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ABSTRACT OF THE THESIS

A Strategy for Classifying a Set of Dissimilar Channels by

Their A Priori Channel Occupancy Probability

by Shridatt Sugrim

Thesis Director: Predrag Spasojevic and Melike Baykal Gursoy

Recent Changes in policy regarding the opportunistic use of licensed radio spectrum

have paved the way for new innovative technologies like cognitive radio (CR). In CR

systems a secondary user (SU) is allowed to use open channels if the primary user

(PU) is not currently using them. Regulatory bodies like the FCC establish maximum

interference requirements for SUs when making use of these channels. To comply with

these requirements SUs must measure the occupancy of each of the channels they intend

to use. Any strategy employed for opportunistic spectrum usage has to consider the

tradeoffs between time spent searching for empty channels and time spent using those

empty channels.

In most cases the spectrum sensing that is employed by a CR system starts with no

prior information about the occupancy of the channels it intends to use. We propose

a novel method of addressing this lack of prior knowledge by employing an efficient

strategy that classifies some of the channels the SU intends to use within a fixed time

limit. This classifier can be run before the SUs attempt transmission, and will provide

the SUs’ spectrum sensing sub-systems with a set of occupancy probabilities for some

of the channels.

Our classifier will be designed around sequential probability ratio tests (SPRT)
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because these tests maintain bounds on classification errors while using the smallest

number of samples for classification. The classifier will attempt to classify as many

channels as possible within the given time limit by intelligently allocating channel mea-

surements. We will examine the system’s performance in various measurement resource

regimes and identify regimes where our approach is superior to simpler classification

schemes.
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Chapter 1

Motivation

Radio spectrum is a limited resource that is currently under heavy contention. Regula-

tory bodies like the FCC take on the daunting task of fairly distributing this resource

among the many spectrum hungry users. Recent changes in policy regarding the op-

portunistic use of licensed spectrum has paved the way for new innovative technologies

like cognitive radio [1].

This adaptive radio policy allows secondary users (SU) to use spectrum not allocated

to them provided that the primary user (PU) is not currently using it. A key element

of this technology is sensing whether the primary user is present or not. This sensing

process typically requires a very extensive sensing period because of the requirement

that the interference that the PU sees be minimized. At the same time, however, if

the sensing takes too long, the utility of secondary usage of the spectrum goes down

rapidly. If a sensing system takes too long to converge on a transmit strategy, it may

miss spectrum opportunities or fail to meet transmission quality requirements.

Since the radio is adaptive, an on-line sensing plan with small convergence times is

required to optimally utilize spectrum. This area of research is very active as there are

several proposed strategies for sensing the environment. Techniques such as C-SPRT,

and finite horizon dynamic programming are used to suggest optimal stopping times

for sensing and balance points between exploration and exploitation. Many of these

strategies however assume a prior distribution that is either unknown or uninformed.

All of these strategies could benefit from any amount of a priori information about the

occupancy of the channels they intend to use.

The main goal of these sensing strategies is to come up with estimates of channel

occupancy that can then be used to plan a transmission pattern. Their performance can
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be measured in achieved throughput. In this work we propose a different goal meant

to augment these existing systems, the goal of spectrum classification.

Spectrum classification can help reduce convergence times and facilitate efficient

spectral usage. Since data usage patterns are coupled with the daily routine of users,

classification based on geography and time of day will be of high utility. However

practical approaches to spectrum classification are not very well explored. Classification

can possibly be done by two different approaches, an infrastructure approach and a

mobile approach.

In the infrastructure case measurement opportunities are infinite, but mobility is

not possible. In this scenario we still need to maintain a bound on error. While we

do not need to be as conservative with our measurement opportunities, we would like

to have occupancy information as early as possible. Our technique prioritizes channels

based on their ease of classification, and can return decisions as they become available

with out having to wait for the entire search to complete. In the mobile case, we are

not tied to fixed geographic locations, however because we are mobile we have a limit

on the amount of measurement resources per geographic location. This suggests the

need for measurement strategies that maximize some utility metric under a constraint

on sample size / error rate.

The mobile measurement case can arise from regulatory bodies doing characteriza-

tion sweeps across geographic areas, to assess usage and possibly coordinate SUs via a

control channel. It could also be done by mobile SUs, in an attempt to build a personal

geographic map of the occupancy for the SU. This map can be consulted before the

initial spectrum scan that precedes a transmission. Map usage can lower convergence

time the initial sensing, as well as warn of recurrent historical spectral artifacts that

might be coming up. If the latter is done in some form of a handset the measure-

ment resources might be very limited because of battery conservation policies, or other

resource constraints.

In the following work, we propose a novel strategy for distributing a limited number

of measurements amongst a set of channels with unknown occupancy probability. Our

goal is to classify as many channels as we can with the limited measurement resources
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while maintaining a bound on the probability that our classifier makes a mistake. The

classification will partition a set of channels into subsets with similar probability of

occupancy. This classification can be used to adjust future sensing policies, perhaps by

starting with channels that are in the set of low occupancy channel first.
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Chapter 2

Proposed Model

For the model proposed, we consider a set of N channels, where |N | denotes the cardi-

nality of this set, i.e., the number of channels to be searched. We assume that there are

L possible measurements and that the rate of measurements is fixed (1 measurement

per unit time). The number of channels may be greater (possibly much greater) than

the number of measurements. Each measurement can correctly identify if a channel is

busy or not. We also assume that each channel n is measured at time l independently

of they others. Channel n is occupied with probability pn which comes from a uni-

form distribution. Hence, each measurement is considered to be a Bernoulli indicator

random variable B(p) with 1 indicating occupied, and 0 indicating free. A complete

characterization for a block of time with L measurements would be a set of P̂N of |N |

probabilities, one for each channel, n ∈ N . These p̂n ∈ P̂N are estimates of the prob-

ability of being occupied, pn. In most cases of interest we will not able to cover the

entire set of channels in the allotted time block.

Our knowledge of occupancy can be measured by splitting N into 2 sets Nclass and

Nunclass, the set of classified and unclassified channels. If a channel n is in Nclass,

then it has been measured enough times that we expect an error probability of the

classification to be bounded by maximum determined by our design parameter choices.

In general, the number of measurements required to make a classification will not be

uniform over the set of channels. All channels that are not fully classified at the end of

a time block are deemed unclassified, that is they are in Nunclass.

The result of our strategy should be a sequence of channel measurements (l1, l2, ..., lj , ...lL)

with j ∈ [0, L] that will maximize |Nclass| while maintaining a bound on probability

of error. Each lj is the index of the channel to be measured (that is, one of the ns).
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Determination of this sequence will be dictated by our allocation strategy which will

depend the ratio of L
|N | as well as the desired error tolerance. We will introduce the

sequential probability ratio test (SPRT) as our method of testing composite hypothesis

on a single channel. We will then use the sequential nature of the test to propose a

cost metric that will guide allocations to channels that complete their classification in

fewer samples.
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Chapter 3

Related work

The broad category of spectrum sensing for cognitive radio is actually quite well ex-

plored. Several surveys like [2] have been published since Mitola coined the term in

1999 [3]. In [2], Yucek charts the various strategies for sensing spectrum ranging from

simple energy detection to multi-dimensional techniques. All of these techniques em-

ploy some manner of detection theory to control their error rates for the purposes of

collision avoidance and efficient spectrum utilization. The key distinction between our

work and many of the methods suggested in [2] and many similar surveys ([4],[5],[6]), is

that their primary goal is maximizing throughput by efficiently finding spectral holes.

In almost every case their primary metric is maximum through put under different

constraints, e.g. fair access to all users. In our proposed method, on the other hand,

we will explore different performance metrics for an entirely different class of problems,

that of classification of channels.

In the broader literature SPRTs have been used to classify students taking adaptive

tests, work pioneered by Spray in 1993 [7]. A modern treatment of the techniques was

given in [8]. The use of classification techniques to build priors seems unexplored in the

literature. While there is a rich base of spectrum analysis techniques to draw from and

the process of making classifications by using SPRTs has been well studied, merging

the two disciplines to “prime” our knowledge of the spectral landscape seems novel.

3.1 Bandit Problems

In [9] and [10], Lai and Poor proposes an adaptive allocation model for sensing that

employs solutions to multi-armed bandit problems. In the single user case, he uses a

network model very similar to the proposed model of our work. In the discussion, he
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considers a time slotted collection of channels. At each time slot, the SU must first

listen to the channel. If the channel is empty, the SU will transmit. If not the SU

will update their occupancy model to avoid picking this channel again. He defines a

performance metric given by

WΓ = Ef(θ)


T∑
j=1

BZs(j)(j)

 ,

whereWΓ is the expected throughput for a channel selection strategy Γ = {s(1), s(2), ..., s(T )}.

s(j) is choice of channel at time j, and B is channel bandwidth, a constant. Zs(j)(j)

is an indicator random variable that equals 0 if the channel is occupied, and 1 if it is

not. Finally f(θ) is the joint distribution on channel parameters θ = (θ1, ... , θN ). For

a choice s(j) = i, ∈ [0, ..., N ], θi is the probability that channel i is unoccupied, that is

Zi(j) = 1. Lai argues that if θ is known, this problem is trivial, simply choose i that

maximizes θi ∀j.

If the θ is not know, then this problem can be cast as a bandit problem where we

assume some distribution on the parameters, and proceed by an inductive procedure

that runs the choices backwards. At each phase the author is selecting the previous

step that leads him to the current maximal value of WΓ, a reverse inductive process.

In the finite Horizon case there is an absolute stopping time dictated by the problem

it self.

Our approach has a very different utility function that aims to limit the amount

of time spent sensing any individual channel. In the bandit formulation if a channel

is unoccupied through out the duration of our sensing interval, this channel is always

the best choice. However in our problem, if a given channel is unoccupied it is only

of limited utility. An unoccupied channel will require a small number of samples to

confirm that it is indeed unoccupied. Once we have determined that it is empty with a

sufficiently small probability of error, this channel is decided and thus sampling it more

is of little utility to our goal.
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3.2 Use of SPRT

While many techniques fall back on the classical Neyman-Pearson methods of error

analysis, a few, most notably Xin and Lai in [11], employ sequential testing techniques.

Here the authors focus on a very similar class of problem, an attempt to minimize a cost

function that depends on the expected sequence length and the error probability. Their

probability model however is very different from the model we’re working with. Their

model comes from noise power observations where the signal is required to be present

during the entire observation period. Specifically, they are trying to decide between

Y
(k)
j ∼ CN (0, [σ(k)]2) and Y

(k)
j ∼ CN (0, P (k) + [σ(k)]2), where j is the time index, and

k is the channel index. We do not assume a signal model that requires constant signal,

instead we expect that an underlying detector can hand us a instantaneous binary

decision as to whether the channel is occupied or not. Our channels can be partially

occupied with occupancy probability pn.

The error terms in their system are a function of the current value of the estimate

of the probability of occupancy. The authors employ an expected cost to go function

J̃j,T (Fj) where T is the stopping time (given), Fj is the set of observations at time j.

The J̃ function is defined recursively via a reverse induction. At each step the author

selects the channel that minimizes the expected cost to go, starting from the deadline

and working backwards. The author then proposes several methods on how to truncate

the sequence in order to use fewer samples.

We approach the choice of channels using very different strategies. Our approach

attempts to minimize cost by making greedy choices, while they try to minimize an

expectation across all channels. A key difference in our method is that we do not rely

on reverse computation of the J̃ function. Instead we use the test itself to project the

best case of expected sequence length, given the current observations. If this best case

is more than an unexplored channel, we move on.

It is noted that in this scenario higher probability of false alarm, PFA, results in

lower spectrum utilization, and higher probability of missed detection, PMD, results
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in more collisions with the PU. If an SPRT is not allowed to reach a complete deci-

sion (by truncating it), the bound on error that the test prescribes will not be met.

Truncating the test is equivalent to running a test with looser thresholds. We show

through explicit calculation, that when the thresholds are relaxed, the effective error

rate is actually higher than the targets set when designing the test, see section (4.11).

In our approach we treat the error rates as upper bounds, and then deem parameter

set for the SPRT admissible if they achieve an error rate below these bounds. We then

select the admissible parameter set that yields the largest set of completely categorized

channels.
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Chapter 4

Sequential Testing for a Single Channel

We build out the statistical machinery to classify a single channel. We will evaluate the

classical hypothesis testing strategy and then turn to the SPRT as a test that minimizes

the required samples while maintaining a specific probability of error. We will then try

to find a good choice of parameters for our case.

