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ABSTRACT OF THE DISSERTATION
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Data: Applications to Prostate Cancer Diagnosis

by Rachel Sparks

Dissertation Director: Anant Madabhushi

Prostate cancer is the second most commonly diagnosed cancer of men, an estimated

192,000 men are diagnosed each year in the United States (source: American Cancer

Society). The current gold standard for prostate cancer diagnosis is pathologist inspec-

tion of prostate needle biopsy samples obtained using transrectal ultrasound (TRUS).

TRUS-guided biopsy is routine because TRUS is widely available and acquires real-time

imagery. However, TRUS-guided biopsy has a low sensitivity, and initial biopsy misses

approximately half of all men with prostate cancer. Multi-parametric Magnetic Reso-

nance Imaging (MRI) has shown promise in detecting, localizing, and grading prostate

cancer. MRI-TRUS fusion, whereby MRI is acquired pre-operatively then aligned to

TRUS during biopsy, allows for both modalities to be leveraged. MRI-TRUS fusion

will enable the construction of joint classifiers, which leverage imaging characteristics

on both MRI and TRUS, to detect, localize, and grade prostate cancer. In order to train

and validate these classifiers, ground truth spatial extent and aggressiveness of prostate

cancer must be obtained. Manual pathologist inspection provides the ultimate defini-

tive diagnosis of prostate cancer, with the Gleason grading system providing a measure

of prostate cancer aggressiveness. Therefore whole mount histopathology (WMH) is

aligned to fused MRI-TRUS imagery to provide ground truth of cancer location and
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aggressiveness. A drawback to this approach is that Gleason grade is subject to inter-

and intra-observer variability. Hence there is a need for reproducible, computer assisted

grading of pathology which can serve as a surrogate for ground truth prostate cancer

aggressiveness. In Aim 1 we develop a novel registration algorithm, multi-attribute

probabilistic elastic registration (MAPPER), to align MRI and TRUS prostate imagery.

In Aim 2 we align WMH with fused MRI-TRUS imagery (Aim 1). In Aim 3 we de-

velop novel morphologic features to distinguish between aggressive and non-aggressive

prostate cancer on histopathology. This will enable WMH to serve as ground truth for

prostate cancer aggressiveness in order to train a MRI-TRUS classifier. Future work

will leverage the tools developed to combine signatures of prostate cancer appearance

across MRI, TRUS, and WMH and enable the development of tools to target biopsy to

aggressive prostate cancer.
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Preface

This dissertation represents a collection of published and unpublished works of the

author [1–7]. It is primarily composed from the content of peer-reviewed conference

and journal publications written during the course the author’s graduate studies.
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Chapter 1

Introduction

The current gold standard for prostate cancer diagnosis and grading is manual patholo-

gist evaluation of histopathology acquired using transrectal ultrasound (TRUS)-guided

biopsy [8]. Due to poor visualization of abnormal prostate tissue on TRUS, biopsies

often sample benign tissue unnecessarily and miss prostate cancer nodules [9, 10]. Ap-

proximately half of all prostate cancer nodules are not detected using the current clinical

protocol [11]. Additionally, 30− 50% of patients found to have low grade prostate can-

cer on biopsy will ultimately be determined to have higher grade prostate cancer after

radical prostatectomy [12]. Hence, there is a clear clinical need to improve prostate

biopsy to enable targeting of (a) regions suspicious for prostate cancer and (b) regions

that contain aggressive prostate cancer. The overarching goal of this dissertation is to

develop tools that will enable identifying and targeting prostate cancer during biopsy.

1.1 Image-Guided Prostate Biopsy

1.1.1 Transrectal Ultrasound for Guiding Biopsy

B-mode TRUS is useful in assessing gross anatomical details of the prostate, such

as locating the borders of the prostate, identifying the seminal vesicles, and guiding

insertion of the biopsy needle into selected regions of the prostate [13]. Prostate cancer

may appear hypoechoic on TRUS but approximately 40% of prostate cancer nodules

are isoechoic and cannot be distinguished from benign prostate tissue [9, 10]. Despite

these shortcomings in visualizing prostate cancer, TRUS is routinely used because it is

widely available and easy to use.

Due to the poor sensitivity in visualizing prostate cancer on TRUS, the clinical
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standard for TRUS-guided needle biopsy is a blinded biopsy procedure. Blinded biopsy

is performed by dividing the prostate into six regions, and sampling two biopsy cores

from each of the six regions [8]. In addition, biopsy cores may be acquired from regions

deemed suspicious for prostate cancer based on manual visual assessment of TRUS.

Using the blinded biopsy procedure, TRUS-guided biopsy has a high false negative rate

of 30 − 40% [11, 14]. In patients with an initial negative biopsy 10 − 20% will have

a cancer detected on a 2nd biopsy and 4 − 5% will have a cancer detected on a 3rd

biopsy [11, 15]. Hence, there is a need to develop in vivo imaging methods that are

more sensitive to prostate cancer and thereby improve biopsy targeting.

1.1.2 Multi-parametric Magnetic Resonance Imaging for Guiding Biopsy

Recent studies have demonstrated that magnetic resonance imaging (MRI) is able to de-

tect prostate cancer with high sensitivity [16–19]. T2-weighted MRI, with a finer spatial

resolution than TRUS, provides structural information about prostate cancer [16]. Ad-

ditional MRI protocols can provide complementary information to T2-weighted MRI,

for instance functional information can be obtained from dynamic contrast enhanced

(DCE) [17] or diffusion weighted imaging (DWI) [18] and metabolic information can

be obtained from magnetic resonance spectroscopy (MRS) [19]. Multi-parametric MRI

schemes combine several MRI protocols, enabling prostate cancer to be detected with a

high positive predictive value of 80% [20–24]. Additionally, multi-parametric MRI may

be able to distinguish between more and less aggressive forms of cancer [25].

MRI-guided biopsy has a low false negative rate of 10 − 20% for prostate cancer

detection [26,27]. Despite the lower false negative rate for MRI-guided biopsy compared

to TRUS-guided biopsy, there are several limitations. MRI-guided biopsy has long

procedure times, is expensive due to the need for specialized equipment and technicians,

and is stressful for many patients.
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1.1.3 Registration of Magnetic Resonance Imaging with Transrectal

Ultrasound for Guiding Biopsy

MRI-TRUS fusion – whereby MRI is spatially aligned to TRUS – enables combining

anatomical, structural, functional, and metabolic information obtained from multi-

parametric MRI with acoustic and anatomical information obtained from TRUS. In-

formation from both modalities can then be leveraged to guide biopsy. The clinical

protocol for MRI-TRUS fusion is as follows. A pre-operative prostate MRI is typi-

cally acquired 1 to 2 weeks prior to the biopsy procedure. This obviates the need

for specialized biopsy equipment. The prostate MRI may then be analyzed, including

pre-processing steps such as bias field correction, delineation of the prostate, and deter-

mining regions suspicious for cancer. During the subsequent biopsy procedure, TRUS is

acquired to provide real-time guidance of the biopsy procedure. By performing the reg-

istration of the pre-operative MRI onto the TRUS both modalities can be used to guide

needle placement. Utilizing fused MRI-TRUS to guide biopsy substantially increases

the positive yield of prostate biopsies [28–31].

MRI-TRUS-guided biopsy schemes rely on manual visual assessment of multi-parametric

MRI to determine needle placement [28–31]. However, identifying prostate cancer on

multi-parametric MRI has high inter- and intra-observer variability [32]. The prostate

imaging reporting and data system (PI-RADS) has been introduced in an attempt to

reduce inter- and intra-observer variability. However, PI-RADS still has significant

variability with κ = 0.5− 0.8 (moderate to good inter-observer agreement) [33]. Addi-

tionally, PI-RADS does not currently contain guidelines for distinguishing between ag-

gressive and non-aggressive prostate cancer. Finally, current MRI-TRUS-guided biopsy

schemes do not take into account information from TRUS that may further improve

prostate cancer detection. Hence, there is a need to develop computerized decision sup-

port tools that can aid clinicians by providing quantitative measures of prostate cancer

presence and, in particular, aggressive prostate cancer presence.
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1.2 Computerized Decision Support for Prostate Cancer Detection

1.2.1 Transrectal Ultrasound for Automated Prostate Cancer Detec-

tion

Despite the limitations of TRUS in visualizing [9,10] several computerized decision sup-

port systems have been developed to detect prostate cancer on TRUS [34–37]. Texture

features extracted from pixel intensities on B-Mode TRUS have been used to distin-

guish between healthy tissue and prostate cancer with reported sensitivity 75 − 83%

and specificity of 70− 85% [34,35]. Feature selection to determine the best performing

set of texture features on B-Mode TRUS resulted in a computerized decision support

system with sensitivity of 80.0% and a specificity of 88.2% [36]. However, conventional

B-Mode TRUS does not fully exploit the information contained in the radio-frequency

(RF) signals received by ultrasound transducers. Feleppa et. al. [37] have developed

methods for analyzing the RF signals obtained from TRUS resulting in a reported area

under the receiver operator characteristic (ROC) curve of 0.844 for prostate cancer

detection. A limitation of these studies is that ground truth was obtained by analysis

of biopsy samples, therefore, it is impossible to assess whether prostate cancer nodules

were missed in regions of the prostate where no biopsies were acquired.

1.2.2 Magnetic Resonance Imaging for Automated Prostate Cancer

Detection

Several groups have developed computerized decision support systems for detecting

prostate cancer on MRI [25,38–40]. A two stage classification scheme on multi-parametric

MRI was shown to accurately detect prostate cancer with a sensitivity of 0.74, where

ground truth was obtained from analysis of biopsy samples [38]. As previously men-

tioned, ground truth obtained from biopsy samples cannot assess missed prostate cancer

nodules. Regions of interest containing prostate cancer can be distinguished from be-

nign regions with an area under the ROC curve of 0.95 [40]. However, this method

relies on the ability of a expert to accurately delineate the region of interest to clas-

sify. Inter-observer variability in region delineation has demonstrated negative effects
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on computerized decision support performance. [41].

An alternative approach to systems that require region selection are decision support

systems that operate at the voxel level. Utilizing whole mount histopathology specimens

aligned to MRI for ground truth, computerized decision support systems for multi-

parameter MRI can detect prostate cancer at the voxel level with an area under the ROC

curve of 0.71 [39]. Combining features from multi-parametric MRI can also distinguish

between low grade and high grade prostate cancer at the voxel level with an area under

the ROC curve of 0.81 [25]. However, assessing prostate cancer aggressiveness, even on

histopathology, to obtain ground truth is a difficult task.

1.2.3 Quantitative Histomorphometry for Assessing Prostate Cancer

Aggressiveness

Prostate cancer on histopathology is typically assessed according to Gleason grade (from

patterns 1 to 5) [42]. Gleason grade is an important predictor of prostate cancer aggres-

siveness and is often used to guide the treatment a patient receives [43]. Low Gleason

grade patterns (≤ 3) are indicative of less aggressive prostate cancer; higher Gleason

grade patterns (> 3) are indicative of more aggressive prostate cancer [44]. Manually

distinguishing intermediate Gleason grade patterns 3 from 4 on histopathology is a

difficult task. Inter-observer agreement between expert pathologists is κ = 0.47 − 0.64

(reflecting low to moderate agreement) [45]. Hence there is a clear clinical need to

develop reproducible, quantitative histomorphometric features to complement pathol-

ogists in distinguishing the subtle differences between intermediate Gleason grades.

Quantitative histomorphometric features have been presented to assess Gleason

grade on prostate histopathology [46–50]. Texture on histopathology has been shown to

correctly identify Gleason grade patterns with 90−95% accuracy [46,47]. Architectural

arrangement of nuclei and glands has also been quantified to classify Gleason grade pat-

terns with an accuracy of 76.0% [48]. Morphology of nuclei and glands can distinguish

between Gleason grade patterns with an accuracy of 73 − 90% [49, 50]. Recent work

suggests that quantitative histomorphometric features that assess nuclei arrangement

and gland orientation may be better able to predict prostate cancer aggressiveness
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compared to Gleason grade alone [51–53].

1.2.4 Opportunity in Fusion of Magnetic Resonance Imaging - Tran-

srectal Ultrasound for Creating Computerized Decision Support

Currently, no computerized decision support systems exist for detecting prostate can-

cer on fused MRI-TRUS imagery. As previously discussed in Sections 1.2.1 and 1.2.2,

decision support systems for either TRUS or MRI are able to accurately detect prostate

cancer. Viswanath et. al. [54] demonstrated that combining different imaging modali-

ties can increase the performance of computerized decision support systems compared

to any single constituent modality alone. Combining acoustic and anatomic informa-

tion from TRUS with the structural, function, and metabolic information from MRI

should further improve the accuracy of computerized decision support systems to detect

prostate cancer.

Additionally, Singanmalli et. al. [55] demonstrated that a subset of MRI character-

istics are strongly correlated with quantitative histomorphometric features indicative of

prostate cancer aggressiveness. Tiwari et. al. [25] demonstrated that multi-parametric

MRI can distinguish between low grade and high grade prostate cancer. These results

suggest that there is a potential to train computerized decision support systems to

distinguish between aggressive and non-aggressive prostate cancer on MRI. Hence it is

reasonable to assume a MRI-TRUS computerized decision support system may also be

able to distinguish between aggressive and non-aggressive prostate cancer.

1.3 Novel Contributions To Enable Fused Magnetic Resonance Imag-

ing - Transrectal Ultrasound Decision Support

To enable the construction of a computerized decision support system for fused MRI-

TRUS sophisticated image analysis tools must be developed. Specifically tools must

be developed for (a) spatial alignment of the MRI and TRUS images of the prostate

to create fused imaging signatures, (b) definitive ground truth acquired from patholo-

gists’ annotations on whole mount histopathlogy (WMH) must be aligned to the fused
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MRI-TRUS, and (c) surrogate ground truth for prostate cancer aggressiveness must

be obtained by developing quantitative histomorphometric features on histopathology.

Although, there has been previous work for individual components of such a system to

the best of our knowledge these components have never before been combined into a

single framework.

In this dissertation a framework that will enable construction of a fused MRI-TRUS

computerized decision support system is presented. The framework contains three novel

contributions:

1. Multi-attribute probablistic prostate elastic registration (MAPPER) to fuse MRI

and TRUS imagery [5].

2. Prostalign, a semi-automated thin-plate spline registration to align WMH onto

fused MRI-TRUS imagery, thereby linking histopathology to fused MRI-TRUS

imagery.

3. Explicit Shape Descriptors (ESDs), a novel quantitative histomorphometric fea-

ture to assess prostate cancer aggressiveness [3, 6, 7].

1.4 Organization of Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 presents fusion

of MRI and TRUS prostate imagery via MAPPER with associated previous work,

novel contributions, methodology, and experimental evaluation. Chapter 3 describes

linking of prostate cancer across WMH, MRI, and TRUS imagery utilizing Prostal-

ign with associated previous work, novel contribution, methodology, and experimental

evaluation. In Chapter 4 a method to characterize prostate cancer aggressiveness on

histopathology using ESDs is discussed with associated previous work, novel contribu-

tions, methodology, and experimental evaluation. Finally, Chapter 5 provides future

work and concluding remarks.



8

Chapter 2

Fusion of Magnetic Resonance Imaging and Transrectal

Ultrasound

In this chapter, a novel Magnetic Resonance Imaging (MRI)-Transrectal Ultrasound

(TRUS) fusion algorithm, Multi-Attribute Probabilistic Prostate Elastic Registration

(MAPPER), is presented. Some of the material presented in this chapter is taken from

Sparks et. al. [5] of which the author of the dissertation is the first author.

Needle biopsy guided by TRUS is the current gold standard for prostate cancer

diagnosis [56]. TRUS-guided biopsy is typically performed using a blinded procedure

where the prostate is divided into six regions and two biopsy cores are taken from

each region [8]. Additional cores may be acquired for regions that appear suspicious

for prostate cancer on TRUS. However, approximately 40% of prostate cancer lesions

appear isoechoic on TRUS; hence these lesions are difficult to accurately target using

TRUS-guided biopsy [9, 10]. TRUS-guided biopsy is associated with a low cancer de-

tection rate of 20 − 25% [11]. Due to the low cancer detection rate for TRUS-guided

biopsy, more than one in three men who have a prostate needle biopsy will undergo a

repeat biopsy procedure [57].

Multi-parametric MRI is better able to visualize prostate cancer lesions [23]. T2-

weighted MRI is able to provide anatomical information about the prostate in addition

to structural information about prostate cancer [16]. Other MRI protocols provide

complementary functional information, such as dynamic contrast enhanced (DCE) [17]

and diffusion weighted imaging (DWI) [18], or metabolic information, such as magnetic

resonance spectroscopy (MRS) [19]. The recent introduction of the Prostate Imaging

Reporting Data System (PI-RADS) has help standardized the definition of suspicious

prostate cancer on multi-parametric MRI, demonstrating moderate to high agreement
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between observers [32]. In a study of 67 patients, MRI-guided biopsy in conjunc-

tion with PI-RADS was able to detect prostate cancer in 42% of patients [32]. Addi-

tional studies confirm these results, with MRI-guided biopsy yielding detection rates

of 40 − 55% [27, 58]. However, MRI-guided biopsy requires specialized equipment and

technicians. Consequently, these procedures tend to be expensive and time-consuming,

and are being done only at very few centers [27,58].

MRI-TRUS fusion – whereby MRI is spatially aligned to TRUS – enables infor-

mation from multi-parametric MRI and TRUS to be combined and leveraged to guide

prostate needle biopsy procedures. Studies [28–31] have shown that utilizing TRUS

in conjunction with MRI substantially increases the positive yield of prostate biopsies.

The clinical protocol for MRI-TRUS fusion is typically as follows. A pre-operative

prostate MRI is typically acquired 1 to 2 weeks prior to the biopsy procedure. The

prostate MRI is then usually subjected to pre-processing steps such as bias field correc-

tion, delineation of the prostate, and determining regions suspicious for cancer. During

the subsequent biopsy procedure, TRUS is acquired to provide real-time guidance.

There are several challenges to be overcome in MRI-TRUS registration. First,

intensity-based metrics traditionally used for image registration, for instance Mutual In-

formation [59], fail because of poor correlation in intensity between MRI and TRUS [60].

Second, differences exist in prostate shape on MRI and TRUS, caused by the differ-

ent deformations induced by the TRUS probe and, when present, the MRI endorectal

coil [61]. Figure 2.1 reveals the differences in prostate deformation between MRI and

TRUS with (Figure 2.1(c)) and without (Figure 2.1(a)) an endorectal coil. Finally,

the registration must be done in near real-time (< 5 minutes) to minimize the biopsy

procedure time and maximize patient comfort. Any manual intervention to determine

prostate location on TRUS or guide the registration of the MRI onto the TRUS will

result in increased biopsy procedure time and, hence, it is important that all steps after

TRUS acquisition involve minimal user interaction.

Current state-of-the-art MRI-TRUS fusion methods require varying degrees of man-

ual intervention to establish spatial correspondence between MRI and TRUS imagery.
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(a) (b)

(c) (d)

Figure 2.1: Two patient stud-
ies with corresponding MRI
and TRUS prostate imagery
obtained from two different
datasets. Dataset 1: (a)
1.5 T MRI acquired with a
pelvic phased-array coil and
(b) side-firing TRUS probe.
Dataset 2: (c) 3.0 T MRI ac-
quired with an endorectal coil
and (d) volumetric end-firing
TRUS probe. Most current
MRI-TRUS fusion schemes are
not generalizable to images
from different scanners, plat-
forms, and field strengths.

However, manual intervention typically increases procedure time, along with poten-

tially introducing error into the registration if the manually determined correspondence

is incorrect. Labanaris et. al. [28] performed a study that divided 260 patients into

two groups: (1) an 18-core TRUS-guided biopsy with no MRI information added, and

(2) a similar biopsy procedure with additional cores sampled from regions suspicious

for prostate cancer as determined by T2-weighted MRI. For the group undergoing only

TRUS-guided biopsy, the cancer detection rate was 19.4%; the group with additional

cores sampled from suspicious regions had a detection rate of 74.9%. Hadaschik et.

al. [29] obtained a 59.4% cancer detection rate when using a semi-automated MRI-

TRUS fusion system in 106 patients.

To overcome the need for time-intensive manual intervention during the biopsy

procedure a new multi-modal registration methodology called Multi-Attribute Proba-

bilistic Prostate Elastic Registration (MAPPER) to align MRI and TRUS images of

the prostate is presented. The MAPPER algorithm involves: (1) Prior to the biopsy

procedure, segmenting the prostate on the MRI; (2) During the biopsy procedure,

calculating a multi-attribute probabilistic map of the prostate location on TRUS; (3)

Maximizing overlap between the prostate segmentation on MRI and the multi-attribute

probabilistic map of the prostate on TRUS, thereby driving elastic registration of MRI
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and TRUS. MAPPER is well suited to MRI-TRUS fusion as it allows for automatically

and accurately determining the location of the prostate on TRUS (Module 2). This

step therefore obviates the need for manual intervention to register the images during

the biopsy procedure. By utilizing an elastic registration (Module 3), MAPPER can

account for differences in prostate deformation on the MRI and TRUS imagery.

The remainder of this chapter is as follows. In Section 2.1 previous work in MRI-

TRUS fusion is discussed. Section 2.2 details the novel contributions of MAPPER.

Section 2.3 describes the methodology of MAPPER. Section 2.4 describes our exper-

imental design for evaluating MAPPER and Section 2.5 showcases our experimental

results. In Section 2.6 concluding remarks on the MAPPER algorithm are provided.

2.1 Previous Work in Magnetic Resonance Imaging-Transrectal Ul-

trasound Fusion

Attributes
Algorithm

MAPPER
UroNav
[62]

Kaplan et.

al. [63]
Profuse
[64]

Hu et.

al. [65]
Urostation

[66]
Mitra et.

al. [60]

Requires manual
prostate segmentation

X X

Requires manual fiducial
selection

X X X

Requires manual
correction of prostate

segmentation
X

Locates prostate
automatically

X

Recovers prostate
deformation

X X X X X

Table 2.1: Comparison between MAPPER and state-of-the-art MRI-TRUS fusion al-
gorithms. The attributes of each algorithm are indicated with a X.

Table 2.1 highlights the major differences between MAPPER and current state-of-

the-art MRI-TRUS fusion algorithms [30,60,62–67]. MAPPER is able to perform MRI-

TRUS fusion with no manual interaction during the biopsy procedure. By comparison,

all of the state-of-the-art MRI-TRUS fusion methods require manual intervention to

locate the prostate on TRUS [30, 60, 62–67]. The intervention may involve either the

delineation of the prostate or the manual selection of fiducials visible on both modalities.
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MRI-TRUS fusion methods can be divided into (a) fiducial [60, 62, 63, 66], (b) surface

[30,64,67], and (c) model-based methods [65].

Fiducial-based methods attempt to find a transformation that minimizes the dis-

tance between corresponding landmarks on MRI and TRUS [60,62,63,66]. Early work

by Kaplan et. al. [63] used manually selected fiducials to determine a rigid transforma-

tion between MRI and TRUS imagery. Alignment was assessed qualitatively between

the MRI-TRUS images. Bubley et. al. [68] evaluated the method of Kaplan et. al. [63]

in a cohort of 30 prostate cancer patients. 16 out of 30 patients (53%) had a positive

biopsy core obtained from a region suspicious for prostate cancer on MRI. Mitra et.

al. [60] extracted the prostate surface and internal fiducials from a manual segmenta-

tion of the prostate; fiducials being used to determine a diffeomorphic transformation

between MRI and TRUS imagery.

Xu et. al. [62] used fiducials extracted from an automated segmentation of the

prostate on MRI and TRUS, with manual refinement of the segmentation, to determine

an affine transformation. Using this method Pinto et. al. [69] were able to successfully

diagnose prostate cancer in 55 out of 101 patients. Furthermore 17 out of 19 regions

determined to be highly suspicious for prostate cancer on MRI corresponded to a cancer

positive biopsy. The method of Xu et. al. [62] was also evaluated on a cohort of 125

patients where multi-parametric MRI showed a low suspicion of prostate cancer [70].

Only 10 patients had a cancer positive biopsy with Gleason score of 7 (3 + 4), an

additional 38 patients had a cancer positive biopsy with a Gleason score of 6 (3 + 3),

the Gleason score being a risk predictor of prostate cancer aggressiveness. Reynier et.

al. [66] used fiducials extracted from a manual segmentation of the prostate to calculate

an elastic transformation. This methodology has been used to guide brachytherapy [71]

and biopsy [31]. Using the methodology of Reynier et. al. [66], prostate cancer was

diagnosed in 54 out of 80 patients who had regions suspicious for prostate cancer on

MRI [31].

Surface-based methods mitigate the need to select fiducials by finding a transfor-

mation that minimizes the distance between prostate surfaces on MRI and TRUS
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[30, 64, 67]. Narayanan et. al. [64] aligned prostate surfaces obtained using a semi-

automated segmentation scheme that required manual selection of four or more fiducials

on the prostate surface. Karnik et. al. [67] used a thin-plate spline registration to align

prostate surfaces, surfaces being obtained via a semi-automated segmentation method

involving manual selection of 10 or more fiducials. Natarajan et. al. [30] extended this

approach to (a) require picking of only 4 − 6 fiducials on the prostate surface as well

as (b) incorporating elastic interpolation when aligning MRI and TRUS. The system

was used to guide biopsies in 56 patients and achieved a cancer detection rate of 23%,

compared to 7% for systematic, nontargeted biopsies [30]. Further studies using the

method of Natarajan et. al. [30] have achieved a detection rate of 53% in 171 men [72];

in patients with highly suspicious MRI findings 15 out of 16 had a positive biopsy. The

difference in cancer detection rates between Natarajan et. al. [30] and Sonn et. al. [72]

could be a reflection of the different patient populations considered in each study; Sonn

et. al. [72] considered patients with persistently increased prostate specific antigen

(PSA), a patient population at an elevated risk for prostate cancer.

A model-based method utilizes prostate segmentation on MRI to construct a Finite

Element Model (FEM); the FEM is then deformed to align the prostate on MRI to

TRUS [65]. FEM initialization on TRUS required specifying two fiducials on the base

and apex of the prostate, respectively. Dickinson et. al. [73] performed a follow up

study utilizing a variation of the method of Hu et. al. [65] to guide high intensity focused

ultrasound (HIFU) ablation of prostate cancer lesions. In Dickinson et. al. [73], 10−20

prostate surface points were selected to guide the fusion of MRI to TRUS in 26 patient

studies. The fusion procedure was reported to take between 3− 16 minutes per case.

A limitation to most of the aforementioned MRI-TRUS fusion algorithms is the need

for manual intervention during the biopsy. All of the previously described methods

rely on user interaction to identify the location of the prostate on TRUS, either by

selecting fiducials or delineating the prostate [30, 60, 62–67]. Apart from the increase

in procedure time and patient discomfort caused by manual intervention during the

biopsy procedure, manual intervention adds a source of variability into the registration

algorithm. Inter-observer variability for manual prostate delineation on MRI is reported
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to be 2.5 ± 1.2 mm [61]. Inaccuracies in selecting landmarks or delineating prostate

boundaries manually may introduce error into the registration, although we are not

aware of any studies that have explicitly reported this variation.

