
THE DESIGN AND IMPLEMENTATION OF

CLOUD-SCALE LIVE MIGRATION

BY LONGHAO SHU

A thesis submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Computer Science

Written under the direction of

Dr. Thu D. Nguyen

and approved by

New Brunswick, New Jersey

January, 2014

ABSTRACT OF THE THESIS

THE DESIGN AND IMPLEMENTATION OF

CLOUD-SCLAE LIVE MIGRATION

by LONGHAO SHU

Thesis Director: Dr. Thu D. Nguyen

Live migration, short for live virtual machine (VM) migration, enables a running

virtual machine to move between two physical hosts without perceptible inter-

ruption in service. Live migration is an efficient tool for system administrators to

perform system maintenance, load balancing, and fault management while allow-

ing end-users to avoid costly service downtimes. Today, live migration between

hosts connected by a local area network (LAN) has become a critical feature of

enterprise class virtual infrastructure.

We also expect live wide area network (WAN) migration, e.g., Cloud-scale

live migration, to extend the scope of provisioning compute resources from a

single data center to multiple geographically disparate data centers. Currently,

Cloud-scale live migration is possible only through ad-hoc solutions using network

file systems, proprietary storage array replication or software replicated block

devices used in concert with more well known approaches for migrating memory.

But this loose aggregation of mechanisms makes migration architectures complex,

inflexible, and unreliable and performs poorly compared with live LAN migration

ii

in general.

To overcome those deficiencies, we present a Cloud-scale live migration frame-

work that integrates support for memory and storage migration over WAN and

maintains much of the simplicity and reliability of live LAN migration. The main

challenge for implementing Cloud-scale live migration is how to deal with the

large VM data (especially VM storage data) transferring over WAN. To solve

this problem, we propose a new “Migration over FedEx” solution to combine the

benefits of both live LAN migration and transferring large amount of data via

shipping portable storage devices containing the data. Our solution capped the

total migration time into a bounded time period without increasing the downtime

compared with traditional live migration. In the meanwhile, the total migration

cost is greatly reduced especially for migrating large number of VMs.

iii

Acknowledgements

First and foremost I would like to express my thanks to my internship mentor Min

Cai, for his insightful advice and support, for providing me an excellent research

environment at VMWare Inc.

I also would like to express my gratitude to my commitee members Dr. Thu

Nguyen, Dr. Ricardo Bianchini and Dr. Abhishek Bhattacharjee for reviewing

my work and their feedbacks.

Last but not least, I would like to express my eternal gratitude to my parents

and girlfriend, Yaqin, for their everlasting love and support.

iv

Dedication

To my parents

v

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . v

List of Tables . viii

List of Figures . ix

1. Introduction . 1

2. Background . 3

2.1. Live Migration . 3

2.1.1. Metrics . 5

2.1.2. Live Memory Migration 6

2.1.3. Live Storage Migration . 8

2.1.4. Live WAN Migration . 9

2.2. Related work . 10

2.3. Our approach . 12

3. Framework: Migration over FedEx 13

3.1. Overview . 13

3.1.1. FedEx?! . 14

3.1.2. Workflow . 15

3.2. Migration Components . 20

3.2.1. Storage Migration over FedEx 20

vi

3.2.2. Memory and Dirty-Storage Migration over WAN 23

3.3. Conclusion . 26

4. Protocol: LAN Storage Replication 27

4.1. Overview . 27

4.2. Delta Consolidation Protocol . 29

4.3. Setting Up . 31

4.4. LSRP Specification . 33

4.4.1. LSRP Initialization . 35

4.4.2. Full Replica Creation . 38

4.4.3. Delta Consolidation . 40

4.4.4. Future . 43

4.5. Conclusion . 45

5. Evaluation . 46

5.1. System Configuration . 46

5.2. Benchmarks . 46

5.3. Migration over FedEx . 47

5.3.1. Migration Time and Downtime 47

5.3.2. Dissection . 49

5.4. Delta Consolidation . 50

5.4.1. Performance Results . 51

6. Discusstions and Futrue . 52

6.1. VM Distribution Network . 52

6.2. Open Live Migration Protocol . 53

References . 53

vii

List of Tables

2.1. Comparisons of three typical live storage migration approaches . . 9

3.1. Comparison of different WAN connection types, their costs, and

the time required to move 1K VMs with 50GB disk each. 15

4.1. LSRP messages . 34

4.2. LSRP initialization messages . 35

4.3. Full Replica Creation messages 39

4.4. Delta Consolidation messages . 41

5.1. Configurations of three benchmark VMs 46

5.2. Threshold number of migrated VMs when Migration over FedEx

exceeds traditional live migration 48

viii

List of Figures

2.1. Live migration classification according to existence of shared storage 4

2.2. Live migration classification according to network connection type 5

3.1. Migration over FedEx framework 16

3.2. Exporting base storage to portable storage devices 18

3.3. Ship the portable storage devices to destination site 18

3.4. Importing base storage to destination site 19

3.5. Migrating memory, device state, and dirty storage blocks to desti-

nation site . 19

3.6. Data-flow path of Storage Migration over FedEx 21

3.7. Data-flow path of Memory and Dirty-Storage Migration over WAN 24

4.1. An overview of Delta Consolidation Protocol 30

4.2. Protocol flow of LSRP initializtion 37

4.3. Protocol flow of Full Replica Creation 40

4.4. Protocol flow of Delta Consolidation 43

5.1. Migration time & Downtime for three workloads under three mi-

gration configurations . 48

5.2. Illustrates the various phases of the migration against a plot of

DVD Store Orders/sec for traditional live migration 49

5.3. Illustrates the various phases of the migration against a plot of

DVD Store Orders/sec for Migration over FedEx 50

5.4. DCP vs. Snapshot for creating consistent disk replicas 51

ix

1

Chapter 1

Introduction

Operating system virtualization is a powerful technique allowing multiple OS in-

stances to run concurrently on a single physical machine with high performance

[2]. The resulting resource isolation not only provides secure execution environ-

ment for each guest OS but also make live migration become reality [4][23]. Live

migration is an alternative solution for process migration [20] but not restricted

to that. Migrating the VM with its applications as a whole unit simplifies the

process-level migration approach. Moreover, live migration allows the mainte-

nance of the original host without perceptible downtime of the service. By load

balancing VMs, we can efficiently use the computing resources and reduce the

energy consumption. In addition to that, migrating whole memory state can

avoid dealing with consistentcy problems, e.g. TCP connection etc., caused by

partially memory migration [6]. Overall, by separating the software and hardware

considerations, live migration becomes an extremely effective tool for datacenter

administrators to improve manageability.

However, those benefits for live migration are only limited to migration be-

tween hosts within the same LAN. Most of the mainstream virtual machine hy-

pervisors usually do not support live migration over WAN. Some of them support

live migration between different datacenters which shared storage, it avoids trans-

ferring the persistent state of VMs over WAN. There are some state of the art

systems that do allow live WAN migration [3][9][11][19][31], but it is very expen-

sive to migrate large amounts of persistent data over WAN connections, especially

when migrating large number of VMs rather than a single VM instance. Some

2

previous research showed that VMs running identical operating systems revealed

content similarity for their memory [7][21][30][32] and storage [17][24][25]. Some

techniques [26][29] which leverage this characteristic have been developed to re-

duce network traffic when migrating VMs between data centers interconnected

by WAN.

In this dissertation, we propose “Migration over FedEx”, a Cloud-scale live

migration framework leveraging the benefits of both live LAN migration and

transferring large amounts of data via shipping portable storage devices contain-

ing those data by courier service. With this framework, we only need to migrate

the memory, device state, and dirty storage over WAN, which greatly reduced the

total migration time and monetary cost. We also design a LAN Storage Repli-

cation Protocol (LSRP) to export/import the VM’s base storage. The LSRP

protocol also contains a lighweight delta consolication protocol which can consol-

idate the dirty storage data into the existing base disk with low cost. Compared

with traditional live WAN migration schemes, our approach caps the total mi-

gration time into a bounded time period and greatly reduces the total migration

cost, especially when migrating large number of VMs.

This dissertation is organized as follows. Chapter 2 describes the background

of live migration and the metrics used to evaluate a live migration scheme. Chap-

ter 3 first investigates the necessity for using courier service to migrate VM’s

base storage, then introduces the Migration over FedEx framework as well as

its workflow steps. Chapter 4 elaborates the LAN Storage Replication Protocol

specification and how those migration components coordinate with each other.

Chapter 5 evaluates our approach. Chapter 6 concludes the thesis and discusses

the possible future work.

3

Chapter 2

Background

This chapter provides background for live migration. We first talk about the

benefits obtained by using live migration as well as its classification. Then we

introduce the metrics for evaluating a live migration scheme and the technique

evolution for live memory migration and live storage migration. Finally, we dis-

cussed the necessity of live WAN migration. Later in this chapter, we briefly

introduce our approach.

2.1 Live Migration

Live migration is a process in which a running virtual machine instance (memory,

storage, and other device state) is entirely moved from one physical machine to

another without interrupting the execution of software running within the virtual

machine. The most significant advantages of live migration are the facts that

it facilitates system maintenance, load balancing, and fault management. For

example, system administrators can move all virtual machines on a host to another

one when maintenance for the original host is needed. By load balancing VMs

among hosts, we can optimize the utilization of available compute and storage

resources. Also, we can recover from system failure by switching the execution to

the migrated instance of the failed one. With these important applications, live

migration has become the critical feature of enterprise class virtual infrastructure.

According to different storage and network connection characteristics, live

migration can be classified into different catagories, i.e., live memory migration

4

and live storage migration (Figure 2.1), live unified migration over LAN and

live unified migration over WAN (Figure 2.2). Live memory migration moves a

virtual machine between two hosts which share storage, thus there is no need

for migrating VM storage. Due to the constraints of high latency and limited

bandwidth of WAN link, migrating VMs over WAN is much more challenging

than migrating over LAN.

