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ABSTRACT OF THE THESIS

Sling-Shot Buckling in Stacked Piezoelectric Structures

by MICHAEL J. PAVLOU

Thesis Director:

Dr. William J. Bottega

A stacked structure consisting of two beam-plates, each being a different piezoelectric

material, subject to a uniformly increasing electric field is analyzed. One beam-

plate is perfectly adhered over the central portion of the other. We consider the

limiting boundary conditions for the bottom layer, the baseplate: clamped-fixed and

hinged-fixed boundaries. A quasi-static analysis is performed, in which a geometri-

cally nonlinear strain-displacement relation is incorporated to account for infinitesimal

strain, while allowing for moderate rotation of the structure. The strain energy of the

stacked structure is formulated, and the governing equations, constitutive relations,

and boundary and matching conditions are derived self-consistently after invoking the

Theorem of Stationary Potential Energy. Stability is assessed through evaluation of

the second variation of the PE under perturbation. A closed form analytical solution

is obtained, and numerical simulations based on these solutions are presented. It is

shown that, for certain combinations of piezoelectric materials and orientations of

the applied increasing electric field, the structure will exhibit sling-shot buckling—an

ii



instability where the orientation of the deflection of the structure will dynamically

change when a critical electric field and critical membrane force are reached. These

critical values are identified from the analytical equations. A parameter study shows

how the critical values depend on various geometric and material properties of the

structure.
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1 Introduction

1.1 Motivation

Piezoelectric materials are widely used in a number of engineering applications. At

the present time, there exists a plethora of applications for these materials, and new

applications are being discovered at an accelerating rate. Piezoelectric materials are

commonly used as actuators in mechanical systems, either to constrain motion or to

induce motion. For example, they are often adhered to thin-walled structures in order

to reduce deflections by a specific amount. Conversely, they can be made to increase

the deflection by a specified amount. Another common application of piezoelectric

materials is their usage in transducers, which convert electrical to mechanical energy

or mechanical to electrical energy, depending on the application.

In what follows, a certain stacked piezoelectric structure is presented where upon

application of a uniform external electric field, the structure deflects in one direction

until a critical electric field is reached. At this point, the orientation of the deflection

dynamically swings to the opposite sense, and the structure continues to deflect in

the opposite direction as the electric field increases. This type of instability was first

discovered by Karlsson and Bottega [4] for non-piezoelectric structures of this same

geometry subjected to a uniformly increasing temperature field, and appropriately

named “sling-shot buckling.”

Systematic understanding of this phenomenon for piezoelectric materials is of

great importance. This type of instability may need to be avoided in a piezoelectric

device, so its origins must be understood. Conversely, this type of instability can be
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utilized in a productive manner. For example, one can make a piezoelectric device that

regulates electric current in such a manner that when the critical electric field that

induces sling-shot buckling is reached, the structure will deflect in the opposite sense,

hitting a sensor that stops increasing the electric field. Also, as will be seen later, as

the electric field increases after buckling, the structure becomes stiffer, monotonically.

Thus, a device could be created that monitors and regulates the internal stress of a

constrained structure.

1.2 Survey of Relevant Literature

1.2.1 Buckling

Since the thesis concerns the extension of the phenomenon of sling-shot buckling from

a problem of a temperature field increase to that of an increasing electric field, it is

instructive to fully understand the nature of buckling of stacked structures, as induced

by thermal loading. Before delving into thermo-mechanically driven buckling, it is

necessary to first present a survey of simpler mechanical buckling modes of stacked

structures. This will shed some light onto the interesting dynamic nature of sling-shot

buckling.

Buckling of Stacked Structures Due to Mechanical Loading

• Bifurcation Buckling and “Asymptotic Buckling”

The simplest, and most well-known type of buckling observed in structures is the clas-

sical Euler-type bifurcation buckling. Euler, in his 1757 work, derived the formula
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for the maximum allowable compressive axial load applied to an ideal beam-column

before the beam-column became unstable. He noted that at a critical load the equi-

librium configuration becomes unstable, and that any subsequent type of loading will

result in the equilibrium solution bifurcating. The structure will then follow one of

the two bifurcating paths depending on which direction it is initially favoring (usually

due to some initial curvature or a defect in the structure).

We now consider the beam to be a stacked structure: one where we have a second

layer perfectly adhered above the central portion of the original beam. The neutral

axis of the stacked structure is moved up, which in the context of buckling orientation

analysis is equivalent to giving the structure a pre-determined influence. Thus, a

bending moment will develop when a compressive axial load is applied. Consequently,

the load-displacement curve will asymptotically approach the bifurcating solution it is

pre-influenced to lean towards. This is known as “asymptotic buckling.” See Figures

1 and 2.

Figure 1: (a) A regular Euler-type beam-column subjected to a compressive axial load.

(b) A stacked structure subjected to the same load as in (a).



4

Figure 2: Load Deflection Curves. The solid lines represent the ideal beam-column, while

the dashed lines are the path for the stacked structure.

Euler’s formula for buckling arose from considering the geometrically nonlinear

terms in relating strain and deflection. It is apparent that buckling can only be

predicted when we allow for moderate rotations of the cross-sections of the beams.

• Snap-Through Buckling

Another important type of buckling is snap-through buckling (and its counterpart

snap-back buckling). Simply stated, snap-through buckling is an instability where a

structure with initial concave curvature is subjected to an increasing load, directed

toward the center of curvature, until a critical value is reached. (See Figure 3.) At

this point, an increase in deflection means a decrease in load. Since, however, the load

is prescribed and will not decrease, the structure will settle upon a new equilibrium
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position associated with the opposite orientation of curvature. (See Figure 4.) It will

“snap-through” the straight configuration and deflect in the opposite sense. This type

of instability is often referred to as “oil canning,” as this phenomenon is exploited

in the design of old oil cans. They were designed with a shallow dome on the base.

When one pressed down on the dome, it would snap through and the volume in the

can would decrease as oil was released out of the nozzle. Upon releasing the force,

the dome snaps back into its original configuration as air comes back into the can

stopping the flow of oil.

Timoshenko presents an overview of snap-through and snap-back buckling in his

1961 text on elastic stability [23], where he refers to these instabilities as “the phe-

nomenon of reversal of deflections.”

Figure 3: Physical Situation Corresponding to Snap-Through Buckling.
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Figure 4: Load-Deflection Curve: Snap-Through Buckling.

It was later noted by Rutgerson and Bottega [15] that for shallow shells, snap-

through buckling occurs below and often well below the previously known limit point.

This assessment is based on an equilibrium stability argument that requires the second

variation of the total potential energy of the structure to remain positive definite for

stable configurations.

Buckling of Stacked Structures Due to Thermo-Mechanical Loading

We are not only concerned with understanding how buckling occurs when the driving

force is purely mechanical, but also how buckling is influenced by an eigenstress.

Specifically, the thesis is concerned with an electro-mechanical eignenstress, which is

mathematically similar to thermo-mechanical loading. Timonshenko [22], in his 1925

work, studied the thermo-mechanical response of bi-metal thermostats. He was able to

induce snap-through buckling of the structure under appropriate heating conditions.

Reversibly, Timonshenko found the opposite effect of “snap-back” when the heated
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structure was cooled in a similar manner–this time at a lower temperature than the

snap-through.

His work was furthered when in 1944, Wahl [25] was able to induce the same type

of buckling in a Valverde thermostat. This is a similar configuration to Timoshenko’s

bi-metal strip, except that it consists of three-layers, each of which were considered

to be pre-stressed.

It is apparent from these analyses that buckling instabilities are largely a func-

tion of geometry. The same geometrically nonlinear assumptions are made for the

structures to be considered here, and it is revealed that the nature of the instability

depends on the geometry of the configuration.