2.2 Novel Contributions and Brief Overview of Multi-Attribute Prob-

abilistic Prostate Elastic Registration (MAPPER)

Multi-Attribute Probabilistic Prostate Elastic Registration (MAPPER) differs from

state-of-the-art MRI-TRUS fusion algorithms in that it does not require manual in-

tervention during the biopsy procedure to perform registration. MAPPER presents

two novel contributions: a new method to estimate the location of the prostate on

TRUS and a novel image registration metric to align a binary mask of the prostate to

a probabilistic map of its location.

The first novel contribution of MAPPER allows for estimation of the location of

the prostate on TRUS. This estimation is done by creating a probabilistic map of

the prostate location that combines texture and spatial priors pertaining to prostate

appearance. This approach was motivated by the utility of texture features and spatial

location in identifying the prostate location on medical imagery [74–77]. In much the

same way MAPPER calculates a probabilistic map of the prostate location on TRUS

in order to facilitate registration.

The spatial prior, calculated from a set of training images, describes the probability

of a pixel corresponding to the prostate according to spatial location relative to the

TRUS probe. The texture prior, calculated as a Gaussian model from a set of texture

features, describes the probability of a pixel corresponding to the prostate according to

its local texture properties. While, Cośıo [77] considered texture and spatial priors to

segment the prostate on TRUS, MAPPER differs in several notable ways. (1) Cośıo [77]

considered only pixel intensity while MAPPER considers local intensity and texture

properties, (2) Cośıo [77] gave a hard decision (0 or 1) to each pixel while in MAPPER

each pixel has a continuous probability value contained in the range of 0 to 1, (3) Cośıo

[77] considered the texture and spatial priors jointly while in MAPPER we assume the
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texture and spatial priors are independent, and (4) Cośıo [77] applied their methodology

to segment the prostate on TRUS while MAPPER is applied to the registration of

prostate MRI and TRUS.

The choice of texture features used to calculate the texture prior has important

implications for the accuracy of MAPPER. Texture features which distinguish between

prostate and background pixels will result in a more accurate registration compared to

texture feature which are unable to distinguish between prostate and background pixels.

In this work, several different types of texture features are considered including first-

order texture features (mean, median, range, variance), edge detecting texture features

(Gabor wavelet), and ultrasound specific features (Rayleigh, Nakagami m-parameter).

The Rayleigh and Nakagami m-parameter texture features were considered because

of their demonstrated utility in describing the statistics of different tissue types in

ultrasound imagery [78,79].

The inclusion of texture-based probability makes our registration algorithm sensi-

tive to TRUS image appearance. Hence, it is important that TRUS imagery has a

consistent appearance, in terms of pixel intensity and texture characteristics. However,

ultrasound imagery may have attenuation artifacts, where pixels closer to the ultra-

sound probe appear brighter than pixels far away. Attenuation is caused by signal loss

as the ultrasound waves propagate through tissue [80,81]. As the TRUS probe is circu-

lar, variations in image intensity will be along radial lines from the probe. To account

for changes in attenuation, correction methods have been developed [81]. Attenuation

correction of TRUS imagery has been demonstrated to be important for segmentation of

the heart on echo-cardiograms [81,82]. In this work, attenuation correction is employed

to facilitate and improve image registration.

The second novel contribution of MAPPER is a registration metric to align a binary

mask onto a probabilistic model for registration of the T2-weighted MRI segmentation

to the probabilistic map of the prostate location on TRUS. The similarity metric is

calculated by combining the probability of individual pixels belonging inside and outside

the prostate, the goal being to maximize the likelihood of accurate alignment of the

prostate segmentation on MRI to the probabilistic map of prostate location on TRUS.
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The rationale behind the metric is that it should return a high value for transformations

where regions inside the MRI prostate segmentation align with pixels that have a high

probability of being prostate. Conversely, the similarity metric should yield a low value

for transformations where regions inside the MRI prostate segmentation align with

pixels that have a low probability of being prostate.

2.3 Multi-Attribute Probabilistic Prostate Elastic Registration (MAP-

PER)

2.3.1 Notation

A 3D MRI volume Cm = (Cm, fm) is defined by a set of 3D Cartesian coordinates Cm

and the image intensity function fm(c) : c ∈ Cm. The 3D prostate segmentation result

is represented by Gm = (Cm, gm) such that gm(c) = i for a pixel c belonging to class i,

where i = 1 represents the prostate and i = 0 represents the background. A 3D TRUS

volume Cu = (Cu, fu) is defined in a similar way as Cm. From Cu a probabilistic map

CP
i = (Cu,Pi(c)) is calculated, where Pi(c) : c ∈ Cu is the probability of the pixel c

belonging to class i. Table 2.2 lists the notation used to describe MAPPER. Figure 2.2

displays a flowchart of our methodology which consists of the following three modules:

• Module 1: Segment the prostate on MRI prior to TRUS acquisition via a semi-

automated algorithm.

• Module 2: Create a multi-attribute probabilistic map of prostate location on

TRUS. As an initial step attenuation correction is performed on the TRUS im-

agery. The probabilistic map is created by, (a) determining a spatial-based prob-

ability of the prostate on TRUS, (b) calculating a texture-based probability of

the prostate on TRUS, and finally (c) estimating the probability of each pixel be-

longing to the prostate by combining the spatial and texture-based probabilities.

• Module 3: Register MRI prostate segmentation and TRUS probabilistic map.

Registration is performed via an (a) affine transform to account for translation,
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Figure 2.2: Flowchart for MAPPER comprises the following modules: (1) Prostate
segmentation on MRI using a semi-automated algorithm (prostate segmentation shown
in pink); (2) Construction of multi-attribute probabilistic model of prostate location on
TRUS (blue corresponds to pixels least likely to belong to the prostate, red corresponds
to pixels most likely to belong to the prostate). The probabilistic prostate estimation
model consists of estimating (a) likely location of the prostate on TRUS (spatial-based
probability) and (b) likely appearance of the prostate on TRUS (texture-based proba-
bility); These features are then combined to obtain a multi-attribute probability map
of the prostate location on TRUS. (3) Registration of MRI segmentation to the prob-
abilistic map of prostate location on TRUS by (a) affine (translation, rotation, scale)
registration, followed by (b) elastic registration.
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Notation Description Notation Description

Cm 3D MRI image scene. Pi[F
u(c)]

Probability of F u(c)
belonging to class i.

Cm 3D grid of pixels of Cm. Ωui
Collection of pixels in Cu

that belong to class i.

Gm
3D MRI prostate
segmentation.

µFi
Mean vector of F u(c) for

Ωui .

Cu 3D TRUS image scene. ΣFi
Covariance matrix of

F u(c) for Ωui .

Cu 3D grid of pixels of Cu. G̃u
Estimate of 3D TRUS
prostate segmentation

fu(c)
TRUS image intensity
function for c ∈ Cu.

Tm→u Transformation function.

Gu
3D TRUS prostate

segmentation.
S[Tm→u(Gm), Cu]

Similarity metric for
Tm→u(Gm) and Cu.

Pi(c)
Probability of belonging
to class i for c ∈ Cu.

R(·)
Regularization metric for

a transformation.

Ωmi
Collection of pixels in Cm

that belong to class i.
pe

Control point location
defined on Cu.

f̃u(c)
Attenuation corrected
TRUS image intensity
function for c ∈ Cu.

E[pe]
Expected location of
control point pe.

F u(c)
Set of texture features for

c ∈ Cu.
N (pe)

Set of neighborhood
control points for pe.

Table 2.2: List of notation used to describe MAPPER.

rotation, and scale differences between images followed by (b) elastic transform

to account for differences in prostate deformation.

2.3.2 Module 1: Prostate Segmentation on MRI

In this work, the prostate is segmented using a semi-automated algorithm based on the

Multi-Feature Appearance (MFA) prostate segmentation scheme described in Toth and

Madabhushi 2012 [74]. Figure 2.3 displays the algorithm used to semi-automatically

segment the prostate on MRI. Since this work has been previously published, this

method is only briefly described here and we refer the reader to Toth and Madabhushi

[74] for additional details. The workflow comprises the following main steps.
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Figure 2.3: Flowchart for
the semi-automated prostate
segmentation scheme on MRI.
Workflow comprises the fol-
lowing steps. (1) Selection of
a bounding box (blue) on the
MRI containing the prostate.
(2) Automated segmentation of
the prostate via a Multi-feature
Appearance (MFA) model. The
MFA estimated prostate sur-
face (pink) is displayed to the
user. (3) If manual correction
is necessary, landmark points
(green) can be placed on the
true surface of the prostate, the
prostate segmentation is then
recalculated. Steps 2 and 3
are then iterated until the user
determines the segmentation is
accurate.

1. Select Bounding Box: A bounding box of the region containing the prostate

is manually selected.

2. Calculate Segmentation: The MFA algorithm calculates the best segmentation

of the prostate within the bounding box region, using shape and appearance

features as described in Toth and Madabhushi [74].

3. Refine Segmentation: The segmentation may then be refined by selecting land-

mark points on the surface of the prostate. The landmark points constrain the

MFA to always include the points on the surface of the prostate.

4. Iterative Refinement: Steps 2 and 3 are repeated until an accurate segmenta-

tion is achieved.

The accuracy of the MFA segmentation scheme is dependent on the selection of

the bounding box (detailed in Step 1) and the landmark points (detailed in Step 3).

Hence a sensitivity analysis of the MFA prostate segmentation scheme is performed (see

Section 2.5.4).
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2.3.3 Module 2: Probabilistic Model of Prostate Location on TRUS

As an initial step attenuation correction [81] is performed on Cu to account for spatial

variations in image intensity. A probabilistic map of prostate location on TRUS defined

as Pi(c) is then calculated by (1) extraction of texture features from Cu defined as F u(c),

and (2) estimation of the likely prostate location (spatial prior) and appearance (texture

prior).

Attenuation Correction

Attenuation correction is performed as follows. For each pixel c ∈ Cu with a set of 3D

Cartesian coordinates expressed as Xi : i ∈ 1, 2, 3 defined such that the probe center is

Xi = 0 : i ∈ 1, 2, 3. To perform attenuation correction each pixel is first transformed

into 3D polar coordinates as follows,

θ1 = (X1)
2 + (X2)

2,

θ2 = tan−1
(X1

X2

)

,

θ3 = X3. (2.1)

Image attenuation is modeled within polar coordinates as,

fu(θi) = β(θi)f̃
u(θi) + η(θi), (2.2)

where f̃u(θi) is the true, unknown TRUS signal associated with the location θi : i ∈

1, 2, 3. η(θi) is additive white Gaussian noise assumed to be independent of f̃u(θi) as

suggest in Xiao et. al. [81]. Similar to Cohen et. al. [83], β(θi) may be estimated via

convolution of a smoothing Gaussian kernel with the image, i.e. a low-pass filtering of

the signal. The true underlying signal may then be recovered using the equation,

f̃u(θi)) = exp{log[fu(θi)]− lpf(log[fu(θi)])}, (2.3)

where lpf is a low-pass filter. f̃u(θi) is then converted back into 3D Cartesian coor-

dinates, f̃u(c) : c ∈ Cu. Figure 2.4 illustrates an example study where attenuation

correction improved the results by over 1 mm.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.4: The panels reveal the importance of attenuation correction and the corre-
sponding texture feature on MRI-TRUS registration. Panels (a) and (e) display the
TRUS image without and with attenuation correction, respectively; (b), (f) the cor-
responding median feature; (c), (g) the corresponding probability models, where blue
corresponds to those pixels least likely to belong to the prostate and red corresponds to
those pixels most likely to belong to the prostate; and (d), (h) the final registration re-
sults. Light grey arrows in (d) and (h) show boundary regions which are well aligned on
MRI and TRUS, while dark grey arrows show boundary regions which are misaligned.
The region highlighted by the red circle in (b) and (f) show a region where attenuation
correction improved the texture feature contrast between the prostate and background
pixels. The corresponding region on the probability models is highlighted by the black
circle in (c), (g). Note that the image with attenuation correction (g) is better able to
distinguish between pixels belonging to the prostate from the background, resulting in
a more accurate registration.

Feature Extraction

For each pixel f̃u(c) : c ∈ Cu a set of texture features F u(c) are calculated. The texture

features chosen describe (a) intensity for a pixel or a region (intensity, mean, median),

(b) intensity spread in a region (range), (c) intensity variation (variance, Rayleigh,

or the Nakagami m-parameter), (d) edge information (Gabor wavelet). Figure 2.5

illustrates 4 representative texture features: (b) median, (c) range, (d) Rayleigh, and

(e) Gabor wavelet.

Features that describe the intensity characteristics of a region are determined by

defining a neighborhood of pixels N (c) for c ∈ Cu and then calculating a texture feature
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(a) (b) (c) (d) (e)

Figure 2.5: The panels illustrate (a) the original TRUS image and 4 texture features,
(b) median, (c) range, (d) Rayleigh, and (e) Gabor wavelet. For all texture features
N (c) is defined A a spherical neighborhood of size 1 mm3. The Gabor wavelet was
calculated with a frequency of .01 Hz and an angle of π/4.

value. For instance the mean intensity value is calculated as fm(c) =
1

|N (c)|

∑

d∈N (c)

[f̃u(d)].

The median intensity value defined as fd(c) is similarly calculated for the median filter

operator. The range texture feature defined as fr(c) describes the range of inten-

sity values within N (c) for c ∈ Cu. The range texture feature value is calculated as

fr(c) = max
d∈N (c)

[f̃u(d)]− min
d∈N (c)

[f̃u(d)].

Intensity variation texture features are calculated to describe the spread of pixel

intensity values assuming a specific underlying distribution. For instance the variance

texture feature assumes that the underlying pixel distribution is Gaussian and is cal-

culated as,

fv(c) =

√

√

√

√

1

|N (c)|

∑

d∈N (c)

[f̃u(d)− fm(c)]2. (2.4)

In a similar manner, the Rayleigh texture feature assumes an underlying distribution

that describes well formed ultrasound scatter and is defined as,

fy(c) =

√

√

√

√

1

2|N (c)|

∑

d∈N (c)

[f̃u(d)]2. (2.5)

The Nakagami m-parameter defined as fn describes the shape of a distribution that

is generalizable across different scatter conditions on ultrasound. To calculate the

Nakagami m-parameter the iterative method described in Greenwood and Durand is

used [84].

Finally, edge information is calculated using a set of texture features extracted from

Gabor wavelets. Gabor wavelets are calculated by modulating a complex sinusoid with
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a Gaussian function as described in [85]. The Gabor wavelets when convolved with

the TRUS imagery return high values for regions with strong edges and low values

for regions with weak edges. The feature set F u(c) is then defined as a subset of

[fm, fd, fr, fv, fy, fn, fg].

Calculating Probability Map of Prostate Location on TRUS

The probability of pixel c belong to class i, defined as Pi(c), is dependent on the location

of c and the feature set F u(c). We define the probability of a location c belonging to

tissue class i as Pi(c). Similarly, the probability of a set of features F u(c) belonging to

tissue class i is Pi[F
u(c)].

In this work, we assume that Pi(c) and Pi[F
u(c)] are independent, and hence the

final probability Pi(c) may be expressed as,

Pi(c) = Pi[F
u(c)]× Pi(c). (2.6)

Below the calculation of Pi(c) and Pi[F
u(c)] is described in further detail.

Spatial Probability: Pi(c) is the likelihood of pixel c belonging to class i based

on its spatial location. Pi(c) is calculated from a set of J training studies Cuj : j ∈

{1, . . . , J}. For each study the prostate has been delineated by an expert yielding the

3D prostate segmentation Guj . The origin for each study is set as the center of the

TRUS probe, so that the location of pixel c has a consistent position relative to the

probe across all studies. Pi(c) is the frequency of pixel c being located in the prostate

across J training studies and is defined as,

Pi(c) =
1

J

J
∑

j=1

guj (c). (2.7)

Feature Probability: The probability Pi[F
u(c)] is the likelihood of a set of features

F u(c) associated with pixel c belonging to class i. In this work, we assume F u(c) may be

accurately modeled as a multivariate Gaussian distribution with a mean vector µFi and

a covariance matrix ΣFi for the ith class. Given the Gaussian distribution parameters
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µFi and ΣFi the probability Pi[F
u(c)] is calculated as,

Pi[F
u(c)] =

1

2πk/2(ΣFi )
1/2

e[(F
u(c)−µFi )′(ΣF

i )−1(Fu(c)−µFi )], (2.8)

where k is the number of features in F u(c). However µFi and ΣFi are unknown, therefore,

these parameters must be estimated.

To estimate µFi and ΣFi , first the location of the prostate on TRUS is estimated

by assuming an initial rigid transformation T r (Section 2.3.4). The estimated prostate

segmentation is then defined as Ĝu = T r(Gm) where Ĝu = (Cu, ĝu) and ĝu(c) = i

for a pixel c estimated to belong in class i. µFi and ΣFi are then calculated as,

µFi =
1

|Ωui |

∑

ĉ∈Ωu
i
F u(ĉ), where Ωui is the collection of pixels in Cu belonging to class i

according to ĝu(c). ΣFi is the covariance matrix from class i similarly defined for F u(ĉ)

and Ωui .

2.3.4 Module 3: Registration of MRI Segmentation and TRUS Prob-

abilistic Model

To goal of image registration is to find a transformation Tm→u to spatially map Cm

onto Cu. In this work, Tm→u is calculated to align Gm and Cu. Tm→u is calculated via

the equation,

Tm→u = argmax
Tm→u

[

S
[

Tm→u(Gm
]

, Cu)− αR(Tm→u)
]

, (2.9)

where S
[

Tm→u(Gm), Cu
]

is a similarity metric between T (Gm) and Cu. R(Tm→u) is a

regularization function which penalizes Tm→u for not being smoothly varying and α

reflects the weight of R(·) relative to S(·, ·).

The similarity metric S(·, ·) is calculated as,

S(Tm→u(Gm), Cu) = Π1
i=0Πc∈Cu

[

Pi[F
u(c), c]|Tm→u(Gm) = Ωmi

]

, (2.10)

where Ωmi is the collection of pixels in Cm belonging to class i. Tm→u is initialized with

a rigid transformation T r such that overlap between Gm and P1(c) is maximized. The

rigid transform is calculated as,

T r = argmax
T r

[

Πc∈CuP1(c)× T r[gm(c)]
]

. (2.11)



25

Given the initial alignment T r, an affine registration T a followed by an elastic registra-

tion T e is used to align the MRI and TRUS images. The final transformation is then

calculated as Tm→u = T e
(

T a(T r)
)

.

Affine Registration

For the affine transformation T a no regularization R(T a) is used since T a is by definition

smoothly varying. Not defining R(T a) is equivalent to setting α = 0.

Elastic Registration

An elastic B-spline-based transformation T e is used to recover differences in prostate

deformation between MRI and TRUS [86]. T e is defined by a set of knots which

determine the transformation T e for all c ∈ Cm. Each knot, defined by its location

pe ∈ Cm, is allowed to move independently (see Figure 2.6).

The term R(T e) is added to constrain T e to only those transformations which are

likely to occur. R(T e) is calculated as,

R(T e) =
∑

pe∈T e

(1− e−‖pe−E[pe]‖), (2.12)

where pe is the location of a B-Spline knot and E[pe] is the maximum likelihood estimate

of the location for knot pe. In this work E[pe] is estimated as,

E[pe] =
1

|N (pe)|

∑

p̂e∈N (pe)

p̂e (2.13)

where N (pe) is the set of knots which neighbor pe. Thus E[pe] is the average over

the set of knots which neighbor the knot pe. Figure 2.6 gives a 2D illustration of the

function R(T e). In our experiments R(T e) is calculated in 3D.

R(T e) is defined such that if pe = E[pe] then the knot pe will not contribute to the

value of R(T e). As pe moves farther from E[pe], the value 1 − e−‖pe−E[pe]‖ increases

and contributes more to the value of R(T e). Hence R(T e) is lower for evenly spaced,

smoothly varying knots compared to randomly spaced, erratically varying knots. De-

formations that are not evenly spaced and smoothly varying will only occur if they

improve the similarity metric S(·, ·).
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(a) (b) (c) (d)

Figure 2.6: A graphical illustration of the regularization constraint R(T e). Black points
correspond to the B-Spline knot locations. A knot of interest pe is shown enclosed by
a red square. (a) The initial knot locations are used to determine neighborhood knots
for pe and denoted as N (pe). Knots corresponding to N (pe) are shown enclosed by
green circles. The expected location of pe defined as E[pe] is shown enclosed by a blue
triangle. (b) Example where R(T e) would have a high value because pe is far from
E[pe]. (c) and (d) would give a low R(T e) value because pe is near E[pe]. For (d) the
deformation not local to pe is not taken into account when considering E[pe], other
knots may contribute to a higher R(T e) compared to (c).

2.4 Experimental Design and Results

2.4.1 Dataset Description

MAPPER is evaluated on two different cohorts of MRI and TRUS. The first cohort

comprised 6 patients with pelvic phased-array coil MRI and 2D ultrasound. The second

cohort comprised 7 patients with endorectal coil MRI and 3D ultrasound. For all

studies an expert radiologist manually selected corresponding fiducials on the MRI

and TRUS images. Corresponding fiducials include, the urethra, the center for those

locations deemed suspicious for prostate cancer, and the center of small calcifications.

In addition, an expert radiologist manually delineated the prostate boundary on MRI

and TRUS.

Dataset 1 (D1): Side-firing Transrectal Probe

T2-weighted MRI was acquired using a Siemens 1.5 T scanner and a pelvic phased-

array coil for 6 patients under IRB approval. TRUS imagery was acquired using a

B-K Profocus probe that acquires 2D transverse B-mode images of the prostate. The

TRUS probe was attached to a mechanical stepping device used to translate the probe

perpendicular to the axial plane at 2 mm intervals. For each patient one TRUS volume
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was acquired, where each volume consists of a set of parallel B-mode planes. A single

expert radiologist selected corresponding fiducials between all 6 MRI-TRUS pairs.

Dataset 2 (D2): Volumetric End-firing Transrectal Probe

T2-weighted MRI was acquired using a General Electric (GE) 3.0 T scanner and an

endorectal coil for 7 patients under IRB approval. TRUS imagery was acquired using a

GE 4DE7C probe, that acquires 3D data in a single, multi-plane sweep of the prostate.

For each patient 1 − 3 volumes were acquired, where each volume is acquired directly

from the ultrasound device. A total of 13 MRI-TRUS pairs were acquired for the 7

patients. Two expert radiologist selected corresponding fiducials between the MRI-

TRUS pairs. Expert 1 selected corresponding fiducials for 10 studies and Expert 2

selected corresponding fiducials for 5 studies.

2.4.2 Performance Evaluation

Root Mean Squared Error (RMSE)

RMSE is a measure of how well two corresponding point sets align; a RMSE of 0

represents perfect alignment. A manually selected set of fiducials on MRI is defined

as pmi : i ∈ {1, . . . , N}. Similarly, a set of fiducials on TRUS is defined as pui : i ∈

{1, . . . , N}, such that pmi corresponds to pui . RMSE is then calculated as
1

N

∑N
i=1(p

m
i −

pui )
2.

Mean Absolute Deviation (MAD)

MAD is a measure of the average extent of variation between a ground truth man-

ual delineation and an automatically determined delineation. Given a ground truth

prostate segmentation Gm, the collection of pixels in Cm belonging to class i is defined

as Ωmi . Similarly, for an automatically generated prostate segmentation Ĝm, obtained

as described in Section 2.3.2, Ω̂mi is defined. MAD is calculated as,

1

|p|

∑

p∈Ωm
i

min
o∈Ω̂m

i

||p − o||. (2.14)
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Figure 2.7: RMSE for 5 texture features with and without attenuation correction.
Attenuation correction has the positive effect of improve registration accuracy indepen-
dent of the choice of texture feature.

2.4.3 Implementation Details

All methods described in this Chapter were implemented using the Insight Segmentation

and Registration Toolkit (ITK) version 4.5 [87]. All texture features were calculated

using a N (c) with a spherical neighborhood of size 1 mm3, determined empirically to be

large enough to accurately represent local image statistics while small enough to capture

only local image statistics. Both T a and T e were found via a Powell optimization scheme

using a single resolution [88].

2.5 Experimental Results and Discussion

2.5.1 Experiment 1: Effect of Attenuation Correction on Registration

Accuracy

Subtle differences in intensity characteristics across the TRUS image may lead to a prob-

abilistic model Pi(c) that does not accurately model the prostate location. Incorrect

estimation of Pi(c) can result in sub-optimal image registration. In this experiment, the

effects of attenuation correction, as described in Section 2.3.3, are evaluated on registra-

tion accuracy in terms of RMSE. MAPPER is evaluated with and without attenuation
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correction for D1.

Figure 2.7 illustrates the quantitative results for T e with and without attenuation

correction for 5 texture features. Attenuation correction has two effects on the registra-

tion results (1) it reduces RMSE variation across studies and, therefore, gives a more

robust image registration and (2) it lowers RMSE and, hence, provides a more accu-

rate registration accuracy. The positive effects of attenuation correction on registration

occur independent of texture feature used.

2.5.2 Experiment 2: Selection of Regularization Weight

The regularization weight α controls the relative importance of a smooth Te and ac-

curately registering the prostate mask on MRI to the TRUS probabilistic model (i.e.

maximizing Equation 2.10). To assess the sensitivity of the performance of MAPPER

on the choice of α, we varied α for {100, 1, 1E-2, 1E-4} and assessed RMSE for D1.
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Figure 2.8:
RMSE for
D1 as a
function of
α for two
features: (a)
Rayleigh and
(b) variance.

Figure 2.8 illustrates the RMSE for each set of regularization parameters α evaluated

for two texture features, (a) Rayleigh and (b) variance. RMSE changes little with

respect to α, even across the wide range of values considered (α ∈ {100, 1, 1E-2, 1E-4}).

2.5.3 Experiment 3: Selection of Features For Creating Probabilistic

Map of Prostate on TRUS

The accuracy of Pi(c) depends on the choice of texture features in F u(c); texture

features which are best able to distinguish prostate from non-prostate tissue will lead to
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Figure 2.9: RMSE for T e and T a evaluated over 5 texture features on (a) D1 and (b) D2.
For D1 variance and Gabor wavelet texture features were the best performing. For D2

intensity and Rayleigh were the best performing texture features. The difference in the
best performing texture features for D1 and D2 demonstrates that prostate appearance
may be specific to the TRUS probe.
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(a) (b) (c)

Figure 2.10: An example MRI-TRUS registration on D1 for T e. (c) Checkerboard
overlay of the MRI and TRUS images. Dotted lines on checkerboard image reveal the
delineation of the central gland surface for MRI (green) and TRUS (orange).

a more accurate Pi(c) and therefore to a more accurate image registration. MAPPER

is evaluated for 7 texture features described in Section 2.3.3 in terms of RMSE for

both datasets. Additionally, for D2 RMSE is compared between expert radiologists to

evaluate inter-observer variability.

Figure 2.9 illustrates the RMSE for 5 of the 7 texture features evaluated for (a)

D1 and (b) D2. Each dataset has a different set of best performing texture features.

For D1, the side-firing TRUS probe, variance and Gabor wavelet texture features were

best able to align the MRI and TRUS imagery. For D2, the end-firing TRUS probe,

intensity and Rayleigh were identified as the best performing texture features. The

selection of different texture features for D1 and D2 most likely reflects differences in

imaging characteristics between D1 and D2. Although MAPPER was able to align

images with an average RMSE of approximately 3 mm the results here clearly reflect

the importance of feature selection for accurate registration.

