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Many real-world systems can be represented as networks driven drgteéisvents each
event identified by the time at which it occurs and the parties involved. Anteald be a
meeting, a stock trade, a phone call, an email, a gang fight, an online orefilithase, a
blog post, a conference, or the transmission of an IP packet. Innosatidechnology have
increased our ability to collect massive amounts of digital data from suchorietywvhich
presents both new opportunities and new challenges. In this work, vedogevew theoretical
models and efficient algorithms that leverage the temporal and relationahation inherent
in the data to better understand and analyze real-world networks. Inytartieve consider
three problems: (1) detecting correlated events in communication netw@kdis¢overing
functional communities; and (3) modeling collaboration in academia.

First we present a new stochastic model for event-driven netwanklsyéh it develop two
algorithms — a streaming local algorithm, and an efficient global algorithm —teztstatisti-
cally correlated activity. We demonstrate that our approach, which modgiseemunication
channel as its own stochastic process, is better able to accommodate theaterapability
present in real-world communication networks than existing methods.

Next we study diffusion processes in information networks, identifyimcfional com-

munities as groups of individuals who participate in the dissemination of commaarddoy



reframing the problem as one of co-clustering sparse matrices. Wegerapwew co-clustering
algorithm that does not require user-specified parameters, anddegesparsity in the data to
run in sublinear time in the size of the matrix.

Finally, we build a game-theoretic model for academic collaboration, repiiegehe aca-
demic environment as a repeated game in which each researcher tries to radxsroz her
academic success. We find analytically that limitations of existing collaboratioelsathy

result in misleading predictions about people’s behavior.
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Chapter 1

Introduction

1.1 Motivation

Many real-world systems can be represented as networks drivendrgtéisventseach event

identified by the time at which it occurs and the parties involved. An evend dmia meeting,

a stock trade, a phone call, a gang fight, an online or off-line purclaasieg post, a confer-
ence, or the transmission of an IP packet. Innovations in technologyimeareased our ability

to collect massive amounts of digital data from such networks, which piebeth new oppor-

tunities and new challenges. The goal of our research is to developgeebrihat leverage the
temporal and relational information inherent in the data to better understarahalyze these
networks.

Event-driven networks are relevant to a variety of real-world domdimsommunication
networksindividual people or computers communicate with one another directly thrchen-
nels such as email, telephone, SMS, instant messaging services, face-tmcounters, or IP
connections. Arinformation networkconsists of people or organizations that can both receive
and broadcast information, facilitating the transfer of content acrosadtveork; examples
include web logs (blogs), microblogging services such as Twitter, ana fithas of social
media. In aco-occurrence networkan event corresponds to terms occurring in the same pub-
lished document. In ao-participation networkevents correspond to individuals participating
in the same activity, such as running a marathon or attending a theatempeamnf® or sporting
event. Stores or markets can be seep@ashase networksvhere an event indicates that a
consumer has purchased a particular producted@mmendation networlows individuals
to endorse an organization, item, or service, e.g. by reading an article“tiking” a page
on Facebook. The diversity of possible applications leads to networksvadthy differing

properties and network structures.



Networks can be understood at multiple scales. A local perspective tmkdat an in-
dividual's behavior: amount of activity, type of activity, how the indivéduelates to others,
or when new connections are formed. A global perspective could lbokes-arching trends,
information diffusion, formation of communities, or changes in network stractu

Some algorithms and data mining approaches are parameter-dependentia domain-
or network-specific knowledge. For example, when studying temporelrdics, the granular-
ity of analysis (e.g. aggregating or analyzing data over each secondemiur, day, week,
or month) may significantly affect the results. A decay model requiresiteas to dictate the
rate of decay. Data mining approaches suchk-aseans clustering de-nearest neighbors are
similarly affected by the choice of parameters.

In addition, some methods of network analysis depend on a multitude of metaudatas
geospatial information or textual attributes. Such approaches would Iététhin a context
where such data is limited or not easily accessible.

In this dissertation, we aim to develop methods that:

e apply to a broad class of dynamic networks

e consider both local and global aspects of network structure and ioehav

e require few or no parameters

e have minimal data requirements
In the next section, we provide an overview of three problems that aritieeimnalysis of

real-world networks, and summarize our contributions in addressing pnob&ems.

1.2 Overview and Contributions

In this dissertation, we develop new theoretical models and efficient algarithanalyze tem-
poral and behavioral aspects of real-world networks. First, we fiwena new framework for

what we callevent-driven networkdNext, we apply this framework to address three problems:

1. Detecting correlated events in communication networks — Find conneaas af the

network with a high concentration of recent activity.

2. Discovering functional communities — Identify groups of individuals \phdticipate in

the dissemination of similar content.



3. Modeling collaboration in academia — Study how coauthorship relationarepshaped

by researchers’ individual goals.

We introduce each of these problems below.

1.2.1 Detecting Correlated Events in Communication Network

Entities in dynamic networks often exhibit correlated behavior, which maybéddalinfluence,
environmental effects, or response to common external stimuli. Howeveraiy scenarios
these dependencies are not explicitly known. Algorithms to discover thiese @orrelations
have applications to computer network security, intelligence, marketing,ledge discovery,
recommendation systems, and other domains. In Chapter 3 we propose apm@ach to
detecting correlated activity in the context of communication networks.

Since the times and rates of communication may vary across the network, npaogees
for analyzing such data first aggregate communication activity over time $loicglobally-
determined length. With this more uniform representation, behavior of eliffegntities can
be compared across the network using well-known time series analysis methaither tools.
However, this preliminary aggregation step may also hide correlated actigitysthot visible
on the time scale determined by the global parameters. In this work, we prap@sv approach
to correlated event detection that is able to better accommodate the tempidailiapresent

in communication networks.

Contributions

We first present a new stochastic model for dynamic networks using toolsRenewal The-
ory, called the REWARDS (REneWal theory Approach for Real-time DateaBts) model.
This approach aims to address the challenges of analyzing networksnawogtiadividuals

with vastly different temporal and behavioral characteristics. In pdaticii moves away from
predominantly-used approaches that require an aggregation step ardecay model with
global parameters, which are sensitive to the time scale used for analgsig.the REWARDS
approach to model communication between each pair of nodes, we detadispical methods

to identify dependencies in the system. We validate the effectiveness lmstiess of our



approach on synthetic data, and then apply it to detect correlated eveatd-imorld email, IP
traffic, and physical proximity networks.

Our main contributions can be summarized as follows:

e The REWARDS model, a streaming stochastic model for systems of pointgsexe

¢ A formal definition of recency for renewal processes that is time scabgiant

A statistical method for measuring correlation between entities in a network dhat a

dresses the variety of temporal characteristics present in real-wadvid ks

A streaming local algorithm for detecting correlated activity among a fixedfsaides

An efficient global algorithm that simultaneously detects subsets of nodekiteng

correlated activity in disparate parts of the network

1.2.2 Discovering Functional Communities

Community discovery is a natural task that arises in the study of social netwount find-
ing a mathematical formulation which captures the intuitive notion of community istareac
research area. Most of the existing literature frames community discosehgdask of clus-
tering a social network graph so that well-connected vertices are inthe cdaster. When the
network also serves as a medium for the dissemination of information, hovegaeh struc-
ture alone does not tell the whole story, since the existence of a socialdek mbt imply
information transfer.

In Chapter 4 we present an alternative approach to community discowvaryddntifies
communities as groups of individuals who have similar behavioral patternseggect to the
dissemination of information. We do this by lookingraemessets of messages with related
content. Our goal is to identify groups of individuals who participate in theediignation of

multiple common memes.

Contributions

Given a set of memes from an information network, we first constructarypmatrix, where
the rows correspond to individuals in the network, the columns corresjpomemes, and a 1-

entry indicates that the individual participated in that meme. We then framedh&pr as one



of matrix co-clustering, simultaneously clustering the rows and columns of éxnateveal
hidden structure. Driven by the goal of community discovery, we sugbes large, dense
blocks, orbiclusters correspond to functional communities of individuals who participate in
many of the same memes. We observe that existing co-clustering metrics atesigried

to reward such structure, and propose a class of metrics that do. Fimellyresent the CC-
MACS (Co-Clustering via Maximal Anti-Chain Search) algorithm, a new hé&ar&gorithm
which efficiently searches the space of possible co-clusterings fowbie maximizes the
value of a given metric.

Our main contributions can be summarized as follows:

e Two intuitive properties of co-clustering metrics that aim to reward largeselbiclusters
e A class of metrics which uniquely satisfy those properties among known metrics
e The CC-MACS algorithm, an efficient heuristic algorithm to find a good cotetugy in

time sub-linear in the size of the matrix for sparse matrices

1.2.3 Modeling Collaboration in Academia

Across academic disciplines, it is natural to want to measure the impact oflidiral and
his or her work. Consequently, many metrics have been proposed| bag@operties of an
individual's research output. These are used to compare reseatohmre another, influenc-
ing decisions around hiring and promotions. Such metrics start with simpléscotipapers
published or citations received, and become progressively more contfi@sever, while most
metrics proposed in the literature are based on individual accomplishmerts seiantific and
academic progress is the result of collaborative efforts.

In this work, we aim to understand the mechanisms underlying academic calliaino
Using tools from the field of Game Theory, we study how collaboration mag agshe result

of interplay between reseachers’ individually-motivated behaviors.

Contributions

We begin by building a model for how researchers collaborate and hidaboocation affects

the number of citations a paper receives, supported by observatmmsafilarge real-world



publication and citation dataset. Using this model, we study researcherfamitave behavior
over time under the premise that each researcher wants to maximize hemacadecess in
terms of both the quality and quantity of her research output.

Our main contributions can be summarized as follows:

e A game-theoretic framework modeling academic collaboration as a repeaed ga

e Formal analysis of collaboration strategies and game equilibria

1.3 Outline of the Dissertation

In Chapter 2, we lay the groundwork for this dissertation. We begin with eré¢fieal frame-

work for modeling networks, including both traditional tools from Graph drigeand a new
model of our own construction. We then introduce several themes thatiartke study of

real-world networks and survey the relevant literature. Finally, we exaeéch of the three
problems addressed in this dissertation, exploring the applicability of the retaadels and

discussing relevance to the themes.

Chapters 3, 4, and 5 focus on the three problems of detecting correlatets & communi-
cation networks, discovering functional communities, and modeling colltiboria academia,
respectively. For each problem, we formally define the problem, suslated work, present
our methodology for solving the problem, and evaluate our approachgihrnalysis of sim-
ulated and real-world networks.

In Chapter 6, we explore several other problems for which our frameammd methodolo-
gies might be useful, and suggest directions for future work.

Chapter 7 provides additional reflection on the material presented in thertdigsn, in-
cluding further discussion of the central themes of our work and a sumafamyr contribu-
tions. We conclude with a big-picture perspective on the current statetwbrk research and

a path forward.



Chapter 2

Background

2.1 Definitions and Framework

In scientific discussion, the ternggaphandnetworkare often used interchangeably. However,
while a graph is a well-defined mathematical construct, there is no single defioftietwork
that is used consistently in the literature. We begin with some definitions frometlaedi
Graph Theory, and then lay out a formal framework for a particulasadsietworks, which
we callevent-driven networksn this dissertation, we will apply both of these constructs in our

study of real-world networks.

2.1.1 Graphs

A graphG = (V, E) is defined by a set of objects = V (G) calledverticesand a set of object
pairsE = E(G) callededges If the pairs are ordered, i.e C V x V, then we sayG is
directed if they are unordered, i.elZ C (‘2/) then we say¥ is undirected A weighted graph
is a graphGy with a functionw assigning weights to the edges@fw : E(G) — R.

A subgraphH of a graphG, denotedd C G, is a set of vertices and edges contained in
G that itself is a graph, i.eV(H) C V(G), E(H) C E(G), and(v,v") € E(H) = v,v’ €
V(H). If G is a weighted graph with weight functian, then i is a weighted graph with
weight functionw restricted toE(H). If V(H) = V(G), thenH is said tospand.

For an undirected grap@, two verticesv, v’ € V(G) are said to bedjacentif (v,v") €
E(G); and theneighborhoodf v, denotedN (v), is the set of vertices that are adjacenvto
For a directed grapt¥, theincoming neighborhoodf v is defined asV+(v) = {v' € V(G) :
(v/,v) € E(G)}, and theoutgoing neighborhoods N~ (v) = {v' € V(G) : (v,v') € E(G)}.



2.1.2 Event-Driven Networks

We define arevent-driven network/ = (U, £) to consist of a set ohodesl/ and a set of
time-stampedventsS ¢ 24 x 24 x R, each event € £ corresponding to a set of source
nodesS. C U, a set of recipient nodeB. C U/, and a time of occurrende € R*. The source
set for an event must be non-empty; there is no restriction on the satipiemrs.

For any set of event§’ C &, we can construct a grapic: = (V, E), with V' C U
corresponding to the network nodes that are a source or recipieny@vant in’, and & C
V x V corresponding to node paifs, u") such that: is a source and’ is a recipient for some
event in&’. We refer toG¢, asthe graph induced bg’.

For each node ¢ U, let&,, C £ denote the set of events withas a source:
Eu={e:e€& uesS.}.

For each node paiu, v') € U x U, let&, . C € denote the set of events for whiehis a

source and/’ is a recipient:
Ewwy=1{e:e€& ue s, u eR.}.

For any set of event§’ C & there is a correspondintime sequenc&s = {t. : ¢ €
&'} under the natural ordering of the reals. For simplicity of notation, w&Je T¢, and
Tww) = Te, - Figure 2.1(a) shows the time sequences for all nodes in an event-drive
network. Figure 2.1(b) shows the (non-empty) time sequences for gailes in an event-

driven network.

Alice Alice Dave

Figure 2.1: Visualization of the time sequences for all (a) hodes and {its) glanodes in an
event-driven network.



We note that in event-driven networks, as opposed to graphs, petsskationships be-
tween nodes need not be defined explicitly. In Section 2.3, we discusthiese two models

can be applied to real-world networks. First, we explore several thehoes work.

2.2 Themes and Survey of Literature

The primary motivation for studying real-world networks is to enable betfersimed future de-
cisions. These decisions may be based on an understanding of the staite of the network,
predictions of the future state, or strategies for manipulating the network itéédfexplore

several themes and discuss their relevance to the study of real-worldrketw

2.2.1 Graph Analysis

One approach to network analysis begins by constructing a gragaicapsulating knowledge
of the network. For one example, consider a social netwdil) could be the users of the
network, and®(G) could be the pairs of users with an explicit social relationship in the network
(e.g. friend, follower, or co-worker). This is calledsaapshot graphsince it represents the
network at a single snapshot in time. For another example, consider & pkeomork with a
log of the sender, recipient, and time of each call. One could form a weigiiitedted graph
G by definingV’(G) to be all phone numbers that have ever been adiivé;) to be all ordered
pairs of numbersa, b) such that: has called at least once, ana(a, b) to be the number of
such calls. This is called summary graphsince it summarizes activity in the network over a
period of time. Graphs can be applied in many different contexts to ragrebgcts and the
relationships between them.

Once a graph has been constructed, a multitude of graph algorithms gaplied aMinimum-
cut algorithms evaluate how robust the graph is to the severence of. &jggaming tree algo-
rithms can help identify a backbone structure of the network. Other algoritborid look for
subgraphs with a particular structure, such as star-like formations erdticges of pairwise-
adjacent vertices.

Centrality measureaim to identify vertices of interest by quantifying the relative impor-

tance of each vertex’s role in the network. Degree centrality looks fdices with many
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neighbors. Closeness centrality ranks vertices based on their distaratethe other vertices.
Betweenness centrality identifies vertices which lay along shortest pathsdremany other
vertex pairs. Eigenvector centrality is defined to recursively favaiogs with many connec-
tions to other central vertices.

Other work studies properties of real-world networks, and proposesdtical models to
describe or explain empirical observations. Well-known results state that real-world net-
works have a heavy-tailed degree distribution [23, 12], small diameter[98nd high cluster-
ing coefficient. Generative models have been suggested to constxphsghat exhibit some or
all of these properties, such as the Watts-Strogatz model [96], the &arAlbert model [12],

and Kronecker graph models [63].

2.2.2 Temporal Dynamics

As the above examples demonstrate, static graph analysis can providianfeemation about
a network. However, many real-world networks change over time. Asudtrestatic analysis
could yield misleading information for several reasons, among them: newrggt&ave been
non-existent or unavailable when the computation was performed; oldriaf@n may no
longer be accurate; and temporal dependencies, such as trend#dicitg in the data, may
be overlooked. Additional data may make the analysis more robust or chemsige, fill in
missing or out-dated information, and decrease the chance of error.

There are many approaches to network analysis with a temporal elementsuCmep-
proach is time series analysis.titne serieglescribes how a scalar quantity changes over time.
For example, one could track the size of the network, the degree of a oottee number of
messages sent across a link as time passes. Formally, a time series is dusshfurection f
parameterized by time, and can be either continugusR™ — R) or discrete { : ZT — R).
In practice, however, it is often impossible or impractical to observe acatdehe functional
values at all points in time. Instead, techniques are employed to more coneipadgent the
time series, such as sampling, fitting to a parameterized model, or low-dimenajpralx-
imation. A wide variety of representations exist in the literature, including elisdrourier
transforms [4, 31], wavelets [18, 21], piecewise functional approtiona [33, 53, 19], singu-

lar value decomposition [58, 81], and symbolic approaches [68]. [&Bjiges a survey and
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comparison of existing time series models.

Another approach models networkstase-evolving graphsgraphs whose vertex and edge
sets change over time. Ingaaph sequenceepresentation, the graph changes at discrete points
in time, resulting in a finite sequence of static graphs which are then analgltectively. Al-
ternatively, updates to the graph could occur in continuous time, usually aitbrfchanges
occurring at any one moment. Previous work has studied real-world rietvtlorough the
lens of time-evolving graphs, observing properties such as densifig&@ddnpreferential at-
tachment [47], triadic closure [40, 80, 37], and shrinking diameter.[6dhange detection
algorithms flag times at which significant changes in graph structure c@tusl]. Machine
learning and other techniques attempt to predict the formation of new links [Biffusion
models are used to analyze the flow of information through a network [§3, 27

One general framework for temporal analysissiswulation which entails developing a
model of a real-world system, and then playing out how the system bebrasetime according
to the model. Simulations can be deterministic or stochastic. Network simulations ma&y mod
the addition or deletion of nodes or links, interactions between nodes,reamdjing node or
link attributes. Several general approaches have been considettegl literature, including
event-based, activity-based, and process-based models [78].

Game theory can also be applied to study temporal aspects of netwodendéconsists
of rational players whose actions collectively determine the outcome of the.daach player
assigns a value to each possible outcome, and each player's goal is&véoaéran outcome
of maximal value. In asequential gameplayers alternate taking actions, which may depend
on the current game state and on knowledge of other players’ previtioes In arepeated
game the same game is played multiple times, and players’ strategies may be basedton wh
happened in previous iterations. Applying game theoretic analysis to a ketentext, the

players may represent nodes, and actions could be interactions betodsen

2.2.3 Group Behavior

Network analysis would be greatly simplified if the network were modeled adlection of
objects acting independently, each of whose behavior is determined splialffipbmation spe-

cific to that object. However, in many real-world networks an object’s bieh#s affected by its
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relationships to and interactions with other objects. Sometimes these relatioashipsown
and interactions observed; other times they are not, for example due tt comenunication
or response to common external stimuli. In either case, models which adootimse higher-
level correlations have the potential to provide more accurate analysigdition, identifying
groups of nodes with similar properties or behavior can avoid reduratanputation, help
characterize nodes and their roles in the network, or assist with entitytieso

One approach to identifying similarities or correlations between nodes is tines pat-
tern matching The goal is to recognize whether two nodes have exhibited similar betesvior
reflected in time series corresponding to their respective activity. Tesbsigave been devel-
oped to detect common patterns even in the presence of shifting, distorti@ingnitata, or
noise [87, 66].

