
DOMAIN COMPOSITION METHOD AND ITS 

APPLICATIONS 

by 

WEI SONG 

 

A dissertation submitted to the 

Graduate School-New Brunswick 

Rutgers, The State University of New Jersey 

In partial fulfillment of the requirements 

For the degree of 

Doctor of Philosophy 

Graduate Program in Mechanical and Aerospace Engineering 

Written under the direction of 

Professor Hae Chang Gea 

And approved by 

 

 

 

 

New Brunswick, New Jersey 

JANUARY, 2014 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2014 

 

Wei Song 

 

ALL RIGHTS RESERVED 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



ii 

 

ABSTRACT OF THE DISSERTATION 

Domain Composition Method and its Applications 

By WEI SONG 

 

 

Dissertation Director: 

Professor Hae Chang Gea 

 

 

 

Topology optimization methods have been fully developed during the past two 

decades, and it has achieved great success in the structural design field. In topology 

optimization, design domain is predetermined, and it keeps unchanged in structural 

optimization process. However, fixed design domain is difficult to satisfy some design 

requirements such as domain sizing adjustment or boundaries change. 

In this dissertation, Domain Composition Method (DCM) is proposed to meet this 

challenge. Instead of treating design domain as a whole, DCM divides domain into 

several subdomains at the beginning. It defines additional scaling factors and applies 

subdomain transformations to describe the change between different designs. Then it 

composites subdomains and solve it as an updated domain. Consequently, structural 
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analysis and sensitivity analysis can be derived. Furthermore, domain and topology of the 

structure are optimized simultaneously. Using DCM, regional strain energy formulation 

is discussed in protective structures design problem. Since the protective structures 

always undergo dynamic loads in practice, but the transient analysis is too expensive to 

apply, inertia relief analysis is employed to analyze the structure deformation. Some 

applications of DCM using regional strain energy formulation and inertia relief analysis 

are presented and discussed. 

The main contributions of this dissertation are listed as follows: (1) presenting the 

concept of Design Composition Method (DCM), (2) applying DCM in static analysis and 

inertia relief analysis, (3) deriving the sensitivity of total strain energy and regional strain 

energy with DCM, (4) discussing the protective structures design scheme employing 

DCM using regional strain energy formulation and inertia relief analysis. 
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Chapter 1.  Introduction 

Structural engineers always attempt to come up with designs to enhance the 

efficiency of objects while designing structures and they try to improve the performance 

of the structures using the minimal resources. The common process generates many 

different designs and analyzes them to select the ‘best’ design but it does strongly depend 

on the limited knowledge and experience of the engineers. To overcome this drawback, 

optimization theory was introduced in structural design and then structural optimization 

filed was constructed. 

Typically, three kinds of structural optimization problems are discussed in the 

literature: sizing, shape and topology optimization problems. Sizing optimization is 

optimized the size of each structural member for a given geometry. Shape optimization is 

finding out the optimal boundary of a parameterized design while keeping the topology 

constant with no holes created or destroyed. These two kinds of problems require a priori 

knowledge of the structural shape. However, for the new structural design without a 

priori knowledge, it might be difficult to get a concept design. Topology optimization can 

be used without a priori assumption of the structural shape and connectivity [1]. It is 

trying to find the optimal material distribution within a predefined design domain under 

boundary conditions. 

Conventionally, the design domain in topology optimization is predefined, and it 

does not adjust in structural topology optimization process. Designers are required to 

specify the design domain in advance. In some cases, such as a package cushioning 

design shown in Figure 1.1, the design domain changing together takes more flexibility 

than only topology changing during the design process. 
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Figure 1.1. A Typical Package Cushioning Design Example: Edge Drop Test (Top Left), 

Package Composition (Top Right), Simplified 2D Initial Configuration (Bottom 

Left), Simplified 2D Shrinked Configuration (Bottom Right) 

In this package cushioning design example as shown in Figure 1.1, the protection 

performance of the package is dependent on the proper structural design of cushioning 
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and only cushioning and content are considered in the simplified 2D case. Then designing 

a better cushioning structure with a constant material usage is a typical structural 

optimization problem and topology optimization can be employed here. However, the 

design domain is not fixed in this example, and its size might be changed during the 

design process. A new structural optimization method would be desired to optimize the 

design domain and material distribution simultaneously. Thus, a new method, Domain 

Composition Method (DCM), is proposed in this dissertation and it deals with the design 

domain and the material distribution optimization in one framework. 

Furthermore, it is worth to note the goal of this cushioning design is protecting 

inside content but holding the structure integrity for outside cushioning. It is a multi-

criteria optimization problem obviously and the conventional total strain energy 

formulation is not fit anymore. A new formulation based on regional strain energy 

formulation is suggested in this dissertation. This formulation is appropriate for 

protecting or strengthening part of the structure. 

In practice, package undergoes drop and impact conditions in storage and 

transportation. It is the dynamic response of the package if the deformation analysis is 

required and static analysis does not apply to this situation. However, the computational 

cost of dynamic analysis is too expensive. An alternative cheap analysis so-called inertia 

relief analysis is employed in our research, and it takes into account the dynamic effects 

but utilizes the static analysis. 

In the following section, structural optimization is to be reviewed and provide a 

fundamental overview on these topics. 
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1.1. Literature Review 

The first work of structural optimization can be traced to work done by Maxwell 

[2] who proved that a fully stressed pin jointed truss with a given set of forces applied at 

specified locations, the volume difference between tension and compression members is a 

constant in 1869. Levy [3] and Cilley [4] studied the fully-stressed design of 

indeterminate pin joint frameworks in 1888 and 1900 respectively. Michell [5] proposed 

a theory for minimum weight structures on limits of economy of material based on the 

extension of Maxwell’s results in 1904. This work established the theoretical basis for the 

structural optimization. Wasiutynsky published possible the first review of the optimum 

of strength design in 1939. This review, summarizing the works from Galileo to 1930, “is 

based on source materials and includes numerous quotations of the original texts and 

proofs” [6]. 

During the 1950s and 1960s, extensive research was developed in the minimum 

weight design, especially in aircraft structure components design because of the aircraft 

structure requirement in post-war [6]. Shanley (1952) exposed the principle of 

simultaneous failure modes to the solutions of problems for structural design in his book 

[7]. Similarly, Johnson (1961) presented the method of optimum design primarily with 

mechanical elements [8]. 

During the late 1960s and early 1970s, a structural optimization method based on 

Optimality Criteria (OC) was developed for the purpose of large-scale optimization [9]. It 

can be traced back to the work of Wasiutynski [10] in 1960. The theoretical foundation of 

OC was established by Prager & Taylor (1968) [11], Taylor (1969) [12] and Masur (1970) 

[13]. They presented the continuum problems obtain differential equations as the 
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optimality criteria and the solutions which provide the optimum shape of the structures. 

Bendsøe and Sigmund provided a comprehensive bibliographical note for Optimality 

Criteria (OC) method [14]. However, the OC method is not a general method since the 

optimality conditions are different and have to be derived on different problems, and this 

limits the range of its application. 

The development of Mathematical Programming (MP) techniques during the late 

1940s and the early 1950s and the development of the Finite Element Method (FEM) 

with computer technologies from 1960s made it possible to extend and simplify the 

structural optimization problem as a powerful tool [15]. The structural optimization 

problems were treated as finding the mathematical extremization of an objective function 

in multidimensional design variables space. The extremum was obtained by linear or 

nonlinear MP. The FEM can analyze more complicated problem in different physics and 

it can provide the function evaluation for MP method. The most important information in 

MP method is function value and sensitivity. It is impossible to implement structural 

optimization without the sensitivity analysis. Generally, design sensitivity is an indicator 

for measuring how well a small perturbation of design variables will affect the system 

response or the objective function in the optimization. Sensitivity analysis can be referred 

in the books written by Haug, Choi & Komkov (1986) [16] and Choi & Kim (2005) [17, 

18] or the review paper written by Haftka and Adelman (1989) [19]. 

With the great development of computer technology after 1970s, structural 

optimization started a new stage. Before that time, the design goal may be to find the 

optimal plate thickness or the optimal truss cross section. It was so-called sizing 
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optimization. The main feature of the sizing optimization is the design domain and the 

state variable is known a priori and is fixed in the design process [14]. 

The developed new structural optimization method was used to design the shape 

of the hole or the body. It was named as shape optimization. The goal of the shape 

optimization is to find the optimum shape of the domain. Zienkiewich and Campbell [20] 

described the shape optimization based on FEM by changing the coordinates of boundary 

nodes in 1973. Bhavikatti and Ramakrishnan [21] represented the boundary shape in 

shape optimization based FEM by setting the coefficients of the polynomials in 1980. 

The early review of shape optimization written by Vanderplaates in 1980 and he dealt 

with the continuous shape parameters [22]. Some survey papers and books about shape 

optimization are presented by Ding (1986) [23], Haftka & Gandhi (1986) [24], 

Zienkiewicz & Zhu (1986) [22], Hsu (1994) [25] and Kawohl et al. (1998) [26]. The 

shape optimization method provides a powerful tool to engineers. However, the optimal 

designs are based on a predefined topology although the boundaries can be changed 

between the design iterations, i.e. shape optimization will not change the topology of the 

structure, and the optimal design has the same topology as the initial design. Also, the 

sensitivity is difficult to calculate because the finite element mesh is design dependent 

[27]. 

To avoid disadvantages of shape optimization, topology optimization was 

proposed. It transformed the optimum lay-out problem into the optimum material 

distribution problem. Topology optimization is to find the optimal material distribution in 

a predefined design domain and the only known quantities in the problem are the applied 

loads, the possible support conditions, and the volume of the structure to be constructed 



7 

 

 

and possibly some additional design restrictions such as the location and size of 

prescribed holes or solid area [14]. Topology optimization needs no additional priori 

knowledge of engineers, so it is a very helpful design automation tool. The basic concept 

of finding material distribution instead of finding lay-out was discussed briefly by Cea et 

al. (1973) [28] and Tartar (1979) [29]. 

The first implementation of the material distribution was first presented by 

Bendsøe & Kikuchi in 1988 [30]. Their work was based on the homogenization method 

which the design domain is assumed to be filled with nonhomogeneous material 

microstructure which is characterized by multiple variables. The equivalent homogenized 

material constant is calculated by using the homogenization method. This concept 

transforms an optimal topology design problem into an optimal material distribution 

problem [31]. The distribution materials with microstructures in a design domain also 

was discussed by Cheng & Olhoff (1981) [32], Lurie et al. (1982) [33] and Kohn & 

Strang (1986) [34-36]. Further early developments of the homogenization can be found in 

Suzuki & Kikuchi (1991) [37] and Thomsen (1991) [38]. An excellent review about 

homogenization and its application in topology optimization was presented by Hassani & 

Hinton [39-41] in 1998. 

Another more common used implementation of topology optimization method is 

the density function interpolation method which was proposed by Bendsøe in 1989 [42] 

and Rozvany & Zhou in 1991 [43]. This method applied the continuous variables to 

replace the integer variables in the original material distribution problem. This method 

was then utilized by Mlejnek (1992) [44], Yang (1994) [45] and other researchers 

because it is efficiency, usability and easy to use. One popular and efficient selection 
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model is so-called Solid Isotropic Material with Penalization (SIMP) model [14]. In our 

research, SIMP model is used and it is discussed in Section 1.2. Other interpolation 

schemes with isotropic material and its discussion can refer papers and book of Bendsøe 

& Sigmund [14, 46] and Stolpe & Svanberg [47]. A comprehensive description and 

explanation of SIMP model can be found in the book of Bendsøe and Sigmund [14]. 