D1, where MRI was acquired with a pelvic phased-array coil, demonstrates an im-

provement in RMSE between T a and T e. In comparison D2, where MRI was acquired

with an endorectal coil, had relatively little improvement in RMSE between T a and

T e. These differences in RMSE improvement between T a and T e are indicative of D1

having larger differences in prostate deformation between MRI and TRUS compared

to D2. Figure 2.10 shows the registration result for a representative study from D1

while Figure 2.11 shows a representative registration result for a study from D2. For
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(a) (b) (c)

Figure 2.11: An example MRI-TRUS registration on D2 for T e. (c) Checkerboard
overlay of the MRI and TRUS images. Dotted lines on checkerboard image reveal the
delineation of the surface of a lateral lobe of the prostate for MRI (green) and TRUS
(orange).

both cases MAPPER aligns the prostate surface as well as internal structures which

are highlighted by dotted lines.

MAPPER is also evaluated on D2 with respect to fiducials selected on MRI and

TRUS by two expert radiologists. Figure 2.12 presents RMSE for each of the two

experts for T e. For the best performing texture features (Rayleigh, intensity) the

difference in RMSE between the two experts is roughly 0.3 mm.
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Figure 2.12: RMSE for T e evaluated on D2 over two different expert observers and 5
texture features: Gabor wavelet, intensity, median, Rayleigh, and variance.
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Method Reference RMSE

Urostation Reynier et. al. [66]
2.07 ± 1.57 mm (urethra)

1.11 ± 0.54 mm (prostate surface)

ProFuse
Narayanan et. al. [64] 3.06 ± 1.41 mm (phantom)
Karnik et. al. [67] 2.13 ± 0.80 mm

UroNav Xu et. al. [62] 2.3± 0.9 mm (phantom)

- Hu et. al. [65] 2.40 mm (median)

MAPPER -
3.36 ± 1.10 mm (D1)
3.14 ± 0.75 mm (D2)

Table 2.3: A comparison of state-of-the-art MRI-TRUS fusion algorithms and MAP-
PER in terms of RMSE. MAPPER was rigorously evaluated across two datasets from
two different institutions, with different TRUS probes, MRI coils and field strengths.
Additionally, MAPPER was evaluated with respect to fiducials identified by two differ-
ent experts. The state-of-art algorithms typically report a single RMSE value evaluated
at a single institutional, hence, drawing conclusions about the relative performance of
MAPPER compared to state-of-the-art algorithms is difficult.

MAPPER is able to register MRI-TRUS images with a RMSE of approximately 3

mm for D1 and D2. MAPPER compares favorably with state-of-the-art MRI-TRUS

fusion methods (see Table 2.3). Although MAPPER has a slightly higher RMSE com-

pared to some of the methods listed in Table 2.3, it is automated for all steps after

the TRUS acquisition. All other methods listed in Table 2.3 require manual user in-

tervention during the biopsy procedure to align MRI and TRUS images. MAPPER

was evaluated for two independent datasets acquired at two different institutions with

different TRUS probes, MRI coils and field strength. Hence it is notable that MAP-

PER is robust in terms of RMSE across D1 and D2. It should be noted that comparing

performance against previously published methods is challenging at best, due to the

use of different (a) datasets, (b) strategies for determining ground truth, and (c) eval-

uation performed in either 2D or 3D. Given that MAPPER was evaluated on two

completely different datasets and against multiple ground truth annotations from dif-

ferent experts, the accuracy of methods in Table 2.3 may reflect a less robust analysis

rather than better registration performance.

To further evaluate the accuracy of MAPPER, surface renderings of the prostate

are created as shown in Figure 2.13, blue and red represent regions where the MRI was
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(a) (b) (c)

Figure 2.13: (a) Prostate surface rendering with the prostate base facing toward the
right, blue and red represent regions where the MRI was misaligned external and in-
ternal to the prostate surface on TRUS, respectively. 2D axial TRUS image displaying
a region of large misalignment (b) distal to the TRUS probe and (c) near the TRUS
probe, in both images the brown region represents the expert delineation of the prostate
on TRUS.

misaligned external and internal to the prostate surface on TRUS, respectively. In the

example shown in Figure 2.13 there are two regions of misalignment, near the rectal

wall (yellow) and near the bladder (blue). Figure 2.13(b) illustrates an axial plane

of the TRUS displayed with two boundaries overlaid. These represent (1) the axial

cross section of the surface rendering shown in Figure 2.13(a) and the true prostate

boundary (brown line). The hyperechoic region distal to the TRUS probe caused Pi(c)

to inappropriately model the location of the prostate, resulting in a registration error

of ≈ 4 mm. Similarly Figure 2.13(c) illustrates a different axial plane of the TRUS

displayed with the cross section of the surface rendering shown in Figure 2.13(a) and

the true prostate boundary (brown line). Note that this misalignment is much less

pronounced, representing a registration error of ≈ 1 mm. Near the rectal wall the error

is primarily due to T e being unable to fully account for the subtle differences in prostate

deformation.

One shortcoming of MAPPER is that poor TRUS image quality negatively impacts

the registration results due to the reliance of MAPPER on TRUS image appearance

for the texture-based probability. For other MRI-TRUS fusion methods, manual inter-

vention is used to determine the prostate location. Poor TRUS image quality may also
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(a) (b) (c)

(d) (e) (f)

Figure 2.14: Two cases where poor TRUS image quality negatively impacted regis-
tration performance. (a)-(c) An example of a poor registration from D1 where (b) the
TRUS has severe intensity artifacts. Note that for this study, intensity on the TRUS
appears blurry with poor definition of the prostate boundary. Due to these artifacts,
MAPPER fails to determine the location of the prostate on TRUS, leading to a poor
registration highlighted by the red circle. (d)-(f) A study from D2 where (e) the TRUS
has a strong shadowing artifacts and abnormal prostate deformation on the right hand
side of the image. MAPPER is unable to account for these differences as is visible in
(f) the checkerboard image and highlighted by the red circle.

effect these methods, if the expert observer is unable to provide accurate manual inter-

vention. Figure 2.14 shows two examples, one from each dataset evaluated, where poor

TRUS image quality resulted in inaccurate alignment of the TRUS and T2-weighted

MRI. Both of these studies were clear outliers, in terms of poor image quality and/or

large deformation in the prostate.

2.5.4 Experiment 4: Effects of Prostate MRI Segmentation Accuracy

The accuracy of MAPPER is evaluated in the context of variation in segmentation per-

formance on account of different levels of manual intervention to segment the prostate.

For both D1 and D2 the top performing texture feature identified in Experiment 3

(Section 2.5.3) were used to perform this evaluation. Different levels of user interaction
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Figure 2.15: RMSE as a function of prostate segmentation algorithm used for (a)
variance for D1 and (b) intensity for D2. Additionally, registration accuracy versus
segmentation accuracy is illustrated for (c) variance for D1 and (d) intensity for D2.
Accurate segmentation schemes, which require more manual intervention, result in more
accurate image registration.

were evaluated via the following strategies.

• Bounding box: Manual selection of bounding box of the region containing the

prostate prior to MFA segmentation.

• Manual correction: Manual selection of bounding box of the region containing

the prostate and selection of landmark points to correct the automated segmen-

tation if necessary.

• Manual delineation: Manual delineation of the prostate on MRI by an expert

radiologist.
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(a) (b)

(c) (d)

Figure 2.16: 2.16(a) TRUS and (b)
corresponding MRI with prostate
segmentation for manual (green) and
bounding box-based segmentation
(red) with corresponding MRI-TRUS
registration from D2 for (c) manual
segmentation and (d) bounding-box
segmentation. The differences be-
tween the bounding-box segmentation
and the true location of the prostate
(manual segmentation) result in a
large misalignment in the prostate
surface for (d).

Figure 2.15 illustrates registration accuracy, in terms of RMSE, for each segmenta-

tion scheme. Manual prostate delineation, the most accurate segmentation scheme, also

has the best registration accuracy. The manual correction of the semi-automated seg-

mentation scheme resulted in an improve registration compared to the semi-automated

scheme without manual intervention.

For D2 there were outliers in terms of RMSE when utilizing the bounding box

segmentation method. Figure 2.16 shows one such outlier case, where registration error

occurs due to a mis-segmentation of the prostate boundary. The large discrepancies in

the prostate segmentation shown in Figure 2.16(b), caused inaccurate registration as

shown in Figure 2.16(d).

2.6 Concluding Remarks

This chapter presented a novel registration methodology, Multi-Attribute Probabilistic

Prostate Elastic Registration (MAPPER), to spatially align MRI and TRUS images

of the prostate. MAPPER was evaluated on 13 patient studies from two datasets–

Dataset 1 had 6 studies with a side-firing TRUS probe and 1.5 T surface coil MRI,

Dataset 2 had 7 studies with a volumetric end-firing TRUS probe and 3.0 T endorectal

coil MRI. RMSE for MAPPER was found to be 3.36 ± 1.10 mm for Dataset 1 and

3.14±0.75 mm for Dataset 2. Unlike previously described MRI-TRUS fusion algorithms

[30,60,62–67], MAPPER requires no manual intervention. Specifically, MAPPER uses
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a semi-automated segmentation scheme on MRI in conjunction with a probabilistic

map of the prostate location on TRUS to register MRI onto TRUS. Hence, MAPPER

automatically detects and aligns the prostate on MRI and TRUS, whereas state-of-

the-art methods rely on manual intervention to either delineate the prostate or select

corresponding fiducials on MRI and TRUS.

A limitation of this work is the use of the B-Spline transformations in Module 3

(Section 2.3.4), which recover non-linear deformations with few additional constraints,

to account for the difference in deformation of the prostate between MRI and TRUS

imagery. In this work, an additional regularization constraint was imposed to ensure the

underlying deformation in the prostate was smoothly varying. However, other trans-

formations such as Finite Element Models (FEM), which allow for explicit modeling of

tissue physics, could also potentially be used to drive the MRI-TRUS fusion [65]. In

future work, other transformations and regularization constraints will be considered to

model the differences in deformation of the prostate between MRI and TRUS imagery.

As evidenced by the results in Experiment 4, the accuracy of MAPPER is reliant on

an accurate segmentation of the prostate on MRI. The prostate segmentation algorithm

is performed offline prior to the biopsy procedure using a Multi-Feature Appearance

(MFA) model of prostate appearance on MRI previously described in Toth and Mad-

abhushi [74]. Future work will be directed towards evaluating in detail the performance

of MAPPER for (a) independent manual delineations of the prostate and (b) different

semi-automated and automated prostate segmentation algorithms.
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Chapter 3

Registration of Whole Mount Histopathology to Fused

Magnetic Resonance Imaging-Transrectal Ultrasound

MRI-TRUS-guided biopsy relies on manual visual assessment of the multi-parametric

MRI to determine needle placement [28–31]. Identifying and localizing prostate cancer

on in vivo imagery, such as MRI or TRUS, is a difficult task and associated with a high

inter- and intra-observer variability [32]. Hence, there is a need to develop computerized

decision support tools that can aid clinicians by computing quantitative measures of

prostate cancer presence and, in particular, aggressive prostate cancer presence on fused

MRI-TRUS imagery [25,34–40].

To distinguish cancer from benign prostate tissue on in vivo imagery it is necessary

to quantitatively model prostate cancer appearance using a set of training images with

delineated prostate cancer spatial extent. However, due to the previously described

problems identifying prostate cancer location on in vivo imagery, utilizing expert anno-

tations obtained on MRI as prostate cancer ground truth results in suboptimal classifier

performance [41]. Hence, relying on expert annotations obtained from MRI is highly

subjective and not a reliable ground truth of prostate cancer spatial extent.

Prostate cancer spatial extent can only be definitively obtained from manual pathol-

ogist annotation on whole mount histopathology (WMH). Therefore there is a need to

map the pathologist annotation onto MRI-TRUS to obtain ground truth prostate cancer

spatial extent on the fused MRI-TRUS. However there are several unique challenges to

registering WMH to in vivo radiological imagery, such as MRI or TRUS. The primary

challenges to register WMH and in vivo radiological imagery are the following [89]:

1. Prostate deformation occurs during in vivo imaging due to the use of the TRUS

probe, MRI endorectal coil, or changes in bladder and rectum filling.
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(a) (b)

Figure 3.1: Example of corre-
sponding (a) 2DWMH section
and (b) and 2D MRI. (a) has
a large tear (green arrow) as
well as severe deformation to
the prostate gland compared
to (b) the MRI.

2. Tissue fixation and sectioning results in tissue shrinkage and distortion. Addition-

ally, there is often tissue loss due to surgical intervention and/or tissue processing.

3. Misalignment between the planes and orientation of the WMH tissue section and

the in vivo imagery.

Figure 3 shows a WMH section and corresponding T2-weighted MRI. This example

shows the difference in prostate shape due to the 3.1(b) endorectal coil, 3.1(a) prostate

shrinkage and tissue loss (green arrow) due processing of the histopathology sample.

Due to the difficulty to aligning WMH to in vivo imaging modalities, there has

been limited work in aligning WMH to MRI [90–94] and WMH to TRUS [95, 96],

several of these methods require additional ex vivo imagery to be acquired to guide

the registration scheme. However, acquiring these additional modalities is not part

of routine clinical care and, hence, is time consuming, expensive, and may require

additional imaging equipment. To overcome these challenges and account for the large

differences in prostate deforamtion between the two modalities we present Prostalign,

an interactive registration algorithm that aligns WMH and in vivo MRI images directly

by minimizing the distance between manually selected corresponding fiducials.

The remainder of this chapter is organized as follows. Section 3.1 provides an

overview of previous work in aligning in vivo prostate imagery with ex vivo WMH.

Section 3.2 describes the Prostalign algorithm used to align WMH to fused MRI-TRUS

imagery. Section 3.3 provides preliminary qualitative results for Prostalign. Finally,

concluding remarks on Prostalign are provided in Section 3.4.
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3.1 Previous Work Aligning Whole Mount Histopathology and In

Vivo Imagery

Due to the difficulty to aligning WMH to in vivo imaging modalities, there has been

limited work in aligning WMH to MRI [90–94] and WMH to TRUS [95, 96]. Methods

to align WMH onto MRI often leverage image similarity [93], corresponding fiducials

[89, 90, 92, 94], or surface correspondence [95, 96]. To the best of our knowledge WMH

has not been aligned to fused MRI-TRUS imagery.

3.1.1 Previous Work Aligning Whole Mount Histopathology and Tran-

srectal Ultrasound

Due to the poor resolution of internal anatomical detail of the prostate on TRUS,

most registration algorithms to align WMH to TRUS rely on matching the surface

of the prostate [95–97]. These methods first perform a volumetric reconstruction of

the 2D WMH images, in which individual 2D sections are aligned and deformation

differences between 2D sections are accounted for. The reconstructed 3D WMH is

then aligning to the prostate gland on 3D TRUS using the gland morphology to drive

the registration [97]. Moskalik et. al. acquired ex vivo ultrasound and aligned it to

WMH by identifying the prostate surface and urethra location and using these two

anatomical structures as fiducials to register the ex vivo ultrasound and WMH [95].

The ex vivo ultrasound was then aligned to in vivo TRUS. Similar methods have been

applied to ultrasound elastography [96]. Irregular and/or large deformations to the

prostate tissue may occur when sectioning and placing onto glass slides, and these

methods cannot account for such deformations if they occur internally to the surface

of the prostate gland.

3.1.2 Previous Work Aligning Whole Mount Histopathology andMag-

netic Resonance Imaging

MRI has a finer spatial resolution than TRUS, and is able to visualize more internal

landmarks. Hence, several methods to align WMH and MRI leverage internal landmarks
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Method 2D/3D Description

Park et. al.
[90]

3D Use of internal and external landmarks to guide WMH reg-
istration to block face photography. Block face photography
is then aligned to ex vivo MRI which is subsequently aligned
to in vivo MRI.

Orczyk et.
al. [91]

3D Use of internal landmarks to guide WMH registration to
block face photography. Block face photography is then
aligned to in vivo MRI.

Gibson et.
al. [92]

2D

Strand-like fiduicals are embedding in radical
prostatectomy specimens. These fiducals are visible on ex
vivo MRI and WMH and guide sectioning of the prostate
tissue and registration of the ex vivo MRI and WMH. Ex
vivo MRI is subsequently aligned to in vivo MRI.

Ward et.
al. [89]

Chappelow
et. al. [93]

2D Aligning WMH onto in vivo MRI leveraging image intensity
and texture features.

Zhan et. al.
[94]

2D Aligning WMH onto in vivo MRI leveraging automatically
detected landmarks.

Turkbey et.
al. [98]

2D The use of a patient specific 3D mold to determine slice
correspondence between MRI and WMH. Corresponding 2D
images are then registered.

Table 3.1: State-of-the-art MRI-WMH registration algorithms.

that are shared between modalities. Table 3.1 briefly describes the previous methods

presented to align MRI and WMH. These methods can be divided into (1) those that

first perform a volumetric reconstruction of the 2D WMH images and then register the

3D WMH to the 3D MRI and (2) those that first determine correspondence between

2D WMH and 2D MRI planar sections and then register 2D WMH onto 2D MRI.

Methods that first perform 3D WMH reconstruction often acquire intermediate ex

vivo imaging to help aid in the volumetric reconstruction of WMH or the registration

to in vivo imagery. In Park et. al. [90] WMH was aligned to block face photography

of the ex vivo prostate tissue specimens utilizing internal and external landmarks; the

block face photography was then used to guide volumetric reconstruction. The 3D

block face photography specimen is then aligned to ex vivo MRI utilizing internal and

external landmarks, and finally, ex vivo and in vivo MRI are registered using utilizing

internal and external landmarks. Another MRI-WMH registration method aligned ex

vivo MRI to block face photography prior to the prostate being embedding in paraffin;

WMH was then aligned to the block face photography and, hence, implicitly aligned
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to the MRI [91]. As noted in Park et. al. [90] performing several sub-registration

steps may be more accurate as the prostate is more similar between each sub-step

than directly registering from WMH to in vivo MRI. However, ex vivo MRI and block

face photography are not routinely acquired in a clinical setting. Ex vivo MRI can be

especially difficult to acquire as it requires access to an MRI scanner.

In Gibson et. al. [92] strand-like fiducials were embedded in the prostate after

radical prostatectomy. The prostatectomy specimen was then images with ex vivo MRI

and then sectioned such that the each WMH image corresponded to a single ex vivo

MRI 2D planar image. The fiducials were visible on the ex vivo MRI and WMH and

helped to guide the registration between the two modalities. Ward et. al. [89] extended

the methodology of Gibson et. al. [92] to align the ex vivo MRI onto in vivo MRI,

thereby allowing for mapping of WMH to in vivo MRI. However, manually altering

the prostatectomy specimens as done in this approach is often not feasible in a clinical

setting.

An automated method to align 2D WMH directly onto 2D in vivo MRI leveraging

image intensity and texture features has been presented by Chappelow et. al. [93].

The method of Chappelow et. al. [93] is highly sensitive to the quality of the WMH

imagery, large deformations or tears in the WMH have adverse effects on registra-

tion performance. An automated landmark detection scheme is presented in Zhan et.

al. [94], where corresponding landmarks are determined primarily according to morpho-

logical similarity between the contour of the prostate on the 2D WMH and 2D MRI.

Large differences in prostate deformation, that will lead to corresponding landmarks to

have large differences in the local morphology, may result in inaccurate landmark cor-

respondence. In both of these works, a necessary prerequisite was to determine which

2D WMH corresponded to 2D planar images of the MRI.

To overcome the need to manually determine slice correspondence between 2D MRI

and 2D WMH, Turkbey et. al. [98] presented a prostate mold approach. In this

methodology, a patient specific 3D mold was constructed by segmenting the prostate

on in vivo MRI. The mold enabled sectioning of the WMH such that every 2D WMH

was oriented and corresponded to a single 2DMRI planar image. The 3D mold enables a
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rigorous method to determine slice correspondence, however, it requires a large amount

of preparation to segment each prostate on MRI and print a 3D mold prior to tissue

processing.

In this work we use Prostalign, an approach to determine corresponding fiducials

on 2D WMH and 2D MRI planar images manually. Fiducials are then aligned using

thin-plate spline [99]. Prostalign is presented to (a) obviate the need to acquire ad-

ditional ex vivo image modalites that are not routinely done, require additional time

and equipment, and (b) overcome large deformations, tissue loss, and tearing that may

occur when creating WMH slides. While this method requires extensive manual inter-

vention, Prostalign will align WMH onto MRI even when the WMH has missing tissue,

large deformations, and tissue tearing. Because the fiducials are selected manually, reg-

istration accuracy is directly related to the choice and accuracy of the corresponding

fiducials selected by the user. In this work, we demonstrate WMH can be aligned to

fused MRI-TRUS imagery using Prostalign.

3.2 Prostalign for Mapping Whole Mount Histopathology to Fused

Magnetic Resonance Imaging - Transrectal ultrasound

A 3D WMH volume Ch = (Ch, fh) is defined by a set of 3D Cartesian coordinates

Ch and the image intensity function fh(c) : c ∈ Ch. The image intensity function

is described by RGB values such that fh(c) = [fhR(c), f
h
G(c)f

h
B(c)] The WMH volume

consists of Nh 2D WMH slices as defined by Ch = [Ch1 , . . . , C
h
N ].

A 3D MRI volume Cm = (Cm, fm) and a 3D TRUS volume Cu = (Cu, fu) are

similarly defined. For the MRI and TRUS the corresponding intensity functions, fm(c)

and fu(c) are a single gray value. The MRI volume consists of Nm 2D MRI slices,

defined similarly to the WMH slices.

The goal of this section is to align all three image modalities. This is performed

in two steps, in step 1 a transform is found that aligns the WMH volume to the MRI

volume and in step 2 a transform Tm→u is found via MAPPER as described in Section

2.3 to align the WMH and MRI volumes to TRUS.
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Step 1 WMH is pre-processed by: (a) initially aligning MRI and WMH using a visual as-

sessment, (b) removing background information from non-histopathology regions

on WMH via thresholding.

Step 2: Correspondences between MRI and WMH are identified by an expert radiologist

and pathologist using distances between WMH images and major anatomical

landmarks.

Step 3: Corresponding fiducials on WMH and MRI are manually selected and aligned

using a thin-plate spline transform [99].

Step 4: Once all 2D WMH slices are aligned to the MRI, volumetric reconstruction is

performed. Volumetric reconstruction takes into account the spatial location of

the corresponding MRI, resulting in a 3D WMH volume registered onto the 3D

MRI.

Step 5: MAPPER as described in Section 2.3 is used to register the joint 3D MRI/3D

WMH imagery to the TRUS volume. The end result is a fused volume in which

each location is associated with a pixel from TRUS, MRI, and WMH.

3.3 Experimental Design and Results for Evaluation of Prostalign

3.3.1 Dataset Description

T2-weighted MRI was acquired using a General Electric (GE) 3.0 T scanner and an

endorectal coil for 1 patient under IRB approval. TRUS imagery was acquired using a

GE 4DE7C probe, that acquires 3D data in a single, multi-plane sweep of the prostate.

Ex vivo WMH was sliced and stained with hematoxylin and eosin (H&E).

3.3.2 Experimental Results

The registration of WMH to fused MRI-TRUS was evaluated using qualitative assess-

ment. Figure 3.3.2 provides qualitative results for two 2D WMH slices. As shown in

Figure 3.2(c) and3.2(i) the MRI and WMH have good alignment at the boundary of the

prostate gland. There is also good agreement between internal anatomical landmarks,
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such as the urethra and lobes. Cancer annotations can also be consistently mapped

between MRI, TRUS, and the fused MRI-TRUS.

3.4 Concluding Remarks on Prostalign

In this chapter we have demonstrated qualitatively that we can align whole mount

histopathology (WMH) to fused Magnetic Resonance Imaging (MRI)- transrectal ultra-

sound (TRUS) imagery. This alignment enables mapping ground truth prostate cancer

spatial extent onto fused MRI-TRUS imagery, thereby, allowing for the construction

of computerized decision support systems for detecting prostate cancer on fused MRI-

TRUS. These preliminary results demonstrate that such a fusion is feasible, however, a

more robust analysis must be performed to assess the accuracy of Prostalign in greater

detail. Future work will involve quantitatively evaluating our methodology to align

WMH to fused MRI-TRUS on (a) a larger dataset, and (b) quantifying mis-alignment

using a set of corresponding fiducials between MRI, TRUS, and WMH.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.2: Two 2D planar images of (a), (g) WMH and (b), (h) corresponding
MRI. (c),(i) WMH and MRI checkerboard overlays showing alignment between the two
modalities. (d),(j) MRI with cancer annotation obtained from WMH (green). (e),(k)
TRUS with cancer annotation obtained from WMH (green). (f),(l) Fused MRI-TRUS
images shown as checkerboards with cancer annotation obtained from WMH (green).
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Chapter 4

Characterizing Prostate Cancer Aggressiveness on

Histopathology

In this chapter we present a novel methodology to assess prostate cancer aggressive-

ness on histopathology. Some of the material presented in this chapter is taken from

published material of which the author of this dissertation is first author [2–4, 6, 7].

Specifically material in Section 4.2 is taken from Sparks and Madabhushi [2] ad Sparks

and Madabhushi [6]; material in Section 4.3 is taken from Sparks and Madabhushi [3];

material in Section 4.4 is taken from Sparks and Madabhushi [4] and Sparks and Mad-

abhushi [7].

Gleason grade [42] has been suggested as one of the most important predictors

of prostate cancer disease aggressiveness with higher Gleason grade patterns being

typically associated with more aggressive disease [44]. Pathologists typically analyze

architectural features, the arrangement and morphology of glands and nuclei within the

tissue, in order to determine Gleason grade (from grade 1 to grade 5) [44]. In low grade

cancers, prostate tissue has a coherent spatial architecture with distinct gland lumen

surrounded by cell nuclei. For higher Gleason grade patterns, gland structure begins

to breakdown with gland lumen becoming indistinct and crowded with a large density

and concentration of cell nuclei [44]. Correctly identifying Gleason grade patterns is

critical for determining the appropriate treatment strategy for a patient with prostate

cancer [100].

Distinguishing intermediate Gleason grade patterns on histopathology is a diffi-

cult task, previous studies have reported an inter-observer agreement between pathol-

ogists as low as 0.47-0.64 (reflecting low to moderate agreement) [45]. Low inter-

observer agreement reflects the difficulty in distinguishing between objects with very
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subtle shape differences (e.g. gland appearance between Gleason grade 3 and grade

4 patterns). The low inter-observer agreement for identifying intermediate Gleason

grades [45] on prostate histopathology reflects the need for developing quantitative,

reproducible computer-extracted descriptors to complement human observers in distin-

guishing subtle differences in intermediate Gleason grades. Recent work from our lab

has suggest that quantitative histomorphometric features may be better able to predict

outcome than Gleason grade alone [51–53].

In this chapter we develop novel quantitative histomorphometric features to as-

sess prostate cancer aggressiveness, as measured by Gleason grade. In this chapter

we present three novel but inter-dependent methods to characterize gland morphol-

ogy on histopathoology. The methods are: (1) Explicit Shape Descriptors (ESDs) to

utilize gland morphology to distinguish between intermediate Gleason grades, (2) Out-

of-sample Extrapolation using Semi-supervised Learning (OSE-SSL) to improve the

computational efficiency and generality of ESDs and (3) Statistical Shape Model of

Manifolds (SSMM) to calculate ESDs that are robust to noise and outlier glands.

The remainder of this chapter is organized as follows. Previous work on developing

quantitative histomorphometric features for prostate cancer is described in Section 4.1.

