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ABSTRACT OF THE DISSERTATION

Modeling and Control of Single-Track Vehicles: A

Human-Machine-Environment Interactions Perspective

by Yizhai Zhang

Dissertation Director: Dr. Jingang Yi

Single-track vehicles, such as motorcycles and bicycles, not only provide an everyday

transportation means and recreational sport, but also offer an excellent platform to

study physical human-machine-environment (HME) interactions. The main goal of

this dissertation is to present a modeling and control system design framework for

HME interactions in single-track vehicle systems.

The dissertation focuses on three aspects: autonomous vehicle design, vehicle-

environment interaction, and human-vehicle interaction. First, we propose novel mod-

eling and control designs for riderless single-track vehicle to achieve agile maneuver

navigation and stationary balancing. To achieve agile maneuver, the zero lateral veloc-

ity nonholonomic constraint at the tire contact point is relaxed. An empirical tire-road

friction model is explicitly considered in the dynamic model. An external/internal

convertible (EIC) model-based controller is designed for both trajectory tracking and

path following strategies. Two different control designs are then presented to balance
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the stationary bicycle through steering control and gyroscopic actuator control, respec-

tively. To capture the vehicle-environment interaction, the second part of the disserta-

tion focuses on the study of the tire-road interaction. A high-fidelity tire model is pro-

posed and built on the calculation of the deformation and friction force distributions in

stick-slip transition. An in-situ sensing technique is also developed to directly measure

the friction force distribution. The model and the sensing development can be further

used for facilitating real-time friction parameter estimation and vehicle safety control.

The third part of the dissertation mainly discusses the human-vehicle interaction. A dy-

namic model is first proposed to capture the physical rider-bicycle interaction. A novel

pose estimation approach is developed to integrate the wearable inertial sensors with

on-board force sensors. A balancing design is finally presented to control the station-

ary rider-bicycle interaction. All the modelings and control designs in the dissertations

are validated through extensive simulations and experiments.

The outcomes of the dissertation provide not only a modeling and control frame-

work but also a physical experimental platform to study the unstable HME interactions.

We discuss the future research direction at the end of the dissertation.
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Chapter 1

Introduction

1.1 Motivation

Human with trained motor skills can flexibly interact with machines while smart ma-

chines can also provide motor assistance and enhancement to facilitate human motor

skills learning. However, we currently lack theories and design tools to model and

control the interaction due to the complex human-machine-environment (HME) inter-

actions. In this dissertation, single-track vehicle such as motorcycle and bicycle is used

as a paradigm to study the modeling, sensing and control of HME interactions.

Single-track vehicles provide an everyday transportation means and recreational

sport. In comparison with double-track vehicles such as passenger cars, single-track

vehicles have attractive characteristics. Single-track vehicles have high maneuver-

ability and strong off-road capabilities. In the environments such as deserts, forests,

and mountains, the mobility of single-track vehicles significantly outperforms that of

double-track vehicles.

Single-track vehicles such as bicycles also offer an excellent platform to study

HME interactions. When riding a bicycle, the rider-bicycle interactions are through

multiple contacts at the handlebar, the seat and the pedals. The rider not only controls

the steering and speed through limbs, but also uses body movements to engage force-

ful physical interactions with the bicycle for maintaining balance. Understanding and

modeling such dynamic and energetic interactions are challenging. Moreover, recent

studies demonstrate promising results of treating Parkinson’s disease patients through
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bicycle riding [2–4]. Thus, bicycles can be used as a potential rehabilitation device for

recovering human postural control for disabilities patients [2].

The main goal of this dissertation is to propose a novel modeling and control frame-

work for single-track vehicles from the human-machine-environment interactions per-

spective. Serving as a corner stone, the research outcome of this dissertation will fur-

ther enable to study the neuro control and sensorimotor mechanism in HME interac-

tions. It is of the hope that the research outcome will also be potentially useful to study

other types of HME interactions.

1.2 Background

The HME interactions for single-track vehicles include two aspects: human-machine

interaction and machine-environment interaction. From the human-machine inter-

action aspect, how the rider actually controls and balances the bicycle or motorcy-

cle is still an open question. In this dissertation, we focus on rider-bicycle inter-

actions and propose a modeling framework for these dynamic interactions. On the

vehicle-environment interaction perspective, tire-road interactions provide the major

thrust/braking forces for the vehicle system and play a critical role in HME system.

Thus, understanding, modeling and control of the tire-road interaction are the main

foci in this dissertation for safe and efficient operations of the single-track vehicles.

In the following, we first review the related work in literature.

1.2.1 Modeling and control of riderless single-track vehicle

The mechanical structure of bicycle or motorcycle consists of four rigid components:

two wheels, a steering mechanism and a rear frame. Therefore, the single-track ve-

hicle is a typical multi-body system. Bicycles and motorcycles share same structures

and properties from dynamic and control aspects. Thus, we do not differentiate them
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throughout the dissertation. Since the last century, many studies are reported to model

the bicycle or motorcycle motions [5,6]. The simplest model is the one degree of free-

dom model that only produces the roll motion and the representative work for the mod-

els are discussed in [7–9]. The first linear model that is able to predict the non-minimal

phase behavior and the speed dependent stability is the “Whipple Model” [10]. The

Whipple Model is bechmarked and derived through four independent methods in [5].

Many other non-linear models are also derived by using multi-body dynamic analy-

sis [6, 11, 12]. However, due to the complexity of intrinsic nonlinear characteristics,

some high-fidelity models are complicated such that a closed-form model for balanc-

ing and motion control design cannot be easily obtained [6]. Computer-aid tools are

also used to simulate the extremely complex models. Sharp and Cossalter separately

extended the bicycle models by considering the tire frictional interactions for motorcy-

cles [13–17].

Control of an autonomous single-track vehicle only using the steering and velocity

as control inputs is challenging due to the platform’s non-minimum phase and under-

actuation properties. For such systems, there is no analytical casual compensator for

exactly output (trajectory) tracking while keeping the internal (balancing) stability [18].

With an additional rider lean (i.e., weight shifting) as a control input, it has been shown

that maneuvering a bicycle becomes easier because adding this extra control input es-

sentially eliminates the right half-plane zeros [19]. In [20], an autonomous bicycle is

designed and balanced using gyroscopic actuators. The controller in [20] is based on

a linearized bicycle model. In [21], a nonlinear control method is designed for a tra-

jectory tracking and balancing. A nonlinear controller based on maneuver regulation

and inverse optimal control is presented in [22]. In [12], sliding-mode control is suc-

cessfully implemented on an autonomous bicycle in laboratory. In [23], a balancing

and tracking control mechanism is designed by on-board shifting weights. In [24, 25],

a simplified inverted pendulum model is utilized for bicycle balancing. A proportional
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derivative (PD) controller with a disturbance observer is employed to design a con-

troller to balance the bicycle. The studies in [24, 25] however focus on balancing the

bicycle on a straight-line motion.

Despite of the abovementioned studies, modeling and control of single-track ve-

hicle for agile maneuvers, such as those maneuvers by professional racing riders, still

remain a challenging task due to intrinsic unstable platform and complex tire-road in-

teraction. Professional motorcycle riders can actually leverage the safety limits of the

tire-road interaction, and maintain the vehicles at high performance while preserving

safety. The previous reported modeling framework assume the nonholonomic con-

straint of the rear wheel contact point. In this dissertation, we relax such zero lateral

velocity constraint to achieve agile maneuvers as those of the professional riders. In

order to fully capture the tire/road slippage, we also consider an empirical tire friction

model in the dynamic model of riderless single-track vehicle. An external/internal con-

vertible (EIC) model-based control is used to design the autonomous agile maneuvers.

Compared to autonomous single-track vehicle with a certain forward velocity, bal-

ancing stationary single-track vehicle is much more challenging, especially for only

using the front tire steering control. It is known that the single-track vehicle has “self-

balance” ability at high speed. Nevertheless, the stationary single-track vehicles do

not possess such property. In [26,27], simulation results demonstrate the possibility to

use only steering control to balance the stationary bicycle. However, no experiments

are reported for such a control scheme. In [20, 23], additional actuated inputs such as

weight-shifting or gyroscopic forces are used to reduce the difficulty of stationary bal-

ancing. In the dissertation, we present two different control designs based on steering

control and gyroscopic actuator control, respectively. Experiments are also conducted

on the developed instrumented bicycle called “bikebot” to validate the control designs.
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1.2.2 Modeling and sensing of tire-road interaction

On the vehicle-environment interaction perspective, tire-road interactions provide the

major thrust/braking forces for the vehicle system and play a critical role in HME sys-

tem. Thus, understanding, modeling and control of the tire-road interaction are one of

the main focuses in this dissertation. Tire-road interactions and real-time tire sensing

play an extremely important role in vehicle dynamics and safety control. However,

analytically modeling of the tire-road interactions is challenging because these inter-

actions are complex, highly nonlinear, and depend on various tire and road conditions.

Further challenges arise because of lack of effective, non-intrusive, inexpensive sens-

ing technology to obtain in-situ tire-road contact information [28]. Most friction force

models are obtained empirically, such as Pacejka “magic” formula [29] that capture

the phenomenological relationships between the total friction forces and tire kinemat-

ics (e.g., slip ratios and slip angles etc.) Although the physical and LuGre dynamical

friction models [30–35] try to capture and interpret the total friction forces through

the rubber deformation and the friction force distributions, several critical modeling

assumptions on the deformation and force distributions are made a prior for these dis-

tributions without experimental validations.

Various tire sensors are also developed to measure the rubber tread deformation and

stresses. In [36,37], a tire sensor has been developed to measure the tire tread deforma-

tion. There is however no further reported evaluation on tire-road friction forces from

the measured tread deflection. Surface acoustic wave (SAW) sensors are proposed for

the “smart tire” application in [38]. Strain and capacitance sensors have been devel-

oped for monitoring the tire tread deformation [39, 40]. In [41, 42], accelerometers

are placed inside tires for friction force estimations. Optical sensors are also devel-

oped for measuring tire deformation [43]. The optical sensing system is complicated

and might not be very robust for varying tire running environments and for real-time

applications. Piezoelectric sensors such as polyvinylidene fluoride (PVDF) has been
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proposed and used for measuring the stresses on the inlet surface of the tire [44]. The

stress measurements are interpreted through a friction force model. The results in [44]

demonstrate the feasibility of the PVDF-based tread deformation sensor. In [45], a

differently configured PVDF-based deformation sensor is designed to measure the tire

sidewall deformation and then to estimate the tire slip angle. Built on these measure-

ments, the tire lateral friction force is estimated using an analytical force model. A

similar PVDF-based deformation sensor is also reported in [46]. Although the above

discussed tire sensors provide measurements of the forces and the deformations, few

results are reported to capture the local friction forces and their distributions. More-

over, these tire sensors cannot capture all aspects of the tire-road interaction forces. For

example, the piezoelectric tire sensors such as PVDF cannot capture the static loading

and forces.

From the above discussion, it is desirable to have a high-fidelity tire-road contact

model and a novel sensing technique to capture the vehicle-environment interactions.

The deformation and friction force distributions are particularly attractive and useful

for real-time estimation of the tire frictional parameters for vehicle dynamics and con-

trol. We develop a modeling and sensing approach to obtain the deformation and force

distribution in stick-slip transition on the contact patch in this dissertation.

1.2.3 Pose estimation, modeling and control of physical rider-bicycle

interaction

Understanding the human-vehicle interaction such as physical rider-bicycle interaction

is challenging. The difficulties are mainly due to the non-rigid rider body, the multiple

contacts physical interaction, the complicated sensorimotor control mechanism, and

lack of effective, non-intrusive motion sensors.

Simple inverted pendulum models and multi-body dynamic models are used for
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the study of physical rider-bicycle interaction; see [19, 47] and references therein. In

those studies, human riders are considered as a rigid part of the motorcycle, or only

a riderless system is discussed. In [48], a human-bicycle model and comparison with

experiments are presented for maneuver simulation. The human is considered as a

point mass connected to the bicycle and only linearized models are obtained. Nonlin-

ear human-bicycle physical models are complex because of high-dimensional human

movements [47]. Moore [6] mainly uses the engineering and experimental approach

to identify the interaction parameters between the rider and the bicycle. In this disser-

tation, we present a physical dynamic model which can reveal the physical dynamic

interaction between the rider’s trunk and the bicycle.

To precisely capture the rider-bicycle physical interaction, a robust pose estimation

scheme is necessary. Existing motion capture systems, such as optical-, acoustic-, or

magnetic-based tracking systems, are limited to indoor usage within a confined space

and cannot be used for tracking human movement in natural environment. Because of

small size, low cost and low power consumption, MEMS-based inertial sensors such

as accelerometers, gyroscopes, or inertial measurement units (IMU) are widely used

as wearable sensors for human motion and gait estimation. The orientation or the po-

sition of a body segment can be obtained by integration of gyroscope or acceleration

signals. However, the results of such strapdown IMU integration have severe drifting

problem due to the sensor measurement biases and noises. To overcome this problem,

other complementary sensors, such as magnetic and ultrasonic sensors, are usually

fused with inertial sensors to eliminate the drifting effect [49–54]. Human anatom-

ical constraints are also used to enhance the fusion accuracy [55]. In [56], multiple

accelerometers are used to estimate the gait without directly integrating IMU mea-

surements. For walking gait estimation, a “resetting” technique is used in [57, 58] to

initialize the integration at the beginning of each stride. In this dissertation, a compu-

tational scheme is proposed to estimate both the rider trunk pose and the bicycle roll
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angle only using body-mounted inertial and force sensors. The scheme is based on the

developed rider-bicycle dynamic model.

In addition, a balancing control design is presented to control the rider-bicycle in-

teraction. The control design is based on a hierarchical sliding-model control approach

with an integrated disturbance observer to estimate the interaction torques between the

rider and the bicycle. Furthermore, we explore the rider’s sensorimotor skill in bicy-

cle riding. Moore [6] uses system identification to obtain an empirical model of the

relationship between the steering angle and bicycle stability. Cain [59] has proposed a

linear model to describe the steady-state turning and verified the model by vast experi-

ments. A proportion integration differentiation (PID) controller is presented to mimic

human steering control and a time-delay controller is used to model the rider trunk

effect without experimental validations in [60]. A systematic review of the rider con-

trol up to the date can be referred to [61]. However, none of the aforementioned work

investigated the human active reactions to external disturbances. In the last part of this

dissertation, preliminary experimental results and observations are presented to show

how the rider reacts external disturbances. To study the rider’s sensorimotor skill for

balancing, we build an instrumented and actuated autonomous bicycle “bikebot”. The

experimental platform and preliminary discovery can be further extended to study the

human sensorimotor skill in future research.

1.3 Dissertation outline and contributions

The dissertation contains seven chapters. Chapter 1 is the introduction. In Chapter 2,

the modeling and control of riderless single-track vehicle for agile maneuver naviga-

tion are first presented. In Chapter 3, two different control strategies are discussed for

stationary balancing. To enhance the understanding of tire-road interaction, a sensor-

enabled high-fidelity tire model is presented in Chapter 4. In Chapter 5, we consider
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to model and estimate the rider-bicycle interaction in real time. A novel pose estima-

tion scheme is proposed based on the fusion of force/inertial sensors. In Chapter 6,

a controller is designed to control the physical rider-bicycle interactions. Preliminary

experiments are also presented to study the human sensorimotor skill. Finally, conclu-

sions and future work are discussed in Chapter 7. We describe the main content of each

chapter as follows.

In Chapter 2, we first relax the commonly-used zero lateral velocity nonholonomic

constraint for the real wheel contact point of the single-track vehicle system. Such non-

holonomic constraint is not realistic for vehicle modeling, particularly for the vehicle

dynamics in agile maneuvers. Second, we explicitly consider the tire-road interaction

in the modeling framework because of the importance of the interaction on vehicle

dynamics. With the new model, an external/internal convertible (EIC) model-based

control design is presented. The control system design takes advantages of the con-

trol actuation flexibility and reduces the design complexity than those in [21] and [26].

The simulation examples of the trajectory tracking and path following demonstrate the

effectiveness and efficacy of the modeling and control design.

In Chapter 3, we present two control designs to balance stationary bicycle. In

the first design, we consider front-wheel steering as the control input. The design is

based on the sliding mode control approach. We reveal and explicitly identify the

attraction region of the control design. In the second design, a gyroscopic balancer

mounted on the rear rack of the bicycle is used as the control actuator for stationary

bicycle. An energy-shaping based control design is proposed to stabilize the bicycle

to the orbital trajectory around the vertical equilibrium position. The effectiveness of

both the control designs are validated by experiments.

We present the modeling, analysis and experimental studies of the stick-slip in-

teractions between the tire and the firm road in Chapter 4. A semi-analytical model

is first proposed to predict the normal force distribution on the tire contact patch. A
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beam-spring network modeling approach is then used to capture and compute the fric-

tion force and rubber deformation distributions on the contact patch. To validate the

contact models and analyses, a pressure-sensitive, electric conductive rubber sensor is

embedded inside the tire rubber layer to extract the three-dimensional forces on the

contact patch. Both the analytical and experimental results show that the friction force

and rubber deformation distributions are dependent on the contact normal force distri-

bution and the tire structural properties.

In Chapter 5, a novel pose estimation scheme is presented to obtain both the rider

trunk pose and the bicycle roll angle only using body-mounted inertial and force sen-

sors. The proposed estimation scheme is built on a rider-bicycle dynamic model and

the integration of the wearable inertial and bicycle force sensors. We take advantages

of the attractive properties of robust force measurements and motion-sensitive inertial

measurements. The rider-bicycle dynamic model provides the underlying relationship

between the force and the inertial measurements. The sensor fusion design fully in-

corporates the dynamic effects of the force measurements. The effectiveness of the

estimation scheme is demonstrated through extensive bicycle riding experiments.

To control the rider-bicycle interactions, we first propose a hierarchical sliding-

mode control approach in Chapter 6. Multiple coupled sliding surfaces are used to

design the controller. The human trunk action is considered as an unknown distur-

bance and a nonlinear disturbance observer (NDOB) is used to estimate its value. The

stability of the combined control and NDOB systems is guaranteed. The performance

of the control systems is demonstrated through numerical simulations. In this chap-

ter, we also present preliminary experimental results to study the human sensorimotor

control using the bikebot. The external perturbation torques are generated by the gyro-

scopic actuator. Both straight line riding and circle trajectory riding are conducted in

the experiments. The experiments conclude that the human rider mainly use steering

rather than trunk motion to overcome external disturbances.
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The main contribution of the dissertation is the development of a novel modeling

and control framework of single-track vehicle from the HME interactions perspective.

The detailed contributions of the dissertation are listed as follows.

1. Novel riderless single-track vehicle modeling and control design are proposed with

considering the tire dynamics and relaxing the nonholonomic constraints. The new

modeling and control design are able to realize the aggressive motions of agile

maneuvers. Such a modeling and control framework can be further extended to

study other machine-environment interactions.

2. The stationary balancing control of single-track vehicle is studied. A new steering

model is proposed to capture the relationship between steering angle and center

of mass change. Two different controllers are designed to implement the station-

ary balancing of single-track vehicle via steering control and gyroscopic balancer

control, respectively. Experiments are conducted to validate the control designs.

3. A high fidelity tire model and a new in-situ sensing technique are introduced to

tire-road interaction. Unlike empirical models, the new tire model is to investigate

the friction force and deformation distributions on the tire-road contact patch with

experimental validations and analyses. The understanding and modeling of the

tire-road interactions potentially provide new knowledge and methods for flexible

thin-layer/rigid contacts in other mechanical systems.

4. An in-situ human pose sensing scheme is proposed for the complex physical rider-

bicycle interaction. The novel pose estimation scheme is built by integrating the

dynamic model and the wearable inertial and bicycle force sensors together. These

modeling and control approaches for rider-bicycle interaction can be applied to

other HME systems.

5. A novel bicycle platform is developed for studying human balancing motor skills.

Preliminary experiments are conducted on the bikebot to study and demonstrate the
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rider sensorimotor control. The platform development provides a new tool to study

human sensorimotor control in human-machine interactions.
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Chapter 2

Modeling and Control of Autonomous Riderless
Single-Track Vehicle

2.1 Introduction

Single-track vehicles, such as motorcycles and bicycles, have high maneuverability and

strong off-road capabilities. In environments such as deserts, forests, and mountains,

mobility of single-track vehicles significantly outperforms that of double-track vehi-

cles. The recent demonstration of the Blue Team’s autonomous motorcycle (Fig. 2.1(a))

in the 2005 DARPA Grand Challenge autonomous ground vehicles competition has

shown an example of the high-agility of the single-track platform [62].

Although the extensive study of the motorcycle dynamics have revealed some

knowledge of motorcycle platform under steady motions, however, modeling and con-

trol of motorcycles for agile maneuvers, such as those by professional racing riders,

still remains a challenging task due to motorcycle’s intrinsic unstable platform and

complex tire-road interaction. Professional motorcycle riders can leverage the safety

limits of the tire-road interaction, and maintain the vehicles at high performance while

preserving safety. The objective of this chapter is to develop a new modeling and

control scheme for an autonomous motorcycle of agile maneuvers. Comparing with

existing study on the motorcycle dynamics and control, the main contribution of this

study is the new modeling and control system design with integrated motorcycle dy-

namics with tire-road interaction. First, we relax the common zero lateral velocity

nonholonomic constraint for the wheel contact points of the motorcycle system. Such
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Figure 2.1: (a) The Blue team autonomous motorcycle. (b) Rutgers autonomous bicy-
cle “bikebot”.

nonholonomic constraint is not realistic for high-fidelity vehicle modeling [47]. The

existence of non-zero lateral velocity is particular useful for capturing motorcycle dy-

namics in agile maneuvers. Second, we explicitly consider the tire-road interaction for

designing control algorithms because of the importance of the tire-road interaction on

motorcycle dynamics. To our knowledge, there is no study that explicitly considers

such kinds of tire dynamics into the motorcycle control system design.

Control of an autonomous motorcycle only using the steering and moving velocity

as inputs is challenging due to the platform’s non-minimum phase and underactuation

properties 1. For such systems, there does not exist an analytical casual compensator

1An underactuated mechanical system is referred to a mechanical dynamic system in which the
number of control inputs is less than the number of the generalized coordinates [63]. Readers can also
refer to [64] for an overview of control of nonlinear non-minimum phase systems.
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for exactly output (trajectory) tracking while keeping the internal (balancing) stabil-

ity [18]. With an additional rider lean (i.e., weight shifting) as an control input, it has

been shown that maneuvering a bicycle becomes easier because adding the extra con-

trol input essentially eliminates the right half-plane zeros [19]. In [20], an autonomous

bicycle is designed and balanced using gyroscopic actuators. The controller in [20] is

based on a linearized bicycle model. In [21], a nonlinear control method is designed for

a trajectory tracking and balancing. In [23], a balancing and tracking control mecha-

nism is designed by on-board shifting weights. In [24,25], a simplified inverted pendu-

lum model is utilized for bicycle balancing. A proportional derivative (PD) controller

with a disturbance observer is employed to design a controller to balance the bicycle.

They however focus on balancing the bicycle on a straight-line motion.

In [21], an external/internal convertible (EIC) dynamical system is presented and

the motorcycle dynamics are of an example of the EIC system. A nonlinear tracking

control design is also discussed for the non-minimum phase bicycle dynamic systems.

In [26], we have extended the dynamic models to consider motorcycle geometric and

steering mechanism properties. In both [21] and [26], nonholonomic constraints of

zero lateral velocity at the rear wheel contact point are enforced and only rear wheel

friction force is considered for traction/braking forces. We relax the nonholonomic

constraint assumption and consider that both wheels can produce braking actuation

though the traction is only from the rear wheel. With the new model, the EIC model-

based control design is presented in this chapter. The control systems design takes

advantages of the control actuation flexibility and reduces the design complexity than

those in [21] and [26]. Two simulation examples demonstrate the effectiveness and

efficacy of the control systems design.

We also present a path-following design to overcome the large errors shown in

the trajectory tracking. For autonomous vehicles, particularly the underactuated me-

chanical systems, maneuver regulation or path following control has demonstrated a
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superior performance comparing with the trajectory tracking design [65–69]. In those

path-following control design, the desired velocity profile along the trajectory is ob-

tained either using Lyapunov-based approach or requiring online solving an optimiza-

tion problem, which is non-causal for non-minimum phase dynamical systems such

as motorcycle dynamics. We use a velocity field concept to generate the desired ve-

locity profile for motorcycle systems. Our approach is inspired by the work in [70]

of passivity-based control of fully-actuated robot manipulators. We integrate the ve-

locity field concept with the EIC control design of underactuated non-minimum phase

motorcycle dynamics.

2.2 Geometry and kinematics relationships
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O

Or

O′
r

X

Y

x
y

xw
yw

φg

α′

α

C1

C2

R

l
vfvr

ψ

ψ
δ

γf

γ′f
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Figure 2.2: A schematic of the riderless motorcycle-bicycle. (a) Kinematic and dy-
namic modeling schematic. (b) Top view of the motorcycle-bicycle kinematic steering
mechanism.

The riderless motorcycle is considered as as a two-part platform: a rear frame and

a steering mechanism. Figure 6.1 shows a modeling schematic of the vehicle. We

consider the following modeling assumptions: (1) the wheel/ground is a point contact
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and thickness and geometry of the motorcycle tire are neglected; (2) The motorcycle

body frame is considered a point mass; and (3) the motorcycle moves on a flat plane

and vertical motion is neglected, namely, no suspension motion.

We denote C1 and C2 as the front and rear wheel point points with the ground,

respectively. As illustrated in Fig. 6.1(a), three coordinate systems are used: the nav-

igation frame N (X, Y, Z-axis fixed on the ground), the wheel base moving frame

(x, y, z-axis fixed along line C1C2), and the rear body frame B (xb, yb, zb-axis fixed on

the rear frame). For the frame B, we use (3-1-2) Euler angles and represent the motion

by yaw angle ψ and roll angle ϕb. We denote unit vector sets for the three coordinate

systems as (I,J ,K), (i, j,k), and (iB, jB,kB), respectively. We consider the tra-

jectory of point C2, denoted by its coordinates (X, Y ) in N , as motorcycle position.

The orientation of the coordinate systems and the positive directions for angles and

velocities follow the conversion of the SAE standard [5].

We consider the instantaneous rotation center of the motorcycle motion on the hori-

zontal plane. Let Or denote the instantaneous rotation center andO′
r denote the neutral

instantaneous rotation center which is the intersection point of the perpendicular lines

of the front and rear wheel planes; see Fig. 2.2. Under the neutral turning condi-

tion [71], the slip angles of the front and rear wheels are the same, that is, λf = λr,

and then the rotation center angles for Or and O′
r are equal to the kinematic steering

angle φg, namely, α = α′ = φg. Let R denote the instantaneous radius of the trajectory

of point C2 under neutral turning conditions. We define σ as the kinematic steering

variable as

σ := tanφg =
l

R
. (2.1)

From the geometry of the front wheel steering mechanism [71], we find the following

relationship,

tanφg cϕb
= tanφs cξ . (2.2)

, where cξ := cos ξ, sξ := sin ξ for angle ξ. If we assume a small roll and steering
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angles, then from (2.2) we obtain an approximation

σ̇ cϕb
= φ̇s cξ . (2.3)

The motion of the motorcycle on the XY plane can be captured by the generalized

coordinates (X, Y, ψ, ϕb, σ). Note that the use of variable σ is to capture the steering

impact on the motorcycle dynamics. The nonholonomic constraint of the rear wheel

and the motion trajectory geometry imply the yaw kinematics equality

vrx = Rψ̇ =
l

σ
ψ̇ . (2.4)

From a differential geometry viewpoint 2, we can partition the generalized veloc-

ities of the motorcycle as base velocities ṙ = [ϕ̇b, vrx, vry, σ̇]
T and fiber velocities

ṡ = ψ̇. We then write the constraints in (2.4) simply as

ṡ+ A(r, s)ṙ = 0, (2.5)

where A(r, s) =

[
0 −σ

l
0 0

]
.

Due to the steering mechanism and caster angle, the height of the mass center

of gravity of the motorcycle is changing under steering. As shown in Fig. 6.1(b),

the height change ΔhB of the center of gravity B due to the steering action can be

calculated as [26]

ΔhB =≈ lbltσ cξ
l

sϕb
, (2.6)

where we use a small angle approximation σ ≈ φg from the relationship (5.9).

Remark 2.1. The height change ΔhB of the gravity center B due to steering given

in (2.6) is an approximation. A more accurate modeling of ΔhB with experimental

validation is given in [73]. The model of ΔhB given in [73] considers the effect of

the tire size without using a small angle approximation and the resultant relationship

2We here take a description of the base-fiber structure of nonholonomic dynamical systems with
symmetry in [72].
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between ΔhB and sϕb
is not linear as shown in (2.6). However, we still use the sim-

plified model (2.6) to design the trajectory tracking and path-following controllers and

the results can be readily extended to the realistic steering model in [73].