More recent research advances have been made concerning the behavior of thermo-

mechanically loaded stacked structures. This area of research has been mainly mo-

tivated by the implementation of such structures as means of repair for aircraft and

spacecraft. These layered structures are exposed to strong temperature fields as well

as large temperature gradients. Thus, a great deal of the available literature is focused

on debonding between the layers, which is not of concern to the present study. How-

ever a systematic approach to finding the overall composite properties of a layered

plate under thermal loading is addressed by Tauchert [18], in his 1991 paper. Work

by Noor and Burton from 1992 [12] and Noor and Peters in 1992 [13] addresses sim-

ilar concerns but also deals with the issue of stability of the composite structure. Of

course, much more progress has been made by countless others in the field of thermal

buckling analysis, including Stavsky in 1975 [16], Leissa in 1987 [8], Thangaratnam

et al. in 1989 [19], Sun and Hsu in 1990 [17], and Librescu and Souza (1993) [9].
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• Sling-Shot Buckling

As previously discussed, sling-shot buckling was first discovered by Karlsson and

Bottega (2000) [4]. They studied the problem of a stacked structure subject to a

uniformly increasing thermal load. In the cases of interest to us, the structure was

fixed at its ends from in-plane translation. It was found that when the two layers had

different thermal expansion properties, an effective thermal bending moment acts on

the edge of the patch. This moment opposes the mechanical moment created by the

raised neutral axis of the structure (much like previously discussed for bifurcation of

stacked structures). They identified a critical temperature and a critical membrane

force, which predict the instant that the thermal moment overcomes the purely me-

chanical moment, and shifts the direction of deflection. Karlsson and Bottega [5]

furthered their study of this structure when they considered cooling of the structure,

as opposed to heating it. It was observed that the response of the structure was

dramatically influenced by the in-plane displacement boundary conditions, but much

less affected by the rotational edge conditions. This theory was extended from just

plates to layered shell segments as well in the 2002 article by Rutgerson and Bottega

[14]. A concise unified review of this phenomenon was given by Bottega (2006) [1].

Electro-Mechanical Buckling

There also exists much literature focused on the buckling of piezoelectric materials.

The majority of this work focuses on adding piezoelectric materials to an existing

structure with the aim of stiffening the overall structure. Heavily cited is the work

of Meressi and Paden (1993) [11]. They studied the effects of adding piezoelectric
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actuators to thin beams in order to be able to control the buckling characteristics of

the beam. Similar work of note includes that of Thompson and Loughlan (1995) [20]

for composite column strips.

Among other more recent work is that of Varelis and Saravanos (2004) [24]. This

paper studies the pre-buckling and postbuckling response of composite laminates with

piezoelectric sensors and actuators adhered to the system. In addition, scenarios were

introduced that would help palliate buckling of the structure, in a comparable fashion

to that of Meressi and Paden.

1.2.2 The Piezoelectric Effect

So far, many statements have been made in regards to considering buckling of piezo-

electric composites. However, we have not yet defined the concept of piezoelectricity.

It is important to understand the piezoelectric effect from first principles so that we

can appropriately apply this effect to layered structures.

Basic Principles and Discovery

It has long been observed that certain materials exhibit electromechanical coupling.

That is, these materials deform mechanically when placed in an electric field, and

conversely become electrically polarized when mechanical loads are applied. Quan-

titative analysis was first done on these electroelastic materials by brothers Pierre

and Jacques Curie in 1880. They confirmed that when compressed, certain materials

showed positive and negative charges on portions of their surface. The landmark

conclusion of these experiments was the magnitude of the charges was directly pro-



10

portional to the applied load. The Curie brothers were also able to give the first

description of what type of crystal structures will lend themselves to this property.

Since the discovery of piezoelectricity, a complete list of lattice structures with the

ability to exhibit the piezoelectric effect has been compiled.

The Curie discovery tells only half of the story, however. They discovered what is

referred to as the direct piezoelectric effect. Again, this is when a structure becomes

polarized when a mechanical load is applied. The following year (1881), Gabriel Lipp-

mann [10] mathematically showed the reversibility of this effect from a thermodynam-

ics viewpoint, and essentially completed the theory of piezoelectricity. Lippman noted

that when placed in a prescribed electric field, these structures will experience me-

chanical deformation. Lippmann also realized that the same proportionality constant

between the applied field and the subsequent deformation was the same as observed

in the direct piezoelectric effect. The effect discovered by Lippmann is what is now

known universally as the converse piezoelectric effect.

3-D Piezoelectric Theory

The term piezoelectricity was first introduced into the vernacular by G.W. Hankel not

long after its discovery, and has since gained universal acceptance. Piezoelectricity,

in its strict modern definition, refers only to the linear theory or electromechanical

coupling. The nonlinear extension of this phenomenon is called more generally the

nonlinear theory of electroelasticity [26].
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We present here the equations of motion and charge inside the body for the non-

linear theory of electroelasticity as derived in the text by Yang [26]:

KLk,L + ρ0fk = ρ0ÿk, (1a)

DK,K = ρE, (1b)

with constitutive relations:

KLj = yj,Kρ0
∂ψ

∂SKL
+ JXL,iε0(EiEj −

1

2
EkEkδij), (2a)

DK = ε0JC
−1
KLEL − ρ0

∂ψ

∂EK
, (2b)

where KLk is the Piola stress tensor, ρ0 is the reference mass density of the structure,

fk is an applied body force per unit of reference mass, yk refers to the present position

vector of a material point, DK is the reference electric displacement vector, ρE is the

free charge density per unit of reference volume, ψ is the free energy per unit mass,

SKL is the finite strain tensor, J = det(yk,K) is the Jacobian of the deformation,

XL,i is the inverse deformation gradient, ε0 is the permittivity of free space, Ei is the

electric field, C−1KL = XK,kXL,k is the inverse deformation tensor, δij is the Kronecker

delta, and an overdot signifies differentiation with respect to time. In this notation,

capitalized subscripts refer to properties of the undeformed structure, while those with

lowercase subscripts are taken to be current properties of the deformed structure.

This theory applies for finite deformations, and is always applicable. However,

since we are to only consider infinitesimal deformation of structures in our analysis,

we are more interested in the linear theory of piezoelectricity. In his 1969 monograph,
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Tiersten [21] derives the linear form of the electroelastic equations.

cijkluk,li + ekijψ,ki = ρüj, (3a)

eikluk,li − εikψ,ki = 0, (3b)

where the constitutive equations have already been accounted for. Here, cijkl is the

elasticity tensor, uk is the displacement vector of a material point, ekij refers to

the piezoelectric constant tensor, ψ is the free energy per unit mass, ρ is the mass

density, and εik is the dielectric constant tensor. Of great concern for our purposes

are the constitutive relations, specifically the one that relates the strain due to the

piezoelectric effect to the overall stress of the body. The constitutive relations are as

follows:

σij = cijklSkl − ekijEk, (4a)

Di = eiklSkl + εikEk, (4b)

where σij is the Cauchy stress tensor, Skl is the overall infinitesimal strain tensor, Ek

is the electric field, and Di is the electric displacement vector.

Reduced Equations for Beam Theory

It is apparent from the form of the above equations that the piezoelectric effect is

inherently a three-dimensional phenomenon. The structures that we will analyze are

assumed to be beams in a state of plane stress or beam-plates in a state of plane

strain. We will be using a modified version of Euler-Bernoulli beam equations that
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will account for moderate rotations. In keeping with beam theory, we reduce the

problem from a physically three-dimensional one to a mathematically one-dimensional

problem. The assumptions are that due to the geometry of the structure, all stress

components other than the normal axial and transverse shear components will vanish.

To make quantitative statements about the forms of our equations, it is best to set

up a coordinate system at this point. We will say that the beam lies in the x-y (1-2)

plane and is subjected to deflections in the z-direction (3-direction). Thus, all stress

components except for σxx (σ11) and σxz (σ13) vanish. However, S13 = 0, as transverse

shear deformation is neglected. The constitutive relations then become:

σ11 = c1111S11 − e311E3, (5a)

D1 = e111S11 + ε13E3, (5b)

when the structures are poled in the 3-direction, and the electric field is applied in

the 3-direction, which is a very common setup for piezoelectric structures.

We will also explore the case where the piezoelectric materials are poled in the

1-direction, along with an electric field applied in the 1-direction. The constitutive

equations then become:

σ11 = c1111S11 − e111E1, (6a)

D1 = e111S11 + ε11E1, (6b)

We will use these equations in the second chapter to formally derive the equations

of motion for our structures.
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1.3 Thesis Outline

There are five chapters to this thesis. The first one being the introduction; it sets

the groundwork for the problem to be studied and systematically develops the tools

necessary to perform a meaningful analysis. The second chapter formally describes

the structure. First, the geometry is established and kinematic relations are defined.

