated of the statistically significantly (p < 0.05) predic-
tive QH-protein expression pairs are shown via (a) Wilcoxon Rank Sum Test and (b)
Student’s t-test.

Investigation of predictive QH-protein pairs

To identify predictive pairs, QH and protein expression features found to show statisti-

cally significant (p < 0.05) differences between BCR and NR patients via the Wilcoxon

Rank Sum test were correlated in order to mine potentially predictive QH-protein ex-

pression pairs. Preliminary work towards QH-based predictors of informative proteins

do not appear to be within reach thus far. The best correlation values found within the

significant cohort were found to have moderate correlation coefficient of approximately

0.4 as shown in Figure 8.3. Future work will aim to investigate these results on a cohort

which shows greater differentiation (ie. Gleason 3 versus Gleason 4 and 5), as there

were relatively few features that were statistically significantly predictive of BCR.

Appendix D: Comprehensive List of Quantitative Histomorphometry

and Proteomic Markers
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Table 8.1: Robust feature selection of quantitative histomorphometric features via
leave-one-out cross-validated Student’s t-test, Wilcoxon Rank Sum, and an intersection
of the two significance tests p < 0.05.

Student’s t-test

1: Voronoi:Area Disorder
2: Voronoi:Perimeter Disorder
3: Voronoi:Chord Disorder
4: Arch:Standard Deviation Nearest Neighbors in a 20 Pixel Radius
5: Arch:Standard Deviation Nearest Neighbors in a 30 Pixel Radius
6: CGT:mean tensor contrast energy
7: CGT:mean tensor contrast ave

Wilcoxon Rank Sum test

1: Arch:Standard Deviation Nearest Neighbors in a 20 Pixel Radius
2: Morph:Min / Max Invariant Moment 2
3: CGT:mean tensor contrast var
4: CGT:mean tensor intensity variance
5: CGT:range tensor entropy
6: CGT:range tensor energy
7: CGT:range tensor correlation
8: CGT:range tensor information measure1
9: CGT:range tensor information measure2

Intersection of Student’s t-test and WRST

1: Arch:Standard Deviation Nearest Neighbors in a 20 Pixel Radius
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Table 8.2: Robust feature selection of proteins via leave-one-out cross-validated Stu-
dent’s t-test, Wilcoxon Rank Sum, and an intersection of the two significance tests
p < 0.05.

Student’s t-test

1: Protein disulfide-isomerase A6
2: T-complex protein 1 subunit delta
3: Nidogen-1
4: ADP-ribosylation factor 3;ADP-ribosylation factor 1
5: Protein disulfide-isomerase
6: Glutathione S-transferase omega-1
7: Serine/arginine-rich splicing factor 3
8: Ras-related protein Rab-5C
9: ATP-dependent RNA helicase DDX3X;ATP-dependent RNA helicase DDX3Y
10: 40S ribosomal protein S17;40S ribosomal protein S17-like
11: Serine/arginine-rich splicing factor 7
12: 60S ribosomal protein L27
13: Proteasome subunit alpha type-4;Proteasome subunit alpha type
14: Collagen alpha-1(VIII) chain;Vastatin

Wilcoxon Rank Sum test

1: Protein disulfide-isomerase A6
2: T-complex protein 1 subunit delta
3: ADP-ribosylation factor 3;ADP-ribosylation factor 1
4: Protein disulfide-isomerase
5: Ras GTPase-activating-like protein IQGAP2
6: T-complex protein 1 subunit beta
7: Ras-related protein Rab-5C
8: ATP-dependent RNA helicase DDX3X;ATP-dependent RNA helicase DDX3Y
9: 40S ribosomal protein S17;40S ribosomal protein S17-like
10: Serine/arginine-rich splicing factor 7
11: Tubulin alpha-1A chain;Tubulin alpha-3C/D chain;Tubulin alpha-3E chain
12: Laminin subunit alpha-4
13: Collagen alpha-1(VIII) chain;Vastatin
14: Tubulin–tyrosine ligase-like protein 12

Intersection of Student’s t-test and WRST

1: Protein disulfide-isomerase A6
2: T-complex protein 1 subunit delta
3: ADP-ribosylation factor 3;ADP-ribosylation factor 1
4: Protein disulfide-isomerase
5: Ras-related protein Rab-5C
6: ATP-dependent RNA helicase DDX3X;ATP-dependent RNA helicase DDX3Y
7: 40S ribosomal protein S17;40S ribosomal protein S17-like
8: Serine/arginine-rich splicing factor 7
9: Collagen alpha-1(VIII) chain;Vastatin
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Table 8.3: Spearman’s Rank correlation of quantitative histomorphometric features
and protein expressions for the three previously defined cohorts