ESDs to utilize gland morphology to distinguish between intermediate Gleason grades

are described in Section 4.2. OSE-SSL to efficiently learn the ESDs described in Section

4.3. Finally, SSMM for ESDs robust to outlier glands are described in Section 4.4.

4.1 Previous Work in Automated Gleason Grading

Pathologists perform Gleason grading of prostate cancer tissue specimens via qualita-

tive, visual evaluation of a tissue section previously stained with Hemotoxilyin and Eosin

(H& E) [42]. The primary discriminating traits of Gleason patterns on histopathology

are the difference in the arrangement and morphology of the nuclei and glands within

a tissue sample [42,44]. In devising automated pattern recognition methods for distin-

guishing different Gleason patterns on histopathology, the key questions to consider are

(1) what is the best feature set to distinguish between Gleason patterns? and (2) what
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is the best method to reduce the dimensionality of the feature set prior to classification?

Jafari et. al. [101] characterized tissue patch texture via wavelet features and classi-

fied Gleason patterns with an accuracy of 97% for the best performing feature. Huang

et. al. [46] characterized tissue patch texture via Fractal Dimension and achieved an

accuracy of 95%. However, a limitation of these approaches were that the image patches

were manually selected to obtain regions which contained only one tissue class on the

digitized slide. DiFranco et. al. [47] characterized tissue patch texture for each color

channel independently showing 90% accuracy classifying images on a per tile. Although

tiles were automatically determined, tiles which contained more than one tissue class

were removed from the dataset.

Structural features (as opposed to texture features) have also been explored by some

researchers for automated categorization of Gleason patterns. Veltri et. al. [49] and

Ali et. al. [50] showed that the quantitative characterization of the shape of individ-

ual nuclei on tissue microarrays can distinguish between Gleason patterns with high

accuracy. In a preliminary study by Veltri et. al. [49] characterization of manually

segmented nuclei were able to distinguish between Gleason pattern 3, 4, and 5 with

73-80% accuracy. Ali et. al. [50] automated the nuclear segmentation and classification

steps in [49], yeilded an 84% accuracy on 80 tissue microarrays. Doyle et. al. [48] char-

acterized manually selected image patches according to nuclear arrangement, reporting

a predictive positive value of 76.0% in distinguishing between Gleason patterns 3, 4,

and 5 within a multi-classification scheme.

Tabesh et. al. [102] combined gland morphology, texture features, color channel

variance, and nuclear arrangement to classify different Gleason patterns with 81.0%

accuracy. Golugula et. al. [103] used proteomic data in conjunction with histology

derived image features to distinguish between prostate cancer patients who following

radical prostatectomy had biochemical recurrence within 5 years from patients who did

not.

Most automated Gleason grading systems are described by a high dimensional fea-

ture space [6, 47,48,102,103]. To perform accurate classification, the high dimensional

feature space must be reduced to a lower dimensional space [104]. One approach to



51

reduce the high dimensional feature space is to perform feature selection, thereby de-

termining a small subset of the original feature space in which accurate classification

can be performed [47, 48, 102]. Difranco et. al. [47] utilized a random forest feature

selection algorithm. Doyle et. al. [48] utilized a cascaded classification approach to

perform feature selection for a series of pairwise classification tasks. Feature selection

schemes have the advantage of selecting those features that give the most accurate

classification while discarding features, which may contain noise, that have relatively

poorer classification accuracy [48, 102]. However, a limitation of these approaches is

that the excluded features may contain important classification information, and there

removal may diminish classification accuracy in some tasks [105].

Dimensionality reduction methods learn a low dimensional embedding space which

best preserves the original high dimensional feature space [6, 103, 106]. For instance

Golugula et. al. [103] performed dimensionality reduction via supervised canonical cor-

relation analysis to learn a low dimensional space in which patient classification was

performed. Naik et. al. [106] demonstrated that GE is well suited for the preservation of

a high dimensional feature space which characterized histological differences in texture,

nuclear architecture, and gland morphology. All of these schemes have utilized the full

dataset to perform ML and then trained a classifier within the low dimensional embed-

ding space. These methods are sensitive to noise in the high dimensional feature space

as well as the samples considered when learning the low dimensional space. If newly

acquired samples or samples which contain noise are included in these systems they will

alter the low dimensional embedding space and may detrimentally affect classification

performance. Manifold regularization can alleviate this problem by constraining the

manifold shape to only shapes which are most likely to occur.

4.2 Explicit Shape Descriptors (ESDs) for Quantifying Gland Mor-

phology

The morphology of anatomical objects, defined as shape and size characteristics, on

medical imagery is often an important cue to determine disease presence and/or disease
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(a) (b) (c)

Figure 4.1: Three representative prostate glands on digitized needle biopsy histology
specimens with lumen boundary (red) and nuclear boundary (blue) segmentations dis-
played. (a) A gland from benign prostate tissue, the gland has a regular oval structure.
(b) A gland from a prostate cancer region identified as Gleason grade 3, the gland is
smaller with greater margin irregularity compared to the benign gland. (c) A gland
from a prostate cancer region identified as Gleason grade 4, the gland is highly irregular
in shape with a shrunken lumen.

aggressiveness [44,102,107–113]. One application where object morphology is important

is in the Gleason grading of prostate cancer which utilizes the appearance of nuclei and

glands on histopathology [44, 102, 111, 114]. Figure 4.1 displays examples of prostate

glands identified as (a) benign, (b) Gleason grade 3, and (c) grade 4 with lumen (red)

and nuclear (blue) boundaries of the glands segmented. Morphological cues are a critical

component of Gleason grading, a scheme employed to assess the invasiveness of prostate

cancer [44]. Gland morphology is a particularly important feature for distinguishing

between intermediate Gleason grades; higher Gleason grades of prostate cancer are

characterized by irregularly shaped glands while lower Gleason grades of prostate cancer

have smooth margins with a distinct lumen.

4.2.1 Previous Work in Quantifying Object Morphology

Several boundary-based shape descriptors have been previously presented

citeRangayyan2007,Tabesh2007,Yang2009,Georgiou2007 to extract specific characteris-

tics from an object margin, determined to be important for a specific task. However,

these descriptors typically quantify a single, specific shape characteristic. Boundary-

based shape descriptors include fractal dimension

citeRangayyan2007, a measure of the self similarity between the object and its parts;
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measures of contour variation including symmetry

citeYang2009; and wavelet parameters of the object boundary [115]. Additionally,

other measures have included how close to circular an object is [116] or how quickly

the contour varies [117]. Such descriptors provide a single global measure of object

morphology, and hence may be unable to distinguish between objects with subtle, local

shape differences. However, determining the boundary-based shape descriptors that

can best distinguish between the prostate glands requires a priori information about

the domain and classification task.

Alternatively, descriptors that explicitly model object shape, and are hence able to

recapitulate the original shape of an object, provide an alternative approach to assess-

ing differences in object shape [118–130]. These descriptors may be used in conjunction

with an appropriate similarity metric to quantify differences between shape model rep-

resentations. Such descriptors typically do not require a priori information about the

domain and classification task to accurately determine subtle morphologic differences

between objects.

Development of model-based descriptors is an active area of research and many

approaches to modeling the shape of an object have been presented [118–130]. Point

Distribution Models (PDM) describe shape as a collection of points on the surface of an

object such as in Active Shape Models (ASMs) [122] or Shape Context [119]. Moment

descriptors such as geometric moments [118] or Zernike Moments [130] describe the

distribution of pixels contained within the object and hence provide a global measure

of object morphology that is robust to subtle, local changes in the contour of an object.

Fourier Descriptors (FDs) [123, 125] or Curvature Scale Space [124, 127] describe the

shape of the object according to the frequency components contained in the contour and

are hence sensitive to subtle changes in the contour of an object; Spherical Harmonics

(SPHARM) [121] describe the spherical basis functions contained in the surface of an

object. The Laplace-Beltrami shape descriptors

citeReuter2006 and variants, such as Heat Kernels [129], describe the components

of some generalized function contained within the object, for instance the Laplace-

Beltrami descriptor is defined as the eigenvalues of the Laplacian operator for an object.
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Additionally, shape models may extract a graph representation of the object, such as

the medial axis shape model (MASM) [120] or Reeb graphs [128], these methods repre-

sent the shape of an object using local symmetry to determine a skeletal representation

of the object. The MASM describes object morphology as a medial axis, points within

an object that are equidistant from two or more locations on the surface of an object,

and hence capture the local symmetry of an object [120].

Despite the wide variety of shape modeling approaches available, relatively few

methods have been applied to medical imaging applications. PDMs have been pro-

posed in the context of segmentation for cardiac, prostate, and other organs on med-

ical imagery [122]. PDMs have been applied to anatomical structures such as brain

hippocampii in conjunction with dimensionality reduction (DR) methods to identify

meaningful, local changes to the shape [131,132]. However, obtaining point correspon-

dence is a difficult task for glands on prostate histopathology, as meaningful substruc-

tures are difficult to identify. Heat Kernels have been utilized in conjunction with

hippocampal morphology to accurately distinguish between normal patients and those

with Alzheimer’s disease utilizing [113]. SPHARMs have been also employed to identify

Alzheimer’s disease utilizing hippocampal morphology [109]. Similar methods have uti-

lized SPHARMs to analyze the atrophy of other brain structures such as the putamen

in patients diagnosed with Parkinson’s disease [112]. However no method to directly

apply either SPHARMs or Heat Kernels to 2D shapes as been presented, although a

method has been presented to map a 2D object into a 3D space and then compute

SPHARMs [133]. FDs have been applied to the analysis of breast lesions on mammog-

raphy [115]. Additionally, recent work has shown applications of FDs to distinguishing

between normal and abnormal rotator cuffs on MRI [134].

The MASM, also referred to as m-rep, has been applied to medical imaging tasks

including segmentation [135,136], registration [135], and calculation of shape statistics

over a population of objects [137]. Recently, the m-rep framework has been used to guide

disease classification by exploiting morphologic differences between brain substructures

in order to distinguish autistic from normal patients [110]. MASMs have also been

applied to the detection of aneurysms [138] as well as the detection of coronary artery
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stenosis [139]. The MASM is able to represent a wide range of object morphologies

over multiple dimensions and is able to detect and represent subtle differences between

objects. The MASM is the shape descriptor we chose to utilize in this work.

Due to the wide application of the MASM to many object recognition and classi-

fication tasks, several approaches to efficiently calculate the MASM have been devel-

oped [140–145]. Blum presented the idea of a “grassfire” approach to calculating the

MASM, the idea being if a fire was set to the boundary of the object the medial axis

would be where the propagating flames meet. [141] applied a similar technique to ex-

tract the MASM for 3D objects. Similarly, [140] presented the idea of shock graphs,

calculated by considering the gradient of the level set function for an object. Alter-

native approaches to calculate the MASM involve iteratively thinning the surface of

the object [142]. Some approaches have incorporated pruning, removal of extraneous

regions of the axis from the MASM. For instance Dynamic Contour Evolution (DCE),

involves first calculating the MASM and then pruning regions on the MASM that lead

to small partitions of the contour [143]. Pruning of the MASM can be performed by re-

moving branches which have similar locations and directions as nearby branches [144].

A groupwise medial axis transform was presented in [145] to retain those branches

that are consistent across a set of objects while removing those branches that are not

preserved across the group.

Calculating similarity between MASMs can be difficult as there is not always a

clear correspondence between regions on medial axes. Several approaches have been

presented to overcome this problem [140, 144–150]. For instance comparing MASMs

may be formalized as a graph matching problem, where the MASM is broken into a set

of medial axis branches; shape similarity is calculated as the summation of similarity

between matched branches [140]. This method can be extended to utilize additional

attributes about each branch, such as branch curvature, when calculating MASM simi-

larity [144,150]. The graph matching problem between MASMs has also been previously

formulated for 3D structures, where the matching is between hypergraphs which may

include 2D medial surfaces [146]. Approaches have also been presented to hierarchi-

cally match and merge regions to quantify MASM similarity [149]. [147] introduced
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the concept of edit-distance, where MASM similarity is calculated as a combination

of three possible edits: branch matching, branch removal, and branch addition; where

each edit is assigned a similarity value. [148] considered the similarity of paths between

end nodes (locations on the MASM that represent where a branch end) to determine

similarity. Alternatively, a method to fit a MASM to an object using only likely, prede-

termined MASM templates have been presented [136]; MASM similarity is calculated

as a difference of distance transforms [145].

Researchers have recently begun using nonlinear DR (NLDR) schemes in conjunc-

tion with shape descriptors [151–153]. Such methods extract a small set of features

which describe the variation in morphology between different objects. For instance,

[151] presented a semi-supervised framework, Graph Transduction, to learn a set of dis-

criminating shape descriptors for content-based image retrieval (CBIR) applications.

However, the set of shape descriptors learned is dependent on the query object, sug-

gesting that it may not be naturally extensible to classification problems. A k-nearest

neighbor approach to finding object similarity in the high dimensional shape space was

presented in [152]. [153] presented a NLDR scheme to determine relevant morphologic

differences between vertebrae, exploiting the definition of the Procrustes shape space.

However, their methodology is only applicable to objects represented by PDMs. [154]

utilized a geodesic distance function to distinguish between contours for pairs of objects.

The use of NLDR schemes typically improves the ability to measure similarity in object

morphology compared to the Euclidean distance in CBIR applications [151–153].

In this section, we present a method to quantify differences in object morphology,

where only the contour of the object needs to be defined. We extract a set of Ex-

plicit Shape Descriptors (ESDs) to quantitatively represent object morphology. Our

framework to extract ESDs involves: (a) utilizing the MASM to quantify object mor-

phology, and (b) obtaining a small set of ESDs via the unsupervised NLDR scheme

Graph Embedding [155].
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4.2.2 Methodology for Explicit Shape Descriptors (ESDs)

Figure 4.2 presents an overview of our ESD framework and the constituent modules.

ESDs are calculated by: (a) representing the shape of each gland using a medial axis

shape model (MASM), (b) registering MASMs using a novel diffeomorphic based sim-

ilarity (DBS) measure, (c) determining parameter correspondence between registered

MASMs, (d) extracting a low dimensional representation of morphologic features utiliz-

ing the non-linear dimensionality reduction scheme Graph Embedding, (e) classifying

the morphologic features using a Support Vector Machine (SVM).

Figure 4.2: An illustration of the main modules for extracting explicit shape descrip-
tors (ESDs). (a) A medial axis shape model (MASM) (blue, green) is fit to each object
contour (black, gray). (b) Pairwise registration between MASMs is performed to align
medial axes which then aids in (c) determining parameter correspondence between reg-
istered MASMs. Subsequently, pairwise differences between object shapes are computed
which yields a N×N affinity matrix. (d) A nonlinear dimensionality reduction scheme,
Graph Embedding, is then applied yielding a set of ESDs which quantify shape differ-
ences. Finally, (e) a Support Vector Machine (SVM) is trained to learn the optimal
hyperplane which separates the ESD feature space into different object classes.

Notation

A histpathology image Ch = (Ch, ξ) is defined by the d-dimensional grid of voxel loca-

tions Ch and an object contour ξ. c ∈ Ch represents a voxel defined by a d-dimensional
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Symbol Description Symbol Description

Ch d-dimensional histology im-
age scene.

T a Affine transformation func-
tion.

Ch d-dimensional grid of vox-
els.

̟k
j kth cluster centroid at iter-

ation j.

ξ Contour for an object of in-
terest.

P (q|̟k
j ) Probability of q ∈ Q be-

longing to ̟k
j .

Q Medial axis shape model
(MASM).

T q Diffeomorphic transforma-
tion function.

Q Set of voxels on a medial
axis.

G Green’s function.

v1(q), v2(q) Surface vectors for m ∈M . (q̆a, q̆b) Correspondence between
two medial axes.

f sdf(c) signed distance function for
c ∈ Ch.

A N×N dissimilarity matrix.

Xi ith direction. y Set of n Explicit Shape De-
scriptors (ESDs).

N Number of objects. E Super quadratic ellipsoid.

Table 4.1: Description of commonly employed notation and symbols relating to Explicit
Shape Descriptor(ESD) calculation.

vector that describes its location in Ch. ξ partitions Ch into two regions Ωhi : i ∈ 1, 2,

where i = 0 denotes background and i = 1 denotes foreground such that Ωh0 ∪Ωh1 = Ch.

Table 4.1 describes the notation and symbols that appear frequently to describe ESD

calculation.

Medial axis shape model construction

The MASM was employed to concisely and explicitly describe the local morphology of

an object described by the contour ξ [120]. We define the MASM as Q = (q, v1, v2)

where Q ∈ Ch is a set of voxels on the medial axis and v1(q), v2(q) : q ∈ Q are two

functions defining vectors to the first and second closest points on ξ. To find Q, we

calculate the gradient magnitude squared of the signed distance function defined as,

f̂ sdf (c) =
d
∑

i=1

(

∂f sdf (c)

∂Xi

)2

, (4.1)

where f sdf (c) is the signed distance function evaluated over c ∈ Ch and
∂(·)

∂Xi
is the

partial gradient along Xi corresponding to the ith direction. For a d-dimensional image
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Xi is found for all i ∈ {1, . . . , d}. We use f̂ sdf (c) to define the medial atoms as Q = {q :

q ∈ Ch, f̂ sdf (q) < τ}. Empirically, we determined that τ = 0.05 argmax
c∈Ch

(

f̂ sdf (c)
)

yields

a well defined medial axis. Section 4.2.3 describes the approach we employed to assess

whether a MASM was able to accurately and quantitatively describe the morphology

of a given object. The use of τ helps avoid spurious branches on the MASM.

The surface vector functions v1(q) and v2(q) : q ∈ Q, are calculated as v1(q) =

p̂1(q)− q and v2(q) = p̂2(q)− q, where p̂1(q) and p̂2(q) represent the two closest points

on ξ to q. For q with more than two closest points on the ξ, we chose p̂1 and p̂2 that

maximize the angle between v1(q) and v2(q).

Framework for quantifying shape differences

Dissimilarity between a set of N MASMs Q = {Q1, . . . ,QN} is quantified by comparing

differences in corresponding medial atoms for each pair of MASMs. The parameters of

a MASM, Qa : a ∈ {1, . . . , N}, include Qa, v1,a, and v2,a (defined in Section 4.2.2). We

determine correspondence between all qa ∈ Qa and all qb ∈ Qb : b 6= a, b ∈ {1, . . . , N}.

By this procedure we attempted to implicitly determine correspondence between the

surface vector functions v1,a(qa) and v1,b(qb) as well as v2,a(qa) and v2,b(qb). To deter-

mine correspondence a two step registration was performed by: (1) affine registration

of Qa onto Qb, followed by (2) a diffeomorphic registration of Qa onto Qb. These steps

are described in more detail in Sections 4.2.2 and 4.2.2, respectively. The affine reg-

istration provides a rough alignment of corresponding regions on the MASMs and is

necessary for the initialization of the diffeomorphic registration process. Once Qa and

Qb have been accurately registered, medial atom correspondence between Qa and Qb is

determined and used to calculate the dissimilarity between Qa and Qb. Section 4.2.2

describes the calculation of MASM dissimilarity.

Medial atom affine registration

Affine registration between Qa and Qb is determined by applying the Iterative Closest

Point (ICP) algorithm [130]. Point correspondence between Qa and Qb is determined

by,
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(q̂a, q̂b) = argmin
q̂a∈Qa,q̂b∈Qb

||qa − qb||. (4.2)

where q̂a ∈ Qa and q̂b ∈ Qb are the set of corresponding points on Qa and Qb. An affine

transformation T a is found by minimizing the following function,

T a = argmin
Ta





∑

q̂a,q̂b

||q̂b − T a(q̂a)||



 . (4.3)

Estimation of point correspondences (Eq. 4.2) and the affine transformation (Eq. 4.3)

are iteratively applied to Qa until point correspondences, (q̂a, q̂b), remain unchanged

between iterations. The resulting medial axis Q̂a = T a(Qa) is affinely registered to Qb.

Medial atom-based non-rigid registration

For two sets of medial atoms Q̂a and Qb, which are registered as described in Sec-

tion 4.2.2, a diffeomorphic registration is then applied to further align Q̂a and Qb.

We utilized a variation of the diffeomorphic registration method proposed by [156]. A

brief overview of our non-rigid registration is as follows: (1) corresponding locations

between Q̂a and Qb are estimated using a deterministic annealing K-means clustering

algorithm [157] (described in greater detail in Section 4.2.2); (2) A diffeomorphic trans-

formation over the image space Ch is calculated to minimize the distance between the

estimated corresponding locations on Q̂a and Qb. A diffeomorphic transformation was

used to ensure a continuous and differentiable transformation field so that the under-

lying relationship between all q̂a ∈ Q̂a and all qb ∈ Qb are preserved. In Section 4.2.2

we discuss the calculation of the diffeomorphic transformation in greater detail.

Correspondence estimation Individual medial atom correspondence between

Q̂a and Qb may be difficult to determine accurately. We therefore determine corre-

sponding locations on Q̂a and Qb via a deterministic annealing K-means clustering

algorithm [157]. We define a set of K cluster centroids at the jth iteration of our reg-

istration method as ̟k
j,a : k ∈ {1, . . . ,K} for all qa ∈ Q̂a. Similarly, for Qb we define a

set of cluster centroids ̟k
j,b : k ∈ {1, . . . ,K}. The cluster centroids are initialized such

that ̟k
0,a and ̟k

0,b represent corresponding points on Qa and Qb. As the clusters are
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used to determine correspondence between MASMs, K is constrained to be the same

for both Q̂a and Qb.

We estimate the probability P (qa|̟
k
j,a, σj) of a medial atom q̂a ∈ Q̂a belonging to

the ̟k
j,a cluster as:

P (qa|̟
k
j,a, σj) =

e−σj ||qa−̟
k
j,a||

2

∑K
k=1 e

−σj ||qa−̟k
j,a||

2
. (4.4)

Similarly, the probability of qb ∈ Qb belonging to the cluster̟
k
j,b is given as P (qb|̟

k
j,b, σj).

The term e−σj ||qa−̟
k
j,a||

2

assigns higher values to medial atoms near the centroid ̟k
j,a

and lower values to medial atoms farther away; σj determines which medial atoms are

considered near and far from the centroid. Convergence of the membership function

is enforced by setting σj = (ζ)jσ0 where ζ > 1, hence at each iteration the clustering

algorithm considers a smaller region to be near the cluster centroid. Therefore at each

step in the algorithm fewer medial atoms have a non-zero probability of belonging to

the cluster defined by the centroid ̟k
j,a . Ultimately when j is very large, each medial

atom is assigned membership (a non-zero probability) to one cluster centroid. The

initial weighting term is set as 1
σ0

= maxqa∈Q̂a
||qa − µa||+maxqb∈Qb

||qb − µb||.

Cluster centroids are updated according to the probability of all qa ∈ Q̂a belonging

to the cluster ̟k
j,a. The cluster cluster ̟k

j,a is updated by the equation,

̟k
j+1,a =

∑

qa∈Q̂a
qaP (qa|̟

k
j,a, σj) +̟k

j,b

1 +
∑

qa∈Qa
P (qa|̟k

j,a, σj)
. (4.5)

The term ̟k
j,b defines a centroid on Qb that corresponds to the centroid ̟k

j,a. By

taking the average of the two locations ̟k
j,a and ̟k

j,b in Equation 4.5, we ensure that

the ̟k
j+1,a remains in a location on Qa which is proximal to ̟k

j,b located on Qb. The

centroid ̟k
j+1,b is determined by a similar equation.

Correspondence registration The goal of correspondence registration is to find

a diffeomorphic transformation T q which best maps the cluster centroids ̟k
j,a onto ̟

k
j,b

for k ∈ {1, . . . ,K}. T q is defined as {T q(t) : t ∈ {0, . . . , tmax}} where T q,k(0) = gk,ja and

T q,k(tmax) = ̟k
j,b. Hence T q will enable alignment of ̟k

j,a to ̟k
j,b. Similar to Twining

et. al. [158], we use a linear piecewise approximation to solve the energy minimization

function,
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T̂ q = argmin
T̂ q

K
∑

k=1

tmax
∑

t=0

ω(t) ·





K
∑

η=1

ωη(t)G(T q,η(t), T q,k(t))



 , (4.6)

where the kernel function G is defined as Green’s function: G(α, β) = −(α−β)2 log(α−

β)2 [99]. Green’s function ensures that T q will be smoothly varying over Ch.

To solve Equation 4.6, an optimization of T q and the variables ω(t) and ωη(t) can

be found in an iterative fashion [158]. This optimization is performed by first holding

ω(t) and ωη(t) constant and using gradient descent to find the optimal T q and then

repeating the procedure with T q held constant.

Both the correspondence estimation (Equations 4.4 and 4.5) and correspondence

registration (Equation 4.6) are iterated until a user defined threshold, Υ, is reached by

the annealing parameter σj. The overall algorithm is detailed in Algorithm 1.

Algorithm 1 RegisterMedialAxisShapeModels

Input: MASM Q̂a and Qb Output: Regsitered MASM Q̃a

1: Initialize σj, ̟
k
j,a, ̟

k
j,b

2: while σj < Υ do
3: Update P (qa|̟

k
j,a), P (qb|̟

k
j,b) by Equation 4.4

4: Update ̟k
j,a, ̟

k
j,b by Equation 4.5

5: Update T q by Equation 4.6
6: Q̃a = T q(Q̂a)
7: end while

The two sets of cluster centroids are initialized to be equal ̟k
0,a = ̟k

0,b and located

at ̟k
0,a =

µa + µb
2

+ ǫ, where ǫ is a random variable with a very small value (ǫ ≈ 10−1).

The term ǫ is added to ensure that each pair of corresponding cluster centroid ̟k
0,a,̟

k
0,b

has a unique starting location, and hence will diverge from the other cluster pairs as

σj increases.

Medial atom correspondence and shape dissimilarity

Given two medial axes Q̃a and Qb registered into a common coordinate frame, we

determine point correspondence between Q̃a and Qb as,

(q̆a, q̆b) = argmin
q̆a∈Q̃a,q̆a∈Qb

||q̆a − q̆b||. (4.7)
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The set of corresponding medial atoms, (q̆a, q̆b) determined via Equation 4.7 are then

used to calculate dissimilarity between Q̃a and Qb as,

Aab =
∑

q̆a,q̆b

(||q̆a − q̆b||+ ||v1,a(q̆a)− v1,b(q̆b)||+ ||v2,a(q̆a)− v2,b(q̆b)||) . (4.8)

For all Q ∈ Q, a dissimilarity matrix A ∈ R
N×N is constructed such that it represents

a N -dimensional space corresponding to morphologic dissimilarity between all Q ∈ Q.

Feature extraction via nonlinear dimensionality reduction

GE [155] is applied to the dissimilarity matrix A, which measures the dissimilarity

between all all Q ∈ Q, to yield a set of ESD features in a low dimensional space.

