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ABSTRACT OF THE DISSERTATION

On a Hardy type inequality and a singular

Sturm-Liouville equation

by Hui Wang

Dissertation Director: Haim Brezis

In this dissertation, we first prove a Hardy type inequality for u € W," ’1(9), where
Q is a bounded smooth domain in RY and m > 2. For all 7 20,1 <k <m-—1,
such that 1 < j + k < m, it holds that d(f)jﬁ% € Wéc’l(Q), where d is a smooth
positive function which coincides with dist(z, Q) near 99, and 8" denotes any partial
differential operator of order [.

We also study a singular Sturm-Liouville equation —(z?*/) +u = f on (0,1),
with the boundary condition u(1) = 0. Here a > 0 and f € L?(0,1). We prescribe
appropriate (weighted) homogeneous and non-homogeneous boundary conditions at 0
and prove the existence and uniqueness of H. 120 .(0,1] solutions. We study the regularity
at the origin of such solutions. We perform a spectral analysis of the differential operator
Lu := —(x?*u') + u under homogeneous boundary conditions.

Finally, we are interested in the equation —(|z[**u’)" + |u[P™ u = p on (—1,1) with
boundary condition u(—1) = u(1) = 0. Here & > 0, p > 1 and p is a bounded Radon
measure on the interval (—1,1). We identify an appropriate concept of solution for
this equation, and we establish some existence and uniqueness results. We examine the

limiting behavior of three approximation schemes. The isolated singularity at 0 is also

investigated.
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Preface

This dissertation is a compilation of the research papers written by the author during
the course of his Ph. D. Each chapter in this dissertation contains one paper, while the
references are collected at the end of this dissertation. Minor changes are made from
the original papers in order to keep the consistency of the presentation style. Some
chapters are collaborative work (with H. Castro for Chapter 1, 3 and 4, and with H.

Castro and J. Dévlia for Chapter 2). Chapter 5 and 6 are written solely by the author.
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Chapter 1

A Hardy type inequality for W™1(0,1) functions

1.1 Introduction

It is well known ([31]) that if u € W12(0,1) and «(0) = 0 then the Hardy inequality
holds for p > 1, that is

1 P » \? 1 ,
de < [ —— / u' ()] de.
/0 (p—1> 0 [v'@)

The constant % is optimal for this inequality and it blows up as p goes to 1. This

u(z)

behaviour is confirmed by the fact that no such inequality can be proved when p = 1,

as we can consider (see e.g. [8]) the non-negative function on (0, 1) defined by

1

v(z) = 1—logx’

(1.1)

A simple computation shows that this function belongs to W1(0,1),u(0) = 0, but uaz)

T

is not integrable.

When we turn to functions u € W2?(0,1), p > 1, with u(0) = v/(0) = 0, there are

:\
=
&
£
8
&

three natural quantities to consider: “(;C), Y@ and (M) = 2. Ifp > 1,

x x
it is clear that both “{Z) apd %2 — w(@ _ L “tu” (t)dt belong to LP(0,1). Thus
T z2 JO

T x

!/ /
(@) € LP(0,1). If p =1 one can no longer assert that ulz) @ belong to L(0,1),

x2
u(x)

/
but surprisingly (—) € L'(0,1). This reflects a “magic” cancellation of the non-

u(@) )’

integrable terms in the difference (T) =

The same phenomenon remains valid when we keep increasing the number of deriva-

tives, and this is the main result of this chapter.
Definition 1.1. We say that u has the property (Pp,) if

we W™ (0,1) and u(0) = Du(0) = ... = D™ 'u(0) =

)

where D'u denotes the i-th derivative of w.



Theorem 1.2. Assume u has the property (Py,) and j, k are non-negative integers.

DIu(x)
xm—i—k

(i) If k > 1 and 1 < j+ k < m, then

has the property (Py) and
(k—1)!

Diu(x)
D¥ - —||D™ . 1.2
The constant is optimal.
(i) There exists w having the property (Pp,) such that
Diw(x) 1 .
e L0, Vi =0, m L. (1.3)

Remark 1.1. For functions u € W?P(0,1), p > 1, with u(0) = «/(0) = 0, a slightly

stronger result holds, namely, when we estimate the LP norms of the three quantities
, /

%,w and (@) , we obtain

u(z) u'(z)

2

" u(x) '
< By [|u"|],,, and H<$>

with oy, Bp,Vp as the best possible constants. It is easy to see that oy, — oo, B, — 00

< ap [l
p

SVpHu”Hp’ <14)

p p

when p — 1. However, a similar “magic” cancellation appears and -y, remains bounded

as p — 1. A proof of this latter fact is presented in Section 1.3.

1.2 Proof of Theorem 1.2

We begin with the following observation.
Lemma 1.3 (Representation formula). If u has property (Py,,), then
u(z) = _r /x D™u(s)(z — 5)™ tds
(m—=1)!Jo .

Proof. We proceed by induction. The case m = 1 is immediate since u € W11(0, 1) if

and only if u is absolutely continuous. Now notice that
x
D™y (x) = / D™u(s)ds.
0
If we use the induction hypothesis, we obtain

u(x) = (ml_2)' /OI (/OS Dmu(t)dt> (z — 5)™ 2ds.

The proof is completed after using Fubini’s Theorem. O



Based on the function defined by (1.1), we have

Lemma 1.4. There exists a function w having property (Py,), such that

D lw(z) D’"”w(@,...,l;:(?f;(;) ¢ I (1.5)

x ’ 22

Proof. In order to construct the function w, we consider the function v defined in (1.1).

As we said, v is a non-negative function on (0, 1), it has the property (P;), but @

does not belong to L'(0,1). Define w(x) as

x
w(zx) = (m12)'/0 v(s)(z — 5)™ 2ds,

so w solves the equation D™ 'w(z) = v(z), with initial condition w(0) = Dw(0) =

...= D™ 2y(0) = 0. Notice that w has the property (P,,), D*w(z) > 0, D*w(1) < oo

and

. D™ F(s)
i 22—,

for all k =1,...,m — 1. We now show that w satisfies (1.5). Notice that

1
+oo:/ de
0 T

_ /1 Dmflw(x) I

0 X
1 Dm72

= D™ 2(1) + wdm.
0 z?

Thus fol de = +o00. Similarly, if we keep integrating by parts we conclude that

N
DM
:/ Driw(z) _ Vi=1,...,m.
Lo, Jo

xJ

D™ Jw(x)
i

We can proceed to the

Proof of Theorem 1.2. The second part was proved in Lemma 1.4, so we will only prove
the first part. Since the result is immediate when j + k = m, in the following we always

assume that j + k£ <m — 1.

To prove that f,,ffj(ﬂ has the property (Px), we proceed by induction. For k = 1

and any 7 =0,...,m — 1, ggnjf](-:f)l has the property (P;) because
Diu(z) , -
T = (m—j — 1)ID™ 1u(0) = 0.

=0



Now assume the result holds for some k. Notice that if j +k 4+ 1 <m — 1 then

pm—i—k—1 m—(+1)—k pm—j—k’

D(zﬁm@ >: D) o Dule)

the righthand side of which has property (Py) by the induction assumption. Thus we

conclude that D <ﬁ(k)1) has the property (Pj), completing the induction step.

Now we prove the estimate (1.2). Notice that

k (f;i‘ffi) - zk: <I;> DIty (z)DF <xm_1j_k) 7

1=0

and that

ph-i (1> _(LppeimogmioDt

xm—i—k (m—j—Fk—1)gm-i-i

Using the representation formula for u from Lemma 1.3, we obtain

D iy(z) = m—7 1_ ) /090 D™u(s)(x — s)™ 77 s,

By combining (1.6), (1.7) and (1.8) we obtain

i ((DIu(x)
rm—i—k
k
B 1 T (CC—S)m j—i—1
_ -1 k—i Dm d
Z;Z( L T T e

=0
1 T _ o\m—j—1 k
= D™ u(s) (@ S)_ 5 ds
(m—j—k-=1)") xm=i r—s
1 v s\Mm—i—k=1 rs\k=1 g
_ Dm 1-2 hd il
(m—j—k=1"J uls) ( ac) (:U) :c2d$

Therefore,

1
i
0

dzx

(fi“éii)

< IDm ([ 1—77”**4(EYF33
(m —]—k—l) x x?

1
:( 1! / | D™ u( ’( )" J=h=1 1diﬁ) ds
m—j—k—
1 m—j—k—
S(m—j—k 1! D™ “”L1(01/0 (L=
= [D™ull 101y -

(m—j7—1)!

dx> ds

(1.6)

(1.7)



The optimality of the constant is guaranteed by the optimality of Holder’s inequality.

The proof of the theorem is now completed. O

1.3 The W™P functions with m > 2 and p > 1

We begin by proving the result stated in Remark 1.1. Notice that for v € W?2P(0,1)

satisfying u(0) = 4/(0) = 0, we can write

!/
1 xX
<u(:1:)> = 2/ su” (s)ds.
x x 0
For p > 1, we can apply Holder’s inequality and Fubini’s theorem to obtain,
! x
/ <> dx < / / sP |u” |p dsdx
0
_ D P
—/Os‘u ‘ (/S p+1dx>d
1 1
< / [u"(s)|" ds,
b Jo
where p’ and p are given by + , = 1. Hence
()
z p

1
Thus, if we define 7, as in (1.4), we have proved that v, < p™ 7, i.e., 7, remains bounded

//H

1
<p 7 u

as p — 1.
As one might expect, an analogue to Theorem 1.2 can be proved for W™P functions.

The result reads as follows

Theorem 1.5. Let m > 2 and p > 1. If u belongs to W™P(0,1) and satisfies u(0) =

Du(0) =...= D™ 1u(0) =0, then fork>1 and 1 < j +k < m,
. 1
DIu(x) B(pk,p(m—j—k—1)+1)»
Dk \ < Y Dm s 1.9
H <$m]k> Lr(0,1) (m—j—k—1) 1%l (19)
where B(a,b) = f t2=1(1 — t)*~1dt denotes Euler’s Beta function.

Proof. From the proof of Theorem 1.2, we have

Diu(x) m—j—k—-1 s s\k=1 g
k _ ™y, _ 2 2 2
(azmjk> C(m—j—k—1) / b 1 ) (:1:) :CZdS'




After applying Holder’s inequality, Fubini’s theorem and a change of variables one

o (%)

obtains that

/

1 p 1 1 '
< m p _ p\p(m—j—k—1) ;pk—1
_<(m—j—k‘—1)!> 0 ‘D u(8)| (/0 (1 t) t dt> ds

p 1
:B(pk’p(m_j_k_1)+l)((m—jik—l)!> /0 | D™ u(s)|P ds.

p

dx




Chapter 2

A Hardy type inequality for Wi*'(Q2) functions

2.1 Introduction

In this chapter, we prove the following result, which is the higher dimensional analogue

of the Theorem 1.2 in Chapter 1.

Theorem 2.1. Let Q be a bounded domain in RN with smooth boundary 0. Given
x € Q, we denote by 6(x) the distance from x to the boundary 0. Let d : Q — (0, +00)
be a smooth function such that d(x) = 6(x) near 0. Suppose m > 2 and let j, k be
non-negative integers such that 1 <k <m—1and 1 < j+k < m. Then for every

u e WHQ), we have _Dul@) e WEL(Q) with

d(x)m—i—k

where 8" denotes any partial differential operator of order | and C' > 0 is a constant

< Cllullymi(q) (2.1)
11(9)

depending only on Q and m.

Remark 2.1. We will see that the proof of Theorem 2.1 is different from the proof of
Theorem 1.2 if we consider, for ezample, N =2, Q = R = {(z1,22); w2 > 0,21 € R},

and u € C°([0,1] x [0,1]). From Theorem 1.2 it is clear that

il (5)

However new technique (Lemma 2.6) will be needed to derive

ol (5)

The rest of this chapter is organized as the following. In Section 2.2 we introduce

32u($1, x2)

83:% dridzs.

d.fCld(L'Q S C/
Q

dridrs < C HDQUHLl(Q) .

the notation used throughout this chapter and give some preliminary results. In order



to present the main ideas used to prove Theorem 2.1, we begin in Section 2.3 with the
proof of Theorem 2.1 for the special case m = 2. Then in Section 2.4 we provide the

proof of Theorem 2.1 for the general case m > 2.

2.2 Notation and preliminaries

Throughout this work, we denote Rf ={(y1,.--,Yn-1,YN) € RY: yy > O}, the upper
half space, and BY (z9) = {z € RY; |z — 29| <r}. When zy = 0, we write BY =
BN(0).

Let © be a bounded domain in RY with smooth boundary 092. Given z € €, we

denote by d(x) the distance from x to the boundary 02, that is
0(z) = dist(x,0Q) = inf {|z — y|; y € 0N}.
For € > 0, the tubular neighborhood of 02 in € is the set
Qe={zxe€Q; d(x) <e}.

The following is a well known result (see e.g. Lemma 14.16 in [30]) and it shows that

0 is smooth in some neighborhood of 92.

Lemma 2.2. Let Q and 6 : Q — (0,00) be as above. Then there exists g > 0 only
depending on 2, such that 0lq,, : e, — (0,00) is smooth. Moreover, for every x € Q,

there exists a unique y, € 0L so that

T =Yg+ 6(55)7/8(2(%6)7
where vgq denotes the unit inward normal vector field associated to OS).

Since 02 is smooth, for fixed Zo € 02, there exists a neighborhood V(Zo) C 02, a

radius r > 0 and a map

d: BN V(i) (2.2)

which defines a smooth diffeomorphism. Define

N+(j0) = {x € Qeo? Yz € V(£O)}7 (23)



where ¢y and 7, are given in Lemma 2.2. We define ® : BN~1 x (—¢p,¢p) — RY as

(§:t) = D(7) + yn - voa(®(7)), (2.4)
where § = (y1,...,ynv—1), and we write
N (i) = @ (BN x (€0, €0)) - (2.5)

About the map ® we have the following

Lemma 2.3. The map ®|BN—1><(O ) s a diffeomorphism and
Ni(F) = @ (BN x (0,€)) -
Proof. This is a direct corollary of the definition of ® through ®, and Lemma 2.2. [

Remark 2.2. The map <I>\BN71X(0 €0) giwes a local coordinate chart which straightens

the boundary near To. This type of coordinates are sometimes called flow coordinates

(see e.g. [9] and [33]).

From now on, C' > 0 will always denote a constant only depending on €2 and possibly

the integer m > 2. The following is a direct, but very useful, corollary.

Corollary 2.4. Let f € LY (N, (Z0)) and ® be given by (2.4). Then

(7, yw) |dyNdy</ (o)) dx
C/BN 1/ N+ $())

<C/BN1/ (9, yn))| dyndy

Proof. Since ®|,n—1 ) is a diffeomorphism, we know that for all (§,yy) € BN ! x

% (0,e0
(0, €9) we have

1
& = ldet DG, yv)| < C:

The result then follows from the change of variables formula. O

The following lemma provides us a partition of unity in RY, constructed from the
neighborhoods N (Zp). Consider the open cover of 99 given by {V(&); Z € 90}, where
V(z) C 09 is defined in (2.2). By the compactness of 0f2, there exists {Z1,...,Zp} C

08, so that 9 = UM, V(F;). Notice that by the definition of V(%) in (2.5) we also



10

have that UM N (Z) is an open cover of 092 in RY. The following is a classical result

(see e.g. Lemma 9.3 in [8] and Theorem 3.15 in [1]).

Lemma 2.5 (partition of unity). There exist functions po, p1,. .., pu € C°(RN) such

that
(i) 0<py <1 foralll=0,1,...,. M andzl]\iopi(m)zlfor all z € RY,
(i1) supp py C N(%), for alll=1,..., M,

(i) polg € C=().

In order to simplify the notation, we will denote by &' any partial differential oper-
ator of order [ where [ is a positive integer!. Also, 9; will denote the partial derivative

with respect to the i-th variable, and 8%- = 0;00;.

Remark 2.3. We conclude this section by showing that, to prove Theorem 2.1, it
is enough to prove estimate (2.1) for smooth functions with compact support. Suppose
u € Wgn’l(Q), then there exists a sequence {un} C CZ°(), so that |[u — un||yym1 gy — 0

as n — 0o. In particular, after maybe extracting a subsequence, one can assume that
8lun — 0y a.e. in Q, forall0 <1< m.

Since d is smooth, the above implies that for a.e. x € Q and all j >0, 1 <k <m—1

and 1 < j+k<m:

ok (d(aju(az) > _ ORu(a) —|—8ju(m)8k< 1 )

x)m—j—k d(x)m—j—k d(x)m—j—k

T GO & 1

= lim 9F <daj“”(x)) :

n—00 (x)m—j—k

Therefore, Fatou’s Lemma applies and we obtain

Fu(x o & uy (x
ok <()k < liminf ||0F % :
d(x)m= L) " d(@)m=? LY(Q)
n general, one would say: “For a given multi-index a = (a1,...,an), we denote by 9 the partial
differential operator of order | = |a| = a1 + ...+ an”. Since we only care about the order of the

operator, it makes sense to abuse the notation and identify « with its order |«| = I.
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Once (2.1) were proved for u, € C°(Q)), we get

(%)

and thus we can conclude that

o

Finally, the fact that % € CX(Q) and Cx(9)

Az k,
Tl € Wyt (@).

<C HUTLHWWJ(Q)v
LY(Q)

< Chnnlmf lunllwmiy = C llullymi(q)-
LY(Q)

k,1
R _ Wéc’l(Q) gives that

2.3 The case m =2

We begin this section by proving estimate (2.1) in Theorem 2.1 for Q = ]Riv ,m =2,
j=0and k=1.

Lemma 2.6. Suppose that u € CSO(RJX) Then for alli=1,...,N

()

Proof. Consider first the case i = N. The proof is essentially the same as (1.2), but for

< 2 fully 2 )

LY(RY)

the sake of completeness, we still provide the proof. Notice that we can write

7 YN 2

dyn YN v Jo Oy

Then integration by parts yields that

] 1 YN 2
Lo ot (20 = [ [t [ o]
RN—1 RN-1 Jo yN 0 ayN
0

© 1 ~
u(g,t)|t / —-dyndtdy
t YN

2
a2
N
[e'e} 82 o0 1
_ u(@ 0|t [ dyeds
/RNl/o 3y]2v r Yk
2

| 9
— (@) dtdi.
/RNl/O 8%2\]”(?/7 )| dtdy

Hence
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1

When 1 < i < N — 1, we need to estimate [pn i
+

g;‘i (y)‘ dy. To do so, consider

the change of variables y = ¥(x), where
\I/(;rl,...,xi,...,xN) = (a:l,...,xi +xN,...,xN). (27)
Notice that det DU(z) =1, so

1 |ou(y 1 |ou
/ 1 ()dy:/ ‘a'(\ll(a:))
RY YN RY TN | OY;

— dx.
9y !
Observe that if we let v(x) = u(¥(z)), we can write

1 Ou 0 v(z 0 (uly
L9 () ( ( >) - ( ( >> | 2.8)
TN 0y dzy \ TN YN \ N / |ymw(a)
Applying estimate (2.6) to u and v yields
RY TN | Oy RY [0zN \ 2N RY | OUN \ UN ) |y—w(a)
~ [l G| Ll ()
RY |0TN \ TN rY |OYN \ YN
2 2
S/ 0 v(;v) da:+/ 0 ugy)‘dy.
Rf aZUN Rf 8yN
Finally, notice that
2 2 2 2
0 ’U(Q.%') _ 0 ugy) 5 68 ua(y) n 0 u(Qy) (2.9)
oy, 0yy y=1(z) YiOYN |y=w(z) dy; y="(z)
Thus, after reversing the change of variables when needed, we obtain
/ 1 ||, :/ L9 g2y da
RY YN Oyi RY TN Oy
2 2 2
<2 aaugy)‘dy”/ Pae ‘d‘“/ aaugy)‘dy
RY YN RY | OYiOYN RY Yi
< 2|uflypea gy -
O

Recall (see Section 2.2) that for every Zy € 0f2, there exist the neighborhood
Ni(Zo) C Q given by (2.3) and the diffeomorphism ® : BN~! x (0,¢9) — Ny (Zo)

given by (2.4). Moreover, we know that d(z) is smooth over Ny (Zy). Hence we have



13

Lemma 2.7. Let &y € 0Q and N (Zg) be given by (2.3), and suppose u € C°(N4(Zo)).
Then for alli=1,...,N,

f )

Proof. We first use Corollary 2.4 and obtain

< Cllully21 v, () -
/ a.(w))‘dxw/ I
Nt (F0) 0(z) - e

LY (N4 (7o)
().

Let v(g,yn) = uw(®(g,yn)). We claim that
O@-(ZEQ) dyNdy<CZ/BN1/

We will prove (2.10) at the end, so that we can conclude the argument. Since v €

dyndy.

(b(,g7yN)

( 9, yN))’dyng’

(2.10)

N-—-1 ~
B z=®(J,yn)

C®(BN71 % (0,€0)) C C(RY), we can apply Lemma 2.6 and obtain

Ju o 12

Notice that by the chain rule and the fact that ® is a diffeomorphism, we get that for

< : yN)) ’ dyndj < Cllvllypas 531« (00)) -

all 1 <i,7 <N,

| ny‘<C Z‘ )| o= ¢yyw‘+2‘apu M= ‘Pny)‘ )

p,g=1 p=1

so with the aid of Corollary 2.4, we can write

1V lvw2a8Y 1% (0,.c0))

€0
SC/N1 / (Z |a§qu‘$:¢(ﬂvyN)‘ + Z ‘8pu|x¢(z},yw)‘> dyndy
Br 0 p.q p
<C ) (Z |02, u(z)| + Z lapu(x)]> dx
N+(IO) D,q D

<Clullywz1(n, 7o) -

To conclude, we need to prove (2.10). To do so, notice that u(z) = v(®~!(x)), and
§(x) = c¢(®~1(z)), where ¢(7,yn) = yn. Thus, by using the chain rule we obtain

u(z) v(y) NN

0; 0; - 0i(P7);(P(7, ,

<(5($)) J <c(y) ( )J( (y yN))

M-

r=%(§,yn) y=(9,yN)
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and since ® is a diffeomorphism, we obtain
N
U(ﬂf)> <v(y)>
0 | =—= <C 0;
(5 2|2 ()

Estimate (2.10) then follows by integrating the above inequality. O

z=®(j,yN) y=(9,yN)

We end this section with the proof of the main result when m = 2.

Proof of Theorem 2.1 when m = 2. When j =1 and k = 1 the estimate (2.1) is trivial.

Taking into account Remark 2.3, we only need to prove

()

for u € C°(Q) and ¢ = 1,2,...,N. To do so, we use the partition of unity given by

< Cllullyy2q) (2.11)
LY(Q)

Lemma 2.5 to write u(z) = Zl]\io w(z) on  where w(x) := py(x)u(z), 1 =0,1,..., M.
Now, without loss of generality, we can assume that d(z) = é(x) for all x € €, and

that d(x) > C > 0 for all z € supp pp N Q. Notice that in supp po N €2, we have

%0 ¢ C°°(supp po N ), with H%H

: < C lluollyprsg

W11 (supp poNs2) sup poN<2) -

To take care of the boundary part, notice that u; € C°(N, (7)) for I = 1,..., M, so

Lemma 2.7 applies and we obtain

o (5)

To conclude, notice that
M

u(zx) ()

d(x) lz:; §(x)

on Q and that |p;(z)|, |0ipi(z)| and

S C HUZHW2’1(N+(:El)) N fOI' all l = 1, e ,M.

LY N1 (71))
[(wo(z)
) <o)
8i2jpl(x) are uniformly bounded for alll = 0,1,..., M.
ﬁ%a(ww> a(%@»
ey S\ () "\ d(x)

M
= (Z leaallywz oz + ||“0||W1»1<supppom>)
=1

Therefore

f )

IA

l

) ’ LY(NL(21))

L (supppoNS2)

<C ||UHW2a1(Q)a

thus completing the proof. d
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2.4 The general case m > 2

To prove the general case, we need to generalize Lemma 2.6 in the following way.

Lemma 2.8. Suppose u € C°(RY). Then for allm >1 andi=1,...,N we have

[ uly)
| i’ (y?%)

Proof. The case m = 1 is a trivial statement, whereas m = 2 is exactly what we proved

< Clullymaay) -

LY(RY)

in Lemma 2.6. So from now on we suppose m > 3. We first notice that when i = N,
the result follows from the proof of Theorem 1.2 when 57 =0 and k = 1.

When 1 < i < N — 1, we can proceed the same as in the proof of Lemma 2.6.
Define v(z) = u(¥(z)) where ¥ is given by (2.7). Notice that when m > 3, instead of

equation (2.8) we have

1 oOu 0 v(z) B 0 u(y
W@iyi(qj(w» = drn <x%_1> YN <y7](;—1>

and instead of (2.9) we have

v (x) _ i (m) 0" u(y)

=0

y=Y(z)

y="(z)

Hence the estimate is reduced to the result for i = N. We omit the details. O

We also have the analog of Lemma 2.7.

Lemma 2.9. Let Tg € 9Q and Ny (Zo) as in Lemma 2.7. Let u € C2°(N4(Zo)). Then

forallm>1andi=1,..., N we have

o (sm)

Proof. The proof involves only minor modifications from the proof of Lemma 2.7, which

LI (30)) D

we provide in the next few lines. Corollary 2.4 gives

Joa P i) 2= foe o ()

dyndy.

z=%(g,yN)
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If (g, yn) = w(®(g, yn)), then

o).

BN 1 dyN dy

@(7,yN)

o dyndy. (2.12)

e

Just as for (2.10), estimate (2.12) follows from the fact that ® is a smooth diffeo-
N
"

morphism. Since v € CX(BN~1 x (0,¢)) C CZ(RY), we can apply Lemma 2.8 and

/Bm/ ( ny)>

Notice that by the chain rule and the fact that ® is a smooth diffeomorphism, we get

obtain

dyndy < Cl[vllyyrma 5¥-15(0,c0)) -

" 0(, )| < € Y |0 u(@) oo

I<m
where the left hand side is a fixed m-th order partial derivative, and in the right hand
side the summation contains all partial derivatives of order I < m. Again with the aid
of Corollary 2.4, we can write

1l (5500 02/

<m By

<CZ/

1<m Y N+( $0)

€0
A ~
. 1/0 <’8 u\x:cb(g,yN)DdyNdy

dac

< Cllullman, @) -

And of course we have

Lemma 2.10. Suppose u € C°(Q2). Then for allm >1 andi=1,...,N we have

P (se=)

We omit the proof of the above lemma, because it is almost a line by line copy of

< Cllullym gy -
Li(9)

the proof of the estimate (2.11) in Section 2.3 using the partition of unity. We are now

ready to prove Theorem 2.1.
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Proof Theorem 2.1. For any fixed integer m > 3, just as what we did for the case

m = 2, it is enough to prove the estimate (2.1) for u € C2°(Q2). Notice that since
HajUHWmfj»l(Q) < fullwmi(q) forall 0 <j <m,

it is enough to show

* (as)

for u € C*(Q) and 1 < k < m — 1. We proceed by induction in k. The case k = 1

< C oy - (2.13)
LY(Q)

corresponds exactly to Lemma 2.10. If one assumes the result for k, then we have to

estimate fori =1,..., N,

The induction hypothesis for m = m — 1 yields

On the other hand, by using the induction hypothesis and the fact that d is smooth in

’ 9 ()

thus concluding the proof. O

(}Z'U(ﬂf) )H
ok < < C |05l yyrm-1, <C ||u”Wm Q) -
1(z)(m=1)—k @) wm=11() HOY)

Q, we obtain

< Clludid|lymagy < C lullyma, -

Therefore

< Cllullymaqy
LY(9)
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Chapter 3

A singular Sturm-Liouville equation under homogeneous

boundary conditions

3.1 Introduction

This chapter concerns the following Sturm-Liouvile equation

— (¢ () + u(x) = f(z) on (0,1),
(3.1)

where « is a positive real number and f € L%(0, 1) is given. We will study the existence,
uniqueness and regularity of solutions of (3.1), under suitable homogeneous boundary
data. We also discuss spectral properties of the differential operator Lu := — (wzau’),—i—
u.

The classical ODE theory says that if for instance the right hand side f is a con-
tinuous function on (0, 1], then the solution set of (3.1) is a one parameter family of
C?(0, 1]-functions. As we already mentioned, the first goal of this chapter is to select
“distinguished” elements of that family by prescribing (weighted) homogeneous bound-
ary conditions at the origin. In Chapter 4, we will study (3.1) under non-homogeneous

boundary conditions at the origin.

When 0 < a < %, we have both a Dirichlet and a weighted Neumann problem.
When a > %, we only have a “Canonical” solution obtained by prescribing either a
weighted Dirichlet or a weighted Neumann condition; as we are going to explain in
Remark 3.20, the two boundary conditions yield the same solution.

Throughout this chapter v € H2_(0,1] means u € H2 (¢, 1) for all € > 0.
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3.1.1 Thecase < a< %

We first consider the Dirichlet problem.

Theorem 3.1 (Existence for Dirichlet Problem). Given 0 < o < % and f € L*(0,1),
there exists a function u € HIQOC(O7 1] satisfying (3.1) together with the following proper-

ties:
(i) lim,_ g+ u(x) = 0.
(it) u € CH17200,1] with [[ufl conr-2a < CIfll 2.
(iii) x**u’ € H'(0,1) with ||#?*|| ;1 < C|If| -
(iv) x?*tu € HY(0,1) with me_luHHl <C|fll2-
(v) z%*u € H?(0,1) with szauHHQ <C|fllzz-
Here the constant C' only depends on a.

Before stating the uniqueness result, we would like to give a few remarks of about

this Theorem.

Remark 3.1. There exists a function f € C°(0,1) such that near the origin the

solution given by Theorem 3.1 can be expanded in the following way
u(z) = a1 72 + agad 1 4 agad T ... (3.2)
where a1 # 0. See Section 3.3.1 for the proof.

Remark 3.2. Theorem 3.1 only says (z?*u') = x?u" + 22?1/ is in L?(0,1). A
natural question is whether each term on the right-hand side belongs to L*(0,1). The
answer is that, in general, neither of them is in L?(0,1); in fact, they are not even

in L1(0,1). One can see this phenomenon in (3.2), where we have that x>*~'u/(x) ~
2 (x) ~ 271 ¢ LY(0,1).

Remark 3.3. Part (iii) in Theorem 3.1 implies that u € WP (0,1) for all 1 < p < 5=
with |||, < C||fll 2, where C is a constant only depending on «. However, one

cannot ezxpect that u € Wl’i(O, 1) even if f € C°(0,1), as the power series expansion

(3.2) shows that v’ ~ 2% near the origin.
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Remark 3.4. Concerning the assertions in Theorem 3.1, we have the following impli-
cations: (i) and (11i) = (iv); (iv) = (it); (ii) and (iv) = (v). Those implications can

be found in the proof of Theorem 3.1.

Remark 3.5. The assertions in Theorem 8.1 are optimal in the following sense: there
exists f € L*(0,1) such that u ¢ C%P0,1] VB > 1 — 2a; and one can find another
f € L%(0,1) such that x**~1u ¢ H?(0,1), 2?*/ ¢ H?(0,1), and z**u ¢ H3(0,1). See

Section 3.3.1 for the counterexamples.

Remark 3.6. Theorem 3.1 tells us that both z**u’ and x**~'u belong to H'(0,1), so
in particular they are continuous up to the origin. It is natural to examine their values
at the origin and how they are related to the right-hand side f € L*(0,1). We actually

have

1
lim z%%u/(z) :/0 f(x)g(x)dz, (3.3)

z—0t

and

1
lim 2% lu(z) =
z—07t 1-—

1
57 | f@s@a, (34

where the function g is the solution of

— (z*g(x)) + g(z) =0 on (0,1),

g(1) =0,
g o(0) =1

See Section 3.3.1 for the proof of this Remark. The existence of g will be given in

Chapter 4. The uniqueness of g comes from Theorem 3.2 below.

Theorem 3.2 (Uniqueness for the Dirichlet problem). Let 0 < a < % Assume that

u € HE (0,1] satisfies

— (**/ (z)) +u(z) =0  on (0,1),

u(1) = 0, (3.5)

Then u = 0.
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In order to simplify the terminology, we denote by up the unique solution to (3.1)
given by Theorem 3.1. Next we consider the regularity property of the solution up

when the right-hand side f has a better regularity.

Theorem 3.3. Let 0 < a < 3 and f € Wl’%(o,l). Let up be the solution to

(3.1) given by Theorem 3.1. Then z**tup € W2P(0,1) for all 1 < p < % with

sza*luDsz,p < C |\ fllwrp, where C is a constant only depending on p and c.

Remark 3.7. One cannot expect that x> tup € WQ’%(O, 1) even if f € C(0,1), as

2«

the power series expansion (3.2) shows that (x** tup(x))” ~ 272% near the origin.

Remark 3.8. When a > %, we cannot prescribe the Dirichlet boundary condition

lim,_,o+ u(z) = 0. Actually, for a > %, there is no H}

(0, 1]-solution of

— (* (z)) +u(z) = f on(0,1),

u(l) =0, (3.6)
xli%l+ u(z) =0,

for either f =1 or some f € C(0,1). See Section 3.3.1 for the proof.
Next we consider the case 0 < a < % together with a weighted Neumann condition.

Theorem 3.4 (Existence for Neumann Problem). Given 0 < o < § and f € L?(0,1),
there exists a function u € HIQOC(O7 1] satisfying (3.1) together with the following proper-

ties:
(i) uw € HY(0,1) with |Jul| jr < £ -
(7) lim, o+ x2a_%u’(:p) = 0.

(iii) x**~ '/ € L2(0,1) and z**u” € L*(0,1), with ||22* /|| o +||22*u”|| o < C||f]] -

In particular, x*%u' € H(0,1).
Here the constant C' only depends on .

Remark 3.9. Notice the difference between Dirichlet and Neumann with respect to

property (iii) of Theorem 3.4. See Remark 3.2.
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Remark 3.10. The boundary behavior lim,_, o+ x2a7%u’(:c) = 0 s optimal in the fol-

lowing sense: for any 0 < x < %, define

Kq(x) = sup ‘:p%‘_%ul(az)‘.
£l 2<1

Then 0 < § < K, (x) <2, for some constant 0 only depending on «. See Section 3.3.2

for the proof.

Remark 3.11. Theorem 3.4 implies that u € C|0,1], so it is natural to consider the

dependence on f of the quantity lim, .o+ u(x). One has

1
lim u(z) = /0 F(@)h(z)dz, (3.7)

z—0t

where h is the solution of

— (%W (x)) +h(z) =0 on (0,1),
h(1) =0,

lim 2?“R'(z) = 1.
z—07t

In particular, equation (3.7) implies that the quantity lim, .o+ u(x) is not necessarily
0. See Section 3.3.2 for the proof of this Remark. The existence of h will be given in

Chapter 4. The uniqueness of h comes from Theorem 3.5 below.

Theorem 3.5 (Uniqueness for the Neumann Problem). Let 0 < a < % Assume that
u € H (0,1] satisfies
— (2% (x)) +u(z) =0  on (0,1),
u(l) =0, (3.8)
xlirélJr a2/ (x) = 0.

Then u = 0.

We denote by uy the unique solution of (3.1) given by Theorem 3.4. We now state

the following regularity result.

Theorem 3.6. Let 0 < a < 5 and f € L*(0,1). Let un be the solution of (3.1) given

by Theorem 3.4.
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(i) If f € lei(o, 1), then uy € WP(0,1) for all 1 < p < 5= with
lunllwzr0,1) < Ol fllwis -

(ii) If f € W2 (0,1), then 22 uly € W2P(0,1) for all 1 < p < -, with

HxQQ_lquH[/le(oJ) < C HfHWQ,p .

Here the constant C' depends only on p and c.

Remark 3.12. One cannot expect that uy € WQ’ﬁ(O, 1) nor x? 1/, € WQ’i(O, 1).
Actually, there exists an f € C(0,1) such that, un ¢ Wz’i(o, 1) and z** W/ ¢

Wz’i(o, 1). See Section 3.3.2 for the proof.

We now turn to the case o > % It is convenient to divide this case into three

subcases. As we already pointed out, we only have a “Canonical” solution obtained by

prescribing either a weighted Dirichlet or a weighted Neumann condition.

3.1.2 The case % <a< %

Theorem 3.7 (Existence for the “Canonical” Problem). Given § < a < 3 and f €
L%(0,1), there exists u € HZ (0,1] satisfying (3.1) together with the following properties:
(i) u e C’O’%fza[o, 1] with ||u||007%72a < C|fll;2 and lim, g+ (1 — lnx)fé u(z) = 0.

(ii) lim,_ o+ xga_%u’(:):) =0.
(iii) z**~1u' € L*(0,1) and z**u" € L*(0,1), with H:CQO‘_lu’HL2+H$QO‘U”HL2 <CNflle-
In particular, z**u’ € H'(0,1).
Here the constant C' depends only on a.

Remark 3.13. The same conclusions as in Remark 3.9-3.11 still hold for the solution

given by Theorem 3.7.

Theorem 3.8 (Uniqueness for the “Canonical” Problem). Let % <a< %. Assume

ue H?

loc

(0,1] satisfies
— (*/(z)) +u(z) =0 on (0,1),

u(1) = 0.
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If in addition one of the following conditions is satisfied

(i) lim,_ o+ 2%%u'(z) = 0,

1

(i) lim, o+ (1 —Inz)” u(z) =0 when a = 3,

(11i) u € Lﬁ(o, 1) when 3 <a < 3,
(iv) lim, o+ 22 lu(z) = 0 when 1 < a < 3,
then u = 0.

Again, to simplify the terminology, we call the unique solution of (3.1) given by
Theorem 3.7 the “Canonical” solution and denote it by uc. We now state the following

regularity result.