Cohort 1: BCR (n = 21)

QH feature Protein Correlation

1: Morph:Mean Perimeter Ratio Calponin-1 0.834
2: Morph:Min / Max Smoothness Galectin-1 0.832
3: GSG:Number of Edges Cytoplasmic dynein 1 heavy chain 1 0.832
4: Morph:Mean Distance Ratio Calponin-1 0.829
5: Voronoi:Area Minimum / Maximum Acetyl-CoA acetyltransferase, mitochondrial 0.826
6: Morph:Mean Area Ratio Calponin-1 0.825
7: CGT:range tensor contrast energy Nucleoside diphosphate kinase 0.820
8: Voronoi:Perimeter Standard Deviation Beta-2-glycoprotein 1 0.817
9: Morph:Median Invariant Moment 2 Calponin-1 0.812
10: Morph:Mean Variance of Distance Calponin-1 0.808
11: Haralick:mean intensity intensity variance Mitochondrial 2-oxoglutarate/malate carrier protein 0.808
12: Morph:Min / Max Standard Deviation of Distance Spectrin alpha chain, brain 0.806
13: Morph:Min / Max Variance of Distance Spectrin alpha chain, brain 0.806
14: Morph:Standard Deviation Area Ratio Copine-3 0.806
15: Morph:Median Perimeter Ratio Hemoglobin subunit beta 0.801

Cohort 2: NR (n = 19)