Stiffness parameters are then identified. All variables and equations are normalized,

as the total strain energy of the structure is formulated. From here, the constitutive

equations, and boundary and matching conditions are found in a self-consistent man-

ner using the calculus of variations. Finally, since we have a mixed formulation in

terms of transverse displacement and membrane force, compatibility of the displace-

ment field is ensured as an integrability condition is developed. In the third chapter,

the governing equations are solved analytically for the transverse displacement of the

structure, as the appropriate boundary and matching conditions are applied. The

physical interpretations of the nature of the solution forms are analyzed, and the

stability of these solutions is assessed. The fourth chapter presents the results of nu-

merical simulations based on the analytic solutions previously derived. Interpretation

of the load-deflection paths sheds insight into the nature of the instabilities. A pa-

rameter study is also presented based on the material properties of actual materials.

Finally conclusions based on the results are drawn in the fifth chapter. Possible areas

of future relevant research are addressed here, as well. The complete list of references

is then included. The final section is the Appendix, which includes the codes used

for the numerical simulations (written in MATLAB syntax).
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2 Problem Formulation

2.1 Geometry

The configuration under consideration consists of a flat thin baseplate of normalized

half-span length L ≡ 1 with a secondary layer of half-span Lp < 1 perfectly bonded

on top of the baseplate. Symmetric deformations will be assumed, and thus, only half

the body need be analyzed. The configuration consists of two regions: one with the

two layers perfectly bonded, and one with just the baseplate. The non-dimensional

path coordinate x begins at the center-span of the structure, and runs along the upper

surface of the baseplate, which is defined as the reference surface. The first region,

the one with two layers, is defined as S1 : x ∈ [0, Lp], while the region with just

the baseplate is S2 : x ∈ [Lp, 1]. The non-dimensional z -coordinate originates at

the interface between the two layers—known as the reference surface—and is positive

downward. The non-dimensional height of the baseplate is denoted by hb, while that

of secondary layer is hp. In keeping with beam theory, it is assumed that hb, hp � L.

See Figure 5. The model describes the two layers as beams (plane stress) or as infinite

plates (plane strain).

Figure 5: Non-dimensional Half-Span of Structure.
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Both layers are composed of a distinct homogeneous material, which exhibits

piezoelectric behavior. The evolution and behavior of this system when placed in a

uniformly increasing electric field is analyzed. Moreover, the poling direction of these

piezoelectric beam-plates is assumed to be in the same direction as the applied electric

field. A quasi-static analysis is performed as the electric field increases uniformly.

Two different limiting boundary conditions are analyzed for this situation: clamped-

fixed boundaries and hinged-fixed boundaries. See Figure 7. For a clamped-fixed

boundary, the structure is constrained from axial displacement, and the entire bound-

ary is fixed, prohibiting rotation at the boundary. For a hinged-fixed boundary, we

mean that, again, the structure is restricted from displacing in the axial direction,

but is bounded only at one point (the centroid of the baseplate). Hence, axial dis-

placement is only zero at this one point, and the edge is free to rotate about that

point.

Figure 6: a) Layered Beam-Plate with Clamped-Fixed Boundaries. b) Layered Beam-Plate

with Hinged-Fixed Boundaries.
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2.2 Kinematic Relations

A geometrically nonlinear strain-displacement relation that accounts for infinitesi-

mal strain and moderate rotation is employed. Here, u and w represent axial and

transverse displacements, respectively. As stated earlier, u is taken as positive away

from the center-span, and w is taken as positive downwards. The strain-displacement

relations for either the baseplate or the secondary layer are:

eα =
∂uα
∂x

+
1

2
(
∂wα
∂x

)2 for α = b, p, (7)

where e is the measure of strain.

Figure 7: Differential element accounting for small strain and moderate rotation.

In addition to strain-displacement relations, the change in curvature, κ, is used,

and is approximated in the following way:

κα =
w′′α

[1 + (w′α)2]
3
2

≈ w′′α for α = b, p, (8)

where ′ indicates differentiation with respect to the x-coordinate, as the only inde-

pendent spatial variable that u and w depend on is x.
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At this point, it is instructive to take these properties for the individual layers

and extend them to the bonded region S1 as one composite structure. To this end,

Kirchhoff’s hypothesis is employed to obtain the strain contribution from each layer

at the reference surface by the following relations:

e∗b = e+
1

2
hbκb, (9a)

e∗p = e− 1

2
hpκp, (9b)

where ∗ indicates the quantity is being evaluated at the reference surface.

It is also important to know the curvature at the reference surface. Since the

assumption has already been made that the x-coordinate is the only independent

spatial variable that transverse displacement depends upon, w does not vary through

the thickness. Thus, curvature changes do not vary through the thickness, either.

Hence,

κb = κp = κ∗ in S1 (10)

2.3 Material Stiffnesses of the Stacked Structure

With the geometry of the problem now defined, attention is shifted towards the

relevant stiffness properties of the system. It is apparent from the model that bending

energy and membrane strain energy will be the main modes of energy storage. Thus,

we must quantify the bending stiffness and membrane stiffness for each layer.
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In the case of plane stress, the bending stiffness parameters for the baseplate and

the adhered layer are, respectively:

Db =
1

12
Ebbbh

3
b , (11a)

Dp =
1

12
Epbph

3
p. (11b)

where Eb and Ep are Young’s Modulus for each layer, and bb and bp are the width

of each layer, respectively. It is assumed that in all cases bb = bp. Likewise, the

membrane stiffness parameters for each layer are, respectively:

Cb = Ebbbhb, (12a)

Cp = Epbphp. (12b)

When plane strain is considered, the bending and membrane stiffnesses become:

Db =
1

12

Eb
1− ν2b

h3b , (13a)

Dp =
1

12

Ep
1− ν2p

h3p, (13b)

Cb =
Eb

1− ν2b
hb, (13c)

Cp =
Ep

1− ν2p
hp. (13d)

where νb and νp represent Poisson’s ratio for each layer, respectively.
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2.4 Normalization of Parameters

Until this point, we have been considering dimensional values for all parameters

stated. From this point forward, dimensional parameters are always denoted by an

overbar, while those parameters without an overbar are normalized. This notation is

used for convenience sake, as the problem will be analyzed in non-dimensional form.

All length scales are normalized with respect to the dimensional half-span L̄, of the

baseplate. Hence, the normalized x-coordinate is defined as:

x =
x̄

L̄
. (14)

This in turn causes the axial and transverse displacements, respectively, to be nor-

malized in the following fashion:

u(x, z) =
ū(x̄, z̄)

L̄
, (15a)

w(x) =
w̄(x̄)

L̄
. (15b)

In keeping with the Kirchhoff hypothesis, transverse displacement is a function only

of the x-coordinate, and not the z-coordinate. This means that in this model, the

transverse displacement varies only in the axial direction, and not the thickness di-

rection.

The height or thickness of each layer is normalized the same way:

hb =
h̄b
L̄
, (16a)

hp =
h̄p
L̄
. (16b)
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It is noted here, that with this formulation, of concern will be the ratio between

these two parameters. To this end, we define the ratio of the thickness of the secondary

layer to that of the baseplate as h0. Hence,

h0 =
hp
hb

=
h̄p
L̄

L̄

h̄b
=
h̄p
h̄b
. (16c)

The procedure of normalizing the parameters of the secondary and primary layers

is extended for all the material properties of both layers. Hence, an important pa-

rameter in this study is the ratio of elastic moduli. For plane stress we see the ratio

as:

E0 =
Ēp
Ēb
, (17a)

where Ēp is the axial elastic modulus of the secondary layer and Ēb is the axial elastic

modulus of the baseplate. In the case of plane strain, the pertinent ratio is:

E0 =
Ēp
Ēb

1− ν2b
1− ν2p

. (17b)

At this point, the material properties from the previous section must also be non-

dimensionalized. These properties are normalized with respect to the dimensional

bending stiffness of the baseplate, D̄b, which was given by Eqs. (11a) and (13a).

Thus, the bending stiffness of the baseplate and adhered layer are, respectively:

Db =
D̄b

D̄b

= 1, (18a)

Dp =
D̄p

D̄b

= E0h
3
0, (18b)

where D̄b is the dimensional bending stiffness of the baseplate and D̄p is the dimen-

sional bending stiffness of the secondary layer.
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Likewise, the normalized membrane stiffness of the primary and secondary layers

are, respectively,

Cb =
C̄b
D̄b

=
12

h2b
, (19a)

Cp =
C̄p
D̄b

= CbE0h0, (19b)

where C̄b is the dimensional membrane stiffness of the baseplate and C̄p is the dimen-

sional membrane stiffness of the second layer.