Theorem 3.9. Let o = %, k be an positive integer, and f € H¥(0,1). Let uc be the
solution to (3.1) given by Theorem 3.7. Then uc € H*1(0,1) and zuc € H*2(0,1)
with

lucllgrer + llzucl grse < CIf |l e,

where C' is a constant depending only on k.

Remark 3.14. A wvariant of Theorem 3.9 is already known. For instance in [23],
the authors study the Legendre operator Lu = — ((1 — x2)u’)/ in the interval (—1,1),
and they prove that the operator A = L + I defines an isomorphism from DF(A) :=
{ue HY(—1,1); (1 —2?)u(z) € H*2(-1,1)} to H*(—1,1) for all k € N.

1

Theorem 3.10. Let 1 < a < 2 and f € Wh2a=1(0,1). Let uc be the solution to (3.1)

given by Theorem 3.7. Then both uc € WP(0,1) and z** 'uy, € WP(0,1) for all
1<p< ﬁ with

2a0—1, 1

HUC'HWLP + H$ uCHWLp <C HfHWLp )

where C is a constant depending only on p and .

Remark 3.15. One cannot expect that uc € Wl’Tlfl(O, 1) nor x?*~tuy, € Wl’ﬁ((), 1).
Actually, there exists an f € C°(0,1) such that uc ¢ Wl’ﬁ(O,l) and z**luy, ¢

Wl’m%l(o, 1). See Section 3.3.2 for the proof.
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3.1.3 The case % <a<l

Theorem 3.11 (Existence for the “Canonical” Problem). Given % < a<1and
f € L*0,1), there ezists a function u € H} (0,1] satisfying (3.1) together with the

following properties:

(i) uw € LP(0,1) with ||ul|;, < C||f|l;2, where p is any number in [1,00) if @ = 3,

andp:ﬁ if%<a<1.
(i) lim,_ o+ (1 — lnzp)_% u(z) =0 if a = 2; lim, o+ :L‘2O‘_%u(:13) =0if3<a<l.
(133) lim, o+ xQO‘*%u’(a:) = 0.

(iv) x* ' € L*(0,1) and 2**u” € L*(0,1), with ||z** /|| o +||z?w”|| o < C || fll 2

In particular, x*%u' € H(0,1).
Here the constant C' depends only on a.

Remark 3.16. The boundary behavior in assertion (ii) of Theorem 3.11 is optimal in

the following sense: for any 0 < x < % and % < a <1, define

3
h = —
, when « 4,

sup ‘(1 - lna:)_% u(z)
Ifll2<1

3
sup ‘x2a_%u(x)‘ , when — < a < 1.
£l 21 4

Then 0 < § < I?a(a:) < C, for some constants 6 and C only depending on o. See

Section 3.3.2 for the proof.

Remark 3.17. The same conclusions as in Remark 3.9 and 3.10 hold for the solution

given by Theorem 3.11.

Theorem 3.12 (Uniqueness for the “Canonical” Problem). Let % < a < 1. Assume

that u € H?

ic(0,1] satisfies
— (2*/ (z)) +u(z) =0 on (0,1),

If in addition one of the following conditions is satisfied
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(i) lim,_,o+ 2%/ (z) = 0,
(ii) lim,_ g+ 22 tu(z) = 0,
(iii) u € L7-1(0, 1),

then u = 0.

We still call the unique solution of (3.1) given by Theorem 3.11 the “Canonical”
solution and denote it by u¢. Concerning the regularity of uc for % < a < 1 we have

the following

Theorem 3.13. Let 2 <a<1and f € Wl’ﬁ(o, 1). Let uc be the solution to (3.1)

given by Theorem 3.11. Then both uc € WP(0,1) and z**~1ul, € WP(0,1) for all

1 <p< 57 with

27ug |y < C Il

lucllwe + ||z

where C' is a constant depending only on p and .

Remark 3.18. The same conclusion as in Remark 3.15 holds here.

3.1.4 The case o > 1

Theorem 3.14 (Existence for the “Canonical” Problem). Given o > 1 and f €

L?(0,1), there exists a function u € H?

loc

(0,1] satisfying (3.1) together with the fol-

lowing properties:
(i) we L*(0,1) with [Jull > < || £l
(i) lim, o+ z2u(z) = 0.

(iii) lim, g+ 23 w/(z) = 0.

(iv) z%u' € L?(0,1) and z**u” € L*(0,1) with ||z%u/|| > + Hanu”HLQ < C|fll 2

where C is a constant depending only on a. In particular, z**u' € H'(0,1).
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Remark 3.19. The boundary behaviors in assertions (i) and (iii) of Theorem 3.14

are optimal in the following sense: for x € (0, %) and o > 1, define

P,(z) = sup x%u'(‘r)},
£l p2<1

]Ba(x): sup x%u(x)‘
l£1l2<1

Then 0 < § < Po(z) < C and 0 < § < Po(x) < C, where § and C are constants

depending only on «. See Section 8.3.2 for the proof.

Theorem 3.15 (Uniqueness for the “Canonical” Problem). Let o > 1. Assume that
u € H} (0,1] satisfies

— (2% (x)) +u(z) =0 on (0,1),

u(1) = 0.
If in addition one of the following conditions is satisfied

Ve
(1) lim,_ o+ x e 5u’(fL‘) =0 when a =1,

VB
(i) lim,_,o+ x5 u(z) =0 when a =1,

11—«

(1) lim,_ o+ x5 e o' (z) =0 when a > 1,

l—a
(w) lim, o+ x2e =a u(x) = 0 when a > 1,
(v) we L'0,1),

then uw = 0.

As before, we call the solution of (3.1) given by Theorem 3.14 the “Canonical”

solution and still denote it by uc.

Remark 3.20. For a > %, the existence results (Theorem 3.7, 3.11, 3.14) and the
uniqueness results (Theorem 3.8, 3.12, 3.15) guarantee that the weighted Dirichlet and

Neumann conditions yield the same “Canonical” solution uc.
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3.1.5 Connection with the variational formulation

Next we give a variational characterization of the unique solutions up, uy and uc given

by Theorem 3.1, 3.4, 3.7, 3.11, 3.14. We begin by defining the underlying space
X*={ueH(0,1); ue L*(0,1) and 2%’ € L*(0,1)}, a > 0. (3.9)
For u, v € X?, define

1 1
a(u,v)—/o mQO‘u'(x)v’(x)dx—i—/O u(z)v(z)dz

and

I(u) = a(u,u).

The space X“ becomes a Hilbert space under the inner product a(-,-). See Section 3.6
for a detailed analysis of the space X“.
Notice that the elements of X are continuous away from 0, so the following is a

well-defined (closed) subspace
Xo ={ue X% u(l) =0}. (3.10)

Also, as it is shown in Section 3.6, when 0 < o < %, the functions in X“ are continuous
at the origin, making

X8 = {u € X8 u(0) = 0} (3.11)

a well defined subspace.
Let 0 < a < % and f € L?(0,1). Then the Dirichlet solution up given by Theo-
rem 3.1 is characterized by the following property:

1 1
up € Xg, and UIél)i(%O {;I(v) /0 f(:v)v@)dx} = ;I(uD)/O f(z)up(x)dx. (3.12)

The Neumann solution uy given by Theorem 3.4 is characterized by:

1 1
uy € X§, and min {1I(v) —/0 f(a:)v(x)d:c} = ;I(UN)_/O f(@)un(z)dz. (3.13)

veXx§ | 2
Let a > % and f € L%(0,1). Then the ”Canonical” solution uc given by Theorem 3.7,

3.11, or 3.14 is characterized by the following property:

1 1
uc € X§, and min {11(1)) —/0 f(a:)v(a:)dx} = %I(uc) _/0 f(@)uc(z)dz. (3.14)

vexy | 2
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The variational formulations (3.12), (3.13) and (3.14) will be established at the be-
ginning of Section 3.3, which is the starting point for the proofs of all the existence

results.

3.1.6 The spectrum

Now we proceed to state the spectral properties of the differential operator Lu :=
— (acQau’ )/ +u. We can define two bounded operators associated with it: when 0 < a <

%, we define the Dirichlet operator Tp,

Tp:L*(0,1) — L?(0,1

(0,1) (0,1) -
f ~—Tpf=up,

where up is characterized by (3.12). We also define, for any o > 0, the following

“Neumann-Canonical” operator Ty,

T, : L*(0,1) — L?(0,1)

1
uy if0<a < g, (3.16)
f ’Taf:

uc if o > %,

where uy and uc are characterized by (3.13) and (3.14) respectively. By Theorem 3.35
in Section 3.6, we know that Tp is a compact operator for any 0 < o < % while T, is
compact if and only if 0 < a < 1.

In what follows, for given v € R, the function J,: (0,00) — R denotes the Bessel
function of the first kind of parameter v. We use the positive increasing sequence
{Juk}trey to denote all the positive zeros of the function J, (see e.g. [46] for a compre-
hensive treatment of Bessel functions). The results about the spectrum of the operators
Tp and T, read as:

1_
Theorem 3.16 (Spectrum of the Dirichlet Operator). For0 < a < %, define vy = 2—=

1-a’

and let pyr =14 (1 — a)2j30k. Then

o(Tp) = 00 e = A

k=1

For any k € N, the functions defined by

1_ . _
ul/()k‘(:l") =22 aJVO(]Vka
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is the eigenfunction of Tp corresponding to the eigenvalue A, . Moreover, for fixed
0<ax< % and k sufficiently large, we have

foe = 14 (1 — @)? [(g (yo - ;) +7rk>2 - (yg - i) +0 (2) . (3.17)

Theorem 3.17 (Spectrum of the “Neumann-Canonical” Operator). Assume a > 0

and let T, be the operator defined above.
_1
(i) For 0 < a <1, definev = O{_—;, and let =1+ (1 — «)?5%,. Then

o(T) = {0} U {Ayk - 1}°°

Huk ) =1

For any k € N, the functions defined by

[NIES

upk(x) == x *O‘Jy(j,,k.ml*a)

is the eigenfunction of Ty, corresponding to the eigenvalue A\, .. Moreover, for fixed

0 < a <1 and k sufficiently large, we have

(-2 (o) od) o

(i) For o =1, the operator Ty has no eigenvalues, and the spectrum is exactly o(Ty) =

(0,5

o =14 (1 —a)?

(iii) For a > 1, the operator T, has no eigenvalues, and the spectrum is exactly

o(Ty) =1[0,1].
Recall that the discrete spectrum of an operator T is defined as
oa(T)={A € o(T): T — A is a Fredholm operator},
and the essential spectrum is defined as
0e(T) = o(T)\oa(T).
We have the following corollary about the essential spectrum.

Corollary 3.18 (Essential Spectrum of the “Neumann-Canonical” Operator). Assume

that o > 0 and let T, be the operator defined above.
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(i) For0 < a <1, g.(T,) ={0}.
(ii) For a =1, o.(T1) = [0, %].
(i1i) For a > 1, 0.(Ta) = [0,1].

Remark 3.21. This corollary follows immediately from the fact (see e.g. Theorem
IX.1.6 of [24]) that, for any self-adjoint operator T on a Hilbert space, o4(T) consists
of the isolated eigenvalues with finite multiplicity. In fact, for Corollary 3.18 to hold,
it suffices to prove that oq(T) C EV(T'), where EV (T) is the set of all the eigenvalues.

We present in Section 3.4.2 a simple proof of this inclusion.

As the reader can see in Theorem 3.17, when o < 1 the spectrum of the operator
T, is a discrete set and when o = 1 the spectrum of 77 becomes a closed interval, so
a natural question is whether o(7,) converges to o(77) as @« — 17 in some sense. The

answer is positive as the reader can check in the following
Theorem 3.19. Let a < 1. For the spectrum o(Ty,), we have
(i) o(Ts) C o(Ty) for all 2 < a < 1.

(ii) For every X\ € o(T1), there exists a sequence o, — 1~ and a sequence of eigen-

values Ay, € 0(Ty,,) such that Ay, — X as m — oo.

Remark 3.22. Notice that in particular o(T,) — o(T1) in the Hausdorff metric sense,
that s

du(oc(Ty),o(Th)) — 0, as o — 17,

where d(X,Y) = max {sup,¢cx infyey |z — y| ,SUpy ey infrex |2 — y|} is the Hausdorff

metric (see e.g. Chapter 7 of [34]).

Remark 3.23. When a < 1, the spectrum of T, has been investigated by C. Stuart
[38]. In fact, he considered the more general differential operator Nu = —(A(x)u')

under the conditions u(1) = 0 and lim,_ o+ A(z)u'(xz) = 0, with

A
A€ Co,1]; A(z) > 0,Yz € (0,1] and lim (z)

a—0t 22

=1 (3.19)
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Notice that if A(x) = 2>¢, we have the equality T, = (N + I)~%, where the inverse is
taken in the space L*(0,1). When oo < 1, C. Stuart proves that o (N + 1)) consists
of isolated eigenvalues; this is deduced from a compactness argument. When o = 1,
C. Stuart proves that maxo. ((N—i—])_l) = %. On the other hand, C. Stuart has
constructed an elegant example of function A satisfying (3.19) with o = 1 such that
(N + 1)~ admits an eigenvalue in the interval (%, 1]. Moreover, G. Vuillaume (in his
thesis [43] under C. Stuart) used a variant of this example to get an arbitrary number
of eigenvalues in the interval (%, 1]. Howewver, we still have an

Open Problem 1. If A satisfies (3.19) for a = 1, is it true that o, ((N+ I)*l) =
[0, 517

Similarly, when o > 1, one can still consider the differential operator Nu = —(A(z)u')’

under the conditions u(1) = 0 and lim,_,o+ A(z)u'(z) = 0, where A satisfies (3.19), and
the operator (N + I)~Y, where the inverse is taken in the space L?(0,1), is still well-
defined. By the same argument as in the case A(x) = x>* (Theorem 3.17 (iii)) we know

that o (N +1)7') C [0,1]. However, we still have

Open Problem 2. Assume that A satisfies (3.19) for a > 1.
(i) Is it true that o (N +1)~') =[0,1]?
(it) Is it true that maxo. (N +I)™') =1, or more precisely o (N +1)"') =[0,1]?

The rest of the chapter is organized as the following. We begin by proving the
uniqueness results in Section 3.2. We then prove the existence and regularity results in
Section 3.3. The analysis of the spectrum of the operators T, and Tp are performed
in Sections 3.4 and 3.5 respectively. Finally we present in Section 3.6 some properties

about weighted Sobolev spaces used throughout this work.

3.2 Proofs of all the uniqueness results

In this section we will provide the proofs of the uniqueness results stated in the Intro-

duction.

Proof of Theorem 3.2. Since v € C(0,1] with lim, o+ u(z) = 0, we have that u €
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C[0,1]. Notice that, for any 0 < = < 1, we can write z?%/(x) = /(1) — fxl u(s)ds,

which implies that z>%u’ € C[0,1]. Then we can multiply the equation (3.5) by u and

integrate by parts over [e, 1], and with the help of the boundary condition we obtain

1 1
/ 2o/ (2)2dx +/ u(z)?dr = 2%/ (x)u(x)|! — 0, as e — 0T,

Therefore, u = 0. O

Proof of Theorem 3.5. We first claim that v € C[0,1]. Since lim,_, o+ 22%/(z) = 0,
there exists C' > 0 such that —Cz 2% < u/(z) < Cx_QO‘, which implies that —Cz' 2 <
u(z) < Cz'™2% hence u € L>(0,1) because 0 < o < 3. Write u/(z) = fo
and deduce that u' € L®°(0, 1), thus u € W1*°(0,1). In particular u € C[O, 1].

Then we can multiply the equation (3.8) by w and integrate by parts over [e, 1], and

with the help of the boundary condition we obtain

1 1
[ @i+ [ us = @)l =0, as e — 0.

Therefore, u = 0. O

Proof of (i) of Theorem 3.8 and (i) of Theorem 8.12. As in the proof of Theorem 3.5,

it is enough to show that u € C[0, 1]. As before, the boundary condition implies that

1—2«

u(x) ~ x , which gives u € La 1). To prove that v € C]0,1], we first write

(0,
p?oly/(z) = 1 fo s)ds. Let po : é 1. Since u € LP0(0,1), one can apply Hardy’s

2a1/

inequality and obtain ||z < C'||lul|zpo - Since u(l) = 0, this implies that

2o

u € X_%“‘l’p‘)(o, 1). By Theorem 3.34 in Section 3.6, we have two alternatives
e u€ L90,1) for all ¢ < oo when a < 2 or
e u € LP1(0,1) where p; := 306%2 > po when % <a<l.

If the first case happens and v € L%(0,1) for all ¢ < oo, then we apply Hardy’s

inequality and obtain u € X3*"%(0,1) for all ¢ < oo, which embeds into C[0,1] for

q large enough. If the second alternative occurs and we apply Hardy’s inequality once

more, we conclude that u € X2*"P1(0,1). Therefore, either u € L4(0,1) for all ¢ < co
4 4

when o < £ or u € LP2(0,1) where py = 50[%4 when = < a < 1. By repeating this

argument finitely many times we can conclude that v € C|0, 1]. O
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Proof of (i1) of Theorem 3.8. Let o = % and suppose that v € H2, (0, 1] satisfies

— (z(z)) +u(x) =0 on (0,1),

lim (1 —Inz)  u(z) = 0.

xz—0t
Notice that u € C(0, 1] together with lim,_,o+ (1 —Inz)"lu(z) = 0 and the integrability
of Inz, gives u € L'(0,1). Define w(z) = u(x)(1 — Inx)~!. Tt is enough to show that

w = 0. Notice that w solves

(z(1 —Inz)w'(z)) = (1 —Inz)w(x) + w'(z) on (0,1),
(3.20)
w(0) =w(l) =0.

We integrate equation (3.20) to obtain

1 1
(1 —Inx)w' (z) = w'(1) — / (1 —Ins)w(s)dz = u'(1) — / u(s)ds.

Since u € L'(0,1), the above computation shows that z(1 — Inz)w/(z) € C[0,1]. Now

we multiply (3.20) by w and we integrate by parts over [e, 1] to obtain

1 1 1
/ x(l—lnx)w'(x)de—i—/ (1—Inz)w?(x)dr = x(l—lnx)w'(z)w(x)ﬁ—iwz(x)]i — 0,

as € — 0T, proving that w = 0. O

At this point we would like to mention that the proof of (iii) of Theorem 3.8 and

(iii) of Theorem 3.12 will be postponed to Proposition 3.23 of Section 3.3.2.

Proof of (iv) of Theorem 3.8 and (ii) of Theorem 3.12. Let 3 < a < 1 and suppose

that u € H?

loc

(0, 1] satisfies

— (2% (x)) + u(x) =0 on (0,1),

Notice that u € C(0, 1] together with lim,_ o+ 22* !u(z) = 0 and the integrability of

21722 for a < 1, gives u € L'(0,1). Define w(z) = z?* tu(x). We will show that
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w = 0. Notice that w satisfies
— (zw'(2)) 4+ 2o — D' (z) + 2 7**w(z) =0  on (0,1),
(3.21)
w(0) =w(l) =0.

Integrate (3.21) to obtain

zw' (z) = w'(1) — / 1720 (s)ds = /(1) — / lu(s)ds,

from which we conclude zw'(z) € C|0,1]. Finally, multiply (3.21) by w and integrate

by parts over [e, 1] to obtain

/61 zw' (z)?dx + /1 o1 2%(x)?de = zw' (z)w(z)|! - <a _ ;) w(e).

€

Letting ¢ — 0" and we conclude that w = 0. O

Proof of Theorem 5.15. Assume that (i) holds. Suppose that u € H?, (0, 1] satisfies

— (2% (z)) +u(z) =0 on (0,1),

u(1l) =0,
.
lim 2 su’(fv) = 0.
xz—0t

Let v(z) = :1;1+2\/5u(x). Then v € H? (0,1] and it satisfies

— (z'(x)) + V50 () =0 on (0,1),

v(1) =0, (3.22)
. ) 1+5 B

xlggr (wv () — 5 v(:v)) =0,

from which we obtain that xv’ — 1+72\/5v € C[0,1] and xv' — v/5v € H'(0,1). Therefore

v € C[0,1]. Multiply (3.22) by v and integrate over [e, 1] to obtain

1
/ xv' (z)?dx + %1)2(6) = (mv’(m) ! +2\£v(x)> v(z)|! =0, as e — 0T,

Therefore v is constant and thus v(z) = v(1) = 0.
Assume that (ii) holds. Suppose that u € HZ (0,1] satisfies

— (2% (z)) +u(z) =0 on (0,1),
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v
Let w(z) = z 3 5u(ac) Then w € HZ (0,1] and it satisfies

— (zw'(z)) + Vbuw'(z) =0 on (0,1),
(3.23)
w(0) =w(l) =0.

Therefore zw’ + 5w € HY(0,1), w € C[0,1], and 2w’ € C[0,1]. Multiply (3.23) by w

and integrate over [e, 1] to obtain

()|} =0, ase— 0.

1
/ zw' (z)2dz = 2w’ (x)w(z)|! — \éng

Therefore w is constant, so w(z) = w(1) = 0.

Assume that (iii) holds. Suppose that u € H? (0, 1] satisfies

— (**/(z)) + u(x) =0 on (0,1),

u(l) =0,
3a Ll
lim 22 e T-a u/(z) = 0.
z—0t

jEyet

Define g(z) = e 7= u(z). Then g € H? (0,1] and it satisfies

— (z*¢(2)) + (z%g(z)) + 2%¢'(x) =0 on (0,1),

9(1) =0,
. 3a o
Jim (2% 4/(2) —2Fg(x)) =0

Multiply the above by g and integrate over [e, 1] to obtain

1
/ 22/ (2)2dx = 22g/ (2)g ()]} — 2°¢*(x)|!

= (x%ag’(x) - x%g(:c)> z2g(x)|l. (3.24)

<3a — 1> ’ 5%_29(5)615 - %l‘a_lh(x) - (1?37&9,@) - x%q(m)) :
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Hence we can write

h(z) = [1 + %xaﬂ o [—‘; (32“ - 1) /: s 2g(s)ds — (g;%"g’(g;) - xgg(a:))} .

We claim that there exists a sequence €, — 0 so that

1
/ s%*Qg(s)ds

€n

lim < 0.
n—oo

Otherwise, assume that lim,_,q+ fel SSTQ_Qg(s)ds = +o00. Then

a zl=®
lim z2e=o u(z) = lim h(x) = £oo.
z—0t z—0t

This forces lim,_,y+ u(x) = +o00, so L’Hopital’s rule applies to u and one obtains that

30 Ll
. a = . xzelau ()
lim zze o u(r) = lim —p—-——+ =0,
z—0t z—07F —556047 -1

which is a contradiction. Therefore lim, o+ h(ey,) exists for some sequence €, — 0.
Finally, use that sequence €, — 07 in (3.24) to obtain that fol 22%¢'(x)?%dxr = 0, which
gives g is constant, that is g(x) = ¢g(1) = 0.

Assume that (iv) holds. Suppose that u € H? (0,1] satisfies

— (2% (x)) +u(x) =0 on (0,1),

u(l) =0,
« Ll
lim z2e T=a u(x) = 0.
z—0t

jEyet

Let p(z) = e = u(x), then w satisfies

— (@*p'(x)) + (z%p(x)) +2°p'(x) =0 on (0,1),

lim 22 p(z) = 0.

z—0t

We claim that lim+x3?ap’(az) exists, thus implying that xsTap’(x) belongs to C[0,1].

x—0

Define ¢(z) = x%p’(x), then using (3.25) we obtain that, for 0 < z < 1,

¢(@) = 5% 7P (@) + ot p(e) + 25 (@),
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A direct computation shows that, for 0 < x < 1,

1 1
3 o [e] @
/ q(s)ds = % <2a - 1> / x%_2p(s)ds + %wo‘_laﬁp(x) —2z2p(x).

Since 2 p(x) € C[0,1], we obtain that xSTa_Qp(x) € L'(0,1). It implies that x%ap’(a:) =
q(z) = — fml ¢'(s)ds is continuous and that the lim, o+ ¢(x) exists. We now multiply

(3.25) by p(z) and integrate by parts to obtain

[ wwr =@t =o
Thus proving that p(z) is constant, i.e. p(x) = p(1) = 0.

Finally assume that (v) holds. Define k(x) = 22%u/(x). Notice that since u €
L'(0,1) N HZ.(0,1], from the equation we obtain that k(z) = /(1) — f; u(s)ds, so
k(z) € C[0,1]. We claim that k(0) = 0. Otherwise, near the origin u/(z) ~ -3+ and
u(x) ~ zm%l, which contradicts v € L'(0,1). Therefore, lim,_,o+ 2%/ (x) = 0. We are

now in the case where (i) or (iii) applies, so we can conclude that u = 0. O

3.3 Proofs of all the existence and the regularity results

Our proof of the existence results will mostly use functional analysis tools. We take the
weighted Sobolev space X¢ defined in (3.9) and its subspaces X, and X defined by
(3.11) and (3.10). As we can see from Section 3.6, X equipped with the inner product
given by

(u,v)q = /01 (2 (2)v' (z) + u(z)v(z)) dz,
is a Hilbert space. X, and X§ are well defined closed subspaces. We define two
notions of weak solutions as follows: given 0 < a < % and f € L?(0,1) we say u is a

weak solution of the first type of (3.1) if u € X§, satisfies

1 1 1
20a, /1 / _ roall v a, )
/0 = (x)v' (x)dx + /0 u(z)v(z)de = /0 f(z)v(z)dz, for all v e X§; (3.26)

and given o > 0 and f € L?(0,1) we say that u is a weak solution of the second type of

(3.1) if u € X satisfies

1 1 1
22 (2)v (x)dx u(x)v(x)dx = x)v(x)dz, for all v < .
/0 <><>d+/0<><>d /Of<><>d,f lveXe  (327)
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The existence of both solutions are guaranteed by Riesz Theorem. Actually, (3.26)
is equivalent to (3.12), while (3.27) is equivalent to (3.13) or (3.14) (see e.g. Theorem
5.6 of [8]). As we will see later, the weak solution of the first type is exactly the
solution up mentioned in the Introduction, whereas the weak solution of the second

type corresponds to either uy when 0 < a < % or uc when « > %

3.3.1 The Dirichlet problem

Proof of Theorem 3.1. We will actually prove that the solution of (3.26) is the solution
we are looking for in Theorem 3.1. Notice that by taking v € C2°(0,1) in (3.26) we
obtain that w(z) := 2?*/(x) € H'(0,1) with (2?*/(x)) = u(z) — f(z) and ||| ;2 <
2| f|l 2. Also since u € X§, we have that u(0) = u(1) = 0.

Now we write

_ [T _ 1 /w 20, 1 I 1-2a zu'(x)
u(x)—/o u'(s)ds = —2a J, (s%*d/(s)) s d8+1—204’

where we have used that lim, o+ su/(s) = lim, o+ s?*u/(s) - s'72* = 0 for all & < 3. It
implies that
2a,,/

20—1 a?ul(x) ! /w 20, 11 VY o120
e d
x u(x) 1 oa + 20—1 ), (s**d/(s)) s S,

and

(.5620‘717,6(.1‘))/ — 202 /:v (82aul(8))’8172ads.

0

From here, since a < %, we obtain

!/

‘ (zQa*lu(ac))

so Hardy’s inequality gives

H(xm—lu)’

/
e

Therefore, || tul|;, < C||f|| 2, where C is a constant depending only on a. Com-
bining this result and the fact that 22w’ € H'(0,1), we conclude that x2%u € H?(0,1).
Also notice that u € C%'722]0,1] is a direct consequence of x2*~lu € C[0,1] N

C*(0,1]. The proof is finished. O
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Proof of Remark 3.1. Take f € C°(0,1). We know that u(x) = A¢1(z) + Bpa(z) +

F(z) where ¢1(z) and ¢2(x) are two linearly independent solutions of the equation

—(2?*d/(x)) + u(z) = 0 and

F(z) = 61 (2) / " F(8)é2(s)ds — da(a) / " 1()1 (s)ds.

xl_a) where f;(z)’s are two linearly inde-

1
Moreover, one can see that ¢;(z) = 22~ f; (ﬁ

pendent solutions of the Bessel equation

14\
2"(2) + 24/ (2) — | 22 + <i_a> ¢(z) = 0.

By the properties of the Bessel function (see e.g. Chapter III of [46]), we know that

near the origin,

) 1
o1(x) = a1z 72 g3 T fag® 0 4 for0<a< 3

and
P2(z) = by + box® 2% 4 bzt 4 byt 1 for0 < a < 1.
Also,
1
61(0) =0, 62(0) # 0, ¢1(1) #0, for 0 <a <,
. _ 1
rli%h |¢1($)| = 00, Ili%h ¢2(ZE) = b17 for a > 57
and
lim | 2] (x) # 0, lim, 2@l (x) = 0, ¢o(1) #0, for 0 < a < 1.

z—0
Notice that F(x) = 0 near the origin. Therefore, when imposing the boundary condi-
tions u(0) = u(1) = 0, we obtain u(x) = A¢i(x) + F(x) with A = —%(11)). Take f such

that
1
P = [ £(6)n(s)01(1) = or(s)en(D)ds £ 0,
O

Then u(z) ~ ¢1(x) near the origin and we get the desired power series expansion.

Proof of Remark 3.3. From the proof of Theorem 3.1, we conclude that w € C]0,1]

with ||w||,, < 2]/ f]| 2. From here we have

[/ (2)] = [w(z)a™| < [Jw]| o 27
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Thus, for 1 <p < i,

Hu,HLP < fwlls Hx_QaHLzJ(ojl) < Cla,p)[If]-

O

Proof of Remark 3.5. If we take f(z) := —(2*/(2))'+u(x), where u(x) = 21 72%(z—1),
we will see that u ¢ C%%[0,1], V3 > 1 — 2a. When u(z) = ng%‘(x — 1), we will see

that 222~y ¢ H?(0,1), 22/ ¢ H?(0,1), and x2u ¢ H3(0,1). O

Proof of Remark 3.6. From Theorem 4.2 we know that the function g exists and 22%¢’ €

L*°(0,1). Therefore, integration by parts gives

! ! 2 / / : 2 /
| @@ = [ —au@) e +uwgte)ds = Jim 2ol (z).

And the L’Hopital’s rule immediately implies that

1
1 -2«

1
lim 2% lu(z) = lim ———22%/(z) =
z—0t z—0+ 1 — 2«¢

1
/ f(@)g(x)dz.
0

Before we prove Theorem 3.3, we need the following lemma.

Lemma 3.20. Let 0 < o < § and kg € N. Assume u € W20, 1) for some p > 1.

loc

Iflim, o+ u(z) = 0 and lim,_,o+ gh—2e ol (s*u'(s)) = 0 for all 1 < k < ko, then for

dxk—1
0<z<l,
dk T dk:
Tk (22> () = xhkl/ skfmﬂ (s (s)) ds, forall1 <k < k.
i 0 S
Moreover
dk o1 ’ dlc
— (27 u < C || — (22 ,
| @ <o )]

where C' is a constant depending only on p, a and k.

Proof. When kg = 1 we can write

(x2a—1u(x))’ _ x2a—1 /I S2au/(8) gl—2a /ds /
0 ]. — 20[
R A TINVAR I z?/(z)
_<2a—1/0 (s%u/(s)) s d8+1—2a>

X
:an_z/ (s2au'(s))/sl_2ad5.
0
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The rest of the proof is a straightforward induction argument. We omit the details. The
norm bound is obtained by Fubini’s Theorem when p = 1 and by Hardy’s inequality

when p > 1. O

Proof of Theorem 3.3. Notice that lim,_,y+ 2272* (s2au’(s)),:0 since both u and f are

continuous. With the aid of Lemma 3.20 for kg = 2 we can write

(CL‘2a_1U(CC))” _ $2a—3/ g2 2 (S2au/)” ds — x2a—3/ 22 (U(S) . f(S))/ ds.

0 0

The result is obtained by using the estimate in Lemma 3.20. 0

Proof of Remark 3.8. We use the same notation as in the proof of Remark 3.1. We
know that u(x) = A¢i(x) + Beoa(x) + F(x) where ¢1(x) and ¢o(x) are two linearly

independent solutions of the equation —(z>%u/(z))" 4+ u(x) = 0 and
Flz)=1, if f=1,

F@%=@@»Afﬂ$@wm8@@»Azﬂﬁm@MaﬁfeC?wﬁy

In either case we have F' € C[0,1]. We also know that

N =

C’:li)r(r)h |p1(x)| = oo, C’:li)r(r)h ¢2(x) = by, for a>

Therefore, if one wants a continuous function at the origin, one must have A = 0. Then
u(z) = Bga(x) + F(x). We see now that the conditions u(1) = 0 and lim, g+ u(z) =0

are incompatible. O
3.3.2 The Neumann problem and the “Canonical” problem
Proof of Theorems 3.4, 3.7, 3.11. For 0 < a < 1, let u € X§ solving

1 1 1
200/ (2 ) (z)dx w(x)v(z)dr = x)v(x)dx, for all v <.
| @ @an+ [ u@p@s = [ j@p@ds, foralve X

First notice that

lull g2 + [Ja%u'|| 2 < [1£1] 2 -

Also, if we take v € C°(0,1), then z>*u’ € H'(0,1) with (z%u/(z))" = u(z) — f(z).
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We now proceed to prove that w(z) := 2%/ (z) vanishes at = 0. Take v € C?[0, 1]

with v(1) = 0 as a test function and integrate by parts to obtain

z—0t

1
0= / (*(IEQQU,(CC))/ + u(zx) — f(x)) v(z)dxr = lim :E2au'(:6)v(:c).
0

The claim is obtained by taking any such v with v(0) = 1.
The above shows that w(z) := 22/ (z) € H'(0,1) with w(0) = 0. Then, notice

that for any function w € H'(0,1) with w(0) = 0 one can write

1
<2 </ w'(:c)de> ,
0

thus

Also, Hardy’s inequality implies that ¥ € L?(0,1) with H%HLQ < 2w 2. Now
recall that w'(z) = (2/(2))' = u(z) — f(z), 0 W'l zz < fullz + Il 2 < 201 fe.
Hence we have the estimate ||z2* /||, < 4| f]| -

In order to prove H:L“Zo‘u” H 72 < C||fllp2, one only need to apply the above estimates
and notice that z2%u"(z) = (22°u/(x))" — 2ax?*~ '/ (z).

By Theorem 3.34, property (i) of Theorems 3.4, 3.7, 3.11 is a direct consequence of
the fact that u € Xgafl.

Finally we establish the property (ii) of Theorem 3.11. For a = %, first notice that
1 2 1 / 2 2
/ u®(x) d < _/ . 2u(z)u’(z)  ui(x) N u®(x) dr
o z(1—1Inxz) 0 z(1—Inz) 22(1—Inz) 2%2(1—Inx)?
1 / 1 2 1 2
= —2/ 7u(az)u (x)dx—l—/ L7 . (z) dw—/ v (z) sdz,
o 1l—Inx o z(1—1Inx) o z(1—1Inx)

17UQ(93) €T 17u(33) 2 (z)dx
/0 x(l_lnx)zd S2/0 x%(l—lnw) (e}

Now Holder’s inequality gives (1 — In x)_lx_%u(x) € L?(0,1). Therefore

thus
(3.28)

(1- 1nx)_1u2(:ﬁ))l =(1—Inz) 2z u?(x) +2(1 - lnx)_lx_%u(as)x%u/(:c) e LY(0,1),

1
so lim, g+ (1 —Inx)” 2 u(z) exists. If the limit is non-zero, then near the origin (1 —

lnx)_lm_%u(x) ~ (1-— lnaj)%x_% ¢ L?(0,1), which is a contradiction. For 3 < a < 1,
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notice that

st = [ (eme@) a= —1a-s) [ oot @as [ e

xX x
Since we know z2*~!u’ € L%(0,1), Theorem 3.33 implies that x2*~2u € L?(0, 1), hence
lim, o+ mQ"_%u(w) exists. If the limit is non-zero, then near the origin u(z) ~ z320 ¢

Lﬁ(o, 1), which is a contradiction. O

Proof of Remark 3.10 for all 0 < o < 1. First notice that 1:2a_%u’(a:) = L [“(u(s) —
f(s))ds. Therefore, ‘xzo‘_%u'(x)’ < 2|1 fll 2, Le., K(x) <2.

On the other hand, for fixed 0 < x < %, define

x% fo<t<gx
f(t) =
0 ife <t<l.

Then [|f||,= = 1. Consider first the case when 3 < a < 1. From Theorem 3.11 we

obtain that u € Xgo‘_l, which embeds into LP° for pg = ﬁ_g > 2. Thus one obtains

that ‘ﬁ Jo u(s)ds

1

1
< x2? »o. Then

Ka(z) > \lf [ twte) = sesas| =

1_1
Therefore K, () > 04 for 4 :=1— (%)5 ro . Notice that when 0 < o < %, then v € LP

for all p > 1, so the above argument remains valid. The proof is now finished. ]

Proof of Remark 3.11 for all a < %. To prove (3.7), first notice that, from Theorem

4.2, the function h exists and x3h € L® (0,1). Therefore, integration by parts gives

/ F@)h(@)de = / (= (22 (2))'h(z) + u(@)h(z))dz = lim u(z).
0 0

z—0t

In order to prove the further regularity results we need the following

Lemma 3.21. Let o > 0 be a real number and ko > 0 be an integer. Assume u €

WFOt2P(0,1) for some p > 1, and lim, o+ ok L (z%*u/(z)) = 0 for all 0 < k < k.

loc dx*

Then for 0 <z <1,

dk 2a—1,/ 1 ‘ k dk—H 20,/
s (z u'(z)) = AT | s (s**d/(s)) ds, for all 0 < k < ko.
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Moreover
dk+1

dxk+1

dk
dak

)

Lr

(@)

where C' is a constant depending only on p, o and k.