Specifically, a n-dimensional embedding is learned from the N -dimensional matrix A,

where n << N . The ESD features for all Q ∈ Q are defined as y = [y1, . . . , yN ] where

y represents the top n eigenvectors for the shape space defined by A. y can be found

by minimizing the pairwise reconstruction error measured as,

y = argmin
y

N
∑

a=1

N
∑

b=1

||ya − yb||
2Wab, (4.9)

where Wab = e−Aab/γ . The term γ is used to normalize A and is dataset specific. The

value of γ was determined empirically as described in Section 4.2.3. Equation 4.9 can

be rewritten as,

argmin
y

N
∑

a=1

N
∑

b=1

(y2a + y2b − 2yayb)Wab. (4.10)

Assuming Wab = Wba, which will be true since Aab = Aba, then Equation 4.10 reduces

to,

argmin
y

2

N
∑

a=1

N
∑

b=1

(y2a − yayb)Wab. (4.11)

The minimization problem can be further simplified by introducing a diagonal matrix

defined as Daa =
∑

bWab, making the minimization problem,

argmin
y

2y(D −W )y. (4.12)

Equation 4.12 is equivalent to the minimum eigenvalue decomposition equation,

(D −W )y = λDy, (4.13)
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where the top n eigenvalues in λ correspond to the n eigenvectors y and the top n ESD

features. The top n eigenvalues correspond to the projection of the matrix A into the

space RN×n such that the pairwise distances between the elements in A, and hence the

pairwise distances between objects, are preserved. Furthermore as the eigenvectors y

are orthonormal to each other, each additional feature provides independent information

on the shape space represented by A.

Support Vector Machine classification

A SVM classifier [159] can be trained using y, to learn the optimal hyperplane which

separates Q into the classes referenced by the label set L = [l1, . . . , lN ].

The SVM classifier utilizes ya to determine the distance to the hyperplane Φ(Qa).

SVM classifiers are typically used to generate a hard class decision where Φ(Qa) < 0

corresponds to assigning a class label of −1 to Qa. However, a pseudo-threshold can

be generated by varying the decision boundary.

Given a specific decision boundary, ̺, if Φ(Qa) < ̺ and la = −1 then Qa is identified

as a true negative (TN); if Φ(Qa) < ̺ and la = 1 then Qa is identified as a false negative

(FN); if Φ(Qa) > ̺ and la = −1 then Qa is identified as a false positive (FP); and if

Φ(Qa) > ̺ and la = 1 then Qa is identified as a true positive (TP). The number of TN

(NTN,̺), FN (NFP,̺), FP (NFP,̺),and TP (NTP,̺) are calculated over a range of ̺.

For each ̺, sensitivity (SN̺), specificity (SP̺), and classifier accuracy (CA̺) can

be calculated as,

SN̺ =
NTP,̺

NTP,̺ +NFN,̺
, SP̺ =

NTN,̺

NTN,̺ +NFP,̺
, and CA̺ =

NTP,̺ +NTN,̺

N

where N is the total number of objects in the database. By plotting SN̺ versus 1−SP̺

over a range of ̺ a Receiver Operating Characteristic (ROC) curve representing the

trade-off between SN and SP for a give feature set is obtained. Area under the ROC

curve (AUC) is calculated for each ROC curve.

For our experiments, the SVM classifier was employed with a radial basis function.

For the dataset evaluated for our experiments there were three prostate histopathology
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classes. To evaluate the prostate histopathology dataset using a SVM the classifica-

tion task was divided into 4 pairwise classification tasks. The training and evaluation

involved a randomized 3−fold cross validation scheme where at each iteration, 2/3 of

the dataset was used for training of the classifier, while always maintaining class bal-

ance. The remaining 1/3 of the dataset was used for independent testing of the SVM

classifier. Training and testing sets were selected such that the training and testing

sets never concurrently contained images from the same patient. The cross validation

procedure was repeated 5 times where, at each iteration, the training and testing sets

were selected randomly always ensuring that there was no overlap between the training

and testing sets in terms of patients.

4.2.3 Experimental Design and Results for Evaluation of Explicit Shape

Descriptors

Dataset description

Synthetic super quadratic ellipsoids

Super quadratic ellipsoids represent a class of 3D objects with a closed topology such

that the shape of a super quadratic ellipsoid is fully determined by the 5 parameters: α1,

α2, α3, ǫ1, and ǫ2 [160]. Super quadratic ellipsoids with similar shapes were generated

by carefully modulating the model parameters so that the discriminability of the ESD

features in a synthetic setting could be evaluated. The boundary of a super quadratic

ellipsoid is defined as,

E(x1, x2, x3) =































x1 = α1 cos(θ) cos(ψ)
ǫ1

x2 = α2 sin(θ) cos(ψ)
ǫ2

x3 = α3 cos(θ) sin(ψ),

(4.14)

where θ ∈ {−π, . . . , π} and ψ ∈ {−π/2, . . . , π/2} [160]. For the purpose of this

study the following parameters were combined: ǫ1, ǫ2 ∈ {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4} and

α1, α2, α3 ∈ {0.7, 0.8, 0.9, 1} resulting in 4096 possible shape combinations. Note how-

ever, that several shapes will be scaled versions of each other (e.g. ǫ1 = ǫ2 = 0.5,
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α1 = α2 = α3 = 0.7 and ǫ1 = ǫ2 = 0.5, α1 = α2 = α3 = 0.8 will be the same shape with

only a scale difference). Two parameters, ǫ1 and ǫ2, are referred to as shape parame-

ters and were used to control the concavity/convexity of the super quadratic ellipsoids.

The other three parameters, α1, α2, and α3, are scaling parameters and determine the

length, width, and depth of the object respectively. By selecting parameters that are

close together, we obtain a set of objects with subtle shape differences.

Prostate histopathology

Prostate tissue biopsy cores obtained from 58 patient studies were stained with Hemo-

toxylin and Eosin (H & E) and digitized using a ScanScope CSTM whole-slide scanning

system at 40× optical magnification. An expert pathologist selected regions of interests

on the digitized biopsy image, to obtain a total of 102 regions. The expert pathologist

then classified each region as benign (24 regions), Gleason grade 3 (67 regions), or Glea-

son grade 4 (11 regions). Every gland contained within each region was segmented by a

human expert to obtain lumen and nuclear boundaries. Glands which did not contain

either a nuclear or lumen boundary, or where the contour was not fully contained within

the region were removed from the study, resulting in a total of 888 glands containing

both lumen and nuclear boundary segmentations. These glands were distributed across

the three classes: benign (N = 93), Gleason grade 3 (N = 748), and Gleason grade 4

(N = 47).

Features for comparison against Explicit Shape Descriptors

Our novel ESD features are compared against three morphologic feature sets: Boundary-

based features (referred to as Boundary) [161], Fourier Descriptors [125], and a MASM

path similarity measure (referred to as Path) [148]. Below, we briefly describe the

calculation of each of these feature sets.

Boundary-based features

The Boundary feature set consists of 6 morphologic features that have been previously

used with computerized decisions support systems for determining Gleason grade using
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prostate gland morphology [102]. The formulation for each of the shape features is

presented in Table 4.2 and reflects the (a) circularity of an object (area overlap ratio,

compactness), (b) how much does object contour vary with respect to the shape of

a circle (normalized average radial distance ratio, standard deviation of distance ra-

tio, variance of distance ratio), and (c) how quickly does the object contour change

(smoothness).

Boundary Feature Description

Normalized Average Radial
Distance Ratio

1
|ξ|

∑

p∈ξ ||p − p̄||

maxp∈ξ ||p − p̄||
where p̄ = 1

|ξ|

∑

p∈ξ p

Area Overlap Ratio
|ξ|

πr2
where r = maxp∈ξ ||p− p̄||

Standard Deviation of
Distance Ratio

σΓ =
√

Γ(p)− µ2Γ

where Γ(p) =
||p− p̄||

maxp∈ξ ||p − p̄||
and µΓ = 1

ξ

∑

p∈ξ Γ(p)

Variance of Distance Ratio σ2Γ

Compactness F (ξ)2

|ξ| where F (ξ) =
∑

p∈ξ,j∈{1,...,J} ||p
j+1 − pj ||

Smoothness

∑

p∈ξ,j∈{1,...,J}B(p(j))

where B(p(j)) = ||p(j) − p̄|| − ||p(j−1)−p̄||+||p(j+1)−p̄||
2

Table 4.2: A listing of the 6 boundary-based features utilized to evaluate object mor-
phology and compared against our ESD feature set. Note that |ξ| represents the cardi-
nality of set ξ.

Fourier Descriptors

The Fourier Descriptor feature set comprised the first 50 frequency components calcu-

lated from the contour of an object ξ [125]. The frequency of the contour was calcu-

lated as follows: a set of ordered points around the contour p(j) ∈ ξ : j ∈ {1, . . . , J}

were found. The magnitude of the points was calculated as ρj = ||pj − p̄|| where

p̄ = 1
|ξ|

∑

p∈ξ p. The Fourier transform of ρ is calculated and is used to derive the first

50 frequency components of each contour.
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Path features

We calculated an alternative shape dissimilarity matrix, Z, using a path-based measure

of MASM dissimilarity previously presented by [148]. This MASM similarity measure

has been demonstrated to perform similarly or better than edit-distances on shock

graphs [147]. Given two MASMs Qa and Qb, a set of medial atoms q′a ∈ Qa and

q′b ∈ Qb comprising the end nodes of the medial axes are identified. End nodes are

defined as those medial atoms with only one neighbor on the medial axis. A path

between pairs of end nodes q
′w
a ∈ Qa and q

′z
a ∈ Qa is defined as ν(q

′w
a , q

′z
a ). Similarly,

ν(q
′ŵ
b , q

′ẑ
b ) is defined for end node pairs in Qb. The dissimilarity between Qa and Qb is

then found by,

Z(a, b) = min
w,z,ŵ,ẑ

[

∆(ν(q′wa , q
′z
a ), ν(q

′ŵ
b , q

′ẑ
b ))
]

. (4.15)

The function ∆ gives a measure of path similarity which is defined as the summation

over the radius and path length [148]. The dissimilarity matrix Z is a high dimen-

sional representation of the shape space, and as with our dissimilarity matrix A, Graph

Embedding was employed to return the top n eigenvectors.

Experiment 1: medial axis shape model ability to capture morphology

Figure 4.3: Prostate gland re-
construction accuracy as mea-
sured by DICE over number
of medial atoms (blue). The
number of medial atoms deter-
mined to give the highest re-
construction accuracy for the
least computational cost is dis-
played (red cross). At first
there is a large increase in
DICE as more medial atoms
are added to the MASM. After
a certain point, adding more
medial atoms does not signif-
icantly increase DICE.

We tested the hypothesis that the MASM can accurately represent the morphology

of a wide variety of shapes. We assumed that MASM reconstruction accuracy reflects
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the accuracy of the MASM to describe object shape. To evaluate this quantitatively,

we reconstructed all of the objects in each dataset. For each dataset we varied the

number of medial atoms contained in the MASM and for each set of medial atoms we

reconstructed the object and denoted it as Ωr. Ωr is determined as a set of pixels

belonging to an object given Q such that,

Ωr = {c : ||q − c|| < r(q), q ∈ Q, c ∈ C} (4.16)

where the function r(q) is defined by the equation,

r(q) =
||(q − v1(q))||+ ||(q − v2(q))||

2
. (4.17)

For each Ωr, we measured how close it is to Ω1 using the edge based measures - (a)

mean absolute distance (MAD) and (b) Hausdorff distance [162]; and the area based

measures - (a) Dice’s coefficient (DICE) [163] and (b) Positive Predictive Value (PPV).

MAD describes on average the extent of variation between the ground truth shape

contour and the reconstructed shape and is formally defined as,

1

|p|

∑

p∈Ω1

min
o∈Ωr

||p − o||. (4.18)

Hausdorff distance [162] measures the performance of the worst case disparities between

two shapes and is defined as,

max
p∈Ω1

(

min
o∈Ωr

||p − o||

)

. (4.19)

DICE [163] is a measure of overlap between two shapes, in this case it reflects the extent

of overlap between the reconstructed shape and the ground truth shape and is defined

as,

|Ω1 ∩ Ωr|

|Ω1|+ |Ωr|
. (4.20)

PPV in this case is used to evaluate the proportion of pixels in the reconstructed shape

accurately identified as belonging to the foreground of the object and is defined as,

Ωr ∩ Ω1

|Ωr|
. (4.21)

For each dataset the fewest number of medial atoms that achieved high DICE and

PPV were selected to represent all objects in the database for calculation of ESDs.
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Figure 4.2.3 illustrates an example of the medial atom evaluation performed for the

prostate histopathology dataset, with a red cross displayed at the optimal number of

medial atoms for representing prostate morphology. The object reconstruction accuracy

for the optimal number of medial atoms is reported in Table 4.3. As seen in Table 4.3

the synthetic dataset which contains 3D objects needs more medial atoms to more

accurately represent the morphology compared to the prostate histopathology dataset

which contains 2D objects. This is to be expected since 3D objects can have more

complex shapes compared to their 2D counterparts.

Performance Dataset (Dimensionality)

Measure Ellipsoid (3D)
Prostate

Gland (2D)

Medial Atoms 1000 55

MAD 3.40± 3.54 0.01 ± 0.01

Hausdorff 24.46 ± 12.95 1.51 ± 1.16

DICE 0.87± 0.12 0.95 ± 0.03

PPV 0.94± 0.06 0.98 ± 0.02

Table 4.3: Object reconstruc-
tion accuracy for 2 datasets using
the previously determined optimal
number of medial atoms for each
dataset. MAD and Hausdorff dis-
tances are shown in units of pixels.
DICE and PPV are unitless ratios.
Note that 3D objects require more
medial atoms to accurately repre-
sent object morphology.

Experiment 2: registration evaluation

In this experiment the diffeomorphic registration algorithm presented in Section 4.2.2

was evaluated in terms of its ability to (a) recover a large range of non-linear deforma-

tions applied to MASMs and (b) determine accurate correspondences between medial

atoms on Qa and Qb. We conducted a total of 200 experiments in which 20 randomly

chosen MASMs and 10 deformation fields were considered. A deformation field denoted

as T ′ was generated by varying the type and magnitude of the deformation applied. We

applied T ′ to the image space Ch containing Qa and then used our diffeomorphic regis-

tration algorithm to approximate the inverse transformation T−1. We then computed

the mean residual error as 1
|Qa|

∑

q∈Qa
= ||q − T−1(T ′(q))||, where |Qa| is the number

of medial atoms contained in Qa.

Mean residual error was on average 1.09±0.24 pixels, where accurate cluster centroid

correspondence between MASMs allowed for close alignment between MASMs. The
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worst case registration for a given MASM was 4.94 ± 2.22 pixels. For this specific

case the MASM had several branches so that the cluster centroids on the original

MASM and the deformed MASM failed to correspond to the equivalent locations on the

original MASM. Incorrect correspondence determination between the cluster centroids

may cause the diffeomorphic registration to be unable to approximate T−1. In these

10 cases, on average 2.8 ± 0.3 cluster centroids did not have correct correspondence.

This effect was only seen in 10 of 200 MASMs and only during the application of large

deformations; deformations that had a magnitude greater than 10% of the area of Ω1,

the foreground region of the object of interest.

(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

Figure 4.4: (a) The first and second ESDs are plotted on the X and Y axes respectively.
Note that the manifold is curvilinear with the two axes corresponding roughly to the
variation in ǫ1 (red) and ǫ2 (blue) respectively. (b)-(e) Ellipsoids with all parameters
held equal except ǫ2, resulting in subtle differences between object morphology. (f)-
(i) Ellipsoids with all parameters held equal except ǫ1, resulting in subtle differences
between object shape. Finally note that the two ellipsoids farthest on the manifold, (e)
and (i), are the most dissimilar.

Experiment 3: distinguishing between super quadratic ellipsoids with dif-

fering shape parameters

We constructed a set of 4096 super quadratic ellipsoids, denoted by S, to evaluate

the ability of our ESD features to represent subtle shape variations between objects

(see Section 4.2.3). Dissimilarity between the pair Ea and Eb for known sets of shape

parameters was measured as Π(Ea, Eb) =
∑

̟ ||̟a−̟b|| : ̟ ∈ {α1, α2, α3, ǫ1, ǫ2}, a, b ∈
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{1, . . . , N}. Π(Ea, Eb) represents the total shape dissimilarity.

The correlation between a set of ESD features y′ = [y1, . . . , yN ] for a set of N objects

and a set of known shape differences Π was calculated as follows. We first define the

distance between two objects in the ESD feature space as, Ξ(Ea, Eb) = ||ya − yb||. We

then calculate Pearson’s correlation coefficient between Π and Ξ [164]. This allows us to

quantitatively evaluate the ability for the ESD feature space, represented by Ξ(Ea, Eb),

to reflect known shape differences (Π).

Pearson’s correlation coefficient was determined to be R=0.82, demonstrating a

strong correlation between the know shape parameters and the underlying ESD feature

space. Figure 4.4 displays all objects in the first 2 dimensions of the ESD feature space

with representative S displayed in Figures 4.4(b) - 4.4(i). Note that a curvilinear man-

ifold that contains the subspace of these shapes is clearly visible. The first dimension

of the ESD feature space correlates to changes in ǫ1, corresponding to the red line. The

second dimension of the ESD feature space correlates to ǫ2, corresponding to the blue

line. Note that similar super quadratic ellipsoids are embedded adjacent to each other

in the feature space while dissimilar super quadratic ellipsoids are embedded far apart.

These results on synthetic data suggest that ESDs are able to differentiate between

subtle changes in shape.

Experiment 4: Gleason grading of prostate histopathology

We evaluated the ability of four feature sets (Boundary, FD, Path, ESD) to accurately

distinguish between Gleason grade 3 (G3), grade 4 (G4), and benign (BE) prostate

glands as seen on histopathology using a SVM classifier. As this is a multiclass problem

we evaluated SVM classifiers for the following 4 pairwise classification tasks: BE versus

other (G3 and G4), G3 versus other (BE and G4), G4 versus other (BE and G3), and

G3 versus G4. SVM training and evaluation was performed as described in Section

4.2.2.

The ESD and Path feature sets were evaluated over 1 ≤ n ≤ 30 and 1 ≤ γ ≤ 2000

for each classification problem (results not shown). SVM CAs and corresponding n and

γ for each features set is shown in Table 4.3(a). For all classification problems, n = 4
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(a) (b)

(c) (d)

Figure 4.5: ROC curves for a SVM classifier trained using 3-fold cross validation on 888
prostate glands for Gleason grade classification of prostate glands as seen on histopathol-
ogy in four tasks: (a) BE versus Other (G3 and G4), (b) G3 versus other (BE and G4),
(c) G4 versus other (BE and G3), and (d) G3 versus G4. Four feature sets were evalu-
ated, Boundary (blue), FD (green), Path (red), and ESD (black).
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Classification
Task

Feature
Boundary FD Path ESD

BE v.
Other

CA
0.80 ± 0.05 0.70 ± 0.06 0.60 ± 0.05 0.83± 0.04

γ = 100, n = 9 γ = 1.2, n = 4
p-value 0.005 0.001 0.005 -

G3 v.
Other

CA
0.70 ± 0.08 0.65 ± 0.04 0.61 ± 0.08 0.87± 0.07

γ = 1025, n = 14 γ = 2.1, n = 4
p-value 0.013 0.006 0.003 -

G4 v.
Other

CA
0.75 ± 0.06 0.58 ± 0.14 0.65 ± 0.10 0.85± 0.03

γ = 1, n = 4 γ = 1.5, n = 4
p-value 0.005 0.024 0.016 -

G3 v.
G4

CA
0.68 ± 0.08 0.60 ± 0.10 0.64 ± 0.06 0.89± 0.06

γ = 151, n = 5 γ = 1.2, n = 4
p-value 0.004 0.001 0.002 -

(b)

Classification
Task

Feature
NMBS FD Path ESD

BE v.
Other

AUC
0.71 ± 0.07 0.67 ± 0.08 0.61 ± 0.09 0.77± 0.05

γ = 100, n = 9 γ = 1.2, n = 4
p-value 0.15 0.059 0.007 -

G3 v.
Other

AUC
0.60 ± 0.09 0.64 ± 0.06 0.56 ± 0.08 0.81± 0.05

γ = 1025, n = 14 γ = 2.1, n = 4
p-value 0.002 0.001 0.0004 -

G4 v.
Other

AUC
0.71 ± 0.08 0.57 ± 0.06 0.56 ± 0.20 0.82± 0.07

γ = 1, n = 4 γ = 1.5, n = 4
p-value 0.042 0.0003 0.023 -

G3 v.
G4

AUC
0.72 ± 0.04 0.58 ± 0.17 0.64 ± 0.17 0.78± 0.11

γ = 151, n = 5 γ = 1.2, n = 4
p-value 0.25 0.065 0.162 -

Table 4.4: (a) CA and (b) AUC for a SVM classifier trained using 3-fold cross vali-
dation on 888 prostate glands for distinguishing between Gleason grades on prostate
histopathology. SVM classifiers were trained with 4 feature sets (Boundary, FD, Path,
ESD). In total 16 classification studies (4 feature sets, 4 pairwise classification tasks)
were performed. p-values comparing ESD to the comparison feature sets are reported,
statistically significant p-values (p < 0.01) are bolded. The best CA and AUC across
the feature sets is bolded.
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was empirically determined to yield the consistently best results in the ESD feature

space. A narrow range of 1 ≤ γ ≤ 2 was identified as yielding the best performance in

the ESD feature space, however γ can be adjusted to obtain better performance for a

specific classification task. In contrast, Path had a wide range of n and γ which yielded

high CA and AUC values. For all classification problems considered, the ESD features

outperformed the Boundary, FD, and Path feature sets. ROC curves for each classifi-

cation task are displayed in Figure 4.5 and corresponding AUC values are reported in

Table 4.3(b).

Figure 4.6 displays the first 2 ESD features of the 888 glands; representative glands

from three different classes are shown along with their corresponding locations in the

ESD feature space. Misclassified glands, shown in the far right row often display char-

acteristics very similar to glands of other Gleason grades. Consequently, some misclas-

sifications may be attributed to glands displaying atypical attributes.

(a)

(b) (c) (d)

G4

(e) (f) (g)

G3

(h) (i) (j)

BE

Figure 4.6: (a) ESD feature space for prostate digital histopathology with BE (blue),
G3 (green), and G4 (red) glands. The first and second ESDs are plotted on the X
and Y axes respectively. Lumen (red) and nuclear (blue) layers are shown, for glands
labeled (b)-(d) G4, (e)-(g) G3, and (h)-(j) BE. Ground truth for mislabeled glands,
displayed in the far right row, are (d) G3, (g) BE, (j) G3. Glands with similar shapes
are embedded adjacent to each other on the manifold while glands with dissimilar
shapes are embedded far apart.
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Experiment 5: evaluation of gland misclassification

We performed additional evaluation of our classification results to better understand the

reasons behind gland misclassification. As stated previously, glands may be misclassified

if they exhibit traits atypical to the Gleason grade they are assigned, however, other

reasons for misclassification exists. Each step in the ESD framework may introduce

errors that result in misclassification. We have identified that misclassifications may

occur due to the following reasons:

1. Glands may be inaccurately represented by the MASM.

2. MASMs may be misaligned during the registration step. As the subsequent steps

in the ESD methodology involves computing shape distances between aligned

MASMs, glands dissimilarity will be inaccurate if the registration is inaccurate.

3. Misclassification may occur if the pairwise distances between MASMs are not

preserved when projecting from the original high dimensional feature space A

into the lower dimensional space y.

4 Glands that exhibits atypical traits the Gleason grade they belong to may be

misclassified.

As each source of misclassification is due to a unique underlying cause we have

assessed sources of misclassification within our framework. However, it is impossible

to assess whether glands demonstrate atypical shape characteristics except by manual

inspection, and have not tried to quantify glands that may be misclassified due to this

cause.

Experiment 5a: gland misclassification due to medial axis shape model

Glands for which the shape variance may not be fully characterized by the MASM, we

anticipate will have a lower than expected reconstruction accuracy. We have attempted

to identify these outlier glands or shapes via use of the DICE [163]. DICE [163] is a

measure of overlap between two shapes, in this case it reflects the extent of overlap
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Figure 4.7: Histogram of
DICE values for correctly clas-
sified (blue) and misclassified
(red) glands. A DICE value
of 1 represents a MASM that
can accurately reconstruct the
original gland shape. A DICE
value of 0 represents a com-
plete inability to reconstruct
the original gland shape.

(a) DICE=0.88 (b) DICE=0.81 (c) DICE=0.91 (d)
DICE=0.94

Figure 4.8: (a), (b) Representative misclassified glands due to poor MASM reconstruc-
tion and (c), (d) representative correctly classified glands. The blue contour represents
the original shape of the gland and red represents the gland shape reconstructed from
the MASM. Note that the glands which are correctly classified ((c), (d)) have fewer
discrepancies between the original shape and the reconstructed shape compared to mis-
classified glands ((a), (b)).

between the reconstructed gland shape and the ground truth gland shape. For glands

where the MASM preserves the shape characteristics we expect a DICE value near 1,

for glands where the MASM cannot preserve the original shape we expect a low DICE

value. Figure 4.2.3 shows a histogram plot of the Dice coefficient for correctly classified

(blue) and misclassified (red) glands. We determined approximately 20% of misclassified

glands had DICE coefficient values below 0.90, compared to correctly classified glands

where only 7% have Dice coefficient values below 0.9. Figure 4.8 shows representative

gland shapes (blue), for both correctly classified and misclassified glands, and their

reconstructed shapes (red).
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Figure 4.9: Histogram of the
change in SSD, represented in
real world coordinates, during
the diffeomorphic registration.

Experiment 5b: gland misclassification due to registration

There is no ground truth for correspondence between MASMs, we evaluated the align-

ment (or misalignment) between MASMs for different glands by quantifying the sum of

squared differences (SSD) between corresponding medial atoms for a pair of MASMs.

To evaluate the registration algorithm, we compute SSD before and after the diffeo-

morphic registration, and then calculate the change in SSD between these values. In

this experiment we make the implicit assumption that glands with small changes in

SSD are more likely to have incorrect correspondence. However, we recognize that this

is only a surrogate measure to determine how well MASMs are aligned via our regis-

tration algorithm. Figure 4.2.3 shows a histogram plot of change in SSD for correctly

classified (blue) and misclassified (red) glands. We identified that approximately 40%

of misclassified glands had a change in SSD of less than 1 µm in real world coordinates,

corresponding to approximately 5 pixels, a low change in SSD compared to correctly

classified glands. Over 85% of correctly classified glands have a change in SSD greater

than 1 µm.

Experiment 5c: gland misclassification due to dimensionality reduction

We evaluated if pairwise distances between gland representations in A and y′ are pre-

served by the following procedure. We determined a set of glands Na in the local
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Figure 4.10: Histogram
of Pearsons correlation coef-
ficient values between ∆HD

and ∆LD for correctly clas-
sified (blue) and misclassified
(red) glands.

neighborhood of a single gland such that W (a, b) < r : b ∈ Na, where r is the thresh-

old distance that determines if two glands are considered neighbors. ∆HD = W (a, b)

represents the distance between two glands in the original high dimensional space.

We calculated the distance between glands in the low dimensional space as ∆LD =

||ya − yb|| : b ∈ Na.

We then evaluated Pearson’s correlation coefficient between ∆HD and ∆LD [164].

Low correlation values reflect glands for which GE does not preserve neighborhood

relationships between glands while high correlation values reflect glands where neigh-

borhood relationships are preserved.

Figure 4.2.3 shows a histogram plot of the Pearsons correlation coefficient for cor-

rectly classified (blue) and misclassified (red) glands. We determined that approxi-

mately 25% of misclassified glands had Pearsons correlation coefficient values below

0.60, while less than 5% of correctly classified glands had values below 0.6. This sug-

gests that GE does not accurately preserve pairwise distances between A and y′ in the

25% of misclassified glands with a low Pearsons correlation coefficient.

