Description: B34, Surface area and volume (side	Authors: Snee, Elizabeth view), Grade 8, June 3, 1996, raw footage Verified: Sigley, Robert Research: Professor Carolyn Maher Date: $6 / 3 / 1996$
	Date: Spring 2014

Line	Time	Speaker	Transcript
1		R1	As kind of a maybe beginning, I thought we'd maybe start with an activity. We usually do, right? You know what these are? What do we call these things? [Michael: Cuisine squares.] [Brian: Blocks.] Cuisenaire rods, and most of you have used and I see that you're very familiar with, with these. Let's do a very quick warm-up, okay? Quick warmup. I want you to find me a rod that's half as long as the blue rod. [Romina: Half as long as the blue rod?] [Michael: Yeah, yeah, yeah.] Find me a rod that's half as long as the blue rod.
2		Romina	Yellows?
3		Brian	Purple.
4		Michael	It ain't the purples.
5		Brian	It's not the yellows.
6		Michael	It cannot be - blue's odd.
7		Brian	Not yellow. Maybe it's these. Nah, these are purple.
8		Romina	The green one. Nope.
9		Michael	Blue is odd. Oh my god. Because two yellows goes up to that. Nothing. It's an odd number. I'll tell you what it is...
10		Brian	I think you're right, Mike.
11		Michael	I'll tell you what it is.
12		R1	If you're telling me there is none, you gotta prove to me there is none.
13		Michael	It's 9.

Description: B34, Surface area and volume (side	Authors: Snee, Elizabeth view), Grade 8, June 3, 1996, raw footage Verified: Sigley, Robert Content: Harding School Research: Professor Carolyn Maher Date: $6 / 3 / 1996$

14		R1	How can you prove to me there is none? If you think you can prove to me there isn't any, [Michael: It's 9.] I'd like you to come up to the overhead and do it.
15		Brian	Prove to me is just another why of saying "why."
16		Jeff(?)	We can do it now.
17		R1	How many of you, how many people think there is no rod that's half as long as the blue rod? Raise your, raise your hand. Okay, now can you come up and prove it? Can you volunteer, come up and prove it?
18		Michael	I don't want to.
19		Brian	Mike wants to.
20		Michael	No.
21		R1	Okay, give it a try Jeff then. Because the overhead's right up there. Here. I heard an answer [indecipherable] verbally so let's see if what she said, I heard her say is the same thing.
22		Jeff	You have to give me a minute, but like [indecipherable]
23		R1	Yeah, I know it's a pain. Do you need some help?
24		Jeff	No, I think I can handle it. How many, how many different ones are there in total?
25		Romina	Seven, I think. No, 8. Sarah. Sarah. Sarah.
26	2:51	Jeff	Okay. Dark green. All right. I mean, none of them fit there. You can fit there for each one (?) [indecipherable] You could see that none of them are half...I mean that's too small, and that'd be it for next one up which is yellow, and yellow is too big. And the one smaller is like the pink one, and the pink one is too small. And there is nothing left. [indecipherable] So there's none in between them.

Description: B34, Surface area and volume (side view), Grade 8, June 3, 1996, raw footage Content: Harding School Research: Professor Carolyn Maher Date: 6/3/1996			Authors: Snee, Elizabeth Verified: Sigley, Robert Date: Spring 2014 Page: 3 of 27
27	R1	And how d	u know there's none in between?
28	Jeff	Because on and those a	p of the box they list all the different colors all the different colors.
29	R1	Do you agre Leave that up and many of attention to provided wh kind of proo as Jeff said, and nothing there's nothi box. But sup	[[Students: Yes.] Thank you, Jeff. And I guess there for a minute. I think what you, what Jeff, you did spontaneously, I'd like to call your because you've just proved, you've just we call a mathematical proof. It's a different than maybe one is accustomed to seeing. But you line them up, he showed all possibilities between. And how can you really believe that g in between? He said well you read it on the ose I don't believe the box?
30	Jeff	It wouldn't tell you the you won't buy	to you though on the box. They're trying to oblem. They're lying (indecipherable), and y it anymore.
31	R1	So you trus skeptic like	is. Is there another way thought if you're a e? Michelle?
32	Michelle	Okay, you t create along count how m I mean the	e how many of these white things and then he blue thing. Blue rod, you know? And you ny there are. And there are 9. Along the white, e thing. And nine can't be divided equally. So.
33	R1	Okay. So th another way? You had Mi You follow nothing in b	's another way. Using the white. Is there So you've had Jeff's way of reading the box. helle's way. You see what she was saying? r? Is there another way of knowing there's ween? What were you going to say, Sandy(?)?
34	Sandy(?) purple shirt	Those are all provided. I weren't like	the possibilities that are given to you. That are ean, there weren't any other rods. There ny other colors remaining besides what was

