
SEARCHES FOR LIGHT- AND HEAVY-FLAVOR
THREE-JET RESONANCES IN PROTON-PROTON

COLLISIONS WITH THE CMS DETECTOR AT√
S = 8 TEV

By

CLAUDIA SEITZ

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Physics and Astronomy

written under the direction of

Prof. Eva Halkiadakis

and approved by

New Brunswick, New Jersey

January, 2014



c© 2014

Claudia Seitz

ALL RIGHTS RESERVED



ABSTRACT OF THE DISSERTATION

Searches for Light- and Heavy-flavor Three-jet Resonances in
proton-proton Collisions with the CMS Detector at

√
s = 8 TeV

By CLAUDIA SEITZ

Dissertation Director:

Prof. Eva Halkiadakis

A search for three-jet hadronic resonance production in proton-proton collisions at 8 TeV

center-of-mass energy has been conducted by the CMS Collaboration at the LHC. The data

set corresponds to an integrated luminosity of 19.4 fb−1. The search method is model-

independent. Events are selected that contain a large number of jets with high transverse

momentum. An ensemble of jets is used to extract a new possible signal from copious QCD

background. Event selection is optimized using a benchmark model where supersymmetric

gluinos are pair-produced and each of the gluinos decays exclusively into three jets. Two

scenarios of this decay are considered denoted by the RPV couplings λ′′112 and λ′′113 or λ′′223.

The first coupling allows for gluinos to decay into only light-flavor jets, while the latter

two allow decays into one heavy-flavor and two light-flavor jets. No significant deviation

is found between the selected events and the expected standard model multijet and tt̄

background. For gluinos decaying through λ′′112, masses below 650 GeV are excluded at

the 95% confidence level. The search including heavy-flavor jets in the final state with the

couplings λ′′113 or λ′′223 is the first of its kind. Gluinos decaying into one heavy-flavor and

two light-flavor jets are excluded for masses between 200 and 835 GeV.
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Chapter 1

Introduction

Fundamental questions about the universe and its basic building blocks have fascinated

humans for centuries. The 20th century was filled with theoretical and experimental ad-

vancements in the field of particle physics. The era of modern particle physics started with

the discovery of the electron in 1897, followed by Einstein’s theoretical description of the

photoelectric effect in 1905.

The discovery of the proton and other particles such as neutrons, neutrinos, and the

heavier brother of the electron, the muon, followed. Weak interactions were introduced

through the observation of β decay, where a neutron decays into a proton under the emission

of an electron and a neutrino. In the 1960’s the idea of even smaller constituents of protons

and neutrons was introduced as the quark or parton model.

The first part of the theory known today as the Standard Model was developed in

the 1960’s as well. Weinberg, Glashow, and Salam proposed a theory that combine the

electromagnetic and weak interactions. This theory also incorporated the idea of electroweak

symmetry breaking, which predicts massive bosons as carriers of the weak force and a new

scalar particle known as the Higgs boson. It took almost twenty more years to discover the

force carriers of the weak interaction the charged W± and the neutral Z0 bosons. Another

prediction of the theory was the existence of a heavy partner of the bottom quark, the top

quark, which was discovered in 1995 at the Tevatron accelerator at Fermilab. Both, the

ATLAS and CMS collaboration at the LHC, reported the observation of a new boson with

Higgs-like properties in 2012. However, despite the success of the theoretical predictions

there are still unresolved questions. For example, what keeps the Higgs mass on the order

of ≈ 100 GeV, or why are the scales for the fundamental forces so different, and how can

gravity be incorporated?
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This thesis describes a search for new physics beyond the Standard Model in an all-

hadronic final state. During the last years the LHC experiments have produced a plethora of

different results placing limits on new physics scenarios. However, all-hadronic final states

are still difficult to handle. While the underlying theory of Quantum Chromodynamics

(QCD) can be described by perturbation theory for high energies and short distances, the

long distance limit is still not very well understood. Due to the properties of the strong

force quarks and gluons cannot be observed as single particles. They undergo the so-called

parton shower and hadronization processes resulting in a spray of hadrons, something we

refer to as a jet.