Clusteringis the task of grouping a set of objects such that elements of the same group
are more similar than elements of different groups. Many different measdsimilarity have
been proposed, depending on the characteristics of the data and tiué tp@aanalysis. Two
general notions of similarity for clustering nodes in a network@menectivityandrole. The
former is based on how well-connected the nodes are; e.g. small painsiaaats, or high
density of links within a group. The latter is based on nodes having similatiunadity or local
graph structure; they need not be in close proximity in the network graplen@ similarity
measure, many different clustering algorithms can be applied. Traditiusacng algorithms
partition the objects into disjoint subsets; alternative clustering models may ailobject to
belong to multiple groups or have fractional group membership, sometimereckfe assoft
clustering

The termcommunity discoveris sometimes used to refer to connectivity-based clustering
of nodes in a network, usually implying interaction or coordinated functioamgng group
members Community evolutiostudies how group membership changes over time. The num-
ber of communities or the labels identifying them may be fixed, or one could atiowhé
formation of new communities and dissipation of existing ones. Regardles® aptrific
model used, there are conceptual challenges in defining and chemagt@ommunities; for
example, the term “community” has a connotation of perpetuity, yet membersthipdisnd

may change considerably over time.
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2.2.4 Attribution

One guiding concept when applying algorithms to real-world problermtaspretability, how
easily the results can be understood and thus applied to future decisiogmgmé&ine way of
making results more interpretable is throwgtribution, connecting an outcome with its source
or cause.

In social psychology, attribution describes the mechanism by which pagpleciate ob-
served behaviors or events with causal factors. For example, sogneberdhearing a verbal
fight might attribute it to the participants’ aggressive personalities, bad spnood recent mis-
understanding. Literary attribution is the study of ascribing historical wofliterature to a
particular author. In copyright law, producers of new work must giaper attribution to ideas
which are not their own. Research publications are also expected to @ts'otlork as a form
of attribution.

Attribution is closely tied taaccountability the ability to hold individuals responsible for
their actions. This idea is central to many legal systems, and has seereceimtgrest with
regard to security and privacy in online systems. The goal is to desigatensythat incen-
tivizes good behavior not by directly enforcing it, but by tying bad béraio undesirable
consequences. One example i®putation systefnwhere users are assigned scores based on
opinions or feedback from others, resulting in rewards or punishms&unth, as the granting or
revocation of privileges [82].

Another related concept ausality In the simplest sense, an action is saiccénsean
outcome if the outcome is a direct consequence of the action. If such al caladionship is
observed, the outcome can be attributed to the action. In many real-worlargxe however,
an outcome is the result of a multitude of factors, and causal relationskEpwaexplicitly
known; defining causality in such circumstances is the subject of debateatszientists [35]
as well as philosophers [8, 44].

When causal relationships can not be directly observed, attribution maleteemined
by studyinginfluence' the indirect effects of one’s actions. Influence can be measured by

comparing the outcome when an action is performed with the outcome when the isctio

lWe use the term “influence” to include such notions as probabilistic causaiGranger causality.
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not performed, all other factors remaining equal. Since we can notqatilysobserve the
outcomes under both scenarios simultaneously, assumptions are made to linfiethfactors

being considered, thus enabling influence to be measured empiricallyx&opke, one may
assume a closed system with a fixed set of variables, and then measuriuteci of each
variable by holding the others constant. This typically requires either the atalitesign

control experiments or a large and varied dataset that contains infornadtoart actions and
the corresponding outcomes.

Since it is often difficult to formally establish causality or influence in practiceny ap-
proaches in the statistics literature focus on the weaker notiatejpéndence Two random
variables are said to be dependent if the probability distribution of valuesni® is different
when conditioned on the value of the other. Given a set of empirical datstigal tests can be
performed to evaluate whether an action and an outcome are dependkhigiore whether

the outcome should be partially attributed to the action.

2.2.5 Computational Realizability

Many real-world networks are massive, not only with regard to the numbentities in the
network, but also the volume and rate of activity. There are an estimatedi®2 émail users
worldwide, who send 45 billion emails — not including spam — every day. Toed/\Wide Web
consists of hundreds of millions of websites; the online social networkdeaéeboasts over
a billion active monthly users; and micro-blogging site Twitter saw an averbgjésomillion
tweets per day in 2012 There are many challenges to performing network analysis on such a
large scale.

Many questions that arise when analyzing group behavior in netwogkoarputationally
hard; that is, the time it takes to solve the problem increases very rapidly withaespthe
size of the network. This is not surprising since the number of possibkeibf nodes is
exponential in the size of the network. However, in many real-world settanggysis is not
helpful unless the results are found in a timely manner. Since exact solatdonsot be found

efficiently, approximation algorithms or heuristics may be developed to provaisical results

2Statistics taken from the websi ngdom com posted on their Tech Blog on January 16, 2013, compiled
from various sources.
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that address the real-world needs.

In addition, many network systems have physical limitations on the amount afjstepace
available, yet data continues accumulating over time. Even if there is spatmed@B of the
data, it may be too cumbersome to process the entire dataset every time neavrida®
One solution is to usstreamingalgorithms, which process new data only once as it arrives,
maintaining only a limited amount of information about all previous data [6].

Another approach for dealing with the great volume and rate of daliatisbuted comput-
ing. A distributed architecture stores data in multiple places rather than in one @pgkgtory.

In distributed algorithms, different segments of the data are analyzethselgalf desired, the
individual results may then synthesized to arrive at a final combinedt.resu

A further challenge to real-world network analysigeta accessibilitythat is, some data
that would be helpful for analysis may not be available as desired. fBonge, the amount or
type of data that can be collected may be limited due to physical constraints aféctfmns
in the data collection mechanism. A sensor may give inaccurate readingsemaértmmental
noise. Lack of precision in data collection instruments may yield data with p@owudgarity.
Faulty devices may result in missing data. These practical issues havetpdoting develop-
ment of methods that are robust to noisy or missing data. Furthermore afteerdata has
been recorded, there may be restrictions on its use due to privacy pollegal concerns.
The secure multi-party computatigraradigm has been suggested as a way of addressing such
concerns [99].

Finally, some computation may be subject to limitations of human observation and un-
derstanding. This is of relevance when the network is intended to modelrhbelfs or
behaviors that are subjective, difficult to observe, or not quantifi@piehen the efficacy of a
computational result is dependent on the ability of human actors to undgestarrespond to
it.

In this dissertation, we propose new methods for analyzing real-worldniesw\e look at
three problems that arise in the study of group behavior in networks,gpagirtial attention to
temporal aspects of the data. We develop new models and efficient algotitlaudress these

problems and explore the use of attribution in improving the interpretability ofethealts.
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2.3 Connection to Projects

Here we discuss how the graph theoretic and event-driven networklsnoale help address
each of the three problems addressed in this dissertation, and explore éyoveldite to the

themes introduced in the previous section.

2.3.1 Detecting Correlated Events in Communication Network

In a communication network, individuals communicate with one another directiygfrchan-
nels such as email, telephone, SMS, instant messaging services, omgttons. Such net-
works are frequently modeled as graphs, where two vertices are ctedrigy an edge if the
corresponding individuals ever interact with one another. The graphbmaveighted by the
frequency or volume of the interactions. We suggest that real-world caoncation networks
can be further understood and analyzed using our event-driverorketaodel. In Chapter 3,
we explore both of these approaches.

In particular, we focus on the task of correlated event detection. Wilesa set of com-
munication events as correlated if their collective relational and temporaateaistics differ
significantly from the expectation if the processes generating them wiing awdependently.
Such correlations may indicate that the behavior of certain individuals idjrdtehat the set
of events in question were triggered by a common external source.

Attribution plays an important role in real-world correlated event detectian.nfany se-
curity applications, the utility of an anomaly detection method depends on its abilitgrtifigl
sources of malicious behavior so they can be neutralized. In the cofgatzomining, proper
attribution can lead to a better understanding of the system and more infagraatilysis. Our
analytical methods are designed with attribution in mind; that is, in addition to simfegtiteg
that correlated activity has occurred, our goal is to pinpoint the exdiiduals and events that
are responsible for that activity.

Many real-world networks of interest contain thousands or millions of sodéh a high
rate of communication, posing a computational challenge. To exascerbatetitem, infor-
mation may be time-sensitive, so that results are only useful if obtained in a timalyema&ur

work focuses on methods that are scalable to large networks, compuligtesheient, and aim
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to minimize the lag time from when the correlated events occur to when they actadkte

2.3.2 Discovering Functional Communities

In information networks, users broadcast messages to an audienotepfial viewers, other
network users who may choose to respond by broadcasting messages afvn, thus dis-
seminating content across the network. A graph may be used to model théigdatiewers of
each broadcast, but this relationship does not imply information transferct, the exact paths
through which information flows may not be directly observable. In Chapves explore how
the event-driven network model can be used to study the diffusion afmraftion even when
explicit paths of information transfer are not known.

In particular, we look at group behavior in diffusion processes. Whitmthetically each
piece of information, omeme may follow a completely different diffusion pattern, in real-
world information networks certain paths appear more frequently thansotfi@erefore, one
might hope to cluster network users based on the content of their bsiadsach that users
in the same cluster participate in the same memes, and users in different gastieipate in
different memes. This, however, is not realistic either, since users nvaynhaltiple interests,
and would be apt to participate in memes relevant to any of those interestss tasle, a soft
clustering may be more appropriate, where each user can be a member ofenclisgers.

We take this one step further. A clustering, whether hard or soft, indiedteh users are
similar, but does not attribute that similarity to participation in particular memes. Aiese
more detailed attribution, we propose-clusteringthe users and memes simultaneously. The
result is a set obiclusters user-meme cluster pairs; a dense bicluster indicates a set of users
with a high degree of participation in a specific set of memes. This more ndiamedysis
of the behavioral correlations between users can lead to better recomtmesdf interesting
memes, improved predictions of future user activity, and a better undérsgaof diffusion
processes in information networks.

Our co-clustering methodology first defines a metric to evaluate the qualityos€hustering,
and then searches for a co-clustering that maximizes the value of the matfidl deneral-
ity, with no constraints on the metric function, this problem is NP-hard bedhessumber of

possible co-clusterings is exponential in the number of users and merdesyanone of them



18

could maximize the metric. In practice, it is therefore necessary to employstiesifor the
results to be useful. We propose an efficient heuristic algorithm to findbd go-clustering
according to a given metric, as well as a class of metrics with propertiesahdtecleveraged

for further improvements in efficiency.

2.3.3 Modeling Collaboration in Academia

Successful research is often the result of collaborative efforesscddemia, this is manifested in
individual researchers working together to publish joint papers. I&raan be used to represent
such collaboration networks, with an edge signifying a coauthorship netdtip, optionally
weighted by the number of joint papers. Alternatively, academic collabaratio be modeled
as an event-driven network, where the publication of a paper is mpegbas an event with the
coauthors as sources and the entire set of researchers as recipients

In Chapter 5, we study the collaborative behavior of researchersatteatia using tools
from Game Theory. We define a game where each researcher is tryingimizeaher own
academic success, and use simulations to analyze the effects of this bematie individual
researchers as well as the community as a whole. The flexibility of the evigatrchetwork
model helps us to study how collaboration strategies change over time.

We posit that due to the collaborative nature of academic research, igidiral's success
is typically not solely the result of his own efforts. Our model attempts to capterevay that
an individual’s success can be partially attributed to the contributions obhistiors.

Our theoretical model makes certain assumptions about the academic worlexample,
that each researcher considers the publication records of all ofearohers, and that all pairs
of researchers have equal opportunity to collaborate — that are m@&lgnealistic. However,
the analytical results we derive under our theoretical model may indicagzaerinciples that

still apply under more realistic computational settings.
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Chapter 3

Detecting Correlated Events in Communication Networks

3.1 Introduction

3.1.1 Background and Motivation

A naive model of event-driven networks consists of a set of entitiesevbehaviors and inter-
actions are governed by independent processes. However, entitiesd-imorld networks often
exhibit correlated behavior, for example due to influence, environmefftadts, or response
to common external stimuli. These dependencies are usually not explicitlykridve ability
to efficiently detect correlated events in large networks could there&sistan a variety of
application domains, such as computer network security, intelligence, maykktiowledge
discovery, and recommendation systems. For example, correlated actisityjputer network
traffic may indicate a coordinated attack or the spread of a virus. In thisme@focus on com-
munication networks, in which individual people or computers communicate witaoother
directly through channels such as email, IP connections, or face-¢cefamunters.

A common approach to analyzing event-driven network data is to firsteggtg infor-
mation over fixed or variable-length time blocks. This approach facilitates gheofimany
existing analytical tools, but it imposes a trade-off: shorter time blockslygeer resolution
at an increased storage cost and may introduce data sparsity issugs; tiare blocks may
have a smoothing effect that hides shorter-term deviations in behavigheffmore, different
time granularities may be appropriate for different nodes or edges withsathe network. In
that case, choosing a global block size may bias analysis towards cettiieseand overlook
others, a phenomenon we ctithe-scale bias

Sulo et al. propose a method for choosing the temporal resolution thab&lesices the

trade-off between minimizing variance and minimizing information loss for a spagiéiph
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metric [90]. Tong et al. [95] and Lian et al. [67] independently suggesiti-resolution ap-
proaches. Sharan et al. determine edge weights for a summary gragghdrmaa decay model
with global parameters [89]. These are all reasonable approachesgdortd analysis of event-
driven networks, but as they all involve the discretization of time or depena global time
parameter, they are all susceptible to time-scale bias.

In addition, many existing algorithms for network analysis are designed teiiermed
off-line. In the off-line scenario, the entire dataset is available simultastgoand multi-
ple passes over the data are permitted. When new data becomes availablg,réqoiee
re-analyzing the entire dataset. In a real-world setting, where new datasacontinuously
and at high rates, off-line approaches may not be able to provide datéoresults in a timely
manner. We use the terstreamingto refer to models or algorithms that require only a single
pass over a dataset in chronological order, typically with space and tinséramts. In our case
of event-driven networks, we aim for space requirements that are iim#ze number of node
pairs that ever communicate, regardless of the period of time over whiclisdatbected.

These challenges motivate the need for new approaches to model tedyr@alics, over-

come time-scale bias, and address efficiency concerns for analysisntfdriven networks.

3.1.2 Related Work

One popular approach to event-driven network analysis begins tsfraating a (weighted or
unweighted) graph to represent network activity aggregated over tathed asummary graph
Then, static graph algorithms employing techniques such as clusteringraspealysis, and
centrality analysis are applied. One application is anomaly detection, whick fookodes or
substructures that are statistical outliers in the graph based on somefimedaneasure. Noble
et al. identify subgraphs that appear infrequently using a data miningatéetlcSubdue and a
variant of the Minimum Description Length Principle [75]. Sun et al. identififlier nodes in
bipartite graphs based on properties of their neighborhood [92]. l&laigl. propose OddBall,
which takes a similar approach for finding outlier nodes in a weighted summeapi ¢5].

A second approach begins by segmenting time into blocks and constructingraasy
graph for each time block. Different nodes can then be compared bagédir history of past

communication and local graph structure. Priebe et al. represent therketsva sequence of
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summary graphs, examining properties of each node’s neighborheodimme [79]. Candia et
al. study anomaly detection in spatio-temporal phone data, analyzing dailyobathe from
each cell tower and comparing to the mean call volume for that tower [13y Tke ideas
from percolation theory to identify times and spatial regions of high activity.

A third approachg¢hange detectigiooks at how summary graphs change over time. Sun et
al. propose the GraphScope algorithm, which clusters vertices in order itmizgrthe number
of bits required to represent the graph, arthange poinbccurs when it would be more space-
efficient to encode a summary graph by itself than in conjunction with the @de@wpones [91].
Henderson et al. measure properties of each summary graph, pedatetailed analysis of
community structure and individual node behavior only when there ardisaggnt changes in
global metrics [41].

A fourth approach models communication data as a time series, and usesdoodnal
processing to analyze patterns of communication for nodes, edges vendotenetwork. lhler
et al. use a hidden Markov model to understand temporal patterns in ketatiic volume
and distinguish between normal and abnormal behavior [45]. Cao eaal.deB-spline model,
identifying both short-term deviations and long-term trends [14]. Lakbinal. do statistical
outlier detection on the time series of traffic volume across origin-destinatias,fia terms
of # of bytes, # of packets, and # of IP-flows [60]. Their approado igse PCA to find the
most prevalent trends across all flows (top-k eigenflows), and thek anfow as anomalous
at a particular time based on how well it matches the eigenflow prediction. Adteib also
use a time series model, comparing the activity of each node or edge to ttadl oetwork
behavior [3].

A related problem is that of asynchronous pattern matching in time seriese 8akl. in-
troduce Dynamic Time Warping, which finds matching patterns between a pisavéte time
series, even if one of the time series is stretched or compressed along tloegktipension or
has missing information [87]. Li et al. propose Parsimonious Linear Himgeing, which in-
dentifies similar pairs of continuous time series, allowing for changes in amplinedgiency,
and phase shifting [66].

Another approach to dynamic network analysis, Tamporal Path Modelconsiders paths

composed of time-ordered edge events. Xie et al. propose an appooaEntifying the origin
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of viruses in a network usingioonwalksrandom walks on the graph backward in time [98].
All of the above network analysis approaches involve the discretizatidimef or use a
model with global time parameters, and are thus susceptible to time-scale biaddition,
many of them are off-line algorithms, making them impractical for real-time aisadystream-
ing data from communication networks. Our approach, based on teckriique Renewal

Theory, is a first step towards addressing these challenges.

3.1.3 Contributions and Outline

We first present a stochastic network model based on ideas from Rembeory. Through
experiments we demonstrate that this is a reasonable model and apply it tocdetetated
events in real-world communication networks.

Our contributions can be summarized as follows:

e The REWARDS model, a streaming stochastic model for systems of pointgsexe

¢ A formal definition of recency for renewal processes that is time scabeiant

e A statistical method for measuring correlation in event-driven networksaithdtesses
the variety of temporal characteristics present in real-world networks

A streaming local algorithm for detecting correlated activity among a fixedfseides

An efficient global algorithm that simultaneously detects subsets of nodekiteng

correlated activity in disparate parts of the network

We begin by introducing our stochastic model, the REWARDS model, in Sectich 32
Sections 3.2.2 and 3.2.3 we propose statistical methods to measure depEnueanetwork
using the REWARDS model. We present two algorithms for detecting corredaeds in Sec-
tion 3.2.4, and analyze their running times in Section 3.2.5. Experimental resufisovided
in Section 3.3. Section 3.4 provides further discussion of the strengthléngitations of our

approach, the significance of our work, and directions for futurekwor

3.2 Methodology

Our approach is to model an event-driven network as a system of stacheocesses. Given

data from a real-world network, we first learn parameters of the moalel fhe data, and then
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apply statistical tools to identify dependencies between processes.

3.2.1 The REWARDS Model

A renewal proces® is a continuous-time Markov process in which states correspond to the
natural numbers, and state transitiansl — ¢ occur with waiting timesy; € R+ sampled
independently from the same distribution. This yields a sequence of ti;mesZﬁC:l wy, at
which state transitions occur. We refer to the countable orderedzset {t¢;} as thetime
sequencéor ®.

Consider a communication network where data arrives as a stream of timpestanes-
sages sent directly from one node in the network to another. We reptbse as an event-
driven network\' = (U, &), with events corresponding to the messages. For each pair of
nodes(u, u’) that ever interacts, we extract the discrete-event sequgpgs consisting of the
relevant events, as well as the corresponding time sequgnpge (see Section 2.1.2).

The REWARDS (REneWal theory Approach for Real-time Data Streams) Imeglesents
the network as a system of renewal processes. For each (directetlioected) node pair
(u,u'), we infer the waiting time distribution for the renewal procéss /) that generated the
time sequenc@“(w/).l The choice of distribution model and inference method are independent
of our work.

Now that we have introduced the REWARDS model, we present a statisticab dodbigy

that will help in analyzing dependencies between processes.

3.2.2 Measuring Statistical Correlation

We suggest the following procedure to test for positive correlationrafoen variables. Given

a set of samplesy, . .., z, taken from real-valued continuous random varial¥gs. . ., X,,:
1. LetY; be a normalization ok, i.e. Y; ~ Uniform(0,1), forall1 <i <n

2. Apply a statistical goodness-of-fit test under the null hypothesistieatorresponding

valuesy, ..., y, are i.i.d. samples frorniform(0, 1)

1The REWARDS approach could also be used to model individual nadathier network substructures. In this
work, we focus on applications where the mode of communication is coed¢anessages.
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3. Measure likelihood of the sample as the p-value from the goodnegsiesifi

Step 1 is accomplished using a technique calledpttobability integral transform Let
X be a continuous random variable, and A&t be the corresponding cumulative distribution

function (CDF). LetY” be the random variable defined by applyifig to X, i.e. Y = Fx(X).

Proposition 3.1. Y ~ Uniform(0, 1).