Description: B34, Surface area and volume (side view), Grade 8, June 3, 1996, raw footage Content: Harding School Research: Professor Carolyn Maher Date: 6/3/1996			Authors: Snee, Elizabeth Verified: Sigley, Robert Date: Spring 2014 Page: 4 of 27
		provided.	
35	R1	So Jeff's buil what the box interesting h upward bou yellows. An bound would though, righ One that's to because of th mathematica proof, and an proof. And it without, w like to, I'd lik warm-up act imagine, if y want you to as a stamp. the white rod colored red. you to think the surface a surface area stamp? Do y Someone pick Light or dark white rod sta this light gre you think yo	ding another staircase really did in fact show was advertising. But the reasoning is very e. It's called the proof by finding we call a . You see the upward bound would be the two then you find the lower bound. The lower be the two purples. They look pink here So you found one that's too big, as Jeff said. small, as Jeff said. And nothing in between white, as Michelle said. Right? And that's a proof. And even though it's sort of an informal intuitive proof, it's a very valid mathematical u sort of did it spontaneously. You sort of did hout thinking a lot. And that's very nice. I'd e to move from, from this kind of what I call a ity to think of another one. I'd like you to 'd like. Can you find your white rod? Okay. I ink of the white rod, imagine your white rod nd imagine if you were to stamp it on a pad, that that part that you'd stamp would now be an you imagine that in your head? And I want bout that that notion of stamping to figure out a of each rod. Now can you tell me the a rod measuring it in terms of a white rod u understand my question? So let's pick a rod. a rod. [Green] All right. Which green one? [Light] Light green? Okay. So in terms of that pp , can you tell me what the surface area of rod is? I want you to talk to your partners. If have it at your table, raise your hand?
36	Michael	14.	
37	Romina	What?	

Description: B34, Surface area and volume (side	Authors: Snee, Elizabeth view), Grade 8, June 3, 1996, raw footage Verified: Sigley, Robert Content: Harding School Research: Professor Carolyn Maher Date: 6/3/1996

$\mathbf{3 8}$		Michael			
$\mathbf{3 9}$		R1			
$\mathbf{4 0}$		Brian			
So if you think you agree at your table, someone raise their					
hand.			$	$	Raise your hand, Mike.
:---					
$\mathbf{4 1}$					
$\mathbf{4 2}$					

Description: B34, Surface area and volume (side	Authors: Snee, Elizabeth
view), Grade 8, June 3, 1996, raw footage	Verified: Sigley, Robert
Content: Harding School	Date: Spring 2014
Research: Professor Carolyn Maher	Page: 6 of 27
Date: $6 / 3 / 1996$	

54		 Brian	G-t-h.
55		Michael	[Writes: (Length x 4) $+2=$ Surface Area of a Cuisenaire rod of any color] Area.
56		Romina	Mike.
57		Brian	You got some nice handwriting.
58		Michael	I don't. Of the...[Brian: That's pretty nice like right there.] Okay how do you spell it?
59		Romina	What are you looking for?
60		Brian	C-u-i-s-e-n-a-i-r-e
61		Romina	Is that what it’s called? I don't have that on mine. Cuisine. That's mine.
62		Michael	Okay. I put a period down...[indecipherable between Brian \& Romina] You can build a house. Two greens(?) make a green.
63	10:06	R1	Okay, do you want to write it on the overhead?
64		Romina	I'll write it.
65		Michael	Copy it.
66		Romina	I have to copy it?
67		Michael	Put it on top of it.
68		Romina	Wait, I can handle it. I'm not copying it.
69		R1	Okay. You sure it works for every single rod? Right? You tested it?
70		Michael	Of any color.

Description: B34, Surface area and volume (side view), Grade 8, June 3, 1996, raw footage Content: Harding School Research: Professor Carolyn Maher Date: 6/3/1996			Authors: Snee, Elizabeth Verified: Sigley, Robert Date: Spring 2014 Page: $\mathbf{7}$ of $\mathbf{2 7}$
71	Romina	Okay, Mike	ou can write it.
72	Michael	I can? Wow conversation	Romina \& Brian indecipherable side
73	Romina	You messed	
74	Michael	No, I don't need it.	nt that. Okay, don't go over there. You don't
75	Romina	I'm missing	e black rod.
76	Michael	Did you dum	your rods on the floor?
77	Brian	He did.	
78	Michael	I hate it. I can messy.	't do it, the sides are all messed up. It must be
79	Brian	How do you	ink they come packaged?
80	Romina	I found a da	one.
81	R1	Okay, now, talk about th of this cube. be a volume what the vo	hile they're catching up to you, I'm going to , this cube. Right? [Holds white cube] The size m going to call this a unit. Okay? This would ould be one unit cubed. Could you figure out me is of every other rod in the box?
82	Michael	Every other?	
83	R1	Well this ha this one be?	a volume of one. What would the volume of Michael: okay.]
84	Romina	Wouldn't th	be 2 ?
85	R1	Two what?	
86	Brian	Two units	