Remark 2.2. In [21] and [74], the steering axis is assumed to be vertical. This as-

sumption simplifies the motorcycle dynamics and neglects a significant geometric sta-

bilization mechanism, which is the “motorcycle trail” (denoted as lt in Fig. 2.2) dis-

cussed in [75–77] and [71]. The resulting model of the motorcycle dynamics cannot

capture the influence of the steering angle φs on the roll dynamics when vrx = 0.

Namely, one cannot use steering to stabilize the motorcycle. Such an observation is

also pointed out in [19].

Given the roll angle ϕb and the steering angle φs, the camber angle of the front

wheel is approximated as

ϕf = ϕb + φs sξ . (2.7)

We consider the relationship between velocities of point C2 and the front wheel center

O1. We write the position vector rO1 = rC2 + ρC2O1
, where rC2 is the position vector

of point C2 and ρC2O1
= liB − rkB = li + r sϕb

j − r cϕb
k is the relative position

vector of B. The angular velocity of the rear frame is represented as ω = ϕ̇bi + ψ̇k.

Thus, we obtain

vO1 = ṙC2 + ω × ρC2O1
= (vrx − rψ̇ sϕb

)i+ (vry + lψ̇ + rϕ̇b cϕb
)j + rϕ̇b sϕb

k. (2.8)

2.3 Motorcycle dynamics

We use the constrained Lagrangian method in [72] to obtain the dynamic equation of

the motion of the riderless motorcycle. We consider the motorcycle as two parts: one

rear frame with mass m and one steering mechanism with the mass moment of inertia
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Js. The Lagrangian L of the motorcycle is calculated as

L =
1

2
Jsφ̇

2
s +

1

2
mvB · vB −mg (hb cϕb

−ΔhB) (2.9)

To calculate the mass center velocity, we take a similar approach as in (2.8) and obtain

vB = (vrx − hbψ̇ sϕb
)i+ (vry + lbψ̇ + hbϕ̇b cϕb

)j + hbϕ̇b sϕb
k.

Plugging the above equations and (2.3)-(2.6) into (2.9), we obtain

L =
Js
2 c2ξ

σ̇2 +
1

2
m
[
(vrx − hbψ̇ sϕb

)2 + (vry + lbψ̇ + hbϕ̇b cϕb
)2 + hb

2ϕ̇2
b s

2
ϕb

]
−mg
(
hb cϕb

− lblt cξ
l

σ sϕb

)
. (2.10)

Incorporating the constraints (2.5), we obtain the constrained Lagrangian Lc as 3

Lc =
Js
2 c2ξ

c2ϕb
σ̇2 +

1

2
m

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣(1− hb

l
σ sϕb

)2
+
lb
2

l2
σ2

⎤⎥⎥⎦v2rx + v2ry +
2lb
l
σvrxvry +

2lbhbσ

l
cϕb

ϕ̇bvrx + 2hb cϕb
ϕ̇bvry + hb

2ϕ̇2
b

⎫⎪⎪⎬⎪⎪⎭−mg
(
hb cϕb

− lbltσ cξ
l

sϕb

)
.(2.11)

The moment Ms on the rotating axis is obtained as

Ms =
lt√

1 + (lt/r)
2

(
Fty cϕf

−Ftz sϕf

)
. (2.12)

The detailed calculation of (2.12) is given in Appendix A.

The equations of motion using the constrained Lagrangian are obtained as [72] 4

d

dt

∂Lc
∂ṙi
− ∂Lc
∂ri

+ Aki
∂Lc
∂sk

= −∂L
∂ṡl

C l
ij ṙ

j + τ i, i, j = 1, . . . , 4, (2.13)

3Readers can refer to [72] for the definition of the constrained Lagrangian Lc and also Chapter 5
of [72] for the Lagrange-d’Alembert principle for nonholonomic constrained dynamical systems.

4Here the summation convention is used where, for example, if s is of dimension m, then Ak
i
∂Al

j

∂sk ≡
Σm

k=1A
k
i
∂Al

j

∂sk
.
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where τ i are the external forces/torques,Aki is the element of connectionA(r, s) at the

kth row and ith column, and C l
ij denote the components of the curvature of A(r, s) as

C l
ij =

∂Ali
∂rj
−
∂Alj
∂ri

+ Aki
∂Alj
∂sk
−Akj

∂Ali
∂sk

. (2.14)

From state variable σ, from (2.13), we obtain the steering dynamics as

d

dt

(
Js
c2ξ

c2ϕb
σ̇

)
− mgltlb cξ

l
sϕb

= τs +Ms . (2.15)

Considering a position feedback control of the steering angle directly, we can reduce

the dynamic equation (2.15) by a kinematic steering system as

σ̇ = ωσ, (2.16)

where the input ωσ is considered as the virtual steering velocity and given by dynamic

extension

ω̇σ =
c2ξ

Js c2ϕb

(τs +Ms)− 2 tanϕbϕ̇bσ̇ +
mgltlb c

3
ξ

lJs
sϕb

.

Similarly, we obtain the roll dynamics equation

lbhbσ

l
cϕb

v̇rx + hb cϕb
v̇ry + hb

2ϕ̈b +

(
1− hbσ

l
sϕb

)
hbσ cϕb

l
v2rx

−g
(
hb sϕb

+
ltlb cξ
l

σ cϕb

)
= − lbhb

l
cϕb

vrxωσ, (2.17)

longitudinal dynamics equation⎡⎢⎢⎣
(
1− hbσ

l
sϕb

)2

+
lb
2σ2

l2

⎤⎥⎥⎦v̇rx + lbσ

l
v̇ry +

lbhbσ

l
cϕb

ϕ̈b

−2
(
1− hbσ

l
sϕb

)
hbσ

l
cϕb

ϕ̇bvrx −
lbhbσ

l
sϕb

ϕ̇2
b = −

⎡⎢⎢⎣−2
(
1− hbσ

l
sϕb

)
hb
l
sϕb

vrx

+
2lb

2σ

l2
vrx +

lb
l
vry +

lbhb
l

cϕb
ϕ̇b

⎤⎥⎥⎦ωσ + 1

m
Frx

− 1

m
√
1 + σ2

(Ftx + σFty)−
1

m
Cdv

2
rx, (2.18)
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and lateral dynamics equation

lbσ

l
v̇rx+v̇ry + hb cϕb

ϕ̈b − hb sϕb
ϕ̇2
b = −

lbvrx
l
ωσ −

1

m
Fry +

1

m
√
1 + σ2

(Fty − σFtx) . (2.19)

In (2.18), Cd is the aerodynamic drag coefficient.

Let q̇ := [ϕ̇b vrx vry]
T denote the generalized velocity of the motorcycle and we

rewrite the dynamic equations (2.17)-(2.19) in a compact matrix form as

Mq̈ = Km +Bm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ωσ

Ftx

Fty

Frx

Fry

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.20)

where matrices

M =

[
M11 M12

M21 M22

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
hb

2 lbhbσ

l
cϕb

hb cϕb

lbhbσ

l
cϕb

(
1− hbσ

l
sϕb

)2
+
lb
2σ2

l2
lbσ

l

hb cϕb

lbσ

l
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (2.21)

Km =

⎡⎢⎢⎢⎢⎣
−
(
1− hbσ

l
sϕb

) hbσ cϕb

l
v2rx + g

(
hb sϕb

+
ltlb cξ
l
σ cϕb

)
2
(
1− hbσ

l
sϕb

)
hbσ
l
cϕb

ϕ̇bvrx +
lbhbσ
l

sϕb
ϕ̇2
b − 1

m
Cdv

2
rx

hb sϕb
ϕ̇2
b

⎤⎥⎥⎥⎥⎦ ,
and

Bm =

⎡⎢⎢⎢⎢⎣
− lbhb

l
cϕb

vrx 0 0 0 0

Bω − 1
m
√
1+σ2

− σ
m
√
1+σ2

1
m

0

− lbvrx
l

− σ
m
√
1+σ2

1
m
√
1+σ2

0 − 1
m

⎤⎥⎥⎥⎥⎦ .
In the above matrix Bm,

Bω = 2

[(
1− hbσ

l
sϕb

)
hb
l
sϕb
− lb

2σ

l2

]
vrx −

lb
l
vry −

lbhb
l

cϕb
ϕ̇b.
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It is clear that the control inputs in (2.16) and (2.20) are the virtual steering velocity ωσ

and the wheel traction/braking forces F f and F r.

2.4 Tire dynamics models

In this section, to make the modeling process trackable, we integrate an empirical and

simple tire-road interaction into motorcycle dynamics. In Chapter 4, we will propose a

high fidelity model for real-time tire-road sensing applications.

2.4.1 Tire kinematics relationships

Figure 2.3 illustrates the kinematics of the tire-road contact. Let vc = vcxi+vcyj+vczk

and vo = voxi + voyj + vozk denote the velocities of the contact point and the wheel

center in frame B, respectively. We define the longitudinal slip ratio λs and the lateral

side slip ratio λγ , respectively, as

λs :=
vcx − Rtωw

vcx
, λγ := tan γ = −vcy

vcx
, (2.22)

where ωw is the wheel angular velocity and γ is the side slip angle.

C

O

ψ

ϕb

vc
vcx vcy γx

y

z

Fx

Fy

Fz

Figure 2.3: Schematic of the tire kinematics.

For the front wheel, the camber angle is different (2.7), and the velocity relationship
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between C1 and the wheel center O1 in B is then

vfx = vfox +Rtψ̇ sϕb
, vfcy = vfoy − Rtϕ̇f cϕf

, vfz = vfoz − Rtϕ̇f sϕb
. (2.23)

Using the relationship (2.8) and (2.7), we simplify the above velocity calculation and

obtain

vfx = vrx, vfy = vry − Rtφ̇s sξ cϕb
+lψ̇. (2.24)

From the side slip ratio (2.22) of the rear wheel, we have

λrγ = tan γr = −
vry
vrx

= −vfy
vfx
− Rtφ̇s sξ cϕb

−lψ̇
vrx

= tan γ′f −
Rt tan ξ c

2
ϕb

vrx
ωσ + σ,

(2.25)

where γ′f := φg − γf and tan γ′f = − vfy
vfx

. We also use relationships (2.3) and (2.4) in

the last step above. Moreover, from (5.9) and the geometry and kinematics of the front

wheel (Fig. 6.1), we have

σ = tanφg = tan(γ′f + γf) ≈ tan γ′f + tan γf = λrγ +
Rt tan ξ c

2
ϕb

vrx
ωσ − σ + λfγ.

Therefore, we obtain the relationship between the front and rear wheel side slip ratios

as follows.

λfγ = 2σ −
Rt tan ξ c

2
ϕb

vrx
ωσ − λrγ. (2.26)

Similarly, we can obtain the slip ratio calculation of the front wheel as follows. We

obtain the longitudinal velocity of point C1 as

vfxw ≈ vrx cφg + (vry + σvrx) sφg =
1√

1 + σ2

[(
1 + σ2
)
vrx + σvry

]
.

Then, by the definition (2.22), we obtain the front wheel longitudinal slip ratio

λfs = 1− Rtωf
vfxw

= 1− Rt

√
1 + σ2

(1 + σ2)vrx + σvry
ωf . (2.27)
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2.4.2 Empirical frictional force model

We focus on modeling of the longitudinal force Fx and lateral force Fy because of their

importance in motorcycle dynamics and motion control.

The tire-road frictional forces depend on many factors, such as slip and slip an-

gles, vehicle velocity, normal load, and tire and road conditions, etc. It is widely

accepted that the pseudo-static relationships, namely, the mathematical models of the

longitudinal force Fx and slip λ, and the lateral force Fy and slip angle γ, are the most

important characteristics to capture the tire-road interaction. We propose to approxi-

mate the friction forces by a piecewise linear relationship shown in Fig. 2.4. Let F (x)

denote the frictional force as a function of independent variable x. The piecewise lin-

ear function F (x) captures the property of the tire-road forces: when 0 ≤ x ≤ xm,

F (x) = kx, where k is the stiffness coefficient, and when xm < x ≤ xmax, F =

(1−αx)Fm

xm−xmax
(x−xm)+Fm, where 0 ≤ αx ≤ 1 is a constant that represents the fraction of

the force at xmax of the maximum force Fm. We thus write the force F (x) as follows.

F (x) = k(a1 + a2x), (2.28)

where

a1 =

{ 0 0 ≤ x ≤ xm

(xmax−xm)xm
xmax−xm xm < x ≤ xmax,

a2 =

{ 1 0 ≤ x ≤ xm

−(1−αx)xm
xmax−xm xm < x ≤ xmax.

With the force model (2.28), we write the longitudinal force as

Fx(λs) = kλ [a1λ + a2λ sgn(λs)λs] , (2.29)

where the function sgn(x) = 1 for x ≥ 0 and −1 otherwise is used to capture both

positive (braking) and negative (traction) forces for Fx(λs). For the lateral force, due

to the large camber angle of the motorcycle tires, we have

Fy(λeq) = kγ [a1γ + a2γ sgn(λeq)λeq] , (2.30)
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Fmax

Fs = αxFmax
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Figure 2.4: Linear approximation of the tire-road frictional force F (x).

where we define the equivalent side slip ratio

λeq = tan γeq = tan

(
γ +

kϕb

kγ
ϕb

)
≈ λγ +

kϕb

kγ
tanϕb.

The values of the longitudinal, corning, and cambering coefficients, kλ, kγ , kϕb
,

depend on the normal load Fz. Due to the acceleration and deceleration, the normal

load Fz often changes during motion. For front and rear wheels, the normal loads Ftz

and Frz are obtained respectively as

Ftz =
lb
l
mg − hb

l
mv̇Bx, Frz =

l − lb
l

mg +
hb
l
mv̇Bx, (2.31)

where v̇Bx is the longitudinal acceleration of the motorcycle at the mass center B. The

relationship between v̇Bx and the acceleration of point C2 is obtained as

v̇Bx = v̇rx − vryψ̇ − hbψ̈ sϕb
−lbψ̇2 − 2hbψ̇ϕ̇b cϕb

.

The calculation of the above relationship is given in Appendix B. In this chapter, we

use the tire models in [1] to calculate the dependence of the stiffness coefficients on

the normal load.

2.4.3 Combined tire and motorcycle dynamics models

We combine the motorcycle dynamics (2.16) and (2.20) with the tire dynamics. The

controlled input variables are the front and rear wheel angular velocities, namely, ωf
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and ωr, respectively, and the steering angle φs. Note that the driving wheel is the rear

wheel and we can apply braking for the front wheel, namely, Ftx ≥ 0. For the control

system design, we consider the pseudo-static friction models (2.29) and (2.30), and

therefore we write the longitudinal at the front and rear wheels as

Ftx = F1f + F2fλfs, Frx = F1r + F2rλrs (2.32)

and lateral forces

Fty = F3f + F4f

(
λfγ +

kfϕb

kfγ
tanϕf

)
, Fry = F3r + F4r

(
λrγ +

krϕb

krγ
tanϕb

)
,

(2.33)

where F1i = kiλa1iλ, F2i = kiλa2iλ sgn(λis), F1i = kiλa1iλ, F2i = kiλa2iλ sgn(λis),

i = f, r, and ajiλ, ajiγ , j = 1, 2, are the longitudinal and lateral force model parameters

defined in (2.28), respectively.

Plugging (2.32) and (2.33) into (2.20) and using the relationship (2.26), we obtain

M(q, σ)q̈ = K(q̇, q, σ) +Bu, (2.34)

where input u :=

[
ωσ uTλ

]T
, uλ =

[
λfs λrs

]T
, matrix

K =

[
K1

K2

]
=

⎡⎢⎢⎢⎢⎢⎣
(Km)1

(Km)2 −
F1f

m
√
1 + σ2

− σ

m
√
1 + σ2

F34 +
F1r

m

(Km)3 −
σF1f

m
√
1 + σ2

+
1

m
√
1 + σ2

F34 −
Fry
m

⎤⎥⎥⎥⎥⎥⎦ , (2.35)

(Km)i is the ith row of matrix K, F34 = F3f + F4f

(
λfγ +

kfϕb

kfγ
(2σ − λrγ)

)
, and

B =

[
B11 B12

B21 B22

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

− lbhb
l

cϕb
vrx 0 0

Bω +
RtσF4f tan ξ c

2
ϕb
kfϕb

mvrxkfγ
√
1 + σ2

− F2f

m
√
1 + σ2

F2r

m

− lbvrx
l
−
RtF4f tan ξ c

2
ϕb
kfϕb

mvrxkfγ
√
1 + σ2

− σF2f

m
√
1 + σ2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.36)
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Remark 2.3. We assume that the motorcycle is rear-wheel driven and thus the front

wheel cannot produce the traction force. We consider the following distribution rule

for braking and traction strategy among two wheels. The rear tire can produce both

traction and braking forces, while the front tire can only produce braking force. If a

braking force is needed, the front tire would first be used to brake and produce the

amount of needed braking force. If the needed braking force cannot be fully generated

by the front tire after the slip ratio reaches λsm, the rear tire will then brake to produce

the necessarily extra braking forces.

2.5 Trajectory tracking control systems design

2.5.1 External/Internal convertible dynamical systems

x1x2xm

α1α2αp

u ∫
∫∫

∫
∫

∫ y

f(x, α)+
g(x, α)u

Int. subsystem
Ext. subsystem

Figure 2.5: An external/internal convertible system.

The motorcycle dynamics with tire models are presented by (2.34). We now con-

sider to put such a system into the form of an external/Internal convertible (EIC) dy-

namical systems. The EIC form of a nonlinear dynamical system can be viewed as a

special case of the normal form.

Definition 2.1 ([21]). A single-input, single-output, n (= m + p)-dimensional time-

invariant nonlinear control system is called in an external/internal convertible form if
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the system is of the form

Σ(u)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi = xi+1, i = 1, · · · , m− 1,

ẋm = u,

α̇i = αi+1, i = 1, · · · , p− 1,

α̇p = f(x, α) + g(x, α)u,

y = x1,

(2.37)

with input u ∈ R, output y ∈ R, state variables (x, α), with x := (x1, · · · , xm) ∈ R
m

and α := (α1, · · ·αp) ∈ R
p. The coordinates (x, α) are assumed to be defined on the

open ball Br ⊂ R
n around the origin. The origin is assumed to be an equilibrium of

the system, namely, f(0, 0) = 0. The functions f(x, α) and g(x, α) are Cn in their

arguments, and g(x, α) 	= 0 for all (x, α) ∈ Br. Moreover, we refer to the external

subsystem of Σ(u) as

Σext(u)

{
ẋi = xi+1, i = 1, · · · , m− 1,

ẋm = u
(2.38)

and the internal subsystem of Σ(u) as

Σint(u)

{
α̇i = αi+1, i = 1, · · · , p− 1,

α̇p = f(x, α) + g(x, α)u.
(2.39)

Figure 2.5 shows the structure of an EIC system. An EIC system is convertible

because under a simple state-dependent input and an output transformation, the internal

system is converted to an external system, and the external system is converted to an

internal system (dual structure). To see such a property, let

u = g(x, α)−1 [v − f(x, α)] (2.40)

define a state-dependent input transformation, u 
→ v. Define ξ = α1 as the dual

output. Apply transformation (2.40) to the EIC system (2.37) and the resulting system
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is referred to as the dual of Σ(u).

Σd(v)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi = xi+1, i = 1, · · · , m− 1,

ẋm = −g(x, α)−1f(x, α) + g(x, α)−1v,

α̇i = αi+1, i = 1, · · · , p− 1,

α̇p = v,

ξ = α1.

(2.41)

Thus the use of input transformation (2.40) and the output assignment ξ = α1 converts

the internal dynamics of Σ(u) to the external dynamics of Σd(v), and the external

dynamics of Σ(u) to the internal dynamics of Σd(v).

Since the EIC form is a special normal form of nonlinear dynamical systems, we

can apply the input-output linearization method [64, 78] to convert (2.34) into an EIC

form. Let B22 ∈ R
2×2, B22 ∈ R

2×2, and K2 ∈ R
2 denote the block elements of

matrices M, B, and K, given by (2.21), (2.36), and (2.35), respectively. Using the

input transformation

uλ = B−1
22 M22

[
M−1

22 (M21ϕ̈b −K2 − B21ωσ) + ua
]
, (2.42)

Eq. (2.34) becomes ⎧⎪⎪⎪⎨⎪⎪⎪⎩
M11ϕ̈b = K1 −M12ua +B11ωσ ,⎡⎢⎣v̇rx
v̇ry

⎤⎥⎦ =
⎡⎢⎣arx
ary

⎤⎥⎦ =: ua,
(2.43)

where ua is the controlled acceleration of point C2 in the xyz coordinate system. We

also define the controlled linear acceleration of point C2 and yaw acceleration as

uj :=

⎡⎢⎢⎢⎢⎣
urx

ury

uψ

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
ȧrx

ȧry

ψ̈

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎣ u̇a

vrxωσ+σarx
l

⎤⎥⎦ , (2.44)
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where we use kinematics lψ̇ = σvrx in the calculation. Let (X, Y ) denote the coordi-

nates of the contact point C2 and then we have⎡⎢⎣vX
vY

⎤⎥⎦ =
⎡⎢⎣Ẋ
Ẏ

⎤⎥⎦ =
⎡⎢⎣cψ − sψ

sψ cψ

⎤⎥⎦
⎡⎢⎣vrx
vry

⎤⎥⎦ .
Differentiating the above equation twice (dynamic extension), we obtain⎡⎢⎣v̈X

v̈Y

⎤⎥⎦ = U+ uJ , (2.45)

where

U =

⎡⎢⎣−2v̇rx sψ −2v̇ry cψ−vrxψ̇ cψ +vryψ̇ sψ

2v̇rx cψ−2v̇ry sψ−vrxψ̇ sψ −vryψ̇ cψ

⎤⎥⎦ ψ̇
and

uJ :=

⎡⎢⎣cψ − sψ

sψ cψ

⎤⎥⎦
⎡⎢⎣urx
ury

⎤⎥⎦+
⎡⎢⎣−vrx sψ−vry cψ
vrx cψ−vry sψ

⎤⎥⎦uψ. (2.46)

We define the new inputs uX and uY such that

uJ = −U +

⎡⎢⎣uX
uY

⎤⎥⎦ (2.47)

and then the motorcycle dynamics (2.43) are in the EIC form as

Σext :

⎧⎪⎨⎪⎩
⎡⎢⎣v̈X
v̈Y

⎤⎥⎦ =
⎡⎢⎣uX
uY

⎤⎥⎦ , (2.48a)

Σint : ϕ̈b =
g

hb

(
sϕb

+
lblt cξ ψ̇

hbvrx
cϕb

)
− 1

hb

(
1− hbψ̇

vrx
sϕb

)
ψ̇vrx cϕb

− 1

hb
cϕb

uψy,

(2.48b)

where

uψy := lbuψ + ary. (2.49)

Remark 2.4. When the motorcycle runs along a straight-line, σ = 0 and matrix B22

becomes singular and we cannot use input transformation (2.42). In this case, we
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calculate the total braking force from the second equation of the motions and split two

the front and rear wheels in a way not producing any net moments around mass center

B. A similar approach is discussed in [79]. If the resultant total force is traction, then

it must be produced by the rear wheel.

2.5.2 Trajectory tracking control

Control system overview

EIC System
Controller

External
Subsystem

Internal
Subsystem

Next

⎡⎣uextrx

uextry

uintψ

⎤⎦
(X, Y )

(E(t),Next, (X,Y, ϕb))

Motorcycle dynamics Σ

T
Σext : (X,Y, u)

Σint : (ϕb,X, Y, u)

Figure 2.6: EIC-based approximate output tracking control of the autonomous motor-
cycle dynamics.

The trajectory control system then guides the motorcycle to follow the desired tra-

jectory T : (Xd(t), Yd(t)) while keeping the platform balanced and stable. We here

employ and extend the control design approach in [21]. Figure 2.6 illustrates such a

control scheme. The trajectory control design consists of two steps. The first step to

design a tracking control uext of the external subsystem Σext for the desired trajectory

T . The second step is to design a balancing controller for the internal subsystem Σint

around the internal equilibrium manifold, denoted as E(t). The internal equilibrium

manifold E(t) is an embedded sub-manifold in the state space and dependent on the

external control uext and the external subsystem. Estimations of internal equilibrium

E(t) and its derivatives are obtained by a dynamic inversion technique [21]. The final

casual control system is a combination of external and internal design.
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Approximate tracking control

We assume that the desired trajectory T : (Xd(t), Yd(t)) is differentiable at least up

to fourth order, that is C4 5. This is feasible since the motion planning algorithm can

usually generate a set of piecewise circular curves (C∞) for T [80].

We design a controller uext to track the desired trajectory (Xd(t), Yd(t)) for the

external subsystem Σext (2.48a) disregarding, for the moment, the evolution of the

internal subsystem Σint (2.48b).

uext :=

⎡⎢⎣uextX

uextY

⎤⎥⎦ =
⎡⎢⎣X(3)

d

Y
(3)
d

⎤⎥⎦− 3∑
i=1

bi

⎡⎢⎣X(i−1) −X(i−1)
d

Y (i−1) − Y (i−1)
d

⎤⎥⎦ , (2.50)

where constants bi, i = 1, 2, 3, are chosen such that the polynomial equation s3+b3s2+

b2s + b1 = 0 is Hurwitz. Under such a control, we define a nominal external vector

field Next as

Next :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ẋ(t)

Ẍ(t)

X
(3)
d −
∑3

i=1 bi

(
X(i−1) −X(i−1)

d

)
Ẏ (t)

Ÿ (t)

Y
(3)
d −
∑3

i=1 bi

(
Y (i−1) − Y (i−1)

d

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.51)

By external control (2.50) and the input transformation (2.47), we find the input

uext
J = −U + uext. From (2.46), we obtain uext

j as⎡⎢⎣urx
ury

⎤⎥⎦+
⎡⎢⎣−vry
vrx

⎤⎥⎦uψ =

⎡⎢⎣ cψ sψ

− sψ cψ

⎤⎥⎦uJ . (2.52)

Note that uJ ∈ R
2 and uj ∈ R

3 and the above equation is under-determined. There

are many options to determine uj by (2.52). Here we propose to choose uψ = ψ̈ = 0

5For the external subsystem control, we only need T to be C3. The requirement for C4 is due to the
estimation of the internal (roll angle) equilibrium and its derivatives by a dynamic inversion technique.
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because such a choice significantly reduces the complexity of the control design as

shown in the following.

uext
j =

⎡⎢⎢⎢⎢⎣
uextrx

uextry

uextψ

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎣R(ψ)uext

J

0

⎤⎥⎦ =
⎡⎢⎣R(ψ) (−U + uext)

0

⎤⎥⎦ . (2.53)

Next, we consider the internal (roll angle) equilibrium, denoted as ϕe, by substitut-

ing uextψ and uextry above into the internal subsystem dynamics (2.48b). We define the

implicit function Fϕb
of ϕb as

Fϕb
:=g

(
tanϕb +

lbltψ̇ cξ
hbvrx

)
−
(
1− hbψ̇ sϕb

vrx

)
ψ̇vrx − uextψy , (2.54)

uextψy = lbu
ext
ψ + ary = ary, and the roll angle equilibrium ϕe := ϕe(ψ̇, vrx,u

ext
j )

is a solution of the algebraic equation Fϕe = 0. We define an internal (roll angle)

equilibrium manifold E(t) as

E(t) =
{(

X(0,2), Y (0,2), ϕ
(0,1)
b

) ∣∣∣∣ ϕb = ϕe, ϕ̇b = 0

}
. (2.55)

The internal equilibrium manifold E(t) can be viewed as a time-dependent graph over

the 6-dimensional (X, Y )-subspace in R
6 of the external subsystem (2.48a) that is

evolved with the external nominal vector field Next (2.51) under the external subsystem

control uext.

For the motorcycle balance systems, we like to control the roll angle ϕb around

E(t) while the external subsystem is tracking T under the control of uext. Note that

ϕ̇e 	= 0 and ϕ̈e 	= 0 in general and here we approximate the derivatives ϕ̇e and ϕ̈e

by using directional derivatives [64, 78] along the vector field Next. We define the

directional derivative (or Lie derivative) as L̄Nextϕe := LNextϕe +
∂ϕe

∂t
and L̄2

Next
ϕe :=

L̄NextL̄Nextϕe. With the above approximations for ϕ̇e and ϕ̈e, the stabilizing control of

the internal subsystem Σint (2.48b) around E(t) is then given by the following feedback
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linearization

uintψy =

(
cϕb

hb

)−1

⎡⎢⎢⎣ ghb
(
sϕb

+
lblt cξ ψ̇

hbvrx
cϕb

)
− 1

hb

(
1− hbψ̇

vrx
sϕb

)
ψ̇vrx cϕb

−vψy

⎤⎥⎥⎦ ,
(2.56a)

vψy = L̄2
Next

ϕe −
2∑
i=1

ai(ϕ
(i−1)
b − L̄i−1

Next
ϕe). (2.56b)

where constants a1 and a2 are chosen such that the polynomial equation s2+a2s+a1 =

0 is Hurwitz. Therefore, the internal control is obtained from (2.49) as

uintψ =
1

lb

(
uintψy − ary

)
(2.57)

The final control system design of the motorcycle balance system (2.45) combines

the above development in (2.57) and (2.53) as

uj =

⎡⎢⎢⎢⎢⎣
uextrx

uextry

uintψ

⎤⎥⎥⎥⎥⎦ (2.58)

It is noted that the coupling between the external- and internal-subsystem control de-

signs is through the introduction of the internal equilibrium manifold E(t). By defining

E(t), we approximately decouple the external and internal subsystems using the EIC

dual structural properties of the motorcycle system.