From the previous literature survey of the topology optimization, the design 

domain is predefined or fixed, and only a few researchers studied the topology 

optimization with the similar boundary change problem. Chen et al. [48] presented a 

shape optimization method which provided explicit parametric control of geometry and 

topology within a large space of free-form shapes and combined free-form and 

parametric shape optimization approaches. This method can deal with the boundary 

change problem, but the design domain itself is fixed as the initial selection. Zhu et al. 

[49, 50] applied the so-called coupled shape and topology optimization technique to 

study the layout design of the components and their supporting structures in a finite 

packing space. The material configuration of the supporting structures and components 

are optimized simultaneously based on topology optimization method. The design 

domain of the supporting structures is fixed, and components are meshed individually 

and embedded with the supporting structures meshes. This method coupled shape and 

topology optimization together. However, the sensitivities of the total strain energy 

respect to the shape parameters of the components are calculated by finite difference 

method which requires more analysis and smaller step size in iteration. It increases the 

computational cost consequently. 
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In this dissertation, the design domain is not fixed and it changes during the 

design process. The design domain and the material distribution are optimized 

simultaneously. The design domain is divided into a series of subdomains and material is 

not only distributed between elements but also between subdomains. Each subdomain 

change is described by different parameters and the parameters have to be compatible 

with each other in order to keep the compatibility of the geometry. Complete discussion 

is proposed in Chapter 2. 

In general, most topology optimization objective formulations consider total strain 

energy of the whole design domain. It gives the optimal design for the largest rigidity in 

the whole design domain. However, in some cases, only a portion of the design domain 

needs to be considered as an objective. For example, it is required to design a protection 

structure to protect a specified object, such as designing a structure to protect the battery 

in electric vehicle impact or designing a container to protect content. Gea [51] proposed 

the concept of regional strain energy formulation and applied it in energy absorption 

design. In this dissertation, this concept is applied to Domain Composition Method 

(DCM) and extended the application of the method in protective structure design. New 

formulation and detailed discussion are presented in Chapter 3. 

To implement the topology optimization, Finite Element Analysis (FEA) and 

sensitivity analysis are two essential bases. Currently, most of the topology optimization 

problems are focused on solving for the static problem. In reality, many structure 

responses are dynamical. However, computational cost of dynamic analysis is much 

higher than static analysis. Furthermore, the sensitivity is required by mathematical 

programming methods but is difficult to calculate in dynamic analysis, and it always 
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calculates in each time step [52]. In order to fill this gap, inertia relief analysis can be 

applied in domain compositing optimization problem. It takes into account the dynamic 

effects but utilizes the static analysis, thus saving a substantial amount of computation 

time and cost [53]. 

Inertia relief was widely used in many industries such as automotive, aerospace, 

flight and airship. Agrawal et al. [53] used inertia relief to analyze a hood structure under 

slam/drop type loading which was due to the complexity of the impact phenomenon. 

Mahishi [54] carried out inertia relief as the measured road loads were in self equilibrium 

to design the lower control arm in a suspension system. Sleight and Muheim [55] 

performed inertia relief analysis with geometric nonlinearity on two general square solar 

sail design to identify parameters of interest. Bessert and Frederich [56] employed 

ABAQUS inertia relief analysis and performed the nonlinear airship disturbed structure 

model in order to yield the respective aero-elastic derivatives. Liao and Pasternak[57] 

presented design and analysis cycle of buoyant air vehicle using inertia relief calculation. 

On the other hand, researchers studied various inertia relief key issues and applied 

it to structural optimization, especially in topology optimization. Anvari and Beigi [58] 

compared inertia relief analysis and transient dynamics analysis in vehicle structure stress 

analysis to show its using condition and accuracy. Liao [59] described the principle of 

inertia relief analysis and discussed inertia relief capability in main current commercial 

finite element packages. Pagaldipti and Shyy [60] revealed inertia relief influence in 

structural design optimization procedure. Quinn [61] studied full automobile topology 

design optimization problem to maximize structural stiffness subject to multiple static 

load cases and compared the results of inertial relief analysis with conventional static 
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analysis. However, a systematical discussion of formulation and sensitivity derivations 

with inertia relief has rarely been found. After a concise discussion of basic equations and 

solving techniques of inertia relief, Domain Composition Method (DCM) is used in 

inertia relief analysis and applied into structural optimization problem. Complete 

formulation and discussion are proposed in Chapter 4. 

1.2. Background of Topology Optimization 

In this dissertation, Domain Composition Method (DCM) is optimized design 

domain and material distribution simultaneously and it can be treated as an extension of 

the topology optimization. It’s worth to discuss some background of topology 

optimization for the completeness of the dissertation. 

Topology optimization for continuum structures is finding the optimal 

distributions of the available material in a predetermined design domain [62]. Typically, 

the maximal stiffness in structures, i.e. the minimal strain energy or the minimal mean 

compliance is commonly considered as an objective, and the prescribed (constant) 

material volume is the constraint. The discretized topology optimization problem is stated 

as 

 

 

min

1
:  

2

. . :     

          

            1,   1, ,

T

T

i

Min U

s t

V V

or i N 







 

γ
u Ku

Ku F

γ

 (1.1) 

where TU  is the total strain energy of the structure. Displacement and external force 

vector are denoted u  and F , respectively. 0V  is the total volume of the design domain. 
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V  is the constant material volume which means the maximal material usage to build the 

structure. Design variable i  indicates the material pseudo-density in the i
th

 element in 

finite element model. It takes 0 or 1 to indicate non-existence or existence of the given 

material within each element. The material pseudo-density value 0 is usually replaced by 

min , a very small positive number, to avoid the singularity in the finite element analysis. 

Above discrete optimization problem is difficult to be solved by gradient-based 

optimization algorithms, because design variables are not continuous. In order to utilize 

the fully developed continuous optimization methods, some material interpolation models 

had been proposed. One of the most commonly used material models is so-called “power-

law approach” or Solid Isotropic Material with Penalty (SIMP) model [30, 42, 43, 46, 63]. 

SIMP model employs the following power-law relation to describe the stiffness and the 

mass of a material with the pseudo-density i  

0

p

i iE E  

0i i    

where i  is a continuous pseudo-density min0 1i    . p  represents a penalty 

coefficient to material, which is set to a value greater than 1 to provide a penalty on 

stiffness of the material. In general, it always sets 3p   [63] and it also happens in our 

research. 0E  and 0  represent Young’s modulus and density of a given material. 

The effect of different penalty values p  to the relative stiffness ( 0E E ) is 

illustrated in Figure 1.2. As shown in this figure, the curve has a tendency towards a step 

function when the penalty power p  increases. Therefore, topology optimization method 
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can be more efficient to converge material density (
i ) as a void (

mini  ) or solid 

( 1i  ) in SIMP model. Hence, the result of topology optimization will tend to an 

optimal design with mostly solid and void phase [42]. 

 

Figure 1.2. Penalization of the Intermediate Pseudo-density in SIMP Model [42] 

Applying SIMP model in original topology optimization problem (1.1), the 

discretized optimization problem is relaxed to a continuous optimization problem as 

 

 

min

1
:  

2

. . :     

          

          0 1,   1, ,

T

T

i

Min U

s t

V V

i N 







   

γ
u Ku

Ku F

γ

 (1.2) 
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In this study, this relaxation of material distribution design variables is the same 

as appearing in formulation (1.2). 

1.3. Research Contribution 

Domain Composition Method (DCM) for structural optimization is presented and 

developed in this dissertation. Several achievements are summarized as follows: 

 The concept of DCM 

The design domain changing problems are difficult to handle in structural 

optimization because traditional domain parameterization has to apply finite difference 

method to calculate the sensitivity for the optimization algorithm rather than accurate 

derivation. In this dissertation, design domain is divided into subdomains, and the 

transformation relations are constructed by defining parameters in subdomains. These 

subdomain transformation relations are combined into analysis and sensitivity calculation 

procedure. 

 Static analysis and inertia relief analysis using DCM 

In this study, DCM is applied in static analysis and inertia relief analysis. Element 

stiffness matrices and element mass matrices are derived by applying subdomain 

transformations between the current design domain and the initial design domain. Global 

stiffness matrix and global mass matrix of the current design domain can be expressed by 

parameters which are defined in corresponding subdomains. Static analysis and inertia 

analysis using DCM are described in Chapter 2 and Chapter 4 respectively. 

 Sensitivity analysis with DCM 

Accurate sensitivity analyses are derived for static analysis and inertia relief 

analysis using DCM. Two types of objective functions are considered, total strain energy 
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formulation and regional strain energy formulation. In Chapter 2, the sensitivity of total 

strain energy with static analysis is derived. In Chapter 3, the sensitivity of regional strain 

energy with static analysis is considered. In Chapter 4, the sensitivity of regional strain 

energy with inertia relief analysis is obtained. All sensitivities are derived with respect to 

two kinds of design variables: conventional material distribution variables and new 

defined parameters in subdomains. 

 Protective structure design using DCM 

Two physics of the protective structure design problems are proposed in Chapter 

3 and Chapter 4: static analysis and inertia relief analysis. The static analysis covers the 

structure static response meanwhile the inertia relief analysis deals the structure 

dynamical response. The proposed regional strain energy formulation is good for design 

protecting or strengthening a part of structure. It is straightforward to apply to protective 

structure design such as the above cushioning design example. 

1.4. Outline of the Dissertation 

This dissertation consists of five chapters discussing Domain Composition 

Method (DCM) and its applications. Furthermore, the protective structure optimization is 

mainly considered such as the package cushioning design. All the details are introduced 

and discussed in the rest of the dissertation. 

The remainder of this dissertation is organized as follows: 

In Chapter 2, DCM is studied. The design domain in topology optimization is 

discussed. If the wholly or partial of the domain is changed, the optimization may give a 

better solution than the fixed design domain situation. The sensitivity of the design 

domain changing is difficult to calculate using the conventional parameterization. To 
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solve this problem, DCM is presented and illustrated in the static analysis. The total strain 

energy formulation with static analysis using DCM is proposed. The sensitivities of the 

total strain energy formulation with respect to the material distribution variable and 

subdomain parameters are derived. Two numerical examples are presented in this chapter: 

one is a package cushioning design and another one is a cantilever beam with a movable 

hole design. 

In Chapter 3, DCM using the regional strain energy formulation is presented. 

Considering the protective structure design, the protected region is the design focus and is 

naturally to minimize the strain energy in this region but the structure integrity is required 

at the same time. To tradeoff this multi-criteria optimization problem, the multiplication 

of total strain energy and regional strain energy is employed, and then the sensitivities 

with respect to two kinds of design variables are obtained. Two examples are discussed: 

one is the same example discussed in Chapter 2, but uses the regional strain energy 

formulation; another one is an extension of this formulation to support structure design 

application. 

In Chapter 4, inertia relief analysis is employed to analyze the dynamical response 

in the protective design. The equations and solving technique of inertia relief analysis are 

presented. The structural optimization problem is formulated using DCM with inertia 

relief. DCM is combined with the inertia relief analysis and the sensitivities for two types 

of design variables are derived. The cushioning design example is offered. 