Description: B34, Surface area and volume (side view), Grade 8, June 3, 1996, raw footage Content: Harding School Research: Professor Carolyn Maher Date: 6/3/1996			Authors: Snee, Elizabeth Verified: Sigley, Robert Date: Spring 2014 Page: $\mathbf{8}$ of $\mathbf{2 7}$
87	R1	So cube uni Right?	Right? So I want you to figure out all of them.
88	Romina	So just the le	gth?
89	Michael	Length time	width times height.
90	Romina	Well, yeah,	ike.
91	Brian	There would	e three of these.
92	Romina	Because that	one.
93	Brian	And this wo	d be three units cubed.
94	Michael	Oh, yeah.	gth equals length plus volume of the rod.
95	Brian	Volume equ Cubed.	length of a rod squared. [Michael: No.]
96	Michael	Cubed. That	great.
97	Romina	No because because that's	don't want lengths cubed. Length cubed just like...
98	Brian	Length equa	volume. Where'd you get that?
99	Romina	Equals volu the unit?	, doesn't it? Like of the with, with the with
100	Michael	This is the le	gth of 5.
101	Romina	No because wouldn't yo Wouldn't yo you go like 1 by 5] 5 tim	u could put the length. No, if you put that think that. Okay, what's the length of this? think that, if I saw that, if I saw that, wouldn't s? Wouldn't you think it's 5 cubes? [Michael: 5 times 5.
102	Brian	Okay. I know	what you're doing.

Description: B34, Surface area and volume (side view), Grade 8, June 3, 1996, raw footage Content: Harding School Research: Professor Carolyn Maher Date: 6/3/1996				Authors: Snee, Elizabeth Verified: Sigley, Robert Date: Spring 2014 Page: 9 of 27
103		Michael	Romina, you [Romina: O	write nice. Doesn't she? [Brian: Yeah.] yeah.] So length equals length?
104		Romina	Doesn't leng	equal volume?
105		Brian	No because	lume is cubed. No.
106		Michael	Who cares a	ut the cubes?
107		Romina	If the length	5 divided by 5 cubes. I don't know.
108		Brian	Three cubed	nits.
109		Michael	I'll write it indecipherab	h Cuisenaire rods. Length... [Brian]
110		R1	Did you writ	down the formula?
111		Romina	No, we don'	know if it's right.
112		Michael	It's right. I'm	just writing it down.
113		Brian	How can that	be right?
114		Romina	Yeah, Mike,	ut we have to go a little more specific.
115		Michael	It is specific	
116		Romina	Michael.	
117		Brian	Length of rod	equals volume of rod.
118		Michael	Okay, length	f rod equals volume of rod.
119		Brian	Length of ro	in units equals volume.
120		Michael	Okay fine. Brian has w	omina \& Brian side conversation re: a poem ten for someone possibly]
121	16:43	Romina	So what are	e going to put?

Description: B34, Surface area and volume (side	Authors: Snee, Elizabeth view), Grade 8, June 3, 1996, raw footage Verified: Sigley, Robert Content: Harding School Research: Professor Carolyn Maher Spring 2014 Date: 6/3/1996

122	Michael	Length equals volume. It sounds good.
123	Romina	Length equals volume. Could we put...How could we phrase this?
124	Michael	I don't know.
125	Romina	Okay, the length of the, of the rod chosen equals. Okay, how about the length of the rod chosen and.
126	R1	Could you do that problem?
127	Romina	We're trying to word it because we know, we know what it is.
128	R1	Get Michelle to write it down.
129	Michael	Yeah, Michelle. Write it.
130	Brian	Go Michelle. You got contacts.
131	Romina	You got contacts? [side comments re: contacts] Okay, go Michelle. You can write it down. Go Michelle, you can write it down.
132	Michelle	Well, wouldn't this be like even though it is the length equals the volume, you have to state that it's length times width times height so you put length times one times one even though it is just length to show.
133	Romina	Yeah. I guess. [Brian: Uh-oh.] But it's because the length is, we all ready have the cubes and we just need the surface. No? I don't know. I don't know.
134	Brian	Rutgers always stresses me out.
135	Romina	Don't throw tables or anything. I can't believe you did that that one time.

Description: B34, Surface area and volume (side view), Grade 8, June 3, 1996, raw footage Content: Harding School Research: Professor Carolyn Maher Date: 6/3/1996			Authors: Snee, Elizabeth Verified: Sigley, Robert Date: Spring 2014 Page: 11 of $\mathbf{2 7}$
136	Brian	I never threw	a table at you.
137	Romina	Oh, you wer	about to throw the table.
138	Brian	I left it and	opped it because it was to
139	Romina	Okay, the le	gth of the square units.
140	R1	Romina, I kn on the langu causing you	w you have an idea here, ge for it, right? What's, wh ouble?
141	Romina	No because	ngth equals volume but se
142	R1	You know	t's not true. You know th
143	Michael	It's not.	
144	Romina	Okay, if you measuring t then this one	se this. This is what we're l. And one, two of these is two units cubed.
145	Michael	Which also	uals length.
146	Romina	But wouldn	length equals "y."
147	R1	You know le	gth can't equal volume.
148	Romina	Yeah we know	w that.
149	R1	But what yo you're trying [Romina: Y Right? To m length is equ many to use mathematic Length equa equals volun we know the	re trying to tell me. I think to tell me is that you used h.] Or you used two times ke a this. Isn't that right? B to volume. It's the length Now see if you could write y. Do you understand, Mic volume.] But you're not r because that doesn't mak ength of this. The length is