We define ϑ(t) = [X(t) vX(t) v̇X(t) Y (t) vY (t) v̇Y (t)]
T as the state variables of

the external subsystem and �(t) = [ϕb(t) ϕ̇b(t)]
T as the state variables of the internal

subsystem. We also define the output ζ(t) = [X(t) Y (t)]T and desired output ζd(t) =

[Xd(t) Yd(t)]
T . We assume that the desired trajectory ζd(t) and its derivatives (up to

the fourth order) are bounded by a positive number ε > 0, namely, ζd(t) ∈ B
(4)
ε :=

{x(t) | ‖x(0,4)(t)‖∞ < ε}, where ‖x(0,n)(t)‖∞ := supt≥0 ‖x(0,n)(t)‖∞. We also define

the tracking errors eϑi = ϑi −X(i−1)
d , eϑi+3 = ϑi+3 − Y (i−1)

d , i = 1, 2, 3, eϕb
j = ϕb

(j) −
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ϕ
(j)
e , j = 0, 1, and e := [eϑ1 , · · · , eϑ6 , eϕb

1 , e
ϕb
2 ]T . We also define the perturbation

error pϕb
(= O(‖ζ(0,4)

d (t)‖,‖e‖) as the approximation errors by using the directional

derivatives for ϕ̇e and ϕ̈e in the internal subsystem control design (2.56b), namely,

pϕb
= L̄2

Next
ϕe − ϕ̈e +

2∑
i=1

ai(ϕb
(i−1)
e − L̄i−1

Next
ϕe).

We similarly define another two perturbation errors pX (= O(‖ζ(0,4)
d (t)‖,‖e‖) and pY

(= O(‖ζ(0,4)
d (t)‖,‖e‖) due to the resulting errors in the external subsystem state ϑ(t)

using the internal subsystem control uintψy in the external subsystem (2.58). An explicit

formulation for pX and pY can be similarly found by the dual structure of EIC sys-

tem [21]. We consider the perturbation vector for the error dynamics of Σ(u) (2.47)

under control (2.58) as

p(ζ
(0,4)
d (t), e) = [0, 0, pX , 0, 0, pY , 0, pϕb

]T .

We assume an affine perturbation for p(y(0,4)d (t), e), namely, there exist constants k1 >

0 and k2 > 0 such that ‖p(ζ(0,5)
d (t), e)‖∞ ≤ k1ε+ k2‖e‖∞.

We only state the convergence properties of the approximate tracking control de-

sign. The proof of these properties follows directly from Proposition 6.7.4 and Theo-

rem 6.7.6 in [21] and we omit here.

Theorem 2.1. For the balance system (2.47), assuming that the desired trajectory

ζd(t) ∈ B
(4)
ε for some ε > 0 and if the affine perturbation constant k2 > 0 is a

sufficiently small real number, then there exists a t1 > 0, and a class-K function r(ε)

such that for all (eϑ(0), eϕb (0)) ∈ Br(ε), (eϑ(t), e
ϕ
b (t)) converges to zero exponentially

until (eϑ(t), eϕb (t)) enters Br(ε). Once (eϑ(t), eϕb (t)) enters Br(ε), it will stay in Br(ε)

thereafter.

Estimation of the internal equilibrium manifold

A dynamic inversion technique approach in [21] is used to estimate the internal equilib-

rium state ϕe in (2.56b). To illustrate the dynamic inversion technique, we differentiate
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Fϕb
= 0 with time, and using the fact that uextψ = ψ̈ = 0 we obtain

ϕ̇e =
1

g sec2 ϕe + hbψ̇ cϕe

⎛⎜⎜⎝glblt cξ ψ̇v̇rxhbv2rx
+ ψ̇v̇rx + uextry

⎞⎟⎟⎠
= : E(ϕe, ψ̇, vrx, v̇rx, u

ext
ry ). (2.59)

A dynamic inverter for an estimate ϕ̂e of the internal equilibrium ϕe is designed as

˙̂ϕe = −βFϕ̂b
+ E(ϕ̂e, ψ̇, vrx, v̇rx, u

ext
ry ), (2.60)

where Fϕ̂e is given by (2.54) and β > 0 is the inverter gain. The proof of the exponen-

tial convergence of the estimation (2.60) follows directly from the development of the

dynamic inversion technique in [21].

The estimate of the directional derivative L̄Nextϕe in (2.56b) is obtained by (2.60).The

estimate of L̄2
Next

ϕe is obtained by directly taking one more directional derivative of

L̄Nextϕe along Next. For brevity, we give the derivation in Appendix C. We also list the

calculation of L̄Nextu
ext
rx and L̄Nextu

ext
ry in Appendix C. Such calculations are needed

for computing L̄2
Next

ϕe. The approximation errors in estimating ϕe (by ϕ̂e) and its

directional derivatives L̄Nextϕe and L̄2
Next

ϕe (by L̄Next ϕ̂e and L̄2
Next

ϕ̂e, respectively)

are considered as additional terms in the perturbation p(ζ(0,4)
d (t), e). Therefore, the

stability results of the approximate control design in the previous section are still held.

Remark 2.5. Although the above control system design is similar to those in [21], the

final form is much simpler because we have chosen uextψ = 0 in (2.53). We have such a

flexibility by (2.52) to determine uj because we have three control input variables now

while in [21] only the rear wheel driving torque and the steering angle are controlled.

Because of this difference, we only require the trajectory T is at least C4 rather than

C5 as the requirement of the controller in [21]. Using optimization techniques by

considering the input constraints for determining uj by (2.52) is an extension of the

control design and currently ongoing research.



38

2.5.3 Simulation results
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Figure 2.7: Tracking performance of a general trajectory. (a) Trajectory positions. (b)
Tracking position error. (c) Rear wheel contact point velocity magnitude.

In this section, we demonstrate the control systems design through two numerical

examples. The first example is taken from [26] for showing a general motorcycle

trajectory while the second example to illustrate an aggressive maneuvers with a large

side slip angles.

We use a racing motorcycle prototype in [1] and [81] in our simulation. The mo-

torcycle parameters are listed in Table 5.1. We use the tire 160/70 in [1] for the racing

motorcycle since the testing data are available. The tire stiffness coefficients listed in

Table 5.1 are calculated under the nominal load Fz = 1600 N.

Figure 2.7 shows the trajectory tracking performance of a general trajectory. The

position errors under the control system in Fig. 2.7(b) are within 1 meter with the center

line of the track throughout the entire course. The desired velocity in Fig. 2.7(c) is
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Figure 2.8: Roll angle and steering angle of the general trajectory tracking. (a) Rear
wheel contact point body-frame velocities vrx and vry. (b) Roll angle ϕb. (b) Steering
angle φs.
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Figure 2.9: Longitudinal slips and slip angles at the front and rear wheels. (a) Slip ratio
λfs and λrs. (b) Slip angles γf and γr.

determined by the curvature of the trajectory. In Fig. 2.8, we have shown the roll angle

ϕb, the body-frame velocities vrx and vry of rear wheel contact point C2, and steering

angle φs. From Fig. 2.8(a) we clearly see that the lateral velocity vry is quite small most

time because the motorcycle is running along a straight-line at most time. At turning
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m(kg) lb(m) l(m) lt(m) hb(m) ξ(deg) Rt(m) λsm λγm(deg) μm kλ(N) kϕb
(N/rad) kγ(N)

274.2 0.81 1.37 0.15 0.62 26.1 0.3 0.1 6 3 41504 23968 1227

Table 2.1: Motorcycle model parameters

locations, the longitudinal velocity is reduced and the lateral velocity increases. The

roll angle and steering angle are small for such a small-curvature trajectory.
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Figure 2.10: An “8”-shape trajectory tracking. (a) Trajectory positions. (b) Tracking
position error. (c) Rear wheel contact point velocity magnitude.

Figure 2.9 shows the longitudinal slips and side slip angles of the front and rear

wheels. Again, it is clear that the slip values at both wheels are small. The front wheel

only brakes and the rear wheel generates traction or braking forces. For example, when

the motorcycle accelerates around 120 s, the rear wheel slip has a large negative spike

to produce the traction force. When the vehicle needs to reduce velocity, both wheels
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Figure 2.11: Roll angle and steering angle of the “8”-shape trajectory tracking. (a)
Rear wheel contact point body-frame velocities vrx and vry. (b) Roll angle ϕb. (c)
Steering angle φs.
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Figure 2.12: Approximate piecewise linear tire forces characteristics. (a) Longitudinal
force with various tire slip angle ratios λγ . (b) Lateral force with various tire slip ratios
λs. The tire stiffness parameters are taken from [1].

brake with a set of large positive slip spikes shown in Fig. 2.9(a). The side slip angles

shown in Fig. 2.9(b) clearly illustrate that at large-curvature locations, the side slip

angles are increased to produce the lateral forces for turning. Typically, the rear side

slip angles are small and close to zero.
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The second example shows that the motorcycle runs under a more aggressive ma-

neuver. The desired trajectory is “8”-shape with circular radius of 25 meters; see

Fig. 2.10(a). In Fig. 2.10(a), the motorcycle starts from the origin and moves along

the direction indicated by the arrows in the figure. The desired velocity of the motor-

cycle moving along the “8”-shape trajectory is designed to be varying significantly as

shown in Fig. 2.10(c). Comparing with the previous example, the tracking errors of the

“8”-shape trajectory are much larger; see Fig. 2.10(b). This is mainly due to the quick

change of the desired velocity profile.

Figure 2.11 shows the body-frame velocity, roll angle, and steering angle for the

“8”-shape trajectory. We clearly see the change of the lateral velocity during each

circle of the “8”-shape trajectory. The lateral velocity magnitude is large due to the

smaller turning radius. The maximum roll angle is around 15 degs and that is much

larger than that of the previous example. The steering angle is large as well to make

the motorcycle turn in a tighter and small circle. The oscillations in both the roll angle

(Fig. 2.11(b)) and the steering angle (Fig. 2.11(c)) are probably due to the variations in

the desired velocity.

2.6 Path-following control system design

In this section, we extend the modeling approach by considering of the coupling effect

of the longitudinal and the lateral friction forces. We then introduce a velocity-field

maneuver regulation control in which the goal of the control system design is to follow

the trajectory path, while the desired velocity is self-tuned online.

2.6.1 Coupled empirical friction force model

In the previous sections, we presented a piecewise linear model of the motorcycle

tire-road friction forces. However, the dependency and coupling effects between the
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longitudinal and the lateral forces are not considered. We extend the previous results

and present a coupled friction force model here.

We consider the pseudo-static friction model of the longitudinal force Fx and lon-

gitudinal slip ratio λs, and the lateral force Fy and side slip ratio λγ (λγ = tan γ, γ

is slip angle). We propose to approximate the friction forces by a piecewise linear

relationship given by (2.28). To capture the coupling effects between Fx and Fy, we

consider the model parameters k and xm along the x and y directions are dependent on

each other. For example, the values of the longitudinal stiffness kx (k value in (2.28)

for Fx) and the maximum slip ratio λsm (xm value in (2.28) for Fx) are functions of

tire slip angle ratio λγ . Similarly, tire corning stiffness ky (k value in (2.28) for Fy) and

the maximum side slip ratio λγm (xm value in (2.28) for Fy) also depend on the longi-

tudinal slip ratio λs. Denoting k0x and λsm0 (k0y and λγm0) as the parameter values of

longitudinal (lateral) force Fx (Fy) when coupling effects with Fy (Fx) are not consid-

ered, we use the following equations to update parameters kx and λsm (parameters ky

and λγm.) For the longitudinal direction, we have

kx = k0x(a1λγ + 1), λsm = λsm0 (2.61)

and for the lateral direction force,

ky = k0y
a2λs + 1

a3λs + 1
, λγm = (a3λs + 1)λγm0, (2.62)

where a1, a2, and a3 are three parameters in the coupled tire model. We use (2.61)

and (2.62) to capture the coupling effects because such relationships have been ob-

served in experiments.

Figure 2.12 shows the property of the coupled tire mode when kx0 = 30000 N and

ky0 = 24000 N. In this example, we use a1 = −5
3
, a2 = −2, and a3 = 10 for the

motorcycle tires. For slip ratio λs, we set λsm0 = 0.15, λmax = 0.5, αx = 0.8; and

for side slip ratio λγ , we set λγm0 = 0.11, xmax = 1,αx = 0.9. In the following, we
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use the coupled coefficients (2.61) and (2.62) in the dynamic model (2.34) to design a

path-following controller.

2.6.2 Path-following maneuvering design

We propose to use velocity field-based approach to design the path-following control

of the motorcycle system. We assume that the motorcycle motion planning modules

such as the one in [80] generate the desired trajectory T : (Xd(τ), Yd(τ)). Note that

the trajectory T is parameterized by τ , which is not necessarily the same as time t.

Therefore, the desired outcome of the control design design is to follow the trajectory

path without specifying the velocity trajectory associated with the path. Instead, the

desired velocity profile is a part of the control design process using a time-suspension

technique.

Time suspension and velocity field design

We use a time suspension technique to design the desired velocity profile. The basic

idea of time suspension is to use self-placing technique to adjust the desired rate of

the progression of the parameter τ related to T . In other word, we do not need to

assign any desired velocity profile in advance and the motorcycle will instantaneously

adjust its velocity according to the changes of the path-following errors. One obvious

advantage of using the time suspension technique in our design is to reduce tracking

error and thus to improve tracking performance.

We also use a velocity field design concept. The adopted velocity field approach is

to define a reference input as a vector of velocities in the moving plane, rather than di-

rectly in terms of a reference-parameterized path. The main benefit of using a velocity

field design is to further improve tracking performance [70]. To construct the velocity

field, we use a potential function-based approach that is similar to those in [70]. We
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define the following potential function to capture the position errors along the path.

U(X, Y ) =
1

2
β1 [(1− cos(X −Xd)) + (1− cos(Y − Yd))] , (2.63)

where β1 > 0 is a constant gain. At any position, we design the velocity vector by⎡⎢⎣Vx(τ)
Vy(τ)

⎤⎥⎦ = λ1(X, Y )

⎡⎢⎣dXd

dτ

dYd
dτ

⎤⎥⎦− λ2(X, Y )
⎡⎢⎣h sin(X −Xd)

h sin(Y − Yd)

⎤⎥⎦ , (2.64)

where λ1(X, Y ) = e−β2U(X,Y ), λ2(X, Y ) = 2−e−β2U(X,Y ), and β2 > 0 is a self-pacing

parameter. The time suspension level is defined by the following dynamics of τ

τ̇ =
dτ

dt
= λ1(X, Y ). (2.65)

Remark 2.6. We consider the time suspension parameter dynamics (2.65) as a part

of augmented motorcycle dynamics (2.34). Note that the τ dynamics is related to the

potential function U(X, Y ) and therefore to the path following errors. When the mo-

torcycle follows the desired trajectory, U(X, Y ) = 0 and τ̇ = 1. In this case, τ can

be considered as the time variable t. When the path-following errors are large, the

progression of desired trajectory (i.e., τ̇ ) is reduced and the controlled trajectory con-

verges to desired path soon with increased λ2(X, Y ). It is noted that 0 < λ1(X, Y ) ≤ 1

and 1 ≤ λ2(X, Y ) < 2.

Controller design

For motorcycle control systems design, we combine the EIC-based control approach

discussed in the previous section with the above discussed velocity field approach.

The EIC-based trajectory control design consists of two steps; see Fig. 2.6. The

velocity vector parameterized by τ , rather than desired trajectory path specified in time

t, is used as the reference input to the EIC control. We combine the EIC control and the

velocity field design as follows. At any position and on any particular τ , we use (2.63)
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and (2.64) to calculate the current velocity vector. Then we construct a special trajec-

tory for the EIC controller as⎡⎢⎢⎢⎢⎣
Xd(τ)

X1
d (τ)

X
(2,4)
d (τ)

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
X(τ)

Vx(τ)

0

⎤⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎣

Yd(τ)

Y 1
d (τ)

Y
(2,4)
d (τ)

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
Y (τ)

Vy(τ)

0

⎤⎥⎥⎥⎥⎦ ,
where τ is updating by (2.65). The basic design idea is to let velocity vector be the

only design components in the desired trajectory space. With this treatment, we can

fully inherit the EIC controller design and its properties that are stated in the previous

section.

2.6.3 Simulation results

In this section, we demonstrate the control systems design through two examples: one

is for a typical “8”-shape trajectory following maneuver and the other for a more agile

maneuver. We use the same racing motorcycle and tire profiles in the simulation as

these in the previous section.

The first example shows that the motorcycle runs under a regular “8”-shape path

following maneuver in which the motorcycle moves along the trajectory with relative

large curvatures. The desired parameterized trajectory (see Fig. 2.13(a)) is given by the

following equation parameterized by τ⎡⎢⎣Xd(τ)

Yd(τ)

⎤⎥⎦ =
⎡⎢⎣ 25 sin(0.1πτ)
40 cos(0.05πτ)

⎤⎥⎦ (2.66)

Figure 2.13 shows the simulation results. As shown in Fig. 2.13(a), the starting

point of motorcycle is (0, 40). We use self-pacing parameter β2 = 100 in (2.64),

parameter β1 = 0.0025 in (2.63), and the initial velocity is 0.1 m/s. In the simula-

tion, we add white noise with standard variations 0.02 m/s, 0.005 m/s2, 0.3 degs, and

0.6 degs to velocity, acceleration, roll angle, and yaw angle measurements, respec-

tively. By comparing with the desired trajectory, the simulation results show that the
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Figure 2.13: (a) Path following. (b) Roll angle ϕb. (c) Steering angle φs.
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Figure 2.14: A typical motorcycle path-following maneuver. (a) Motorcycle position
and velocity (b) Longitudinal velocity vrx and lateral velocity vry

motorcycle successfully tracks the desired trajectory under the velocity field control.

Figure 2.13(b) and 2.13(c) clearly shows the desired and actual motorcycle roll angle

ϕb and steering angle φs, respectively. The roll angle and steering angle are relatively
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Figure 2.15: Slip ratios and angles at the front and rear wheels during the “8”-shape
trajectory tracking. (a) Slip ratio λs. (b) Slip angles γγ .
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Figure 2.16: (a) Path-following errors under various values of self-pacing parameter
β2. (b) Progression (i.e., τ̇ ) under various values of self-pacing parameter β2.

large when turning at small radius curvatures and small along the straight trajectories.

Figure 2.14 shows the positions, the longitudinal velocity and the lateral velocity of

point C2. From Fig. 2.14(a), the motorcycle spends about 65 s to go through one entire

circle. It is quite clear that the motorcycle tunes its own velocity automatically using

the self-placing technique. When tuning at a small radius, the tracking errors become

large. The motorcycle control system then reduces the rate of the progression in time,

namely, its longitudinal velocity, to reduce the errors. Meanwhile, due to the sharply

direction change, the lateral velocity is relatively large; see Fig. 2.14(b).

The tire slip ratios and angles during the maneuver are shown in Fig. 2.15. For the

front wheel, we see a maximum 15-deg side slip angle while for the rear wheel, the
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slip angle reaches almost 6 degs. Figure 2.16(a) shows the tracking error performances

of the motorcycle under different values of self-pacing parameter β2. From this figure,

we can see that when self-pacing is increased (i.e., increasing β2), the tracking errors

become smaller, namely, the better path-following performance. When β2 = 0, the

maximal error is always smaller than 0.3 m. Of course, the better performance is

trade-off by the smaller motorcycle velocity. This can be observed by the progression

factor τ̇ as shown in Fig. 2.16(b). From Fig. 2.16(b), we see that increasing β2 will

reduce the value of τ̇ in general, which implies that the time has been expanded more.

We can clearly see when β2 = 0, τ̇ = 1 and then the progression always remains at

one, which implies no time suspension exists. In this case, the path-following system is

the same as time-based trajectory tracking as shown in the previous section. Note that

the oscillation of both path-following errors and progression τ̇ are due to the repeated

motion trajectory.

In the second example, we show that the motorcycle runs with a more agile “8”-

shape path-following maneuver. In this maneuver, the motorcycle will turn sharply at

much smaller radii. The desired parameterized trajectory as shown in Fig. 2.17(a) is

defined as ⎡⎢⎣Xd(τ)

Yd(τ)

⎤⎥⎦ =
⎡⎢⎣ 7.5 sin(0.5πτ)
15 cos(0.25πτ)

⎤⎥⎦ (2.67)

The start point of motorcycle is (0, 15). We choose self-pacing parameter β2 = 80 and

parameter β1 = 0.00825. The initial velocity and noise characteristics are the same as

those in the previous example.

From Fig. 2.17(a), we see that even in this extremely tight trajectory case, the mo-

torcycle can still follow the desired trajectory under the velocity field control. From
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Figure 2.17: Motorcycle agile motion. (a) Path-following performance. (b) Roll angle
ϕb. (c) Steering angle φs.
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Figure 2.18: Motorcycle agile maneuver. (a) Position and velocity (b) Longitudinal
velocity and lateral velocity

Fig. 2.17(b) and 2.17(c), it is clear that the steering angle and roll angle are both obvi-

ously larger than those of the previous example due to the much smaller radius curva-

tures. Figures 2.18(a) and 2.18(b) show the motorcycle position and velocity informa-

tion for this maneuver. We see a large lateral velocity vry. Figures 2.19(a) and 2.19(b)
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Figure 2.19: Slip ratios and angles under the agile maneuver. (a) Slip ratio λs. (b) Slip
angles λγ .

show the tire slip ratios and slip angles, respectively. It is noted from Fig. 2.19(a) that

the required longitudinal slip ratio of the rear tire nearly reaches 0.15, which is nearly

the maximal stable slip ratio of the tire model. From Fig. 2.19(b), we also see the large

slip angles in this agile maneuver.
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Figure 2.20: Longitudinal slips and slip angles at the front and rear wheels of the “8”-
shape trajectory tracking. (a) Slip ratio λfs and λrs. (b) Slip angles γf and γr.

We clearly see a large side slip angles shown in Fig. 2.20(b). Particularly, for the

front wheel, we have seen a 15 degs side slip angle. For the rear wheel, the side slip

angle reaches almost 6 degs, which is around the saturation point of the tire character-

istics. In other words, the motorcycle rear wheel is starting to slide on the ground. If

the side slip angle increases further, the stability of the motorcycle will change signif-

icantly. The longitudinal slips are relatively small since the longitudinal acceleration
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of the motorcycle is not large and the racing motorcycle tire is stiff. This simulation

example demonstrates that the proposed dynamic model and control systems capture

the realistic aggressive motorcycle maneuvers.

Comparing with time-based trajectory tracking control design, the simulation re-

sults in this section show that the velocity field based path-following design achieves

smoother velocity profiles and much smaller tracking errors.

2.7 Conclusion

In this chapter, we presented a new nonlinear dynamic model for autonomous motor-

cycles for agile maneuvers. The proposed model is obtained through a constrained

Lagrange modeling approach. Comparing with the existing riderless motorcycle mod-

els, the new features of the proposed motorcycle dynamics model are twofold: First,

we relaxed the assumption of zero-lateral-velocity constraints at tire contact points and

thus the model can be used for the agile maneuvers when wheels run with large longi-

tudinal slips and lateral side slips. Second, we considered the motorcycle tire models

and extended the previously developed motorcycle dynamics. Then a nonlinear con-

trol design is proposed with three control inputs: the front wheel steering angle and the

angular velocities for the front and rear wheels. The trajectory tracking control design

took advantages of the external/internal convertible (EIC) dynamical structure of the

motorcycle dynamics, and was extended with three control inputs. Such an extension

allowed flexibility in control systems design and therefore simplified the complexity

of the final calculation. We demonstrated the trajectory tracking control systems de-

sign through two simulation examples using a racing motorcycle prototype. To further

improve the tracking performance, we presented a velocity field based pathfollowing

control design. A velocity field design was presented to provide a desired velocity pro-

file through a time suspension technique. We then combined the velocity field design
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with the previously developed EIC motorcycle controller. The control system automat-

ically tuned the velocity profile based on the tracking errors and trajectory properties.

The simulation results of an agile maneuver demonstrated that the velocity field based

path-following control design improved the tracking errors.
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Chapter 3

Balancing Control of Stationary Riderless Single-Track
Vehicle

3.1 Introduction

Balancing control of a stationary riderless bicycle is the main topic of this chapter.

The motivation for this study is twofold. First, balance control of stationary bicycle

systems is much more challenging than that under a certain velocity. It is known that

the two single-track vehicles has “self-balance” ability at high speed. Nevertheless,

the stationary single-track vehicles do not possess such property. Only few stationary

balancing studies of single-track vehicles have been reported, especially for vehicles

under only steering control. Second, understanding the balance capability is important

for applications such as the use of bicycle-based rehabilitation device for recovering

human postural control for disabilities patients [2].

We will present two balancing control designs. First, we consider the front-wheel

steering as the only control input of the system. With only steering control, we show

that the balance is maintained within a certain region in the state space. We reveal and

explicitly identify this attraction region. We extend the approach in [82] with consider-

ation of steering mechanism for the bicycle systems under a sliding-mode stabilization

controller. Second, we use the gyroscopic actuator that is mounted on the rear rack of

the bicycle to balance the stationary bicycle. Inspired by the observation that an expe-

rienced human rider commonly oscillates his/her body or the front steering mechanism

around the equilibria points for balancing a bicycle, we propose an energy-shaping
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Figure 3.1: (a) “Bickebot”. (b) Schematic of the bicycle system.

based control design to stabilize the bicycle to the orbital trajectory around the vertical

equilibrium position. Both the effectiveness and performances of control designs are

validated by experiments.

Figure 3.1(a) shows the instrumented bicycle “bikebot” newly developed at Rut-

gers University. All the stationary balancing experiments are conducted on the the

bikebot. The mechanical structure of the bicycle is modified and built on a mountain

bicycle with significant modifications. Both the traction/braking and the steering func-

tions are augmented to allow a human rider, the onboard computer, or both to control

the unstable platform. A hub motor and a DC motor are used for rear-wheel driving

and steering control, respectively. The steering mechanism is modified significantly
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such that the handlebar and the actual steering fork are mechanical separated and in-

dependently controlled. The rider can turn the handlebar and the human input steering

angle is measured by the encoder. The onboard controller then turns the lower-steering

mechanism for actual steering angle. Same design is applied to pedaling control of the

bicycle moving velocity. A braking actuator is installed on the rear wheel to reduce the

moving velocity and is controlled by the onboard computer. To perturb the rider’s bal-

ancing torque, a single gimbal active controlled gyroscopic actuator is mounted on the

back rack of the bicycle as shown in Fig. 3.1. The single gimbal gyroscopic actuator is

compact [83] and can generate significant balancing moments to assist or perturb the

rider. The values of the bikebot physical parameters are listed in Table 3.1.

3.2 Stationary bicycle balancing with steering control

3.2.1 Steering mechanism and geometric relationships

To facilitate the explanation of the influence of the steering mechanism on bicycle

stability, we first assume that the front tire rotates about the fixed axis. Due to the

steering mechanism and a caster angle ξ, the height change ΔhB of the center of gravity

B is calculated by an estimate of the bicycle frame rotation angle δ. Similar to Chapter

2, the height change ΔhB is then calculated by the following equation

ΔhB = δlb sϕb
=
lblt sϕb

cξ
l

βg, (3.1)

where lb is the horizontal distance between the rear tire/ground contact point C2 and

the mass center B.

The formulation (3.1) does not consider the movement of the tire/ground contact

point C1 change due to steering. The portion change of C1 can be negligible for nav-

igation application where only requires small steering angle but not for the stationary

balancing. Figure 3.2 illustrates the steering mechanism geometry. As shown in the
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Table 3.1: Bikebot physical parameters

m (kg) Ix (kgm2) Iwx (kgm2) Iwz (kgm2) hb (m) lb (m) l (m) lt (m) ξ (deg) Rt (m)

51 2.5 0.028 0.036 0.64 0.27 1.1 0.06 20 0.33

figure, because the front wheel plane moves from Πs to Π′
s, the change of the height

of the center of gravity B is changed from two sources. The first one is the change

of height of front tire center point (from Of to O′
f ). We denote the height difference

between Of and O′
f as ΔhOf

. The second source comes from the lateral movement

of C1 (to C ′
1). We denote the lateral movement distance between C1 and C ′

1 as Δyc1 .

