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ABSTRACT OF THE DISSERTATION

Evaluating Treatment Related Changes for Prostate

Cancer via Image Analysis Tools and Magnetic Resonance

Imaging

by Robert Toth

Dissertation Director: Anant Madabhushi

The goal of this work is to quantitatively evaluate treatment response (specifically

changes in imaging markers and prostate morphology) following treatment for prostate

cancer, via the development and application of novel segmentation and registration

methods. In this work, we quantitatively evaluate treatment response for three treat-

ment modalities: radical prostatectomy, focal laser ablation (FLA) and external beam

radiation treatment (EBRT) imaging data.

Radical prostatectomy specimens are evaluated via accurately quantifying the prostate

volume pre- and post-treatment. To this end, a novel Multi-Feature, Landmark Free

Active Appearance Model (MFLAAM) algorithm has been developed in order to de-

termine the prostate boundary and therefore associated volume. This is compared to

the prostate volume following prostatectomy, which is determined by submersing the

removed specimen in water. Quantitative results on over 200 patients show that the

MFLAAM yields more accurate segmentations than existing state of the art segmenta-

tion systems, and offers highly accurate volume estimations compared to current state

of the art clinical volume estimation procedures.
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In order to evaluate EBRT and FLA treatments for prostate cancer, the pre-, post-

treatment MRI images must be spatially aligned. However, existing registration tools

do not take into account specific treatment related changes to the prostate such as

radiation-induced shrinkage, and the specific morphological changes which occur within

the prostate. In addition, no automatic quantitative tools for specifically evaluating

treatment changes exist, which is the main contribution of this work. The prostate

consists of distinct internal substructures central gland (CG) and peripheral zone (PZ)

which respond to treatment differently. Our model aims to explicitly exploit domain

information by taking into account the different effects treatment may have on the

shapes of the internal prostatic structures, rather than on the gland as a whole. To

model these different substructures, they first must be segmented. In order to automati-

cally segment the CG and PZ, the MFLAAM algorithm was extended to simultaneously

segment multiple objects.

Following the automatic segmentation of the CG and PZ, a finite element model

(FEM) registration algorithm is introduced to deform the pre-treatment MRI to post-

treatment MRI. An FEM uses physical properties of the segmented prostate, CG, and

PZ to constrain the registration to only physically-real deformations. This is essential

when registering pre- and post-treatment imagery, as the only deformations on the

prostate would have occurred from physical forces. In addition, the physical shrinking

of the prostate (which occurs due to radiation treatment) is specifically modelled in the

FEM. This FEM was quantitatively compared to other linear and non-linear registration

techniques, and was the best performing algorithm over 30 patients. Finally, a separate

FEM is developed in order to compensate for the changes in the surrounding organs

(bladder and rectum filling) between the pre- and post-treatment MRI, which is essential

for one to isolate the treatment-related changes in the prostate.

Following an accurate registration of the pre- and post-treatment MRI, changes in

the MR parameters, changes in the prostate volume (determined from the MFLAAM

segmentation results), and changes in prostate morphology (determined from the FEM)

are calculated. We envision that this work will pave the way for predictive models in

order to predict patient outcome from early follow-up imaging data.
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Chapter 1

Introduction

Following a suspicious digital rectal exam, prostate cancer is typically diagnosed via a

biopsy. A magnetic resonance image MRI is then used to stage the cancer, help locate

the tumor, guide treatment, and to evaluate the treatment. To evaluate the treatment

via MRI, one must compare the post-treatment image to the pre-treatment image.

However, one must first spatially align (register) the images. Yet challenges exist due

to specific treatment related changes to the prostate and its internal substructures,

which existing tools currently to not address.

Several prostate cancer treatment options are available including radical prostatec-

tomy, external beam radiation therapy (EBRT), and focal laser ablation (FLA) therapy

[7]. The overarching objective of the work presented in this dissertation is to evaluate

treatment efficacy via development of sophisticated segmentation and registration algo-

rithms on prostate MRI. Our work represents the first use of these tools for evaluating

prostate cancer treatment following the aforementioned treatments.

1.1 Evaluating Radical Prostatectomy

1.1.1 Prostate Volume Estimation

In the context of radical prostatectomy, determining prostate volume allows one to

assess pathological stage of prostate cancer, can offer insights into prognosis, and help

predict treatment response [8, 9]. Prostate volume has been shown to be a strong

predictor of treatment outcome for patients with prostate cancer [10, 11], especially

when combined with a baseline prostate-specific antigen (PSA) level [12]. Prostate

volume has also been shown to be useful in determining PSA density [13]. The most
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common method for estimating the prostate volume involves modeling the prostate as

a simple geometric shape based on manually estimated measurements of the anterior-

posterior, transverse, and cranio-caudal lengths of the prostate.

The most common models for approximating the prostate shape are the ellipsoid

model [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23] and the prolate spheroid model

[13, 15, 18]. It is important to note that the ellipsoidal model has been a clinical

standard for comparisons from at least 1991 [16] to the present day [21, 23]. Some

researchers have reported that in several cases the ellipsoid model underestimated the

prostate volume [15, 17, 20, 24]. Eri et al. [15] and Tewari et al. [20] both found that

the ellipsoid model underestimated the prostate volume by about 10%. Matthews et

al. [17] found that the ellipsoid model from transrectal ultrasound (TRUS) imagery

underestimated the volume for large prostates (>50 mL), but overestimated the vol-

ume for small prostates (<30 mL). Myschetzky et al. overcame this understimation by

proposing a new formula in which the ellipsoid volume estimation is multiplied by a

factor of 1.34 [24]. Additionally, methods involving manual intervention are typically

subject to inter- and intra-observer variability [25, 26] and these volume estimations

are not highly reproducible.

While most prostate volume estimations are done using TRUS imagery, a strong

correlation (R2 = 0.925) has been shown between the volume estimations obtained

using TRUS and and from MR imagery [14]. In addition, the ellipsoidal model was

found to yield accurate volume estimations for T2-w MR imagery of the prostate,

even when an endorectal coil was used [21]. In [22] it was found that the ellipsoidal

volume estimations were more accurate than a planimetry-based approach (aggregating

a series of measurements from each slice) when using a surface coil; in contrast to

[21] where planimetry estimates were found to yield more accurate volume estimations

compared to the ellipsoidal model estimates when using an endorectal coil. In [14],

a planimetry based volume estimation was performed by measuring the areas from

manual 2D segmentations of the prostate on each slice.
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1.1.2 Prostate Segmentation on MRI

Segmentation is the process of locating an object’s boundaries in an image. With

the recent advancements of prostate MRI, several prostate segmentation schemes have

been developed [27, 28, 29, 30, 31, 32, 33, 34, 35, 36]. Segmentation of the prostate

is useful for a number of tasks, including calculating the prostate volume pre- and

post-treatment [5, 11, 14, 37], for creating patient specific anatomical models [18], and

for planning radical prostatectomies. Additionally, identifying the prostate capsule

is clinically significant for determining whether extra-capsular spread of cancer has

occurred, which is used as a determining factor when planning the extent of the excision.

Manual segmentation of the prostate, however, is not only laborious, but is also

subject to a high degree of inter-, and intra-observer variability [38, 39]. Our prostate

volume estimation method is related to the technique used by Hoffelt et al. [14], where

the gland areas obtained by manual segmentation of the capsule were aggregated across

multiple 2D sections. However, while Hoffelt et al. [14] obtained the prostate areas

manually, we aim to perform the capsule segmentations automatically, via the use of

a shape-based model. Our segmentation algorithm yields a 3D model of the prostate,

the volume of which is compared to the volume of prostatectomy specimens.

1.2 Evaluating External Beam Radiation Treatment (EBRT)

1.2.1 Overview of EBRT

A second treatment option for prostate cancer is EBRT. EBRT involves irradiating the

affected anatomical region with ionizing radiation, in an effort to destroy cancer cells.

During treatment, the radiation disrupts the natural mitotic process in cells [40]. When

apoptosis naturally occurs, the tumor cells have not had a chance to divide as rapidly,

and therefore get eliminated naturally. Since tumor cells divide at a faster rate than

benign cells [41], the radiation implicitly affects tumor cells more than benign cells,

and can be effective at reducing the tumor volume. There is also significantly gland

shrinkage following the radiation treatment period due to the elimination of tumor cells,

as well as atrophy which can also occur to benign prostatic tissue [42].
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Despite being a useful treatment option, EBRT may not be effective at completely

eradicating prostate cancer, as there may be either residual disease or local recurrence

following EBRT [43]. A study by Westphalen et al. [43] identified locally recurrent

prostate cancer (via biopsy) in 58% of men deemed suspicious post-EBRT. To deter-

mine whether EBRT was effective, Prostate Specific Antigen (PSA) concentrations (in

ng/ml) are tracked post-treatment. PSA values are currently used to evaluate treat-

ment efficacy [44], in which a rise in PSA levels post-treatment is deemed to constitute

biochemical failure. Approximately one fourth of EBRT patients undergo biochemical

failure [45]. It was reported that approximately 23% of EBRT patients (381 out of 1650)

had biomechanical failure with a 5-year incidence rate of prostate cancer metastases of

29% [45].

PSA velocity, defined as the change in PSA concentration (units of ng/ml/year), has

been found to be statistically significantly predictive of metastatic disease post-EBRT

[46]. Thus tracking PSA values is the current clinical standard in evaluating EBRT

efficacy. A meta-analysis found that a higher than normal radiation dose during EBRT

helped prevent biochemical failure in prostate cancer patients compared to the tradi-

tional dose [44]. However, while higher EBRT doses were found to significantly reduce

biochemical failure, no changes in mortality rates were noticed over 2555 patients from

6 randomized trials [44]. Therefore, a more accurate method for evaluating treatment

efficacy may be required.

PSA cannot typically be used to evaluate early treatment response. Determining

early treatment response in the cases of residual or recurrent disease is necessary to allow

for an early image guided intervention which will allow for complete disease response.

PSA is usually measured at intervals of 3 to 6 months [45]. For favorable risk patients,

the median PSA doubling time (PSA-DT), a useful prognostic tool, is 18 months, and

8 months for unfavorable risk patients [45]. In addition, a PSA-DT of less than 10

months is considered rapid [46]. Consequently there appears to exist a need for a way

of assessing very early treatment changes to be able to modulate therapy if necessary

via an image guided intervention.
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1.2.2 MRI for EBRT Evaluation

MRI has shown to be useful in the detection of recurrent disease post-treatment and can

potentially be used to discern and quantify treatment efficacy [47, 48, 49, 50, 51, 52, 53].

Over a cohort of 32 patients, the sensitivity of detecting locally recurrent prostate cancer

post-EBRT was 71% with T2-weighted MRI, 96% for dynamic contrast enhanced (DCE)

MRI, and 100% for a combination of T2-weighted and DCE [49].

Quantifying voxel-level changes within the tumor region on MRI can potentially

be used to quantify early treatment related changes [54]. Foltz et al. [54] studied

the association between changes in T2-w and apparent diffusion coefficient (ADC) MRI

parameters following EBRT. The tumor was manually identified on pre-EBRTMRI, and

mapped onto the post-treatment MRI. The changes in MRI parameter values 6 weeks

following treatment were statistically significantly correlated with PSA velocity values

(ng/ml/year), suggesting that early changes in voxel-by-voxel MRI imaging markers

could be used to predict biochemical treatment response [54].

To determine voxel level changes in imaging markers, one must first register, or

spatially align, the pre- and post-treatment imagery. Registration will allow one to (1)

accurately localize the tumor region to study, so as not to confuse changes in tumor

appearance with radiation necrosis of benign tissue, (2) determine precise voxel-by-voxel

changes in imaging markers, and (3) determine EBRT induced morphologic changes to

the prostate. Yet registration of EBRT MRI is not a trivial task, due to changes in

MRI intensity values, atrophic shrinkage resulting from radiation, and local morphologic

changes occuring within the gland [42] (Figure 1.1). While registration was performed

manually in [54], this is time-consuming, may be prone to errors and inter-observer

variability, and may be infeasible for large-scale studies. This work aims to create a

domain constrained deformable (DoCD) biomechanical model to study early treatment

related changes. The EBRT induced shrinkage effects and changes to the internal

structures of the prostate are used create a domain-specific biomechanical model. DoCD

is then used to register pre-, post-treatment MRI for (1) determining voxel-by-voxel

changes, and (2) quantify changes in gland morphology following radiation.
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(a) (b)

(c) (d)

Figure 1.1: Prostate MRI intensity changes as a result of EBRT, where the PZ bound-
ary is shown with a dotted yellow outline, and the CG boundary with a solid red outline
in (a) and (b). (a) and (c) show the pre-EBRT MRI and (b) and (d) show the post-
EBRT MRI. In (c) and (d) 3D renderings of the CG (red) and PZ (yellow) are shown.
It can be seen that there are not only significant changes in volume to the prostate as a
whole following EBRT, but also changes to the shapes of the PZ and CG, which DoCD
aims to model.

1.2.3 Domain Constrained Deformable (DoCD) Model

The prostate gland consists of internal structures including the peripheral zone (PZ),

central zone (CZ), and transition zone (TZ), where the latter 2 structures are jointly

referred to as the central gland (CG) [55] (see Figure 1.2).

In the context of EBRT evaluation, the different zones can have different tissue

compositions [56], suggesting that they may respond to EBRT differently. Following

EBRT, there can be a significant loss in visible zonal anatomy on MRI [57]. Our model

aims to explicitly exploit domain information by taking into account the different effects

EBRT may have on the shapes of the internal prostatic structures, rather than on the

gland as a whole. A domain constrained deformable (DoCD) biomechanical model
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(a) (b)

Figure 1.2: Two different 3D views of the prostate (yellow) with the central gland
(CG) (red) and peripheral zone (PZ) (purple) segmented.

aims to take advantage of these different zones for automatically registering pre- and

post-treatment MRI. Our DoCD model is driven by physical properties of the organ,

specifically Young’s modulus and Poisson’s ratio. Young’s modulus defines the hardness

of the tissue, and defines the degree to which a force applied to the prostate will deform

the tissue. Poisson’s ratio determines the compressibility of the tissue, and can act as

a volume-preserving property. DoCD is used to automatically register the pre-, post-

treatment imagery, following which a voxel-level evaluation of the EBRT efficacy can

be performed.

1.3 Evaluating Focal Laser Ablation (FLA) Treatment

1.3.1 Overview of FLA

Over 90% of low risk prostate cancer is currently treated with radical treatment such as

prostatectomy or EBRT [58], which can cause significant quality of life issues and side

effects such as incontinence, impotence, and damage to surrounding organs [59, 60, 61].

One alternative to radical treatment is active surveillance, which intends to simply wait

to see if the tumor progresses before treatment is performed, in order to minimize the

quality of life issues associated with radical treatment. However, this fails to address the

underlying disease, and many patients wish to proactively attack the prostate cancer.
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Focal treatments aim to destroy cancer cells with a high degree of precision, in

order to avoid the quality of life issues associated with radical treatments while not

sacrificing treatment efficacy. One type of focal treatment, FLA, has recently emerged

as an extremely promising cancer treatment since it includes the best aspects of radical

treatment (the ability to eradicate cancer cells), and its precision allows one to minimize

the risk of side effects [58, 59, 60, 61, 62, 63]. FLA causes thermal destruction of tissue

by a laser [58]. Radiation from a laser is absorbed by the tissue, causing homogeneous

necrosis [59]. Due to the lack of excess vascularity in the prostate (which could cause

unwanted excess conduction of heat), prostate cancer is well-suited for FLA treatment

[63]. FLA for prostate cancer has the additional advantages of ease of use, and lower

cost than some radical treatments [58].

1.3.2 MRI for FLA Evaluation

MRI is frequently used to both guide the treatment, and evaluate its efficacy [59, 61, 62,

63]. Prior to FLA, MRI is used to locate the tumor [59, 63], and to guide the laser during

treatment [59]. Following FLA, MRI can be used to determine the effect of ablation [62],

calculate the size of the ablated lesion [62], detect cancerous tissue [59, 61], and detect

complications with surrounding organs such as the rectum or neurovascular bundle [61].

Raz et al. stated that a contrast-enhanced MRI directly following treatment can be

used to confirm the treatment success, or to immediately repeat the FLA treatment

[61]. Only seven days following treatment, hypoperfused lesions (lesions with decreased

blood flow) were evident on MRI [60]. Eggener et al. recommended that following FLA,

periodic MRI should be performed in order to characterize treatment effects [60].

1.3.3 Registration of Pre-, Post-FLA Prostate MRI

To the best of our knowledge, no system exists to quantitatively evaluate the post-FLA

treatment effects on the prostate via MRI. In order to determine the effects of FLA

following treatment, the ablated zone must first be calculated on the post-FLA MRI.

However, a direct spatial mapping is not possible due to:
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1. Different patient position within the MRI machine.

2. Changes in the prostate due to motion and filling of nearby tissue and organs

such as the bladder and rectum.

3. Morphological changes in the prostate due to the ablation.

As such, a registration algorithm is employed to address these changes. Issue 1

can be addressed by a linear (rigid or affine) alignment of the pre-, post-FLA MRI.

Issue 2 can be addressed by a non-linear (deformable) model specifically designed to

simulate the changes to the prostate due to nearby tissues. Issue 3 can be addressed by

a non-linear alignment of the pre-, post-FLA prostate, CG, and PZ. In fact, as stated

previously, an exploration of #3 (the morphological changes due to FLA) is one of the

state goals of this work. It is important to note that the motion of the nearby organs

must be done separately since we wish to explicitly determine the deformations induced

solely by the FLA.