In a similar fashion, forces are normalized with respect to the half-span length,

L̄, and the dimensional bending stiffness, D̄b, of the baseplate. A general normalized

force per unit length, F, is related to its dimensional counterpart, F̄ , by the relation

F =
F̄ L̄2

D̄b

. (20)

The analysis will consider both transverse and axial electric fields. The axial

piezoelectric constant of each layer due to a transverse electric field is normalized

with respect to a dimensional reference electric field, Ēref . Therefore, the normalized

axial piezoelectric constant due to a transverse electric field for the baseplate and the

secondary layer are, respectively,

ηb31 = η̄b31Ēref , (21a)

ηp31 = η̄p31Ēref . (21b)

The ratio of these two properties is defined as

η031 =
ηp31
ηb31

. (22)
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When the electric field is in the transverse direction, it is normalized by the same

dimensional reference electric field:

E =
Ē − Ēref
Ēref

. (23)

Analogously, if we consider an axial electric field, instead of a transverse one, then

the piezoelectric constants that enter the formulation are η̄b11 and η̄p11. Both will be

normalized with respect to the same dimensional reference electric field. Thus, the

normalized counterparts are as follows:

ηb11 = η̄b11Ēref , (24a)

ηp11 = η̄p11Ēref . (24b)

The ratio of these two properties is defined as

η011 =
ηp11
ηb11

. (25)

The electric field is normalized in the same manner:

E =
Ē − Ēref
Ēref

. (26)

2.5 Energy Formulation

The governing equations for each region, and the boundary and matching conditions

come about by applying the theorem of stationary potential energy and, hence, as a

consequence of taking the first variation of the total potential energy of the system.

The potential energy functional of the system is formulated in terms of the strain
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energies of each layer, as well as a constraint functional for the bonded region. In

addition, the internal electrical energy functional is included. The potential energy,

Π, of the entire structure is given as follows:

Π =
2∑
i=1

[
U

(i)
B;b + U

(i)
M ;b

]
+ UB;p + UM ;p + UE − Λ, (27)

where the bending energies of the baseplate and the secondary layer in the two regions

are given by

U
(i)
B;b =

∫
Si

1

2
Dbκ

2
b dx for i = 1, 2, (28a)

UB;p =

∫
S1

1

2
Dpκ

2
p dx. (28b)

The stretching energies of the baseplate and the secondary layer in the two regions

are given by

U
(i)
M ;b =

∫
Si

1

2
Cb(ebi − ηbE)2 dx for i = 1, 2, (28c)

UM ;p =

∫
S1

1

2
Cp(ep − ηpE)2 dx. (28d)

We consider only the situation where the electric field is prescribed. Consequently,

the variation of the internal electrical energy term, UE will vanish identically, and the

details of the form of UE need not be considered here.

The constraint functional is given by:

Λ =

∫
S1

λ1(wp − wb) dx+

∫
S1

λ2(u
∗
p − u∗b) dx, (28e)

where λ1 and λ2 are Lagrange multipliers which physically correspond to the in-

terfacial normal and shear stresses between the two layers in the bonded region,

respectively.
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For the problems considered here, there are no applied work terms. It will be seen

in what follows that the increase in the electric field will manifest itself through a

matching boundary condition as an electro-mechanical moment.

The theorem of stationary potential energy is invoked, which states that for equi-

librium solutions the first variation of the potential energy functional must vanish.

Hence,

δΠ = 0, (29)

where δ is the variational operator. This gives rise to the governing equations of

equilibrium for each region, as well as the boundary conditions at x = 0, x = 1, and

x = Lp (the boundary between the two regions).

An important point of clarification must be made here. It is well-known that a

structure will always tend towards a state of minimum potential energy. Enforcing

that the first variation of potential energy vanishes guarantees us only that our so-

lution corresponds to an extremum. It does not guarantee that the corresponding

equilibrium configuration is stable. It does not distinguish between a minimum or a

maximum of potential energy. Thus, the vanishing of the first variation of the poten-

tial energy is necessary to ensure that the configuration will minimize the potential

energy of the structure, but it is not a sufficient condition.

We are considering a geometrically nonlinear structure, which means multiple

equilibrium configurations are possible for a given value of the loading parameter.

Therefore, we must assess the stability of these equilibrium configurations by ensuring

that the second variation of the potential energy for these configurations is a positive
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definite quantity. This, along with the theorem of stationary potential energy is

sufficient to determine if a configuration minimizes potential energy (See for example

Lanczos [7]).

2.6 Equilibrium Equations

The governing equations for the membrane forces in S1 and S2 follow from the vari-

ational principle as:

∂N∗

∂x
= 0 in S1, (30a)

∂Nb

∂x
= 0 in S2, (30b)

where N* corresponds to the normalized membrane force in each region. Correspond-

ingly, there is a matching boundary condition at x = Lp:

N∗(Lp) = Nb(Lp). (31)

Though this is a boundary condition, it is worth including in this section because it

greatly simplifies the governing equations. Upon combing Eqs. (30a), (30b), and (31)

it can be easily seen that the membrane force is uniform throughout the structure.

This is stated as

N∗(x) = Nb(x) = −N0 in S = S1 + S2, (32)

where the constant N0 is to be determined as part of the solution.

The governing equations for transverse equilibrium that arise from Eq. (29) take

the forms

D∗w
′′′′

1 − (N∗w
′

1)
′
= 0 in S1, (33a)
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Dbw
′′′′

2 − (Nbw
′

2)
′
= 0 in S2, (33b)

where w1(x) and w2(x) represent transverse displacement in Region 1 and Region

2, respectively. The above coupled differential equations would render themselves

nonlinear, except for the fact that Eq. (32) tells us that the membrane forces are

constant, and thus can be pulled outside of the differentiation. Applying Eq. (32) to

Eqs. (33a) and (33b) yields:

D∗w
′′′′

1 +N0w
′′

1 = 0 in S1, (34a)

Dbw
′′′′

2 +N0w
′′

2 = 0 in S2, (34b)

which is a solvable linear system of differential equations.

2.7 Constitutive Relations

The potential energy functional was formulated in terms of each layer, individually.

In the stacked region, equations for both layers were combined to get the normalized

resultant membrane force and normalized bending moment of the composite region,

as a whole. They are given in terms of the material properties of the stacked region

as follows:

N∗ = C∗e∗ +B∗κ∗ − n∗E , (35a)

M∗ = B∗e∗ + A∗κ∗ − r∗E = D∗κ∗ + ρ∗N∗ −m∗E , (35b)

where e∗(x) is the membrane strain for the stacked region at the reference surface,

κ∗(x) is the normalized curvature change for the stacked region at the reference sur-

face, and E corresponds to the normalized uniform electric field change.
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The non-dimensional composite material properties are found in terms of the

corresponding membrane stiffness, Cb and bending stiffness, Db of the baseplate,

and the membrane and bending stiffnesses of the secondary layer, Cp and Dp. The

relations follow as:

C∗ = Cb + Cp, (36a)

B∗ =
1

2
(hpCp − hbCb), (36b)

A∗ = Db +Dp +
1

4
Cbh

2
b +

1

4
Cph

2
p, (36c)

n∗ = η031Cp + Cb, (36d)

r∗ =
1

2
η031hpCp −

1

2
hbCb, (36e)

when the applied electric field is in the 3-direction (transverse). When, however, the

applied electric field is in the 1-direction (axial), Eqs. (36d) and (36e) become:

n∗ = η011Cp + Cb, (37a)

r∗ =
1

2
η011hpCp −

1

2
hbCb, (37b)

For mathematical convenience, we also define D∗, m∗, and ρ∗ in terms of the

previously defined quantities:

D∗ = A∗ − ρ∗B∗, (38a)

m∗ = r∗ − ρ∗n∗, (38b)
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ρ∗ =
B∗

C∗
, (38c)

where ρ∗ physically corresponds to the distance of the centroid of the stacked region

with respect to the reference surface.

2.8 Boundary Conditions

In addition to the governing equations that come about from the vanishing of the first

variation of the potential energy functional, this formulation also clearly defines the

boundary and matching conditions. As previously mentioned, two different boundary

conditions are studied: clamped-fixed boundaries and hinged-fixed boundaries. For

both of these cases, the fixed constraint means that axial deflections of the structure

are prohibited. This is stated, formally, as

u∗(0) = 0 (39a)

ub(1) = 0 (39b)

The remaining boundary conditions for each case are stated explicitly in this section.