In the following, we first discuss how to compute ΔhOf
and Δyc1 and then revise the

formulation of ΔhB in (3.1).

We assume that under steering point C1 is moving on a circular curve under the

effect of tire width. Notice the fact that if the steering angle is 90 degs, the arc length

of curve Ĉ1C
′
1 is equal to Rtξ [71],where Rt is the tire radius. In this special case,

φg = π
2

and it is straightforward to calculate that ΔhOf
= Rt(1 − cos ξ). For any

general steering angle φg, we approximate ΔhOf
proportionally to that of the special

case of φg = π
2
. Therefore, we obtain

ΔhOf
= Rt

[
1− cos

(
φg
π/2

ξ

)]
= Rt

[
1− cos

(
2φgξ

π

)]
,

and then we approximate the height change of B as

ΔhB1 = Rt cosϕb

[
1− cos

(
2φgξ

π

)]
lb
l
. (3.2)

To calculate Δyc1 , we take the similar approach as calculation ΔhOf
. We illustrate

the calculation in Fig. 3.2. We denote the contact point as Cπ/2 under steering angle

φg = π
2
. We assume that the trajectory of C1Cπ/2 is a circular curve with radius

rs = Rtξ
π/2

(since the moving length from C1 to Cπ/2 is Rtξ by the definition of the

caster angle ξ). We approximate Δyc1 proportionally to that of steering angle is π/6,
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Figure 3.2: Schematic of the front wheel steering mechanism.

namely,
Δyc1
φg

=
rs (1− cos π/6)

π/6

The above calculation is illustrated in Fig. 3.2 by assuming that the lateral displacement

of C ′
1 is proportional to that of φg = π

6
. By such an approximation, we obtain

Δyc1 =
12Rtξ

π2

(
1− cos

π

6

)
φg. (3.3)

We here choose φg = π
6

as the reference point mainly for simplicity to obtain a linear

relationship between Δyc1 and φg. Note that by considering the lateral movement of

point C1, we need to deduct an angle of a magnitude of Δyc1
l

to revise the calculation

of ΔhB in (3.1).

Based on the above discussions with (3.2) and (3.3), we revise the relationship

in (3.1) as follows

ΔhB(φs, ϕb) =
lblt cξ sϕb

l
φg −

12Rtlbξ sϕb

π2

(
1− cos

π

6

)
φg −

lbRt cϕb

l

[
1− cos

(
2ξφg
π

)]
. (3.4)

Figure 3.3 shows that the new model is much more accurate than the linear approxima-

tion model (3.1).
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Figure 3.3: Experimental comparison of ΔhB with different model predictions with
initial roll angle φ = −3.8◦.

3.2.2 Stationary bicycle dynamics

Similar to Chapter 2, we use the Lagrangian equations to obtain the dynamic equation

of the motion of a stationary riderless bicycle as follows

ϕ̈b =
mg sinϕb
Ix +mh2b

(
h+

αRtlb
l

)
+

mglb cϕb

(Ix +mh2b)l

⎡⎢⎢⎣lt cξ−12Rtξ

π2

(
1−
√
3

2

)⎤⎥⎥⎦φg,(3.5)

where α := 1−cos
(

2ξφg
π

)
, m is the total mass of the bicycle system, hb is the height of

mass center B, Ix is the mass moment of inertia of the bicycle system along the x-axis,

and g is the gravitational constant. Due to the similarity with those in the previous

chapter, we neglect the detailed derivation of (3.5). In the model(3.5), we also consider

the gyroscopic actuator as a mass point and being included in the total mass.

3.2.3 Balance stability and control design

Roll angle controllable region

We consider the controllable region of bicycle systems (3.5) as the maximum roll angle

region in which the system is possibly balanced around the vertical position (ϕb = 0)

for any given steering control design.
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To make the analysis tractable, we assume that: (1) the tire/ground contact is a

point rather than a patch; and (2) the two contact points C1 and C2 do not move. Under

a roll angle ϕb, the lateral movement of the center of gravity B is approximated as

ΔBy = hb sinϕb. Now suppose that we apply a steering angle φs on the front wheel,

the turn of the front wheel will compensate for the lateral movement of point B by

distance Δβ
By as follows.

Δβ
By =

ltlb cξ cϕb

l
φg. (3.6)

To maintain the balance by steering, let ΔBy −Δβ
By = 0 and thus we obtain

ϕbmax = tan−1

(
lblt cξ
hbl

βg

)
. (3.7)

It is straightforward to check ϕbmax is 4 degree given the parameters in Table 3.1.

Remark 3.1. From (3.7), we clearly see that the maximum stabilizable roll angle by

steering depends on geometric parameters of the bicycle system. Note that the analysis

here is based on a simplified static and kinematic calculation and consideration of

dynamic effects is ongoing work.

Control design and domain of attraction (DOA)

We consider the DOA of the bicycle dynamics (3.5) under a particular balance con-

troller. We first specify a controller before analyzing DOA. Using a small angle ap-

proximation, we consider α ≈ 0.05 in the dynamics (3.5) and thus we rewrite (3.5)

as

ϕ̈b = f1(ϕb) + f2(ϕb)φg, (3.8)

where

f1(ϕb) =
mg sinϕb

Ix +mhb
2

(
h +

0.05Rtlb
l

)
and

f2(ϕb) =
mglb cϕb

(Ix +mhb
2)l

[
lt cξ−

12Rtξ

π2

(
1−
√
3

2

)]
.
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We design a sliding mode control for the dynamic systems (3.8). We first define a

sliding surface s = ϕb + λϕ̇b. Then we design the controller

φg =
−ϕ̇b − λf1(ϕb)−Ks

λf2(ϕb)
, (3.9)

where λ > 0 and K > 0 are constants. Plugging (3.9) into (3.8), we obtain

ϕ̈b = −
K

λ
ϕb −
(
1

λ
+K

)
ϕ̇b (3.10)

as the closed-loop dynamics.

To estimate DOA, we consider the case that the maximum projected steering angle

is π
3
, namely, φg ≤ π

3
. Combining (3.8) and (3.10), it is straightforward to obtain the

DOA estimates given by∣∣∣∣∣−K
λ
ϕb −
(
1
λ
+K
)
ϕ̇b − f1(ϕb)

f2(ϕb)

∣∣∣∣∣ ≤ π

3
. (3.11)

Figure 3.4 shows the DOA estimates with three different sets of control parameters.

It is interesting to find that when the controller is aggressive such as K = 40, the

DOA becomes smaller. This is because that aggressive actions increase the roll angular

motion, which is undesirable for the balance control. Figure 3.4 also shows that the

DOA estimate under this type of sliding-mode control has a strip shape.
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Figure 3.4: DOA estimation under different sliding-mode control designs
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Figure 3.5: Experimental results of the balance controller with K = 20 and λ = 1. (a)
Roll angle ϕb. (b) Roll angle rate ϕ̇b. (c) Steering angle φs.

3.2.4 Experiments

We conducted all experiments using the bikebot shown in Fig. 3.1(a). In experiment,

the rear tire is fully locked to achieve zero velocity constraint.

Figure 3.5 shows the experimental results. We release the bicycle from equilibrium

position and the controller turned steering immediately. The bicycle was then returned

around the equilibrium position finally. We now show a validation of the DOA estima-

tion by two experiments. First, we set up a zero initial roll angular rate. The design

parameters of the sliding-mode controller are K = 20 and λ = 1. By calculation,

when ϕ̇b = 0 we find the DOA boundary (e.g., curves in Fig. 3.4) is around 2.5 degs.

In the first experiment, we use the motorized support jack to setup the bicycle to start

at 2.5 degs. In the second experiment, we set the initial roll angle to be slightly larger
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than 4 degs. Figure 3.6 shows the experimental roll angle results. The results shown

in Fig. 3.6 clearly illustrate that for the first experiment the controller can regulate the

roll angle to return back to the equilibrium position, while in the second experiment,

the bicycle cannot be balanced and finally supported by the motorized jack. To protect

the bicycle from falling down, we set a 6-deg roll angle limit position by the support

jack in experiments.
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Figure 3.6: Roll angle trajectory of experiments with two different initial roll angle
values

3.3 Stationary bicycle balancing with gyroscopic actuator

3.3.1 Bicycle model

In this section, the riderless bicycle is considered as a three-part platform: a rear frame

with the gyro-balancer structure and rear wheel, the front wheel and steering mecha-

nism and the gyro-balance flywheel. We consider the following modeling assumptions:

(1) the mass center W of the gyro-balancer flywheel and its driving motor is located at

the rotating axis and therefore, its translational velocity is along the rear frame; (2) the

rear wheel contact point satisfies the nonholonomic constraint, i.e., zero lateral veloc-

ity; and (3) the bicycle moves on a flat plane and vertical motion is neglected, namely,
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no suspension motion.
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Figure 3.7: Schematic of the bicycle system.

Similar to the previous derivations and using the Lagrange approach, the motion

equations of motion of the riderless bicycle with zero steering angle are

(mh2b + Ix + Iwxz s
2
ϕw

)ϕ̈b + Iwxz s2ϕw ϕ̇wϕ̇b −mghb sϕb
+Iwz cϕw ϕ̇wωs = 0, (3.12)

Iwyϕ̈w + Iwxzϕ̇
2
b cϕw

sϕw −Iwzϕ̇bωs cϕw = τm, (3.13)

where Iwxz = Iwz − Iwx and I represents the inertial of moment,ωs is the constant

rotating speed of flywheel in the gyroscopic actuator.

3.3.2 Stationary bicycle dynamics

The state variable is defined as x = [x1 x2 x3]
T = [ϕb ϕ̇b sinϕw]

T . For presentation

convenience, we also define xb = [x1 x2]
T . It is clear that the bicycle with gyroscopic

actuator is an underactuated system under only gyro-balancer control. Since the pivot-

ing motor is controlled through the lower-level embedded control for a given velocity,

we consider a velocity control input for pivoting angle x3. With the defined state vari-

able, we re-write the dynamics equation (3.12) along with the pivoting angular velocity
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control as

ẋ1 = x2 (3.14a)

ẋ2 = f(x) + g1(x)u1 (3.14b)

ẋ3 = u1, (3.14c)

where u1 = cosϕwϕ̇w is the controlled pivoting velocity,

f(x) =
mghb sx1
Is(x)

, g1(x) = −
Iwxzx2 s2x3 +Iwzωs

Is(x)
, (3.15)

and Is(x) = mh2B + Ix + Iwxz s
2
x3

. Due to the physical constraints, the pivoting angle

and angular rate are within a limit. We denote that

|x3| = | sϕw | ≤ sϕmax
w

< 1, |u| = | cϕw ϕ̇w| ≤ ωmax
w , (3.16)

where ϕmax
w and ωmax

w are the maximum flywheel pivoting angle and angular velocity,

respectively. In the following, we present the balancing control design.

3.3.3 Balancing controller

The equilibrium of the dynamics (3.14) is x1e = x2e = 0 under u1e = ϕ̇we = 0. It

is interesting to notice that the flywheel pivoting angle can be any values within ϕmax
w

while the bicycle is balanced.

We now consider how to calculate the gyro-balancer flywheel’s pivoting angle x3(t)

for a given profile for roll angle x1(t). Indeed, (3.12) can be re-written as

d

dt

[
(mh2b + Ix)x2 + Iwxzϕ̇bx

2
3 + Iwzωsx3

]
= − ∂

∂ϕb

(
mghb cx1

)
. (3.17)

From the above equation, the bicycle with flywheel satisfies the Hamiltonian dynamics

with angular momentum along the x-axis direction

px(t) = (mh2b + Ix)x2(t) + Iwxzx2(t)x
2
3(t) + Iwzωsx3(t). (3.18)
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By integrating (3.17), it is then straightforward to obtain that

px(t)− px(0) =
∫ t

0

mghb sx1(τ) dτ. (3.19)

From (3.19), we have the following property with a proof given in Appendix E.

Property 3.1. For a given periodic profile x1(t) with period T , the profile for the

pivoting angle is also periodic with the same period T .

To further simplify the controller design, from (3.15) and the fact that the flywheel

spinning speed ωs 
 |x2|, it is noted that Iwzω2 cx3 
 |Iwxzx2 s2x3 |. Moreover,

mh2G 
 Ix 
 Iwxz and therefore, (3.14b) is approximated and reduced to

ẋ2 −
g

hB
sx1 +

Iwzωs
mh2B

u = 0. (3.20)

Clearly, for simplified dynamics (3.20), state variable x ∈ D := S× R× (−1, 1).

We consider to regulate roll motion on an orbital trajectory in D. An oscillation

orbital trajectory Ob is selected as given by the following pendulum dynamics.

Ob : ẋ2 +
b

hb
sx1 = 0, (3.21)

where design parameter b > 0 is a gravitationally equivalent constant. Plugging (3.21)

into the simplified roll dynamics (3.20) to eliminate term sx1 , we obtain

ẋ3 = −
(b+ g)mh2b
Iwzbωs

ẋ2 = −Lẋ2, (3.22)

where constant L =
(g+b)mh2b
Iwzbωs

. Therefore, the corresponding orbital trajectory Ow for

flywheel pivoting angle x3 is designed as

Ow : x3 = −Lx2. (3.23)

Remark 3.2. The form of (3.23) is seemingly similar to those of virtual holonomic

constraints in orbital stabilization of underactuated mechanical systems in [84, 85].

However, the relationship (3.23) are not the same as the virtual constraints in [84, 85]
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since (3.23) is obtained through the system dynamics (3.20) rather than by design.

Moreover, (3.23) represents the torque balance relationship between the controlled fly-

wheel pivoting and the underactuated bicycle roll motion, while the virtual holonomic

constraints in [84, 85] capture the displacement relationships among the generalized

coordinates.

Once the bicycle roll motion follows the orbitOb, the total energy E(xb) is defined

as:

E(xb) =
1

2
mh2bx

2
2 +mhbb (1− cx1) .

When target orbit Ob reaches the maximum angle xd1 with x2 = 0, the total energy

is Ed = mhGb(1 − cxd1). We define the energy difference ΔE = E(xb) − Ed. We

consider the Lyapunov candidate function V (x) as

V (x) =
1

2
ΔE2 +

1

2
k1 (x3 + Lx2)

2 ,

where k1 > 0 is a constant. Obviously, V (x) ≥ 0 and

V̇ (x) = ΔE(mh2bx2ẋ2 +mhbb sx1 x2) + k1(x3 + Lx2)(ẋ3 + Lẋ2).

Using (3.14) and (3.20) and letting

u =
Lb

hB
(sx1 +v1) = u1s +

Lb

hb
v1, (3.24)

where u1s = Lb
hb

sx1 and v1 is an auxiliary control input, V̇ (x) is then reduced to

V̇ (x) = −mhb(g + b) [ΔEx2 + αk1 (x3 + Lx2)] v1, (3.25)

where α = g
bIwzωs

> 0 is a constant.

The control input v is further designed as

v1 = k2 [ΔEx2 + αk1 (x3 + Lx2)] (3.26)

with a positive constant parameter k2 > 0, then we obtain

V̇ (x) = −mhb(g + b)k2 [ΔEx2 + αk1 (x3 + Lx2)]
2 ≤ 0.
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By La’Salle theory [86], the system states asymptotically converge to the invariant set

S(x)

S(x) =
{
x ∈ D |ΔEx2 + αk1 (x3 + Lx2) = 0

}
. (3.27)

The trajectories of the closed-loop dynamics are on orbits Ob and Ow. Therefore, the

origin xe = 0 ∈ S(x).
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Figure 3.8: Bicycle self-balancing at zero velocity. (a) Roll angle ϕb. (b) Flywheel
pivoting angle ϕw.

3.3.4 Experiments

We demonstrate the self-balancing control of the stationary riderless bicycle in exper-

iments. The balancing controller (3.24) was implemented with parameter b = 1 and

k2 = 1 and the bicycle was successfully balanced. Figure 3.8 shows the experimental

results. The bicycle roll angle is shown in Fig. 3.8(a), and the gyroscopic actuator fly-

wheel pivoting angle is shown in Fig. 3.8(b). Clearly, the trajectories of the bicycle roll

angle and the pivoting angle converge to the orbits and are finally synchronized in pe-

riodic motion. It is also clear that under the gyroscopic control constraint, the bicycle

can be balanced within a small range (i.e., 2-3 degs) around the vertical position.
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3.4 Conclusion

In this chapter, we presented two balancing control designs of the stationary riderless

bicycle. We first revealed geometric and kinematic relationship of the front wheel

steering mechanism of the bicycle system. We presented the analytical estimation of

the domain of attraction (DOA) for a sliding mode control by using steering as the only

input. We also designed an energy-shaping-based control with a gyroscopic actuator to

realize orbital stabilization. Experiments are conducted to validate both the two control

designs.
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Chapter 4

Modeling and Sensing of Tire-Road Interactions

4.1 Introduction

This chapter is an extension of the tire friction model presented in Chapter 2. In this

chapter, a more accurate model of tire deformation and force distributions is presented.

Tire-road interactions play an extremely important role for vehicle operation. How-

ever, understanding and modeling of the tire-road interactions are challenging because

these interactions are complex, highly nonlinear, and dependent on various tire and

road conditions. Further challenges arise because of lack of effective, inexpensive

sensing technology to obtain in-situ tire-road contact information [28].

Rubber deformations on the tire-road contact patch generate friction forces. Most

empirical friction force models, such as Pacejka “magic” formula [29], capture the

phenomenological relationships between total friction forces and tire kinematics (e.g.,

slip ratios and slip angles etc.) Although the physical and the LuGre dynamic fric-

tion models [30–35] try to capture and interpret the total friction forces through rubber

deformation distribution, several critical modeling assumptions are made a prior. For

example, the physical model in [30] uses an assumption of a simple division of adhe-

sion (stick) and sliding (slip) regions of the tire contact patch. The LuGre dynamic

models in [32–35] are built on the given normal force distribution to calculate rubber

deformation distributions without experimental validation. Although the normal load

distribution is discussed in [87,88], few work are reported on analyses and experiments

of the rubber deformation and friction force distributions on the contact patch. One of
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the main goals of this work is to fill the gap of such knowledge.

Tire-road stick-to-slip transition determines the rubber deformation and friction

force distributions. The stick contact refers to no locally relative movement between

the tire and the road, while in slip contact, relative tire-road motion exists locally. Un-

derstanding of stick-slip interactions not only provides the fundamentals of the rubber

deformation and friction force distributions and their evolutions [89], but also helps

build accurate friction models for vehicle dynamic simulation and active safety control

[90,91]. Another goal of this work is to present the analysis, modeling and experiments

of stick-slip interactions between the stationary tire and the firm road.

Unlike robotic fingertip contact [92–94], the Hertzian contact theory [95] cannot

be directly used to obtain the tire-road normal contact force distribution due to the

large rubber deformation and the tire’s hollow structure. A semi-analytical normal

force model for the thin layer-rigid contact [96] is instead used and extended. To

obtain the elastic rubber deformation and friction force distributions simultaneously,

a beam-spring network model is introduced and employed. Inspired by the discrete

mass-spring network models that are used to successfully simulate and compute the

deformation of thin layer structures [97, 98], a set of virtual cantilever beams are used

to model the rubber’s shear effect and a set of virtual springs that connect the beams are

introduced to capture the elasticity. The cantilever beam-spring modeling approach not

only provide the fundamental information of deformation and force distributions, but

also fits well with tire-road dynamic friction models such as the LuGre models in [34,

35]. Therefore, it is naturally convenient to integrate the beam-spring network model

with the dynamic tire-road friction model to bridge the local friction force distribution

with the total friction force.

To eliminate the influences of tire treads or grooves on the rubber deformation and

friction force distributions and to focus on the fundamentals of mechanical contact

properties, a tire with a smooth outer surface is used in this study. To validate the
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analyses and the models, an embedded, small sensor made of pressure-sensitive, elec-

tric conductive rubber (PSECR) is used to extract the multi-directional local friction

forces on the tire contact patch [99]. Compared with the other types of the tire sensors

(e.g., [36, 40, 44]), the embedded PSECR sensor is capable to extract the local friction

forces and their distributions.

The main contribution of the work lies in the force and deformation distribution

models, analyses, and sensing for studying stick-slip contacts between a flexible thin

layer and a rigid surface. These contact problems include not only the tire-road in-

teractions but also many other applications in mechanical systems, such as robotic

grasping and manipulation [100]. Although the presented work focuses on the stick-

slip interaction, the results provide new modeling approaches to study the dynamic

tire-road interactions. The calculation and modeling of the local contact force distribu-

tions will also lead to potentially build relationships among the beam-spring network

model, the embedded tire sensor measurements, and the total friction models (e.g., Lu-

Gre dynamic friction model). These relationships are particularly useful for using the

embedded sensors to estimate the model parameters in the total friction models in real

time.

4.2 Tire-road normal contact pressure model

4.2.1 Tire contact patch geometry

Figure 4.1(a) shows the tire-road contact and Fig. 4.1(b) illustrates the schematic of the

contact geometry and force generation. A torus-shape motorcycle tire with a smooth

outer surface and a circular radial cross section is used in this work. The thickness of

the rubber layer is defined as 2h. A coordinate system is set up with the origin at the

center of contact patch P with a vertical distance of h to the road surface. The x-axis

is along the tire center with the positive direction towards the leading edge of P , that
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Figure 4.1: (a) A torus-shape tire-road contact. (b) A schematic of the tire-road contact
and the boundary force calculation.
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Figure 4.2: (a) The contact patch geometry. The dashed-line indicates the elliptic
model approximation and the triangular line shows the actual contact contour from the
images taken by a camera underneath the tire. The white dots painted on the tire surface
are used to calculate the rubber deformation distribution. (b) Pn(x, y) distribution (in
Pa) under Pair = 69 kPa and Fz = 267 N. (c) Schematic of the one-dimensional tire
contact configuration along the center line.

is, the direction where the tire tends to move forward. Total normal force Fz is applied

on P with contact normal pressure distribution Pn(x, y) and inflation air pressure Pair

Total friction forces Ff is projected along the x- and y-axis directions as Ffx and Ffy,

respectively. The friction force stress Pf(x, y) at point (x, y) ∈ P is composed by the

x- and y-axis components as Pfx(x, y) and Pfy(x, y), respectively. From the above

definitions, it is straightforward to obtain

Fz =

∫
P
Pn(x, y)dS, Ff =

∫
P
Pf(x, y)dS,
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where dS is an infinitesimal area on P .

Under Pair and Fz, P is in an elliptical shape [101, 102]. To estimate the major

radius Lx and the minor radius Ly of P , a series of experiments are conducted under

various Pair and Fz. An empirical model for Lk, k = x, y, is proposed in [102]. In the

empirical model, the exponential functions of normal load Fz and tire inflation pressure

Pair are used to predict Li, i = x, y, as follows.

Li(Pair, Fz) = ai(Pair)F
bi(Pair)
z , i = x, y, (4.1)

where ai(Pair) = eai2P
2
air+ai1Pair+ai0 , bi(Pair) = bi2P

2
air + bi1Pair + bi0, i = x, y, are

quadratic functions of p. The values of parameters aij and bij , i = x, y, j = 1, 2, 3, are

listed in [102]. The comparison of the model predicted ellipse and the measured P is

shown in Fig. 4.2(a). The prediction matches the actual size of P . With the known Lx

and Ly, the distance between the tire center O and P is calculated as H =
√
R2
o − L2

x.

From the geometry in Fig. 4.1(b), the radius of the tire radial cross section is obtained

as Rc =
(Ro−H)2+L2

y

2(Ro−H)
.

4.2.2 Normal contact pressure distribution Pn(x, y)

Because of its influences on the friction force distribution, the normal contact pres-

sure distribution is discussed in this section. Figure 4.2(b) shows a typical normal

contact pressure distribution Pn(x, y) that is obtained from the measurements of a set

of PSECR sensor arrays placed on P . It is clear that Pn(x, y) is symmetric with re-

spect to the center of P . Unlike the fingertip contact in which the highest pressure of

Pn(x, y) is located around the center [94], the locations of the highest Pn(x, y) form a

ring-shaped zone and are close to the edge of P . In [102], an empirical model is pre-

sented for Pn(x, y). To provide a better understanding of the normal contact pressure

distribution, a semi-analytical model is derived and obtained in this section. In order

to capture the fundamental thin layer contacting property and achieve the analytical
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model, it is assumed that the tire is only made of rubber without fiber layer in the nor-

mal contact pressure model. Note that in the model, the geometry information (i.e, Lx,

Ly) of contact patch is assumed known by (4.1).

Due to the symmetry, the analytical model along the tire center line (Fig. 4.1(a))

is presented here. Such a one-dimensional pressure distribution is denoted as Pn(x)

and Fig. 4.2(c) illustrates the schematic to calculate Pn(x). The Fourier-Michell solu-

tion [103] is used to obtain Pn(x). To satisfy the bi-harmonic condition∇4φ(r, θ) = 0

in polar coordinates [103], the following potential function φ(r, θ) is selected [96]

φ(r, θ) = a0r
2 + b0 log r +

∞∑
n=1

(
anr

nπ/θ0 + bnr
nπ/θ0+2 + cnr

−nπ/θ0 + dnr
−nπ/θ0+2

)
cos

nπθ

θ0
,(4.2)

where a0, b0, an, bn, cn and dn are coefficients to be determined and θ0 is defined

for the cross section where the contacting influence on deflection and shear stress are

negligible. In Fig. 4.2(c), contact angle θc = sin−1
(
Lx

Ro

)
. Given the potential function

in (4.2), the radial normal stress σrr, the tangential normal stress σθθ and the shear

stresses τrθ in polar coordinates are calculated as follows [103]

σrr =
1

r

∂φ

∂r
+

1

r2
∂2φ

∂θ2
, σθθ =

∂2φ

∂r2
, τrθ = −

∂

∂r

(
1

r

∂φ

∂θ

)
. (4.3)

For calculation convenience, normalized θ̂ = πθ
θ0

and θ̂c = πθc
θ0

are used in the

following calculations. Without confusion, the notations are abused by using θ and θc

instead of θ̂ and θ̂c for brevity.

The normalized boundary conditions are set as

uθ = τrθ = 0, |θ| = π, Ri ≤ r ≤ Ro,

σrr = τrθ = 0, 0 ≤ |θ| < π, r = Ri,

σrr = τrθ = 0, θc ≤ |θ| < π, r = Ro, and⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂ur
∂θ

=
Roθ20
π2 sin θ,

τrθ = 0,

0 ≤ |θ| < θc, r = Ro,

(4.4)
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where ur and uθ are radial and tangential displacements in polar coordinates, respec-

tively. Notice that directly applying the boundary condition σrr = −Pair at r = Ri

does not provide correct solutions in (4.2) due to the intrinsic limitations of linear elas-

ticity theory. The influence of Pair on Pn(x) is temporarily not considered and its effect

will be compensated into the Pn(x) model through empirical approach.

Plugging (4.2) and (4.3) with the normalized θ into (4.4), the coefficients in φ(r, θ)

are solved and obtained. Following the similar derivation in [96], an analytical solution

for the normal contact stress at r = Ro is obtained as

σrr(Ro, θ) = cos

(
θ

2

)∫ θc

θ

ϕ(t)dt√
cos θ − cos t

, (4.5)

where ϕ is an auxiliary function that is found as a Fredholm integral problem of the

second kind

ϕ(t) +

∫ θc

0

ϕ(s)K(t, s)ds = − G√
2(1− ν)

(
θ0
π

)2
sin t (4.6)

and the kernel function K(t, s) is defined as

K(t, s) = −1
2

∞∑
n=1

n

(
1− G

1− ν hn
)
tan

(
t

2

){[
Ln(cos s) +

Ln−1(cos s)

][
Ln(cos t) + Ln−1(cos t)

]}
.

Ln(x) in the above equation is a Legendre polynomial of order n, n̂ = nπ
θ0

, and param-

eter ρ = Ri

Ro
is the ratio of Ri and Ro and where

hn =
n̂[(2ν − 1)(ρ2n̂ − 1)

2
+ 2n̂(ν − 1)(ρ4n̂ − 1)− n̂2ρ2n̂−2(ρ2 − 1)(ρ2 + 3− 4ν)]

2G(n̂2 − 1)[(ρ2n̂ − 1)2 − n̂2ρ2n̂−2(ρ2 − 1)2]
.

(4.7)

Considering θ in (4.5) actually represents θ̂, substituting θ̂ = πθ
θ0

into (4.5) and

taking a small angle assumption for θ, σrr
(
Ro,

πx
θ0Ro

)
is then used to approximate

Pn(x) at x = Roθ.
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Remark 4.1. Although the distribution of σrr
(
Ro,

πx
θ0Ro

)
only along the tire center

line is presented, the results are readily extended to the distribution along the y-axis

direction because the radial cross-section is also in a circular shape. Similar to the

approach presented in [102], the two-dimensional model of σrr(x, y) distribution on P

can be extended and obtained. In here, arguments R0 and other constants are dropped

in σrr for explicitness.