Finally, the main conclusions of this research are briefly summarized and the 

further extensions of the current work are proposed in Chapter 5. 
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Chapter 2.  Domain Composition Method (DCM) 

Structural optimization, in particular topology optimization, has been introduced 

in the previous chapter; this chapter starts from the discussion of design domain in 

topology optimization. Design domain are typically considered predefined in traditional 

topology optimization, and some designers’ need to find the most effective way to set up 

design domains is not addressed. This leads to an introduction of Domain Composition 

Method (DCM) which divides design domain into several subdomains to describe the 

size of domain change but solves problem after subdomains composition. In this chapter, 

DCM is described and combined into static analysis. A new structural optimization based 

on DCM is then introduced, and its sensitivity is derived. 

2.1. Design Domain in Topology Optimization 

In structural optimization, topology optimization of solid structures is to 

determine the number, location and shape of holes and the connectivity of domain [14]. 

Typical topology optimization problems are formulated as problems to find the optimal 

material distribution in fixed design domains. Generally, selection of the design domain 

is based on a priori knowledge including designer’s preference, the objective function, 

relevant physics, geometric constraints, boundary conditions, external loads and 

manufacturing concerns. For example, Figure 2.1 depicts a typical selection of a design 

domain for the given boundary condition and external force. In this case, the design 

domain is fixed. 
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Figure 2.1. A Typical Selection of Design Domain in Topology Optimization 

However, if the design domain is flexible to choose, such as the cushioning 

design example discussed in Chapter 1, which is a static version of this problem shown in 

Figure 2.2, the cushioning design are flexible to select in some ranges and the 

optimization may give a better solution by combining the material distribution and the 

design domain changing. In structural optimization, a parametric shape is described by a 

set of geometric parameters called dimensions [48]. Parameterization of the dimensions is 

needed in order to implement this idea. 

 

Figure 2.2. Flexibility of Selection Design Domain 
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A straightforward parameterization for this example is shown in Figure 2.3. In 

this circumstance, two dimensions parameterize the thicknesses of cushioning if the 

cushioning is symmetric in both directions. However, this parameterization is difficult to 

combine with the existing topology optimization procedure mainly because the sensitivity 

of parameters such as lengths and heights cannot be derived analytically. The finite 

difference method can be applied, but it has some severe drawbacks. If n  parameters are 

defined in the design problem, 1n  analysis will be required to calculate the sensitivity 

information in each iteration of the structural optimization problem. Furthermore, in 

order to keep the accuracy of sensitivity results, the change between iterative steps need 

be kept small enough. The step size has to be as small as 510  times the difference 

between the parameter’s upper and lower bounds, i.e. 510 ( )ub lb   . Consequently, 

the convergence of the optimization problem becomes unacceptably slow and it makes 

the finite difference method undesirable. 

 

Figure 2.3. Traditional Parametrization for Two Different Configurations 
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In order to overcome the difficulties discussed above, a new parameterization 

method is presented in the following section. 

2.2. Domain Composition Method (DCM) 

In previous section, the same topology optimization problem but the different 

design domains was discussed. If the flexible design domain can be found the optimal 

configuration, the designer is provided a better design than traditional topology 

optimization. To touch this goal, the parameterization of the design domain is needed. 

The traditional parameterization method applies finite difference method to calculate the 

sensitivity for the optimization algorithm rather than accurate derivation. It has downside, 

such as it requires more analyses and too small step size in iterations. To overcome the 

existing drawbacks, a new parameterization of the design domain is proposed. 

2.2.1. Domain Division 

To illustrate the proposed parameterization method, example shown in Figure 2.3 

will be considered. In order to change the size of cushioning, the entire domain is divided 

into a set of subdomains, and then the dimensions of subdomains are changed 

correspondingly, while satisfying the geometric compatibility as shown in Figure 2.4. 

The cushioning changing is implemented by changing dimensions of the different 

subdomains. Dimensions of all the subdomains except the subdomain of the content need 

be changed. In order to discuss the parameterization of the dimensions, an arbitrary 

subdomain is selected to study. 
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Figure 2.4. Domain Division of Design Domains: Initial Design Domain (Left) and Current 

Design Domain (Right) 

2.2.2. Subdomain Transformation 

To illustrate subdomains change in different designs, the finite element mesh is 

considered. The selected subdomain in initial design is denoted as  , and the 

corresponding subdomain in current design is denoted as   and shown in local 

coordinate systems in Figure 2.5. These two subdomains have the same meshing pattern. 

If the dimensions of the selected subdomain of initial design are known, then the selected 

subdomain of current design can be parameterized by defining two scaling factors x  and 

y . 
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Figure 2.5. Selected Subdomain Dimensions and Defining Scaling Factors 

It can be assumed that the coordinates of the subdomains   and   have the 

following transformation relation 

 
x x

y y

 

 

   
   

   
S  (2.1) 

where S is the transformation matrix 

0

0

x

y





 
  
 

S  

This transformation relation provides a convenient way to parameterize 

dimension changes of the subdomains among different designs. This transformation was 

originally applied to the microstructure base cells mapping and calculation of the 

homogenized material properties by Liu et al. [64]. In this dissertation, this subdomain 

transformation is used in the structure change and it is applied in essential analysis and 

sensitivity derivations. 
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2.2.3. Static Analysis using Domain Composition Method (DCM) 

In this section, linear elastic static analysis based on a finite element method is 

used to illustrate DCM. The same example of the package cushioning design is 

considered here. 

As shown in Figure 2.6, six scaling factors are defined in order to describe the 

dimensions of the subdomains. The dimension of the inside content does not change in 

design process, so 2  and 5  are set equal to constant value 1. The design domain is 

symmetric in both directions, which means that two pairs 1  and 3  as well as 4  and 6  

are equal to each other. Therefore, only two variables are necessary to parameterize the 

thicknesses of the cushioning, and it is consistent with traditional parameterization shown 

in Figure 2.3. 

 

Figure 2.6. Example of Initial Design Domain Division and Scaling Factors in Subdomains 
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To apply the domain composition to static analysis, we denote the current design 

as C  and the initial design as I , and the static analysis equation of the current design 

with an external load vector F  is stated as 

 C C K u F  (2.2) 

where 

 
1

 
N

C C

e
e

K kA  (2.3) 

The global stiffness matrix C
K  is assembled from element stiffness matrices of 

the current design C . If all element stiffness matrices are known, the global stiffness 

matrix can be assembled and the displacement field can be computed by solving Eq. (2.2). 

Since different subdomains have different scaling factors, one element of the 

arbitrary subdomain   in current design C  is considered. The subdomain   is 

transformed from the corresponding subdomain   in initial design, and scaling factors 

are assumed ( , )x y   as shown in Figure 2.5. 

From the isoparametric formulation of Q4 element (Quadrilateral Four Nodes 

Element) in finite element theory, the element stiffness matrix 
e


k  of element e  in the 

current design can be calculated as [65] 

 
1 1

1 1
    

e

T

e

V

T

dV

J d d 

  

  

 







 

k B EB

B EB

 (2.4) 

where   and   are isoparametric coordinates: they are not related to the nodal 

coordinates of the geometry model. E  is a symmetric matrix of material stiffness. For an 
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isotropic material, it is equal to the following equation for a given elastic modulus E  and 

Poisson’s ratio   are given: 

 
2

1 0

1 0
1

1
0 0

2

E







 
 
 

  


 
 
 

E  (2.5) 

Scalar J   is the determinant of the Jacobian matrix 
J  which can be calculated 

as 

 

1 1

2 2

3 3

4 4

x y

x y

x y

x y

 

 



 

 

 
 
 
 
 
  

NJ D  (2.6) 

For bilinear element, it has 

 
(1 ) (1 ) (1 ) (1 )1

(1 ) (1 ) (1 ) (1 )4

   

   

      
  

      
N

D  (2.7) 

The nodal coordinates of subdomain   of the current design can be transformed 

from the corresponding nodal coordinates of subdomain   in the initial design. Applying 

the transformation relation defined in Eq. (2.1), Eq. (2.6) can be rewritten as 

 

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

0

0

x

y

x y x y

x y x y

x y x y

x y x y





   

   

 

   

   

   
   

           
   
      

N NJ D D S J S  (2.8) 

Thus, the determinant of the Jacobian matrix can be computed as 
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 det( ) det( )det( ) x yJ J      J S S J  (2.9) 

In Eq. (2.4), the strain-displacement matrix 
B  can be expanded as 

   DB AT N  (2.10) 

where 

1 0 0 0

0 0 0 1

0 1 1 0

 
 


 
  

A  is a constant matrix and 






 
  
 

Γ 0
T

0 Γ
 is related to the 

nodal coordinates in subdomain  . Matrix DN  is the derivatives with respect to 

isoparametric coordinates   and   

1, 2, 3, 4,

1, 2, 3, 4,

1, 2, 3, 4,

1, 2, 3, 4,

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

N N N N

N N N N

N N N N

N N N N

   

   

   

   

 
 
 
 
 
  

DN . 

Matrix 
Γ stands the inverse of the Jacobian matrix 

 1 1 1 1 1( ) ( ) ( )            Γ J J S S J S Γ  (2.11) 

Substituting Eq. (2.11) into Eq. (2.10), it gives 

 

1

1



 



 
  

 
D

S 0
B A T N

0 S
 (2.12) 

where 







 
  
 

Γ 0
T

0 Γ
 is similar to 

T . 

Defining a new matrix A  as 
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1

1

0 0 0

0 0 0

0 0

y x

x y x y

x y y x

 

   

   





 
  
    
  
 
 

S 0
A A

0 S
 (2.13) 

which is only related to the scaling factors x  and 
y  of subdomain   in current design. 

Plugging Eq. (2.12) and (2.9) into Eq. (2.4), the element stiffness matrix 
e


k  of 

subdomain   in the current design domain can be expressed merely in terms of the 

coordinates of the subdomain   in the initial design domain 

 
1 1

1 1

T T T

e J d d    

 
    D D

k N T A EA T N  (2.14) 

The corresponding element stiffness matrix of subdomain   in the initial design 

domain is 

 
1 1

1 1

T T T

e J d d    

 
   D D

k N T A EAT N  (2.15) 

Comparing Eq. (2.14) with (2.15), the difference is only matrices A  and A . 

Therefore, if the constant matrix A  is substituted by matrix A  which only depends on 

scaling factors x  and 
y , the element stiffness matrix 

e


k  of the subdomain   in the 

current design domain can be calculated by the same procedure to calculate 
e


k  of the 

subdomain   in the initial design domain. 

If all element stiffness matrices C

ek  are computed in current design C , the global 

stiffness matrix can be assembled using Eq. (2.3). Although the entire domain is divided 

in to a set of subdomains, the problem is solved entirely rather than partially. Thus, this 

method is named Domain Composition Method (DCM). 
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2.3. Domain Composition Optimization 

In this section, the static analysis using domain composition method is applied in 

structural optimization to design optimal structures. Strain energy based optimization 

problems are formulated and the sensitivities of two types of design variables, material 

distribution variables and scaling factors, are derived. 

2.3.1. Problem Formulation 

A strain energy based formulation is considered in this work. Strain energy is the 

potential energy stored in a structure, and it is balanced with the work done by external 

load in an elastic material. It is defined as 

 
T

V
U dV  σ ε  (2.16) 

where σ  denotes the stress tensor and ε  denotes the strain tensor. 

In finite element analysis, Eq. (2.16) is discretized as 

 
1

1 1 1

2 2 2

N
T T T

e e e

e

U


  u F u Ku u k u  (2.17) 

where N  is the number of elements in volume V . ek  and eu  are the element stiffness 

matrix and the element nodal displacement vector, respectively. The strain energy 

function is one of the comprehensive indicators to measure the structure deformation. 