4.1 Composite Hypothesis and the UMP

The classical binary hypothesis testing problem tries to decide between two simple

hypotheses, H0 versus H1. These hypotheses pertain to a generic parameter (or set of

parameters) θ which controls the distribution on the general random variable we wish

to make inferences about X. Here X is the RV that models the phenomenon we wish

to observe, i.e., channel occupancy. X may not be a single random variable, but a

vector of fixed length X = (X1, X2, ..., XL), where L is a fixed limit on the number of

samples we can take. θ may be one of many parameter choices, that is we can consider

the family Θ of which θ0, θ1 are members. Our hypotheses then takes on the form:

H0 : θ = θ0, (4.1)

H1 : θ = θ1.

These hypotheses are deemed simple because the parameter is constrained to two values

due to the equality of the defining equation (we are isolating two from the family

Θ). The solution to this problem is usually found by comparing a function of the

observations of the random variable to a threshold η. Typically this function is the

likely hood ratio defined as:

Λ(x) =
F (H0|x)

F (H1|x)
≷ η. (4.2)
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where we declare H0 when Λ(x) > η and reject H0 when Λ(x) < η. As a side effect

note that if θ > θ0, this test will decide H0 because the observations of x that would

confirm H0 become more likely that our tests expects them to be. The exact opposite

happens if θ < θ1. The choice of the threshold η can be arrived at by many different

methods, see [12]. Tests of this form are named the likelihood ratio test, or LRT for

short.

A general solution to any decision problem is to form a rule φ(x), called the deci-

sion rule, that is a function of the observation, x, which is chosen to minimize some

cost or error probability. The function φ(x) assigns a decision to values of observable

X. Before it is observed X is a random variable. Since φ(X) is a function of a ran-

dom variable, it is also a random variable. For an arbitrary hypothesis test, there are

two types of errors that can be made, both of which result in declaring a specific hy-

pothesis when the other is true. In the specific case of the threshold tests which are

decided by computing Λ(x), these errors arise because the observation x causes Λ(x)

to incorrectly cross the threshold. The probability that such a crossing occurs can

be computed from the observation’s distribution conditioned on the correct hypothe-

sis, e.g., PX(declare H1|given H0 is true) = PX(Λ(x) ≤ η|given H0 is true) = α and

PX(declare H0|given H1 is true) = PX(Λ(x) ≥ η|given H1 is true) = β.

Since we plan to classify channels based on their parameter, we will need to deal

with the entire parameter family Θ. This will require that we use composite hypothesis

instead of simple equalities, we will need to consider hypothesis of the form:

H0 : θ ≥ θ0, (4.3)

H1 : θ ≤ θ1.

where we leave open the possibility that θ0 = θ1.

To treat this class of problems we can appeal to the general formulation of the

solution as derived in [13]. Consider an arbitrary φ(x) as the probabilistic rule for

deciding H0 as a function of the observation x. Since the observation space |X| is of

fixed, the probability that φ(x) will decide H0 across the set of possible observations is
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given as

P (declare H0)θ = Eθ(φ(X)) =

∫
φ(x)dPθ(x). (4.4)

As we vary θ this expectation gives us the probability of declaring H0 as a function

of θ. In the region where H0 is wrong, we have β(θ) = P (declare H0)θ ∀θ ≤ θ1, the

probability of making the wrong decision given θ. This integral should decrease as θ

increases away from θ1 because the probability of observing x that confirm H0 decreases.

P (declare H0)θ turns out to be a very important quantity for designing tests, we name

it the operator characteristic (OC) curve. The same method can be used to compute

an expression for αφ(θ).

Each choice of φ partitions the observation space into two sets, X0 and X1. Ob-

servations x ∈ X0 confirm hypothesis H0, and equivalently x ∈ X1 confirm hypothesis

H1. The integrals αφ(θ) and βφ(θ) are coupled via this partitioning. If we modify φ

by moving an observation from X0 to X1, the value of βφ(θ) decreases because there is

one less point that φ(x) will declare H0 on. At the same time αφ(θ) gains that point

and thus increases slightly. The opposite occurs when we move from X1 to X0.

The observation space however admits a natural partitioning given as X ′0, X ′1, and

X ′I . Here observations that fall into X ′0 and X ′1 should properly confirm H0 and H1

respectively. The observations in X ′I are indifferent. It is not clear which hypothesis

they confirm, however our rule φ(x) has to make a decision on them. How φ allocates

the elements of the indifference region will ultimately dictate the values of αφ(θ) and

βφ(θ).

A typical approach that appeals to the Neyman-Pearson lemma is to fix a value of

α, called the size of the test, and then choose a φ(x) that maximizes 1− β, called the

power of the test. If a single choice of φ works across the entire Θ space, this choice

is said to be the uniformly most powerful test. We can use the UMP to resolve the

composite hypothesis problem as it will have bounded error for all θ.

The UMP test has two major draw backs. The first is that it may not always exist,

however in many simple cases a UMP can be found and used as a flawed test for more

complex distributions. The second drawback is that the assumption that the size of L
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remains fixed means we cannot adjust the number of samples we take without having

to choose φ. This presents a very big problem for us because we have no mechanism

for determining what a minimum number of samples should be, or if we have reached

it.

While the UMP will not serve our purposes, it does provide some insights into a

possible solution. The idea that a test intended to evaluate a simple hypothesis can

be used to test parameters it was not explicitly intended to test as long as we have a

bound on the error, will play a crucial role in the test we will use. In [14], it is shown

that the sequential probability ratio test(SPRT), under the very weak conditions, will

achieve the lowest expected sequence length. This test will serve as the basis for our

work.

4.2 More than 2 Hypotheses

There is no specific limitation on the number of hypothesis we can decide between.

If we allow for more than two hypotheses, we can use a similar definition of Λ(y) to

decide between each of these hypotheses. Let Γ be the number of hypotheses. This

Λ(y) however will now be computed across pairs of hypothesis, there should be a Λ for

each pair of tests for a total of Γ − 1. If we select a minimum error criteria, we can

carve up the space of possible observations into Γ sets, where each allocation is chosen

to minimize the overall error. Computation of this error, however, now becomes more

difficult because each hypothesis has Γ − 1 alternatives. There are some well known

approximations for this error probability, e.g. the union bound.

One question becomes how to make the actual decision, [15] outlines a tournament

procedure that picks hypothesis by testing a sequence of binary hypothesis elimination

rounds. In the upcoming sections we will take a similar approach to decide between

multiple composite hypothesis.
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4.3 Definition of Sequential Test

To begin consider a single parameter simple hypothesis where we decide between two

values of the generic parameter θ for the general distribution f(x, θ). Suppose the

hypothesis is:

H0 : X ∼ f(x, θ0), (4.5)

H1 : X ∼ f(x, θ1). (4.6)

f(x, θ) could be a discrete Bernoulli distribution with parameter p, or a continuous

Gaussian distribution with known variance, and mean θ. We can specify the form of

the SPRT as

B < Λ′(x) =
f(x1, θ1)...f(xm, θ1)

f(x1, θ0)...f(xm, θ0)
< A. (4.7)

This is a departure from the classical likelihood ratio defined in section (4.1) in that

we specify two thresholds and do not require a fixed observation size. The SPRT is a

special case of the LRT where the LRT will also be a function of m, the sample index

for this test. As m grows, if the LRT goes above A, we declare H1, if it goes below

B, we declare H0, otherwise we keep sampling. In [16] it is shown that there exists

some maximum M for which this test terminates in a decision, that is this LRT will

eventually cross A or B, i.e., M = inf{n > 0 | Λ′(x) < B or A < Λ′(x)}. Hence, M is

the random stopping time.

4.4 Finding A and B

To determine the values of A and B, we first need to establish some important inequal-

ities. Consider a sequence of observations x1, ..., xM that results in the declaration of

H1 at the M th step. Then we have

B <
p1m

p0m
=
f(x1, θ1)...f(xm, θ1)

f(x1, θ0)...f(xm, θ0)
< A, (4.8)

A ≤ p1M

p0M
. (4.9)

where the pij is the probability of observing the length j sequence under hypothesis i.

Note that M is a random variable since the observations are coming from a probability
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distribution. At the M th step we have crossed the threshold and declared H1. At this

step consider Pθ(H1|H0) = Pθ(x1, ..., xM |H0) = p0M . We will define this to be

Pθ(H1|H0) = α. (4.10)

Similarly We will let

Pθ(H0|H1) = β, (4.11)

which makes p1M = 1 − β, that is the probability of correctly declaring H1. We can

then establish a key inequality by substituting into Eq. (4.9).

A ≤ 1− β
α

. (4.12)

A similar analysis of sequences that result in the declaration of H0 will yield the

following:

B ≥ β

1− α
. (4.13)

Supposes that we have fixed an α and β corresponding to our two classical types

of errors. In order for this test to achieve these error rates, the thresholds should be

set to values A = A(α, β) and B = B(α, β) which are the proper functions of α, β

respectively. We know from the previous inequality that:

A(α, β) ≤ 1− β
α

,

B(α, β) ≥ β

1− α
. (4.14)

Because the assumed distributions only differ by a parameter, the ratio p1m
p0m

should

be strictly monotonic with respect to increasing m. Suppose we set A = A′, where

A′ > A(α, β), then the test will terminate later at some M ′ > M because the LRT was

heading in the direction of the proper A(α, β) and monotonicity will cause it to cross

A′ eventually. This later thresholds should yield the same decision, but with a longer

sequence. A similar argument applies to B, thus we can choose for A and B:

A =
1− β
α

,

B =
β

1− α
. (4.15)
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These assignments of A,B can be shown (by explicit calculation, [16]) to not increase

the required steps by a significant amount. The achieved error rates will in general not

be equal to α, β though. For the values of A,B given by Eq.(4.15) let the effective error

rates be given by α′, β′, then from Eq.(4.14) we have have

1− β′

α′
≥ A =

1− β
α

,

β′

1− α′
≤ B =

β

1− α
, (4.16)

from which we can derive

α′ ≤ α

1− β
,

β′ ≤ β

1− α
. (4.17)

Adding the equations of Eq.(4.17), we get the result

α′ + β′ ≤ β + α, (4.18)

which establishes a bound on the effective size power.

4.5 Types of tests

As we saw in section (4.1) hypothesis tests can come in a variety of flavors. The main

classes are discrete versus continuous and composite versus simple hypothesis. For this

problem we will primarily be concerned with discrete tests of a composite hypothesis.

We will specifically focus on Bernoulli random variables B(p) for the treatment of

sequential tests as this is the case we will need to classify channels.

Let us initially consider a composite hypothesis formulated as:

H0 : p ≤ p′,

H1 : p > p′. (4.19)

p′ is a soft-threshold, that is we deem p′ the soft threshold because our test does not

demand p = p′. In fact our test will only make better decisions for values of p� p′ or

p� p′. For values of p that are close to p′, if our system declares the wrong hypothesis,
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this should not be regarded as a serious error. Thus our hypothesis is equivalent to a

test where we set hard thresholds, which are chosen to be far enough away from p′ that

making a mistake would be considered a serious error. Let p0 and p1 be these hard

thresholds and define

ωr = {p|p1 < p} , (4.20)

be the region of rejection, that is the region where we declare H1. p1 is chosen so that

p1 > p′. Similarly let

ωa = {p|p < p0} , (4.21)

be the region of acceptance, there region where we declare H0. The set of parameters

ωI = {p|p0 < p < p1} , (4.22)

lie in the region of indifference. p1 is a hard threshold in the sense that we expect that

when the true parameter is equal to p1 (that is when H1 is true), we will make a mistake

with probability β. Similarly when the true parameter is equal to p0 (when H0 is true),

we will make a mistake with probability α. For all other values of the parameter in

ωr, α serves as a bound of the probability of making an type 1 error. The opposite

is true for ωa with β serving as the bound. In this test (α, 1 - β) together define the

size/power of the test which are now both fixed. For a given p as the sequence length

grow, the error probabilities are bounded by (α, β). This establishes a bound for what

to expect from the test performance. For a given size/power choice we can adjust p0

and p1 to try to minimize the expected sequence length Ep(M). This however is not a

trivial adjustment, and there is no “perfect minimum” as we will see when we examine

the trade offs.