Proof.
Fy(y) = Pr(Y <y) = Pr(Fx(X) <y) [by definition]
= Pr (Fy' (Fx(X)) < Fy'(y)) [F5! increasing]
=Pr (X < Fy'(y)) = Fx (Fx'(y)) =y [by definition]

O]

The probability integral transform is illustrated in Figure 3.1. Valuesfoére along the

x-axis, whileY takes values if0, 1], shown along the y-axis.

CDF for random variable X

Figure 3.1: The probability integral transform

For Step 2, we perform a statistical goodness-of-fit test comparingrpiieal distribution

function Y (y) =

L |{i : y; < y}| to the theoretical cumulative distribution function for
Uniform(0, 1) samples,Triangle(0,1). One such test, the Kolmogorov-Smirnov test [57], is

illustrated in Figure 3.2. The Kolmogorov-Smirnov statistic, denatgd, is the maximum
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difference between the two distributiofis:

dics(V | Triangle(0, 1)) = max(¥ (y) - y).

The p-value, denoteg s, is the likelihood that a sample generated according to the null model
would yield a difference of at leadltys. The smaller the p-value, the greater the confidence
with which one may reject the null hypothesis, and therefore the strongémitiication that

the random variables are not independent.
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Figure 3.2: The Kolmogorov-Smirnov statistic

Among probability distance functions, we choose the Kolmogorov-Smirndiststabe-
cause of its interpretability: it indicates the thresholds = arg maxy(f/(y) — y) with the
highest concentration of values falling below that threshold, as well asofinesponding val-
ues. This feature is instrumental for attribution, allowing us to identify the bkegawith the
highest correlation. Next, we explore how this paradigm can be appliedtéztdcorrelated

events in event-driven networks.

3.2.3 Recency

Our goal is to detect correlations in communication activity. In particular, wk for times
at which there has been an unusually high concentration of recernityaativongst a subset of

nodes in the network. In order to formalize this task, we first define wieahean byecent

2In our experiments we use the positive one-sided Kolmogorov-Smatatistic since for the applications we
consider, we are more interested in correlation of activity than nonigctiv different choice may be appropriate
for other applications, such as fault detection.
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A natural quantity to consider is thege of a renewal process, which is defined in the

Renewal Theory literature as the time elapsed since the last event:

t—t;, ift;<tandfit;:t; <t; <t
Ageg(t) =
00 if B¢, <t
However, activity rates may vary among nodes in the network, and lookithg @ge will bias
analysis towards nodes with higher activity rates, potentially hiding corcetabavior among
lower-rate nodes. To compensate for this time scale bias, we first normalibepeocess
following the procedure proposed in Section 3.2.2.

Let F, & denote the limit distribution of tha ge function3
Age o <
Fyo™(7) tlgr()lo Pr(Ageg(t) < 7).
We define theecencyof ® at timet to be
_ Age 4
Reco(t) =1 — Fi® (Ageg(t)).

Note thatRec is a decreasing function on every inter{ial ¢, 1) (see Figure 3.3), and that
it satisfies the uniformity property as described in Section 3.2.2,Rhay ~ Uniform(0, 1)
for any renewal process. The intuition is that sampling the recency function randomly in
time will generate uniform random samples[ih1]. This normalization is scale-invariant
(recency values remain the same when time is stretched by a constant f&bioh) makes our
approach robust to differences in time scale between networks or retméiies within the
same network.

Next, we consider correlation of recent activity across multiple prosessigen a sef) of
renewal processes, we define the recenc@ @t timet asRecq(t) = 1 — pxs, wherepgs
is the p-value from performing the Kolmogorov-Smirnov test as describ&kation 3.2.2.
Larger values oRecq, are a stronger indication that the processes are not independent.

For notational convenience, we usge,, . (t) to denote the age of the renewal process
corresponding t@u, u’), Rec, . (t) to denote the recency of the renewal process correspond-

ing to (u, u"), andRecg(t) to denote the recency of the set of renewal processes corresgondin

3Note that this is different from the distribution of waiting times for the rengwatess. As an illustration of
this, consider the inspection paradox.

“We define recency using — C'DF instead ofCDF to match the linguistic intuition that higher recency
corresponds to more recent activity.
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Recency of Node Pair (3,22) in Bluetooth Dataset
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Figure 3.3: Plot of recency over time for an edge in the Bluetooth netwdrthelmodel is
accurate, the value of the recency function willde» exactlyp fraction of the time, for any
p € [0,1].

to node pairs irt.

3.2.4 Correlated Event Detection

With the infrastructure in place, we now present two efficient algorithms tiectieecent cor-
related activity in communication networks. For both algorithms, we use the RENY®Aap-
proach to model activity for each node pgir, v') as a renewal proceds,, ..y, and then detect
sets of correlated events using the statistical approach in Section 3.2.2.

The first is a streaming local algorithm, L-CORE (Local algorithm for detgc@ORre-
lated Events), which simultaneously monitors the neighborhood of eachimalde network.
Whenever there is outgoing communication from a node, the recency ofigishaehood is
computed, and a flag is thrown if it exceeds a pre-specified sensitivitghibic Algorithm 3.1
gives a formal description of the L-CORE algorithm.

The second algorithm, G-CORE (Global algorithm for detecting CORrelatedtE), is a
static algorithm built on the streaming REWARDS model, which searches the eatim®rk
for the subsets of nodes with the highest concentrations of recentyaatia given time. This
is accomplished by maintaining a disjoint set data structur& amd running a variant of the
Union-Find Algorithm [94], incrementally considering node pditsu’) in decreasing order
of recency. At each iteration, if andu’ are not already in the same set, then we join the two set
into one. The G-CORE algorithm is given as Algorithm 3.2, and it is illustratedgare 3.4.

We note that a pair of disjoint sets is a refinement (subpartition) of the siegfersned
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Algorithm 3.1 The L-CORE Algorithm (Local algorithm for detecting CORrelated Events)

Input: An event-driven network\" consisting of a set of nodé# and a stream of communi-
cation eventg, and a sensitivity threshold

Output: For each time at which correlated activity is detected, the source node thapn-
sible for the activity along with the corresponding set of events.

1. For notational convenience, &t~ (u) = N (u); that s, the set of nodes € U/ that
have received communication from For each node € i/, maintain the (approximate)
distribution of inter-arrival times for outgoing communication to each ndde N~ (u).

2. Every timet there is outgoing communication from

e Update the inter-arrival time distribution for the corresponding recipiede(s).

e Compute the recency of all outgoing activity from Recg,(t), where S, =
{(u, ) : v € N~ (u)}.

o If Recg, (t) > 1 — 6, output the tupléw, ¢, Recg, (t), vk s, & (t)), where&(t) con-
tains the most recent event franfor eachu’ € N~ (u) such thaRec(, ) (t) < Vks-

Algorithm 3.2 The G-CORE Algorithm (Global algorithm for detecting CORrelated Events)

Input:  An event-driven networR/ = (U4, £), with the IAT distributions for all node pairs that
communicate through time

Output: A list of node sets partitioning/, along with the recency values corresponding to
their induced subgraphs.

1: Construct the grapty = (U, E) induced by the set of all events up to timeeach edge
(u,u’) € E weighted by the corresponding recency valie,, . (t).
2. Initialize a disjoint set data structure tn
e Setll, the current partition aff, andIT*, the output partition, to be the collection of
singleton verticesII = IT* = {{u} : u € U}.
e For each seU e II, maintainRecy;(t), the highest recency attained by any of its
subsets (including itself), which is initialized o

w

Sort E(G) in decreasing order of weight.
For each edgéu, v') € E(G), if uw andu’ are in different sets:

R

e Updatell by removing the sets containingand«’ and adding their unioty.

e ComputeRecy(t) = Recg(t), whereS is the set of edges incident to nodeslin
and updat&ecy;(t) as necessary.

e If Recy(t) is greater than the recency of all subset#/dfi.e. Recj;(t) = Recy (1)),
updatelT* by addingU and removing its subsets.

a

OutputIT* along with the corresponding values®éc; (¢) for eachU € I1*.
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Figure 3.4: (a) The weighted graph constructed in Step 1 of the G-COREthlg. (b) Itera-
tions of the loop in Step 4. (c) The G-CORE tree, showing the recency bfreade set, with
the output partitiodI* highlighted.

by their union. We can therefore construct a partially-ordered ssefpover sets considered
during the G-CORE algorithm, ordered by the containment relation. Thig g fact a
tree, where the leaves are individual nodes and the r@oPi#\n example of this hierarchical
structure can be seen in Figure 3.4(c). We refer to this poset & @ORE tree

Two elements:, b in a poset areomparablaf a < b orb < a. A maximal antichairof a
poset is a maximal set of elements of the poset, no two of which are companébleote that
any maximal antichain in the G-CORE tree forms a partitiot¥ ofr he output of the G-CORE
algorithm is a list of event sets, ranked in decreasing order of recdimeygraphs induced by
these event sets are guaranteed to partiticgsinceIl* is always a maximal antichain in the
G-CORE tree. (ltis true initially, and is maintained every tifiieis modified in Step 4.)

This property is instrumental to the G-CORE algorithm’s ability to detect corcklate
tivity in disparate parts of the network simultaneously. Without the disjointedo@sstraint,
the node sets with the second and third highest correlated activity would bkesubsets or
supersets of the top result. This is particularly relevant for real-worddritg applications,
where an attacker may try to hide malicious activity by creating a diversionathanpart of
the network.

The G-CORE algorithm is an effective way to detect correlated activity ievent-driven
network. However, because its worst-case running time makes it imprafcticalany real-

world networks (see Section 3.2.5), we propose an efficient heuristcithlign with the same

5If G¢ is not connected, this holds for each connected component.
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input and output specifications plus a precision parameter, given astAlgaS. 3.

Algorithm 3.3 The Heuristic G-CORE Algorithm

Input: An event-driven network/ = (U4, £), with the IAT distributions for all node pairs that
communicate through timk and a precision parameter § < 1.

Output: A list of node sets partitioning/, along with the recency values corresponding to
their induced subgraphs.

1: Construct the grapty = (U, E) induced by the set of all events up to timeeach edge
(u,u") € E(G) weighted by the corresponding recency vaiee ,, ., ().
Initialize a disjoint set data structure o

N

e Setll, the current partition aff, andIT*, the output partition, to be the collection of
singleton verticestl = IT* = {{u} : u € U}.

e For each set/ € II, maintainRecy; (), the highest recency attained by any of its
subsets (including itself), which is initialized €0

3. Partition the interval0, 1] into equally-sized subintervals of width and bin each edge
according to the subinterval containing its recency value.
For each subinterval, in increasing order:

»

e Add all edges in the corresponding bin, and update the disjoint sets auglgrd
e Compute the recendyecy (t) of each setU € II, and updat&ec;;(t) as necessary.

e For each set/ € II, if Recy(t) is greater than the recency of all subsetd/ofi.e.
Recy;(t) = Recy(t)), updatell* by addingU and removing its subsets.

a

OutputIT* along with the corresponding values®éc; (¢) for eachU € I1*.

3.2.5 Complexity Analysis

Both the local and global algorithms are based on the REWARDS approduth models
each node pair as being generated by a renewal process, andhefeiting time distribution
from the observed inter-arrival times (IATs) between events. Streaalgugithms to dynam-
ically maintain the (approximate) IAT distribution for each node pair (e.g. ukistpgrams
[9, 38], kernel density estimators [84, 59, 76], or other methods [@B,ehable the use of the
REWARDS maodel for efficient analysis of streaming network data. Theécehaf distribution
model and approximation method are independent of our work.

In our experiments, we use maximum-likelihood estimation to determine the best-fit pa
rameters for a Bounded Pareto distribution (see Section 3.3.1). The Bbzieto has three
parametersi,,;,, the minimum possible I1AT, .., the maximum possible IAT; and, the

shape parameter. The maximum-likelihood estimator for these parameters datebeined
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using only the following three values: the minimum IAT seen so far, the maximurrsé&en

so far, and the sum of the logs of all IATs seen so far [1]. Since thalses can be maintained
and updated in a streaming fashion, o6lyl) space is required to model each time sequence,
with constant-time update per communication event.

In the L-CORE algorithm, each nodemaintains the IAT distributions for outgoing activity
to its neighborsV—(u) (Step 1). For each outgoing event, we update the corresponding IAT
distribution, calculate the recency of communication with each neighbad then compute
the collective recency for all outgoing activity (Step 2). Each of thegessgeat most linear in
the number of neighbors. Therefore, the running time for the L-CORHEi#tigo at nodeu is
O(|N~(u)]) for each outgoing communication event fram

The G-CORE algorithm takes as input the IAT distributions for all node ratise network
that communicate, updated through timéetn = |U/|, and letm be the number of such node
pairs. In Step 1, a weighted graphis constructed by computing the recency of each node pair,
which takesD(n+m) time. Initializing the disjoint set data structure take&:) time (Step 2).
Sorting the edges by weight tak€$m log m) time (Step 3). For each of the— 1 iterations of
the loop in Step 4 when the union operation is performed, we compute theyeafesm subset
of nodes, which runs in time linear in the number of incident edges, whiclbeat mostn,
for a total ofO(n - m) time for the loop. The complexity of maintaining the disjoint set data
structure iD((n+m) - «(m, n)) over the course of the algorithm using path compression and
union by rank, wherex(m, n) is the extremely slowly-growing inverse Ackermann function,
which is a small constant for all practical valuesro&ndm [94]. Finally, it takesO(n + m)
time to output the sets in the partition along with the corresponding edges amtye@lues
(Step 5). Thus the worst-case running time of the G-CORE algoritt@tis m).

For the Heuristic G-CORE algorithm, Steps 1 and 2 still téKe. + m) andO(n) time,
respectively. Binning the edges into subintervals by weight tdkes) time (Step 3). For
each of the% iterations of the loop in Step 4, we compute the recency of all sdil imhich
takesO(m) time since each edge is incident to at most two node sets, for a tata(of - 1)

time for the loop. The complexity of maintaining the disjoint set data structure igX3iit +

®For the Bounded Pareto model, there is no closed formula for the limit distib/ 2, so in our implemen-
tation we use Simpson’s Method for numerical integration.
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Dataset Description Timespan | # of nodes| # of edges| # of events
ENRON [55] emalil 2 years 1141 2017 4847
BLUETOOTH [28] | physical proximity| 9 months 101 2815 102563
LBNL [77] IP traffic 1 hour 3317 9637 9258309
TWITTER [20] @ replies 1 year 262932 307816 1134722

Table 3.1: Datasets used in our experiments

m) - a(m,n)). Finally, it takesO(n + m) time to output the sets in the partition along with
the corresponding edges and recency values (Step 5). Thus thecasesrunning time of the
Heuristic G-CORE algorithm i® ((n + m) - a(m,n) + m - 3).

3.3 Evaluation

To evaluate our approach, we perform experiments on several simutadeca-world net-

works. Table 3.1 lists the real-world datasets used in our experiments.

3.3.1 Modeling Inter-Arrival Times

To apply the REWARDS model, we must estimate the distribution of inter-arrivabtameoss
each network edge. [11] suggests that inter-arrival times for comntigncfllow a power
law. In Figure 3.5, we plot the probability mass function (PMF) of intervairtimes for
several network edges in each of our datasets using a logarithmic binrdngdore. The
linearity of the distributions (on a log-log scale) indicates that this claim holdssaall of
our datasets, regardless of the communication medium. An interesting phesroisaeen in
the LBNL packet trace data, which appears to be the sum of two powettiaributions. We
hypothesize that two processes are being observed, one com@gptminter-arrival times of
consecutive packets in a single connection, and the other correspdodinter-arrival times
between connections.

Next, we consider several variants of the Pareto distribution, a powediribution com-
monly used for modeling real-world phenomena [74]. The Pareto distribigiparameterized
by two variablesx,,;,, the smallest value with non-zero probability density, andhich mea-
sures the peakedness of the distribution. The Bounded (or Trundzdesetp has an additional

parameter,,.., the largest value with non-zero probability density.
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Figure 3.5: IAT distributions for the 5 most active edges in each of ouisdtdan a log-log
scale. Linearity indicates that they obey a power law. IATs between [meka between
connections may account for the bimodal distribution in the LBNL dataset.

We compared the Pareto, Bounded Pareto, and Exponential distributiomefleling the
distribution of inter-arrival times along edges in the four datasets, usitigthe Maximum-
Likelihood Estimation and Mean Estimation techniques to estimate the distribution garame
and found that the Bounded Pareto Distribution using a Maximume-Likelihoptbagh consis-
tently out-performed the other models. Therefore, we use the Boundetb Rath Maximum-
Likelihood Estimation for all further experiments.

Using an upper-bounded model makes sense intuitively, since themequemtly practical
limits on the maximum time gap between consecutive communication along an edge. For
example, if there has been no communication between two people in 100 iyeaes; be
reasonable to assume that communication has ceased permanently. fEhéneboactice, if
the time elapsed since the last communication is greater than the estimated maximymwealue
designate the edge deadand omit it in computation. If, however, communication is observed
along an edge previously considered dead, we conclude that the estimatmoum value was

inaccurate, and include the edge in further computation with updated parasteteates.

3.3.2 Robustness to Time Scale

To evaluate the ability of the REWARDS approach to detect correlated aatdgrdless of
time scale, we perform a series of experiments on simulated networks. Fagiytine a
general procedure for simulating a communication network:

1. Generate a graph to represent the nodes and underlying relat®irsttip network.

2. Choose values for parameterand .
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Streaming Output from Parallel L-CORE Algorithm (All Vertices)
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Figure 3.6: Output from running the L-CORE algorithm on a simulated networderlying
graph generated by the R-MAT model with 128 vertices and averageeléér IATs for edge
activity sampled from Bounded Pareto distributions with- 1 and varying scale parameters.
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Figure 3.7: Same as in Figure 3.6, but zoomed in to highlight correlated aaivitjmes (a)
t =10, (b)t = 15, and (c)t = 40.

3. For each edgeu, u’), select a rate parametey, . indicating the frequency of activ-
ity, and generate a discrete-time sequengg,/) by simulating a renewal process with
inter-arrival times sampled from a Bounded Pareto distribution with shajaengter,

minimum inter-arrival timel /r(,, .., and maximum inter-arrival time- 1/7(,, ).

4. To simulate correlated activity across a set of edfjastimet, increase the rate param-

eter for each of the edges fhby multiplicative factors.

We use the RMAT model proposed in [17] to generate a graph with poweddgree dis-
tribution and small world characteristic. Then we select a rate paramgfer each node:
sampled randomly between once a week and once every ten minutes, andestoaianuni-
cation along the outgoing edges franwith rate parameter, .,y = r.. Every five days, we
randomly select a node to simulate correlated activity at 10x the usual rate for a duration of
five times the new minimum inter-arrival time. Figure 3.6 plots the output from tEORE

algorithm, the recency of outgoing activity from each node in the simulated nletwer time.
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Activity Rate vs. Recency Degree vs. Recency
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Figure 3.8: Correlation between (a) activity rate and recency, and bet{l@ size of neighbor-
hood and recency, over 1000 randomized trials.

That is, if nodeu has outgoing activity at timg there is a pointt, Rec,(t)).”

We observe a clear peak during seven of the nine 5-day periodsechimp of the data
confirms that each of those peaks indeed corresponds to the node witatsoineorrelated
activity during that period. However, some peaks are higher than othedssome are very
sharp compared to others which appear to be more gradual. In Figuree&Xamine several
of these peaks more closely, and find that they in fact have similar shajpehgpizontal and
vertical scaling.

While it takes longer for correlated activity to be recognized at nodes witkr@activity
rates, we observe that timeagnitudeof the peak seems to be indepedent of the frequency of
communication. We test this observation by performing an experiment with reB@@mized
trials. For each trial, we simulate a star network, randomly choosing the nuwhbetgoing
edges from the center nodeas well as the activity rate,. In half of the trials, we also
add correlated activity at 10x the normal rate. Figure 3.8(a) plots thetgatate r,, against
max; Rec, (t) for each trial. The Pearson correlation coefficient is 0.007 for the riGrotigity
and -0.019 for the correlated activity, indicating that there is no significamelation. This is
consistent with our claim thagecency is time scale invariant

Next we analyze the correlation betweenx; Rec,(t) and the size of the neighborhood
N~ (u). Since recency measures the unlikelihood that a burst of recent activitgs a set of

edges would occur by chance, we expect that a greater numberex @ity increased activity

"For clarity of visualization, all plots use log,,(1 — Rec), which scales the values but preserves their relative
ordering.
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Figure 3.9: ROC curves showing the trade-off between accuracyractsion for several cor-
relation detection methods, evaluated on simulated networks where eachasotié outgoing
neighbors, and (a) daily and (b) hourly normal activity rates. Theozesmetrics perform
almost identically to the corresponding weighted degree metrics, so arbavah s
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Figure 3.10: ROC curves showing the trade-off between accuracy@uision for several
correlation detection methods, evaluated on simulated networks with randodegeek dis-
tributions and activity rates. Our approach out-performs both the (a)ezlglegree and (b)
Z-score metrics.

would yield higher recency. Using the same set of 1000 trials as abowgetveePearson corre-
lation coefficient of 0.777 for normal activity and 0.980 for correlateiag. Note that in this
experiment a larger neighborhood yields more communication events in tathl resulting
in another recency computation. This sampling bias may account for the ategmsitive
correlation in normal activity. This effect is compounded by the presehcerrelated activ-
ity, as evidenced by the much stronger Pearson correlation and the aesaisimg trend in

Figure 3.8(b).
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3.3.3 Accuracy and Precision

We compare the accuracy and precision of the REWARDS approach ingdiistiing between
normal and correlated behavior with several baseline approacheslatet work. Given time
sequences corresponding to outgoing activity from a single source mexlconsider several
methods for detecting correlations in recent activity.