Source Host

Hypervisor

Destination Host

Live Memory Migration

Hypervisor

(a) Live Memory Migration

Source Host & Destination Host

Live Storage Migration

Hypervisor

(b) Live Storage Migration

Figure 2.1: Live migration classification according to existence of shared storage

5

LAN

Source Host

Live Storage Migration

Hypervisor Hypervisor

Destination Host

Live Memory Migration

(a) Live Unified Migration over LAN

Source Host

Hypervisor Hypervisor

Destination Host

WAN

Live Storage Migration

Live Memory Migration

(b) Live Unified Migration over WAN

Figure 2.2: Live migration classification according to network connection type

2.1.1 Metrics

The efficiency of a live migration scheme can be evaluated using three different

metrics: downtime, total migration time, and total transferred bytes.

Downtime is the time period during which the service is interrupted because of the

suspension of the original VM. Total migration time is the time duration taken by

moving a entire VM instance from the source host to the destination host. Total

transferred bytes is the total number of bytes transferred over the network from

the source host to the destination host. A good live migration scheme is always

6

seeking a relatively reasonable trade-off among the requirements of minimizing

the downtime, the total migration time, and the total transferred bytes.

In addition, we should also consider the impact on other active services caused

by any live migiration scheme as well. Taking live unified migration over LAN as

an example, the memory and storage both are transferred in a succession of iter-

ations. The resulting large traffic could easily consume the remaining bandwidth

available between the source and destination and hence starving other active

services. Therefore, some degree of service degradation will inevitably occur

during any live migration process. However, this negative impact can be allevi-

ated by throtting the data transferring rate by limiting the network and CPU

resources used by the migration process.

2.1.2 Live Memory Migration

There are a number of ways to move the VM’s memory state from one physical

host to another, and those approaches differ from each other by transferring

the memory state in different orders. The most widely used three techniques

are: Pre-Copy Memory Migration [28], Post-Copy Memory Migration

[12][13], and Hybrid-Copy Memory Migration.

Pre-copy based live memory migration is easy to design and does not re-

quire a fast network connection between hosts. Thus it is implemented in most

mainstream hypervisors such as Xen [2], KVM [15], and VMware ESX [5]. The

memory is transferred to the destination in a manner of successive iterations un-

til the remaining amount of dirty memory is lower than a pre-defined threshold

value.

Pre-copy memory migration includes two phases: Warm-Up Phase and

Stop-and-Copy Phase.

7

• Warm-Up Phase: Starting the first iteration by copying the whole mem-

ory from source to destination while the VM is still running on the source.

Any dirty memory generated in this process will be re-copied in the second

iteration. This process will be repeated until the amount of dirty memory

is lower than a pre-defined threshold. Note that the convergence of this

iterative copying process depends on copying rate being faster than the rate

of memory writes in the virtual machine.

• Stop-and-Copy Phase: Once the Warm-Up Phase stops, the VM on the

source host will be suspened and the remaining dirty memory will be copied

to the destination then the VM will be resumed on the destination host.

Post-copy based live memory migration starts by first suspending the source

VM and copying a minimal subset of execution state to the destination host.

Upon finishing, the execution control is immediately transferred and the VM is

resumed at the destination side. A page-fault will be triggered if the VM tries

to access any un-transferred data, which will be trapped at the destination and

redirected towards the source over the network. At the same time, a thread will

copy over the remaining memory in the background while the VM is running on

the destination host.

Hybrid-copy based live memory migration is a combination of the other two

approaches for seeking a trade-off between minimizing downtime and total mi-

gration time. It starts by executing some copying iterations of pre-copy warm-up

phases before entering the post-copy phase. The initial warm-up iterations can

reduce the possibility of page fault on the destination host since a large portion

of the VM memory state has already been pre-copied.

8

2.1.3 Live Storage Migration

There are some very important use cases for live storage migration. For example,

live storage migration enables storage maintenance by which the system admin-

istrator can upgrade storage arrays and file system. By storage load balancing,

we can improve the storage performance and prolong the lifetime of storage de-

vices. Earlier live migration did not move VM’s storage, requiring that all virtual

disks should reside in the same storage array accessible by both the source and

destination hosts. Various software and hardware solutions have been developed

to overcome this limitation. Among those software solutions, there are three ap-

proaches which are the most popular: Snapshotting, Dirty Block Tracking and

Distributed Replicated Block Device (DRBD).

• Snapshotting: The migration begins by taking a snapshot of the base disk

and copying the base disk to the destination. All writes from guest OS will

be sent to this snapshot file. After the copying process is finished, another

snapshot is taken and the old shapshot is consolidated into the base disk.

By the time the consolidation is complete, some writes may have been sent

to the new shapshot. Thus such process will be repeated until the amount

of data in the snapshot file becomes small enough.

• Dirty Block Tracking (DBT): The migration begins by copying the base

disk to the destination. In the meanwhile, a bitmap is used to track the

dirty blocks on the source host. At the end of the first copy iteration, the

bitmap is atomically obtained and cleared and the dirty blocks identified

by the bitmap are copied to the destination. Such process is repeated until

the number of dirty blocks stabilizes, then the source VM is suspended and

the remaining dirty memory is transferred.

• DRBD: The migration begins by copying the base disk to the destination

block by block concurrent with mirroring all writes from the guest OS on

9

the source host to the destination. The source and destination will become

consistent immediately after the base disk is entirely copied to destination.

Any writes to the block being copied will be synchronized.

Advantages Disadvantages

Snapshotting
simple to implement
good robustness
easy to converge

not atomic
cost space

lower performance

DBT
finer granularity

atomic
harder to converge

DRBD
atomic

easy to converge
harder to implement

Table 2.1: Comparisons of three typical live storage migration approaches

Those live storage migration approaches differ from each other by way of

functionality, implementation complexity and performance. We compare those

approaches in Table 2.1. Snapshooting is simple to implement and easy to tune.

But it is not atomic, which may result in an intermediate state where multiple

snapshots span over both source and destination storage volumes when cancelling

a migration. DBT overcomes most of the performance inadequacies of snapshot-

ting while increasing the complexity of tuning. Specifically, it is hard to get con-

vergence when the write rate at the source is higher than the dirty rate. DRBD

overcomes all of those deficiencies while maintaining better temporal and spatial

performance compared with the other two approaches.

2.1.4 Live WAN Migration

Live WAN migration is key for providing a hybrid Cloud solution which can ag-

gregate the resource capability from both private and public Cloud. This solution

not only gives users the same experience of running workloads in private Cloud

but also offers the benefits of public Cloud such as economies of scale and im-

proved flexibility. Some use cases illustrate the necessity of live WAN migration,

e.g. Cloud-scale live migration.

10

• Cloud Bursting: Cloud Bursting is an application deployment model

in which an application running in a private Cloud bursts into a public

Cloud when the demand for local computing resouces spikes. It allows an

enterprise to dynamically harness Cloud servers and migrate the workload to

those servers when the local workload transcends the confines of its private

datacenter.

• Data Center Consolidation: Data Center Consolidation is an organiza-

tion’s strategy to reduce overall operating costs and IT footprint by shrink-

ing the size of a single data center or merge several small data centers into

a large one.

• Follow The Renewable: Follow The Renewable is conceptually similar

with Follow The Sun but more coarse-grained, which is a type of global

workflow model in which tasks are passed around seasonally between work

sites that are many time zones apart. With Cloud-scale live migration,

people can easily and freely move the tasks among different geographic

locations by migrating the whole virtual machines.

• Disaster Recovery as a Service: DRaaS is a predetermined set of pro-

cesses offered by a third-party vendor to help an enterprise develop and

implement a disaster recovery plan. The idea is that when a disaster is

expected you can start to move the virtual machines to the backup data

center while they are running.

2.2 Related work

Pre-copy is a widely-used technique for migrating memory no matter for the

traditional live LAN migration or state-of-art live WAN migration approaches.

At the end of pre-copy process, the source VM will be finally suspended for

11

copying the remaining dirty pages. This phase is directly responsible for the

downtime experienced during the whole migration process. Downtime can range

from a few milliseconds to seconds or minutes, depending on page dirtying rate,

network bandwidth and latency [1]. Minimizing downtime is the first priority for

any live migration scheme.

The previous work for live memory migration can be classified into two types:

pre-copy based and post-copy based approaches. For pre-copy based approaches,

the hybrid-copy could be seen as an optimization of it. The existing work op-

timizes and improves the naive pre-copy by using techniques like compression,

delta consolidation, and content deduplication. The performance of compression-

based approaches really depends on the compression algorithm and the memory

page characteristics [14]. Delta conslidation based approaches reduce the net-

work traffic by sending and conslidating the different memory content between

the source and destination memory [8][27][31]. Content deduplication based ap-

proaches avoid transferring the duplicated data which is cached on both source

and destination side by sending an index of the corresponding data to the des-

tination [33][31]. For post-copy based approaches, [16] fast deploy VMs on mul-

tiple hosts by using demand-paging and multicast distribution of data. Some

approaches adopt checkpointing/recovery and trace/replay technique to improve

the migration efficiency [18].

The previous work for live storage migration can also be classified into pre-copy

based [3], post-copy based [10][11], and hybrid-copy based [19] approaches. In

pre-copy scheme the storage is migrated prior to memory whereas the sequence is

reversed in post-copy scheme. Pre-copy scheme causes no data access latency since

each storage block has been copied over before the VM runs in the destination, but

it may introduce excessive extra traffic. Post-copy scheme dose in a completely

opposite way, the VM will start to run before the storage blocks are copied. The

disk blocks can be copied either by a background process or on-demand. Unlike

12

pre-copy scheme, the post-copy scheme will cause extra WAN delays since the data

can not be immediately obtained when a I/O request is issued by destination VM.

2.3 Our approach

We propose a live WAN migration framework and implement it as a Cloud-scale

live migration solution, which has scaled out the geographical scope and network

environment of traditional live migration by enabling VM mobility over WAN

with lower cost. There are two big challenges in implementing Cloud-scale live

migration. The first one is the contradiction between large WAN traffic and lim-

ited bandwidth. The second one is the security issue of a open migration protocol

in a multi-tenant network environment. We solve the first problem by proposing

a new “Migration over FedEx” solution to combine the benefits of both live LAN

migration and transferring large amounts of data via shipping portable storage

devices containing the storage data. We leave the second problem, migration

protocol hardening, as our future work.