4.2.4 Concluding Remarks on Explicit Shape Descriptors

Explicit Shape Descriptors (ESDs) are calculated by (a) fitting a medial axis shape

model (MASM), (b) calculating diffeomorphic based similarity (DBS), and (c) applying

Graph Embedding (GE) to the shape dissimilarity matrix to find a set of ESDs. The
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individual modules contained in our ESD calculations (e.g. MASM [120], GE [155]) have

been previously described, however, our methodology represents a novel integration of

each of these methods in order to describe object morphology with a concise set of

features. ESDs were able to distinguish between subtle differences in super quadratic

ellipsoids and were also able to distinguish between prostate glands on histopathology

with subtle morphologic differences with a maximum accuracy of 89% for 888 prostate

glands acquired from 58 patient needle core biopsies.

ESDs offer distinct advantages compared to previously reported methods which

combine shape models with NLDR. ESDs, unlike that of previously presented work

[151, 152], is unique in that it can be applied to data where class information is not

known. ESDs are derived from the eigenvector decomposition of the high dimensional

shape dissimilarity matrix and hence are guaranteed to be of low dimensionality while

simultaneously preserving pairwise class relationships between objects. For the datasets

considered in this work, ESDs were better able to accurately capture morphologic dif-

ferences between objects compared to other classes of feature descriptors including

boundary-based features [102], Fourier Descriptors (FDs) [125], and MASM path simi-

larity [148].

The results from Experiment 1 (Section 4.2.3) show that the MASM is able to

accurately model the shapes of glands as seen on prostate histopathology. However, a

relatively minor portion of glands (approximately 20% of misclassified glands) may be

misclassified due to an inability of the MASM to capture subtle differences in shape.

The results from Experiment 2 (Section 4.2.3) demonstrate that DBS is able to

accurately determine correspondence between a wide variety of MASMs over a range

of deformations. However, determining MASM correspondence is a difficult task. Fur-

thermore, evaluation of the registration step demonstrated that in approximately 40%

of misclassified glands the inability to correctly determine medial atom correspondence,

and hence accurately determine shape dissimilarity, may be responsible for misclassifi-

cation (results not shown).

Finally, gland misclassification may be caused by GE being unable to accurately

preserve the relationships between samples when projecting the high dimensional space
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into a lower dimensional space. We found roughly 25% of misclassified glands may be

on account of classes relationships not being preserved during this step. Future work

will evaluate other NLDR algorithms (e.g. Locally Linear Embedding (LLE) [165],

Isomaps [166]) within our framework.

For approximately 15% of glands that were misclassified we were unable to deter-

mine which step in our algorithm may be responsible for the misclassification. Visual

inspection of a subset of these glands showed that some misclassifications may be at-

tributed to glands displaying atypical shape attributes. In future work we will integrate

the ESD features with other types of histologic image attributes, such as the shape and

arrangement of nuclei [111] or texture [48, 167], to build classification tools for Glea-

son grading of prostate histopathology that may be better able to classify glands with

atypical shape attributes.

4.3 Out-Of-Sample Extrapolation Utilizing Semi-Supervised Learn-

ing for Efficient Explicit Shape Descriptors

In this section we present out-of-sample extrapolation utilizing semi-supervised learn-

ing (OSE-SSL) for computationally efficient calculation of ESDs for never before seen

images. OSE-SSL is evaluated in the context of Content-based Image Retrieval (CBIR)

where images are retrieved from a database according to their similarity to a query

image. In the context of medical imagery, images which are visually similar often have

similar pathologies. A CBIR system for histopathology images could serve as a useful

training tool for pathology residents, fellows, and medical students and could potentially

serve as a decision-support tool in diagnosis and grading of pathologies [168–177]. CBIR

systems are particularly relevant in the context of histopathology imagery where (a) the

images can be extremely large and described by a very large set of image descriptors, and

(b) differences between pathologies may be very subtle and not immediately appreciable

visually. Additionally, with the recent advent of whole-slide digital scanners, pathology

labs will soon be routinely generating very large amounts of digitized histopathology

imagery, necessitating intelligent and efficient image retrieval systems [178].
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CBIR systems attempt to retrieve images from a database identified as being the

most similar to the query image in terms of quantitative image descriptors obtained

from the query and database images. In the context of medical imagery, images which

are visually similar often have similar pathologies. A CBIR system for histopathology

images could serve as a useful training tool for pathology residents, fellows, and medical

students and could potentially serve as a decision-support tool in diagnosis and grading

of pathologies [168–177]. CBIR systems are particularly relevant in the context of

histopathology imagery where (a) the images can be extremely large and described by

a very large set of image descriptors, and (b) differences between pathologies may be

very subtle and not immediately appreciable visually. Additionally, with the recent

advent of whole-slide digital scanners, pathology labs will soon be routinely generating

very large amounts of digitized histopathology imagery, necessitating intelligent and

efficient image retrieval systems [178].

The remainder of the section is organized as follows. In Section 4.3.1 we review

previous work in CBIR systems for histopathology and describe the novel contributions

of OSE-SSL. Section 4.3.2 describes the theoretical foundations of OSE-SSL and the

OSE-SSL algorithm. Section 4.3.3 discusses our experimental design and results for

OSE-SSL. Section 4.3.4 presents our concluding remarks.

4.3.1 Previous Work in Content-based Image Retrieval for Histopathol-

ogy

CBIR systems typically comprise two components: (1) a module for extraction of do-

main specific image descriptors to quantitatively characterize the images, and (2) a

module for computation of the similarity between the query and database images in

terms of the quantitative image descriptors. Several CBIR methods for radiological

medical imagery have been presented [179,180]. Such CBIR systems extract relatively

few image descriptors and hence are able to accurately perform image retrieval in the

original high dimensional image descriptor space. In comparison, CBIR systems for

histopathology imagery extract a very large number of features to describe the complex

imagery [168,170–177]. Such medical imagery can be represented by a high dimensional
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space, where each dimension corresponds to a single image descriptor.

A high dimensional image descriptor space makes the calculation of similarity be-

tween image descriptors difficult as (a) the number of database images may be small

compared to the number of image descriptors giving rise to the curse of dimensionality

problem [181], and (b) images often cluster densely in small regions of the high dimen-

sional space [182]. Hence relationships between image descriptors may be important

when calculating image similarity. Consequently, a few researchers have proposed di-

mensionality reduction methods [168,171,172,175,177,183] to map the high dimensional

image descriptors into a low dimensional representation so that image similarity calcu-

lation and retrieval can be performed directly in the low dimensional space. Retrieval

performed in a low dimensional space is often more accurate than retrieval performed

in the original high dimensional space [172,175]. However, utilizing dimensionality re-

duction methods to learn a low dimensional space may add computational complexity

to the retrieval algorithm.

Linear dimensionality reduction methods, such as Principal Component Analysis

(PCA), attempt to find a low dimensional space that is a linear projection of the high

dimensional space. Hence linear dimensionality reduction methods only preserve linear

relationships between images [168,171]. Semi-supervised learning (SSL) methods, such

as Linear Discriminant Analysis, have been proposed to take into account semantic

information such as partial class labels when learning a low dimensional projection in

order to co-localize semantically similar images [173, 180, 184]. Comaniciu et. al. [168]

utilized a weighted sum of image descriptors, where weights were determined by maxi-

mizing an objective function, to retrieve images corresponding to different hemotologic

malignancies. This approach is equivalent to a linear dimensionality reduction method

as only linear relationships between images are preserved during retrieval. Zheng et.

al. [171] utilized multi-dimensional scaling, a linear dimensionality reduction scheme,

to compute a low dimensional space in which image retrieval could be performed for

a set of histopathology images taken from different anatomical regions (e.g. spleen,

prostate, colon, etc.). However, these methods assume that a linear projection of the

high dimensional space will best preserve relationships between images.
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(a) (b) (c) (d)

Figure 4.11: (a) 3D Swiss Roll dataset comprising 2000 samples belonging to two classes
(red, blue). The arrow displays the direction of greatest variance along the manifold.
(b) 2D low dimensional embedding space found via Graph Embedding. Note that the
two classes cluster on different regions of the low dimensional embedding space. (c)
2D low dimensional embedding space found via semi-supervised Graph Embedding.
Note that the two classes are more separated than for Graph Embedding. (d) 2D low
dimensional embedding space found via Graph Embedding (closed points) and OSE
(open points).

Manifold learning schemes attempt to find a low dimensional embedding space which

preserves the manifold structure of the image descriptors in the high dimensional space.

Hence manifold learning methods attempt to preserve the non-linear relationships be-

tween image descriptors [155, 165, 166]. Graph Embedding [155], a specific instance

of a manifold learning scheme, attempts to model the manifold structure using local,

pairwise relationships between image descriptors in the high dimensional space thereby

preserving these relationships between images in the low dimensional space. Recent

work has demonstrated that manifold learning schemes, such as Graph Embedding,

may result in low dimensional spaces better suited for CBIR when image similarity is

defined by a non-linear manifold in the high dimensional space [172,175,177,183]. Semi-

supervised manifold learning methods, which utilize SSL in conjunction with manifold

learning, attempt to learn a low dimensional embedding space such that semantic, non-

linear relationships between images in the high dimensional space are preserved [185].

To our knowledge no CBIR systems for histopathology have leveraged semi-supervised

manifold learning. However, CBIR systems for color photography [183,186] have been

proposed which leverage such methods.

Figure 4.11 demonstrates the ability of Graph Embedding to preserve non-linear

relationships between samples in the case of a synthetic Swiss Roll dataset. Figure
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4.11(a) shows a synthetic Swiss Roll dataset consisting of 2000 samples described by a

3D space, the arrow demonstrating the direction of greatest variance along the mani-

fold. In this example Graph Embedding is able to find a low dimensional space (2D)

which preserves the underlying structure of the dataset as evidenced by the planar 2D

embedding space shown in Figure 4.11(b). Figure 4.11(c) shows the results of semi-

supervised Graph Embedding for the Swiss Roll. Note that for SSGraph Embedding

(Figure 4.11(c)) samples from two classes (blue, red) have a larger separation compared

to Graph Embedding (Figure 4.11(b)).

Despite the advantages of manifold learning, only a few papers have attempted to

use manifold learning in conjunction with CBIR of medical imagery [172,175,177], due

to its computational cost. A computationally expensive eigenvalue decomposition must

be calculated for every new query image [187, 188]. Hence there is a need to develop

manifold learning schemes which are more computationally efficient and do not require

a eigenvalue decomposition for each new query image. Algorithms have been developed

to avoid recomputing the eigenvalue decomposition for out-of-sample images, but have

not previously been evaluated in the context of CBIR for medical imagery [187,188].

Locality Preserving Projections attempts to approximate the low dimensional em-

bedding space found by manifold learning as a linear combination of image descriptors

in the high dimensional space [187]. Locality Preserving Projections is reliant on a

linear combination of the image descriptors accurately modeling relationships between

images, and hence accurately modeling relationships in the low dimensional space. If

the low dimensional space found via manifold learning is not approximately linear Lo-

cality Preserving Projections will not correctly estimate the low dimensional space.

Alternatively, out-of-sample extrapolation (OSE) [188] attempts to determine the loca-

tion (or embedding) of a new query image in the low dimensional space as a weighted

sum of the low dimensional embeddings already calculated for a set of images. In the

context of a CBIR system, the calculated embeddings would correspond to the em-

bedding location for the database images. Unlike Locality Preserving Projections, the

non-linear relationships between images are preserved, and hence OSE may be better

able to resolve differences between images belonging to different classes. Figure 4.11(d)
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shows the results of OSE for the Swiss Roll dataset where samples which were projected

into the low dimensional space via OSE are represented by open points.

We have developed OSE-SSL algorithm, which represents a novel combination of

SSL and OSE, designed specifically to be computationally tractable. The novel inte-

gration of these two methods involves projecting never-before seen images into a low

dimensional embedding space that takes into account semantic information (class la-

bel information). Hence OSE-SSL (a) integrates known label information to learn a

low dimensional embedding space and (b) overcomes the out-of-sample problem. We

demonstrate the use of OSE-SSL in the context of CBIR applications. Figure 4.12 il-

lustrates a flowchart of our OSE-SSL CBIR system. The CBIR system is characterized

by (1) offline database construction where SSL is applied to quantitative image descrip-

tors for a set of database images to obtain a low dimensional embedding space and

(2) online image retrieval where OSE is used to compute the embedding location of a

never before seen query image. Offline database construction consists of (a) extracting

image descriptors for all database images, and (b) applying SSL to determine the low

dimensional embedding space for images contained within the database. Once offline

database construction has been completed online image retrieval is then performed effi-

ciently utilizing OSE. Online image retrieval consists of (c) extracting image descriptors

from the query image, (d) OSE of the query image into the low dimensional embedding

space, and (e) ranking image similarity in the low dimensional embedding space.

OSE-SSL confers several advantages to a CBIR system. Firstly, OSE-SSL efficiently

calculates embedding locations for images not contained in the database, such as query

images, by removing the need to recompute the eigenvalue decomposition. Secondly,

OSE allows for non-linear relationships between images to be appropriately modeled

when learning the low dimensional embedding space. Thirdly, OSE-SSL allows for the

utilization of semantic information when calculating the low dimensional embedding

space. Leveraging semantic information allows for construction of an low dimensional

embedding space where semantically similar images are near each other while semanti-

cally dissimilar images are farther away.

We demonstrate OSE-SSL in the context of the ESD framework (Section 4.2 ). We



87

Figure 4.12: A flowchart of the OSE-SSL CBIR system. The system has an offline
database construction phase (top) and an online retrieval phase (bottom). Database
construction consists of (a) obtaining a set of N repository images (C = [Cr1 , . . . , C

r
N ])

and extract image features, represented by the dissimilarity matrix A. (b) Performing
SSL to learn the low dimensional embedding space which optimally describes similarity
between images in C. Retrieval of images most similar to a query image Cq is then
performed via (c) extracting image features from Cq, represented by A(·, q). (d) OSE
of Cq into the low dimensional embedding space. (e) Image retrieval of the n most
similar images (s1, . . . , sn) to Cq according to Euclidean distance in the low dimensional
embedding space.
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evaluate our system on two datasets (a) synthetic MPEG-7 dataset [189] and (b) a digi-

tized prostate histopathology dataset. The MPEG-7 dataset consists of synthetic black

and white silhouette images, hence only morphologic similarity is relevant for image

retrieval. The MPEG-7 dataset was selected to demonstrate that ESDs are able to ac-

curately retrieve images according to morphology. The prostate histopathology dataset

was chosen due to the challenges in accurately distinguishing between intermediate

Gleason grades [45];

4.3.2 Out-of-Sample Extrapolation Utilizing Semi-Supervised Mani-

fold Learning (OSE-SSL)

Notation

Table 4.5 displays the notation used to explain the methodology of OSE-SSL. A database

of N images is defined by C = [Cr1 , . . . , C
r
N ]. r denotes that the image is contained in

C, to contrast with Cq where q denotes a query image not contained in database. Each

image in the database has a corresponding label defined by L = [l1, . . . , lN ]. Every label

li ∈ L takes on a discrete value li ∈ {1, 2, . . . , Z} where C contains images belonging

to Z classes.

Symbol Definition Symbol Definition

C Image database N Number of images in C

Cri ith image in C Cq User-selected query image

φ(Cri , C
r
j ) Dissimilarity function be-

tween Cri and Crj

yr Embeddings in the low dimen-
sional space R

d

L Image label information A Dissimilarity matrix for C

W Similarity matrix for C yri Embedding location for Cri
yq Embedding location for Cq DOS Distance metric in R

d

Table 4.5: Notation used to describe OSE-SSL.

For two images Cri ∈ C and Crj ∈ C, j 6= i we define pairwise dissimilarity as

A(i, j) = φ(Cri , C
r
j ). The function φ(·, ·) can represent any dissimilarity function such

that if φ(Cri , C
r
j ) > φ(Cri , C

r
k) then it follows that Cri and Crj are more dissimilar than Cri

and Crk. The function φ(C
r
i , C

r
j ) is evaluated over all i, j ∈ {1, . . . , N}, j 6= i to obtain A.
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A is an N ×N matrix representing pairwise dissimilarity between all images contained

in C.

Review of Manifold Learning

Graph Embedding

The goal of Graph Embedding is to determine a set of low dimensional embedding

locations y ∈ R
n that preserves the relationships between images in C ∈ R

N where

n ≪ N . Graph Embedding determines y by modeling the similarity between images

according to a similarity matrix W . Given the dissimilarity matrix A described in

Section 4.3.2, W is found by W (i, j) = e−A(i,j)/γ , where γ is a user selected scaling

parameter. y is then found by minimizing the pairwise reconstruction error defined as,

y = argmin
y

[ N
∑

i=1

N
∑

j=1

||yi − yj||
2W (i, j)

]

, (4.22)

where ||·|| denotes the L2-norm. An image Cri is associated with the embedding location

yi. Belkin et. al. [190] demonstrated that Equation 4.22 is equivalent to the following

eigenvalue decomposition,

(D −W )y = λDy, (4.23)

where D is a diagonal matrix defined as D(i, i) =
∑N

j=1W (i, j). The largest d eigen-

values in λ correspond to the n eigenvectors y which are defined as the n dimensional

embedding locations. y correspond to the projection of the matrix W into R
n such

that the pairwise similarity between the elements in W , and hence the pairwise simi-

larity between images, are preserved. Furthermore the eigenvectors y are orthonormal,

hence, each additional eigenvector (or dimension) provides independent information on

the image similarity in W .

Semi-Supervised Manifold Learning (SSL)

For C let a corresponding set of known labels be defined as Lr ⊂ L where Lr =

[l1, . . . , lN ]. Note that N
l, the number of labels, is less than N , the number of database
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images, as we assume that some labels may be unknown for images contained in C. A

similarity matrix W r is constructed by altering elements in W , as defined in Section

4.3.2, according to Lr. Images which correspond to the same class have higher values

in W r compared to W , while images which correspond to different classes have lower

values in W r compared to W . For images where no label information is known the

values in W r and W are equivalent. W r is calculated as,

W r(i, j) =































ω(1 + ω) if li = lj ,

ω(1− ω) if li 6= lj ,

ω otherwise,

(4.24)

where ω =W (i, j). The “otherwise” case corresponds to instances where label informa-

tion is unknown for either li or lj . Once the similarity matrix W r has been calculated,

the eigenvalue decomposition described by Equation 4.23 is performed on W r to obtain

yr.

By alteringW r according to Equation 4.24, images belonging to the same class (i. e.

li = lj) will be close together in the low dimensional embedding space. Images belong

to different classes (i. e. li 6= lj) will be farther apart in the low dimensional embedding

space. Images where class information is unknown (i.e. li or lj are undefined) will be

near images determined to be similar, in terms of φ(·, ·), regardless of class.

Out-of-Sample Extrapolation (OSE)

OSE uses y determined from C to extrapolate yq for Cq. Assuming that y accurately

describes the non-linear relationships in C, which should be the case when C is suffi-

ciently large, OSE is able to accurately determine yq [191,192].

OSE is divided into three steps,

1. Manifold Learning: A set of low dimensional embeddings y are learned by per-

forming Graph Embedding on C as described in Section 4.3.2.

2. Query Image Descriptor Calculation: Pairwise dissimilarity A(i, q) is calculated

between Cq and every image contained in C as described in Section 4.3.2. W (i, q)

is calculated from A(i, q) as in Section 4.3.2.
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3. Query Sample Extrapolation: The embedding location yq for Cq is extrapolated

via,

yqk =
1

λk

N
∑

i=1

yi,kW (i, q), (4.25)

where k ∈ {1, . . . , n} is the kth embedding dimension corresponding to the kth

smallest eigenvalue λk.

Intuitively, OSE calculates yq as a weighted sum of the database embeddings yi : i ∈

{1, . . . , N} where weights are based on image similarity described by W (i, q).

Out-of-Sample Extrapolation for Semi-Supervised Manifold Learning

OSE-SSL is a novel combination of the previously described SSL and OSE algorithms

that projects never-before seen images into a low dimensional embedding space that

incorporates semantic information. OSE-SSL calculates yr for C such that (a) the

image class labels Lr are taken into account and (b) image similarity is optimally

represented by yr. After yr have been calculated for C, a new never before seen image

Cq can be extrapolated into the low dimensional space to obtain yq. OSE-SSL calculates

the embedding yq in a computationally efficient manner.

Our novel methodology for OSE-SSL can be divided into an offline ConstructOSE-

SSL algorithm and an online ApplyOSE-SSL algorithm both of which are described in

detail in Section 4.3.2. Section 4.3.2 describes the application of OSE-SSL to CBIR.

Finally, the computational complexity of OSE-SSL is described in Section 4.3.2.

OSE-SSL Algorithm

The algorithm for OSE-SSL is divided into two parts, (1) ConstructOSE-SSL which is an

offline computationally intensive algorithm to learn yr that only needs to be performed

once for C and (2) ApplyOSE-SSL which is an online algorithm to extrapolate yq for Cq.

The combination of these two algorithms results in a low dimensional representation

for both C and Cq.

The ConstructOSE-SSL algorithm takes into account only images contained in the

database C and the corresponding semantic information Lr. ConstructOSE-SSL is
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describe in Algorithm 2.

Algorithm 2 ConstructOSE-SSL

Input: C, Lr

Output: λr , yr

1: Find A(i, j) = φ(Cri , C
r
j ) ∀i, j ∈ {1, . . . , N}.

2: Find W r by Equation 4.24.
3: Find λr , yr by Equation 4.23.

Once the eigenvalues λr and the embedding locations yr have been computed, ex-

trapolation of Cq into the low dimensional embedding space can be performed via the

ApplyOSE-SSL algorithm. ApplyOSE-SSL is describe in Algorithm 3.

Algorithm 3 ApplyOSE-SSL

Input: Cq, λr, yr

Output: yq

1: Find A(i, q) = φ(Cri , C
q) for all i ∈ {1, . . . , N}.

2: Calculate W (i, q) = e−A(i,q)/σ.
3: Find yq by Equation 4.25.

These two algorithms in combination allow for a low dimensional embedding space to

be found for C and Cq.

Application to Image Retrieval

The goal of a CBIR system is to retrieve n images in C which are most similar to

Cq. The application of OSE-SSL to a CBIR system can be applied to learn the metric

DOS(C
r
i , C

q) where DOS(C
r
i , C

q) is defined such that smaller values correspond to more

similar images.

Offline database construction is an important precursor to image retrieval and is

performed using the algorithm ConstructOSE-SSL. Online retrieval of the most simi-

lar images in C is performed by the algorithm RetrieveOSE-SSL. RetrieveOSE-SSL is

describe in Algorithm 4.
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Algorithm 4 RetrieveOSE-SSL

Input: Cq, yr

Output: Cr

1: Extrapolation of yq for Cq via ApplyOSE-SSL.
2: Calculate similarity between C and Cq by,

DOS(C
r
i , C

q) = ||yri − yq||. (4.26)

3: Sort DOS from smallest to largest value to give s.
4: Return Cr corresponding to the smallest n values in s.

OSE-SSL Computational Complexity

To analyze the computational complexity of our novel OSE-SSL algorithm we con-

sider ConstructOSE-SSL and ApplyOSE-SSL separately. ConstructOSE-SSL is a SSL

algorithm applied to C. SSL has a computational complexity of O(N3) due to the

eigenvalue decomposition in Equation 4.23 which is the rate limiting step [193]. How-

ever as ConstructOSE-SSL is utilized only to learn a low dimensional representation of

C it is performed offline prior to image retrieval. ApplyOSE-SSL learns yq for Cq and

hence must be performed online. The computational complexity of OSE is O(N) due

to the weighted summation in Equation 4.25 [193].

4.3.3 Experimental Design and Results for Evaluation of Out-of-Sample

Extrapolation of Semi-Supervised Learning

We evaluated our RetrieveOSE-SSL algorithm on two datasets described in Table 4.6.

The synthetic MPEG-7 dataset as described in Section 4.3.3 was selected to demon-

strate RetrieveOSE-SSL can accurately retrieve images according to morphology. The

prostate histopathology dataset as described in Section 4.3.3 was selected to demon-

strate the application of RetrieveOSE-SSL to retrieving images according to morphol-

ogy in a relevant clinical context, that of the Gleason grading system. The use of these

datasets to determine C and Cq and perform CBIR is described in Section 4.3.3. Eval-

uation measures used to determine the accuracy of RetrieveOSE-SSL are described in

Section 4.3.3. All code was implemented in MatLab R© 2012b and run on a computer

with a 3.0 GHz Xeon Quad-Core processor and 16 GB of RAM.
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Dataset
Database
Size (N)

Number of
Classes (Z)

Description

MPEG-7 1400 70 Synthetic silhouette images of various objects.

Prostate 888 3
Prostate histopathology images each contain-
ing one prostate gland.

Table 4.6: Description of the datasets used for evaluation OSE-SSL.

MPEG-7 Data Description

The MPEG-7 Core Experiment CE Shape-1 part B was selected as a synthetic dataset

to evaluate CBIR. This dataset contains 1400 silhouette images divided equally into 70

classes (20 objects per class) [189]. The dissimilarity metric φ(Cri , C
r
j ) is calculated by

extracting Explicit Shape Descriptors (ESDs) for the silhouette in each image (Section

4.2).

Prostate Histopathology Data Description

Prostate tissue biopsy cores were obtained from 58 patient studies. Each tissue biopsy

was stained with Hemotoxylin and Eosin (H & E) and digitized using a ScanScope

CSTM whole-slide scanning system at .25 µm per pixel (40× optical magnification). An

expert pathologist selected regions of interests (ROIs) on the digitized biopsy image,

for a total of 102 ROIs. The expert pathologist then classified each ROI as benign (BE)

(24 ROIs), Gleason grade 3 (G3) (67 ROIs), or Gleason grade 4 (G4) (11 ROIs). Every

gland contained within each ROI was segmented by a human expert to obtain lumen

and nuclear boundaries, the human expert was blinded to the Gleason grade for all

glands. Glands which did not contain either a nuclear or lumen boundary, or where the

contour was not fully contained within the ROI were removed from the study, resulting

in a total of 888 glands. Glands were distributed across the three classes: Benign

(N = 93), Gleason grade 3 (N = 748), and Gleason grade 4 (N = 47).

Dissimilarity between prostate histopathology images is determined according to

morphologic similarity between prostate glands on each image. The function φ(Cri , C
r
j )

is calculated as described in Section 4.2.
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Database Construction

For each dataset in Table 4.6 a query image Cq was selected such that each image in the

dataset was selected once. C was constructed by randomly selecting N images from

the dataset in such a way as to always maintain class balance (i.e. stratified sampling

of database images). Additionally, the query image Cq was always excluded from C.

Construction of Lr was performed by randomly selecting N l labels from the images in

C in such a way as to maintain class balance. Additionally for all experiments N l ≤ N ,

so that the total number of known labels were always less than N . The ability of

RetrieveOSE-SSL to return images belonging to the same class as Cq was evaluated as

described in Section 4.3.3.

Measure Description

Silhouette Index (SI) ηSI =
∑N

i=1
ν(i)−ψ(i)

max[ψ(i),ν(i)] where ψ(i) =
∑

j,lj=li
||ỹi − ỹj||

and ν(i) =
∑

j,lj 6=li
||ỹi − ỹj||

Area under the pre-
cision recall curve
(AUPRC)

Area generated by plotting p(α) versus r(α) where p(α) =
Φ(α)
α and r(α) = Φ(α)

Φ(N) . Φ(α) denotes the number of rele-
vant objects in the closest α points.

Bull’s Eye B = Φ(2×Φ(N))
Φ(N) where Φ(N) denotes the number of relevant

objects in the database.

Table 4.7: Evaluation measures to compare CBIR systems.

