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ABSTRACT OF THE DISSERTATION 

 

Statistical Applications to Cardiovascular Disease Research 
 

By KEZHEN LIU 

Dissertation Director: Javier Cabrera 

Cardiovascular disease (CVD) is the most frequent cause of deaths worldwide [1]. Scien-

tists have done and are stilling doing a high volume of research on this area, hoping to 

help people who are already suffering from the disease and also to prevent those at high 

risk of getting CVD. Statistical applications play a very important role in most of these 

research activities and a better utilization of the right statistical methodology for a specif-

ic study would definitely make the research outcomes more reliable and eventually being 

beneficial to the human kind. This dissertation studies several scenarios in cardiovascular 

disease research where traditional statistical methods may not be applicable. And we pro-

posed corresponding practical solutions or modifications to existing methods to better fit 

the problems case by case.  

In the first part, we are focusing on using the gain in life expectancy to assess the treat-

ment effect of an antihypertensive therapy for stroke. We first propose a framework for 

estimating this quantity by calculating the area between estimated survival curves given 

by two comparative treatments. And then, in order to better assess the variability of our 



 
 

iii 
 

estimate especially with small sample size, we propose a new bootstrap method for ob-

taining confidence interval for this quantity. We also propose the corresponding bootstrap 

testing procedure to test the null hypothesis. 

The second part of the dissertation is about meta-analysis in CVD research. We discover 

the non-normal behavior of the test statistics when sample size in each study of the meta-

analysis is small. We use t distribution to approximate the underlying distribution and 

propose a simple formula to calculate the degree of freedom of the t distribution based on 

the sample size in each study as well as the number of studies.  

Finally, we modify a new clinical design called Simultaneous Global Drug Development 

Program (SGDDP) which can be more efficient for evaluating the treatment effect on 

diseases such as CVD where ethnicity  have a potential impact. We add an additional as-

sumption to the original test to make it unbiased. We also show the performance of the 

program after the modification. 
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Chapter 1 

Introduction 

1.1 Motivation  

Cardiovascular disease (CVD) is a group of diseases or disorders involving the heart and 

blood vessels [2]. It also refers to diseases that affect the cardiovascular systems in the 

human body [3]. Cardiovascular diseases draw a lot of attentions from scientists in differ-

ent areas not only because they have serious symptoms such as a heart attack or stroke, 

but more importantly, they are the leading cause of deaths globally [1, 2] and are project-

ed to remain the single leading cause of death at least in the following 10-15 years[4]. 

Scientists have done and are stilling doing various types of research on this area, trying 

their best to help people who are suffering from the CVD and also to prevent those at 

high risk of getting it.  

For many years, statistical applications have played a very important role in most of these 

research activities. For example, statistical data analysis on the information from patients 

with CVD can help identify the potential risk factors that will increase the probability of 

CVD. Clinical trials with appropriate designs can evaluate the most efficient intervention 

or treatment for certain cardiovascular disease or for patients from specific sub-

population. And a better utilization of the right statistical methodology for the specific 

objective in this kind of research would definitely make the outcomes or conclusions 

more reliable and eventually be beneficial to the human kind. There are already plenty of 

works have been done on how to apply different statistical methods to medical research 
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in general [5-7]. However, there are always times when those classical methods don’t fit 

so well for specific practical problems. The motivation of this dissertation is to make con-

tributions to statistical applications in medical research, or more specifically, for cardio-

vascular disease research by finding better solutions or methods for the practical prob-

lems that we found while collaborating with cardiologists at the cardiovascular institute 

of New Jersey. 

This dissertation studies several scenarios in cardiovascular disease researches where tra-

ditional statistical methods may not be applicable. And we proposed corresponding prac-

tical solutions or modifications to existing methods to make them fit the problems better 

case by case. 

 

1.2 Assessing Life Extension in Survival Analysis 

The Systolic Hypertension in the Elderly Program (SHEP) trial was a randomized, place-

bo-controlled, clinical trial designed to assess the effect of antihypertensive drug treat-

ment in reducing the risk of stroke in patients with isolated systolic hypertension [8, 9]. 

While, during the data analysis project whose objective is to show the benefits of treat-

ment in terms of survival time [9], average life extension is believed to be the best statis-

tic to be used here. Because this was a study with a very long follow-up time (22 years) 

[9] and the objective it to evaluate the treatment effect not only during the clinical trial 

but also the for the “legacy effect” during the follow-up time, which has already been 

showed in other studies [10-13].  And the gain in life expectancy or average life exten-
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sion is the most intuitive and reasonable statistic to show that effect and it can be easily 

interpreted. 

It turns out that this statistic is equivalent to the difference of mean survival times, or re-

stricted mean survival times [14, 15] in some case scenarios, between two groups. And 

because the mean survival time, or restricted mean survival time is equal to the area un-

der survival curve [16], we first propose a framework for estimating the average life ex-

tension by calculating the area between estimated survival curves given by two groups, 

treatment and placebo. Both Kaplan-Meier estimator and Cox proportional hazard model 

are utilized to estimate the survival curves. And then, in order to assess the variability of 

our estimate, we propose a new Bootstrap method for obtaining bootstrap confidence in-

terval for this quantity, instead of using normal approximation. We also propose the cor-

responding bootstrap testing procedure to test the null hypothesis that two groups have 

the same expected survival.  

In the estimating step, we estimate the survival curves first via non-parametric Kaplan-

Meier estimator to reflect the observed survival probabilities in the study. We then use 

semi-parametric Cox proportional hazard model and obtain the direct adjusted average 

survival curves. By doing this, we can adjust for the potential imbalance of covariates 

between the two treatments and also we can predict survival probabilities. 

With the survival curves estimated, the gain of treatment in terms of lifetime extension is 

estimated by the difference of the area under them. Furthermore, in order to assess the 

variability of our estimate, the easier way would be estimating the variance of the re-

stricted mean survival time for each curve and then used normal approximation for hy-
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pothesis testing or confidence interval calculation. But considering that we don’t know 

the underlying distribution of the true survival time and it may not be normally distribut-

ed. The approximation may lead to a less accurate result especially when the sample size 

is not large. To avoid such potential problem, we propose a new procedure based on 

bootstrap method for obtaining confidence interval for this quantity. We also propose the 

corresponding bootstrap testing procedure to test the null hypothesis that two treatments 

have the same expected survival.  

The bootstrap method is specially recommended for small and moderate sample sizes and 

datasets from clinical trials like SHEP are often large. But if we constrain ourselves to 

subjects who live longer than a fix period of K years, then the datasets will become 

smaller and the bootstrap can be very useful. In cardiovascular disease research, this is a 

very timely application because although it is known that cardiovascular procedures tend 

to prolong life by solving critical health issues, it is not proven that in the long run, the 

side effects of the cardiovascular procedures would not worsen the outcome. For example 

the treatment may onset other diseases such as cancer and the treatment benefits may be 

short-lived. As part of our ongoing collaboration with the cardiologists, we are currently 

looking at these issues with our bootstrap method and hopefully we will publish these 

results in the near future. 

 

1.3 Meta-Analysis with Small Sample Sizes 

Meta-analysis is a statistical technique to combine results of individual studies that with 

similar or related research hypotheses under a given single set of assumptions and condi-
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tions. The advantage of this method is to increase the power of the analysis by making 

the best use of all the information we have gathered across all different individual studies. 

It is widely used in different research areas including cardiovascular disease research. 

And there are plenty of good examples in existing literatures. For example, Ernst et al 

(1993) [17] conducted a meta-analysis with six epidemiologic studies that were found 

from 1980 to 1992 on fibrinogen and cardiovascular disease to show the association be-

tween fibrinogen and subsequent myocardial infarction or stroke. Wald et al (2002) [18] 

showed the significant associations between homocysteine and three cardiovascular dis-

eases with a meta-analysis using (a) 72 studies in which the prevalence of a mutation in 

the MTHFR gene (which increases homocysteine) was determined in cases (n=16849) 

and controls, and (b) 20 prospective studies (3820 participants) of serum homocysteine 

and disease risk.  

There are several well developed statistical algorithms in meta-analysis to combine the 

information from different studies, given the types of data sets. One of them is the in-

verse-variance method, which weights the estimate of the effect of interest in each study 

by its own variance and adds them together to get the summary effect estimate. This is 

the most commonly used one for datasets with continuous response variable. And the test 

statistic is just the summary estimate divided by its standard deviation, which is assumed 

to follow a standard normal distribution under the null hypothesis. This can be justified 

be the central limit theorem because it can be considered as a weighted average. And 

when the number of studies and sample size in each study are large, the approximation 

should work well.   
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In most practical studies, researchers usually apply this method directly without consider-

ing whether it is appropriate for the particular case. While, unfortunately, people should 

be more precautious if they want the test to have a correct level of type I error. Because 

our study shows that when the sample size in each individual study is not large enough, 

and the number of studies is also not sufficiently large, the distribution of the test statistic 

is far away from the standard normal distribution. As a result, it could lead to an inaccu-

rate level of type one error. This is not a rare scenario in practice, because the original 

motivation of a meta-analysis is to more powerfully estimate the true effect size as result 

from a single study may not be reliable, especially when the sample size is small. Basi-

cally, the application of meta-analysis is mostly essential when there is a set of single 

studies with small sample sizes, which happens sometime in cardiovascular disease re-

searches. As sometimes, the treatment or risk factor we are interested in for CVD is rare, 

the sample sizes won’t be very large. For example, for studying the relationship between 

hamstring anterior cruciate ligament (ACL) reconstructions in females and magnetic res-

onance imaging (MRI), we find 4 similar studies with sample sizes smaller than 10 for 

each single study [19-22].  

In this dissertation, we first prove the severity of this problem by a set of simulations. 

Then in order to avoid that problem, we propose a new method to approximate the under-

lying true distribution of the test statistic by a t-distribution. We also propose a simple 

formula to calculate the degree of freedom of the t distribution based on the sample sizes 

in each study as well as the number of studies.  

 

http://dict.cn/inaccurate
http://dict.cn/inaccurate
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1.4 Weighted-Z test in Clinical Design 

Ethnicity has always been believed to be a factor that has potential impact on the treat-

ment effect. It was not a major concern for a clinical trial when it is performed in a region 

with the proportions of different races similar across all subareas and the treatment will 

only be applied in the same region. However, as nowadays, everything goes globe and 

the distribution of different races are also changing dramatically in some regions. Ethnic 

factor becomes more and more important in medical research and drug development. And 

as for the cardiovascular disease research we are focusing here, there are already plenty 

of studies showed that ethnicity has effect on different CVDs directly or associating with 

those well known risk factors [61-64]. And in order to control or study the relationship 

between ethnicity and treatment effect, some statistical methodology has already been 

proposed. Part of this dissertation will focus on how to combine efficacy information 

from different ethnic groups to help testing the treatment effect on one targeted ethnic 

group. 

Huang et al (2012) [65] proposed a new clinical design for the Simultaneous Global Drug 

Development Program (SGDDP) to assess the impact of ethnic factors on the effect of a 

new treatment for a targeted ethnic (TE) population. The idea is to borrow efficacy in-

formation from clinical trials that have already been carried out in other countries or re-

gions, so that the sample sized need for the local clinical trial with patients only from tar-

geted ethnic population can be reduced. While at the same time, the power of the test re-

mains at certain level. They used weighted-Z test to combine the information collected 
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from the TE and non-TE (NTE) subgroups in the SGDDP based on the fundamental as-

sumption on their shared biological commonality.  

Several designs with similar objective have already been proposed in literatures. For ex-

ample, Hsiao et al. (2005) [66] proposed a two-stage design and provided sample size 

calculation for the LCT at the second stage. Lan et al. (2005) [67] applied weighted-Z 

tests to combine the information from the MRCT and the LCT. They all share the same 

idea as in Huang et al (2012) [65], which is to borrow information from other studies by 

down weighting it and use a weighted-Z test to combine all the information together. 

While, the main different here is the way how the information is combined or grouped for 

the final test.  

In those previous designs, they believed that the stage or the location of the study is key 

factor that has potential impact on the treatment effect. So the information from previous 

stage should be down weighted. While in the SGDDP design, because the studies in dif-

ferent location and stage have the same key design features, the ethnic factor is the one 

believed to be the most important. As a result, after all the information is collected from 

all studies, patients will be grouped based on their ethnicities and those from non-targeted 

ethnic population will be down weighted. 

Overall, to justify the way that the information is used for the final efficacy test, we must 

to emphasize the fundamental assumption. On one hand, all patients from different ethnic 

population share certain level of biological commonality so that we can borrow infor-

mation from other ethnic group to help testing the treatment effect for the targeted group. 