13

Chapter 3

Framework: Migration over FedEx

In this chapter, we present the overall design of our Migration over FedEx frame-

work as well as the workflow steps. By comparing the bandwidth, unit transfer

cost and efficiency of each mainstream WAN link type, we affirm the necessity

of leveraging the capability of courier service (like FedEx first overnight etc.) to

migrate large amounts of data among geographically disparate locations in a rel-

atively short time period. Finally, we elaborate on each migration component of

Migration over FedEx framework.

3.1 Overview

Cloud-scale live migration is a natural extension of the existing live migration

in many virtual machine hypervisors (like vMotion in VMware ESX) from the

perspectives of geographical scope and network connection type. Offering vir-

tual machine mobility in hybrid Cloud environement is necessary for providing a

complete hybrid Cloud solution:

• It enables enterprise users to ramp up quickly onto the public Cloud from

their existing on-premise datacenters. A key advantage of Cloud-scale live

migration is that existing enterprise workloads can be run seamlessly on

public Clouds without any modification or redeployment.

• It allows ordinary users to seamlessly move workloads to public Cloud with

minimal disruption. With Cloud-scale live migration, the public Cloud can

14

be a seamless extension of any private compute resources.

3.1.1 FedEx?!

For geographically separated sites, it is very time-consuming and monetarily ex-

pensive to transfer large numbers of virtual machines over WAN connections

because of the limited bandwidth and high latency. Instead, it is much faster and

more cost effective to export/import the virtual machine data to/from portable

storage devices and shipping them using through FedEx or other courier services.

Moreover, with the rapid development of hard disk drive (HDD) technology, the

capacity per HDD has increased to the order of tens or even hundreds of terabytes

while the price decreased to nearly 60 US dollars per terabyte. The high storage

density and low price of modern HDD is another incentive for Migration over

FedEx.

Many courier services provide national-wide over-night delivery service. Tak-

ing FedEx First Overnight as an example, it costs less than $200 to ship 50TB of

hard drives from San Francisco to New York. The equivalent Internet bandwidth

needed to move the same amount of data in 15 hours is more than 7Gbps which

is about three times the bandwidth of an OC-48. Table 3.1 shows the cost of dif-

ferent WAN link types and the time to migrate 1,000 VMs with 50GB disk each.

Note that this assumes the WAN bandwidth is consistent end-to-end from the

enterprise datacenter all the way to the public Cloud. However, no ISP gurantees

the same bandwidth in the Internet backbone as the access links. In addition,

the inbound link to the public Cloud provider will become the bottleneck if there

are lots of migration traffic from different edge datacenters.

Many Cloud providers including Amazon AWS and VMware vCHS already

support the export and import of large data sets using portable storage devices.

However, those export and import services only support offline VM relocation

since the VMs have to be powered off before export in the source site, and will

15

WAN Link
Bandwidth
(Mbps)

Monthly Cost
Time to Migrate
1K VMs

T3 44.76 ∼ $5K 103 days
OC3 155 ∼ $20K 29 days
OC12 622 ∼ $200K 7 days

Table 3.1: Comparison of different WAN connection types, their costs, and the
time required to move 1K VMs with 50GB disk each.

need to be powered on after import in the destination site. Migration over FedEx

combines the benefits of both live migration and high efficient data movement

via portable storage devices so that we can live migrate large numbers of VMs

between geographically distributed locations.

3.1.2 Workflow

We show our Migration over FedEx framework in Figure 3.1. It basically contains

4 interrelated entities: Source Host, Destination Host, Source Terminal,

and Destination Terminal, respectively. The source and destination hosts are

located in two geographically separated data centers and connected by WAN.

The source and destination terminals are two distinct machines connected to

the source and destination hosts via a LAN, respectively, and function like two

intermediate data transfer stations. The Cloud administrator can operate on the

source/destination terminal to export/import a VM’s base storage. The source

and destination terminals are indispensible for Migration over FedEx because

the source/destination host can not be physically accessed due to security and

management consideration. By bringing in the source and destination terminals,

we leave the source and destination data centers as independent objects from

the point of view of migration operator and the design is technically simplified

since there is no need for modifying the software stack of the virtual machine

infrastructure on both sites.

16

Source Host Destination Host

Virtual
Disk

 Hypervisor ED WAN

LAN

Hypervisor

Source Terminal

Hypervisor

LAN

Hypervisor

Destination Terminal

Target VM

FedEx over night

Portable storage
device

ES IC ES

Figure 3.1: Migration over FedEx framework

The Migration over FedEx framework consists of two independent migra-

tion components: Storage Migration over FedEx and Memory and Dirty-

Storage Migration over WAN. Storage Migration over FedEx takes care of

base disk migration, which includes three successive steps: Export, Shipping,

and Import. Those storage migration phases are associated with three stor-

age migration components: Export Driver (ED), Export Server (ES), and

Import Client (IC). The Export Driver is implemented as a kernel module of

virtual machine hypervisor and is in charge of reading out the base storage data

block by block and sending them to the Export Server. The Export Server is a

virtual machine running on the source/destination terminal (source ES and des-

tination ES). The source ES is responsible for forwarding the data received from

the ED to an export destination which could be either the source terminal itself

or another machine within the same LAN. The destination ES takes charge of

receiving the base storage data from the IC and transferring them to the desti-

nation host. After the portable storage devices containing the storage data are

delivered, the Import Client, another VM running on destination terminal, will

read out the data from portable storage devices and send them to the destination

ES. All data transfers are performed using our LAN Storage Replication Protocol

17

(LSRP), which will be described in detail in the next chapter.

The complete workflow of Migration over FedEx includes 6 phases as follows:

1. Enable migration for a target VM and setup the Export Server, e.g. specify

export destination and target disk group, etc.

2. Storage Migration over FedEx - Export: The Source Export Server

exports the base storage of the target VM to portable storage devices asso-

ciated with export destination (Figure 3.2)

3. Storage Migration over FedEx - Shipping: Shipping the portable

storage devices containing the VM’s base storage to the destination site via

FedEx or other courier services (Figure 3.3)

4. Storage Migration over FedEx - Import: The Import Client reads

and forwards the base storage data to the destination Export Server. The

Export Server will import the data to destination host (Figure 3.4)

5. Memory and Dirty-Storage Migration over WAN: The Source host

identifies the dirty storage blocks by looking up the bitmap maintained by

the Export Driver and transfers those data to the destination host over the

WAN concurrent with mirroring any new writes from the guest OS to the

destination. Upon finishing dirty storage transfer, the memory and device

state will then be transferred over the WAN (Figure 3.5)

6. Destroy source VM and resume destination VM if the migration succeeds

18

Source Host Destination Host

Virtual
Disk

 Hypervisor ED WAN

LAN

Hypervisor

Source Terminal

Portable storage
device

 Hypervisor

LAN

Hypervisor

Destination Terminal

ES IC ES

Target VM

Figure 3.2: Exporting base storage to portable storage devices

Source Host Destination Host

 Hypervisor ED WAN

LAN

Hypervisor

Source Terminal

LAN

Hypervisor

Destination Terminal

Portable storage
device

 Hypervisor

Virtual
Disk

ES IC ES

Target VM

Figure 3.3: Ship the portable storage devices to destination site

19

Source Host Destination Host

 Hypervisor ED WAN

LAN

Hypervisor

Source Terminal

LAN

Hypervisor

Destination Terminal

Virtual
Disk

 Hypervisor

Virtual
Disk

ES IC ES

Target VM

Figure 3.4: Importing base storage to destination site

Source Host Destination Host

 Hypervisor ED WAN

Virtual
Disk

LAN

Hypervisor

Source Terminal

LAN

Hypervisor

Destination Terminal

 Hypervisor

Virtual
Disk

delta

ES IC ES

Target VM

Figure 3.5: Migrating memory, device state, and dirty storage blocks to destina-

tion site

20

The amount of dirty storage data to be transferred completely depends on the

guest write IO workload. Our study showed that most guest IO writes exhibit

some degree of locality and will repeatedly write to a few hot disk regions. In

addition, to tolerate possible damage of storage devices during shipment, we could

export source VM disks to multiple devices using RAID-5 kind of striping with

distributed parity. Therefore, on the destination side, we can tolerate at least a

single device failure without losing the disk content.

3.2 Migration Components

Traditional live WAN migration usually takes days or even months to migrate

large numbers of virtual machines. Instead of this inefficient way, our Cloud-scale

live migration scheme employs Storage Migration over FedEx to migrate the

base storage of target VMs. It takes at most one day to migrate the bulk of VM

data to the destination anywhere in the nation. Then it utilizes theMemory and

Dirty-Storage Migration over WAN component to migrate the dirty storage

generated while the base storage was being exported, shipped, and imported.

Upon finishing, the memory and other device state will be migrated.

3.2.1 Storage Migration over FedEx

Migrating a VM’s base storage typically comprises the largest component of the

overall migration time since the base storage may be in the tens or hundreds of

gigabytes. Thus it is inefficient or even impossible to migrate large number of

VMs at the same time over the WAN in an acceptable time period because of the

WAN’s limited bandwidth and high latency. The Storage Migration over FedEx

is designed to overcome this limitation.

21

Export Driver

Export Server

disk

Import Client

Export Server

disk

portable

storage

device

portable

storage

device

Figure 3.6: Data-flow path of Storage Migration over FedEx

Figure 3.6 shows the data-flow path of Storage Migration over FedEx. The

Export Driver, Export Server, and Import Client together constitute the backbone

of the client-server model. As the starting point, Export Driver is designed and

implemented as a kernel module and we also implemented a layer in the VM

kernel to include a framework that can be used for registering and unregistering

the Export Driver after it is loaded into the kernel. In general, the Export Driver

is responsible for keeping track of which regions of the virtual disk the guest is

modifying and sending these updates to the destination site in a manner that

results in a consistent replica. Specifically, it is responsible for:

• Sequentially reading the target base storage data block by block (block size

is an experimental parameter).

• Packing each block read from the first step with LSRP header and trans-

ferring the package to Export Server.