Obviously, the existence of Pair also contributes normal contact pressure; see the

force equilibrium diagram Fig. 4.2(c). To capture the influence of Pair, an empirical

approach is proposed by combing the above analytical solution and Fz. Thus, a semi-

analytical model of normal contact pressure is calculated as

Pn(x, y) = −σrr(x, y) +
Fz −
∫
P −σrr(x, y)dS

S
. (4.8)

In (4.8), S is the area on P and the negative sign follows the convention that a com-

pressive stress is defined as a negative value. The second term in (4.8) captures the

partial pressure distribution caused by Pair. The uniform influence assumption of Pair

on P is taken in (4.8) for simplification and the effectiveness will be validated through

real experiments.

Remark 4.2. The above derivation does not consider the existence of the friction force

Ff on P . The experimental results show that during the stick-to-slip transition, the

peak values of Pn(x, y) tend to shift toward the leading edge. However, in contrast to

the fingertip contact [92–94], the magnitude of change of Pn(x, y) during stick-to-slip

transitions is very limited due to the hollow structure and the relatively smaller friction

forces than those in dynamic interactions of rotating tires [87]. Therefore, the change

of Pn(x, y) under Ff is neglected in the rest of the discussions.
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4.3 Stick-slip analysis, modeling and sensing

4.3.1 Beam-spring network modeling

During stick-to-slip transition, some contact points at certain locations on P begin

deforming and slipping while other points remain sticking to the road. The slipping

region grows as the applied force increases. It is difficult to obtain a closed-form

formulation of the deformation and force distributions. Instead, a beam-spring network

approach is used to integrate that integrates the mass-spring model with the cantilever

beam model.

Figure 4.3 illustrates the beam-spring network modeling approach. The contact

patch P is partitioned intoN virtual cantilever beams and each of them has a height of

2h and a square cross-section with dimension c× c, where c is the side length. Virtual

linear springs connect each pair of neighboring beams. The following assumptions are

considered: (1) for each beam, elongation and compression are ignored and only the

bending deformation is considered, and (2) all the cantilever beams are clamped at one

end through the tire inlet fiber layer. The fiber layer is flexible to allow deformation.

Although the springs connect each pair of neighboring beams, there is no spatial gap

among adjacent beams.

beams)

Rubber bristle
(cantilever

fiber layer

networks 
Beam−spring 

Side view

Top view

ith beam
(i−1)th beam

(i+1)th beam

P
∂P

2h

x

y
c

c

δi

f ie
f ib

f if

ke
Ff

f i∂P

Figure 4.3: A schematic of the hybrid beam-spring network model to capture tire-road
stick-slip interaction.
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Let IP◦ and I∂P denote the index sets of the beams inside the interior of P and

the beams on the boundary of P , respectively. During stick-to-slip transition, dynamic

motions of the beams are negligible. For the ith beam, i = 1, · · · , N , the following

force equilibrium is obtained.⎧⎨⎩ f if + f ib + f ie = 0, i ∈ IP◦ ,

f if + f ib + f ie + f i∂P = 0, i ∈ I∂P ,
(4.9)

where f if is the tire contact friction force, f ib is the bending force that captures the shear

deformation, f ie is the resultant net elastic force from the connected springs, and f i∂P

is the boundary force from the tire side wall if the beam is on ∂P; see Fig. 4.3. In

the following, the calculations of f ib , f
i
e, and f i∂P are presented such that f if is obtained

by (4.9).

Because of relative movements among beams, the resultant elastic force f ie is cal-

culated as

f ie =
∑
j∈Ni

f ije =
∑
j∈Ni

keΔuij = 2Eh
∑
j∈Ni

Δuij , (4.10)

where f ije = keΔuij is the spring (elastic) force between the ith beam with its neigh-

boring jth beam, ke = 2Eh is the spring stiffness coefficient, and Ni is the index set

of all the neighboring beams of the ith beam. Spring deformation

Δuij = (uj − ui)

(
1− ‖uj0 − ui0‖

‖uj − ui‖

)
(4.11)

is the relative position change between the ith and the jth beams, where ui and uj are

the position vectors for the ith and jth beams, respectively. In (4.11), ui0 and uj0 are

respectively the original position vectors of the ith and jth beams without deformation.

Indeed, it is straightforward to obtain

‖uj0 − ui0‖ =
{√

2c Beams i and j are diagonal neighbors

c otherwise.
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The virtual cantilever beams are bent under Ff . The tip bending deformation δik of

the ith beam along the k-axis is approximated by [93]

δik =
P i
n

P ave
n

3μFz
16Lk

2− ν
G

[
1− (1− ψk)2/3

]
, k = x, y, (4.12)

where μ is the friction coefficient, P i
n is the local normal pressure at the ith beam’s

location, P ave
n is the average normal pressure of P , ψk =

Ffk

μFz
is the friction force

factor in the k-axis direction. Compared with the model in [93], a normal pressure

dependency factor P i
n

P ave
n

is introduced in (4.12) to capture the effect of Pn(x) on δik.

The bending force of the ith beam is then obtained as

f ib = kbδ
i =

3EI

(2h)3
δi, (4.13)

where δi = (δix, δ
i
y) is the tip deflection vector of the ith beam, kb = 3EI

(2h)3
is the bending

stiffness of the beam.

To compute f if for i ∈ IP◦ , the Coulomb friction model is adopted. If |f ib + f ie| <

μf iz, where f iz = P i
nc

2 is the normal force at the tip of the ith beam, the beam is

stuck and has no movement. In this case, f if balances the resultant of f ib and f ie. If

|f ib + f ie| ≥ μf iz, |f if | = μf iz cannot fully sustain the resultant of f ib and f ie. The beam

will slip until the force equilibrium holds again at the new location. f ib is assumed to be

saturated when the ith beam slips.

Remark 4.3. The eight-neighboring-beam topology and the beam’s square cross sec-

tion shown in Fig. 4.3 are chosen because under these configurations, the model repre-

sents a structure with an equivalent Poisson’s ratio around 0.5 [97], almost the same

as the value of rubber ν = 0.49. The number of beams N is important for an accu-

rate beam-spring network model. With a larger N , the model produces more accurate

results [97].

In the above discussion, only the interior beams are considered. For the beams on

the boundary ∂P , the same calculation are followed but with additional consideration

for boundary force f i∂P . In the next section, the calculation of f i∂P will be discussed.
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4.3.2 Boundary force f i∂P calculation

By adding allN equations in (4.9) together, the total boundary force F∂P =
∑

i∈I∂P f i∂P

is obtained as

F∂P = −Fb − Ff , (4.14)

where

Fb =
N∑
i=1

f ib and Ff =
N∑
i=1

f if , (4.15)

where Fb is total bending force. To obtain (4.14), the fact that total spring force Fe =∑N
i=1 f

i
e = 0 is used since f ies are internal spring forces and their summation is zero.

Figure 4.1(b) illustrates the schematic of the calculation of boundary force f i∂P of

the ith beam at location (x, y) on ∂P . For a given Ff and Fz, Fb is calculated by (4.13)

and (4.15) and F∂P is then obtained from (4.14). F∂P is further decomposed along the

x- and y-axis directions as F∂Px and F∂Py, respectively.

In the following, only the calculation of the x-axis component force f i∂Px of f i∂P

is described and f i∂Py can be obtained similarly. The boundary force f i∂Px is gener-

ated through rubber deformation. By symmetry, it is assumed that F∂Px is equally

distributed on each quarter of the elliptical boundary such that only one quarter of ∂P

with a total boundary force 1
4
F∂Px is considered.

For the boundary point (x, y) shown in Fig. 4.1(b), radius Rex with respect to ro-

tation axis is obtained as Rex =
√
H2 + x2. During the stick-to-slip transition, it is

assumed that the entire tire/rim structure rotates by an infinitesimal angle Δθ. The

projected displacement along ∂P in the xy plane is Δx = RexΔθ cos θ ≈ RexΔθ for a

small θ. Letting Ks denote the rubber stiffness coefficient, under deformation Δx, the

boundary force f i∂Px is then

f i∂Px = KsΔx = KsΔθ
√
H2 + x2. (4.16)
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Considering that the total boundary force on a quarter of the ∂P is 1
4
F∂Px, it is straight-

forward to have

1

4
F∂Px =

∫
∂P1

f∂Pxds =
∫
∂P1

KsΔθ
√
H2 + x2ds, (4.17)

where s is the arc-length and ∂P1 is the quarter of ∂P . Noticing that (ds)2 = (dx)2 +

(dy)2 and that dy = −xL2
y

yL2
x
dx from the elliptical equation x2

L2
x
+ y2

L2
y
= 1, (4.17) becomes

1

4
F∂Px =

∫ Lx

0

KsΔθ
√
H2 + x2

√
1 +

(
xL2

y

yL2
x

)2
dx = KsΔθKx, (4.18)

where

Kx =

∫ Lx

0

√
H2 + x2

√
1 +

L2
yx

2

L2
x(L

2
x − x2)

dx.

In the last step of (4.18), the fact that L2
xy

2 = L2
y(L

2
x − x2) is used to obtain Kx.

Plugging the results (4.18) into (4.16), the final calculation for f i∂Px is obtained as

f i∂Px =

√
H2 + x2

4Kx
F∂Px, (4.19)

4.3.3 Computing the deformation and friction force distributions

Using the beam-spring network model, a computational algorithm is presented to si-

multaneously obtain the tire rubber deformation and the friction force distributions on

P . Algorithm 1 illustrates the iteratively computing of deformation distribution u and

friction force ff on P . In the algorithm, a variable A ∈ R
N is defined to update

the stick (A(i) = 1) or the slip (A(i) = 0) status for the ith beam. An error threshold

Ethresh > 0 is also introduced to terminate the iterations. An updating factor 0 < η < 1

is used to tune the convergence performance. The computation follows the calculations

discussed previously and the complexity of the algorithm is O
(

1
η
N2 log
(

1
Ethresh

))
.

Although a Coulomb friction model is used in the algorithm, it can be replaced by

other types of friction models to determine the stick-to-slip transition for each beam.
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Algorithm 1: Tire stick-slip evolution numerical calculation under Ff .
1 Initialize: Set normal force f iz and original position ui for all N beams. Define
A ∈ R

N and set A(i) = 1, Ff ← 0, f ib ← 0, f ie ← 0, f if ← 0, i = 1, · · · , N ;
2 while A 	= 0 do
3 Ff ← Ff +ΔFf ;
4 Update f ib and Fb by (4.13) and (4.15);
5 F∂P ← −Ff − Fb, update f i∂P by (4.19);
6 Set iteration error indicator Err ← 1;
7 while Err > Ethresh do
8 Err ← 0;
9 for i = 1 to N do

10 Find Ni and update f ie by (4.10);
11 si ← 0 if i ∈ IP◦, or si ← 1 if i ∈ I∂P ;
12 if A(i) = 1 then
13 if ‖f ie + f ib + sif

i
∂P‖ < μf iz then

14 f if ← −f ie − f ib − sif i∂P , Δui ← 0;
else

15 A(i)← 0, go to Line 9;
end

else

16 f if ← μf iz
f ie+f ib+sif

i
∂P

‖f ie+f ib+sif
i
∂P‖ , Δui ← η

4Eh
(f ie + f ib + sif

i
∂P − f if );

end
17 ui ← ui + Δui, Err ← max(Err, ‖Δui‖);

end
end

end

4.4 Embedded tire force sensor

4.4.1 Sensor model

To obtain the multi-directional local friction forces, a PSECR sensor is embedded with

a special orientation as shown in Fig. 4.4. If being positioned horizontally, the PSECR

sensor is not sensitive to local friction forces on P . Moreover, the PSECR sensor

only functions under compressive forces inside the rubber layer and thus, it cannot

be placed along the vertical direction since horizontal tensile stresses exist during the

stick-to-slip transition. By tilting the sensor at a certain angle, the existence of the
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internal compressive normal stress prevents the sensor from exposing to tensile forces.

(b)(a)

Tire rubber layer
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β

P

Figure 4.4: Embedded PSECR sensor configuration. (a) Configuration diagrams of the
four sensor cells. (b) A side view schematic of the embedded sensor inside the rubber
layer.

To extract both the local x- and y-axis directional friction forces, we separate the

four sensor cells into two groups: C1 and C2 are placed on plane π1; while C3 and

C4 lie in plane π2. The tilting angles of π1 and π2 with respect to the x- and y-axis

directions are denoted as α and β, respectively.

Let Pfx and Pfy denote the local friction stresses at location (x, y) on P along the

x- and y-axis directions at the sensor location, respectively; see Fig. 4.4(a). Pfx and

Pfy can be considered as the x- and y-axis components of the spatially normalized

friction force f if given in the beam-spring network model in (4.9); see Fig. 4.3. Due

to symmetry of P and for presentation clarity, we consider locations on P at the fixed

y coordinate (e.g., at the tire center line) and varying x coordinate so that the force

variables are only functions of x. Let σlk and τ lk denote the normal and shear stresses

along the k-axis for Cl, k = x, y, l = 1, 2, 3, 4, respectively. Note that σlk corresponds

to the spring elasticity effect and is considered as the spatially normalized spring force

in the beam-spring network model. Similarly, τ lk is related to the bending effect at

the sensor location. We denote the normal stress along the z-direction at the sensor

location as σlz.

Let F l
s denote the resultant compressive force applied to Cl and V l

s be its measured

output voltage. Then we have V l
s = KlF

l
s, where Kl, l = 1, 2, 3, 4, are the output
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gains for sensor cells Cl. The sensor output Vs under Pfx and Pfy consists of two

portions: one portion V0 is due to the rubber bending and the other portion comes from

the existence of σlk and τ lk due to the friction forces on P . Thus, output V l
s can be

written as

V l
s =

⎧⎨⎩V
l
0 +KlAs(−σlx + τ lx) sinα, l = 1, 2,

V l
0 +KlAs(−σly + τ ly) sin β, l = 3, 4,

(4.20)

where

V l
0 =

⎧⎨⎩KlAs(−σlz cosα− σlx0 sinα), l = 1, 2,

KlAs(−σlz cos β − σly0 sin β), l = 3, 4,
(4.21)

As is the area of each sensor cell, and σx0 and σy0 are the shell-to-plate bending stresses

along the x- and y-axis, respectively.

The goal of building a sensor model is to extract Pfx and Pfy information from

measurements V l
s in (4.20). We first obtain a model for V l

0 . By the assumption of the

unchanged length of neutral line during the shell-to-plate bending [103] and consider-

ing the thin rubber layer, we estimate

σlx0 ≈ −
EhCl

Ro − h
, l = 1, 2, and σly0 ≈ −

EhCl

Rc − h
, l = 3, 4,

where hCl
is the z coordinate of cell Cl. To obtain σz(z), we obtain the following

relationship

σz(z) = [Pn(x)− Pair]
(

1

4h3
z3 − 3

4h
z

)
− Pn(x) + Pair

2
. (4.22)

The derivation of the above equation is given in Appendix D. Combining the above

results for σlx0, σly0 and σlz = σz(hCl
) and from (4.21), we obtain V l

0 in (4.20).

We need to build the relationship between σlk, τ lk and Pfx, Pfy. In the following

discussion, we only present the development of such relationships for C1 and C2 to

extract Pfx and the similar results can be obtained along the y-axis direction for C3

and C4 to obtain Pfy.

We denote the spatially normalized net spring force f ie and beam bending force f ib

along the x-axis direction as σPx and τPx, respectively. We normalize (4.9) spatially,
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take the magnitude of the normalized stress equation along the x-axis direction, and

then obtain

Pfx = τPx + σPx. (4.23)

Notice that τPx corresponds to the shear stress τ lx and σPx is related to the normal stress

σlx. Both σlx and τ lx can be extracted from the sensor measurements through (4.20) for

C1 and C2. First, the sensor cells are spatially close each other and in the local area of

C1 and C2, σlx, l = 1, 2, are treated approximately the same because of the small sensor

size. Therefore, we have

σ1
x = σ2

x = σx. (4.24)

To further build the relationship between τ lx and τPx, we consider that τPx is the

boundary shear stress at z = h and τ lx, l = 1, 2, are the shear stresses at the sensor

locations zl = hCl
. We assume that the shear deflection of the rubber layer follows the

virtual beam deflection. Using the Euler-Bernoulli beam theory, the deflection w(z) of

a cantilever beam under bending force fbx is

w(z) =
fbx(z + h)2(5h− z)

6EI

and the (maximal) deflection at the tip is δx =
fbx(2h)

3

3EI
. By eliminating fbx, we obtain

w(z) =
δx

16h3
(−z3 + 3hz2 + 9h2z + 5h3)

and τ lx is then calculated by

τ lx = G
∂w(z)

∂z

∣∣∣∣∣
z=hCl

= γlG
∂w(z)

∂z

∣∣∣∣∣
z=h

= γlτPx, (4.25)

where γl = 1
4h2

(−h2Cl
+ 2hCl

h+ 3h2), l = 1, 2. Eq. (4.25) implies that τ lx varies along

the z-direction.

Using (4.20), (4.24) and (4.25), we obtain⎡⎢⎢⎢⎣V
1
s − V 1

0

V 2
s − V 2

0

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

V

=

⎡⎢⎢⎢⎣−K1As sinα K1Asγ1 sinα

−K2As sinα K2Asγ2 sinα

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

K

⎡⎢⎢⎢⎣ σx
τPx

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

σ

. (4.26)
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The coefficient matrix K is invertible if γ1 	= γ2, that is, C1 and C2 are not at the

same depth, which is satisfied in the design. σx and τPx are then uniquely determined

as σ = K−1V. The linear model in (4.26) is derived based on the Euler-Bernoulli

beam assumption. Other modeling approaches could lead to the similar conclusion.

Instead computing K in (4.26) from a set of the model parameters, we conduct a cal-

ibration process to obtain K in practice for high accuracy. Therefore, the final results

of obtaining coefficient K are not restricted by knowing the beam model parameters.

We still need to obtain σPx to calculate Pfx by (4.23). We take an empirical ap-

proach to calculate σPx: if the sensor lies in the stick region, we take the following

relationship

σPx = κx|σx|mx , (4.27)

where we use the absolute value of σx because σx can be negative and σPx is always

positive. The coefficients κx and mx are obtained by calibration in experiments. When

the sensor lies in the location where the local contact slips, σPx saturates at the value

σ0
Px. We detect slipping when τPx is saturated and at this moment, we denote σx = σ0

x.

Then σ0
Px is calculated by (4.27) for the given σ0

x.

Summarizing the above discussion, we obtain

Pfx =

{
τPx + σPx locally stick,

τPx + σ0
Px locally slip.

(4.28)

where τPx and σPx are respectively obtained by (4.26) and (4.27) with a calibrated

PSECR sensor, and σ0
Px = κx|σ0

x|mx with σ0
x is captured by sensor measurements as

discussed above.

4.4.2 PSECR sensor calibration and model validation

The sensor calibration processes for the x- and y-direction forces are similar and we

here only describe the x-direction case. We first obtain the σx measurements right after

the sensor is glued on one side inside the tire rubber. We use a force gauge (model FDK
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80 from Wagner Inc.) to press on C1 and C2 to generate σx. Figure 4.6(a) shows the

outputs of C1 and C2 under various σx measurements. The sensor outputs demonstrate

a strong linear relationship with σx.

After the sensor is completely glued inside the tire, we apply τPx to the local area

where the PSECR sensor is embedded using a calibration fixture. The fixture is de-

signed and fabricated with a comparable size to that of the PSECR sensor [102]; see

Fig. 4.5. The fixture is directly mounted on the transparent plate of the testing platform;

see Fig. 4.11. The use of the calibration fixture guarantees that the friction force lie lo-

cally at the location where the sensor is embedded. At this moment, we use a leather

coat on the fixture surface to generate high friction forces and prevent the contact from

sliding. Therefore, shear force dominates the interaction and we assume that the lo-

cal friction force Pfx is fully contributed by τPx. The calibration results with varying

τPx are shown in Fig. 4.6(b). A linear relationship between sensor outputs and τPx is

clearly obtained, similar to the model prediction by (4.25). Moreover, the results also

show that the two sensor cells have different sensitivities to τPx, as the model (4.25)

predicts due to the different γl at locations of Cl, l = 1, 2.

Calibration fixture

x−axis local
friction force

friction force

sensor

y−axis local

Embeded PSECR

Pfx

Pfy

Figure 4.5: The PSECR sensor calibration fixture.

In experiments, multiple repeated calibrations are conducted. Given M1 measure-

ments of σx = (σx)M1 and M2 measurements of τPx = (τPx)M2 , we form a stress

measurement matrix σm ∈ R
2×(M1+M2) and the corresponding sensor output matrix
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Figure 4.6: Sensor cells C1 and C2 calibration results. (a) Sensor output voltage with
various σx. (b) Sensor output voltage with various τPx. (c) Gain κx (between σPx and
σx) calibration.

Vm ∈ R
2×(M1+M2) respectively as

σm =

⎡⎢⎢⎢⎣ σx 0M2

0M1 τPx

⎤⎥⎥⎥⎦ and Vm =

⎡⎢⎢⎢⎣V
1
s − V 1

0

V 2
s − V 2

0

⎤⎥⎥⎥⎦ ,
where 0M ∈ R

1×M is the zero row vector. From the relationship V = Kσ in (4.26),

we estimate K in x-direction as

K̂x = Vmσ
+
m = Vmσ

T
m(σmσ

T
m)

−1, (4.29)

where σ+
m = σT

m(σmσ
T
m)

−1 is the pseudo-inverse of σm. The calibration value and
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Figure 4.7: Sensor cells C3 and C4 calibration results. (a) Sensor output voltage with
various σy. (b) Sensor output voltage with various τPy. (c) Gain κy (between σPy and
σy) calibration.

the standard error of the estimated Kx are respectively as

K̂x =

⎡⎢⎢⎢⎣−3.01 2.73

−3.02 4.84

⎤⎥⎥⎥⎦V/MPa

and

σ̂Kx =

⎡⎢⎢⎢⎣0.09 0.18

0.10 0.23

⎤⎥⎥⎥⎦V/MPa.

By substituting K̂x into the sensor output model, we then calibrate coefficients κx

and mx in (4.27) with measurements σx and σPx, where σPx = Pfx − τPx and Pfx

is obtained again from the calibration fixture without the leather coat; See Fig. 4.5.

Fig. 4.6(c) shows the calibration curve. The calibration values of estimated κx and mx
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are κ̂x = 29.74 and m̂x = 0.68, respectively. The standard errors of estimated κx and

mx are σ̂κx = 1.97 and σ̂mx = 0.01, respectively.

Similar calibration process is conducted for the y-direction force sensor cells C3

and C4. The calibration results are shown in Fig. 4.7 and the calibration coefficients in

the y-direction are

K̂y =

⎡⎢⎢⎢⎣−3.32 2.97

−3.33 5.03

⎤⎥⎥⎥⎦V/MPa, κ̂y = 32.40 and m̂y = 0.66,

respectively. The standard errors for estimated Ky, κy and my are respectively as

σ̂Ky =

⎡⎢⎢⎢⎣0.13 0.22

0.11 0.24

⎤⎥⎥⎥⎦V/MPa, σ̂κy = 1.91 and σ̂my = 0.01.
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Figure 4.8: Friction force measurement validations. (a) Pfx measurements. (b) Pfy
measurements.

To validate the sensor model, we conduct multiple repeated validation tests by vary-

ing Pfx and Pfy at the sensor location and then compare with the sensor measurements.

Figure 4.8 shows the comparison results for both Pfx and Pfy in one validation test.

The root mean square differences are 1.1 × 104 Pa (for the x-direction stress) and

0.9 × 104 Pa (for the y-direction stress). Figure 4.9 shows the statistical errors of the
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Figure 4.10: Comparison of the prediction of the static bending stress (represented by
V0) with the experiments.

multiple validation tests. The maximum errors are consistently less than 1.5×104 Pa in

both the x- and y-directions. We also compare the measured voltage V0 with the model

prediction (4.21) as shown in Fig. 4.10. The values for the V0 model parameters are

listed in Table 4.2. The model predictions show a clear agreement with the experiments

for V0.
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Table 4.1: PSECR sensor and tire parameters

E(MPa) Ro(m) h(mm) As(cm2) K1(V/N) K2(V/N) K3(V/N) K4(V/N)

11.7 0.128 3.5 0.16 0.56 0.54 0.53 0.53

4.5 Experiments

In this section, the experiments are presented to demonstrate the models and analysis

of tire-road stick-slip interactions discussed in the previous sections.

4.5.1 “Smart tire” test platform

CompRIO
Computer

Steering 
motor

Motorized 
motion cont.

Loadcells
&force sen.

Cabled
potentiometer

(b) (c)
Force sensor 

(a)

Contact image

Mirror Embedded sensorCamera

F fx

F fy

Figure 4.11: “Smart tire” test platform prototype with embedded force sensors and
vision-based tire deformation measurement systems. (a) The entire system. (b) Camera
system setup for deformation measurement. (c) Embedded tire force sensor.

Figure 4.11 shows the “smart tire” test platform developed at Rutgers University.

A treadmill is modified to act as a support foundation for the testing tire in the design.
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The treadmill belt is removed and replaced by a thick transparent plate to represent the

road surface. The plate is supported by three individually computer-controlled electric

jacks. Three cable potentiometers (from Celesco Transducer Products, Inc.) are used

to feedback the positions and the tilting angles of the plate. Three load cells (from

Transducer Techniques Inc.) are positioned under the supporting plate to measure the

total normal load between the tire and the plate. A feedback controller is designed

to take the load cell’s readings and regulate the normal load by raising/lowering the

motorized jacks. To generate friction forces along the x- and y-axis directions, the

tire and the plate are respectively pulled by two steel cables, one for the longitudinal

(x-axis) direction and the other for the lateral (y-axis) direction. The total friction

forces Ffx and Ffy are measured respectively by two force sensors ( from Transducer

Technique Inc.) as shown in Fig. 4.11.

The PSECR sensor (from Pongpara Codan Rubber Technology Company, Thai-

land) is shown in Fig. 4.11(c). The circular PSECR sensor is around 12-mm in diam-

eter and is flexible. To measure the tire rubber deformation on the contact patch, we

use a high-resolution camera (CM-080GE camera from Teledyne DALSA Inc., 1032

× 778 pixels, 30 fps) to capture images of white dots (Fig. 4.2(a)) painted on the tire

surface through the transparent supporting plate; see Fig. 4.11(b). The image acquisi-

tion, camera calibration, and image processing are implemented through the National

Instrument (NI) Vision Development Module (VDM). The entire system is controlled

through a real-time NI CompactRIO embedded system. More details about the setup

can be found in [102].

4.5.2 Tire contact normal pressure experiments

A set of the PSECR sensors are placed on the treadmill surface to measure Pn(x)

along the tire center line. Figure 4.12 shows comparison results between the prediction

of the model and the experimental data. The parameters used in the model are listed
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Figure 4.13: Normalized contact pressure distribution Pn(x) with respect to P̄n =∫ Lx

−Lx
Pn(x)dx under various tire rubber layer thicknesses ρ, Pair=69 kPa.

in Table 4.2. Parameter θ0 in the normal pressure model cannot be directly measured

and it is tuned empirically. The model predications match experiments under various

Pair and Fz. It is noted that although the simple torus-shape tire is used in this study,

as shown in Fig. 4.12 and in [102], the normal contact pressure distribution follows the

similar pattern as those obtained by using actual automobile tires reported in [87, 88].

One advantage of the analytical model over the empirical model in [102] is that
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the former can be used to predict Pn(x) under variations of physical parameters, while

the empirical model cannot. For example, Fig. 4.13 shows the normalized Pn(x) under

varying tire rubber layer thicknesses. For tires with a thin rubber layer, ρ = Ri/Ro → 1

and a thick layer, ρ is small. It is clearly shown in Fig. 4.13 that for tires with thin rubber

layers (e.g., ρ > 0.9), the bending effect dominates the pressure distribution and the

pressure peaks lie close to the contact edge, while for tires with thick rubber layers

(e.g., ρ = 0.86), Pn(x) follows the Hertzian contact with the highest pressure around

the center of P . These results explain the observed differences between the tire-road

contact and these in fingertip contact reported in [92–94].

Table 4.2: Beam-spring tire model parameters

E (MPa) G (MPa) ν μ θ0 (deg) Ro (m) c (cm) h (cm) N

11.7 3.9 0.49 0.7 45 0.128 0.2 0.35 591

4.5.3 Stick-to-slip transition experiments
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Figure 4.14: The PSECR sensor measurements and stress estimation at the sensor
location during the stick-to-slip transition.