Description: B34, Surface area and volume (side	Authors: Snee, Elizabeth view), Grade 8, June 3, 1996, raw footage Verified: Sigley, Robert Research: Professor Carolyn Maher Date: $6 / 3 / 1996$
	Date: Spring 2014

			volume is cubic units. See. The volume of this is one cubic unit. So the volume of this is not equal to length of two units. The volume is equal to two cubic units. Is that true? So watch those units a little bit and see if you can write it.
150	20:28	Romina	Go Michelle.
151		Michael	I'm going to bring up some (indecipherable). Here's Mr. Volume. [Romina: Mr. Volume.] Here’s Mr. Length.
152		Teacher	What did you say the volume is?
153		Romina	Wouldn't that be 3?
154		Teacher	Three because it's three long, right?
155		Romina	Yeah.
156		Teacher	How long is this?
157		Michael	Three long.
158		Teacher	Is that three still?
159		Michael	No.
160		Romina	And the height is one. See, that's what Michelle was saying.
161		Michael	Here's Mr. Length and here's Mr. Volume.
162		Romina	Length times one times height.
163		Michelle	See, you have to state what the width and the height is to calculate volume even if it is just one.
164		Romina	Length times one times one.
165		Teacher	Is that true here: length times 1 times 1 ?
166		Romina	Well, because, well, not here. Length times, we could do length times width times height.

Description: B34, Surface area and volume (side view), Grade 8, June 3, 1996, raw footage Content: Harding School Research: Professor Carolyn Maher Date: 6/3/1996			Authors: Snee, Elizabeth Verified: Sigley, Robert Date: Spring 2014 Page: 13 of $\mathbf{2 7}$
167	Teacher	Right, but you [Romina: Ye [Michael: X, always volu Your rule sh	're giving me a formula for one rod, right? h.] But I think what she wants you to think Y equals] about is, is that the length here isn't . Okay. So kind of be more general there. uld fit volume more generally.
168	Romina	How about l in units equa	gth in units times width in units times height volume?
169	Teacher	Does that wo	
170	Michael	Don't we kn	w that all ready?
171	Teacher	In another cas	
172	Romina	Yea because width of this	his, then the length of this would be 3 . The would be 2 and the height of would be 3 .
173	Michael	Of course it	ould.
174	Teacher	But the volu	e does not equal length.
175	Romina	No. We knew	that.
176	Teacher	Okay. No. T saying Lequ	at's not what you were saying. You were ls V.
177	Michael	Why did you	say that? Now you're making us look stupid.
178	Teacher	So when you that's true.	make up a rule, make sure you say something
179	Romina	Go for it Mi	elle.
180	Michelle	Length times	width times height?
181	Romina	Length in un	s times width in units times height in units.
182	Brian	I didn't know	it was such a simple answer. Answer.

Description: B34, Surface area and volume (side view), Grade 8, June 3, 1996, raw footage Content: Harding School Research: Professor Carolyn Maher Date: 6/3/1996				Authors: Snee, Elizabeth Verified: Sigley, Robert Date: Spring 2014 Page: 14 of $\mathbf{2 7}$
183		Romina	Here, Miche conversation did it again. with rods]	e, you could write on this. I don't know. [Side with Brian] Sorry Michelle. Sorry, Michelle I Romina/Brian side conversation and playing
184	26:35	R1	Okay. So	did you do here?
185		Romina	We have, sh and units tim	w her in units times height units times width s length equals volume.
186		Brian	A simple an	
187		R1	Again, one	re time.
188		Romina	It's just leng for example That's lengt like this it'd	times height times width equals volume. So his would, just this one would be $2 \times 1 \times 1$. times height times width. If you had something $2 \times 2 \times 2$.
189		R1	Okay, now with a way them. Pick you want. Y this? You ca come up with for them sta	hat id like you to do. I want you to come up expressing every rod. Suppose you stack e, pick one like lets say green. Pick any one know what I mean by stacking them like stand them up or put them like this. Can you a way of finding the surface area or volume ing as high as we want to stack?
190		Brian	Isn't that the	question Mr. [name] came and asked us?
191		R1	That's sort one of the r results and understand	the question he came and asked you. For every s, okay, because I'd like you to record your able to convince us that that works. Do you question, Brian?
192		Brian	Yes, I do.	
193		Romina	Brian, what	e you going to do?
194		R1	But you can	just tell me your formula of length times width