This work aims to compare pre- and post-treatment MRI in order to quantify (a)

functional and (b) morphological changes to the prostate due to the FLA. In this work,

we will generate a FEM to determine how the motion and filling of the bladder and

rectum affect the prostate. This simulated motion will be inverted, so that the only

remaining changes in the prostate are due to the FLA. A second FEM will then be used

to model the morphological changes in the prostate due to the FLA. This will allow us

to (1) determine the changes to the MRI parameters specifically at the ablated zone,

and (2) determine the morphological changes induced by FLA to the prostate and its

internal structures.

1.4 Organization of this dissertation

The organization of this dissertation is as follows. In Chapter 2, existing literature con-

cerning each of the different goals in this dissertation is reviewed, and the specific novel

contributions of this dissertation are presented. In Chapter 3, the segmentation and reg-

istration methodology to be used for treatment evaluation is presented with associated
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definitions, theory, algorithms. In Chapter 4, the evaluation of radical prostatectomy

treatment via the use of a sophisticated segmentation methodology is described. In

Chapter 5, the evaluation of external beam radiation treatment (EBRT) via the use of

a deformable, biomechanical model (DoCD) is described. In Chapter 6, the evaluation

of focal laser ablation (FLA) via DoCD is described. Finally, in Chapter 7, we present

our concluding remarks and suggest directions for future work.
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Chapter 2

Previous Related Work and Novel Contributions

2.1 Previous Work in Prostate Segmentation

Segmentation is the process of locating the an object’s boundaries in an image. In this

work, we developed a segmentation algorithm to be used for volume estimation, and

for generating a model of the prostate and its internal substructures for registration.

In this section, we provide a brief review of recent attempts to improve segmentation

algorithms in the context of prostate imagery.

2.1.1 Shape Based Prostate Segmentation

In medical imagery, shape model based segmentation has been used in a number of

applications including volume estimation [5, 37], surgical intervention [64], and detect-

ing disease within an organ for targeted therapy [65]. Active Shape Model (ASM)

[66] and Active Appearance Model (AAM) [67] frameworks are two shape based meth-

ods commonly used for object segmentation, from which our segmentation scheme is

derived.

The premise of both ASM’s and AAM’s is that a low dimensional representation

can accurately describe the shape and intensity appearance of an object. Tradition-

ally, ASM’s define a set of landmarks (specified by their Cartesian coordinates) on the

boundary of an object, and Principal Component Analysis (PCA) is performed on the

coordinates of the landmarks to yield a statistical shape model (SSM) of the object

of interest [66]. Following the generation of the SSM, the intensities surrounding each

border landmark are modeled as Gaussian distributions. To segment a new image,

boundary locations are automatically ascertained [66], to which the SSM is fit.
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However, no information from inside or outside the object of interest is taken into

account when using ASM’s. In addition, the shape and appearance have interdependen-

cies, which ASM’s do not consider. To overcome these limitations, the AAM framework

was developed [67]. With AAM’s, PCA is first performed on the set of image intensi-

ties inside the object of interest to generate a low dimensional appearance projection

of each training image. A set of low dimensional “linked projections” are then cal-

culated by concatenating the Cartesian coordinates, representing the shape, with the

appearance projections, and performing PCA a second time [68]. A linked projection

defines both the shape and appearance of an object. To segment a new image, the

linked projections are varied, and the original, high dimensional shape and appearance

are reconstructed. This process of varying the linked projections is repeated until the

reconstructed intensities best match the original intensities [67].

2.1.2 Limitations with Existing Segmentation Models

Despite their widespread use, several ASM limitations in the context of prostate seg-

mentation are listed below.

1. ASM’s exclude information regarding the object’s appearance everywhere except

the object boundary.

2. ASM’s assume independence of the shape and appearance models.

3. The traditional ASM appearance model assumes a Gaussian distribution for the

underlying intensities, an assumption that may not always be valid [69].

In addition, there are several limitations common to both ASM’s and AAM’s. Some of

these are listed below.

1. Performing PCA on a set of landmarks may not always accurately capture shape

variations in the organ.

2. A large number of anatomical landmarks may be required (usually manually se-

lected) to accurately capture shape variations.
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3. Landmark-based models require accurate alignment of an equal number of cor-

responding landmarks on all training images [66]. To accurately capture the

underlying image intensity statistics, each landmark should represent the same

anatomical location in each training image [70, 71]. Generating accurate corre-

spondences quickly becomes infeasible on account of the large number of land-

marks, and an automated method for landmark detection and alignment can be

prone to errors [72].

4. Landmarks require triangulation, and the triangulation algorithm could have a

significant computational overhead, and may be prone to errors [73].

5. Both ASM’s and AAM’s traditionally use image intensities [66, 67]. Texture

features such as edge gradients have been previously shown to yield more accurate

segmentation results [74].

Our segmentation scheme is called the multi-feature landmark-free AAM model

(MFLAAM) and extends the traditional AAM framework in two ways.

Firstly, the MFLAAM uses a levelset to capture the shape information [75]. A

levelset is defined as a set of positive values at every pixel outside the object of interest,

and negative values inside, and 0 at the surface of the object.

Secondly, while the traditional AAM was developed using image intensities, our

MFLAAM allows for incorporation of multiple textures (such as grayscale intensities),

providing the model with additional discriminability. Instead of using a low-dimensional

projection to link the landmark coordinates with image intensities, the MFLAAM links

the levelset (representing the shape) with a series of texture features.

2.1.3 Improvements to Statistical Shape Models

As stated previously, traditional ASM’s and AAM’s use PCA on a collection of land-

marks to define the shape of an object, which performs a linear embedding of the

landmarks into a low dimensional space. Yet a simple linear model may not necessarily

be sufficient to accurately capture variations in the object’s shape, and to overcome
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this limitation a bilinear model could be used to create a SSM [76]. Owing to the previ-

ously mentioned problems with the use of landmarks to define SSM’s, some researchers

have investigated levelset based representations of object shape, initially proposed by

Leventon et al. [75].

Leventon et al. [75] first proposed performing PCA on a series of signed distance

maps (levelsets) to capture shape variations, to overcome the issues with landmark

based SSMs. A levelset is defined as a set of positive values at every pixel outside

the object of interest, and a set of negative values at every pixel outside the object of

interest. Therefore, a value of 0 would represent the surface of the object. The simplest

way to compute a levelset is at each pixel in the image, calculate the Euclidean distance

to the closest border pixel, and negate that value if the pixel values within the object of

interest. To define multiple levelsets, the signed distance to the border of each object

is computed.

This approach involves first performing PCA on a set of minimum signed distances

from each pixel to the object’s surface, to yield a set of shape projections. The original

levelsets can be reconstructed from these shape projections. It was noted in [75] that

reconstructing the levelset from the shape projections will not necessarily result in a

signed distance levelset, yet the reconstructed levelsets will be smooth and accurate

enough for shape modeling.

This work was later incorporated into the ASM framework by Tsai et al. in 2004

[77] in which the levelset representations of multiple objects were concatenated prior

to performing PCA. This allowed for the creation of a set of “linked” projections. In

this context, a linked projection is a low dimensional embedding which defines the

linear relationship between levelsets of multiple objects. Tsai et al. [77] used this low

dimensional linked projection to segment multiple objects simultaneously. However,

despite the merits of using levelset-based SSM’s, traditional landmark based SSM’s are

still more common [71]. Levelsets were considered as a shape model in the context of

AAM’s in [78], in which an AAM was trained to segment out the lateral ventricles on

20 3D MRI volumes.
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In addition, coupling the individual SSMs allows one to take advantage of the in-

herent dependency between the spatial location of multiple adjoining organs. The

technique used by Tsai et al. [77] was in 2D, and the SSMs included not just shape,

but also pose information. Akhondi-Asl et al. [79] developed a coupled SSM in 3D,

which only accounted for shape variations (but not pose) by first aligning the training

shapes. Akhondi-Asl et al. [79] then explored whether coupling the SSMs actually im-

proved segmentation accuracy over simply constructing individual SSMs. It was found

that in most cases, shape coupling improves results only when the levelsets were first

aligned prior to training.

2.1.4 Improvements to Statistical Appearance Models

Traditional AAM’s define the appearance of an object based on the intensities within

that object [67]. Yet complementing image intensities with texture features may yield

more accurate segmentations [37]. Seghers et al. [80] convolved the intensities of lung

CT images with 25 different kernels, and the average Mahalanobis distance over all 25

texture features was shown to yield accurate localization of the border. Van Ginneken

et al. [81] calculated a Taylor series approximation of image intensities and the optimal

texture features were then selected and used in an ASM framework.

M. de Bruijne [69] and B. van Ginneken [81] showed that a non-linear k-nearest-

neighbor (kNN) based appearance model yields improved segmentation accuracy in

terms of both image intensities [69] and texture features [81] instead of invoking the

normal distribution for modeling the object boundary in traditional ASM’s. These

methods demonstrated the utility of using non-Gaussian descriptions of appearance,

as well as the usefulness of texture features, over simple intensity based appearance

models.

In [82], Larsen et al. extended the traditional AAM framework to use wavelet fea-

tures instead of intensities for 2D images. The image intensities were converted into

Haar wavelet projections, mainly as a means to reduce computational cost. The wavelet

projections were then utilized to reconstruct the original image intensities. Ghose et

al. [83] employed intelligent wavelet coefficient selection by discarding several wavelet
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coefficients, to yield an even more efficient, although still highly accurate, implemen-

tation of a wavelet based AAM. In addition, Hu et al. [78] used different MR imaging

modalities (specifically T1-weighting, T2-weighting, and proton density) as three fea-

tures used to drive an AAM. Finally, Baka et al. [84] showed an AAM derivation which

used multiple texture features to segment 19 2D cardiac MR images.

2.1.5 Application to Prostate Segmentation

Several segmentation schemes for MR imagery of the prostate have been recently pre-

sented, including Klein et al. [85], Martin et al. [86], Pasquier et al. [87], and Makni

et al. [88]. Klein et al. [85] performed a registration between an MR image of the

prostate and an atlas of training data to achieve a segmentation of the prostate. Mar-

tin et al. [86] also used an atlas of training images, but constrained the segmentation

model through the use of a statistical shape model. Pasquier et al. [87] used an Active

Shape Model [66] method for extracting a statistical shape model of the prostate, which

then looked for strong gradients to identify the prostate edge. Finally, Makni et al. [88]

used a statistical shape model of the prostate, and clustered the intensities within a

manually placed region of interest into 3 clusters: surrounding tissues and fat, central

prostate zone, and the peripheral prostate zone. Any pixels within the latter 2 zones

were determined to be in the prostate.

2.2 Novel Contributions in Prostate Segmentation

2.2.1 Multi-Feature Landmark-Free Active Appearance Model

In this work we present the multi-feature, landmark-free AAM (MFLAAM), a frame-

work for (1) incorporating multiple texture features into an AAM, (2) defining the

shape using a levelset, and (3) linking mulitple levelsets to the textures to simultane-

ously segment multiple objects.

PCA is used to link multiple objects by first concatenating the objects, and perform-

ing PCA on this concatenated space [67, 77]. This is achieved either by (1) Concate-

nating High-Dimensional Features (CHF), in which one aggregates all the original high
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dimensional data, similar to Tsai et al. [77], or (2) Concatenating Low-Dimensional

Projections (CLP), in which one first performs PCA to reduce the dimensionality of the

shape and appearance, and those projections are concatenated, similar to traditional

AAM’s [67]. Overall, this work differs from Tsai et al. [77] in that (1) PCA is used to

link a multiple levelsets with multiple texture features instead of just multiple levelsets,

and (2) PCA is performed using the CLP method instead of the CHF method.

With each application of PCA, the data is embedded in a lower dimensional space,

thereby decreasing the data variance. While the CHF approach involves a single ap-

plication of PCA, and the CLP approach involves two successive applications of PCA,

one would assume that CHF would be the appropriate strategy since it involves lower

loss in variance. However, CHF results in a space with extremely high dimensionality,

and performing PCA on this high dimensional space can be computationally infeasible.

CLP is a computationally tractable method, one employed by the traditional AAM [67],

and hence the one we adopt for the MFLAAM. The benefits of performing PCA twice

include (1) the ability to process each feature in parallel, and (2) the reduced memory

requirements of the Eigen-analysis and covariance matrix calculation. In addition, we

show that there is only a marginal loss of variance from performing PCA twice.

To segment a new image, the texture features are first extracted, and the goal is

to calculate the associated shape, and therefore the resulting segmentation. Given a

set of linked projections, one can reconstruct an approximation of the original high

dimensional data. The MFLAAM is rotated, translated, and scaled, and the texture

features are reconstructed. The location of the best reconstructions is found, and the

shape is reconstructed at this location. The hypothesis is that an accurate texture

reconstruction will correspond to a proper shape reconstruction, and thus a correct

segmentation. This segmentation is then used to automatically compute the volume

in vivo prior to radical prostatectomy, and compared to the volume of the excised

specimens.
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2.2.2 Segmentation of Prostatic Substructures

In addition to using the MFLAAM to evaluate radical prostatectomy volume changes,

it is also used to guide the registration for EBRT and FLA evaluation. As stated pre-

viously, DoCD aims to take into account specific changes to the prostate substructures

CG and PZ, and the MFLAAM is therefore extended to segment those substructures.

In [54], outlines of the prostate, tumor, CG, and PZ were manually identified on

both the pre- and post-treatment MRI in order to guide the registration. Subsequent to

delineating the structures, the regions so identified were manually brought into align-

ment between the pre-, post-treatment MRI [54]. This work aims to automatically

segment these structures using the MFLAAM for use in guiding the registration.

In order to segment these boundaries automatically, the MFLAAM was extended to

simulteanously segment multiple objects. As stated previously, to estimate the prostate

volume, the MFLAAM was trained with a levelset of the prostate. In order to extend

this method to segment multiple objects, we take an approach similar to that of Tsai

et al. [77], in which concatenating the levelsets of multiple objects is performed prior

to performing PCA, essentially “coupling” the levelsets. Hence a single set of low

dimensional values (a “projection”) is used to represent the shape of multiple objects.

This allows for simultaneous segmentation of multiple objects. Our approach employs

the concept of coupling multiple shapes’ levelsets (i.e. the prostate capsule, CG, and

PZ) with multiple textures with the MFLAAM framework.

2.2.3 Comparison to Closest Related Works

While [78] used a levelset in an AAM framework, there are several important differences

with the work presented in this work. (1) The low dimensional projections for the

levelsets were constrained to between ±2 standard deviations from the mean shape.

While this may be a reasonable assumption for most scenarios, it is entirely possible

that a new image might be better segmented where the extent of shape variation falls

outside this range. (2) No alignment was performed for the training images in [78].

This is not typically an issue with brain MRI, but critical to address with prostate
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MRI data, where deformation and the presence or absence of the endorectal coil can

cause differences in relative orientations of the gland from patient to patient. (3) No

alignment of the AAMmodel to a new image was performed. Since there is a large region

in which the object can appear in a new image, we find that this affine alignment is a

crucial step in the MFLAAM algorithm. Without any rotation, translation, or scaling,

one assumes that the training levelsets include sufficient pose information, which is

not guaranteed. (4) Intensity differences were used to drive the segmentation in [78],

whereas we employed normalized cross correlation on account of non-standard intensity

values between patient studies in the present work.

We note that texture features have been previously used in conjunction within an

AAM framework [78, 82, 83, 84]. In [82] and [83] the AAM’s were developed in con-

junction with wavelets, while in [78] and [84] the AAM’s were generalized to work in

conjunction with any type of texture features. While [78] and [84] attempted to maxi-

mize the similarity between the reconstructions and original features using the L2 norm,

the MFLAAM maximizes normalized cross correlation, a useful similarity measure to

help overcome intensity non-standardness and extreme intensity values. Another fun-

damental difference between the MFLAAM and related works [78, 82, 83, 84] is that

it employs an explicit feature selection scheme specifically tailored to identifying those

attributes that will yield the most accurate shape reconstruction (and therefore most

accurate segmentation). Additionally, unlike [84] which only utilized pose informa-

tion to drive the AAM, the MFLAAM utilizes a full range of affine transformations to

determine the optimal segmentation.

Our model uses multiple coupled level sets to model the 3D shapes, thereby helping

to alleviate many of the issues facing traditional landmark-based AAMs. The MFLAAM

offers the advantage of (1) not having to deal with the landmark identification prob-

lem, and (2) not having to triangulate a series of landmarks to generate a 3D model.

In addition, we take a similar approach that proposed by Leventon et al. [75] and

Akhondi-Asl et al. [79], in that multiple levelsets are coupled to allow for simultaneous

segmentation of multiple objects.

In addition, the MFLAAM can also use existing segmentations of one or more organs
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to generate more accurate segmentations of the adjacent organs (for example using the

prostate segmentation to simultaneously segment the bladder and rectum [89]). This is

accomplished by generating the coupled projections using both intensities and levesets,

whereas prior AAM models are only able to consider intensity information [67].

This approach also allows the MFLAAM to be used hierarchically, in which one

object can first be segmented, and then used to drive the segmentations of other em-

bedded objects. For example, in the case of prostate MRI, the central gland (CG) and

peripheral zone (PZ) are substructures of the prostate itself (see Figure 1.2). Using an

existing prostate segmentation to segment the CG and PZ reduces the search space,

which can help hone in on the embedded substructures within the gland. In addi-

tion, the coupled model allows for structural linking of of the adjoining sub-structures,

thereby permitting incorporation of anatomic constraints.

2.3 Previous Work in Prostate Registration

There are several examples of biomechanical models being used to (1) register prostate

MRI and CT imagery [90, 91, 92, 93, 94, 95], and to (2) register brain MRI following

radiation treatment [96, 97, 98] (Table 2.1). Biomechanical models have been used to

model morphologic and volumetric changes as a result of tumor growth and shrinkage

on brain MRI. Karacali et al. [98] attempted to study brain tissue atrophy which

was simulated by prescribing volume changes to the region of atrophy. In addition,

Kyriacou et al. [97] modeled the effects of tumor shrinkage on surrounding tissue using

a biomechanical model.