While on the other hand, there are still potential differences between them and that’s why 
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we cannot simply treat every patient equally, and have to down weight patients from oth-

er ethnic groups. This assumption makes this SGDDP design reasonable but also makes 

the distribution of the final test statistics much more complicated. It turns out that if we 

treat it simply as having a standard normal distribution under the null hypothesis, the test 

would be biased, even if we assume that the endpoints for all ethnic groups having nor-

mal distribution.  

In order to make the test unbiased, we mathematically formulated the fundamental as-

sumption as proportional treatment effects between both subgroups. We used it to more 

rigorously describe the hypotheses, and showed the unbiasedness of the weighted-Z test 

under the new assumption. Moreover, to study the loss of efficiency from down 

weighting the NTE information in Huang (2012)’s design, we compare the power of their 

test with that of the uniformly most powerful (UMP) test, which we prove to be also a 

weighted-Z test. We discuss that the choice of weight should balance the maximization of 

power when the proportional assumption holds and the minimization of bias otherwise.  
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Chapter 2 

Assessing Life Extension from Medical Interventions 

2.1 Introduction 

Comparing outcomes of several types of treatments or interventions is an important task 

in clinical trials as well as retrospective cohort studies in epidemiology. For simplicity 

and without loss of generality, in our study, we compare two treatments and refer them as 

the treatment and the control respectively. Among various measurements in assessing the 

relative efficacy for a time to event outcome, the median survival time and the hazard ra-

tio are two commonly used statistics. While for studies with long time follow-up after the 

clinical trial, the overall gain in life expectancy is often more of interest, especially when 

the treatment effect is believed to persist even after the trial. This, also called “legacy ef-

fect”, has already been discovered in several cardiovascular disease related area, such as 

hypertension, hyperlipidemia [9-13]. And besides, this quantity is also much straight for-

ward for people to link it with the treatment effect, because it can directly represent the 

number of days that the participants in the active group lived longer compared with con-

trol. 

Statistically, this gain in life expectancy can be  measured by estimating the average 

number of days that the survival of treatment patients exceeded that of control patients, or 

equivalently by the area between the two survival curves from the two treatment arms [23, 

24]. While in practice, there is usually a maximum follow-up time, like the end of a clini-
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cal trial. The survival curves estimated from those kinds of data are limited up to certain 

time point maxT . As a result, it is hard to estimate the actual mean survival time without 

extrapolate the survival curve beyond time point maxT . Irwin (1949) [14] proposed an es-

timator for the expectation of life restricted to this time maxT , called restricted mean sur-

vival time. It is equal to the area under the survival curve form 0 to maxT . Then more pre-

cisely, the gain in life expectancy obtained from this method should be consider as a re-

stricted gain up to maxT .   

There are several steps in the estimating and testing of the survival gains: 1) estimating 

the survival probabilities for the subjects from the two treatment groups; 2) calculating 

the area under the two curves and its standard error; 3) computing the p-value of the null 

hypothesis that there is no survival gain between the two treatments. 

In the first step, the Kaplan-Meier estimator is the most straightforward method. It repre-

sents the observed survival estimates and is quite accurate when the distributions of co-

variates in the two treatment arms are balanced. When we have imbalance of the distribu-

tions, we need to adjust for the covariates with regression models such as semi-

parametric model (Cox regression) and parametric models (Weibull, exponential, etc.) 

[25]. Individual survival curves are predicted from the regression results and expected 

survival curves can be obtained in several ways such as mean covariate method [26] or 

direct adjustment [28]. The mean covariate method applies the parameter estimates from 

a regression to produce one survival curve in each treatment arm for a “typical” partic-

ipant who assumes average values for all the covariates. Though it is easy to calculate, it 

lacks good interpretation and can be misleading in some circumstances [26, 27]. The di-
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rect adjustment method computes a weighted average of the individual survival curves, 

with weights proportional to the number of individuals at each level of the covariates. 

Since it is a clear improvement over the average covariate method, we adopt the approach 

in our study. As for the choices of regression models, parametric models are only occa-

sionally used in the analysis of survival data although they may offer advantages over 

Cox model. However, they involve stronger assumptions [29]. Therefore, we will only 

consider Cox regression model here. 

With the estimated survival curves from both treatment arms, the gain of survival is esti-

mated by the difference of the area under them. Furthermore, we would like to estimate 

the precision of this estimator and conduct statistical hypothesis testing for no treatment 

effect. Because of the correlation, the variance estimation of the survival curves is quite 

complicated [30] and it is even more so when we take consideration of entire time region 

and the difference of the area under two curves. To overcome this problem, we propose 

to adopt the Bootstrap sampling method [31] to obtain a bootstrap confidence interval of 

the survival gain and a bootstrap p-value to test a hypothesis that the two treatment arms 

have the same expected survival. 

The rest of the chapter is arranged as follows. After reviewing the basic background in 

survival analysis, section 2.2 presents the framework to estimate survival curves, the area 

differences between curves, a bootstrap confidence intervals and a p-value for hypothesis 

testing. Section 2.3 provides a theoretical proof of consistency of bootstrap estimator. 

Section 2.4 conducts simulation studies to evaluate the effectiveness of this framework. 

Section 2.5 analyzes a real data set from a clinical trial. Section 2.6 concludes the chapter 

with discussion and future research directions. 
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2.2 Methods 

2.2.1 Notations  

Assume that there are n subjects receiving a same treatment in a study, which studies an 

event of interest, for example, death due to some cause. Let iT denote the survival time 

for the thi subject. Assume that iT , ..., nT are continuous random variables identically dis-

tributed and with a cumulative distribution function (.)F  and a density function (.)f . De-

fine the survival function  

 ( ) ( ) 1 ( ) ( )
t

S t P T t F t f u du
∞

= > = − = ∫   (2.2.1) 

Since time to event data is sometimes censored due to end of the follow-up period of the 

study or dropout of subjects from the study, we generally observe a sample of pairs ( iT ,

iδ ), 1i = , ..., n  where 1iδ =  if the subject has an event and 0iδ =  if the subject is cen-

sored. Note that there are several types of censorship [33]. In this dissertation we focus 

on the right censoring type of time to event data. In addition we observe a list of covari-

ates denoted by iX  that identify the demographic and medical characteristics of the thi

patient.  
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2.2.2 Estimating survival functions  

Assume the observed times for the n subjects are 1 2 .nt t t≤ ≤ ≤  For each it , we denote 

in as the number of subjects who are at risk just prior to time it , and id  as the number of 

events at time it . The Kaplan-Meier estimator [32] is the nonparametric maximum likeli-

hood estimate of ( )S t  with a product of the form 

 ˆ( )
i

i i

t t i

n dS t
n<

−
=∏   (2.2.2) 

Note that when there is no censoring, in  is just the number of survivors just prior to time

it . With censoring, in  is the number of survivors less the number of losses (censored cas-

es). It is only those surviving cases that are still being observed (have not yet been cen-

sored) that are “at risk” of an (observed) event. 

The Kaplan-Meier is quite accurate when the distributions of covariates in the two treat-

ment arms are balanced. When we have imbalance of the distributions, we need to adjust 

for the covariates with regression models. We define the hazard function (.)h  as 

 ( )( ) log ( ),
( )

f t dh t S t
S t dt

= = −   (2.2.3) 

which is the ratio of the density function to the survival function. Hence, the hazard func-

tion is related to the survival function: 
0

( ) exp[ ( ) ]
t

S t h u du= −∫ . The semi-parametric Cox 

proportional hazard model [34] incorporates covariates X in the form: 
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 0( ) ( ) exp( ),Th t X h t Xβ=   (2.2.4) 

where β  is a vector of regression coefficients and 0 ( )h t  is a baseline survival function. 

The survival function can be written in terms of a base survival function 

0 00
( ) exp[ ( ) ]

t
S t h u du= −∫ : 

 exp( )
0 00

( ) exp( ( ) exp( ) ) ( )
Tt T XS t X h u X du S t ββ= − =∫   (2.2.5) 

This can be estimated by ˆexp( )
0

ˆ ˆ( ) ( )
T XS t X S t β= where 0

ˆ ( )S t is the estimated baseline sur-

vival function by the Aalen-Nelson estimator [35] and β̂  is the estimated coefficient 

from Cox regression based on a partial likelihood approach. 

Based on the direct adjustment method, we can obtain the average survival curves for the 

subjects in one treatment arm by averaging the individual curves as 

 ˆexp( )
0

1

1ˆ ˆ( ) ( )
T

i

n
X

i
S t X S t

n
β

=

= ∑   (2.2.6) 

When some of the predictors do not satisfy proportional hazards assumption, we may 

stratify them to get around the problem. In the case of a stratified Cox regression model 

[36], the above becomes 

 
ˆexp( )

0
1 1

1ˆ ˆ( ) ( )
j T

ij

nJ
Xj

j i
S t X S t

n
β

= =

= ∑∑   (2.2.7) 
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where J  is the number of strata, jn  is the number of subjects in the thj stratum, n  is the 

total number of subjects, 0
ˆ ( )jS t is the estimated baseline survival function for the thj stra-

tum. 

 

2.2.3 Restricted mean survival time 

One important issue in analyzing survival data is to compare the survival function ( )trtS t  

of a treatment group with that of a control group ( )ctrS t . The quantity to compare here is 

the expectation of time to event variable T. Since 

 
0 0 0

( ) ( ) (1 ( )) ( ) ,E T uf u du F u du S u du
∞ ∞ ∞

= = − =∫ ∫ ∫   (2.2.8) 

which is the area under the survival curve, therefore treatment survival gain (TSG ) is de-

fined as 

 ( )0
( ) ( ( ))trt ctr trt u ctrTSG E T T S S u du

∞
= − = −∫   (2.2.9) 

which is the area between two survival curves from the two treatment groups.  

In order to estimate the ( )E T  or TSG , we have to first estimate the survival curves from 

0 to ∞ . However in practice, this cannot be achieved directly most of the times. Because 

in most studies, there is a maximum follow-up time and the survival curves estimated 

from those studies are only up to certain time point T . There are different methods pro-

posed to deal with this problem [35, 37, 38]. In this chapter, we are going to use restricted 

http://dict.cn/to%20achieve
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mean survival time proposed by Irwin (1949) [14]. Let maxT  be the maximum follow-up 

time, then the restricted mean of survival time up to maxT , max( )Tµ  is defined as  

 max

max max 0
( ) (min( , )) ( ) .

T
T E u T S u duµ = = ∫   (2.2.10) 

Then, the TSG based on restricted means from both arms will simply follow by its defini-

tion: 

 max max( ) ( )trt ctrTSG T Tµ µ= −   (2.2.11)  

And ( )S u here can be estimated by either KME or Cox regression model. While, do no-

tice that when covariates are involved, (2.2.6) or (2.2.7) shows that the estimated survival 

function depends on the values of X . When the distribution of X  is not balanced for the 

two treatment arms, the KM estimator approach produces misleading results which com-

pares the survival gains between two difference groups of subjects. 

 

2.2.4 Estimation of the area between two survival curves 

We estimate the TSG  in the following steps: 

1. Obtain the two estimated curves ˆ ( )trtS t  and ˆ ( )ctrS t either by their corresponding 

Kaplan-Meier estimators or by direct adjusted survival curves from Cox regres-

sion described in Section 2.2.2. In general, the two estimated curves are expressed 

as step functions. We assume that ˆ ( )trtS t takes value iy  in the interval 1[ , )i it t−  for 
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1i = , ..., n  and 0 0t = ; ˆ ( )trtS t takes value jz  in the interval 1[ , )j js s−  for 1j = , ..., 

m  and 0 0s = . And assume there is a maximum follow-up time, or end time for 

whole studyω , where max( , )m ns tω ≥ . 

2. Suppose that nt ω<  then we set the interval for the integral to be *[0, ]nt , with 

*nt ω= , and *n ny y= . Essentially we extend the estimated survival curve of the 

treatment group to the maximum follow-up time ω  based on the last point of that 

curve. Note that * 1n n= + . Same procedures will be taken if ms ω< . 

3. Estimate TSG  by the trapezoidal method over the interval [0, ]ω : 

 

* *

1 1
1 1

( ) ( )
n m

i i i j j j
t j

TSG y t t z s s− −
= =

= − − −∑ ∑   (2.2.12) 

This algorithm uses the fact that the estimated survival curves in real data analysis re-

gardless which estimating method is utilized are step functions and hence the area under 

the curve can be calculated without error as a sum of rectangular areas. 