Description: B34, Surface area and volume (side	Authors: Snee, Elizabeth
view), Grade 8, June 3, 1996, raw footage	Verified: Sigley, Robert
Content: Harding School	Date: Spring 2014
Research: Professor Carolyn Maher	Page: 15 of 27
Date: $6 / 3 / 1996$	

		times height. You gotta sell it to me.
195	Romina	I hate [indecipherable]. Six times 3 is 18 plus 3 . Six times 6.
196	Brian	Six times 4.
197	Romina	Six times 3.16 times 1 . Isn't that the same thing?
198	Brian	Depends. Three. Oh okay.
199	Romina	Six times 3. I got that by 6 this equals 1 . And then 2 and 3 . And then other way 6 times 3 .
200	Michelle	Wait. Didn't she want us to find like, like the formula for surface area though?
201	Romina	Uh, I didn't know that's what she wants us to do. You can do that.
202	Michelle	Well, wouldn't it be 6 times 6 and then times 6 times 6 times 6 times 6 times 6 times 6 and then plus everything at the end. Like everything 6.
203	Brian	Okay, this is where we go in parentheses. We do 6...
204	Michelle	But it depends on how many you like stack in a row. Like if you put 3, it's going to be different than 4 .
205	Brian	Okay here's what's going on. You do in parentheses 6 times 4 plus 2 in parentheses and go on that side, number all the rods. Like that would be just the unknown.
206	Romina	What?
207	Brian	Never, never mind. Okay. Okay. See that thing? We're finding, find the surface area. It would be 6 times 4 .
208	Romina	Why 4? Where's the 4 from?
209	Brian	[Motions levels] Four times. Plus 2. All that would be in parentheses. All of that, put it like that. [Romina: 26] And

Description: B34, Surface area and volume (side view), Grade 8, June 3, 1996, raw footage Content: Harding School Research: Professor Carolyn Maher Date: 6/3/1996				Authors: Snee, Elizabeth Verified: Sigley, Robert Date: Spring 2014 Page: $\mathbf{1 6}$ of $\mathbf{2 7}$
			outside woul	be number of rods.
210	30:00	Romina	Length times	plus 2. Isn't that what you're trying to say?
211		Brian	Yeah. Times	umber of rods.
212		Romina	Did I get it thor	ugh? Okay.
213		Michael	How big is t	
214		Romina	So, let's say many, how	ou had this one. 3 that's 12. That's 14. How ny do you want?
215		Michelle	3	
216		Romina	That's 42. N would be. T would be 9	w is that what it would be? I just thought it is 3 squared. Like three cubes. And like 3×3 tead of 42.
217		Michelle	What if it w one. That's be times 8 b	like the length of your rod. Say it's the green And then if you have 3 of them then it would ause...
218		Romina	How about	gth times. Hold on. Length times.
219		Brian	She told you	hold on, Mike.
220		Michael	I'm sorry.	
221		Romina	Wouldn't it	length times number of rods equals volume?
222		Michael	Look everyb	
223		Romina	I mean that	ould make sense.
224		Michelle	No because have like 3 h plus another	u still have to add the ending because if you e. It's going to be 3 plus 3 plus 3 plus 3 plus 3 ree 3s. And then plus the end.
225		Romina	I don't get th	because that wouldn't be volume.

Description: B34, Surface area and volume (side view), Grade 8, June 3, 1996, raw footage Content: Harding School Research: Professor Carolyn Maher Date: 6/3/1996			Authors: Snee, Elizabeth Verified: Sigley, Robert Date: Spring 2014 Page: 17 of $\mathbf{2 7}$
226	Michelle	But she want	d us to find surface area.
227	Romina	She wants su	face area?
228	Brian	Yeah.	
229	Romina	Oh. I didn’t then just disr we have?	now that. Didn't she say the volume? Ah, well gard everything she said. Okay, so what did
230	Michelle	Okay, so if	kept it like going straight...
231	Romina	If she wants Yeah, would	hat, wouldn't it just be length times 4 plus 2 ? 't it be that?
232	Michelle	No because th	re's not, there's like...
233	Romina	Length time	4 the number of sides plus 2 .
234	Brian	Wait. Wait.	
235	Michelle	It's the length	times
236	Brian	L times	
237	Michelle	8	
238	Brian	Number of ro	
239	Romina	Wouldn't we	just do this one and then times 3.
240	Brian	Times 4. Plus	
241	Romina	Yeah, but she	's saying that's covered.
242	Brian	That is it.	
243	Michelle	It's like your	length times 8.
244	Romina	No, it's not. count these.	ook. Michelle’s saying that, that you don’t