• Maintaining a bitmap to track the dirty blocks of the target virtual disk

after base storage migration starts.

We attach an instance of Export Driver to each disk that we are migrat-

ing. Each instance requires some configuration information that is specific to the

22

associated virtual SCSI device. Those options are stored in the virtual machine

configuration file; when the virtual SCSI device is created these options are parsed

and passed down as part of the driver attachment process. Each instance only

cares about the device that it is attached to. The coordination of mutiple drivers

is done in the management layer.

The Export Driver maintains meta-data about what regions of the virtual

disk are empty as well as a set of blocks that have been updated that need to be

re-send to the remote side. This meta-data is stored in a file on disk managed

by the driver itself. When the driver is attached, we open the file and load the

state from disk, when the driver is detached we flush any in-memory state to disk

and close the file. All of the state kept in this file can be regenerated from the

remote site, so in the event that this file is lost or not written out cleanly, we can

recover by triggering a full replica creation. This operation allows the driver to

rebuild its meta-data by comparing the state of the primary disk with the state

of its remote copy. The process involves reading the entire disk contents on both

sides, so it is relatively expensive.

Export Server is the server-side daemon process running in a virtual machine

hosted by source/destination terminal indicated by the blue square in Figure 3.6.

On the source side, it will first create a virtual disk (same capacity with the

target virtual disk) in the portable storage device when storage migration starts.

Then it receives the packages sent by Export Driver and unpacks them. Finally it

writes the virtual disk data into the right place of virtual disk within the portable

storage device. On the destination side, it will receive the packages sent by Import

Client and unpack them, then transfer the data directly to the destination host.

Import Client is the client-side application running in a virtual machine (can

be the same VM with Export Server or not) hosted by destination terminal. It is

similar to the Export Driver but runs at the user level and does not maintain any

bitmaps. The only work it will do is read the virtual disk data from the portable

23

storage devices and send them to the destination Export Server.

3.2.2 Memory and Dirty-Storage Migration over WAN

Most of the live memory migration architectures follow a similar iterative copy

approach: they initially mark all memory pages as dirty and iteratively copy

memory pages from source to destination. After a page is copied, a write trap

will be installed and the corresponding page will be marked as clean. If the write

trap is triggered, the page will be marked as dirty again. Then applying successive

“iterative pre-copy” passes, each pass will copy remaining dirty pages left by the

last iteration. At some point, the VM will be suspended and the remaining dirty

pages along with the device state are sent to the destination. At the same time,

DRBD disk replication system will mirror the new writes to the destination site.

Our Memory and Dirty-Storage Migration over WAN component acts analo-

gously with traditional iterative copy approach, except that the dirty storage data

is migrated prior to memory and device state. Specifically, it initially installs the

DRBD disk replication system in the VM storage stack and mirrors IO to the des-

tination host. In the meanwhile, by checking the bitmap maintained by Export

Driver a separate thread identifies the dirty storage blocks and copies them from

source to destination with a single pass, while guaranteeing synchronization with

the DRBD mirroring. Finally, the virtual disks in source and destination will

become consistent immediately after the initial dirty storage blocks are copied.

24

disk

VM IO

Live Migration
Module

Stream Stream

Live Migration
Module

TCP

Source Destination

disk

DRBD buffer buffer

Figure 3.7: Data-flow path of Memory and Dirty-Storage Migration over WAN

Figure 3.7 depicts the data-flow path of the Memory and Dirty-Storage Mi-

gration over WAN. The DRBD disk replication system is used to interpose on

all virtual disk writes and mirror them to both the source and destination disk.

Disk buffering allows for the appearance of asynchronous IO mirroring. While

the buffer has available space IOs behave asynchronously, meaning writes return

immediately. Upon filling, subsequent write attempts are delayed until space be-

comes available in the buffer, effectively switching the guest IO to a temporary

state of synchronous mirroring. Draining of the buffer is handled by the Streams

bulk transport framework, discussed next.

The live migration module is responsible for many well-known tasks of live

memory migration, such as locating memory pages for transmission, and appro-

priately handling the VM’s virtual device state. It enqueues the memory pages

and relevant device state for transmission by Streams.

Streams serve to abstract knowledge of the underlying network or commu-

nication channel from the rest of the live migration system. Delivery in Streams

is generally out-of-order; this choice comes from how memory pre-copying in our

live migration system works. A migration begins by linearly iterating over the

VM’s physical memory, queuing up each page for transmission as we install a

25

write trace on the page. We guarantee that we always make full passes over the

VM’s memory, never sending a given page more than once in any pre-copy iter-

ation. Since we know we only transmit a given 4K guest memory page once per

pre-copy iteration, we do not need to be concerned with the order the destination

host receives those pages in. It will not harm correctness, for example, if the

destination ends up receiving all of our transmitted pages backwards, provided

it can distinguish between a page sent during the first pre-copy iteration and a

page sent in the second iteration.

The relaxed ordering of many Streams consumers, such as pre-copy, make

it easy for Streams to support mutipathing, as it can often buffer and transmit

data in whatever order it wishes. In particular, it can opt to leverage multiple

TCP connections between the source and destination, traversing different physical

network interfaces.

For example, any number of live migration network interfaces can be config-

ured, perhaps two 10GbE NIC at the source, one 10GbE NIC and two 1GbE NICs

at the destination. Streams pair off adapters based on the expected maximum

capacity of all adapters until either host is saturated. In the example given above,

this would result in the source pairing its first 10GbE with the destination’s sole

10GbE NIC and its second 10GbE with the destination’s two 1GbE NICs, leav-

ing the source pool with 8Gb of unused link speed capacity. We open one TCP

connection per network adapter pair.

Streams can dynamically load-balance outgoing buffers over the TCP connec-

tions, servicing each connection round-robin as long as the socket has free space.

This allows us to saturate any number of network connections, up to PCI bus

limitations. Streams also allows for leveraging of non-network communications

channels, such as a multi-writer buffer on shared storage, though we currently

do not employ such channels by default. Streams rely on zero-copy transmit and

single copy receive network APIs. We also decided to continue using TCP to

26

leverage hardware offload abilities that are not readily available for other trans-

ports. These choices proved critical to surpassing 10Gbps throughput, and almost

doubled our single-adapter throughput with low CPU consumption.

Any ordering requirements that exist are expressed using a write barrier e.g.,

the Live Migration module will create a write barrier at the end of any-copy iter-

ation - one linear pass over the VM’s physical memory. Upon encountering such a

barrier, the source host transmits the barrier over all communication channels to

the destination host. The destination host, will pause reading data off each chan-

nel until all channels have read up to the barrier message. Once every channel has

reached its barrier message, all channels will resume receiving page content. This

guarantees that pages transmitted on the source on one side of a barrier message

will not be interleaved with messages on the other side of this write barrier.

3.3 Conclusion

In this chapter, we first elaborated the necessity and feasibility for leveraging the

capability of courier service to migrate the bulk of VM data - storage. Then

we introduced our Migration over FedEx framework and its detailed workflow

steps. After that, we talked about the design and working principles of each

migration component. The Storage Migration over FedEx component is in charge

of transferring the VM’s base storage data, and the Memory and Dirty-Storage

Migration over WAN is in charge of transferring the memory, device state, and

dirty storage content.

27

Chapter 4

Protocol: LAN Storage Replication

For Cloud-scale live migration, the data transferred by Migration over FedEx falls

into five catagories: base storage, dirty storage, memory, device state, and config

files. In this chapter, we will elaborate the design and implementation of base

storage migration mechanism. The base storage is actually migrated through the

Storage Migration over FedEx component which leverages an application layer

transport protocol to create a remote replica for the base storage of the target

VM. We implemented this protocol, LAN Storage Replication Protocol, on top

of Storage Migration over FedEx compoment as an independent service.

4.1 Overview

The motivation behind LSRP is that TCP/IP does not provide any ordering guar-

antees for data delivery across different connections. Besides, TCP/IP ensures

in-order delivery of data on a single socket, but if a socket is closed the caller can

make no assumptions about whether any of the data that was currently in-flight

was processed by the remote site. This presents a problem, as updates from an

older connection could end up with getting interleaved with updates from a newer

connection. The following case is a example for such scenario:

1. Virtual machine M is being migrated from host A to host B and a storage

data package P1 is on the way to host B

2. Host A failed sometime when P1 is in-flight and M is restarted on host C

28

3. Host C starts to migrate M to host B and another LSRP package P2 is on

the way to host B

Host B thought the connection between itself and host A is still valid since host

A did not close it. Moreover, the in-flight package P1 which is on the connection

between host A and B could be delayed and get to destination later than P2,

in this case, if P2 is stale it could end up corrupting the remote storage replica

version.

To overcome the above defficiency, we designed an application layer trans-

port protocol, LAN Storage Replication Protocol (LSRP), to perform consistent

data transfer. The LSRP is developed to provide an efficient and consistent

LAN storage replication mechanism at the granularity of virtual machine. VM-

based replication simplifies the provisioning and management of storage relative

to datastore-based solution, because the latter one requires specifying replication

properties at the granularity of datastore. In a VM-based way, once the base stor-

age migration is completed, we will immediately have a replica in the destination

datastore. Next, we only need to migrate the dirty storage, memory, device state,

and config files over the network. The use of LSRP to mgirate base storage gives

the following benefits:

• Create consistent replica for the target VM’s base storage with minimal per-

formance impact by applying a “lightweight” Delta Consolidation protocol.

• Replicate a group of virtual disks of several different VMs in a way that

guarantees the consistency of an application that spans those disks.

• Minimize the overall use of network bandwidth through using some sophis-

ticated heuristics.

For each target VM, there is a primary site where the production copy of

VM is executing and the secondary site where the replica of the VM lives. The

29

primary site can be specified for each target VM and it includes two components.

The first component is LSRP Manager which is a host plugin providing interfaces

for configuration and management purposes. The second component is Export

Driver that runs as part of the VM kernel. Export Driver intercepts all I/O to

the disks of target VMs that are powered on on the local host, tracks the dirty

regions of disks, performs initial synchronization of target VM disks, coordinates

the creation of consistent disk replicas and transfers the data to Export Server

which can run either on secondary host or on an intermediate host.