(ZL'Qa_lU/)

<C’

Lp

Proof. If ky = 0 then the statement is obvious. When kg = 1, the condition
x (:UQO‘U’(J:))/ —0
gives

(xZaflu/(x))/ _ v

(szau’(s))/ ds),
/Ox s (%' (s))" ds + (xZau’(af))/>,

(szau’(s))// ds.

1
x

S—

Il
HN‘._./\/\
S— B~

The rest of the proof is a straightforward induction argument. We omit the details. The
norm bound is obtained by Fubini’s Theorem when p = 1 and by Hardy’s inequality

when p > 1. O

Proof of Theorem 3.6. Assume that f € Wl’i((), 1). First notice that for 1 < p < %
we have v/ € LP since x?u’ € H'(0,1). Also notice that x(x?*/(x)) = x(u — f) — 0

since both u and f are continuous. We use Lemma 3.21 for ky = 1 to conclude

@Y, < €l = C = 5l < C il

2au// 2a—1u/ -

where C'is a constant only depending on p and «. Recall that x =u—2ax

fewhr(0,1). It implies
|u" ()| = 22" | 272 < O\ fllyrn 277,

where C' is a constant only depending on p and «. The above inequality gives that
u € W2P(0,1) forall 1 < p < i, with the corresponding estimate.

Assume now f € WQ’i(O, 1). We first notice that x? (anu’(x))” =22 (u—f) =
2/ (2)x? 72 — 22 f'(x) — 0 as x — 0T since f € C1[0,1]. This allows us to apply

Lemma 3.21 and obtain

(‘,1/,20471,“/(:1:))” _ =
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Lemma 3.21 also gives the desired estimate. O

Proof of Remark 3.12, 3.15, 3.18. It is enough to prove the following claim: there exists

f € C(0,1) such that the solution u can be expanded near the origin as
u(x) = by + box? 2 4 bapt A 4 by 0 4. (3.29)

where b1 # 0, by # 0.
We use the same notation as the proof of Remark 3.1. Take f € C2°(0,1). We know
that u(z) = A¢1(x)+ Bo2(x)+ F(x) where ¢1(x) and ¢2(x) are two linear independent

solutions of the equation —(z2*u/(x))" + u(x) = 0 and

F(2) = é1 () /0 " F(8)éa(s)ds — da(x) /0 " ()61 (s)ds.
Moreover,

lim 22%¢)(x) # 0, lim, 2L (x) = 0, ¢o(1) #0, for 0 < o < 1.
T—

z—0t

Notice that F(z) = 0 near the origin. Therefore, the boundary conditions

: 200,/ — —
xli)rg+$ u(z)=u(l)=0

imply that we have u(x) = Boy(z) + F(x) with B = —%(11)). Take f such that

1
F(1) = [ 1(6)[0a)01(1) = a(s)aa(1)}ds 0,
Then u(z) ~ ¢o(x) near the origin and we get the desired power series expansion. [J

Proof of Theorem 3.9. When k = 0 we have already established that v € X° =
H'(0,1). Also, we have that zu” € L?, so (zu)” = (u+zu/) = 2u' + zu”, that is
ru € H*0,1).

When k = 1, notice that z (zu/(x)) = z(u— f) — 0 since both f and u are in

H'(0,1). we use Lemma 3.21 to write

u'(z) = ! /Oxs (su'(s))” ds = ! xs (u(s) — f(s)) ds.

a2 a2
We conclude that u” € L?(0,1) using Lemma 3.21. The rest of the proof is a straight-

forward induction argument using Lemma 3.21. We omit the details. O
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Lemma 3.22. Suppose 0 < a < 1 and let f € L*(0,1). If u is the solution of (3.27),

then u € C[0,1] and x?*'u’' € L>(0,1) with
lull oo + |22 || oo < C N f [l oo
where C' is a constant depending only on «.

Proof. To prove z?* '/ € L*(0,1), it is enough to show that u € L*°(0,1) with
lull oo < C|fllz - Indeed, if this is the case, by (3.27) we obtain that z?*u’ €
W2(0,1) with lim,_,o+ 22*/(x) = 0. Hardy’s inequality implies that || /||, <
Callfll -

Now we proceed to prove that u € C[0, 1]. First notice that if o < % then u € C10,1]
by Theorem 3.7. So we only need to study what happens when % <a<l.

Suppose % < a < 1. Since u € X?*! we can use Theorem 3.34 to say that
u € LP(0,1) for po = 125, s0 g == f —u € LP(0,1). From (3.27) we obtain that
(:z:QO‘u’(x))/ = g(z), therefore 22’ € W1P0(0,1). Since py > 1 and lim+ 2%/ (x) = 0,

z—0

we are allowed to use Hardy’s inequality and obtain that z?*~!u/ € LP0(0,1). Using
Theorem 3.34 once more gives that either u € C[0,1] if a < %, in which case we are
done, or u € LP(0,1) for p; := ﬁ if % < a < 1. If we are in the latter case, we
repeat the argument. This process stops in finite time since o < 1, thus proving that

u € C0,1]. O

Proof of Theorem 3.10, 3.13. We begin by recalling from Lemma 3.22 that if f €
L>®(0,1) then z2*~ v/ € L>(0,1), so |u'(z)| < H;I:QO‘_lu’(x)HLoo 21729 This readily
implies u € W1P(0,1). Now just as in the proof of Theorem 3.6 we can use Lemma 3.21

and write

(221 (2)) = = /0 " (52 (s))"ds = — [ s(u(s) — £(s))ds.

N ﬁ 5132 0
Notice that |zu/ ()| < || 4/||, . 272%. From here we obtain

@/ @) < O (o | e 2+ £ )

The conclusion then follows by integration. O
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Proof of Remark 3.16. First notice that, from the proof of (ii) of Theorem 3.11, when

_ 3
01—1,

‘(1 —lnx)_% u(m)‘ < C‘

1
/()| , < CIfle
and when % <a<l,
3
22 u@)| < Ca [l @)]] 2 < Ca

That is, Ka(z) < Ch.

On the other hand, we can write

/m/ i
- <$2a 1/ F)dt + : t’;igt)ldt>

o ([t - snar - s [Cuan- [ 5.

When a = %, for fixed 0 < z < %, take

+

0 Hfo<t<zx
7t) = 1

t_%(—lnx)_i ife<t<l.

Then || f||;2 = 1. Since u € LP(0,1) for all p < oo, we can say that, there exists M, > 0

independent of x such that

/Ol(u(t) — f(t))dt — # /0”“ u(t)dt — /; tZCEt—)l dt‘ < M,.

Then

2a —1 (1—1n:p)% (1—ln:v)%

When 2 < o < 1, for fixed 0 < z < 3, take

Ro() > 1 ( (—1n$)% B M, ) .

1 .
r 2 if0<t<z

ft) =
0 fex<t<l.

Then || f||;2 = 1. Since v € L?°(0,1) for py = a273 > 2, we can say that, there exists

M, > 0 and 4 > 0 such that

1 1
t
2203 /0 (ult) — ()t — — / — 227 /m tgi)ldt’ < Myae.
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Then

_ 1
Raolz) >
ol®) 2 30

(1 — Myx>).
Now, for % < «a < 1, take €, > 0 such that I?a(x) > % forall0 <z < ey Ife, <2 < %,
we take f(t) = —2(3 — 2a)t + 3(4 — 2a)t* 4+ 3722 — 172 hence u(t) = 3720 — ¢172,

Notice that 0 < || f||;2 < 10, so we obtain

> 0,

3 5
foralle, <z < % The result follows when we take 0, := min {}1, ed 1_063 } O

Proof of Theorem 3.14. Let u be the solution of (3.27). By the definition of u, we have
that w € L?(0,1) and 2%u’ € L*(0,1). As in the proof of Theorem 3.4, we have that u

satisfies (3.1), w(z) = 2%*u/(z) € H'(0,1), w(0) = 0 and for any function v in Xg,

: 200, /1 _
xli%lJr x“u' (z)v(zr) = 0.

Take v(z) = 2%/ (z) — u/(1). Since o > 1, we have
% (z% (z)) = w'(x) — az® tz%d/ (z) € L*(0,1),
which means that v € X§. Thus we obtain

lim 2%*u?(z) = 0.
z—07F

To prove that lim, g+ 22 u(z) = 0, we first claim that lim, ¢+ 22 u(z) exists. To

do this, we write z%u?(z) = — fxl(sau2(s))’ds. Notice that
(z%u?(z))" = az® T (x) + 22%/ (z)u(z) € L1(0,1).

Therefore

1
im x%u?(z) = — su?(s)) ds.
! (@) == [ ()

z—0t

Now, we can conclude that lim,_ o+ 22 u(z) = 0. Otherwise, u(z) ~ i% ¢ L?(0,1). O

Proof of Remark 3.19. Fix ¢ € C°°(R) such that supp¢ = [—1,1], $(0) =1, ¢'(0) =1
and 0 < ¢ < 2. Denote C = [|¢/[| oo (_1 1) + 19" ]| oo(1,1)- For fixed z € (0, 1), take

1

u(t) = _
(aC220+4 +2) 2

¢ (227t — x)) .
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It is straightforward that u € C2°(0,1), f := —(t**') +u € L?(0,1) and || f]|;2 < 1.
Moreover, x%u(:n)‘ = m and ‘m%au’(x)‘ = Wﬂﬁ It follows that P,(x) >

and Iga(:r) > On the other hand, for all x € (O, %), note that

2 1
aC2?2e+142 aC220+142"

T

23 (2))? = 3a/

s27 (W (s))?ds + 2/ s/ (s)u' (s)ds,
0 0
% (x) = a/ s u?(s)ds + 2/ s®u'(s)u(s)ds.
0 0

It follows that P, (z) < 6y/a and P, (z) < 4y/a. Therefore, the proof is complete. [
Before we finish this section, we present a proposition which will be used when

dealing with the spectral analysis of the operator T,. Also, this proposition gives the

postponed proof of (iii) of Theorem 3.8 and (iii) of Theorem 3.12.

Proposition 3.23. Given % < a<1andf € L*0,1), suppose that u € HE (0,1]
solves

— (@ () +u(z) = f(z)  on (0,1),

u(1l) =0, (3.30)

we L=1(0,1).

Then u is the weak solution obtained from (3.27).

Proof. We claim that z®u’ € L%(0,1). To do this, define w(z) = x?*/(x). Then
w € HY0,1). If w(0) # 0, then without loss of generality one can assume that there

exists 0 > 0 such that 0 < M; < w(x) < My for all z € [0, d]. Therefore,

§ d d
M M

T

It implies that
Mi(Ind —Inz) <u(d) —u(x) < My(Ind —Inz), Vo € (0,0],

, and

when o = %

M1<1 1

Mo 1 1
— < - <
200 — 1 \ g2t (52a—1> < uld) —ulz) < 200 — 1 <

p2a—1 52&—1> , V€ (0, 4],
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1
when a > 3. In either situation, we reach a contradiction with u € L2-7(0,1).

Therefore, w(0) = 0, so Hardy’s inequality gives

9 1w2(:1:) 1w2(3:)
et = [ < [ <

Since w € H'(0,1) satisfies w(0) = 0, we conclude, in the same way as in the proof

AN

of Theorem 3.7, that lim, o+ xféw(ac) = 0. Now, integrate (3.30) against any test

function v € X§ on the interval [e, 1] and obtain

1 1 1
/x2au'(1:)v'(m)dx—|—e2au'(e)v(e)+/ u(m)v(m)dm:/ f(z)v(z)d.

Since % < a <1, we write

The estimate (3.46) in Section 3.6 tells us that ‘x%v(:v)} < Cq||v||,, so we can send

€ — 07 and obtain (3.27) as desired. O

3.4 The spectrum of the operator 7,

In this section we study the spectrum of the operator T,. We divide this section into
three parts. In subsection 3.4.1 we study the eigenvalue problem of T, for all a > 0.
In subsection 3.4.2 we explore the rest of the spectrum of T;, for the non-compact case

« > 1. Finally, in subsection 3.4.3, we give the proof of Theorem 3.19.

3.4.1 The eigenvalue problem for all o > 0

In this subsection, we focus on finding the eigenvalues and eigenfunctions of T;,. That
is, we seek (u,\) € L?(0,1) x R such that u # 0 and Tpu = Au. By definition of T, in

Section 3.1.6, we have A # 0 and the pair (u, \) satisfies

ey ! 1 _1 luxvx z, Vv 5
/Ox u (z)v (:c)d:z-i—/o u(m)v(m)dx—)\/o (x)v(x)dx, Yv € X(. (3.31)

From here we see right away that if A > 1 or A < 0, then Lax-Milgram Theorem applies

and equation (3.31) has only the trivial solution. Also, a direct computation shows that
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u = 0 is the only solution when A = 1. This implies that all the eigenvalues belong to
the interval (0,1). So we will analyze (3.31) only for 0 < A < 1.

As the existence and uniqueness results show, it amounts to study the following

ODE for p := % > 1,
— (2% (x)) + u(x) = pu(z) on (0,1), (3.32)
under certain boundary behaviors. To solve (3.32), we will use Bessel’s equation
v F" () +yf () + (* = v*)f(y) =0 on (0,00). (3.33)
Indeed, we have the following

Lemma 3.24. For a # 1 and any 8 > 0, let f, be any solution of (3.33) with parameter

2 — (Z:%y and define u(zx) = x%*af,,(ﬁxl_o‘). Then u solves
—(@*/ (2)) = 5*(a = 1)%u().

The proof of Lemma 3.24 is elementary, which we omit. We will also need a few
known facts about Bessel functions, which we summarize in the following Lemmas (for

the proofs see e.g. Chapter III of [46]).

Lemma 3.25. For non-integer v, the general solution to equation (3.33) can be written

as

fzx(l’) = ClJu(m) + CZqu($)~ (3.34)

The function J,(x) is called the Bessel function of the first kind of order v. This

function has the following power series expansion

40 =155 (3) * st o ()

m=1

A similar expression can be obtained for J)(x) by differentiating J,(z).

Lemma 3.26. For non-negative integer v, the general solution to equation (3.33) can
be written as

fu(@) = C1J,(z) + CaY, (). (3.35)
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The function J,(z) is the same as the one from Lemma 3.25, and the function Y, (x) is
called the Bessel function of second kind which satisfies the following asymptotics: for

0<x <<,

2o

Y.(@) ~ (%) ++] ifv=0,

-2 v,

where v := nh—>ngo (3p1 + —In(n)) is Buler’s constant.

Remark 3.24. We have been using the notation f(x) ~ g(x). This notation means

that there exists constants cq,co > 0 such that

cilg(@)| < [f(2)] < calg(x)]-

Remark 3.25. Suppose that o # 1, and let § = |‘a“__11. Then Lemma 3.24-3.26 guar-

antee that the general solution of (3.32) is given by

(@) C’lx%_o‘Jl,(ﬁazl_a) + Cg:n%_aJ,,,(ﬁwl_o‘) if v is not an integer,
u(x) =

Clx%_ajy(ﬁxlfa) + Cgm%_aYy(,Bmlfa) if v is an non-negative integer.
(3.36)

Now the problem has been reduced to select the eigenfunctions from the above family.
We first study the eigenvalue problem for the compact case 0 < a < 1.

Proof of (i) of Theorem 3.17. We first consider the case when 0 < o < % In this case

_1
notice that v = ?702( is negative and non-integer. From theorems 3.4 and 3.5, and

equations (3.31), (3.32) and (3.36), we have that the eigenfunction is of the form
u(z) = Clx%*aj,,(ﬂa:lfo‘) + ng%*aJ_y(ﬁxlfa)

with 3 = Y1 lim 22*u/(z) = 0 and w(1) = 0. Then Lemma 3.25 gives that

la—1[> r—0+

a B (3«
z*u!(z) ~ Cy 27”F((3V+2)'

vanish. Therefore u(z) = C’lx%_aJ,,(ﬂ:L‘l_a). Now, the condition u(1) = 0 forces [ to

so the boundary condition lim x?%u/(x) = 0 forces Cy to

x—0

satisfy J, () = 0, that is 8 must be a positive root of the the Bessel function J,, for
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Therefore, we conclude that if we let j,i be the k-th positive root of J,(x), then
upk(x) = m%_aJ,,(j,,kxl_a), k=1,2,---

are the eigenfunctions and the corresponding eigenvalues are given by

1
vk 1+(1 —a)2j3k7 y &y

1
. . . a—5 .
Next, we investigate the case when % < a < 1. In this case, ¥ = =2 is non-

negative and could be integer or non-integer. Using Lemma 3.25 and 3.26, we obtain

the asymptotics of the general solution near the origin,

Clﬁy 022'/ 1—2«¢ . l . .
T+1)27 + - if @ > 5, and v is not an integer,
~ C18" 2'T(v)C2 _1—2a, . 1 . .
u(x 1 — 1
() T+1)27 BT if a > 3, and v is an integer,

o + 22 (BVD) +9] ifa =3

Now Proposition 3.23 says that it is enough to impose u € L%%I(O, 1) which forces
Cy = 0 and u(x) = Clxé_o‘Jy(ﬁxl_o‘). Moreover, the condition u(1) = 0 forces [

to satisfy J,(8) = 0, that is # must be a positive root of the Bessel function .J,, for

1
)

l—a-

UV =
As before we conclude that
w(@) = 22T, (™), k=1,2, -

are the eigenfunctions and the corresponding eigenvalues are given by

1
1+ (1— )22

Ak k=1,2,--.

Finally, the asymptotic behavior of j,, as k — oo is well understood (see e.g.

Chapter XV of [46]). We have

T 1 4 —1 1
we=rn+ 3 (v-3) - : +0(): (3.37)
g 2 2) 8(kn+Z(v-1)) k3

Using (3.37), we obtain that

e =1+ (1 — ) !(W

o |
/N
R
|
O |
~__
_|_

3
?TA
~__

no
|
/N
R
no
|
=~ =
~__
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Next we consider the case a = 1. In this case, the equation (3.36) is not the general
solution for (3.32). However, as the reader can easily verify, the general solution for

(3.32) when a = 1 is given by
1 5 1 5
Cra 2 TVaTH L Oy VaATH for p < 2,

u(zr) = C’lx_% + CQ:C_% Inzx for p = g, (3.38)

Claf% cos ( w— 21113:) + Cza:*% sin ( w— %lnx) for p > %
With equation (3.38) in our hands, we can prove the following:

Proposition 3.27. If a = 1, then T, has no eigenvalues.

Proof. For the general solution given by (3.38), we impose u(1) = 0, and obtain that

any non-trivial solution has the form:
1 5 5
Cx 2 Vi (1 — g2V 4”> for pu < g,

Cz zlnz for p = %,

Cz~2 sin( u—glnm) for p > %,
for some C' # 0. From here we see right away that if 4 > 2 then u ¢ L?(0,1). And

when p < %, we obtain that
1 1 5 5\ 2
/ u2(ﬂf)d:c:CQ/ g VAT <1—x Vi “) dz.
0 0
/5 _
Let y = 2?Vi " so this integral becomes
1 1 2 2 1
1 C 2 1
/ u?(z)dx = 02/ (1 - ) dy > — —dy = +0o0.
0 0 Yy 4 Jo y
This says that when o = 1, there are no eigenvalues and eigenfunctions. ]

Finally we investigate the case o > 1. To investigate the eigenvalue problem in this

case, we need the following fact about the Bessel’s equation.
Lemma 3.28. Assume that f,(t) is a non-trivial solution of Bessel’s equation
) + () + (=) fu(t) = 0. (3.39)

Then [°tf2(t)dt = oo, Vs > 0,Vv > 0.
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Proof. We first define the function g, (¢) = f,(bt), for some b # 1. Then g, (t) satisfies
(3.40)

the ODE
2 gu(t) + tg,, (t) + (01> — v*)g,(t) = 0

From equation (3.39) and (3.40), we have
t2(f7 (£)gu(t) = £ (O)gy (1) + t(fL (g (t) = £ (£)g, (1)) + £2(1 = b) fu()gu(t) = O,

=0,

t(fy ()90 (t) = fu(£)gn (1) + (£, ()90 (1) — fu(£)gy (1)) + (L = b%) fu(£) 90 (1)

L 000 — £OGLO)] + 10— ) at) =0

Integrating the above equation we obtain

N
| thom
_ N, (V)gu(N) = fu(N)g,(N)) — s(f,(s)gu(5) — fu(5)g,(5))
b2 —1 b2 —1
_NF(N)fu(bN) = bN fy (N)f(bN) — sf,,(5)fv(bs) — bsf(5) ) (bs)
b2 —1 b2 —1
£A - B.
We then pass the limit as b — 1. Notice that
o A 1im VTN (6N) — BN S, (N) £ (BN)
b—1" bol b2 —1
o NRNELBN) = N £, (N)£5(bN) = BN, (N) £2(N)
b—1 2b
_ N2R(N)FL(N) = Nfy(N)f)(N) = N?f, (N) f(N)
2
= 5 (NP F2(N) + N2 2(N) = 2 (N))
and
o B — tin S 05) — b £ (3) 1105
b—1 b—1 b —1
5 (82 f7(s) + 8" f2(s) = V2 [2(5))

2
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Therefore

/ TR0 =L (VPN + NERN) — 2 R)

s

- % (212 (s) + s> f2(s) — V2 f2(s)) -

Sending N — oo, we deduce from the asymptotic behavior of the Bessel’s function that

00, £2 _
[ tfo(t)dt = . O
Proposition 3.29. If a > 1, then T, has no eigenvalues.

Proof. We argue by contradiction. Suppose A = % is an eigenvalue and u € L?(0,1) is
the corresponding eigenfunction, then 1 > 1 and the pair (u, \) satisfies (3.32). Lemma
3.24 says that u(x) = x%_o‘f,,(ﬂ:clfa) where § = % and f,(t) is a non-trivial solution
of

1))+ tf,(t) + (2 =) £, () = 0.

-«

Applying the change of variable Sz

1 1
/ u?(z)dr = / 2172 2Bl ) dx
0 0

Sl (5) o

1 oo
= Fa-D /ﬁ tf2(t)dt = oo,

which is a contradiction. ]

=t and Lemma 3.28 gives

3.4.2 The rest of the spectrum for the case a > 1

We have found the eigenvalues of T, for all @ > 0. Next we study the rest of the
spectrum for the non-compact case @ > 1. It amounts to study the surjectivity of the
operator T,,—\I in L%(0, 1), that is, given f € L?(0, 1), we want determine whether there
exists h € L2(0,1) such that (T — A\)h = f. Since ||T,| < 1, Ty, is a positive operator,
and T, is not surjective, we can assume that 0 < A < 1. By letting u = Ah + f,
the existence of the function h € L%(0, 1) is equivalent to the existence of the function

u € L?(0,1) satisfying
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By the definition of T;, in Section 3.1.6, the above equation can be written as

/0 1 (anu'(az)v/(I) i (1 . i) u(m(x)) do =2 /0 ' F@yo(@)dr, Vo € X8, (3.41)

Since we proved that there are no eigenvalues when o > 1, a real number A is in the
spectrum of the operator T, if and only if there exists a function f € L?(0,1) such
that (3.41) is not solvable. To study the solvability of (3.41) we introduce the following

bilinear form,

1 1 1
o (u,v) é/ 2% (z)' (z)dx + (1 - )\> / u(z)v(z)dr, (3.42)
0 0
and we first study the coercivity of a;(u,v).

Lemma 3.30. If A > 2, then a1 (u,v) is coercive in X;.

Proof. We use Theorem 3.33 and obtain

Thus if A > %, this bilinear form is coercive. ]
Now we can prove the next
Proposition 3.31. For o = 1, the spectrum of the operator Ty is exactly o(T1) = [0, %] .

Proof. The coercivity of aj(u,v) gives immediately that o(77) C [0, %] To prove the
reverse inclusion, we first claim that (77 — A)u = — X is not solvable when 0 < A < %.
Otherwise, by equation (3.41), there would exist 4 = 5 and u € L?(0,1) such that

— (@A (2)) + (1 - pu(@) =1 on (0,1),

(3.43)
u(l) =0.
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Equation (3.43) can be solved explicitly as

2”3 [C—(C—i—ﬁ)lnx]—kﬁ for p=2,
u(z) =
Cﬂx_% sin (Au + /= %lnx) + ﬁ for p > %,
2+(171 )2 ) o
where C), = £~ sin A, = Fop N — and C could be any real number. So we
et (-2
have that
2 0 1 2 5
u(z) — —— (o= (orZn)u) dy forn=4,
- =
FllLz(o,1) C, ffoo sin? (A, +vy) dy for p > 2.

Notice that the right hand side above is +oo independently of C, thus proving that
u ¢ L*(0,1). Therefore (I} — A\)h = —\ is not solvable in L2(0,1) for 0 < A < 2. Also

0 € o(T}), because T is not surjective. This gives [0, 3] C o(T}) as claimed. O
Proposition 3.32. For a > 1, the spectrum of the operator T, is exactly o(Ty) = [0, 1].

Proof. As we already know, o(T,) C [0,1]. So let us prove the converse. We first claim
that the equation (T, —A\)u = —\ is not solvable for 0 < A < 1. As before, this amounts
to solve

—(@*'(2)) + (1 = pu(z) =1,

where 1 = §. Lemma 3.24 implies that u(z) = :L‘%_O‘fl,(ﬁ:clfa) + 1 where g = ¥£1

a—1

and f,(t) is a non-trivial solution of
£ (t) + tf,(8) + (2 = v*) fu(t) = 0.
By Lemma 3.28 we conclude that ||u|| ;2 = 0o. So (T, — A)h = —A is not solvable when
A€ (0,1).
When A = 1, take f(x) = —)\me_%, where € > 0 is to be determined, and try to
solve (T, — I)u = f, which is equivalent to solve
~ (@*(2)) =22 on (0,1),
u(1l) = 0.
The general solution of this ODE is given by

1 3 1
u(x) = pate2e g Op2etl 0 - :
(=) G+eE +e—20) G+eE +e—20)
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We choose 0 < € < 2a—2 so that 3 +e—2a < —3. Therefore, ||u||;» = oo independently
of C, thus (T, — I)u = f is not solvable. Hence (0,1] C o(T,). Also 0 € o(T,); thus

the result is proved. ]

Proof of Corollary 3.18. To prove (i), it is enough to notice that when 0 < « < 1 the
operator Ty, is compact and R(7},) is not closed.

To prove (ii) and (iii), by the definition of essential spectrum and the fact that 7, has
no eigenvalue when o > 1, it is enough to show that o4(T,) C EV(Ty), where EV (T,,) is
the set of the eigenvalues. Actually, for A € 04(T,,), we claim that dim N (7, — A\I) # 0.

Suppose the contrary, then dim N (T, — AI) = 0, and one obtains that
R(T, — A\)* = N(T — \I) = N(T,, — \I) = {0}.

Since T, — Al is Fredholm, it means that R(T,—AI) is closed and therefore R(T,—\I) =

L?(0,1). That leads to the bijectivity of T, —AI, which contradicts with A € 04(T,). O

3.4.3 The proof of Theorem 3.19

N[ =

Proof. To prove (i), it is equivalent to prove that i, > % forall k =1,2,...and v >

Indeed, since v > %, we have the following inequality (see [25]) for all k = 1,2,.. .,

s +k7r 1> +7r—1
vt ——=2>v
Jvk 2 9 = 2 )
SO
(1 i 1 . >1+ T—3 >1
— = —— - — —_— -
TRy ) =2 T 1) T 2

Thus e = 1+ (1 — )%, > §.
To prove (ii), from [25] we obtain that for fixed z > 0, we have
. ,jll,V.l‘ .
lim —— =i(x), (3.44)
V—00 1%

where i(z) :=secf and 6 is the unique solution in (0, %) of tan @ — 6§ = mx. Using this

fact, and the definition of v, we can write

ANEZAY
Muk:1+(1_a)2j3k:1+<a_2> <Z>
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Define vy, = % (or equivalently, ap =1 — Q(E%l))’ then (3.44) implies that

fom = fym = 14 (am - ;)Qi%ﬁ) (1+0(1)),

where o(1) is a quantity that goes to 0 as m — oo. So for fixed z > 0 we find that

(notice that m — oo implies v, — 0o, which necessarily implies that a,,, — 17)

1 1
A 1= >~ A ().
i 1+ L2(2) (@)

It is clear from the definition of i(z), that i(x) is injective and that i((0,+00)) =
(1,+00), which gives that A(z) is injective and A((0,+00)) = (0,3). So we only need
to take care of the endpoints, that is 0 and %. Firstly, consider j,1, the first root of

Jy(x). Tt is known that (see e.g. Chapter XV of [46])
Jvl = V+O(V%) as v — 00.

Consider fim, = fim1 = 1+ (am — %)2 (14 o0(1)), where a, =1 — m, and o(1) goes

to 0 as m — oo. This implies that
4 .
Am, — £ as q, — 17,
To conclude the proof of (ii), recall that T, is compact for all a« < 1s0 0 € 0(T,,). O
Proof of Remark 3.22. Notice that part (i) in Theorem 3.19 gives

sup inf |x—y[/=0
2€0(Ty) Y€ (T1)
for all % < a < 1. Therefore, it is enough to prove
lim sup inf |z—y|=0.
a—=1" zeq(Ty) ¥€0 (Ta)
Indeed, the compactness of o(77) implies that, for any € > 0, there exists {z;} , €

o(T1) such that

€
su inf |x—y| < max d(z;,0(T,)) + =.
:EGU(Ii)“l)yEU(Ta)’ y| T =l ( ‘ ( a)) 2

Then part (ii) in Theorem 3.19 gives the existence of a. < 1 such that d(z;,0(Ty)) <

[T

forall o <a<landalli=1,... n.
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3.5 The spectrum of the operator T

Proof of Theorem 3.16. In order to find all the eigenvalues and eigenfunctions, we need

the nontrivial solutions of

1_
Let vy = %z, which is positive and never an integer. Equation (3.36) gives us its

general solution
u(z) = Clx%_aj,,o (Bxl™) + ng%_o‘J_l,o (Bz'™),

where 3 = Y=L The asymptotic of J,, when 0 < x << 1 yields

= a1

Clkl/o 1—2a C22V0

U~ Ty T 1z k0T (1 — 1)

so imposing u(0) = 0 forces Cy = 0. ie. u(x) = C’lx%_O‘J,,O (Bz1=%). Then u(1) = 0

forces [ to satisfy J,,(5) = 0, that is § must be a positive root of the Bessel function

1
5—Q
l—-a-

Ju,, for vy =

Therefore, we conclude that
1_ . _
uljok(x) = X2 aJVo(]llokxl a)v k= 1727"'

are the eigenfunctions and the corresponding eigenvalues are given by

N 1
T I A- )22,

k=1,2---.

The behavior of p,, is then obtained from the asymptotic of j,,; just as we did in

the study of the operators T,. We omit the details. O

3.6 Appendix: a weighted Sobolev space
For a > 0 and 1 < p < oo define

XOP(0,1) = {u e WLP(0,1); ue LP(0,1), 2% € LP(0, 1)} .

loc
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Notice that the functions in X*P(0,1) are continuous away from 0. It makes sense to

define the following subspace
X3P(0,1) = {ue X*P(0,1); u(l) = 0}.

When p = 2, we simplify the notation and write X® := X*2(0,1) and X§ := X%’Q(O, 1).

The space X*P(0, 1) is equipped with the norm

ully, = HUHLP(O,l) + Hxau,HLP(O,l) ’
or sometimes, if 1 < p < oo, with the equivalent norm

1
P

(HUHip(o,n + Hxa“/Hip(og))

The space X is equipped with the scalar product

1
(u,v)o = /0 (22 (2)v' (2) + u(z)v(2)) dz,

and with the associated norm

1
lulle = (el + 27|72 0y)
One can easily check that, for a > 0 and 1 < p < oo, the space X*P(0,1) is a Banach
space and X77(0,1) is a closed subspace. When 1 < p < oo the space is reflexive.
Moreover, the space X is a Hilbert space.
Weighted Sobolev spaces have been studied in more generality (see e.g. [35]). How-
ever, since our situation is more specific, we briefly discuss some properties which are

relevant for our study.

Theorem 3.33. For1 < p < o0, let 8 be any real number such that B—f—% > 0. Assume
that u € I/Vi)’f(O, 1] and u(1) = 0. Then

: (3.45)

B < H B+1, 7
H:E UHLP_CP’B t v Lp

where Cp g = ﬁ for 1 <p < oo and Cxpg = % In particular, for 1 < p < oo and

0<a<l,|ul,, =z, defines an equivalent norm for X3*(0,1).
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Proof. We first assume 1 < p < oo and write

/61 278 |u(2)|P dz = — /1 v (a7 () ") da — P (o)

€

< —/elx (mpﬁ |u(;v)|p)/dx

= _pﬁ/l 2P8 ju(z) [P da — p/1 2P () P2 u(z)u! () da.

€

Applying Holder’s inequality, we obtain

1 1 B
(1 ~|—pﬁ)/ P8 |u(x)|pd$§p/ $Pﬁ|u($)|l71ﬁ+l }UI(IEHd:L‘ SleﬁuHipluxﬁ'ﬂu’

€

e

Then equation (3.45) is derived for 1 < p < oo and Cp 3 = When p = oo, it is

1+p5

understood that ]lg = 0 and 8 > 0, so we pass the limit for p — oo in equation (3.45)

and obtain

[ < 5 =

Lo

O]

Theorem 3.34. For 0 < a < 1, 1 < p < oo, the space X*P(0,1) is continuously

embedded into
(i) C™ 30,1 f0<a<1l-Landp#1,
(i) L(0,1) for all g < oo zfa—l—f

(i) Lw—pﬁ(o,l) ifl—%<a§ 1 and p # .

Proof. For all 0 < z < y < 1, we write |u(y) —u(z)| < [Y]s*u/(s)] s™*ds. Applying

Holder’s inequality, we obtain

A ifp=1
__op 1—= FT . 1
‘y =1 — g p-1 1f1<p<ooandoz7é1—5
-1
’U(y)—U(JU)‘SCa,pHSQUIHLp \lny—lnx|p7 if1<p<ooanda:1—;1)
|y10‘—xl_a‘ ifp=occand a # 1
lny — In x| if p=ocand a =1.

(3.46)
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Then assertions (i) and (ii) of Theorem 3.34 follow directly from equation (3.46).
Next, we prove the assertion (iii) with u € X§%(0,1). That is, for 1 < p < oo,

1-— <a<1andu€W’p(01}W1thu()—O,Weclaim

loc

1\ _
ol et < oo () 27 el (347

If @ = 1, estimate (3.47) is a special case of (3.45). We now prove (3.47) for p = 1 and
0 < a < 1. Notice that, from equation (3.45),
ol oo < [[(zw)'|[ s
< a el + [l

<2 o],
Therefore,

1 1 1
/ |u(z dx——l/o @ u(z)|e 2 u(x)u (z)de — lim z|u(z)|=

(6] r—0t
1 1
< — a0 [ @
1 1-o 1
< 2% a7,
That is
1 (07
lull 1 < (a> 217 ||| - (3.48)

Then we assume 1 < p < oo and 1 — % < a < 1, we proceed as in the proof of

the Sobolev-Gagliardo-Nirenberg inequality. That is, applying the inequality (3.48) to

u(z) = |v(x)|”, for some v > 1 to be chosen, it gives

(/ ol dﬂ?) <7<;>a2l‘“ /0 @) o' ()| 2da.

Using Holder inequality yields

</ it dw) <7( ) 27 ||| </ [o()| > )

%. That is v =

Let % = > 1 and the above inequality gives the desired

pa
pa—p+1

result.
Finally, the assertion (iii) in the general case follows immediately from (3.47),

because ||lull;, < |lu—wu(l)||, + |u(1)], while v —u(1) € X3P(0,1) and |u(1)] <

(2po¢ + 1) ||u||oz,p‘ D
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We would like to point out that, by the assertion (i) in Theorem 3.34, we can define,

forl<p§ooand0<a<1—%,
XogP(0,1) = {u e X“P(0,1); u(0) = u(l) =0}.

Remark 3.26. Notice that the inequalities (3.45) and (3.47) are particular cases of
the inequalities proved by Caffarelli-Kohn-Nirenberg. For further reading on this topic

we refer to their paper [15].

Theorem 3.35. Let 1 < p < oo. Then X*P(0,1) is compactly embedded into LP(0,1)

for all a < 1. On the other hand, the embedding is not compact when o > 1.

Proof. We first prove that, for 1 < p < oo and 0 < a < 1, the space X3%(0,1) is
compactly embedded into L?(0,1). Let F be the unit ball in X37(0,1). It suffices to
prove that F is totally bounded in LP(0,1). Notice that, by equation (3.46), Ve > 0,

there exists a positive integer m, such that
HUHLP(O,%) < €, Vu S f
Define ¢(x) € C*°(R) with 0 < ¢ <1 such that

0 ifz<1
o(x) =
1 ifz>2,

and take ¢, (z) = ¢(mzx). Now ¢, F is bounded in WP(0,1), and therefore is totally
bounded in LP(0,1). Hence we may cover ¢,,F by a finite number of balls of radius e
in LP(0,1), say

P F C UB(Qz‘,G), gi € LP(0,1).
We claim that U B(g;,3¢) covers F .Z Indeed, given u € F there exists some ¢ such that
i
[ému = il Lr0,1) < €-
Therefore,
lw = gill eo,1) < lému = gill oo,y + 1w — Pl o010

<e+2 ||U”Lp(o%)

< 3e.
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Hence we conclude that F is totally bounded in LP(0,1).
To prove the compact embedding for X*P(0,1) with 1 < p < oo and 0 < « < 1,

notice that for any sequence {v,} C X%P(0,1) with |lv,[,, < 1. One can define

up(z) = vp(z) — vp(1) € X37(0,1). Then
lnllap = lleunll o = lz%vn] o < 1.