Description: B34, Surface area and volume (side view), Grade 8, June 3, 1996, raw footage Content: Harding School Research: Professor Carolyn Maher Date: 6/3/1996				Authors: Snee, Elizabeth Verified: Sigley, Robert Date: Spring 2014 Page: 18 of $\mathbf{2 7}$
245		Michelle	No because	ey're hidden and you can't count them.
246		Romina	So wouldn'	be $1,2,3,4$.
247		Michelle	Okay. The l 30. Okay, is showing. Th	gth is 3 . So it's 3 times 8 so that's another 6 . hat right? 8 plus 8 because there's 8 sides e's $1,2,3,4,5,6$ and then an $8,24.30$.
248		Brian	I see what	're talking about.
249		Romina	Yeah, I see	hat you're talking about, too. So there's that.
250		Michelle	It's your len	h times 8 if we're like keeping it like...
251		Brian	How many b sides.	ocks there are to 2 sides there's 2.4 blocks 3
252		Romina	Wait, if ther don’t know. guys done?	s 3 of them. 3×3 minus 1 and you get 8 . I How many times do you get 8. 1-2-3-4. Are you
253		Michelle	Wouldn't it showing [Br many...	length times however many sides are n: Yes] then [Brian: No]depending on how
254		Brian	No, becaus	u gotta add the two on the edge like that...
255		Michelle	And then plu	the number of things over there.
256		Brian	Plus, 2 time cut off. Thes	number of blocks because these 2 can never be are going to be on the end unless it's like this.
257	35:04	Romina	Yeah, but I	n make one like this.
258		Brian	Shut up. Shut satisfy all ou conversation	up. I doubt there's going to be one equation to things. All those different lengths. [side w/Romina]
259		Romina	We have to	gure this out. Okay.

Description: B34, Surface area and volume (side view), Grade 8, June 3, 1996, raw footage Content: Harding School Research: Professor Carolyn Maher Date: 6/3/1996				Authors: Snee, Elizabeth Verified: Sigley, Robert Date: Spring 2014 Page: 19 of $\mathbf{2 7}$
260		Michelle	Plus it’s leng many ends How long th	however many sides and then plus however re are row is.
261		Romina	Times how	any ends? Plus. I mean plus.
262		Michelle	Yeah becau	if you have 5 things...
263		Romina	Oh well leng [Michelle: 10 Would that Wait 1, 2, 3, 30. Where a	3 times length times how many sides , yeah times 10 plus [Michelle: 8] 8. Sorry 40, 38 ? 48 ? [Michelle 38] 38? Is that right? $\text { , } 5,6,7,8,9,10,11,12,24,25,26,27,28,29$ we going to get the other one from?
264		Michelle	From the oth	ends. [Counts up to 38 on blocks]
265		Brian	So is that rig	
266		Romina	Yeah, if we, to make us p	they accept that. But you know they're going ve that.
267		Brian	So use that.	
268		Romina	Mike, what that?	you doing? You want to ask if they’d accept
269		Brian	I'm not gonn	because I don't know.
270		Romina	Where's Mr Brian. Mich acceptable? many ends?	name]? He's not here. [Side conversation with l draws an "awesome face."] Is this ength times how many sides times plus how
271	40:10	R1	I don’t know you have to	what you mean by an end. You have to define, y what a side is and what an end...
272		Romina	How many f	es, faces plus how many...
273		R1	When, is thi	a times or a next?

Description: B34, Surface area and volume (side view), Grade 8, June 3, 1996, raw footage Content: Harding School Research: Professor Carolyn Maher Date: 6/3/1996			Authors: Snee, Elizabeth Verified: Sigley, Robert Date: Spring 2014 Page: $\mathbf{2 0}$ of $\mathbf{2 7}$
274	Romina	Times	
275	R1	That's confu you had to p exactly what	ng. Can you try to come up with a way that if ss this to another group, they would know you mean. Okay, length times...
276	Romina	Length tim	number of faces plus ends like these.
277	R1	What do you up with what of saying this? by an end...	mean by ends? You're going to have to come you mean by that. Michelle, do you have a way Just say what an end is? Say what you mean
278	Michelle	How about called.	? Or whatever cubic unit or whatever it's
279	R1	The only thi remember if square. That' of the whole talk about your area in terms keep that dis answer of th What's your things for su of these stam	I would advise that might help you is you're thinking of just one of these, that's a a square unit. Right? And if you're thinking hing, the volume, that's a cubic unit. So either r square units, the face, right, that's surface of the square unit. Or a cubic unit. So try to nction so that your units come out in the final unit you want it to be. So the surface area. inal unit going to have to be? If you're doing ace area, I'm stamping, finding out how many s...
280	Romina	You would	ve to square.
281	R1	Square units stacking the it's gotta tur sure that hap an end, but are you doin	Right? But if I'm doing volume, if I'm , right, I'm going to count how many of these, into the cubic unit. Right? Just check to be ens however you define it. And you can have me what an end is. Fair enough? Brian, what now?
282	Brian	Finding an	d. What are you doing?