With these definition of the decision regions, we can now establish a relationship be-

tween simple hypotheses and composite hypotheses. Suppose that instead of Eq.(4.19)

our hypothesis is simpler:

H0 : p = p0,

H1 : p 6= p0, (4.23)
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so the region of accept has only a single value in it. That is ωa = {p0}. This observation

leads us to the distinction between simple and composite hypotheses in this context,

namely the cardinality of the acceptance and rejection regions. The choice of hypothesis

will have an impact on the fundamental curves that govern the behavior of our tests.

In particular the operator curve (defined in section 4.1) will have a jump discontinuity

in it when the hypothesis is simple. We can model simple hypothesis with a ε sized ωa

about p0, so that the operator curve is not discontinuous.

4.6 Fundamental Curves

We define the operator characteristic curve L(p) as the probability of the test ending

in a declaration of H0 given a value of p ∈ (0, 1). In section (4.1), we saw that L(p) =

Eθ(φ(X)), where in this case our φ(x) is the SPRT. L(p) is our fundamental tool for

analyzing parameter choices. While it is possible to derive an expression for L(p) from

the integral in Eq. (4.4), Wald derives it from a simple continuity argument in [16]. In

particular for the given composite hypothesis, we must have

L(0) = 1, (4.24)

L(1) = 0,

L(p0) = 1− α,

L(p1) = β.

Our assumption of a Bernoulli random variable, plus the given composite hypothesis

means that L(p) admits a simple form, it is given by the parametric equations:

L(p) =
(1−β
α )h − 1

(1−β
α )h − ( β

1−α)h
, (4.25)

p =
1− (1−p1

1−p0 )h

(p1p0 )h − (1−p1
1−p0 )h

, (4.26)

where h ∈ (−∞,∞). There is a discontinuity at h = 0 which is due to the tests inability

to gracefully handle the case where p = p′, but it’s a simple point discontinuity and so

can be safely ignored.
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A second fundamental curve which can be considered a result of the parameter

choices is Ep(M), the expected number of samples required before a decision is made.

It depends on the actual value of p. It has the form

Ep(M) =
L(p)log( β

1−α) + (1− L(p))log(1−β
α )

p log(p1p0 ) + (1− p)log(1−p1
1−p0 )

. (4.27)

For given choices of p0, p1, α, β these curves can be drawn (see section 4.8).

4.7 Derivation of L(p)

Recall that we defined L(p) as the probability of declaring H0 when the test ends.

There is a small subtly in the phrasing of this definition that can be misleading. L(p)

is not the probability of declaring H0 at an instant. That probability is dictated by the

past observations and the derived thresholds and is determined by how close you are to

the resulting H0 threshold lines (defined in section 4.9). Instead L(p) is the probability

that the test will terminate with a declaration of H0. Note that even though there are

3 decision regions, the test can only ever terminate with one of two choices, H0 or H1.

Consider the expression [
f(x, θ1)

f(x, θ0)

]h(θ)

, (4.28)

where θ is a generic parameter of the distribution (not necessarily limited to the

Bernoulli case).

For a given value of x, the quantity inside the [. ] is fixed, and Eq.(4.28) is purely a

function of θ. h(θ) is chosen such that the mean across x with respect to f(x, θ) equals

one: ∑
x

[
f(x, θ1)

f(x, θ0)

]h(θ)

f(x, θ) = 1, ∀θ. (4.29)

This choice of h(θ) ensures that

f∗(x, θ) =

[
f(x, θ1)

f(x, θ0)

]h(θ)

f(x, θ), (4.30)

is a distribution on x for all allowable θ, it simply re-weights the individual assignments

of f(x, θ). Fix a θ and let H be the hypothesis that f(x, θ) is the true distribution on

x. Let H∗ be the hypothesis that f∗(x, θ) if the true hypothesis, where f∗(x, θ) comes
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from Eq. (4.30). If we consider the LRT of a sequence of observations x1, ..., xm, we

have

Bh(θ) <

[
f∗(x1, θ)...f

∗(xm, θ)

f(x1, θ)...f(xm, θ)

]
=

[
f(x1, θ1)...f(xm, θ1)

f(x1, θ0)...f(xm, θ0)

]h(θ)

< Ah(θ). (4.31)

It is shown in the appendix of [16] that for a small set of assumptions on f(x, θ),

h(θ) takes on only one non-zero value if it is to satisfy Eq. (4.29) for each θ. We can

treat two cases h(θ) > 0 and h(θ) < 0. They yield the same result however, namely

for given set of observations x1, ..., xm, if the left LRT of Eq. (4.31) declares H, then

the right LRT will declare H0 and vice versa. Since the tests yield the same results

for a given set of observations, it follows that the probability of the test ending in the

declaration of H0 is the probability that the left LRT declares H.

We saw in section (4.4) that for any LRT, and choice of α, β, we can take the upper

threshold to be 1−β
α and the lower threshold to be to be β

1−α . While this is not exact,

taking these thresholds ensures that our αactual < α and βactual < β. In this case, we

can use similar results to approximate the bounds. Let

Ah(θ) ∼1− β′

α′
, (4.32)

Bh(θ) ∼ β′

1− α′
,

where α′, β′ are the respective probabilities of miss and false alarm. From these equa-

tions we can solve for α′ and get

α′ =
1−Bh(θ)

Ah(θ) −Bh(θ)
. (4.33)

Given that α′ is the probability of declaring H1 when the parameter is in the accept

region, we have α′ = 1− L(θ), which yields

L(θ) =
Ah(θ) − 1

Ah(θ) −Bh(θ)
. (4.34)

Now in the Bernoulli case Eq.(4.29) yields,

p

(
p1

p0

)h
+ (1− p)

(
1− p1

1− p0

)h
= 1, (4.35)

where h is the nonzero value of h(p) for that specific p. Solving Eq.(4.35) for p and

performing the proper substitutions into Eq.(4.34), yields Eq.(4.25) and Eq.(4.26).
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4.8 Curve plots

In this section the following parameter choices were made. Here we will introduce a

parameter δ which is an offset from p′. Then the pi for i ∈ {0, 1} can be computed as

p1 = p′ + δ, (4.36)

p0 = p′ − δ.

This has the effect of putting p′ in the middle of the indifference region. The δ

parameter will be explored in more detail later. For this sample curve the parameters

are:

α = 0.01, (4.37)

β = 0.05,

p′ = 0.20,

δ = 0.15.

Figure 4.1: Operator Curve

Figure (4.1) contains two truncated curves the theoretical curve which was calcu-

lated from Eq.(4.25) and Eq.(4.26), and a simulated curve that comes from running the
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sequential experiments and then collecting the actual p(H0). They were truncated to

show the interesting detail as the edge behavior is asymptotic. Note that the theoretical

curve passes through the expected points.

Figure 4.2: Expected sample length curve

Figure (4.2) shows the expected sequence length. As you can see the closer the true

parameter is to the soft threshold the more samples we need to verify the hypothesis.

This confirms the intuition that the closer the parameter is to the threshold, the harder

it is to tell what side the parameter is on. This is an important result since p′ will

shape many of our design decisions.

4.9 Threshold lines and Simulation

Applying some algebraic manipulation and logarithms to Eq.(4.7) and using the Bernoulli

distribution as our model, we find that dm =
∑M

m=0 xm is a sufficient statistic for the

proposed test (see [15] for a discussion of sufficiency). Here dm is the number of ones

observed after m samples. We can plot this quantity as a function of sample index

and compare it to two thresholds lines that come from the sufficiency derivation. If dm

lies between the two threshold lines L0(m) and L1(m) then we continue sampling. We

declare hypothesis Hi when we cross Li(m), i ∈ {0, 1}. The formulas for the threshold
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lines are given as

L0(m) =
log( β

1−α)

log(p1p0 )− log(1−p1
1−p0 )

+m
log(1−p0

1−p1 )

log(p1p0 )− log(1−p1
1−p0 )

, (4.38)

L1(m) =
log(1−β

α )

log(p1p0 )− log(1−p1
1−p0 )

+m
log(1−p0

1−p1 )

log(p1p0 )− log(1−p1
1−p0 )

.

A sample run looks like figure (4.3). Note that the lines are parallel (equal slope)

and only differ by their intercept. This observation was used in the proof of eventual

termination of the SPRT.

Figure 4.3: Example of the Test

To generate the simulated curves in 4.8, we sample a Bernoulli RV with parameter

p ∈ [0, 1] until it crosses one of these threshold lines. Performing this process over

thousands of trails for all p ∈ [0, 1], we can analyze the resulting declarations and

sequence lengths, this is examined in section (6.1).

4.10 Random walks between two thresholds

An alternate way to think about the SPRT is to consider it as a random walk between

two moving thresholds as in figure (4.4). This can be seen as projecting the graph

in figure(4.3) onto the y axis. The sufficient static dm =
∑M

m=0 xm is by definition a

random walk as it is the sum of an increasing series of IID Bernoulli random variables

[12]. As m increases the thresholds move to the left (this is convention, there is no
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specific reason for left vs right). If the parameter p is low then dm will get overtaken

by the lower threshold L0, causing the test to decide H0. On the other hand, if the p is

high, then dm will over take L1, causing the test to decide H1. One might try to derive

Ep(M) directly from Wald’s equality E[dm] = E[X]E[M ]. In [15] it is shown that in

the case of a simple random Wald’s equality yeilds:

P {∃M s.t. dM ≥ T} =

(
p

1− p

)T
.

The problem with this equation is that it assumes a fixed T . While this method can not

be used directly to derive Ep(M), it does suggest techniques like considering the ratio

of the expected sum to the expected value of the random variable, i.e., E[dm]
E[X] = E[M ].

With this formulation it’s clear that the SPRT has a Markovian property since at

any m, the probability of deciding H0 or H1 is purely a function of the distance from

one of the threshold lines to dm. Note that if the p is closer to 0 or 1, this test will

complete in fewer samples because both threshold lines move at the same rate (slopes

are equal). This can also be seen from Ep(M) curves of section(4.8).

Figure 4.4: Random Walk between two thresholds

4.11 Computing βeffective

By definition β = P{DeclareH0|H1is true}. L(p) is by definition P{DeclareH0|p}.

Since H1 is true when p > p′, we can compute the βeffective by integrating L(p) over

the region where H1 is true. In the most general case:

βeffective =

∫ 1

p′
L(p)f(p)dp, (4.39)
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For simplicity we can take f(p) = 1
µ(S) = 1

1−p′ where S = (p′, 1), that assuming

a uniform distribution on p ∈ (p′, 1). Clearly S = (p′, 1) ⊃ ωr = (p1, 1) so we can

establish a relationship between βeffective and β like so:

βeffective =
1

µ(S)

∫ 1

p′
L(p)dp, (4.40)

=
1

µ(S)

[∫ p1

p′
L(p)dp+

∫ 1

p1

L(p)dp

]
. (4.41)

Since L(p) is monotonically decreasing for p > p′ we have:

βµ(ωr) ≥
∫ 1

p1

L(p)dp, (4.42)

β
µ(ωr)

µ(S)
+

1

µ(S)

∫ p1

p′
L(p)dp, ≥ βeffective, (4.43)

β ≥ βµ(ωr)

µ(S)
≥ βeffective −

1

µ(S)

∫ p1

p′
L(p)dp, (4.44)

The first inequality of (4.44) follows because 1 ≥ µ(ωr)
µ(S) . Clearly as p1 → p′, βeffective

grows closer to β which becomes the true false alarm probability. (4.44) shows how

choosing looser (or tighter) p1 will effect the effective false alarm rate, βeffective. As we

saw in section (4.8), the closer p1 is to p′ the higher the Ep(n) becomes. For that cost

we do gain a reduction in false alarms.

Figure 4.5: The over shoot of βeffective

We can also examine this intuition from the graph of L(p) as in figure 4.5. Since

L(p1) = β, as p1 → p′, this forces the curve to pass through the value β earlier because
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we require L(p) to be smooth. This shrinks the effective area of the shaded region thus

cutting out significant area under the L(p) curve over the region (p′, 1) and thus lower

the value of the integral in Eq. (4.40). A similar analysis can be done for α and p0.

4.12 αeffective, βeffective and δ

If we consider Eq. (4.41) and adjust the equations to reflect the βeffective’s dependence

on δ, we derive

βeffective(δ) =

∫ p′+δ

p′
L(p)dp+

∫ 1

p′+δ
L(p)dp, (4.45)

≤
∫ p′+δ

p′
L(p)dp+ L(p1)µ(ωr), (4.46)

≤ L(p′)δ + L(p′ + δ)(1− (p′ + δ)). (4.47)

When δ is really small the fixed point L(p1) = L(p′ + δ) on the operator curve is

very close to p′, so (4.47) is dominated by the second term. Monotonicity of L(p) in

the region p > p′ implies that L(p′) > L(p′ + δ). Clearly as δ −→ 0 =⇒ βeffective ↘ as

was noted in section (4.11).