 

2.2.5 Confidence interval and p-value by normal approximation 

By the procedure above, the estimate for the treatment gain in terms of life extension can 

be easily calculated. The next step would naturally be making some statistical inference 

based on that to see how precise the estimate is or whether the TSG is statistically signifi-

cant. In order to do that, we need to know the underlying distribution of the estimate or at 

least an approximate one. However, by (2.2.12) we can see that the distribution of TSG  
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won’t be in a simple form, especially when the underlying distribution of time to event is 

unknown. But since this statistic is still a mean of survival times in a general way, normal 

approximation would definitely to be considered first.   

Now let’s just consider the simplest case here. Suppose iy and jz  here in (2.2.12) are all 

from Kaplan-Meier estimator, then the variance of the restricted mean can be estimated 

by   

 
2

1

ˆˆ ˆ( ) ( )
( )i

D
i

t
i i i i

dV u S t dt
n n d

ω

=

 =    −∑ ∫   (2.2.13) 

in general [39]. Here the ˆ( )S t  is the Kaplan-Meier estimate of the survival function. it s

are the event times and ordered as 1 20 Dt t t< < < <  and id are the number of individu-

als with an event at corresponding event time it . While in  is the number of individuals at 

risk just before event time it . And since TSG is just a linear function of two independent 

restricted means, the variance of TSG the summation of the variances from both treat-

ment and control groups calculated by (2.2.13). And once we have ˆ( )V TSG , the proce-

dure for hypothesis test and confidence interval calculation would easily follow.  

   

2.2.6 Bootstrap confidence interval and p-value 

Since TSG  is just a simple function of Kaplan-Meier estimates from two groups, the 

large sample behavior would be similar to KME, which has already been shown to have 

an asymptotic normal distribution [41, 42]. So the hypothesis test and confidence interval 
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based on normal approximation discussed in previous section should work well when the 

sample size is large. However, we can’t make any comments on that when the sample 

size is small, especially, when we don’t have any information regarding the true distribu-

tion of the survival time. In those case scenarios, Bootstrap method would be a good al-

ternative because it is commonly used for estimating the variance or confidence interval 

for an estimate when the underlying distribution is unknown.     

Efron [31] proposed to bootstrap the survival function by sampling the pairs of censoring 

indicators and observed times to event with replacement. He also showed that this is 

equivalent to sample from the distribution of survival times (denote *
ix  as the samples), 

and sample from the censoring time (denote *
iu  as the samples), and then assign

* * *min( , )i i it x u= , * 1iδ = if * *
i it x=  and 0 otherwise. This algorithm has been applied by 

Utzek and Sanchez [43] to estimate a bootstrap confidence envelop of the survival curve. 

Denote the upper bound in follow-up times for both arms asω . Here we apply Efron’s 

algorithm to estimate a confidence interval of the area between two survival curves as 

follows: 

1. Using the algorithm in Section 2.2.4 to calculate the estimate  obsTSG with the up-

per bound in time for both arms asω . 

2. Use Efron’s method to select two bootstrap samples * *{( , ),  1, ..., }i it i nδ =  and 

* *{( , ),  j 1, ..., m}j js v = from the treatment group and the control group respectively. 

Order the pairs by the *
it s and the *

js s and estimate the survival curves for the 

both bootstrap samples. If *
nt ω< , we add the point *( , )ny ω to the estimated sur-
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vival curve for the treatment sample and do the same operation to the estimated 

survival curve for the sample from the control group. 

3. Calculate the survival gain from the bootstrap samples - 
( )b

TSG  over the interval 

[0, ]ω using algorithm described in Section 2.2.4. 

4. Repeat steps 2 and 3 B (at least 1000) times and order the estimates increasingly 

as 
( )

{ : 1, ..., }
b

iTSG i B= from which we estimate the sample quantiles as 
( )
0.025
b

BTSG

and 
( )
0.975
b

BTSG . Then  

( ) ( )
0.025 0.975( , )
b b

B BTSG TSG is a 95% bootstrap confidence interval 

for TSG .  

We also propose a similar algorithm for testing the null hypothesis that 0TSG =  or there 

is no survival gain from treatment comparing to the control, vs  the one-sided alternative 

hypothesis that 0TSG > . This algorithm is an adaptation of the general bootstrap testing 

algorithm that can be found in [44]. We modify the above algorithm as follows 

• 2*.  Using Efron’s method to select two bootstrap samples * *{( , ),  1, ..., }i it i nδ =

and * *{( , ),  j 1, ..., m}j js v =  both from the control. If *
nt ω< , we add the point 

*( , )ny ω to the estimated survival curve for the treatment sample and do the same 

operation to the  estimated survival curve for the sample from the control group. 

• 4*.  Repeat steps 2* and 3 B times, where B  is a large number at least 1000. Ob-

serve the sample  

( ) ( )
1{ ,  ..., )
b b

BTSG TSG from which we estimate the bootstrap one-

sided p-value as the #  

( )
( ) /

b
j obsTSG TSG B> . 
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2.3 Asymptotic Properties of the TSG Estimators 

Although, the asymptotic properties of Kaplan-Meier estimates, the general bootstrap 

procedure and results from that procedure applied on survival analysis have already been 

studied in different literatures [45-48], we still need to show the asymptotic properties or 

convergence of the estimate based on our procedure since we made several modifications 

comparing to the general method. And it will help to justify the confidence interval and 

hypothesis testing based on our procedure.  

Denote  *TSG  as the bootstrap version of TSG  in (2.2.12). We will show that 1) TSG is 

an asymptotically consistent estimator; 2)  *TSG  converges to TSG  in the same way as  

TSG  converges to TSG  asymptotically. Note in 1) it suffices to show that in each arm, 

the area under the estimated survival curve is a consistent estimator for the expected sur-

vival time. Denote trtMSD as 
0

( )
T

trtS u du∫  for the treatment group where T is the end of 

follow-up and  trtMSD  as *
11

( )n
i i ii

y t t −=
−∑ . We need to show that  trtMSD  is a consistent 

estimator of trtMSD . With 2), the bootstrap confidence interval based on  *TSG  will pro-

vide accurate coverage for the true value and the bootstrap p-value is available to conduct 

hypo these testing. We first use Kaplan-Meier estimator for the survival function. Then 

we extend the conclusion to the direct adjusted survival curves based on Cox regression. 

First assume that trtS  is absolutely continuous from 0 to T and *( , )n ny t T= is added if 

nt T< . There are two different situations about we should consider. 
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1. ( )trtS t  is strictly decreasing around time point T  

Note that 11
( )n

i i ii
y t t −=

−∑ is just a simple function of the KME , which is a 

uniformly consistent estimator of trtS in [0, ]nt [49]. As a result, the sum con-

verges to 
0

( )nt

trtS u du∫  in probability. 

When nt T= , by definitions,  trtMSD is a consistent estimator for trtMSD . 

When nt T< , decompose trtMSD and  trtMSD  as:  

 
0

( ) ( )n

n

t T

trt trt trtt
MSD S u du S u du= +∫ ∫   (2.3.1) 

 

11
( ) ( )n

trt i i i n ni
MSD y t t y T t−=

= − + −∑   (2.3.2) 

Since ( ) / 0trtdS T dt− < , we have density ( ) 0trtf T − > . It follows that 

(lim ) 1n nP t T→∞ = = . Therefore the second terms in (2.3.1) and (2.3.2) will 

converge to zero with probability one with the finite values of ( )trtS t  and ny . 

Then the proof is completed. 

2. ( )trtS t  is constant around time point T  

Now that the density function ( ) 0trtf T − = , there are no observations prior to

T in a close neighborhood. Define * arg max{ ( ) : ( ) 0}trt trtT f t f t= > , then we 

can decompose  trtMSD and  trtMSD  as:                             
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*

0
( ) ( ) ( *)( *)n

n

t T

trt trt trt trtt
MSD S u du S u du S T T T= + + −∫ ∫   (2.3.3) 

 

11
( ) ( * ) ( *)n

trt i i i n n ni
MSD y t t y T t y T T−=

= − + − + −∑   (2.3.4) 

Using the same arguments as in 1, the first two terms in (2.3.4) converges to 

those in (2.3.3) consistently. In addition, since ( )trtS t is continuous, 

(lim ( ) ( *)) 1n trt n trtP S t S T→∞ = = . And since ny converges to ( )trt nS t , it con-

verges to ( *)trtS T as well. Therefore, the third term in (2.3.4), ( *)ny T T−  

converges to that in (2.3.3) consistently. With that, the proof is completed. 

The asymptotic properties of the bootstrap version of KME have been studied in [50, 51]. 

Denote ( )kmS t  as the Kaplan-Meier estimator of a survival function ( )S t  and * ( )kmS t  as 

its bootstrap version. Then 



*[ ( ) ( )]km kmn S t S t−  converges to [ ( ) ( )]kmn S t S t− . Since 



*
trtMSD ,  trtMSD  and trtMSD  are simple functions of * ( )kmS t , ( )kmS t  and ( )S t , it follows 

that  

*
[ ]trt trtn MSD MSD−  converges to [ ]trt trtn MSD MSD− . The conclusion holds for 

the control group as well. Therefore  [ * ]n TSG TSG−  converges to [ ]n TSG TSG− as-

ymptotically. This validates the bootstrap confidence interval and p-value that generated 

by our algorithms.  

All the arguments above are based on KME  which is nonparametric estimator. While, 

there already have been some applications on using parametric or semi-parametric mod-

els for estimating restricted mean survival time to adjust for the covariates [52, 53]. Let’s 

take Cox model for example. Under general conditions, the direct adjusted survival curve 
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from the Cox model converges to KME in probability [54]. The estimated survival func-

tion and its bootstrap counterpart based on Cox regression will converges in probability 

to their KME versions respectively. Therefore the asymptotic properties for the Cox re-

gression based survival estimators remain the same as that for the KME based ones. 

 

2.4 Simulations 

In this section, we present simulation studies to demonstrate that proposed procedures 

effectively estimate survival gains and its confidence interval as well as p-value for hy-

pothesis testing. Intuitively, factors such as number of subjects in a trial and censoring 

rates of lifetime will directly affect the estimation accuracy and power. Also, since our 

estimator is restricted by the follow-up time, it is very likely that the maxT  may affect the 

power and the performance of our procedure. Besides, how the survival curve is estimat-

ed under different circumstances would also be important.  We study whether and how 

they all relate to the performance of our procedure so that future users can decide when 

and where to apply it.  

 

2.4.1 Bias of estimation from KM Estimator and Cox regression with balanced design 

We simulate samples of a size n for both treatment and control arm with life time and 

censoring time from some known distributions. The true TSG can be calculated. We 

compute the estimated TSG  based on KME and Cox regression respectively. Repeat this 

operation for N times, we get the average TSG  and its standard error. We vary n and re-

http://dict.cn/circumstances
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peat the whole steps. We also use censoring time with different distributions. The pur-

pose of this simulation is to show the different results from the two methods in estimating 

survival functions and study the biases. 

Assume life time ( ) exp( )trt trty t γ  for a treatment group, where 0 exp( )trt trtxγ γ α β= + ; 

life time ( ) exp( )ctr ctry t γ  for a control group, where 0 exp( )ctr ctrxγ γ β= ; covariate

2
,( )trt trt trtx normal µ σ  for the treatment group; covariate 2

,( )ctr ctr ctrx normal µ σ for the 

control group; and censoring time ( ) exp( )cen ceny t γ . Then the theoretical survival gain 

is  

 2 2 2 2
0 0( ) ( ) 1/ exp( 0.5 ) 1/ exp( 0.5 ).trt ctr trt trt ctr ctrE y E y γ α µ β β σ γ µ β β σ− = − − − − − −  (2.4.1) 

We vary n  from 50 to 4000. For each n  , we generate the trty or ctry  (denoted by y ) 

with the equal probability using log(0.5)α = , 1β = , 2trt ctrµ µ= = , 1trt ctrσ σ= = , 

4
0 2.23 10γ −= × , and 410cenγ −= . Then the observed time to event min( , )cent y y= , censor-

ing indicator { }cenI y yδ = ≥  where (.)I is an indication function which takes the value of 

1 when the argument is true, and 0 otherwise. For each value of n , calculate  kmTSG  and 



coxTSG . Repeat this for 2000 times to get the mean of estimates and their standard errors. 

The true TSG is calculated as 1000 with censoring rate of 0.11. Thus we plot in Figure 

2.4.1 the true TSG ,  kmTSG ,  coxTSG  and their 95% confidence bands. We observe that 1) 

when sample size increases, the estimates from both methods get close to the true value; 

2) Cox regression tends to achieve less bias and produce narrower confidence bands 

though the two methods do not differ significantly. 
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To examine the effects of censoring, we repeat the simulations using the same settings as 

above except for 47.14 10cenγ −= ×  . The censoring rate increases to 40%. We plot the re-

sults in the same figure and observe that the bias is bigger when the censoring is severer.  