What we just proved shows that there exists u € LP(0, 1) such that, up to a subsequence,
un — u in LP. Notice in addition that [v,(1)|] < (2P% + 1) [[v][,,, < 2P* + 1, thus there
exists M € R such that, after maybe extracting a further subsequence, v, (1) — M.
Then it is clear that v, (z) — u(z) + M in LP.

We now prove the embedding is not compact when 1 < p < oo and o > 1. To do

so, define the sequence of functions

and

1
Clearly ||vp1p1) = 1 and 1 — (Hr < [unll o1y < 2. Also [lzuy |l o1y < It

6
>
means that {u,(z)}22, is a bounded sequence in X7(0,1) for & > 1. However, it has
no convergent subsequence in LF(0,1) since up, — 0 a.e. and [[un| p( 1y is uniformly

bounded below.

If p=oocand 0 < a < 1, take u € X**°(0, 1) and equation (3.46) implies that
[u(z) = u(y)| < Ca [|2°v|| oo 2 =y~

Therefore, the embedding is compact by the Ascoli-Arzela theorem. To prove that the
embedding is not compact for p = co and « > 1, define the sequence of functions
—peogfl <<
Pn(z) =
1 if 0 <z <t
We can see that ¢y, is a bounded sequence in X**°(0,1) for o > 1. However it has no

convergent subsequence in L°(0, 1) since ¢, — 0 a.e but ||¢y |~ = 1. O
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We conclude this section with the following density result, which is not used in this

chapter but is of independent interest.
Theorem 3.36. Assume 1 < p < 0.

(i) Ifp#1and0 < a<1-— %, we have that C*°[0, 1] is dense in X*P(0,1) and that
C°(0,1) is dense in Xgg"(0,1).

(i) If a >0 and o > 1 — Il), we have that C°(0,1] is dense in X*P(0,1).

Proof. For any 1 <p < oo, @ >0 and u € X*P(0, 1), we first claim that there exists a

sequence {e, > 0} with lim,_, €, = 0 such that:
e cither |u(e,)| < C uniformly in n, or
o |u(ey)| < |u(z)| for all n and 0 < x < €.

Indeed, if |u(z)| is unbounded along every sequence converging to 0, we would have
lim,_,o+ |u(z)| = 400, in which case we can define €, > 0 to be such that |u(e,)| =
ming_, o 1 |u(x)|, thus completing the argument. In the rest of this proof, for any
u € X*P(0,1), sequence {e,} is chosen to have the above property.

We first prove (i). Assume 1 <p<oocand 0 < <1— %. To prove that C*°[0, 1]
is dense in X*P(0,1), it suffices to show that WP(0,1) is dense in X*P(0,1). Take
u € X*P(0,1). Define

ule,) if0<z<e,
up(x) =
u(z) ife, <ax <1

Then one can easily check that u, € W'P(0,1) and that u, — u in X*P(0,1) by
the dominated convergence theorem. To prove that C2°(0,1) is dense in X;"(0,1), it
suffices to show that W, ?(0,1) is dense in X(:7(0,1), to do so, we adapt a technique
by Brezis (see the proof of Theorem 8.12 of [8], page 218): take G' € C*(R) such that
[G(#)] < [t] and

0 if |t <1

toif |t] > 2.
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For u € X(;7(0,1), define u,, = 1G(nu). Then one can easily check that u, € Cc(0,1)N
X*P(0,1) C Wol’p((), 1) and that u, — w in X*P(0,1) by the dominated convergence
theorem.

To prove the assertion (ii), we notice that it is enough to prove that C2°(0,1) is
dense in X(%(0,1). Indeed, for any u € X*P(0,1), define ¢(z) € C°(0,1] such that
|p(z)| < 1 with

1 if:<a<1
¢(z) =
0 ifo<a<i.
Define v(z) := u(z) — ¢(z)u(l), then v € XG¥(0,1). If we can approximate v by
vy, € C2°(0,1), then uy,(z) = vy () + ¢(x)u(1) belongs to C2°(0, 1] and it approximates
win X37(0,1). Solet @ > 1— % and 1 < p < oo, to prove that C°(0,1) is dense in
X%P(0,1), it suffices to show that Wy*(0,1) is dense in X3P (0,1). To do so, for fixed
u € X37(0,1), define
@x ifo<z<e,
un () = !
u(z) ife, <z <1l
Then u, € Wol’p(O, 1) and on the interval (0,€,) we have either |u,(z)| < |u(z)| and
lul, (z)| < ‘u(x—z)', or |uy(z)] < C and |ul,(z)| < € where C is independent of n. In both

Yu(z) € LP by Theorem 3.33, one can conclude that

cases, since a > 1 — % and x®~
Up, — w in X*P(0,1) by the dominated convergence theorem.
Fora=1-— % and 1 < p < oo, again, it suffices to prove that Wol’p((), 1) is dense in

X5P(0,1). For fixed u € X37(0,1), define

wen)lnen) e < po< e

1-Inz
u(zx) ife, <z <1,

One can easily check that u, € C[0,1] N X*P(0,1) and u,(0) = u,(1) = 0. On the

interval (0,€,), we have either |u,(x)| < |u(z)| and |u),(z)] < m(lfffgl‘m), or |u,| < C

and |ul, (z)] < ﬁ where C' is independent of n. Notice that by using the same

1
trick used in estimate (3.28), one can show that z~ »(1 — Inz)~'u € LP(0,1) for any
1_7? . .
u € X, pp((), 1) with 1 < p < oo. Therefore, one can conclude that u, — w in

XP(0,1).
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The above shows that that {u € C[0,1] N X*P(0,1); u(0) = u(1) = 0} is dense in
X3%(0,1). Finally, notice that by using the same argument used to prove (i), we obtain
that Wol’p((), 1) is dense in {u € C[0,1] N X*P(0,1); u(0) = u(1) = 0}, thus concluding

the proof. ]
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Chapter 4

A singular Sturm-Liouville equation under

non-homogeneous boundary conditions

4.1 Introduction

In Chapter 3 we studied the equation (3.1), with (weighted) homogeneous Dirichlet and
Neumann boundary conditions at the origin. In order to conclude that the boundary
conditions used in Chapter 3 are the only appropriate boundary conditions, we inves-
tigate the existence of solutions for equation (3.1) under the corresponding (weighted)
non-homogeneous boundary conditions at the origin.

Without loss of generality, we always assume that f = 0 in (3.1). Consider the

following (weighted) non-homogeneous Neumann problem,

— (2®/(2)) +u(z) =0 on (0,1),

u(1) =0, (4.1)
1 "(z) =1,
T (o) (2)
where

x2 ifo<a<l,

Ya(z) = l‘3+2\/g if =1, (4.2)

30 :clfa

rzel-a ifa>1,
\

and the following (weighted) non-homogeneous Dirichlet problem,

— (**/(z)) + u(z) =0 on (0,1),

u(1) =0, (4.3)
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where

1 if0<a<i,

_ . 1
(I-Inz)™! ifa=3,

Pa(x) = { g20-1 if% <a<l, (4.4)
252 fo=1,
. z1701
r2el-o if o > 1.

\

We have the following existence results for (4.1) and (4.3):

Theorem 4.1. Given o > 0, there exists a solution u € C*(0,1] to the Neumann

problem (4.1).

Theorem 4.2. Given « > 0, there exists a solution u € C*(0,1] to the Dirichlet

problem (4.3).

Remark 4.1. The solutions given by theorems 4.1 and 4.2 are unique. This has already

been proved in Chapter 3.

Remark 4.2. As one will see in the proof, when o > %, the solution of (4.3) is a
constant multiple of the solution of (4.1) and the constant only depends on «.. Therefore,
when o > %, the boundary reqularity of the solutions to both problems is automatically

determined by the weight function ¢, given by (4.4).

m1—2a_1

Remark 4.3. When 0 < a < %, by introducing a new unknown (e.g. i = u — 5~

for equation (4.1) and @ = u+(x?—1) for equation (4.3)), both problems can be rewritten
into the corresponding homogeneous problems with a right-hand side f € L*(0,1), and
therefore the existence, uniqueness and reqularity results from Chapter 3 readily apply.
Howewver, in this case, we still provide a proof of independent interest for the Neumann

problem via the Fredholm Alternative.

4.2 Proof of the theorems

Proof of Theorem 4.1 when 0 < a<1l. Let 0 < a<land 1l <p< i We introduce

the following functional framework. Recall the following functional space defined in



73

Chapter 3,
X§P(0,1) = {u € W0, 1); we LP(0,1),2%' € L/(0,1),u(1) = 0},

equipped with the (equivalent) norm |ul, , := [|z*u/[|, (Theorem 3.33). Define £ =
X3P(0,1) and F = X%’pl(O, 1) and notice that since 1 < p < oo, both E and F are
reflexive Banach spaces.

For w € F and v € F, we define B : E — F* by

1
B(u)v:/0 22 (z)' (z)dz.

We claim that B is an isomorphism. Clearly B is a linear bounded map with || B(u)|| g <
||u|| 7, so we only need to prove its invertibility.

To prove the surjectivity of B, consider the adjoint operator B* : F' — E* given
by B*(v)u = B(u)v. It suffices to show that (see e.g. Theorem 2.20 in [8]) ||v||p <
||B*(v)||E*. Indeed, let g be any function in LP(0,1) with [[g[[, = 1, and consider

f s7%g(s)ds. Notice that z%uy(r) = g and u(1) = 0, thus |lugl|, =

z%ul|l =||g|l, = 1. Therefore u, € E and by definition we have
gllp p 9

1B g >

Since the above inequality holds for all g € LP(0,1) with || g||p = 1, taking supremum
over all such g yields [|v]|p = [[2*V'[|,; < |B*v| 5 as claimed.

To prove the injectivity of B, assume that B(u fo 2/ ( (x)dz = 0 for all
v € F. Taking v € C2°(0,1) C F implies that :L‘Qo‘u’(:z‘) = C for some constant C.
Furthermore, by taking v € C*°[0,1] with v(0) = 1 and v(1) = 0 gives that C' = 0.
Hence u is constant and it must be zero.

Next, we define K : E — F* by
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Clearly this is a bounded linear map, with ||K(u)|/z < C|lul/g. Also since the em-
bedding F < LP(0,1) is compact when a < 1 (Theorem 3.35), we obtain that K is a
compact operator.

Finally, consider the operator A : E —— F™* defined by A := B + K. Then,
the Fredholm Alternative theorem (see e.g. Theorem 6.6 in [8]) applies to the map
A:E+—— F defined by A:= B 'oA=1Id+ B !0 K and we obtain

R(A) = R(A) = N(A*)t = N(A")*.
We claim that N(A*) = {0}. Indeed, A*v = 0 is equivalent to

/01 a:mu'(x)v/(a?)dx + /01 u(z)v(z)dz =0,

for all u € E. By taking u € C2°(0,1) we obtain that (22*v'(z))’ = v(x). Taking
u in C*°[0,1] with u(1) = 0 and u(0) = 1 implies that lim,_ o+ 22*v(x) = 0. Since
v € F we have that v(1) = 0. That is, v satisfies equation (3.1) with the homogeneous
Neumann boundary condition as in Chapter 3. Hence the uniqueness result applies and
we obtain v = 0. This proves that N(A*) = {0}, which implies R(A) = F*. Therefore
the equation Au = ¢ is uniquely solvable in F for all ¢ € F™*.

Using the above framework, take ¢(v) = —v(0), Vv € F. Since 1 < p < 1, we

can apply Theorem 3.34, and obtain that the space F' is continuously embedded into

C0,1], so ¢ € F*. Then a direct computation shows that the solution u € F of Au = ¢

is in fact in C°°(0, 1] and it satisfies (4.1). O
Y
Proof of Theorem 4.1 when o = 1. One can directly check that u(z) = — 1+2\/5x 74
9 71J2r\/5 1
v solves

— (2% (z)) +u(z) =0 on (0,1),

u(1l) =0,
3+V5
lim 273 u'(z) =1
z—07t
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Proof of Theorem 4.1 when o > 1. Define!
1 [e] tzl_a
I(z) := xlza/ (1—t3)2eTe a1 dt

-1

and

3a-2 a 3a— 2
A=—(a—1)2e=2220-DT .
(a—1) <2a - 2)
We claim that
—(z%*T' () + I(x) = 0 on (0,1],
- pl—a

lim+ m%eﬁf(m) = A.
z—0

Indeed, it is straightforward to check that —(z2I'(x)) + I(x) = 0 on (0, 1]. Moreover,

the dominated convergence theorem implies that, as x — 07,

3a 2l

rz el ['(x)

=(1 - 2a)z® (o — 1)‘;’3:3 /0 (—=2r — (o — 1)7"2530‘_1)2(“&*1) e"dr
_ogl—a
a—1
3a—2 0 fe
— (@ = 1)z (o — 1)2a2 /%la r(=2r — (a — 1)r?g* h 2D dr
a—1
— (a— 1)% /0 (=2r — (o — 1)r2:ca_1)2<aa*1>erdr
_ogpl—a
a—1
3a—2 0 e
— — (a—1)2=2 / (=2r)2=De"dr
—0o0

=A.

From Theorems 3.14 and 3.15, we know that there exists a unique solution w € C'*°(0, 1]

for the homogeneous equation

— (2% (2)) + w(z) = IE{}) on (0,1),

w(l) =0,
3a pl—o
lim z2 e == w'(z) = 0.
z—0t

Therefore, by linearity, u(x) = w(z) + (I(I)A& € C*(0,1] solves (4.1) for > 1. O

' A variant of this function can be found in Chapter IIT of [46], page 79.
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Proof of Theorem 4.2 when 0 < a < % From Theorems 3.1 and 3.2 we know that there

is a unique function w € C*°(0, 1] solving
— (2% (2)) + w(z) = —22a + 1)z** 4 (2 — 1)  on (0,1),
w(0) = w(l) =0.

Then by linearity, u(z) = w(z) — (2 — 1) solves

— (z*w'(z)) +w(x) =0 on (0,1),

O]

Proof of Theorem 4.2 when % < a < 1. We know from Theorem 4.1 that there exists

w € C*°(0, 1] solving the Neumann problem

— (:L‘zo‘w’(x))’ +w(z)=0 on (0,1),

w(1) =0, (45)
. 2c0, /1 _
xlg(r]{r z*w'(z) =1

Define

We claim u solves
— (2% (2)) +u(z) =0 on (0,1),
u(l) =0,

lim 22 tu(z) = 1.
z—0t

Indeed, from (4.5) we know that there exists 0 < €y < 1 so that

<w'(z) < 3

S 52a V0 < x < €.
T

2:6204

Since % < «a < 1, by integrating the above inequality, we obtain that

lim |u(z)| = lim |w(z)| = co.
lim_u(o)| = lim_fu(o)|
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Therefore L’Hopital’s rule applies, and we obtain that

200,/
1
lim 22 ly(z) = lim zu(z) =1, when - <a <1,
x—0t r—0t 1 — 20{ 2
and

1
lim u(@) = — lim xu/(z) =1, when a = —.
z—0t 1 —Inz z—0+ 2

Proof of Theorem 4.2 when o = 1. One can directly check that u(z) =2~ 2  —z 2

solves

— (2% (z)) +u(z) =0 on (0,1),

u(1l) =0,
lim :c1+2\/gu(a:) =1
xz—07t

O]

Proof of Theorem 4.2 when o > 1. We know from Theorem 4.1 that there exists w €

C*°(0, 1] solving the Neumann problem
— (z%w'(z)) +w(xz) =0 on (0,1),

w(l) =0,

3 (L'l_&
lim 22 e T-o w'(z) = 1.
z—0t

Define u(x) = —w(z). We claim that w solves

— (2% (x)) +u(x) =0 on (0,1),

u(l) =0,
o zl—a
lim z2e = u(z) = 1.
z—0t+

3 z1—(1

Indeed, from the boundary condition lim,_,q+ 2 e 7= w'(x) = 1 we know that

hm+ lu(z)| = hm+ |w(z)| = 0.

z—0 r—

Therefore L’Hopital’s rule applies, and we obtain that

30 zlfa
. o zl7® . z2elau(x)
lim z2e -0 y(z) = lim ————— =1
z—0t z—0t 75560471 —1
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Chapter 5

A singular Sturm-Liouville equation involving measure
data

5.1 Introduction

In this chapter, we consider the following singular Sturm-Liouville equation

—(lz]**u) +u = on (—
(Jz[**u') +u = p (=1,1), (5.)

Here we assume that o > 0 and p € M(—1,1), where M(—1, 1) is the space of bounded
Radon measures on the interval (—1,1). An equivalent way is to view a bounded Radon

measure p as a bounded linear functional on Cy[—1,1]. That is,
M(=1,1) = (Co[-1,1])", (5:2)

where
Co[-1,1) = {¢ € C[-1,1]; ¢(=1) =¢(1) =0}

By a solution u of (5.1), we mean a function u such that

uwe LY—=1,1) nWEH[-1,1)\ {0}), |=]**u/ € BV(-1,1), (5.3)

loc

and u satisfies (5.1) in the usual sense (i.e., in the sense of measures).

We warn the reader that in the case when 0 < a < 3, although v € L'(-1,1)
(because BV (—1,1) C L*(—1,1)), we cannot conclude that v € WH1(—1,1), since v/
is not necessarily the distributional derivative of u on (—1,1). In fact, denote by Du
the distributional derivative of w on (—1,1), it is easy to check that

Du =+ ( lim u(z) — lim u(x)) 5o, (5.4)

z—0t z—0~
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where §y is the Dirac mass at 0.

In this chapter we investigate the following questions about equation (5.1).

(i) FEzistence of a solution. As we are going to see, equation (5.1) admits a solution
for every measure g when 0 < o < 1. This is not true anymore when « > 1; for
this case we will present in Theorem 5.4 a necessary and sufficient condition on

u for the existence of a solution.

(ii) Uniqueness of a solution. As we are going to see, equation (5.1) admits plenty of
solutions when 0 < a < 1 even for u = 0. Therefore it is natural to introduce
a mechanism which will select among all solutions the most “regular” one. This
solution will be called the good solution and we will establish its uniqueness in

Section 5.2.

(iii) Elliptic regularization. For any 0 < € < 1, we consider the following regularized
equation
—((lz] + €)**ug) +ue =p on (-1,1),
(5.5)
Note that by the theorem of Lax-Milgram there exists a unique solution u. €
H(—1,1) with u. € BV(—1,1). We will study in Section 5.5 the limiting behavior

of the family {uc} ., as e — 0.
We start with the definition of the good solution for (5.1) when 0 < a < 1.

Definition 5.1. Let 0 < a < 1. A solution u of (5.1) is called a good solution if it

satisfies in addition

)
lim u(z) = lim u(z), when 0 < a < 3,

z—0t x—0~
- -1
i 1 - L 1 -1 5.6
Jg{ﬁ (1 +1In |90|> u(z) zli%l— (1 +1n Ix\) u(zr), when o = 3, (5.6)

lim |z lu(z) = lim |z[?**lu(z), when i <a <1
\ z—0* z—0~

Our first result concerns the question of uniqueness.

Theorem 5.2. Assume p = 0 in (5.1). When a > 1, the only solution of (5.1) is

u=0. When 0 < a < 1, the only good solution of (5.1) is u = 0.
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Remark 5.1. When 0 < a < 1 we will prove in Section 5.8 that the class of all

solutions of (5.1) with u =0 is a one-dimensional space.
The following two theorems are about the question of existence.

Theorem 5.3. Assume 0 < o < 1. For each p € M(—1,1), there exists a (unique)

good solution of (5.1). Moreover, the good solution satisfies

(i) :lli% (1 +1In |71‘>7 u(z) = —mluron+ |z|u (x) = wlirgf |z|u/(z) = “({0} for a =1,
(ii) lim |2~ u(z) = - lim, o) _ lim. @) — sUOH) for L < <1,

(iti) |lull g < llullpg and [[u® 0 < llntl g for all 0 < a <1.

Theorem 5.4. Assume o > 1. For each p € M(—1,1), there exists a (unique) solution

of (5.1) if and only if pn({0}) = 0. Moreover, if the solution exists, it satisfies
(i) lim a|*u(x) = lim [z|**v/(z) = 0,
(ii) lull < el pg and [l g < [l ]|y
Remark 5.2. Given a > 0, denote
sup {[|ull 1 pe M(=1,1) and [[p] <1}, if 0 <a <1,

sup {[|ullpr; pe M(=1,1), [lullpe <1 and p({0}) =0}, if a > 1,
where u is the solution of (5.1) identified in Theorems 5.3 and 5.4. These two theorems
imply that ko < 1. In fact, we can further prove that ko, < 1 when 0 < a < 1. On the

other hand, ko, = 1 when o > 1. See Section 5.4 for the proof of this remark.

Remark 5.3. Assertion (i) in Theorem 5.4 is optimal in the following sense. Fix

z € (—1,1)\{0} and define

Jo(x) = sup {|x|2a |u’(m)

1€ M(=L,1), allpg < 1 and u({0}) = 0},

Ja(z) = sup {|z|*u(z)|; p € M(=1,1), ]z < 1 and p({0}) = 0},

where u is the solution of (5.1) corresponding to u and we assume that |z|>*u’ is right-
continuous (or left-continuous). Then 0 < 6o < Jo(z) < Cq, Vz € (—1,1)\ {0}, and
0 < 0o < Jolz) < Cy, Vz € (=3, 2)\ {0}, where 5o and C, are constants depending

only on a.. See Section 5.4 for the proof of this remark.
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Next, we consider the family {u,}.., where u, is the unique solution of the regular-

ized equation (5.5) and our main results are the following two theorems.

Theorem 5.5. Assume0 < a < 1. Then as e — 0, u. — u uniformly on every compact

subset of [—1,1]\ {0}, where u is the unique good solution of (5.1).

Theorem 5.6. Assume o > 1. Then as € — 0, u. — u uniformly on every compact
subset of [—1,1]\ {0}, where u is the unique solution of

—(JzPu) +u=p—p({0})d on(=1,1),
(5.7)

u(—=1) =u(1) = 0.
Remark 5.4. In Section 5.5 we will present further results about the mode of conver-

gence in Theorems 5.5 and 5.6.

Remark 5.5. The stability of the good solution when % < a <1 is a delicate subject.

1

For example, let p = 6o and let fn(x) = Cnp(nz — 1), where p(x) = X[z|<1je*”*~* and
O~ = [p, so that f, = &y in (Co[—1,1])*. Denote by u, the unique good solution
corresponding to fn. Then u, — u but u is not the good solution corresponding to dg.

This subject will be discussed in Section 5.6.

Remark 5.6. Given p € M(0,1), we can also study the equation

—(22) +u = on
( ) tu=p (0,1), (5:5)

Section 5.7 is devoted to equation (5.8) under several appropriate boundary conditions
at 0.

In Chapter 6, we will study the above-mentioned questions for the following semi-

linear singular Sturm-Liouville equation with o > 0 and 1 < p < oo,

—(lePou’y + [t = on (~1,1),
(5.9)
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Our study of (5.1) and (5.9) is motivated by various results about the (semilinear)
elliptic equation

—Au+|ulPlu=pu onQ,
(5.10)

u=0 on 09,
where 1 < p < o0, Q is a bounded smooth domain in RY and p is a bounded Radon
measure on ). The linear case of (5.10) actually goes back to Stampacchia [36, 37] (see
also Section 2 of Brezis-Strauss [13]).
For the semilinear case, the existence and uniqueness of an LP-solution of (5.10)
for all 1 < p < oo and p € L'(R) is proved by Brezis-Strauss [13]. When p is just a

bounded Radon measure, the following two cases were studied separately:
(i) 1<p< % if N > 3 and no restriction on p if N =1, 2,

Bénilan-Brezis proved the existence and uniqueness for case (i) and the nonexistence
for case (ii) if u = J, for some a € Q (see, e.g., [4] and the references therein). For case
(ii), a necessary and sufficient condition on p for the existence of a solution was given
by Baras-Pierre [2] (see an equivalent characterization by Gallouét-Morel [29]).

About the isolated (interior) singularity, Brezis-Véron [14] proved that the isolated
singularity is removable for case (ii). For case (i), Véron [40] classified the asymptotic
behavior of the solutions near the isolated singularity (a different proof was given by
Brezis-Oswald [11]).

Brezis [7] observed that, for case (ii) with u = J, where a € €2, a sequence of approx-
imate solutions may converge to 0, which is obviously not the solution corresponding
to p = d4. This phenomenon was then studied by Brezis-Marcus-Ponce [10] in a more
general setting.

We refer to Appendix A of Bénilan-Brezis [4] for a comprehensive review on this
subject, and to the monographs of Véron [41, 42] for a variety of results about the
singularities of solutions for more general classes of PDEs.

The rest of this chapter is organized as follows. We present in Section 5.2 some

properties of the differential operator (|z|?®w’)’, viewed as an unbounded linear operator
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on L'(—1,1). Theorem 5.2 will be a direct consequence of these properties. The non-
uniqueness result when 0 < a < 1 will be established in Section 5.3. The existence
results will be proved in Section 5.4. The elliptic regularization will be studied in Section
5.5. The lack of stability of the good solution when % < a < 1 will be investigated in

Section 5.6. Finally, equation (5.8) will be studied in Section 5.7.

5.2 An unbounded operator on L!(—1,1)

In this section we consider the unbounded linear operator A,: D(4,) C L'(—1,1) —

LY(—=1,1) where

Agu = — (|z)?u"), (5.11)
b= {ue L'(-1,1) WAL\ 0)); w(d) = u(~1) = 0, Jo*u’ € WH(-1,1)},
(5.12)
and
DNC[-1,1], when 0 < a < 1,
~ —1
DN {u; (1 Jrlnﬁ) u € C’[l,l]} , when a = %,
D(A,) = (5.13)

DN {u; |z lu € C[-1,1]}, when } < a <1,

l~?, when o > 1.

We shall present several properties of the linear operator A, which will be needed

to establish the main results stated in the introduction.
Proposition 5.7. The operator A, satisfies the following properties.

(i) For any o > 0, the operator A, is closed and its domain D(A,) is dense in

LY(—-1,1).

(ii) For any A > 0 and o > 0, I + M\A, maps D(A,) one-to-one onto L'(—1,1) and

(I +XA,)~L is a contraction in L'(—1,1).

(iii) For any A >0, a > 0 and f € L'(—1,1), esssup(I+AA,) "1 f < max {0, esssup f}.
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(iv) Let v be a mazximal monotone graph in R x R containing the origin. For any
a >0, letu e D(Ay) and g € L®°(—1,1) be such that g(x) € y(u(x)) a.e. Then
f_ll Aqu(z)g(x)dz > 0.

To prove Proposition 5.7, we start with two lemmas concerning the properties of

the functions in the domain D(A4,).

Lemma 5.8. Assume 0 < a < % For u € D(A,) we have

1t 1 /0
lim |z|?%/ (z) = / (Aqu) (1 - 81_20‘) ds — / (Aqu) (1 - |s|1_2°‘) ds, (5.14)
z—0 2 0 2 1
1 ! 1-2
=——— [ (Aqu)(1—|s|'2 1
u0) = =gy [ (o) (1= s ds. (515)
[l | e < 5 ||AauHL17 (5.16)
6
lullprr < =5~ 1 Aaulipr - (5.17)

Proof. Given u € D(A,), we denote K = hm |z|?*u/ (). Then,

|z 2 () = —/ Aqu(s)ds + K.
0

For z € (0, 1), this implies that

1—z!-
u(x) = ~T—%a /Aau ds+

K(l—=x
1 -2«

/Aau 51_20‘) ds
— 2«

12a

On the other hand, for = € (—1,0), we obtain that

O e . /0 Aqu(s)ds + /gc Aqu(s) (1 — |s|12) ds
1-2a J, 1-2a )4
K(1—|z|'2)
1 -2« '

Since 0 < o < 3, the relation u(0") = u(07) yields (5.14). The rest of the proof follows

directly. ]
Lemma 5.9. Assume o > % Then

D(Ay) = {u € D; lim [a/ (x) = o} , (5.18)
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where D is defined by (5.12). For u € D(Aqa) we have

1
H|x\2°‘u/“Loo < ||Aqul|;1, when a > 37 (5.19)
. 1\ 1
lim (14 In— u(z) =0, when a = —, (5.20)
z— |z 2
1\ ¢ 1
1+In— u S4HA;UH , when a = —, (5.21)
|| N z it 2
1
lim |z** tu(z) = 0, when o > =, (5.22)
z—0 2
2 |y < 4 |Agull 1, when a > 1 (5.23)
WhE = 20— 1 L 2

Proof. Given u € D(A,), we denote K = liH(l) |z|?%u’(x). We claim that K = 0 if and
r—

only if (1 +1In ﬁ) u € C[—1,1] for « = 3 and [z|**tu € C[-1,1] for a > 3.

When a = %, integration by parts yields

I ! 1 1
u(x) =1In x/ Aqu(s)ds + / Aqu(s)In gds — Kln = Vz € (0,1), (5.24)
0 T
I v 1 1
u(x) =In Tl Aqu(s)ds + Aqu(s)In Eds + Kln Tl Vo € (—1,0).  (5.25)
T -1

Notice that

1\t 1
lim (1+ln > / |Aqu(s)|In —ds
r—0t X T S

X ln(l —In 1’) E —Ilnx 1—}nz
< _ = 0.
< xlg(r)l+ ( T Ing / ) |Aqu(s)|ds + T o /x |Aqu(s)|ds 0

1-Inz

Similarly,

, I 1
lim (1+1In Tl |Agu(s)|In —ds = 0.
1

0~ x _ |s]

Therefore,

— lim <1+1n1)1u(x): lim <1+1n1)1u(x):K.

a0 ] 70~ ]

Thus K = 0 if and only if (1 —l—ln%)ilu e C[-1,1].

When a > %, the same computation implies that, for all z € (0, 1),

1— x1—2a T 1 Aau(s) 1— Sl—?a K(l - x1—2a)
u(z) = 1_205/0 Aqu(s)ds —i—/ 1(_ o )ds — o (5.26)
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and, for all z € (—1,0),

) = "I [ auisyas o [ AN O KOS

1 -2« _1 1 -2« 1 -2«
(5.27)
Notice that
1
lim a:2°‘1/ | Aqu(s)| s **ds
z—0t z
. v
< lim :Ca_2/ |Aqu(s)|ds —|—/ |Aqu(s)|ds | =0.
z—0t Nz x
Similarly,
lim |$|2a1/ |Aqu(s)||s|'~2%ds = 0.
z—0~ -1
Therefore
— lim |z** tu(z) = lim |z** lu(z) = K (5.28)
z—0t z—0~ 200 — 1 ' '

Thus K = 0 if and only if |z|?*1u € C[-1,1].

Recall that v € D(A,) and thus (1 +1In ﬁ)_l u € C[-1,1] when a = 1 and
|z[?**~1u € C[-1,1] when § < a < 1. When o > 1, the fact that u € L'(—1,1) together
with the relation (5.28) implies that K = 0. It completes the proof of (5.18). the rest

of the proof follows easily. O

We now start to prove Proposition 5.7. The idea is similar as the one for Theorem

8 in Brezis-Strauss [13]. We denote
Col=1,1] = {¢ € C'[=1,1]; (1) =¢(1) = 0} .

Proof of (i) of Proposition 5.7. Tt is clear that D(A,) is dense in L'(—1,1). To prove
that A, is closed, we assume that there is a sequence {uy},-; in D(A,) such that
up — u in LY(=1,1) and Aqu, — f in L'(—1,1). We need to show that u € D(A4,)
and Aqu = f. Denote f, = Aqu, and then {f,}°° | is Cauchy in L'(—1,1). By (5.17),
(5.21) and (5.23), we obtain

6 1
1\ ! 1
<1—|—ln|$|> (U, — Um) <A fn— fllp1, Whena:§,
LOO
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4
200 — 1

_ 1
H|x’2a ! | fn = fmllz2, when a > —.
2

(un — “m)HLoo <
These inequalities imply that u, — u in W&’l(—l, Dif0<a<3, (1-In l2)) " u, —
(1—Injz)) " u in Co[~1,1] if @ = L and |z]?*  u, — |22 1w in Co[-1,1] if @ > L.

To conclude that u € D(A,), we still need to show that |z|>**u’ € W11(—1,1). Notice

‘hal from (516) and (519) we Ob ain
n ml| oo — J?’L ,}m Lt

This implies that |z|?“u/, — |z|>**u’ in C[~1,1]. We can rewrite the identity f, = Aqun,
as

1 1
[ weacin= [ g v e e
1 ]

Passing to the limit as n — oo, we obtain

1 1
/|ﬁ%@w:/fw%we%}Lm
-1 —1
Thus |z|?*w € Whi(—1,1) and Ayu = f. O

The key ingredients in the proof of (ii) of Proposition 5.7 are the duality of L! and

L, and the following maximum principle.

Lemma 5.10. Let A > 0 and o > 0. For g € L>®(—1,1), there exists a function

u € D(Ay) such that (I + A Aqy)u =g and
min {0, essinf g} < u < max{0,esssupg}. (5.29)
Proof. Consider the Hilbert space

Xg(_]-v 1)

— {u€ L(~1,1) N Hp, (=L 1\ {0}); w(1) = u(~1) = 0, [¢]*u’ € L2(~1,1)},
with the inner product

1 1
(u,v)az/ |x|2au’v'd:v—|—/ uvdz.

-1 -1

All the properties listed in Section 3.6 for the space X§(0,1) can be inherited by

1

X§(—1,1) with some obvious changes. In particular, when 0 < a < 3, Theorem
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3.34 implies that every function w in X§(—1,1) is continuous on the intervals [—1, 0]
and [0, 1]. As a consequence, we can define

X¢(-1,1)NnC[-1,1], when 0 < a < 3,
H, = (5.30)

X§(—1,1), when o > 1.
It is closed in X§(—1,1) and therefore it is a Hilbert space. Then the Lax-Milgram
theorem yields that there exists an u € H, such that
1 1 1
)\/1 || 2%’V da + /1 uvdr = /1gvdx, Vv € Hg. (5.31)
Choosing v € C(—1,1) it follows that |z|**u’ € H'(—1,1) and (I +  \Ay)u = g.
When 0 < a < 3, we obtain that v’ € L'(—1,1) since |z[**«’ € L*°(—1,1). Therefore
u € D(Ay). When oo > 3, the existence results in Chapter 3 (Theorems 3.7, 3.11
and 3.14) imply that the solution given by (5.31) satisfies ili% |z|?/ (z) = 0, so we
deduce that u € D(A,) by (5.18). In order to prove (5.29), we use the Stampacchia’s
truncation method. Set K = max {0, esssup g} and take v(z) = (u(z) — K)" in (5.31).

The rest of the proof is the same as the one for Theorem 8.19 in [8]. O

Proof of (ii) of Proposition 5.7. We first prove that I + AA, is one-to-one from D(A,)
to L'(—1,1). Assume u € D(A,) such that (I + AA,)u = 0. We claim that u = 0.

For the case 0 < a < %, we argue by duality. Notice that

1 1
)\/ |2/ da +/ wvdzr =0, Yv € C°(—1,1).
-1 -1

Since C2°(—1,1) is dense in Wol’l(—l, 1), we find that
1 1
)\/ || 2" da: +/ uvdr =0, Yv € Wol’l(—l, 1).
-1 -1
By Lemma 5.10, for any g € L>(—1, 1), there exists v € H, C Wol’l(—l, 1) such that

1 1 1
)\/ || 2%w'v' dac +/ wudr = / gwdx, Yw € H,,
~1 ~1 -1

where H,, is defined in (5.30). Since u € D(A,) C H,, take w = u in the above identity.

We deduce that f_ll gudx = 0. As g is arbitrary in L°°, v must be identically zero.
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For the case a > 1, by (5.18) we obtain that u € C* ([—1,1]\ {0}) and it satisfies

~A(|z|?*vw) +u=0 on (0,1),

lim |z|?%/(z) = u(1) =0,
T, [+ () = (1)

and

=A|z]**w) +u=0 on (-1,0),

lim |z|?%/(x) = u(—1) = 0.

z—0~
By the uniqueness results in Chapter 3 (Theorems 3.8, 3.12 and 3.15), we obtain that
u = 0.

Next we prove that I + A\A, is surjective from D(A,) to L'(—1,1) and

la+2a07 5| < sl

Given f € L'(—1,1), we take a sequence {f,}°, in L>®(—1,1) such that f, — f

in L'(-1,1). For each f,, by Lemma 5.10 and identity (5.31), there is a function

un € Hy N D(A,) such that

1 1 1
)\/ || 2%l v da +/ upvdr = / frvdz, Yv € Hy, (5.32)
-1 -1 -1

where H, is defined in (5.30). On the other hand, Lemma 5.10 and identity (5.31) also

imply that for any g € L*°(—1,1) there exists v € H, such that

1 1 1
)\/ ]3:|2°‘u;11/dx+/ unvdx:/ gupdz, (5.33)

-1 -1 -1

and ||v]| e < ||g]| 0. Combining identities (5.32) and (5.33), we have

1 1
‘/ qupdx| = ‘/ fnvdx
-1 -1

lunllr < ([ fnll e - (5.34)

< [ fallpe 1ol oo < M fallzr llgll o -

Hence

Notice that identity (5.32) yields that Aqu, = } (f — up). Taking into account (5.16),

(5.19) and (5.34), we obtain

3
H|x|2au’/n,HLoo S X anHLl 5 Yo > 0.
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From (5.17) and (5.34), one deduces that

12

1
[unllpra < NI —2a) [fullgr, when 0 <a < ;.