We can see this effect from figure (4.6). This graph is the βeffective integral given

in Eq. (4.40) numerically integrated as δ : 0.01 −→ 0.09. The graph’s growth is in

accordance with intuition from the treatment of the bound.

Figure 4.6: δ vs β
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A sample Ep(N) curve is shown in figure (4.7) with δ = 0.09, βeffective(δ) = 0.0437,

and max(Ep(M)) = 26.3996.

Figure 4.7: Large delta (big indifference region) expected sequence length

At the same time we can bound αeffective by:

αeffective(δ) =

∫ p′

p′−δ
L(p)dp+

∫ p′−δ

0
L(p)dp, (4.48)

≤
∫ p′−δ

p′
L(p)dp+ L(p1)µ(ωa), (4.49)

≤ L(p′)δ + L(p′ − δ)(p′ − δ), (4.50)

which again has the same relationship with δ namely δ −→ 0 =⇒ αeffective ↘. As

we saw in 4.11, this reduction in error comes at the cost of max(Ep(M)).

While adjusting all the other parameters has an effect on both max(Ep(M)) as well

as (αeffective, βeffective), these quantities are most sensitive to changes in δ, because

changes in δ affect the declaration regions the most. max(Ep(M)) in particular pri-

marily depends on the width of the indifference region, which is 2δ. This maximum

occurs at the center of the indifference region, which was set to p′ for all the previous

analysis.

The fundamental trade off identified here is an exchange of the expected sequence

length for the probability of error. However, this is not the only exchange we can make.

We can introduce a new parameter ζ which represent the split of the indifference width.
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We can compute the values of p1 and p0 as p1 = p′ + 2ζδ, p0 = p′ − 2(1 − ζ)δ. This

moves the center of the indifference region and the position at which max(Ep(M))

occurs. This has the effect of trading βeffective for αeffective as the integration regions

get adjusted to:

αeffective(δ) =

∫ p′

p′−2(1−ζ)δ
L(p)dp+

∫ p′−2(1−ζ)δ

0
L(p)dp, (4.51)

βeffective(δ) =

∫ p′+2ζδ

p′
L(p)dp+

∫ 1

p′+2ζδ
L(p)dp.

This gives us another mechanism for adjusting the SPRT to have low Ep(M) over

the region of where the parameter p highest probability. The effects of this ζ term can

be seen in figure (4.8).

Figure 4.8: Shift of the indifference region boundaries due to ζ

4.13 Multiple SPRTs

Hypothesis like Eq.(4.19) partition the parameter space into two disjoint regions, R0 =

{p|p < p′} and R1 = {p|p′ < p}. If we examine the variance of a Bernoulli random

variable (see figure 4.9), we notice that it is symmetric about the parameter p = 1
2 .

Because of this symmetry, for properly chosen parameters, we can run two tests si-

multaneously without affecting the expected sequence length Ep(M) or the effective

error rates (αeffective, βeffective) significantly. By running 2 tests against the same
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set of observations we will partition the parameter space into 3 intervals using two

thresholds p′L, p
′
R (p′L < p′R). This will partition the parameter space into three regions

R0 = {p|p < p′L}, R1 = {p|p′L < p < p′R} and R2 = {p|p′R < p}. We expect to oper-

Figure 4.9: Variance of a Bernoulli Random Variable

ate in a regime where samples are limited but computation is unconstrained (limited

sampling time, but infinite power). Under this assumption, we can get a better clas-

sification granularity by computing multiple SPRTs with the same set of samples. As

we saw in section (4.2) we can use an elimination process to choose 1 hypothesis from

many. For this discussion we will consider the case of Γ = 3. It is possible to use larger

Γ but the error rates become much more difficult to analyze. The three hypotheses

corresponds to the three regions or parameter space is partitioned into:

H0 : p < p′L, (4.52)

H1 : p′L < p < p′R,

H2 : p′R < p.
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We can decide between these three by using the elimination process against two equiv-

alent sets of binary hypothesis:

LEFT RIGHT (4.53)

H1 : p < p′L H1 : p > p′R,

H0 : p > p′L H0 : p < p′R.

Each of these tests will generate a set of threshold lines L0,L, L1,L and L0,R, L1,R. As

was observed in [17] we can run these tests simultaneously by simply plotting both sets

of test lines, and using a set of combining rules to decide what the final declaration of the

test will be. A sample run of two would look like figure (4.10). The rule for combining

Figure 4.10: Sample run of 3-ary test with 2 sets of threshold lines

the decisions from the two tests into a final declaration decides in the following manner:

• Left declares H0 and Right declares H1, declare H0 : p < p′L

• Both declare H1, declare H1 : p′L < p < p′R

• Right declares H0 and Left declares H1, declare H2 : p′R < p

We can see that from figure (4.10), that this decision rule merely picks a hypothesis

based on what set of threshold lines dm crossed. If dm crosses one of the outer threshold

line, a declaration of H0 or H2 is made depending on which line was crossed. If dm
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ends up in the region bounded by the inner 2 threhold lines, H1 is declared. It is

argued in [17] that contradicting declarations cannot occur because that would violate

the convergence of the single test.

4.14 L(p) and Ep(M) for two-tests

If we examine each test in section (4.13) individually, it will have an Ep(M) similar

to figure (4.2) for a single test. Note how this curve is unimodal with a maximum

near p′, the soft threshold for the two hypothesis test. We see that as p moves away

from p′ in either direction, Ep(M) decreases monotonically. If we now consider the two

tests together there will be two soft thresholds p′L and p′R. An arbitrary p will tend

to be closer to one of the soft thresholds than the other (the case where p is centered

between the two does not cause any discontinuities). Because of the monotonicity of

the individual Ep(M), one test will always finish before the other. Since we can only

make a decision when we have answers from both tests, see that E2,p(M), the two-tests

expected sequence length, can be computed as E2,p(M) = max(EL,p(M), ER,p(M)),

where (EL,p(M), ER,p(M)) are the individual left and right Ep(M) curves respectively.

In general (EL,p(M), ER,p(M)) will not be symmetric, so the maximum function

will always pick one side. We can however simplify the test and calculations by picking

p′R = 1−p′L, and δL = δR. It is assumed that p′L <
1
2 , otherwise the decision regions will

be degenerate. In practice, 0.3 < p′L yields poor performance because the indifference

regions are too close together. For a proper choice of p′L and p′R, the resulting E2,p(M)

curve will look like figure (4.11)

For Γ = 3 the original operator curve is not very meaningful because purely paying

attention to declarations ofH0 ignores the 3rd hypothesis. The errors of this test become

difficult to analyze because there are now two kinds of type I error for each hypothesis.

An operator curve might not be feasible in this case because some of the points that

the curve are required to pass through might contradict, e.g., incorrectly declaring H1

instead of H0 might have a different probability than incorrectly declaring H1 instead

of H2.
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Figure 4.11: Expected Sequence length, E2,p(M), for a combined two-test

It is possible however to reduce the problem to the two hypothesis case by simply

“gluing” together the two outer hypothesis, for the purposes of error analysis. The test

will still return 1 of 3 answers, but we will treat the errors that come from declaring

H0, H2 as the same. If we stick to symmetrically chosen parameters then the error

analysis actually simplifies quite well. If we take as our hypothesis,

H ′0 : p > p′L or p′R < p, (4.54)

H ′1 : p′L < p < p′R,

and choose our parameters as before, p′R = 1−p′L, and δL = δR, then the probability of

declaring H0 is simply the probability that either the left or the right declares H0. Since

these tests run independently of each other, L2(p) = LL(p)+LR(p) = LL(p)+LL(1−p),

where L2(p) is the two-test operator curve, and (LL(p), LR(p)) are the left and right in-

dividual operator curves respectively. The last equality follows because of the symmetry.

The two-test operator curve can be seen in figure (4.12), it has the expected symmetry

about p = 1
2 . From the operator curve we can again compute (αeffective, βeffective) by

integrating the operator curve over the accept and reject regions as was done in section

(4.11). In this case the do not reject region is ωa = {p|p > p′L} ∪ {p|p′R < p} and the

reject region is ωr = {p|p′L < p < p′R}.
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Figure 4.12: The L2(p) OC curve

4.15 Parameter sensitivity

For a given size/power (α, 1−β) of test we can adjust the accept/reject regions bound-

aries (that is we can choose different p1, p0), which has an effect of on the slope and

intercept of L0, L1.

If we consider δ where δ = p1−p0
2 , we can make δ larger by choosing p1, p0 which are

separated by a further distance. This will result in smaller accept and reject regions.

These smaller accept/reject regions cause two effects. Ep(M) becomes lower because

we are making decisions on parameters that are much further away from the threshold.

At the same time, however, the indifference region gets bigger. Even though our false

alarm bound is fixed, our effective false alarm / miss probability are going to suffer

because the test is now indifferent to larger region about p1−p0
2 . On the other hand we

can shrink δ to a very tight region around p1−p0
2 , this will give us very good effective

error probabilities, but will come at the cost of much higher Ep(M). In figure (4.13)

and figure (4.14) we can see the effect of widening δ. Note that as L(p) becomes shaped

more like a step function, max(Ep(M)) grows unboundedly.

For a given (α, β) pair we can compare bounds on the number of samples required

for the UMP to achieve these error rates against the Ep(M). In [16] a bound for the
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Figure 4.13: Operator curves with fixed p′ and varying δ

Figure 4.14: Expected sequence length with fixed p′ and varying δ
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UMP’s required samples to achieve (α, β) is given as:

M ≈ (Q−1(β)−Q−1(1− α))2

(p0 − p1)2
, (4.55)

where Q is the Q-function of a standard normal random variable. The key observation

is that this value has no p dependance and thus is constant across the range of p.In

contrast, the Ep(M) can be orders of magnitude below Ep(M) which occurs at the

center of the indifference region. If we know something about how the space of possible

p’s is distributed, for a fixed (α, β), we can tune the SPRT to achieve a lower sequence

lengths in the regions of interest. That is there is a choice of p1, p0, α, β which positions

the low portion of the Ep(M) in the optimal portion of the parameter space.
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Chapter 5

The Cost Classifier

In section (4) we saw that the SPRT classifies the channel with the lowest expected

sequence length. Tuning the SPRT amounts to choosing the bins we place our channels

in (p′L, p
′
R mark the boundaries), and choosing a balance between (αeffective, βeffective)

and the Ep(M). We have simplified the trade off to a choice of δ and ζ. As noted in

section (4.10), the Markovian property of this test implies that the expected sequence

length after an arbitrary number of steps is purely dependent on the probability of

occupancy p and the current proximity to the threshold lines.

5.1 Cost Definition and Greedy Allocation

Based on the observations of section(5) we propose a cost metric to guide our measure-

ment distribution across all channels. This metric rewards movement towards threshold

lines and penalizes excessive sequence lengths. The cost of channel n is then defined to

be:

C(mn, n) =


en,mn + (λ ∗mn) : unclassified,

∞ : classified,

(5.1)

where en,mn is the distance to the nearest outer threshold line, n ∈ [0, |N |] is the channel

index, mn ∈ [0,Mn] is the number of samples given to channel n (it’s local clock). Here

Mn is the stopping time for channel n. Each channel has it’s own mn, so to simplify

the notation, we’ll simply use m when mn is paired with n, e.g. C(m,n). λ is the

measurement penalty coefficient, a constant that does not depend on n.

As the search progresses the classifier will dwell on some channels that do not

complete thier classification because these channels will take too long according to the

cost. We index these channels by n′. Each of these channels has a dwelling time denoted
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by M ′n′ . Channels indexed by n′′ do complete their classification with a stopping time

given by Mn′′ . We define a global time index j as j =
∑

n′′ Mn′′ +
∑

n′ M ′n′ . Note that

j ∈ [0, L] (recall that L is our measurement limit) and the sum
∑

n′ M ′n′ will contain

the channel currently under observation. Once channel is classified, it will belong to

the sum
∑

n′′ Mn′′ .

The greedy selection rule for each measurement choice is then min
n

(C(m,n)). At

each tick of the global clock j we pick the channel with the smallest cost. As the

random walk dn,m =
∑
m

xn,m, the sum of the m samples from channel n, tends towards

an outer threshold line en,m will decrease. If a channel n receives enough measurements

to complete classification there is no reason to measure it any more, hence setting the

cost to ∞ means the section rule will never come back to this channel.