In Chapter 2 we briefly discuss the field theoretical description of the Standard Model

followed by one possible extension for a new physics scenario called Supersymmetry. The

concept of R-parity violation is introduced. Pair-produced supersymmetric gluinos decaying

through these R-parity violating couplings into three jets are used as a benchmark model

throughout this thesis. Dedicated searches are performed where the final state consists of

only light-flavor jets or of one heavy-flavor and two light-flavor jets.

Chapters 3 and 4 focus on the experimental setup of the LHC and the CMS experiment,

as well as the data collected during the 2012 running period. The general approach for

algorithms used to reconstruct the recorded events is discussed in Chapter 5.

Chapter 6 focuses on the specific analysis strategy used in this search for three-jet reso-

nances. The jet ensemble technique is introduced, which is the main method to reconstruct

the mass of the new hypothetical particle. Basic event selection criteria, as well as the

optimization procedure and their results are described in detail. This chapter concludes

with the definition of three distinct search regions with optimized selection requirements to

improve the sensitivity to a possible new physics signal.

The background from QCD multijet production is theoretically difficult to model. Data

driven methods, based on fits of parametrized function as well as binned background tem-

plates from control regions in the data, are discussed in Chapter 7. A general introduction

to fitting techniques is given as well.

The search is performed by examining a smoothly falling invariant mass distribution

in data for a localized Gaussian deviation. The modeling of this signal shape is presented
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in Chapter 8. Systematic uncertainties affecting the signal and background models are

discussed first in Chapter 9, followed by an introduction to limit setting techniques.

No significant deviation between the data and background model is found. Chapter 10

shows the experimental results interpreted as limits on the gluino pair production cross

section for two different sets of R-parity violating couplings.

An additional cross-check validating the analysis technique is presented in Appendix C

as a measurement of the tt̄ cross section based on events selected for the heavy-flavor search.
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Chapter 2

Theoretical overview

In this chapter we start with a theoretical overview of the Standard Model of particle

physics, introducing a field theoretical description of particles and their interactions. The

second part of the chapter focuses on a possible extension of the Standard Model in the form

of a new symmetry, introducing a model of a new three-jet resonance. We conclude this

chapter with experimental results previously obtained from searches for this new physics

scenario.

2.1 The Standard Model

The Standard Model (SM) is one if the most successful theories developed during the last

century. Interactions between particles are described in the context of a relativistically

invariant quantum field theory containing the electromagnetic, weak, and strong forces.

Gravity, the fourth fundamental force, is not included in the theory due to its expected

negligible effect at the currently accessible energy scales. Each of the three forces included

in the SM can be viewed as an exchange of spin-1 gauge fields represented by photons for

the electromagnetic force, W± and Z0 bosons for the weak force, and gluons for the strong

force.

By means of group theory the SM is described by the symmetry group:

SU(3)C × SU(2)L × U(1)Y , (2.1)

where SU(3)C is an abstract representation for the strong force and SU(2)L ×U(1)Y com-

bines the electromagnetic and weak interactions. The building blocks of matter in the

universe can be divided into two main categories, fermions and bosons. The field quanta
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described above are bosons which have integer spin, whereas fermions have half-integer

spins. This fundamental difference plays an important role when describing their behavior

mathematically. Several different quantum numbers are introduced, as described below,

leading to conservation laws that need to be taken into account when building a full theory

of fundamental interactions. Fermions can be split up further into two categories: quarks

and leptons, where both are present in three different generations displaying a large mass

hierarchy. Leptons participate in the electroweak interaction and either carry integer charge

(e, µ, τ) or are electrically neutral (νe, νµ, ντ ). Independent of the charge, they are assigned

a lepton number (L = +1 for particles and L = −1 for antiparticles). Quarks are subject to

the electroweak as well as the strong interactions. They carry fractional charges of ±1
3 or

±2
3 and are assigned a baryon number (B = +1

3 for particles and B = −1
3 for antiparticles).