2
It follows that:
(i) {un},o, is Cauchy in Wol’l(—l, 1) when 0 < o < 3,
(ii) {un}o; is Cauchy in L'(—1,1) when a > £,
(iii) {\m|2au;}zo:1 is Cauchy in C[—1,1] for all a > 0.

Passing to the limit in (5.32) as n — oo, we have

1 1 1
)\/ |z| 2%/ ¢’ dxe —l—/ uCdx :/ f¢dz, V¢ € C§[—1,1],
-1 1 ~1

where u € V[fol’l(—l7 1) when 0 < a < % and HII(I) |z[>*/(z) = 0 when « > . Therefore
r—

u € D(Ag), (I +Aa)u = f and H(I FAAl) ! fHLl < Ifll - 0

Proof of (iii) of Proposition 5.7. Let f € L'(—=1,1) and u = (I + MA) "' f. Ifesssup f =
400, there is nothing to prove, so we assume that esssup f is finite. Define f, =
max{f,—n}. Then f, € L>®(—1,1) and, for n large enough, esssup f, = esssup f.
Take u, = (I + AA)~" f, and Lemma 5.10 implies that

un, < max {0, esssup f,} = max{0,esssup f}.
Notice that

b flo=[ n-ns[ -0

On the other hand, |Ju, — u| ;1 < ||fn — fll;1 since (I +XA)~" is a contraction. There-

fore u, — u in L*(—1,1) and esssup u < max {0, esssup f}. O
Proof of (iv) of Proposition 5.7. Just apply Lemma 2 of Brezis-Strauss [13]. O
We conclude this section with the

Proof of Theorem 5.2. Assertion (ii) in Proposition 5.7 implies that the map I 4+ A, is
one-to-one from D(A,) to L'(—1,1). Therefore Theorem 5.2 follows. O
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5.3 Non-uniqueness when 0 < o < 1

In this section we present a complete description of all solutions of (5.1) when p = 0
and 0 < a < 1. Throughout this section we assume 0 < o < 1.

We know from Theorem 4.1 that there exists a unique function V' € C*°(0,1] N
L'(0,1) such that
—(@2*V"Y +V =0 on (0,1),

V(1) =0, (5.35)

Set

V(z) forz e (0,1),

Uz) = (5.36)

—V(—z) forz € (—1,0).
We claim that U is a solution of (5.1) with g = 0. Indeed, since |z|>*U’ € C[-1,1], we
obtain that

(lz)*U") =U  in D'(~1,1)

and thus |z|?*U’" € WH1(—1,1) with (|:c\2°‘U’(x))/ = U(z). However, U is not a good
solution. Otherwise we could apply Theorem 5.2 and conclude that U = 0. This is
impossible since ilir(l) 2?20 (z) = 1.

Using this function U we may now describe all solutions of (5.1) with = 0.
Theorem 5.11. A function u is a solution of (5.1) with u = 0 if and only if
u=71U
for some T € R.

Proof. By linearity, since U is a solution of (5.1) with g = 0, then 7U is a solution of
(5.1) with g = 0. On the other hand, if u is a solution of (5.1) with u = 0, we have

|z|?*u € WhH1(—1,1) and we denote lir% |z|?*u’(x) = 7. Then the function v = u
€T —>

(0,1)
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satisfies

lim 22%/(x) = 7.
z—0+t

By the uniqueness results in Chapter 3 (Theorems 3.5, 3.8 and 3.12), we deduce that
u=7U on (0,1).

Similarly, v = 7U on (—1,0). Thus u = 7U. O

Remark 5.7. The function V is strictly increasing and

V(0) <0, if0<a<i,
lim V(z) = (5.37)

z—0t .
—00, zf% <a<l

Proof. We first claim that V' > 0 on (0,1). Indeed, integration by parts yields

/1 2 (V’(t))th + /1 VE(t)dt = —%ﬁa% (V(z))?, Vx € (0,1).

T

We deduce that |V| is monotone and thus V' doesn’t change sign. Then V is also
monotone. Recall that lim z2*V'(x) = 1, we obtain that V' > 0 on (0, 1).
z—0

Next we claim that V/ > 0 on (0,1). Otherwise, denote
zo =min {z € (0,1); V'(z) =0} .

We obtain that x¢ € (0,1) and V(x¢) = V'(xg) = 0. The uniqueness of the initial value
problem for V at x implies that V = 0 on some neighborhood of x¢. It contradicts the
definition of xg.

Then we prove (5.37). When 0 < a < %, the regularity results (Remark 4.3 and
Theorem 3.4) imply that V € C[0,1]. Obviously V(0) < 0. When 1 < a < 1, note that

— lim (1+W) 7 V() ifa=1,
1= lim 2*V'(z) = e=07

—0t
’ —(2a—1) lim 21V (2), if § <a < 1.
z—0

Then (5.37) holds. O
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5.4 Proof of the existence results

We start with the proof of Theorems 5.3 and 5.4. Given p € M(—1,1), there exists a
sequence {f,}°° | € L®(—1,1) such that f, — p in (Co[—1,1])*. By assertion (ii) in

Proposition 5.7, there exists a unique u, € D(A,) such that

1 1 1
/ || 2%l ¢ da +/ upCdr = / fuCdx, V¢ € C3[—1,1], (5.38)
-1 1 -1

where D(A,) is defined by (5.13).

Proof of Theorem 5.3. Notice that || f,||;1 < C, where C is independent of n. Then

Lemma 5.8 and Lemma 5.9 imply that

~ 1
oo + [[l2P | oo + ([ (2P0 || < € 0 <<, (5-39)
1\ ! ~ 1
lunll 1 + H]w|u;HW11 + <1 +In |55‘> Uy, <C, ifa= 3 (5.40)
W1,1
1
llunll 1 + H]az\Qo‘ugme + H|x]2a*1unHW1,1 <C, if 3 <a<l, (5.41)

where C is independent of n. For all these three cases, there exists a subsequence ny
such that u,, — win L'(—1,1) and |z[**u,, — |z[**u in L'(=1,1). Passing to the
limit in (5.38) as k — oo, it follows that

1 1 1
/ \xl%’é’dH/ qu:cz/ Cdp, V¢ € CA[-1,1].
-1 1 -1

When 0 < a < 1, estimate (5.39) implies that |Ju},||;, < C H |:1c|_2°‘HLq for some fixed
q€ (1, i) Therefore the sequence u, is bounded in W14(—1,1) and thus u,, — u in
Co[—1,1]. We conclude that u is a good solution of (5.1).

-1

When a = %, estimate (5.40) implies that (1 +1In ﬁ) u € BV(—1,1). Assume

that
1\ 1
lim <1 +1In > u(r) = A"

20 ]

and

1\ 1
lim <1+ln ) u(z) =A".

70~ ]
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If AT = A~, then u is the good solution. Otherwise, we make the following “correction”

by defining

At — A-
i=ut U,

where U is given by (5.36). It is easy to check that

1 -1 1 -1 A+ A,
Jim, (1—|—ln‘x’> i(z) = lim <1—|—ln \w!> a(z) = +

Therefore 4 is the good solution of (5.1).

When § < o < 1, estimate (5.41) implies that |z[**~!u € BV (—1,1). By a similar
“correction” one can obtain a good solution of (5.1).

Assertions (i), (ii) and (iii) will be proved in Section 5.5. O

Proof of Theorem 5.4. Suppose u({0}) = 0. We claim that there exists a solution of

(5.1). The same as the proof of Theorem 5.3, we apply Lemma 5.9 to obtain
unll g2 + ([l ||y + (122 ] yrn < C,

where C is independent of n. It follows that |z[**u), — |z[**’ in L'(—1,1) and that

Up, — w uniformly on any closed interval I C [—1, 1]\ {0}. The Fatou’s lemma implies

that u € L*(—1,1). Passing to the limit in (5.38) as k — oo, we obtain

1 1 1
[ beucis s [Cugdo= [ cdp o e cl-r oy )
1 -1 1

Here we use the same device as in Brezis-Véron [14]. Let ¢(x) € C*°(R) be such that
0<¢p<1,p=00n (-3, 35) and ¢ =1 on R\(—1,1). Let ¢, (z) = ¢(nz). In (5.42),

perform integration by parts and replace ¢ by @,¢ where ¢ € C?(—1,1). It follows that

1 . 1 1
—/ u (]a:\zo‘(cpn@') dx —i—/ upppdr = / onddu, Yo € C?(=1,1). (5.43)
—1 1

For each individual term on the left-hand side of (5.43), we obtain

1 1
/ 22 () p(n) " (2)dx — / 22 (2)§" (),
-1

-1

1 1
Za/ u(z) sign z|z|**Lp(nz) ¢ (z)dr — Za/ u(z) sign z|z|>* 1/ () dz,
1 _

1
1 1
/ w(z)p(nz)d(z)dz — / u(a)s(o)dr

-1
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2n/n |z ?“u(z) (nx) ¢ (x)dx

2
< n2a—1 HQO/(WHLOO HUHLl(_%,_%) -0,

3=

1
2an /

n? / " (@) 22 () () dx

. _ 2c
u(z)sign efal? 1 () ()| < — o |60 o Nl 1 1) = 0,

3=

1
S a3 0" | 1o lull -2 1y = 0.

3=

For the right-hand side of (5.43), notice that u({0}) = 0 and therefore the Dominated

Convergence Theorem implies that

1

1
iim [ e = [ on

n—oo J_

Thus
1 1 1
/ !xP“u’¢>’daz+/ u¢dac:/ ddp, Yo € CH(—1,1).
-1 -1 -1

Therefore u is a solution of (5.1).

Conversely, assume that u is a solution of (5.1). We claim that ({0}) = 0. Indeed,

we have

1 1 1
—/ u (|x]2aC’)lda;+/ udx :/ Cdp, V¢ € C(—1,1). (5.44)
~1 —1 -1

Take ¢ € C°(R) such that ¢ =1 on (—1,1), suppp C (—2,2) and 0 < ¢ < 1. Replace

((x) by ¢(nz) in (5.44). Then for each individual term on the left-hand side of (5.44)

we have
2

nQ/n u(z)|z|*" (nx)dz

2

2om/n u(z)|z|** 1! (nx) sign xdx

< 92a HSONHLOO ||u||L1(7%’%) — 0,

S

< a220¢ HSDIHLOO HuHLl( ) - 07

3

_2 2
n’n

/1 u(z)p(nx)dx — 0.

1

For the right-hand side of (5.44), we have

/_11 @(nx)d/t:#({o})+/ ] go(n:c)du+/ o(na)dp.

(07;} [_%70)
Note that
lim p(nx)dp = lim p(nx)dp =0,
e (0,2 e J-2.0)
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since
. 2 . 2
lim p ((O, ]) = lim p <[—,O>> =0.
n—o0 n n—00 n
Therefore, 1 ({0}) = 0.

Now assume that the solution exists. We prove assertion (i). Notice that |z|>**u? €

Wbt (=1, 1]\ {0}). Since [z[2*~'u € BV(~1,1), we have
(]:C|2°‘u2)/ = 2|:C|2O‘u’u + 2a(signx)|1:]2a_1u2 = Ll(—l, 1).

That is |z[**u?|o1) € WH(0,1) and |z[**u?|(_1 ) € W1 (—=1,0). Therefore, the one-

sided limits lim+ |z|%|lu(z)| and lim |z|%|u(z)| exist. They must be zero. Otherwise,
z—0 z—0~

we obtain a contradiction with u € L*(—1,1). The fact that u € L'(—1,1) also forces

hm |z|?*u/(z) = 0. Assertion (ii) will be proved in Section 5.5. O

Proof of Remark 5.2. Given 0 < a < 1, from Chapter 3 we obtain that there exists a

unique ¢, € WH1(0,1) N H?

loc

(0,1) such that ¢, > 0 on [0,1] and

_(x2a¢;)/ +¢a=0 on (0’ 1)7
2a 4/ _ —
lim 226, (@) = 0, ga(1) =1
Since ¢, (x) = :1:20‘ Jo @a(t)dt > 0, we deduce that ¢,(0) € (0,1). One can easily check
that Go(z) =1 — ¢a(|z|) € VVO1 1(=1,1) satisfies
—(|z|**G.) + Goa =1 on (—1,1),

Ga(1) = 0.

Moreover, hm |z|*G.,(z) = 0, G, > 0 and H[laf(u Go = G4(0) =1 — ¢(0) € (0,1).
Te|—

When 0 < o < 1, we claim that k, = G4(0). Indeed, for any p € M(—1,1) and its

corresponding good solution u, we have lin%) |z|2*G”, (x)u(x) = 0. Therefore integration
r—

1 1 1
/ Godp :/ |lz| 2%’ G, dx —|—/ uGodz
—1 -1 —1

1 1
= —/ u(|m|2O‘G'a)’dx—|—/ uGodx
-1 -1

1
:/ udzx.
-1

by parts yields
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If £ >0, then u > 0 a.e. and ||u ;1 < Ga(0)||g]| o For a general p € M(—1,1), write
w=pt —p~. Let uy (resp. uz) be the good solution corresponding to ut (resp. p™).
Then the linearity of equation (5.1) and the uniqueness of the good solution imply that
u = uy — up. Therefore we obtain that [jul[;1 < G(0) ||g[[ 1. On the other hand, take

tn = 01, the Dirac mass at %, and let u, be its corresponding good solution. Then

. . 1
lim |jup||; = nh—>120 Ga <n> = Gy(0).

n—oo

As a consequence, ko = G4 (0).

When a > 1, take

o720 — 1, if 2] € (5, 1],
U () =
n2e=l 1 if 2| € [0, %] )
and define
fn, = Up + (2a0—1)01 + (200 — 1)d_1.
It is easy to check that w, solves
—(lz[**up)" + un = pn on (=1,1),
Un(—1) = u,(1) = 0.

Since ||up|| ;1 — 0o as n — oo, we obtain that

ka Hun”Ll _

“on el

Recall that k, <1 and therefore k, = 1. O
We conclude this section with the

Proof of Remark 5.3. For fixed z € (—3,3) \ {0}, take

2 1
(5 + 220+2) [y |20 t—z+ §|x| X(2—Lz|~z)

2 1.
(5 + 220+2) [z[20 \© T 5’33‘ 1) X(za+Lale)

It is straightforward that u € W, ™ (=1,1), == —(|t|**u/) +u € M(~1,1), il <1

u(t) =

+

and p({0}) = 0. Moreover, |z|* |u(z)| = 5+2+a+2 and |z|2* |u/(x)| = M% It follows



98

that Jo(7) > sherr and Jo(z) > sgberr. On the other hand, forallz € (=3, )\ {0},

notice that

Jo u(s)ds — f(OJ] dp, x>0,

— [Ju(s)ds + Jw0y s © <0,

o (x) =

1 1
(|| *u(z))? = —2/ |52/ (s)u(s)ds — 2a/ (sign s)|s[** Lu(s)u(s)ds.

[un

Since lul ;1 < [|g]| oy, it follows that Jo(z) < 2 and Jo(z) < (2 + 2;‘:31)5. Therefore,

the proof is complete. O

5.5 The elliptic regularization

For any 0 < ¢ < 1, by the Lax-Milgram theorem, since M(—1,1) ¢ H~*(—1,1), there

exists a unique u, € H}(—1,1) such that v, € BV (—1,1) and

1 1 1
/1 (] + €)™ ulv'da —1—/1 uevdr = /lvdu, Vo € HY(—1,1). (5.45)

In particular, take v € C}[—1,1] and it follows that u. solves (5.5). Take v, = p(nuc)
where ¢ € C*°(R) and ¢’ > 0 such that ¢ = 1 on [1,00), ¢ = —1 on (—o0,—1] and
©(0) = 0. Notice that
1 1
/_1 (|| + €)** ulvl, da = /_1 (J] + €)% [ul|>¢ (nue)dz > 0.

Then
1 1
el pr 11y = 1111—{20 /_1uevndx < nhjgo/_lvndﬂ < el pg=1,1y - (5.46)
We now examine the limiting behavior of the family {uc},., and we are going to

establish the following sharper form of Theorems 5.5 and 5.6.

Theorem 5.12. Given o > 0, As ¢ — 0, we have

(|| + €)** u! — |z** in LP(=1,1), Vp < cc. (5.47)
Moreover,
1
ue — u in Co[—1,1], if 0 < a < 3 (5.48)

1

1\ 1\
il in LP(— o
<1—i—ln ]:c|+e> Ue — <1+ln |93|> w in LP(—1,1), Vp < oo, if a 5 (5.49)
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1
(|| + €)** ue — |2 u in LP(=1,1), Vp < o0, if a > 5 (5.50)

Here u is the unique good solution of (5.1) when 0 < a < 1, and w is the unique solution

of (5.7) when o > 1.

Proof of Theorem 5.12 for 0 < a < % Take v = u, in (5.45) and it follows that

(HUeHL2+H (|| 4 €)* HL2 52”:“”/\4 l|tell oo -
Notice that wu,(z f L uc(t)dt and therefore
1 2
Jul - < HMH el + 0 w1 < g el +
Thus
4
luell g2 + || (J2] + )" ug]| 2 < T ag 1l

For a fixed ¢ € (1, ﬁ), we have

1
24

Jolzr < Wl + 0wl | g, e

< C (Il + ) u| 2

where C' is independent of e. Therefore the family {uc},., is bounded in I/VO1 4(—-1,1)
!/
(ol + )| <
M
2|1tllr;. Thus the family {(|x| + )X u’}  is bounded in BV(~1,1). Then (5.47)
>

where g € (1 ) Taking into account (5.46) we obtain that

2
’ 20+1
and (5.48) hold for a subsequence {e,},-; with €, | 0 as n — oco. Passing to the limit

n (5.45) as n — oo, we obtain

1 1 !
/ |22/ v da: +/ wvdr = / vdp, Yo € Co[—1,1].
1 -1 -1

In particular, u is the good solution of (5.1). Notice that the above argument also
shows that any convergent subsequence of {uc} ., converges to the good solution u.

The uniqueness of the good solution and “the uniqueness of the limit” (see, e.g., page

392 of [8]) imply that (5.47) and (5.48) hold for the whole family {u.} .. O
Proof of Theorem 5.12 for a = 3. Since ((|z| +€) ul) = ue — p and (|z| + €) u. € BV,
we denote K7 = lim u/(x) and K. = lim u/(z). Without loss of generality, we can

z—0t z—0~

write

(|Jz] + €) ul(z) — eKS = —/ du—i—/ ue(s)ds, Vr € (0,1),
(0,z) 0
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and

0
— (2| + e)ul(z) + e K. = —/ d,u—l—/ ue(s)ds, Vo € (—1,0).

(2,0)

Then integration by parts implies that, for = € (0, 1),

1 x
ue(z) =In ( + €> —eKF +/ du —/ ue(s)ds
T+ € (0,z) 0

! 1+e I+e
_/x u5(3)1n<5+6> ds—i—/[x’l)ln(S_i_E) du(s), (5.51)
and for x € (—1,0),

1+e 0
€ =1 K- - €
uele) n<\x|+e> (6 ‘ Jr/(x,o) an /oc ! (S)ds>
x 1+4+¢ 1+4+¢€
— ue(s) In d3+/ ln< >dus.
[ (5755 o sl ) #)

By the relation u(0%) = u(0~), we have

1 1+e€
eK! +eK, :/ (signs)In <> du(s)
I (55) Je0000) |s| + €
1 L 1+e
_ @ /1(51gns)u€(s) In (S‘ n 6) ds.
Also recall the relation eK* — eK. = —p ({0}), so we deduce that

1 1 1+e€
eK =— ({0 +/ sign s ln< )d,us
2OV S0 5 Jcroon "8 e 44

_ 11) / " (sign 8)u.(5) In (He) ds, (5.52)

2In (1<) 4 |s| + €

€

and

1 1 1+e€
eK. =-p({0}) + E/ sign s 1n< ) du(s
210D 21n (+F°) (—1,o>u<o,1>( e ) 4

1 1 1+e¢
_ _ - (s)In [ —— ) ds.
21n (1<) /-1(8%“3)“ (5)n (rsr +e> ’

It is easy to check that [eKF| < 2 ||ull\ and [eK7| < 3 ||u]| o since [Juel|;1 < |1l -
Moreover, by the above integral forms of (|z|+€)u. and u., a straightforward calculation

implies that

1 -1
1+In— Ue
|x| + €

+ || (=] + €)u2HBV(—1,1) <G
lel(*l,l)
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where C' is independent of e. Then (5.47) and (5.49) hold for a subsequence {€,} - ;.

Passing to the limit in (5.45) as n — oo, we obtain

1 1 1
/ |z|u'v' dx +/ uvdx = / vdp, Yv € C[-1,1].
-1 1 _

1

We now show that lim (1 +1In i) u(z) = $p ({0}). We first claim that lir% eKF =

z—07t E

—11({0}). Indeed, we have the following estimate,
. 1 1 1+e€
ll—r% In (HC) /0 ue(s)In (5 + e) ds

1 ! 1
= lim 1/ ue(s) ln( )ds
e—0 ln(l—i—g) 0 s+e

e
<lim /H] © ue(s)ds
0

e—0

=0,

since [|uel|2(_y,1) < C where C is independent of e. All the other terms in (5.52) can

be estimated in the same way. Therefore with the help of (5.51) we have

1\ 1\
lim <1—|—ln> u(x) = lim lim <1—|—ln> e, ()

2—0+ || 2—0+ n—oo ||

— limeKF = %u ({0}).

e—0

Similarly we can obtain that Zlir(r)lﬁ <1 +1In %) - u(z) = llir(l) eK- = 111 ({0}). There-
fore, u is the good solution of (5.1). Since the limit 151(1) eKF =— lg% eK. = —3u({0})
doesn’t depend on the choice of the subsequence {e,}. , the above argument also
shows that any convergent subsequence of {uc} ., converges to the good solution u.

The uniqueness of the good solution and the uniqueness of the limit imply that (5.47)
and (5.49) hold for the whole family {u},- - O

Proof of Theorem 5.12 for% < a < 1. We use the same method for the case o =

N[ —

We denote K = lim ul(x) and K. = lim ul(z). We write

z—0t z—0~
(ol + 0 uila) = K = = [ dut [ uds)as, v € 0,0),
(0,z) 0

and

(] + ) (z) + @K = _/

0
du—i—/ ue(s)ds, Vo € (—1,0).
(z,0) T
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Then integration by parts yields, for z € (0, 1),

o () (o [ [P

_ /: ue(s) <(5 nak i e e)ma) ds

20— 1
(s+e)l 720 — (1 4+¢)l 2
+ /[x’l) 501 dp(s),

and for x € (—1,0),

- (B o)

[ (L9,

-1 200 — 1
(’S’ _"_ 6)172& _ (1 _"_ 6)172&
d .
o — u(s)

By the relation u.(0") = u(07), we have

Ji1ou Gigns) [(s] +e)172% = (1+ )12 dp(s)
= el—2a _ (1 4 6)1*20‘
f,ll(sign s)ue(s) [(|s] + )12 — (1 4 €)172] ds
— el—2a _ (1 + 6)1_20‘ .

€2aK:_ + €2aK€—

Recall the relation e2*K} — 2K = —p ({0}), so we deduce that

f_ll(sign s)ue(s) [(|s] + €)172 — (1 + €)1722] ds
2[el =20 — (1 + ¢)1-29]

J 1o igns) [([s[ +€)'72% — (1 + €)' 2] du(s)

2[61—2a _ (1 + 6)1—2@] ’

SRS == Ju({0)) -

_.I_

and

op— 1 ! (sign s)ue(s) [(|s] + €172 — (1+ €)' =2%] ds
62 Ke :§M ({0}) - f e 2[61[_2a _ (1 + 6)1—2a] ]
f(fl,O)U(o,l)(Sign s) [(Is| + €)' 72 — (1 4 €)' 72*] dp(s)
2[617204 _ (1 + 6)17204] :

+

It is easy to check that |2*KF| < 3|l and [2*K7| < 3 ||pll e since [luel 1 <

||| os- Moreover, the integral forms of (|| + €)?®u, and u. imply that

H(m Fe2aly,

WL1(—1,1) + H(|3§'| + E)QQUIEHBV(—IJ) < 07 (553)
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where C' is independent of e. Then (5.47) and (5.50) hold for a subsequence {€,} - ;.
Passing to the limit in (5.45) as n — oo, we get
1 1 1
/ ]w\%‘u’v’daﬁ—i—/ uvdx :/ vdu, Yv € CA[—1,1].
-1 -1 -1
We now show that mll%l+ |z |20 tu(x) = m;z ({0}). We first claim that 1% OKF =
— 31 ({0}). Indeed, we have the following estimate,

1

1
. 1—2a 1—-2a
lg]% (11 i /0 uc(s) [(s +€) —(14+¢)' %] ds

1
= lim 620‘_1/ ue(s)(s + €)' 72%ds
0

e—0
2a-1 1
. / uc(s)ds

a—1
€ 2 €e—e

+ lim

e—0F

<lim / uc(s)ds
0

e—0

=0,

since [[uc|[o(_q 1) < C for some fixed 6 € (1, ﬁ) and C' is independent of €. All the

other terms in the identity for e2*K} can be estimated in the same way. Therefore

lim |z** lu(z) = lim lim |z|** tu,, (x)
z—0t r—0+t n—oo0
R . ¥M({o})
20 — 1 e—0 € 2(2a — 1) .
Similarly we can also get that 151% K = %,u ({0}) and zli%l— |z tu(z) = 2’(5&%2)

Hence, u is the good solution of (5.1). The uniqueness of the limit then implies that

(5.47) and (5.50) hold for the whole family {u} O

e>0"

Proof of Theorem 5.12 for a > 1. In this case, we can still obtain (5.53) by the same
computation from the previous case, so (5.47) and (5.50) hold for a subsequence {€,}- ;.
In particular, it follows that u., — u uniformly on any closed interval I C [—1, 1]\ {0}.
Passing to the limit in (5.45) as n — oo, we get
1 1 1
/_1 |z| 2%’V dx + /_1 wvdxr = /_1 vdp, Yo € CH((=1,1)\ {0}).

Since [|ue|l;1 < ||pllpgs the Fatou’s lemma yields that w € L'(—1,1). The same argu-
ment from the proof of Theorem 5.4 (see Section 5.4) implies that

1 1 1
— [P+ [ wvde= [ odtu—n((0) 0. vo e C-11)
-1 - 1

1
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Therefore u is the unique solution of (5.7). We can further deduce that (5.47) and

(5.50) hold for the whole family {u.} O

e>0"

Theorem 5.13. If o > 3 and p € L'(—1,1), the mode of convergence in (5.49) and

(5.50) can be improved as

1\ 1\ 1
<1+ln$|+6> u€—><1—|—ln|x’> u in Co[—1,1], ifazi, (5.54)

and

1
(Jz] + €)** M ue — |z]?*  u in Co[=1,1], if o > 5 (5.55)

Proof. We divide the proof into four steps.

Step 1. Assume p € L'(—1,1). We claim that the family {uc},. is equi-integrable.
Here we use a device introduced by Gallouét-Morel [29]. Take a nondecreasing function
p(z) € C*®(R) such that ¢(z) = 0 for x < 0, p(x) > 0 for x > 0 and p(x) = 1 for

x > 1. For fixed k € N and t € R", we define
Peu(a) = sign e o (k(je] — 1)),
It is clear that Py is a maximal monotone graph containing the origin. Moreover,
{x; Pyi(z) # 0} = (—o0, —t) U (¢, +00),

[PLi(@)] < |Po(x)] < -+ |Ppo(2)] < [Prgap(@)]--- <1,

and
Jm [Pyl = Xjaf>1)-

It is easy to see that
1 !
—/ ((]a:\ + e)zaué) Pt (ue)dz >0,
-1
and therefore

1 1
/ Pt (u0)] fueld < / Pt (u)] |ulde.
1 1

Passing to the limit as £k — oo, the Monotone Convergence Theorem implies that

/ [ueldx < / |p|dz, YVt > 0 and Ve € (0,1).
[lue[>1] ([ue|>]
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Then
1
juclds < 5 el

1
meas {[|uc] > t]} < t/

Hue|>t]

For any € > 0, there exists tz > 0 such that

/ [ue|dx < / |p|de < E, Ve € (0,1).
[Jue|>te] [Jue|>te] 2

Take § = 5. Then for all K C [—1,1] such that meas K < §, we have

2t
/ |u€|dx§/ |u€|dm+/ |ue|dx
K KN[Jue|>te] K[Jue|<te]

< / |ueldz + t meas K
[Jue|>te]

™

<E

Thus, the family {u.}. . is equi-integrable.

Step 2. Without loss of generality, assume 0 < € < % We claim that for o = % the

-1
the family {(1 +In ﬁ) uE} is equi-continuous on [—1,1]. Assume 0 < z; <
e>0

29 < 1. With the help of (5.51), we can write

1\ 1\
<1+lnxl+€) ue(a:l)—<1+lnx2+€> ue(x2)

1 ~1 1 ~1 1
(l—Hn ) —<1+1n ) </ (u—qus—eKj)
T +e€ To + € 0

In 1L In L 1
+ r1+te€ o r2te€ / — ds — K+

=In(1l+¢)

T1+e€ T2+€
1

- [ )~ wleas
1+1In z21+6 o1 H ‘
+1/$2(M(s)—u (s)) In ——ds
14—111:“1+E o ‘ s+e€
1 1 1 1
! (1 +1In ml—&-e 1 +1n a:zl-&-e> /962 () = uels))n s+ EdS‘

We claim that, V€ > 0, there exists § > 0 such that if |x; — xz2| < J, then

Lo /1<<>—<>>1 L
1+ _L 1+l L xzﬂs Ue(S ns+€s

T1+e€ T2+€

1
<€, Ve e (0, 2> . (5.56)

First of all, there exists §; > 0, such that if 0 < z < 47, then fow | — ue| < € and

|xrlnz| < €. For this d;, since the function n(z) = mﬁ is uniformly continuous on
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[0, %], there exists do > 0, such that if 0 < x9 < do, then

1 1
1+1n -t 1—|—ln%

o€

< 01.

Hence if 0 < x9 < min {01, d2}, then

1 1

I
[ ) — sl
X

2

<

and

. : /1< (5) = ue($)) In ——d
— S) — Uel S n S
1+1In Ila_e 1+1In $21_~_6 s H € 5+e€
1 1
n 1 - nl
[T ) - s
T2

1 1
1—|—lnw2+6 To + €

T T )| i 1 H— Uclas
1+1nx2+6 1+1n€ 1+lnm ].+lrl€ 0

<+ 2]pllp)e

Denote d3 = {d1,02}. If 1 > xo > d3, there exists 64 > 0 such that if |21 — 22| < Iy,

then

€
< :
2 [In 63 [|a]| 1

1 1
1+1n -t 1+lnﬁ

Tro+te€

Therefore take 6 = min {d3,d4} and one obtains (5.56). The rest of the proof for this
claim follows in the same way.

Step 3. We claim that for o > % the family {(|z| + €)** 'u} _, is equi-continuous

e>0

n [—1,1]. Assume 0 < z; < x9 < 1. By the integral form of u. in the proof of Theorem

5.12, we can write

(2a = 1) [(|z1] + €)** Mue(@1) — (Jz2| + €)% ue(a2)]

= [ uts) — s

1

+ (1462 [(m1+ € — (v +€)* ] (eQO‘Kj — /Ol(u — ue)ds>

T (w1 + ) / (u(s) — ue(s))(s + €)1~22ds

1
1

+ [+ €7 = (22 +€)* ] / (1(s) — ue(s))(s + €)t2“ds.

T2
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Notice that, Vé > 0, there exists §; > 0 such that if 0 < x5 < §1, then

1
‘[<x1+e>2“1—<x2+e>2“1] / (1s) = ue(s))(5 + €)' ~2ds

T2
min{%,m}
é/ |1(s) — ue(s)|ds + 2Ca0_1 ||l 1 |2 ™" 1202
X

where Cy,_1 is the Holder constant of the function n(z) = 2?1 on [0, %] When

1> x9 > 81, we have

1
(@147 = (@2 + 7] / (1(s) = uel(s))(s + €)' 2ds

z2

<2Co0-161 2 pll 1 |21 — o™ {12071,

Therefore, take
1
| ) 5 < € > min{l,2a—17}
r1 — To| < mMin 1, — .
{ 2072 || ull 1 Coar

1
o €2 ot 1] [ ulo) — (o)) s+ 92

€2

We obtain

The rest of the proof for this claim follows in the same way.
Step 4. The Ascoli-Arzela theorem and the uniqueness of the limit imply (5.54) and
(5.55). O

We conclude this section with the proof of assertions (i), (ii) and (iii) (resp. (ii)) in

Theorem 5.3 (resp. Theorem 5.4).

Proof of (i) and (ii) of Theorem 5.3. The limiting function v in Theorem 5.12 when

0 < a < 1 is exactly the good solution satisfying assertions (i) and (ii). O

Proof of (iii) of Theorem 5.8 and (ii) of Theorem 5.4. For u € M(—1,1), the estimate
(5.46) implies that [jul[;1 < ||p[| o, - Take a nondecreasing function ¢ € C*°(R) such
that ¢ = 0 on (—00,0] and ¢ = 1 on [1,00). Replace v by ¢(nuc) in (5.45) and pass
to the limit as n — oo. It follows that fil ufdz < ||| o - Then the Fatou’s lemma

yields the desired result. O
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5.6 The lack of stability of the good solution when % <a<l

Recall that in Section 5.4, the stability of the good solution when 0 < a < % and the
stability of the solution when o > 1 and p({0}) = 0 have been established in the proof
of Theorems 5.3 and 5.4. Here we only investigate the case when % < a < 1. In this
case, as we pointed out in Remark 5.5, the stability of the good solution fails.

Assume 3 < o < 1. Given p € M(—1,1), there exists a sequence {fn}oo, C
L>®(—1,1) such that f, = pin (Co[—1,1])*. Let u, be the unique good solution of the
following equation

—(|z?*u!)) +up = fn  on (—1,1),

(5.57)
un(—1) = u,(1) = 0.
In fact, from assertion (ii) of Proposition 5.7 we know that u, € D(A,) and
1 1 1
/ ]a:|2au’nC’dx+/ upCdz :/ fnCdx, V¢ € C3[—1,1], (5.58)
-1 -1 -1

where D(A,) is defined by (5.13).

In this case, the limiting behavior of the sequence {uy,},- ; is rather sensitive to the

choice of the sequence {f,} - ; and in our main result we present a “good” choice and

a “bad” choice.

Theorem 5.14. Assume 3 < a < 1. Fiz p € C(R) such that suppp = [—1,1],
p(x) = p(—z) and p > 0. Let C~' = [ p.

(i) Let pp(z) = Cnp(nz) and fn = p* pn so that fn = p in (Co[—1,1])*. Then as

n — 0o, we have

1\ ! 1\ 1
<1+ln|x) Up — <1+lnm> w in LP(—1,1), Vp < oo, ifazi, (5.59)

1
|22 Y, — |22t in LP(—1,1), Vp < oo, if g <a<l (5.60)
where u is the unique good solution of (5.1).

(ii) Let pn(x) = Cnp(nz — 1) and f, = p* pp so that f, — p in (Co[—1,1])*. Then

as n — 00, (5.59) and (5.60) still hold. However the limiting function w is not
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necessarily the good solution of (5.1). In fact, when o = %,

lim (1 +ln ‘%')_1 u(z) = p({0}),

a—0+
xli%l— (1 +1In |?1|>_1 u(z) =0,
and when % <a<l,
i [ ua) = 5000,
xli%lf |22 tu(z) = 0.

Remark 5.8. By convolution f, = u* pn, we mean that f, = fn|[_171], where
Fu@) = (pax 1) @ = [ pula = 9)dity) (5.61)

and fi is the zero extension of u on R, i.e., i(A) = p(AN(—1,1)), for all Borel sets
ACR.

Remark 5.9. Even if we assume pu € L'(—1,1), it still cannot be guaranteed that the
limiting function w is the good solution. Indeed, we can take fy(x) = Cnp(nz — 1) —
Cnp(nz +1), where p and C are given in Theorem 5.14. Then f, = 0 in (Co[—1,1])*,

but the limiting function u # 0. In fact, when o = %,

-1
lim (1 +In ﬁ) u(x) =1,
z—07F

lim (1—!—111‘?1') u(z) = —1,

z—0~

and when % <a<l,

: 20—1 _ 1
xg%h 2% u(z) = Sa—1°

1
2a—1"

lim |z|?* tu(z) = —
z—0~

Remark 5.10. For % < a < 1, the limiting function u is the good solution if and only

if
o g I 1
g;li%l+ nh_)rgo (/0 fn(s)ds + <ln m) /x fn(s)In Mds)
o 0 L\ 1
:;plir(r)l* nh—%lo (/I fn(s)ds + <1n m) /_1 fn(s)In Mds)

1 1
—ou({0]),  whena =,
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and

lim, Tim ( / fa(s)ds + [ / 1 fn(8)|8|12ads>
0 x

r—0+ n—0o0

= lim lim ( / " fa(o)ds + et / ) fn<s>ysy”ads>
00 z 1

rz—0— n—

1 1
zﬁ,u({()}), when 5 <a< 1.

If u € L'(—1,1) and the convergence is under the weak topology o (L', L°°), we can

recover the stability of the good solution.

Theorem 5.15. Assume that % < a < 1and p € LY (—1,1). Let the sequence

{fa}>2, € L*(—1,1) be such that f, — p weakly in o(L', L>°). Let u, be the unique

n=1

good solution of (5.57). Then as n — oo, we have

1\ 1\~ 1
1+In— Up — (1+1In— u in Co[—1,1], if a = =, (5.62)
|| ] 2
1
|22y, — 222 in Co[—1,1], if 5 <a< 1, (5.63)

where u is the good solution of (5.1).