Evaluation Measures

OSE-SSL was evaluated on (a) Silhouette Index (SI) of y, a measure of how well images

cluster according to class [194], and (b) area under the precision-recall curve (AUPRC)

of RetrieveOSE-SSL, a description of the behavior of an image retrieval system in terms

of how many and in what order relevant images are returned. The synthetic MPEG-7

dataset was evaluated using the Bull’s Eye measure, a description of how many of the

top returned images are in same class as Cq. Table 4.7 describes all evaluation measures.
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Distance Metric Description

High dimensional metric (DH) DH(C
r
i , C

q) =
√

∑N
j=1(A(i, j) −A(q, j))2.

Linear low dimensional metric
(DPCA)

DPCA(C
r
i , C

q) = ||xri − xq||2, where x
r
i ∈ x is

obtained by taking the top b principle components
from applying PCA to A.

Graph Embedding low
dimensional metric (DGE)

DGE(C
r
i , C

q) = ||yri − yq||2, where y
r
i , y

q are
obtained by applying Graph Embedding to A as
described in Equation 4.23. Note this is equivalent

DOS where Cq is contained in C.

Table 4.8: Comparative distance metrics utilized to define alternative image similarity
measures.

Evaluation Distance Metric
Measure DH DPCA DGE DOS

Area under the
precision recall

curve
0.05 ± 0.01 0.023 ± 0.018 0.164 ± 0.130 0.171 ± 0.148

p-value 8 .2 × 10−4 3 .4 × 10−4 - 0.213

Bull’s Eye 69.63 ± 18.83 69.63 ± 18.83 77.46 ± 12.76 79.74± 9.75

p-value 6 .5 × 10−3 6 .5 × 10−3 - 0.56

Table 4.9: Area under the precision recall curve, Silhouette Index and Bull’s Eye val-
ues for Experiment 1. Values for the best performing metric are bolded. p-values are
reported for a Student’s t-test to evaluate whether the distance metric DGE outper-
formed the distance metrics (DH , DPCA, or DOS). The null hypothesis is DGE and the
compared distance metric are equivalent.

Experiment 1: Distance Metric for Synthetic MPEG-7 Database

We compared the ability of DOS to retrieve relevant images with respect to three other

distance metrics, DH , DPCA and DGE, discussed in Table 4.8. DGE is a special case

of DOS where Cq is contained in C (equivalent to N l = 0.0 and N = 1.0), hence, yq is

calculated using Equation 2 for both Graph Embedding and OSE-SSL. For DOS some

labels are known (N l = 0.5) and not all images are contained in the database (N = 0.9).

Table 4.9 reports Bull’s Eye and area under the precision recall curve for each

distance metric. Both DOS and DGE outperform DH and DPCA in terms of area under

the precision recall curve and Bull’s Eye score. A Student’s t-test was performed with
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Figure 4.13: Precision-recall curves for Ex-
periment 2 showing retrieval for the met-
rics: DH (black), DPCA (orange), and DGE

(pink). The precision-recall curves for DH

and DPCA perform similarly while DGE out-
performs both.

the null hypothesis was that there were no differences in performance between DGE and

the other distance metric compared. The differences between DGE and either DH or

DPCA are statistically significant (p < 0.05) and the null hypothesis is rejected. The

differences between DGE and DOS are not statistically significant. Additionally, DOS is

comparable to several state of the art shape modeling approaches including curvature

scale space and shape context, methods which had Bull’s Eye scores in the range of

75− 80% [119,151,195].

Experiment 2: Distance Metric for Prostate Histopathology Database

In this experiment we evaluated the ability of DOS to retrieve relevant images for the

prostate histopathology dataset. Three other distance metrics, DH , DPCA, and DGE,

discussed in Table 4.8 were used for comparison. DGE is a special case of DOS where Cq

is contained in C (equivalent to N l = 0.0 and N = 1.0), hence, yq is calculated using

Equation 2 for both Graph Embedding and OSE-SSL. For DOS some labels are known

(N l = 0.5) and not all images are contained in the database (N = 0.9)

In Table 4.10 we report Silhouette Index and area under the precision recall curve for

the prostate histopathology database. DGE results in a higher area under the precision

recall curve and Silhouette Index compared to DH or DPCA, and these differences are

statistically significant (p < 0.05). Additionally, increase in Silhouette Index and area

under the precision recall curve for DOS(N = 0.9, N l = 0.5) over DGE is statistically

significant. In all cases the null hypothesis is that there are no differences between DGE

and the compared distance metrics.
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Evaluation Distance Metric
Measure DH DPCA DGE DOS

Area under the
precision recall curve

0.42 ± 0.01 0.44 ± 0.01 0.50 ± 0.01 0.53± 0.03

p-value 9.8× 10−23 5.52 × 10−13 - 6.1 × 10−3

Silhouette Index −0.06± 0.02 −0.10 ± 0.02 0.08 ± 0.03 0.14± 0.12

p-value 2.01 × 10−14 2.01 × 10−15 - 2.86 × 10−6

Table 4.10: area under the precision recall curve and Silhouette Index values for Ex-
periment 2. Values for the best performing metric are bolded. p-values are reported for
a paired Student’s t-test to evaluate whether the distance metric DGE outperformed a
comparative distance metric (DH , DPCA, or OS). The null hypothesis is DGE and the
compared distance metric are equivalent.

(a) Query

(b) DPCA

(c) DGE

(d) DOS(N = 0.9, N l = 0.5)

Figure 4.14: (a) Gleason grade 4 query image and top 5 images retrieved (left to right)
by (b) DPCA, (c) DGE , and (d) DOS. Retrieved images belonging to the same class as
the query image (Gleason grade 4) are outlined in red while those belonging to Gleason
grade 3 are in green, and Benign are in blue.
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fGr

(a) Query

(b) DPCA

(c) DGE

(d) DOS(N = 0.9, N l = 0.5)

Figure 4.15: (a) Benign query image and top 5 images retrieved (left to right) by (b)
DPCA, (c) DGE, and (d) DOS. Retrieved images belonging to the same class as the
query image are outlined in blue (benign) while those belonging to Gleason grade 3 are
in green, and Gleason grade 4 are in red.
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The top 5 retrieved images are shown for Cq of an example Gleason grade 4 gland in

Figure 4.14, where DOS(N = 0.9, N l = 0.5) was able to retrieve only glands belonging

to the same class as Cq. DGE also outperforms DPCA for Cq. Figure 4.15 displays a

particularly hard to classify Cq of a benign gland, and the corresponding top 5 images

retrieved. Further evaluation of this gland showed that due to its small size compared

to other benign glands, Φ(·, ·) often resulted in a higher than expected dissimilarity

between this gland and other BE glands, resulting in retrieving glands belonging to

other classes. While DPCA did not retrieve only glands belonging to the same class in

this example DOS and DGE were able to retrieve glands belonging to the same class,

with DOS ranking glands belonging to the same class higher compared to DGE .

Experiment 3: Parameter Sensitivity

In this experiment we evaluated the ability of DOS to retrieve relevant images for the

prostate histopathology dataset under for a range of parameter conditions. For DOS

there are two parameters which may be selected by the user, N the number of images

contained in C and N l the number of labels known for C. Parameters N l and N were

evaluated independently (Sections 4.3.3 and 4.3.3) by holding the parameter not under

consideration constant. The defaults for the parameter not under consideration were

N = 1.0 and N l = 0.0, as already mentioned when N = 1.0 and N l = 0.0 the distance

metrics DOS and DGE are equivalent. The parameters N l and N were also evaluated

together (Section 4.3.3) to explore the synergistic effects of N l and N on image retrieval.

Effect of Known Label Size

We hypothesized that adding label information via SSL would improve the ability of the

low dimensional embedding space to distinguish between images belonging to different

classes. Figure 4.16 displays the Silhouette Index and area under the precision recall

curve values of the baseline case of no labels (pink) and SSL by varying the number

of known labels (light blue). Adding label information improved Silhouette Index and

area under the precision recall curve for large N l.
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(a) (b) (c)

Figure 4.16: Effects of increasing the known labels (N l) on the prostate histopatholgy
database for (a) area under the precision recall curve and (b) Silhouette Index in the
low dimensional space obtained via OSE-SSL. The X axis reflects increasing the size of
the known labels (N l) as a function of the percentage of the training set size. The pink
line corresponds to the baseline case of N l = 0.0. (c) Three example precision-recall
curves for the area under the precision recall curve values are illustrated in (a).

Effect of Database Size

We hypothesized for OSE-SSL smallN would be unable to uncover the underlying struc-

ture in the database and result in embeddings which are less than optimal. As shown

in Figure 4.17, for N < 0.9 OSE was unable to accurately extrapolate embeddings.

However, for N ≥ 0.9 there are no statistically significant differences (p-value> 0.05)

between embeddings found via OSE and recomputing the eigenvalue decomposition of

the similarity matrix (i.e. embeddings found via Graph Embedding).

Relationship between Database Size and Known Label Size

The relationships between the SSL and OSE components of the OSE-SSL were evalu-

ated. Increasing the known labels (N l) necessitates a concomitant increase in database

size (N) to appropriately model the embedding space. This trend is shown in Figure

4.18 where for N l = 0.0 a training set size of N = 0.9 is able to appropriately extrapo-

late embeddings. However, when N l = 0.85 a training set size of N = 1.0 is required to

appropriately extrapolate embeddings (i.e. Graph Embedding must be utilized to learn

the embeddings). In this database, N is not sufficiently high to capture the underly-

ing structure if N l is increased. Despite not having a large enough N to capture the

underlying image structure increasing N l does result in better area under the precision
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(a) (b) (c)

Figure 4.17: Effects of increasing the training set size (N) on the prostate histopatholgy
database for (a) area under the precision recall curve and (b) Silhouette Index in the
low dimensional space obtained via OSE-SSL. The X axis reflects increasing the size of
the training set (N) as a function of the percentage of the total dataset size. The pink
line corresponds to the baseline case of N = 1.0. (c) Three example precision-recall
curves for the area under the precision recall curve values are illustrated in (a).

recall curve and Silhouette Index measures even for small N .

(a) (b) (c)

Figure 4.18: Effects of increasing the training set size (N) in conjunction with the known
label (N l) on the prostate histopatholgy database for (a) area under the precision recall
curve and (b) Silhouette Index in the low dimensional space obtained via OSE-SSL. The
X axis reflects increasing the size of the training set (N) as a function of the percentage
of the total dataset size. Different lines (0 and 0.9 are shown) reflect increasing the size
of known labels as a function of the training set size. (c) Four example precision-recall
curves for the area under the precision recall curve values are illustrated in (a).

Experiment 4: Computational Time

In this experiment we evaluated the time to retrieve images used the three distance

metrics: DH , DGE, and DOS to retrieve relevant images for the prostate histopathology

dataset using a range of training database sizes (N) and number of query images (N q).
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As shown in Figure 4.19 DH and DOS are able to retrieve images most similar to a

query in approximately the same amount of time while DGE requires more time to

perform an equivalent retrieval. Figure 4.19 (c) displays under what conditions the

time increases in retrieval for DGE are statistically significant (red). For larger N and

larger N q, DGE takes a statistically significant amount of time longer, the higher the

values for N and N q the more pronounced this effect is. The increase in time for DGE

is due to two factors (a) DGE requires more pairwise comparisons between Cq and the

images contained in C and (b) DGE requires a computationally expensive eigenvalue

decomposition to compute yq, the low dimensional embedding for the query image.
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Figure 4.19: Time to retrieve database images most similar to a set of query images
using three distance metrics: DH (H), DGE (Graph Embedding), and DOS (OSE-SSL).
The effects of training set size (N) and number of query images (N q) were evaluated.
Retrieval time for (a) N q = 1 and (b) N q = 25 are shown, note the different y-axis
scaling for each plot to better highlight the difference between the compared algorithms.
In all cases DH and DOS performed the retrieval in similar amounts of time. In contrast
DGE typically required more time to perform retrievals than either DH or DOS. (c)
Visual representation of when the differences in retrieval time for DGE and DOS are
statistically significant (p< 0.01, red) or not statistically significant (p> 0.01, blue).

4.3.4 Concluding Remarks

In this section a novel combination of out-of-sample extrapolation with semi-supervised

manifold learning (OSE-SSL) was described. OSE-SSL refines relationships between

images in the low dimensional embedding space according to semantic information via

SSL and then utilizes OSE to project never before seen images into the low dimensional
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space learned via SSL. We have demonstrated the application of OSE-SSL for content-

based image retrieval (CBIR) of prostate histpathology. Image similarity within our

CBIR framework is defined using ESDs. ESDs are leveraged to determine similarity

between images, and then apply the OSE-SSL algorithm to retrieve images which are

most similar in a computationally efficient manner.

CBIR for histopathology, has as histopathology images require many image descrip-

tors to accurately describe the large amounts of complex data present. Retrieval directly

within the high dimensional feature space for histopathology images is difficult. Man-

ifold learning can be leveraged to find a low dimensional representation where image

similarity calculation and retrieval can be performed accurately and efficiently.

Our OSE-SSL CBIR algorithm was evaluated for a prostate histopathology database

containing 888 glands and the synthetic MPEG-7 dataset. OSE-SSL outperformed

image retrieval in the high dimensional space as well as in a low dimension space found

by Principle Component Analysis (PCA). We demonstrated that for each database

OSE-SSL was able to accurately retrieve images utilized a low dimensional embedding

space found via SSL on a training database that was smaller compared to the full

dataset. For the MPEG-7 dataset OSE-SSL is able to retrieve images with a Bull’s

eye value of 79.74 ± 9.75%. For the prostate histopathology dataset N l = 0.85 of

the dataset, or 754 images, was required to achieve retrieval rates comparable to those

achieved by performing an eigenvalue decomposition for each new query image. Finally,

incorporating known label information was able to improve retrieval rates.

The current work is limited in that CBIR was performed on a per patch basis, where

multiple patches are defined over a single slide. However, pathologists typically utilize

the whole slide to determine Gleason grade. Additionally, in this work we have lever-

aged only gland morphology to determine similarity between image patches. However,

pathologists typically evaluate Gleason grade using the morphology and arrangement

of glands and nuclei [44]. Future work will involve incorporating our gland based re-

trieval into a whole slide similarity metric, which will be capable of retrieving whole

slides which contain similar image characteristics, likely including measures of nuclei

arrangement [167] and nuclei morphology [50].
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The current work is also limited by the fact that all 58 patients had prostate tissue

biopsy cores acquired at a single institution. Therefore, the dataset used in this work

may be more homogeneous, in terms of tissue staining and digitization of the slides,

compared to a dataset of prostate histopathology images acquired across several insti-

tutions. While these differences between institutions will likely affect pre-processing

steps such as automated segmentation, in this work we have limited the effects of a

homogeneous dataset by relying on manual segmentation. The variability in gland

morphology is independent of institution, as gland morphology is a function of disease

grade. Future work will evaluate the presented methodology on a larger patient cohort

acquired across institutions.

Additionally, the current work only evaluated morphologic features (ESDs) of glands

present on prostate histopathology. Previous work has shown that texture [172, 175]

and nuclear architecture [169,172,175] are also able to provide accurate image retrieval

of prostate histopathology. The OSE-SSL algorithm is not limited to ESDs, hence,

alternative dissimilarity measures that combine ESDs with other features derived from

the prostate histopathology images can be implemented within our CBIR framework.

Future work will evaluate the best way to implement a dissimilarity measure that

combines multiple image features.

4.4 Statistical Shape Model for Manifold Learning (SSMM) for Ro-

bust Explicit Shape Descriptors

As previously described Explicit Shape Descriptors (ESD) use Graph Embedding, a

manifold learning algorithm, to take the high dimensional feature space A, obtained by

calculating differences between MASMs, and reduce A to the lower dimensional space

y which is better suited to classification. However there are several manifold learning

algorithms to calculate a low dimensional embedding space that can preserve subtle

relationships between samples in the high dimensional space [155, 165, 166]. Manifold

learning schemes tend to be sensitive to the dataset considered, and changes in the

dataset may cause changes to the learned manifold [196].
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(a) (b) (c) (d)

Figure 4.20: (a) Original 3D Swiss Roll dataset with Gaussian noise added to 2%
of samples in the datasest. (b) 2D manifold M in the absence of noise. This man-
ifold structure best preserves the relationships between samples in the original high
dimensional space. (c) Manifold M̂ found by applying Graph Embedding to a dataset
containing noise and (d) the manifold M̃ found by regularization of M̂ using the SSMM.

To formalized the problem, manifold learning algorithms find a low dimensional

manifold representation M from a dataset of images C which preserves relationships

between images in C. Most manifold learning algorithms assume that C is contained

in a high dimensional space R
D [155, 165, 166, 190]. Additionally, manifold learning

techniques assume that C is densely clustered and concentrated within a small region

of RD. An example of dense clustering can be seen in Figure 4.20(a) which shows an

example of the synthetic Swiss Roll dataset. In R
3 the samples cluster along a 2D

planar structure.

Manifold learning algorithms first construct a dissimilarity matrixA which quantifies

dissimilarity between samples in R
D [155, 165, 166]. For a dataset c containing N

samples, A is a N × N dissimilarity matrix defined such that A(Ci, Cj) quantifies the

differences between the samples Ci, Cj ∈ C. Typically A(Ci, Cj) = φ(Ci, Cj) where φ(·, ·)

is a dissimilarity measure (e.g. heat kernel [106,197], geodesic distance [166], ESDs as

described in Section 4.2) which is dataset and feature set dependent. Manifold learning

algorithms then calculate M to best preserve the relationships in A. Manifold learning

techniques preserve relationships in A differently, some methods such as Local Linear

Embedding (LLE) [165] try to preserve the local neighborhood relationships between

samples. Isomaps [166] and Graph Embedding (GE) [155] find the best embedding

space to preserve the global structure of A, albeit with different underlying algorithms.
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Manifold learning schemes tend to be sensitive to the dataset considered, and

changes in the dataset may cause changes to the learned manifold [196]. Consider a

sample Ci ∈ C perturbed by some error ǫ; the new location for Ci would be Ĉi = Ci+ ǫ.

A would have to be altered such that Â(Ĉi, Cj) = φ(Ĉi, Cj) for all Cj contained in C,

resulting in changes to 2N − 2 elements in A. The manifold M̂ learned from Â will

reflect those changes. Hence even a small change in C may cause large changes to M.

Figure 4.21 demonstrates this phenomenon for the prostate histology dataset compris-

ing 888 glands. Two manifolds were generated by applying the ESDs to 90% of samples

in the dataset (800 glands) such that for each manifold a different set of 88 samples

were excluded. Each manifold has a distinct structure evident by (a) changes in the

planar structure of the manifold and (b) changes in object-class relationships on the

manifold, displayed as color differences between manifolds.

Consider a large dataset C from which the manifold M is generated. In the absence

of knowing the true manifold, M is the best manifold representation to capture the

relationships between samples in the dataset. If we consider a subset Ĉ ⊂ C then Ĉ

can be used to create an alternative manifold M̂ which approximates M. Manifold

regularization constrains the structure of M̂ giving a better approximation of M and

hence resulting in a better representation of the relationships between samples in Ĉ.

To overcome the sensitivity of manifold learning algorithms to noise we present a sta-

tistical shape model of manifolds (SSMMs) to perform manifold regularization. SSMM

merges the theory of ensemble learning [198] with statistical shape models (SSMs) [199].

The theory behind ensemble learning is that an ensemble of weak classifiers has higher

accuracy compared to any single weak classifier [200]. Similarly, consensus clustering

takes a ensemble of weak clusterings of a dataset, obtained by applying an unstable

clustering method such as K-mean clustering to a dataset multiple times, and com-

bines the ensemble to generate a strong clustering of the dataset [201]. Viswanath et.

al. [54] demonstrated that consensus embedding, obtained by generating an ensemble

of manifolds from a single dataset, produced a more stable low dimensional manifold

compared to any single manifold in the ensemble. In this work we hypothesize an en-

semble of manifolds will have a more accurate representation of the manifold shape



108

(a) (b)

(c) (d)

(e)

(f)

(g)

(h)

Figure 4.21: (a), (c) Two manifolds M̂1 and M̂2 generated by performing Graph
Embedding, a manifold learning scheme, on quantitative morphologic features extracted
from 800 prostate histopathology glands. The manifolds M̂1 and M̂2 were generated
from two distinct datasets C1 and C2 such that 88 glands excluded from either C1

or C2. (b), (d) Manifold region enclosed by the black box in (a) and (c) respectively.
Representative glands for (f) benign (benign), (e), (g) Gleason grade 3, and (h) Gleason
grade 4 (G4) classes. A classifier trained in the reduced dimensional space allows for
assignment of a single class to each region on the manifold, such that blue regions
correspond to benign, green regions correspond to Gleason grade 3, and red regions
correspond to Gleason grade 4. Differences between the manifolds can be seen in
changes in global structure as well as class-object relationships on the manifold, which
are evident by changes in region color. In the case of (h) a representative Gleason grade
4 gland, in one manifold ( (c)) the gland was incorrectly projected on to the Gleason
grade 3 class region.
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that any single manifold. The concept of SSMMs is that an ensemble of manifolds

can be modeled with a SSM. SSMs have been proposed to model shape variation in

anatomical structures [199]. In much the same way, we utilize a SSM to model which

manifold shapes are statistically most likely to occur. The SSMM describes the max-

imum likelihood estimate of the manifold shape and primary modes of variation for a

series of different manifolds constructed by randomly selecting a subset of samples from

a dataset. For a new, related dataset, the resulting manifold can be constrained to only

the range of shapes dictated by the SSMM. Hence every sample on the new manifold is

spatially and locally constrained to within 2 standard deviations of its location on the

average manifold shape.

The SSMM can be utilized in several ways. (1) Regions on a new, related manifold

which deviate from the SSMM can be identified. By identifying these regions, mean-

ingful differences between the dataset and the SSMM may be determined. (2) Noisy

samples on a manifold can be identified based on their deviation from the SSMM. Re-

moving these samples from the dataset may result in a more accurate low dimensional

manifold, and hence improve classification accuracy. (3) A classifier can be trained

on the SSMM which would allow for (a) classifier decision boundaries to be applied

to a new, related manifold without retraining the classifier or (b) new, related sam-

ples could be projection onto the SSMM. The projection of newly acquired samples

onto a previously calculated manifold can be performed by out-of-sample extrapolation

(OSE) [188].

4.4.1 Previous Work in Manifold Regularization

Manifold learning is well known to be sensitive to the dataset considered, as well as

noise and outliers contained within a dataset [196, 197]. Perturbations in the mani-

fold structure may reduce classification performance in the low dimensional embedding

space as object-class relationships may be obscured. Manifold regularization techniques

have been proposed which impose additional constraints on manifold learning to better

preserve object-class relationships in the low dimensional space. For instance, Chang

et. al. [196] proposed a weighted manifold learning scheme, where outlier samples were
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assigned low weights, to reduce the effect outliers have on learning the manifold. Other

manifold regularizers perform local smoothing on the learned manifold [202]. Manifold

regularization techniques may add a smoothness constraint into the manifold learning

algorithm [197, 203]. All of these methods over smooth the manifold, as they reduce

the effects of outliers which including meaningful information as well as noise.

Another type of regularization learns a consensus embedding from a set of manifolds.

Hou et. al. [204] learned a set of manifolds by obtaining multiple views for each sample

in the dataset and then generated a consensus manifold across the views. Other con-

sensus embedding schemes have varied the parameters or samples considered to find a

manifold set, and then generated a consensus embedding from the set [205,206]. These

methods rely on the manifolds in the set being independent, which may not be a valid

assumption when generating manifold sets across manifold learning parameters. Ad-

ditionally, relationships between samples across the individual manifolds are not taken

into account when determining a consensus embedding .

4.4.2 Brief Overview and Novel Contributions of Statistical Shape

Model of Manifolds (SSMM)

A flowchart of the proposed SSMM methodology is displayed in Figure 4.22. Table 4.11

list the notation used throughout the paper. To construct the SSMM we (1) generate a

set of manifolds M for a dataset C. For this task we divide the dataset C into K folds,

and then generate M using a leave-one-fold-out scheme. (2) As manifolds in M will

be misaligned, primarily due to rotational and translational differences, a Procrustes

based registration scheme aligns all the manifolds in M. (3) Calculate the maximum

likelihood estimator and primary modes of variation for M. Once constructed the

SSMM constrains a new manifold instance Ṁ of related datasets to only those shapes

statistically most likely to occur resulting in the regularized manifold M̃. In this work

we demonstrate that the SSMM can (a) determine noisy samples by identifying samples

which deviate from the SSMM, and (b) accurately perform OSE of newly acquired

samples onto a manifold constrained by the SSMM.

The novel contributions of the SSMM are:
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Figure 4.22: Flowchart which describes the construction of the SSMM and its appli-
cation to manifold regularization for the synthetic Helix dataset. SSMM construction
consists of dividing the dataset C into K folds, denoted as {C1, . . . ,CK}. The K
folds of C are utilized to find the manifold set M = {M̂1, . . . ,M̂K}. The manifolds
in M are then aligned via Procrustes based registration scheme resulting in the aligned
manifold set M̆ = {M̆1, . . . ,M̆K}. The SSMM finds the maximum likelihood estima-
tor (M̄) and primary modes of variation for M̆. Shown are the modes of variation
corresponding to the statistical extremes of the model M̄ − 2σ and M̄ + 2σ. Given a
new manifold instance Ṁ the SSMM constrains the structure to only those statistically
likely to occur (M̄± 2σ). This results in the regularized manifold M̃ which is a better
approximation of the underlying relationships in C than any constituent manifold in
M. For the synthetic Helix dataset shown in this flowchart the ideal manifold is a 2D
circular structure.
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Symbol Description Symbol Description

C Image database || · || L2 norm

Ci, Cj Images contained in C M̆ Aligned manifold set

Ck kth fold of C for k ∈
{1, . . . ,K}

M̄ Maximum likelihood estimate
of M̆

R
D High dimensional feature

space
V Primary modes of variation

for M̆

φ(·, ·) Dissimilarity measure Ṁ New manifold instance

A Dissimilarity matrix defined
as φ(Ci, Cj) evaluated for all
Ci, Cj ∈ c

M̃ Manifold constrained via the
SSMM

γ Graph Embedding scaling
term

O New image instance

R
n Low dimensional embedding

space
Oe Samples which contain noise

in O

M Ensemble manifold set Oc Samples which do not contain
noise in O

M̂k kth manifold in M τ Threshold to determine sam-
ple deviation from the SSMM

ŷk Embedding locations on M̂k Mc Manifold generated from Oc

yi,k Embedding location for Ci on
M̂k

Ote Testing samples not contained
in O

Transformation to align M̂b

to M̂a

Mte,c Manifold with samples in Ote

projected onto Mc.

Table 4.11: Notation used to describe Statistical Shape Model of Manifolds (SSMM).
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• A computerized decision support system which utilizes a SSMM based on the

morphologic features of glands on prostate histopathology to automatically dis-

tinguish between Gleason grades 3 and 4.

• A novel combination of SSMs and ensemble learning theory to generate a more

accurate manifold representation of C.

• A novel method to generate M, an set of K manifolds, containing all samples in

C.

• A novel manifold registration to align all manifolds in M. As each sample Ci ∈ C

has a corresponding embedding location yi,k on the manifold Mk, the registration

algorithm minimizes the differences between yi,k for all k ∈ {1, . . . ,K} and all

Ci ∈ C via Procrustes registration [207].