Description: B34, Surface area and volume (side view), Grade 8, June 3, 1996, raw footage Content: Harding School Research: Professor Carolyn Maher Date: 6/3/1996			Authors: Snee, Elizabeth Verified: Sigley, Robert Date: Spring 2014 Page: 21 of 27
283	Romina	She's speak	g to you.
284	Brian	These ends.	ike.
285	R1	So what do [Brian: The don't you sa	ou mean? You mean, you mean the face? square unit.] You mean the square unit? Why the square unit?
286	Romina	The square make sense?	Does it make sense? Okay, let's, does it
287	Brian	Why'd you was talking.	nock down my building? [Romina: Because she] It was totally balanced.
288	Romina	Length of on length of on	square. Of one. Okay length. How about rod?
289	Brian	Can I get the	fuzz out?
290	Romina	Yes. Okay, [counts 10] get it if I sai	ngth of one rod is 3 times number of faces mes 10 plus square unit, which is 1 . Would you that?
291	Michelle	Yeah beca	square units is like the same thing.
292	Romina	Plus perim is because	. Can we say that? Isn't that what it basically 8, right?
293	Michelle	Why don't don’t think	just say square unit ends and just so they s the side or something.
294	Romina	Would it be get 14 this t	would be 3 and 3, [counts to 14]. Why did I e?
295	Michelle	14 right and 12 on the bo	hen plus the 14 . Plus the 12 on the top and the om. That's $14+24$.
296	Brian	But, wait, w width squar	t. Wouldn't it just be width, wouldn't it just be then. That's the width? It's squared.

Description: B34, Surface area and volume (side	Authors: Snee, Elizabeth view), Grade 8, June 3, 1996, raw footage Content: Harding School
Research: Professor Carolyn Maher Date: $6 / 3 / 1996$ Date: Spring 2014 	

$\mathbf{2 9 7}$		Romina	Hold on, what I mean is like length. We have length times number of faces. Number of faces is 10. And then that's 30 and this is just supposed to be 8. So it'd be just on this side.
$\mathbf{2 9 8}$		Michael	I found... Uh oh. I can't do this. [making tower]
$\mathbf{2 9 9}$		Romina	What is that?
$\mathbf{3 0 0}$		Michael	I'm going to try something else. Four, four, four. 6, 6. Which is the length and which is the width?
$\mathbf{3 0 1}$	45:18	Romina	Length. Width.
$\mathbf{3 0 2}$		Michael	3, 6 plus 8. 2.
$\mathbf{3 0 3}$		Romina	What are you doing? Four of them and I’ll tell you what I get what I think it's supposed to be...
$\mathbf{3 0 4}$		Romina	Mike, do it like this. So it would be...
$\mathbf{3 0 5}$		Brian	You're gonna get 4.
$\mathbf{3 0 6}$		Michael	It works.
$\mathbf{3 0 7}$		Romina	It works.
$\mathbf{3 0 8}$		Michael	Excuse me, ma'am. For this is different than that. That. I'd include it but.
$\mathbf{3 0 9}$		Romina	Two times length.
$\mathbf{3 1 0}$		Michael	Listen, cross it out. Want to cross it out? You know what, yes.
$\mathbf{3 1 4}$		Maybe switch with green?	
$\mathbf{3 1 4}$		Shh. I have everything. Everything. Everything	
		But, length, okay, two times length times width plus height	

Description: B34, Surface area and volume (side view), Grade 8, June 3, 1996, raw footage Content: Harding School Research: Professor Carolyn Maher Date: 6/3/1996			Authors: Snee, Elizabeth Verified: Sigley, Robert Date: Spring 2014 Page: $\mathbf{2 3}$ of $\mathbf{2 7}$
		times width.	times two.
315	Michael	I tried a flat surface...	e and I tried a square one. Yes. Equals
316	Romina	How did you	get that?
317	Michael	You wouldn'	understand
318	Romina	Oh, I'm not	eant to be.
319	Michael	Okay, I'll te times...	you how I got it. I ended up with that 2ly
320	Romina	Not everybo	y else knows that.
321	Michael	Okay, I got it	
322	R1	You think y	have it?
323	Michael	I do have it.	
324	R1	I could see. paper, Mich	kay, I'll come around. You have a plain white le? All right, explain to me.
325	Michael	Two times th $+2=$ The sur	s equals that. Now. [Has written (Length x 4) ace area]
326	R1	I don't know	what that means. I don't know what L .
327	Michael	Length and	idth. Height.
328	Brian	Put "l" lengt	"W" width. And "h" height.
329	Romina	You spelled 2(LW+HW+	wrong. Mike. H-e-i-g-h-t. [Also has HL) = surface area]
330	R1	All right. Le here? Surfac	s see what this is. So tell me what you're doing area. So I'm stacking them, right?
331	Michael	Whichever w	y you stack them...