Existing prostate biomechanical models have focused on how external loads on the

surface of the prostate deform the gland [90, 91, 92, 93, 94, 95], which is extremely useful

when modeling how organs move relative to each other [91, 94], or how a probe deforms

the prostate [93]. Chi et al. [91] modeled the motion of the bladder, prostate, and rec-

tum on CT imagery, and explored different material properties for benign prostate tis-

sue, prostate tumors, and benign prostatic hyperplasia using a FEM model. Boubaker

et al. [94] used a FEM to model how the bladder, rectum, and prostate moved on CT



21

Table 2.1: DoCD (last row) and closest related work. Most existing works either
model shrinkage in brain imagery, use 2D models, or model external surface forces
on the prostate, unlike DoCD which models EBRT-induced changes to substructures
within the prostate.

Image Type Brief Description

2D Brain MRI FEM strains model tumor shrinkage [97]

3D Brain MRI Tissue atrophy modeled by reducing volume of pixels [98]

2D Brain MRI Tumor growth modeled using a FEM [96]

3D Prostate CT Prostate, bladder, rectum modeled with FEM [91, 94]

3D Prostate MRI Endorectal coil deformation modeled with FEM [93]

3D Prostate MRI External forces with FEM align prostate surfaces [90]

3D Prostate MRI DoCD: Internal shrinkage models EBRT deformations.

imagery, and compared the results to a cadaver. Crouch et al. [92] used a FEM to

register the prostate surfaces on CT imagery. Hensel et al. [93] used a FEM to register

a prostate MRI with an endorectal coil to an MRI without. Brock et al. [90] used an

FEM to register a prostate MRI acquired prior to treatment to an MRI acquired during

treatment by automatically aligning nodes on the prostate surface.

2.4 Novel Contributions in Prostate Registration

2.4.1 Domain Constrained Deformable (DoCD) Model

We use the MFLAAM to yield simultaneous segmentation of prostatic substructures,

and bring them into spatial alignment via the use of a biomechanical model. In this

work we employ a finite element model (FEM) as the choice of biomechanical model.

The FEM is a biomechanical model which uses physical properties such as elasticity

and compressibility to deform one or more objects, in our case the CG and PZ.

Brock et al. [90] used a Young’s modulus of 21 kPa for the prostate, and Chi et al.

[91] claimed that normal prostate tissue has a Young’s modulus of 40-80 kPa, benign

hypertrophic prostate tissue has a value of 30-50 kPa, and cancerous prostate tissue

has a value of 80-120 kPa. Based off these findings, we employed a Young’s modulus of

30 kPa.

A Poisson’s ratio of 0.50 indicates that compressing in one direction results in
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stretching in the perpendicular direction. A value of 0.0 indicates that compressing

in one direction yields no changes in the perpendicular direction, and as such reduces

the volume. Chi et al. [91] noted that an accurate Poisson’s ratio is critical for an

accurate registration. Brock et al. [90] modeled the prostate with a Poisson’s ratio of

0.40 and Crouch et al. [92] used a value of 0.49.

The methods in [90, 92] use a high Poisson’s ratio because the prostate capsule is

essentially modeled as a volume-preserving entity, such that compressing one part of

the prostate yields an expansion elsewhere. While this is likely a correct assumption for

modeling how various external forces affect the prostate capsule, such as the pressure

from an endorectal coil [93] or the bladder [91], this may not be a valid assumption

for EBRT induced deformations. In this work, we wish to model the EBRT induced

shrinkage effects on the PZ and CG of the prostate, and therefore use a Poisson’s ratio

of 0.0, which allows changes in the volume.

For DoCD, strains are induced at the boundaries of these prostatic substructures,

as well as on the prostate surface itself. A 3D FEM is then used to deform the entire

prostate as a result of these strains. Similar to [96], an optimization scheme is used

to determine the model parameters which best deform the pre-treatment MRI to post-

treatment MRI.

2.4.2 Comparison to Closest Related Works

Existing biomechanical models of the prostate have focused on external forces, and

models for registering radiation treatment have mainly focused on 2D brain MRI. By

contrast, DoCD uses a 3D FEM to register pre-, post-treatment MRI due to the FEM’s

ability to explicitly incorporate prior domain knowledge about the treatment induced

effects on the prostate. The approach we take is similar to that of [98] in which brain

atrophy was modeled by shrinking the volume of certain pixels in the image. However,

while domain-specific information was used in [98], no physical tissue information was

incorporated, as we aim to do via the use of a FEM. In this case, the effects of shrinkage

are modeled by supplying known loads at locations within the prostate (rather than

only at the surface, as in traditional prostate FEM schemes [90]).
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In addition, in this work, we will also generate a FEM to determine how the motion

and filling of the bladder and rectum affect the prostate. This simulated motion will be

inverted, so that the only remaining changes in the prostate are due to the FLA. This

will allow us to (1) determine the changes to the MRI parameters specifically at the

treatment location, and (2) determine the morphological changes induced by treatment

to the prostate and its internal structures.

In summary, DoCD makes the following novel contributions:

1. DoCD uses an FEM generated from the PZ and CG substructures of the prostate,

rather than the capsule as a whole (as in [90, 92, 93, 94]), in order to more precisely

model the treatment induced changes to the internal prostate morphology.

2. DoCD applies strains within the prostate towards the centroid of the PZ and CG,

in order to model the unique shrinking effects of treatment, unlike only applying

loads on the surface of the prostate as in [90, 92, 93, 94].

3. DoCD employs physical properties specifically chosen to allow changes in volume

of the prostate and substructures in order to model the shrinkage, unlike [91, 93]

which models the prostate as volume-preserving.

4. DoCD specifically models, and removes, the deformations on the prostate from

surrounding organs to isolate the treatment-induced morphology changes.
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Chapter 3

Segmentation and Registration Methodology

3.1 MFLAAM Segmentation Algorithm

This content is primarily derived from [1], on which Robert Toth is the first author.

3.1.1 Notation

An image scene is defined as I = (C, f). C ∈ R
P represents a set of P pixels, and

each ck ∈ C, k ∈ {1, . . . , P} is defined by its Cartesian coordinates (x, y, z). f(k)

represents the intensity at pixel k. Fi,j ∈ R
P represents feature j of image i, where

Fi,j = {fi,j(k) | k ∈ {1, . . . P}} and fi,j(k) represents the value of feautre j at pixel k

of image i. fi,1(k) represents the levelset value at pixel k and fi,2(k) through fi,M(k)

represent the (M − 1) texture features at pixel k.

For a segmented image Ii, C
(In) ⊂ C represents an unordered set of pixels inside

the object. Each c ∈ C(In) is therefore a pixel inside the object. A summary of the

notation used throughout the section is illustrated in Table 3.3 [1].

Table 3.1: Notation and symbols used.

Symbol Description Formula/Domain

N Number of images. N ∈ N
1

i Image index. 0 < i ≤ N

M Number of features. M ∈ N
1

j Feature index. 0 < j ≤M

P Number of pixels. P ∈ N
1

Continued on next page
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Table 3.1 – continued from previous page

Symbol Description Formula/Domain

k Pixel index. 0 < k ≤ P

P̂j Feature projection dimensionality. p̂j ≤ P .

k̂ Feature projection index 0 < k̂ ≤ P̂j

P̃ Linked projection dimensionality. P̃ ≤
(∑

j P̂j

)

k̃ Linked projection index. 0 < k̃ ≤ P̃

ψ̂
(k̂)
j k̂th feature projection eigenvector. ψ̂

(k̂)
j ∈ R

P .

fi,j(k) Feature value at pixel k. fi,j(k) ∈ R
1

ψ̃(k̃) k̃th linked projection eigenvector. ψ̃(k̃) ∈ R
(
∑

j Pj).

f̂i,j

(
k̂
)

Feature projection value at index k̂. f̂i,j

(
k̂
)
∈ R

1

λ̂
(k̂)
j k̂th feature projection eigenvalue. λ̂

(k̂)
j ∈ R

1

f̃i

(
k̃
)

Linked projection value at index k̃. f̃i

(
k̃
)
∈ R

1

λ̃
(k̃)
j k̃th linked projection eigenvalue. λ̃

(k̃)
j ∈ R

1

Fi,j Feature image. Fi,j ∈ R
P

F̆i,j Concatenation of feature projections. F̆i,j ∈ R
(
∑

j Pj).

F̂i,j Feature projection. F̂i,j ∈ R
P̂j

Ḟi,j Feature reconstruction. Ḟi,j ∈ R
P

F̃i Linked projection. F̃i ∈ R
P̃

C Collection of P pixels. C ∈ R
P

C(In) Pixels inside an object. C(In) ⊂ C

3.1.2 Theory of MFLAAM

The MFLAAM training involves Concatenating Low-dimensional Projections (CLP)

prior to performing PCA. An alternative to the CLP scheme is the Combining High-

dimensional Features (CHF) scheme [77]. In the CHF scheme, the original features

are simply concatenated and embedded into a low dimensional linked projection. This

section explores the additional loss of variance from using CLP versus CHF.
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Figure 3.1: The CLP process (computing a set of linked projections from features). (a).
M features from N objects are input. (b). Compute a series of feature projections F̂i,j .
(c). Concatenate feature projections as F̆i. (d). Calculate a set of linked projections
F̃i from the concatenated projections. At every step, a certain percentage (α) of the
data’s variance is required to be retained in the projections. The top row represents the
steps performed on each object, while the bottom row represents the variance retained
in each step.

Definitions

An object C ∈ R
P contains P elements. For each element k ∈ {1, . . . , P}, there

is an associated scalar value f(k). Each Ci is associated with a set of M features,

Fi,j ∈ R
P , j ∈ {1, . . . ,M}.

The variance V (S) of a set S = {C1, . . . , CN} is defined as the accumulated variance

of each element,

V (S) =
P∑

k=1

(
1

N − 1

N∑

i=1

(
fi(k)− f̄(k)

)2
)

=
1

N − 1

N∑

i=1

P∑

k=1

(
fi(k)− f̄(k)

)2
(3.1)

where f̄(k) = 1
N

N∑
i=1

fi(k) represents the mean of element k across all N objects.

Definition 1. Given a set Sj of feature j across N images, Sj = {F1,j , . . . , FN,j}, the
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corresponding feature variance Vj is given as Vj = V (Sj), ∀j ∈ {1, . . . ,M}.

The total feature variance VΣ is defined as the feature variance accumulated over all M

features, VΣ =
M∑
j=1

Vj .

A low dimensional embedding of feature Fi,j is called a feature projection and de-

noted by F̂i,j (Figure 3.1b). A feature projection F̂i,j ∈ R
pj , where pj ≪ P is defined by

its scalar values f̂i,j

(
k̂
)
, k̂ ∈ {1, . . . , pj}. Each feature projection F̂i,j ,∀j ∈ {1, . . . M},

is required to retain at least (α · Vj) variance, where α is a pre-determined value such

that 0 < α ≤ 1. Note F̂i,j is computed independently for each j.

Definition 2. Given a set Ŝj of N feature projections Ŝj =
{
F̂1,j , . . . , F̂N,j

}
, the

projection variance V̂j is defined as V̂j = V
(
Ŝj

)
,∀j ∈ {1, . . . ,M}.

By definition, V̂j ≥ α · Vj , which is rewritten as V̂j = α̂j · Vj , where α ≤ α̂j ≤ 1. The

total feature projection variance V̂Σ is defined as the accumulated projection variances,

V̂Σ =
M∑
j=1

V̂j .

Definition 3. Given M feature projections
{
F̂i,1, . . . , F̂i,M

}
, associated with object

Ci,∀i ∈ {1, . . . , N}, the corresponding concatenated projection F̆i, is defined as,

F̆i =
{
f̂i,1(1), . . . , f̂i,1(p1), . . . , f̂i,M(1), . . . , f̂i,M (pM )

}
. (3.2)

The dimensionality of F̆i is given by q =
M∑
j=1

pj, so F̆i ∈ R
q (Figure 3.1c).

Definition 4. Given a set S̆ of N concatenated projections S̆ =
{
F̆1, . . . , F̆N

}
, the

total concatenated variance V̆Σ is defined as V̆Σ = V
(
S̆
)
.

After concatenation, a second low dimensional embedding is performed (Figure

3.1d). A linked projection F̆i ∈ R
q, which is required to retain at least

(
α · V̆Σ

)

variance, is denoted as F̃i ∈ R
r where r ≤ q.

Definition 5. Given N linked projections
{
F̃1, . . . , F̃N

}
, the total linked variance ṼΣ,

is defined as ṼΣ = V
({
F̃1, . . . , F̃N

})
.

By definition, ṼΣ ≥ α · V̆Σ, which can be rewritten as ṼΣ = α̃ · V̆Σ, where α ≤ α̃ ≤ 1.
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Propositions

Propositions 1 and 2 below show that the CLP method (using F̆ to calculate F̃ ) will

allow for retention of most of the original variance VΣ.

Proposition 1. Given N concatenated projections
{
F̆1, . . . , F̆N

}
, with a total concate-

nated variance of V̆Σ, and total feature projection variance of V̂Σ, V̆Σ = V̂Σ.

Proof.

V̆Σ = V
({
F̆1, . . . , F̆N

})

=
1

N − 1

N∑

i=1

M∑

j=1

pj∑

k̂=1

(
f̂i,j

(
k̂
)
−

¯̂
fj

(
k̂
))2

=
M∑

j=1


 1

N − 1

N∑

i=1

pj∑

k̂=1

(
f̂i,j(k̂)−

¯̂
fj(k̂)

)2



=

M∑

j=1

(
V̂j

)

= V̂Σ

ṼΣ can now be rewritten as,

ṼΣ = α̃ · V̆Σ = α̃ · V̂Σ = α̃ ·
M∑

j=1

V̂j = α̃ ·
M∑

j=1

α̂j · Vj. (3.3)

Proposition 2. Given a total linked variance of ṼΣ and total feature variance of VΣ,

ṼΣ ≥ α2 · VΣ.

Proof. By definition, α is the lower bound of α̃ and α̂j . Substituting α into Equation

(3.3) yields the lower bound of ṼΣ:
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ṼΣ = α̃ ·
M∑

j=1

α̂j · Vj

ṼΣ ≥ α ·
M∑

j=1

α · Vj

ṼΣ ≥ α2 ·
M∑

j=1

Vj

ṼΣ ≥ α2 · VΣ

As stated previously, the CHF method [77] could have been used to compute F̃i. A

concatenated feature Fi ∈ R
(P ·M) can be defined as,

Fi = {fi,1(1), . . . , fi,1(P ), . . . , fi,M (1), . . . , fi,M (P )} . (3.4)

It can be shown that V ({F1, . . . ,FN}) = VΣ in a manner similar to Proposition (1).

However, there are several reasons our MFLAAM uses F̆i (the CLP method) instead of

Fi (the CHF method) for calculating F̃i:

1. Minimal Loss of Data Variance. Using Fi retains at least α · VΣ variance

while using F̆i retains at least α
2 · VΣ variance. Since lim

α→1

(
α · VΣ − α2 · VΣ

)
= 0,

the additional loss of variance is minimal if α ≈ 1.

2. Computational Efficiency. The CHF method involves projecting a set of P ·M

objects to a lower dimensional space. By comparison, the CLP method only

requires projecting a set of P dimensional objects. In addition, calculating F̂i,j

can be performed in parallel for each j using the CLP method, which isn’t possible

using the CHF method.
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3.1.3 MFLAAM Training

The MFLAAM is trained with N images {Ii, . . . , IN}. First, the shape Fi,1 and the

texture features Fi,j, j > 1 are computed, followed by the calculation of the feature

projections F̂i,j and linked projections F̃i.

Calculating Shape

The shape Fi,1 = {fi,1(1), . . . , fi,1(P )} for Ii is represented by the signed distances to

the object’s surface [75], and is calculated as,

fi,1(k) =





− min
c∈C(In)

‖ck − c‖2 if ck ∈ C
(In)
i

+ min
c∈C(In)

‖ck − c‖2 if ck /∈ C
(In)
i .

(3.5)

Calculating Projections using PCA

Performing PCA on {F1,j, . . . , FN,j} results in P ordered eigenvectors ψ̂
(1)
j , . . . , ψ̂

(P )
j

and associated eigenvalues λ̂
(1)
j , . . . , λ̂

(P )
j , where λ̂

(1)
j > . . . > λ̂

(P )
j .

Each eigenvector ψ̂
(k̂)
j ,∀k̂ ∈

{
1, . . . , P̂j

}
is defined by its P elements

ψ
(k̂)
j =

{
ψ
(k̂)
j (1), . . . , ψ

(k̂)
j (P )

}
. (3.6)

P̂j is chosen to be as small as possible such that

P̂j∑

k̂=1

λ̂
(k̂)
j ≥ α ·

P∑

k=1

λ̂
(k)
j , (3.7)

and α is predetermined and 0 < α ≤ 1. The feature projection F̂i,j =
{
f̂i,j(1), . . . , f̂i,j(pj)

}

for image i and feature j is calculated as,

f̂i,j

(
k̂
)
=

P∑

k=1

(
fi,j(k)− f̄j(k)

)
· ψ

(k̂)
j (k), (3.8)

where f̄j(k) =
1
N

∑N
i=0 fi,j(k). The feature projections are concatenated as,



31

F̆i =
{
f̂i,1(1), . . . , f̂i,1(P̂1), . . . , f̂i,M(1), . . . , f̂i,M (P̂M )

}
. (3.9)

Performing PCA on
{
F̆1, . . . , F̆N

}
results in q =

∑M
j=0 P̂j ordered eigenvectors

ψ̃(1), . . . , ψ̃(q) and associated scalar eigenvalues λ̃(1), . . . , λ̃(q), where λ̃(1) > . . . > λ̃(q).