In structural optimization, compliance is used more widely as the objective 

function. It is equivalent to the strain energy function, only without the coefficient 1 2  in 

front of the strain energy. Compliance is defined as 



29 

 

 

 T TC  u F u Ku  (2.18) 

In this dissertation, the strain energy function is used because it gives a clear 

physical meaning than compliance. 

Using the previous example demonstrates the design domain in Figure 2.6, the 

formulation can be extended as general form. This example gives the initial design I  and 

scaling factors defined in different subdomains. In current design C , a total strain energy 

objective function with the constant volume constraint, using static analysis, a structural 

optimization problem is formulated as 

  

,

min

1
:  

2

. . :     

          ,

          0 1,   1, ,

          0 ,   1, ,

C CT C C

T

C C

C

i

j j j

Min U

s t

V V

i N

j M

 

  







   

   

γ λ
u K u

K u F

γ λ  (2.19) 

where V  is the upper bound of the volume which is predefined by the designer. N  is the 

total number of elements in the entire domain. M  is the number of scaling factors 

describing dimensions in different subdomains. 

In the optimization problem, two types of design variables are considered: (1) 

material distribution variables, i.e. element pseudo-densities γ , which defined in SIMP 

model and (2) shape variables, i.e. the scaling factors λ , which defined in Section 2.2.2. 

They are all bounded by specified upper and lower bounds to guarantee that the problem 

is a well-bounded optimization problem. 
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The constant volume constraint is considered in the optimization problem. The 

constant volume constraint requires the total material volume is kept at a constant value, 

and it does not change even when the size of the entire design domain varies. 

2.3.2. Sensitivity Analysis 

In order to solve the structural optimization problem as Eq. (2.19), the gradient-

based mathematical optimization algorithm is needed. The gradient information is always 

called sensitivity in structural optimization filed. There are two types of the sensitivities 

for two types of design variables: the material distribution variable and the shape variable. 

The sensitivity of the material distribution variable is consistent with the 

traditional topology optimization because the material distribution variable i  is only 

related to the material property, and it is not affected by the shape variables. 

Taking derivative of the static equilibrium equation with respect to the material 

distribution variable i  

 
C C

C C

i i 

 
 

 

K u
u K 0  (2.20) 

where 
j  F 0  for a design independent load. The derivative to the total strain energy 

is 

 
1

2

C C C
CT C CT CT

i i i

U

  

  
 

  

K u
u u u K  (2.21) 

Substituting Eq. (2.20) into Eq. (2.21), it obtains 
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1 1

2 2

C C
CT C T CT

e e e i

i i i i

U p p
U

   

 
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 

K
u u u k u  (2.22) 

where p  is the penalty coefficient to material from SIMP model. C

iU  is the element 

strain energy of the i
th

 element and it can be calculate easily from element stiffness v

matrices and displacement vector. 

The calculation of the sensitivity of the shape variable will be presented in this 

section. It can be derived using the adjoint method. A Lagrange multiplier vector is 

introduced, and the modified objective function can be written as 

  
1

2

C CT C C CT C C

TU   u K u v F K u  (2.23) 

where the second part of the modified objective function is equal to zero and is 

equivalent to C

TU . 

Taking derivative of the new objective function w.r.t. 
j , and setting the adjoint 

displacement as 

 C Cv u  (2.24) 

For a design independent load, it has 
j  F 0 , and then it gives 

 
1

2

C C
CT CT

j j

U

 

 
 

 

K
u u  (2.25) 

From Eq. (2.25), the partial derivative term is not easy to evaluate because the 

shape variable j  is related to some subdomains affect by this variable. However, it can 

be decomposed into element level terms as 
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e e

e Cj j j
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  

  
         


kK

u u u u  (2.26) 

where C

ek , C

eu  are element stiffness matrix and element nodal displacement vector of 

current design C . 

If the sensitivity of the element stiffness matrix C

ek  w.r.t. 
j  is considered in 

arbitrary subdomain  , it has C

e e

k k  and gives following results from Eq. (2.14): 

(1) If 
j jx   or 

jy  

 
1 1

1 1

T

T T T T Te

j j j

J d d 
  


    

 

       
                

  D D D D
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where 
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(2) If j jx   or jy , i.e. j  is not related to this element 

 e

j






k
0  (2.28) 
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Thus, e j
 k  can be computed as a separated routine and combined in the 

static analysis, and then the sensitivity 
C

T jU    can be evaluated. 

2.4. Numerical Examples 

2.4.1. Package Cushioning Design: Total Strain Energy Formulation 

In this section, the first example is the static version of the package cushioning 

design problem which is considered in the discussion of Domain Composition Method 

(DCM) and it is compared with conventional topology optimization design. As shown in 

Figure 2.7, this example is to find the optimal cushioning structure under static loads and 

the total strain energy formulation as shown in Eq. (2.19) is employed. 

In this example, the initial configuration is displayed in Figure 2.7. The content is 

located at the center of the rectangular domain and the cushioning design domain is 

symmetric. The outside cushioning area is designable and the inside content area is non-

designable, i.e. it keeps unchanged in optimization process. The initial configuration is 

modeled as the upper bounds of all thicknesses of cushioning. The top edge is assumed 

fixed and a left bottom corner load 1414 F kN  is applied. The material properties are 

set as follows: For the content: Young’s modulus 0 20 E GPa , Poisson’s ratio 0.3  ; 

and for the design domain: Young’s modulus 0 0.2 E GPa , Poisson’s ratio 0.3  . It 

shows that the soft cushioning material protects the stiff content. Volume constraint is set 

as 30%  of the initial design cushioning volume and the design domain is meshed by four 

node quadrilateral (Q4) elements. 
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Figure 2.7. Example of Static Version of Cushioning Design 

Three cases are considered and their results are shown in Figure 2.8. All cases 

employ the total strain energy formulation and two symmetric boundary conditions. Case 

1 is the conventional topology optimization result and it is treated as comparison purpose, 

i.e. the cushioning design domain is fixed as initial configuration. Case 2 is the result of 

DCM with bounded length and fixed height of design domain. Case 3 is the result of 

DCM with bounded length and height of design domain. The lower and upper bounds of 

the cushioning dimensions, the optimal cushioning dimensions and the optimal total 

strain energy are listed in Table 2.1. 
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Figure 2.8. Cushioning Design Cases: Case 1. Conventional Topology Optimization (Top), 

Case 2. DCM with Bounded Length and Fixed Height (Middle),  Case 3. DCM with 

Bounded Length and Height (Bottom) 
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Table 2.1. Comparison of Three Results for Package Cushioning Design 

Cases 
Bounds of 

Cushioning 

Optimal 

Dimensions of 

Cushioning 

Optimal Total 

Strain Energy 

Case 1: Conventional 

Topology 

Optimization 

, , ,

are fixed

a b c d
 

0.2

0.2

0.12

0.12

a

b

c

d









 48076.1079 

Case 2: DCM with 

Bounded Length and 

Fixed Height 

, [0.02,0.2]

,  are fixed

a b

c d


 

*

*

0.09

0.09

0.12

0.12

a

b

c

d









 29333.2039 

Case 3: DCM with 

Bounded Length and 

Height 

, [0.02,0.2]

, [0.012,0.12]

a b

c d




 

*

*

*

*

0.153

0.153

0.012

0.012

a

b

c

d









 21062.1520 

 

In Table 2.1, the dimensions of cushioning are different. In Case 1, length and 

height of the cushioning are fixed and it gives the greatest value of the total strain energy 

of the whole structure. In Case 2, height of the cushioning is fixed and length obtains the 

optimal value between the lower and upper bounds of given. In Case 3, length and height 

of the cushioning are bounded by predefined bounds. The heights reach the lower bounds 

and the lengths converge to the optimal values. The optimal total strain energy values 

decrease from Case 1 to Case 3. To present the structural deformations, strain energy 

distributions of the optimal designs are shown in Figure 2.8 and all cases are plotted in 

the same contour legend range. Case 2 and 3 show smaller strain energy distributions 

than Case 1 and it is consistent with the total strain energy results in Table 2.1. 
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Figure 2.9. Strain Energy Distributions of Cushioning Design Cases: Case 1. Conventional 

Topology Optimization (Top), Case 2. DCM with Bounded Length and Fixed Height 

(Middle),  Case 3. DCM with Bounded Length and Height (Bottom) 



38 

 

 

This example demonstrates the effectiveness of DCM. The optimal objective 

function value, i.e. total strain energy, is reduced in Case 2 and Case 3 comparing with 

Case 1, so DCM give better solutions than conventional topology optimization method. 

2.4.2. Cantilever Beam with a Movable Hole Design 

The former example changes the size of design domain. However, application of 

DCM is not restricted here and it is possible adjust the boundary of design domain. A 

cantilever beam with a movable hole example is studied as follows. It is a simplification 

of the real design problem. In the wings of the airplane, ribs support the airfoil shape of 

the wings and attach to the main spar. In order to reduce the weight of the wings, 

topology optimization is applied and the holes are generated in the design domain. Some 

lines and pipes pass through the ribs so the holes have the lower bounds. However, the 

location of the predefined hole is not fixed and it gives the different topology of the rib 

structure. Proposed DCM using total strain energy formulation can be applied in this 

problem. 

The problem is considered as a short cantilever beam and the initial design is 

shown in Figure 2.10. This beam is fixed at the left edge and the external force 

100F kN  is applied downward at the bottom right corner. The following elastic 

material properties are assumed: Young’s modulus 0 206E GPa , Poisson’s ratio 

0.3  . The 50% of the total design volume is applied as the bound of the volume 

constraint. The design domain is meshed by four node quadrilateral (Q4) elements. The 

center of the circular hole is located at (0.6,  0.3)  , i.e. at the middle of length and width 

initially. The design composition which is applied in this example is shown as Figure 

2.11. 
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Figure 2.10. Initial Design Domain and Hole Location of Example 1 

 

Figure 2.11. Initial Design Domain Composition 

The design objective is to generate the most rigid structure and find the optimal 

location of the circular hole under the volume constraint. Four cases are shown from 

Figure 2.12 to Figure 2.15. Case 1 to Case 3 is the result of topology optimization using 

total strain energy formulation and the different locations of the center of the hole for 

comparison purposes: Case 1 is located at ( 3,  2)L W ; Case 2 is located at ( 2,  2)L W ; 
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and Case 3 is located at (2 3,  2)L W . Case 4 is the result of DCM using total strain 

energy formulation with small height and width lower bounds which is formulated as Eq. 

(2.19). The lower bounds and upper bounds of length and width, the optimal location of 

the center of circular hole and the optimal total strain energy of beam are listed in Table 

2.2. 