Remark 5.11. Under the assumption of Theorem 5.15, a functional analysis argument
implies that u, — u weakly in o(L',L>) and u is always the unique good solution

corresponding to . Indeed, recall the notation from Section 5.2 and denote

T:L'Y(—1,1) = D(A,) € L'(—1,1)

i (I+ Aa) ™ .

Proposition 5.7 implies that T is a bounded linear operator. Therefore, in view of
Proposition 3.1 in [8], it is easy to check that T f, — Tu weakly in o(L', L*°). Recall
that T'f, = uy, 50 u, — u weakly in o(L', L) where u = Tu. The definition of T
implies that u is the good solution corresponding to p. A proof of (5.62) and (5.63) will

be presented in the end of this section.

We now start to prove Theorem 5.14; the proof relies on the following four lemmas.
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Lemma 5.16. Assume that o« = § and p € M(—1,1). Let {fn}or, C L>(—1,1) be
such that f, = p in (Co[—1,1])*. Let u, be the unique good solution of (5.57). Then

there exists a subsequence {ny}p—, such that
1\ 1\
<1—|—ln||> U, <1+ln||> u in LP(—1,1), Vp < oo, (5.64)
T T

-1
where u is a solution of (5.1), such that (1 +In %) u € BV(-1,1) and

1\ !
lim (1+In— u(zx)
i ]

-1
:zliron+ klingo (/ I, (8)ds + < > / fr(s)1In ds) , (5.65)

lim ( +n 1) @)

=0~ ]

o 1\ 1
:xli%l_ kli)ngo </$ fri(8)ds + (111 |$|> /1 fni(s)In |s|d8> . (5.66)

Proof. The proof of Theorem 5.3 for the case o = l shows that there exists a subse-
quence {ny} -, such that (5.64) holds, where u is a solution of (5.1) and (1 +1In o ) ue
BV (—1,1). We only need to establish (5.65) and (5.66). Notice that, with the help of

(5.24), we have

lim (1 +in 1>1 u(z)

oot P

1\ -}
= lim lim <ln> Up, ()

r—0t+ k—oo |CU‘

xli%l+ kllngo (/0 Agun, (s)ds + (ln m) / Agun, (s ’d$> .

Write Aquy, = fn, — Un,. We can check that
z 1 -1 r1 1
xli,%l+ kh—>nolo (/0 Un, (5)ds + <ln ]:z:|> /x Un, (5) In |S|d5>
x 1 -1 r1 1
:xli%h (/0 u(s)ds + < iz |> /x u(s)In ‘S‘d8>

=0.

Therefore we obtain (5.65). One can perform the same computation to verify (5.66). [
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Lemma 5.17. Assume that 3 < a <1 and p € M(—1,1). Let {fn}oo, C L>(—1,1)
be such that f, = p in (Co[—1,1])*. Let u, be the unique good solution of (5.57). Then

there exists a subsequence {ny}p—, such that

12y, — |2 in LP(—1,1), Vp < oo, (5.67)

|z
where u is a solution of (5.1), such that |x|**~1u € BV(-1,1) and

lim |z** tu(x)

z—0*t
T 1
lim lim </ fnk(s)ds—i—\x|2°‘1/ fnk(s)]sllzads>, (5.68)
0 T

2a — 1 2—0+ k—oo

lim |z** tu(x)

x—0~
0 x
lim i  (8)d 2a-1 - 12ad>. 5.69
im_Tim </f (s JaPot [ g @)l (5.69)

2&-—].we0 k—o0

Proof. Based on the proof of Theorem 5.3 for the case % < a < 1, we only need to

establish (5.68) and (5.69). Indeed,

li 2a—1
Jim " ()

= lim lim |z[?*7!
z—0t k—oo

|21 ‘204 1
it (52 [ et [ o)
1
li li d 200—1 1-2a 7.
T 20— 1 om0t b (/0 Fr(s)ds + 2] /:C fri,(8)]3] $

One can perform the same computation to get (5.69). O

Uny, (%)

Lemma 5.18. Fiz p € C(R) such that suppp = [-1,1], p(z) = p(—z) and p > 0.
Let pp(x) = Cnp(nx) where C~1 = fp. For up € M(-1,1), let f, = pu* p,. Then

fo € CI=1,1), Ifallpr < llpllags and fo = poin (Co[—1,1])*. For any -1 <a<b<1
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and y € [—1,1], we have

07 fOT’y € [—1,CL),
%, fory=a
b—y
7}1_{20 - pn(s)ds = 1, fory € (a,b), (5.70)
%7 Jory =10,
0, fory e (b,1].
Moreover,
0 1
lim lim / fu(s)ds = lim lim fu(s)ds = —u({0}). (5.71)
r—0+ n—oo r—0— Nn—00 T 2

Proof. Recall the notation (5.61). From Propositions 4.18 and 4.19 in [8], we know
that f, € C.(R), which in particular implies that f, € C[—1,1]. We can compute the

L'-norm of f, as

s < [ ([ ot =l a1l @) < .

For any ¢ € Cy[—1,1], define ¢ € C.(R) as the zero extension of (. Then

1 +oo
fim [ fu()c(e)de = lim / (on *C) ()il / cdp,

n—oo

since pp * ¢ — ( uniformly as n — oo. It is straightforward to verify (5.70). Apply

(5.70) for @ = 0 and b = z with = € (0, 1), so the Dominated Convergence Theorem

yields
di [ s = i [ gt = (0.0 + utted) + gution.

Similarly, for any = € (—1,0),

n—oo

0
tim [ uls)ds = p((x, 0)) + Su({a}) + Gu({0))

Notice that

lim p((0,2)) = lim p({z}) = lim p((z,0)) = lim p({z}) =0.

z—0t z—0 z—0— z—0—

Therefore identity (5.71) holds. O
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Lemma 5.19. Let p,(z) = Cnp(nz — 1) where C and p are specified in Lemma 5.18.
For e M(_la 1)7 let fn = H* Pn. Then fn € C[_lv 1]; ||anL1 < ||lu’||/\/[ and fn = K

in (Co[—1,1])*. For any -1 <a<b<1 andy € [-1,1], we have

07 fOT’ ) € [_170’)7
b—y
nlgl;o pn(s)ds =1, fory e [a,b), (5.72)
a—y
0, fory e [b,1].

Moreover,

lim lim fo fn dS = hm :U’([O ‘T)) ({0})7

Z—0F B00 (5.73)
lim lim f fn(s)ds = lim p([z,0)) = 0.
r—0~ Nn—00 z—0~

The proof of Lemma 5.19 is the same as the one of Lemma 5.18. We now prove

Theorem 5.14.

Proof of Theorem 5.14. We first prove (i). When a = 3, in view of Lemma 5.16 we

D[ =

only need to show

-1 r1

mlir(r)l+ nlirgo (/ fn(s ds—|—< ‘> /m fn(s)In ‘i‘ds>
-1 ,z

:xlir(r)l* nango (/ fn(s ds+< ’> /_1 fn(s)In |i|ds)

= u({0})

Assume z € (0,1). We can write

(lnm) RIS

e In Inz) [!
< [T s+ O [ g las

—Inax

In(1—Inz)
—lnz

1
1-Ina
< / [ fn(s)lds + [| ]| pq

Take a = z and b = —— in (5.70). We have
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Therefore,

1\t 1

xlirg)1+ nh_)ngo (ln |$|> /g; fn(s)In Hds =0.
I 1

lim lim <ln ) / frn(s)In —ds = 0.
2%\ ) L E

Thus (5.71) gives the desired result.

Similarly,

When % < a <1, by Lemma 5.17 we only need to show

1 ) ) v a1 [1 1—2a
T (/0 ls)ds a2t [ fulsl s

! i i ’ 20—1 N 120
“20— 1 ot o ( / In(s)ds + 2 / Fn®)ls] s
1

:mﬂ({o})-

Assume z € (0,1). We can write

1
o [ gulslt s

\/5 1
< / Fals)]ds + []21 /ffn(S)ISIMQdS

NG -
< / [ Fn(8)[ds + 1l 2173

We have
JE
g i [ s =i [ s )
= s (3D + 3 (VD) + 1 ()
=0.

Therefore (5.71) gives the desired result.

The proof of (ii) can be done in the same way, i.e., we can compute the one-sided
limits (5.65), (5.66), (5.68) and (5.69) with the help of Lemma 5.19.

For both (i) and (ii), the convergence (5.64) and (5.67) can be recovered for the

whole sequence {u, },-; by the uniqueness of the limit. O

Proof of Remark 6.9. From Exercise 4.37 of [8], we know that f,, = 0 in (Co[—1, 1])*.
A direct computation for the one-sided limits (5.65), (5.66), (5.68) and (5.69) yields the

conclusion. 0
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Proof of Remark 5.10. Just apply Lemma 5.16 and 5.17. O
We conclude this section with the

Proof of Theorem 5.15. In view of Remark 5.11, we only need to show (5.62) and (5.63).
We divide the proof into four steps.

Step 1. Since f, — pu weakly in o(L!, L>), we obtain that the sequence {f,}o; is
bounded in L'(—1,1) and it is equi-integrable.

Step 2. With the help of assertion (iv) in Proposition 5.7, the same argument from
Step 1 in the proof of Theorem 5.13 shows that the sequence {u, }, - is equi-integrable.

—1 oo
Step 3. We claim that for a = % the sequence { (1 + In ﬁ) un} is equi-
n=1

continuous on [—1, 1] and for % < a < 1 the sequence {\x|2a*1un}zo:1 is equi-continuous
on [—1,1]. Here as an example we just show that the sequence {\w|2a_1un}zo:1 is equi-
1

continuous on [0,1] when 5 < a < 1; all the other cases can be done in the same

way.

Assume 0 < z; < 23 < 1. From (5.26) we can write
(1 —2a) [:E%O‘_lun(:cl) — x%a_lun(xg)}
1 T2
= (m%o‘_l - a?go‘_l) /0 (fn(s) — up(s))ds — x%o‘_l/ (fn(s) — un(s))s' 2%ds
4 [ ls) — wn(sas + (a3 - [

T T

(fn(s) — un(s))s'~2%ds.

1
2
We claim that, for any € > 0, there exists > 0 such that if |z; — z2| < J, then

2a—1 _  2a—1 ! _ 1-2a
(3 1) | (fals) —un(s))s ds| < e. (5.74)

2

Notice that, since the sequences {u,} -, and {f,} ., are equi-integrable and
C =sup ([[full 1 + [Junll 1) < oo,
n

there exists 91 > 0, such that if 0 < z < §; then

1
p20-1 / (Fa(5) — un(s))s2ds

el Lol
< [T 1)~ unllds +a2 [ 1~ walds <
T 0
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Therefore, if 0 < 29 < 61 then

<e.

1
(22071 — g2a-1) / (fa(8) — un(s))s'2ds

2

1
If 1 > 29 > 61, take |x1 — xo| < (CC;_I) et 01, and it follows that
2a—1 sa1y [
(@3t = 31) [ (fals) = unls))s! s
2

xT

1-2 2a-1
< 06 " Co—1 |z1 — 72| <e,

where Cy,_1 is the Hélder constant for the function n(x) = 22~1 on [0, 1]. Therefore,

§ =min{ s ‘ 2&%15
= min 1 <CCQQ_1> 1

and it leads to (5.74). Hence {|ﬂ:|2°‘_1un}zo:1 is equi-continuous on [0, 1].

take

Step 4. The Ascoli-Arzela theorem and the uniqueness of the limit imply (5.62) and
(5.63). O

5.7 The problem on the interval (0, 1)

In this section, we are going to discuss equation (5.8) under several appropriate bound-

ary conditions at 0. By a solution of (5.8), we mean a function u such that

u € Wl’l(O, 1], 2% € BVjo.(0,1],

loc

and u satisfies (5.8) in the usual sense.
When p = 0, equation (5.8) under nonhomogeneous boundary conditions at 0 has
been studied in Chapter 4. Therefore, for p € M(0, 1), we will focus on equation (5.8)

under homogeneous boundary conditions. We have the following existence result.
Theorem 5.20. Given p € M(0,1), the following assertions hold.

(i) When 0 < a < %, there exists a solution u of (5.8) such that u € C[0,1], %%’ €

BV(0,1) and lim u(x) = 0.

z—0t
(ii) When 0 < a < %, there exists a solution u of (5.8) such that u € C[0,1], %%’ €

BV(0,1) and lim 2?%u'(x) = 0.

z—0t
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(iti)) When o = %, there exists a solution u of (5.8) such that (1 —HH%)_l u(z) €

C10,1], zu’ € BV(0,1) and lim zu/(z) = lim+ (1+1n %)71 u(z) = 0.

z—07F x—0
(iv) When § < a <1, there exists a solution u of (5.8) such that 2**~u(z) € C[0, 1],

r?%/ € BV(0,1) and lim 2?*/(z) = lim 22 lu(z) = 0.
z—0t z—0t+

(v) When o > 1, there exists a solution u of (5.8) such that u € L'(0,1), x%u(z) €

C[0,1], %’ € BV(0,1) and lim z?*u/(z) = lim z%u(z) = 0.

z—0t z—0t
Note that the uniqueness result has been established in Theorems 3.2, 3.5, 3.8, 3.12

and 3.15.

Remark 5.12. We have the following observations about the relation between equations

(5.1) and (5.8).

(i) When 0 < a < %, for p € M(0,1), let i € M(—1,1) be the even reflection of
w which doesn’t charge the origin, i.e., i(A) = u(AN(0,1)) + u((—A) N (0,1)),
for any Borel set A C (—1,1). Let v be the good solution of (5.1) corresponding
to fi. The uniqueness of the good solution implies that v(x) = v(—x). Then it is

straightforward that

lin%) |z| 2% (2) :;/ (signs) (1 —|s|'"2*) du(s)
r— (—1,0)u(0,1)
1t 1-2
—5 /_1(81gn s)v(s) (1 —[s|' %) ds
=0.

Therefore, v|,1) is the solution of (5.8) satisfying (ii) of Theorem 5.20.

(ii) When 5 < a <1, for p € M(0,1), let i € M(—1,1) be any extension of p which
doesn’t charge the origin, i.e., p({0}) = 0, and p(A) = p(A), for any Borel set
A C (0,1). Let v be the good solution of (5.1) corresponding to . Theorem 5.3
implies that u = v|g 1) is the solution of (5.8) satisfying (iii) and (iv) of Theorem
5.20.

(iii) When o > 1, for p € M(0,1), let p € M(—1,1) be any extension of u which

doesn’t charge the origin, i.e., p({0}) = 0, and a(A) = p(A), for any Borel set
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A C (0,1). Let v be the solution of (5.1) corresponding to fi. Theorem 5.4 implies

that uw = vl(g 1y is the solution of (5.8) satisfying (v) of Theorem 5.20.

Remark 5.13. For all the five cases in Theorem 5.20, it always holds that ||ul|;1 <
il o and ||ut|| 2 < ||utll o Moreover, for the solution satisfying (i) of Theorem
5.20, we have ||ull ;1 < ko |1l for some ko € (0,1); for the solution satisfying (ii),
(iii) and (iv) of Theorem 5.20, Remark 5.2 and 5.12 imply that ||u||;: < ko ||| vq-

Remark 5.14. We have the following observations about the optimality of Theorem
5.20.

(i) When 0 < o < 3, assertions (i) and (ii) of Theorem 5.20 imply that u €

WhP(0,1), Vp < 5. In general, we cannot obtain that u € Wl’i((), 1).

(ii) When + < o < 1, assertions (iii) and (iv) of Theorem 5.20 imply that u €

Lr(0,1), Vp < 20}_1 (define ﬁ =40 if a = %) In general, we cannot obtain

that u € Lﬁ(o, 1).

(iii) The boundary behaviors listed in assertions (i), (iii), (iv) and (v) of Theorem

5.20 are optimal in the following sense. Fix x € (0, %) and define

Ky(x) = sup ‘x%‘u'(x)‘ , when a > 0,
llll g <1

sup ‘ (1+1In %)_1 u(x)
el a1

, when a = %,
Ky(z) = sup ‘3:20‘*111(:1:)‘ , when % <a<l,
el <1

sup |z%u(z)|, when a > 1,
llell <1

where u is the solution of (5.8) identified in (i), (iii), (iv) and (v) of Theorem

5.20 and we assume that x?*u’ is right-continuous (or left-continuous). Then
0 < 6o < Ko(z) < Cq, Yz € (0,3), and 0 < 5 < Ko(z) < Cq, Vz € (0,3),
where 8, and C,, are constants depending only on o.

Proof of Theorem 5.20. Note that assertions (ii), (iii), (iv) and (v) are consequences of

Remark 5.12. We only need to prove assertion (i). Assume 0 < o < % and recall the
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Hilbert space
X56(0,1) = {u € Hpe(0,1); u € L*(0,1), 2*u" € L*(0,1), u(0) = u(1) =0},

defined in Section 3.6. We know that X§(0,1) C Cy[0,1] for 0 < a < %. In particular,
M(0,1) C (X§5(0,1))*. By the theorem of Lax-Milgram there exists u € X§;,(0, 1) such

that
1 1 1
/ 1‘2aulvld$+/ uvdx :/ vdp, Yv € Xg(0,1). (5.75)
0 0 0

This u satisfies assertion (i). O

Proof of Remark 5.13. We only need to prove this remark for u satisfying (i) of Theorem
5.20. To prove [Juf ;1 < [|pl| o (resp. [[uT || < [t 1), it is enough to take v = ¢y, (u)
in (5.75) where ¢, is the smooth approximation of signx (resp. sign® z). To prove
[P || &el| oq> We only need to show that, for 0 < a < %, we have ko < 1, where

ko = m[%}i] |Fo(z)| and Fy, € C[0,1] N C>(0,1) satisfying
ze|0,

(@R £ Fa=1 on (0,1),
Fa(0) = Fy(1) = 0.

Notice that F, > 0. Take g € (0, 1) such that Fi,(z¢) = m[%)i F,(z). Then F/(z¢) =0
z€l0,

and F/(zo) < 0. Since

ko = Fo(wo) = 1+ 23*F (z0) + 2025* 1 F/(20),

it is enough to show that F(xz¢) < 0. Indeed, if F/(x¢) = 0, the uniqueness of the
initial value problem for F! at z( implies that F! = 0 in a neighborhood of zy. It
follows that F,, = 1 in a neighborhood of xy. We can write F, = C1f1 + Cofo + 1
for some constants Cy and Cy, where f; and fo are the set of general solutions for

the corresponding homogeneous equation. The linear independence of f; and fs forces

Cy = Cy = 0. We obtain a contradiction with F,(0) = 0. O
Proof of Remark 5.14. We first prove assertion (i). We assume 0 < a < % Take
u(r) = x172%(z — 1). It is easy to check that p = —(2?%/) +u € L*(0,1) and

u(0) = u(l) = 0. However u' ¢ Lﬁ(o,l). Take v(z) = z!—2* (1+ln %),a It
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is easy to check that v := —(2?*/) +v € L'(0,1) and lim z?*/(z) = v(1) = 0.

z—07F

However, v’ ¢ Lﬁ(o, 1).
Next we prove assertion (ii). When o = 1, take u(z) = (1 —i—ln%)% — 1. When
3 < a <1, take u(z) = z'72(1 +1n%)172a — 1. It is easy to check that p :=
—(2z%*u')' +u € L1(0,1) and 37jli}]r(r)lJr 22y’ (x) = u(1) = 0. However, u ¢ LTL(O, 1).
Then we prove assertion (iii). The case o > 1 follows from Remark 5.3, so we focus

on the case 0 < a < 1. For all x € (0, %), note that

2% (z) = / u(s)ds —/ dp, 0 <a <1,
0 (0,z]

T 1
u(z) =In 1 / dp — / u(s)ds | — / u(s)In 1ds + / In 1d,u(s)7 ifa= 1,
x (0,x) 0 x S [#,1) S 2
( ) x172o¢ / J /x ( )d 1 J /1 J
u\xr) = — uls)as | — — uas
20 — 1 (0,z) a 0 2a0 — 1 (0,1) : 0

1 81—2(1 Sl—?a 1
- d d if — 1.
/xu(S)Qa—lS+/[x71)204—1’u(8)’1 5 <a<

Also note that the solution u identified in assertions (ii), (iii) and (iv) of Theorem 5.20

satisfies |lul| 1 < ka ||ptl| oq, where ko € (0,1). Therefore, Vo € (0, 3), take p = dz and
deduce that

Ko(z) >1—kq >0, when 0 < v < 1,

~ In2 1

> — = —

Ky(x) > 14_1112(1 ko) > 0, when o 5
Ko(z) > ! 1- 120‘71 (1 —kq)>0 hen1<a<1
=901 2 o) =T WA '

On the other hand, for all x € (0, %), it is easy to check that

Kqo(x) <2, if0<a<l,

. 1
Kq(z) <2, 1foz:§,
IN(Q(:E)§2@_1, if -<ax<l1

Therefore, the proof is complete. O
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Chapter 6

A semilinear singular Sturm-Liouville equation involving

measure data

6.1 Introduction

In this chapter, we consider the following semilinear singular Sturm-Liouville equation

—(lePou’y + [ultu =g on (<1,1),
(6.1)

Here we assume that a > 0, p > 1, and p € M(—1,1), where M(—1,1) is the space of
bounded Radon measures on the interval (—1,1). (See (5.2)).

For the semilinear equation (6.1), we can adapt from Chapter 5 the notion of solution
and the notion of good solution. Rewrite (6.1) as —(|z[**/) +u = u — |u[P~ u + p.

Then according to (5.3), a function w is a solution of (6.1) if
u€ LP(=1,1) N W, ([=1,1\{0}), |2**u’ € BV(~1,1), (6.2)

and u satisfies (6.1) in the usual sense (i.e., in the sense of measures). When 0 < o < 1,
a solution u of (6.1) is called a good solution if it satisfies in addition (5.6).

In this chapter, we are interested in the question of existence and uniqueness, the
limiting behavior of three different approximation schemes, and the classification of the
isolated singularity at 0.

It turns out that we need to investigate the following four cases separately:

1
O<a§§,p>1, (6.3)
1< <l,1<p< (6.4)
g SAS B ASPS o Ty ‘
1
- <a<l p> (6.5)

2 200 — 1’
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a>1,p>1. (6.6)

As we are going to see, the notion of good solution is only necessary for case (6.3) and
(6.4). In fact, for case (6.5), if the solution exists, it must be the good solution.

Our first result concerns the question of uniqueness.

Theorem 6.1. If a and p satisfy (6.3) or (6.4), then for every u € M(—1,1) there
exists at most one good solution of (6.1). If a and p satisfy (6.5) or (6.6), then for

every p € M(—1,1) there exists at most one solution of (6.1).

Remark 6.1. In fact, for o and p satisfying (6.3) or (6.4), there exist infinitely many

solutions of (6.1); all of them will be identified in Section 6.6.
The next two theorems answer the question of existence.

Theorem 6.2. Assume that o and p satisfy (6.3) or (6.4). For every p € M(—1,1),

there exists a (unique) good solution of (6.1). Moreover, the good solution satisfies

-1
(i) lirr(l) <1 +1In |71\) u(z) = — lim+ |zju/ () = lim |z|u/(x) = % when o = %
T— z—0 z—0~
and p > 1,
i) lim |z lu(z) = — lim M = lim |x‘2azl(x) = “({E}) when £ < a <1 and
0 T @ 2a—1 da—2 2
T z—0 z—0~

1
l<p< a7’

(iii) |[lulP~u = faP=tal| o < llu = il g < (= )| g

[t~ 1)

Ll
for u, i € M(—1,1) and their corresponding good solutions w, .

Theorem 6.3. Assume that o and p satisfy (6.5) or (6.6). For each p € M(—1,1),
there exists a (unique) solution of (6.1) if and only if u({0}) = 0. Moreover, if the

solution exists, it satisfies
(i) lim |z)?* lu(x) = lim |z]**/(x) = 0,
z—0 z—0

(it) ||[ulP~ e = |alP=tal 0 < (e = Al g

(=t i)

I S ”(,u - /1)+HM7

for u, i € M(—1,1) and their corresponding solutions u, .
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We now study (6.1) by three different approximation schemes. The first one is the

elliptic regularization. Take 0 < € < 1 and consider the following regularized equation

—((Jz] + €)**ul) + |ue/Ptue = p on (=1,1),
(6.7)

Given a > 0, p > 1 and u € M(—1,1), note that the existence of u, € Hg(—1,1)
with . € BV (—1,1) is guaranteed by minimizing the corresponding functional, and

the uniqueness of u, is also standard. Our main results are the following two theorems.

Theorem 6.4. Assume that o and p satisfy (6.3) or (6.4). Then as € — 0, ue — u

uniformly on every compact subset of [—1,1]\ {0}, where u is the unique good solution

of (6.1).

Theorem 6.5. Assume that « and p satisfy (6.5) or (6.6). Denote by &g the Dirac
mass at 0. Then as € — 0, uc — u uniformly on every compact subset of [—1,1]\ {0},

where u is the unique solution of

—(JzPu) + ufPtu = p = p({0}) b0 on (—1,1),
(6.8)

Remark 6.2. In Section 6.3 we will present further results about the mode of conver-

gence in Theorems 6.4 and 6.5.

The second approximation scheme consists of truncating the nonlinear term. Fix

p > 1 and n € N. Define g,,, : R — R as

gpn(t) = (signt) min {ytyp,nlﬁyty} . (6.9)

It is clear that

P < gpa(t) < gpa(t) <0, VE <O,

Gpn(t) — [tP71E, asn — oo
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Consider the equation

7(|$’2au%),+gp,n(un) = U on (*1,1),
(6.10)

Rewrite (6.10) as —(|z|**u),)’ + un = un — gpn(un) + p. Then according to (5.3), a

function u, is a solution of (6.10) if
un € LN(=1,1) N Wy ([-1,1\ {0}), [2[**u}, € BV(~1,1),

and u satisfies (6.10) in the usual sense. When 0 < a < 1, a solution wu,, of (6.10) is
called a good solution if it satisfies in addition (5.6).

We will see in Section 6.4 that when 0 < « < 1, for all p > 1 and n € N, there exists
a unique good solution u, of (6.10). When o > 1, for all p > 1 and n € N, there exists
a unique solution u, of (6.10) if and only if 1 ({0}) = 0.

We have the following results concerning the sequence {uy, } - ;.

Theorem 6.6. Assume that o and p satisfy (6.3) or (6.4). Then as n — 00, U, — u

uniformly on every compact subset of [—1,1]\ {0}, where u is the unique good solution

of (6.1).

Theorem 6.7. Assume that o and p satisfy (6.5). Then as n — oo, u, — u uniformly

on every compact subset of [—1,1]\ {0}, where u is the unique solution of (6.8).

Theorem 6.8. Assume that a and p satisfy (6.6) and pu({0}) = 0. Then as n — oo,

Uy, — u uniformly on every compact subset of [—1, 1]\ {0}, where u is the unique solution

of (6.8).

Remark 6.3. The more precise mode of convergence in Theorems 6.6, 6.7 and 6.8 will

be presented in Section 6.4.

Remark 6.4. The third approzimation scheme consists of approximating the measure

i by a sequence of L'-functions under the weak-star topology. This is a delicate subject.

For example, for % <a<landl <p< m%lr let p = 69 and fp, = Cnp(nz — 1),

1 * *
where p(x) = X[jz)<1j€**~1 and C~t = [p, so that f, = & in (Co[—1,1])*. Let u,
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be the good solution corresponding to f,. Then u, — u but u is not the good solution

corresponding to dg. This subject will be discussed in Section 6.5.

Finally, we study the isolated singularity at 0. The next result asserts that for «

and p satisfying (6.5) or (6.6), the isolated singularity at 0 is removable.

Theorem 6.9. Assume that o and p satisfy (6.5) or (6.6). Given f € L'(—1,1),

assume that u € LY ((—1,1)\{0}) satisfying
1 1 1
~ [ utiaPecyds+ [ urtucds = [ fede, v € (-1, 0\(0))
-1 -1 -1

Then u € L?

loc

(—=1,1) and
1 1 1

—/ u(|x!2"C')'dx+/ |u]p_1qu:U:/ fcdx, ¥¢ € C°(—1,1). (6.11)
-1 -1 -1

Remark 6.5. An easy consequence of Theorem 6.9 is that equation (6.1) does not
have a solution if o and p satisfy (6.5) or (6.6) and u = &, which is a special case of
Theorem 6.3.

On the other hand, for « and p satisfying (6.3) or (6.4), the isolated singularity at
0 is not removable. In this case, we give a complete classification of the asymptotic

behavior of the solutions.

Theorem 6.10. Assume that o and p satisfy (6.3) or (6.4). Let u € C%(0,1] be such

that

—(@®u) + |ulP~lu =0 on (0,1),
(6.12)
u(l) =0.

Then one of the following assertions holds.
(i) u=0.

(ii) w = u, for some constant ¢ € (—00,0) U (0, +00), where u. is the unique solution
of (6.12) such that
lim @) _ (6.13)
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and

Lif0<a<i,

Eo(z) = ln%, if o = %, (6.14)

1 e 1
721 'Lf§<a<1

(111) U = Utoo, Where Uy 1S the unique solution of (6.12) such that

2(1—a)

xlirghw P Upoo (X)) = (6.15)
and N
e [O_Q)Q (pil) <p2—pl ) 1ia>] (010
(1v) U = U_oo, where U_oo = —Utoo.
Moreover, u_. = —ue. If ¢ >0 or ¢ =400, ue > 0. Forc >0, ue | 0 and ue T Uqoo-

Remark 6.6. The solutions uyo and u_q are called the very singular solutions, which

is a terminology introduced by Brezis-Peletier-Terman [12].

Remark 6.7. Given u € M(0,1), we can also study the following equation,

(@Y + [l = on (0,1),
(6.17)

u(1) = 0.
In Section 6.9, we discuss (6.17) under appropriate boundary conditions at 0, and
we will also compare the results about (6.17) with some well-known results about the

semilinear elliptic equation.

The rest of this chapter is organized as follows. The question of existence and
uniqueness is studied in Section 6.2 where Theorems 6.1-6.3 are proved. The three
approximation schemes mentioned in the introduction will be investigated respectively
in Sections 6.3, 6.4 and 6.5. In Section 6.6, we describe all the solutions of (6.1) when «
and p satisfy (6.3) or (6.4). The removability of the singularity is studied in Section 6.7
and the classification of the singularity is studied in Section 6.8. Finally, Section 6.9 is

devoted to (6.17). Throughout this chapter, several lemmas in Chapter 5 are applied.
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6.2 Proof of the uniqueness and existence results

We start with the proof of the uniqueness result.

Proof of Theorem 6.1. Fix p € M(—1,1). If @ and p satisfy (6.3) or (6.4), assume that
u and @ are two good solutions of (6.1) corresponding to . Then u — 4 € D(A,) and
Ag(u —a) = |a|P~10 — |u|P~tu, where D(A,) is given by (5.13).

If o and p satisfy (6.5) or (6.6), assume that v and @ are two solutions of (6.1)
corresponding to p. Then —(|z|?*(u —@)")" = |@|P~ 4 — |u|P~'u. We claim that v — 4 €
D(A,). For a > 1, it is clear by the definition of D(A,). For % < a < 1 and
p > 51+, by (5.18), it is enough to show that algli% |z|2%(u — @)’ (z) = 0. Indeed, since
|z|2%(u — @)’ € BV(—1,1), the limits xlilé1+ |z|2%(u — ) (x) and rllroni |z|?%(u — 0)' ()

exist. They have to be zero. Otherwise, it contradicts the fact that « — 4 € LP(—1,1)

. 1
with p > 5.

Then for all the cases, assertion (iv) of Proposition 5.7 implies that

1 1
/ (JaP~ 0 — |ulP~ ) sign(u — @)dx = / Aq(u — 4) sign(u — @)dx > 0.
-1 -1

On the other hand, (|a[P~*4 — |u[P~1u)sign(u — @) < 0 a.e. Therefore u = @ a.e. O

The basic idea in the proof of Theorems 6.2 and 6.3 is to approximate the measures

by L!-functions. Therefore, we start with the case when p € L'(—1,1) in (6.1).

Proposition 6.11. For every a > 0, p > 1 and f € L'(—1,1), there exists a unique
u € D(A,) N LP(—1,1) such that Aqu + [uP~'u = f a.e. on (—1,1), where A, and
D(Ay) are given by (5.11) and (5.13) respectively. Moreover, |||uP||,x < ||fll;: and

[Aaullr < 221
To prove Proposition 6.11, we need the following result by Brezis-Strauss [13].

Lemma 6.12 (Theorem 1 in [13]). Let 8 be a mazimal monotone graph in R x R which
contains the origin. Let £ be any measure space. Let A be an unbounded linear operator

on L' (Q) satisfying the following conditions.

(i) The operator A is closed with dense domain D(A) in L*(Q); for any X > 0, [+ A

maps D(A) one-to-one onto L'(Q) and (I + NA)~! is a contraction in L*(Q).
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(ii) For any A > 0 and f € L' (), esssup(f + AA) " f < max {O,esssupf}.
Q Q
(111) There exists § > 0 such that 0 ||ul|;1 < ||Au||;:, Yu € D(A).

Then for every f € LY(Q), there exists a unique u € D(A) such that Au(x)+ 3 (u(z)) >
f(x) a.e. Moreover, |[f — Aul|pr < |[[fllr and [[Aull g < 2| f]|L:-

We now prove Proposition 6.11. We apply a device by Gallouét-Morel [29].

Proof of Proposition 6.11. We first assume 0 < « < 1. Applying Proposition 5.7 and
the estimates (5.17) and (5.23), we deduce that A, is an unbounded operator satisfying
the conditions (i)-(iii) in Lemma 6.12. Consider 8(u) = |u/P~1u as a maximal monotone
graph in R x R. Then Lemma 6.12 implies the desired result.

We then assume o > 1. For any n € N, consider the unbounded linear operator
20, 1N/ 1
Agpu = —(|z]*u") + U

Take its domain D(Aq ) = D(A). Note that

Aa,n:Aa“‘*Ia
n
)\Aan+I:</\+1>< An Aa+l>a
’ n A4n
An -1 n
Man+D7 = A,+1 I.
( an + ) ()\—i—n ot ) o/\—i—n

It is clear that A, , satisfies the conditions (i)-(iii) in Lemma 6.12. Therefore, for every
a>1,p>1,neN, and f € L'(—1,1), there exists a unique u,, € D(A,) N LP(—1,1)
such that

1
~(2 ) + i + Jun P~ e = f on (=1,1).

That is,

1 1 1 1 1
/ || 2%l ¢ da + / ~un(dr+ / |t [P Ly Cd = / f¢dx, V¢ € Cj[—1,1]. (6.18)
—1 1 -1

-1

Moreover, we have

1
enl?llgs + — el o+ [zl || o + ([ (2P w) [ 0 < €
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where C' is independent of n. Therefore, passing to a subsequence if necessary, we

can assume that there exists u € Wl ([=1,1]\ {0}) such that un(z) — u(z),Vz €

loc
[—1,1]\ {0}, and |x|**u}, — |z|>*«/ in L'(—1,1). Tt implies that u(—1) = u(1) = 0 and
Loy + [un P uy — ufP~lu ace. on (—1,1).
We now prove that the sequence {%un + \un|p*1un}zo:1 is equi-integrable. For this
purpose, take a nondecreasing function p(z) € C*°(R) such that ¢(x) = 0 for z < 0,

o(x) >0 for z > 0 and p(x) =1 for z > 1. For fixed k € N and ¢t € R", define
Py(z) = signz o(k(|z| —1)).
It is clear that Py, is a maximal monotone graph containing the origin. Moreover,
{i: Pry(a) # 0} = (—00, 1) U (¢, +o0),
|Pra(z)] < [Pop(@)] < -+ [ Pe(2)| < [Pryre(z)| - < 1,

Jim | Prt| = X[jz|>4)-
Then assertion (iv) in Proposition 5.7 implies that
1
= | P Pus () do 2 0.
-1
Therefore

1 1 1
[ 1P )l (sl + o) o < [P 1
1 1

Passing to the limit as k — oo, the Monotone Convergence Theorem implies that

1
/ <n\unl+|un|p> dl’S/ |f|dx, Vt > 0 and Vn € N.
[lun|>] [lun|>1]

Then

1
[Jun| > t]| < / |un [Pdz < ¢
P Jlfun|>1) 2

For any € > 0, there exists t. > 0 such that

1
/ <|un| + \unp> da < / Iflde < <, ¥n e N.
llun|>tc] \T (Jen| >tc] 2
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Take § = . Then for all K C R such that |K| < 6§, we have

__€
2(tE+te)

1
K n
1 1
< —|up| + |un|P ) dx + —|upn| + |un|? ) dz
KN[lun|>t] \T KN[Jun|<t] \T

1
<[ (|un| T \unrp) dz + (&2 + )| K]
[|Un‘>te}

n

<e.

Thus, the sequence {%un + |un|p71un}:i1 is equi-integrable.
A theorem of Vitali implies that Luy, + |uy [P~ u, — |ufP~lu in L'(—1,1). Passing
to the limit as n — oo in (6.18), we obtain

1 1 1
[ ebeucds o+ [ tugds = [ pdn, v e G-,
1 —1 1

Therefore, u € D(Ay)NLP(—1,1) and Agu+|ulP~'u = f a.e. on (—1,1). The uniqueness

follows from Theorem 6.1. ]

We now start to prove Theorems 6.2 and 6.3. Given u € M(—1,1), there exists
a sequence {f,}°°, C L'(—1,1) such that f, = p in (Co[—1,1])*. For each f,, by
Proposition 6.11, there exists a unique u,, € D(A,) N LP(—1,1) such that

1 1 1
/ || 2%l ¢ da + / |t [P~ Cda = / fuCdz, V¢ € CY[—1,1]. (6.19)
1 -1 -1

Lemma 6.13. Assume that 0 < a < % and p > 1. Let {u,},, be the sequence

satisfying (6.19). Then u, — w in C[—1,1], where u is the (unique) good solution of
(5.1).