 

2.4.2 Bias of estimation from Cox regression with imbalanced design 

When the design is not balanced in the two treatment arms, the result from KME is not 

easy to interpret. Cox regression method, on the other hand, can be applied to estimate 

the TSG on a particular subgroup of subjects from both arms. 

Figure 2.4.1 TSGs  from Two Methods--1 
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Assume that X  in the active treatment arm takes values of 0 and -2 with equal probabil-

ity, 0 and 2 in the control arm. We might be interested to know the TSG  when X  takes 

on -2 or 2. To do so, we can fit a Cox regression model to available data, then using the 

concept of “counter-factual” by assigning a different treatment type to the same sub-

group of subjects. 

Similar setup as the previous setting except for the construction of covariate X  and

3
0 7.8 10γ −= × , the true overall 1000TSG = , the true TSG  for the subgroup is 945.0 for 

2X = − , 17.3 for 2X = . With 1/ 4000cenγ =  the censoring is set to 10%. We repeat the 

simulations with 1/ 350cenγ = to achieve 40% censoring. The estimated TSGs  for both 

subgroups are shown in Figure 2.4.2.  

 

 

Figure 2.4.2 TSGs from Two Methods--2 
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It can be observed that the censoring rate makes difference in estimating TSG  for subset 

2X = −  while no difference for the other subset. The reason is because of the different 

lifetime distributions.  

 

2.4.3 Coverage of bootstrap confidence intervals and power of bootstrap testing 

We want to study the accuracy of the Bootstrap method. We concentrate on the case 

when the covariates are balanced in both treatment arms and use the KME approach. Us-

ing the similar setup, we use Bootstrap steps to obtain a 95% confidence interval (CI) and 

check if the CI covers the true TSG . Repeat these steps 100 times, we can calculate the 

percentage of a correct coverage of the CI. We plot the results in Figure 2.4.3 

 

Figure 2.4.3 Bootstrap Confidence Interval Coverage Rates 
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We observe that censoring rate of the life time data plays an important role in the correct 

coverage of the Bootstrap CI. For example, with a low censoring rate of 10%, the cover-

age percentage achieves around 90 to 95% even with moderate sample size. However, the 

higher rate of 40% makes the coverage percentage a little bit lower.  

Next, we evaluate the Bootstrap p-value calculation for hypothesis testing. We use the 

same simulation setting as before and obtain the percentage of Bootstrap p-value less 

than 0.05 as the power of hypothesis test in Figure 2.4.4. We observe that the testing 

power increases rapidly to 0.9 and above with the sample size and low censoring rate data 

achieves high powers than the high censoring rate data. We also try other settings with 

different true TSG with similar power curves. 

 

Figure 2.4.4 Bootstrap Testing Powers 
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2.4.4 Comparing results from bootstrap method and normal approximation  

One of the motivations that we propose this bootstrap procedure is that we believe the 

statistical inference based on bootstrap is more reliable than simply using the normal ap-

proximation, especially when the sample size is small. In this section, we are going to 

compare the coverage of confidence intervals and the powers of hypothesis testing from 

both methods by simulation with relatively small sample sizes. And we also want to 

study whether the underlying distribution of the time to event and the censoring distribu-

tion will affect their performances. In this part of the study, we only focus on using KME 

to estimate the survival curve.  

We start with simple setting where there is no censoring distribution, only end of the 

study. The survival times are randomly generated from 2
2χ  and 2

3χ  , and then multiplied 

by 1000, for the control and treatment group respectively. The maximum follow-up time 

is max 4000T = . By (2.2.10) and  (2.2.11), the true TSG can be easily calculated using nu-

merical integrating method such as the “integrate( )” function in R, which equals to 164. 

And we set the sample sizes for both groups to be equal and changing from 10 to 80 

gradually. Still, for each sample size setting, we repeated the simulation 100 times to get 

the percentage of the confidence intervals which cover the true TSG  and the tests reject 

the null hypothesis, which is equivalent to power. The results are showed below in Figure 

2.2.5 and Figure 2.2.6 correspondingly.  
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From Figure 2.2.5, we can see that the bootstrap test performs very well. Even when the 

sample size is very small, only above 10, its power is still higher than 80%. While the 

power from the normal approximation test is always lower than that from the bootstrap 

test. And the different is significant when the sample size is small, almost 40% to 80% 

when the sample size is between 10 and 20. Although as the sample size increasing to 

above 50, the difference is getting much smaller. But overall, the bootstrap test does out-

perform the normal test in this set of simulation and the advantage is obvious.   

 

 

On the other side, the coverage of the confidence intervals from both methods seems to 

be almost the same as showed in Figure 2.2.6. This means that the confidence interval 

and hypothesis test are not equivalent [56]. Besides, as the sample size increasing, the 

coverage rate drops a little bit.  

Figure 2.4.5 Testing Powers from Both Methods--1 
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Now, we change the data a little more complicated by adding an underlying censoring 

distribution. This time, we use the setup similar to that we used in section 2.4.3. Let

( ) exp( )trt trty t γ  with 1/ 3311trtγ = , ( ) exp( )ctr ctry t γ  with 1/1656ctrγ = and the cen-

soring time ( ) exp( )cen ceny t γ  with 1/1000cenγ = . The maximum follow-up time is set 

to be max 5000T = . Then the theoretical survival gain is 144.5TSG = . Similar simulations 

are performed as above and the results are plotted in Figure 2.4.7 and Figure 2.4.8. 

Similar as Figure 2.4.5, Figure 2.4.7 also shows that the bootstrap test performs much 

better comparing to the normal test even when the sample size is moderate large, like 80. 

And moreover, the power difference between two methods does not become smaller as 

sample size increasing, as what we observed in Figure 2.4.5.   

Figure 2.4.6 Coverage of Confidence Intervals from Both Methods --1 
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Figure 2.4.7 Testing Powers from Both Methods--2 

Figure 2.4.8 Coverage of Confidence Intervals from Both Methods--2 
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While, Figure 2.4.8 shows a different pattern from that in Figure 2.4.6. In this second set 

of simulation, the confidence intervals from bootstrap method do have a higher coverage 

rate than that from normal approximation. The coverage rates from both methods and the 

difference between them almost stay the same when the sample size increases.  

The previous two sets of simulations show that the test from bootstrap always works bet-

ter than that from normal approximation. While in terms of confidence interval, on the 

data generated from chi-squared distribution without censoring, those two methods work 

almost the same. But on the data from exponential distribution and with censoring, the 

confidence from bootstrap has higher coverage. The might indicate that the underlying 

distribution of survival time and the censoring mechanism do have some influence on 

how these two methods perform.  

So, in the third set of simulations, we keep the most settings same as that in the second 

set of simulations. The only thing we change is the censoring distribution, which become 

as ( ) exp( )cen ceny t γ  with 1/1500cenγ = . This means that comparing to the second set of 

simulations, the average censoring rate here should be lower. But the true TSG stays the 

same. The results are plotted in Figure 2.4.9 and 2.4.10. 

Comparing Figure 2.4.9 to Figure 2.4.7, we can see that the patterns of the power change 

for both methods stay the same, as well as the difference between them. The only differ-

ence is that, as the censoring rate lowers, the powers from both methods increase a little 

bit but not significant. As for the coverage rate in Figure 2.4.10, it decreases from both 

methods as sample size increases. But the result from bootstrap method still has a higher 

rate all the time. 
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Figure 2.4.9 Testing Powers from Both Methods--3 

Figure 2.4.10 Coverage of Confidence Interval from Both Methods --3 



37 
 

 
 

 

2.5 Applications to a Real Dataset 

2.5.1 Data Description 

The Systolic Hypertension in the Elderly Program (SHEP) was a randomized, double 

blinded placebo controlled trial in older patients with isolated systolic hypertension with 

the primary endpoint of fatal or non-fatal stroke. The investigators randomized 4736 par-

ticipants (56.8% women) with systolic blood pressure (SBP) 160 mm Hg or higher and 

diastolic blood pressure 90 mm Hg or lower to stepped care antihypertensive therapy 

based on chlorthalidone or matching placebo. 

Initially, all participants received chlorthalidone (or placebo) to decrease the SBP by at 

least 20 mm Hg and to below 160 mm Hg. If this was not achieved, a second drug, 

atenolol, (reserpine if atenolol was contraindicated) or placebo was added. During an av-

erage follow-up of 4.5 years there was a significant decrease in stroke with relative risk 

(RR) of 0.63 (95% confidence interval of 0.49 to 0.82) but the non-significant effects on 

all cause (RR=0.87, 0.73-1.05), cardiovascular (0.80, 0.60-1.05) or non-cardiovascular 

(1.05, 0.80-1.38) mortality. 

After the end of the study all participants were advised to take active treatment at the dis-

cretion of their physician. Recruitment begun on March 1, 1984 and vital status, date of 

death and cause of death were ascertained using the NDI through the end of 2006. The 

total duration of follow-up was 21 years and 10 months. Death was classified as cardio-

vascular if it was due to International Classification of Diseases, Ninth Revision codes 
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290 to 459 or International Statistical Classification of Disease, 10th Revision codes I00 

to I99. 

 

2.5.2 Analyses and Results 

In order to access the efficacy of the treatment, we are interested in estimating the net 

gain in life expectancy free from cardiovascular death in the active therapy group by cal-

culating the area between survival curves of the two interventions expressed as the mean 

number of days that the survival of a patient in the active treatment group exceeded that 

of a patient in the placebo group. 

First, we fit Kaplan-Meier survival curves for cardiovascular (CV) death only on the 

treatment group and control group. We calculate the areas under the two curves and take 

the difference and follow the Bootstrap steps to obtain the confidence interval and p-

value for testing whether there is no difference in the two groups in term of survival gains. 

We repeat the same set of analyses for the end point of all-cause mortality. The results 

are shown in Table 2.5.1: 

 

  Bootstrap 

End Point TSG  Mean 95% CI p-value 
     

All-Cause Death 104.7 105.6 (-39.2,241.8) 0.073 
CV Death 158.9 157.6 (36.4,286.6) 0.009 

     

 

Table 2.5.1 TSG  from Kaplan-Meier Approach 
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Next we use Cox partial regression approach to correct any imbalance of the covariates 

between the two treatment groups. After using all the significant variables and checking 

the proportional hazard assumption, we stratify age using two categories of older than 71 

and the rest, and race with 3 categories of white, black and others. The two covariates are 

sex and indicator of whether the patient previously has myocardial infarction (histmi). 

For the end point of cardiovascular death, we stratify age and use sex and race as covari-

ates. The results are in Table 2.5.2. 

 

 Covariates  Bootstrap 

End Point (besides treatment) TSG  Mean 95% CI p-value 
      

All-Cause Death sex, histmi  
(race and age-stratified) 64.9 67.1 (-62.6,190.7) 0.158 

CV Death sex, race  
(age-stratified) 146.0 145.5 (14.9,276.1) 0.016 

      

 

From the results in Table 2.5.1 and 2.5.2, chlorthalidone reduces CV death significantly 

and does not reduce all-cause mortality. The Cox partial regression approach achieves a 

slightly tighter confidence interval of the TSG  for CV death. The estimated TSG  for all-

cause death differs quite a lot from the two methods. 

 

Table 2.5.2 TSG  from Cox Partial Regression 
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2.6 Discussions 

This chapter proposes a bootstrap-based method to estimate the survival gain of a treat-

ment vs. its control and assess the precision of this estimator. In the estimating step, the 

Kalplan-Meier approach is straightforward and less computational intensive. Under the 

assumption of balanced study covariates, we can use this approach to estimate the surviv-

al gains for a similar group of participants. However, when this assumption does not hold, 

the Kaplan-Meier method produces misleading results. To solve this problem, we pro-

pose an alternative Cox partial regression approach. With that, we can deal with the pos-

sible imbalance between the two groups.  

Furthermore, the ultimate goal of proposing this method is that we can make inference of 

the survival gain of a hypothetical participant or group of participants with similarity to 

the counterfactual causal inference framework. And because of the properties of boot-

strap method, the underlying distribution of the time to event and the size of the sample 

would not have large influence on the results based on our procedures, which is often the 

case when we simply use a normal approximation to get the p-value or confidence inter-

val. And based on our simulation results, our bootstrap procedure does have advantage 

over the normal approximation. Not only our method has a significant higher power of 

testing but also has higher coverage from the confidence interval, even when the sample 

size is moderate large. 