 

Figure 2.12. Optimal Material Distribution for Fixed Hole Location ( 3,  2)L W  

 

Figure 2.13. Optimal Material Distribution for Fixed Hole Location ( 2,  2)L W  
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Figure 2.14. Optimal Material Distribution for Fixed Hole Location (2 3,  2)L W  

 

Figure 2.15. Optimal Material Distribution and Optimal Hole Location 

Table 2.2. Comparison of Results for Cantilever Beam with a Movable Hole Design 

Cases 

Bounds of 

Location of Center 

of the Circular 

Hole 

Optimal Location 

of Center of the 

Circular Hole 

Total Strain 

Energy 

Case 1: Topology 

Optimization using 

Total Strain Energy 

,X Y  are fixed 
0.4

0.3

X

Y




 206.0635 

Case 2: Topology 

Optimization using 

Total Strain Energy 

,X Y  are fixed 
0.6

0.3

X

Y




 196.3870 
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Case 3: Topology 

Optimization using 

Total Strain Energy 
,X Y  are fixed 

0.8

0.3

X

Y




 201.4163 

Case 4: DCM using 

Total Strain Energy 

[0.4,0.8]

[0.2,0.4]

X

Y




 

*

*

0.6528

0.2813

X

Y




 195.7394 

 

In Table 2.2, the optimal objective function value in Case 4, i.e. the total strain 

energy of the beam, is smallest than the values in difference location cases. Case 2 also 

gives a small value of the objective function because the center of location of circular 

hole is close to the optimal solution. The differences of the objective function values are 

small because the bending configuration is not very sensitive to the location of the holes 

in this problem. This example shows that the DCM can be extended to solve the design 

domain boundary change problem. 

2.5. Conclusion and Remark 

In this chapter, Domain Composition Method (DCM) is presented and discussed. 

First of all, the fixed design domain in topology optimization is studied and it is selected 

based on a prior knowledge of designer. However, if designer has flexibility to change 

whole or a partial of the design domain, it might be got a better solution. The 

conventional topology optimization is challenging to handle this kind of problem. 

To change the design domain, the parameterization is needed. A straightforward 

parameterization is direct dimensions. However, this method is difficult to be combined 

into the existing topology optimization procedure because the sensitivity of the 
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parameters cannot be derived analytically. The finite difference method to calculate the 

sensitivity which was applied has some obvious drawbacks. 

To avoid these drawbacks, DCM is proposed. At the beginning, the entire design 

domain is divided into several subdomains. A set of scaling factors is defined to 

parameterize the subdomains’ change between the initial design and the current design 

which is termed subdomain transformation. An example is used to demonstrate the new 

parameterization will not increase the number of variable. The concept of DCM is 

applied in linear elastic static analysis and then integrated into the strain energy based 

structure optimization problem. In order to solve this optimization problem using the 

gradient-based mathematical optimization algorithm, the sensitivities of two kinds of 

design variables, the material distribution variable and the scaling factors, are derived 

respectively. Unlike the topology optimization, domain composition optimization is not 

only distributing material between elements but also trade off material between different 

subdomains because of the change of subdomains. Two numerical examples: one 

package cushioning design under static load problem demonstrates the effectiveness of 

DCM; another one cantilever beam with a movable hole design problem presents the 

extension of DCM to solve the boundary change problem. 

Finally, it is worth to note that DCM can be not only integrated in static analysis, 

but also applied in a lot of other physics for structural optimization problem, such as 

dynamic analysis, electromagnetics, acoustic and vibration. 
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Chapter 3.  Domain Composition Method (DCM) using 

Regional Strain Energy Formulation 

DCM is developed and is applied in structural optimization problem in Chapter 2 

which the total strain energy is used as the objective function. This chapter focuses on the 

protective structure design. A regional strain energy formulation is discussed and applied 

in the protective structure design. The structural optimization problem is formulated 

using DCM and its sensitivities are derived for two types of variables. 

3.1. Protective Structure and Total Strain Energy Formulation 

Protective structure is a type of structure to protect the content which is easy 

broken or fragile. The protective structures include the civil structure, vehicle white body, 

bridge infrastructure, ship frame and packaging cushioning. The functions of the 

protective structure are hold, support or protect the content or space. A typical protective 

structure is a package cushioning structure, it protect the inside content. Cushioning 

controls shock and vibration in storage and transportation process and reduces the chance 

of product damage. The outside box contains the cushion and the inside content. 

Obviously, proper performance of cushioning is dependent on its proper design 

and use, and then how to design the cushioning is a typical engineering problem. A good 

protective cushioning can be considered from two aspects: the inside content is well-

protected and the cushioning material is reduced. 

There are two ways to reduce the cushioning briefly. One is reducing the 

cushioning material and another one is shrinking the size of packaging (including cushion 

and box). Reducing material from the cushioning structure declines material and weight 
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of packaging. Shrinking the size of cushioning reduces the volume and weight in storage, 

transportation, delivery and recycling. It saves money in the packaging life cycle and 

provides better protection for the inside content. It satisfies the requirement from 

economical and sustainable perspectives in current industries. 

Total strain energy formulation is not good for the protective structure because the 

total strain energy of the structure is decreased is not equivalent to the strain energy of 

protected content is decreased. In contrast, strain energy might be pushed from the 

protective structure design domain to the protected content. It does not match the design 

target to minimize the deformation of the protected content. To overcome this dilemma, a 

regional strain energy formulation is proposed in this chapter. 

3.2. Regional Strain Energy Formulation for DCM 

3.2.1. Problem Formulation 

In Chapter 2, DCM is proposed and the entire domain is divided into several 

subdomains and each subdomain changes between the initial design and the current 

design based on the subdomain transformation. 

Correspondingly, strain energy is parted into the different subdomains. Naturally, 

it can be extended as regional strain energy. The “region” is naturally defined as a set of 

subdomains. Strain energy is distributed between the different subdomains. However, 

region and subdomain are different and they are defined in different perspective. The 

region is defined from objective function perspective. To satisfy the objective 

requirement, the design domain is separated into different regions and the objective 

function is defined for different regions. The subdomain is defined in design domain 



46 

 

 

perspective. A region is a group of server subdomains or a partial of a subdomain. They 

are used in different context. 

In Chapter 2, total strain energy based structure optimization problem is proposed. 

In this formulation, the entire design domain is treated as a whole and the objective 

function is the strain energy of the whole design domain. The whole structure strain 

energy is considered as a comprehensive measurement of the whole structure 

deformation. However, a special region is required to be emphasized or to avoid of the 

strain energy concentration. For example, a region in the entire domain is very sensitive 

for strain energy concentration, or a region need protection, a region absorb more strain 

energy and so on. The objective function should include regional strain energy which 

stores in the different regions. If the entire domain is separated into several regions, the 

objective function can be considered as a certain combination with these regions. That’s 

reason regional strain energy formulation is needed. Gea [51] proposed the concept of 

regional strain energy and applied it in energy absorption design. This concept is 

extended to the generalized topology optimization proposed in this chapter. 

The package cushioning is a typical protective structure. The simplified 2D 

cushioning example is shown in Figure 3.1. The shadowed region demonstrates the 

protected content. The design domain is the region outside of the content. The design 

target is to find the protective structure that provides the best protection for the content. 

The proposed method to solve the problem also can be used to design other protective 

structures such as vehicles and electronics devices. 



47 

 

 

 

Figure 3.1. Initial Design of Cushioning Design Example 

In this example, the inside content is non-designable region and the outside region 

is designable region. The design target is considered as: the content is well protected and 

a protective structure is generated under the limited material constraint. It can be 

interpreted as: the objective is to minimize the strain energy imposed in the content, 

rather than to minimize the total strain energy in the whole structure because the content 

is our design focus. However, the structural integrity in the protective structure design 

domain should be maintained. There are two objectives need to be satisfied in our design 

problem: minimize the strain energy in the protected content and minimize the strain 

energy in the protective design domain. Thus, it is a multi-objective design problem. 

There are a lot of different methods were proposed to convert a multi-objective 

problem to a single-objective design problem [66], a simple conversion is chosen in our 
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research. A new objective function based on regional strain energy concept is proposed 

for protective structure design 

 R TU U  (3.1) 

where RU  denotes the strain energy generated in content and TU  denotes the total strain 

energy produced in the whole structure design domain. This is a straightforward selection 

because the design target is minimizing two objectives simultaneously. 

In previous chapter, DCM is proposed and the entire domain is divided into 

subdomains. It is intuitively to connect the protective structure design with DCM. It is 

possible to get a better design if the design domain is possible to change. The protective 

structure design problem using DCM is formulated as 

  

,

min

:  

. . :     

          ,

          0 1,   1, ,

          0 ,   1, ,

C C

R T

C C

C

i

j j j

Min U U

s t

V V

i N

j M

 

  







   

   

γ λ

K u F

γ λ  (3.2) 

where V  is the volume upper bound which is predefined by designer. N  is the element 

number in design domain. M  is the number of scaling factors which are defined in 

different subdomains. 
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Figure 3.2. Region R  and Domain Decomposition 

In the topology optimization problem stated in Eq. (3.2), C

RU  is the strain energy 

of the content region in current design C  and C

TU  is the total strain energy of whole 

structure in current design C . The material of the content might be harder or softer 

material compared with material which is assigned to the design domain. Inside content is 

non-designable region and the content is predefined by user and does not change in the 

protective structure design process. 

Additionally, it is worth to note the problem defined in Eq. (3.2) can be applied 

not only to protective structure design but also to support structure design. This extended 

application is illustrated by a numerical example in this chapter. 

3.2.2. Sensitivity Analysis 

To solve the optimization problem Eq. (3.2), the sensitivity analysis is required. 

Two types of design variables exist if DCM is applied: material distribution design 

variable i  and shape variable 
j  and their sensitivity derivation is similar. The 
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derivation of the sensitivity w.r.t. the shape variable 
j  is discussed as follows and the 

sensitivity w.r.t. the material distribution variable 
i  is revised from the similar 

derivation process. Their results are given separately. 

In the objective function of the optimization problem Eq. (3.2), the strain energy 

in content region C

RU  and the total strain energy in entire domain C

TU  can be evaluated 

from the static analysis. 

From the chain rule for the derivative w.r.t the shape variable 
j , it gives 

 
 C C C C

R T C CR T
T R

j j j

U U U U
U U

  

   
 

  
 (3.3) 

The sensitivity of total strain energy 
C

T jU    has the same result as Eq. (2.22) 

and only the sensitivity 
C

R jU    need to be derived. To derive the sensitivity of the 

regional strain energy C

RU , the adjoint method is applied, and a Lagrange multiplier 

vector 
v  is introduced. The objective function in Eq. (3.2) is rewritten as 

  
1

2

C CT C C CT C C

R q q q

q R

U


   u k u v F K u  (3.4) 

where the second term is equal to zero. Taking derivative to the new objective function 

w.r.t. j  yields 

 
1

2

C CC C C
q qCT C CT C CT C CR

q q q q

q R q Rj j j j j j

U

      

     
            
 

k u F K u
u u u k v u K  (3.5) 
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For a design independent load, it has 
j  F 0 . To eliminate the unknown 

C

q j u  and 
C

j u  from the sensitivity expression for the structure, vector C
v  is 

given from the following equation 

   0

T
C

C C C C

R R

j

 
    

u
K v K u  (3.6) 

where C

RK  and C

Ru  are assembled element stiffness matrix and element nodal 

displacement, which has the same dimension as the total number of DOFs. Only those 

nodes which belong to domain R  will give non-zero values in C

RK  and C

Ru . One possible 

solution is 

 C C C C

R RK v K u  (3.7) 

The adjoint vector C
v  can be calculated from this equation. The applied force 

vector is the right hand side term C C

R RK u , and it can be obtained as the elemental nodal 

forces from the static analysis. 

Eq. (3.5) can be simplified as follows by applying Eq. (3.6) 

 
1

2

qT TC
q q

q Cj j j

U

  

 
   



 
 

  


k K
u u v u  (3.8) 

The above sensitivity can be evaluated by applying Eq. (2.27) and (2.28). 