To observe stick-to-slip transition and friction force evolutions for the points on P ,
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the tire is rotated and the sensor is placed at around the middle point between the trail-

ing edge and the center of P . An increasing Ffx is generated until the tire completely

slips at around Ffx = 160 N. Figure 4.14 shows the local friction force measurements

at the PSECR sensor location during the stick-to-slip transition. Shear stress τPx starts

to increase with the increasing Ffx. Once the partial slip at the sensor location starts

around t = 8.8 s, τPx stops increasing and keeps constant. This observation agrees

with the previously discussed friction model in which Pfx saturates when the partial

slip starts. The observation of the saturated τPx is used to predict the moment when the

partial slip happens at the sensor location. We estimate σ0
x = 6× 104 Pa and therefore,

σ0
Px = κx|σ0

x|mx = 5.27× 104 Pa.
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Figure 4.15: Deformation distribution (in cm) on P with various friction forces Ffx.
The blue dots indicate stick point and the red bars indicate slipping displacements.
The elliptical contour indicates the contact patch P and the plotting deformations are
magnified five times for clear presentation. Vision-based experiments: (a) Ffx = 44.5
N. (b) Ffx = 89 N. (c) Ffx = 133.5 N. Numerical computation: (d) Ffx = 44.5 N. (e)
Ffx = 89 N. (f) Ffx = 133.5 N.

After the partial slip starts, σx keeps increasing with the increasing Ffx and the slip

region moves towards the interior area of P . The middle plot of Fig. 4.14 shows the

local friction stress Pfx from the calibrated PSECR sensor. When the full slip of the

entire patch starts around t = 11 s, τPx and Pfx drop rapidly. The timing (t = 8.8
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Figure 4.16: Comparison results between model prediction and sensor measurements
of stress distributions on P under various friction forces Ffx. (a) τPx(x). (b) σx(x). (c)
Pfx(x).

s) to determine the partial slip depends on the relative sensor location on P , while the

timing of the full slip of P (t = 11 s) is determined by the magnitude of Ffx. These

observations fit the previously discussed analysis.

4.5.4 Rubber deformation and friction force distributions

The experiments of obtaining rubber deformation and friction force distributions are

conducted under Pair = 69 kPa and Fz = 267 N. The camera image is used to obtain

the rubber deformation on P . Figure 4.15 shows the rubber deformation distribution

results under Ffx. In the figure, the blue dots indicate the sticking points and the

red bars represent the displacements of slipping points on P . Both the vision-based
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experiments and the computational results show consistent trends. During the stick-to-

slip transition, the rubber deformations grow with the increasing Ffx. The points on

∂P start slipping first and then the slipping region propagates to the center portion of

P . It is interesting to note that the last portion to slip is not exactly the geometry center

of P but the location close to the trailing edge.
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Figure 4.17: (a) Comparison results between model prediction of Pfy(x) distribution
and sensor measurements under various friction forces Ffy along the center line. (b)
Comparison of friction force distribution Pfx(x) under a combined Ffx and Ffy =
89N.

To study the local friction force distributions during the stick-slip transition, scan-

ning experiments are conducted by moving the embedded sensor at various locations

along the tire center line (i.e., fixed y = 0). At a given location x, both the local lon-

gitudinal and lateral friction stresses Pfx(x) and Pfy(x) exist. The first set of scanning

experiments are conducted under only Ffx and in this case, Pfy(x) = 0 along the cen-

ter line due to the symmetry. Figs. 4.16(a) and 4.16(b) show the comparison results

between the model predictions and the experiments for τPx(x) and σx(x), respectively.

The results demonstrate a clear agreement between the model predictions and the ex-

periments. As shown in Fig. 4.16(a), the distribution of τPx(x) is not uniform on P

and indeed has a similar pattern to the distribution of Pn(x). The results in Fig. 4.16(b)

show that σx(x) has larger values close to ∂P than those around the center of P . The

sign of σx(x) has changed: at the leading edge the rubber is under compression (i.e.,
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negative σx(x)), while at the trailing edge portion it is under elongation (i.e., positive

σx(x)). This phenomenon also matches the rubber deformation distribution shown in

Fig. 4.15. Figure 4.16(c) shows the matching friction stress Pfx(x) along the center

line of P between the model predictions and the experiments.

Figure 4.17(a) shows the consistently matching results between the model predic-

tions and the experiments for Pfy(x) along the center line ofP under only friction force

Ffy. Similar to Pfx(x) under Ffx, the results of Pfy(x) under Ffy show a two-peak

distribution pattern. Finally, the experiments are conducted to obtain the local fricton

force distributionPfx(x) along the x-axis direction under the existence of both Ffx and

Ffy. Figure 4.17(b) shows the comparison results of Pfx(x). In the scanning experi-

ments, constant Ffy = 89 N are applied. These results confirm a similar distribution

pattern to that under only applying Ffx.

4.5.5 Discussions

The distributions Pfx(x) and Pfy(x) in Figs. 4.16(c) and 4.17 demonstrate a similar

two-peak trend as Pn(x) shown in Fig. 4.12 for the case of Pair = 69 kPa and Fz =

267 N. To determine whether the friction force distribution completely follows the

distribution of Pn(x), Pfx(x) is computed under a single-peak Pn(x) distribution by

using parameter ρ = 0.86. Figure 4.18 shows the evolution of Pfx(x) distributions

under increasing Ffx. It is interesting to see that with increasing Ffx, the evolution

of the distribution of Pfx(x) changes its shape: at the beginning of the stick-to-slip

transition, the Pfx(x) distributions show a two-peak pattern; see the case of Ffx =

40, 80, or 110 N. However, when the full slip starts on P , that is, the case of Ffx = 135

N, Pfx(x) follows the single-peak shape, similar to that of Pn(x).

From the above comparison results, it is concluded that the local friction force dis-

tribution is indeed a resultant of both the tire thin layer structure and the normal force
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Figure 4.18: Friction force distribution Pfx(x) along the tire center line under a single-
peak normal force distribution Pn(x).

distribution. Because of the thin layer structure, when Ffx is small, the boundary por-

tion of P starts slipping and Pfx(x) reaches their saturation values. That is the reason

why a two-peak shape of Pfx(x) distribution appears at the beginning of the partial

slip stage. With an increasing Ffx, the entire patch is about to slip, and the Pfx(x)

distribution follows the Pn(x) distribution due to the kinetic friction relationship, i.e.,

Pfx(x) = μPn(x) at −Lx ≤ x ≤ Lx. Therefore, during the stick-to-slip transition, the

friction force distribution evolutes from the two-peak shape to the shape of the normal

pressure distribution.

Compared with the experimental results, some discrepancies exist in the predic-

tion results of both the normal contact pressure model and the stick-slip model. These

differences mainly come from several sources: first, the tire-road contact is more com-

plicated than what the models capture in this work. The imperfect models leads to

some prediction errors. For example, the rubber has the hyper-elasticity property and

both the normal pressure model and stick-slip model do not incorporate such charac-

teristics. In stick-slip experiments, due to the physical constraints, the sensor is not

installed at the optimal orientation for superior sensitivity [99]. Finally, the limited

force measurement accuracy of the low-cost PSECR sensor also lead to measurement

errors [99].



102

4.6 Conclusion

In this chapter, modeling, analysis and sensing of tire-road stick-slip interactions were

presented. The presented modeling and analyses were validated through the developed

“smart tire” test platform with the embedded PSECR tire force sensor. A beam-spring

network model was proposed to capture the evolution of the complex stick-to-slip tran-

sition on the tire contact patch. The predictions of the model showed good agreements

with the experiments for both the rubber deformation and the local friction force dis-

tributions. The results demonstrated that the rubber deformation propagates from the

boundary to the center of the contact patch during the stick-to-slip transition. More-

over, the local friction force distribution on the contact patch was determined by both

the normal force distribution and the thin layer structure properties.
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Chapter 5

Rider-Bicycle Pose Estimation with Fusion of
Force/Inertial Sensors

5.1 Introduction

From this chapter on, we take the rider’s effect in consideration in the HME modeling

and control frame. We first propose a pose estimation scheme of the rider-bicycle sys-

tem based on the fusion for force/inertial sensors. Pose and gait estimation not only

benefits clinical analysis and diagnosis [104], but also provides tools to understand

human sensorimotor mechanisms and their interactions within HME systmes. Human

pose estimation in physical human-machine interactions such as bicycling is challeng-

ing because of the highly-dimensional human movement and the dynamic interactions

with machines. Further challenges arise in lack of effective, non-intrusive motion sen-

sors in natural environment.

Existing motion capture systems, such as optical-, acoustic-, or magnetic-based

tracking systems, are limited to indoor usage within a confined space and cannot be

used for tracking human movement in natural environment. Wearable sensors have

been extensively used for human pose and gait estimation [105]. For example, estima-

tions of human upper-limb orientations were discussed in [50, 55, 106, 107]. The work

in [56, 57, 108–110] discuss the lower-limb pose estimation. Some other work discuss

general human segment pose measurement [49, 52–54]. Most of the abovementioned

work focus on human walking, standing, or reaching activities, and there is few work

that discusses the human motion and pose estimation in highly-skilled human-machine
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interactions such as bicycling. The goal of this work is to develop an estimation scheme

for the rider trunk pose and the bicycle roll angle using inertial and force sensors.

Human bicycling motor skill is chosen as a pose estimation application for several

reasons. Unlike commonly studied walking or stance where the human-environment

interaction is only through the ground contact, the rider-bicycle interactions are through

multiple contacts at the handlebar, the seat and the pedals. The multi-contact interac-

tions bring complexity but also provide new features for pose estimation. Sitting on

the unstable platform, riders have to actively react to the sensory feedback through

body movement for balancing. Bicycles provide a unique platform for studying cou-

pled human sensorimotor functions with machines. Finally, the recent clinical studies

demonstrate promising results of treating Parkinson’s disease patients through bicycle

riding [2–4]. Bicycles can be further developed and used as a postural rehabilitation

device.
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Figure 5.1: (a) The instrumented bicycle. (b) Rectangular marker for outdoor use. (c)
Bicycle IMU and seat force sensor. (d) Locations of the IMU and optical markers
mounted on rider trunk.

Because of small size, low cost and low power consumption, MEMS-based inertial

sensors such as accelerometers, gyroscopes, or inertial measurement units (IMU) are

widely used as wearable sensors for human motion and gait estimation. The orienta-

tion or the position of a body segment can be obtained by integration of gyroscope or
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acceleration signals. However, the results of such strapdown IMU integration have se-

vere drifting problem due to the sensor measurement biases and noises. To overcome

this problem, other complementary sensors are usually fused with inertial sensors to

eliminate the drifting effect. For example, inclinations are estimated by accelerometer

measurements and then integrated with gyroscope measurements in [49, 50]. In [51],

ultrasonic sensors are attached on human body to provide positioning information.

In [52–54], magnetic sensors are used as an attitude reference to constrain the drift

growth and to provide the initial estimates in the filter design. However, the above-

mentioned sensor fusion schemes have various limitations. Accelerometer-based incli-

nation can generate large measurement errors for dynamic activities, ultrasonic sensors

potentially suffer from the line-of-sight restriction, and magnetic sensors are vulnera-

ble to magnetic disturbances in environment. Human anatomical constraints are also

used to enhance the fusion accuracy [55]. In [56], multiple accelerometers are used

to estimate the gait without directly integrating IMU measurements. For walking gait

estimation, a “resetting” technique is used in [57, 58] to initialize the integration at the

beginning of each stride.

In this chapter, we fuse the force sensors with the IMUs to overcome the drifting

issue in integration of the inertial measurements. Unlike magnetic and ultrasonic sen-

sors, the force sensors are reliable and robust to environmental disturbances and do not

have the line-of-sight restriction. The fusions of force and inertial sensors have been

used to measure the interaction kinetics between human and environment [111–114].

However, the work in [111–114] use the force and inertial sensors to obtain kinetic

measurements and none of them uses the force measurements to enhance the pose esti-

mation. Unlike in walking or stance, pose estimation in bicycling has different features.

The rider sits on a moving platform and the measurements from wearable IMUs contain

motion information of both the rider and the bicycle. Multiple IMUs are needed and

analyses have to be conducted to decouple the IMU measurements. A trunk-bicycle
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dynamic model is used to reveal the underlying dynamic relationship between the in-

ertial and force measurements. We present extensive experiments to demonstrate the

drift-free and robust performance of the pose estimation design.

The main contributions of this work are twofold. First, the pose estimation scheme

relies only on the wearable sensors and the onboard sensors and therefore, it aims

for human pose and gait studies in daily surroundings rather than in restrictive indoor

environment. The use of the inertial/force sensors fusion is novel and provides reliable

and robust estimates of human pose under dynamic motions. Second, the new dynamic

model captures the rider-bicycle motion characteristics and bridges the human motion

kinematics with the driving force measurements. The modeling framework provides a

new approach to potentially study other types of human-machine interactions.

5.2 Instrumented bicycle and riding experiments

Figure 5.1(a) shows the instrumented bicycle. The bicycle is modified from a com-

mercial mountain bike and equipped with various sensors. The bicycle is designed for

both indoor and outdoor experiments. A force/torque sensor (from JR3 Inc.) is in-

stalled along the seat supporting rod to measure the 3-axis hip-seat forces and torques;

see Fig. 5.1(c). Three load cells are installed inside the customly-built bicycle seat to

measure the sitting force distribution (Fig. 5.3). An optical encoder is used to mea-

sure the bicycle speed. A set of stain gauges are installed on the bicycle handlebar

to measure the handlebar forces. A real-time embedded system (CompactRIO 9074

from National Instruments Inc.) samples and stores all sensor measurements at the

frequency of 50 Hz, a maximum sampling frequency that can be achieved by the given

hardware capability.

Two IMU units (model 605 from Motion Sense Inc. 1) are used: one IMU is

1http://www.motionsense.com/.
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mounted to the bicycle frame (Fig. 5.1(c)) and the other one is rigidly attached to a T-

shape fixture at level T6 on the back of the rider trunk. The T-shape fixture spans levels

T4 to T11; see Fig. 5.1(d). Each IMU consists of a tri-axial gyroscope and a tri-axial

accelerometer. Similar to [115–117], we assume the rigid-body movement of the trunk

and we will discuss this assumption in Section 5.8. The direction of the spinal segment

from levels T4 to T11 is used to represent the human trunk orientation.

For indoor experiments, a vision-based motion capture system (from Vicon Inc.)

is used to provide the ground truth for the trunk and bicycle poses. The Vicon sys-

tem includes 8 Botina cameras, MX Giganet module, and a workstation computer with

Nexus 1.6 motion capture software. For outdoor experiments, the ground truth of the

bicycle attitude angles is obtained by a high accuracy IMU (model 800 from Motion

Sense Inc., 0.3-degree attitude accuracy). The trunk pose with respect to the bicycle

is obtained by an onboard high-resolution monocular camera with a rectangular-shape

feature marker; see Fig. 5.1(b). The camera (Manta G-145 from Allied Vision Tech-

nologies, 1392×1040 pixels, 16 fps) is mounted on an extended rod that is rigidly

connected to the bicycle frame. The details of the camera-based pose calculation are

given in [118]. The motion capturing systems are synchronized with the onboard sen-

sors through the wireless network connections.

In experiments, the subjects are asked to ride the bicycle at their own riding styles.

For indoor experiments, due to spatial constraints, the subjects are asked to ride the

bicycle for a circular trajectory (with radius around 2.5 m). For outdoor experiments,

the subjects arbitrarily ride the bicycle in an area of a size of 50×40 m2. The ground

is paved with bricks in outdoor experiment.

5.3 IMU model

Figure 6.1 illustrates a schematic of the kinematic rider-bicycle interactions. The

rider’s trunk is modeled as an inverted pendulum in the three-dimensional (3D) space.
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The bicycle roll and yaw angles are denoted as ϕb and ψ, respectively.

The IMU on the bicycle frame is tilted by angle α with respect to the xb-axis. Let

Ih and Ib denote the rider and bicycle IMU frames, respectively. The orientation of

the trunk is defined by three Euler angles with the X-Y -X ordered rotation from R

to Nh: roll angle ϕh around the x-axis, angle θ around the y-axis, and finally self-

spinning angle φ around the x-axis. The generalized coordinates for the trunk and the

bicycle are denoted as qh = [ϕh θ φ]
T and qb = [ϕb ψ]

T , respectively. We also define

q = [qTh qTb ]
T .
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Figure 5.2: Schematic of the rider-bicycle system.

5.3.1 Gyroscope model

The bicycle IMU gyroscope measurements ωb = [ωbx ωby ωbz]
T are calculated as

ωb = RT
y (α)R

T
x (ϕb)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

ψ̇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+RT

y (α)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ̇b

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.1)



109

where Ri(β) represents the 3D rotational matrix around the i-axis with angle β, i =

x, y, z 2. To obtain the rider IMU gyroscope model, we consider the transformation

from R to Ih and the rider IMU gyroscope measurements ωh = [ωhx ωhy ωhz]
T are

then calculated as

ωh = RT
x (φ)R

T
y (θ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ̇h

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+RT

x (φ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

θ̇

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ̇

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+RT
x (φ)R

T
y (θ)R

T
x (ϕh)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

ψ̇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.2)

Combining (5.1) and (5.2) and solving for q̇b and q̇h, we obtain

q̇b = e(qb;ωb) =

⎡⎢⎢⎢⎢⎣
cα 0 sα

− sα
cϕb

0 cα
cϕb

⎤⎥⎥⎥⎥⎦ωb, (5.3)

q̇h = f(q;ωh,ωb) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
sφ
sθ

cφ
sθ

0 cφ − sφ

1 − cθ
sθ
sφ − cθ

sθ
cφ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ωh +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sα cθ cϕh

cϕb
sθ

0 − cα cθ cϕh

cϕb
sθ

sα sϕh

cϕb
0 − cα sϕh

cϕb

− sα cϕh

cϕb
sθ

0
cα cϕh

cϕb
sθ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ωb (5.4)

where notations cϕh
= cosϕh, sϕh

= sinϕh are used for angle ϕh and any other angles.

2The details of the definition and formulation of the standard rotational matrices can be found in [119]
(e.g., p. 31) and we omit here.
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ab =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cα v̇b + (cα cϕb
pz − sα cϕb

px)ψ̇ϕ̇b + (sα s
2
ϕb
pz − cα px)ψ̇

2 + sα pzϕ̇
2
b

+(cα sϕb
pz + sα sϕb

px)ψ̈ − sα cϕb
g,

cϕb
sϕb

pzψ̇
2 + cϕb

pxψ̈ − pzϕ̈b + sϕb
pxψ̇ϕ̇b + sϕb

g,

sα v̇b + (sα cϕb
pz + cα cϕb

px)ψ̇ϕ̇b − (cα s
2
ϕb
pz + sα px)ψ̇

2 − sα pzϕ̇
2
b+

(sα sϕb
pz − cα sϕb

px)ψ̈ + cα cϕb
g

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.6)

5.3.2 Accelerometer model

The position of the bicycle IMU in B is denoted as rbI = [px 0 − pz]
T , where

px and pz are the horizontal and vertical distances from the IMU to C2, respectively.

Considering the nonholonomic constraint at C2, the acceleration of C2 inR is Rv̇C2 =

[v̇b 0 g]T , where g is the gravitational constant and vb is the bicycle velocity. The

angular velocity of the bicycle in R is Rωb = [ϕ̇b 0 ψ̇]T . The bicycle IMU ac-

celerometer measurements ab = [abx aby abz ]
T in Ib are then calculated as

ab =
R
IbR

T

[
Rv̇C2 +

Rωb × Rωb × R
BRrbI +

Rω̇b ×R
BRrbI

]
, (5.5)

where R
BR = Rx(ϕb) and R

IbR
T = RT

y (α)R
T
x (ϕb) are the rotational matrices from R

to B and Ib, respectively. The calculation of ab is given in (5.6) on the top of this page.

Notice that the coefficients of ψ̈ in abx and abz are near zero when ϕb is around zero.

We take an approximation that during typically bicycle riding, the average value of ϕ̈b

is around zero, i.e., ϕ̈b ≈ 0. From aby in (5.6), we then obtain

ψ̈ =
aby
px cϕb

− sϕb
pz

px
ψ̇2 − sϕb

cϕb

ψ̇ϕ̇b −
sϕb

g

cϕb
px
. (5.7)

Let rs = [ls 0 − hs]
T denote the seat position in B, where ls and ls are the

horizontal and vertical distances from the seat to C2, respectively; see Fig. 6.1. To

make calculation tractable, the angular velocity of rider’s trunk in R is approximated

as Rωh = [ϕ̇h cϕh
θ̇ ψ̇ + sϕh

θ̇]T . Let rhI = [h 0 0]T denote the position of the rider
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⎡⎣ϕ̈h
θ̈

⎤⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

1
sθ h
ahy + sϕh

cϕh
ψ̇2 + cϕh

ψ̇θ̇ − sϕh

cθ
sθ
ϕ̇hψ̇ − cθ

sθ
ϕ̇hθ̇ − cϕh

cθ
sθ
ψ̈ − cϕh

sθ h
asy

− sϕh

sθ h
asz

−ahz
h
− cϕh

ϕ̇hψ̇ + 2 cϕh
c2θ ϕ̇hψ̇ − sθ cθ c

2
ϕh
ψ̇2 + sθ cθ ϕ̇

2
h − sϕh

ψ̈ + sθ asx
h

− cθ sϕh
asy

h
+

cϕh
asz cθ
h

⎤⎥⎥⎥⎥⎥⎥⎦
(5.8)

IMU in Ih with respect to the seat, where h is the distance from the rider IMU to the

seat. Similar to (5.5), we obtain the seat acceleration Ras = [asx asy asz]
T in R and

the rider IMU accelerometer measurements ah = [ahx ahy ahz]
T are then calculated

using Ras. Similar to (5.7), we obtain the attitude acceleration formulation in (5.8) on

the top of this page by using acceleration ah.

With the results in (5.7) and (5.8), the IMU accelerometer measurements ah and

ab are used to provide the attitude accelerations ϕ̈h, θ̈ and ψ̈ in the EKF design in

Section 5.6.

5.4 Rider-bicycle dynamic model

Let ρB = [lb 0 − hb]
T denote the position of bicycle mass center B in B, where

lb and hb are the horizontal and the vertical distances from C2 to B, respectively. The

trunk mass is denoted as mh at H; see Fig. 6.1. The distance between H and the seat

is denoted as hh. Using the Lagrange’s equations, we obtain the human driving torque

τ h =

⎡⎢⎢⎢⎢⎣
τϕh

τθ

⎤⎥⎥⎥⎥⎦ = Mq̈h +C(q, q̇, q̈b) +G, (5.9)

where τϕh
and τθ are the driving torques along the x-axis (ϕh) and the y′-axis (θ)

directions in R, respectively. The y′-axis is obtained from the y-axis by rotating ϕh

about the x-axis. A brief derivation of (5.9) and matrices M , C(q, q̇, q̈b) and G are
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given in Appendix F.

5.5 Force/torque sensor model

We designed and fabricated a special seat as shown in Fig. 5.3. Three load cells are

used to calculate the location of the center of pressure (CoP) of the hip-seat interaction

force. In this section, we discuss how to use the force sensor measurements to obtain

driving torque τ h in (5.9).
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JR3 sensor
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Figure 5.3: (a) A schematic of bicycle seat forces/torques and the transformation. (b)
The CoP calculations through three load cell-measured forces.

A seat frame St is defined as the same orientation of B with the origin S at the

intersection of seat rod and the seat surface; see Fig. 5.3(a). Let Rh = [Rx Ry Rz]
T

and Mh = [Mx My Mz ]
T denote the hip-seat forces (acting at the CoP) and torques

in St, respectively. Let F s = [Fx Fy Fz]
T and T s = [Tx Ty Tz]

T denote the forces and

torques measured by the JR3 sensor in sensor frame Sr, respectively. Considering the

transformation between frames St and Sr, we obtain⎡⎢⎢⎢⎢⎣
Rh

Mh

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

St
Sr
R 0

S(Strc)
St
Sr
R St

Sr
R

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
F s

T s

⎤⎥⎥⎥⎥⎦ , (5.10)

where St
Sr
R = Ry(γ) is the rotational matrix from frames St to Sr and γ is the tilting

angle of the supporting rod. The skew-symmetric matrix S(Strc) is defined by Strc =
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[−xC + L1 sγ −yC L1 cγ ]
T (the position vector of the force sensor with respect to

the CoP in St), L1 is the distance between S and the JR3 sensor, and (xC , yC) is the

coordinate of the CoP in St. Letting Pi, i = 1, 2, 3, denote the measurements of the

three load cells, (xC , yC) is then calculated by

xC =
P1

P1 + P2 + P3
Lx − Lm, yC =

P2 − P3

2(P1 + P2 + P3)
Ly,

where Lx and Ly are the x- and y-axis directional distances between the front and rear

load cells, respectively, and Lm is the x-axis distance between S and rear two load

cells.

(a) (b)

τ̂ϕh

τ̂ θ

F hx

F hz
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θ
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−Rz

Figure 5.4: Rider trunk driving forces and torques. (a) τϕh
calculation. (b) τθ calcula-

tion.

Table 5.1: Model parameters in inertial/force sensors fusion

α (deg)γ (deg)g (m/s2) ls (m)hs (m) lb (m)hb (m)px (m)pz (m)L1 (m)Lx (m)Ly (m)Lm (m)

10 20 9.8 0.26 0.38 0.45 0.66 0.37 0.71 0.13 0.2 0.12 0.043

To capture the sitting position variations among different riders, we define the CoP

location rV = [xV , yV ]
T in St when the trunk is upright. Vector rV is obtained for

each subject in experiments. As shown in Fig. 5.4(a), along the ϕh direction the torque

applied on the trunk is the sum of the measured Mx and the torque generated by the
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reacting force Rz. Thus, we obtain the estimate of τϕh
as

τ̂ϕh
= −Mx −Rz(yC − yV ). (5.11)

Along the θ direction, the handlebar forces also contribute to torque τθ that drives the

trunk motion (Fig. 5.4(b)). Neglecting the arms dynamics, the estimated torque τ̂θ is

approximated as

τ̂θ =
−My + Fhxdz + Fhzdx − Rz(xC − xV )

cϕb−ϕh

, (5.12)

where Fhx and Fhz are the resultant handlebar reaction forces along the xb-axis and

the zb-axis directions, respectively, and dx and dz are the the horizontal and vertical

distances from the handlebar to the seat, respectively. Finally, similar to the results

in [117], bicycle roll angle ϕb is estimated as

ϕ̂b = tan−1

(
Ry

Rz

)
. (5.13)

5.6 Extended Kalman filter (EKF) design

Figure 5.5 illustrates the EKF design structure. The EKF system equations are built on

the IMU gyroscope model with a bias model that will be discussed later in this section.

The rider-bicycle dynamic model is used as output equations to bridge the EKF state

variables with the force sensor model. The IMU accelerometer model provides the

attitude acceleration calculations to the rider-bicycle dynamic model.

A first-order random walk is considered for modeling the measurement bias only

for the rider IMU gyroscope. If we consider the bias model for the both IMU gyro-

scopes, the EKF system becomes unobservable and the EKF convergence cannot be

guaranteed. Let nh and nb denote the measurement noises for the rider and bicycle

IMU gyroscopes, respectively. Then, we have the noise model [120]

nh = ch + b+ νh, nb = cb + νb, (5.14)
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Figure 5.5: The structural and information flow diagram of the EKF design.

where ch and cb are the constant offset biases and obtained in experiments, and νh and

νb are assumed to be the zero-mean white noise vectors. Vector b = [bx by bz]
T is the

random walk bias with the model

ḃi = −
1

τi
bi +

√
2fsσ2

i

τi
wi, i = x, y, z, (5.15)

where τi are the time constants, fs is the sampling frequency, σ2
i = E[b2i ], and wi ∼

N (0, 1) are zero-mean white noises with unit variances.

We define the discrete-time EKF state variables as

X(k) = [ϕh(k) θ(k) φ(k) ϕb(k) bx(k) by(k) bz(k)]
T
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and

fx(X(k),u(k)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(q(k);u(k))

e1(X(k);ωb(k))

− 1
τx
bx(k)

− 1
τy
by(k)

− 1
τz
bz(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where u(k) = [ωT
h (k) ωT

b (k)]
T are the IMU gyroscope measurements at the kth

step, f(q(k);u(k)) = f (q(k);ωh(k) − b(k) − ch,ωb(k) − cb) is given in (5.4) and

e1(X(k);ωb(k)) is the first element of e(qb;ωb) in (5.3). We obtain the EKF state

dynamics

X(k) = X(k − 1) + ΔTfx (X(k − 1),u(k − 1)) , (5.16)

where ΔT = 20 msec is the sampling period. The values of the rider-bicycle systems

and the bias model parameters are listed in Table 5.1.