Each eigenvector ψ̃(k̃),∀k̃ ∈
{
1, . . . , P̃

}
is defined by its q elements

ψ̃(k̃) =
{
ψ̃(k̃)(1), . . . , ψ̃(k̃)(q)

}
, (3.10)

which can be rewritten as,

ψ̃(k̃) =

{
ψ̃
(k̃)
1 (1), . . . , ψ̃

(k̃)
1 (P̂1), . . .

ψ̃
(k̃)
M (1), . . . , ψ̃

(k̃)
M (P̂M )

}
.

(3.11)

P̃ is chosen to be as small as possible such that,

P̃∑

k̃=1

λ̃(k̃) ≥ α ·

q∑

k=1

λ̃(k). (3.12)

The linked projections F̃i =
{
f̃i(1), . . . , f̃i(r)

}
are calculated as,

f̃i

(
k̃
)
=

M∑

j=1

P̂j∑

k̂=1

f̂i,j

(
k̂
)
· ψ̃

(k̃)
j

(
k̂
)
. (3.13)

Since the feature projections retain a certain percentage (α) of the variance, and

the linked projections also retain α of the variance, the total variance retained in the

final model is α2 of the original variance. This was shown analytically above.

3.1.4 MFLAAM Segmentation

A new, unsegmented image is denoted as Iθ, where Fθ,j , for j > 1 represents the texture

features of the new image, and Fθ,1 represents the unknown shape of the new image.

The goal is to determine the final segmentation C
(In)
θ given the texture features. The

texture features are used to estimate F̃θ, which can then be used to reconstruct an

estimate of Fθ,1 (denoted as Ḟθ,1 ∈ R
P ) and yield a final segmentation C

(In)
θ .
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Calculating a Feature Reconstruction using Texture Features

The first step is to calculate a set of linked projections F̃θ using the texture features.

Given linked projections F̃θ, the feature projections F̂θ,j, for ∀j ∈ {1, . . . ,M} are esti-

mated as F̂θ,j,F̃ =
{
f̂θ,j,F̃ (1), . . . , f̂θ,j,F̃ (pj)

}
,

f̂θ,j,F̃

(
k̂
)
=

r∑

k̃=1

ψ̃
(k̃)
j

(
k̂
)
· f̃θ

(
k̃
)
. (3.14)

The linked projections F̃θ =
{
f̃θ(1), . . . , f̃θ(r)

}
which minimize the sum of squared

differences between F̂θ,j,F̃ and F̂θ,j are calculated,

F̃θ = argmin
F̃

M∑

j=2

pj∑

k̂=1

(
f̂θ,j,F̃

(
k̂
)
− f̂θ,j

(
k̂
))2

. (3.15)

Equation (3.13) cannot be used to estimate F̃θ directly since we only have the texture

features (j ≥ 2) and not the shape (j = 1).

The next step is to use F̃θ to reconstruct a full P dimensional feature. Given a set

of estimated feature projections F̂θ,j,F̃ , the reconstructed features Ḟθ,j are calculated

as, Ḟθ,j =
{
ḟθ,j(1), . . . , ḟθ,j(P )

}
, j ∈ {1, . . . ,M},

ḟθ,j(k) = f̄j +

P̂j∑

k̂=1

ψ̂
(k̂)
j (k) · f̂θ,j,F̃

(
k̂
)
. (3.16)

The entire process of reconstructing feature j from the texture features is illustrated

in Algorithm 1.

Algorithm 1 ReconstructNewFeature

Input: texture features Fθ,2 through Fθ,M , feature index j ∈ {1, . . .M}
Output: Reconstruction Ḟθ,j ∈ R

P

1: Calculate F̂θ,j, for ∀j ≥ 2 using Equation (3.8);
2: Calculate F̃θ using Equation (3.15);
3: Calculate F̂θ,j,F̃ using Equation (3.14);

4: Calculate Ḟθ,j using Equation (3.16);
5: return Ḟθ,j
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Step 1 in Algorithm 1 calculates the texture feature projections F̂θ,j . Step 2 uses

the feature projections F̂θ,j to estimate the linked projections F̃θ. Step 3 calculates a

feature projection estimate F̂θ,j,F̃ for feature j using the linked projections F̃θ. Step 4

calculates the feature reconstruction Ḟθ,j using the feature projection estimate F̂θ,j,F̃ .

Figure 3.2 shows a graphical overview of the process for reconstructing all features (lev-

elset and texture) from a collection of input features. An example of a reconstruction

overlaid with the original image is shown in Figure 3.3 [1].

Figure 3.2: (a) The projections from the input intensities and levelsets are calculated
using Equation (3.8). (b) Only the rows from the coupled matrix corresponding to
the given inputs are extracted. The projections are used to estimate a set of linked
projections F̃θ using Equation (3.15). The linked projections F̃θ are used to reconstruct
the entire set of projections F̂θ,j,F̃ using Equation (3.14). Finally, a set of reconstructions

Ḟθ,j using Equation (3.16) are calculated using Equation (3.16).
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(a) (b)

Figure 3.3: (c) and (c) represent F
(T )
θ,j and Ḟ

(T )
θ,j for two different patient studies. In

both (c) and (c), the original feature image F
(T )
θ,j is shown as the background image.

The reconstruction Ḟ
(T )
θ,j resulting from the MFLAAM is shown inside the blue box.

Segmenting a New Image

To segment Iθ, a template matching algorithm is employed. The location with the

best texture feature reconstructions (based on normalized cross correlation (NCC)) are

found. Fθ,1 is then reconstructed, and a segmentation C
(In)
θ is calculated.

If F
(T )
θ,j represents applying an affine transformation T to feature Fθ,j, then Ḟ

(T )
θ,j is

defined as

Ḟ
(T )
θ,j = ReconstructNewFeature

(
F

(T )
θ,2 , . . . , F

(T )
θ,M

)
. (3.17)

After each texture feature is transformed (F
(T )
θ,j ), there is an associated reconstructed

texture feature (Ḟ
(T )
θ,j ). NCC was used to determine how well each feature was recon-

structed, denoted as NCC
(
Ḟ

(T )
θ,j , F

(T )
θ,j

)
. A value of 1.0 would represent a transformation

that yielded a perfect reconstruction, while lower values represent transformed texture

features which the MFLAAM could not reconstruct from the training data. NCC was

chosen as the similarity measure instead of the L2 norm because of its ability to over-

come intensity non-standardness and its robustness to extreme intensity values. For

example, a few extremely bright or extremely dark pixels would contribute to driving

the metric if the L2 norm was used, while the NCC would not suffer from this limitation
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(a) (b)

Figure 3.4: (a) and (b) each show the same image as the background. In both (a) and
(b), the ground truth prostate segmentation is shown in green. However, during the
segmentation process, different transformations T yield different reconstructions. The

reconstructions for two different transformations Ḟ
(T )
θ,j are shown in blue squares in (a)

and (b). When T is well aligned with the object of interest, the reconstruction results
in a high NCC value (0.65 in (a)), yet when T causes the feature to be far from the
object of interest, the MFLAAM is unable to reconstruct the texture feature, which
results in a low NCC value (0.42 in (b)).

due to the fact that it is inherently normalized. The hypothesis is that a high NCC

value would occur if the feature is transformed such that the object of interest is in

perfect alignment with the trained MFLAAM (Figure 3.4). However, since each texture

feature is reconstructed independently, each texture feature would have a distinct NCC

value. Therefore, the average NCC over all texture features is maximized to determine

the best transformation T ,

T = argmax
T

1

M − 1

M∑

j=2

NCC
(
Ḟ

(T )
θ,j , F

(T )
θ,j

)
(3.18)

where NCC
(
Ḟ

(T )
θ,j , F

(T )
θ,j

)
represents the normalized cross correlation [99] between Ḟ

(T )
θ,j

and F
(T )
θ,j .

Equation 3.18 must be optimized to determine the set of affine parameters for which

the NCC is maximized. This is a crucial step, since the working hypothesis is that the

NCC will be maximized if and only if the MFLAAM is properly aligned with the new

image, and hence the reconstruction will properly capture the desired segmentation. A
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global optimization is first performed, followed by a local optimization to properly hone

in on the maximum NCC. To perform the global optimization, an initialization-biased

particle swarm optimizer [100] is used, in which 100 random affine parameters (100

particles) are each allowed to converge independently on the maximum NCC, and the

particle with the maximum NCC overall is chosen. Then, a local Powell optimization

[101] is performed, in which each of the 12 affine parameters is optimized independently.

This process of optimizing each parameter independently is repeated until convergence,

thus driving the transformations to the maximum NCC value [1].

The optimal transformation T , can now be used to calculate the reconstructed

levelset Ḟ
(T )
θ,1 =

{
ḟ
(T )
θ,1 (1), . . . , ḟ

(T )
θ,1 (P )

}
using Equation (3.16). The final segmentation

C
(In)
θ is now calculated as all pixels in which the reconstructed levelset is negative,

C
(In)
θ =

{
ck | T−1

(
ḟ
(T )
θ,1 (k)

)
< 0
}
, (3.19)

since the levelset is represented by a signed distance function.

The images were first affinely aligned to a single study to serve as part of the training.

The MFLAAM was implemented in a multi-resolution fashion, with 4 resolutions from

50×50×40 pixels up to the full resolution of 256×256×40 pixels. For all experiments,

α = 0.95 was used, similar to [67].

3.1.5 Feature Extraction and Selection

For our experiments, we employed several texture features. These included first order

grey level features (median and variance of neighborhoods surrounding a given pixel)

as well as Kirsch [102] and Sobel [103] texture features. Table 3.2 contains a complete

list of the texture features used for the MFLAAM [1].

The texture features are utilized to estimate the linked projection F̃θ using Equation

(3.15). F̃θ is then employed to reconstruct our final segmentation Ḟθ,1. Knowing the true

shape Fθ,1 would have allowed us to use Equation (3.13) to estimate F̃θ. However, Fθ,1

is unknown, and as such Equation (3.15) was used. We work under the assumption the

difference between using Equations (3.13) and (3.15) would be insignificant if the feature
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Table 3.2: Texture features employed with the MFLAAM.

j Name Operation

2 Kirsh (0◦) Convolution

3 Kirsh (90◦) Convolution

4 Kirsh (180◦) Convolution

5 Kirsh (270◦) Convolution

6 Sobel (0◦) Convolution

7 Sobel (90◦) Convolution

8 Gaussian Convolution (Standard Deviation of 0.5)

9 Gaussian Convolution (Standard Deviation of 2.5)

10 Gaussian Convolution (Standard Deviation of 4.5)

11 Variance Neighborhood of (3 mm)3

12 Variance Neighborhood of (8 mm)3

13 Variance Neighborhood of (15 mm)3

14 Median Neighborhood of (3 mm)3

15 Median Neighborhood of (8 mm)3

16 Median Neighborhood of (15 mm)3

projections of the texture features and shape are highly correlated. This correlation R

can be quantified, and employed for identifying the most discriminating features [1].

The correlation R between a given texture feature projection f̂i,j

(
k̂j

)
and shape

feature projection f̂i,j

(
k̂1

)
is defined as,

R
(
k̂1, k̂j

)
=

N∑
i=1

f̂i,1

(
k̂1

)
· f̂i,j

(
k̂j

)

(N − 1) ·
√
V̂1 · V̂j

, (3.20)

where V̂j indicates the variance of Fi,j and is described analytically in the Appendix.

We were able to compute a score φj defining the correlation between the shape and

texture feature as,

φj =
1

p1 · pj
·

p1∑

k̂1=1

pj∑

k̂j=1

R
(
k̂1, k̂j

)
. (3.21)

The M features with the highest scores are then identified and incorporated into the

MFLAAM [1].
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3.2 Simultaneous PZ/CG Segmentation Methodology

This content is primarily derived from [2], on which Robert Toth is the first author.

3.2.1 Training Multiple Shape Models

The previous section discussed the use of texture features with a levelset in an AAM

context (denoted as MFLAAM). The ability to simultaneously segment multiple shapes

is implemented by extending the MFLAAM to include multiple levelsets.

All training images are first aligned, as described in [79]. A single training image is

chosen as the template, and an affine alignment is applied to align all the segmentations

to the template. The next step is to generate a levelset from each training object, such

that negative levelset values represent pixels inside the object, and positive levelset

values represent pixels outside the object, using Equation 3.5.

In the MFLAAM used to segment prostate volumes for evaluating prostatectomy,

the first feature Fi,1 for training image i represented a levelset, and the remaining

M − 1 features represented textures used to drive the segmentation process. In order

to segment multiple objects simultaneously, the first L features Fi,1, . . . , Fi,L represent

levelsets, and the remaining M − L features represent texture features.

Following the extraction of multiple levelsets, the entire MFLAAM training process

as described in the previous chapter remains unchanged. The only difference is that

instead of performing PCA on 1 levelset and M −1 texture features, PCA is performed

on L levelsets and M − L texture features.

A graphical display of the coupling process is shown in Figure 3.5. The boxes in the

left column represent the high dimensional texture features and levelsets. The boxes in

the middle column represent the projections of each intensity and levelset. Finally, the

boxes in the right column represent the coupled matrix, where each column represents

a single eigenvector.

A comparison between the multi-shape MFLAAM with a traditional AAM and the

coupled levelsets proposed by Tsai et al. [77] is shown in Figure 3.6. Traditional AAMs
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couple intensities with landmarks, and traditional coupled levelsets involve concate-

nating a set of levelsets, which can be computationally infeasible. The MFLAAM, by

comparison, allows for coupling of the projections of multiple levelsets with the inten-

sity projections, essentially allowing simultaneous segmentations in an AAM framework.

This helps avoid the computational cost of concatenating high dimensional levelsets [2].

Figure 3.5: Coupling intensities with mulitple levelsets for the MFLAAM training.
First, PCA is used to project each texture Fi,3 and levelset Fi,1, Fi,2 down into a
lower dimensional space, denoted as F̂i,j. Then, a second PCA is performed, creating
a coupled matrix, where each row corresponds to a specific projection value, and each
column represents a single eigenvector.
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(a)

(b)

(c)

(d)

Figure 3.6: (a) Traditional AAMs [67] perform PCA on a set of intensities, and link
the intensity projections with the shape by performing a second PCA. (b) Traditional
coupled levelsets [77] concatenate the high dimensional levelsets, and perform PCA on
the result. (c),(d) The MFLAAM projects each levelset and texture to a low dimensional
space prior to coupling for either one (c) or multiple (d) shapes.
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3.2.2 Simultaneous Segmentation

In the single-shape (prostate-only) MFLAAM, Equation 3.17 used features 2 through

M (the texture features) to drive the reconstruction of any feature. For the multi-

shape MFLAAM, Equation 3.17 is also used, but instead of using only the textures,

the MFLAAM can additionally use a presegmented levelset to drive the reconstruction.

Figure 3.2 shows the process of reconstructing any feature (including multiple levelsets)

from any inputs (textures or levelsets).

Equation 3.18 is used to determine the location of the best reconstruction, and

Equation 3.19 is used to reconstruct multiple shapes simultaneously (see Figure 3.2(c)).

Given the optimal transformation, the high dimensional levelsets of all objects are

reconstructed and thresholded, yielding a set of segmentations for all objects in the

image. This allows one to use the given prostate segmentation, as well as the texture

features, to drive the simulteanous reconstruction and segmentation of the CG and PZ.

Figure 3.7 shows the entire segmentation process on a new image.

Figure 3.7: The MFLAAM uses input levelsets Fθ,3, . . . Fθ,L and texture features

Fθ,L+1, . . . , Fθ,M . The inputs are transformed F
(T )
θ,j , j ≥ 3 and reconstructed Ḟ

(T )
θ,j , j ≥ 3.

When the NCC between the reconstructions and transformed inputs is maximized, the

MFLAAM reconstructs all levelsets T−1
(
Ḟ

(T )
θ,j

)
, j = 1, 2, which are then thresholded.
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3.3 DoCD EBRT Registration Methodology

3.3.1 Notation

A 3D MRI image scene I = (C, f) is defined by a collection of voxels c = (xc, yc, zc),

∀c ∈ C, and MRI intensity information for each voxel, f (c) ∈ R, ∀c ∈ C. Each voxel

c is manually labeled as either the PZ, CG, or background (the prostate is simply CG

+ PZ), such that L (c) = {CG,PZ, background}. The pre-EBRT MRI is denoted as

IPre and the post-EBRT MRI is denoted as IPost. A region R upon which to induce

shrinking is defined by a collection of voxels, such that R ⊂ C. A collection of N

nodes NI representing the meshed discretization of I is defined as a collection of voxels

NI ⊂ C. A full list of notation used throughout this section is presented in Table 3.3.

Table 3.3: Notation and symbols used.

Symbol Description

C Collection of voxels.

c Single voxel c ∈ C, c = (xc, yc, zc).

f(c) Intensity at voxel c.

IPre Pre-EBRT MRI.

IPost Post-EBRT MRI.

L(c) Label of voxel c (CG, PZ, background).

R Region consisting of a collection voxels (R ⊂ C).

cR Center of mass of region R (cR ∈ C).

∆R Magnitude to shrink region R.

N Collection of voxels representing FEM nodes (N ⊂ C).

N Number of nodes in FEM.

K 3N × 3N matrix representing FEM material properties.

F 3N × 1 vector representing FEM forces.

U 3N × 1 vector representing FEM displacements.

Sc Nodes representing corners of an element in the FEM.