Description: B34, Surface area and volume (side view), Grade 8, June 3, 1996, raw footage Content: Harding School Research: Professor Carolyn Maher Date: 6/3/1996				Authors: Snee, Elizabeth Verified: Sigley, Robert Date: Spring 2014 Page: $\mathbf{2 4}$ of $\mathbf{2 7}$
332		R1	Do them wi this works.	these. I want to test them. I want to be sure
333		Michael	It would flat	n it would work...
334		R1	So how does	his work?
335		Michael	The height is which one you take thi Plus HL is [Michelle: the answer. that you guy somewhere. just look at so it's 24 an	1. I'll write it. L, W. Height is 1 . The width is, you talking about, 4 , and the length is 6 . Now equation. Two times LW is 24 . Plus HW is 4 . Which that equals 30, no, 30 square. 34 times 2 is 68 . Right? Okay. Now that is want to see, I think, where's my other paper took away? I think I already did that one Okay and it's 68 and now the way to prove is to 4 plus 4 on the other side and then this is 24 6 and 60. 28. It's 68. It works.
336	50:02	R1	Wow, so if work?	did any other one, with these, this would also
337		Michael	Yeah, even	you did them in squares.
338		R1	So it doesn'	matter how many you got?
339		Michael	Yeah, it’ll area.	rk with these too. It'll have a different surface
340		R1	It'll have a d	ferent surface area?
341		Michael	Yeah, I thin	so, but I'm not sure. I'm not positive.
342		R1	That's an in it 2 ways. N	resting question. Does it work? Okay, let's do w, let's do it this way.
343		Michael	It works squ	red too.
344		R1	It works this	way, and...

Description: B34, Surface area and volume (side view), Grade 8, June 3, 1996, raw footage Content: Harding School Research: Professor Carolyn Maher Date: 6/3/1996			Authors: Snee, Elizabeth Verified: Sigley, Robert Date: Spring 2014 Page: $\mathbf{2 5}$ of $\mathbf{2 7}$
345	Michael	With this, i So. LW is 56. And thi	be...Length is still 6 . Width is 2 . Height is 2. HW 4. And HL is 12 . That'll be 28 . Times 2 . This is 12. Plus, so wait.
346	Romina	6, yeah. 60.	
347	R1	What are you	saying, Michelle? It's always going to work?
348	Michael	56. Yeah. I	gured this out.
349	R1	So that's the volume?	general way. now, and volume. What about
350	Michael	Volume?	
351	R1	Did you do	ume yet?
352	Michael	I just did s	e area. I'll do volume now.
353	R1	Okay, work	volume now.
354	Romina	I thought it w	as length times width times height.
355	R1	Okay let me it's the ques volume this staggered it area. Would [Romina: Y the volume Michelle do next questio	sk you another question. Suppose I took those, on you just asked, you might want to write the own. What if I staggered it by one, what if I 1 ? I asked you to find the volume and surface he surface area change, do you think? h.] You think the surface area changes. Does ange? Do you think the volume will change? n't think the volume will change. That's my Okay. Why don't you do that in general?
356	Romina	What does s	mean? This is added like this?
357	Michelle	It's like step	You have just like one.
358	Michael	I don’t know ours? [side	[indecipherable to another group.] Want to see nversations]

Description: B34, Surface area and volume (side view), Grade 8, June 3, 1996, raw footage Content: Harding School Research: Professor Carolyn Maher Date: 6/3/1996				Authors: Snee, Elizabeth Verified: Sigley, Robert Date: Spring 2014 Page: $\mathbf{2 6}$ of $\mathbf{2 7}$
359	1:01:00	R1	How are you	oing?
360		Michael	Um. Fine.	
361		Romina	We're not g	ing anywhere.
362		Michael	I found the to find the	rface area of this. That's 68. Now, I'm trying me kind of formula for those in-between.
363		Brian	Gotta share.	Share.
364		R1	It's time to Getting real	are? You're getting tired of working on this? tired? Okay.
365		Brian	Share. [side	onversation]
366	1:01:40	R1	Why don't got and ever there. Okay. overhead?	u write up what you got. Write up as far as you thing you found out. And put your names on Do you need another overhead? Need another
367		Romina	No, not reall	
368		Michael	Cross that o not. This is area.	And that out. [Brian: But that's right.] No I's e right surface area. That's the wrong surface
369		Romina	Oh one cube	of one rod.
370		Michael	Okay. No, th	t's right.
371		Romina	No it's not.	
372		Michael	That's volun	e. [Brian: No.] I made a mistake.
373		R1	If you need pen? [Romi so whatever	nother piece of paper. Do you need another : Do you want it neater?] We're gonna share it you feel comfortable with.
374		Brian	What'd you	

Description: B34, Surface area and volume (side	Authors: Snee, Elizabeth view), Grade 8, June 3, 1996, raw footage Verified: Sigley, Robert Content: Harding School Research: Professor Carolyn Maher Date: $6 / 3 / 1996$
	Page: 27 of 27

$\mathbf{3 7 5}$		Romina	I don't know.
$\mathbf{3 7 6}$		Brian	You need another sheet.
$\mathbf{3 7 7}$		Romina	I don't want to do this. I don't see how that got on there.
$\mathbf{3 7 8}$		R1	Okay, what I would like you to do. I think what makes the most sense is to try, get your data organized. Whatever you found. tomorrow we'll begin by sharing. So try to get good notes. If you want to take a view graph home, you can do that. Get ready for your presentations tomorrow.