In our study, we propose to use the restricted mean of survival time to avoid making any 

assumptions regarding the survival curve past the maximum follow-up time. But it also 

http://dict.cn/influence
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brings limitation. Because it limits our estimate to only assess the life extension or treat-

ment gain up to this up time bond. However, the ideal goal or ultimate objective for a 

study like SHEP is to assess the overall life extension brought by the treatment. In order 

to do that, we must find a good way to estimate and extrapolate the rest part of survival 

function which beyond follow-up. By doing so, we can more accurately access the sur-

vival gain of a treatment. And this should be further explored.  
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Chapter 3 

Meta-Analysis with small sample sizes 

3.1 Introduction  

Meta-analysis is a statistical technique to combine results of individual studies that with 

similar or related research hypotheses. The advantage of method is increasing the power 

of the analysis by making the best use of all the information we have gathered across all 

those individual studies. There are several well developed statistical algorithms for dif-

ferent type of datasets [58, 59]. One of them is the inverse-variance method which is 

also the most widely used one. It is used to combine the effect estimates, such as log 

odds ratios, risk differences, mean differences, etc., together by weighted averaging with 

weights equal to the variance of the effect estimates. And the weighted average is called 

the summary effect estimate from the set of studies. Then to test the summary effect, the 

test statistic is calculated by dividing the summary effect estimate by its standard devia-

tion. This statistic is usually considered as following a standard normal distribution, at 

least approximately or asymptotically.  

While using meta-analysis to a real data application, we discovered that when the number 

of observations in each study and the number of studies are not sufficiently large, the dis-

tribution of the test statistic could be far away from the standard normal distribution. And 

we believe that researchers should pay attention to this when they are doing meta-

analysis. Although, in the literature, most previous meta-analysis have been published do 
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have large sample sizes, we also have examples with small sample sizes. Like the one we 

were trying to perform. We want to study the relationship between hamstring anterior 

cruciate ligament (ACL) reconstructions in females and magnetic resonance imaging 

(MRI). And we only find 4 similar studies with sample sizes smaller than 10 for each 

single study [19-22]. Similar situation could also be found in cardiovascular disease re-

searches, especially when the treatment or the risk factor of interest is rare. These all 

make it important to take a close look of the true distribution of the summary statistic in 

meta-analysis with small sample sizes. After all, the application of meta-analysis is essen-

tial when there is a set of single studies with small sample sizes, and the evidence gath-

ered from each study individually doesn’t have enough statistical power to prove any-

thing.   

In this chapter, we are going to show the non-normal behavior of the summary test sta-

tistics in meta-analysis, when the number of observations in each study and the number 

of studies are not sufficiently large. For the purpose of simplicity, we chose the differ-

ence of means between two groups as the effect size that we are interested in, and as-

sume that the dataset is the combination of the individual study data with the same or 

similar two treatment groups.  

We show the results in two steps. First, we prove that if we use the pooled standard error 

from different studies to get the variance of the mean difference for each study, the test 

statistic actually followed a t-distribution with certain degree of freedom. Second, if the 

variance of the mean difference is estimated from individual study data, then the true 

distribution is not easy to specify but surely not close to standard normal distribution 

when the sample size is not large. It will then be proved by the result from simulations. 
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Then, in order to control the type I error of the test, we propose to use t-distributions to 

better approximate the underlying true distribution of the test statistic with certain de-

gree of freedom. And a simple formula is also proposed to calculate the degree of free-

dom.  

 

 

3.2 Method  

3.2.1 Data structure 

Suppose the meta-analysis was carried on a set of I studies with continues outcome and 

two treatment groups. Then the number of observations, the means and the standard de-

viations of the response in each study can be showed in the table below.  

 

Study i  Group  
size Mean Standard 

Deviation 
    

Treatment 1iK  
1im  

1isd  

Control 2iK  
2im  

2isd  
    

 

Then the treatment effect we are interested in is the difference of the means between 

treatment and control groups: 1 2î i im mθ = − . And the standard error of that can be esti-

mated by  

Table 3.2.1 Data from Study i  
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θ = +   (3.2.2) 

Here, the MSE  is the mean square error calculated based on all the datasets in the meta-

analysis. 

 

3.2.2 Inverse-variance method 

In meta-analysis, there are different ways to define the weight for the effect estimate in 

each study. For inverse-variance method, it uses the estimated variance of the main re-

sponse. Taking a data with structure as in Table 3.2.1 as an example, the individual ef-

fect estimate îθ  is weighted by  

 

{ }
2

1
i

i

w
SE θ

∧
=
 
 
 

  (3.2.3) 

     

Then apply the weight defined in (3.2.3) to every îθ to get the summary estimate as a 

weighted mean, which is given by  
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with 
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  (3.2.5) 

As a result, the final test statistic is for testing the treatment effect across all studies in 

the meta-analysis will be:  

 
{ }

ˆˆ
ˆ

i i

i

w
z

SE w

θθ
θ

= = ∑
∑

  (3.2.6) 

 

 

3.2.3 Using pooled standard error from all studies 

Obviously, in this inverse-variance method showed above, how the variance or standard 

error of îθ  is estimated will directly affect the calculation of weight for study i . And as 

we already showed in previous section, there are two ways to do that which is by either 

(3.2.1) or (3.2.2). While, in order to apply (3.2.1), we have to calculate the Mean Square 

Error ( MSE ) first, which can be obtained as follow: 

 
( )

2 2
1 1 2 21

1 11

( 1) ( 1)

( 1) 1

I
i i i ii

I
i ii

sd K sd K
MSE

K K I
=

=

× − + × −
=

+ − − −
∑
∑

  (3.2.7) 

Then, after the MSE is available, we can get weight for each study by 
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  (3.2.8) 

And the final test statistic would become  

 1 21 1

1
1 1

1 2

ˆ ( )

1 1( )

I I
i i i ii i

I I
ii i

i i

w m m
z

w MSE
K K
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−
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+

∑ ∑
∑ ∑

 (3.2.9) 

which follows t-distribution with degree of freedom ( )1 1i iK K I+ −∑ . This should be 

equivalent to the test for the treatment effect in the generalized linear model, when study 

factor is treated as a simple 1I − dimensional categorical variable.  

 

3.2.4 Using standard error from individual study 

If in some situation, we don’t think using the pooled standard error is such a good ap-

proach, maybe because we believe that all studies are not that similar. Then we can use 

(3.2.2) to calculate the standard error for îθ . And the weight for study i  becomes 

 

{ }
2 2 2

1 2

1 2

1 1
i

i i
i

i i

w
sd sd

SE K Kθ
∧

= =
  + 
 

  (3.2.10) 

And the overall test statistic would become 
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  (3.2.11) 

with a distribution that is not easy to be described. And when ijK s are not so large, it 

will distribute far away from the standard normal distribution. 

 

3.2.5 Letter values approximation 

Since the true distribution is complicated and certainly non-normal, to get a better con-

trol of the type I error of the final test in practice, we must find other standard distribu-

tion which is closer to the true distribution and get a better approximation then using 

standard normal distribution. While, t-distribution is good candidate since in 3.2.3, the 

test statistics actually do belong to that family. And we find there is a way to calculate 

the degree of freedom of the close t-distribution to any empirical distribution, which is 

called letter values approximation. The idea is to get the spread of the distribution of 

interest at each letter value, which is the 1/ 2m  quantile ( 2,... 10.m = ) and calculate the 

ratios between these and that from normal distribution. Then based on those ratios, there 

is an empirical formula to get the degree of freedom of close T-distribution.  

Here are the main steps: 

• Get the Letter Values and Spread from the distribution of interest. 

• Calculate the ratios of the Spreads for targeted distribution over standard normal 

distribution. 
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• Fit a linear model between 2log ( )ratio log2 and 2log (  )tail probability− and get 

the slope the fitted line. 

• Degree of freedom of a close t-distribution: 1/ 2 1/ (2.25 )slope+ × . 

 

3.2.6 Finding an empirical formula for the degree of freedom 

Based on this letter values approximation, we can find a close t-distribution for certain 

test statistic in (3.2.11), with specific number of sample sizes. But it still cannot be used 

directly in practice. So, with this objective and the idea from letter values approximation 

method, we propose the following procedure to find an empirical formula for the degree 

of freedom of a close t-distribution. First of all, we simulate the distributions of the test 

statistic with different number of studies and different number of observations in each 

study. Then, using the letter values approximation, we get the degree of freedom of the 

t-distribution which is close to the true distribution under each sample size setting. And 

based on these data, we try different formulas and find the best one to describe the rela-

tionship between number of studies, number of observations and degree of freedom.  

 

3.2.7 Data simulation 

All data sets used in this chapter are simulated by SAS with the model  

 ijk i j ijkY γ µ ε= + +   (3.2.12) 
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where ijkY  is the main response of observation in study i  and treatment j with iγ , jµ and 

ijkε  representing study effect, treatment effect and random error respectively. We use 

different numbers of observations to see how they affect the type I error. Also, we simu-

late datasets with different combinations of number of studies and number of observa-

tion in each study to find the relationship between the distribution and those numbers. 

 

3.3 Simulation Results  

 

In the section, we will first show some simulation results to prove that no matter which 

method you use to calculate the weight ((3.2.8) or (3.2.10)), the type one error would 

not be the same as we desired, which support our statement that using a standard normal 

approximation is not a good approach, especially when the sample sizes are relatively 

small. Then, after our motivation is fully justified, we are going to show the results by 

using the method we proposed to get a better approximation with t-distribution. And fi-

nally, we will present the empirical formula we find for calculation the degree of free-

dom. 

 

3.3.1 Type I error  

First of all, Table 3.3.1 shows the different settings of sample sizes we use in our simu-

lations. They changes from very small to acceptable large in terms of rule of thumb for 

normal approximation.  Then, Table 3.3.2 shows the result of testing the treatment effect 
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on the first five replicates of the simulation with sample sizes from “Data sets1”, using 

both PROC GLM and Meta-Analysis with the weights calculated based on MSE. We set 

1 2 11µ µ= =  and  for 1 to 6i iγ = has he value of (1.5, 1.0, 0.5, -0.5, -1.0, -1.5) corre-

spondingly. And ijk sε are random numbers from (0,25)N . It is clear to see that results 

from both approaches are exactly the same, which confirms our conclusion in section 

3.2.3.  

 

 Data sets 1 Data sets 2 Data set3 

Study# Group1 Group2 Group1 Group2 Group1 Group2 
       
1 3 4 7 8 30 35 
2 4 2 5 9 35 20 
3 5 3 7 7 40 40 
4 6 3 10 8 25 30 
5 3 4 8 4 30 20 
6 5 4 6 9 25 30 
       

 

 

 PROC GLM Meta-Analysis using MSE 

Replicate Estimate S.D. t_value Estimate S.D. z_value 
       
1 -0.40 1.54 -0.26 -0.40 1.54 -0.26 
2 -2.13 1.40 -1.52 -2.13 1.40 -1.52 
3 1.29 1.77 0.73 1.29 1.77 0.73 
4 -3.62 1.45 -2.50 -3.62 1.45 -2.50 
5 2.22 1.54 1.44 2.22 1.54 1.44 
       

 

Table 3.3.1 Sample Sizes in Different Simulation Sets 

Table 3.3.2 Comparing results from PROC GLM and Meta-analysis with MSE 
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Then, in Figure 3.3.1, we show the type I errors from PROC GLM and meta-analysis 

with both ways of calculating weights. Here, in order to show the severity of the type I 

error inflation, the sample sizes used in this first set of simulations are very small and 

unbalanced (Table 3.3.1 under Data sets 1) and we replicated 50 times with each repli-

cation consisting 1000 individual simulation to calculate the type I error. Notice that 

“Meta1” here represents the type I error of using the test statistics calculate by (3.2.9) 

and treating it as standard normal, while “Meta2” is based on the calculation from 

(3.2.11). Clearly, the type I error from “Meta2” is around 0.2 and sometimes even close 

to 0.25 which is way above the desired level (0.05). This may be somehow extreme sce-

narios. But it does support our concerns that simply treating the weighted average as 

standard normal will cause serious problem sometime.    

Another interesting point worth noticing is that, although the values of test statistics in 

“GLM” and “Meta1” are exactly the same as proved in Table 3.3.2, the type I errors 

from “Meta1” are higher. It is simply because, instead of compared to the true t-

distribution as it is in “GLM”, the test statistic in “Meta1” is incorrectly compared to 

standard normal distribution. However, the difference is not very significant because the 

degree of freedom of the true t-distribution it follows (t-distribution with 40df = ) is 

fairly large in spite of the small sample sizes in individual studies.  