2.8.1 Clamped-Fixed Supports

At the fixed end (x = 1), the structure cannot displace and is constrained from

rotating. Thus,

w2(1) = 0, (40a)

w
′

2(1) = 0. (40b)
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Since we also consider symmetric deformations, rotation and transverse shear

vanish at the center-span (x = 0). Thus,

w
′

1(0) = 0, (40c)

D∗w
′′′

1 (0) +N0w
′

1(0) = 0. (40d)

At the interface of the two regions, S1 and S2, the matching conditions for dis-

placement, rotation, transverse shear, and bending moment are, respectively,

w1(Lp) = w2(Lp), (40e)

w
′

1(Lp) = w
′

2(Lp), (40f)

D∗w
′′′

1 (Lp) +N0w
′

1(Lp) = Dbw
′′′

2 (Lp) +N0w
′

2(Lp), (40g)

D∗w
′′

1 (Lp)− ρ∗N0 −m∗ηbE = Dbw
′′

2 (Lp) +
1

2
hbN0. (40h)

We rewrite the matching condition for the bending moment, Eq. (40h), in the

following way:

D∗w
′′

1 (Lp)−Dbw
′′

2 (Lp) =Mλ = m∗ηbE + (ρ∗ +
1

2
hb)N0. (41)

This shows that the electric field manifests itself as a bending moment at the interface

between S1 and S2. We call this parameter, Mλ, the transverse loading parameter

and recognize that this is how the electric load enters the problem.
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2.8.2 Hinged-Fixed Supports

We consider the situation where the structure is pinned at x = 1 and z = hb
2

, where the

x -coordinate begins at the centerspan of the structure, and the z -coordinate begins

at the surface between the two layers, and is positive downward. This is along the

neutral axis of Region S2. At the fixed end (x = 1), the structure cannot displace,

but can rotate. However, the curvature change must vanish. Thus,

w2(1) = 0, (42a)

κ2(1) = 0. (42b)

The same symmetric deformations as the clamped case are considered. Thus, at

the center-span (x = 0), rotation and transverse shear vanish:

w
′

1(0) = 0, (42c)

D∗w
′′′

1 (0) +N0w
′

1(0) = 0. (42d)

Again, as was the case with the clamped boundaries, the same interior matching

boundary conditions exist at the interface of the two regions, S1 and S2. Restating

these:

w1(Lp) = w2(Lp), (42e)

w
′

1(Lp) = w
′

2(Lp), (42f)

D∗w
′′′

1 (Lp) +N0w
′

1(Lp) = Dbw
′′′

2 (Lp) +N0w
′

2(Lp), (42g)
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D∗w
′′

1 (Lp)−Dbw
′′

2 (Lp) =Mλ = m∗ηbE + (ρ∗ +
1

2
hb)N0. (42h)

where we have already rewritten the moment matching condition to identify the

transverse loading parameter.

2.9 Integrability Condition

The governing differential equations were derived from the vanishing of the first vari-

ation of the potential energy. This resulted in two coupled nonlinear differential

equations in terms of the displacements w and u. These equations were greatly sim-

plified into the form shown by Eq. (34a) and Eq. (34b), when Eq. (32) was applied.

This means that the nonlinear coupled differential equations in terms of (u,w) were

recast into two uncoupled linear differential equations in terms of (N0, w).

Thus, we need a relationship between the in-plane displacement and the membrane

force. This integrability condition acts as a compatibility relation between the axial

displacement and the resulting force. This relation is derived by integrating the

composite membrane force and solving for the in-plane displacement, resulting in the

following:

u2(1)− u∗1(0) = −
[Lp
C∗

+
L∗p
Cb

]
N0 +

[ n∗
C∗
Lp + L∗p

]
ηbE

−
[
ρ∗ +

1

2
hb

]
w

′

1(Lp)−
2∑
i=1

∫
Si

1

2
w

′

i

2
dx,

(43)

where, L∗p = 1− Lp is the length of S2.

Since we only consider boundaries that are fixed with respect to axial displace-

ment, we can impose the boundary conditions on in-plane displacement given by Eqs.



33

(39a) and (39b). This results in the identity

−
[Lp
C∗

+
L∗p
Cb

]
N0 +

[ n∗
C∗
Lp + L∗p

]
ηbE −

[
ρ∗ +

1

2
hb

]
w

′

1(Lp)−
2∑
i=1

∫
Si

1

2
w

′

i

2
dx = 0.(44)

Therefore, when the governing equations are solved for w, the integrability con-

dition gives us a direct relation between the applied electric field strength, E , and

the resulting membrane force, N0, throughout the structure. Thus, only discrete

combinations of N0 and E correspond to equilibrium configurations.
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3 Analysis

3.1 Analytical Solution

In this section, the governing differential equations previously derived and given by

Eqs. (34a) and (34b) (repeated below)

D∗w
′′′′

1 +N0w
′′

1 = 0 in S1, (32a)

Dbw
′′′′

2 +N0w
′′

2 = 0 in S2, (32b)

are solved analytically for both clamped-fixed and hinged-fixed boundary conditions,

which are described in Sections 2.8.1 and 2.8.2, respectively.

Eqs. (34a) and (34b) are readily solvable ordinary differential equations upon

recognizing that N0, while still unknown, is a constant value. Thus, the deflections

w1 and w2 will be functions of the unknown N0. The membrane force N0 can be

determined by substituting w1 and w2 into the integrability condition, Eq. (44).

Thus for a prescribed electric field, we will be able to determine the corresponding

membrane force and the transverse deflection of the structure.

3.1.1 Clamped-Fixed Supports

When the structure has clamped-fixed boundary conditions, governing equations.

(34a) and (34b) are solved analytically along with the boundary conditions given

by Eqs. (40a), (40b), (40c), (40d), (40e), (40f), (40g), (41) to get the transverse

displacement field for both regions. This gives

w1(x) =
Mλ

N0Hc

{
Hc − sin(k∗Lp)−

√
D∗

Db

sin(kL∗p) cos(k∗x)

}
in S1, (45a)
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w2(x) = − Mλ

N0Hc

sin(k∗Lp) {1− cos[k(1− x)]} in S2, (45b)

where

Hc = sin(k∗Lp) cos(kL∗p) +

√
D∗

Db

cos(k∗Lp) sin(kL∗p), (46)

and

k∗ =

√
N0

D∗
(47a)

k =

√
N0

Db

(47b)

3.1.2 Hinged-Fixed Supports

When, the governing equations (34a) and (34b) are solved subject to hinged-fixed

boundary conditions given by Eqs. (42a), (42b), (42c), (42d), (42e), (42f), (42g),

(42h), the transverse displacement field is found to be:

w1(x) =
Mλ

N0Hh

{
Hh −

√
D∗

Db

cos(kL∗p) cos(k∗x)

}
in S1, (48a)

w2(x) = − Mλ

N0Hh

sin(k∗Lp) sin[k(1− x)] in S2, (48b)

where

Hh =

√
D∗

Db

cos(k∗Lp) cos(kL∗p)− sin(k∗Lp) sin(kL∗p), (49)

3.2 Consequences of Solution Form

For either boundary condition, we see that the transverse displacement has a similar

form. For both cases, the displacement in both regions, S1 and S2, is always directly
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proportional to Mλ. We see also that for clamped-fixed supports, the transverse

displacement is inversely proportional to Hc, while for hinged-fixed boundaries it

is inversely proportional to Hh. Thus, it is apparent that when Hα for α = c, h

approaches zero, the deflections grow without bound. For situations where Hα is

identically zero, the deflection is singular. Since Hα is only a function of material

properties and N0, we can conclude that there is an appropriate membrane force for

both cases that makes the deflection singular.

In fact, it is apparent that there are several values of N0 that make Hα vanish.

The lowest value of N0 satisfying

Hα = 0 (50)

is designated as the critical membrane force (Ncr) and is associated with classic Euler

type bifurcation (or more appropriately asymptotic buckling since we are considering

a stacked structure with a raised neutral axis), if we were considering the case of

controlled edge force loading.

However, instead of controlled edge force loading, we are concerned in this study

with electric field strength loading. Since we consider boundary types that are always

fixed, electric field strength and membrane force cannot be uncoupled, and are related

in a nonlinear manner through the previously described integrability condition given

by Eq. (43).