The first approach is based on the number of edges that have beenceli a designated
period of time: the more active edges, the higher the level of recent actiMitisg metric is
equivalent to the degree of the node in the corresponding summary. gia@lsecond approach
is based on the total number of communication events that have occuriad dyperiod of
time, and is equivalent to the weighted degree of the node in the summary. graptthird
and fourth approaches are based on [79], which suggests comailagtivity of a node or
subgraph to its past behavior. Instead of using the raw value of a mogerpy such as degree
or weighted degree, they compute the z-score of the value at tisiag the sample mean and
standard deviation of the values at times. ., ¢ — 1.

All of the four approaches require segmenting time into blocks to create syngraghs,
so we perform each of our experiments using a wide range of time block aie found that
the weighted degree-based metrics consistently out-perform the desged-metrics on all our
experiments, so we omit the degree-based metrics from the results.

In the first experiment, we simulate a network of 200 nodes, each with 1@iogtgdges
and normal activity rate of one event per day, for a period of one taghdays. For half of
the nodes we simulate normal activity, and for the other half we include incliderisecutive
hours of “correlated” activity at 10x the normal rate. We then consideathility of several
correlation detection methods to distinguish between nodes with normal aretbted behav-
ior. The ROC curve visualizes the trade-off between precision andamcUEach point on the
ROC curve indicates the false positive and true positive rates for ostbpothreshold value.
Note that since in this experiment all nodes have the same degree and aat®jtihe z-score
metrics are essentially scaled versions of the simpler degree-based ighted&legree-based
metrics, so are not shown.

Figure 3.9(a) compares the ROC curve for the L-CORE algorithm with tlooskd weighted
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degree approach. We observe that the weighted degree-based nitstricday time blocks
performs exceedingly well here, since it is specifically tailored to deteotleded activity that
occurs on a daily time scale, followed closely by our REWARDS-basedappr The 1-month
and 1-hour time blocks yield moderately good results, whereas the 1-minute ltoies lare

too fine-grained to capture correlations at the daily time scale.

Figure 3.9(b) shows results for a similar experiment, except with a norrtigitacate of
one event per hour, and correlated activity at 10x that rate for agefibalf an hour. Here
we observe that the weighted degree-based metric with 1-hour time blocleves perfect
accuracy and precision, with L-CORE falling in a close second place.nTétbod based on
1-day time blocks, which performed the best in the previous experimentsyielg mediocre
results; 1-month time blocks are too coarse to detect correlated activityhetualy rate; and
1-minute time blocks are again too fine-grained.

Next we move on to a more realistic setting, where nodes may have diffargriiers of
outgoing edges and activity rates. For each trial, we select the degthe nbde randomly
between 10 and 100, the normal activity rate between once a minute ané\@rge30 days
(using a logarithmic distribution to encourage sampling from the full range ofssakes), and
correlated activity between 5x and 10x the rate of normal activity. We coenpith both the
raw weighted degree metrics and the weighted degree z-score metrics i Bi@0. Since
the degree and activity rate of the nodes can vary, the raw weightedealeggtrics are highly
skewed towards nodes of high degree and high activity rate, which éctredl in the results,
performing not much better than random chance. The z-score metricsrpdretter, but their
high accuracy and precision for specific time scales is compromised by tdwgipprformance
at others. The time scale invariance property of our REWARDS-bagwdagh makes ibbust

to variations in temporal dynamicgielding high performance across the board.

3.3.4 Detection Latency

One important goal in real-world correlated event detection is minimizing the tione When
correlated activity occurs to when it is detected. We compare the detectioeyatéthe L-
CORE algorithm with that of the GraphScope algorithm, which creates summaphgand

then detects times at which there is significant change in the graph stru@ijwre [



39

Change Detection in the Enron Corpus
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Figure 3.11: The L-CORE algorithm vs. the GraphScope algorithm (usimgek time blocks
as in [91]) for the ENRON dataset.

Figure 3.11 shows the results of both L-CORE and GraphScope on th©ENRtaset.
First, we notice that peaks in the L-CORE output largely coincide with highkreg from
GraphScope, indicating that the two methods are identifying similar changestvionk be-
havior. Furthermore, the peaks in the L-CORE output consistpntigedethe corresponding
spikes in the GraphScope results. The time segmentation approach empl¢géfrimeans
that up to a week may pass before network changes are reflected inalisignvhereas our

approach based on the REWARDS model can detect changes as sben ascur.

3.3.5 Scanning Activity in IP Traffic

Anomaly Detection in LBNL IP Traffic
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Figure 3.12: Output from the L-CORE algorithm, total network volume, andlébscanning
activity over time. Note the different scales for total volume and scannitigtgic

The LBNL dataset was collected by monitoring network flows for IP trafficaolarge
enterprise network for a period of one hour starting at 11:42am onrbleeel5, 2004 [77].
LBNL researchers then labeled as “scanning activity” any time a singlesa@ontacted more

than 50 distinct IP addresses in ascending or descending order/lassveetivity from two
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known internal scanners.

Figure 3.12 shows the output from the L-CORE algorithm — the recendy 16f addresses
over time, as well as the total number of packets sent in each minute and themointihose
packets that were labeled as scanning activity. We note that spikes mrsgactivity do not
necessarily coincide with spikes in total volume, and that scanning activiguats for less
than 2% of all traffic even at its peak (thus we use two different axis sdatevisualization
purposes).

The times with the highest peaks in the L-CORE output are 11:56:21 AM, 12:ENIL8
12:25:35 PM and 12:32:32 PM. Three of those immediately precede peakgliedazanning
activity at 11:57, 12:13, and 12:33 (reflecting the difference in detecti@mdg), but 12:26
does not stand out in terms of total network volume or scanning activity. fecltmok at
the data reveals that in the three seconds between 12:25:33-12:25:35nfMhane with IP
address 128.3.204.42 sent packets to over a hundred distinct IBsesireesulting in 160 of
its 214 incident edges having recency values above 0.984. This wéahbetéd as scanning
activity by the LBNL researchers because it did not satisfy their critesfagoing through IP
addresses monotonically.

On the other hand, the biggest spike in labeled scanning activity, at 1RQ%&s not
reflected in the L-CORE output. Looking at the network trace, the majoritybefiéal scanning
activity overall (over 70% of it) comes from two IP addresses, serving@and NBNS requests,
respectively. Comparing the period of greatest labeled scanning ad®@8/ packets from
12:06-12:07 PM) with that of the least (189 packets from 12:38-12:39 Ridje than 500 of
the roughly 700 additional packets can be attributed to increased actithity BNS and NBNS
servers during that minute, but still with no more than 10 requests servey igiveen second.
While that does cause an increase in recency at the correspondieg, tioel effect is weaker

than for other scenarios with more sudden changes in behavior.

3.3.6 Physical Proximity

The BLUETOOTH dataset consists of communication logs collected frontd0@Bluetooth-
enabled mobile devices carried by MIT students and faculty between Sept@6y and June

2005 [28]. Each mobile device conducted periodic scans for othebydarices (with a range
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L-CORE Algorithm on the Bluetooth Dataset Days 90 (Saturday} - 99 (Monday) Days 92 (Monday) - 94 (Wednesday)

Figure 3.13: Output from running the L-CORE algorithm on the BLUETOG¥dtaset, the
recency of all vertices in the network.

of about 5 meters), and recorded the times and device IDs. We cleargataite consider only
the times at which another device initially came within Bluetooth range, and to igoosec-
utive occurrences until the device next became out of range, exneg distinct “encounters.”

Figure 3.13(a) shows the output from the L-CORE algorithm, the receheayl mobile
devices over the duration of the study. Figure 3.13(b) zooms in on ayl@4daow with the
largest spike. We can see that the detected correlated activity has tlesthiglensity over a
three-day period from Monday to Wednesday, and then lessens dhgsgo we further zoom
into that time zone in Figure 3.13(c). Matching these dates to MIT’s academeicdza from
the 2004-2005 academic year, we find that they correspond exactlylasttieree days of Fall
semester classes.

Since the above output from the L-CORE algorithm only looks at the nergiolds of
individual nodes, we turn to the G-CORE algorithm to give us a better statating of the
kind of interactions that are responsible for the correlated behavioard-§y14(a) visualizes
the output from the G-CORE algorithm at 6pm on day 93, around the geakrelated activity
as indicated by the L-CORE results above. We see a giant componennaugtzearly half
of the nodes, with many recent pairwise communications. In contrast, watdbk G-CORE
output on a “normal” day, at 12pm on day 100. While the component with kigiwerelation
contains roughly the same number of nodes, there seems to be a significaetiyinsity of
recent communication than on day 93. In fact, examining the recency Jahtbe components
of interest indicates that the degree of recent activity exhibited on dag 8®re than one

million times less likely to occur by chance than that seen on day 100.
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Figure 3.14: Visualization of output from running the G-CORE algorithm enBluetooth
dataset at (a) 6pm on day 93, and (b) 12pm on day 100.

3.4 Discussion

3.4.1 Extensions and Applications

The L-CORE algorithm permits streaming analysis, but is limited to detecting ceedativ-
ity from a single node. The G-CORE algorithm considers more genergfapb structures,
but may not be efficient enough for streaming analysis of large red8wetworks. It may
be possible to achieve the best of both worlds, however, by channeérgutput from the L-
CORE algorithm to global algorithms based on the idea of distributed triggéfsAcentral
server would choose the sensitivity threshéltbr the L-CORE algorithm and disseminate it
to all nodes in the network. Each node would independently monitor its owvitgcélerting
the central server only when the recency of its outgoing activity exciredthreshold. More
sophisticated methods could then be used to analyze the flagged activiexdaimple, per-
forming graph algorithms on the subgraph consisting of only those nodesdges that have
been flagged in the past, or dynamically maintaining a sparse data struathrassaminimum
spanning tree [43]. In this way, the REWARDS approach can be usedampling mechanism
to permit more computationally intensive network analysis methods that othenwidd be

infeasible on large networks.
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With minor modification, the L-CORE and G-CORE algorithms can also be applied to
address other network and cyber security challenges. Instead of ¢pakivutgoing edges, a
node could compute the recency focomingcommunication. This could be helpful in early
detection of synchronized activity controlled by a botnet, such as a digtdienial-of-service
attack. In another setting, neighboring nodes can cooperate to debectlanis behavior at a
node that has been compromised. Alternatively, our algorithms could déardault detection
by modifying the recency formula to test fotack of recent activity.

In some real-world contexts, message content and other meta-data magibeaeailable.
In such cases, our approach based on temporal dynamics could bleowmnfed with existing
techniques that leverage textual, geospatial, or other node or messHuysesstr

Finally, the REWARDS approach could be generalized to model multiple-retipmails,
public broadcast messages, or bipartite network structures such asuersin many recom-

mendation systems, and to accommodate diurnal patterns or other global trend

3.4.2 Limitations of Our Approach

Since the REWARDS approach measures recency relative to the prémieusrrival times
of communication activity, our statistical test for correlation will only be dffecif the time
lag between correlated activity is small compared to the inter-arrival timetheloontext of
computer network security, for example, with enough foresight a peafeacker could, from
the beginning of its existence, establish a pattern of behavior through wiatbious activ-
ity could easily be concealed. For example, if a bot master were to sendnfegsages to
all infected hosts in a botnet every minute, it would be easy in the future sdbast com-
mands undetected. A similar problem is caused by denial-of-service attaok$P addresses
that have never appeared before and thus have no previously dstdhldishavior to which to
compare.

Another limitation is due to approximating the inter-arrival time distribution. Fomexa
ple, maximume-likelihood parameter estimation for the Bounded Pareto distributiensgise
to changes in the minimum inter-arrival time. The results from the L-CORE a@DRE
algorithms may also be misleading in cases where the real inter-arrival timidwtistns do

not follow a power law. These limitations may be mitigated by using a more flexibleboist
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distribution model. Moreover, we note that these are practical issueéispethe implementa-
tion of the inter-arrival time distributions, rather than a theoretical limitation oRE¥VARDS
approach itself.

A broader limitation is that the REWARDS model does not capture temporalboptema
such ashurstinessand memory which are present in some real-world systems [34]. This is
inherent to the approach of modeling activity as being generated by atpeacesses, for
which inter-arrival times are identically and independently distributed. Twess this, more

general stochastic models would need to be employed.

3.4.3 Significance and Impact

In this work, we first presented the REWARDS approach, which modelsonketmommunica-
tion between each pair of nodes as a renewal process, and defioédraaf recency that is
invariant to changes in time scale, addressing the time-scale bias causeghignsing time
into discrete blocks. To our knowledge, it is the first such solution prexgbosthe literature.

Next, we proposed statistical methods to measure correlation in recerityaativong a
subset of nodes in a network, and developed two efficient algorithmsdotderrelated events:
L-CORE, a streaming algorithm which monitors outgoing activity from a singteenand G-
CORE, a global algorithm which can detect correlated activity in dispaeate pf the network
simultaneously.

A strength of the REWARDS approach is that it only requires informatiomngthe times
of communication, and does not rely on message content. This makes it jgalgiaseful for
applications in which message content may be unavailable or encryptetieardata privacy
is a concern.

Our approach is also well-suited for interfacing with a human analyst. Both-tB@RE
and G-CORE algorithms explicitly output the set of events that constitutesiesteimce of
correlated activity, along with the recency value which indicates the straxigtie correla-
tion. This can guide a human analyst in selecting and prioritizing nodes amisefor deeper
scrutiny.

Correlated event detection is just one application of the REWARDS modeln@et ap-

proach to representing and analyzing activity in event-driven netwaldsl also be leveraged
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to capture long-term patterns of correlation and dependence betweszspes, leading to po-
tential uses for studying information diffusion and influence in networks eplore these and

other directions for future work in Chapter 6.
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Chapter 4

Discovering Functional Communities

4.1 Introduction

4.1.1 Background and Motivation

Many networks can be seen as an interface between individuals atehtorhich may be
material or conceptual. In social media, content is shared by individuatsanidience that has
subscribed to received it, or is otherwise made publicly accessible. Soméertt examples
are web logs (blogs), internet forums, and the microblogging service Twittether contexts,
individuals publicly endorse companies, products, artists, or audioided ¢ontent that they
like. Examples include Amazon.com, YouTube, and Facebook Pages.

Such relationships can be represented as a matrix with rows corresgondidividuals in
the network and columns corresponding to content, as in Figure 4.1. A& dectangular block
in the matrix indicates &unctional communitya group of individuals who share or endorse
common content. For example, if the matrix represents a restaurant recoatioanmobtwork,

a functional community could consist of lovers of Italian cuisine along with fagorite Italian
restaurants.

However, since the order of the rows and columns of a matrix are arhiftargtional
communities may not be readily apparent as contiguous blocks. Rathdviciumster— a pair
of row and column subsets — could form a functional community. Furtherrmaligiduals may
have multiple interests and therefore belong to more than one community. Effi¢eealso a
concern, since real-world networks may contain many individuals and dtiatigict pieces of
content.

A task known asco-clustering— simultaneously permuting and clustering the rows and

columns of the matrix — can facilitate the efficient discovery of dense bickjsiad allows for



47

Rl RZ R3 R4— RS R6 R7 RS R9 RlO Rll R12

Alice
Bob

Cheng

Devika

Elina

Figure 4.1: A matrix representing relationships between individuals anémoin a network.

multiple community membership. We seek an algorithm that does not rely on dopegiiis
knowledge or data-specific parameters so it can be easily applied to & \@frieetworks.

Before presenting our own approach, we provide a survey of relebekl

4.1.2 Related Work

There is a significant amount of related work in the data mining, machine Igaihtabases,
and bioinformatics literature — each motivated by different applications @hdhiferent goals
in mind. These tasks may be variously referred to in the literature as corahgstaiclustering,
two-mode clustering, or matrix block partitioning.

In bioinformatics, biclustering algorithms have been developed to find patiergene
expression [71, 93, 30]. A matrix is constructed where each row is @ ga&th column is an
experiment under different conditions, and each entry indicates thiedieggpression of that
gene under those conditions. Matrices are dense and real-valuetheagdal is to identify
genes that behave similarly, demonstrated by expression levels that bamstant, linear, or
multiplicative relationship across similar experimental conditions. Due to thatgerighe
matrices and the more intricate bicluster structure desired, algorithms in this dmélito
find only one bicluster at a time, and efficiency concerns frequentlyicetteir use to smaller
datasets.

Algorithms for finding structure in matrices can be used to improve the efficiefrdatabase
storage and querying. Navathe et al. address the problem of vewit&igmning of a database,
which groups attribute columns that frequently need to be accessed tojg&hévuthukrish-

nan et al. consider the problem of rectangular partitioning of a matrix, paitiicthe matrix
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into a set of rectangular tiles without permuting the rows or columns, whictefsiu®r main-

taining multi-dimensional histograms [72]. They consider a variety of evakiatietrics, and
give heuristics and complexity theoretic results for several related optinmzatablems. For
the applications we are interested in, row and column permutations are allancdre fre-
guently necessary to discover latent structure.

Co-clustering has also been found to improve upon standard technaqueadtering uni-
partite data. Such approaches entail first computing a similarity matrix, a symmegtiéce
matrix indicating the similarity of each pair of points in the dataset, to which co-cingtel-
gorithms are then applied. A similar approach can be employegrémh partitioning where
the goal is to cluster the vertices in the graph so that there is a high densityex within clus-
ters and few edges going between them, a task which has applications to cityrofisgovery
and parallel computing for graph algorithms. Here, co-clustering algoritimogd be applied
to the adjacency matrix.

In these scenarios, co-clustering is performed on a square matrixe wieerows and the
columns represent the same set of objects. The desired result is a pagditibrthe objects,
which corresponds to block diagonalstructure in the matrix, like that seen in Figure 4.2(a).
Numerous algorithms to achieve this have been proposed in the literatuckdrakseear alge-
braic techniques such as singular value decomposition, referred tdlypesspectral cluster-
ing [70]. Further works have suggested algorithms which permit a slightly maerergematrix
structure, such as block diagonal with overlap [50], block tridiago8@l, [or rectangular ma-
trices [56]. In some domains, however, matrices arise with more varied btooktures, such
as that in Figure 4.2(b), which would not be captured well by these methods

Another approach is to first define a metric over co-clusterings, andsiench for a co-
clustering which optimizes the metric. Dhillon et al. define a metric based on mutaahia-
tion [25]. Their algorithm optimizes the metric subject to a constraint on the nuoflbew and
column clusters. On the other hand, our approach is parameter-fegehisg over partitions
with varying numbers of clusters and implicitly determining the number of clustats/ilds

the best result.
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Figure 4.2: Two matrices with clear block structures. Spectral clusteringotetire suited
well for block diagonal matrices like that in (a), but less so for matrices like ith (b). The
dashed lines suggest a good co-clustering.

Chakrabarti et al. follow a similar approach, but are motivated by the taslatrix com-
pression, and proposmcoding cosas a metric, the number of bits required to represent a ma-
trix [16]. They present the Cross-Association algorithm, a heuristic faliffig a co-clustering
with minimal encoding cost, incrementally increasing the number of row or collostecs
until a local optimum is reached. It is parameter-free, a strength oveoagmes which require
the number of clusters to be known in advance. However, the efficidribtgio algorithm de-
pends on quick convergence to a small number of clusters. This mayeogiedffor achieving
their objective of a good compression ratio, but may run contrary to calrafdinding dense
biclusters, especially in the case of very large and sparse matrices. riotbewe found that
in practice, since the algorithm alternates between refining the row and colustars instead
of doing both simultaneously, it may get stuck at a local optimum because migighews nor
the columns alone can sufficiently distinguish clusters. A simple example of thimatra
where all rows have the same density, and likewise for the columns — thélahgevill never

progress past a single row and column cluster.