And if we increase the sample sizes in each individual study, the type I errors, especially 

that of “Meta2”, will become smaller and closer to 0.05 level as in Figure 3.3.2. And if 

the sample sizes are large enough, there won’t be much difference between these three 

methods (Figure 3.3.3). Details of sample sizes are also in Table 3.3.1.  And same simu-

lation parameters are used as for Figure 3.3.1.  
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Figure 3.3.1 Type I Errors of Different Methods on Datasets 1 

Figure 3.3.2 Type I Errors of Different Methods on Datasets 2 
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3.3.2 The t-distribution approximation 

For both sample size settings “datasets 1” and “datasets 2”, we actually simulated 

500000 ( 50 1000× ) times each and calculated same numbers of the final test statistic 

values which leads to the type I error plots we see above. They also gave us very good 

empirical distribution of the test statistic from method “Meta2” under two different sim-

ple size settings. We can get the letter values and theirs spreads of these two distribu-

tions easily. And then after applying the letter value approximation method, we got the 

approximated degree of freedom for them as 4 for that from “datasets 1” and 22 for “da-

tasets 2”, along with scales of 1.3 and 1.2 respectively. And from the type I error curves 

in Figure 3.3.4, we can say that the approximation works very well. 

Figure 3.3.3 Type I Errors of Different Methods on Datasets 3 
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 Distribution Ratio to Normal 

Letter Value Normal D 1 D 2 D 1 D 2 
      

Fspread 1.35 2.00  1.58  1.48  1.17  
Espread 2.30 3.53  2.71  1.53  1.18  
Dspread 3.07 4.92  3.68  1.60  1.20  
Cspread 3.73 6.31  4.54  1.69  1.22  
Bspread 4.31 7.76  5.31  1.80  1.23  
Aspread 4.84 9.55  6.08  1.97  1.26  
Zspread 5.32 11.68  6.72  2.20  1.26  
Yspread 5.77 14.28  7.39  2.48  1.28  
Xspread 6.19 17.27  8.15  2.79  1.32  

      
                  

                 *Here, D 1 and D 2 stands for Datasets 1 and Datasets 2 

 

 

 

Table 3.3.3 Letter Value Spreads and Ratios of Test Statistic from D1 and D2 

Figure 3.3.4 Type I Errors of Meta-Analysis under t-distribution Approximation 
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3.3.3 Formula for calculating degree of freedom 

The above results show that if we use the t-distribution with the degree of freedom from 

the Letter Values Approximation method as the standard distribution to compare with, 

the type I error from “Meta2” will be well controlled to the desired level. This gives us 

enough reason to keep using t-distribution to approximate the true distribution of the test 

statistics. But in order to make it more practical, we need to find an easy formula to cal-

culate the degree of freedom ( df ) base on the observed data, mostly the samples sizes, 

which including the number of studies ( sn ) and number of observations in each study 

and each treatment group ( cn ), since we don’t have the empirical distribution to start 

with in real data analysis.  

To make it simple, here we only consider the situation that each study and each group 

has the same number of observations. We simulate sets of data with different combina-

tions of sn  and cn , and applied our approximation method on each datasets to get the 

corresponding degree of freedoms. Results are listed in Table 3.3.4. 

Then, we try different simple models with df  as response variable and sn , cn  as co-

variates and picked the best one, which is  

 log( ) log( ) log( ) log( ) log( )df sn cn sn cn+ + ×   (3.3.1) 

 

But still, there are different combinations of coefficients can be chose for the final for-

mula. We then test the formula on another set of simulated data to see which one works 

better.  
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 # of Observations in each Cell ( cn ) 

#of Studies( sn ) 5 7 10 13 15 
      
2  8.826  16.354  21.547  44.742  38.692  
3  9.682  16.824  29.817  40.016  101.209  
4  11.253  22.311  36.855  70.412  58.504  
5  11.131  24.798  37.047  79.148  75.046  
7  12.010  29.439  59.461  69.206  156.837  
10  13.409  44.503  168.717  148.854  154.026  

      
 

 

 

 

 

Table 3.3.4 Approximate Degree of Freedom from Different Sample Size Settings 

Figure 3.3.5 The Relationship between sn  and df with Fixed Values of cn  

 *Here, X is log( )sn   and Y is log( )df  
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  df  from Different Methods 

sn  cn  DF 1 DF2 DF3 DF4 
      
6  6  18.2  19.6  20.3  19.9  
6  8  28.9  34.8  33.6  33.4  
6  12  131.9  78.4  68.3  69.2  
6  14  61.0  106.7  89.4  91.4  
9  6  23.5  29.4  25.9  25.9  
9  8  40.7  52.3  42.8  43.4  
9  12  73.4  117.6  87.1  90.1  
9  14  1919.8  160.0  114.1  118.9  
      

 

*DF1: Using Letter Value Approximation; DF2: 2 exp( 2.4)df sn cn← × × −                                                     

DF3: 0.6 1.75 exp( 1.2)df sn cn← × × − ; DF4: 0.65 1.8 exp( 1.4)df sn cn← × × −  

Figure 3.3.6 The Relationship between cn  and df with Fixed Values of sn  

*Here, X is log( )cn   and Y is log( )df  

 

Table 3.3.5 Testing Results of df from Different Formulas 
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Table 3.3.5 shows that the when sn  and cn  are small all three formulas work very well. 

But as they becoming larger, sometimes, the approximation from those formulas works 

not so well. However, when sample sizes or number of studies are large, it is not neces-

sary to apply our method anyway.  

 

3.4 Simple data example 

Now let’s apply our method to the example we mentioned earlier. So we have four simi-

lar datasets all about studying the correlation between magnetic resonance imaging 

(MRI) cross-sectional area measurements and the intraoperative graft size in hamstring 

anterior cruciate ligament (ACL) reconstructions [19-22]. The original summary statis-

tics used in all for studies were the person correlation. But for the illustrating purpose, 

we use the Fisher’s transformation and get the summary statistics as below in Table 

3.4.1.    

 

Study (Author, Year) 
Summary Statistics 

Delta S.E. cn  p-value 
     

Bickel et al., (2008) 0.76 1.141 14 0.0135 
Wenecke et al., (2011) 0.59 1.543 9 0.1422 

Beyzadeoglu et al., (2012) 0.45 2.910 7 0.3494 
Erquicia et al., (2013) 0.56 1.765 8 0.2008 

     

 

 

Table 3.4.1 Summary Statistics from Individual Study 
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And table 3.4.2 shows the results after we apply different methods using cn from the 

average of all four studies. Comparing the p-value, we can see that they are similar from 

all three formulas. And they are all a little bit higher than that from normal distribution.  

 

 
Different Methods 

DF2 DF3 DF4 Normal 
     

df  29 32 31 NA 
p-value  0.1027 0.1025 0.1026 0.1010 

     

 

3.5 Discussion   

In this chapter, we discuss the behavior of the summary test statistic of meta-analysis 

when using inverse-variance method. We show that if overall MSE is used in variance 

estimation, then the final test statistic would follow an exact t-distribution. However, if 

the variance is estimated within each study, the true underlying distribution of the 

weighted average would become very complicated. And the simulation results shows 

that it is not so close to standard normal distribution especially when sample sizes are 

small as well as the number of studies. We propose an approach using t-distribution to 

better approximate the true distribution with an empirical formula to calculate the de-

gree of freedom. And it comes down to three similar formulas. All of them should lead 

to very close results. We suggest using the formula for DF2, which is a little bit simpler 

that the other two. The method works well with small sample sizes. However, since our 

formula comes from simple case scenario where each group in each study has the same 

Table 3.4.2 Testing Results from Different Approximation Methods 
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number of observations, more simulation may be needed to come up a formula for more 

complicated situations.     
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Chapter 4 

Statistical Properties of the Design for Simultaneous Global Drug De-
velopment Program 

 

4.1 Introduction 

4.1.1 Background on Global Clinical Trials   

Ethnicity has always been believed to be a factor that has potential impact on the treat-

ment effect. And it is becoming more and more important as medical research and drug 

developments all go globally, because the proportions of different ethnic groups in the 

local population change dramatically from region to region. As for area like cardiovascu-

lar disease research we are focusing here, researchers have already started to put extra 

efforts on the potential effect brought by ethnic factor, since plenty of studies already 

showed that ethnicity has effect on different CVDs directly or associating with those well 

known risk factors [61-64]. One simple way to deal with that is to control the proportion 

of different races in the sample. For example, as in the Study CHART [68], one of their 

sites in San Diego, CA, was specifically designed to enroll more subjects from Hispanic 

or Latino origin than other site to represent the underlying population. And as for other 

studies, they may set an additional site in other country to study the effect on different 

ethnic group, such as the Syst-China trial which can be considered as the extension of the 

SHEP trail in China [69], which we studied in chapter 2. Another example is the study 
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that was carried out in a Han Chinese population living in rural areas of northern China to 

exam the association between renin-angiotensin-aldosterone system (RAAS) genes and 

salt-sensitivity of blood pressure (BP) [70]. 

Drug development also faces the same challenge brought by this ethnic factor. The design 

of clinical trials for new drug or treatment may be a well-established topic in statistics. 

But when it goes to global and with this ethnic factor to consider, it becomes more com-

plicated, along with the troubles caused by the different regulations in different countries. 

Mainly for now, a multi-regional clinical trial (MRCT) with many participating countries 

or regions could be sufficient to obtain the approval of a new drug in the United States 

(US) and Europe Union (EU). However, when it comes to globe, especially for countries 

like China or Japan, additional local clinical trial (LCT) may be required to assess the po-

tential impact of ethnic factors on treatment effect [71, 72]. The main reason that this is 

not a major issue in MRCT is because among those counties in MRCT, the proportions of 

different ethnic groups are similar. While, it is not the case for countries like China or 

Japan. Then it is reasonable to assume there would be potential difference on the safety 

and efficacy results from the MRCT and LCT. The well-known E5 guideline (1998) [73] 

published by the International Conference on Harmonization (ICH) provided a general 

principle and framework for evaluating such impact. The general idea behind that is to 

extrapolate the information from studies in one region to another, so that all the infor-

mation can be utilized more efficiently. However, there are no commonly accepted statis-

tical criteria on how to extrapolate or combine information from different studies, such as 

MRCT and LCT.  
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Several methods and designs based on this guideline have been proposed in literatures in 

recent years. For example, Shih (2001) [74] introduced the idea of a “consistency trial”. 

They suggested designing the new local trial, also known as bridging study, based on the 

consistency of the previous similar trials determined by a Bayesian prediction method. 

Chow et al. (2002) [75] proposed the use of a sensitivity index as a possible criterion to 

determine whether a bridging study is necessary, and the sample size for such study. A 

statistical method for the assessment of similarity of clinical results between regions was 

also proposed using the concept of population bioequivalence.  

Hsiao et al. (2003, 2005) [66, 76] proposed a two-stage design and provided sample size 

calculation for the LCT at the second stage. Lan et al. (2005) [67] applied weighted-Z 

tests to combine the information from the MRCT and the LCT. The main theme of both 

papers was to borrow information from the MRCT to test the efficacy in the target ethnic 

(TE) population.  However, both of them designed the LCT after the completion of the 

MRCT, which could lead to years of delay for local registration.  

We can see that a better methodology for global clinical trial design and corresponding 

statistical analysis plan would really be beneficial to both the drug developer and the pa-

tients. For the developer side, a better way to use all the information from different loca-

tion and ethnic group will evenly reduce the sample size needed in certain country which 

will lead to huge cut in the overall investment. And it will be even better if the overall 

time in the drug development can be shorted. While for the patients, especially those are 

suffering under disease such as CVD which is the number one cause of death worldwide, 

the early they get the new drug, the better chance they have to improve their life, not to 

mention that the efficacy results may be more reliable from those new designs.   



65 
 

 
 

 

4.1.2 SGDDP Design and Statistical Method 

With the motivation of finding a good solution to the problem mentioned above, Huang 

et al. (2012) [65] proposed to design the MRCT and the LCT concurrently in a simulta-

neous global drug development program (SGDDP). It is outlined in Fig 4.1.1. Generally, 

the MRCT is a standard large phase III clinical trial with many participating regions 

while the LCT is a smaller trial carried out in the targeted region to collect more data in 

TE patients. The first major difference between this SGDDP design and the two-stage 

design or bridging study is that, SGDDP is designed prospectively and both the MRCT 

and the LCT share the same key design features. The results from the MRCT will be ana-

Figure 4.1.1 Flow Chart of SGDDP (Huang et al. 2012) 
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lyzed first, and if positive, used for regulatory registration in the US and the EU. The re-

sults of the SGDDP will be considered for further local regulatory registration only when 

the results of MRCT are at least promising (e.g., p < 0.1) [65]. Although still, the LCT 

will probably start a little bit later then MRCT, and whether LCT should be carried out 

until the end depending on the results from MRCT, the overall time length of the program 

will be significantly shortened.  