Since our analytical solutions given by Eqs. (45a), (45b) and (48a), (48b) show

that the transverse displacement is proportional toMλ for both situations, an appro-

priate ratio of electric field strength and axial membrane force can be implemented
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so that Mλ vanishes. For the case when N0 = Ncr, Mλ will vanish when

E =
(ρ∗ + hb

2
)Ncr

ηbm∗
(51)

When this is the case, we say E = Ecr. It will be shown later that Ecr is a driving

factor in the orientation of the structural response of the system.

3.3 Stability Criterion

The geometrically nonlinear nature of the problem lends itself to multiple equilib-

rium states for given loading conditions. This is apparent by the transcendental and

nonlinear nature of the integrability condition, Eq. (43). For a given electric field, it

is possible that multiple equilibrium configurations can be obtained. Taking the first

variation of the potential energy functional ensured that equilibrium configurations

arose when the potential energy functional was stationary. However, these stationary

values can represent a minimum or a maximum of potential energy. The propen-

sity of structures to tend towards configurations of minimum potential energy leads

to the well accepted conclusion that maximum values of the total potential energy

functional correspond to unstable equilibrium configurations, while stable equilibrum

configurations are associated with a minimum value of potential energy. Thus, it

is important to have a criterion for deciding to which equilibrium configuration the

structure will tend.

Since this is a quasi-static solution, it is important to clarify at this point what

is meant by stability. An equilibrium configuration is considered stable if, when
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perturbed away from a state of equilibrium, it will tend back to the same equilibrium

state. Any other result is deemed unstable.

Stability of our solution depends upon the second variation of the potential energy

functional. In fact the solution is deemed stable when

δ2Π > 0. (52)

The system is perturbed away from its equilibrium states by perturbing the trans-

verse displacement, w, and the axial displacement, u. It was shown earlier by Eqs.

(45a), (45b), (48a) and (48b) that w is always directly proportional to the transverse

loading parameter, Mλ, given by Eq. (41). Thus, perturbing Mλ is equivalent to

perturbing w.

We also know that the axial strain, e, depends directly upon u. So we can perturb

e, instead of u. Moreover, perturbing e is equivalent to perturbing the membrane

force N0. Consequently, we write the second variation of the total potential energy,

in terms of δMλ and δN0, which is equivalent to perturbing w and u. The second

variation of the total potential energy takes the following form,

δ2Π =
1

4N0H2
c

[D∗
Db

k∗ sin2(kL∗p) sin(2k∗Lp) + k sin2(k∗Lp) sin(2kL∗p)
]
(δMλ)

2

+
1

2

[Lp
C∗

+
L∗p
Cb

]
(δN0)

2,

(53a)

δ2Π =
1

4N0H2
h

[D∗
Db

k∗ cos2(kL∗p) sin(2k∗Lp)− k sin2(k∗Lp) sin(2kL∗p)
]
(δMλ)

2

+
1

2

[Lp
C∗

+
L∗p
Cb

]
(δN0)

2,

(53b)

for clamped and hinged boundaries, respectively.
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As stated by Eq. (52), stability of an equilibrium configuration requires that the

second variation of the total potential energy is positive definite. To check this, Eqs.

(53a) and (53b) are rewritten in canonical form as

 FN0
0

0 ζ


 (δMλ)

2

(δN0)
2

 > 0, (54)

where

ζ =
1

2

[Lp
C∗

+
L∗p
Cb

]
, (55)

and

F =
1

4H2
c

[D∗
Db

k∗ sin2(kL∗p) sin(2k∗Lp) + k sin2(k∗Lp) sin(2kL∗p)
]
, (56a)

F =
1

4H2
h

[D∗
Db

k∗ cos2(kL∗p) sin(2k∗Lp)− k sin2(k∗Lp) sin(2kL∗p)
]
. (56b)

for clamped and hinged boundaries, respectively.

Clearly, (δMλ)
2 and (δN0)

2 are positive definite since each represents a physical

quantity squared. Thus, we need to only consider positive definiteness of the char-

acteristic matrix in Eq. (54). This is a symmetric matrix, which is positive definite

when it’s eigenvalues are both positive definite. Since the characteristic matrix is

already diagonal, the eigenvalues are clearly:

λ1 =
F
N0

, (57a)

λ2 = ζ. (57b)



40

It is apparent that, since Lp, L
∗
p, Cb, and C∗ are all positive values (as defined earlier),

ζ > 0, (58)

always. The configuration is now considered stable if λ1 > 0. This would imply that

F > 0. Therefore, we call F the stability function. An equilibrium configuration is

stable if and only if

F > 0, (59)

where F is given by Eq. (56a) or Eq. (56b) depending on whether the supports are

clamped or hinged, respectively.

Now that the governing equations have been solved and a measure of stability has

been assessed, we can know which equilibrium path the structure will tend towards.

Results of numerical simulations for many different cases are shown in the next chap-

ter. The stability analysis helps to draw definitive conclusions about the buckling

and post-buckling nature of these structures.
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4 Results and Discussion

This chapter presents results of numerical simulations for the layered structures dis-

cussed earlier, which are restricted from in-plane motion. The loading scenario con-

sidered here is a uniform increase in electric field strength. As stated earlier, the two

different boundary conditions to be studied are clamped and hinged, respectively.

Solution of the governing equations with the aid of the stability analysis, imple-

mentation of the boundary and matching conditions, in addition to utilization of the

integrability condition, gives rise to various load-deflection paths for our structure.

Several different material combinations are presented to demonstrate the qualitative

behavior of sling-shot buckling. These results show how and when sling-shot buckling

will occur.

Critical parameters will be identified, and a complete parameter study is given

to show the buckling behavior of the structure under different geometries, as well as

material properties. This section gives insight to the role these parameters play in

facilitating this unique buckling phenomenon.

4.1 Representative Results

4.1.1 Clamped-Fixed Supports

It is instructive to first discuss a stacked structure whose two layers have the same

mechanical material properties, but with differing piezoelectric constants. This is

done so that we can isolate the difference between the piezoelectric effect in the two

layers, and study more closely the role it plays in the overall behavior of the structure.
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We are focusing here on how the piezoelectric effect influences sling-shot buckling.

We will assume, for our first numerical analysis, that the structure is subjected to

a transverse electric field, and that it has clamped-fixed boundary conditions. The

structure to be analyzed has the following properties:

hb = hp = 0.06,

Lp = 0.75,

E0 = 1.0,

ηb31 = 0.003.

η031 = 0.5.

The results for this situation are also valid when considering a structure where the

electric field is applied in an axial manner, with the structure having piezoelectric

properties ηb11 = 0.003 and ηp11 = 0.0015.

Based on these values, we can calculate the critical non-dimensional membrane

force, Ncr, and critical non-dimensional electric field strength, Ecr. Substitution of

Eq. (46) into Eq. (50) results in Ncr = 36.16. Upon substituting this value into (51),

it is found that Ecr = 7.233.

As mentioned in Section 2.9, the integrability condition gives discrete combina-

tions of N0 and E that correspond to equilibrium configurations. Due to the geomet-

rically non-linear strain-displacement formulation, the correspondence is not one-to-

one. For the properties chosen above, the electric field strength is varied, and the

corresponding membrane forces are calculated by numerically solving Eq. (44) for

N0. The results are shown in Figure 8.
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Figure 8: Clamped-fixed boundaries: Equilibrium pairs of applied electric field, E , and

corresponding reactionary membrane force, N0.
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It is apparent from Figure 8 that for small electric fields, the membrane force

can only be single-valued. However, when the non-dimensional electric field exceeds

4.10, there exists three possible values of N0 that correspond to equilibrium solutions,

as shown on the figure. The equilibrium curves are labeled branches A, B, and C,

respectively, in order to keep track of them in Figures 9 - 11.

To decide what the actual membrane force will be, it is instructive to check the

stability of the three membrane forces. The criterion for stability, derived in Section

3.3, shows that the structure is in a stable equilibrium configuration when F , the so

called stability function (given by Eq. (56a)), is positive. The equilibrium pairs of

(E , N0) depicted in Figure 8 are substituted into the stability function, and shown

graphically in Figure 9. Stable pairs are shown as solid curves, while the unstable

equilibrium configurations are shown by dashed curves. The stability results are

added to the other corresponding figures for clarity, meaning that in all figures a

solid curve represents a stable configuration, whereas a dashed curve represents an

unstable configuration.