For EKF outputs, we obtain the estimated torques τ̂ϕh
and τ̂θ in (5.11) and (5.12)

and the estimated bicycle roll angle ϕ̂b in (5.13). Moreover, the experiments show that

the rider always tries to keep his/her shoulder level during bicycle riding. Therefore,

a level-shoulder constraint among the trunk orientation angles is then used as a virtual

measurement, namely,

sc = sϕh
cφ+cϕh

cθ sφ = 0. (5.17)

Thus, including the above physical and virtual measurements, we have the EKF output
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equation

y(k) = h(X(k)) + ny(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

τϕh
(k)

τθ(k)

ϕb(k)

sc(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ ny(k). (5.18)

The first two elements of h(X(k)) are calculated by (5.9) and ny(k) ∼ N (0,Σy) is

the white noise vector with variance matrix Σy.

An EKF design is applied to the system (5.16) and (5.18). For the state dynam-

ics (5.16), we obtain the Jacobian matrix F (k) as

F (k) = I7 +ΔTFX(k),

where In is n × n identity matrix and FX(k) = ∂fx

∂X

∣∣∣∣
X(k),u(k)

. The final result for

FX(k) is given as

FX(k) =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cθ sϕh
(− sα ωbx+cα ωbz)

sθ cϕb

φ̇−ωhx

sθ

cφ ωhy−sφ ωhz

sθ

sϕb
cθ cϕh

(sα ωbx−cα ωbz)

c2ϕb
sθ

0 − sφ
sθ

cφ
sθ

cϕh
(sα ωbx−cα ωbz)

cϕb

0 − sφ ωhy − cφ ωhz
sϕb

sϕh
(sα ωbx−cα ωbz)

c2ϕb

0 − cφ sφ
sϕh

(sα ωbx−cα ωbz)

cϕb
sθ

ϕ̇h

sθ
− cθ(cφ ωhy−sφ ωhz)

sθ
− sϕb

cϕh
(sα ωbx−cα ωbz)

c2ϕb
sθ

−1 cθ sφ
sθ

cθ cφ
sθ

0 0 0 0 0 0 0

0 0 0 0 − 1
τx

0 0

0 0 0 0 0 − 1
τy

0

0 0 0 0 0 0 − 1
τz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(5.19)

Similarly, the Jacobian matrixH(k) = ∂h
∂X

∣∣∣∣
X(k),u(k)

is obtained for the outputs (5.18)
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as

H(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H11 H12 0 H14 0 0 0

H21 H22 0 H24 0 0 0

0 0 0 1 0 0 0

H41 H42 H43 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where elements of H(k) are given as follows

H11 = −mhhh(ls sϕh
sθ+hh sϕh

sθ cθ)ψ̈ +mhhshh cϕb−ϕh
sθ ϕ̇

2
b + 2mhh

2
h sϕh

s2θ θ̇ψ̇ +

mhhh(−hh c2ϕh
s2θ +hs sϕb

sϕh
sθ)ψ̇

2 −mhhh sϕh
sθ vbψ̇ −mhghh cϕh

sθ, (5.20a)

H12 = 2mhh
2
h sθ cθ ϕ̈h +mhhh(ls cϕh

cθ+hh cϕh
c2θ)ψ̈ + 2mhh

2
h c2θ θ̇ϕ̇h

−mhhshh sϕb−ϕh
cθ ϕ̇

2
b − 2mhh

2
h cϕh

s2θ θ̇ψ̇

−mhhh(hh sϕh
cϕh

s2θ +hs sϕb
cϕh

cθ)ψ̇
2

+mhhh cϕh
cθ vbψ̇ −mhghh sϕh

cθ, (5.20b)

H21 = (mhlshh cθ cϕh
+mhh

2
h cϕh

)ψ̈ − 2mhh
2
h s

2
θ sϕh

ϕ̇hψ̇ −mhhshh sϕb−ϕh
cθ ϕ̇

2
b −

mhhh(hh s2ϕh
sθ cθ+hs sϕb

cϕh
cθ)ψ̇

2 +mhhh cϕh
cθ vbψ̇ −mhghh sϕh

cθ, (5.20c)

H22 = (mhhshh sϕb
cθ −mhlshh sθ sϕh

)ψ̈ −mhhh cθ v̇b + 2mhhshh cϕb
cθ ϕ̇bψ̇

+2mhh
2
h s2θ cϕh

ϕ̇hψ̇ +mhhshh cϕb−ϕh
sθ ϕ̇

2
b

−mhhh(hh s
2
ϕh

c2θ−hs sϕb
sϕh

sθ −ls cθ)ψ̇2

−mhhh sϕh
sθ vbψ̇ −mhh

2
h c2θ ϕ̇

2
h +mhh

2
h c2θ ψ̇

2 −mhghh cϕh
sθ, (5.20d)

H24 = mhhshh cϕb
sθ ψ̈ − 2mhhshh sϕb

sθ ϕ̇bψ̇ +mhhshh sϕb−ϕh
cθ ϕ̇

2
b

−mhhhhs cϕb
sϕh

cθ ψ̇
2, (5.20e)

H14 = −2mhhshh sϕb−ϕh
sθ ϕ̇b, H41 = cϕh

cφ− sϕh
cθ sφ, H42 = − sθ cϕh

sφ, (5.20f)

H43 = − sϕh
sφ+cϕh

cθ cφ . (5.20g)

With these Jacobian matrices, the EKF implementation for the systems is written as
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a prediction step (X̂(k|k − 1)) and a correction step (X̂(k|k)) recursively as follows

X̂(k|k − 1) =X̂(k − 1|k − 1) + ΔT f(X̂(k − 1|k − 1),u(k − 1)) (5.21a)

P(k|k − 1) =F(k)P(k|k − 1)FT (k) +Q(k) (5.21b)

X̂(k|k) =X̂(k|k − 1) +W(k)
[
y(k)−H(k)X̂(k|k − 1)

]
(5.21c)

W(k) =P(k|k − 1)HT (k)S−1(k) (5.21d)

S(k) =H(k)P(k|k − 1)HT (k) +R (5.21e)

P(k|k) =(I9 −W(k)H(k))P(k|k − 1)(I9 −W(k)H(k))T +W(k)RWT(k).

(5.21f)

In (5.21b), the symmetric positive definite matrix Q is used as a tuning parameter for

the EKF performance [121].

5.7 Experiments

We recruited five healthy and experienced bicycle riders (four male and one female

with age: 27 ± 3 years, height: 176 ± 4 cm, and weight: 70 ± 7 kg) to conduct both

the indoor and the outdoor experiments. The duration for each riding experiment run

was around 2 minutes. When riding the bicycle, the subjects were asked to arbitrar-

ily change the bicycle speed and trajectory and to freely move their upper bodies. In

outdoor experiments, the maximum bicycle speed was around 22 km/h. All the sub-

jects gave their informed consent before being tested using a protocol approved by the

Institutional Review Board (IRB) at Rutgers University.

Figure 5.6 shows the indoor pose estimation results for Subject #1. The subject

rode the bicycle by his own riding style. Figs. 5.6(a)-(c) show the estimates of the

trunk pose angles and Fig. 5.6(d) shows the estimates of the bicycle roll angle. For

clarity, we only show truncated estimates during the time period between 45 to 70 s.

For comparison purposes, the estimates by the direct strapdown IMU integration are
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Figure 5.6: Indoor comparison results of the estimated poses by the Vicon motion
capturing systems, the EKF estimates, and the integrations of IMU measurements for
Subject #1. (a) ϕh. (b) θ. (c) φ. (d) ϕb.

also plotted in these figures. For the direct IMU integration results, the offset biases

(i.e., ch and cb in the noise model (5.14)) are measured and their effects are eliminated

in calculation. The subject tried to move his trunk aggressively in the experiment. Bal-

ancing the bicycle for a counter-clockwise circular trajectory, the subject tilted his trunk

toward the center of the trajectory. Thus, the average value of ϕh is around −20 deg.

The EKF-based estimation results clearly demonstrate a superior tracking performance

than those by the direct strapdown IMU integration. The estimates by the direct IMU

integration diverge after 50 s as shown in Figs. 5.6(a)-(c), while the EKF-based pose

estimates consistently match the ground truth. Figure 5.7 shows the indoor estimation

performance for Subject #2. Comparing with Subject #1, this subject moved his trunk

arbitrarily. For example, as shown in Fig. 5.7, the subject moved his trunk aggressively

before 48 s, then mildly and slightly from 48 to 66 s, and finally aggressively again.
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Figure 5.7: Indoor comparison results of the estimated poses by the Vicon vision cap-
turing systems, the EKF estimates for Subject #2. (a) ϕh. (b) θ. (c) φ.

In this experiment, the EKF-based pose estimation also demonstrates matching per-

formance. The pose estimation performance of the outdoor experiments demonstrates

similar results as those of the indoor experiments.

Table 5.2: The mean and standard deviation (SD) of Root-mean-square (RMS) errors
with and without the bias model (BM)

Experiment type ϕh (deg) θ (deg) φ (deg) ϕb (deg)

Indoor
With BM 3.42± 1.34 1.62± 1.06 5.56± 1.45 0.82± 0.31

No BM 3.73± 1.46 1.84± 1.09 5.81± 1.42 0.84± 0.33

Outdoor
With BM 4.46± 1.62 4.01± 1.61 6.18± 2.43 2.31± 0.89

No BM 4.42± 1.75 4.18± 1.63 6.24± 2.39 2.30± 0.88

To further demonstrate the performance of the EKF-based design, we compute the
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Figure 5.8: Pose estimation errors from the EKF-based design. The solid lines indicate
the mean values of the errors of all subjects and the dashed lines are one-standard
deviation (SD) bounds. (a) Indoor experiments. (b) Outdoor experiments.

statistics of the pose estimation errors for all subjects. Table 5.2 shows the accuracy

performance in terms of the mean and standard deviation (SD) of root mean square

(RMS) errors for all subjects for both the indoor and the outdoor tests. Figure 5.8

shows the calculated statistic errors over time for all subjects. For all experiments, the

estimation errors are around zero and do not grow over time. The results shown in

Table 5.2 and Fig. 5.8 confirm the consistently robust performance of the estimated

trunk and bicycle poses by the EKF-based sensing fusion.
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5.8 Discussions

In [54], the fusion of inertial and magnetic sensors shows the mean RMS errors of 2.4 to

3.2 degs for different body segments orientations. The approach in [49] demonstrates

a 2.8 degs mean RMS error in the orientation estimation by using inclination in the

Kalman filter design. In [51], the fusion of inertial and ultrasonic sensors demonstrates

the mean RMS errors ranging from 5.7 to 6.6 degs. All the above results are obtained

in the laboratory conditions. Compared with those results, our indoor experiment re-

sults are on the same accuracy level. Although our outdoor experiments show slightly

large errors, the accuracy is still comparable to those by the other fusion approaches in

literature.

From the results shown in Table 5.2 and Fig. 5.8, we notice that the estimation er-

rors are not at the same level among the four estimated angles. In general, estimates

of ϕb have the least errors, while the estimates of φ have the largest errors. These dif-

ferences are due to several reasons. First, during typical bicycle riding, the change of

the bicycle roll angle ϕb is relatively small. The performance of the IMU-based esti-

mation within a small range is better than those with a large range such as for the trunk

angles. Second, there is no direct measurement for angle φ in the EKF design and the

constraint (5.17) of φ is coupled with the other two angles. Therefore, the estimation

of φ has the maximal error. Moreover, for different riding styles, the performances of

the EKF-based estimation design are not the same. For example, for a rider with an

aggressively riding style, the EKF-based estimation scheme produces relatively larger

errors than those with a mild riding style.

To quantify the improvement of the usage of the random-walk bias model in the

EKF design, we compare the estimation errors with and without the inclusion of the

bias model. As shown in Table 5.2, the results confirm that the use of the bias model
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improves the overall estimation performance. For outdoor experiments, the improve-

ment is not significant due to the large ground truth errors provided by the on board

camera. We shall emphasize that, with or without using the bias model, the EKF-based

fusion always achieves the non-drifting results, unlike the strapdown IMU integration

approach.

The estimation errors are mainly due to the imperfect models for the IMU mea-

surement noises, the interaction forces, and the complicated rider-bicycle interactions.

For example, the calculated torques τ̂ϕh
and τ̂θ in (5.11) and (5.12) do not consider the

articulated arm dynamics and the interactions between the legs and the trunk (e.g., ped-

aling effect). During the normal riding, we found the influences from the articulated

arm dynamics and the pedaling effects are not significant for trunk pose estimation.

Therefore, we ignore them in the rider-bicycle dynamic model for simplicity. Another

error source might come from the measurement errors by the Vicon motion capture

system. We estimated and found a maximum 0.8-deg accuracy for the trunk pose an-

gles and 0.3-deg accuracy for the bicycle roll angle measurements by the Vicon motion

capture system. For the outdoor experiments, the vibration of the camera mounting

base due to uneven road surface also contributes to the ground truth errors.
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Figure 5.9: The mean values and one standard deviation (SD) bounds of the spine
curvatures in the sagittal plane (top) and in the coronal plane (bottom).
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Human trunk is flexible and its orientation is difficult to define and measure. In [115–

117], the trunk is modeled as a rigid one-link inverted pendulum in walking, stance and

bicycling balance studies. To validate this rigid-body modeling assumption in bicycle

riding, we placed a set of optical markers along the spine to observe the characteristics

of trunk motion; see Fig. 5.1(d). Figure 5.9 shows the means and the standard devi-

ations of the spine curvature calculations in the sagittal plane and the coronal plane

during one aggressively indoor riding experiment. The results shown in the figure con-

firm that the trunk maintains rigid-body motions in bicycle riding since the variations

of the spinal curvatures are small. The curvatures at the level T4-T11 region, where the

rider IMU is attached, are small. This implies a straight line-shape spine. Especially, in

the coronal plane the curvature of the entire spine is around zero. Therefore, the rigid

pendulum seems a valid model for capturing the trunk motion in bicycle riding.

The force measurements at the seat and handlebar contain motion information

about the rider-bicycle pose angles and their dynamics, as shown in (5.9). The use

of the IMU measurements facilitates the EKF design to calculate the pose informa-

tion from the force measurements by (5.9). Therefore, the fusion of the force/inertial

measurements in the EKF design provides a more restrictive constraint than that of the

velocity constraints such as those in [120, 122]. This is the main reason why the drifts

by the strapdown IMU integration are eliminated. Unlike the approaches in [49, 50] to

build an empirical acceleration model to enhance pose estimation accuracy, the use of

force measurements is built on the system dynamics and thus, the obtained estimation

results are reliable under dynamic motions. The robust estimation results shown in

Fig. 5.8 confirm such an observation.

Unlike some inertial sensor-based schemes in which the ground-truth pose infor-

mation is needed to initialize the estimation design [58], the force/inertial fusion design

is robust to the choice of the initial state values. For example, Fig. 5.10 shows the EKF-

based estimate of ϕh in the first few seconds. Although the initial value is set by more
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Figure 5.11: Comparison results among the dynamic model-based, the static model-
based, and the sensor measured τϕh

and τθ.

than 30 deg different from its actual value, the estimates of ϕh converge to the ground

truth within around 6 s. Of course, it is preferable to use a set of initial values that are

near their true values for a fast convergence. We used the static force measurements

to calculate the initial values for the state variables [117]. The static model assumes

zero derivatives in (5.9). Figure 5.11 shows the comparison of the estimated torques

by the dynamic model, the static model, and the sensor measurements. Clearly, the dy-

namic model-based torque calculations match well with the measurements, while the

magnitudes of the static model-based calculations are much smaller than those of the

measurements because of the neglected dynamic effects. The results in Fig. 5.11 also

indirectly validate the rider-bicycle dynamic model (5.9).
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As one design limitation, the force/inertial sensor fusion design is not capable to

identify and estimate the bicycle yaw angle ψ because none of the onboard sensors

provides the absolute yaw motion information. The used inverted pendulum model is

valid only for typical bicycle riding in which the rider always sits on the seat. The

pose estimation will not perform well in the cases of uncommonly riding styles, such

as acrobatic bicycle riding in which the rider stands on the pedals and does not sit on

the seat.

5.9 Conclusion

In this chapter, we presented a rider-bicycle pose estimation scheme using the inertial

and force sensors. The pose estimation scheme was built on the attractive properties of

the robust force measurements and the motion-sensitive responses of the inertial sen-

sors. A rider-bicycle dynamic model was developed to provide the underlying dynamic

relationship between the pose angles and the human body driving forces. By incorpo-

rating the rider-bicycle dynamics into the design, the pose estimation results did not

drift over time even under highly dynamic motions. We demonstrated and validated

the pose estimation scheme through both the indoor and the outdoor bicycle riding

experiments. The results showed superior performance than those by using the direct

strapdown IMU integration method and the estimation performances were also com-

parable with the other fusion methods reported in literature. Since the pose estimation

approach uses only onboard sensors, it is particularly useful for outdoor applications

and also potentially for other types of human-machine interactions.
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Chapter 6

Control of Rider-Bicycle Systems

6.1 Introduction

An accurate pose estimation of ride-bicycle system is already obtained in Chapter 5,

the chapter we mainly present the balancing control and perturbation for rider-bicycle

system.

In the first part of the chapter, we present a dynamic modeling and balance control

of stationary rider-bicycle system. We consider the human as an inverted pendulum

connected to the moving bicycle platform. When the bicycle is at stationary, the dy-

namics of the rider-bicycle systems are shown similar to these of double-link inverted

pendulum systems. If we consider the human motion is a disturbance, the rider-bicycle

system is an underactuated system like an acrobot or a pendubot. It is known that such

dynamic systems are controllable [123]. Several control approaches are reported for

acrobot or pendubot, such as hybrid-based [124] or passivity-based control laws [125].

However, these control designs do not work for the rider-bicycle control because no

cyclic swing motion is allowed before the system reaches the attraction basin around

the unstable equilibria. We take a hierarchical sliding-model control (SMC) approach

in [126, 127] to design the balancing controller. A nonlinear disturbance observer

(NDOB) [128, 129] is used to estimate the human turning torque. We show that the

integrated hierarchical SMC and the NDOB design is asymptotically stable. The con-

trol systems design is illustrated through simulation examples.

In the second part of this chapter, we consider to use rider-bicycle interactions as
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a new paradigm to examine a sensorimotor theory for modeling and shaping human-

robot interactions. Humans with trained motor skills can flexibly interact with ma-

chines. Many efficient human-robot interactions are unstable [130, 131]. The recent

study in [60] demonstrates that human neuro-control has different, complementary sen-

sitivities of balancing stability between riding the bicycle and quiet stance. Although

studying interactions between the rider and the passive bicycle is reported in recent

years [60, 132–134], the bikebot platform provides active perturbation to break rider’s

sensorimotor feedback mechanism through actively controlled steering, velocity, and

balancing. Sitting on the bicycle, riders have to actively react to the sensory feedback

through body movements (i.e., steering, pedaling and upper-body leans) for balancing

and navigation. Compared to other motor skills such as quiet stance [135], riding the

bicycle requires the coordinated control of multi-limb and body movements follow-

ing the sensorimotor cues. Therefore, the bikebot offers an new platform for studying

sensorimotor human-robot interactions.

6.2 Balance control of rider-bicycle system

6.2.1 Rider-bicycle dynamics

General motion dynamics

Figure 6.1(a) shows the schematic rider/bicycle system. The system is considered as a

three-part platform: a rear frame, a steering mechanism, and human body. We consider

the following assumptions: (1) the rider trunk is modeled as a point mass; (2) the

wheel/ground is a point contact and thickness and geometry of the motorcycle tire

are neglected; (3) The motorcycle body frame is considered a point mass; and (4)

the motorcycle moves on a flat plane and vertical motion is neglected, namely, no

suspension motion.

Similar to the previous chapters, we use the constrained Lagrangian method to
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Figure 6.1: Schematic of the rider-bicycle systems. (a) Side view. (b) Top view.

obtain the dynamics equation of the rider-bicycle motion. We consider the motorcycle

as three parts: one rear frame with mass m, one steering mechanism with the mass

moment of inertia Js, and the human rider with mass mh. Let q̇ := [ϕ̇b ϕ̇h vrx vry]
T

denote the generalized velocity of the motorcycle, where ϕh is the trunk roll angle and

vry is the lateral velocity of C2 in the body frame. Following the similar approach and

calculation in [11], we obtain the motion equations

Mq̈ = K+Bu , (6.1)

where u :=

[
ωσ τh Ffx Ffy Frx Fry

]T
, ωσ := σ̇, τh is the human turning

torque, Ffi, Fri, i = x, y, are the front/rear tire frictional forces. Matrices M, K, and

B are given in (6.2b) to (6.2c), respectively. Cd is the aerodynamic drag coefficient,

and parameters

M := m+mh, Mbh :=
lbm+ cmh

l
,

Mx := m+mh s
2
ϕb−ϕh

, Hs := hb sϕb
+hh sϕh

.

In (6.2b), we have

Mrx := m

[
(1− hbσ sϕb

/l)2 + lb
2σ2/l2

]
+mh

[
(1− σHs/l)

2 + c2σ2/l2

]
,
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in (6.2c)

K3:= −2

⎡⎢⎢⎣m(1− hbσ sϕb

l

)(
−hbσ cϕb

l

)
+mh

(
1− Hsσ

l

)(
−Hsσ

l

)⎤⎥⎥⎦ϕ̇bvrx
+2mh

(
1− σHs

l

)(
σhh cϕh

l

)
ϕ̇hvrx +Mbhhbσ sϕb

ϕ̇2
b +mh

cσhh sϕh

l
ϕ̇2
h,

and in (6.2c)

Bω = −

⎧⎪⎪⎨⎪⎪⎩2m
⎡⎢⎢⎣(1− hbσ sϕb

l

)(
−h
l
sϕb

)
+
b2σ

l2

⎤⎥⎥⎦

+2m

⎡⎢⎢⎣(1− hbσ sϕb

l

)(
−h
l
sϕb

)
+
c2σ

l2

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭vrx −Mbhvry −Mbhhb cϕb

ϕ̇b

−mhchh
l

cϕb
ϕ̇b.

Remark 6.1. In this chapter, in order to have a closed-form design for the controller,

simplifications are used in modeling process. Comparing with the steering mechanism

presented in Chapter 3, we consider the simple model developed in Chapter 2 to make

the calculation tractable. Simplification is also taken to the rider trunk modeling. So

we only consider rider roll angle and not include the rider trunk pitch angle.

System dynamics at zero velocity

We consider the balancing control of the rider/bicycle system when the system is sta-

tionary. Letting vrx = vry = 0, dynamic equations (6.1) are reduced to

M11q̈s +Cs(qs, q̇s)q̇s +G(qs) = us , (6.3)
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M =

[
M11 M12

M21 M22

]
(6.2a)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Mh2b mhhbhh c(ϕb−ϕh) Mbhσhb cϕb
Mhb cϕb

mhhbhh c(ϕb−ϕh) mhh
2
h

mhchhσ cϕb

l
mhhh cϕh

Mbhσhb cϕb

mhchhσ cϕh

l
Mrx Mbhσ

Mhb cϕb
mhhh cϕh

Mbhσ M

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (6.2b)

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(Mhb sϕb
+mhhh sϕh

) hbσ
2

l2
cϕb

v2rx −mhhbhhϕ̇
2
h s(ϕb−ϕh)

+Mg
(
hb sϕb

+
ltb cξ σ cϕb

l

)
−mh

[
1− σHs

l

] σhh cϕh

l
v2rx +mhhbhhϕ̇

2
b s(ϕb−ϕh)+mhghh sϕh

K3

Mhb sϕb
ϕ̇2
b +mhhh sϕb

ϕ̇2
h

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B =

⎡⎢⎢⎢⎢⎢⎣
−Mbhhb cϕb

vrx 0 0 0 0 0

−mhσhh cϕh
vrx

l
1 0 0 0 0

Bω 0 − 1√
1+σ2

− σ√
1+σ2

1 0

−Mbhvrx 0 − σ√
1+σ2

1√
1+σ2

0 −1

⎤⎥⎥⎥⎥⎥⎦ . (6.2c)

where qs = [ϕb ϕh], us = [
Mgltb c2ξ

l
tanφ τh]

T , and

M11 =

⎡⎢⎢⎢⎣ Mh2b mhhbhh cϕb−ϕh

mhhbhh cϕb−ϕh
mhh

2
h

⎤⎥⎥⎥⎦ ,

Cs =

⎡⎢⎢⎢⎣ 0 mhhbhhϕ̇h s(ϕb−ϕh)

−mhhbhhϕ̇b s(ϕb−ϕh) 0

⎤⎥⎥⎥⎦ ,

Gs =

⎡⎢⎢⎢⎣−Mghb sϕb

−mhghh sϕh

⎤⎥⎥⎥⎦ .
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Let x := [x1 x2 x3 x4]
T = [ϕb ϕ̇b ϕh ϕ̇h] be the state variable and we re-

write (6.3) as ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = f1(x) + b1(x)u+ b1w(x)dw

ẋ3 = x4

ẋ4 = f2(x) + b2(x)u+ b2w(x)dw,

(6.4)

where u :=
Mgltb c2ξ

l
tanφ is the steering angle input, dw = τh is the disturbance, and

f1(x) =
1

Mxhbhh

[
(M sx1 −mh sx3 cx1−x3)ghh − (hbx

2
2 cx1−x3 +h

2
hx

2
4)mhhh sx1−x3

]
,

f2(x) =
1

Mxhbhh

[
(sx3 − sx1 cx1−x3)Mghb + (Mhbx

2
2 +mhhhx

2
4 cx1−x3)hb sx1−x3

]
,

b1(x) =
1

Mxh2b
, b2(x) = b1w(x) = −

cx1−x3
Mxhbhh

,

b2w(x) =
M

mhMxh
2
h

.

Systems (6.4) are considered for balance controller design.

6.2.2 Balancing control design

We are now ready to design balance control by only steering the front wheel. We

assume that the human rider turning torque dw = τh is unknown. For systems (6.4),

the desired trajectories are x1d = ϕbd = 0 and x3d = ϕhd = 0. Therefore, we define

the following two sliding surfaces

s1 = c1x1 + x2, s2 = c2x3 + x4, (6.5)

where c1 > 0 and c2 > 0 are constants. We define the coupled surface S = λs1 + s2,

where λ is a constant. To estimate the disturbance dw, we take the dynamics of the

bicycle (e.g., the first two equations in (6.4)), and using the similar design in [128,129],
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we propose the following disturbance observer⎧⎪⎨⎪⎩ ż = −l(xb)b1w(x)z − l(xb)
[
b1w(x)p(xb) + f1(x) + b1(x)u

]
,

d̂w = z + p(xb),

(6.6)

where xb = [x1 x2]
T , l(xb) =

∂p(xb)
∂xb

, and p(xb) is a function to be designed. Letting

d̃w = dw − d̂w, it has been shown that the error dynamics of the NDOB is

˙̃
dw + β(xb)d̃w = 0, (6.7)

where β(xb) := l(xb)b1w(x) > 0 by the choice of p(xb).

For the balance control of each subsystems in (6.4), we introduce nominal control

inputs

u1 = −
1

b1(x)
[f1(x) + c1x2] , u2 = −

1

b2(x)
[f2(x) + c2x4] (6.8)

to compensate their desired trajectories assuming zero disturbance. Finally, we design

the control input as

u = u1 + u2 + uc, (6.9)

where uc will be determined as in the following theorem.

Theorem 6.1. For the rider-bicycle system (6.3) with the NDOB design (6.6) and the

coupled SMC (6.9) with

uc =
−1

b2(x) + λb1(x)

⎧⎪⎪⎨⎪⎪⎩KS + b2(x)u1 + λb1(x)u2 + [b2w(x) + λb1w(x)] d̂w +

S [b2w(x) + λb1w(x)]
2

β(xb)

⎫⎪⎪⎬⎪⎪⎭, (6.10)

where K > 0, the balance control and the NDOB errors asymptotically converge to

zero.
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Proof. We consider the Lyapunov function

V =
1

2
S2 +

1

2
d̃2w. (6.11)

Taking the derivative of V and using the systems dynamics (6.4) and NDOB error

dynamics (6.7), we obtain

V̇ = S

[
λ (ẋ2 + c1x1) + c2ẋ3 + ẋ4

]
− β(xb)d̃2w

= S

{
b2(x)u1 + λb1(x)u2 + [b2(x) + λb1(x)]uc + [b2w(x) + λb1w(x)] dw

}
−β(xb)d̃2w.

By control design (6.10), the above equation becomes

V̇ = S

⎧⎪⎪⎨⎪⎪⎩−KS + [b2w(x) + λb1w(x)] d̃w −
S [b2w(x) + λb1w(x)]

2

β(xb)

⎫⎪⎪⎬⎪⎪⎭− β(xb)d̃2w
= −KS2 − S2 [b2w(x) + λb1w(x)]

2

β(xb)
+ S [b2w(x) + λb1w(x)] d̃w − β(xb)d̃2w

≤ −KS2 −
[√

β(xb)d̃−
S|b2w(x) + λb1w(x)|√

β(xb)

]2
≤ −KS2 ≤ 0. (6.12)

Therefore, the stability of the equilibria S = 0 and d̃w = 0 is obtained. To see the

asymptotic stability, we use Barbalat’s lemma by showing the uniformly continuity of

V̇ . This completes the proof.