While, regarding the statistical method for the efficacy evaluation, similar to traditional 

bridging study designs, the SGDDP is also trying to borrow efficacy information from the 

MRCT to test the treatment effect for TE patients, based on the fundamental assumption 

that patients in TE group and in NTE group share some level of biological commonality 

of humankind. However, instead of borrowing the MRCT as a whole, the SGDDP 

grouped patients from both the MRCT and the LCT by ethnicity into TE and non-TE 

(NTE) subgroups, and test statistics for both of them were then combined to get the 

weighted-Z statistic. Basically, the main difference here, in statistic point of view, is that 

in the bridging design, the location or the stage or the study is the main factor which we 

believe has a major impact on the efficacy result. While, that factor is no longer the major 

concern in SGDDP, because the MRCT and LCT are designed prospectively and both 

share the same key design features. Instead, because of the ultimate objective, or the ini-

tial motivation, is regarding the impact ethnic factor, it naturally becomes the key factor 

on how to combine the information. 

Let 1Z  and 2Z  be the test statistics for the TE group and NTE group, respectively. Then, 

the weighted-Z statistic was formulated as follows: 
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 1 21Z wZ wZ= − +   (4.1.1) 

where w  was a pre-specified weight, 0 1w≤ < . This testing strategy relied on the fun-

damental assumption that patients from the TE and NTE groups should share biological 

similarity in the response to the treatment. To adjust for ethnic difference, the information 

from NTE group was down-weighted. 

The above design has several advantages. First, it provides a possible solution to design 

bridging trials with statistical rigor, providing adequate statistical power with type I error 

rate controlled at a given level. Second, the simultaneously designed MRCT and LCT 

with similar design features ensured the validity of combining information together. It 

would also shorten the timeline for drug registration in the new region. Moreover, since 

the weight is pre-selected, it would avoid potential selection bias in Lan, et al. (2005). 

 

4.1.3 Issues about the SGDDP 

Despite these attractive features, issues remain in the proposed design for the SGDDP [77, 

78]. One of them is that the fundamental assumption of the SGDDP design is not neces-

sarily equivalent to identical treatment effect between the TE and NTE groups, due to the 

potential impact of ethnicity. This leads to complexity in hypothesis specification. Let 1δ  

be the mean effect for TE patients, and then the hypothesis for the SGDDP can be formu-

lated as follows: 

 0 1 1: 0 . : 0aH vs Hδ δ= >   (4.1.2)               
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Since the 0H  is only for the TE group, the weighted-Z test statistic defined in (4.1.1) may 

not be distributed as standard normal since the distribution of 2Z is not necessarily stand-

ard normal under (4.1.2) because there is no statement regarding the mean treatment ef-

fect for NTE patients neither in the underlying assumption nor in the null hypothesis. 

This may lead to biased tests. 

Therefore, in this chapter, we propose a modification to (4.1.2) by translating the state-

ment “both TE and NTE patients share some biological commonality” into a quantitative 

proportionality assumption under which the weighted-Z test would become unbiased.  

Additionally, we will derive the uniformly most powerful (UMP) test and use it to evalu-

ate the performance of the weighted-Z test to illustrate the impact of different weights on 

power. Finally, we will discuss the situation when this proportionality assumption does 

not hold. 

 

4.2 Modification to the Hypothesis in SGDDP Design  

4.2.1 Distribution of Weighted-Z test 

To closely study the distribution of this Weighted-Z test in the SGDDP, we should first 

fully understand the fundamental assumption which is patients from the TE and NTE 

groups should share biological similarity in the response to the treatment. Based on that, 

we can claim that the TE and the NTE population are independent, but not necessarily 

identically distributed in terms of treatment effect. Here, without loss of generality, let’s 

focus on continuous endpoints and using the notation used in (4.1.1). Then the above 
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statements are equivalent to stating that the 1Z  and 2Z  are independent but not necessari-

ly identically distributed due to the consideration of ethnic effect. A natural hypothesis 

for testing the treatment effect of the TE population is (4.1.2). And under the 0H , it’s 

safe to claim that 1Z  would follow the standard normal distribution. However, due to the 

impact of ethnic factor, the mean of 2Z , 2E  is not necessarily equal to 0 under the 0H . 

We can only claim that 2Z  follows 2( ,1)N E , with 2 2 2 2
1 /
2

E N δ σ=  if the mean effect 

for NTE patients are distributed as normal with mean δ2  and variance σ22 , where the 

number of patients in the NTE group is N2 (Huang et al., 2012). As a result, the distribu-

tion of Z under 0H  would be 2( ,1)N wE , which is not (0,1)N  for 2 0δ ≠ ,  leading to a 

biased test for the treatment effect for the TE population.  

 

4.2.2 Proportionality Assumption 

In order to make this test unbiased, the first possible solution would be adding 2 0δ = into 

the null hypothesis, since this the reason causes this problem. Unfortunately, if we change 

0H  like that, the alterative hypothesis would also be changed. It would become either one 

of the δ  is not equal to 0, which is not the same as what we want to claim.     

So, instead of changing the null hypothesis, the modification we are proposing is to quan-

tify the assumption that the NTE and TE population share certain biological commonality. 

We assume that the treatment effects between two populations are proportional:  
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 1 2 δ γ δ= ∗   (4.2.1) 

 where 𝛾 is an unknown positive constant. With (4.2.1), the following two null hypothe-

ses are equivalent: 

 0 1:  0H δ =   (4.2.2) 

 0 1 2:  0 and 0H δ δ= =   (4.2.3) 

Therefore, the distribution of the weighted test statistic Z  is standard normal under 0H  

in (4.1.2) which makes the test unbiased.  

 

4.2.3 Sample size evaluation  

In this section, we are going to show that under the proportionality assumption, the sam-

ple size calculation in Huang et al. (2012) [65] will be depending on not only the weight 

but the proportionality parameter 𝛾 as well. Taking continuous endpoints as an example, 

let p be the proportion of the TE patients in the MRCT with an overall effect size 0δ , and 

let the effect size of the TE group and NTE group be 1δ  and 2δ  respectively, then  

 ( ) ( )0 1 2 1* 1 * *( * 1 1) /p p pδ δ δ δ γ γ= + − = − +   (4.2.4) 

From (4.2.4) we can see that if the values of 0δ  and p  are fixed, then 1δ  and γ are one-

to-one corresponding to each other. As a result, any sample size calculation based on the 

parameter combinations of \w γ  and 1\w δ  are equivalent.  
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Now let’s take a look at the method Huang et al. (2012) [65] used to calculate the mini-

mum sample size need in LCT to make the test having a power at least equal to β . First 

of all, because the power of the Weighted-Z test for treatment effect in TE population can 

be calculated by the formula below: 

 { }1 2 1 /2β Φ 1 ,wE wE Z α−= − + −   (4.2.5) 

then we have  

 1 β 1 /2 2( 1 .) /ZE Z wE wα−= + − −   (4.2.6) 

Here, 1E and 2E  are the corresponding means of 1Z and 2Z . βZ and 1 /2Z α−  are the 100β ×  

and (1 / 2) 100α− ×  percentiles of the standard normal distribution. And because we have 

 2 2 2 2
1 /
2

,E N δ σ=   (4.2.7) 

1E can be calculated by (4.2.6) if we know the values of 2N , 2δ  and 2σ . While, since we 

also have  

 1 1 1 1,
1 /
2 pnE δ σ=   (4.2.8) 

where, 1pn  is the total sample size for TE subgroup, and 1σ is the standard deviation of 

the end point in TE population. Then 1pn  can be easily calculated by  

 2
1 1 1 14( / )pn Eσ δ=   (4.2.9) 

Note that we assume the treatment group and control group have same number of sub-

jects in both TE and NTE subgroup. Also note that 1pn  is the sample size of the whole 
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TE subgroup. So the sample size of LCT would be 1pn subtracted by the number of TE 

subjects in MRCT.  

To sum up, if we have the values of 0δ , p , 2N , 1σ , 2σ , α and β  pre-fixed, then for the 

selected \w γ , we can first calculated the values of 1δ  and 2δ  by (4.2.4) and then get 2E  

by (4.2.7). After that, apply (4.2.6) to get the value of 1E and finally get the sample size 

1pn  by (4.2.9), and the sample size for LCT will follow. 

Table 4.2.1 and Table 4.2.2 below show the sample sizes for LCT if we use the same pa-

rameter settings as for table 1a and 1b in Huang et al. (2012) [65]. Here, we assume that 

1 2 1σ σ= = . The type I error is set to 0.05α = and the desired power lever it set to 

80%β = . The values of γ are selected as 0.55,  0.76,  1.00 and 1.26γ = to match the val-

ues of 1 0.15,  0.20,  0.25 and 0.30δ =  in Huang et al. (2012). We also set the overall 

sample size and effect size 0δ of MRCT to be 500 and 0.25 so that the test for MRCT 

alone will also have a power equal to 80% .   

As shown in Table 4.2.1, borrowing information from the MRCT can significantly reduce 

the sample size needed in LCT while still have the same level of power. For example, if 

the underlying 0.76γ = , which means 1 0.20δ = and the treatment effect for TE group is 

smaller than that for NTE group. Under this case scenario, if we chose the weight 

40%w = , the LCT in this SGDDP would require 118 patients which is much fewer than 

685 if no information from NTE patients are to be used. 
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 Proportional Parameter (γ ) 

Weight( w ) 0.55 0.76 1.00 1.26 
     

0% 1296 685 403 249 
10% 638 332 188 108 
20% 449 232 127 69 
30% 327 166 88 43 
40% 235 118 59 26 
50% 162 79 37 12 
60% 101 48 20 3 
70% 49 23 8 0 
80% 4 3 3 0 

     
 

a) The MRCT has 500 patients with 20% of them belong to the targeted ethnic subgroup; b) the endpoints 
are normally distributed with the overall effect size of 0.25 and 1 2 1σ σ= =  ; c) has different underlying 

values of γ   

 

 Proportional Parameter (γ ) 

Weight( w ) 0.55 0.76 1.00 1.26 
     

0% 1346 735 453 299 
10% 683 371 225 144 
20% 493 266 159 100 
30% 370 198 117 72 
40% 277 148 85 50 
50% 203 107 60 34 
60% 142 74 40 20 
70% 90 45 23 10 
80% 44 22 10 2 

     
 

a) The MRCT has 500 patients with 10% of them belong to the targeted ethnic subgroup; b) the endpoints 
are normally distributed with the overall effect size of 0.25 and 1 2 1σ σ= =  ; c) has different underlying 

values of γ  ;  

Table 4.2.1 Sample Size for LCT when MRCT has 20% TE Patients 

Table 4.2.2 Sample Size for LCT when MRCT has 10% TE Patients 
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Similar results can be found in Table 4.2.2 when there are fewer (10%) TE patients are 

enrolled in the MRCT. And by comparing Table 4.2.1 and Table 4.2.2, we can see that 

under the same value of \w γ , more TE patients are need in Table 4.2.2, 148 patients 

comparing to 118 patients mentioned in previous example to maintain the same power. 

This is straightforward to understood since the 1pn  is the summation of number of TE 

patients both from MRCT and LCT. When the number from MRCT drops, the one from 

LCT has to increase.  

By comparing the numbers in Table 4.2.1 and Table 4.2.2 to Table 1a and Table 1b in 

Huang et al. (2012) [65] cell by cell, we can conclude that they are totally identical, 

which verified our conclusion earlier that sample size calculation based on the parameter 

combinations of \w γ  and 1\w δ  are equivalent. It also means that our modification can 

justify the calculation in that paper. 

 

4.3 Power Consideration 

With the proportional assumption, the Weighted-Z test defined in (4.1.1) for hypothesis 

(4.1.2) becomes unbiased test and the type I error rate can be well controlled. Then in the 

following sections, we are going to study the performance of the test in terms of power, 

especially with the choice of weight changing. In order to do that, we are first going to 

find certain standard test to be comparing with. The UMP test becomes our first candi-

date. We also notice that Lan et al. (2005) [67] suggested an optimum choice w  such that 

is ( )wE Z maximized. And those two tests actually turn out to be equivalents which then 
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are defined to be our optimum test. Their powers are then compared to the Weighted-Z 

test in different ways to show that although we can don’t achieve the maximum power in 

practice, the loss of power is acceptable even without complicated procedure to choose 

the weight. 

 

4.3.1 The test with optimum weight  

In this section, we will first derive the UMP test. Without loss of generality, let’s assume 

)( ii ZEE =  be the expectation of iZ in (4.1.1) with 2 ,1=i . Then, based on the assump-

tion of (4.2.1), the joint distribution of 1Z  and 2Z  can be expressed as:   

 ( ) ( )
1 2

1 2
, 1 2 1 2 1 1 2 1 2

1

, , exp ( ),E E
p

E Nf z z C E E E z z h z z
nγ

 
= +  

 
  (4.3.1) 

where 2N  and 1pn  are the numbers of patients in the NTE and TE groups, respectively.  