4.1.3 Contributions and Outline

Our contributions can be summarized as follows:

e Two intuitive properties of co-clustering metrics that aim to reward largeselbiclusters
e A class of metrics which uniquely satisfy those properties among known metrics
e The CC-MACS algorithm, an efficient heuristic algorithm to find a good cotefuyy of

anm x n matrix inO (N - max (log(mn), log? (%2))) time, whereN is the number of
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non-zeros in the matrix

In this work, we break away from the traditional mindset that a good csteiling must
consist of a small number of clusters. While it may be true for applications asanatrix
compression that “fewer is better,” in the context of community discovetyshmet necessarily
the case. Instead of having a small number of very large blocks, CCS/&ay return a
co-clustering with hundreds or thousands of blocks, among which will &ednse biclusters
corresponding to functional communities. To our knowledge, this idea &l tmwour approach,
and allows us to out-perform techniques based on low-dimensionabap@tions or requiring
the maximum number of clusters to be specified in advance. The CC-MACSthigas also
designed to leverage the sparsity of many real-world datasets, running isub¥leear in the
size of the matrifor sparse matrices.

In particular, our methods have the following benefits over previouslyqgaegapproaches:
(1) the dense biclusters in the matrix need not have a block diagonal s&u@)our algorithm
explores the breadth of the search space rather than getting stuck afitices; (3) the results
are not dependent on user-specified parameters; and (4) ouitfaly sub-linear in the size
of the matrix for/N < mn, making it extremely efficient for large, sparse datasets.

In Section 4.2.1, we give preliminary definitions and the framework for ppr@ach. Sec-
tion 4.2.2 addresses the question of choosing an appropriate metric. ¥éafiiee CC-MACS
(Co-Clustering via Maximal Anti-Chain Search) algorithm in Section 4.2.3 aralyae its
running time in Section 4.2.4. In Section 4.3, we evaluate our approach wigtiggnts on
synthetic and real-world datasets. In Section 4.4, we conclude with disouwdghe strengths

and limitations of our approach, the significance of our work, and direxfianfuture work.

4.2 Methodology

4.2.1 Preliminaries

Let M be anm x n matrix. A biclusterof M is a subset of matrix entries formed by the
intersection of a set of rows C [m] and a set of columng C [n], and is denoted by/; ;.
We define the weight of a biclustét = M; ; to bew(B) = 3, ;c; M ;; the areau(B) =

|I| - |.J|; the semiperimetes(B) = |I| + |.J

; and the densityl(B) = w(B)/a(B).
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Figure 4.3: Two biclusters in a matrix.

Figure 4.3 shows two different biclusters in the same matrix. Biclusies arguably better
thanB; since it is the same size but more dense, indicating a stronger associati@eiébhe
corresponding rows and columns.

Let 5(M) denote the set of all possible biclustersidf A bicluster partitionof M is a
set of biclustersI C (M) such that each element; ; is contained in exactly one bicluster.
Co-clusterings the data mining task of simultaneously clustering the rows and columbs of
which naturally corresponds to a bicluster partition\éf

Our approach consists of two main components: (1) define a quality metrimdaoister
partitions; and (2) find a co-clustering that maximizes the value of the metri@addfess each

of these tasks in the following sections.

4.2.2 Choosing a Metric

Here we consider metrics to evaluate the quality of a bicluster partitiobiclister partition
metric 1 is a mapping from bicluster partitions to real values, igI1) € R wherell is a
bicluster partition.

A variety of bicluster partition metrics have been proposed in the literaturéedide which
are most appropriate for our context, we first suggest two desirafpepies, motivated by our
goal of identifying large, dense biclusters. Figure 4.4 gives motivatiagnges of properties

P1andP2

(P1) Merging a positive-weight bicluster with a zero-weight bicluster de@gdse value of

the metric.
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Figure 4.4: Examples illustrating properties ) and (b)P2.
(P2) Merging two non-empty biclusters of the same density increases the value roftiic.

We now propose a class of metrics that satisfy both properties:

a 2
{ua(ﬂ) => s((ll?%)) d(B)* o> 0}

Bell

The intuition is that the first term favors larger biclusters and the secondftafors denser
biclusters, so overall the metric favors partitions containing biclusters thdiaih large and
dense. The value of the parametecan be used to balance the trade-off between size and

density of the biclusters.
Theorem 4.1. For all & > 0, p,, satisfies property1.

Proof. Consider two bicluster$s; and B,. For B; U B, to also be a bicluster, it must be
that B; and By share either the same set of rows or the same set of columns. Without loss of
generality, suppose they share the same setroivs; then their column sets must be disjoint.
Let w(B;) = w; andw(Bs) = 0, and letB; and By havec; andce columns, respectively.

Table 4.1 gives several values used in the computatiqun, of

Bicluster || Weight Area Semiperimeter
By w1 - Cl T+
By 0 - Co T4 C2

Bi U By w1 r-(cr+e) | r+ec+e

Table 4.1: Values used in the proof that satisfies P1.
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We want to show:

2 » QMa({Bh 3222 pa({B1 U B;}) .
(re1)” (wl> L (re)” (0> L (rlate)” < wy ))

V

T+ rc1 T+ Co rc1 r+c1+co r(cl + c2
(7“61)2 w1 2o (T(Cl + Cz))2 w1 2o
7‘—|—cl'(7‘01> - r+c1+co '<T(C1+02)>
w12+a w12+a

—a >
(r+c1)(rep)” (r+c1+c2)(r(cr + )
(r+ci+ec)(r(cr+c) > (r+ec)(re)”
Each consecutive statement is true if and only if the preceeding statememe isytrsimple
algebraic manipulation, and the last statement is true since 0 anda > 0. Therefore yu,

satisfies properti? 1. Ol
Theorem 4.2. For all a > 0, u,, satisfies property2.

Proof. Consider two bicluster®3; and B;. For B3 U B, to also be a bicluster, it must be
that B3 and B, share either the same set of rows or the same set of columns. Without loss of
generality, suppose they share the same setrofvs; then their column sets must be disjoint.
Let d(Bs) = d(B4) = d, and letBs and B, havecs andc, columns, respectively. Table 4.2

gives several values used in the computatiop of

Bicluster || Density Area Semiperimeter
B3 d T C3 r+ c3
By d r-cy T+ cy

Bs U B, d r-(c3+cq) r+c3+cy

Table 4.2: Values used in the proof that satisfies P2.

We want to show:

ta({Bs, Ba}) < pa({BsU Ba})

(7"03)2 . d2+0¢ (TC4)2 . d2+a

N _ (r(cs +c1))* 2
r+c3 T+ cCq r+c3+cy
ot el _ ()
r+c r+cy r+c3+cy
c32(r +cq) +ca®(r + c3) - (cs+ 04)2
(r+c3)(r+cq) r 4 (c3+ ¢q)
r(c3? + c4?) + czca(cs + ca) (c3+ cq)?

<
2 4+ r(c3 + cq) + c3c4 r+ (c3+ ¢q)
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(7’(032 + 642) + c3eq(es + 64)) (r+(es+cr)) <

((03 + 64)2) - (r* 4+ r(c3 + c1) + csca)

12 (e3 4 c4?) + 1r(es + ca)(e3® + eseq + ea?) + cseales + ¢4)? <

T2(63 + 64)2 +r(cs+ 04)3 + czeq(es + 64)2

7“2(632 + 042) -+ 7“(03 + C4)(632 + c3cq4 + 642) + 0304(63 + 04)2 <

7“2(032 + 2c3c4 + 042) +7r(es+ (:4)(632 + 2¢3¢4 + 042) + cgeq(es + 04)2

0 < 72%(2c3¢q) + r(cg + ca)(czeq)

Each consecutive statement is true if and only if the preceeding statememe isytisimple
algebraic manipulation, and the last statement is true singecy > 0. Thereforeyu,, satisfies

propertyP2. n

We now examine which of these properties are satisfied by several psgvjmroposed and
baseline metrics in Table 4.3. That none of the previously proposed metdosireed here
satisfy both properties does not imply that they are bad metrics. Rathenvdreyproposed
with different objectives in mind. Properti€sl andP2 were motivated by our goal of finding
large, dense biclusters. Other objectives could be optimal compressiba pfatrix (inverse
encoding cost) or non-uniformity of densities of the biclusters (Kullbaigbler divergence

from uniform).

Metric P1| P2
Inverse encoding cost [16] R4
Kullback-Leibler divergence from uniform v* | —
ZBeH w(B) i
ZBeH d(B) v -
>_penw(B) - d(B) - |V
> pen(a(B)?/s(B)) - d(B)*** i

Table 4.3: Properties satisfied by several metrics.

We note that our proposed metrics take the forig; f(B), wheref : 3(M) — Ris

a function of the weight and dimensions of a bicluster. Pheoperator is both commutative
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and associative, so our metrics can be computed by combininfrtiadues for the biclusters
in any order. In the next section, we leverage this property to develog efficient algorithms

to find good bicluster partitions.

4.2.3 The CC-MACS Algorithm

We now present the CC-MACS (Co-Clustering via Maximal Anti-Chain S®aatgorithm,
which efficiently searches for a good co-clustering according to angivetric. We first note
that the total number of possible co-clusterings ofrar n matrix is exponential in the size of
the matrix (the product of thexth andnth Bell numbers), so an exhaustive search is infeasible.
Our strategy for overcoming this computational challenge is to first build tvaethe rows
and columns, respectively, and then to consider only co-clusteringsspanding to maximal
anti-chains in the trees.

A maximal anti-chairof a rooted tree is a maximal set of nodes in the tree, none of which
is a descendant of any other. For example, the blue nodes in each afabéntiFigures 4.5(c)-

() form a maximal anti-chain. Note that the subtrees of the nodes in a maxiriaiheamn
correspond to a partition of the leaves of the tree. Therefore any paiaximal anti-chains of
the row and column trees, respectively, corresponds to a co-clustéring matrix.

This is still a computational challenge, however, because ther@ @' maximal anti-
chains in a complete binary tree withleaves. We employ a heuristic to find the most likely
candidates by traversing the row and column trees simultaneously, starting labves and
greedily merging the nodes that result in the greatest increase in the métiec ¥gure 4.5

illustrates an example run of the CC-MACS algorithm. Pseudocode is givelyorithm 4.1.

4.2.4 Complexity Analysis

Consider amn x n matrix containingV-non-zero entries. We first make the following claim

about the running time of Step 4 of the CC-MACS algorithm.

Theorem 4.3. The arraysiV and F' populated in Step 4 of the CC-MACS algorithm contain

O (N -log?® (™)) non-zero entries.

Proof. Let M denote the original matrix, and I&°” and7* denote the k-d trees constructed
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Figure 4.5: lllustration of the CC-MACS algorithm. Figure (a) shows an exammatrix as
input to the algorithm. Figure (b) shows the same matrix permuted to reflect dhedes
constructed in Steps 2 and 3. The maximal anti-ch&ii¥¥ and.S<® are indicated by the blue
nodes, initially set to be the leaves in Step 5 (Figure (c)), and dynamicalgtegduring the
loop in Step 8 (Figures (d)-(g)). Figure (h) shows the co-clusteritey #fie final iteration of

the loop, whenS™* and S°° are the roots of the trees, corresponding to the single bicluster
consisting of the entire matrix. Figure (i) shows the result of the CC-MACSrihgn, the
co-clustering that was found to maximize the metric value, indicated by the rexd line
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Algorithm 4.1 The CC-MACS Algorithm (Co-Clustering via Maximal Anti-Chain Search)
Input:  Anm x n matrix M and a bicluster partition metri¢(Il) = @z ; f(B), whered

is a commutative and associative binary operator, an@ (M) — R is a function of the
weight and dimensions of a bicluster.

Output: A co-clusteringll of M.

=

9:

10:
11:

Initialize partitionsIT™*® andII° to be the sets of singletons of the rows and columns of
M, respectively.

Construct a-d treeT"°" over the vector sums corresponding to row clusterBliff”,
after first applying a random projection, as in [49]. &7 ") denote the set of leaves of
T, and letl,, C [m] denote the indices of rows in the subtree rooted at noder*.
Construct a-d treeT°° over the vector sums corresponding to column clustef$fh,
similarly to above. Letl(7°') denote the set of leaves &F, and letJ, C [n] denote
the indices of columns in the subtree rooted at npdeT "'

Populate a two-dimensional arrdl/ indexed by nodes ifi™*” and 7, respectively,
where entryi/ [z, 3] is the number of non-zeros in the biclusléy, ;,. From this, populate
another array* of the same dimensions, containing valugs, y| = f(Mjy, s, ).

Let S™ov, S7o% and S, S¢° be maximal anti-chains ov@r ™ and7°°, respectively.

max max
Initialize them asS™*w = Srow = [(Trv), §° = 8%l = L(T<).

Maintain the current and maximum metric valugs,,» and,.., and initialize them for
the partition corresponding to the curredit® x Se°.

Maintain a max heag ™" containing only nodes € T7°* such that bothz .LEFT
andz .RIGHT are in.S™*, with priorities h™*(z) = 3 e Flz,y] — flz .LEFT,y] —
flz .RIGHT, y], the marginal value from including in a maximal anti-chain instead of its
children. ConstrucEH similarly.

While at least one off"* and H** is non-empty (without loss of generality, suppose
that H™" .max Priority() > H .maxPriority()):

Update the dynamic data structures and variables:
o 1+ H"™" . deletemax();
e STOW ¢ GQTOW L 4 — 1 LEFT —2 .RIGHT;

® [fleyrr < Meurr T hrow (3«')1
e Updateh<!(y) for eachy € H,

If z .SIBLING € S™", thenH"*".add(x .PARENT);
If ficurr = tmaz, PErfOrm the following updates:

® lmaz < Heurrs

rTow TOW «
o S0 — STV,

UpdatelI™® andII* to be the row and column partitions corresponding to nod&&4y.
andSc. ., respectively.

Repeat Steps 2-9 using the updafBd® andII®. Continue while at least one is updated.
ReturnIl = II"°% x II¢”, the co-clustering formed by the intersectioBP* andII¢®.
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on the rows and columns, respectively. For a pair of nades7" andy € 7, the array
entry Wz, y| (and therefore alsé'[x, y]) is non-zero only if the biclustei/;, ;, has at least
one non-zero entry.

Let 7T; denote the set of nodes in levedf treeT". The critical observation to make is that

forall y € T,

{z e T/ : Wz, y] > 0} < |[{z € T}{Y : Wz, y] > 0}

< Wz e L(T): W(x,y] > 0}]. (4.2
The first inequality follows from the fact that
Wiz, y] >0 = Wiz.left,y] >0 or Wz.right,y] >0,
and the latter by induction. We also have the trivial bound
{z € T/ : Wlz,y) > 0} < {z € T7""}| = 2" (4.2)

When less than half of the nodes € T;?}" have W [z,y] > 0, then bound 4.1 is better;
otherwise, bound 4.2 is better. The following analysis finds the optimal lewdiiah to switch,
yielding a bound on the overall number of non-zero entries.

Suppose we use bound 4.2 for the {6pevels of T7°", and bound 4.1 for the remaining

log (m)—1* levels. Then we have the following bound on the number of non-zero satiess
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all nodes inT"°* and all leaves if¢!:
H(w,y) eT x L (Tc°l> Wiz, y] > OH

- i H(x,y) €T/ x L <TCOZ> : Wiz, y] > O}‘
=1
log(m)

+ Z H(a:,y) eI/ x L (TCOl) Wiz, y] > 0}‘
I=1*+1

-
= > Y HreT:Wry >0}

=1 yeL(Tcol)
log(m)
+ > {z € T/ : Wz, y] > 0}|
I=l"+1yer(Teol )
log(m

I* )
Yoo 2+ ) Y KreL(T): Wia,y) > 0}

=1 yeL(Tcol) I=l*+1 yeL(Tcol)

IN

(by bounds 4.1 and 4.2 above)

yeL(Teol) =1 I=l1*+1

= n- (21*+1 - 1) + (log (m) —=1I")- N

To get the best bound possible, we optimize dvelVe set the derivative of the above expres-

sion equal to 0 to find the critical values:

d
dl*

(n. (2”“ - 1) + (log (m) — I*) - N) —n- 2" n(2) — N =0

:>l*—10 L
-8 2-In(2)-n

This minimizes the function, giving an optimal bound of

H(x,y) eT™ x L (TCOZ) : Wiz, y] > OH

< n-<2-2.m]2;)'n—1>+log<2'm(;)'ml>w

- hﬁ;) mn N -log (W)

- o ().

This gives a bound on the number of non-zeros across all nodés'i but only the leaves

in 7<°!. An analytical approach analogous to that applied for the row nodesamplies for
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the column nodes as well, giving a final bound across all nod&& and7°°:

H(:ﬂ,y) e T x T : Wz, y] > OH =0 (N-log2 <%)),

as desired. O

In fact, we note that the bound in Theorem 4.3 is tight.

Theorem 4.4. There exists a constantsuch that for allm,n, N < mn € N, there exists an
m x n matrix M with N non-zero entries for which the corresponding aridy contains at

leastc - N - log” (%) non-zero entries.

Proof. For simplicity, assume that = /"% is an integer. Consider the@ x n matrix M

constructed as follows:

1 if i =0 (modd) andj = 0 (modd)
Mij =

7

0 otherwise

First, we note that/ hasz - & = \/@ % = N non-zero entries. Next, consider a
nodez € T}, wherel* = log (m) — log (d). The subtree rooted athas heightog (d), and
therefore containg!°s(9) = { leaves. By construction, exactly one of those leaves corresponds
to a row with non-zero entries, so we have a bijection from non-zeroddaveon-zero nodes
in each of levels/i%7 1 1.+ - Tiog(m)—1- (If d is not an exact power of 2, the analysis is

still accurate to within a factor of 2.) Summing over all leayes L (TCOI), corresponding to

columns of M, we have that

H(;U,y) eT x L (Twl> : Wiz, y] > OH
log(m)

> Z H(m,y) eI/ x L <Tc"l> Wiz, y] > OH
I=log(m)—log(d)

log(m)

= > H@weraenyxo(T) s wiwy > o]
I=log(m)—log(d)

—log (d) - [{(w,y) € L(T™) x L (T*") : W[z,y] > 0}

=log (d) - N (corresponding to th& non-zero entries if/).
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This counts the number of non-zeroshin across all nodes i, but only the leaves in

T°!. Similar analysis to that above gives a final bound across all node¥thand7<*:

H(a:,y) €T x T : Wz, y] > OH > N -log? (d) = N - log? (%),

as desired. O

We now proceed to analyze the running time of the entire CC-MACS algorithm.

Step 1, initializing the partitions, take3(m + n) time. Them rows can be projected
onto alog(m)-dimensional space i® (N logm) time, after which the k-d tree on the rows
can be computed i@ (m logm) time; likewise, then rows can be projected ontoleg(n)-
dimensional space i@ (N log n) time, after which the k-d tree on the columns can be computed
in O(nlogn) time; so Steps 2 and 3 tak& NV - (logm +logn)) = O(N log(mn)) time total.
Using dynamic programming, the arralis and F' in Step 4 can be populated in time linear in
the number of non-zeros in the resulting arrays, whia {sV - log® (%)) by Theorem 4.3.
Step 5 isO(m + n), and Step 6 iD(N). Computing the priority values in Step 7 takes
O(N) time. Inserting and deleting the elements in the row and column heaps in Stepkes-8 ta
O(mlog m—+nlogn) time total since each node is inserted and deleted at most once. Updating
he°l(y) in Step 8 take®)(log n) time for eachy € H*, which is performed for each iteration
of the loop where an elemente H"** was chosen such thaiz, y] is non-zero, for a total of
O(N logn); the total for iterations where an element frdfi® was chosen i© (N logm). In
total, the CC-MACS algorithm runs i@ (- N - max (log(mn), log? (22))) time, wherex

is the number of iterations of Step 10.