T (c) Transformation applied to voxel c.
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3.3.2 FEM Review

An FEM contains elements (e.g. hexahedrons) connected at nodes. Given N nodes

N in a 3D FEM, a 3N × 3N sparse, symmetric “stiffness” matrix K defines how each

node interacts with every other node. A 3N × 1 vector V represents the coordinates

of the nodes, a 3N × 1 vector F represents a series of external forces applied to each

node, and a 3N × 1 vector U represents the final displacements of each node (the final

result of the FEM calculation). Mathematically, this is stated as solving for U in the

following equation,

K · U = F. (3.22)

However, solving
(
U = K−1 · F

)
directly is computationally infeasible; iterative al-

gorithms such as the biconjugate gradient stabilized method algorithm [104] estimate

U by solving,

U = argmin
U

‖ F −K · U ‖2, (3.23)

which we employ in DoCD.

3.3.3 Radiation Induced Shrinkage

The collection of nodes associated with region R, upon which to apply a shrinking

strain, is defined as NR = NI ∩ R. To shrink region R with magnitude ∆R ∈ R, we

define a radial displacement uc ∈ R
3 at each node c ∈ NR relative to its centroid as,

uc = ∆R ·
c− cR

‖ c− cR ‖2
, where cR =

1

|R|

∑

c∈R

(xc, yc, zc) , for ∀c ∈ NR. (3.24)

Essentially, Equation 3.24 represents inducing a strain (fixed displacement u) of a given

magnitude ∆ towards the center of a region R.
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(a) (b)

Figure 3.8: FEM of the CG (pink) and PZ (blue). Forces (yellow) are applied to
the CG of the prostate (a). The FEM deforms the entire mesh based on these forces,
resulting in a deformed model (b).

3.3.4 FEM Deformation of Prostate MRI

In the case of the EBRT-induced shrinkage, the displacements uc from each of the M

shrinking regions are used as boundary conditions in the FEM, as described in [90].

Boundary conditions essentially set the displacements of several nodes as constant and

solve the FEM for the displacements of the remaining nodes (denoted as U). To deter-

mine the displacement of each voxel in the image scene (c ∈ C), the nodes surrounding

c, Sc ⊂ {1, . . . , N}, are defined by the corners of the FEM element containing c. In

this work we use hexahedron elements as in [92, 105], and as such, Sc ∈ R
8. The

transformation of c is defined as an interpolation of nodal displacements,

T (c) = c+

∑
n∈Sc

‖ c− vn ‖2 ·un
∑

n∈Sc

‖ c− vn ‖2
, (3.25)

where un denotes the displacement of node n from the FEM result U . This allows

for a deformation of IPre given the parameterized shrinking regions. The transformed

pre-EBRT MRI T (IPre) is defined as,

T (IPre) = {CPre, fPre (T (c))} . (3.26)

Figure 3.9 shows the general flow of DoCD.
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Figure 3.9: Flowchart of DoCD. The pre-EBRT MRI IPre is shown in (a) and in (b)
with the CG and PZ outlines in white solid and dashed lines, respectively. The post-
EBRT MRI IPost is shown in (d) and (e). The prostate structures are discretized into
an FEM (c) which is used to deform the image. The deformed pre-EBRT T (IPre) is
shown in (f). An optimizer induces different deformations until a similarity energy E
is maximized.

3.3.5 Optimization of EBRT Shrinking Parameters

We aim to register a pre-EBRT MRI IPre to a post-EBRT MRI IPost. The goal is to

calculate the transformation T , such that,

T = argmaxE (IPost, T (IPre)) , (3.27)

where T is defined by the magnitude of shrinkage at each node on the surface of the

prostate substructures. E is an energy function measuring the degree of overlap, and

expressed as,

E =
∑

c∈C

E(c), E(c) =





1, if LPost (c) ≡ LPre (T (c)) ,

0, otherwise.

(3.28)

The parameters defining T are modified, and the registration algorithm then pro-

ceeds to determine which parameters maximize E, in a manner similar to [96]. A



46

“particle swarm” optimizer [100] is used, in which 100 random parameters (100 “parti-

cles”) are each allowed to converge independently on the maximum E, and the particle

with the maximum energy overall is chosen.
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Chapter 4

Evaluation of Radical Prostatectomy

4.1 Data Description

Two datasets were used for these experiments: one specifically tailored to evaluate

the segmentation methodology, and one to evaluate the prostatectomy volume changes.

Some content is taken from [5], on which Robert Toth is the second author.

4.1.1 Segmentation Accuracy Dataset

This datasets consists of 108 prostate endorectal MR images, acquired using T2-weighting

protocol and a 3.0 Tesla coil. A detailed description is shown in Table 4.1. The prostate

boundaries were manually segmented in 3D by an expert radiologist using the 3D Slicer

software [106, 107, 108, 109]. In addition, to help determine inter-expert variability a

second expert segmented a subset of the studies. For 17 studies in which a second expert

segmented the prostate capsule, the mean Dice Similarity Coefficient value (Equation

(4.1)) between the experts’ segmentations was 0.899894 with a standard deviation of

0.023272. The raw data for each study was originally 256×256×Z, where 20 < Z ≤ 40.

So as not to lose information, the images were upscaled and interpolated so that each

image was 256 × 256× 40 pixels (P ≈ 2.6× 106) [1].

Table 4.1: Detailed description of the data used to test the MFLAAM segmentation.

Protocol T2-weighted, 3.0 Tesla

Image Size (pixels) 256 × 256× Z, 20 ≤ Z ≤ 40

Field of View (mm) 140 × 140× Z, 60 ≤ Z ≤ 150

Resolution (mm) 0.54 × 0.54 × Z, 2.0 ≤ Z ≤ 3.0

MRI Acquisition Fast Spin Echo, Endorectal Coil
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4.1.2 Prostatectomy Volume Dataset

From August 2007 to May 2009, 96 consecutive subjects with wholemounted specimens

from radical prostatectomy who had undergone preoperative pelvic MR imaging were

initially included in our study from the Beth Israel Deaconness Medical Center. Two

subjects were excluded for lack of access to MR images. One subject was excluded

because MR imaging was performed with a 1.5T magnet. One subject was excluded

for lack of endorectal coil use. One subject was excluded because pathologic specimen

weight was unavailable. A total of 91 patients (mean age, 59 years; age range, 42-84

years) were included in this data set.

Ninety-one prostates were analyzed with MR images acquired with a 3T wholebody

imager (GE Healthcare Technologies, Waukesha, Wis) and an endorectal coil (Medrad,

Pittsburgh, Pa) inflated with 60 mL of a 100% weight per volume barium sulfate sus-

pension for improved spatial resolution [110, 111, 112]. T2-weighted MR images were

acquired in the axial, coronal, and sagittal planes (repetition time msec/echo time msec,

3300 − 6250/155 − 165; echo train length, 20− 21; four signals acquired; field of view,

16× 16 cm (coronal and sagittal) or 14× 14 cm (axial); section thickness, 2.2− 3.0 mm

with no gap). The section thickness varied according to the size of the prostate gland

to maintain a consistent imaging time and in-plane resolution [5].

4.2 Experimental Design

4.2.1 Segmentation Accuracy Experiments

Each image was preprocessed to normalize the intensities and remove the bias field

[113]. Since the radiologists acquired additional slices past the apex and base, the user

manually selected the first and last slices, which were transformed into the appropriate

translation and scale in the Z-direction. This served as the only initialization of the

model, and hence the MFLAAM segmentation was minimally supervised.

A 5-fold cross validation was performed, in which the data was split into 5 equal

partitions. To train, 4/5 of the images were used, and the trained MFLAAM was used

to segment the remaining 1/5 of the images, repeated 5 times.
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Measures to Evaluate Segmentation Performance

The first measure to evaluate the segmentation result is the Dice Similarity Coefficient

(DSC). DSC is volume-based and measures the overlap between two segmentations

(higher is better), given as,

DSC (Ci, Cθ) = 2 ·

∣∣∣C(In)
i ∩ C

(In)
θ

∣∣∣
∣∣∣C(In)

i

∣∣∣+
∣∣∣C(In)

θ

∣∣∣
. (4.1)

The second measure is the Mean Absolute Distance (MAD). MAD measures the

average distance between two surfaces (in mm, lower is better), and is calculated as,

MAD (Ci, Cθ) =
1∣∣∣C(On)
θ

∣∣∣
·
∑

cθ∈C
(On)
θ

(
min

ci∈C
(On)
i

‖cθ − ci‖2 .

)
(4.2)

Experiment E1: Evaluation of Efficiency

This experiment aims to measure runtime efficiency. For this experiment, the num-

ber of texture features used was varied from 2 ≤ M ≤ 7, and the average time per

segmentation was noted, as was the average accuracy in terms of DSC [1].

Experiment E2: Evaluation of Texture Features

In this experiment, we aimed to determine whether φj is a useful measure for selecting

texture features. The MFLAAM was run using the texture features with the highest

φj scores (ΩHigh) and lowest φj scores (ΩLow). Finally, the use of no texture features

was explored, where M = 2 and fi,2(k) represents the intensity at pixel k. This is

analogous to a traditional AAM, which only uses image intensities, and is therefore

denoted ΩAAM . A list of models are shown in Table 4.2 [1].

Experiment E3: Comparison of MFLAAM to Existing Prostate Segmenta-

tion Algorithms

This experiment compares the MFLAAM segmentation accuracy in the context of the

prostate MRI segmentation schemes by Klein et al. [85], Martin et al. [114, 86],
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Table 4.2: Models employed in experiments E2 and E3.

Experiment Model Model Description

E2 ΩHigh MFLAAM using texture features with high φj

E2 ΩLow MFLAAM using texture features with low φj

E2 ΩAAM MFLAAM with only intensities (no texture features)

E3 ΩASM Multi-Feature ASM [37]

E3 ΩBase ΩHigh results from prostate base

E3 ΩMid ΩHigh results from prostate midgland

E3 ΩApex ΩHigh results from prostate apex

Pasquier et al. [87], and Makni et al. [88].

In addition, we show the MFLAAM accuracy for different regions of the prostate.

The base is considered the first third of the prostate, the midgland the next third, and

the apex the final third. The accuracies are reported independently for each region.

A multi-feature ASM (ΩASM ) was constructed, as described in our previous work

[37]. For the ΩASM , a series of 500 landmarks were placed on the prostate surface in each

training image after alignment. Then, a multi-variate, (M − 1) dimensional Gaussian

distribution was constructed for each landmark point, serving as a unique appearance

model for each of the 500 landmarks. To segment a new image, the location with the

highest probability was determined for each landmark point, and the landmark-based

shape model was optimally fit to these detected locations, as described in [66].

4.2.2 Prostatectomy Volume Experiments

Prostatectomy Volume Estimation Procedure

Ninety-one prostatectomy specimens (prostate gland with attached seminal vesicles),

which were removed during radical prostatectomy, were weighed by a pathologist when

fresh. As demonstrated by Rodriguez et al. [115], there is a 0.997 correlation between

prostate weight and displaced water volume in milliliters; Varma and Morgan [116]

found a similar agreement. Therefore, the specimen weight is used as the true volume

of the prostate gland. Rodriguez et al [115] also showed 3.8 g to be the average weight of
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seminal vesicles, and this number was subtracted from specimen weight to compensate

for the attached seminal vesicles. This calculated weight multiplied by 1.05 g/mL (for

prostatic tissue) and served as the reference standard for our study [5, 117].

Experiment E4: Comparison of Volume Estimation Methods

Total prostate volumes were calculated from T2-weighted axial MR images in a prospec-

tive real-time reading fashion as part of the routine clinical interpretation by members

of the clinical radiology team (seven fellowship-trained radiologists with 1 to 20 years

of experience reading prostate MR images, who are hereafter collectively referred to as

reader 1) and retrospectively by a radiologist (with 9 years of experience interpreting

prostate MR imaging, hereafter referred to as reader 2) who was not involved in any of

the prospective clinical interpretations of reader 1.

Readers calculated the volume V by using the standard ellipsoid formula:

V = DAP ·DML ·DTV · π/6 (4.3)

where DAP is the maximum anteroposterior dimension measured on sagittal images,

DML is the maximum craniocaudal dimension measured on sagittal images, and DTV

is the maximum transverse dimension measured on axial images.

The MFLAAM was then used to calculate the volume by determining the number

of pixels within the prostate shape, and multiplying by the pixel size.

V =
∣∣∣C(In)

θ

∣∣∣ · (0.54× 0.54 × 2.2) . (4.4)

To establish a surrogate in vivo ground truth, planimetry was performed by two

independent readers (reader 3: with less than 1 year of experience; reader 4: with more

than 6 years of experience) who did not have prior exposure to the cases. T2-weighted

axial MR images of the prostate were analyzed by using a workstation (Advantage

4.0; GE Medical Systems). The prostatic capsule was manually traced by drawing a

region on each two-dimensional MR image of the series, which took 5 to 10 minutes per

case. Segmentations were initially drawn around the midgland and were then drawn
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section by section up to the base and down to the apex. Upon completing the tracing,

the software displays the area for each section in square centimeters. The volume was

estimated by multiplying the sum of these areas by the section thickness in centimeters.

The Wilcoxon signed rank test was used to compare the mean volume between any

two methods. Type I error was adjusted by using the Bonferroni multiple comparison

adjustment. The P values were compared with multiple comparison-adjusted type I

errors. To assess concordance between two methods, linear regression was used to

obtain the individual slope and its 95% confidence interval. To test for the difference

between any two of these slopes, linear mixed-effects models [118] with linear contrasts

with compound symmetry structure for the variance-covariance were used. In addition,

the concordance correlation coefficient and its 95% confidence interval were computed.

The percentage of measurements whose between-methods differences were within the

limits of agreement from the Bland-Altman plot was also reported. All analyses were

performed with SAS software (version 8; SAS Institute, Cary, NC) [5].

4.3 Results and Discussion

4.3.1 Qualitative Results

Figure 4.1 shows qualitative results for two T2-weighted prostate MR images. In both

cases, ΩHigh performed significantly better than both ΩLow and ΩAAM . It can be seen

in Figures 4.1(b) and 4.1(d), that all models had trouble segmenting the apex of the

prostate, but ΩAAM encountered difficulties with the right side of the prostate. The

poor results in the apex are also supported by the results from E3. ΩLow in Figure

4.1(c) completely missed the peripheral zone, resulting in a DSC value of only 0.62.

Examples such as this one lend credence to the necessity for accurate feature selection.

In the second row of Figure 4.1, all models (ΩHigh, ΩLow, ΩAAM) performed rela-

tively well. All 3 models encountered difficulties near the levator ani muscles on the

left side of the prostate, but this was exacerbated in the ΩAAM (Figure 4.1(i)). How-

ever, the ΩHigh still performed slightly better than ΩLow, especially near the apical

region closest to the endorectal coil. Figure 4.1 represents the types of errors typically
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(a) C
(In)
i

(b) ΩHigh, DSC = .88 (c) ΩLow, DSC = .62 (d) ΩAAM , DSC = .84 (e)

(f) C
(In)
i

(g) ΩHigh, DSC = .90 (h) ΩLow, DSC = .87 (i) ΩAAM , DSC = .84 (j)

Figure 4.1: Each row represents the results for one T2-w prostate MRI. The ground

truth C
(In)
i is shown in (a) in (f). The prostate segmentation results obtained via

ΩHigh are shown in the (b) and (g), the corresponding results from ΩLow are shown in
(c) and (h), and ΩAAM in (d) and (i). For (b)-(d) and (g)-(i), the T2-weighted MR
image is shown in the background, and the segmentation result is shown as a colored
surface (heatmap). Hot colors represent large errors while cooler colors represent small
errors between the corresponding model and associated ground truth segmentation. For
(b)-(d), red represents an error of 5 mm, while in (g)-(i) red represents 3 mm.

seen in the three models tested in Experiment E2 (ΩHigh, ΩLow, ΩAAM) and shows the

usefulness of accurate feature selection with the MFLAAM.

(a) (b) (c) (d) (e)

Figure 4.2: Isosurface renderings of the prostate capsule segmentations are shown

for I1 (a) through I5 (e), in which the ground truth C
(In)
i is shown in green and the

segmentation C
(In)
θ from ΩHigh is shown in red.
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4.3.2 Experiment E1: Evaluation of Efficiency

The results from experiment E1 are displayed in Figure 4.3. The runtimes range from

just under 2 minutes per volume to approximately 8 minutes per volume (Figure 4.3(b)).

However, no additional improvement in accuracy was noted after the inclusion of the

fifth texture feature (Figure 4.3(a)). This suggests that after the first four texture fea-

tures, minimal correlation exists with the shape information, or that the subsequent

texture features chosen by the feature selection scheme had a low signal to noise ratio.

Overall, we believe that 3 texture features offer a reasonable trade-off between accuracy

and efficiency. Consequently, we chose to use M = 4 for experiments E2 and E3 [1].

(a) E1 Accuracy (b) E1 Efficiency

Figure 4.3: Results from experiment E1, which aimed to explore model efficiency. The
mean accuracies (a) and runtimes (b) for the MFLAAM are displayed for different
number of texture features. M = 2 represents just one texture feature, while M = 7
represents six texture features.
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4.3.3 Experiment E2: Evaluation of Texture Features

The first 3 rows of Table 4.3 show the quantitative results for the ΩHigh, ΩLow, and

ΩAAM . We report separate p values from a 1-tailed paired Student’s t-test for the DSC

values between {ΩHigh,ΩLow}, {ΩHigh,ΩAAM}, and {ΩAAM ,ΩLow}. A histogram of

the DSC values from ΩHigh over 108 studies is shown in Figure 4.4.