4.2 Delta Consolidation Protocol

Our base storage migration mechanism follows an asynchronous replication model,

where the replica state may fall behind the state of the primary host. When a

new replica needs to be created, a straightforward way is to do another migration

for all target virtual disks. Whereas, this naive approach is very inefficient and

bandwidth intensive for migrating a large amounts of unchanged data. Instead of

that, we choose to consolidate the changed data (delta content) into the secondary

host as long as a new replica needs to be created (the dirty region of virtual disks

in primary site is tracked by Export Driver). Nevertheless, we still need a protocol

to ensure that the new replica is in a consistent state with the primary site.

We implemented the Delta Consolidation protocol to enforce the above consis-

tency property. It will create an immutable image of the primary disk from which

it copies any dirty regions. Typically, such an immutable image is created using

some type of snapshot. However, generic snapshot mechanism is heavyweight

and may impact the performance of the workload using the disk especially when

the snapshot is created and/or removed. To minimize the performance impact of

replica creation for the most common types of workloads, we utilize a lightweight

log to record the under-affected data region. We show the basic principles of

30

Delta Consolidation protocol in Figure 4.2.

The Export Driver starts to migrate the dirty regions of a virtual disk as soon

as the consolidation is required (step w0). The grayed-out blocks in the figure

depict the dirty regions that need to be transferred to the remote site to result

in a new consistent replica. During the period, Delta Consolidation is used to

ensure the immutability of the dirty regions that need to be replicated. Instead

of implementing copy-on-write functionality for all disk blocks, as is typically

the case with generic snapshot mechanisms, we create a copy of the original dirty

block contents, only if an overwrite to a dirty block is detected before the contents

of that block are copied to the replica. Thus a write operation is allowed to be

executed without any overhead (step w
′′

1). If an overlap exists (step w1 and w
′

1),

then the original block contents are copied (step w2 and w
′

2) in the lightweight

log, before the write operation is allowed through (step w4 and w
′

4). Export

Driver transfers the content of lightweight log to the secondary site in the same

way it does for the dirty regions on the disk.

VM
Guest OS

wait

Virtual Disk

Lightweight Log

wait

Hypervisor
(ED)

w1

w2

w4

w’1

w’2

w’4

w" w’"

w3 w’3

w’’"

w’’1

w0

secondary site

secondary site

Figure 4.1: An overview of Delta Consolidation Protocol

31

With this approach, we can create an updated replica version when it is neces-

sary by consolidating the dirty storage data into the remote replica in secondary

site and there is no cost for snapshot initialization or collapse. There is an over-

head due to additional I/O when an overwrite actually occurs, this overhead is

incurred only the first time a dirty block is overwritten. Moreover, only the read-

ing of the original data is synchronous with respect to the guest I/O, the write to

the lightweight log is performed concurrently with the guest I/O execution. For

typical workloads, such overwrites are limited, usually, there are just a few “hot”

blocks in the working set of a workload.

4.3 Setting Up

Before base storage migration (export or import) starts, each migration com-

ponent has to be set up first by migration administrator. LSRP Manager has

provided various interfaces for configuring those components. After finishing the

set-ups for each migration component, the administrator can start export by is-

suing a “start export” command in local terminal. LSRP Manager is in charge of

receiving, translating those commands and control related component to perform

corresponding actions.

The first component needs to be set up is Export Server. It is the core com-

ponent for base storage migration no matter for export or import stage becasue

that it connects the primary host and secondary host by constructing a migration

group for the target storage and its remote replica path. The group is the unique

identification for the target storage. The workflow steps for setting up Export

Server is as follows:

• Launch the Export Server. Export Server can stay on either secondary host

or an intermediate host

• Add the datastore host into the host list of Export Server, which will tell

32

the Export Server inside the VM which storage LUN it has access to

• Add a migration group by pairing the target virtual disks with its remote

replica path

The migration group and datastore hosts added to Export Server will be

stored in its internal database. Re-adding an identical group or datastore host

is not allowed unless the original database is deleted, a new server is started, or

upgrading to a server which uses a different database version. Creating replicas

for a group virtual disks (either of the same or of multiple different VMs) at the

same time is also supported by LSRP. This function can be enabled by adding

all wanted target virtual disk ID and their remote replica disk path pairs in the

third step of the above workflow. The Export Server can differetiate which target

disk a replica belongs to by checking the group identification.

The second component needs to be set up is primary host. It is the client end

where the LSRP Manager and Export Driver (or Import Client) live. The primary

host must have some necessary management knowledge about the target VMs

running on it. For example, it have to know which VM is currently configured

as “replication enabled” status as well as which virtual disks of a targe VM are

active for migration. LSRP Manager also provides any necessary interfaces for

setting up the VMs or obtaining any configuration information. The setting up

steps for primary host is as follows:

• Obtain the target virtual machine ID

• Enable the replication function for target VM

The virtual machine ID can be easily obtained by issuing a “get VM id” com-

mand. After enabling the replication mode, the target VM is then connected to

the Export Server through a group of TCP ports. The virtual machine ID and

TCP port group will be automatically set to default values if not be explicitly

33

specified in the parameter list. Each time the replication is configured, the Ex-

port Server have to be re-configured with the matching group information. The

per-VM replication mechanism can also be turned off by executing a “disable

replication” command.

The last component needs to be set up is the secondary host. For base storage

export, secondary host is also where the Export Server lives. So all we have to

do is to create a empty replica file (flat virtual disk file) since the LSRP expects

pre-exsiting disk into which replica data will be copied. The replica disk file have

to be the same size with the original disk.

4.4 LSRP Specification

The LSRP is an application layer transport protocol implemented to coordinate

each LAN storage migration component: Export Driver, Export Server, Import

Client, primary host, and secondary host. As a result, the base storage is migrated

by creating a replica in the destination datastore. Besides, LSRP also supports to

consolidate the delta content (dirty storage data) into the corresponding remote

replica. Delta consolidation has some very important advantages, e.g., it allows

the migration administrator to check out the base storage into the portable storage

devices days or even months prior to the shipping date and consolidate the delta

content periodically until when they decide to ship the portable storage devices

to the destination site. Moreover, it is also helpful for looking for a time point

when the amount of dirty storage becomes stable, which can effectively reduce

the WAN traffic and shorten the WAN migration time.

The LAN storage migration components communicate with each other by

sending messages. There are three types of messages: data message, control mes-

sage, and event message. The data messages are dedicated used by the Export

34

Driver (or Import Client) and the Export Server for base storage migration pur-

pose. The control messages are sent by the LSRP manager to the Export Driver,

which is a way for the migration administrator to control the behaviour of Export

Driver. Most of the control messages will be finally converted into corresponding

data messages to perform the real actions. The event messages are sent by the

Export Driver to the LSRP manager for notifying it if the requested operations

are successfully executed.

CODE MESSAGE NAME TYPE

D1 LSRP DATA GET SERVER STATE Data
D2 LSRP DATA HANDSHAKE Data
D3 LSRP DATA INIT SESSION Data
D4 LSRP DATA REPLICATION START Data
D5 LSRP DATA REPLCIATION CHECKSUM Data
D6 LSRP DATA REPLICATION UPDATE Data
D7 LSRP DATA REPLICATION COMPLETE Data
D8 LSRP DATA TRANSFER CONFIG FILE Data
D9 LSRP DATA DELTA CONSOLICDATION START Data
D10 LSRP DATA DELTA CONSOLIDATION UPDATE Data
D11 LSRP DATA DELTA CONSOLIDATION COMPLETE Data
C1 LSRP CONTROL GET SERVER STATE Control
C2 LSRP CONTROL REPLICATION START Control
C3 LSRP CONTROL TRANSFER CONFIG FILE Control
C4 LSRP CONTROL GROUP PREPARE AND COMMIT Control
C5 LSRP CONTROL DELTA CONSOLIDATION START Control
C6 LSRP CONTROL DELTA CONSOLIDATION UPDATE Control
E1 LSRP EVENT GET SERVER STATE Event
E2 LSRP EVENT REPLICATION COMPLETE Event
E3 LSRP EVENT TRANSFER CONFIG FILE Event
E4 LSRP EVENT DELTA CONSOLIDATION RESULT Event
E5 LSRP EVENT DELTA CONSOLIDATION COMPLETED Event

Table 4.1: LSRP messages

We list all messages and their corresponding types in Table 4.2. There are

11 data messages, 6 control messages, and 5 event messages in total. LSRP

is initialized as soon as the base storage migration starts. In the process of

initialization, a connection between the Export Driver and Export Server will be

constructed as well as some sanity checks and identity confirmation. Once the

LSRP initialization is finished, the base storage migration starts immediately.

Then all storage data will be sent to the Export Server block by block, each

35

block will be sent as a LSRP package. Delta consolidation is activated by an

independent command, which can only issued after the base storage migration is

completed.

4.4.1 LSRP Initialization

LSRP is immediately initialized as soon as a base storage replication is launched

by the LSRP manager. The initialization process includes two parts: Export

Driver initialization and LSRP manager initialization. Upon successful initializa-

tion, some important server-side states for the target VM will be returned back

to the Export Driver and a session will be constructed for each migration group

between the Export Driver and the Export Server. All disk-related traffic is done

within the context of the latest sessions established between the Export Driver

and the Export Server. The Export Driver will establish a new session with the

Export Server when it needs to start or resume replication for a disk that is repli-

cated to the corresponding target. Specifically, the Export Driver has to establish

a new session whenever the VM is powered on.

The notion of a session is separate from that of a connection in the network

substrate. If an underlying connection for a session gets reset it can simply

be re-established. The important point is that it is up to the Export Server to

determine whether a disk’s session is no longer valid. For the layer above a resume

communication with the remote site, it has to re-establish the session. From an

implementation perspective, sessions are represented by session IDs. The ID for

a specific disk session is monotonically increasing over time.