4.3 Evaluation

We first evaluate the effectiveness of the CC-MACS algorithm for findegsd biclusters by
comparing with existing and baseline co-clustering algorithms. Then we useGHdACS
algorithm to identify functional communities in social media. These are the algwitte use

in our experiments:

e CC-MACS algorithm wittyi = 3y 3 - d(B)?

e CC-MACS algorithm wittyy = 3 5.y %2 - d(B)?
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CC-MACS algorithm withyg = 3 .y “2; - d(B)’

s

Cross-Association: minimizes encoding cost [16]

One-block: consists of a single large bicluster

Singletons: each matrix entry is in its own bicluster

4.3.1 Prediction Accuracy

First we outline an unsupervised learning task by which to evaluate cteghg algorithms.
Given a matrix)/ containing an unknown set of possibly noisy biclustels } <, co-cluster

M such that elements of biclusté&, only appear in the same block in the partition as other
elements ofB;,. That is, the pair of matrix entrig@;, az) = (M;, ;,, M, ;,) form a positive
instance if(3k) ai,a2 € Bg; and a negative instance if at least onea@fas appears in a
bicluster and k) a1, as € By.

We perform experiments to evaluate the accuracy of several co-ahgsédgorithms for the
learning task described above using synthetically generated matrices vetrety \of param-
eters. SpecificalymMGEN(m, n, k, r, s, p) generates am x n matrix M with % biclusters of
sizer x s selected randomly from/, where each non-bicluster entry i9,gand each bicluster
entry is al with probabilityl — p. For each co-clustering algorithm, we compute the precision,
recall, andFi-score (a statistical measure that considers both precision and recaifgad
over 10 trials.

Figure 4.6 shows the results when we vary the number of biclusters. We#ix, = 1024,
r=s=4,andp = 0, and letl < k£ < 256. The Singletons method has perfect precision
since there are no false positives, but 0 recall; on the other hand, IOtk method has
perfect recall but close to O precision. The CC-MACS algorithm with;thend ;11 metrics
out-perform the other algorithms in finding a good balance between predsio recall, as
measured by thé’-score. Performance inevitably deteriorates as the number of biclusters
increases, as they are more likely to overlap and create conflicts in findargl @ -clustering.

In Figure 4.7, we fixn = n = 1024, k = 16, andp = 0, and vary the size of the biclusters
from 1 x 1to 32 x 32. The results are similar to the previous experiment, with performance

reaching a peak arourtdx 2 or 4 x 4, and declining as the size of the biclusters increases (for
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Figure 4.6: Precision, recall, anfd-score of several algorithms as the number of biclusters
varies.
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Figure 4.7: Precision, recall, arfd -score of several algorithms as the size of biclusters varies.

smallerk, the peak would be later).
Figure 4.8 analyzes robustness to missing values. Wenfixx n = 1024, £ = 8, and
r =s = 16, and let0 < p < 0.5. Results show that the CC-MACS algorithm with the

metric still achieves good precision and recall with ug®6; missing.

4.3.2 Finding Block Structure

We now evaluate the ability of the CC-MACS algorithm to find dense biclustersalworld
matrices with known structure. We looked through the NIST Matrix Markpbséory, and
chose several matrices from the domains of finite element modeling and quahamistry
because of their clear block structure. Some of the matrices contain congileed entries. In
the following experiments, we treat all data{@s 1 }-matrices, where &indicates the presence
of a non-zero value.

Figure 4.9 shows the results from the Cross-Association and CC-MAGSRithlgs. In
particular, the CC-MACS algorithm with the, metric is seen to be effective at identifying
large, dense biclusters in these datasets. [Ihmetric returned the trivial single-block co-

clustering on all datasets, reflecting that it does not put enough weigtiieodensity of a
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Figure 4.8: Precision, recall, arfd -score of several algorithms as the percentage of missing
values varies.
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Figure 4.9: Real-world datasets from finite element modeling (FIDAPOO%HMAPMO05) and
guantum chemistry (QC324). The red lines indicate co-clusterings fop@uldss-Association
and CC-MACS algorithms.

bicluster. Theu; and e metrics, on the other hand, seem to have performed quite well — in
fact, they achieve a lower encoding cost than the co-clustering outghelfyross-Association
algorithm itself. The Cross-Association algorithm may perform poorly ogdluatasets either
because it finds a local optimum before the global optimum is reached, aus®in sparse
matrices the encoding cost may be minimized by having a single bicluster contaieieqtie

matrix.

4.3.3 Discovering Functional Communities in Social Media

Next we perform experiments on the Meme-Tracker dataset, a largetmoile memes ex-

tracted from the web by Leskovec et al. [62]. To study the dynamics ofi¢iaes cycle, they
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# of Memes| # of Domains| Density | Topic
26 21 98.2% | St. Jude’s Children’s Hospital
178 5 96.1% | Brazilian news sites
39 6 98.7% | Spanish news sites
20 6 99.2% | Tech conference and magazine sites
17 6 100.0% | Political blogs

Table 4.4: Top biclusters returned by the CC-MACS algorithm on the Meraek&r dataset.

processed text from hundreds of thousands of blogs and newst@getusextract distinguish-
able phrases that suddenly appeared with unusual frequency.clHssyfied these into phrase
clusters — each representing a meme — to account for variations in spellingation, and
other modifications that may occur as a phrase spreads through the vesb.ths data, we
constructed a binary matrix where each row corresponds to one of thesneaeh column
corresponds to a web domain, and erftry)) is a 1 if and only if theith meme was mentioned
on a website at thgth domain. After filtering out domains with less than 10 memes, the re-
sulting matrix has 71,566 rows; 47,228 columns; and 4,026,266 non-zeiesdi®.1% of the
matrix). We will refer to this as the MT matrix.

We ran the CC-MACS algorithm on the MT matrix using #ag 11, andus metrics. The
1o metric returned the trivial single-block co-clustering, as in the previopsrxent, but the
11 andus metrics yielded more illuminating results. Table 4.4 shows some of the top biclusters
found.

We see that the CC-MACS algorithm identified several large and vergdedsisters in the
MT matrix, and furthermore, that the biclusters correspond to clearly ida@vigficommunities

of web domains that participate in disseminating much of the same content.

4.4 Discussion

4.4.1 Extensions and Applications

Our approach to co-clustering may be particularly helpfudaiiaborative filtering where the
goal is to make recommendations for a given user based on feedbatki$ers with similar

preferences.
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Although in our work we focused on applications that entail a binary relsttipn the met-
rics we propose can be equally applied to real-valued matrices. In Sec2idn we define the
density of a bicluster as being dependent on the sum of values and thaf $iwebicluster,
which does not require that the entries bd@1}. In fact, both of the properties described in
Section 4.2.2 still hold for our metrics when the matrix is real-valued.

The CC-MACS algorithm as presented here is a static algorithm. Although isterce
of a functional community implies some degree of stability, community structure nageh
over time. In networks where such changes tend to occur more rapidlyy ibenaf interest to
develop a dynamic version of the CC-MACS algorithm that seamlessly adaptsvtdata.

Other possible directions for future work include considering a more gedess of matrix
partitions, not just those formed by a co-clustering of the rows and colymnmé&ding bounds
on the approximation factor of our heuristic algorithm; or adapting our ampréor distributed

computation.

4.4.2 Limitations of Our Approach

The efficiency of the CC-MACS algorithm relies on the metric being of a pdaticiorm,
the sum over values of a function applied to each bicluster in the co-clugteRor some
applications, however, the desired metric may not fit this form. To addrésdirtiitation,

future work could analyze run-time bounds under various relaxatiotigofondition.

4.4.3 Significance and Impact

We have presented a new approach for discovering hidden relatiomshipsirtite data, called
the CC-MACS (Co-Clustering via Maximal Anti-Chain Search) algorithm. W& ionstruct
k-d trees on the rows and columns using random projections, and then thgiztual tree
structure to efficiently search for a co-clustering which optimizes the vdlaegoven metric.
We traverse the trees entirely instead of terminating the algorithm if a local optiene@ached,
thus better exploring the breadth of the search space for a globally opbiutibs.

The literature on co-clustering spans multiple disciplines, but differenicapions and data

characteristics motivate different approaches. Although the metrics ggesuare motivated
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by the task of finding dense biclusters, the CC-MACS algorithm can bewisedny metric.
While in some real-world scenarios matrices are assumed to have a blockaliatjoicture,
our method does not make that assumption, and therefore can be effaativ when that as-
sumption does not hold. Our algorithm is designed to leverage sparsity imtaerdnning in
O(N log?(mn)) time for sparse matrices. However, we get a further improvement foedens
matrices, running irO(mnlog(mn)) time. This flexibility to metric, matrix structure, and
density makes our algorithm applicable across domains with different guéildedia character-
istics.

Most related work in the computer science literature assumes that it is desdiave a
small number of clusters, leading to methods that are based on dimensiondlitfioe, or
require the maximum number of row and column clusters to be specified in @vavhile
there are tasks such as matrix compression where minimizing the number oflsgissen-
tial, we claim that in many real-world applications this is not the case — if the dat@ios
many dense but disjoint biclusters, it may be reasonable to return a ¢ergigsvith hundreds
or thousands of row and column clusters. We hope that this observatiomatillate others to

develop algorithms that also overcome the limitations of the “fewer is better” mentality
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Chapter 5

Modeling Collaboration in Academia

5.1 Introduction

5.1.1 Background and Motivation

In academia, the success of a researcher is often measured by metnies suumber of papers
published and how frequently one’s work gets cited. These factorsgplasnportant role in
decisions of tenure, promotions, and awards. However, while eaehrod®r has individual
goals, much scientific and academic progress is the result of collabogétives. In this work,
we seek to better understand the mechanisms driving academic collaboration.

Although collaboration is an essential aspect of most academic disciplihas,lieen given
relatively little attention in the literature. Most measures of academic impact aeel lom a re-
searcher’s publication record, and pay no regard to collaboratiorer©#valuate impact via
centrality measures on an aggregated coauthorship graph. Howegseaacher's behavioral
patterns may change over time. The existing literature that looks at temppeaita®f pub-
lication and citation activity tend to assume that the processes driving thestaéireor have
static parameters. We suggest that more sophisticated models are needddrsiamd the
intricacies of collaborative behavior.

Researchers exhibit a wide range of different work habits and lbmisavSome distribute
their time among many projects, while others focus on only a few projects at a Some
engage in mentoring relationships, while others choose to collaborate mostliheiitipeers.
These behaviors may be motivated by a variety of factors such as instilutesds, academic
field, stage in career, funding situation, and affinity for teaching. We plos question: “If
researchers were motivated By, what would the world of academic research look like?” In

the current work, we purport to answer this question by first develapgeme-theoretic model
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of academic collaboration, and then studying the outcome of the game wheresaarcher is

trying to optimize a given objective function.

5.1.2 Related Work
Bibliographic Metrics

Across all academic disciplines, it is natural to want to measure the impactodizidual and
his or her work. Consequently, many metrics have been proposed| bag@operties of an
individual's research output. These start with simple counts like the nunfilpeibtications (in
selective venues) or the total number of citations across all publicatinddyecome progres-
sively more complex. Given the attention such metrics receive, there basingch effort in
designing them to be meaningful. For example, total paper counts give littletiaioof the
quality of the work. Aggregate citation counts are distorted by a single higitég-paper, and
so do not indicate the breadth of the researcher’s work.

In 2005, Hirsch proposed the h-index: the largest intégsuch that the author has pub-
lished at leash papers with at leagt citations each [42]. This measure has an intuitive appeal,
and is not unduly influenced by a single high-impact paper, nor by a multatibsv-impact
publications. Since then, a plethora of variations and alternative indiseskieen proposed
to address perceived shortcomings of the h-index [29, 48]. Mostesetimeasures evaluate
an author solely based on his or her individual publication record. Mervenodern scientific
research tends to be highly collaborative in nature.

There has been some effort in recent years to design bibliographic sigictake collab-
oration into account. Abbasi et al. proposed an index that rewardsthargor collaborating
with top researchers [2]. Kameshwaran et al. defined a metric combingmgg#itrof publica-
tion record with eigenvector centrality to identify prominent researcherseircétiaboration
network [51]. In previous work, we proposed the Social h-indexctviattributes partial credit

for a researcher’s success to the coauthors whose joint work agetlito that success [22].
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Temporal Models

Several models have been proposed to study how publications and ci@aticuraulate over
time. In his original paper, Hirsch suggests a model in which a reseapcidishes a con-
stant number of papers per year, and each paper accumulates antonsther of additional
citations per year [42]. This results in linear growth of the h-index, with gndiest papers
accumulating the most citations.

Other works have further studied how the h-index of a researchersgreer time, through
simulation models or empirical studies. Wu et al. track the h-indices of 47 Neried win-
ners as functions parameterized by time and categorize them into five shiapag convex,
concave, S-shaped, and I1S-shaped [97]. They also examine #shriEss” of the papers con-
tributing to the h-index — whether they were published early or late in thendsss career —
and find that a researcher’s best papers tend to be distributed tlordugdr career.

Guns and Rousseau look at how citations of a paper accumulate over tiineTB8y
suggest a peak-decay model, in which the number of citations a givennggpgées increases
each year until a peak year and then decreases. Note that under thdk thedotal number
of citations a paper receives is usually bounded (but could differ ipepawhereas under
Hirsch’s model, papers accumulate citations unboundedly. They shougthsimulations that
by varying the parameters (peak year, height of peak, and rate af)dewr choosing them
stochastically — growth of the h-index under the peak-decay model chndag, concave, or
S-shaped.

Cardillo et al. empirically study the correlation between stability of local grapictire
over time and the willingness of individuals to compromise their own interestsan gdsocial

cooperation [15], but stop short of suggesting a mechanism that weplaie such behavior.

5.1.3 Contributions and Outline

In this work, we aim to understand the mechanisms underlying academic caliaino Using
tools from the field of Game Theory, we study how collaboration may ariseeasetult of

interplay between reseachers’ individually-motivated behaviors.
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Notation | Description
cit(p) | the total # of citations received by paper
city(p) | the # of citations received by papein yeary
A(p) the set of authors of papgr
P(a) the set of papers authored by

Py(a) | the set of papers authored byn yeary

Xy(a) | the citation profile of researcherin yeary

hy(a) | the h-index of researcherin yeary

Hy(a) | the h-profile of researcherin yeary

Hy(a) | the h-augmenting profile of researchein yeary

Table 5.1: Table of basic notation

We begin by building a theoretical model for how researchers collabaratédow collab-
oration affects the number of citations a paper receives, supportdaseyvations from a large
real-world publication and citation dataset. Using this model, we study rdsarcollab-
orative behavior over time under the premise that each person wants to mekisiar her
academic success in terms of both the quality and quantity of her resedpcit. ou

Our main contributions can be summarized as follows:

e A game-theoretic framework modeling academic collaboration as a repeabed ga

e Formal analysis of collaboration strategies and game equilibria

5.2 Methodology

We first introduce some basic terminology and notation. Using a game-thelastiework,

we then describe a game of academic collaboration with which we can simulateafesrs

collaborative behavior over time.

5.2.1 Preliminaries

We begin with some definitions, including a more general definition of the h¢jrateginally
proposed in [42]. A summary of notation is provided in Table 5.1.

We define thecitation profile of a set of papers?, denotedX(P), to be the multi-set
{cit(p) : p € P}, and the citation profile of a researcheto beX(a) = X(P(a)). When
multiple years are being considered, we dgéz) to denote the citation profile of researcler

in yeary.
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We define then-indexof a multi-set of non-negative integefs denotedh(Z), to be the

largest integeh such that at least elements ofZ are greater than or equal ko
hMZ)=max{h:|{z € Z, 2> h}| > h}.

For simplicity of notation, we define the h-index of a set of pagets beh(P) = h(X(P));
and the h-index of a researcheto beh(a) = h(P(a)) = h(X(P(a))). When multiple years
are being considered, we usg(a) to denote the h-index of researchein yeary.

We define théh-profile of a multi-set of non-negative intege#s denotedH (7), to be the

multi-set of integers ir¥ that are greater than or equalitQ?):
H(P)={z€Z:z>h(2)}.

We similarly define the h-profile of a set of papdPsto be H(P) = H(X(P)); and the h-
profile of a researchet to be H(a) = H(P(a)) = H(X(P(a))). When multiple years are
being considered, we ugé,(a) to denote the h-profile of researchein yeary.

Sometimes we are only interested in the papers with strictly more /thatations. We
define theh-augmenting profilef a multi-set of non-negative integefs denotedH (Z), to be

the multi-set of integers i& that are strictly greater than 2):

H(P)={z€Z:2>h(Z)}

We similarly define the h-augmenting profile of a set of paper® be H(P) = H(X(P));
and the h-augmenting profile of a researchés be H (a) = H(P(a)) = H(X(P(a))). When
multiple years are being considered, we mNﬁ;(a) to denote the h-augmenting profile of re-
searcheu in yeary. Intuitively, the h-augmenting profile indicates progress towards incrgas
the h-index.

Let Z and Z' be multi-sets of non-negative integers. We says weakly h-preferable
to Z', denotedZ »; Z',if h(Z) > h(Z') and (VY zp > h(Z)) {z€ Z:2> 2} >
{z € Z": 2> 2}|. We sayZ is strongly h-preferablgo Z’, denotedZ -, Z’, if in addi-
tion eitherh(Z) > h(Z') or3 zg > h(Z) for which the inequality is strict. WheR and P’ are
two sets of papers, we write ), P’ to denote tha¥(P) =, X(P’), andP >, P’ to denote
thatX (P) =, X(P').

Next, we propose a model with which to study academic collaboration over time.
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5.2.2 Game-Theoretic Model

To model the collaborative behavior of researchers in academia, vealajopfield of Game
Theory. We consider a model where in ygaeach researcherhas a fixed amount eésearch
potential @, (a) to be invested in writing papers, and the total number of citations that a paper
receives reflects the amount of research potential that was investesipagpler by its authors.
For simplicity of analysis, we model all citations as being received in the saaretlyat the
paper is published. We also suggest that there is a practical limit on the nofntmauthors
that can meaningfully contribute to a paper, and in the following analysis limiparga two
coauthors. Future work could revisit the analysis under a more realiggien@ral model.

A gameis a way of modeling the decisions of a set of ratiopklyerswhoseactions
collectively determine anutcome A player’s goal is to achieve an outcome of maximglity
to that player. We model collaboration in academia aspgated gamewhere the same base
game is played multiple times, and in each iteration players choose actions simudigneo

We formalize a repeated game played by a set of researchers, explifitipgehe actions
available to each researcher in each year, the outcomes determined dwthioss, and the
utility of each possible outcome to each researcher. We refer to this as #aemac Collabo-

ration (AC) game:

e Players: Let A be a set of researchers, eacte A initially having published a set of

papers resulting in citation profibey(a).

e Actions: In yeary, each researcher € A hasQy(a) units of research potential to
distribute amongst individual and collaborative projects. Formallypnstructs a finite
sequence of non-negative integgfs and for each potential coauth@re A a sequence

o>, such that
Doaylil+ D ay™li] = Qyla).

e Outcome: In yeary, a paper is produced for each project, which receives citations
commensurate with the research potential invested by its coauthors. Actesea
becomes a coauthor on a papeby investing a non-zero amount of research poten-

tial ¢(a,p) in it. Formally: Letcit be the citation function, which maps a non-empty
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multi-set{q(a, p) }oca consisting of the research potential invested in a project by its
coauthorsA’ C A to the number of citations the resulting papewill receive. For

i > |q|, defineq[i] = 0. For alla,i such thatqg[i] > 0, a paper will be published
which will receivecit({q2[i]}) citations, singly-authored by. For all {a,a’} € (3)
andi such thatq®® [i] + g3 2[i] > 0, a paper will be published which will receive
cit ({q’;‘,’a' [i],q;,’a[i]}> citations, for whicha (resp. @') is a coauthor if and only if

ay™ [i] > 0 (resp.qy *[i] > 0).

e Utility: The functionUtil,(a) = hy(a) indicates the utility for researcherat the end

of yeary.

We will consider the AC game affinite horizon which means that each player wants to
maximize his utility in the limit, rather than after some pre-specified number of ye@re
Game Theory literature considers several ways to compare playergireds in infinite games.
Our approach is most similar to the overtaking criterion presented in [85].

Thegame stateepresents, at any point in the game, all information that may help determine
the available actions, corresponding outcomes, and utilities of the plagale AC game, we
define the game state to consist of the citation profiles of the researchers.

A strategyis a set of rules that govern which action a player will take given her leuye
of the game state. In the current work, we only consider deterministic sateg

Let s be a set of strategies for a game, one per player; this is referred tstastegy
profile. For the purpose of analysis, we take two strategy profiles to be equa&lyifallvays
result in the same outcome. When considering multiple strategy profiles, wéedgnP; (a),

X3 (a), hi(a), H3(a), H:(a), andUtil3(a) the papers, citation profile, h-index, h-profile, h-
augmenting profile, and utility, respectively, for playeaftery iterations of the game when the
players follow their respective strategiessinand byWW#(A) the social welfare under. We

denote by, the strategy for player € A under strategy profile,> and bys, the strategies for

Although in reality a researcher lives for only a finite number of yeafjite games are arguably a reasonable
model of human behavior when “players examine a long-term situatiorowtithssigning a specific status to the
end of the world” [86].