1: Morph:Median Invariant Moment 2 Fibrinogen alpha chain;Fibrinopeptide A;Fibrinogen alpha chain 0.893
2: Morph:Mean Fourier Descriptor 7 Fibrinogen alpha chain;Fibrinopeptide A;Fibrinogen alpha chain 0.889
3: Morph:Mean Fourier Descriptor 7 Biglycan 0.886
4: Morph:Median Invariant Moment 6 Fibrinogen alpha chain;Fibrinopeptide A;Fibrinogen alpha chain 0.885
5: Morph:Mean Long/Short Distance Ratio Biglycan 0.884
6: Morph:Median Fourier Descriptor 7 Prelamin-A/C;Lamin-A/C 0.877
7: Morph:Mean Fourier Descriptor 7 Puromycin-sensitive aminopeptidase 0.858
8: Morph:Median Long/Short Distance Ratio Biglycan 0.856
9: Morph:Median Invariant Moment 2 Biglycan 0.854
10: Morph:Median Long/Short Distance Ratio Serotransferrin 0.854
11: Morph:Median Invariant Moment 1 Fibrinogen alpha chain;Fibrinopeptide A;Fibrinogen alpha chain 0.849
12: Morph:Median Invariant Moment 2 Puromycin-sensitive aminopeptidase 0.847
13: CGT:range tensor contrast energy Ras-related protein Rab-7a 0.846
14: Morph:Median Standard Deviation of Distance Endoplasmic reticulum resident protein 29 0.842
15: Morph:Median Variance of Distance Endoplasmic reticulum resident protein 29 0.842
16: Morph:Mean Long/Short Distance Ratio Fibrinogen alpha chain;Fibrinopeptide A;Fibrinogen alpha chain 0.840
17: Morph:Mean Long/Short Distance Ratio Serotransferrin 0.837
18: Morph:Standard Deviation Fourier Descriptor 1 Prelamin-A/C;Lamin-A/C 0.833
19: Morph:Median Standard Deviation of Distance Lysosome-associated membrane glycoprotein 2 0.833
20: Morph:Median Variance of Distance Lysosome-associated membrane glycoprotein 2 0.833
21: Morph:Median Standard Deviation of Distance Prostatic acid phosphatase;PAPf39 0.832
22: Morph:Median Variance of Distance Prostatic acid phosphatase;PAPf39 0.832
23: Morph:Median Perimeter Ratio Lysosome-associated membrane glycoprotein 2 0.831
24: Morph:Median Fourier Descriptor 7 Puromycin-sensitive aminopeptidase 0.830
25: Morph:Mean Fourier Descriptor 7 Prelamin-A/C;Lamin-A/C 0.830
26: Morph:Standard Deviation Fourier Descriptor 2 Vitronectin;Vitronectin V65 subunit;Vitronectin V10 subunit;Somatomedin-B 0.830
27: Morph:Min / Max Fourier Descriptor 10 Keratin, type II cytoskeletal 2 epidermal 0.828
28: Morph:Standard Deviation Invariant Moment 5 Interleukin enhancer-binding factor 2 0.828
29: Morph:Median Invariant Moment 1 Biglycan 0.826
30: Morph:Mean Invariant Moment 1 Fibrinogen alpha chain;Fibrinopeptide A;Fibrinogen alpha chain 0.825
31: Morph:Median Fourier Descriptor 7 Fibrinogen alpha chain;Fibrinopeptide A;Fibrinogen alpha chain 0.823
32: Morph:Median Invariant Moment 2 Serotransferrin 0.823
33: Morph:Standard Deviation Fourier Descriptor 2 Fibrinogen alpha chain;Fibrinopeptide A;Fibrinogen alpha chain 0.823
34: Morph:Median Perimeter Ratio Fibrinogen alpha chain;Fibrinopeptide A;Fibrinogen alpha chain 0.822
35: Morph:Standard Deviation Fourier Descriptor 2 Filamin-B 0.821
36: Morph:Median Perimeter Ratio Trifunctional enzyme subunit beta, mitochondrial;3-ketoacyl-CoA thiolase 0.820
37: Morph:Median Smoothness Fibrinogen alpha chain;Fibrinopeptide A;Fibrinogen alpha chain 0.819
38: Morph:Mean Fourier Descriptor 7 Serotransferrin 0.818
39: Morph:Standard Deviation Fourier Descriptor 6 T-complex protein 1 subunit epsilon 0.818
40: Morph:Standard Deviation Fourier Descriptor 6 Macrophage migration inhibitory factor 0.818
41: Morph:Median Invariant Moment 2 Prostate-specific antigen 0.816
42: GSG:mean edge length Lysosome-associated membrane glycoprotein 2 0.816
43: Morph:Median Long/Short Distance Ratio Fibrinogen alpha chain;Fibrinopeptide A;Fibrinogen alpha chain 0.815
44: Morph:Median Fourier Descriptor 4 Lysosome-associated membrane glycoprotein 2 0.813
45: Morph:Standard Deviation Variance of Distance Lamin-B2 0.812
46: Morph:Standard Deviation Fourier Descriptor 5 Fibrinogen alpha chain;Fibrinopeptide A;Fibrinogen alpha chain 0.812
47: Morph:Median Standard Deviation of Distance Retinol dehydrogenase 11 0.812
48: Morph:Median Variance of Distance Retinol dehydrogenase 11 0.812
49: Arch:Standard Deviation Nearest Neighbors in a 10 Pixel Radius T-complex protein 1 subunit epsilon 0.811
50: Morph:Median Invariant Moment 6 Biglycan 0.810
51: Morph:Mean Invariant Moment 4 T-complex protein 1 subunit epsilon 0.809
52: Morph:Median Invariant Moment 4 Prelamin-A/C;Lamin-A/C 0.807
53: Morph:Mean Distance Ratio Lysosome-associated membrane glycoprotein 2 0.807
54: Morph:Mean Invariant Moment 6 rRNA 2-O-methyltransferase fibrillarin 0.807
55: CGT:range tensor contrast ave rRNA 2-O-methyltransferase fibrillarin 0.807
56: Morph:Median Perimeter Ratio Prelamin-A/C;Lamin-A/C 0.806
57: Morph:Standard Deviation Perimeter Ratio Isocitrate dehydrogenase [NADP], mitochondrial;Isocitrate dehydrogenase [NADP] 0.805
58: Morph:Median Invariant Moment 6 Vitronectin;Vitronectin V65 subunit;Vitronectin V10 subunit;Somatomedin-B 0.804
59: Morph:Standard Deviation Fourier Descriptor 1 Fibrinogen alpha chain;Fibrinopeptide A;Fibrinogen alpha chain 0.804
60: Morph:Median Long/Short Distance Ratio Complement C3 0.802
61: Morph:Median Invariant Moment 5 Puromycin-sensitive aminopeptidase 0.802
62: Arch:Avg. Nearest Neighbors in a 20 Pixel Radius Phosphatidylethanolamine-binding protein 1 0.802
63: Morph:Median Invariant Moment 2 Lysosome-associated membrane glycoprotein 2 0.802
64: Morph:Mean Perimeter Ratio Trifunctional enzyme subunit beta, mitochondrial;3-ketoacyl-CoA thiolase 0.802
65: Morph:Median Fourier Descriptor 7 Vimentin 0.800

Cohort 3: All cases (n = 40)

1: Morph:Min / Max Distance Ratio Membrane primary amine oxidase 0.722
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