Proof. Note that ||f,| 1 < C, where C' is independent of n. Then Lemma 5.8 implies
that [|un || 1o + || ]a:PO‘uQLHWM < C, where C is independent of n. Therefore the sequence
uy, is bounded in W14(—1,1) for some fixed ¢ € (1, 5=). By compactness, there exists
a subsequence such that u,, — u in Co[—1,1] and |z[**u;, — |2z[**«/ in L'(-1,1).

Passing to the limit in (6.19) as ny — oo, we obtain that

1 1 1
/ \x|2au’g’dx+/ luP~tucdx :/ Cdu, V¢ € C[—1,1].
-1 -1 —1
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We conclude that u is a good solution of (6.1). The uniqueness of the good solution

and “the uniqueness of the limit” imply that w, — v in C[—1,1]. O

Lemma 6.14. Assume that o = % and p > 1. Let {un},2 | be the sequence satisfying

(6.19). Then there exists a subsequence {ny}p, such that

1\ 1\!
<1 +1In > Up, — (1 +ln> uwin L"(—1,1), Vr < oo, (6.20)

|| |z

1
where u is a solution of (6.1). Moreover, <1 +1In |71\> u € BV(—-1,1) and

0% ]

- g I\ 1
:xli%i kl:rgo (/0 Jng(s)ds + (ln m) /x fng(s)1In |5|d8> , (6.21)

lim (1 +ln 1> @)

lim (1 +in 1) @)

20" ]

0 -1 ,z
:xli%lf klggo </x fri(s)ds + <ln |xl]> /_1 fne(s)In é,ds) . (6.22)

Proof. Lemma 5.9 implies that
1\ !
1+1In— Up,
|z

where C' is independent of n. As a consequence, we obtain (6.20). Moreover, u,, — u

<C,

Wi

el [y +

1
in LP(—1,1), |aful, — |2|u/ in L(~1,1), and (1+1n ﬁ) w € BV(—1,1). Passing
to the limit in (6.19) as ny — oo, we obtain that u is a solution of (6.1). The proof of

(6.21) and (6.22) is the same as the one of Lemma 5.16. O

Lemma 6.15. Assume that % <a<landl<p< 20}_1. Let {un},2 be the sequence

satisfying (6.19). Then there exists a subsequence {ny}r-, such that
22y, — |22t in LT(—1,1), Vr < oo, (6.23)
where u is a solution of (6.1). Moreover, |z|**~'u € BV(~1,1) and
lim |z** lu(z)

r—0t

T 1
' ym lim < /0 For ()ds + |22 /w fnk(s)|s|1_2ads>, (6.24)

200 — 1 z—0+ k—oo
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lim |z>* tu(x)

r—0—
0 T
lim lim e (8)d 2a=1 - 1=2ag4 ) . .
(/ s+ 1227 [ g6l ) (6.25)

720& —1 20" k-0

2c¢ / ‘20471

Proof. Lemma 5.9 implies that H\x le L+ H]m unHle < C, where C is in-
dependent of n. As a consequence, we obtain (6.23). Moreover, |z|?* 1y € BV (—1,1),
Up,, — w in LP(—1,1) and |z|**u), — |z|** '/ in L'(—1,1). Passing to the limit in
(6.19) as ny — oo, we obtain that w is a solution of (6.1). The proof of (6.24) and

(6.25) is the same as the one of Lemma 5.17. O

Proof of Theorem 6.2. The existence of good solution for 0 < a < % and p > 1 has

been proved by Lemma 6.13.

Assume now that f, is the sequence identified in Lemma 5.18. For a = % and p > 1,

g g ([ o () [ o )
ZJL%-JE%OU st (mgy) [ o )

=5n({0)).

we claim that

For%<a<1and1<p<ﬁ,weclaimthat

1 . . * 2a—1 ! 1-2a
S Tl ( [ s ta [ passlt-as

L lim lim /0 fu(s)ds 4 |z|>*t /x Fu(s)|s|1 20 ds
T2a—1 z—0— n—oo \ f, _1

:2(20}_1)/1({0})-

The proof of these two claims is the same as their counterparts in the proof of (i) of
Theorem 5.14. Therefore, in view of Lemmas 6.14 and 6.15, we proved the existence
of good solution for 3 < a < 1and 1 < p < 31, as well as assertions (i) and (ii).

Assertion (iii) will be proved in Section 6.3. O

Lemma 6.16. Assume that o and p satisfy (6.5) or (6.6). Let {uy,},-, be the sequence
satisfying (6.19). Then |x|** tu, — |z|?** "ty in L"(—1,1), ¥r < oo, where u is the

solution of (6.8).
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2a,,/

Proof. Lemma 5.9 implies that |Hx unle,l + |||zt

unHWLl < C, where C' is inde-
pendent of n. It follows that |z[**u], — |z[**v’ and |z[** 'y, — |z[** 1w in L"(—1,1),
Vr < oo. Note that ||uy||;, < C. Then Fatou’s Lemma implies that v € LP(—1,1).

Passing to the limit in (6.19) as ny — oo, we obtain

1 1 1
/ 2 e + / P~ ucdz = / Cdp, V¢ € CH(~1, 1)\ {0}). (6.26)
—1 —1 —1

Here we use the same device as in Brezis-Véron [14]. Let ¢(x) € C*°(R) be such that
0<¢p<1,¢=00n (—3,3) and ¢ = 1 on R\(—1,1). Let ¢n(z) = ¢(nz). In (6.26),

perform integration by parts and replace ¢ by ¢,¢ where ¢ € C?(—1,1). It follows that

1 1 1
— / u(|z)** (pno)') dz + / P up,pde = / pnddp, Vo € C2(—1,1).  (6.27)
-1 -1 1

For each term on the left-hand side of (6.27), we obtain

1 1
/ 22 () p(n) " (2)dx — / 22 (2)§" (),
—1 -1

1 1
2a/ u(z) sign z|z|**Lp(nz) ¢ (z)dr — 2a/ u(z) sign z|z|>* 1/ (z)dz,
-1

1 1 -
/ (@) P () p(na)p(z)dz — / ()P () (),
—1 -1

2
= n2a—1 HQO/Qb/HLOo HUHLl(f%,%) -0,

2n / " e Pou(e) (na) o (x)de

3=

1

20m/n u(z) sign z|z|** ¢ (na) ¢ (x)da

1
n

2

1
2 7
S n?oc—2 <TL> ’ H90,¢HL°° HuHLp(_%y%) — 0,

1
N 1 [2\¥
n? / u(@) |2 (na) () da sn(n) 1"l o o 1,1) =0,

where p’ is the Holder conjugate of p, which satisfies [% +2a—2 > 0. For the right-hand

side of (6.27), the Dominated Convergence Theorem implies that
1

1
i [ ptna)o(e)di= [ o) - ({ohd0).
1 -1

n—oo J__

Thus

1 1 1
[ ebeusan s [P tusds = [ od(u— ({06, v € CL-L 1),
1 —1 -1

Therefore u is the solution of (6.8). O
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Proof of Theorem 6.3. Suppose ;1({0}) = 0. Then Lemma 6.16 implies that (6.1) has
a solution. Conversely, assume that u is a solution of (6.1). We claim that u({0}) = 0.

Indeed, we have

1 1 1
—/ u(]wQ"‘C')’dx—i—/ ]u]p_lqux:/ Cdp, Ve € C2(=1,1). (6.28)
-1 “1 1

Take ¢ € C°(R) such that ¢ =1 on (—1,1), suppy C (—2,2) and 0 < ¢ < 1. Replace

¢(x) by p(nz) in (6.28). Then for each term on the left-hand side of (6.28), we have

a 22a+§
n2/_2 u(56)|96|20‘s0”(n1:)dx < e 2r L HQONHLOO HUHLP(,%,%) — 0,
n n »
% 22a+§a
20m/2 u(z)|z|** 1y (na) sign zdx| < m ' || oo HuHLP(_%,%) -0,
n

1
/ lu(z) P~ u(z)p(nx)dz — 0.

-1

For the right-hand side of (6.28), we have

/_ll‘P(”“””)d“:f‘({ob+ / _p(na)du + / o(nz)du.

(07;] [_%70)
Note that
lim p(nx)dp = lim p(nx)dp =
n—oo (07%} n—oo [_%70)

Therefore, 1 ({0}) = 0.

Assume now that the solution exists. We prove assertion (i). Indeed, since |z|?*~!u €
BV(—1,1), the one-side limits mhj& |z|?*~tu(z) and xlir(r)lﬁ |z|?*~Lu(x) exist. They must
be zero. Otherwise, it contradicts u € LP(—1,1). The same reason guarantees that
iii% |z|?*u/(z) = 0. Assertion (ii) will be proved in Section 6.3. O

6.3 The elliptic regularization

For any 0 < € < 1, we consider the regularized equation (6.7). Since M(—1,1) C

H~Y(—1,1), the solution u, of (6.7) is actually the minimizer of the following functional

1 1 1 1 1
I(u) = 2/1 (=] + 6)20‘ \u’]de + p+1/1 |u]p+1dx — /1ud,u, Yu € H&(—l, 1).
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It implies that u. satisfies the following weak formulation

1 1 1
/1 (| + €)** ulv'dx + / ) lue|P tucvdr = /1 vdp, Yo € Hy(—1,1). (6.29)

Take v, = p(nu.) where p € C°(R) and ¢’ > 0 such that ¢ =1 on [1,00), ¢ = —1 on
(—o00, —1] and ¢(0) = 0. Notice that
1 1
/ (2] + €)** ulv] da = n/l (|| + €)** [ul|>¢ (nue)da > 0.
1 _
Then

1 1
. 1 .
Jall oy = Jim [l e < i [ odp < Il (630)
We now examine the limiting behavior of the family {uc}., and we are going to

establish the following sharper form of Theorems 6.4 and 6.5.

Theorem 6.17. Given o > 0, as € — 0, we have

(|| + €)** u! — |z** in L™ (-1,1), Vr < . (6.31)
Moreover,
ue — u in Co[—1,1], if 0 < v < %, (6.32)
1\ 1\ 1
(1 +1n P €> Ue — (1 +1In |x|> win L"(—1,1), Vr < oo, if a = 3 (6.33)
(Jz] + €)** M ue — |z**tu in L7(=1,1), Vr < oo, if o > % (6.34)

Here u is the unique good solution of (6.1) if a and p satisfy (6.3) or (6.4); u is the
unique solution of (6.8) if o and p satisfy (6.5) or (6.6).

The proof for the case 0 < a < % of Theorem 6.17 is the same as the proof for

the case 0 < a < % of Theorem 5.12, except some obvious modifications due to the

nonlinear term. We omit the detail.

Proof of Theorem 6.17 for a = 5. Write K} = lim u.(z) and K = lim ul(x). One
z—0 z—0~
can perform integration by parts (the same as the proof of Theorem 5.12) and obtain,

for z € (0,1),

1+e> i / /:c -1
ue(x) =1n —eK + dp — we(8) [P~ uc(s)ds
(@) =t (5 < = [t
! 1+e 1+e
_ p—1
/z lue(s)] u6(3)1n<8+6> d8+/[x,1)ln(s+e> du(s),
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and for x € (—1,0),

ue(x) =In <|516‘—:_€€> <6K€ + /(170) dy — /xo ‘u6(8)|p1ue(8)d5>
- /j l1e(5) P~ e () In (éii) ds + /<—1,a:] In (;ﬁi) du(s).

Taking into account the relations uc(0") = u.(07) and eK} — eK. = —pu({0}), we

deduce that

1 1
eK =— ({0 +/ sign s ln< )d,us
2OV S0 T Jroon "5 e 44

1 ! . —1 1+€
— ST IEe (1+e) /1(51gns)\u€(s)|1° ue(s) In <|S| n 6) ds,

€

and

1 1 1+e€
eK. =—pn ({0 +E/ sign s ln( >d,us
2 O T 3 (T S T ) HO
- 1/1 (sign s)|uc(s) [P~ u (5)1n< Ite > ds
2In (1) /4 8 ‘ ‘ |s| + € ’

€

It is easy to check that [eK | < 3 ||ull\ and |[eK7| < 3 ||u|l o since [luellf, < (|1l -

Therefore, we obtain that

1 -1
1+ 1In Ue
|x| + €

where C is independent of e. It follows that (6.31) and (6.33) hold for a subse-

+ [|(J] + 6)uéHBV(—1,1) =G,
Wi1(=1,1)

— oo . . .
quence {ue, }oo ;. Moreover, the sequence {|uc, P uc,} is equi-integrable and

n=1
[ue, [P~ ue, — |ulP~lu in LY(—1,1). Passing to the limit as n — oo in (6.29), we
obtain
1 1 1
/ |a:|u’v'd:n—|—/ luP~ tuvda :/ vdp, Yo € CH[—1,1].
-1 -1 —1
Notice that [|uc|[yp+1(_11) < C. The same argument as in the proof of Theorem 5.12
implies that
1
—limeK = limeK_ = ~u({0}),
e—0 e—0 2
and

lim (1+ln1>_1u(:c): lim (1+ln1>_1u(:c):;u({0}).

oo a s B
Therefore, u is the good solution. The uniqueness of the good solution and the unique-

ness of the limit imply that (6.31) and (6.33) hold for the family {uc}. - O
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Proof of Theorem 6.17 for 3 < a < 1. We denote K} = lim+ ul(x)and K. = lim ul(x).
z—0

z—0~

Integration by parts yields, for z € (0, 1),

(o) = (L G (—e% of ae [ |ue<s>rp1ug<s>ds>

/ e ()P Ve )<(8+€)12°‘—(1+6)12°‘>d8

200 — 1

/ (S+6)1 204_(1_’_6)1—204
[z 1) 200 — 1

dp(s),
and for x € (—1,0),

- [ ettt (1 il O >) s

200 — 1

+/ (‘S| + 6)17204 _ (1 + 6)17204
(—La]

2 — 1 dpals).

By the relations u.(0%) = u.(07) and 2K} — 2*K_ = —u ({0}), we have

TV (sign 8) ue(s) P~ Ve (s) [(1s] + )2 — (1 + ¢)'=20] ds
2[el=20 — (14 ¢)l-20]

S oo (sin s) (5] + )12 — (14 2] diu(s)

22— (14 ¢)i-2] 7

SRS =~ Jp({o}) -

_l’_

and

ap— 1 1 (sign ) |ue ()P ue(s) [(|s] + )12 — (14 €)1720] ds
€2 KE :§,U ({0}) — f 1\51g 2[61_20‘—[(1—1—6)1_2@] ]

J 1o (signs) [(Is[ + €)' 2 — (1 + €)' 7] du(s)
" 2 el 720 — (1 4 €)1 729 :

It is easy to check that |2 *KF| < 3||ull, and |2 K| < 3 |ully since [luelf, <

|l oq- Therefore, we obtain that

ot + % e 1]+ 2 1y < € (6.35)

Wli(—1,1
where C' is independent of e. It follows that (6.31) and (6.34) hold for a subsequence
{uﬁn}zozl

If 1 < p < 51, there exists § € (p, 2(1%1) such that [luc||zo(_1 1) < C. Thus the

sequence {|uc, |p_1u6n}C>O is equi-integrable and |u, [P"1u,, — |u[P~lu in L'(-1,1).

n=1
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Passing to the limit as n — oo in (6.29), we obtain

1 1 1
/ |x’2au/v/dx —I—/ |u‘p_1uvdx = / vdp, Yv € Col [_17 1]'

The same argument as in the proof of Theorem 5.12 implies that

1
—lim K" = lim 2*K_ = ~u ({0})
e—0 e—0 2
and
1

li 20—1 _— 20—1 — .
S [T () = lim (27 (@) = 55 =2 n ({0))

Therefore, u is the good solution.
Ifp > ﬁ, a consequence of (6.35) is that u.,, — u uniformly on any closed interval

I c [-1,1]\ {0}. Passing to the limit as n — oo in (6.29), we obtain

1 1 1
/ \x!Qau’v’dﬂU—i—/ ]up_luvda::/ vdp, Vv € CL((=1,1)\ {0}).

~1 1 ~1
Since [Juellf, < ||ull o> Fatou’s lemma yields w € LP(—1,1). The same argument as in
the proof of Lemma 6.16 implies that u is the solution of (6.8). The uniqueness of the

solution and the uniqueness of the limit imply that (6.31) and (6.34) hold for the family

{te}eso- O

We omit the proof for the case o > 1 of Theorem 6.17 since it is the same as the

1 1
proof for the case 5 < a <1 and p > 575.
If we assume the data to be L!, we have a further result about the mode of conver-

gence.

Theorem 6.18. For a > % and p € LY(—1,1), the mode of convergence in (6.33) and

(6.34) can be improved as

(6.36)

1\ 1\ , 1
14+In—— e — |1+ In— u in Co[—1,1], zfozzﬁ,

2| + € |z
and

1
(Jz] + €)** M ue — |z]?* tu in Co[-1,1], if a > 7 (6.37)

To prove Theorem 6.18, one can just perform the same argument as the proof of
Theorem 5.13. We omit the detail.

As we indicated in the previous section, the following is the
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Proof of (iii) of Theorem 6.2 and proof of (ii) of Theorem 6.53. For pu,p € M(—1,1),
denote by u. and 4, their corresponding solution of (6.7). From (6.29) we have
1 1
/ (|| 4 €)% (ue — ) v'dx + / (Jue [P~ ue — |te|P~ e )vda
—1 -1

1
:/ Ud(M - :&)7 Vv € H&(_Ll)
—1

Take v = @y (ue — Uc), where ¢, is the smooth approximation of either signz or

(signz)™. We obtain

H|u€|p71u€ - me‘pilﬂeHLl < ||N - ﬂ”/\/t )

and

| = — =137

< =

Then Fatou’s lemma yields the desired result. O

6.4 The approximation via truncation

In this section, we consider the approximation scheme via the truncated problem (6.10).
As we mentioned in the introduction, the following lemma ensures the sequence {u, },-

is well-defined.

Lemma 6.19. Fizp > 1 and n € N. When 0 < a < 1, for each p € M(-1,1),
equation (6.10) has a unique good solution u,. When o > 1, for each p € M(—1,1),

equation (6.10) has a unique solution uy, if and only if p ({0}) = 0. Moreover, for both

cases, g (un)l 1 < Iallpg and || (22| o, < 2110l

Proof. For p € M(—1,1), take f,, = pm * pu, where p,, is specified in Lemma 5.18.
Then f,, = p in (Co[—1,1])* as m — oo. For fixed m € N, the same argument as in

the proof of Proposition 6.11 implies that there exists uy », € D(Aq) such that

1 1 1
/ 1 |z **uy, ,,¢'dx + / 1 Gpin (Un.m)Cdx = / 1 fmCdz, V¢ € CY—1,1]. (6.38)

Moreover,

19p.n (Unm)l 1 < I fmll e < el
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(2P ) [ 10 < 2 fimlls < 21aall g -

If 0 < o < &, then {u,m}oc_, is a bounded sequence in W4(—1,1) for 1 < ¢ < 5.

Thus, passing to the limit as m — oo in (6.38), we obtain

1 1 1
/ o * ), dar + / Ipun(un)Cda = / ¢dp, V¢ € Cy—1,1], (6.39)
—1 —1 —1
where t, € WIL(=1,1), lgpun ()1 < 1l g andd || (2220 < 2 1l
If 3 <a<1, asm — oo, we obtain [z**u],,,, — |z[**u, and |z[** up,m —

|z|2* 1y, in L"(—1,1), Vr < oo. Then the Dominated Convergence Theorem implies
that gpn(Unm) — gpn(un) in L(—1,1). We again obtain (6.39). The same as the proof

of Theorem 6.2, we can check that

_ 1\ , 1\! 1 , 1
w1i>r(1)1+ 1+1In Tl up(z) = xli)r(l)li 1+1In Tl up(x) = S ({0}), ifa= 2
lim |22 up(z) = Tim |22 un(z) = ————p ({0}), if = < a < 1.

z—0t r—0— 2(20é — 1) ’ 2

Therefore, uy, is a good solution of (6.10) with ||gpn(un)|| 1 < |1l o and H(\x|2au%)’HM <

21| ll pg-
If > 1, as m — oo, we obtain |z|**u],,, — |z[**u], in L"(—1,1), Vr < oo, and

Up,m — Uy uniformly on any closed interval I C [—1,1]\ {0}. Passing to the limit as

m — o0, we have [[gpn(un) |1 < [l 1 and

1 1 1
[ et [ gpatuncds = [ cau v e CH-L 1\ (0D,
1 —1

_1 _
The same as the proof of Theorem 5.4, we have that w,, is a solution of (6.10) if and
only if y¢({0}) = 0. If u, is a solution, it clearly satisfies ||gpn(un)|l;1 < [[u|l 1 and
2P| o < 2 Nl

We now proof the uniqueness. Assume that ug) and ug) are two solutions of (6.10)

corresponding to p. Then WV —u? e D(A,) and

—(2P* () = ul)) + gpn(u)) = gpn(u)) = 0.
Assertion (iv) of Proposition 5.7 implies that

1
- / (|2 (ulD) — wP)Y sign(ul) — u{?)dz > 0.

n n
-1

Therefore, gpm(ugll)) = gpm(ug?)) and u') = u? ae. O
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We now prove Theorems 6.6, 6.7 and 6.8. Actually, we will prove the following

result with a more accurate mode of convergence.

Theorem 6.20. As n — oo, we have

|22, — |z|**u in L"(—1,1), Vr < oco. (6.40)
Moreover,
1

u, — u in Co[—1,1], if 0 < a < 2 (6.41)

1\ " 1\ 7! 1
(1 +In H) Up — (1 +1In H) win L"(—=1,1), Vr < oo, if a = 3 (6.42)

T T
1

2|2 Yy, — |z** Y in L7(—1,1), Vr < oo, if a > 7 (6.43)

Here u is the unique good solution of (6.1) if a and p satisfy (6.3) or (6.4); u is the

unique solution of (6.8) if o and p satisfy (6.5) or (6.6).

Proof. Assume 0 < o < % We obtain that the sequence {u,} -, is bounded in

Whi(—1,1) for 1 < ¢ < i Hence, there exists a subsequence such that
(i) up, — win C[—1,1],
(i) gpny (uny) — [ufP~tu in LY(=1,1),

(ili) |z[**uy, — |z|**u/ in L"(—1,1), Vr < co.

n

Passing to the limit as np — oo, we obtain that

1 1 1
[ peeucds [ uptucds = [ can, v e cii-1.1)
—1 -1 —1

Thus, w is the good solution of (6.1).
Assume a = 3. Denote Kt = lim+ |zju) (z) and K~ = lim |z|u] (z). Integration
z—0 z—0~

by parts yields, for x € (0,1),

() = <ln i) <_K+ + /( e /0 ’ gpm(un(s))ds)

_/:gpvn(un(s))lnids-i-/ In ~du(s)

[z,1) S
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and for z € (0,1),

() = (m ’xl‘> (K- 4 /( R / ’ gp,,l(un(s))ds)

[ gt s+ [ G
-1 (~1a] sl

5]

One can check that

1\ L
lim <1+ln> up(z) = K.

z—0~ |IL‘|
Since uy, is a good solution, then K™+ K~ = 0. On the other hand, K~ — K™ = 1 ({0}).

Therefore, K+ = —3,({0}) and K~ = 4 ({0}). Furthermore, a direct computation

1\"!
14+In— Unp,
|z

where C' is independent of n. It implies that (6.40) and (6.42) hold for a subsequence

yields that

+ [l | gy <
w1

{tny, oy~ As aresult, the sequence {gp n, (Un, )} oo is equi-integrable and g, », (un,) —

|ulP~lu in L'(—1,1). Passing to the limit as n; — oo, we obtain that

1 1 1
/1 ]:L“|u'(’dx+/1 lu[P~ ulde = /lgd,u, V¢ € Cil-1,1].

Moreover, we can check that

lim <1+ln1)_1u(x) ~ lim lim <1+1n1>_1unk(m) _ Kt = %M({o}),

xz—0t |ZE’ z—01 k—oo |$|
i (145 ) u@) = i ot (1o L) ) = K- = Lu((op
im n— | w(zr)= lim lim n— | up(z)= = - .
z—0~ ’l“ z—0~ k—oo |.’L" "tk 2”
Thus, u is the good solution of (6.1).

Assume a > . Denote KT = lim+ |z|?*u,(z) and K~ = lim |z|**u/ (z). Integra-
z—0 z—0~

tion by parts yields, for z € (0,1),
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and for x € (—1,0),

()_& K‘+/ d _/0 (un(s))d
Unp(T) = 90— 1 o) I xgp,nuns S

T ‘8‘17204_1 / ’3’172(1_1
[ s+ [ o)

One can check that

K+
li 200—1 —
Jim, |2 ** " up () 50 1
o
1~ 2c0—1 — )
S e (@) = 5

When % < a < 1, since u, is the good solution, we have K™ + K~ = 0. On the other
hand, K~ — KT = p({0}). Thus K™ = -1 ({0}) and K~ = 4 ({0}). When a > 1,

the fact that u, € L'(—1,1) implies that K = K~ = 0. For either case, we have

2a,,/

|2Q71U”HW1’1 + H]x unHBV <G,

Il

where C' is independent of n. It implies that (6.40) and (6.43) hold for a subsequence
{unk }Zozl
If o and p satisfy (6.4), it implies that {gy,n, (un, )} -, is equi-integrable. Therefore

Gpng (Un,) — |ulP~ u in L1(—1,1). Passing to the limit as ny — oo, we obtain that

1 1 1
/ \:U|2“u'('d:v—|—/ luP~ ulda :/ Cdp, Y¢ € C[-1,1].
1 -1 -1

Moreover, we can check that

1 1
: 2a—1 1 : 2a—1 _ + _
S [P () = Tt (2, () = =5 g KT = oty n (0D),
lim [ u(z) = lim lim |22, () = —— K = —— i ({0})
o0~ 20~ k—00 "k 200 — 1 2200 — 1) ‘

Thus, u is the good solution of (6.1).

If o and p satisfy (6.5) or (6.6), we obtain that w,, — w uniformly on any closed

interval I C [—1,1]\ {0}. Therefore,

1 1 1
/ e e + / P ucde = / Cdp, ¥¢ € CH(~1, 1)\ {0}).
1 -1 1

The same argument as in the proof of Lemma 6.16 implies that u is the solution of

(6.8).
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For all the above cases, the uniqueness of the limit implies that (6.40)-(6.43) hold

for the whole sequence {u,},~ ;. O

If we assume the data to be L', we have a further result about the mode of conver-

gence.

Theorem 6.21. For a > § and p € L*(—1,1), the mode of convergence in (6.42) and

(6.43) can be improved as

1\ 1\ ' , 1
1+1In— Up — |1+ 1In— w in Co[—1,1], ZfOé:i,

|z ]
1
222y, — 222w in Co[—1,1], if a > o

The proof of Theorem 6.21 is just the same as the one of Theorem 5.13, except some

obvious modifications due to the nonlinear term. We omit the detail.

Remark 6.8. The choice of g, can be more general than the one given by (6.9). In

fact, assume that g, satisfies
(1) gpn € C(R), nondecreasing,
(i) 0 < gp1(t) < gpalt) < - <|tP7It, fort € (0,00),
(iii) [tP~1 < gpa(t) < gpi(t) <O, fort € (—o0,0),
(iv) gpn(t) — [tP71E, as n — oo,

(v) for each p > 1 and n € N, there exist constants C = C(p,n) > 0 and M =
M(p,n) > 0 such that

990 ()] < Clt], for [t] € (M, 00), if 0 < <1,

l9p.n ()| = Clt|, for|t| € (M,00), if @ > 1.

Then all the results in this section still hold and the proof remains the same.
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6.5 The lack of stability of the good solution for % <a<land 1<
1

p<2a

1

This section is devoted to the question of stability of the solution with respect to the
perturbation of the measure p under the weak-star topology. Recall that Lemma 6.13
implies that when 0 < a < % and p > 1 the unique good solution is stable. Lemma 6.16
implies that when « and p satisfy (6.5) or (6.6) and p ({0}) = 0, the unique solution is
stable. Therefore, we only investigate the stability of the good solution when % <a<l

and 1 < p < 2a1_1. In this case, as we pointed out in Remark 6.4, the stability of the

good solution fails.
Assume % <a<landl<p< Tl—l Given p € M(—1,1), there exists a sequence
{fa}%, € L*(~1,1) such that f, = p in (Co[—1,1])*. Let u, be the unique good

solution of the following equation

—(JzP*u)" + [un[P~tun = fn - on (=1,1),

(6.44)
Un(—1) = u,(1l) =0
By Proposition 6.11, we know that u, € D(A,) N LP(—1,1) and
1 1 1
/ |z QO‘U'TLC’d:c—F/ |t [P :/ fuldz, V¢ € CY[—1,1]. (6.45)
-1 -1 -1

The limiting behavior of the sequence {uy, }- | is sensitive to the choice for the sequence

Theorem 6.22. Assume that 3 <o <1 and 1 <p < 5. Take p € C(R) such that
suppp = [-1,1], p(x) = p(—x) and p > 0. Let C~ = [ p and p,(x) = Cnp(nz). For
fized T € R, take

fo=p*pp+7(Cnp(nxr—1) —Cnp(nx+1)). (6.46)

Then fn, = p in (Co[—1,1])*. Let u, be the unique good solution of (6.44). Then as

n — oo, we have

1\* 1\7! 1
(1 +In m) Up — (1 +In M) win L"(—=1,1), Vr < oo, if a = 3 (6.47)

1
|zt — |22t in LT (=1,1), Vr < oo, if 3 <a<l, (6.48)
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where u is a solution of (6.1) such that, if o = 3,

. -1
Jim (141 ;)_1 u(w) =~ Tim [l (2) = $u({0}) +7 610
D (14D ) (@) = lim felo/(2) = g ({0)) —

andif%<a<1,

. _ 0
l1m+ 2P lu(z) = —5 1 hm 2% (z) = 2‘(2(3_}%) + 507>
_ ) 0
lim|220 " u(z) = gy lim [of?(z) = 20 — o
x—0 x—0

Remark 6.9. A straightforward consequence of Theorem 6.22 is that the limiting func-
tion u is the good solution if and only if T = 0. This means that, in general, the stability

of the good solution fails.

Proof of Theorem 6.22. Note that we already have (6.20)-(6.25) by Lemmas 6.14 and

6.15. Also note that since uy, is the good solution of (6.44), we have

a2, (2) = /0 (It ()7t (8) = Fuy (5)) s, Var € (=1, 1).
Therefore,

lim |z**/(z) = lim lim |z|**u uy, (z) = — lim lim/ frg(8)ds

z—0t z—0t k—oo z—0t k—o0 Jq

Similarly,
lim |z|?*%/(z) = lim hm/ fri (s

z—0~ r—0~ k—o0

Then taking into account (6.46), one can obtain (6.49) and (6.50). Finally, the unique-

ness of the limit implies (6.47) and (6.48). O

If p € L*(—1,1) and the convergence is under the weak topology o (L', L*), we can

recover the stability of the good solution.

Theorem 6.23. Assume that s<a<l, l<p< 2 — and j1 € LY(—1,1). Let the
sequence { fn}oo, C LY(—1,1) be such that f,, — p weakly in o(L', L>). Let u, be the

unique good solution of (6.44). Then as n — oo, we have

—1 -1
<1+ln1> Un, <1+ln) u in Co[—1,1], ifa:%, (6.51)

|z ]
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1
|22ty — |22t in Co[—1,1], if 5 <a< 1, (6.52)
where u is the good solution of (6.1).

The proof of Theorem 6.23 is the same as the one of Theorem 5.15, except some

obvious modifications due to the nonlinear term. We omit the detail.

6.6 The non-uniqueness for the case (6.3) and (6.4)

Throughout this section, we assume that o and p satisfy (6.3) and (6.4). We present a
complete description of all the solutions of (6.1). Note that if u is a solution of (6.1),
then we have

tim, o/ (z) — Tim |20/ (@) =~ ({0}).

On the other hand, we have

Theorem 6.24. Assume that o and p satisfy (6.3) and (6.4). For any 7 € R and any
uw e M(=1,1), there exists a unique solution u of (6.1) such that

lim |z|?%/(x) = T,

z—0" (6.53)
lim |z[*u/(z) = 7+ 1 ({0}).

z—0~

Proof. We first prove uniqueness. For any 7 € R and any p € M(—1,1), assume that

both uy and wugy are solutions of (6.1) satisfying (6.53). Then
—(Je P (ur = u2)") + | [P~ g — |ua P =0,

and lir% |2[**(u1 — us)’(z) = 0. When 0 < o < 1, take ¢ € C*°(R) such that ¢(0) =0,
T—
¢ >0,¢ > 0on (0,400), ¢ < 0 on (—00,0), and ¢ = sign on R\(—1,1). Since

up — ug € WH(0,1), we have

1 1
[ G = wa) Yo — ) = = [P (= )0 — ) <0
0 0

Therefore,

1
/ (|u1|p_1u1 - ‘UQ|p_1’LL2)¢(U1 — UQ)dl‘ =0.
0
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It implies that u; = ug a.e. on (0,1). The same argument implies that u; = uy a.e. on

(—1,0). When <a<landl<p< by Lemma 5.9, we have u; —ug € D(A,).

2a 1

Assertion (iv) of Proposition 5.7 implies that
1
/1(\1']20‘(1&1 — ug)") sign(uy — ug)dz < 0.
Therefore, u; = ug a.e. on (—1,1).
Next we prove the existence when 0 < a < % and p > 1. We first claim that for
every v € M(0,1) and 7 € R, there exists v € W11(0,1) such that 2%’ € BV(0,1)

and

—(2?'") + w|P~lv =v  on (0,1),

v(1) =0, (6.54)
lim 22/ (z) = 7.
xz—07F

Indeed, define a nonlinear operator A : C[0, 1] — C10,1] as

1— 12«
Av(z) =— " i /|v (s)[P~Lo( ds+/|v ()P~ o (s) ——ds

1 -2« 200

1 2a
dUdt+T .
/ t2a /Ot 1 -2«

It is clear that A is continuous. Recall from Section 3.6 that X is compact in C[0, 1]
when 0 < a < % It is easy to check that A (X§) C X§. Therefore, the Schauder Fixed
Point Theorem implies that there exists a fixed point v € X§ such that v = Av. This
fixed point v is precisely a solution of (6.54).

For any p € M(—=1,1), take pu1 = pfo,1) and p2 = pf(—10). For any 7 € R, we
deduce from the above claim that there exist u; € W11(0,1) and uy € WH1(-1,0)

such that #2%u} € BV(0,1) and |z|?**u, € BV (—1,0), which satisfy

—(@®u}) + | [P tuy = p1 on (0,1),

u1(1) =0, lim z?*u)(z) =T,

" e 0+

and

—(z[**uy) + |ugP~lug = p2 - on (—1,0),

uz(~1) =0, lim [a*uh(a) = 7+ 1 ({0}) .

Tr—
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Take
u; on (0,1),
up on (—1,0).
Then w is a solution of (6.1) satisfying (6.53).

When £ <a<landl<p< , the existence of the solution of (6.1) with

_1
2a—1

property (6.53) is a direct consequence of Theorem 6.22. ]

6.7 Removable singularity

In this section, we prove Theorem 6.9. The idea of the proof is the same as Brezis-Véron

[14] and Brezis [7].

Lemma 6.25. Assume that o >0, p > 1 and f € L*(—1,1). Letu € L} ((—1,1)\{0})
be such that

1 1 1
~ [ aePocydo+ [ juptucds = [ pcds, v e C (=100
Then u € Wfi’cl((—l, 1)\{0}) and

—(Jz**d) + [ulPlu = f  on (a,b), Y(a,b) cC (—~1,1)\{0}.

The proof of Lemma 6.25 is standard.

Lemma 6.26. Assume that « > 0, p > 1 and f € L'(—1,1). Assume that u €
Wice (=1, 1)\{0}) and

—(|z]**) + [ulPru = f  on (a,b), Y(a,b) cC (—1,1)\{0}.
Then

1 1 1
—/ ot (|22 da +/ (uYPedr < / Fede, e € C((=1, 1)\{0}) and ¢ > 0.

-1 1 -1
(6.55)

Proof. Denote Lu = (|z|**u')'. Fix an interval (a,b) cC (—1,1)\{0}. We recall the

following Kato’s inequality (lemma A in [32]),

Llu| > (Lu)signu  in D'(a,b).
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By the same argument as in Lemma 1 of [14], we obtain
L(u") > (Lu)sign™u  in D'(a,b), (6.56)

where

1 when z > 0,

ot e —
sign - r = when x = 0,

[N

0 when z < 0.

\

Since Lu = |u|P~'u — f on (a,b), it implies that
Luh) > [ufPtusign™u — fF = @W"P — fT  in D'(a,b).
Therefore
b 1 1
—/ u+(|x|2°‘C’)'dac+/ (uT)P¢dx < / f¢dz, V¢ € C°(a,b) and ¢ > 0.
a -1 1
Since (a, b) is arbitrary in (—1,1)\{0}, we derived (6.55). O

Lemma 6.27 (Maximum Principle). Let a« > 0. Assume that (a,b) CC (—1,1)\{0}

and u € L'(a,b) satisfying u > 0 a.e., suppu CC (a,b) and
(|z**uw) >0 in D'(a,b).
Then u =0 a.e. on (a,b).