CODE MESSAGE NAME TYPE

D1 LSRP PROTOCOL GET SERVER STATE Data
D2 LSRP PROTOCOL HANDSHAKE Data
D3 LSRP PROTOCOL INIT SESSION Data
C1 LSRP CONTROL GET SERVER STATE Control
E1 LSRP EVENT GET SERVER STATE Event

Table 4.2: LSRP initialization messages

36

We show all involved messages for LSRP initialization in Table 4.3. Three

data messages are all going to be sent from the Export Driver to the Export

Server for requesting states, handshaking, and initializing session. The Export

Driver will notify the LSRP manager by sending event message when the state

information is successfully received from the Export Server. The Export Driver

side initialization has following two steps:

• Export Driver issues a handshaking messageD2 to Export Server to confirm

that both side are using the same LSRP version etc.. D2 includes a unique

identification number which is expected to be returned by Export Server

• Upon receiving expected response, the Export Driver then issues a session

initialization message D3 to the Export Server, in the meanwhile, request-

ing the virtual disk information (e.g., capacity) which is provided by the

administrator when setting up the Export Server

LSRP Manager side initialization has following 5 steps:

• LSRPManager issues a ioctl message C1 to the Export Driver for requesting

status information (number of virtual disks etc..) from the Export Server

• Upon receiving requests from the LSRP manager, Export Driver issues mes-

sage P1 to the Export Server to request the needed information

• Export Server responds to the Export Driver with requested information

• Upon receiving responds, Export Driver posts an event message E1 to notify

LSRP Manager that the requested information is ready

• LSRP Manager processes the event and finish initialization

We show the complete protocol flow of LSRP initialization in Figure 4.3. On

the local side, the LSRP manager and Export Driver both reside in primary host

37

which is indicated by a grey dotted circle. On the remote side, the Export Server

communicates with primary host by exchanging WAN messages (LSRP data mes-

sages) which are indicated by red dotted arrows. Accordingly, the solid arrows

(green and blue) represents LAN messages. The message types are differentiated

by three colors. The green arrow is control message sent from the LSRP manager

to Export Driver, the blue arrow is the event message sent from the Export Driver

to LSRP manager, the red arrow is data message sent between the Export Driver

and Export Server.

Export Driver Export Server LSRP Manager

get-server-state ioctl

get-server-state response

handshaking request

handshaking response

get-server-state event

get-server-state request

session-initialization request

session-initialization response

Figure 4.2: Protocol flow of LSRP initializtion

38

4.4.2 Full Replica Creation

This protocol is utilized to replicate the base storage of the target VM. The

replication process is exactly the way we migrate the base storage of the target

VM. Full replica creation ensures that a consistent replica from the primary site

is always reflected on an immutable image in the secondary site. It is concerned

with on disk only and implemented by injecting special control message in the

update stream of the disk to indicate that all updates up to that point constitue

a consistent replica. After the Export Driver has received acknowledgements for

all updates that complete a consistent replica, it sends a control message to the

Export Server. Upon receiving the message, Export Server will take a snapshot

of the replica file to capture the consistent replica. Only after the snapshot is

created successfully does it act the control message back to the Export Driver.

The Export Driver can then continue with any new updates that it may have to

send to the secondary site.

The snapshot mechanism is not necessary for Full Replication Creation itself.

But when we bring in Delta Consolidation, we will talk about it in the next sec-

tion, it becomes essential for preventing the remote replica disk from corrupting

because of the failure of delta consolidation. For example, we launched a delta

consolidation operation in the primary host, without snapshot mechanism, the

dirty storage data will be directly written into the remote replica disk. Unfortu-

nately this delta consolidation operation finally failed because of networking or

other problems. Therefore the Export Driver has to roll-back while the remote

replica has been ruined, which causes that the replica disk is in an inconsistent

status with the primary site.

A full replica creation is enabled by executing a “full replication start” com-

mand in the administrator terminal. The command will be translated into a RPC

call by LSRP manager on primary host, this RPC call will first initialize LSRP

itself and then start replica creation, namely, export/import the base storage.

39

CODE MESSAGE NAME TYPE

D4 LSRP PROTOCOL REPLICATION START Data
D5 LSRP PROTOCOL REPLICATION CHECKSUM Data
D6 LSRP PROTOCOL REPLICATION UPDATE Data
D7 LSRP PROTOCOL REPLICATION COMPLETE Data
C2 LSRP CONTROL REPLICATION START Control
E2 LSRP EVENT REPLICATION COMPLETE Event

Table 4.3: Full Replica Creation messages

We list all involved messages in Table 4.4. Each D6 message includes a LSRP

header and a base storage data block. Upon received it from Export Driver, the

Export Server will extract the data block and write it into corresponding place

in the portable storage device (for export stage). The detailed workflow steps of

full replica creation is as follows:

• LSRP manager decides to create a full replica for the target VM. It sends

C2 to Export Driver indicating the set of virtual disks that is going to create

a group consistent replicas for

• Upon receiving C2, the Export Driver then sends D4 to the Export Server

to start full replication for each target virtual disk.

• Export Driver computes checksums for all blocks on disk, and sends D5

to Export Server for all blocks. It sets the bits for any blocks with non-

matching checksums.

• Export Driver transfers data blocks with set bits by sending D6 to Export

Server, in parallel with the above step.

• When transfer is complete, Export Driver will notify that all consistent data

has been received by sending D7 to Export Server

• Upon receiving D7, the Export Server will update the database to indicate

there is a snapshot and takes an actual snapshot. Then response back to

Export Driver

40

• Upon receiving the response, Export Driver sends E2 to LSRP manager.

LSRP manager will declare the base storage migration complete when re-

ceived E2 for each target disk.

We show the complete protocol flow of LSRP initialization in Figure 4.4.

replication-checksum request

replication-checksum response

replication-start ioctl

replication-start response

replication-update request

replication-update response

replication-start request

replication-complete request

replication-complete response

replication-complete

event

.

.

.

Export Driver Export Server LSRP Manager

.

.

.

Figure 4.3: Protocol flow of Full Replica Creation

4.4.3 Delta Consolidation

Delta consoliation is a way to create a new replica version by sending the dirty

storage data to remote site. If we decide that we want to transfer a dirty block

and consolidate the content into remote replca. We will atomically mark this

block clean in the bitmap. Once this is done we read the block from disk and

41

send it to the remote site. Based on the result of the transfer we need to update

our state. If the transfer fails, we can continue to retry till it sucesses or give

up and mark the block as dirty in the bitmap. If the transfer succeeds, once the

remote site acknowledged that the block is on disk then we have nothing need to

do in the primary site. We listed all involved messages for delta consolidation in

Table 4.5 and the detailed workflow steps of delta consolidation is as follows:

CODE MESSAGE NAME TYPE

D8 LSRP PROTOCOL TRANSFER CONFIG FILE Data
D9 LSRP PROTOCOL DELTA CONSOLIDATION START Data
D10 LSRP PROTOCOL DELTA CONSOLIDATION UPDATE Data
D11 LSRP PROTOCOL DELTA CONSOLIDATION COMPLETE Data
C3 LSRP CONTROL TRANSFER CONFIG FILE Control
C4 LSRP CONTROL GROUP PREPARE AND COMMIT Control
C5 LSRP CONTROL DELTA CONSOLIDATION START Control
C6 LSRP CONTROL DELTA CONSOLIDATION UPDATE Control
E3 LSRP EVENT TRANSFER CONFIG FILE Event
E4 LSRP EVENT DELTA CONSOLIDATION RESULT Event
E5 LSRP EVENT DELTA CONSOLIDATION COMPLETED Event

Table 4.4: Delta Consolidation messages

• LSRP manager decides to consolidate the delta for the target VM. It sends

C5 to Export Driver indicating the set of virtual disks that is going to be

consolidated

• Upon receiving C5, the Export Driver then sends D9 to the Export Server

to start delta consolidation for each target virtual disk

• After get responsed by Export Server, Export Driver will send E4 to LSRP

manager to notify that delta consolidation starts

• Once D9 has succeeded, the LSRP manager will initiate file transfer by

sending C3 to Export Driver

• Upon reveiving C3, the Export Driver will send D8 to Export Server to

42

transfer each chunk of config file and response to Export Driver when fin-

ishing transfer

• Export Driver will send E3 to LSRP manager to notify that config file

transfer is finished

• Upon reveiving E3, LSRP manager will send C4 and C6 to Export Driver.

C3’s PREPARE part does the following:

– Any update which is in-flight will be marked as dirty and no new

update will be sent

– Update the dirty block bitmap which records the regions that must be

sent to the remote site

– Block the completion of any IO operations from being delivered to the

guest

– Start an asynchronous task that walks the transfer bitmap and sends

each dirty region to Export Server by sending D10 (controlled by C6)

– Acknowledges the PREPARE part is successfully executed

• Upon receving a successful response to PREAPRE for each target disk, C4’s

COMMIT part will be executed:

– Unblock completion of IO operations, if there are any queued comple-

tions it delivers them to the guest

– Acknowledges the COMMIT is successfully executed

• Once the Export Driver has sent all of the dirty regions, it sends D11 to

Export Server instructing the server to take a snapshot.

• Once get responsed by Export Server, the Export Driver will send E5 to

LSRP manager to indicate that the delta consolidation is completed

43

• Once the Export Server receives D11, it writes an entry into it’s database

to mark that it has a new replica for the VM

• Once the LSRP manager has received E5 for all target virtual disks, it will

claim that delta consolidation is completed

The complete protocol flow is shown in Figure 4.5.

transfer-config-file request

transfer-config-file response

Δ-consolidation-start response

Δ-consolidation-update request

Δ-consolidation-update response

Δ-consolidation-result event

transfer-config-file event

Δ-consolidation-start ioctl
Δ-consolidation-start request

transfer-config-file ioctl

.

.

.

group-prepare-&-commit ioctl

Δ-consolidation-update ioctl

.

.

.

Δ-consolidation-complete request

Δ-consolidation-complete response

Δ-consolidation-complete event

Export Driver Export Server LSRP Manager

Figure 4.4: Protocol flow of Delta Consolidation

4.4.4 Future

We discuss here a number of possible optimizations we could do in the future for

the full replica creation protocol flow. There are two areas for improvement:

44

• Minimize the data transferred in export stage by avoiding transferring blocks

that are the same in primary and secondary sites

• Avoid re-starting from scratch if full replica creation was going on either

upon a failure or upon VM power off/on (because of live migration or dis-

aster recovery)

For the first optimization area, our first potential solution could be avoiding

transferring storage blocks which are all 0s. If one or more consecutive blocks are

all 0s just send some meta-data indicating so, instead of the actual block contents.