2For convenience, we also usg to denote the singleton set containing that strategy; in each use case, the
meaning should be clear from context.
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all players other than; by s 4/ the strategies for players id’ C A, and bys 3, the strategies
for players not in4’.

Let f,, and g, be two infinite real-valued sequences. We say thabvertakesg,, if
limsup fr, — gn > 0 andlinn;icgf fn — gn > 0.3 We note that there are three (mutually ex-

n—00

clusive and exhaustive) possibilities:

e [, overtakesy,
e ¢, overtakesf,

e neitherf, nor g, overtakes the other

These are illustrated in Figure 5.1.

Overtaking Sequence Non-overtaking Sequences

(b)

Figure 5.1: (a) Sequengk overtakesy,,. (b) Neither sequencg, nor g,, overtakes the other.

Multiple notions of equilibrium have been proposed in the literature. Due todhabe
orative nature of the AC game, we consider a set of strategies to be in eqguilith no two
researchers would prefer to deviate from their current strategieddn tw collaborate with one
another. We formalize this by generalizing the notion of stability presente®]n [3

Given a strategy profile for the players in an infinite game, we say that the subset of
playersA’ C A is unstable undes if there exist alternate strategie’, for the players in4’
suchthatVa € A") U tz‘li’i’us/A’ (a) overtaked/til; (a). We define a strategy profile to be
a k-stable equilibriumf there does not exist an unstable set of size at rho3throughout the
rest of this chapter, we use the teequilibriumto refer to a2-stable equilibrium.

In the next section, we use the AC game to examine how researcher&dirally-motivated

%In [85], f,, overtakegy, if lim inf f,, — g, > 0. Our definition is more inclusive, additionally allowing for the
n— oo
situation in Figure 5.1(a).
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behavior can lead to academic collaboration.

5.3 Evaluation

First, we build a model of academic collaboration based on data extractadaffarge corpus
of Computer Science publications. In particular, we analyze how reasmarsplit their effort
between multiple papers, and the relationship between the authors of aapdpbe number of
citations it receives. Next, we explore the single-player, two-playel nanlti-player versions
of the AC game. For each version, we analyze the asymptotic behaviomailibiéa when

each player is trying to maximize his or her h-index.

5.3.1 Collaboration Model

In Section 5.2.2, we proposed a game-theoretic model of academic cotlaharawhich in
yeary, each researcherhas a fixed amount of research potenfigla) to be invested in writ-
ing papers, and the total number of citations that a paper receivedséfieamount of research
potential that was invested in the paper by its authors. We now furtheifysfigs mechanism
by analyzing publication and citation data from the field of Computer Scienesextvact all
publications, along with authors and number of citations received, frora@sfiot of the DBLP
database, which contains approximately 1 million researchers and 2 million gutidnis.

We first analyze the simple case of a paper published by a single authdraghwo other
publications that same yehiand explore the relationship between the number of citations a
paper receives and several attributes of the author: number ofspppbklished previously,
total number of citations received previously, and current h-index.c@Vepute Spearman’s
rank correlation coefficient for each of the attributeamd find that the h-index has the highest
correlation with a value of 0.34, compared to paper count with a value ofah@8itation sum
with a value of 0.08. Therefore, in subsequent analysis, we use thdeRk-&s a proxy for the

research potential of an author.

“The assumption is that if a researcher published only one paper inraygiae, then all of her effort went into
that paper. In reality, she could have worked on projects that weiguhtished that year, but that is hard to evaluate
empirically since unpublished papers are not captured in the data.

SWe choose this over the more common Pearson’s coefficient bedaisemore robust to non-linear
relationships.
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Figure 5.2: The h-index of the author versus the median number of citagoeved across all
single-authored papers for which the author published no other péygesame year.

In Figure 5.2, we take a closer look at the relationship between the h-irfidee author
and the number of citations a paper receives. The plot shows the medidoenof citations
received on papers singly-authored by a researcher with h-infl@xeach value of.. We use
the median because there are a few extreme outliers which skew the aedtegyeght, and we
are looking for a model which represents a typical researcher. Csopap the best-fit line
demonstrates visually that the two quantities have a linear relationship up uhtiralex of
about 10, indicating that the number of citations a single-authored pagéves is proportional
to the h-index of the author when he puts all of his effort into the papervélaes ofh > 10,
the fluctuation may be a result of high variance and too few data points.

Next, we look at the case of papers with multiple authors. To isolate this aspéuot
model, we consider two-author papers where neither of the authorsledbksy other papers
in the same year, as illustrated in Figure 5.3(a). In Figure 5.3(b), we platuimeof the h-
indices of the authors versus the median number of citations receivessatirsuch papers. We
again observe a linear relationship, indicating that the combined reseatsaitipl of multiple
authors is additive when they put all of their effort into the paper.

Finally, we investigate what happens when an author publishes multiple papleessame

year by narrowing our focus to instances where aside from the auttiotecest, none of the
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Figure 5.3: The sum of the h-indices of the coauthors versus the medialpenwf citations
received across all two-authored papers where neither authorlpedbsy other papers in the
same year. The dashed line is the number of citations predicted by our model.
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Figure 5.4: The h-index of an autharwho published two papens andps in the same year
with coauthorg, andb, respectively, neither of which published any other papers in the same

year, versus the median 6fit(p1) — h(b1)) + (cit(p2) — h(b2)).

coauthors published any other papers in the same year. This scenarictimidid in Fig-
ure 5.4(a). Using the previous result of research potential being\aelditross multiple coau-

thors, we plot the h-index of the author of interest against the value

S (et - 3w

PEPy(a) beA(p)\{a}
in Figure 5.4(b). The plot shows a linear relationship, indicating that theliititn of an
author’s research potential across multiple papers is also linear.
Based on the observations above, we formalize our model with the followiag roper-

ties:

1. Inyeary, aresearcher hasQ,(a) = hy(a)+ 1 units of research potential to be invested

in writing papers.
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2. Anindividual’s research potential can be distributed amongst any euofipapers to be

published in that year:
Qyla)= Y qla,p),

pEPy(a)

whereq(a, p) is the amount of research potential invested by researcimepaperp.

3. A paperp will receive in totalcit(p) = cit ({q(a,p)}acap) = Daca() 4(aD) Cita-

tions.

We now use this model to study the AC game.

5.3.2 Single-Player Game

First, we consider the AC game when there is only one player, researclmaihis caseq may
only write single-author papers; the question is how many papers to writecantb optimally
distribute her research potential between them.

We begin by analyzing how the utility function grows wherputs all of her effort into

writing a single paper each year.

Proposition 5.1. Consider the single-player AC game of infinite horizon. 4etlenote the
strategy profile where each year the playeinvests all research potential into a single paper.
Then the limit behavior for player's utility unders* is

limsup Util? (a) ~ v2n.

n—oo

Proof. If the claim holds forhg(a) = 0, then it also holds fohy(a) > 0, so assume that
ho(a) = 0. Following strategys*, from the timea reaches an h-index df’, it will take

h' + 1 years to accumulate’ + 1 papers withh’ + 1 citations each. Thus requires a total of
n= Z?:li = @ years to achieve an h-index bf Conversely, as the number of years

goes to infinity,a achieves a utility of

limsup Utils (a) = limsup hS (a) = limsup 2n. O

n—oo n—oo n—o0

{—1+\ng N

We now compare’s success under the single-paper strategy relative to other possise wa

of distributing her effort.
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Lemma 5.2. Consider the single-player AC game of infinite horizon. {*etenote the strategy
profile where each year the playerinvests all research potential into a single paper. Then for

all strategy profiless # s*, S (a) overtakesh? (a).

Proof. Consider a strategy profike£ s*. Lety* be the first year in which the outcome is dif-
ferent undes* ands, so thath,-_y(a) = hi-_;(a) = hi._;(a) andHy,«_y(a) = H3_(a) =
ﬁj*_l(a). Sinces* produces a single paper that will receig- (a) = hy+_1(a) + 1 citations,
a’s strategy undes must split the research potential between at least two papers, eadbitbere
receiving at mosk,- 1 (a) citations, resulting irH;’Zf (a) =n Hy-(a). It follows by induction
thatHj* (a) = Hy(a) forall y > y*, and furthermore, tha‘tz*(a) > h;(a) for all years

y > y* in which 2*" (a) increases. By definitiorh? (a) overtakesi? (a). O

Theorem 5.3. Consider the single-player AC game of infinite horizon. {*edlenote the strat-
egy profile where each year the playemvests all research potential into a single paper. Then

s* is the only equilibrium.
Proof. This follows directly from Lemma 5.2. Ol

We have shown the strategy described above to be optimal for the singt-pl@ game.
However, a researcher may hope to have a greater impact by collabonatinothers. We

explore this possibility in the following sections.

5.3.3 Two-Player Game

We now consider the AC game with two playeisanda’. For simplicity, we only analyze the
case wheréd(a) = Hy(a'), i.e. initially both researchers have the same h-profile; the results
can be generalized for arbitrary initial citation profiles. Note that if all pgpeoduced through
yeary are joint between andd’, thenh, (a) = hy(a'), H,(a) = H,(a'), andH,(a) = H,(d'),
in which case we will denote them ty,, H,,, and H,, respectively.

We begin by considering two collaborative strategy profiles: one whatte fdayers pool
all their effort into a single joint paper, and another where they collabara two papers

simultaneously. We analyze how the players’ utility functions grow under seenario.
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Proposition 5.4. Consider the two-player AC game of infinite horizon, whiégéa) = Ho(a').
Lets* denote the strategy profile where each year the players invest therabgeotential into

a single joint paper. Then the limit behavior for each player’s utility unsfeis

. .mn
limsup Util; > 5

n—oo

Proof. If the claim holds forhg = 0, then it also holds fohy > 0, so assume that; = 0.

We use recursion to give a bound p;uj\ the number of years needed to achieve an h-index of
h unders*. We have thay; = 0, andy; < yff*z/ﬂ—l + h, since after they have achieved
h-index of[h/2] — 1, each of the followingh years they will produce a paper with at least
citations each. We get the following bound:

*

Yh

IN

yf;/21_1 +h

IN

Yinjz) +h
hoh

ht s+ +...
55t

IN

IN

2h

Converselyh > y;";*/2, so as the number of yearsgoes to infinity, each player achieves a
utility of
n

limsup UtilS = limsup hS > O

n—00 n—00 2
Proposition 5.5. Consider the two-player AC game of infinite horizon, whégéa) = Hy(a').
Let s~ denote the strategy profile where each year the players split their relsqatential

evenly between two joint papers. Then the limit behavior for each playglity under s~ is

limsup Utils ~ 2v/n.

n—o0

Proof. If the claim holds forhy = 0, then it also holds for arbitrary initial citation profiles, so
assume thaly = 0. Following strategy™, from the time the players each reach an h-index of
', it will take [ (A" + 1)/2] years to accumulate + 1 papers withh' + 1 citations each. Thus

a total ofn = Z?:l [1/2] > W years are required to achieve an h-indexo€onversely,

as the number of yearsgoes to infinity, each player achieves a utility of

TlJr\/sz 2.

limsup U tilff = lim sup h‘;’f = lim sup
n—oo n—oo n—oo
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We now examine how these two strategy profiles compare to other possilbégssaor

the two-player game.

Lemma 5.6. Consider the two-player AC game of infinite horizon, whBida) = Hy(a').

Let s* denote the strategy profile where each year the players invest thearobspotential

into a single joint paper, and let™ denote the strategy profile where each year the players split
their research potential evenly between two joint papers.q9i&t™ denote the set of strategy
profiles that each year prescribe eithet or s=. Then for any strategy profile ¢ St}

35" € 1"} such thath? overtakes both? (a) and ks (a’).

Proof. Consider a strategy profitle¢ S1*F}. Consider the strategy profiééwhich is identical
to s for game states in whick prescribes actions according 4b or s, and behaves like*
otherwise. Let/’ be the first year in whick ands’ differ, so thatH,,_; = H;f_l = H;,_l.
Let P, denote the set of papers producedin yeary’, then we haveZPeP;/ cit(p) =
2(hy—1+1). Sinces differs froms"™ in yeary/, there can be at most one paper witth,/ 1 +1
citations; and since it differs from*, no paper can have(h,,_; + 1) citations; it follows
that 53, =), H(a) andH:, =, H:(a’). It follows by induction thatH; -, H;(a) and
Hy =y, Hi(d') forally > 3/, and furthermore, that] > h3(a) andhs > h(a’) for all years

y >y in which h;’ increases. By definitiorh? overtakes bott? (a) andhs (a’). O

Lemma 5.7. Consider the two-player AC game of infinite horizon, whéséa) = Hy(a'). Let
s* denote the strategy profile where each year the players invest thearofsgotential into a
single joint paper. Then there does not exist a strategy prefites™ such that eitheh? (a) or

he (a') overtakesh? .

Proof. Consider a strategy profile# s*. Let s~ denote the strategy profile where each year
the players split their research potential evenly between two joint papetdets{~} denote
the set of strategy profiles that each year prescribe either s=. If s ¢ S1*F} then we are
done by Lemma 5.6, so assume S1* . Letys” denote the first year such thla; > i let
y; denote the first year such thig}, > i; and letk; denote the number of yeags | <y < y;
in which s differs froms*. It follows by induction thaty” — y§ < k; — Z k;. In particular,

j<i

if ki < 3 kj, theny?” < y$, which implies that in yeay;” we haveh®” > h*. Since the
<i
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sequencey = 0, z; = ) z; grows exponentially yek; can grow at most linearly, this is
j<i
guaranteed to happen an infinite number of times. Sknoely takes integral values, we have

thatlim inf A8, — kS < 0, and so by definitiork? does not overtakgs . O

n—o0

Theorem 5.8. Consider the two-player AC game of infinite horizon, whBga) = H(d').

Let s* denote the strategy profile where each year the players invest thearobspotential

into a single joint paper, and let™ denote the strategy profile where each year the players split
their research potential evenly between two joint papers.9i&t™ denote the set of strategy

profiles that each year prescribe eitheror s~. Then we have the following:
(a) All equilibria must be ins{="},
(b) The strategy profile* is an equilibrium.

(c) Not all strategy profiles is{* =} are equilibria.

Proof. Claims (a) and (b) follow directly from Lemmas 5.6 and 5.7, respectivelyckim (c),
itis sufficient to show that™ is not an equilibrium, which follows from Propositions 5.4 and 5.4

since the players would rather play accordingto O

5.3.4 Multi-Player Game

We now look at the AC game with an arbitrary number of playdrsFor simplicity, we only
analyze the case whe(¥ a € A) Hyo(a) = H, i.e. initially all researchers have the same
h-profile; the results can be generalized for arbitrary initial citation pofile

We consider two variants: the “static” AC game, where each player folloessdime col-
laboration strategy each year; and the “dynamic” AC game, where nevboddiions may be
formed and the distribution of research potential may change.

We represent the static game as a directed graph, each(eddg labeled with a vector

~a’,a

dy '~ such that
o (Va,d € A, i €N) q‘;"“/[i] <1; and

e Wacd) Y&+ Y Yar¥li=1
ieN a’#a1€N

That is, the graph dictates what fraction of a player’'s research pdt&niiavested in each

collaboration every year.
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Theorem 5.9. Consider the static multi-player AC game of infinite horizon, where we have
that (V a € A) Hyo(a) = Hy. LetS* be the set of strategy profiles corresponding to perfect
matchings on4d, where each year every pair of players in the matching invests theiarese

potential into a single joint papérThen all of the strategy profiles isi* are equilibria.

Proof. Consider a strategy profik € S*. It is obvious that no player can improve her utility
if all other players’ strategies remain the same, since joint papers areossibfe without
cooperation from both players. Consider any strategy prsfitiffering from s* only in the
strategies of players, andas, so that undes’ botha; anda, invest a non-zero fraction of their
research potential into a joint paper. By an argument similar to that in thé grbemma 5.7,

it is not possible that both? (a1) overtakesh? (a;) and h¥ (ay) overtakesh?' (as), S0 by
definitiona; andasy do not form an unstable set. Since this is true for all pairs of players ther

does not exist an unstable set of at most two players wid@huss* is an equilibrium. [

Next, we consider the same strategy profiles in the dynamic setting, with a iffeneilt

result.

Theorem 5.10.Consider the dynamic multi-player AC game of infinite horizon, where we ha
that (V a € A) Ho(a) = Hy. LetS* be the set of strategy profiles corresponding to perfect
matchings ond, where each year every pair of players in the matching invests theiarese
potential into a single joint paper. Then féA| > 2, none of the strategy profiles it are

equilibria.

Proof. Consider a strategy profile € S*. Leta; andas be two players who are not paired up

in the matching, and let) anda, be their matched pairs, respectively. We construct a strategy
profile s’ as follows: All players besides, andas follow their respective strategies undet
Inyears 1 and 23; anda, follow their strategies undet*; in years 3 and 7, they invest one unit
of research potential in a joint paper with andas, respectively, and the rest in a single joint
paper between themselves; and in all other yeamnda, invest all of their research potential

in a single joint paper between themselves. It can be showrfHat, ) overtakesh? (a;) and

h#' (az) overtakesh? (a;). Therefores* is not an equilibrium. O

®Note that this set is empty whér | is odd.
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We conclude by posing the following open question:

Question. Does there exist an equilibrium for the dynamic multi-player AC game of infinite

horizon?

5.4 Discussion

5.4.1 Extensions and Applications

Many modifications and extensions to our model are possible. For examsgieadnof all
decisions being deterministic, one could allow for mixed strategies, i.e. wiptager's action
each year is selected from a probability distribution over possible stratefjies, under our
proposed model, the number of citations received by a paper is deternyirtiee b-indices of
the coauthors; alternative models could have a person’s researaligidie dependent on other
variables. A further extension could allow more than two coauthors onerpagrhaps with a
sublinear aggregation function to avoid the degenerate solution of aflredea's collaborating
on a single giant paper. An even more realistic model could allow the settadrauto change,
for example as new researchers enter academia.

Our analysis was performed under the premise that each researgfisrtovenaximize his
or her h-index. However, in real life researchers are motivated barigty of factors. In
previous work, we introduced an alternative to the h-index, the Sodiadldx, that aims to
capture not only the direct impact of a researcher on the reseanuhis;daut also on his or her
fellow researchers [22]. Here we consider two variants, the InstaotenSocial h-index and
the Progressive Social h-index.

Taking the h-index as a suitable metric for the impact of a person’s indivigdsaarch
contributions, we define thgocial h-indeyof authora to be
Z L Z contrib(p, a’),
peP(a) |A(P)] a’€A(p)
wherecontrib(p, a’) measures how much papehas contributed to the h-index @f. That is,
for each papes has coauthored, he gets partial credit for the contribution of that pagach

coauthors’ h-index, including himself. We suggest two instantiations ofdherib function,
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one based on whether the paper currently contributes to a designatedsaliimdex, and the
other which considers its cumulative contribution over time.

For thelnstantaneous Social h-indef authora, denotednst—Soch(a), we define

h(a) . "
contrib(p, a) = |H (a)] e

0 otherwise

A natural first thought would have been to sethtrib(p,a) = 1if p € H(a) and0 otherwise.
However, due to ties, we may hal# (a)| > h(a). The above definition maintains the prop-
erty thaty_ . p, contrib(p,a) = h(a), even in the case of ties. Note that it is possible for
contrib(p, a) as defined above to decrease over time, egpifblishes additional papers which
bring h(a) > cit(p). Next, we suggest a version of the Social h-index which is non-dsiciga

For eachi < h(a), consider the time at which first achieved an h-index af and let
H®(a) C P(a) be the set of papers with at leastitations at that time. For therogressive
Social h-indexof authora, denotedProg-Soc”(a), we define

contrib(p, a) = Z HO@)|

i<h(a): |
peH ) (a)

Intuitively, the Progressive Social h-index assigns partial credit &saarcher’s coauthors ev-
ery time her h-index increases. We note tRatg-Soc” () is non-decreasing over time. That
is, oncea gets credit for contributing to another’s success, that credit canenotérshadowed
by future work. However, an exceptionally good paper could continaping rewards as a
coauthor’s h-index grows, if it remains one of the contributing papers.