The quantity en,m is a measure of how close the test for channel n is to completion.

If the sum dn,m moves away from these outer threshold lines towards the center of

either pair of threshold lines, the λ ∗ m term will drive the cost of this channel up.

It is assumed that all channels initially start with the same cost which is due to our

assumption that initially all channel parameters that are unknown and uninformed. If

a channel’s cost is driven up past that of an unexplored channel, the selection rule will

ignore it until all other channels have had a chance to generate a cost reduction. In a

low measurement regime, channels with cost that are above the cost of an unexplored

channel will probably never be revisited. If there are several choices for min
n

(C(m,n)),

we pick one randomly.

There is a bias in the allocation because the distance metric favors channels that are

at the edges of the interval (0, 1). Because of the way our distance metric is defined, we

favor H0 of the Eq. (4.54). We picked this metric of proximity to completion because

we observed in section (4.13) that channels with parameters p at the edges have shorter

expected sequence length. If we prioritize these channels over ones that are in near the

soft thresholds (p′L, p
′
R) we will spend fewer samples characterizing individual channels

at the beginning of the search. If we have enough samples to measure all the channels

n ∈ [0, |N |] then we will eventually get to the channels that will take more samples to

characterize. However, if we do not have enough samples, by prioritizing channels that
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finish in fewer samples we maximize the number of channels we can classify.

5.2 Distance metrics

There are at least three different ways to compute en,m, however each of them results

in essentially the same allocation process. The core difference between them is what

units en,m is measured in, and what values of λ are allowable due to the difference in

units. The 3 different methods are as follows:

e1
n,m = min

h
(|dn,m − Lh(m)|), (5.2)

e2
n,m = min

h
(dist((m, dn,m), Lh(m))),

e3
n,m = min

h
(dM ′n,m,h −m.e)

The simplest to compute is e1
n,m, it is just the vertical distance to the correspond

threshold line. The minimization is over the hypothesis index h ∈ {0, 1}. This value is

unitless. For e2
n,m the dist() function is simply the Euclidean distance. The quantity

e2
n,m is the distance to the nearest point on the threshold line, again minimized over h.

The distance metric e1
n,m is vertical projection of e2

n,m. Clearly as e2
n,m grows so does

e1
n,m. This quantity is also unit-less.

e3
n,m is a little more difficult to compute, the quantity M ′n,m,h is the ideal stopping

time from current position. It is the number of steps required to cross threshold line h

assuming every sample after the current one was perfect. For example, if we were trying

to to cross the lower bound (h = 0) and were already used m samples, N ′m,0 would equal

the number of zeros required to cross Llower. All three distances are visualized in figure

(5.1). For the case of the lower threshold line the ideal continuation would consistently

add zero, whereas in the upper threshold line the ideal continuation would consistently

add one.

In figure (5.1) we have a sample path with three ones and five zeros. This path is

tending towards the lower threshold line. In this case e3
n,m will measure the steps to

complete with respect to the lower threshold line. In this case e3
n,m is just the horizontal
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Figure 5.1: Graphical representation of outer threshold distance calculation

projection of e2
n,m. Again we have a similar relationship between these two distance

metrics, e2
n,m decreasing =⇒ e3

n,m decreasing. Since each of these distance calculations

obey the same growth trends, using any one of them as the en,m term will yield the

same hopping pattern, however that actual numerical value of C(m,n) will be different.

An equivalent relationship can be shown for the upper threshold lines.

Although all three metrics yield the same hopping strategy, there is one key differ-

ence between them. Metric 3 is measured in units of steps to complete, which gives

a very intuitive interpretation to λ fractions of a step. If we choose lambda as some

fraction 1
z then a test must take z steps to offset the cost reduction of 1 step towards

the threshold lines. For our implementation we choose en,m = e3
n,m.

5.3 Early mistakes

When using the two-test case, the outer threshold lines diverge. From section (4.14) we

know that the two-test will complete in E2,p(M) samples. For the two-test case, this

divergence self imposes a measurement penalty for channels that do not move toward

an outer threshold line soon enough. Figure (5.1) shows that the divergence might

cause early mistakes to be penalized unfairly. If channel n with parameter pn gets an

disagreement between samples early on, the jumping rule will skip over it before it can
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generate enough cost reduction to offset the divergence cost penalties even if λ = 0.

For example, if the first two samples of a channel i were xn,1 = 0, xn,2 = 1, then this

channel has essentially not changed position, however it has consumed two samples,

and thus moved forward two steps in figure (5.1). The value of en,m has increased,

however we still do not know much about this channel.

This effect is caused by the usage of the two-test, if we were using a single test then

the parallel threshold hold lines would not exhibit this problem. To compensate for this

early mistake sensitivity we can take one of two strategies. We can introduce a term to

cost metric to prevent early jump. The cost function them becomes:

costm(cn) =


en,m + (λ ∗m) + F (m) : unclassified

∞ : classified,

(5.3)

where F (m) is a forgiveness factor defined as

F (m) =


−ϕ ∗m m < mf

0 m > mf ,

(5.4)

where the coefficient ϕ is chosen to offset the increase in cost due to the divergence

until the mth
f step. At this stage if the channel n has not generated enough cost

reduction on it’s own, then a jump is justified. There is no exact empirical rule for

determining the forgiveness step mf . As an alternative, for a given δ we can use the

shifting capability of ζ to make the outer threshold lines closer in slope. We do this by

shifting the decision regions closer together so that the slope terms are closer in value.

Since we assume that the channel parameters pn are drawn from a uniform dis-

tribution U [0, 1], we can use a simple argument to gauge what mf should be. Con-

sider the left side threshold, the probability of finding a channel below a threshold

p′L is simply the width of the interval µ([0, p′L]) = p′L. Similarly the right side prob-

ability is µ([p′R, 1]) = p′R. If we choose (p′L, p
′
R) as in section (4.14) then we have

P (pn ∈ ωa) = 2p′L

If we treat the inspection of a channel as a simple Bernoulli trial, BInspection(pn) =
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P (pn ∈ ωa), then the number of channels we must inspect before we find one below the

threshold is geometrically distributed with parameter 2p′L. Thus a lower bound on the

expected number of channels we need to inspect before we find one that is below our

threshold is 1
2∗p′L

. This simplification can be used as a guiding principle for the choice

of mf . The ideal number of channels inspected before a classification should not be

much greater than 1
2p′L

.

The principal argument against using the F (m) term is that it offsets the effect of

the single channel error rates on the cost function. It becomes harder to determine if

we should have legitimately passed on a channel. On the other hand, when we adjust

the ζ shift, the changes to the cost function are straight forward as the cost function

definition remains unchanged.

5.4 Conditions for Optimality of the greedy approach

The selection rule is deemed greedy because at each step it seeks out the lowest cost

choice without consideration of possible future cost reduction. For our model we assume

that the parameters pn for each channel n are constant during the search period. Let

Mn be the stopping index for the nth channel. In section (4.10) we noted that the

Epn(Mn) was only a function of the distance to the threshold line and parameter pn.

This property will be used to show the optimality of the greedy approach is tied to our

choice of λ.

5.4.1 When is greedy approach optimal for our search

One of the requirements for the greedy approach to be optimal is that our test must

posses the greedy-choice property, that is the greedy approach should be able to pick the

globally optimal solution. To possess this property our model would need two qualities:

• Every channel with increases in cost will not decrease in cost for the duration of

the search (monotonic increase).

• Every channel with decreasing in cost will continue to have decreasing until com-

pletion.
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these two properties are necessary so that every choice of the lowest cost channel

ca not be replaced by a channel that at the current instant has a higher cost, but over

the length of the sequence costs less.

5.4.2 Why greedy is not always optimal

Using the definition of greedy-choice property given in [18], we see that our allocation

problem does not have this property in general. Indeed there may be cases where the

greedy choice does not pick a globally optimal solution. Consider a simple example

where we get a single inconsistent sample very early in our sampling from a channel n

that with pn < p′L. Let xn,1 = 0, xn,2 = 1, xn,3 = 0, xn,4 = 0 be the first four samples

of channel n. In this case the current estimate p̂n = 1
4 . Since channel n had an early

disagreement, it’s cost may go up if λ is high or if the outer threshold lines separate

quickly. Channel n’s random walk returned to it’s original unmeasured trajectory but

consumed two samples. Because of this sequence of samples, channel n’s cost will be

penalized as compared channels which have not yet taken any samples. In the large N

regime, there will always be an unmeasured channel to pick over channel n.

In section (5.3) we have lower bounded the number of channels we need to inspect

before finding a desired one by 1
2p′L

. Suppose p′L = 0.2, we can expect to go through

≈ 2.5 channels before we find another channel n′ 6= n with parameter pn′ < p′L. If

we give channel n two more samples, and get the result xn,1 = 0, xn,2 = 1, xn,3 =

0, xn,4 = 0, xn,5 = 0, xn,6 = 0 then p̂n = 1
6 ≈ 0.166... . The sufficient statistic dn,6

moved significantly closer to the threshold line.

The most aggressive case of the two-test will jump to another channel if the first two

samples don’t agree. This choice would explore maximally but pass on many channels

that satisfied the criteria p < p′L. If we skip channel n and we spend at least two

samples on channels we are not dwelling on, we would expect to spend ≈ 4− 6 samples

before we found a channel that generates enough cost reduction to dwell on. In contrast

had we stayed on channel n, we would have only spent two more samples and would

have gotten a enough cost reduction to justify dwelling on channel n for longer. Here

the greedy choice failed to be optimal because our cost function did not properly price
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the channel.

5.4.3 Lower bound on the cost to characterize a single channel

As we saw in (5.3) the lower bound on channels we have to pass through before we find

one worth expending samples on is 1
2p′L

. The ideal lower bound on cost to characterize

any channel is given as C(n) =
∑Mn

m=0C(n,m), where m = 0 is the initial cost. For

each channel we pass on, the cost spent on them is C ′(n) =
∑M ′

n
m=0C(n,m) where M ′n is

the number of samples spent (without completion). A lower bound to the cost required

to classify channel n is then

Cmin(n) =
∑
n′

C ′(n′) + C(n) = b( 1

2p′L
)C ′(n) + C(n)c, (5.5)

where n′ are the indices of the channels selected but not completed. C ′(n) is assumed

to be constant, it is the cost spent on any uncharacterized channel to find channel n.

The lower bound for the number of samples required to find this channel can be

computed as

Mn + b 1

p′L
c, (5.6)

where we have taken the best case scenario of two samples per uncharacterized channel.

We assume that the decision of whether or not to stay with a channel is made early

in the sample sequence of that channel. There are only a limited set of possible paths

that will yield a jump and the difference in cost between the alternative paths does not

amount to more than two samples worth of cost. The critical number that governs how

much cost is paid to discover a channel is the number channels searched since the Mn

and C(n) for the channels we did classify will be very close.

5.4.4 Choices of λ that bring the search closest to optimal

The choices of λ controls how we are penalized for expending measurements, and thus

influences the utility of the greedy approach. The F (m) or ζ term prevents the test from

being too aggressive early on, and overlooking channels which are not far enough above

or below the thresholds (p′R, p
′
L). The quantity λ, for a given choice of test parameters
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(δ, p′L, p
′
R), is a measure of how aggressively we wish to explore for channels that are

far away from the thresholds. As λ increases we spend more samples searching and

fewer classifying because disagreements between samples are heavily penalized even for

sequences that are very close to completion. In the ideal case, we would choose λ so that

the number of samples spent searching is less than samples spent categorizing to achieve

the best tradeoff between searching for channels to classify and actual classification of

those channels.

When the value of λ nears the optimal value, channels that have early disagreement

do not necessarily get ignored immediately. At each step the cost will force one to

either pick a channel from the unmeasured pool, or continue with the channel that just

received a sample. Once a channel has passed the early jump point (loosely defined as

the period before the forgiveness window expires), the probability that we observe a

sequence that raises to the cost high enough to cause a jump is low. This probability

is low because observing a sequence that allows us to stay on a channel past the early

jump point even though pn ∈ ωr is a rare event for that n. While late jumps (jumps

that happen after the forgiveness window expires) can happen, they are exceedingly

rare because the early jumps usually cause the system to leave most of channels that

would vary that much.