( )1 2,C E E  and 1 2 )( ,h z z  are two real value functions. Since γ  is a positive constant as 

we assumed, the UMP test can be constructed as following (Casella & Berger, 2008) 

[79]:  

 ( )

2 2
1 0

1

1 2

2 2
1 0

1

 1?         

,
  0?      

p

p

N zif z c
n

z z
N zifz c
n

γ
ϕ

γ


+ >

= 
 + <


  (4.3.2) 

 where 0c  is a constant controlled by the size of the test. It is straightforward to see that 

the UMP test is equivalent to a weighed Z test with 
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 2

1

1
1 p

Nw
nw γ

=
−

  (4.3.3) 

Besides of the UMP test, we also found out that for given 𝑛1𝑝 and 𝑁2, Lan et al. (2005) 

had suggested an optimal choice of w  such that ( )wE Z  is maximized, which is, 

 
2

* 2 2
2 2

2 2 1 1p

Nw
N n

δ
δ δ

=
+

  (4.3.4) 

Under the proportional assumption, we then have  

 
2

* 2 2 2
2 2 2

2 2 1 2 2 1( )p p

N Nw
N n N n

δ
δ γδ γ

= =
+ +

  (4.3.5) 

It’s straightforward to verify that *w  is the solution to (4.3.3). Thus the “statistically” 

optimal Weighted-Z test is also the UMP test, which is reasonable because with larger 

expected value, the probability of the test statistic being greater than 0c  is also larger, so 

as the power. Next we will use the UMP test as a standard to evaluate the performance 

of the weighted-Z test with different choices of w . 

 

4.3.2 Comparing powers of weighted Z test to optimum test 

Since we assume the true treatment effect for the TE and NTE population is proportion-

al, we can borrow the down-weighted information from the NTE group in the Weighted-

Z test. In practice, the weight of the information from the NTE group should be capped 

by the actual proportion of NTE patients in the SGDDP. In other words, the cap for the 

choices of w is as follows: 
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1

0
2

2 p

Nw
N n

=
+

  (4.3.6) 

Because in practice, we do not know the true value of γ , as well as *w ,  we cannot use 

the information from NTE group entirely to achieve the maximum power.    

Again, taking continuous endpoints as an example, the power of the weighted-Z test can 

be calculated with (4.2.5) with 00 w w≤ ≤ . Here, we still have 1 1 1 1,
1 /
2 pnE δ σ=

2 2 2 2
1 /
2

,E N δ σ= and ,i sδ  are connected by (4.2.4). Without loss of generality, we still 

assume 1 2 1σ σ= = . The results below show the loss of power of the Weighted-Z tests 

with different weights comparing to the UMP test.     

Table 4.3.1 lists the powers of the Weighed-Z test as w  changes from 0 to 70%, which 

is less than the cap 0 72.7%w = , given that 0 0.25δ = , 2 400N = and  1 150pn = . From 

the table, we can see that if we do not borrow any information from the NTE group 

( 0%w = ), then the power would be very low. However, with appropriate selection of 

the weight, the loss of power is moderate.  For example, assume that 1 20.76δ δ= , then 

for 50%w = , the power of the weighted Z test would be 0.777, only 5% less than that 

of the UMP test. We can also find that the closer the means of both TE and NTE groups 

are, the less the power loss is.    

Similar results can be found in table 4.3.2, where 1pn  is increased to 200 while the other 

parameters stay the same. Moreover, as the 1pn  increased, the cap of the weight 0w  de-

creased. And with the same choice of \w γ , the test in Table 4.3.2 is always having  
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 Proportional Parameter (γ ) 

Weight( w ) 0.55 0.76 1.00 1.26 
     

0% 0.149 0.231 0.334 0.451 
10% 0.413 0.513 0.611 0.703 
20% 0.536 0.621 0.701 0.772 
30% 0.624 0.692 0.755 0.810 
40% 0.688 0.742 0.790 0.833 
50% 0.737 0.777 0.813 0.846 
60% 0.774 0.802 0.828 0.851 
70% 0.801 0.818 0.834 0.849 

Optimum test 0.826 0.826 0.834 0.851 
0 72.7%w =  0.806 0.821 0.834 0.847 

     
 

a) The MRCT has 500 patients with 20% of them belong to the targeted ethnic subgroup and LCT has addi-
tional 50 patients ; b) the endpoints are normally distributed with the overall effect size of 0.25 and 

1 2 1σ σ= =  ; c) has different underlying values of γ  ; 

 

 Proportional Parameter (γ ) 

Weight( w ) 0.55 0.76 1.00 1.26 
     

0% 0.184 0.293 0.424 0.564 
10% 0.466 0.584 0.694 0.789 
20% 0.587 0.684 0.770 0.841 
30% 0.668 0.746 0.813 0.868 
40% 0.726 0.787 0.839 0.882 
50% 0.769 0.815 0.855 0.889 
60% 0.800 0.833 0.863 0.889 

Optimum test 0.838 0.847 0.865 0.890 
0 66.7%w =  0.815 0.841 0.865 0.886 

     
 

a) The MRCT has 500 patients with 20% of them belong to the targeted ethnic subgroup and LCT has addi-
tional 100 patients ; b) the endpoints are normally distributed with the overall effect size of 0.25 and 

1 2 1σ σ= =  ; c) has different underlying values of γ  ; 

Table 4.3.1 Powers of the Weighted-Z Test with 1 150pn =  

Table 4.3.2 Powers of the Weighted-Z Test with 1 200pn =  
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larger power than that in Table 4.3.1. This is also well expected since the sample size of 

TE patients is larger and that of NTE patients remains the same. And with same value of 

treatment effect for both subgroups, of course larger sample size brings higher power of 

the test. 

Table 4.3.3 and Table 4.3.4 evaluate the performance of the Weighted-Z test in other 

perspectives, In Table 4.3.3, we compare the power of weighted-Z test with 45%w =  to 

the UMP test as 1pn  increasing from 100 to 400. Here Wz represents for Weighted-Z 

test and Opt for optimum test. The trend shown in the table is that as the 1pn  size in-

creases, the loss of power becomes smaller. This is because 45%w =  is becoming clos-

er to the optimal weight. 

 

1pn  
Proportional Parameter (γ ) 

0.55 0.76 1.00 1.26 

Wz Opt Wz Opt Wz Opt Wz Opt 
         

100 0.670 0.813 0.706 0.802 0.740 0.798 0.772 0.802 
150 0.714 0.826 0.761 0.826 0.803 0.834 0.840 0.851 
200 0.749 0.838 0.802 0.847 0.848 0.865 0.886 0.890 
250 0.778 0.850 0.835 0.865 0.882 0.890 0.918 0.919 
300 0.802 0.860 0.861 0.882 0.907 0.911 0.941 0.941 
350 0.823 0.870 0.883 0.897 0.927 0.928 0.957 0.957 
400 0.841 0.880 0.900 0.910 0.942 0.942 0.968 0.969 

         
 

a) The MRCT has 500 patients with 20% of them belong to the targeted ethnic subgroup and LCT has addi-
tional 1 00)( 1pn −  patients ; b) the endpoints are normally distributed with the overall effect size of 0.25 

and 1 2 1σ σ= =  ; c) has different number of patients belong to the targeted ethnic subgroup and different 
underlying values of γ  ; 

 

Table 4.3.3 Powers of the Weighted-Z Test with 45%w =  and Different 1pn  



80 
 

 
 

For a pre-specified \w γ , we already calculated the additional number of TE patients 

needed to make the corresponding Weighted-Z test having 80% power (Table 4.2.1). In 

Table 4.3.4, we based on this sample size and calculate the power of the corresponding 

UMP test to show the loss of power. For example, for the MRCT, assume that there are 

500 patients, 100 of which (20%) are from TE population. And if we assume the overall 

effect size 0 0.25δ = , and the underlying 0.76γ = , then if we pre-specify that 40%w = , 

we need to enroll at least 118 TE patients in the LCT to obtain 80%β = for the SGDDP. 

While, the power of the corresponding UMP test under this sample size setting, is 0.853, 

which is just slightly higher than 0.8. In a word, this table shows that with reasonable 

choice of weight, the loss of power for the SGDDP design is generally small. 

 

 Proportional Parameter (γ ) 

Weight( w ) 0.55 0.76 1.00 1.26 
     

0% 0.975 0.97 0.964 0.957 
10% 0.928 0.917 0.906 0.895 
20% 0.904 0.891 0.879 0.866 
30% 0.884 0.871 0.858 0.845 
40% 0.867 0.853 0.840 0.828 
50% 0.852 0.838 0.825 0.815 
60% 0.838 0.824 0.813 0.805 
70% 0.826 0.813 0.804 0.800 

     
 

a) MRCT has 500 patients and 20% of which belong to the targeted ethnic subgroup; b) use a normally 
distributed endpoint with the overall effect size for MRCT equal to 0.25 and 1 2 1σ σ= = ; c) has different 
underlying values of γ ; d) numbers of patients in the LCT equal to numbers from corresponding cells in 
table 3.2.1. 

 

Table 4.3.4 Powers of the UMP tests with Minimum 1pn  

http://dict.cn/in%20a%20word
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Over all, these four tables show that, if the weight is pre-specified regardless the true 

value of γ , then there will be some loss of power comparing to the theoretically opti-

mum test. This is unavoidable unless we know the true γ . However, if we pick an ap-

propriate w , the loss of power is generally small.   

 

4.4 Discussion and Final Remarks 

The SGDDP design provides a possible solution on the assessment of the impact of po-

tential ethnic factors. The program consists of two phases, a MRCT phase and a LCT 

phase and the results of the SGDDP can provide adequate evidence for local regulatory 

registration of a new treatment. The reason this design is valid is that we assume both 

the TE and NTE population share some level of biological commonality, which can be 

translated quantitatively that the treatment effect between the two populations are pro-

portional. With this proportional assumption, we were able to make sure that the 

Weighted-Z test was unbiased. We also validated the sample size calculations in Huang 

et al. (2012) under this additional assumption. Besides, we showed that with a proper 

choice of weight, the loss of power of the weighted-Z test would be acceptable. 

However, if the proportional assumption does not hold, then the problem can be more 

complicated and more investigation is needed. There may be two extreme scenarios. 

The first one is that the new treatment is effective in the NTE group but not in TE group, 

i.e., 1δ 0=  but 2δ 0≠ . In this case, the weighted test for the treatment effect for the TE 

population would be biased as discussed earlier. The distribution of the weighted-Z sta-
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tistic will depend on the true value of 2δ . And if we treat it as standard normal regard-

less of 2δ , then the test is very like to be biased. From figure 4.4.1, we can see that 

when the value of 2δ  is large, the type I error can be unacceptable. For example, if 

2δ 0.2= , the type one error would be close to 0.4. 

The other extreme scenario is that the new treatment is effective in the TE population 

but not in the NTE population, i.e., 𝛿1 ≠ 0 but 𝛿2 = 0. In this case, the statistical test in 

MRCT phase could fail since the majority of the patients enrolled in the MRCT are NTE 

patients. Unless the treatment effect for the TE population is extremely large, the power 

of the weighted-Z test would be extremely low. From figure 4.4.2 we can see that with 

40%w = , even 1δ 0.25= , the power is only around 0.2.  

Although, in application, we intend to believe that the treatment effects should be at 

least similar among patients from different ethnic groups, these two scenarios discussed 

above should still be kept in mind. One possible solution is to apply a test first, testing 

weather the ration between 1δ  and 2δ  is positive and finite. Then, overall bias might be 

controlled and the power would be increased.  

Another important aspect of this method should be noticed is that, to avoid selection bi-

as, the weight w  in the final Weighted-Z test should be pre-specified in the design stage. 

Since we don’t know the true value of γ , how to select a w should be a further topic to 

work on. And estimating γ  first by Bayesian Methods based on related studies might be 

helpful.  
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Figure 4.4.1 Type I Error of the SGDDP when the Proportional Assumption 
doesn’t Hold 

a) MRCT has 500 patients and 20% of which belong to the targeted ethnic subgroup; b) use a normally 
distributed endpoint with the overall effect size for MRCT equal to 0.25 and 1 2 1σ σ= = ; c) 1δ 0= ; d) 
numbers of  TE patients in the LCT equal to 50. 
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a) MRCT has 500 patients and 20% of which belong to the targeted ethnic subgroup; b) use a normally 
distributed endpoint with the overall effect size for MRCT equal to 0.25 and 1 2 1σ σ= = ; c) 2δ 0= ; d) 
numbers of  TE patients in the LCT equal to 50. 

 

 

 

 

 

Figure 4.4.2 Power of the SGDDP when the Proportional Assumption doesn’t 
Hold 
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