Proof. Assume suppu C (c:L,l:)) cc (a,b) cC (a,b). Take the positive smooth mollifiers
pn(z) = Cnp(nzx) where p(z) = X[\x|<1]€‘””‘2%1 and C~1 = [ p. Consider u,, = u*p, with
n large enough such that (@ — 1,0+ 1) C (a,b). Notice that u,, > 0 and u,, € C°(a,b).
We claim that

b
/ (| **ul,) ¢dx > 0, V¢ € C(a,b) with ¢ > 0, (6.57)

Indeed, we have

b b
/ (2, ) Cdr = / wn(|222¢"Y da

1

n b
:/1pn(y) ([ U(z)(’z+y|2acl(z+y)),dz> dy.
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It is enough to show

b 11
[ ulo)le+ yPoC e )Y 2 0, Yy € (—1, 1), VC € CEF(a,b) with ¢ 2 0
We already know
b
/ u(2)(|2]**¢'(2))dz > 0, Y € C=°(a,b) with ¢ > 0.
Given y € (=2, 1) and ¢ € C°(a,b) with ¢ > 0, define

_ Zt_|_y204 Et+y2a -
o) = [ i [ Gl on o

Take ¢ = @h where h is the cut-off function such that h € C¢°(a,b), h > 0, h =1 on

(@,b) and supp h C (@,b). Then ¢ € C°(a,b) with ¢ > 0. Therefore

b b
/ u(2)(|2 + 92 (2 + y))dz = / u(2)(|2°¢ ()Y dz > 0.

Thus we proved (6.57). It implies that (|z|?>*u,)’ > 0 on (a,b). The classical Maximum

Principle yields that u,, = 0. Since u, — u in L!(a,b), we have u = 0 a.e. on (a,b). [

Lemma 6.28 (Keller-Osserman Estimate). Assume that o > 0, p > 1 and f €

LY(—1,1). Letu € I/Vli’cl((—l, 1)\{0}) be such that
—(|z]**) + [ulP'u = f  on (a,b), Y(a,b) cC (—1,1)\{0}.

Then

(@) < Clayp)|z] 7T + ug(z), Y0 < |z| < =, (6.58)

| =

where C(a,p) is a positive constant depending only on o and p, and uy € D(Ay) N
LP(—1,1) is the unique solution of

—(lz[**ug) +uf = f|  on (=1,1),

up(—1) = up(1l) = 0.
Proof. We fix xy such that 0 < |zg| < % Consider the interval

3
Ixo = <Signx0‘20’751gnx0’§0‘> CccC (_17 1)\{0}



Define
BT

2
T p—1
v(x) = A < 1 (x — x0)2> on Iy,
where A > 0 is a constant to be determined so that

—(Jz**) + 9P >0  on I,.

Indeed, we have
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(6.59)

4\ xol? p—1
(aPooy =25 (B - map) 7
where
2 +1 o T 2 o o— :
J = if_1>(a: — :1:0)2\:U|2 + <|Z‘ — (x — x0)2> (|:U|2 + 2a(x — :1;0)|:L‘|2 1 51gnx) .

Since = € I, we have |J| < A(a)|zo|?>**? where A(a) is a constant only depending on

a. Notice that —z% —2= —%. Therefore,

2p

4

4N 2 Tt
—(|x]20‘v')’ + P > (—A(a) ]3:0|2°‘+2 + /\p> (‘CEO, —(z — xo)2> ’ .

p—1

Take X such that
4\

p—1

—A(a) |20 |2 + WP = 0,

i.e.

1

4 1

A = ( A(a)|x0‘2a+2>p ! )
p—1

Then the inequality (6.59) holds. Now take v = v + up which satisfies
—(|z?*0) + P > |f]  on IL,.
Denote Lu = (|z|?**u’)’. We have
L(u—79) > ufPlu—oP  on I,.
Applying the revised Kato’s inequality (6.56), we obtain

L((uw—2))> (Juf'u—1P)signt(u—0) >0 in D'(I,).
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Notice that lim ©(z) = +oo and u € L*>(I,,). It follows that (u—v)" = 0 near d1,,.

=01y,

Then Lemma 6.27 implies that (u — )™ = 0 on I,,. In particular,

u(wo) < 0(wo) = (i)pz}l (Z;A_(al)yll ol 7 + ug(wo)-

1

__2 =1
Let C(a,p) = (3) 7! (4A(a))p ', Note that g is arbitrary in (0, 3], so we obtain

(6.58). O

Lemma 6.29. Under the assumption of Theorem 6.9, we have u € LT (—1,1).

loc

Proof. We first prove that u™ ¢ L?

loc

(—=1,1). Applying Lemma 6.25 and 6.26, we find

1 1 1
—/ (|22 Y da +/ (utPeds < / FHed, Ve € C((—1, D\{0}) with ¢ > 0.
1 —1 1

Take ¢(z) € C°°(R) such that 0 < ¢ <1, p =0 on (—3,3) and ¢ = 1 on R\(—1,1).
Define ¢, (x) = ¢(nx) € C*°[—1,1]. For any ¢ € C°(—1,1) with ¢ > 0, we have

1 1 1
/ (uT)Ppnldr < / ut(|z]**(pnC)) da +/ fTonldr.
-1

-1 -1

Notice that

1
/ (ol () Vo

1

1
:2an/n ut signx|x\2°‘_1cp'(na:)(dx—|—2a/ u't sign x|z Lp(ne)dx
_ -1

3=

1
+/ uﬂx!zagpnC”dx—l—Qn/

uﬂ:{:\zago'(nx)gldx—i—nQ/n ut|z >y (nx)(da.

1
n

3=

In view of Lemma 6.28 and Proposition 6.11, we know
(e PREIE S (T PSS

where C' is independent of n. Also notice that

1

[ i waae = [ 1 @las

3=

and
1

"l (na)lde = [ | ()ld.
/ /1

1
n
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Therefore,
1
/ W (|22 (pnC) Y da < C,
-1

where C' is independent of n. It implies that

/1 (ut)Pppldr < C.

-1
Passing to the limit as n — oo, we have (u*)?¢ € L'(—1,1). Hence, u™ € LV (—1,1).

Similarly, v~ € L?

loc

0_171) ]

Proof of Theorem 6.9. Take p(z) € C*°(R) such that 0 < ¢ <1, 9o =0on (—3,3) and
¢ =1on R\(—1,1). Define ¢, () = ¢(nx) € C*°[—1, 1]. Then we have

1 1 1
- / w(|2[2 (o)) dz + / P ugpnCda — / FonCda, ¥C € C(~1,1). (6.60)
—1 -1 -1

Note that v € L} (—1,1) by Lemma 6.29. Passing to the limit as n — oo in (6.60), the

same argument as in the proof of Lemma 6.16 implies (6.11). O

6.8 Classification of the singularity

In this section, we prove Theorem 6.10. The proof combines ideas by Véron [40, 41]

and Brezis-Oswald [11].

Lemma 6.30. Assume that o >0 and p > 1. Let u € C%(0,1] satisfying (6.12). Then

u can not change signs, i.e., either u >0, or u <0 on (0, 1].

Proof. For a fixed t € (0,1), multiply (6.12) on both sides by u(z) and integrate by

parts on the interval (¢,1). We obtain that

1,,d

1 1
P () = /t 220 (@)l () dz + /1t () [P dz > 0.

It implies that |u| is decreasing on (0, 1] and therefore changing sign is not permitted

for u. O

Lemma 6.31. Assume that a >0 and p > 1. Let u € C?(0,1] be such that u > 0 and

u satisfies (6.12). Let

w(r) = ( ! >P1u (rﬁ) e C2(0, 1]. (6.61)
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Then v solves

—v"(r) — <ﬁ> %v’(r) +oP(r)=0 on (0,1),

(6.62)
v(l) =0.
Moreover T%U(T) € L>(0,1).

22«

Proof. One can directly check that v solves (6.62). By Lemma 6.28, we have x »=1 u(z) €
L>°(0,1). Therefore r7-Tu(r) € L®(0,1). O

Lemma 6.32. Assume that o and p satisfy (6.3) or (6.4). Assume that v € C?(0,1],

v >0 and v solves (6.62). Denote

1

o = Kp:) <p2—p1 - 1ia)]pl' (663

Then one of the following assertions holds.

() Tlirégrrp%lv(r) =lpa-

(i1) Tlir(r)lJrrP%lU(r) =0.

Moreover, if v satisfies (i), then

_ 2 _ 2p 1
1

(1) = lpar P71 <lpore=1 T=a VYre (0,1]. (6.64)

2(p+1) 1

2
Proof. Write I, jri=Tv(r) = ¢(z) where & = r »=1 ~T-o. It is easy to obtain that

¢(x) € L>(0,1) and it solves

2/ (x) = ijl)zwp(m) —(x)) on (0,1),

p—1 " 1-a
¢(1) = 0.

We claim that 0 < ¢(x) < 1. Indeed, if ¢(z9) > 1 for some z¢ € (0,1), then
¢ is convex and increasing on (0,x¢). Therefore ¢"(x) > -5 on (0,z0), and thus
¢(z) > ¢ — clnz, which contradicts ¢ € L>°(0,1). Hence 0 < ¢(x) < 1.

As a result, ¢ is concave and xli%l+ ¢(x) exists. If 0 < xh:& o(x) < 1, then ¢’ (z) <
—+5 for z near 0, and thus ¢(z) < —¢+ clnz, which again contradicts ¢ € L*°(0,1).
Therefore either xli%l+ ¢(z) =1or xli,Ing ¢(z) =0. If xlirgr ¢(x) =1, since ¢ is concave,

it implies that 1 > ¢(x) > 1 — z, Vo € (0, 1], which is precisely (6.64). O
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Lemma 6.33. Assume that 3 <a <1 and1<p< . Assume that v € C%(0,1],

1
2a—1

v > 0 and v solves (6.62). If hm+rp To(r) = 0, then there exists eg > 0 such that
r—0

r%_eov(r) € L*>(0,1).

In order to prove Lemma 6.33, we need the following lemma from [41], which is

originally due to Chen-Matano-Véron [21].

Lemma 6.34 (Lemma 2.1 in Page 67 of [41]). Let y(t) € C[0,00) be such that y > 0

and
(i) Jim y(t) =0,

(ii) limsup ey (t) = +oo, Ve > 0.

t—o0

Then there exists n € C*°[0,00) such that
(i) n> 0,7 <0, lim 5(t) =0,
(ii) lim en(t) = +o0, Ve > 0,

t—o0

(i1i) 0 < hmsup E g < 00,
. T]l !/ n, " 1

(ZU) (;) ’ <F> €L (0700)7

! . 1 t
(v) Jim 2 = lim % = 0.

Proof of Lemma 6.33. Write v(r) = rip%ly(t) where t = In2 and ¢ € [0,00). Denote

=X p+1 — 1. Then y(t) € C?[0, 00), Jim y(t) = 0 and y(t) solves

y"(t) + By (t) + lha'y(t) —yP(t) =0 on (0,00),

y(0) = 0.

Assume limsup e’y (t) = +o0, Ve > 0. Denote w(t) = % where 7 is given by Lemma

t—oo

6.34. Then w € L*°(0,00) N C?[0,00) and w satifies

" U’(t) / . on 50
we)+ (5422 ) w0 = 10 on (0,0) (6.65)
where
_ .p—1 wP (-1 77”(15) 77,(75) w 00 0
)= 0w - (2 + L+ 5T w) € 12(0.00),
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We claim that

lim w'(¢) = lim w"(t) = 0. (6.66)

t—00 t—o0
We only show tlim w'(t) = 0 since one can show the other part of (6.66) by the same
—00
idea. To show lim w’(t) = 0, it is enough to obtain that w’ is uniformly continuous and

t—o0

w' € L%(0,00). To do so, we first need w’ € L>(0,00). Indeed, from (6.65) we obtain

(7 (t)e ' () = i (t)e £ (2).

That is,
Ji e F(s)ds ! (0)P(0)
elin(t) efin(t)

Note that the Mean Value Theorem yields

1 (s)el  f(s)ds (€)™ f(€)
P2 (t) —n?(0)  Befen?(€) + 2580 (E)n(€)’

where £ € (0,t) and £ depends on t. One can check that the right hand side of (6.67) is

w'(t) =

(6.67)

in L>°(0,00). Therefore w’ € L>°(0,00). As a consequence, w is uniformly continuous.
To show the uniform continuity of w’, note that (6.65) implies
(®) ' ZAGAY
w’t+<ﬁ+2"()wt>:ft+2( )wt. 6.68
(oo Y u)) = r)+2 (L) wio (6.63)
One can check that the right hand side of (6.68) is in L*°(0,00). Therefore w'(t) +

(ﬁ + 271((15))) w(t) is uniformly continuous and so is w’. Now, multiplying (6.65) by

w'(t), we obtain

(o)
o345 )

L@ | gn @Y d (P OQwrt ) p—1 o wht!
+2<17(t) +Bn(t)> (”dt( P11 > 1" ()n (t)wP ().

Notice that 7P~ 2n'wP*! € L(0, 00) since

L/’|np (s ()P (s)] ds < [P (©)] [P (0) — P~ ()] < 2 ol B [l

where n is any integer, £ € (0,n) and the choice of ¢ depends on n. By lemma 6.34,

there exists t, — oo such that lim w(t,) = 6 > 0. Since w’ € L*°(0,00), without

n—o0
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loss of generality, one can assume that lim w'(t,) exists. As a result, we obtain that
n—oo

lim fo t))2dt exists. Therefore w' € L?(0, o).

Note that (6.65) and (6.66) imply lim w(t) = 0, which is a contradiction with
lim w(t,) = 6 > 0. Hence, there exists ¢y > 0 such that e®'y(t) € L>(0,00), i.e.,

n—oo

TTEl_EOU(T) € L>(0,1). O

Lemma 6.35. Assume that s5<a<landl <p< 2 . Assume that v € C?(0,1],

v >0 and v solves (6.62). If rﬁv(r) ¢ L>(0,1), then r v(r) ¢ L>(0,1), V8 < ﬁ.

_ R o
Proof. Fixk € [ ) Write v(r) = Mr kh(s) where s = = with j = 2k—% >

2—k(p—1)
0 and M is a positive constant such that MP~!j 5 "2 =1. Then h(s) € C%(0,1/4],

lapl

h > 0 and h solves

2—k(p—1)

W'(s)=s i °hP(s)—k (kz — %) i72s72h(s) on (0,1/4),
h(1/) = 0.
Integrating the above equation, we obtain, for s € (0,1/5),

h(s) + k (k - 210‘__a1> 52 / v £2R(E)(t — s)dt

/5 o—kp-1)

— W] —s) +/ 2 (- ).

S

Therefore,

/5 2—k(p—1) 2-k(p=1)

s+ K (1/i =) < [T e e

S

Assume r*uv(r) ¢ L>=(0,1). Then h(s) ¢ L°(0,1/5). The above inequality then implies

that
2—k(p—1)

s 2 hP(s) ¢ L7(0,1/7).

+ 2=k . . .
2 v(r) ¢ L*>(0,1). By induction, we obtain a

The definition of A implies that rk

sequence ky, € [ ol p21> such that r*v(r) ¢ L>°(0,1), Vn € N, ko = 22=1 and

2 — kn—l(p - 1)
2p '

o2 p+1\" [ 2 2a — 1
"op—1 2p p—1 1-a/)’

Therefore, rv(r) ¢ L>(0,1), V0 < p%l. O

kn = kf'nfl +

That is,
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Lemma 6.36. Assume that 3 < a <1andl <p < 20}_1. Let u € C?(0,1] be such

that u > 0, = ¢ L*(0,1) and u solves (6.12), where Eq is defined by (6.14). Then

2(1—a)
lim z 1 u(x) =1,,.
z—0t ( ) P

Proof. Since 7~ ¢ L it implies

Y u(z) n
im su = +o00.
:p~>0+p EOé (1’)
Consider v defined by (6.61). We have that
. v(r)
lim su = 400,
ot La(r)

where

It is then equivalent to show that

lim 17 To(r) = ba, (6.69)

r—0t

where l_p,a is given by (6.63). If a« = %, one can check that v is the radially symmetric

and positive solution of the following equation

—Av+vP =0 on B;\ {0},
v=0 on 0B,

where By C R? is the unit ball centered at the origin. Then Theorem 4.1 by Véron [40]
implies (6.69). If % < a < 1, Lemmas 6.32, 6.33 and 6.35 imply (6.69). O

Lemma 6.37. Assume that 3 < a <1 and 1 <p < 52~. Let u € C*(0,1] be such

that u >0, g € L*(0,1) and u solves (6.12), where E, is defined by (6.14). Then its

even extension u(x) := u(|z|) is the good solution of the following equation

—(|lz|?*w@) +@P = codo  on (—1,1),
(6.70)

a(—-1)=ua(1) =0,

where cg is some nonnegative constant.
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Proof. We first claim that there is a sequence {a,},~; C (0,1) such that nhnolo an, =0
20! (an)}zo_l is bounded. Otherwise, it means lier 2/ (z) =
- z—0

and that the sequence {a
—o0 since u is non-increasing. Then for all M > 0, there exists aps € (0,1) such that

lim ap; =0 and

M —+o00
u'(r) < ——=, Vo € (0,an)
It follows that
2 M 1
uumg) 2 4—71f0g: 57
Ea(aM) 2

and

u(an/2) M IRl B |
> — | = _
Euolan/2) =~ 2a—1 [1 <2> g <a<t

which contradicts g € L>(0,1). Therefore, such a sequence {a,},~, exists. Without

: : 2a,,/ _ co
loss of generality, assume nlirgo azu'(an) = — 9.

The assumptions Eia € L>®(0,1)and 1 < p < 5=

2a—1

imply that v € LP(0,1). For any
¢ € CY[-1,1], from (6.12) one obtains
1 1
/ ]a:\mu'(’dac—i—/ uPCdr = —a2®u/ (an)C(ay).
Qn Qn
Passing to the limit as n — oo, it yields that 22w’ € L*(0,1) and
1 1 ‘o
/ |:U|2au’C'd$+/ uPldx = —((0).
0 0 2
A similar computation for @ yields that |z|?**@’ € L'(—1,1) and

1 1
/ |z 2“4/ ¢ dx + / aPCdr = co¢(0), V¢ € Ci[—1,1].
—1 1

Thus |z|?>*@ € BV (—1,1). Denote lim |z|?**%/(x) = K*. We can check that

x—0t

. 1\ ' L 1
lim (1+In— u(x) = K™, 1foz:§,

it ]
K+ 1
li 20-1g(z) = ——, if = 1.
xi{ng’ u(x) 5,1 f3<a<

Since @ is an even function, we have

, 1\ , 1N 1
lim (1+In— w(r)= lim (14 In— u(z), 1foz:§,

70+ ] =0~ ]

1
lim |z|?* ta(z) = lim |z** la(z), if = <a < 1.
i (o a(e) = T o), it

Then we can conclude that @ is the good solution of (6.70). O
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Proof of Theorem 6.10 for 0 < a < % Lemma 6.30 implies that u does not change its
sign. Therefore we only need to consider u > 0 in (6.12).
We first prove the uniqueness. For solutions of type (ii), if there are two solutions

u; and wug solving (6.12) with lim wu;(z) =¢, i = 1,2, then

z—0

1 1
/0 2 (uy — u2)")?¢ (ug — ug)da + /0 (uf —ub)p(uy — ug)dz = 0,

where ¢ € C*°(R) such that ¢(0) =0, ¢ >0, ¢ > 0 on (0,00), ¢ < 0 on (—o0,0), and

¢ = sign on R\(—1,1). It follows that u; = ug on [0, 1]. For solutions of type (iii), if

2(1—a)
there are two solutions w; and ug solving (6.12) with lim z =T w;(z) =y, i = 1,2,

x—0

then estimate (6.64) implies
lur () — ua(x)| < 21, 2%, VY € (0,1],
for some oy > 0. Also notice that
—(@*(u1(2) = u2(2))") + e(x) (ur () —uz(x)) =0 on (0, 1),

where

A gy (2) # ug(a),
c(zr) =

puf_l(:z:), if uy(z) = ug(x).

It is easy to check that ¢ € C(0,1] and ¢ > 0. A maximum principle on (e, 1) implies

m(aai) |ui(z) — ua(x)| < |ui(e) — ua(e)| < 21, 4€7°.
e (e,

Let e — 01 and then u; = uy on (0, 1).
We now claim that, for u > 0 satisfying (6.12), one of the following assertions holds.

i i 2(1—a)
(i) xlgélJr:L‘ =1 u(x) = lp .

(ii) lim+ u(z) = ¢, for some ¢ > 0.
z—0

Indeed, denote

1 -2« %"L(p—?)_(?i?a) 1-2a l—a _1-20
v(r) = ri—ah —a | (6.71)

1—a 1—2a
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where v is defined in (6.61). Then h(s) € C? {11:20;, oo) and h satisfies

1—
W) =5 TR o ({gm0).

A result of Fowler (Page 288 in [27]) implies that, as s — oo, either

1

h(s) = As+ B + /11”;1_—220504)28_112(1(1 +0(1)),

for some constants A and B. Therefore, the relation (6.71) implies our claim.
We then show the existence of the u. and the u; . Consider the Hilbert space X
given in Section 3.6. Note that X C C]0, 1] since 0 < a < % It is straightforward to

check that there is a minimizer of the following constraint minimization problem,

1 [t 1!
min { / 22 (! (z))?de + —— / |u(z) ]pﬂd:z} ,
ueXg, u(0)=c (2 Jo p+1Jj

and the minimizer is indeed the u.. Moreover, a comparison principle implies that u., >
_2(1-a)

Ue, if €1 > ¢2. On the other hand, Lemma 6.28 implies that u.(z) < C(a,p)x »-1

2(1—a)
forO<z < % Since u. is decreasing, u.(x) < C(a,p)2 »=1T for % < x < 1. Therefore

lim u.(x) < oo for all x € (0,1]. We claim that uyoo(z) = lim u.(x). Indeed, since

limsup uyoo(z) > lim uc(x) =c,
z—07F z—07F

we have

lim sup U400 () = +00.
z—0t

Note that u is still a solution of (6.12). The previous claim implies that u . satisfies
(6.15).

Finally, denote up(z) = lim uc(x). Then lim wg(x) = 0. Therefore ug = 0. O

=07 z—07F
Proof of Theorem 6.10 for % < a < 1. The same as the case 0 < a < %, we only need
to consider u > 0 in (6.12).
We first prove the uniqueness. Note that the even extension of u. is the good

solution of (6.70) with ¢y = 2¢. The uniqueness of the good solution of (6.70) implies
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the uniqueness of u.. The proof for the uniqueness of u,~ is the same as the case
0<ac<s.

We now prove that, for u > 0 satisfying (6.12), one of the following three assertions

holds.
(i) u=0.
(ii) xlirng ;a(fx)) = ¢, for some ¢ > 0.
(i) lim 2 () = 1.
We consider hfi %Ep 5058) If hfi ztip gofa) = 0, Lemma 6.37 implies that u(z) := u(|z|)

is the good solution of (6.70) with ¢y = 0. Therefore the uniqueness of the good solution

of (6.70) forces u = 0. If 0 < limsup ul@) 00, then @ satisfies (6.70) with ¢o > 0.

Eao(x)
z—0t
Therefore by Theorem 6.2, we have hm+ = (8) = ¢o/2. If limsup & (8) = oo, Lemma
z—0t 7« z—0+ ¢
2(1—a)
6.36 implies lim z r=1 u(z) =) 4.
z—0t

The existence of u, is already given by Theorem 6.2. Note that the limits lim u.(z)
C— 00

and lim+ uc(x) are well-defined for z € (0,1]. The same as the case 0 < a < 3, we can
c—0

check that uyoo(x) = lim u.(z) and 0 = lim+ uc(z). O
c—00 c—0

After Theorem 6.10 was done, the author was informed a recent work by Brandolini-
Chiacchio-Cirstea-Trombetti [6]. The authors in [6] studied the positive solutions of the

following equation
—div (A(Jz|)Vu) +u? =0 on B} := B;\ {0},

where By C RY is the unit ball centered at the origin, N > 3, and A is a positive

C*(0, 1]-function such that

A
T

=1, for some ¥ € (2— N,2).

For the special case when A(r) = r¥ with 9 € (2 — N,2), a consequence of the main

result in [6] is
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Theorem 6.38. Assumel < p < N_LM For a positive solution u € C?(0, 1] satisfying

u'(r)+ (N -1+ 19)@ = “’;EJ") on (0,1),
(6.72)

one of the following cases occurs:
(i) u=0,

(i1) lil%a+ rN=240(r) = N\, for some X € (0,00),

|:(N—(N—2+19)p)(2—19)] ﬁ.

(i4i) lim r%u(r) = e

r—0+

Remark 6.10. let u(x) = N_%u(:cl/N), where u satisfies (6.72). Then @ satisfies

—(z? @) +aP =0 on (0,1),

where « = 1 — % € (%, 1). It is now easy to check that Theorem 6.38 coincides with

the case % < «a < 1 of Theorem 6.10. However, the proofs of these two theorems are

different.

6.9 The equation on the interval (0, 1)

In this section, we first consider the following equation,

/

—(@®u) + |ulP~'u=p on (0,1),

: 2ac, 1 — 6.73
xEI(IJIJr =/ () = B, ( )
u(1) =0,

where p € M(0,1), « >0, p>1and 3 €R.

A function u is a solution of (6.73) if

we LP(0,1) N W21 (0,1], #**u’ € BV(0,1), (6.74)

loc

and u satisfies (6.73) in the usual sense.

The following result concerns the existence and uniqueness of the solution of (6.73).
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Theorem 6.39. Let € M(0,1).

(i) If o and p satisfy (6.3) or (6.4), then there exists a unique solution of (6.73) for

all B € R. Moreover, this unique solution satisfies

hrng (1+ ln%)f1 u(z) = — 1iré1+ zu'(z) = —(3 when a = § and p > 1,
T— T

. 20—1 . . 2o/ (z) B8 1 1
xhjg-k:pa u(x)—*xh*{g_F 5a—1  —  %a—1 when§<0z<1 and1<p<m

(ii) If a and p satisfy (6.5) or (6.6), then there exists a solution of (6.73) if and only

if 6 =0. Moreover, if the solution exists, then it is unique and it satisfies

lim 22 lu(z) = lim 2%/ (z) = 0.
z—07F z—07F

Proof. We first prove the existence in assertion (i). Take i € M(—1,1) as the zero
extension of p, ie., p(A) = u(AnN(0,1)), where A C (—1,1) is a Borel set. Then

Theorem 6.24 implies that there exists a solution u satisfying

(

—(jzPow) + |af~ta =g on (—1,1),

lim |z|?%4/ (z) = 3,
z—0

a(—1) = a(1) = 0.

Therefore, u = (g1 is a solution of (6.73).

We then prove the existence in assertion (ii). We still take i as the zero extension
of p. Notice that f({0}) = 0. Then Theorem 6.3 implies that there exists a solution «
satisfying
—(JzPea’) +|aPa=n on (-1,1),
tim [f20 () =0,

u(—1) =u(l) =0.

Therefore, u = () is a solution of (6.73) with 3 = 0. On the other hand, if (6.73)
has a solution with £ # 0, it implies that u ~ 3320‘%1 near x = 0. It is a contradiction
with the fact that v € LP(0,1).

We now prove the uniqueness for both cases. Assume that there are two solutions
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uq and us. Then we have
—(@**(u1 = ug)') 4 |ua [P~ rug — |ug[P~tug =0 on (0,1),
lim 22%(u; — ug)’(x) = 0,

r—0t

kul(l) == Ug(l) = 0.

Define @; € I/Vl})’cl([—l,l]\ {0}), ¢ = 1,2, such that 4; = u; on (0,1) and u; = 0 on
(—=1,0). Then the same argument for the uniqueness of Theorem 6.24 implies that
i1 = Uo. Thus, uy = us. O

Remark 6.11. When 0 < a < %, we can also consider the following equation,

,

—(@?u) + [uPTru = on (0,1),

im u(x) = (6.75)
u(l) =0,

where p € M(0,1), p> 1 and § € R. Indeed, the uniqueness of the solution of (6.75)
has been proved in Theorem 6.10. The existence of the solution of (6.75) follows from

the existence of the minimizer of the following minimization problem,

J
min - z°* dx—i—/ u(z)[PHde — / z)d :U},
uexg,u@:ﬁ{Q/o (' (@) fu(a) w(e)du()

where X§ is given in Section 3.6. Moreover, a direct computation shows that this unique

solution u satisfies

lim 2%%u/( / lu(s)|P u(s) (1 — s'72%)ds + /01(1 — 512N du(s) — (1 — 20)B.

z—0t
‘We now discuss the connections between Theorem 6.39 and the well-known existence
results about the semilinear elliptic equation. Let B; C RN be the unit ball centered

at the origin and p € M(B7). For p > 1, consider the following equation,

—Au+ [uP~'u=p  on By,
(6.76)

u=0 on dB;.

Recall that a function u is a weak solution of (6.76) if uw € LP(By) N Wol’l(Bl) and

VuVidr + / lulP~ uCdr = / Cdp, Y¢ € C°(By).
B1 B1 By
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Although the general existence theory about (6.76) is well-known, the following Corol-
lary provides a more precise information when p is rotationally invariant, i.e., u(A) =

u(OA), where A is any Borel set in By and O is any N x N orthogonal matrix.

Corollary 6.40. Assume that p € M(By) is rotationally invariant. Let ‘SN_l‘ be the

surface area of SN~1. Define ji € M(0,1) as
WA =p({ro; re A ¢ SN_l}) , VA C (0,1) such that A is a Borel set. (6.77)

Let f.pn be the push-forward measure of i under the map f :1[0,1] — [0,1] with f(r) =
™V, de., foi(A) = p(f~1(A)), YA C (0,1), Borel set.

(i) Assume that 1 < p < 5 for N >3, orp > 1 for N = 2. Then u(z) =
N7 T4 (|z|Y) is a weak solution of (6.76), where @ satisfies

,

(RO + AP A = NSV i on (0,1),

lim 20-%)@/(t) = N7oT [SV-1| 7 (o)), (6.78)

\

(i) Assume that p > NL_Q for N > 3. Eq. (6.76) has a weak solution if and only
if w({0}) = 0. Moreover, if u({0}) = 0, then u(z) = N7 (||Y) is a weak
solution of (6.76), where u satisfies

—(P @) + AP a) = NSV LA on (0,1),

(6.79)

lim 203 () = @(1) = 0.
L 55N () = a(l)

To prove Corollary 6.40, we need the following lemma.

Lemma 6.41. Assume that p € M(By) is rotationally invariant. Assume that u €

LP(B;) N Wol’l(Bl), u is radially symmetric, and

VuV{dx —|—/ lu[P ulde —/ Cdu, ¥¢ € C§°(B1) and ¢ is radially syemmetric.
B1 B1 B

Then u is a weak solution of (6.76).
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Proof. We use the same idea as the proof of Proposition 5.1 by de Figueiredo-dos

Santos-Miyagaki [28]. We first take w € LP(B1) N Wol’l(Bl) as a weak solution of
Aw = |ulP'u —p  on By.
Then w is radially symmetric and

VwVCdx+/ |u]p1ug“d$:/ ¢dp, V¢ € C§°(By).
B1 B B

For any ¢ € C§°(B1) such that ¢ is radially symmetric, we have

/ () = / u(A0),

Moreover, for any ¢ € C2°(Bj) such that ¢ is radially symmetric, there exists ¢ €

C§°(Bq) such that ¢ is radially symmetric and A¢ = ¢ on Bj. It implies that
/ (w—u)pdr =0, Vo € C°(Bq) and ¢ is radially syemmetric.
Q
Then
1
[ (w® ~ ule)ewe a0, v & c2(0,1)
0

Therefore w = u a.e. O

Proof of Corollary 6.40. Note that Theorem 6.39 ensures the existence of @ in (6.78)
and (6.79).

We first prove assertion (i). For any ¢ € C§°(B1) such that ¢ is radially symmetric,
we denote g(|z|V) = ((z). Then g(t) € C[0,1], g(1) = 0 and ¢'(t) € L*(0,1). Therefore,

1
/0 20 Bt + / ()P La(t)g(t)dt (6.80)
=N sV / gA(LA)0) + N7V g(0)u({0)).
0
Note that fo d(fepr)(t fo r) by Theorem 3.6.1 in Page 190 of [5]. Let

t=r"in (6.80). We have

1 2 1
[ 9 )ditr) + g0)n({0}) =N 831 [t ) ()N e

+ NPT SN 1}/ [a(rMY P ta(r ™) g (rN )NV Ly,
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Let u(z) = N%ﬁ(\x]]v) with € By. Then u € LP(By) N Wol’l(Bl). Moreover,

1
VuVde = N1 i / P22 () g (r ) NN
B 0

1
/B juf' ugde = N7 }SN1|/O a(r™) Pt a(r ) g(r ) NrN " ar,
1

Cdp = / g(™)di(r) + g(0)({0}).

By

Therefore,

VuV{dx +/ |ulP~tuCds = Cdu, ¥Y¢ € C§°(B1) and ( is radially symmetric.
Bl Bl

By
By Lemma 6.41, u is a weak solution of (6.76).
We now prove assertion (ii). If x({0}) = 0, then the same proof as the above shows

that u is a weak solution of (6.76). On the other hand, if u is rotationally invariant

and (6.76) has a weak solution, then

VuVidr + /

‘u|p71ugdx = / Cdp, Y¢ € C5°(B1) and ( is radially symmetric.
Bl Bl

B
Write g(r) = ((x) where r = |z|. Then g € W1>°(0,1) and g(1) = 0. Write u(r) = u(x)
where 7 = |z|. Then |u[Pr¥=1 € L'(0,1) and, by Theorem 2.3 in [28], u € T/Vlicl(O, 1)

such that ¥V ~1u’ € L'(0,1). Therefore
[N 1|/ N1 (r)g' (r)dr + [SN 1|/ NN (r) [P~ tu(r)g(r)dr
=/0 g(r)da(r) + () ({0})

That is
lim N1/ (r) = (SN T ({0)).

r—0t
It forces p({0}) = 0. Otherwise, u ~ r~¥*2 near r = 0. Therefore |u|PrN=1 ~

,,,,—(N—Q)p—f—N 1

near r = 0. Since p > 25, it implies that |u[Pr¥ =1 ¢ L1(0,1), which is

a contradiction. ]

The well-known result by Baras-Pierre [2] states that for p € M(By), p NL and

N > 3, equation (6.76) has a weak solution if and only if

pu(E) =0, VE C By such that Caps (E) =0, (6.81)
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where Claps ,y is the capacity associated with the W2P (RN)-norm and p’ is such that

1 1 _
lyl=1

Remark 6.12. In the case when u is rotationally invariant, the criterion (6.81) is
equivalent to u({0}) = 0. Therefore, the necessary and sufficient condition in assertion

(i) of Corollary 6.40 is consistent with (6.81).
The proof of this remark relies on the following lemma.

Lemma 6.42. let p € M(By) be rotationally invariant, fi be defined by (6.77), and
HN=L be the (n—1)-dimensional Hausdorff measure on SN=1. Then for any u-integrable

function f, we have

1 r N-1 ((r
[ @) = gy [ ([ 000 ® ) i) + 0ucton, - 652

where r = |x| and 0 = @ VT € B\ {0}.

Proof. By a standard linearity and approximation argument, we only need to prove
(6.82) for characteristic functions. Moreover, by a standard argument involving the
properties of Borel algebra and Radon measure (see, e.g., the proof of Theorem 2.49 in

[26]), we only need to show that

1((0,a] x U) = \SN1—1|/1((0’ a]) x HN-1(U), Ya € (0,1), YU € S¥~L and U is open.

Apply once again the standard approximation argument. It is further reduced to show

that

/(0 IxEN-1 ¢ <i|> du(r) = 'EM /SN_1 ¢(9)dHN*1(9)7 Vo € C(SN71)‘ (6.83)

We use some ideas by Christensen [22] to show (6.83). For fixed z € S¥~! and ¢ > 0,
denote

C(z;e) = {y e sVt d(z,y) < e},

the so-called spherical cap, where d(-,-) is the standard distance on SN=1. Define

C(e) = u((0,a] x C(z;¢€)).
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Note that C/(e) is well-defined since p is rotationally invariant and p((0,a] x C(z;e€)) is

independent of z € S¥~1. Denote B, = (0,a] x S¥~!. Define
Ke(x,y) : By X By — R,

as
1 x Y
oo 1fd<\x|’|y|) <e

0, otherwise.

K(z,y) =

For any x € B, write ¢(x) = ¢ (i) Define

||

Kep(z) = : Ke(z,y)p(y)du(y), Vo € Bq.

It is clear that K.p(x) — ¢(z) as € — 0 for all € B,. Therefore, the Dominated

Convergence Theorem implies that

i [ Kep@)dH x p)a) = [ @)Y x ) o).
e—0/p,

a

Note that

| Eeptwan™ <) = [ w(y)< [ Ke<x,y>d<HN—1><m<x>) du(y)

(0, a)HNH(C (x5 €))
= o /B ) e(y)du(y).

Therefore, there exists A € R such that

g B0, A)HY (i)

e—0 0(6) =A

Take ¢ = 1. It implies that A = [S¥~!|. Hence, identity (6.83) holds and the proof is

complete. 0

Proof of Remark 6.12. Assume that 1 satisfies (6.81). Since Capy,y ({0}) = 0, it is
clear that p ({0}) = 0. On the other hand, assume that p is rotationally invariant and
w1 ({0}) = 0. For any £ C By such that Capy ;7 (E) = 0, it holds that dimy(E) < N —2,

where dimy, is the Hausdorff dimension. Therefore,

/ e (r0)dHY1(0) = 0, ¥r € (0,1).
SN—l
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Hence Lemma 6.42 implies that

1 1o g _
W8 = ey [ ([ xeCo 0 ) i) + o)) = o0
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