The sensitivity w.r.t. the material distribution variable i  has the similar 

derivation from Eq. (3.3) to (3.8). As Eq. (3.3), The chain rule for the derivative w.r.t the 

material distribution variable i , it gives 
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 C C C C

R T C CR T
T R

i i i

U U U U
U U

  

   
 

  
 (3.9) 

The total strain energy derivative C

T iU    is same as Eq. (2.22) and only the 

derivative C

R iU    in Eq. (3.3) is to be derived. The same adjoint vector C
v  from Eq. 

(3.7) is applied and no additional adjoint analysis is needed. The result is directly given 

 
1

2

CC C
qCT C CT CR

q q

q Ri i i

U

  

 
 

  


k K
u u v u  (3.10) 

Because the material distribution variable 
i  is only related to the i

th
 element of 

the domain, the result can be simplified when SIMP model is applied. 

(1) If i
th

 element is outside to the region R , the first term is equal to zero. 

 
CC

CT C CTiR
i i i i

i i i

U p

  


   

 

k
v u v F  (3.11) 

(2) If i
th

 element is inside to the region R , the first term is non-zero. 

 
1

( )
2

C CC
CT C CT C CTi iR
i i i i i i i

i i i i

U p
U

   

 
   

  

k k
u u v u v F  (3.12) 

where p  is the penalty power in SIMP model. iU  is the i
th

 element strain energy. 
i


v is 

the i
th

 element adjoint displacement vector and iF  is the i
th

 element nodal force vector. 
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3.3. Numerical Examples 

3.3.1. Package Cushioning Design: Regional Strain Energy Formulation 

In this section, the static version of the package cushioning design problem same 

as Section 2.4 is considered but DCM with the regional strain energy formulation which 

is shown in Eq. (3.2) is applied. A comparison case which is applied the topology 

optimization with the regional strain energy formulation is also considered. In this 

example, all configurations are same as example shown in Section 2.4 and the same 

model is shown as Figure 2.7. 

Three cases are considered and their results are shown in Figure 3.3. Case 1 

employs the topology optimization using regional strain energy formulation, i.e. the size 

of design domain is fixed as initial configuration. Case 2 is the DCM using regional strain 

energy formulation with large lower bounds. Case 3 is the DCM using regional strain 

energy with small lower bounds. All cases apply the regional strain energy formulation 

proposed in this chapter and symmetric boundary conditions. The lower bounds and 

upper bounds of the cushioning thicknesses, the optimal cushioning thicknesses, the 

optimal total strain energy, and the optimal strain energy in content are listed in Table 3.1. 
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Figure 3.3. Cushioning Design Cases: Case 1. Topology Optimization using Regional Strain 

Energy Formulation (Top), Case 2. DCM using Regional Strain Energy 

Formulation with Small Lower Bounds (Middle),  Case 3. DCM using Regional 

Strain Energy Formulation with Large Lower Bounds (Bottom) 
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Table 3.1. Comparison of Three Results for Package Cushioning Design 

Cases 

Bounds of 

Cushioning 

Dimensions 

Dimension of 

Cushioning 

Total Strain 

Energy 

Strain Energy 

in Content 

Case 1: 

Topology 

Optimization 

, , ,

are fixed

a b c d
 

0.2

0.2

0.12

0.12

a

b

c

d









 436988.7588 0.00157 

Case 2: DCM 

with Large 

Lower Bounds 

, [0.14,0.2]

, [0.084,0.12]

a b

c d




 

*

*

*

*

0.2

0.2

0.084

0.084

a

b

c

d









 164345.8086 0.00001 

Case 3: DCM 

with Small 

Lower Bounds 

, [0.02,0.2]

, [0.012,0.12]

a b

c d




 

*

*

*

*

0.2

0.2

0.012

0.012

a

b

c

d









 44322.8410 0.000001 

 

In Table 3.1, the dimensions of cushioning are different in difference cases. In 

Case 1, length and height of the design domain are fixed. In Case 2 and Case 3, length 

and height of the design domains are bounded and the lower bounds are different: one is 

large and another one is small. The results of these two cases converge to the given 

bounds: lengths reach their upper bounds and heights reach their lower bounds. The 

objective functions of all cases are multiplication of total strain energy of the whole 

structure and regional strain energy of the content. The total strain energy values and the 

regional strain energy values are decrease from Case 1 to Case 3. 

To present the structural deformations, strain energy distributions of the optimal 

designs are shown in Figure 3.4 and all cases are plotted in the same contour legend 
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range. Case 2 and 3 present smaller strain energy distributions than Case 1 and it is 

consistent with the strain energy results in Table 3.1. 
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Figure 3.4. Strain Energy Distributions of Cushioning: Case 1. Topology Optimization 

using Regional Strain Energy Formulation (Top), Case 2. DCM using Regional 

Strain Energy Formulation with Small Lower Bounds (Middle),  Case 3. DCM using 

Regional Strain Energy Formulation with Large Lower Bounds (Bottom) 

This example shows the effectiveness of DCM using regional strain energy 

formulation. All cases are given structures which bypass the protected content so the 

regional strain energies of contents are very small, actually almost zeros. They are 

reasonable results because no force directly acts on the content. The optimal objective 

function values, i.e. the multiplication of the regional strain energy of content and the 

total strain energy of the entire structure, are reduced in Case 2 and Case 3 comparing 

with Case 1, so DCM gives a better solution than topology optimization method. 

3.3.2. Support Structure: Table Design 

The second example of this chapter is a table design which is applied DCM using 

regional strain energy formulation proposed as Eq. (3.2). There are two purposes to 

present this example: (1) this is an extended application of DCM using the regional strain 

energy formulation; (2) this example demonstrates that designable domain and non-

designable domain for material distribution still can tradeoff materials because of 

subdomain size changes.  

As shown in Figure 3.5, the design domain, boundary condition and external load 

are symmetric so only half of table is considered and the symmetric boundary condition 

is applied which left edge of half table is supported horizontally. 
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Figure 3.5. Symmetric Boundary Condition and Initial Design Domain for Table Design 

The initial dimensions of the half table are given in Figure 3.5. The bottom edge 

is fixed and the external load 1000F kN  is applied at the center table top. The design 

requirements and geometric constraints are listed as follows: (1) minimize the 

deformation of the table top and minimize the deformation of the whole table at the same 
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time; (2) the total weight of the table is fixed, i.e. the total material including table top 

and supports is fixed; (3) the thickness of table top is changeable but the total height of 

the table is fixed:  0.075,0.125d  and 1.1c d  ; (4) the under table space is fixed, i.e. 

1b   is fixed; (5) the supports design area dimensions is changeable. The lower bounds 

and upper bounds of dimensions are:  0.25,0.5a , 1b   and it is fixed, 

 0.975,1.025c ,  0.075,0.125d . The material properties are set as follows: Young’s 

modulus 0 20E GPa , Poisson’s ratio 0.3  . The volume constraint is applied as: the 

table top area is fulfilled with material and the table support area is 30% material as the 

initial. The entire design domain is meshed by four node quadrilateral (Q4) elements. 

Two cases are shown in Figure 3.6 and Figure 3.7. The first case is used for 

comparison purposes: it employs topology optimization using the regional strain energy 

formulation. The domain is fixed as the initial design. The second case holds DCM using 

the regional strain energy formulation. In this design, material can be collaborated 

between table top and supports even the table top has the fixed material distribution. The 

optimal dimensions of the table, the optimal total strain energy value and the optimal 

strain energy values in table top are listed in Table 3.2. 



60 

 

 

 

Figure 3.6. Topology Optimization using Total Strain Energy Formulation 

 

Figure 3.7. DCM using Regional Strain Energy Formulation 

Table 3.2. Results Comparison of Table Design 

Case 
Bounds of 

Dimensions 

Optimal 

Dimensions 

Total Strain 

Energy the 

Table 

Regional 

Strain Energy 

of the Table 

Top 
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Case 1: Topology 

Optimization 

using Total Strain 

Energy 

Formulation 

a , b , c , d are 

fixed 

0.5

* 1

* 1

* 0.1

a

b

c

d









 297.8566 271.6581 

Case 2: DCM 

using Regional 

Strain Energy 

Formulation 
 

 

[0.25,0.5]

 is fixed

0.975,1.025

0.075,0.125

a

b

c

d







 

* 0.332

* 1

* 0.975

* 0.125

a

b

c

d









 170.4268 147.3788 

 

In the first design, c  converges to the lower bound and d  converges to the upper 

bound. The dimension a  is not pushed to its bounds but reaches the optimal value. The 

total strain energy and regional strain energy in the second design are all smaller than the 

first design. Thus, DCM using regional strain energy formulation gives a better solution 

than topology optimization using total strain energy in this table design problem. Also, 

the material is moved from the table support to the table top because of subdomain size 

change even the table top is non-designable for material design variables. 

3.4. Conclusion 

In this chapter, the regional strain energy using DCM for the protective structure 

is proposed. The protective structure is discussed and the design target of the protective 

structure is analyzed. The total strain energy is not fit for this design target because the 

strain energy might be pushed from the protective design domain to the non-designable 

protected content. A regional strain energy formulation was developed based on the work 

of Gea [51]. This formulation tries to minimize the deformation in the non-designable 

content region and generate a structure in the designable region. The sensitivity of two 

types of design variables are derived and simplified. Two numerical examples are 
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discussed in this chapter: one is a package cushioning design which is same as Chapter 2 

but applies the regional strain energy formulation proposed in this chapter; another one is 

a table design which extends the application of the proposed regional strain energy 

formulation. 

 



63 

 

 

Chapter 4.  Domain Composition Method (DCM) with Inertia 

Relief Analysis 

The new regional strain energy formulation is used in DCM to design protective 

structures in the previous chapter. The governing equation is static analysis, i.e. the 

external loads are static loads and the structure response is evaluated under the static 

situation. This chapter DCM is expanded to consider the dynamic response of the 

structure. The inertia relief analysis is applied to DCM. 

4.1. Protective Structure under Dynamic Load 

The typical protective structures are civil structure, bridge infrastructure, ship 

frame, vehicle frame and packaging. For example, the electrical vehicle while body 

provides the support and protection for the battery pack when a vehicle crash happened; 

and the package cushion structure undergoes drop and impact in storage, transportation 

and delivery. In these two examples, the design targets are protecting the battery pack for 

electrical vehicle or inside content for the package. The regional strain energy using 

domain composition method can applied the structure and the location of the battery pack 

and the content. 

A typical package drop example is shown in Figure 4.1. The package of this 

example consists of three parts: content, cushion and box. The box is made of by the 

corrugated board but it will not be considered in our research for simplification. The 

simplified 2D model including content and cushioning is shown in Figure 4.2. 
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Figure 4.1. A Typical Package Drop Example 

 

Figure 4.2. Simplified 2D Pacakage Drop without Box 
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The left bottom corner load F  is applied to the cushioning. The structure is 

unbalance because no constraint is applied on the structure in this model. The structure 

response is dynamically. The transient analysis in finite element theory can be selected to 

analyze the deformation. However, the computational cost of dynamic analysis is much 

higher than that of static analysis [58]. The computation of the sensitivity required by a 

gradient-based optimizer is also complex in dynamic analysis [52]. In order to address 

these issues, inertia relief analysis can be applied in topology optimization. It takes into 

account the dynamic effects but utilizes the static analysis, thus saving a substantial 

amount of computation time and cost [53]. 