To implement the control and the NDOB design, we need to choose the function

p(xb). For the rider-bicycle system, we use p(xb) = −γx2 and l(xb) = [−γ 0]T , and

thus β(xb) > 1. In implementation, we choose a large γ value for rapidly changing

disturbances.

Similar to [126], we need to be careful to design parameter λ. It may be shown

that by an appropriate choice of λ, we can guarantee the asymptotic stability of sliding

surfaces s1 and s2 around the unstable equilibria.
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Theorem 6.2. For the control design given in Theorem 6.1, if we choose λ

λ =

{
λ0 s1s2 ≥ 0

−λ0 s1s2 < 0,
(6.13)

where λ0 > 0, then the sliding surfaces s1 and s2 are both asymptotic stable.

Proof. We consider the same Lyapunov function (6.11). By the controller design, we

have V̇ = SṠ−β(xb)d̃2w < 0 and V (t) = 1
2
S2+ 1

2
d̃2w < V (0) <∞. Hence |S| <∞ is

obtained. Due to λs1s2 ≥ 0, it’s straightforward to obtain that |s1| <∞ and |s2| <∞.

From (6.5), we obtain

ṡ1 = c1ẋ1 + ẋ2 = c1x2 + f1(x) + b1(x)u+ b1w(x)dw.

Since all terms on the right-hand side of the above equation are bounded (u is bounded

due to the physical actuation limitation), we obtain |ṡ1| < ∞. Similarly, we obtain

|ṡ2| < ∞. Taking integration on both sides of (6.12), we obtain
∫∞
0
S2dt < ∞. Thus,

by (6.13), we have

0 <

∫ ∞

0

(λ2s21 + s22)dt ≤
∫ ∞

0

(λ2s21 + 2λs1s2 + s22)dt =

∫ ∞

0

S2dt <∞,

namely,

0 <

∫ ∞

0

s21dt <∞, 0 <

∫ ∞

0

s22dt <∞.

Using Barbalat’s lemma, we can show that

lim
t→∞

s1 = 0, lim
t→∞

s2 = 0.

Therefore, sliding surfaces s1 and s2 are asymptotically stable. This completes the

proof.
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Figure 6.2: Balance control of rider-bicycle system under a constant disturbance human
motion torque. (a) Bicycle roll angle. (b) Human roll angle. (c) Steering angle. (d)
Actual and estimated disturbances.

6.2.3 Simulation results

We demonstrate the control system design through two numerical examples. In each

example, we compare the results of the proposed control design (6.9) with the NDOB

and of the regular hierarchical SMC without NDOB design. The physical parameters

of the rider-bicycle systems are listed in Table 6.1. These parameters are based on the

Rutgers’ “smart bicycle” prototype. The control systems parameters with the NDOB

design are λ0 = 0.4, c1 = 0.4, c2 = 1, and K = 25. For comparison purposes, we use

the same set of the parameters in hierarchical sliding-model controller. In simulation,

the initial state values are x0 =

[
0.21 0 0.087 0

]T
, namely, the bicycle is released

from rest with an initial roll angle of 12 degrees and the human has an initial roll angle

of 5 degrees.
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Table 6.1: Rider/bicycle system parameters

m (kg) mh (kg) hb (m) hh (m) l (m) lt (m) lb (m) c (m) ξ (rad)

13.13 65 0.38 0.47 0.97 0.05 0.41 0.34 0.33
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Figure 6.3: Balance control of rider-bicycle system under a random disturbance human
motion torque. (a) Bicycle roll angle. (b) Human roll angle. (c) Steering angle. (d)
Actual and estimated disturbances.

In the first example, we assume a constant human body turning torque τh = 3

Nm. We use γ = −3 in the NDOB design. Figure 6.2 shows the simulation results.

It is clearly to see that the roll angles of the bicycle and human are smaller when the

proposed NDOB is applied. From Fig. 6.2(c), we see that the steering angle input is

also smaller with the NDOB design comparing with the controller without the NDOB

design. The NDOB successfully estimates the disturbance τh as shown in Fig. 6.2(d).

We can see that the NDOB design can accurately estimate the constant disturbance

after 5 s. Note that there is always a bias in roll and steering angles from their desired
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equilibria (e.g., vertical positions) at steady-state. Such biases are coming from the

existence of the constant disturbance. The rider-bicycle system tries to overcome the

constant disturbance by using a non-zero steering angle as shown in Fig. 6.2(c).

In the second example, we assume that the disturbance τh is randomly changing.

The magnitude of disturbance is varying periodically around every 5 s. Figure 6.3

shows the simulation results. We use γ = −10 in the NDOB design. The exact distur-

bance is shown in Fig. 6.3(d). When only the coupled SMC is used, the performance

of the rider-bicycle systems is changing abruptly and a large control input is needed

to balance the platform. From Fig. 6.3(d), we can see that the NDOB can catch up

the time-varying disturbance in a very short time due to using a large γ value. The

rapidly changing disturbance in this example makes the NDOB convergence challeng-

ing. From Fig. 6.3, we clearly see the superior performance by using the NDOB design.

6.3 Human sensorimotor control in rider-bicycle interaction

6.3.1 Experiments

Human IMU

Force sensor

Figure 6.4: Human outdoor riding experiments.
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Figure 6.5: Steering angle and a single perturbed torque disturbance. Top: Bikebot
riding following a straight-line. Bottom: Bicycle riding following a circle.

To demonstrate the feasibility of the use of the bikebot to perturb the human motor

control and coordination and study the human sensorimotor control, we conduct a set

of human riding experiments. A young male experienced bicycle riding subject was re-

cruited to ride the bicycle in outdoor environment; see Fig. 6.4. The subject was asked

to ride the bicycle by tuning the driving motor control and steering handlebar, the same

as his regular bicycle riding style. Both a straight-line riding (for a distance of 50 m)

and a circular riding (about a radius of 3 m) were conducted in experiments. After the

subject got used to ride the bicycle comfortably, we turned on the gyro-balancer to per-

turb the riding and measured the rider’s responses to the generated torque disturbances.

The subject gave his informed consent before being tested using a protocol approved

by the Institutional Review Board (IRB) at Rutgers University.

We first perturbed the riding by a step torque disturbance suddenly applied without

notifying the rider. Figure 6.5 shows the rider steering angle responses and the per-

turbed torques for both the straight-line and circular bicycle riding experiments. It is

clearly shown in these plots that under a perturbation, the rider uses the steering as a

motion strategy to keep balancing the unstable platform. The responses also confirm
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Figure 6.6: Rider-bicycle responses under typical riding and randomly perturbation by
the gyro-balancer for the straight-line (top row) and circular (bottom row) trajectories.
(a) Steering angle φs for straight-line. (b) Bicycle roll angle ϕb for straight-line. (c)
Gyroscopic perturbed torque for straight-line. (d) Steering angle φs for straight-line.
(e) Bicycle roll angle ϕb for straight-line. (f) Gyroscopic perturbed torque for straight-
line.

the so-called “counter-steering” strategy (turning the steering toward the same direc-

tion as falling trend), a bicycle-riding motor skill that is obtained through training.

To further demonstrate that riders use steering as an effective strategy, rather than

other motor strategies such as upper body motions, we conduct riding experiments
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under randomly generated torques. We compare the riding responses in these per-

turbed experiments with responses from normally riding experiments without any dis-

turbances. Figure 6.6 shows the comparison results of the rider-bicycle interactions

under a normal and a perturbed experiment. Figure 6.6(a)-(c) shows the rider’s steering

angle responses, bicycle roll angle, and the perturbed torque for straight-line riding and

Fig. 6.6(d)-(f) shows the profiles of the same variables for circular riding experiments.

The rider responded to the random perturbation by actively turning the handlebar and

using steering to balance the platform in experiments. This can be clearly observed

by the comparison with normal riding behavior shown in Fig. 6.6(a) and 6.6(d). On

the other hand, the comparison of the bicycle roll angle profiles shown in Fig. 6.6(b)

and 6.6(e) does not clearly demonstrate significant difference. Although not being pre-

sented here, the comparison results of the rider’s body movement do not show signifi-

cant difference between normal and perturbed bicycle riding, either. These results and

observations confirm that the bicycle platform can be used to study dynamic postural

human motor skills.

6.4 Conclusion

In this chapter, we first presented a dynamic modeling and balance control of stationary

rider-bicycle system. We considered the human as an inverted pendulum and treated

the human actuation torque as an unknown disturbance. The balance control was de-

signed by using a coupled two sliding-mode surface approach and the controller was

integrated with a nonlinear disturbance observer. We proved the asymptotic stability of

the integrated control and disturbance observer design. The performance of the control

system was demonstrated through simulation results. In the second part of the chapter,

we mainly demonstrate the possibility to use the bikebot to study the human sensori-

motor skill. We conclude that the human rider uses steering as the first priority way to
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maintain the bicycle balance when he/she feels large external disturbances.



144

Chapter 7

Conclusions and Future Work

7.1 Conclusions

The dissertation proposed a modeling and control framework of the single-track vehi-

cles from the human-machine-environment (HME) interactions perspective. We thor-

oughly investigated the HME interactions from three aspects: the navigation and sta-

tionary balancing of an autonomous motorcycle, the tire-road interactions and the rider-

bicycle interactions. The newly developed Rutgers instrumented bicycle “bikebot” was

also presented in the dissertation.

For the autonomous motorcycle navigation, we relaxed the lateral zero velocity

constraint and considered the tire-road interactions in the modeling of riderless single-

track vehicles. EIC-based nonlinear controllers were designed to realize the trajectory

tracking and the path following, respectively. The simulation results demonstrated that

autonomous motorcycle can even achieve the agile maneuvers which only belong to

professional riders with such the significant improvements in modeling process. We

also investigated the challenging balancing problem of a riderless stationary bicycle.

Two different controllers were designed based on the steering control and the gyro-

scopic actuator control, respectively. Experiments were conducted to validate the ef-

fectiveness of the two controller designs.

To study the tire-road interactions, a new high-fidelity tire model was proposed

to predict the deformation and friction force distributions on the tire contact patch in

stick-slip transition. An in-situ sensing technique by using a new PSECR sensor was
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developed to directly measure the friction force distribution and validate the new tire

model. The new model not only extends the current knowledge of tire-road interaction,

but also can be used to potentially guide the future tire sensing development.

For the ride-bicycle interactions, a new dynamic model was first proposed to cap-

ture the physical interactions for rider-bicycle system. A novel sensor fusion scheme

was presented based on the dynamic model to measure the system motion in real time.

The sensor fusion approach combined both the advantages of inertial sensors and force

sensors. Drift-free performance was achieved in both the indoor and outdoor experi-

ments. The new pose estimation approach benefits the future studies for rider-bicycle

interactions, especially in outdoor environment. A hierarchical sliding mode control

was then designed to control the rider-bicycle system via steering control. Simulation

results showed that the rider-bicycle system can converge to the equilibrium position

under such the control. Finally, some experiments were conducted to show the pos-

sibility to use the “bikebot” to study the human sensorimotor skill. The experimental

results showed that the human rider mainly uses steering angle to keep the system

balance.

The outcomes of the dissertation in terms of the modeling, sensing and control of

HME interactions of single-track vehicles not only lay down a theoretical and experi-

mental foundation for the HME interactions of single-track vehicles, but also provide

methodologies and enabling experimental platforms to study the HME interactions in

other mechanical and robotic systems.

7.2 Future Work

Following the research developments in this dissertation, there are quite a few research

directions and continuation work in future. For the study of autonomous single-track
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vehicles, a piece of natural extension work is to experimentally realize the riderless bi-

cycle or motorcycle navigation for both the trajectory tracking and path following. The

work can be conducted on the newly developed Rutgers instrumented bicycle “bike-

bot”. Second, the orbital stabilization of the stationary bicycle can be further inves-

tigated for both the steering control and gyroscopic balancer control. Besides the en-

ergy shaping-based control design presented in the dissertation, other approaches, such

as virtual-constraint-based control design, sliding mode control, dynamics inversion-

based tracking, can be also used to potentially design a controller to reach the orbital

stabilization. Furthermore, the problem of gyroscopic balancer control of stationary

bicycle can be even generalized for the control of a class of underactuated dynamic

systems where the subsystems are coupled through torque or force interaction. The

hybrid control of combining the steering control and gyroscopic balancer control is an-

other interesting research topic. With the hybrid control, we believe that the maximal

domain of attraction can be obtained in the stationary bicycle balancing case. The third

future research direction is to design a control system for the stationary balancing-

navigation transition of the autonomous single-track vehicles, which is critical for the

real application for bicycle-like robots.

For the tire-road interactions, we shall further investigate the friction force distri-

bution of the dynamic rotating tire. We are currently modifying the tire platform to

prepare for such an objective. The beam-spring model can be integrated with LuGre

model to calculate the deformation and friction force distributions.

For the rider-bicycle interaction, the whole body motion pose estimation is ob-

viously necessary for the further studies of rider-bicycle system. The whole body

motion pose estimation can be achieved by using multiple wearable inertial sensors

with enhancements by fusing vision measurement from onboard camera or geometry

constraints. A thorough study of human sensorimotor control is also needed for the

rider-bicycle interactions. The stability analysis of the rider-bicycle system should be
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developed using the new results of the human sensorimotor control that can be obtained

through experiments.

Finally, extension of the modeling and control framework to study other types of

unstable HME interactions would be interestingly explored in future.



148

References

[1] R. S. Sharp, S. Evangelou, and D. J. N. Limbeer, “Advances in the modelling of
motorcycle dynamics,” Multibody Syst. Dyn., vol. 12, pp. 251–283, 2004.

[2] C.-G. Song, J.-Y. Kim, and N.-G. Kim, “A new postural balance control sys-
tem for rehabilitation training based on virtual cycling,” IEEE Trans. Inform.
Technol. Biomed., vol. 8, no. 2, pp. 200–207, 2004.

[3] M. B. Aerts, W. F. Abdo, and B. R. Bloem, “The “bicycle sign” for atypical
Parkinsonism,” Lancet, vol. 377, no. 9760, pp. 125–126, 2011.

[4] A. H. Snijders and B. R. Bloem, “Cycling for dreezing of gait.” New Engl. J.
Med., vol. 362, 2010, p.e46.

[5] J. Meijaard, J. Papadopoulos, A. Ruina, and A. Schwab, “Linearized dynamics
equations for the balance and steer of a bicycle: A benchmark and review,” Proc.
Royal Soc. A, vol. 463, pp. 1955–1982, 2007.

[6] J. Moore, “Human control of a bicycle,” Ph.D. dissertation, Dept. Mech. and
Aero. Eng., Univ. Calif., Davis, CA, 2012.

[7] S. Timoshenko and D. H. Young, Advanced Dynamics. New York: McGraw-
Hill, 1948.

[8] D. Karnopp, Vehicle Stability. Marcel Dekker, Inc., 2004.

[9] K. J. Astr, R. E. Klein, and A. Lennartsson, “Bicycle dynamics and control,”
IEEE Control Syst. Mag., vol. 25, no. 4, pp. 26–47, 2005.

[10] F. J. W. Whipple, “The stability of the motion of a bicycle,” Quart. J. of Pure
and Appl. Math., vol. 30, pp. 312–348, 1899.

[11] J. Yi, Y. Zhang, and D. Song, “Autonomous motorcycles for agile maneuvers:
Part I: Dynamic modeling,” in Proc. IEEE Conf. Decision Control, Shanghai,
China, 2009, pp. 4613–4618.

[12] M. Defoort and T. Murakami, “Sliding-mode control scheme for an intelligent
bicycle,” IEEE Trans. Ind. Electron., vol. 56, no. 9, pp. 3357–3368, 2009.

[13] R. Sharp, “The stability and control of motorcycles,” J. Mech. Eng. Sci., vol. 13,
no. 5, pp. 316–329, 1971.



149

[14] ——, “Stability, control and steering responses of motorcycles,” Veh. Syst. Dyn.,
vol. 35, no. 4-5, pp. 291–318, 2001.

[15] V. Cossalter and R. Lot, “A motorcycle multi-body model for real time simula-
tions based on the natural coordinates approach,” Veh. Syst. Dyn., vol. 37, no. 6,
pp. 423–447, 2002.

[16] V. Cossalter, A. Doria, R. Lot, N. Ruffo, and M. Salvador, “Dynamic properties
of motorcycle and scooter tires: Measurement and comparison,” Veh. Syst. Dyn.,
vol. 39, no. 5, pp. 329–352, 2003.

[17] V. Cossalter and A. Doria, “The relation between contact patch geometry and the
mechanical properties of motorcycle tyres,” Veh. Syst. Dyn., vol. 43, no. Suppl.,
pp. 156–167, 2005.

[18] J. Grizzle, M. Di Benedetto, and F. Lamnabhi-Lagarrigue, “Necessary con-
ditions for asymptotic tracking in nonlinear systems,” IEEE Trans. Automat.
Contr., vol. 39, no. 9, pp. 1782–1794, 1994.
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of nonlinear systems,” Automatica, vol. 40, pp. 373–383, 2004.

[68] A. Aguiar, J. Hespanda, and P. Kokotović, “Path-following for nonminimum
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Appendix A

Calculation of Ms

We consider the front wheel center O1 and the projected steering axis point C3 on

the ground surface. Since the frictional moment is independent of the coordinate sys-

tem. We setup a local coordinate system xfyfzf by rotating the coordinate system xyz

around the z-axis with an angle φg (origin at contact point C1). Let (if , if , if) denote

the unit vectors along the xf , yf , zf -axis directions, respectively.

In the new coordinate system, the coordinates of O1 and C3 are (0, r sϕf
,−r cϕf

)

and (lt, 0, 0), respectively. We write the front wheel friction force vector F f as

F f = −Ftxif − Ftyjf − Ftzkf

and the vector rC3C1 = −ltif . The directional vector nO1C3 of the steering axis O1, C3

is then

nO1C3 =
ltif − r sϕf

jf + r cϕf
kf√

l2t + r2
.

Therefore, the friction moment Ms about the steering axis is calculated as

Ms = (rC3C1 × F f) · nO1C3 =
lt√

1 + (lt/r)
2

(
Fty cϕf

−Ftz sϕf

)
.



160

Appendix B

Calculation of acceleration v̇B

Taking the time derivative of the mass center velocity vG and considering the moving

frame xyz’s angular velocity ω = ϕ̇bi+ ψ̇k, we obtain

v̇B =
δvB
δt

+ ω × vB = (v̇rx − hbψ̈ sϕb
−hbψ̇ϕ̇b cϕb

)i+ (v̇ry + lbψ̈ + hbϕ̈b cϕb

−hbϕ̇2
b sϕb

)j + (hbϕ̈b sϕb
+hϕ̇2

b cϕb
)k + (ϕ̇bi + ψ̇k)× vB

= (v̇rx − vryψ̇ − hbψ̈ sϕb
−lbψ̇2 − 2hbψ̇ϕ̇b cϕb

)i

+(v̇ry + vrxψ̇ + lbψ̈ + hbϕ̈b cϕb
−hbψ̇2 sϕb

−2hbϕ̇2
b sϕb

)j

+(vryϕ̇b + hbϕ̈b sϕb
+lbψ̇ϕ̇b + 2hbϕ̇

2
b cϕb

)k,

where δvB

δt
denotes the derivative of vB by treating the xyz-coordinate as a fixed frame.
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Appendix C

Calculation of the Lie derivatives

The calculation of L̄Nextu
ext
rx and L̄Nextu

ext
ry is obtained by taking the Lie derivative

along the nominal external vector field (2.51) and the control input (2.53). The calcu-

lation are shown in (C.1) and (C.2).

L̄Nextu
ext
rx =

[
− sψ cψ

]
ψ̇
(
−U+ uext

)
+

[
cψ sψ

]
⎛⎜⎜⎝ −
⎡⎢⎢⎢⎣−2u

ext
rx sψ−2uextry cψ−3v̇rxψ̇ cψ +3v̇ryψ̇ sψ +ψ̈ (vrx sψ +vry cψ)

2uextrx cψ −2uextry sψ−3v̇rxψ̇ sψ −3v̇ryψ̇ cψ−ψ̈ (vrx cψ−vry sψ)

⎤⎥⎥⎥⎦ ψ̇

+

⎡⎢⎢⎢⎣L̄Nextu
ext
X

L̄Nextu
ext
Y

⎤⎥⎥⎥⎦
⎞⎟⎟⎠

= v̇rxψ̇
2 +
(
2uextry − uextX sψ +u

ext
Y cψ
)
ψ̇ + L̄Nextu

ext
X cψ

+L̄Nextu
ext
Y sψ, (C.1)

L̄Nextu
ext
ry = v̇ryψ̇

2 −
(
2uextrx + uextX cψ +u

ext
Y sψ
)
ψ̇ − L̄Nextu

ext
X sψ

+L̄Nextu
ext
Y cψ . (C.2)

In these equations, we have⎡⎢⎢⎢⎣L̄Nextu
ext
X

L̄Nextu
ext
Y

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣X

(4)
d (t)

Y
(4)
d (t)

⎤⎥⎥⎥⎦− b3
⎡⎢⎢⎢⎣u

ext
X −X

(3)
d (t)

uextY − Y
(3)
d (t)

⎤⎥⎥⎥⎦−
2∑
i=1

bi

⎡⎢⎢⎢⎣X
(i) −X(i)

d (t)

Y (i) − Y (i)
d (t)

⎤⎥⎥⎥⎦ .
Similarly, we calculate L̄2

Nextϕe by directly taking a directional derivative of L̄Nextϕe
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along the vector field Next. From (2.59), we have

L̄2
Next

ϕe =
(
hbψ̇ cϕe +g sec

2 ϕe

)−1

⎡⎢⎢⎣glblt cξhb

⎛⎜⎜⎝ ψ̇uextrx

v2rx
− 2v̇2rxψ̇

v3rx

⎞⎟⎟⎠+ ψ̇uextrx +

L̄Nextu
ext
ry +

(
hbψ̇ sϕe −2g sec2 ϕe tanϕe

)(
L̄Nextϕe

)2
⎤⎥⎥⎦. (C.3)
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Appendix D

Calculation of σz(z) inside the rubber layer

Figure 4.4(b) illustrates the configuration of the tire rubber layer. We first decompose

Pn(x) by a Fourier series.

Pn(x) = P0 +
∞∑
m=1

Am sin (λx) +
∞∑
n=1

Bm cos (λx) , (D.1)

where P0 is the constant term and λ = mπ
Lx

and Lx is the major axis length of the

elliptical P . By superposition, we consider the contribution of each term in (D.1) to

the internal stress σz(z). The particular solution of σz(z) when Pair and P0 are applied

on each side of the tire rubber layer is given by (page 41 of [103])

σsz(z) =
P0 − Pair

4h3
z3 − 3(P0 − Pair)

4h
z − P0 + Pair

2
.

To calculate the contribution of the first harmonic term Am sin (λx) in (D.1) to

σz(z), we introduce an Airy function φm(x, z) = sin (λx) fm(z) in the form of the

Fourier series [103]. Plugging φm(x, z) into bi-harmonic condition ∇4φm(x, z) = 0,

we obtain

λ4fm(z)− 2λ2f ′′
m(z) + f (4)

m (z) = 0.

The general solution for fm(z) is

fm(z) = D1 ch(λz) +D2 sh(λz) +D3z ch(λz) +D4z sh(λz), (D.2)

where sh(x) := sinh(x) and ch(x) := cosh(x) for x.

Considering that σz =
∂2φm
∂x2

and τxz =
∂2φm
∂x∂z

and the boundary conditions: τxz = 0,

σz = −Am sinλx for z = h, and τxz = 0 and σz = 0 for z = −h, we obtain
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coefficients Di in (D.2). Therefore, the contribution of the term Am sin (λx) in (D.1)

for Pn(x) is given by σms shown in (D.3). Similarly, for the term Bm cos (λx) in (D.1)

for Pn(x), the contribution to the stress distribution is given by σms in (D.4).

σms = −Am sin(λx)(
[λh ch(λh) + sh(λh)] ch(λz)− λz sh(λz) sh(λh)

sh(2λh) + 2λh
+

[λh sh(λh) + ch(λh)] sh(λz)− λz ch(λz) cos(λh)
sh(2λh)− 2λh

) (D.3)

σmc = −Bm cos(λx)(
[λh ch(λh) + sh(λh)] ch(λz)− λz sh(λz) sh(λh)

sh(2λh) + 2λh
+

[λh sh(λh) + ch(λh)] sh(λz)− λz ch(λz) cos(λh)
sh(2λh)− 2λh

) (D.4)

ForLx 
 h, using the approximations sh(x) ≈ x+ x3

6
+ x5

120
and ch(x) ≈ 1+ x2

2
+ x4

24

for small x, Eqs. (D.3) and (D.4) are reduced respectively to

σms ≈ Am sin(λx)

(
1

4h3
z3 − 3

4h
z − 1

2

)
and

σmc ≈ Bm cos(λx)

(
1

4h3
z3 − 3

4h
z − 1

2

)
.

By superposition, we add all the above calculated stress terms together and us-

ing (D.1), we obtain

σz(z) = σsz(z) +
∞∑
m=1

σms +
∞∑
m=1

σmc

= [Pn(x)− Pair]
(

1

4h3
z3 − 3

4h
z

)
− Pn(x) + Pair

2
,

for a given x. This completes the calculation of (4.22). The above derivation is readily

extended to the two-dimensional case (i.e., including stress along the y-axis direction)

if Ly 
 h.
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Appendix E

Proof of Property 3.1

For a periodic profile x1(t + T ) = x1(t) for any t, x2(t) = ẋ1(t) is also periodic with

period T , i.e., x2(t + T ) = x2(t). From (3.19), we obtain

px(t+ T )− px(0) =
∫ t+T

0

mghG sx1(τ) dτ.

Taking the difference of the above equation with (3.19), we obtain

px(t+ T )− px(t) =
∫ T

0

mghG sx1(τ) dτ. (E.1)

Using the fact that both x1(t) and x2(t) are periodic functions with period T and∫ T
0
sx1(τ) dτ = 0, using (3.18), (E.1) reduces to

[x3(t+ T )− x3(t)] [Iwzωs + Iwxz(x3(t+ T ) + x3(t))] = 0.

Thus, x3(t + T ) = x3(t) and the flywheel’s pivoting angle is periodic with period T .

This completes the proof.
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Appendix F

Rider-bicycle dynamic model

The rider-bicycle dynamic model is obtained by the Lagrangian approach. The La-

grangian of the rider-bicycle system is obtained as

L =
1

2
mRvB ·RvB +

1

2
mR
h vH ·RvH − g

[
mhb cϕb

+mh (hs cϕb
+hh cϕh

sθ)

]
,

where RvB and RvH are the linear velocities for the bicycle and the trunk, respec-

tively. We obtain RvB = [vb 0 0]T +R ωb × ρB . Similarly, we obtain the

seat velocity Rvs and RvH is then calculated as RvH =R vs +
R ωh × ρH , where

ρH = [hh cθ hh sϕh
sθ −hh cϕh

sθ]
T . Finally, using Lagrange’s equations, matrices

M and G are obtained as

M =

⎡⎢⎢⎢⎣mhh
2
h s

2
θ 0 0

0 mhh
2
h 0

⎤⎥⎥⎥⎦ , G =

⎡⎢⎢⎢⎣−mhghh sϕh
sθ

mhghh cϕh
cθ

⎤⎥⎥⎥⎦
and C(q, q̇, q̈b) is given in (F.1).

C(q, q̇, q̈b) =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mhhh(ls cϕh
sθ +hh cϕh

sθ cθ)ψ̈ +mhhshh cϕb−ϕh
sθ ϕ̈b +mhh

2
h s2θ θ̇ϕ̇h

−mhhshh sϕb−ϕh
sθ ϕ̇

2
b − 2mhh

2
h cϕh

s2θ θ̇ψ̇ −mhhh(hh sϕh
cϕh

s2θ +hs sϕb
cϕh

sθ)ψ̇
2

+mhhh cϕh
sθ vbψ̇

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(mhhshh sϕb
sθ +mhlshh cθ sϕh

+mhh
2
h sϕh

)ψ̈ −mhhshh sϕb−ϕh
cθ ϕ̈b

−mhhh sθ v̇b + 2mhhshh cϕb
sθ ϕ̇bψ̇ + 2mhh

2
h s

2
θ cϕh

ϕ̇hψ̇ −mhhshh cϕb−ϕh
cθ ϕ̇

2
b

−mhhh(hh s
2
ϕh

sθ cθ +hs sϕb
sϕh

cθ −ls sθ)ψ̇2 +mhhh sϕh
cθ vbψ̇

−mhh
2
h sθ cθ ϕ̇

2
h +mhh

2
h sθ cθ ψ̇

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(F.1)