4.4.3 Statistical Shape Model of Manifolds Theory

In this section we prove theoretically that SSMMs are appropriate to determine the

maximum likelihood estimator of a manifold shape. Specifically, we prove that con-

structing a SSMM from a set of manifolds is guaranteed to represent the underlying

manifold structure at least as well as any manifold contained in the set. To perform

the theoretical analysis we utilize the theory of ensemble learning [198].

A dataset of N images is defined as C = {C1, . . . , CN}. A sample Ci ∈ C is defined

as a point in a D-dimensional space R
D.

Definition 1. A true manifold M ∈ R
n is defined by a set of N true embedding

locations M = {y1, . . . , yN}. Each true embedding location yi ∈ R
n corresponds to a

sample Ci ∈ R
D where n << D.

Definition 2. A manifold M̂ estimates M by a set of N embedding locations M̂ =

{ŷ1, . . . , ŷN}. Each embedding location ŷi ∈ R
n corresponds to a sample Ci ∈ R

D where

n << D.
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Definition 3. The manifold M̂ approximates M with an error ǫM̂ given as,

ǫM̂ = Ei
(

ŷi − yi
)2
, (4.27)

where Ei is the maximum likelihood expectation over i = {1, . . . , N}.

Proposition 1. Given a set of K independent, identically distributed manifolds M =

{M̂1, . . . ,M̂K}, a manifold M̄ exists such that M̄ → M as K → ∞.

Proof. Each estimated manifold M̂k is defined by the embedding locations ŷi,k ∈ M̂k :

i ∈ {1, . . . , N}, k ∈ {1, . . . ,K}. Assuming that each embedding location ŷi,k ∈ M̂k :

i ∈ {1, . . . , N}, k ∈ {1, . . . ,K} is normally distributed about yi, the Central Limit

Theorem states,

lim
K→∞

(

Ek(ŷi,k)− yi

)

= 0, (4.28)

where Ek is the maximum likelihood expectation over k = {1, . . . ,K}. Therefore M̄

exists and is defined M̄ = Ek(ŷi,k) : i ∈ {1, . . . , N}.

The error between M̄ and M is defined as (similar to Equation 4.27),

ǫM̄ = Ei
(

ȳi − yi
)2
, (4.29)

where x̄yi = Ek(ŷi,k). From Equation 4.27 the error over K embeddings is given as,

ǫK,M̂ = Ek
[

ǫM̂
]

= Ek
[

Ei
(

ŷi,k − yi
)2]

. (4.30)

Proposition 2. Given K independent, identically distributed manifolds, M̂k ∈ M,

ǫK,M̂ ≥ ǫM̄.

Proof. Comparing Equation 4.30 and Equation 4.29 in a manner analogous to Bagging

[198] gives the proof. In Bagging, an ensemble classifier is constructed from a set of weak

classifiers. Similarly, the M̄ obtained from the SSMM can be viewed as an ensemble

embedding constructed from a set of weak embeddings M. Hence the result follows.

4.4.4 Construction of Statistical Shape Manifold Model (SSMM)

In this section we present our methodology for constructing a SSMM. Concepts discuss

in Section 4.3.2 are leveraged for construction of the SSMM. We then describe our novel
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K fold algorithm to calculate M in Section 4.4.4. Section 4.4.4 presents the Procrustes

based registration of manifolds in M. In Section 4.4.4 we discuss SSMM construction

and Section 4.4.4 describes the fitting of Ṁ to the SSMM. Finally we present two novel

algorithms for (a) noise identification and removal in Section 4.4.4 and (b) OSE of

newly acquired samples onto the SSMM in Section 4.4.4.

Construction of the Manifold Set

A set of K manifolds M = {M̂1, . . . ,M̂K} are obtained from a dataset of N images

defined as C = {C1, . . . , CN}. M is generated utilizing a K fold scheme via the following

steps:

1. Samples in C are randomly divided into K equal partitions such that C = {C1 ∪

. . . ∪CK}.

2. Testing and training sets are obtained via a leave one fold out scheme. A testing

set is defined as Ct
k = Ok : k ∈ {1, . . . ,K} and the corresponding training set is

defined as Cr
k ∪Ct

k = C.

3. Each training set Cr
k is utilized to find ŷk which defines M̂k via GE as described

in Section 4.3.2. The samples in Cr
k are then used to determine the structure of

the manifold M̂k.

4. Each test set Ct
k is extrapolated into the manifold M̂k to determine ỹk via out-

of-sample extrapolation as described in Section 4.3.2.

5. Training and testing sets are combined to determine yk = {ŷk, ỹk}. This combi-

nation allows for point correspondence between manifolds in M to be estimated.

In this work K = 10 was chosen to construct M, and the steps described above were

performed 5 times for a total of 50 constituent manifolds in M. Graph Embedding was

chosen for experiments showcased in this work, but it is worth noting any manifold

learning [155,165,166,190] algorithm can be used to construct M.
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Manifold Alignment via Procrustes Based Registration

Manifolds contained in M may not align, the algorithm for manifold learning preserves

pairwise relationships between samples but may not preserve the global relationship of

samples in the low dimensional embedding space. Procrustes registration is applied to

align all manifolds in M [207]. Procrustes registration can be performed since there are

point correspondences between all manifolds in M as each sample in O has a location

on every manifold in M.

A reference manifold M̂a : a ∈ {1, . . . ,K} is randomly selected. All other manifolds,

M̂b : b 6= a are registered to M̂a by minimizing,

M̆b = min
TM

(

∑

i

||yi,a − TM(yi,b)||

)

, (4.31)

where yi,a is a embedding location in Ma for an image Ci and yi,b is a embedding

location in Mb for an image Ci. The transform TM selected was a rigid transform, to

take into account scale and rotational differences between M̂a and M̂b. || · || denotes

the L2-norm. Registration is performed for all M̂ ∈ M to obtain the aligned set of

manifolds M̆.

Statistical Shape Manifold Model (SSMM)

Once all manifolds are aligned the statistical properties of the manifold set can be

determined. The SSMM is defined via the mean and principal modes of variation for

M̆. The mean of M̆ is calculated by,

M̄ = 1
K

∑

k

y̆i,k : ∀y̆i,k ∈ M̆k. (4.32)

The principal modes of variation for the manifold defined as V are obtained by per-

forming PCA on M̆ [199].

Only the V corresponding to the top 95% of variance in the sample locations yi,k

for all k ∈ {1, . . . ,K} are retrained to constrain the SSMM to those shapes within 2

standard deviations of the mean shape.
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Constraining a New Manifold Instance to the SSMM

A new manifold Ṁ is obtained by applying Graph Embedding to C. Ṁ is constrained

to only likely shapes as defined by the SSMM obtained in Section 4.4.4.

M̃ = T rK+1

(

M̄+ V ∗ υ
)

, (4.33)

where υ controls the shape of M̃ and T rK+1 is a rigid transformation between the

SSMM and Ṁ. υ is found via a linear least squares fit between the SSMM and Ṁ and

is constrained to M̄ ± 2σ to limit the SSMM to only those shapes statistically most

likely to occur [199].

Application of SSMM to Identify Noisy Samples

The SSMM can aid in the identification of samples which contain noise. The algorithm

FilterManifold assumes samples which contain noise are those samples which deviate

most from the SSMM.

A dataset contains N samples defined as O = {o1, . . . , oN}. Algorithm 5 can be

used to identify the samples which contain noise On and the samples which do not

contain noise Oc within O given a user defined threshold τ .

The value assigned to τ is dataset specific as sample variation across datasets may

vary. In this work τ was chosen such that 5% of the samples in the dataset were

excluded.

Algorithm 5 FilterManifold

Input: O, τ
Output: Mc

1: Obtain M̃ from O via application of the SSMM.
2: Obtain M̂ from O by GE (Eq. 4.23).
3: Calculate e(oi) = ||ŷi − ỹi||.
4: Obtain On = oi : oi ∈ O, e(oi) ≥ τ .
5: Obtain Oc : Oc ∩On = ∅.
6: Obtain Mc for Oc via Graph Embedding (Eq. 4.23)
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Application of SSMM to OSE

The SSMM can be utilized for robust OSE, by generating a more accurate manifold

representation of a dataset. The algorithm OSE-SSMM demonstrates how the SSMM

can be used for this purpose.

A dataset O is divided into training samples Otr and testing samples Ote such that

Otr ∩ Ote = ∅. To find a set of testing embeddings Mte,c for a filtered manifold we

apply algorithm 6

Algorithm 6 OSE-SSMM

Input: Otr, Ote, τ
Output: Mte,c

1: Obtain Mtr,c for Otr via FilterManifold.
2: Obtain Mte,c for Ote via NM (Eq. 4.25) with Mtr

c as the training manifold.

4.4.5 Experimental Design and Results for Evaluation of Statistical

Shape Model of Manifolds (SSMM)

Dataset Description

Dataset Sample Size Dissimilarity Measure

Synthetic Swiss
Roll [166]

3000
A(Ci, Cj)

{

||Ci − Cj|| if ||Ci − Cj|| < N ,

0 otherwise.

N is a neighborhood parameter.

Synthetic
Helix [166]

3000
A(Ci, Cj)

{

||Ci − Cj|| if ||Ci − Cj|| < N ,

0 otherwise.

N is a neighborhood parameter.

Prostate
Histology

888
ESDs (Section 4.2 )

(58 patients)

Table 4.12: Description of datasets and their dissimilarity measures.

Synthetic Datasets

Two synthetic datasets, Swiss Roll and Helix, described in Table 4.12 were utilized to

demonstrate the application of SSMM to manifold regularization. The Swiss Roll is a
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2D planar manifold divided into two classes which exists in a 3D space. The Helix is

a 1D circular manifold divided into six classes which exists in a 3D space. The benefit

of both datasets is that the high dimensional 3D space and the low dimensional 2D

embedding space may be visualized.

Gaussian noise was added to 5% of samples within each dataset where the standard

deviation of the noise was set equal to 15% of the standard deviation of samples in the

dataset. The dissimilarity measures for both datasets are reported in Table 4.12.

Prostate Histopathology

Prostate needle core tissue biopsies were obtained from 58 patients. Biopsies were

stained with H & E and digitized at 40× optical magnification using an Aeperio scanner.

An expert pathologist selected regions of interest (ROIs) on each biopsy. In total 120

ROIs were selected across. Each ROI was assigned a Gleason grade of either benign,

Gleason grade 3, or grade 4. All glands contained within each ROI were manually

segmented to obtain a total of 888 glands from benign (N = 93), Gleason grade 3 (N =

748), and Gleason grade 4 (N = 47) ROIs. For this set of experiments only Gleason

grade 3 and Gleason grade 4 glands were considered during classification. DBS was the

dissimilarity measure utilized to quantify morphologic differences between glands [2].

Evaluation Measures

Silhouette Index

Silhouette Index is a measure of how well samples cluster by class label [194] with

1 corresponding to perfect clustering by class and −1 corresponding to no clustering

by class. Silhouette Index is calculated as, ηSI =
∑N

i=1
ν(i)−ψ(i)

max[ψ(i),ν(i)] where ψ(i) =
∑

j,lj=li
||ỹi − ỹj|| and ν(i) =

∑

j,lj 6=li
||ỹi − ỹj||.

Area Under the Receiver Operator Characteristic (ROC) Curve

A probabilistic boosting tree classifier [208] was trained and evaluated using a 5×2 cross

validation scheme [209]. For each of the 5 runs, the dataset was divided into 2 folds
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such that all samples from a single patient were contained in the same fold and all folds

maintained class balance. The probabilistic boosting tree classifier assigns a probability

value to each sample of belonging to the positive class. Altering the threshold level of

the probablistic boosting tree classifier allows for the construction of a ROC Curve. For

each ROC Curve the area under the curve is calculated.

Experiment 1: Application of SSMM to Filtered Manifold Learning

For each dataset O in Table 4.12, a manifold M was calculated from O using GE as

described in Section 4.3.2. Similarly a filtered manifoldMc was found by FilterManifold

as described in Section 4.4.4. The measures described in Section 4.4.5 were used to

evaluate M and Mc. A Student’s t-test was calculated to determine the statistical

significance between M and Mc for each evaluation measure described in Section 4.4.5.

Experimental results for all datasets are reported in Table 4.13. Across all datasets

Mc outperforms M in terms of Silhouette Index and area under the ROC curve. In

the prostate histology dataset these increases in Silhouette Index and area under the

ROC curve were statistically significant (p≤ 0.1). Hence Mc is better able to preserve

object-class relationships in the datasets evaluated.

For the synthetic datasets, changes in Silhouette Index and area under the ROC

curve are not always statistically significant. However, as may be noted in Figure

4.20 (d) Mc is a closer approximation to the true embedding (Figure 4.20 (b)) than

compared to M (Figure 4.20 (c)). In Figure 4.20 the samples are colored according to

their location on the true embedding to aid in visualization.

Experiment 2: Application of SSMM to Filtered OSE

For each dataset O in Table 4.12, a training set Otr and a testing set Ote were defined

so that Ote is 10% of O and Otr ∪ Ote = ∅. Otr and Ote were used to construct an

original manifold Mte and filtered manifold Mte,c. Mte is generated by applying GE as

described in Section 4.3.2 and then applying out-of-sample extrapolation as described

in Section 4.3.2 to Ote where Mtr is the training manifold. The filtered manifold Mte,c

is calculated by OSE-SSMM as described in Section 4.4.4. The measures described in
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(a)

Dataset M Mc p-value

Swiss Roll 0.56 ± 0.01 0.57± 0.03 0.063

Helix 0.44 ± 0.05 0.47± 0.02 0.138

Prostate 0.02 ± 0.01 0.05± 0.03 0.032

(b)

Dataset M Mc p-value

Swiss Roll 0.876 ± 0.067 0.935± 0.065 0.071

Helix 0.995 ± 0.002 0.996± 0.002 0.240

Prostate 0.779 ± 0.075 0.832± 0.048 0.073

Table 4.13: (a) Sil-
houette Index and (b)
area under the ROC
curve are reported for
M and Mc. The best
value for each dataset
is bolded. p-values
are reported for a
Student’s t-test com-
paring M and Mc.

Section 4.4.5 were used to evaluate Mte and Mte,c. A Student’s t-test was calculated

to determine the statistical significance between Mte and Mte,c for each evaluation

measure described in Section 4.4.5.

Experimental results for all datasets are reported in Table 4.4.5. For the histopathol-

ogy dataset Mte,c outperforms Mte in terms of Silhouette Index and area under the

ROC curve. The synthetic datasets, the Swiss Roll and Helix, do not show a significant

improvement in performance.

(a)

Dataset Mte Mte,c p-value

Swiss Roll 0.57± 0.01 0.58± 0.01 0.061

Helix 0.47± 0.01 0.47 ± 0.01 0.77

Prostate −0.04 ± 0.01 −0.02± 0.02 0.005

(b)

Dataset Mte Mte,c p-value

Swiss Roll 0.997 ± 0.003 0.999 ± 0.002 0.102

Helix 0.994 ± 0.002 0.996 ± 0.002 0.089

Prostate 0.779 ± 0.054 0.834 ± 0.051 0.032

Table 4.14: (a) Sil-
houette Index and (b)
area under the ROC
curve are reported for
Mte and Mte,c. The
best value for each
dataset is bolded. p-
values are reported
for a Student’s t-test
comparing Mte and
Mte,c.
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4.4.6 Concluding Remarks on Statistical Shape Model of Manifolds

(SSMM)

We presented a statistical shape model of manifolds (SSMM) which is a novel inte-

gration of statistical shape models (SSMs) with ensemble learning for regularizing low

dimensional data representations of high dimensional spaces. New, related manifolds

may then be constrained by the SSMM to only those shapes statistically most likely to

occur.

The SSMM may be utilized for several applications including (a) identification of

noisy samples based on their deviation from the SSMM. Removing these samples from

the dataset may result in higher area under the receiver operator characteristic (ROC)

curve. (b) A classifier could be trained on the SSMM allowing for (i) classifier decision

boundaries to be applied to a new related manifold without retraining the classifier or

(ii) new, related samples to be classified by projection of the samples onto the SSMM. (c)

identification of regions on a new, related manifold which deviate the SSMM. Identifying

these regions may aid in determining meaningful differences between the dataset and

SSMM.

To construct the SSMMwe (1) generate a set of manifoldsM for a database of images

C, (2) align manifolds in M, and (3) calculate the maximum likelihood estimate of the

manifold shape and its primary modes of variation. The SSMM allows for constraining

a new, related manifold instance to only those shapes statistically most likely to occur.

We have demonstrated in this work that SSMM can improve area under the ROC

curve in the context of Gleason grading of prostate histopathology utilized quantitative

morphologic features of glands. For the dataset considered, the tissue samples corre-

sponded to either Gleason grade 3 or grade 4. Improvements in area under the ROC

curve via the SSMM were demonstrated for two applications: (1) We demonstrated

that outlier samples within a manifold can be identified as those samples which deviate

from the SSMM via FilterManifold. Removal of outlier samples increased area under

the ROC curve and Silhouette Index. (2) We demonstrated via OSE-SSMM that man-

ifold regularization by the SSMM improves Silhouette Index and area under the ROC
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curve when performing out-of-sample extrapolation on never before seen samples onto

the SSMM.

In future work we intend to explore the ability of the SSMM to identify regions

of a new, related manifold which deviate from the SSMM. These regions will then be

further investigated to determine subtle difference between the dataset and the SSMM.

Secondly, we plan on investigating the effects of dataset size on the SSMM by evaluating

how accurately the mean manifold shape and primary modes of variation of the manifold

shape are represented for SSMMs trained on different dataset sizes.
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Chapter 5

Concluding Remarks and Future Work

The current gold standard for prostate cancer detection, transrectal ultrasound (TRUS)-

guided biopsy, misses half of all prostate cancer nodules [11]. Due to the low sensitivity

of TRUS-guided biopsy, one in three patients will undergo a repeat biopsy to confirm

their negative biopsy [210]. Hence, there is a clinical need to improve the targeting of

needle biopsy to those regions suspicious for prostate cancer, and thereby reduce the

number of false negative biopsies.

In this work, a framework for constructing a computerized decision support sys-

tem for fused Magnetic Resonance Imaging (MRI)-TRUS was developed to address

the clinical need for improving biopsy. A computerized decision support system that

leverages the fused MRI-TRUS imagery can aid in (1) detecting prostate cancer and

(2) distinguishing aggressive from non-aggressive prostate cancer. A fused MRI-TRUS

computerized decision support system will allow clinicians to acquire biopsy samples

from those regions most likely to contain aggressive prostate cancer and may ultimately

reduce the number of false negative biopsies.

Currently, no fused MRI-TRUS computerized decision support systems exist. Sev-

eral studies have shown that computerized decision support systems for MRI [25,38–40]

and TRUS [34–37] alone have utility in detecting prostate cancer. MRI computerized

decision support systems are limited in guiding needle biopsy because MRI-guided

biopsy has long procedure times, is expensive due to the need for specialized equipment

and technicians, and is stressful for many patients. TRUS computer decision support

systems are more clinically feasible as TRUS-guided biopsy is routine. However TRUS-

based systems are typically less accurate than MRI-based systems [34–37].

Recent work from our lab has demonstrated that combining information across
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modalities increases the performance of computerized decisions support compared to

any single constituent modality [54]. Hence, our work developing a fused MRI-TRUS

computerized decision support system is based on the premise that combining informa-

tion from MRI and TRUS will result in more accurate prostate cancer detection than

either modality alone. Such a combination will enable needle biopsy to be guided by

acoustic and anatomic information from TRUS along with the structural, function, and

metabolic information from MRI.

In order to enable the construction of a computerized decision support system for

fused MRI-TRUS we developed several sophisticated image analysis tools. These tools

can be used to (a) determine the spatial location of aggressive prostate cancer on whole

mount histopathology (WMH), (b) map the location of aggressive prostate cancer from

WMH onto MRI, and (c) fuse MRI with delineated aggressive prostate cancer spatial

extent (determine from WMH) with TRUS. Aggressive prostate cancer spatial extent

mapped onto fused MRI-TRUS imagery enables training of a computerized decisions

support system. The novel algorithms developed to perform the aforementioned tasks

are comprised of:

1. Multi-attribute probabilistic prostate elastic registration (MAPPER) to register

MRI and TRUS images of the prostate.

2. Prostalign to semi-automatically align WMH to MRI images of the prostate.

3. Explicit Shape Descriptors (ESDs) to quantify prostate cancer aggressiveness on

histopathology by leveraging morphologic features of prostate glands.

Below a description of the contributions and results of each algorithm described in

greater detail.

MAPPER was presented in Chapter 2 to spatially align prostate MRI and TRUS

automatically during biopsy. Specifically, MAPPER uses a semi-automated segmenta-

tion algorithm on MRI to delineate the prostate. The delineated prostate on MRI is

then aligned to a probabilistic map of prostate location on TRUS enabling registration

of prostate MRI onto TRUS. In comparison state-of-the-art MRI-TRUS registration
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algorithms rely on manual intervention during biopsy to either delineate the prostate

or select corresponding fiducials on MRI and TRUS [30, 60, 62–67]. Requiring manual

interaction to align MRI and TRUS results in increased procedure times and patient

discomfort. MAPPER represents a significant advance over the current state-of-the-

art approaches in that (1) it requires no user interaction during the biopsy procedure

to determine the location of the prostate on TRUS and (2) although MAPPER re-

quires minimal manual interaction segmenting the prostate on MRI this step can be

preformed prior to the biopsy procedure and, hence, will not increase biopsy procedure

time. MAPPER was evaluated on 13 patient studies from two datasets – Dataset 1 had

6 studies with a side-firing TRUS probe and 1.5 T surface coil MRI, Dataset 2 had 7

studies with a volumetric end-firing TRUS probe and 3.0 T endorectal coil MRI. MAP-

PER has a root mean square error (RMSE) for expertly selected fiducials (consisting

of the urethra, calcifications, and the centroids of cancer nodules) of 3.36 ± 1.10 mm

for Dataset 1 and 3.14± 0.75 mm for Dataset 2. Comparatively, state-of-the-art MRI-

TRUS fusion methods that require manual intervention on ultrasound report RMSE in

the range of 3.06-2.07 mm.

One limitation of MAPPER is the use of B-Splines with an imposed regularization

constraint to ensure the underlying deformation in the prostate was smoothly varying.

Other transformations such as Finite Element Models (FEM), which allow for explicit

modeling of tissue physics, could also potentially be used to constrain the registration

to only physically plausible transformations of the prostate [65]. Another limitation

is the use of the Multi-Feature Appearance (MFA) model of prostate appearance on

MRI previously described in Toth and Madabhushi [74]. The accuracy of MAPPER is

reliant on an accurate segmentation of the prostate on MRI, hence, developing a more

accurate segmentation scheme may improve the accuracy of MAPPER.

Prostalign was presented in Chapter 3 to spatially align WMH onto MRI. Several

previous methods to align WMH onto MRI have been presented that require obtaining

additional ex vivo imaging modalities [90, 91], implanting fiducials [89, 92], or creating

patient specific molds [98]. These methods are difficult to implement in a wider clinical

setting because they are time consuming, expensive, and may require additional imaging
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equipment. While there are a few methods that can directly register WMH to in vivo

MRI [93, 94], they are often not robust to large deformations in the prostate or tissue

loss. Hence we developed Prostalign, a method to manual select corresponding fiducials

on WMH and MRI to drive a thin-plate spline registration. We demonstrated accurate

alignment between the prostate on WMH, MRI, and TRUS for one patient study.

In Chapter 4 ESDs were presented to assess prostate cancer aggressiveness uti-

lizing gland morphology. Pathologists typically assess prostate cancer aggressiveness

with the Gleason grading system, a qualitatively ranking determined by differences

in the arrangement and morphology of the nuclei and glands within a tissue sam-

ple [42, 44]. Several methods to assess Gleason grade have been presented that utilize

tissue texture [46, 47, 101, 102], the arrangement of nuclei and glands [48, 102], nuclei

morphology [49,50], and gland morphology [102]. However, many of these systems have

difficulty distinguishing between intermediate Gleason grades 3 and 4, a clinical impor-

tant task as Gleason grades 4 and 5 are considered more aggressive, while lower Gleason

grades (≤ 3) are considered less aggressive. Gland morphology is often an important

cue in distinguishing between intermediate Gleason grades 3 and 4, hence, ESDs were

developed to quantitatively describe gland morphology. ESDs are calculated by: (a)

representing the shape of each gland using a medial axis shape model (MASM), (b)

registering MASMs using a novel diffeomorphic based similarity (DBS) measure, (c)

determining parameter correspondence between registered MASMs, (d) extracting a

low dimensional representation of morphologic features utilizing the non-linear dimen-

sionality reduction scheme Graph Embedding, (e) classifying the morphologic features

using a Support Vector Machine (SVM). ESDs are a concise set of features that are ca-

pable of distinguishing between intermediate Gleason grades with a maximum accuracy

of 89% for 888 prostate glands acquired from 58 patient needle core biopsies.

ESDs for Gleason grading are dependent on glands being present to classify the

tissue. The highest Gleason grade 5 is characterized by the absence of glands, hence,

ESDs will be unable to classify tissue belonging to Gleason grade 5. In future work we

will integrate the ESD features with other types of histologic image attributes, such as

the shape and arrangement of nuclei [111] or texture [48, 167], to build classification
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tools for the highest Gleason grade of prostate histopathology. Additionally a classifier

that incorporates ESDs with other features may be better able to classify tissue that

contains glands with atypical shape attributes.

When considering all the three novel algorithms presented in this work – MAPPER

for MRI-TRUS fusion, Prostalign for MRI-WMH alignment, and ESDs for assessment

of prostate cancer aggressiveness – the spatial extent of aggressive prostate cancer can

be learned from the WMH and mapped onto fused MRI-TRUS imagery. Thist enables

the aggressive prostate cancer location to be mapped on fused MRI-TRUS imagery,

and ultimately can lead to the development of fused MRI-TRUS classifiers for identify-

ing aggressive prostate cancer. However, one limitation of the current methodology is

error propagation; namely, that errors delineating aggressive prostate cancer on WMH

will be made more inaccurate if there are errors spatially aligning WMH onto MRI.

Furthermore these errors will be further exacerbated by errors in registration of MRI

onto TRUS, ultimately leading to inaccurate delineation of cancer spatial extent when

training the computerized decision support system. Hence, in future work it is im-

portant to experimentally evaluate the accuracy of the entire combined workflow, in

addition to the experimental evaluate of the individual components as performed in

this work. Additionally, in this work validation of the individual components was done

utilizing expert annotations (Gleason grade for ESDs and corresponding landmarks for

MAPPER), which are well documented to be subject to intra- and inter-observer vari-

ability [45, 61]. A more robust and long term analysis of our methodology assessing

(a) the number of cancer positive needle biopsy cores obtained above blinded sextant

biopsy and (b) patient outcomes is need evaluate the methods presented in this work.

Finally, future work is need to train and validate the computerized decision support

system. To train the computerized decision support system features on MRI and TRUS

will need to be extracted; such features may include texture features [25,34–36,39], raw

RF features [37], and functional parameters [25,38]. The ground truth spatial extent of

prostate cancer can then be utilized to train a classification scheme [41] Due to the large

number of features that may be useful for classification, machine learning methods to

determine features useful for classification and combine them in an intelligent manner
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may be leveraged to improve classifier performance [25,54]. Ultimately, such a system

will need to be validate in a clinical trail to assess the ability to obtain cancer positive

cores from regions the computerized decision support system identifies as being likely

to contain aggressive prostate cancer.
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