4.2. Inertia Relief Analysis 

It is assumed that only steady-state loads act on the system, and the system’s 

transient responses have damped out [67]. The unconstrained structure cannot be 

performed by static analysis because the stiffness matrix is singular due to rigid body 

motion of the structure. With the inertia relief technique, an external load is balanced by a 

set of inertia forces with respect to a reference point. The reference point removes the 

rigid body motion from the structure, and only elastic deformations are considered. Thus 

the unconstrained structure is in a state of static equilibrium. A set of inertia forces are 

calculated through the rigid body acceleration at the reference point and which can be 

calculated from the rigid body dynamics. 

A diverse types of inertia relief techniques have been developed and published by 

Gaffrey and Lin for Nastran in 1994 [68], Barnett et al. in 1995 [67], Moulin and Karpel 

in 1998 [69], ANSYS in 2007 [70] and ABAQUS in 2008 [71]. The concise description 

was drawn by Lee et al. in [72]. 
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The total displacement vector t
u  of the constrained structure can be decomposed 

into a rigid body displacement vector with respect to the reference point r
u  and an elastic 

displacement e
u  as 

 et r u u u  (4.1) 

The corresponding total acceleration vector is 

 et r u u u  (4.2) 

When a steady-state external force vector F  is applied to the unconstrained 

structure with global mass matrix M  and global stiffness matrix K , the dynamic 

equilibrium equation can be written as 

 r e r e   Ku Ku Mu Mu F  (4.3) 

In this equation, r Ku 0  because the rigid body displacement generate zero 

resultant forces. Also, it is assumed that the inertia force due to the elastic deformation of 

the structure is negligibly small compared to the one due to the rigid body motion. Thus 

the relative acceleration term e
Mu  can be omitted from Eq. (4.3) 

 e r Ku Mu F  (4.4) 

All the applied loads and the inertia forces generated by the applied loads must be 

balanced at the reference point to achieve force and moment equilibrium. The location of 

the j
th

 node of the discretized system following the finite element model is described in a 

Cartesian coordinate system as  , ,j j jx y z . If the coordinate origin is selected as the 
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reference point at origin  0,0,0O , a geometric rigid body transformation matrix 
ojR  

that relates rigid body motions r

ou  from the origin to those motions at the j
th 

node 
r

ju  can 

be defined as 

 
r r

j oj ou R u  (4.5) 

where 

1 0

0 1

j

oj

j

y

x

 
  
 

R . 

If a reference point is different from the origin, such as the center of gravity (CG), 

the geometric rigid body transformation matrix is revised accordingly. The choice of the 

reference point is arbitrary and does not affect the deformation (strain and stress results) 

of inertia relief although the displacement field is different. 

Using the same rigid transformation matrix, the acceleration and force vectors can 

be transformed as follows 

 
r r

j oj ou R u  (4.6) 

 
T

oj j ojR F F  (4.7) 

For a structure discretized by the finite element model with n nodes, only a partial 

of nodal loads applied but others can be treated as zero load vectors applied. The 

accelerations at the origin and the total resultant load vector can be obtained as 

 r r

o ou R u  (4.8) 
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 T

o oR F F  (4.9) 

Similar as Eq. (4.9), the inertia force at all nodes can be transformed to the inertia 

forces at the origin as 

 T r T r

o o o oR Mu R MR u  (4.10) 

where M  is the global mass matrix of the structure. 

In inertia relief analysis, the total external load applied to the structure at the 

origin is balanced by the nodal inertia forces about the origin. It can be described as 

 T r T

o o o oR MR u R F  (4.11) 

Combined with Eq. (4.11), the elastic displacement eu  can be found through the 

following equation 

 e r

o o Ku MR u F  (4.12) 

This is the governing equation for the inertia relief analysis when the origin of the 

structure is chosen as the reference point for the rigid body motion. 

Since the global stiffness matrix K  in Eq. (4.12) is singular for the unconstrained 

structure, it requires some special techniques to solve for the elastic displacement. A 

solution method will be explained in this section. 

This method is based on the fact that the elastic displacement is orthogonal or 

decoupled from eigen-solution of an arbitrary rigid body mode shape lφ . The geometric 

rigid body transformation matrix oR  can be expressed as a linear combination of all rigid 

body modes. Therefore, the rigid body decoupling condition can be described as follows. 
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 0  for   T e T e

l ol   φ Mu R Mu 0  (4.13) 

Combining Eq. (4.10), (4.12)and(4.13) yields 

 

A nonsigular matrix

e
o

T T Tr
o o o oo

    
    

    

K MR Fu

R M R MR R Fu
 (4.14) 

Solving Eq. (4.14) gives the rigid body acceleration and elastic displacement 

simultaneously. 

4.3. Domain Composition Method (DCM) with Inertia Relief Analysis 

4.3.1. Problem Formulation 

To extend the use of the proposed method, DCM involving inertia relief analysis 

are considered. In the package cushioning design problem shown in Figure 4.2, the 

outside cushioning regions are designable and the inside content region is non-designable. 

Because protection of the content is our design target, the regional strain energy 

formulation is utilized. The content is fixed, but size of the outside design domain is 

changeable. The difference of this work is that the inertia relief analysis is used in DCM 

with a regional strain energy formulation. 
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Figure 4.3. Region R  in Initial Design I  and Current Design C  

In the current design C  (left in Figure 4.3), a regional strain energy formulation 

using DCM with inertia relief structural optimization problem is presented as 

  

min

:  

. . :    

          ,  

          0 1,   1, ,

          0 ,   1, ,

C C

R T

C eC C C rC

o o

C

i

j j j

Min U U

s t

V V

i N

j M

 

  



 



   

   

K u M R u F

γ λ  (4.15) 

where V  is the volume bound which is predefined by designer. N  is the total element 

number in design domain. M  is the number of scaling factors which are defined in 

different subdomains. 

4.3.2. Inertia Relief Analysis using DCM 

The inertia relief analysis governing equation for the current design is 

 C eC C C rC

o o K u M R u F  (4.16) 
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In Eq. (4.16), the relation of the global stiffness matrix C
K  between the current 

design C  and the initial design I  is the same as Eq. (2.14) in static analysis. The global 

mass matrix C
M  is assembled from element mass matrix 

e


m . Similar as element 

stiffness matrix in Section 2.2.3, , the element consistent mass matrix C

em  is calculated as 

follows [73] for Q4 element.  

 
1 1

1 1

e

T T

e

V

dV J d d    

 
   m N N N N  (4.17) 

where   is the material density and N  is the shape function matrix which is nothing 

related to the nodal coordinates 

1 2 3 4

1 2 3 4

0 0 0 0

0 0 0 0

N N N N

N N N N

 
  
 

N  

and 

1

1
(1 )(1 )

4
N     , 

2

1
(1 )(1 )

4
N     , 

3

1
(1 )(1 )

4
N     , 

4

1
(1 )(1 )

4
N     . 

From Eq. (2.9), the element mass matrix equals to 

 
1 1

1 1

T

e x y J d d     

 
  m N N  (4.18) 

Comparing Eq. (4.18) to the element mass matrix for the initial domain   

 
1 1

1 1

T

e J d d   

 
  m N N  (4.19) 

It obtains 
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 e x y e  m m  (4.20) 

The geometric rigid body transformation matrix C

oR  in the current design domain 

can be built from nodal transformation matrices about the origin as 

 

1

2

o

C o

o

oN







 
 
 
 
 
  

R

R
R

R

 and 
1 0

0 1

j

oj

j

y

x







 
  
  

R  (4.21) 

where oj


R  is the j

th
 nodal transformation matrix about the origin in the current domain C  

and 1, ,j N .  
T

C C

j jx y  is the j
th

 node coordinate in the current domain C . 

4.3.3. Sensitivity Analysis 

To derive the sensitivity of the objective function w.r.t. the material distribution 

variable i  in (4.15), the chain rule give the same form as Eq. (3.9) 

 
 C C C C

R T C CR T
T R

i i i

U U U U
U U

  

   
 

  
 (4.22) 

The total strain energy sensitivity C

T iU    calculation is same as Eq. (2.22) and 

only the derivative C

R iU    in Eq. (3.3) needs to be derived. To derive the sensitivity of 

the regional strain energy C

RU , the adjoint method is applied. C

RU  can be rewritten as 

  
1

2

C CT C C CT C C C C Cr

R q q q o o

q R

U


    u k u v F K u M R u  (4.23) 
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where a Lagrange multiplier vector C
v  is introduced. The second term is equal to zero so 

the modified objective function is equivalent as the original one. Taking derivative of the 

new objective function w.r.t a design variable i  

 

1

2

           
C C C C

C CC C C
q qCT C CT C CT C CR

q q q q

q R q Ri i i i i i

C CrC
r C r Co o

o o o o

i i i

U

     

  

 

     
     

     

 
  

   

 
k u F K u

u u u k v u K

R uM
R u M u M R

 (4.24) 

For a design independent load, the term i  F 0 . Since the reference point is 

not related to the design variables, the geometric rigid body transformation matrix C

oR  is 

independent of the design variables, and C

o i  R 0 . To eliminate the unknown 

C

q i u  and C

i u  from the sensitivity expression for the structure, vector C
v  can be 

calculated based on the following equation 

   0

T
C

C C C C

R R

i

 
  

 

u
K v K u  (4.25) 

where C

RK  and C

Ru  reassembles element stiffness matrix and element nodal displacement 

and only those nodes that belong to domain R  will give non-zero values in C

RK  and C

Ru . 

The solution is 

 C C C C

R RK v K u  (4.26) 

From which the adjoint vector C
v  can be calculated. It can be treated as an inertia 

relief analysis with zero acceleration, as it is balanced by external forces, and with no 
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constraint. The above equation cannot be solved by the inversion of the stiffness matrix 

because the stiffness matrix of the structure is singular. The applied force vector is the 

right hand side term C C

R RK u  and it can be computed through the original inertia relief 

analysis. 

Using Eq. (4.26), Eq. (4.24) can be simplified as 

 
1

2

CC C C
CT C CT C CT C CriR
i i o o

i i i i

U

   

  
  

   

k K M
u u v u v R u  (4.27) 

where 
C

q i k  in the first term is non-zero only when q i  and q R . 

The sensitivity of the regional strain energy can be calculated if SIMP model is 

applied, where p  is the penalty power in SIMP model 

(1) If the design variable i  is inside of the region R : 

  
1C

C CT CT CTR
i i i i i i i

i i i i

U p p
U

   


   


u f v F u f  (4.28) 

(2) If the design variable i  is outside of the region R : 

  
1C

CT CT CTR
i i i i i i

i i i

U p

  


   


u f v F u f  (4.29) 

The chain rule is applied to calculate the derivative of the objective function w.r.t. 

the shape variable j  as 

 
 C C C C

R T C CR T
T R

j j j

U U U U
U U

  

   
 

  
 (4.30) 
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The sensitivity of the total strain energy can be calculated as 

 
1

2

CC C C
CT C CT C rC CT C rCoT

o o o

j j j j

U

   

  
   

   

RK M
u u u R u u M u  (4.31) 

The derivation of the regional strain energy sensitivity yields a similar result as 

Eq. (4.27) but the transformation matrix derivative is non-zero because C

oR  is related the 

nodal coordinates. The nodal coordinates are functions of the scaling factor 
j  in the 

current design C . 

 
1

2

C CC C C
qCT C CT C CT C rC CT C rCoR

q q o o o

q Rj j j j j

U

    

   
   

    


k RK M
u u v u v R u v M u  (4.32) 

In Eq. (4.31) and (4.32), partial derivative terms are not easy to evaluate because 

the scaling factor 
j  is related to elements under the range of 

j . To simplify the 

calculation, these global terms can be decomposed into elemental terms. If the arbitrary 

subdomain   in current design and corresponding subdomain   in initial design are 

considered, only derivatives of elemental terms, e j
 k , e j

 m , oe j
 R , 

e


k , 

e


m  and 

oe


R  are required for each element e. 