The value of using φj as a feature selection measure for the MFLAAM can clearly be

seen, as ΩHigh performed significantly better than ΩAAM (p = .0473). When comparing

ΩHigh to ΩLow, the results were even more pronounced, with p = .000171. Comparing

ΩLow to ΩAAM resulted in ΩAAM being significantly better (p = .0081). This suggests

that the MFLAAM has the potential to perform significantly better than a traditional

AAM when the appropriate texture features are selected and used in conjunction with

the model [1].
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Figure 4.4: A histogram of the DSC results for ΩHigh is shown for all 108 studies. The
mean and median DSC values equal 0.88 with a standard deviation of 0.05.
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4.3.4 Experiment E3: Comparison of MFLAAM to Existing Prostate

Segmentation Algorithms

The bottom 5 rows of Table 4.3 show the results from the ΩASM as well as other

prostate MR segmentation algorithms. The number of prostate volume studies tested

in [85, 86, 87, 88, 114] range from 12 to 50 studies, with varying degrees of manual

intervention, ranging from completely automated to fully interactive initialization of

the segmentation. By comparison, our model is being evaluated on 108 studies and

requires only very minimal user interaction. It should be noted that since each of the

comparative results operated on different datasets, a direct comparison is impossible.

This would involve applying a set of algorithms to the same benchmark dataset, utilizing

the same ground truth annotations.

The results show that in a quantitative evaluation involving more than twice the

number of patient studies used in either of [85, 86, 87, 88, 114], our model yielded a

consistent median and average Dice accuracy of .88. This is at least as high, if not

higher, than any other state of the art prostate segmentation methods. In addition,

our mean absolute distance between surfaces was approximately 1.5 mm, compared to

[86], where an error of 2.41 mm was reported.

ΩASM performed poorly, possibly due to many false positive locations in the image

which had a similar appearance to the prostate boundary, and took a much longer time

to run on a full 3D volume compared to the MFLAAM. The results for different regions

of the prostate showed that the MFLAAM performed extremely well in the base and

midgland, but most of the inaccuracies were localized to the apex [1].
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Table 4.3: Quantitative results in terms of mean, median, and standard deviations of accuracy for E2 and E3. Accuracy values for the
MFLAAM are reported separately for the base (ΩBase), midgland (ΩMid), and apex (ΩApex). Comparison with other state of the art
prostate MR segmentation systems in terms of the number of volumes used in the study, the efficiency (in seconds per volume), and the
level of user interaction required, ordered by year are also listed. The best results for each measure for each experiment are bolded.

Exper. Reference Volumes
DSC MAD

Time (s) Interaction
Mean Median Std. Mean Median Std.

E2

ΩHigh 108 .8766 .8848 .0497 1.51 mm 1.35 mm .781 mm 154 minimal

ΩLow 108 .8158 .8673 .1663 2.25 mm 1.56 mm 2.53 mm 154 minimal

ΩAAM 108 .8599 .8804 .0903 1.64 mm 1.37 mm .986 mm 110 minimal

E3

ΩASM 108 .5898 .6196 .1750 4.85 mm 4.41 mm 3.20 mm 180 none

ΩBase 108 .8808 .8903 .0596

ΩMid 108 .9141 .9238 .0420

ΩApex 108 .8424 .8672 .0907

Pasquier 2007 [87] 24 .879 .04 1200 [88] medium

Klein 2008 [85] 50 .85 - .88 900 [88] none

Makni 2009 [88] 12 .91 .0260 76 [88] none

Martin 2010 [86] 36 .84 .87 2.41 mm 240 [86] unknown
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Table 4.4: Prostate volume as estimated with clinical and MFLAAM methods..

Method Reader Mean (mL) Median (mL) Range (mL)

Ellipsoid Reader 1 40.81 ± 21.38 35.40 14.57 − 128.11

Ellipsoid Reader 2 42.80 ± 21.14 38.58 13.23 − 155.77

Planimetry Reader 3 41.11 ± 21.44 35.22 12.72 − 139.13

Planimetry Reader 4 44.81 ± 23.20 39.22 14.70 − 151.94

MFLAAM N/A 42.62 ± 20.89 37.75 12.54 − 133.41

Prostatectomy N/A 50.38 ± 19.94 45.36 23.31 − 138.81

4.3.5 Experiment E4: Comparison of Volume Estimation Methods

Distribution of Volumes

Table 4.4 shows the mean 6 standard deviation, median, and range for prostate volume

with each of the six methods. The distributions show asymmetry, with the medians

consistently smaller than the means, indicating slight skewness of the right tail. The

mean and median prostate volumes with the four MR imaging methods and MFLAAM

are consistently smaller than those with the pathologic reference standard. This in-

dicates a potential underestimation of the prostate volume with the MR imaging and

MFLAAM methods. The variability in the distribution of these five methods is similar

to that of the pathologic reference standard. The P values from Table 1 for comparison

of these five methods with the pathologic reference standard indicate that the under-

estimation is indeed significant (15.8%, P = .0001). The first column in Table 4.5 also

shows the mean amount and variability of underestimation [5].

Volume Estimates with Ellipsoid

The ellipsoid estimate by reader 1 was the least correlated with the prostatectomy

volume (slope, 0.805; 95% CI: 0.707, 0.903). The estimate by reader 2 had a slope

of 0.864 (95% CI: 0.786, 0.942) when compared with the prostatectomy. Reader 1

had slopes of 0.910 and 0.987 when compared with planimetry from readers 3 and 4,

respectively. When compared with each other, calculations by readers 1 and 2 had

a slope of 0.897 (95% CI: 0.810, 0.983). The underestimation of the prostate volume
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as compared with the prostatectomy volume was similar for readers 1 and 2 (-9.56 vs

-7.58). Reader 2 also had a higher concordance correlation coefficient (0.857 vs. 0.779)

and percentage of measurements within the limits of agreement (95.6% vs 92.3%) [5].

Volume Estimates with Planimetry

The slope of the regression model for planimetry volume in comparison to the prostate-

ctomy specimen was 0.864 for reader 3 and 0.804 for reader 4. When the two planimetry

data sets were compared, the slope of the line was 1.074 (95% CI: 1.046, 1.101). Reader

4 had a higher concordance correlation coefficient (0.897 vs 0.843) and a similar percent-

age of measurements within the Bland-Altman limits of agreement (95.6% vs 94.5%)

compared with reader 3. The mean underestimation of the prostatectomy volume was

smaller in reader 4 than in reader 3 ( -5.57 vs -9.26) [5].

Volume Estimates with MFLAAM

Prostatectomy prostate volume was underestimated by a mean −7.76 ± 7.69 with the

MFLAAM. The MFLAAM yielded the slope closest to 1.0 when compared with the

pathologic reference standard (slope, 0.888; [95% CI: 0.800, 0.976]; concordance corre-

lation coefficient, 0.867) 4.5. MFLAAM prostate volume were compared with planime-

try prostate volume; the results were not significant for readers 3 or 4 (P = .265 and

.027, respectively) with the adjusted type I error level of .004. The concordance corre-

lation coefficient between MFLAAM and the pathologic reference standard was 0.867,

with 93.4% of the measured differences within the Bland-Altman limits of agreement [5].

4.3.6 Discussion of Prostatectomy Volume Estimation

The best estimates of prostatectomy prostate volume were obtained with the MFLAAM

algorithm and planimetry as performed by reader 4. Furthermore, the MFLAAM

planimetry-determined volumes showed substantial overlap in slopes and confidence

intervals, suggesting MFLAAM is an appropriate surrogate for planimetry. Though

readers 1 and 2 showed strong agreement with one another (slope, 0.897; 95% CI:
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0.810, 0.983), the differing slopes suggest that ellipsoid volume measurements have a

user dependence. It is also possible that there is dependency on the interpretive circum-

stance, since reader 1 prostate volumes were generated during clinical interpretations,

whereas reader 2 prostate volumes were generated in a dedicated research mode, iso-

late from the distractions encountered in clinical practice. It is interesting that the

ellipsoid based prostate volumes showed a stronger relationship to planimetry prostate

volumes than to prostatectomy prostate volumes, whereas MFLAAM volumes showed

a stronger relationship to prostatectomy volumes. When the ellipsoid prostate volumes

were compared with the in vivo ground truth of planimetry volumes, the regression line

slopes were closer to 1.0, indicating a stronger relationship with in vivo images than

with prostatectomy specimens [5].

Figure 4.5: MFLAAM volume estimates (x-axis) compared to prostatectomy (y-axis).
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Table 4.5: Linear regression data for clinical and MFLAAM volume measurements. The mean volumes are ± 6 standard deviations.
Bonferroni-adjusted type I error set at .003 (.05 divided by 15 comparisons). For the concordance coefficient, the data in parentheses are
95% confidence intervals. For the final columns, the limits were the upper and lower bounds from the Bland-Altman plot.

Comparison Mean
difference

P
Value

Regression 95%
C.I. of
Slope

Concordance
Correlation
Coefficient

Measurements
within Limits
of Agreement

Ellipsoid vs prostatectomy:
Reader 1 −9.56± 10.88 .0001 y = 0.805x + 17.51 0.707, 0.903 0.779(0.707, 0.852) .923
Reader 2 −7.58± 8.49 .0001 y = 0.864x + 13.39 0.786, 0.942 0.857(0.807, 0.907) .956

Planimetry vs. prostatectomy:
Reader 3 −9.26± 7.92 .0001 y = 0.864x + 14.85 0.793, 0.935 0.843(0.792, 0.9895) .945
Reader 4 −5.57± 8.34 .0001 y = 0.804x + 14.32 0.741, 0.867 0.897(0.858, 0.835) .956

MFLAAM vs. prostatectomy:
−7.76± 7.69 .0001 y = 0.888x + 12.55 0.800, 0.976 0.867(0.821, 0.913) .934

MFLAAM vs. Ellipsoid:
Reader 1 +1.79± 12.36 .225 y = 0.849x + 4.65 0.730, 0.967 0.828(0.763, 0.893) .956
Reader 2 −0.18± 10.29 .700 y = 0.891x + 4.82 0.791, 0.990 0.882(0.836, 0.928) .934

Ellipsoid vs. planimetry:
Reader 1 vs. reader 3 −0.30± 9.22 .756 y = 0.910x + 3.975 0.822, 0.998 0.908(0.872, 0.944) .934
Reader 1 vs. reader 4 −4.00± 9.61 .105 y = 0.987x + 1.081 0.893, 1.081 0.894(0.853, 0.935) .967
Reader 2 vs. reader 3 +1.68± 5.34 .381 y = 0.983x − 0.935 0.930, 1.036 0.966(0.952, 0.980) .934
Reader 2 vs. reader 3 −2.01± 5.35 .0001 y = 1.070x − 0.990 1.019, 1.121 0.967(0.954, 0.981) .923

Planimetry vs MFLAAM:
Reader 3 −1.50± 9.38 .265 y = 0.879x + 6.475 0.791, 0.967 0.900(0.861, 0.939) .934
Reader 4 +2.19± 9.70 .027 y = 0.818x + 5.955 0.739, 0.896 0.900(0.861, 0.939) .934

Planimetry:
Reader 3 vs. reader 4 −3.69± 3.25 .162 y = 1.074x + 0.661 1.046, 1.101 0.976(0.967, 0.985) .956

Ellipsoid:
Reader 1 vs. reader 2 −1.98± 9.17 .222 y = 0.897x + 6.190 0.810, 0.983 0.904(0.866, 0.942) .945
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Since the reference standard for comparison is uncertain, it remains a choice whether

to prefer a method that aligns better with prostatectomy or in vivo planimetry volumes.

However, the lower bound slope of the best-performing volume estimation method

(MFLAAM) versus the prostatectomy reference standard can be as low as 0.800, indicat-

ing up to a 20% underestimation of prostate volume. All methods showed a similar and

consistent underestimation of prostate volume when compared with the prostatectomy

reference standard. The clinical implications of this underestimation and inaccuracy

should be further investigated.

We recognize that there may be volume changes that occur in vivo in MR imaging

with an endorectal coil; however, there are also potential volume changes in the ex vivo

specimens that occur prior to weight measurement. Both of these may be implicated

in the increased strength of association between MR imaging ellipsoid volumes and

planimetry-generated volumes.

A surrogate in vivo ground truth, planimetry, was used in our study to approxi-

mate changes that may occur ex vivo and for comparison with the volume estimates

derived from MR images with an endorectal coil. Heijmink et al [119] showed a sig-

nificant difference in prostate volume (mean of 18% decrease) when MR images were

acquired with an endorectal coil compared with those acquired with a body-array coil.

In that study, the anteroposterior dimension was, on average, reduced by 15.7% with

an endorectal coil. Such shape and volume changes may be influenced by water loss or

physical vasoconstriction from the pressure of the inflated endorectal balloon [119]. Our

results show an average underestimation across the five volume measurements of 15.8%

when compared with prostatectomy specimens, which is consistent with the findings of

Heijmink et al. As a point in favor of imaging with an endorectal coil, the signal-to-

noise benefit enables higher spatial resolution for a given imaging time and, therefore,

may yield a more accurate delineation of gland borders.

The small differences in MR imaging planimetry results between readers 3 and 4

may be related to experience in determining the prostate gland borders. The results

of reader 3 likely benefited from the fact that reader 4 designated the inferior-most

and superior-most sections for reader 3. In general, inaccuracies in planimetry may be
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related to volume averaging and difficulty in delineating prostate borders, especially at

the apex.

We subtracted 3.8 g from each specimen weight to adjust for seminal vesicle con-

tributions to prostate volumes. This produced a shift in data and did not affect the

correlation. Despite the strong correlation between specimen weight and true volume,

seminal vesicle size can vary substantially between patients, resulting in a small source

of error in our study. We recognize concerns about the use of prostatectomy specimens

as the reference standard considering the potential ex vivo blood loss and the inclusion

of periprostatic tissue [120]. Future prospective studies with more precise pathologic

analysis (removal of seminal vesicles and periprostatic tissue, immediate weight mea-

surement) may yield additional information on the accuracy of in vivo volume estimates

with MFLAAM and MR imaging [5].

4.4 Concluding Remarks

We have presented a novel methodology for extending the traditional Active Appearance

Model (AAM) framework to include multiple texture features, as well as a landmark-free

framework for generating a statistical shape model. We have shown that the amount of

information lost by using principal component analysis on a series of texture features,

and combining those texture features with a shape model, is minimal compared to a

traditional AAM. This is a significant improvement over current state of the art statis-

tical shape models. Our segmentation algorithm employs an advanced feature selection

algorithm, and our final MFLAAM yields both accurate and consistent segmentation

results, tested over a large cohort of data. In terms of accuracy, level of interaction, effi-

ciency, and consistency over a large number of volumes, the MFLAAM can outperform

most other prostate MRI segmentation algorithms.

When comparing the MFLAAM to other clinical prostate volume estimations in

the context of radical prostatectomy, we note that no significant differences between

methods were demonstrated. However, the trend points toward MFLAAM as having

the slope closest to one compared with the prostatectomy reference standard; therefore,
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it seems reasonable that MFLAAM can perform at least as well as other methods

and should be considered on the basis of its expected practicality in clinical practice.

In conclusion, prostate volume estimates with MFLAAM’s on axial T2-weighted MR

images yield strong approximations of prostatectomy specimendetermined volumes and

can serve as a surrogate for MR imaging planimetry determined volumes, offering the

prospect for accurate volume determinations in clinical practice.
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Chapter 5

Evaluation of External Beam Radiation Treatment

5.1 Experimental Design

5.1.1 PZ/CG Segmentation Experiments

This content is primarily derived from [2], on which Robert Toth is the first author.

Data Description

Our data consists of 40 prostate endorectal MR images, acquired using T2-weighting

protocol and a 3.0 Tesla coil. Each image was 512×512 pixels in the x, y directions with a

variable number of slices. The prostate capsule, PZ, and CG boundaries were manually

segmented in 3D by an expert radiologist using the 3D Slicer software [107, 108, 109].

The raw data for each study was preprocessed to normalize the intensities and remove

the bias field [113]. In addition, the variance of each levelset and each intensity image

was normalized to a value of 1. Due to the fact that MR imagery of the prostate is

used for staging of prostate cancer in the US, and not for screening, all 40 studies

have biopsy-confirmed prostate cancer present. A full description of our dataset and

associated parameters is shown in Table 5.1 [2].

Table 5.1: Detailed description of the data used to test the MFLAAM.

# of Studies 40 Studies
Protocol 3.0 Tesla, T2-weighted

MRI Acquisition Fast Spin Echo, Endorectal Coil
Image Size (pixels) 512 × 512× Z, 20 < Z < 50
Field of View (mm) 140 × 140× Z, 60 < Z < 150

Resolution (mm) 0.27 × 0.27 × 3.0
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Implementation Details

TheMFLAAMwas implemented in C++ using the ITK framework [121]. The MFLAAM

was run on a machine with 8 cores (each 2.67 GHz) and 32 GB of memory running

Debian Linux, compiled using GCC (version 4.7.1). The segmentation process was

performed in a multi-resolution fashion, with P ≈ 106 at the coarsest resolution and

P ≈ 107 in the finest resolution. Segmenting the prostate, CG, and PZ on a 140

mm ×140 mm ×140 mm image took approximately 200 seconds. For all experiments,

α = 0.95 was used, similar to [67].

Hierarchical Prostate Segmentation

Two specific categories of experiments were performed: non-hierarchical experiments

(E1, E3, E5) and hierarchical experiments (E2, E4, E6). The non-hierarchical experiments

used only the imaging information to simultaneously segment the prostate, CG, and

PZ. Therefore, for K = ∅, as only the intensities were used to segment the objects. The

hierarchical experiments used the imaging information, as well as the known segmen-

tation of the prostate, to segment the CG and PZ, and thus K = {Prostate}. Due to

the fact that CG and PZ are embedded within the prostate itself, using a segmentation

of the prostate boundary forces the MFLAAM to only consider the desired region of

interest. This is also similar to the approach taken in [122], which assumed the prostate

was already segmented prior to segmenting the PZ and CG.