Thus, we see from Figure 8 that the true value of N0 is that of branch A, up

until the critical electric field is reached. At this point, branch B is the only stable

configuration. As the electric field increases, branch B is the only one corresponding to

a stable solution. However, when the non-dimensional electric field strength reaches

11.24, in this situation, branch C also has stable equilibrium configurations. The

natural question to ask at this point is, how can one decide which stable equilibrium

configuration the structure will tend towards?
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Figure 10 shows the total potential energy of the structure as a function of the

applied electric field strength. This is computed by substituting the equilibrium pairs

of (E , N0) into the total potential energy functional given by Eq. (27). It is well

known that a structure will tend towards the state of lowest potential energy. It is

seen that when the electric field reaches Ecr, branch B corresponds to a lower energy

state than branch A, which is why the structure switches from A to B at this point.

It is also seen that when the electric field strength gets to 11.24, both branches B and

C are stable. However, branch B is much more energetically favorable than branch

C, so the structure will continue along following the equilibrium path of branch B.
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Figure 10: Clamped-fixed boundaries: Potential energy, Π, of the structure as a function

of the applied electric field, E .
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At this point, for a uniformly increasing electric field, we are able to tell exactly

what the value of the membrane force, N0, is for any electric field. These values are

substituted into the equations for transverse deflection, given by (45a) and (45b). The

centerspan deflection (i.e. w1(0)) is plotted as a function of the applied electric field in

Figure 11. Once again, the stability results are added to this load-deflection graph. It

can be seen that as the electric field increases from zero, the structure will deflect in the

upwards sense. However, once the critical electric field is reached, branch A becomes

unstable, and the structure will tend towards branch B. Branch B, as shown by the

figure, is associated with downward deflections. Thus, at this point where the critical

membrane force and critical electric field are reached simultaneously, the structure

dynamically shifts from upward to downward deflections. Therefore, the structure

exhibits sling-shot buckling at this point. An increase in electric field strength means

the structure will continue to deflect downward following the path of branch B. Again,

it is worth noting that branch C eventually becomes stable, but the energy argument

makes that equilibrium configuration impossible to attain naturally. The magnitude

of the deflections shown in Figure 11 show that the sling-shot buckling instability

occurs well within the allowable deflection bounds of beam theory, validating the

appropriateness of the model.
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Figure 11: Clamped-fixed boundaries: Load-deflection curve: centerspan displacement,

w(0), as a function of the applied electric field, E .

4.1.2 Hinged-Fixed Supports

Figures 12, 13, 14, and 15 show results for the same geometric and material properties

as before, but with hinged-fixed, as opposed to clamped-fixed boundary conditions.

We see the same qualitative behavior in the hinged case that was observed in the

clamped case. Three branches of equilibrium configuration exist, just as before. It

is important to notice that for the hinged case, Ncr = 16.11 and Ecr = 3.222. These

values are significantly less than those for the clamped case. A beam or plate that is

fixed only at one point of contact on its edges is physically much more susceptible to

transverse deflection than one that is fixed at every point on its boundary. Thus, the

hinged structure requires a much smaller electric field to induce transverse deflections.

Therefore, it makes sense for the critical membrane force and critical electric field to

be lower than those for the clamped case.
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It is also worth noting from comparing Figure 15 with Figure 11, that the mag-

nitude of the critical deflection is smaller for the hinged case. That is, sling-shot

buckling occurs not only at a lower electric field and corresponding membrane force,

but also when the structure has deflected less than the clamped case.

Comparison of Figures 14 and 10 shows that, for a given electric field, the hinged

structure always has less stored potential energy than the clamped structure. This

makes perfect physical sense based on the constraints on the boundaries. A clamped

structure, inherently, leads to a more constrained displacement field than one that is

hinged. Thus, when the structure does deflect, the clamped one is less flexible and

therefore stores more energy than the hinged configuration.
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Figure 12: Hinged-fixed boundaries: Equilibrium pairs of applied electric field, E , and

corresponding reactionary membrane force, N0.
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Figure 13: Hinged-fixed boundaries: Stability criterion, F , as a function of the applied

electric field, E .
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the applied electric field, E .
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Figure 15: Hinged-fixed boundaries: Load-deflection curve: centerspan displacement, w(0),

as a function of applied electric field, E .

A point of clarification needs to be made regarding the stability of the hinged-fixed

case. While it appears in Figure 13 that branch C becomes unstable at the critical

electric field, this is in fact untrue. Figure 16 shows a magnified view of Figure 13.

From this, it is apparent that branch C switches from an unstable to a stable curve

at E = 3.341, not at E = Ecr = 3.222. Coupling this information with the energy

argument we made for the clamped case, it is clear that at the critical electric field,

the structure will switch from branch A to branch B, while branch C is still physically

unrealizable.
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Figure 16: Hinged-fixed boundaries: Closer view of the difference between the critical elec-

tric field and the point where branch C switches from an unstable to a stable configuration.

4.2 Critical Parameter Study

The previous section showed that sling-shot buckling is possible in piezoelectric struc-

tures. For temperature controlled loading of non-piezoelectric materials, Karlsson and

Bottega (2000) [4] proved that sling-shot buckling only occurs for structures where

0 < α0 < 1, where α0 is the ratio of the non-dimensional coefficient of thermal ex-

pansion of the secondary layer to that of the primary layer. This is a question that

needs to be addressed for the piezoelectric situation.

Figures 17 - 20 are the graphs for the same clamped-fixed structure as the previous

section, but with different ratios of piezoelectric constants. They represent the case

where the two materials have the same piezoelectric constant, ηp31 = ηb31 = 0.003 or

ηp11 = ηb11 = 0.003, depending on whether the structure is subjected to a transverse
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or axial electric field. Thus, η0 = 1. Figure 17 shows the discrete combinations of

applied electric field and resultant axial membrane force, as given by the integrability

condition. We see for this case that branch A and branch B asymptote towards each

other, but never cross. The critical membrane force for this case is the same as before

(Ncr = 36.16), as the piezoelectric constants do not affect this. Recall, the critical

electric field is calculated by Eq. (51) (repeated below):

E =
(ρ∗ + hb

2
)Ncr

m∗
. (49)

For the case where η0 = 1, m∗ = 0. Thus, there is no critical electric field for this

case, and hence sling-shot buckling will not occur.

Figure 18 shows the stability of the three equilibrium branches. It is apparent that

branch A is always stable, while branch B is never stable, and branch C transitions

from unstable to stable. Based on Figure 19 it is apparent that the potential energy of

the stable region of branch C is far greater than that of branch A. Thus, the structure

will continue along branch A as the electric field increases. Finally, the load-deflection

profile is given by Figure 20. It shows that as the electric field increases, the structure

will continually deflect upwards in the context of this model. Therefore, sling-shot

buckling will not occur when then piezoelectric constants of the two layers are equal.

Sling-shot buckling is precipitated by a mismatch in piezoelectric constants, which is

not the case here.
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Figure 17: Clamped-fixed boundaries, η0 = 1: Equilibrium pairs of applied electric field,

E , and corresponding reactionary membrane force, N0.
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Figure 19: Clamped-fixed boundaries, η0 = 1: Potential energy, Π, of the structure as a

function of the applied electric field, E .
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Figure 20: Clamped-fixed boundaries, η0 = 1: Load-deflection curve: centerspan displace-

ment, w(0), as a function of applied electric field, E .
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One more situation needs to be addressed. Since sling-shot buckling requires a

mismatch in piezoelectric constants, will it still occur when the piezoelectric constant

of the secondary layer is greater than that of the primary layer? Results for this

situation are shown in Figures 21 - 24. Again, we keep the same geometric properties

as the previous section, but here ηb31 = 0.003 and ηp31 = 0.006, or ηb11 = 0.003 and

ηp11 = 0.006, depending on whether the structure is subjected to a transverse or axial

electric field. Thus, η0 = 2 for this situation.

When η0 > 1, m∗ < 0. Thus, the critical electric field is mathematically a negative

number, which does not correspond to a real physical situation. Therefore, we can say

there is no critical electric field for this situation, as well. Figure 21, much like Figure

17, shows that branches A and B never cross each other. Upon inspection of Figure

22, it is apparent that branch B is always unstable, while branch C becomes stable at

higher electric fields. Like the previous situation, Figure 23 shows that branch C will

never be naturally attained, as it corresponds to much higher potential energy in the

system than branch A. Figure 24 shows the load-deflection graph for this situation.