The second solution is to use content-based digests to transfer only blocks that

differ between both sites. The basic idea is that as part of the initial handshake

protocol, the Export Driver will request cryptographic digests for the contents of

the secodary disk image. The Export Server scans the secondary disk replica and

provides the digests at some predetermined granularity. As the filter scans and

reads the contents of the primary disk, it also generates content-derived digests,

which are compared with those provided by the Export Server. Blocks are send

to the secondary only when the corresponding digests do not match. But there

are still a number of issues needing to be considered.

• The lock-step of the two sites scanning through the disk replicas

• The properties of the hash functions used to calculate the digests

• The details of the digest-generation algorithm and how it is optimized to

not affect negatively the performance of disk scanning

• the granularity of the blocks on which digests are calculated and their rela-

tion to the granularity of the blocks transferred

• The feasibility of defining the granularity of those blocks dynamically

45

4.5 Conclusion

In this chapter, we detailed introduced the LSRP, LAN Storage Replication Pro-

tocl, which is an application layer transport protocol to migrate base storage by

creating replicas for the virtual disks of target VM. LSRP includes a lightweight

Delta Consolidation protocol which can merge the dirty disk data into the replica

in the “remote” site. Thus we can update the replica in the local portable storage

device periodically till deciding to send those to the secondary site. This is a

very efficient approach to reduce the amount of dirty storage data which will be

migrated through WAN. We also discussed the improvements we could do in the

future for LSRP protocol.

46

Chapter 5

Evaluation

5.1 System Configuration

We run all tests on a pair of HP ProLiant DL580 G7 servers. Each of them is

a quad-socket machine configured with eight-core 2.67 GHz Intel Xeon E7-8837

processors, 256 GBs of RAM, and two 10GbE Intel network adapters. Both

servers are connected to an EMC CX4-480 and an EMC CX3-40 SAN arrays

using an 8Gb Fibre Channel (FC) switch. We created a 100GB virtual machine

file system on a 15-disk RAID-0 volume on each FC array.

5.2 Benchmarks

We compare the performance of our Cloud-scale live migration approach for three

benchmarks: an idle VM, Online Transaction Processing using Iometer, and the

DVD Store verion 2 (DS2). The configurations of these three VMs are shown in

Table 5.1.

CPU# RAM(G)
DISK(G)

BOOT DATA LOG

IDLE 2 8 16 24 N/A
OLTP 2 8 16 24 N/A
DS2 4 16 50 90 24

Table 5.1: Configurations of three benchmark VMs

Our synthetic workload uses Iometer to generate an IO pattern that simultes

an OLTP workload with a 30% write, 70% read of 8KB IO commands to the 24GB

47

data disk. During the migration for IDLE and OLTP, both the data disk and boot

disk are migrated at the same time, but for OLTP there is no workload running

on the boot disk. The DVD Store version 2 workload is an online e-commerce

test application with a web front-end and database. The test was configured with

50 million customers and tested with 12 DS2 users. During the migration, all the

three disks are migrated at the same time.

5.3 Migration over FedEx

We compare Migration over FedEx to local live storage migration and traditional

live migration. Local live storage migration works by copying a virtual disk

from one shared storage device to another on the same host. This is perhaps

a bit of an apples to oranges comparison as Cloud-scale live migration must

also deal with migrating memory and device state. We choose this comparison

for two reasons. First, storage migration overhead generally dominates memory

migration overhead. Next, storage migration is quite heavily optimized, so it

represents a good best-case for comparison. Traditional live migration transfers

everything over network while Migration over FedEx transfers the base storage

data by shipping the portable storage device where the storage data is stored.

5.3.1 Migration Time and Downtime

Figure 5.1(a) shows the migration time for three workloads under three migration

configurations. As expected, Migration ove FedEx is the fastest since it avoids

transferring the bulk of storage data over network. The actual time for transfer-

ring the dirty storage data depends on the characteristics of running workloads.

Taking the time needed for shipping the portable storge devices into considera-

tion (assuming 12 hours), we list the threshold number of migrated VMs when

Migration over FedEx exceeds traditional live migration in Table 5.2. Traditional

48

live migration is nearly 10% slower than local live storage migration because that

it also needs to deal with the additional memory and device state. For example,

there are 12 seconds difference between local storage migration and traditional

live migration for idle VM and that difference grows to 17 seconds for the OLTP

workload. The overhead is mostly from traditional live migration that requires

about 9 to 10 seconds to migrate the memory state.

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

!"#$"%&'

!"#$"%('

!"#$"%)'

M
ig

ra
ti
o

n
 t

im
e

 (
s)

Live Storage Migration

Traditional Live Migration

Migration over FedEx

IDLE OLTP DVDStore

(a) Migration time

!"

!#$"

%"

%#$"

&"

&#$"

'"

!"#$"%&'

!"#$"%('

!"#$"%)'

D
o

w
n

ti
m

e
 (

s)

Live Storage Migration

Traditional Live Migration

Migration over FedEx

IDLE OLTP DVDStore

(b) Downtime

Figure 5.1: Migration time & Downtime for three workloads under three migration
configurations

IDLE OLTP DVDStore
Threshold # of migrated VMs 345 361 251

Table 5.2: Threshold number of migrated VMs when Migration over FedEx ex-
ceeds traditional live migration

In Figure 5.1(b), we show the downtimes involved in three workloads against

different migration configurations. As expected, the downtime of Migration over

FedEx is a little bit higher for all three cases than that of traditional live migra-

tion. That is because Migration over FedEx transfers the dirty storage data over

network. We expect that all Migration over FedEx have effectively a bounded

downtime of a few seconds, which is composed of the transfer time for any re-

maining data and a few round trips for the resume handshake. Our local live

storage migration in these tests suffered greater downtimes because it is very ex-

pensive to hand over the memory ownership when memory size is big. Compared

49

with traditional live migration, our approach does not incur apparent overhead

but greatly shortens the total migration time especially when migrating large

number of VMs.

5.3.2 Dissection

Figure 5.2 and 5.3 show dissections of DVD Store’s reported workload throughput

during migration time for traditional live migration and Migration over FedEx.

These VMs are migrating from a higher datastore to a slower one, as shown by

the throughput on the source and destination, during the migration the workload

throughput reduces. We can notice a quick dip to zero in both of the figures as the

VMs are suspended for switchover. Besides, there is a short period of time where

the workload is not experiencing any performance penalty, and this is during the

memory pre-copy.

!"

#!!"

$!!"

%!!"

&!!"

'!!"

#" &&" ()" #%!" #)%" $#*" $'+" %!$" %&'" %((" &%#" &)&" '#)"

source

disk copy

memory copy

switchover

destination

Time (s)

O
rd

e
rs

/s
e

c

Figure 5.2: Illustrates the various phases of the migration against a plot of DVD

Store Orders/sec for traditional live migration

For both traditional live migration and Migration over FedEx, the throughput

dramatically decreased by almost 70 orders/sec when disk copy phase starts. This

is mainly because that disk copy occupies nearly half of the disk bandwidth. In

50

addition, when the coming writes fall into the disk region where we are currently

copying from, they will be queued until this disk region has been copied. This

synchronization also causes negative effect on throughput to some extent. Mem-

ory copy does not introduce any overhead for the throughput that is because we

have finished disk copy and any writes will be mirrored to both the source and

destination sites.

Disk copy and memory copy dominate the migration time for both traditional

live migration and Migration over FedEx. Thanks to the way we migrate storage

by shipping the portable storage device, the storage migration time has been

shrinked to one fifth compared with traditional live migration.

!"

#!!"

$!!"

%!!"

&!!"

'!!"

#" &&" ()" #%!" #)%" $#*" $'+" %!$" %&'" %((" &%#" &)&" '#)"

O
rd

e
rs

/s
e

c

Time (s)

source

dirty disk copy
switchover

destination

Figure 5.3: Illustrates the various phases of the migration against a plot of DVD

Store Orders/sec for Migration over FedEx

5.4 Delta Consolidation

We investigate the advantages of Delta Consolidation protocol by comparing it to

snapshot mechanism. DCP is a lightweight protocol used to creates a consistent

storage replica.

51

5.4.1 Performance Results

Figure 5.4. presents experimental performance results that show the impact in

terms of sustainable I/O throughput to a workload running in a VM. The graphs

compare the use of DCP vs. snapshot as the mechanism to achieve primary disk

immutability during delta consolidation. They capture an execution period of 15

minutes during which we create three replicas.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 100 200 300 400 500 600 700 800 900

Time (seconds)

No replication

LWD

Redo

No replication

lightweight delta

Snapshot

M
B

/s

Time (s)

(a) Sequential writes, 4KB block size, 1GB disk

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700 800 900

Time (seconds)

No replication

LWD

Redo

M
B

/s

Time (s)

No replication

lightweight delta

Snapshot

(b) Sequential writes, 64KB block size, 1GB disk

Figure 5.4: DCP vs. Snapshot for creating consistent disk replicas

The workload in the VM tries to consume as much disk bandwidth as possi-

ble. In the case of 4KB writes, both mechanisms introduce some overhead, but

snapshot approach drives the throughput down to 0 for a few seconds. In the

64KB case, the throughput of snapshot approach is much lower than DCP in

most of the time and takes so long that it is not done in time for the next replica

creation. The results indicate that DCP is a more appropriate protocol especially

when consectively creating replica in short time interval.

52

Chapter 6

Discusstions and Futrue

We have shown our Cloud-scale live migration framework and the detailed design

for LAN storage migration protocol. This is however a prototype design and

needs to be studied further from some more important aspects e.g. performance

and security. We list some future studies here.