Cross Validation Experiments

For both the hierarchical experiments and the non-hierarchical experiments, both a

leave-one-out cross validation, and a 30-run, 5-fold cross validation were performed.

For the leave one out experiments (E1, E2), for each image In, the MFLAAM was

trained using the other 39 studies. For each run of 5-fold cross validation experiments

(E3 − E6), the dataset was randomly split into 5 groups of 8 studies per group. Each

study in a given group was segmented using an MFLAAM trained from the 32 studies

in the other 4 groups, resulting in a segmentation for each study. This was repeated
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30 times, resulting in 30 segmentations for each study. The goal of the cross validation

experiment is to determine the generalizability of the MFLAAM to different training

sets, by determining how well each study was segmented given different training sets,

and the variance of the results over the various training sets.

The segmentation result C
(in)
m,θ was compared to the ground truth segmentation C

(in)
m,n

using the Dice similarity coefficient (DSC).

DSC
(
C(in)
m,n, C

(in)
m,θ

)
= 2 ·

∣∣∣C(in)
m,θ ∩ C

(in)
m,θ

∣∣∣
∣∣∣C(in)

m,θ

∣∣∣+
∣∣∣C(in)

m,θ

∣∣∣
. (5.1)

In addition, the Mean Absolute Distance (MAD) between the surfaces was reported,

calculated as,

MAD
(
C(in)
m,n, C

(in)
m,θ

)
=

1∣∣∣C(on)
m,θ

∣∣∣
·
∑

c∈C
(on)
m,θ

(
min

d∈C
(on)
m,n

‖c− d‖2 ,

)
(5.2)

where C(on) represents pixels on the surface of the object, and the MAD values are

reported in mm.

The results from the prostate, PZ, and CG segmentations from the non-hierarchical

experiments (E1, E3, E5) are presented, in addition to the PZ, and CG segmentation

results from the hierarchical experiments (E2, E4, E6) The segmentation results in the

midgland of the prostate are presented separately for the area-based DSC values (the

boundary-based MAD is not easily defined for separate regions). This was done due

to poor boundary contrast in the base and apex of the prostate, preventing accurate

segmentations in these regions.

The cross validation experiments resulted in 30 values for each of the 40 studies

(1200 total values). Experiments E3 and E4 present the results over all 1200 values

for the non-hierarchical and hierarchical experiments respectively. To determine the

generalizability over different training sets, the median value was computed over the 40

values for each run. The results over the 30 different median values (1 for each run) are

presented as E5 and E6. Table 5.2 summarizes the different experiments performed [2].
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Table 5.2: Description of the leave-one-out and cross validation experiments performed
to quantitatively test the MFLAAM. The difference between E3/E4 and E5/E6 is that
with E3/E4 we calculate the results over all 1200 trials (30 runs × 40 studies), while with
E5/E6 we calculate the median value for each of 30 runs and calculate the results over
all 30 runs to determine the generalizability of the MFLAAM over different training
sets.

Experiment Hierarchical Runs Folds Total # of Trials

E1 No 1 40 40

E2 Yes 1 40 40

E3 No 30 5 1200

E4 Yes 30 5 1200

E5 No 30 5 30

E6 Yes 30 5 30

5.1.2 EBRT Registration Experiments

Data Description

A retrospective cohort of 30 CaP patients had T2-weighted MRI acquired both before

and after EBRT. The cohort included patients from between 1991 and 2011 and the

selection criteria included patients from UCSF who had both pre-, post-EBRT T2-

weighted MRI but no androgen deprivation therapy. In each study, the T2-weighted

MRI was acquired using either a 1.5 Tesla or 3.0 Tesla GE MRI scanner. The image sizes

were approximately 140×140×140 mm, and the voxel sizes ranged from 0.27×0.27×2.2

mm/voxel to 0.54 × 0.54 × 3.0 mm/voxel. A summary is shown in Table 5.3.

Table 5.3: Detailed description of the data used to test DoCD.

# of Patients 30

Protocol T2-weighted, 3.0 Tesla

Field Strength 1.5 or 3.0 Tesla

Image Size (pixels) (256× 256 × 19) to (512× 512 × 35)

Field of View (mm) 140 × 140× Z, 60 < Z < 150

Resolution (mm) (0.54× 0.54 × 3.0) to (0.27 × 0.27 × 2.2)

MRI Acquisition Fast Spin Echo, Endorectal Coil

Hormonal Therapy No
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Quantitative Measures for Evaluating Registration Accuracy

As in [123, 124], segmentations of the prostatic structures were used to drive the reg-

istration. Similar to [90], the center of mass (CoM) of the prostate, and the mean

absolute distance (MAD) between the surfaces, were used to evaluate the accuracy of

the registration. A registration is considered accurate if the residual error is less than

the largest voxel dimension (in our case 3.0 mm) [90]. Moreover, the Dice similarity

coefficient [125], which measures the overlap between two volumes (1.0 is a perfect

overlap), was also used to evaluate the registration accuracy.

In addition, between 3 and 11 anatomical fiducials (median of 6) were manually

identified by an expert corresponding to structures, such as the urethra or calcifications

as in [126], visible on both pre-EBRT and post-EBRT imagery. The root-mean-square

(RMS) displacement between the fiducials (in mm) was then calculated following the

registration, which gives a more unbiased estimate of the registration errors within the

prostate. The following measures were used to evaluate the accuracy of the registration

comparing CPost, and T (CPre).

1. Dice coefficient [125] for prostate, CG (0.0 to 1.0, higher is better).

2. Center of Mass (CoM) displacements [90] (mm, lower is better).

3. Mean Absolute Distance (MAD) for surfaces [90] (mm, lower is better).

4. Root Mean Square (RMS) differences between the manually identified fiducials

within the prostate [126] (mm, lower is better).
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Comparative Strategies

The following strategies were compared against DoCD:

1. An FEM which does not explicitly exploit EBRT domain knowledge.

2. Rigid alignment, in which only translations and rotations (no change in volume)

are allowed.

3. Affine alignment, which adds X, Y, and Z scaling terms to a rigid transformation

to account for global changes in volume and shearing effects.

We have adopted an implementation of a “traditional” biomechanical FEM (simply

referred to as FEM) which contains just as many degrees of freedom as DoCD, is also

deformable, and yet does not exploit specific EBRT domain knowledge. The model is

based on the FEM in [90] which was used to align prostate surfaces. Young’s modulus

was set to 20 kPa, Poisson’s ratio to 0.49, and an iterative closest points algorithm [90]

was used to align the prostate surfaces. No information on the internal anatomy of the

prostate, nor any specific radiation-induced shrinking effects, was used.

In addition, a rigid registration (translation plus rotation) was used as a compara-

tive strategy in [124] for a deformable registration of pre-EBRT MRI and CT. Rigid was

therefore used as a comparative strategy in this study. Moreover, we also compared our

strategy to an affine registration, which extends rigid registration by allowing scaling

and shearing in each of the 3 dimensions. A comparison with affine will allow us to deter-

mine the usefulness of using a linear scaling term to model the EBRT induced shrinkage

since rigid does not allow scaling. A statistical test of the results was performed. The

null hypothesis was that the mean error between DoCD and the comparative strategy

was equivalent for a given strategy.
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5.2 Results and Discussion

5.2.1 PZ/CG Segmentation Results

This content is primarily derived from [2], on which Robert Toth is the first author.

The quantitative results for the prostate, CG, and PZ for experiments E1 through E6

are shown in Figure 5.1. The segmentation of the capsule boundary resulted in a mean

DSC accuracy of 0.81, and a mean MAD value of 1.8 mm. When only considering

the midgland of the prostate, the mean DSC value for the prostate increased to 0.89,

reflecting the tapering off of the gland towards the base and apex [2].

The hierarchical segmentation results E2, in which it is assumed that the prostate

segmentation already exists, as in [122], resulted in a mean DSC value of 0.79 for the

CG, and 0.68 for the PZ, with mean MAD values of 1.4 mm and 1.0 mm for the CG,

and PZ, respectively. When only considering the midgland, the mean DSC values were

0.84, and 0.76 for the CG and PZ, respectively. However, when only using the imaging

information (non-hierarchical experiment E1), the mean DSC values for the CG and

PZ were 0.72 and 0.60 respectively.

Qualitative results from two studies are shown in Figures 5.2 and 5.3. The region in

green represents the ground truth segmentations and red represents the segmentation

results. The DSC values for the prostate, CG, and PZ, were .88, .86, and .76 respec-

tively in Figure 5.2. The DSC values for the prostate, CG, and PZ, were .90, .71, and

.73 respectively in Figure 5.3. In addition, the reconstruction is shown in Figures 5.2(c)

and 5.3(c), which demonstrates that the intensities in a previously unseen study can be

reasonably well reconstructed [2].

5.2.2 PZ/CG Segmentation Discussion

The closest related work is [122], which reported mean DSC values of 0.89 and 0.80 for

the CG and PZ segmentations respectively on multi-spectral (T2-weighted and dynamic

contrast enhanced), 1.5 Tesla prostate MRI. When using the ground truth prostate

segmentations to drive the CG and PZ segmentations, similar to [122], resulted in DSC

accuracies of 0.79 and 0.68 for the CG and PZ for the MFLAAM. However, it should
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Figure 5.1: Quantitative segmentation results from experiments E1 through E6 for 40
studies segmenting the prostate, CG, and PZ. The mean is given by a solid gray line,
the 25th − 75th percentiles are shown as a shaded gray rectangle, and the 10th − 90th

percentiles are shown as error bars.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: (a) illustrates the intensities Fθ of a midgland prostate slice from a 3D,

T2-w, endorectal MR image. (c) represents the reconstruction R
(
F̂T ∗

)
resulting from

the MFLAAM. (e) illustrates a 3D rendering of the the prostate in light yellow, CG
in red, and PZ in dark purple. In (b), (d), and (f), the MFLAAM segmentations are
shown in red while the ground truth segmentations are shown in green. (b) illustrates
the prostate, with DSC = 0.878. (d) represents the CG, with DSC = 0.861. (f)
illustrates the PZ, with DSC = 0.764.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: (a) illustrates the intensities Fθ of a midgland prostate slice from a 3D, T2-

w, endorectal MR image. (c) represents the reconstruction R
(
F̂T ∗

)
resulting from the

MFLAAM. (e) illustrates a 3D rendering of the the prostate in light yellow, CG in red,
and PZ in dark purple. In (b), (d), and (f), the MFLAAM segmentations are shown
in red while the ground truth segmentations are shown in green. (b) illustrates the
prostate, with DSC = 0.90. (d) represents the CG, with DSC = 0.81. (f) illustrates
the PZ, with DSC = 0.73.
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be noted that those reported DSC values in [122] were from a combined STAPLE

segmentation of three expert ground truths. When considering only one of the ground

truths in [122], the mean DSC values decreased to 0.82 and 0.71 respectively. This is a

more appropriate and fairer comparison to the results presented in this work, and also

reflects the difficulty of getting accurate expert segmentations for the CG and PZ from

prostate MRI. In addition, the data used in [122] contained 31 studies (as compared to

the 40 we employed in this study).

Moreover, the algorithm in [122] was specifically designed to intelligently take into

account data from multiple modalities such as T1 contrast enhanced and diffusion

weighted images, to complement the T2-weighted MR imagery. This allowed the al-

gorithm to extract more accurate CG and PZ boundaries by leveraging additional in-

formation that may not be present in T2-weighted MRI. It is not clear how well the

algorithm in [122] would perform if only T2-weighted MRI images were available (as

in the current dataset). In addition, it is also unclear how well the MFLAAM would

perform if other MRI protocols were used in addition to, or instead of, T2-weighted in-

tensities, so a direct comparison is difficult. However, it is important to note that while

T2-weighted MRI is routinely performed at all sites where prostate MRI is performed,

multi-parametric MRI is only done in a subset of those imaging facilities. Hence our

algorithm could be employed on data from a larger number of centers.

To the best of our knowledge, this is the first work exploring a fully automated CG

and PZ segmentation algorithm, as [122] only reported results using the ground truth

prostate segmentations as the inputs to the algorithm.

In all the cases, the 5-fold cross validation experiments performed worse than the

leave-one-out experiments, mainly due to the 20% fewer studies used to train the MLA

(32 versus 39 training studies), suggesting the need for a large training cohort. However,

the median DSC and MAD values between cross validation runs were remarkably

consistent, suggesting very little variance between different training sets [2].
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5.2.3 EBRT Registration Results

Qualitative Estimation of Location of DoCD Registration Errors

Qualitative results of the location of DoCD registration errors are shown in Figures 5.4

and 5.5. In each panel of Figure 5.4, the post-EBRT MRI CPost is shown along with

the deformed pre-EBRT MRI T (CPre). In addition, renderings of the prostate and

CG surfaces are shown, in which hot colors represent regions of large error, while cool

colors represent regions of low error. Most errors were sub-millimeter. A comparison

of DoCD with Rigid, Affine, and FEM registration schemes, in terms of surface errors

on the prostate, is shown in Figure 5.5.

(a) (b)
(c) (d)

(e) (f)
(g)

(h)

Figure 5.4: Qualitative results showing the location of DoCD registration errors for two
studies (one study per row). The post-EBRT MRI CPost was used as the fixed image,
and is shown in ((a)) and ((e)). The deformed pre-EBRT MRI T (CPre) is shown in
((b)) and ((f)). In ((c)) and ((g)), the surfaces of the post-EBRT prostate are shown
in 3D, and colored based on the deformation error. For every voxel on the surface, the
closest distance to the prostate on T (CPre) is calculated and colored, such that blue
represents 0 mm (no error) and red represents an error of 3 mm. The same renderings
are shown for the CG in ((d)) and ((h)).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.5: Qualitative results comparing the locations of registration misalignments
for DoCD and the comparative strategies are shown for three studies (one study per
column). Shown are the misalignment locations for Rigid (first row), Affine (second
row), FEM (third row), and DoCD (fourth row) schemes. In each image, the prostate
surface is colored depending on the surface error at that location, where hot colors
represent regions of large error and cool colors represent regions of small error. The
errors range from 0 mm (blue) to 3 mm (red) (see Figure 5.4).
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Quantitative Evaluation of DoCD versus Comparative Registration Schemes

Quantitative registration errors are shown in Figure 5.6. DoCD outperformed the rigid,

affine, and FEM registration schemes in terms of Dice, MAD, CoM and fiducial errors.

DoCD yielded mean Dice coefficients for the prostate and CG of 0.896 and 0.902 respec-

tively (median of 0.916 and 0.911). The mean MAD of the prostate and CG surfaces

were 0.665 mm and 0.397 mm respectively (median of 0.642 mm and 0.379 mm). The

mean CoM displacements of the prostate and CG were 1.104 mm and 0.617 mm re-

spectively (median of 0.598 mm and 0.540 mm). The mean RMS fiducial displacement

was 2.994 mm for DoCD (median of 2.894 mm). Results from a Student’s t-test are

shown in Table 5.4. The null hypothesis was rejected for all results except the prostate

surface MAD and CoM of the traditional FEM.

Table 5.4: Results of a 2-tailed paired Student’s t-test (p is shown), with statistically
significant results indicated by asterisks (p < .05∗, p < .01∗∗). DoCD was compared to
each method in terms of the center of mass (CoM) displacements, the mean absolute
distance (MAD) between surfaces, the Dice similarity coefficient, and the root mean
square (RMS) error between fiducials.

DoCD vs: Rigid Affine FEM

Prostate Dice 1.84 × 10−09 ∗∗ 1.32 × 10−06 ∗∗ 1.81× 10−02 ∗

CG Dice 8.87 × 10−11 ∗∗ 8.02 × 10−08 ∗∗ 7.11× 10−07 ∗∗

Prostate MAD 8.18 × 10−10 ∗∗ 3.62 × 10−09 ∗∗ 8.02× 10−02

CG MAD 2.95 × 10−09 ∗∗ 2.69 × 10−09 ∗∗ 3.18× 10−06 ∗∗

Prostate CoM 3.60 × 10−04 ∗∗ 9.40 × 10−04 ∗∗ 1.29× 10−01

CG CoM 2.30 × 10−03 ∗∗ 1.02 × 10−02 ∗ 3.27× 10−04 ∗∗

Fiducials RMS 5.62 × 10−05 ∗∗ 1.18 × 10−02 ∗ 2.80× 10−10 ∗
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Figure 5.6: Quantitative results comparing the rigid (90% grey), affine (60% grey),
traditional FEM [90] (30% grey) and DoCD (white) registration algorithms in terms
of the center of mass (CoM) between objects ((a)), the mean absolute distance (MAD)
between surfaces ((b)), the Dice similarity coefficient between volumes ((c)), and the
RMS distance between fiducials ((d)). The height of the bars represent the mean over
30 studies, and the standard deviations are shown as black error bars.

5.2.4 EBRT Registration Discussion

Comparison of DoCD to Linear Registration

The difference in accuracy between rigid and affine schemes demonstrates the impor-

tance of the scaling term for EBRT images. However, while the affine registration

yielded better results than rigid registration, the local morphologic deformations mod-

eled by DoCD statistically significantly outperformed the affine registration in terms of
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Dice, COM, and MAD measures. Nonetheless, a perfect alignment of the prostate and

CG surfaces would have yielded a “perfect” Dice measure of 1.0, and “perfect” CoM &

MAD errors of 0.0 mm, yet could yield completely unrealistic deformations within the

prostate. This underlies the necessity of evaluating the registration accuracy with man-

ually identified fiducials within the prostate. The statistically significant improvements

noticed in the Dice, CoM, and MAD evaluation measures are also apparent in the fidu-

cial errors, suggesting that DoCD is better able to capture the internal deformations

occurring after EBRT. In addition, in 16 of the 30 cases, the fiducial displacements were

within the inter-slice resolution of the MRI.