With an optimal choice of parameters and the assumption of |N | > L there will

always be an unmeasured channel to jump to. Thus any channel that goes up in cost

will never be revisited and has made as much contribution to the overall search cost

as it is ever going to. Since any channel that consistently produces cost reduction will

rarely turn around, the search cost that results from this parameter choice will be the

lowest cost that the greedy approach can achieve. This parameter choice returns us to

the case where the greedy-choice property holds.



45

Chapter 6

Simulation and Analysis

To verify our assumptions we ran numerical simulations over many 1000s of trials. We

extracted some quantities of interest to serve as metrics for performance under various

assumptions. No one choice is completely optimal nor will they work under all scenarios.

We identify what the tradeoffs are for each choice we make so that actual systems built

using this technique can be tuned to match the assumptions.

6.1 Validating our implementation of the SPRT

To verify our implementation of SPRT, we pick a p ∈ [0, 1]. For this p we draw a

large ordered sequence of samples χm. Treating this sequence as the samples from an

unknown parameter we compute dMτ =
∑Mτ

m χm and where Mτ is the index at which

this sum crosses a threshold line and causes the overall two-test approach to make a

decision for trial τ . We preform this process over the entire range of allowable p (with

a granularity of 0.001), and for each p we run 1000 trials (τ ∈ [0, 1000]). For each trial

with parameter p we compute an indicator function

Ip(τ) =


1 this trial declared H0

0 otherwise

(6.1)

We then compute the sample mean of this indicator over all the trials for each p. If

our test implementation was correct then L(p) ≈
∑

τ Ip(τ)

max(τ)
and Ep(M) ≈

∑
τ Mτ

max(τ)
. In

figure (4.1) and figure (4.2), this is how the simulated curves were generated.
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6.2 Choosing δ for the SPRT

As we saw in section (4.11) for a fixed p′L, the choice of δ is a trade off between effective

error rates (αeffective, βeffective) and Ep(M). From figure (4.14) we see that there are

diminishing returns for increasing deltas. For each delta as, p → 0 or p → 1, the

Ep(M) gets closer to the edge. In the range of 0.10 ≤ δ ≤ 0.15 the Ep(M) clusters very

tightly at the edges, but the edges only tell half the story. Because of our choice of δ

and (p′L, p
′
R), maxp(Ep(M)) = Ep′L(M). While the edges are clustering, the maximum

is decreasing (see figure 4.14). This maximum plays a role in the effectiveness of our

search because it bounds the amount of samples we can waste on a channel.

To see the effect of δ on the search consider figure(6.1). We see that as δ increases the

threshold lines themselves get closer together. This is how large δ yields shorter tests,

the random walk does not have to travel as far to make a decision. The further apart

the threshold lines are the lower the probability that a random walk will “accidentally”

cross them. This is why larger δ makes more mistakes, it is easier to walk through

the lines by chance. The narrowing of the threshold lines changes the behavior of our

cost functions values, and the choice of λ that will bring us back to the optimal greedy

regime.

Figure 6.1: Single Test threshold lines for varying delta.

Unfortunately, we end up with a dilema where the choice of δ depends on λ, and
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the choice of λ depends on δ. To resolve this we fix (αeffective, βeffective) and determine

which δs achieve a reasonable compromise between maxp(Ep(M)) and these constraints

on the error. In figure (6.2) and figure (6.3) we see that a δ between 0.1 ≤ δ ≤ 0.125

keeps the βeffective ≤ 0.05 while keeping the maxp(Ep(M)) ≤ 200. Given this chosen

bound on the effective error rates for one decision, we can then choose a λ that pairs

with this delta range.

Figure 6.2: Effective error rates for varying delta.

Figure 6.3: maxp(Ep(M)) for varying delta.
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6.3 Effects of ζ

Once we have chosen a δ, we can translate the indifference region to minimize Epn(M)

and make the threshold lines more fair. This is done by choosing an appropriate ζ.

This translation essentially trades µ(ωa) for µ(ωr), which will ultimately impact our

αeffective and βeffective. In figure (6.4) we see the effect of the translations on the

operator curve. The effects of these translations on Epn(M) can be seen in figure

(6.5). In figure (6.6) we drew the threshold lines from the two-test case and the ideal

Figure 6.4: L(p) for varying ζ with δ = 0.125.

Figure 6.5: Epn(M) for varying ζ with δ = 0.125.
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trajectories which result in a decision of H1 or H0. We can see that the translations

result in changes to the threshold line’s slopes. For decreasingng ζ we see a decrease in

the slopes, but we also observe a decrease in the distance of separation of the threshold

lines. This is true even though δ is held constant. These two changes explain why

Epn(M) is getting smaller. When the slope is closer to zero, there is less bias for one

hypothesis vs another. Since we chose the parameters to preserve symmetry, lower the

slope means the other threshold lines get closer together. This makes the two-test case

more forgiving of early mistakes. As ζ decreases the Epn(M) is moving towards the

edges and max (Epn(M)) is getting smaller. Since the expected sequence length over

the decision region we are interested in is given by

E(M) =

∫
ω
Epn(M)dp,

the shift in this Epn(M) will result in smaller expected sequence lengths for those

regions.

Figure 6.6: Threshold lines for varying ζ with δ = 0.125.

6.4 Optimal λ for the search

In practice the lower bounds on searching calculated in section (5.4.1) are actually

quite loose. The idealization required to get the greedy-choice property to hold for

every allocation are not easily achievable. We can however, pick the λ that achieves a
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good compromise between searching and classifying by evaluating how many samples

are spent to find a channel. We can then see how this generalizes to the full search

by looking at the fraction of channels classified and the error rates of those that are

classified.

6.4.1 λ effect on searching for channels

At each tick of the global clock the search tries to decide if the channel it just sampled

has a short Epn(Mn). The cost function from section (5.1) tries to predict this by

considering the distance needed to finish and the samples already consumed. Our H ′0

two-test hypothesis from Eq. (4.54) is that the parameter pn is in one of the outer

regions of the range [0, p′L)∪ (p′L, p
′
R)∪ (p′R, 1]. From what we have seen from our plots

of Epn(Mn) this assertion goes hand in hand with the assertion that the Epn(Mn) is low.

Samples spent on channels for which H ′1 are true are not of high utility because these

channels have the “undesirable” characteristics that their probability of being occupied

is too close to uninformed. We would like to spend fewer samples on these channels

if possible. The bias in our cost function tries to take advantage of the relationship

between the hypothesis and Epn(Mn). Since our goal is to characterize as many channels

as we can while maintaining a bound on the error, our best course of action is to focus

most of our samples on channels where H ′0 is true.

The search procedure will hop around, measuring unexplored channels, in an at-

tempt to find channels where Epn(Mn) seems short. Once it deems one promising, it

then places enough samples in this channel to get a completed test. We control what

is deemed promising by adjusting the cost of measurements, λ. If measurements are

expensive, high λ, our search will hop frequently and very often overlook channels that

may actually satisfy H ′0 as noted in section (5.4.1). This has two implications, the first

is that we will spend many more samples searching. The second is that in order to

generate enough cost reduction to offset the measurement cost increase, the pn that

does capture the interest of the search will be very far from the thresholds. On the

contrary for low λ we are more tolerant to mistakes and will accept values of pn closer

to the thresholds. Thus we will spend less samples searching, however, we will spend
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more samples characterizing.

To examine this trade off, we consider how many samples are required to find one

channel for which H ′0 is true. With the δ from section (6.2), we can fix all other

parameters at δ = 0.125, p′L = 0.2, p′R = 0.8, N = 1024 and allow λ to vary. From

section (5.2), our λ is measured in fractions of a sample 1
z , and thus is only meaningful

in the range [0, 1]. For each lambda we run the search 1000 times and collect some

meaningful quantities.

In figure (6.7), we see the number of samples required to categorize the channel we

found as well the number of samples spent searching for that channel as a function of

λ. With the given parameter choices, the minimum number of samples to characterize

a channel is 25. As λ increases the number of samples required to characterize reaches

this limit but the number of samples required to find the channel with this property

grows disproportionately large.

Figure 6.7: Samples required to find one low Epn(Mn) channel and Samples required
to categorize that channel vs λ

To confirm our conclusion, in figure (6.8) we plotted the mean across trials of the

actual parameter value found as a function of λ for the left side. It decreases with λ

as expected. This drop in the pn is not very large, and for individual channels it is

not enough to justify the large extra cost. We can see a fundamental trade off between

spending samples to explore and spending samples to categorize. It is worth noting
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that even with λ = 0 the pn is very far from p′L.

Figure 6.8: Actual value of the paramter pn found vs λ

6.4.2 How often do I pass on channels I should have stayed on?

To consider the efficiency of our search procedure, we would like to examine the amount

of samples that are “wasted”. From figure (6.7) we have an idea of how many samples

went into finding an individual channel, however this number hides some of the details

of how we get to that decision. In examining the amount of samples spent we can

partition the set of channels we passed through to get to the decision in two sets, the

channels we should have accepted ω′a and the channels we should have passed on ωp.

The passed channels samples are actually not “wasted” in some sense as they are the

cost of searching. The should have accepted set however does represent wasted samples

as we should properly have settled on these channels.

In an ideal case |ω′a| should be small. The obvious question is, how does a channel

end up in this set? As we saw from figure (4.2), when the parameter are examining is

inside the indifference region ωI = {p|p0 ≤ p ≥ p1}, expected sequence length grows

very long. Channels with parameters in this region will produce random walks that

drive up costs above those of an unmeasured channel. When our search lands on one of

these channels it is very likely that the search will jump to a different channel because
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samples of this channel produced a sequence that has a cost that is higher than the

unexplored cost.

Suppose we specify the resource regime L
|N | , the assumed meta distribution, and

the threshold choices (p′L, p
′
R). If we take as a criteria of admissibility, the maximum

probability of error (βeffective, αeffective), the parameters of λ, δ and ζ can be chosen to

lower |ω′a|. This quantity is an important measurement tool for determining how many

samples are spent exploring and how many are spent categorizing (exploiting).

While we do not want this quantity to be large, the case of |ω′a| = 0 is also not

efficient. If |ω′a| = 0, we would never pass on channels near the threshold, and would

thus spend max(Epn(Mn)) samples to categorize some of them. Suppose the search

landed on channel n with parameter very close to p′L or p′R but properly on the H0 side

of the threshold, e.g. pn = p′L − ε. max(Epn(Mn)) is orders of magnitude higher than

channels with parameters below the indifference boundary, e.g., n′ 6= n with pn′ < p′L−δ.

As long as N is large, we may actually characterize more channels if we continue to

search instead of trying to characterize channel n even though n properly below the

threshold. Our choice of λ, δ and ζ needs to strike a balance between |ω′a| and |ωa|, the

set that we failed to classify but were below the threshold, and the set we did classify.

In figure (6.9) we can see the quantity of channels passed on for varying δ and multiple

choices of λ. We will want to choose low λ and δ in the previously specified range to

prevent |ω′a| from growing too big and consuming most of our samples searching instead

of classifying.

6.5 Alternative schemes for comparison

We will examine some very simple schemes that can be computed very fast. Each

of these schemes has a draw back over the greedy-SPRT, however there are resource

regimes, where the increase in probability of error is small, and the gains in computa-

tional speed greatly out weigh the greedy-SPRT approach.
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Figure 6.9: Channels passed on as a function of λ and δ

6.5.1 The simplest allocation scheme

The most simple allocation scheme one can consider distributes Mn = |N |
L samples to

each channel (in no specific order). It repeats this process until it runs out of samples.

It then computes the estimate of the parameter p̂n =

∑Mn xn,m
Mn

based on the samples

it has distributed to channel n. Using each estimate, it then decides which hypothesis

to claim by comparing p̂n to the thresholds.

Clearly Mn is fixed for every channel and more importantly increasing N =⇒ de-

creasingMn. This has the apparent problem that asMn decreases both (αeffective, βeffective)

increase. In section (6.6.1), we will compute the error rates for the declarations we have

made.

There are two choices of how to distribute the samples for this method. We can

scan from lowest index to highest index, and then wrap around until we run out of

samples. The alternative is to start from the lowest index, place Mn samples in this

channel, and keep moving along until we run out of samples. There may be practical

considerations for which technique we would want to follow, e.g. the second method

makes the estimates available for immediate use, but might introduce a time correlated

bias. Under our assumptions of fixed pn for the measurement duration, however, both

techniques produce equivalent decisions, and are thus identical. We will compare this
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scheme to the greedy-SPRT scheme in section (6.7).