As the applied electric field increases, the structure will follow the equilibrium path

of branch A. Since there is no critical electric field, an increase in applied electric field

will not result in sling-shot buckling.

Based on the mathematical arguments set forth, and aided by the corresponding

figures, it can be definitively concluded that sling-shot buckling will only occur when

the piezoelectric constant of the baseplate is greater than that of the secondary layer

(0 < η0 < 1).
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Figure 21: Clamped-fixed boundaries, η0 = 2: Equilibrium pairs of applied electric field,

E , and corresponding reactionary membrane force, N0.
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Figure 22: Clamped-fixed boundaries, η0 = 2: Stability criterion, F , as a function of the

applied electric field, E .
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Figure 23: Clamped-fixed boundaries, η0 = 2: Potential energy, Π, of the structure as a

function of the applied electric field, E .
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Figure 24: Clamped-fixed boundaries, η0 = 2: Load-deflection curve: centerspan displace-

ment, w(0), as a function of applied electric field, E .
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4.2.1 Effect of Changing Young’s Modulus

Since it is now known that sling-shot buckling will occur when 0 < η0 < 1, we wish

to show how the critical electric field is affected by the other material or geometric

properties. The first one to consider is the ratio of the elastic modulus of the secondary

layer to that of the primary layer. Figures 25 and 26 show the critical electric field as

a function of the ratio of piezoelectric constants for various ratios of elastic moduli,

for clamped and hinged boundary conditions respectively. For both of these cases, we

assume the same material properties as before: hb = hp = 0.06, Lp = 0.75, and ηb31 =

0.003 (or ηb11 = 0.003). As the secondary layer becomes stiffer, the critical electric field

increases. A stiffer secondary layer naturally becomes less susceptible to transverse

deflections, and thus will require a higher electric field to buckle. Also, the critical

electric field is directly proportional to η0—a very intuitive result both physically and

mathematically speaking. It can also be seen from a comparison of Figure 25 and

Figure 26 that the critical electric field for the hinged case is significantly lower than

the clamped case, as previously discussed.

Here, we evaluate a combination of actual materials, namely polarized ceram-

ics. Consider a clamped beam (plane stress) with an applied electric field ori-

ented in the axial direction. The primary layer is composed of PZT-5A (c̄11 =

11.1 × 1010 N/m2, η̄11 = 1.423 × 10−10 C/N), while the secondary layer is PZT-

7A (c̄11 = 13.1 × 1010 N/m2, η̄11 = 7.252 × 10−11 C/N). The pertinent ratios here

are E0 = 1.180 and η011 = 0.510. This configuration is shown in Figure 25.
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Figure 25: Clamped-fixed boundaries: Critical electric field, Ecr, as a function of ratio of

piezoelectric constants, η0, for various ratios of Young’s Modulus, E0.
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Figure 26: Hinged-fixed boundaries: Critical electric field, Ecr, as a function of ratio of

piezoelectric constants, η0, for various ratios of Young’s Modulus, E0.
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Likewise, consider a hinged-fixed structure subjected to a state of plane stress,

where the primary layer is PZT-5H (c̄11 = 11.7×1010 N/m2, η̄11 = 1.991×10−10 C/N)

and the secondary layer is PZT-6B (c̄11 = 16.3×1010 N/m2, η̄11 = 4.356×10−11 C/N).

The pertinent ratios here are E0 = 1.393 and η011 = 0.219. This configuration is shown

in Figure 26.

4.2.2 Effect of Changing Length of Secondary Layer

The critical electric field, Ecr, is also affected by the size of the secondary layer. It

is reached when the transverse loading parameter, Mλ, vanishes. Eq. (41) shows

that the transverse loading parameter represents a competition of moments at the

interface between the bonded region and the region with just the primary layer.

Clearly this value will be affected by adjusting the length of the bonded region.

Figures 27 and 28 show for clamped and hinged boundaries, respectively, that as the

bonded region increases the critical electric field is raised—in agreement with the

mathematical argument just put forth. For this situation, hb = hp = 0.06, E0 = 1.0,

and ηb31 = 0.003 (or ηb11 = 0.003). Physically, too, we can imagine that as the bonded

region increases, the structure is stiffer and thus will require a stronger electric field

to deflect, and eventually buckle.
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Figure 27: Clamped-fixed boundaries: Critical electric field, Ecr, as a function of ratio of

piezoelectric constants, η0, for various values of Lp.
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Figure 28: Hinged-fixed boundaries: Critical electric field, Ecr, as a function of ratio of

piezoelectric constants, η0, for various values of Lp.
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4.2.3 Effect of Changing Thickness Ratio

The final geometric ratio to consider is that of the thickness of the two layers. We see

from Figures 29 and 30 that as the secondary layer gets thicker the critical electric

field is raised. The parameters chosen for this simulation are as follows: E0 = 1,

hb = 0.06, Lp = 0.75, and ηb31 = 0.003 (or ηb11 = 0.003). We again see higher critical

electric field values for the clamped supports when compared to the hinged supports.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

η0

E c
r

 

 

h0 = 5.0

h0 = 2.0

h0 = 1.0

h0 = 0.5

h0 = 0.1

Figure 29: Clamped-fixed boundaries: Critical electric field, Ecr, as a function of ratio of

piezoelectric constants, η0, for various thickness ratios, h0.
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Figure 30: Hinged-fixed boundaries: Critical electric field, Ecr, as a function of ratio of

piezoelectric constants, η0, for various thickness ratios, h0.
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5 Conclusion and Future Work

The buckling and post-buckling behavior of layered piezoelectric beam-plates sub-

jected to an externally applied electric field has been studied. The geometrically

non-linear problem was self-consistently formulated in the calculus of variations and

solved analytically. It was shown that when the structure is constrained from axial

deformation, the applied electric field corresponds to discrete combinations of the re-

actionary membrane force via the integrability condition, which ensures compatibility

of the displacement field. Thus, there exists multiple possible deflection paths. By

taking the second variation of the total potential energy of the system, stability of the

multiple deflection paths is assessed. Finally, the true path the structure will follow

is based on the potential energy. Numerical simulations are presented as an example

with which to apply these results.

In order to solve the non-linear partial differential equation governing the structure

in terms of the transverse and axial displacements, u and w, respectively, the problem

was recast into a mixed formulation in terms of N0 and w. Realizing that the axial

membrane force, N0 was always uniform allowed the non-linear partial differential

equation to be transformed into an ordinary differential equation for the transverse

deflection, w.

The transverse loading parameter, which comes about as a matching boundary

condition ensuring matching moments at the interface of the two regions, has been

identified and its importance realized. Because it is directly proportional to the

transverse motion of the structure and represents a competition between mechanical
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and piezoelectric moments at the interface of the two domains, the transverse loading

parameter dictates the direction of transverse deflection for a given electric field.

Two major critical parameters were identified: the critical membrane force, Ncr

and the critical electric field Ecr. It was shown that the simultaneous vanishing of these

two parameters corresponds to sling-shot buckling. It was argued mathematically

and verified by numerical simulations that these parameters can only simultaneously

vanish when 0 < η0 < 1. A parameter study was then presented to show how these

values are affected by various geometric and material properties. It was shown that

the critical electric field increases as η0 approaches unity. It was also concluded that

a stiffer structure will require a higher electric field to precipitate sling-shot buckling.

Thus, the critical electric field is directly proportional to the length of the secondary

layer, as well as the stiffness and thickness of this layer when compared to the primary

layer of the structure.

A problem of this sort still has many aspects to still be researched. For ex-

ample, the symmetric deformation assumption can be relaxed in order to consider

antisymmetric deflections. Further, if non-symmetric deformations are considered,

the secondary layer need not be centrally placed above the primary layer, which may

result in drastically different behavior.

Delamination of the two layers is also something that can be considered. It is well

known that delamination and buckling are not mutually exclusive phenomena, and

in certain cases one often precipitates the other.

An experiment can be conducted to verify sling-shot buckling in a laboratory

setting, and compared to the numerical simulations presented in this study. Since
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everything presented here is in non-dimensional form and a parameter study was

included, the results apply for a wide range of materials.
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