Comparison of DoCD to Traditional FEM

Even though both DoCD and the traditional FEM accurately deformed the prostate

surface (as demonstrated in the prostate Dice values), there was a minor significant

improvement in the prostate Dice values in DoCD. This suggests the importance of

explicitly incorporating the EBRT induced shrinkage, represented by the low Poisson’s

ratio in DoCD. However, there were no significant differences in the CoM and MAD

values between DoCD and the FEM.

The traditional FEM yielded noticeably poor results in the CG evaluation, even

compared to the rigid and affine results. The most noticeable results, however, are

in the fiducial displacements, in which the FEM was outperformed by all comparative

strategies. The fact that the FEM had better prostate Dice, MAD, and CoM values

than rigid and affine, and yet poorer CG and fiducial values, suggests that while the

FEM aligned the prostate surfaces quite well, it did not accurately model the internal

changes to the prostate as a result of EBRT. Our DoCD method, comparatively, was

able to align the prostate surfaces well, in addition to the internals of the prostate, thus

showing the importance of the domain knowledge incorporated into the model.
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5.3 Concluding Remarks

Radiation treatment aims to destroy cancerous cells with ionizing radiation, and pre-

and post-EBRT treatment MRI can potentially be used to determine treatment related

changes in the gland. However, to quantify these changes, the pre- and post-EBRT MR

images must first be segmented and then registered.

To segment the internal structures of the prostate (the PZ and CG) the MFLAAM

was extended to simultaneously segment multiple shapes. The multi-shape MFLAAM

presented uses the texture features, as well as the existing prostate segmentation, to

drive the simultaneous segmentations of the PZ and CG. This is accomplished us-

ing knowledge of the shapes of various objects, and how those shapes correlate with

textures. The algorithm was tested on 40 T2-weighted, 3D, endorectal, 3.0 Tesla,

prostate MRI images containing ground truth segmentations of the prostate, central

gland (CG), and peripheral zone (PZ). Most existing prostate segmentation algorithms

only segment the prostate boundary, and yet CG and PZ segmentations are critical

for cancer detection and treatment planning. When using the intensities and known

prostate segmentations, mean DSC values of 0.79 and 0.68 were reported for the CG

and PZ, respectively.

Once the PZ and CG were segmented, a domain-constrained deformable model

(DoCD) was employed to register the pre-, post-EBRT MRI. Challenges of such a reg-

istration technique arise from the significant changes to gland morphology following

radiation treatment, specifically local gland shrinkage arising from a reduction in tu-

mor volume, as well as atrophy of benign tissue. In this work we presented DoCD, a

biomechanical model for simulating the effects of radiation on the internal substructures

of the prostate. DoCD has been applied to register images from 30 patients who have

undergone external beam radiation therapy (EBRT) for prostate cancer. Qualitative

and quantitative results demonstrate the efficacy of this model. Each patient had in-

ternal fiducials manually identified for evaluating the accuracy. DoCD achieved a root

mean square fiducial error of 2.994 mm, which was statistically significantly better a

traditional biomechanical model (mean of 5.071 mm).
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Chapter 6

Evaluation of Focal Laser Ablation Treatment

6.1 Focal Laser Ablation Registration Methodology

6.1.1 Notation and Overview

A 3D MRI scene I = (C, f (c)) is defined by a collection of voxels c = (xc, yc, zc),

∀c ∈ C, and MRI intensity information for each voxel, f (c) ∈ R, ∀c ∈ C. The pre-FLA

MRI is denoted as IPre and the post-FLA MRI is denoted as IPost. An image scene

deformed by transformation T is defined as,

T (I) = (C, f (T (c))) , (6.1)

where T (c) represents the transformation of voxel c. T (C) represents the collection of

transformed voxels, T (C) = {T (c) | ∀c ∈ C}.

Following treatment, we assume the prostate undergoes transformations due to dif-

ferent patient alignment within the MRI machine (T1), transformations due to changes

in surround tissue (T2), and FLA-induced transformations (T3). Therefore,

CPost = T1 (T2 (T3 (CPre))) . (6.2)

It follows that,

T3 (CPre) = T̂2

(
T̂1 (CPost)

)
, (6.3)

where T̂ represents the inverse transformation. The following sections outline the pro-

cedure for calculating the inverse transformations T̂1, T̂2, thereby removing the effects

of those transformations. This leaves only the FLA-induced morphologic changes to
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the prostate, T3. In addition, once T̂1, T̂2, and T3 are known, the MRI parameters can

be compared between T3 (IPre) and T̂1

(
T̂2 (IPost)

)
, which represents spatially aligned,

pre-, post-FLA MRI.

6.1.2 Linear Alignment T̂1

The first step in accounting for the FLA induced deformation is to linearly align the

pre-, post-FLA MRI. A linear transform is defined by translation, rotation, and scaling,

in each of the three dimensions. The mutual information (MI) between the pre-, post-

MRI is used as the metric to guide the linear registration. A gradient descent optimizer

is used to determine which transformation yields the maximum MI, defined as,

T̂1 = argmax
T

MI (T (IPost) , IPre) . (6.4)

6.1.3 Modelling Changes from Surrounding Tissue T̂2

Even after taking account patient motion and position within the MRI between visits

(defined by T̂1), changes in tissues surrounding the prostate, such as the bladder and

rectum, can cause deformations to the gland. To model how the bladder and rectum

deform, an FEM is created by defining forces at the surface of these structures. The

direction and magnitude of the forces are defined by deforming the bladder and rectum

on T̂1 (IPost) towards the bladder and rectum on IPre. Figure 6.1 shows the process

of removing the deformations due to the bladder and rectum from the images. The

FEM calculates the deformation for the entire image given the forces at the surface of

the bladder and rectum. These deformations are applied to the prostate, yielding only

the deformations due to the FLA remaining. The FEM based deformations (from the

bladder and rectum on post- to pre-FLA) is denoted as,

T̂2 = FEMBR

(
T̂1 (IPost) , IPre

)
, (6.5)

where FEMBR(a, b) represents the FEM-induced deformations due to deforming the

bladder and rectum from a to b.
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(a) (b) (c) (d)

Figure 6.1: (a) represents the pre-FLA prostate, bladder, and rectum IPre. Following
the FLA treatment, the prostate is deformed, represented in (b) as T3 (IPre), which we
aim to recover in this work. However, there are changes to the bladder and rectum
between the acquisition of the pre-FLA MRI (a) and post-FLA MRI (c) (IPost), rep-
resented in this example by forces angled towards the center of the prostate in (c). To
recover only the FLA-induced changes to the prostate, a FEM determines which forces
will deform the post-FLA bladder/rectum to the pre-FLA bladder/rectum. This is

shown by forces in (d) angled away from the prostate, yielding T̂2

(
T̂1 (IPost)

)
. Notice

that the prostate in (d) is most similar to the prostate in (b).

6.1.4 FLA Induced Prostate Deformations T3

T̂2

(
T̂1 (IPost)

)
represents the post-FLA image with the deformations due to the bladder

and rectum removed. To model the FLA induced changes to the prostate, a FEM of

the prostate is generated, and the prostate on T̂2

(
T̂1 (IPost)

)
is deformed to best first

the prostate on IPre. This deformation is denoted as T3, defined as,

T3 = FEMP

(
IPre, T̂2

(
T̂1 (IPost)

))
. (6.6)

where FEMP (a, b) represents the FEM-induced deformations due to deforming the

prostate from a to b. T3 represents the morphological changes solely due to the FLA.

T3 (IPre) and T̂2

(
T̂1 (IPost)

)
represent spatially aligned pre-, post-FLA MRI respec-

tively.
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6.2 Experimental Design

6.2.1 Data Description

A retrospective cohort of 10 CaP patients had T2-weighted MRI acquired both before

and after FLA. The cohort included patients from between 2008 and 2011. In each

study, the T2-weighted MRI was acquired using a 3.0 Tesla MRI scanner without an

endorectal coil. None of the patients in this cohort had androgen deprivation therapy.

The image sizes were approximately 140 × 140 × 140 mm, and the voxel sizes ranged

from 0.27 × 0.27× 2.2 mm/voxel to 0.54 × 0.54 × 3.0 mm/voxel.

6.2.2 Testing Accuracy of T2 via Synthetic Deformations

T̂2 aims to remove the deformations on the prostate due to surrounding tissues. In

this experiment, T2 is synthetically generated (defined as T̃2) in order to quantify the

accuracy of the inversion. If T̂2 perfectly recovered the deformations due to the bladder

and rectum, then T̂2 =
(
T̃2

)
−1

An FEM model of the bladder and rectum was created for the pre-FLA image on

one study IPre, and known forces at the surface were induced to generate a synthetic

transformation T̃2. The forces were chosen to deform the pre-FLA bladder and rectum

towards the post-FLA bladder and rectum for the same study. This yields a synthetic

post-FLA ĨPost. Let C
P
Pre represent the pre-FLA prostate voxels, and C̃P

Post = T̃2
(
CP
Pre

)

represents the synthetically deformed post-FLA prostate voxels. The Dice similarity

coefficient [125] between CP
Pre and T̂2

(
C̃P
Post

)
was used to determine the accuracy of

the inversion, where a Dice of 100% indicates T̂2 =
(
T̃2

)
−1

.

6.2.3 FLA Induced Deformations

For each step in the registration process, one image is fixed as the reference, and another

image is considered the moving image, outlined in Table 6.1. The first two steps bring

IPost into the frame of reference of IPre, after which the FLA-induced changes to the

prostate are calculated to deform the pre-FLA MRI onto the post-FLA MRI in which

all external deformations have been removed. The final deformation, T3 represents the
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Table 6.1: Description of the registration steps for the experiments. Specifically which
images were used as fixed and moving in each of the steps in the registration process.
The final result is the FLA-induced morphological changes (T3) as well as spatially
aligned pre-, post-FLA images.

Registration Step Fixed Image Moving Image Moved Image

1. Linear IPre IPost T̂1 (IPost)

2. Bladder/Rectum IPre T̂1 (IPost) T̂2

(
T̂1 (IPost)

)

3. Prostate FLA T̂2

(
T̂1 (IPost)

)
IPre T3 (IPre)

morphological changes in the prostate due to the FLA treatment. This is compared

to the location of treatment in order to determine if the FLA-induced morphological

changes at the site of necrosis.

6.3 Results and Discussion

The synthetic experiments outlined in Section 6.2.2 resulted in a mean Dice score of

93% ± 2%, suggesting that the FEM was able to accurately recover the bladder and

rectum deformations. Figure 6.2 shows the qualitative results of T2 in Figure 6.2(b)

and the result of the recovered deformation T̂2 in Figure 6.2(c). In this case, the change

in the rectum (pale blue, below) was the primary driving force in pushing the prostate

(teal) upwards, near the apex. The pulling effect caused by bringing the rectum back

to its original position caused the inverse deformation in the prostate, yielding a high

overlap with the original prostate in Figure 6.2(c).

Figure 6.3 shows the prostate volume before and after FLA treatment. The median

pre-FLA volume was 51.0 ml and the median post-FLA volume was 47.7 ml, a decrease

of 5.1%. This decrease suggests that the necrosis caused by the FLA treatment caused

shrinking effects within the prostate. However, in Patient #1, which had the largest

prostate, the volume actually increased. Future work will aim to determine if the change

in volume is correlated to treatment outcome.

Figure 6.4 shows the registration result for three patients in order to determine

where the morphological changes in the prostate occurred. Each patient is shown as a
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(a) (b) (c)

Figure 6.2: (a) represents the bladder and rectum in pale blue, and prostate in teal. (b)
represents the result of the synthetic deformation T2. The deformed prostate is shown
in yellow, and the arrows represent the direction of the transform (in this case mostly
due to the rectum). (c) represents the result of the recovered deformation T̂2. The
deformed prostate is shown in yellow, and the high level of overlap with the original,
undeformed prostate, can be seen.

column. The first row shows IPre, the second row shows a live image of the ablation

needle during treatment, and the third row shows IPost. The slight change in volume

in the prostate can be visible in IPost. The registration result T3 is shown in the fourth

row. The arrows represent the direction of the morphological changes, and in all cases

they point inwards towards the centroid of the prostate close to the site of ablation. In

addition, the heatmap shows the magnitude of morphological changes (‖ T3(c)− c ‖2),

where red represents a small change and white represents a large change. These results

show that the slight decrease in volume of the prostate occured at the site of ablation,

suggesting that the FLA-induced necrosis caused a change in prostate morphology.

Future work will follow these patients and attempt to correlate the location and decree

of morphological changes with patient outcome.

Figure 6.5 shows the registration result of a given patient, with spatially aligned

pre-FLA (T3 (IPre), Figure 6.5(a)) and post-FLA (T3 (IPre), Figure 6.5(a)) MRI. This

particular patient had two sites of ablation, shown by the MRI images during treatment

in Figures 6.5(c) and 6.5(d). The changes in MRI intensity values are shown as a colored

heatmap in Figures 6.5(e) and 6.5(f). Hot colors represent areas of large changes and

cooler colors represent areas of small changes. The first thing to notice is that there
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Figure 6.3: The volume of eight patients pre-, post-FLA. The median change was a
5% decrease in volume.

are some hot regions at the top of the prostate due to minor registration edge artifacts.

This was caused by a very slight misalignment of the prostate boundaries at that region.

However, at the two FLA locations, there is significant necrosis following treatment,

showing up as dark regions in Figure 6.5(b), and as hot colors in Figures 6.5(e) and

6.5(f). This result paves the way for quantifying the effect of radiation treatment, and

allows for a quantifiable way to track patients over time. Future work will aim to

determine if the magnitude and location of changes in MRI parameters are correlated

with patient outcome.



89

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.4: Results of morphological changes for three patients (one per column). The
first row represents IPre. The second row represents an image of the location for the
laser during treatment, in all cases shown in the bottom right corner of the prostate. The
third row represents IPost. The fourth row represents a heat map of the FLA-induced
deformations T3. White represents regions of large deformations, while transparent red
represents regions of small deformations. Small arrows represent the direction of the
deformation (in all cases pointing towards the centroid of the prostate) after removing
deformations due to patient alignment (T1) and surrounding tissues (T2). It can be
seen that in all patients, the areas with the the largest deformations were also the FLA
treatment locations.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.5: (a) and (b) show the registered pre-, post-FLA images T3 (IPre) and

T̂2

(
T̂1 (IPost)

)
respectively. For this patient, two different FLA needle locations were

used, shown in (c) and (d). After registration, the difference between the MRI intensity
values are shown as colored values in 2D (e) and 3D (f), where cool colors represent
regions of small differences, and hot colors represent regions of large differences. The
hot colors at the top of the prostate are likely due to edge artifacts, yet the hot colors
at the bottom of the prostate are correlated with the needle locations.
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6.4 Concluding Remarks

Focal laser ablation (FLA) treatment aims to destroy cancerous cells with highly fo-

cused laser, in order to cause necrosis to the affected tissue. It combines the aggres-

sive benefits of radiation treatments (the ability to destroy cancers cells) without the

harmful side effects (due to its localization). However, to quantify these changes, the

pre- and post-FLA MR images must first be spatially aligned via image registration.

Challenges of such a registration technique arise from the significant changes to gland

morphology following radiation treatment due to (1) patient alignment, (2) changes

due to surrounding organs such as the bladder rectum, and (3) changes due to the FLA

itself. In order to isolate the FLA-induced morphological changes, the changes from (1)

and (2) are first modeled and removed. Then, a finite element model determines the

FLA-induced changes to the prostate. This results in (a) FLA-induced morphological

changes to the prostate, and (b) spatially aligned pre-, post-FLA imagery. In this work

we present results which suggest that the FLA treatment causes a minor decrease in

prostate volume, focused specifically at the site of ablation. In addition, after spatially

aligning the images, changes to MRI intensity values are clearly visible at the site of

ablation. Both these results lend themselves to quantifying the degree of FLA-induced

changes to the prostate, which can be used to track a patient over time. Future work

will explore the correlation between morphological and intensity changes within the

prostate, with patient outcome.
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Chapter 7

Concluding Remarks and Future Directions

In this work we have presented a suite of novel segmentation and registration meth-

ods for quantitative evaluation of prostate cancer treatment using MRI. Specific goals

accomplished include, (a) evaluation of radical prostatectomy via quantification of

prostate volume, (b) evaluation of EBRT via modeling EBRT-induced shrinking ef-

fects post-treatment, and (c) evaluation of FLA treatment via a biomechanical model

aimed to isolate FLA-induced changes to the prostate.

This work represents the first method to combine multiple shape models with a

texture model for 3D image segmentation (MFLAAM). In terms of accuracy, level of

interaction, efficiency, and consistency over a large number of volumes, the MFLAAM

outperforms most other prostate MRI segmentation algorithms. MFLAAM prostate

volume estimates yield strong approximations of prostatectomy determined volumes,

offering the prospect for accurate, automatic volume determinations in clinical practice.

This work also represents the first attempt to model treatment-specific morpholog-

ical changes to the prostate via the use of a domain-constrained, deformable (DoCD)

biomechanical model. Explicitly modeling the shrinking effects of the internal substruc-

tures of the prostate allows for a more accurate registration of pre-, post-treatment

prostate MRI than current state of the art registration methods. This novel domain-

constrained registration model was validated over 30 EBRT and 10 FLA patients with

pre-, post-treatment MRI. Future work will aim to use DoCD to quantify the specific

changes in prostate morphology and MRI parameters over time, and correlate those

changes with patient outcomes. This will lend itself towards creation of a predictive

model, so that early changes detected from prostate MRI following treatment could be

used to predict long term treatment efficacy and patient outcome.
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