6.5.2 A tree structure approximation

In the greedy-SPRT case we are using the distance to threshold lines at each step as a

guide for allocation of measurements to channels. Each individual sample is allocated to

minimize the time spent searching and maximize the number of channels characterized.

In the regime of small L
N < 1 we will never be able to cover all possible channels, and

so by prioritizing channels with the shortest expected sequence length Epn(Mn), we try

to achieve a compromise that yields the desired maximization.

We can modify the simple strategy, to be adaptive by building tree with a process

that alternates between breadth and depth searches. We will build the tree in phases.

At each phase we employ a pruning rule to prevent us from placing too many samples

into a channel that confirms the wrong hypothesis, or takes to long to confirm the right

hypothesis. This rule will be based on the agreement (or lack there of) of the samples.

First we will need to decide how many samples we place in a single channel per

phase, name this quantity ψ. The smallest amount we can choose is ψ = 2, because

ψ = 1 samples can not be checked for agreement and parameter estimate p̂n ∈ {0, 1}

does not really give us anything to decide on. The choice of ψ will be discussed in

section (6.5.3).

Next we will set aside a fraction ρ of our sample budget to preform the initial pass.

We allocate ψ measurements per channel until we exhaust our first pass budget ρL.

Since the channels are not in any order, simply going sequentially by index selects a

random sampling. This first pass will place measurements in |N1| = ρL
ψ channels. After

this first pass, we inspect the elements of N1 for agreement, and establish a criteria for

admissibility that picks the set we will sample in the second phase.

To build the admissibility rule, consider the case of ψ = 4. We can enumerate all 24

choices for the samples of an individual channel n, but we know that p̂n,1 =
∑Mn,1 xn,m

Mn,1

is a sufficient statistic. That is we do not need to consider the ordering of the sequence

of 1s and 0s that results from sampling, merely the sum of it’s elements. We have given

each of the parameters an additional subscript to indicate what phase they are from, e.g.
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Mn,1 is the stopping time for channel n in phase one. In this case, p̂n,1 ∈ {0, 1
4 ,

1
2 ,

3
4 , 1}

corresponding to the cases of 0, 1, 2, 3, 4 ones.

We can pick a rule for agreement of samples which will translate to a threshold

on p̂n,1. As an example, we will allow for one disagreement among the samples of an

individual channel. That is at least three zeros or three ones in the set of four samples

for this example. This will admit all channels where p̂n,1 6= 1
2 , call this set of channels

admitted during the first pass N1,a. For each channel in N1,a we repeat the process

distributing ψ samples to each channel in N1,a. At this phase every channel in N2

has eight samples. Now p̂n,2 ∈ {0, 1
8 ,

1
4 ,

3
8 ,

1
2 ,

5
8 ,

3
4 ,

7
8 , 1}, we can use the same admissi-

bility rule which would limit us to two errors in eight samples. Thus all channels with

3
8 ≤ p̂n,2 ≤ 5

8 would be excluded. Our admissibility rule of one in four disagreements

essentially admits channels with p̂n ≤ 0.25 or 0.75 ≥ p̂n to the next phase.

Proceeding to phase three we apply the same process onto the set N2,a, and continue

the same way with each phase until we exhaust our budget. We can then categorize

all channels that have received samples by simply computing p̂n for each channel and

then comparing that to the given thresholds (p′L, p
′
R). There is one early stopping

condition that might cause this process to break, for some phase ν, we may have that

Nν,a = ∅. There are a few ways to resolve this issue, one can relax the requirements on

disagreement for what ever phase you are at, e.g. allow three errors in eight at phase

two instead of two. This has the effect of increasing the error because we are relaxing

our admission threshold, but also means we will not “throw away” some of the early

samples we spent. Alternatives are considered in section (6.5.4). We note that if we set

ρ = 1 and ψ = L
N this scheme reduces to the simple scheme of section (6.5.1).

A pseudo code implementation would look like:

#F i r s t Pass

MaxScanIndex = ( rho ∗ L) / p s i

f o r i = 1 to MaxScanIndex

d( i ) = d( i ) + sample ( i , p s i )

m( i ) = m( i ) + p s i

end
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#Spend the r e s t o f the samples

UsedSamples = ( rho ∗ L)

While UsedSamples < L

#r e s e t picked counter

ChannelsPicked = 0

#Sample any channe l s that meet c r i t e r i a

f o r i = 1 to MaxScanIndex

pHat ( i ) = d( i ) / m( i )

i f {( pHat ( i ) < LeftThresho ld )

or ( RightThreshold < pHat ( i ) )}

d( i ) = d( i ) + sample ( i , p s i )

m( i ) = m( i ) + p s i

UsedSamples = UsedSamples + p s i

ChannelsPicked = ChannelsPicked + 1

end

end

#Relax the th r ehso ld i f we didn ’ t f i n d any th ing

i f ChannelsPicked = 0

LeftThresho ld = LeftThresho ld − RelaxationAmmount

RightThreshold = RightThreshold + RelaxationAmmount

end

end

#Now compute the e s t imate s and

p lace them in t h e i r proper c h a r a c t e r i z e d s e t s .
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f o r i = 1 to MaxScanIndex

pHat ( i ) = d( i ) / m( i )

i f pHat ( i ) < LeftThresho ld

add i to s e t N Left

e l s e pHat ( i ) > RightThreshold

add i to s e t N Right

e l s e

add i to N Center

end

end

Where the NLeft,NRight and NCenter are sets that contain channel indices that

satisfy specified conditions.

6.5.3 Parameter Choices for the tree approximation

This scheme is controlled by the two parameters (ψ, ρ) and the admissibility rule. For

a fixed ρ as ψ increases we might expect to get lower overall error rates because all the

poorly explored channels are better approximated, but this increase in ψ comes at the

cost of smaller |N1|. While we may reduce the probability that we place a channel n into

the wrong region (ωa, ωr), we also shrink the size of channels we can say anything about.

This may not seem like a limitation however the fraction of channels that will confirm

H0 for the set N1 has cardinality 2|N1|p′L in the symmetric hypothesis case. While we

do not have an Ep(M) curve for this scheme, the Bernoulli parameter observation of

section(4.13) still holds. As |N1| decreases, we will find few of the desirable channels,

and thus fewer have successful categorizations. As before we need to choose (ψ, ρ) to

achieve a balance between samples spent exploring, and samples spent exploiting.

We can also set aside a larger ρ at the beginning, this will cast a wider net initially.

This results is an higher |N1|, which yields higher probabilities for landing on a channel

that will confirm H0. The downside to this is that we will have fewer reserve samples

to use for later phases. Thus our trees cannot grow very deep, and the number of
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measurements spent classifying channels of interest is lower. As we proceed to later

phases the granularity of values of the parameters estimated from the longest branches

of the tree, p̂n,final, can take on in the final phase increases. The more phases we go

through, the more discerning our test of the parameter will be for channels that make

it to the final phase. Channels with parameters very close to the threshold may get

misclassified if the granularity of p̂n,final is not fine enough to make a proper decision.

This can happen if we run out of samples to achieve the necessary granularity because

we spent too many in the first phase.

The admissibility rule is closely tied to our choice of (ψ, ρ). We can choose an

arbitrary admissibility rule, but if the admissibility rule and (ψ, ρ) do not agree the test

fails to meaning fully distribute samples in an adaptive way, and basically reduces to

the simple scheme. As an example we could have considered an alternative ψ choice

of ψ = 5, then our admissibility rule could be one in five errors, which would match

with our choice of (p′L, p
′
R). This would be a perfectly valid choice, but may be too

aggressive for some resource regimes.

6.5.4 Alternative tree approaches

In building the tree implementation, we made a few design choices that have some

alternative options. Each of these options represents some trade off between samples

spent searching samples and spent classifying. We did not opt to implement these

designs as they would have raised the complexity of the tree building process. It may

be possible to achieve tighter approximations to the greedy-SPRT case but at the cost

of increased scheme complexity.

The first alternative to be considered is how to handle the Nν,a = ∅ case. Our simple

approach was to relax the criteria on measurement disagreement. As an alternative,

we could start the problem over again with L′ = L −
∑ν

ι=1 |Nι|ψ samples (what ever

samples were left) and pick channels from N c
1 (channels we have never measured yet).

In this case, we would not relax the admissibility rule, instead we widen the search over

larger sets. The gain from this approach is wider breadth of search, however since we

are scanning more channels, we are also adding more misclassified channels to our set
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of measured channels which raises our error.

As a second alternative, we can attempt to patch the low sampled channels problem,

by setting some threshold of measurement. The smallest threshold we can pick is to

discard all channels that never made it past phase 1. The major draw back to this

is that all the samples of this phase will essentially be discarded. This is ultimately

governed by the choice of (ρ,ψ). We can try to reduce this effect by lowering the two

parameters, but that results in a loss of parameter granularity (and thus an increase in

misclassification errors).

We can also try to be more conservative with our samples by not requiring equal

sample distribution across all phases. Perhaps at phase 1 we use ψ as our initial mea-

surement allocation, then for each subsequent phase we only allocate ψ′ samples where

ψ′ < ψ. The problem with this alternative is that we will require a new admissibility

rule for subsequent phases. One can imagine a sequence of ψι, one for each phase. Then

at each phase we will have a different admissibility policy to go with the ψι.

If we examine the element-wise decisions that are made by the greedy-SPRT ap-

proach, these alternatives taken together with per-phase ψι preform the similar op-

erations to the greedy-SPRT. The greedy-SPRT randomly chooses a channel initially,

and then begins allocating samples to it. If the channel shows promise by reducing

the distance to the threshold lines, it is rewarded with more samples. If not, the test

moves on. While the greedy-SPRT is not preformed in phases, the allocation patterns

that arise from either strategy will look the same, perhaps with a reordering or initial

choices.

6.6 Performance Metrics

In general a global performance metric is hard to derive because there are many tuning

parameters and many scenarios where the choice of parameters leads to an unworkable

solution. For example, we could spend all the samples searching and make no declara-

tion, or we could blindly allocate all samples to one channel, yielding the lowest error

but only one decided channel.
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For any sample distribution scheme to be admissible it would have to maintain

bounds on the effective error rates. The ideal metric for an admissible scheme would

be number of channels characterized while maintaining the bound. However the error

bound itself it not clearly defined. This metric is itself hard to compare in closed form

because for some of the evaluated schemes this quantity is a function all the parameter

choices and adjustments we make to the scheme to make it admissible.

We are going to examine a somewhat flawed but useful error metric which we can

compute very easily. The performance metrics we can examine will be samples spent

finding a H0 confirming channel, channels passed on during the search and the number

of channels found at the end of the search. All of these metrics are directly com-

putable from simulation, but may not necessarily admit a closed form expression which

is derivable from the model.

6.6.1 Error Probability Across the entire search

For the error of any individual test, we will take a simple approach to quantify the

errors made across the search. If we consider the set NH0 of channels for which we have

declared H0, any particular element of this set n ∈ NH0 is incorrect with probability

βeffective by definition. Since each element of NH0 is placed in there independently of

the others, we can treat them as an independent population with the property that

some of them may be wrongly categorized. Let N ′H0
be the set of channels that are

wrongly categorized. To determine the probability than any element of this population

is wrongly categorized we simply compute P (n ∈ N ′H0
) =

µ(N ′
H0

)

µ(NH0
) =

|N ′
H0
|

|NH0
| , where µ

is the counting measure. Let βsearch =
|N ′
H0
|

|NH0
| . In a similar way we can compute an

expression for αsearch.

While this derivation is perfectly reasonable, it does gloss over some important facts.

These error rates given here only tell you about the channels we did classify. We do

not count all the samples lost searching. In the SPRT case we can compute βeffective

directly from the test itself via the integrals in section (4.11). There is a problem,

however, with directly equating these two quantities. The act of searching terminates

any tests that takes too long, and as we see from the EP (M) curve of figure (4.11) and
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the OC curve of figure (4.12), these are the tests that have higher probability of error.

Consider the integral of Eq. (4.41) and note that for our test the search prevents us

from picking parameters in the [p′, p1) region. Thus we can bound our effective error

by βµ(ωr) = βµ([p′L + δ, p′R − δ]) = β(p′R − p′L − 2δ), where we have used the fact that

the measure of the interval is the difference of it’s end points (Lebesgue). Here ωr is

the region between the two thresholds because of how our hypotheses are chosen. We

expect that β > β(p′R− p′L− 2δ) ≥
|N ′
H0
|

|NH0
| = βsearch which is observed in the simulations

of section (6.7).