Future work could analyze the AC game using the Instantaneous or theeEsivg So-
cial h-index as the players’ utility functions, and compare the resultingvi@haith that in
the current work. Furthermore, while we focused on the context alean&, our approach
can be applied to study collaborative behavior in other contexts suchsasebs teams and

collaborative design.

5.4.2 Limitations of Our Approach

In order to simplify analysis, we made several modeling assumptions thabtareatistic. For

example, we assumed that all citations for a paper are received immediabdelypublication.
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Taking a different citation model, such as a constant number of additidatibos per paper
per year as in [42], or a peak-decay model as suggested in [39]dwomplicate analysis
but may lead to more realistic results. On the other hand, it may be that asyniptdlieae
variations lead to the same behavior.

There is also an inherent limitation in modeling human relationships and interaciibes
underlying premise that people can be modeled as rational agents is itgelftdobdebate.
Even if we take that to be a reasonable model, there are many more fagitayg at the real
world of academia — e.g. geographic location, personal relationships, tiastéliloyalties,

and academic competition — than can be captured by a simple mathematical model.

5.4.3 Significance and Impact

In this work, we have presented a game-theoretic approach to studyialgarative behavior
in academia by modeling researchers as rational agents trying to maximize daganac
success. Several publication models have been proposed in the bibliolitertaitire, but to
our knowledge, ours is the first with the flexibility to model collaborative bara that may
change over time in response to actions of and interactions with others. Qiel makes it
possible to simulate and therefore predict the growth of the academic commsi@tyhole
when individuals are driven by a specific objective.

The written policies of our academic institutions, as well as the unspoken aote&x-
pectations of academia, inevitably shape the mentalities and goals of indivehearchers,
encouraging certain behaviors and discouraging others. An incredmity to understand
the effects of these motivating forces will help policy-makers and academuiete to make

informed decisions that will stimulate the growth and progress of the academimanity.
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Chapter 6

Related Problems and Future Work

In this chapter, we explore three other problems related to the study af@sreen networks,

and present some initial work.

6.1 Measuring Pairwise Influence

First, we build on the REWARDS model introduced in Chapter 3 to measure therict that
one node has on another based on the times of their respective activity.

Given two event®) andi generated by renewal procesgesind ¥, respectively, we say
that the ordered paifo, ) are consecutivef t(¢) < t(¢) andf ¢ € Ty U Ty such that
t(¢) <t < t(yp). We refer to the elapsed time between consecutive eveatsd v as the
(¢,¢)-gap

Gap(¢, 1) = t(¢) — ().

To identify influential relationships in a network, we could look for ordgaits of nodes with
many small gaps. However, this will bias the analysis towards nodes withrragtigity rates,
which are more likely to have small gaps. To compensate for this time scale leidsllow a
normalization procedure similar to that in Section 3.2.3.

Let Fgff denote the limit distribution of gaps between consecutive event pairs for two

independent renewal procesgeand:!

Fpg(r) = Jlim Pr(Gap(¢,v) < 7| (¢,1) are consecutive

1The limit is well-defined except in certain cases when the support of theanteal distributions for bothp
and¥ have measure zero.



89

We define theesponsivenedsetween two consecutive evemitandqy to be
Resp(¢, 1) = 1 — Fy o (Gap(¢, 1)).2

Note thatResp satisfies the uniformity property described in Section 3.2.2, i.e. that for
independent renewal procesgeand¥, randomly sampling the responsiveness across all con-
secutive event pairs will generate uniform random sampld$,in. This normalization is
scale-invariant (the responsiveness between any pair of conseewvgnts remains the same
when time is stretched by a constant factor), which again makes our appaiaust to differ-
ences in time scale between networks or between entities within the same network.

Next, we consider correlation of responsiveness among multiple paiosisécutive events.
Given a sef() of consecutive event pairs, we define the collective responsisenfeQ as
Resp(2) = 1 — pis, Wherepgg is the p-value from performing the Kolmogorov-Smirnov
test on the individual responsiveness values, as described in S8&i@n Larger values of
Resp(£2) are a stronger indication that the corresponding processes are epemdknt.

Let ' = (U, €) be an event-driven network, and consider two nodes € U. Then
we define the responsivenessufto v asResp(u, v’) = Resp(Q2), where( is the set of all
pairs of consecutive events between the renewal processespoomdesy to the discrete-event
sequenceg, .y and &/, respectively. Intuitively, this measures whether there is a greater
likelihood of activity fromw’ shortly after receiving information from. In future work, we

plan to explore the use of responsiveness to detect and measuredafineretworks.

6.2 Innovation and Circulation

In Chapter 4 we suggested co-clustering as a way of identifying communitiadividuals
who participate in sharing the same content. However, that approacindbpsovide insight
on the dynamics of information flow within communities or the roles of individualeso Var-
ious centrality measures have been suggested to indicate the relative imparfarodes in
a network. These have traditionally been designed for static graphsedarritly several ex-

tensions have been proposed to accommodate graphs that change ovén tinrework, we

2Similar to recency, we define responsiveness using”' D F instead ofC D F to match the linguistic intuition
that higher responsiveness corresponds to shorter gaps.
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apply our event-driven network model to better understand the rolesthaduals play in the
spread of information.

Consider an event-driven netwalk = (/, £), where each evente £ has a single source
nodes., and either is in response to an event received.gr is an independently generated
piece of new content, although which of the two scenarios applies may eapheitly known.
We would like to determine the most likely sources of new content, as well asunectie
importance of each node in the diffusion process.

We formalize our problem with the following model: Leite(u) denote the total rate of
activity generated by node € U/. This activity can be decoupled into the rate of independently
generated new content, denofiesiovation(u), and the rate of activity which is in response
to each incoming neighbar’, denotedow(v’, v). The goal is, givenate(u) for each node
in the network, to infer the values a@finovation(u) andflow(u, u’) for each node and node
pair, respectively. We additionally require as input an upper bound epribbability that.’
responds to an event from which we denote by(u, u').

We frame the problem as a linear program:

Linear Program for Innovation and Flow

Input:
e for each node, rate(u)

e for each node paifu, v'), p(u, u’)

Variables:
e for each node:, innovation(u)

e for each node paifu, v'), flow(u, u’)
Constraints:
e (VueU) innovation(u) >0
o Vu,u' eld) flow(u,u') >0
o Vu,u' eUd) flow(u,u') < p(u,u) - rate(u)
(Vu e l) innovation(u) + > flow(u', u) = rate(u)
u'#u

Obijective function:
e maximize > flow(u,u’)

(u,u’)

The values ofnnovation(u) are uniquely determined, and are straight-forward to compute:

innovation(u) = max <rate(u) — Z p(u,u) - rate(u), O> .

u'eUd

The maximal value of the objective function represents the amount of netetivikty that
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can be explained as responses to existing content. We refer to this eisctiiation of the
network, which is computed as follows:
circulation(N') = Z rate(u) — innovation(u).
ueld

However, the linear program may have many optimal solutions. Specifiaallgath node
u With rate(u) < /Z p(u’,u) - rate(u’), the activity may be attributed to the incoming neigh-
bors arbitrarily. Vl\LleELE)osit that this reflects a reality in information networles, tthere is often
redundancy in the information received by a node, in which case theeso@ithe content to
which a response should be attributed is inherently ambiguous. How, grememeasure the
influence a node has on the diffusion process?

We propose a measure which we term ti@rginal circulationof a node, which indicates
how much more activity from the other nodes can be explained as respitiaseif the node

were not there:
dcire(u) = circulation(N') — (rate(u) — innovation(u)) — circulation(N — u).

It may also be of interest to compare the circulation between different neswieor this, we
suggest theirculation ratio, which indicates the fraction of network activity that is responsive

rather than innovative:
circulation(N\)

> rate(u)

ueld

gcirc (N) —

We plan to explore this framework further in future work.

6.3 Cascade Partitioning

One term that has fallen into common use in the information diffusion literaturexi&cadle,”
a sequence of connected node events induced through causal eflgatorSeveral generative
cascade models have been proposed [54, 36], as well as numerdies stualyzing the prop-
erties of known cascades [65, 61], but to the best of our knowlgtges has been no attempt
to identify or extract cascades from unlabeled data. In this section,eveugvent-driven net-
work model to introduce several new problems relating to the study of dasda information

streams.
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Let V' = (U, &) be an event-driven network. Given two events’ € £, we say that
precedes’ if t. <t and(3 u € U) such thatu € R. andu € S..

We define acascadeo be a set of events C £ with a designated root event € C such
that for alle € C, ¢ # &*, there exists an event € C such that’ precedes. A cascade
partition of A/ is a set of cascades that partitighsThecascade numbeaf a network\ is the
smallest non-negative integekisuch that there exists a cascade partitioN/obf sizek.

We say a cascadeis simpleif for all ,&’ € C, s. # s./; that is, no source node appears
more than once. Aimple cascade partitioof \ is a set of simple cascades that partitiéns
The simple cascade numbef a network is the smallest non-negative integesuch that

there exists a simple cascade partitioo\obf sizek.
Theorem 6.1. The cascade number of a netwavkcan be computed i@ (€| - [U{|) time.

Theorem 6.1 is realized by Algorithm 6.1.

Algorithm 6.1 Greedy Algorithm for Cascade Partitioning
Input: An event-driven networlV" = (i, £), with £ in chronological order.

Output: A cascade partitioning of M.

1: Initialize a collection of cascadés := () and an array of cascadesindexed byl with
entries initialized taul | .

2: For each event € £ (processed in chronological order):
(@) If A[s;] = null then create a new sé = {¢} and addC to C; otherwise, let

C = A[sc], adde to C, and then assigA[s.| ;== nul | .
(b) For each node € R., assignA|r| := C.
3: Return@C, the set of cascades.

Theorem 6.2. The decision problem for simple cascade partitioning is NP-hard.

Theorem 6.2 can be proved via a reduction from Set Covering, a jpndboiewn to be NP-
complete [52]. As an intermediate step, we construct a graph whose sat&the events ifi
colored by their source nodes, and consider a problem of partitioningyépd into trees with
no repeated colors. The full proof is omitted here.

Future work may consider cascade and simple cascade patrtitioning Uffielead sets of

constraints, or study the approximability of the simple cascade partitionindggpnob
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Chapter 7

Conclusions

7.1 Discussion of Themes

In this section, we review the central themes of our work, highlighting thi@vaace to each

of the problems we have studied.

7.1.1 Graph Analysis

We have applied tools from Graph Theory to help address severaiktiffieroblems pertaining
to event-driven networks. In Chapter 3, we construct an edge-vesigitaph that represents
the recency of communication between each pair of neighboring nodes metherk at a
given point in time. We then propose the G-CORE algorithm, which uses a disgtimata
structure to search for subgraphs with a high concentration of rectvityacln Chapter 4,
we efficiently search the set of possible co-clusterings of a matrix byrgiagea pair of k-d
trees, one for the rows and one for the columns, each co-clusterirgsponding to a pair of
maximal anti-chains on the trees. In Chapter 5, we find that the equilibria ontitéeplayer
academic collaboration game include the set of all perfect matchings ongisarchers. In
Section 6.1, we measure the influence between a pair of nodes, whicte cupled with
graph algorithms to study the structure of influence and hierarchy in netwhbr Section 6.2,
we study the effects that individual nodes have on the flow of informaticem metwork by
framing an optimization problem on a weighted graph. In Section 6.3, we detethanthe
simple cascade partitioning problem is NP-hard by a reduction from a pairigipmoblem on

a vertex-colored graph.
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7.1.2 Temporal Dynamics

Temporal dynamics are an important aspect of real-world networksh&pi@r 3, we propose
a stochastic approach that models communication between nodes as rpraseskes, and
detect sets of nodes whose behavior is temporally correlated. In CHapteridentify com-
munities in social media as entities who participate in propagating many of the sames meme
over time. In Chapter 5, we model the world of academia as a repeated ghme every
year the researchers may change their collaborations based on the oésheirs and other
players’ actions in previous years. This model can be used to simulatackses’ behavior
over time and thus predict the growth of an academic field when reseafolew a particular
set of strategies. In Section 6.1, we propose a new way to measure teaaflof one node on
another based on the likelihood that one’s activity is in response to thésothreSection 6.2,
we suggest a model to study the generation and transfer of informatiossacnetwork, which
is inherently a temporal process. In Section 6.3, our definition of casrddeces the temporal

precedence of consecutive events.

7.1.3 Group Behavior

In real-world networks, individuals rarely operate in complete isolatiomyines, individual
actions can be better understood in the context of group behavior. dpt&@h3, we look for
correlations in the collective behavior of groups of nodes. In Chaptee4dentify functional
communities as groups of individuals with related behavior. In Chapter Sjefiae ak-
stable equilibrium as a strategy profile in which no groug: d@fidividuals would benefit from
cooperatively choosing to deviate from their current strategies. Wgzmnthe game fok =

2, and suggest exploring the casekof> 2 as future work. In Section 6.1, our measure of
pairwise influence can be used to study the internal structure and dynafrggeups. In
Section 6.2, we suggest the notion of circulation to capture how much of nebdretivity is
due to collective rather than individual behavior. In Section 6.3, cascatherently entail the

cooperative behavior of multiple nodes.
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7.1.4 Attribution

In analysis of real-world networks, attribution can greatly improve the ing¢apility of results
and lead to actionable information. In Chapter 3, we choose a statisticelat@n test that
identifies the exact nodes and events that are most responsible fortakatea behavior. In
Chapter 4, as opposed to traditional clustering methods, our co-cluségmamgach attributes
the similarity of elements in each row cluster to the sets of columns that many of @ h
in common. In Chapter 5, our game model attributes the citations that a pap&eseto the
collective effort invested by its authors. In Section 6.1, we attribute theeinfiel of one node
on another to the specific pairs of consecutive events that more likelyalaugsal relationship.
In Section 6.2, we frame an optimization problem that determines how much lofneae’s
activity should be attributed to responsive behavior, and suggest raheijiculation as a way
to measure how much of the total flow in the network should be attributed to ediefdinal
node. In Section 6.3, we attribute each event that occurs in a network tagicade which

includes it.

7.1.5 Computational Realizability

Finally, we examine the computational issues that arise in applying our modketdgorithms
to real-world networks. In Chapter 3, we propose both a streaming liggalthm and a heuris-
tic global algorithm that address the need for computational efficiency dbaling with large,
high-volume communication networks. In Chapter 4, our CC-MACS algoritiveréges the
sparsity of many real-world networks to run in time sub-linear in the size of thexnadn
Chapter 5, we discuss how assumptions about human rationality and tissibitg of infor-
mation can affect the applicability of theoretic models to study real-world hurehavior. In
Section 6.1, by maintaining the distributions of inter-arrival times and respgoress values
for consecutive event pairs using dynamic distribution approximation meghloe collective
responsiveness of one node to another can be computed efficientlyreaesg manner. In
Section 6.2, we frame our problem as a linear program, whose solutioreczonfiputed effi-

ciently. In Section 6.3, we discuss two variants of the cascade partitionibéepnppresenting
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an efficient algorithm for one and an NP-hardness proof for the .otpproximation algo-
rithms would be needed to make the latter variant feasible in practice, whichggest as a

direction for future work.

7.2 Summary of Contributions

The first main contribution of our work is the formalization of a new frameworkmodeling
event-driven networks. Our framework is flexible enough to model a wédiety of network
types, including: direct pairwise communication such as email, phone, IR trafii face-to-
face encounters; broadcast messages such as multi-recipient emajés,asid online social
media; bipartite networks such as those that arise in recommender systelhesaathorship
and citation networks. It can easily model the addition of new nodes, anortimation and
discontinuation of paths of information transfer. In the remainder of theedatton, we ap-
ply this new framework to address a variety of problems that arise in the sfugal-world
networks.

In Chapter 3, we consider the task of detecting correlated events in conationioet-
works. We first present the REWARDS (REneWal theory ApproacRé&al-time Data Streams)
model, a new stochastic model for event-driven networks. Our appraiats to address the
temporal variability present in communication networks, moving away frordgmménantly-
used approaches that require an aggregation step or use a decayvittogiobal parameters,
which are sensitive to the time scale used for analysis. In particular, weagiormal defini-
tion of recency for renewal processes that is time scale-invariant,rapdge a statistical test to
identify the presence of recent correlated activity among a given settities. We then present
algorithms to efficiently find such correlations in a network. The L-COREralyn detects
correlations among outgoing activity from a single node, and is tailoreddistabuted setting
in which each node can perform the algorithm using only local informatidihconputations
can be performed in a streaming manner with extremely low space requiremmaiisyg it
ideal for nodes with a high-volume of traffic. The G-CORE algorithm simuliasty detects

subsets of nodes exhibiting correlated activity in disparate parts of theretw heuristic
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version of the algorithm makes it computationally feasible for larger netwditkough exper-
iments on synthetic and real-world data, we demonstrate that our apptitectively detects
correlated events in communication networks.

In Chapter 4, we present a new approach to community discovery in infiormaet-
works. As opposed to most existing work, which frames the problem aobokistering
well-connected vertices in a social network graph, we aim to identify funatioommuni-
ties as groups of individuals who participate in the dissemination of multiple commoresme
Given a set of memes from an information network, we first constructarypimatrix, where
the rows correspond to individuals in the network, the columns corresfmomemes, and a
l-entry indicates that the individual participated in that meme. We then framprdisdem
as one of matrix co-clustering, simultaneously clustering the rows and colohanatrix to
reveal hidden structure. We propose a class of metrics that rewarllisterings containing
large, dense blocks, and then present the CC-MACS (Co-Clusteringasanal Anti-Chain
Search) algorithm, a new heuristic algorithm which efficiently searchespieesof possible
co-clusterings for one which maximizes the value of a given metric. The @C®algorithm
provides several benefits over previously proposed approathettie dense biclusters in the
matrix need not have a block diagonal structure; (2) it explores thelttredthe search space
rather than getting stuck at local optima; (3) the results are not dependeser-specified pa-
rameters; and (4) it is designed to leverage the sparsity of many real-meivarks, running
in sub-linear time for sparse matrices. Finally, we apply the CC-MACS algottithadiscover
functional communities in a large information network.

In Chapter 5, we aim to understand the mechanisms underlying academiocatilaib us-
ing tools from the field of Game Theory. We begin by building a model for hesearchers
collaborate and how collaboration affects the number of citations a pagaves, supported
by observations from a large real-world publication and citation datassedan this model,
we frame the world of academic research as a repeated game in whictesaahcher wants
to maximize her h-index. We consider the single-player, two-player, and plaiter versions
of the game, analyzing the asymptotic behavior and equilibria for each re@ia first main
result is that for the two-player game, the researchers perform astyoafijobetter by collab-

orating, achieving linear growth of the h-index, than by publishing onlypedeent work, for
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which their h-index grows as the square root of the number of yeardthaybeen producing
papers. Our second main result is that for the multi-player game, whenrpkageconstrained
to following the same strategy every year, any strategy profile correspptuia perfect match-
ing on the set of researchers is an equilibrium; yet when strategies amedlto change over
time, the same strategy profiles are not equilibria. This highlights an importainiiepn with

the existing literature, most of which is based on models where collaborataiagts remain
constant over time. Our game-theoretic approach provides a foundatitumther study, which
through analytical methods as well as simulation can help us to better undetrstagynamics

of collaborative systems.

7.3 The Big Picture

Our ability to gain actionable information from real-world network data is limited @ty
the data is represented. The majority of known network analysis methodd netderks as
graphs, which opens the door to a suite of well-studied graph algorithmihaocktical tools.
However, as computational technologies are being brought to beaisagaireasingly chal-
lenging real-world tasks, traditional models are no longer sufficient ttucathe complexities
and subtleties of the data. Some real-world networks can be modeled as tiviegpgraphs;
that is, graphs to which nodes and edges may be added or removed overTtisemodel
makes sense when persistent relationships are explicitly observalfleasic an online so-
cial network. In many other real-world contexts, however, relationst@osonly be inferred
through the observation of discrete events in continuous time, such asittiegef a message
or the posting of online content. In such cases, flattening the data by wctivggra sequence
of snapshot or summary graphs at periodic intervals necessarily re@sutifrmation loss,
even before further computational methods have been applied. While sastingework has
attempted to work directly with event-based data, the literature seems to lackmgmifodel
for event-driven networks upon which new analytical tools can be builCHapter 2, we laid
the groundwork for such a model. In the subsequent chapters, eredjts application to
address a variety of problems that arise in the study of real-world neswdtkis our hope

that this work will lead to improved methods and technologies to provide uaeflctionable



information to human analysts in a wide variety of fields and contexts.
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