The sensitivity of the element stiffness matrix 
e


k  can be evaluated as Eq. (2.27)-

(2.28). From Eq. (4.20), the sensitivity of the element mass matrix 
e


m  is 

1) If j jx   or jy , the mass sensitivity between current design and initial 

design is 

 
1e

e

j j 







m
m  (4.33) 
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2) If ,j jx jy   , i.e. 
j  is not related to element e , so 

 e

j






m
0  (4.34) 

From Eq. (4.21), the sensitivity of the rigid body transformation matrix for node k 

is 

 

0 0 0

0 0
ok

k

jx

jx

x








 
  

  
  

R
 and 

0 0

0 0 0

k

ok
jy

jy

y







 

  
  

 
 

R
 (4.35) 

The coordinate derivatives, such as k jxx   and k jyy    depend on the 

relationship between the initial design   and current design  , and it can be obtained 

from the scaling and geometry continuity 

 

1

0            ,   in the subdomains left of 

  ,   in subdomain 

 ,   in the subdomains right of 

i

jx

i i

x i
x

x x x i

x x x i





  

  




 

 
  

 (4.36) 

and 

 

1

0             ,  y  in the subdomians above 

  ,  y  in subdomain 

 ,  y  in the subdoamins below 

i

jy

i i

i
y

y y i

y y i





  

  




 

 
  

 (4.37) 

where ( , )i ix y  and 1 1( , )i ix y   are the reference points of the scaling of subdomain i  and 

1i  . The “left”, “right”, “left” and “below” of subdomains are judged by the location of 

the references points of subdomains. 
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4.4. Numerical Example: Package Cushioning Design with Inertia 

Relief 

In this section, the package cushioning design is considered which is discussed in 

Section 4.1. As shown in Figure 4.4, this problem is to find the optimal cushioning 

structure under dynamic response for package application which protects the inside 

content, such as weak or fragile products, and obtains a cushioning structure to resist 

external loads. This structural optimization problem has two objectives: one is 

minimizing the deformation of the content and another one is minimizing the compliance 

of the cushioning. On the other hand, the size of the cushioning domain is adjustable. It is 

straightforward to apply the regional strain energy formulation with DCM to discover the 

optimal sizes of cushioning and the optimal topology of the structure. 

 

Figure 4.4. Initial Design Domain with no Fixture 
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The initial configuration of the example is displayed in Figure 4.4 and it is similar 

as static example in Chapter 2 and 3 except no fixture. The whole system is 

unconstrained and a nodal force 1414F kN  is acted at the left bottom corner of the 

design domain. The Inertial Relief (IR) analysis is applied to handle the dynamic 

response of the structure. The content is at the center of the outside rectangular domain. 

The design domain is symmetric but the entire domain is considered in our research 

because initial forces are included in dynamic problem. The initial configuration is 

modeled as upper bounds of thicknesses of the cushioning and the content size is fixed. 

The material properties are set as follows. For the content: Young’s modulus 

0 20E GPa , Poisson’s ratio 0.3   and density 3

0 2000 /kg m  ; and for the design 

domain: Young’s modulus 0 0.2E GPa , Poisson’s ratio 0.3   and density 

3

0 30 /kg m  . It shows that the soft cushioning material protects the stiff content. 

Volume constraint is set as 30%  of the total initial cushioning volume and the design 

domain is meshed by four node quadrilateral (Q4) elements. 

Three results are shown in Figure 4.5. All cases are considering as initial relief 

analysis. Case 1 is the topology optimization using regional strain energy formulation 

result. Case 2 applies the DCM using the regional strain energy formulation with 

bounded length and fixed height. Case 3 employs the DCM using the regional strain 

energy formulation with bounded length and height. The lower bounds and upper bounds 

of the cushioning thicknesses, the optimal cushioning thicknesses, the total strain energy, 

and the strain energy in content are listed in Table 4.1. 

To present the structural deformations, strain energy distributions of the optimal 

designs are shown in Figure 4.6 and all cases are plotted in the same contour legend 
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range. Case 2 and 3 present smaller strain energy distributions than Case 1 and it is 

consistent with the strain energy results in Table 4.1. 
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Figure 4.5. Cushioning Design Cases: Case 1. Topology Optimization using Regional Strain 

Energy with Inertial Relief (Top), Case 2. DCM with Bounded Length and Fixed 

Height (Middle),  Case 3. DCM with Bounded Length and Height (Bottom) 

Table 4.1. Comparison of Three Results for Package Cushioning Design 

Cases 
Bounds of 

Cushioning 

Optimal 

Dimensions 

of Cushioning 

Total Strain 

Energy 

Strain Energy 

in Content 

Case 1: Topology 

Optimization 

using Regional 

Strain Energy 

with Inertia Relief 

, , ,

are fixed

a b c d
 

0.2

0.2

0.12

0.12

a

b

c

d









 248767.8629 11.5103 

Case 2: DCM 

with Bounded 

Length and Fixed 

Height 

, [0.02,0.2]

,  are fixed

a b

c d


 

*

*

0.045

0.045

0.12

0.12

a

b

c

d









 24312.8352 13.8701 

Case 3: DCM 

with Bounded 

Length and 

Height 

, [0.02,0.2]

, [0.012,0.12]

a b

c d




 

*

*

*

*

0.089

0.089

0.065

0.065

a

b

c

d









 33085.2903 9.9771 
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Figure 4.6. Strain Energy of Cushioning Design Cases: Case 1. Topology Optimization using 

Regional Strain Energy with Inertial Relief (Top), Case 2. DCM with Bounded 

Length and Fixed Height (Middle),  Case 3. DCM with Bounded Length and Height 

(Bottom) 

This example shows the effectiveness of DCM using regional strain energy with 

Inertia Relief (IR). The optimal objective function values, i.e. the multiplication of the 

total strain energy of the entire structure and the regional strain energy of content, are 

reduced in Case 2 and Case 3 comparing with Case 1. Therefore, DCM gives better 

solutions than topology optimization method if the regional strain energy formulation and 

IR analysis are applied in this cushioning design. Also, it is worth to note all thicknesses 

converge to the optimal thicknesses instead of bounds in Case 2. 

4.5. Conclusion 

In practice, the protective structures always undergoes the dynamic loads, such as 

shock and impact loads for package cushioning in its transportation and delivery, and 

impact loads for vehicle white body. However, the dynamic transient analysis is much 

more computational time consuming than the static analysis. So the inertia relief analysis 

is applied in our research. The equations and solving technique are presented. The 

structural optimization problem is formulated using DCM with inertia relief. DCM is 

combined with the inertia relief analysis and the sensitivities for two types of design 

variables are derived. The cushioning design example is studied to show the effectiveness 

of our DCM. 
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Chapter 5.  Conclusion and Future Work 

Domain Composition Method (DCM) and its extensions to regional strain energy 

formulation and inertia relief analysis are proposed and the applications in protective 

structure design are shown in this dissertation. The main conclusions of this research are 

briefly summarized and further research can be extended based on the research is also 

discussed in this chapter. 

5.1. Conclusion 

Conventionally, design domain of topology optimization is fixed. However, if 

designer has the possibility to change whole or partial of the design domain to obtain a 

better solution, the tradition topology optimization cannot handle this kind of problem. 

To fulfill this requirement, DCM is proposed and developed. 

DCM provides a way to change the whole or partial of the design domain. It 

distributes material between elements and subdomains. This method divides design 

domain into a set of subdomains which sizing change are described by scaling factors. A 

set of scaling factors is parameterized design domain change between the initial design 

and the current design that is called subdomain transformation. DCM is applied in static 

analysis and then integrated into the total strain energy formulation. The proposed 

optimization problem finds the optimized size and topologies of the structures in those 

subdomains simultaneously. The sensitivities of the objective function with respect to 

two kinds of design variables are derived respectively. 

DCM using the regional strain energy for the protective structure is also discussed 

in this dissertation. A typical protective structure, the package cushioning structure, is 
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discussed and its design target is analyzed. Total strain energy is not proper for this 

design target because the strain energy might be pushed from the protective design 

domain to the non-designable protected content. The regional strain energy formulation 

minimizes the deformation in the non-designable content region and generates a structure 

in the designable cushioning region. The sensitivities w.r.t. two types of design variables 

are derived and simplified. 

Inertia relief is combined with DCM using regional strain energy formulation. 

Inertia relief analysis avoids costly transient analysis to find the response of an 

unconstrained structure subject to constant or slowly varying external loads. The 

structural optimization problem is formulated as DCM using regional strain energy 

formulation with inertia relief. DCM is applied to the inertia relief analysis and the 

sensitivities w.r.t. two types of design variables are derived. 

The effectiveness of the proposed methods and formulations are demonstrated in 

the package cushioning design problems separately from Chapter 2 to Chapter 4. The 

extended application and two numerical examples are discussed in Chapter 2 and Chapter 

3 separately. The cantilever beam with a movable hole beam design is an extended 

application of the problem defined in Chapter 2. The outside boundary is fixed but the 

inside boundary is movable. The table design example applies the regional strain energy 

formulation is discussed in Chapter 3. It shows the regional formulation also can be used 

in support structure design and it tradeoff material distribution between different 

subdomains. All numerical examples are verified by comparing DCM results and 

conventional topology optimization method. 
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The study in this dissertation about DCM extends the scope of application the 

structural optimization. It expands the flexibility of the topology optimization to find 

shape and topology at the same time through design domain change. 

5.2. Future Work 

This research suggests the concept of DCM and its extension with regional strain 

energy formulation and inertia relief analysis. However, not all of situations and 

problems were studied and some possibilities are point out as follows: 

 More general subdomain transformation 

The study of DCM considers subdomains scaling in this dissertation. However, 

design change between iterations may be complicate, such as rotation and shear. It can 

handle more complicate changes of subdomains and DCM becomes more flexible. 

Correspondingly, more design variables are involved and the next question is how to 

define these variables automatically. Therefore, more general subdomain transformation 

might be discussed in the future work. 

 Automatic mesh update in subdomains in optimization iterations 

In implement of DCM, the finite element meshes are altered corresponding with 

optimization iterations and it is possible that some elements degenerate distortedly. The 

distorted elements may increase the magnitude of the error of the finite element solutions. 

The automatic mesh update might be needed and it depends on the change of elements in 

design process. This automatic mesh update should be based on some criteria and it may 

cause material design variables numbers change. Therefore, further study about the 

automatic mesh update should be conduct. 

 Other objective function formulation for protective structure design 
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In this dissertation, strain energy based objective function is employed. 

Furthermore, regional strain energy formulation and its sensitivity derivation are 

presented. However, strain energy is not always a good choice. For example, some cases 

are requiring minimizing a set of the nodal displacements for some critical points on the 

structure and average regional displacements may be a better objective function.  

 Implementation of practical requirements 

In practical situation, some consideration should be combined with DCM 

discussed in this dissertation to satisfy the practical requirements. For example, structure 

is always designed bearing multiple load cases and it is a tradeoff results for different 

situations. Furthermore, the loading conditions are happened with uncertain values and 

directions, i.e. with load uncertainty. Also, structure always undergoes large displacement 

and material nonlinearity and nonlinear analysis is required in simulation. Therefore, 

further study regarding DCM with nonlinearity is worthy. 
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