For the other schemes we do not have bounds on the effective error. As we shall

see in section (6.7) L
|N | ↘ =⇒ βsearch ↗ for both alternative schemes. The error

rates of channels that were classified fail to consider the efficiency of the search. In

many cases we might erroneously leave a channel when the parameters might have

been close to what we were looking for. These types of mistakes do not show up

in these error calculations because these channels never reach a decision. Our goal of

maximal number of channels classified can be achieved by bounding the errors described

here, while maximizing the metric described in section (6.6.2). This maximization will

be achieved by minimizing the “unreported” errors caused by passing on channels we

should have stayed on, like those considered in section (6.4.2).

6.6.2 Number of Channels classified

The number of channels classified is really the ideal metric of performance, but by

itself it is not a complete picture of the performance of the search. Consider the

simple scheme when L
|N | = 1. At this resource regime the simple scheme manages

to classify every channel but has only one sample per channel. The simple scheme

will make many errors because with only one sample p̂n =

∑Mn xn,m
Mn

= xn,1 and

thus p̂n ∈ {0, 1}. When we threshold on these estimates, our decisions have a very

high probability of error due to the low sample rate. Since we only take one sample,

when the test declares H0 the probability that it is wrong can be computed from

P (H0|H1) = P (x1 = 0|p ∈ ωr) = Ep(φ(X)) =
∫
ωr
dPp(x) = µ(ωr) due to the definition

of Ep(φ(X)) given in Eq. (4.4) and that φ(x1 = 0) = 1.
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We can compute an idealized upper bound on what can be discovered by any adap-

tive scheme by treating the search as a geometric random variable as we did in sec-

tion (5.3). Since the parameters are drawn from a uniform distribution, the success

probability is merely µ(ωa) which in the case of symmetric thresholds is 2p′L. The

expected number of channels before we find one is the 1
2p′L

. If we assume that each

undesirable channel only consumes 2 samples (a perfect jump every time), then we will

expend 2
2p′L

= 1
p′L

samples to find a good channel. Once this good channel is found

it will take Mn samples to characterize. Let us assume that ∀n,Mn = Mmin, then

max(|Nchar|) ∼ L
Mmin+ 1

p′
L

. For our simulation scenario the SPRT parameters we have

chosen yield Mmin = 19 and the bound becomes 1000
19+ 1

.2

≈ 41.

An important characteristic of this bound is that it does not depend on N at all.

Consider N ′ with N ′ > N , but with L fixed. The resource regime is now worse but

our strategy remains the same. The only reason we need the assumption of large |N |

is so that there will always be an channel with C(0, n) = Mmin, the unmeasured cost.

The unmeasured cost is always starts off as the minimum samples to characterize. As

a channel receives samples it must then require fewer samples to characterize than an

unmeasured channel in order to continue receiving samples. Assuming N ′ is drawn

from the same distribution as N , larger |N | does not change our strategy. As we will

see in section 6.7, the set of discovered channels levels off after N of a certain size.

For the simple scheme, it will always characterize a deterministic number of channels

given by

|Nchar,simple| =


|N | if |N | < L

L if L < |N |

Depending on the implementation of the tree scheme the amount of channels is char-

acterized is variable. Using the implementation we initially described, however, the

number of channels characterized |Nchar,tree| = |N1| = ρL
ψ . Clearly both schemes will

characterize as many channels if not more than greedy-SPRT, but to achieve this result

they sacrifice error probability, often beyond tolerable limits.

For the greedy-SPRT approach we can examine the how the samples are spent to get

an idea of where our channel classification will fall with respect to the computed bound.
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As the number of samples required to find a channel with low Epn(Mn) quantities

grow, the |Nchar,greedy−SPRT | decreases, through our choices of the parameters (δ, λ),

we achieve the best compromise between the allowed error rates and the discovered

channels.

6.7 Comparison of performance between different allocation schemes

In figure (6.10) we can see the number of channels discovered for all 3 schemes as a

function of the number of channels we have to search, N . The simple scheme excels at

discovering channels, however as we see in figure (6.11) this comes at the cost of high

classification error.

Figure 6.10: Number of channels found for all 3 schemes as functions of N

Because the simple scheme involves large numbers, the graph scales hide the details

of how the tree scheme compares with the SPRT. The tree scheme is an adjustment to

the simple scheme that does not add much computational complexity, at least compared

to the greedy-SPRT scheme. If we look at figures (6.12) and (6.13) we can see how the

tree and greedy-SPRT compare. Clearly the tree does a better job of finding more

channels, it almost approaches the bound we derived in section (6.6.2). However figure

(6.13) shows us the cost of this wider exploration, higher error. We originally picked

our β = 0.05, this bound is met by the greedy-SPRT scheme.
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Figure 6.11: βsearch for all 3 schemes as functions of N

Figure 6.12: Number of channels found for greedy-SPRT vs Tree schemes as functions
of N
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Figure 6.13: βsearch for greedy-SPRT vs Tree schemes as functions of N

6.8 Measurement Distribution

We can check the distribution efficiency of the SPRT as a function of N . Figure (6.14)

gives us a count of how many channels we passed on. As N grows, this quantity

increases as we have more channels to jump to. There is a saturation point near 400

channels after which the variation begins to dampen. After this point the size of N

begins to matter less as the constraint due to L becomes a bigger factor in the curves

behavior. Figure (6.15) shows some interesting results as N grows which helps explain

the behavior of figure (6.14). We see that the number of samples to complete the test

reaches an inflection near 400. This inflection is at the minimum number of samples

required to complete a test. This is expected as the number of channels which are far

below the threshold grows with N due to the uniformity assumption on the distribution

of p. While there is some jitter in the number of samples to find a channel with low

EPn(Mn), the swing is only ±3 samples. Here we see that for large N we spend almost

as many samples searching as we do classifying.

To get a better idea of how the schemes compare with respect to the sample distri-

bution consider figure(6.16). This histogram shows the mean number of channels that

received a given amount of samples for the low L
N regime. The simple scheme blindly
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Figure 6.14: Number of channels passed on as a function of N

Figure 6.15: Mean samples spent classify vs searching as functions of N
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puts 1 sample in almost every channel because none of it’s channels revived 0 samples

and the number of channels that received 1 is off the chart. The Tree Scheme is more

judicious in it’s distribution, and ignores a large section of channels as the 0 is off the

chart. Here we see how the tree approximates the greedy-SPRT which has a decreas-

ing but wide range of distributions. The huge jump at 19 is the result of successful

searching, as 19 is the minimum number of samples for this choice of parameters. There

is also a large unmeasured set, and spots of samples spent on channels slightly more

difficult to characterize, e.g. 23 and 27.

We also see that the greedy-SPRT is eliminating channels with as few as 2 samples,

while the tree always requires a minimum of 4. When the tree completes it’s first

phase it spends ≈ 75 ∗ 4 = 300 samples to eliminate that set of 75 channels, while the

greedy-SPRT eliminates ≈ 76 = 40 + 21 + 15 channels in ≈ 40(2) + 21(3) + 15(4) = 203

samples. The greedy-SPRT is more efficient at finding channels worth examining as it

uses fewer samples to eliminate the same amount of bad candidates.

Figure 6.16: Mean number of channels that receive a given level of sampling
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Chapter 7

Conclusion

7.1 Why a proof of optimality is hard

To properly prove the optimality of the greedy-SPRT scheme one would need to derive

a meaningful metric that was free of ambiguity and special cases. In the way this

problem was formulated the metric of choice seems to be maximizing |Nchar| while

keeping (βsearch, αsearch) minimized. A few problems that arise with this formulation.

The first is that a proper optimization of the SPRT requires optimization of a vector

of parameters (αR, βR, p1,R, p0,R, αL, βL, p1,L, p0,L, λ) in the greedy-SPRT case to find a

balance between βsearch and |Nchar|. We have tried to simplify the parameter space by

appealing to symmetry but we loose some flexibility in the class of tests we can consider

when we do this.

Second, this metric is heavily tied to the distribution assumed for pn. The sensitivity

of the metric to this distribution might give rise to special cases that would prevent any

scheme from reaching global optimality. This can possibly be addressed by confining the

slices of spectrum we are interested in to sufficiently small pieces so that the uniformity

assumption holds, but if we do that we may end up in the high L
N regime, in which case

the choice of scheme might be moot.

Third, In section (6.6.2) we used idealized assumptions to show what a bound on

the channels discovered would be while keeping error rate fixed. To properly establish

this bound we would need to specify Mmin via some external criteria. Once we knew

this quantity we would then need to derive expressions for the number of channels

found for this scheme and show that it gets closer to this bound over any other scheme.

These expressions are not necessarily trivial to derive because of the complex set of

relationships between L(P ) and EP (M). Our best approach in this case would be to
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appeal to dynamic programming techniques to traverse the problem backwards and see

if the allocation scheme we proposed comes close to the perfect scheme.

7.2 Possible Applications

Our formulation of errors differs quite a bit from the usual interpretation of type I

(false Alarm) and type II (miss). In [19] false alarms are interpreted as lost spectral

opportunities, while missed detections result in collision. These interpretations are due

to the simple hypothesis used in the formulation of the problem, specifically

H0,n : Channel n is free

H1,n : Channel n is busy

Since our hypothesis is formulated somewhat differently, the interpretation of our errors

is also different. For our formulation type I errors are interpreted as mislabeling channels

which vary a small amount as channels that alternate between occupied and not, very

often. Type II errors then label relatively constant channels as volatile.

Because the system goal is different, the performance of our system has to be mea-

sured differently. One can utilize the information that comes from this system to

improve the performance of the transmission system proposed in [19]. The output of

the system will partition Nchar into three sets (NLeft, NCenter, NRight), the left, center,

and right sets of characterized channels. In the worst case performance scenario, we

can start a follow up system like the one in [19] and not allow it to use any channels

from NRight. In the most ideal case we start the follow up system and only allow it to

use channels from NLeft.

If All the channels end up in NCenter we expect poor performance from the follow up

system. In the absolute worst case all channels will be in Nunchar, under this scenario we

either did not have enough samples to do anything useful, or the parameter distribution

is not uniformly distributed (our assumptions are wrong). Again the follow up system

will suffer and might not want to try at all (for example to conserve power). This might



71

be the case if the entire space of channels is populated with channels that sit on one of

our two respective thresholds forcing all SPRTs to require max(Epn(Mn)) samples.

7.3 Future Work

From here there are several avenues that can be explored, the first and foremost is

establishing the optimality of the scheme as described in section (7.1). Additional

avenues include considering combination of results across multiple scanning passes to

build historical models. We can then use the historical models combined with the

most recent analysis to make better informed decisions about what channels to try

transmissions on.

We can also attempt to numerically evaluate a more general (possibly asymmetric)

set of parameters that govern the scheme, and then pick the subset of parameters that

is both admissible (yields tolerable error probabilities) and maximizes |Cchar|.

Finally, all the simulations are representations of a real world radio environment.

We know that uniformity of the parameter space is an approximation, but it would

be useful to validate the model with real world RF. We can employ current software

defined radio technology to test out our parameter assumptions on real world channels.

While real hardware has it’s own complexities, eventually any proposed system needs

to be tested on actual spectrum.

7.4 Final Remarks

In figure (7.1) we have a graph of the mean computation time per trial in seconds vs

number of channels. While this number is heavily dependent on implementation details,

it does demonstrate another key distinction between the greedy-SPRT and the other

two schemes. The greedy-SPRT is very computationally expensive when compared to

the other two schemes. In high resource regimes, i.e. high L
N the gain in error reduction

might not warrant the expense of computational cost. As L
N decreases the greedy-

SPRT maintains a bound on the error by spending many more samples and many more

computations to find channels that have shorter Epn(Mn) which it can then classify
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Figure 7.1: CPU Time for All 3 schemes as function of N

with a relatively short sequence.

One of the reasons this is true is that the parameters were tuned for a very low

resource regime. The choice of parameters can be adjusted to be more or less judicious

with the expenditure of samples. If we knew that the resources were more abundant, a

different choice of parameters might actually lower the computations by reducing the

amount of search required to find a channel to dwell on.

Another feature that is not captured in any of these graphs is that in the high

resource regime, the greedy-SPRT often completes early, using fewer samples than it

was allotted to complete the task. The other schemes are built to exhaust the budget

and thus cannot adapt to this condition. Even in the high resource regime, one might

prefer the greedy-SPRT if we wish to conserve measurement resources for a followup

system.
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