6.1 VM Distribution Network

In addition to Migration over FedEx, we can optimize and accelerate the WAN

traffic for memory and dirty-block migration using a distributed content de-

duplication network. We have two observations to prove the necessity and feasi-

bility of VMDN. The first observation is that in a virtualized environment, many

VMs should exhibit the same similarity in their disk conten since those VMs are

often deployed from a few common VM templates. For example, the VMs could

have the same Windows OS and applications installed in the guest. Therefore,

there will be lots of duplicated disk blocks for the same executable binaries as

shown in [22]. Many VMs in an enterprise datacenter already use linked-clone

features to explicitly share the same base disk image. The second observation is

that due to the nature of Cloud-scale live migration, the WAN bandwidth will be

very asymmetric between source and destination datacenters. If there are hun-

dreds even thousands of users who want to extend their private datacenters to

public Cloud, it is very difficult if not impossible to provide the inbound WAN

bandwidth that is even close to the total aggregated bandwidth of those users.

53

We will study different cache strategies and algorithms to globally optimize

the memory and dirty-block migration traffic. Our idea is: VMDN consists of a

set of virtual applicances that can be deployed in both private Cloud and public

Cloud. Each VMDN node will have a dedup engine as well as local cache for

popular disk contens. The cache index of each VMDN node is propagated among

other VMDN nodes so that any duplicated data transfer can be suppressed by

only sending the content has rather than the actual content data.

6.2 Open Live Migration Protocol

Our Migration over FedEx framework is contructed on a open networking envi-

ronment which may cause the communication to happen between untrusted hosts.

So we have to redesign our memory and dirty-block migration protocol to prevent

from malicious attacking. The original live migration protocol does not inherently

require trust between the communicating hosts. Rather, the trust extends natu-

rally from the type of VM metadata that must be transferred in order to move a

running VM’s state. In order to harden the protocol, it is critical to review each

and every type of metadata transferring during a VM’s migration, ensuring that

proper sanity checks and content validation are performed.

There is some additional room for improvement here, we can ask the user to

sacrifice some degree of VM fidelity in order to simplify the migrating. Such an

approach allows us to greatly reduce the scope of any necessary migration protocol

to just the core requirements of VM migration: moving the VM’s memory state

and virtual device checkpoint.

54

References

[1] S. Akoush, R. Sohan, A. Rice, A.W. Moore, and A. Hopper. Predicting the

performance of virtual machine migration. In Proceedings of the 2010 In-

ternational Symposium on Modeling, Analysis, and Simulation of Computer

Systems (MASCOTS2010), pages 37–46, 2010.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-

bauer, I. Pratt, and A. Warfield. Xen and the art of virtualization. In Proceed-

ings of 19th ACM Symposium on Operating Systems Principles (SOSP19),

pages 164–177, 2003.

[3] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schioberg. Live wide-area

migration of virtual machines including local persistent state. In Proceed-

ings of the 3rd international conference on Virtual Execution Environment

(VEE07), pages 169–179, 2007.

[4] C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul, C. Limpach, I. Pratt,

and A. Warfield. Live migration of virtual machines. In Proceedings of the

2nd Symposium on Networked Systems Design & Implementation (NSDI05),

pages 273–286, 2005.

[5] VMWare Inc. VMWare ESX. http://www.vmware.com.

[6] B. Gerofi, H. Fujita, and Y. Ishikawa. Live migration of process maintaining

multiple network connections. IPSJ Transactions on Advanced Computing

Systems (ACS29), 3(1), 2010.

55

[7] D. Gupta, S. Lee, M. Vrable, S. Savage, A.C. Snoeren, G. Varghese, G.M.

Voelker, and A. Vahdat. Difference engine: Harnessing memory redundancy

in virtual machines. In Proceedings of the 8th USENIX Symposium on Oper-

ating Systems Design and Implementation (OSDI08), pages 309–322, 2008.

[8] S. Hacking and B. Hudzia. Improving the live migration process of large

enterprise applications. In Proceedings of the 3rd International Workshop

on Virtualization Technologies in Distributed Computing (VTDC09), pages

51–58, 2009.

[9] E. Harney, S. Goasguen, J. Martin, M. Murphy, and M. Westall. The effi-

cacy of live virtual machine migrations over the internet. In Proceedings of

the 3rd international workshop on Virtualization Technology in Distributed

Computing (VTDC07), pages 1–7, 2007.

[10] T. Hirofuchi, H. Nakada, H. Ogawa, S. Itoh, and S. Sekiguchi. A live storage

migration mechanis and its performance evaluation. In Proceedings of the

3rd International Workshop on Virtualization Technologies in Distributed

Computing (VIDC09), 2009.

[11] T. Hirofuchi, H. Ogawa, H. Nakada, S. Itoh, and S. Sekiguchi. A live storage

migration mechanism over wan for relocatable virtual machine services over

clouds. In Proceedings of the 9th IEEE/ACM International Symposium on

Cluster Computing and the Grid (CCGrid09)), pages 460–465, 2009.

[12] T. Hirofuchi and I. Yamahata. Yabusame: Postcopy live migration for

qemu/kvm. In Oliver & Boyd, London, OCLC, pages 26–27.

[13] W. Huang, Q. Gao, J. Liu, and D.K. Panda. High performance virtual

machine migration with rdma over modern interconnects. In Proceedings of

the 2007 International Conference on Cluster Computing (CLUSTER07)),

pages 11–20, 2007.

56

[14] H. Jin, L. Deng, S. Wu, X. Shi, and X. Pan. Live virtual machine migra-

tion with adaptive memory compression. In Proceedings of the 2009 IEEE

International Conference on Cluster Computing (CLUSTER09), 2009.

[15] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. Kvm: the linux

virtual machine monitor. In Proceedings of the 2007 Linux Symposium, vol-

ume 1, pages 225–230, 2007.

[16] H.A. Lagar-Cavilla, J.A. Whitney, A.M. Scannell, P. Patchin, S.M. Rumble,

E. de Lara, M. Brudno, and M. Satyanarayanan. Snowflock: Rapid vir-

tual machine cloning for cloud computing. In Proceedings of the 4th ACM

European Conference on Computer Systems (EuroSys09), pages 1–12, 2009.

[17] A. Liguori and E.V. Hensbergen. Experiences with content addressable stor-

age and virtual disks. In Proceedings of the First Workshop on I/O Virtual-

ization (WIOV08)), 2008.

[18] H. Liu, H. Jin, X. Liao, L. Hu, and C. Yu. Live migration of virtual ma-

chine based on full system trace and replay. In Proceedings of the 18th

ACM International Symposium on High Performance Distributed Comput-

ing (HPDC09), pages 101–110, 2009.

[19] Y. Luo, B. Zhang, X. Wang, Z. Wang, Y. Sun, and H. Chen. Live and

incremental whole-system migration of virtual machines using block-bitmap.

In Proceedings of 2008 IEEE International Conference on Cluster Computing

(Cluster08), pages 99–106, 2008.

[20] D. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler, and S. Zhou. Process

migration. In ACM Computing Surveys, volume 32, pages 241–299, 2005.

[21] G. Milos, D.G. Murray, S. Hand, and M. Fetterman. Satori: Enlightened page

sharing. In Proceedings of the 2009 USENIX Annual Technical Conference

(USENIX09), 2009.

57

[22] A. Muthitacharoen, B. Chen, and D. Mazieres. A low-bandwidth network

file system. In Proceedings of 18th ACM Symposium on Operating Systems

Principles (SOSP18), 2001.

[23] M. Nelson, B.H. Lim, and G. Hutchins. Fast transparent migration for virtual

machines. In Proceedings of the 2005 USENIX Annual Technical Conference

(USENIX05), pages 391–394, 2005.

[24] N. Partho, M.A. Kozuch, D.R. O’Hallaron, J. Harkes, M. Satyanarayanan,

N. Tolia, and M. Toups. Design tradeoffs in applying content addressable

storage to enterprise-scale systems based on virtual machines. In Proceedings

of the 2006 USENIX Annual Techinal Conference (USENIX06)), pages 1–6,

2006.

[25] S. Rhea, R. Cox, and A. Pesterev. Fast, inexpensive content-addressable

storage in foundation. In Proceedings of the 2008 USENIX Annual Techinal

Conference (USENIX08)), pages 144–156, 2008.

[26] C.P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M.S. Lam, and M. Rosen-

blum. Optimizing the migration of virtual computers. In Proceedings of the

5th Symposium on Operating System Design and Implementation (OSDI02),

pages 377–390, 2002.

[27] P. Svard, B. Hudzia, J. Tordsson, and E. Elmroth. Evaluation of delta

compression techniques for efficient live migration of large virtual machines.

In Proceedings of the 7th ACM SIGPLAN/SIGOPS International Conference

on Virtual Execution Environments (VEE11), pages 111–120, 2011.

[28] M.M. Theimer, K.A. Lantz, and D.R. Cheriton. Preemptable remote execu-

tion facilities for the v-system. In Proceedings of the 10th ACM Symposium

on Operating Systems Principles (SOSP85)), pages 2–12, 1985.

58

[29] N. Tolia, T. Bressoud, M. Kozuch, and M. Satyanarayanan. Using content

addressing to transfer virtual machine state. In Technical Report, Intel Cor-

poration, 2002.

[30] C.A. Waldspurger. Memory resource management in vmware esx server. In

Proceedings of the 5th USENIX Symposium on Operating Systems Design

and Implementation (OSDI02), pages 181–194, 2002.

[31] T. Wood, K. Ramakrishnan, P. Shenoy, and J. van der Merwe. Cloudnet:

Dynamic pooling of cloud resouces by live wan migration of virtual machines.

In Proceedings of the 7th international conference on Virtual Execution En-

vironments (VEE09), 2011.

[32] T. Wood, G. Tarasuk-Levin, P. Shenoy, P. Desnoyers, E. Cecchet, and

M. Corner. Memory buddies: Exploiting page sharing for smart coloca-

tion in virtualized data centers. In Proceedings of the 2009 ACM SIG-

PLAN/SIGOPS International Conference on Virtual Execution Environ-

ments (VEE09)), pages 31–40, 2009.

[33] X. Zhang, Z. Huo, J. Ma, and D. Meng. Exploiting data deduplication

to accelerate live virtual machine migration. In Proceedings of the 2010

International Conference on Cluster Computing (CLUSTER10), pages 88–

96, 2010.