Six flavors of quarks with corresponding quantum numbers are observed: up, down, charm,

strange, top, and bottom. Additionally, quarks carry color (r, b, g) which can be viewed

as the charge of the strong force as discussed in more detail in Section 2.1.4. The gauge

bosons neither have baryon nor lepton number and they all have spin 1. The Higgs boson

responsible for electroweak symmetry breaking is the only known fundamental particle with

spin 0. A summary of these elementary fermions and bosons can be found in Table 2.1 and

in Figure 2.1.

The SM is build upon the Lagrangian formalism of quantum field theory, which can

accommodate Lorentz invariance, internal gauge symmetries, causality, and local interac-

tions [1]. All of the above mentioned particles are described by fields representing creation

and annihilation operators for particles and antiparticles. The following notation will be

used throughout the rest of the discussion [1]:

• scalar fields φ(x) represent spin-0 particles

• vector fields Aµ(x) represent spin-1 particles

• spinor fileds ψ(x) represent spin-1/2 fermions

Gauge invariance of the Lagrangian is the fundamental principle behind the interactions

of the SM. The following sections describe in more detail our current understanding of

electromagnetic, weak, and strong processes.
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Name Spin Baryon Lepton Charge Mass
s number B number L Q [MeV]

leptons
electron 1

2 0 0 -1 0.511
electron neutrino 1

2 0 0 0 < 2.2× 10−6

muon 1
2 0 0 -1 105.7

muon neutrino 1
2 0 1 0 < 0.17

tau 1
2 0 0 -1 1.77× 103

tau neutrino 1
2 0 0 0 < 15.5

quarks
up 1

2
1
3 1 2

3 2.4
down 1

2
1
3 1 -1

3 4.8
charm 1

2
1
3 1 2

3 1.27× 103

strange 1
2

1
3 1 -1

3 104
top 1

2
1
3 1 2

3 171.2× 103

bottom 1
2

1
3 1 -1

3 4.2× 103

gauge bosons
photon 1 0 0 0 0

W± boson 1 0 0 ±1 80.4× 103

Z0 boson 1 0 0 0 91.2× 103

gluon 1 0 0 0 0
Higgs boson 0 0 0 0 126× 103

Table 2.1: Particles and their quantum numbers in the Standard Model. The spin is defined
in units of h̄ and electrical charge in units of the elementary charge e [2].

Figure 2.1: Standard Model of Particle Physics [3].
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2.1.1 Quantum electrodynamics

Quantum electrodynamics (QED) describes the fundamental electromagnetic interactions

between fermions mediated by massless spin-1 photons. This simple example will be used

to introduce the principle of local gauge invariance. One starts from the free Lagrangian

describing Dirac fermions [4]:

LQED0 = iψ(x)γµ∂µψ(x)−mψ(x)ψ(x), (2.2)

where ψ(x) is the two dimensional Dirac Spinor and m represents a mass. We know already

from non-relativistic quantum mechanics that the overall phase θ of the wave function has

no physical effect, which results in an invariance of the Lagrangian under the transformation

ψ′(x) = eiQθψ(x), with the charge given by Q. If the phase is global (meaning independent

of the space-time coordinate x) then LQED0 in the relativistic case is also invariant under

this transformations described by the global symmetry group U(1). However, if the phase

depends on local space-time coordinates θ = θ(x) we pick up an additional term in the

Lagrangian due to the derivative of θ(x):

∂µ(eiQθ(x)) = iQ(∂µθ(x))eiQθ(x)ψ(x) + eiQθ(x)∂µψ. (2.3)

The additional term ∂µθ(x) has the structure of a 4-vector, to restore the invariance of

LQED0 a new spin-1 field Aµ(x) is added, which transforms as A′µ(x) = Aµ(x) − 1
e∂µθ(x).

One then defines the covariant derivative:

Dµψ(x) = [∂µ + ieQAµ(x)]ψ(x), (2.4)

and replaces ∂µ by Dµ in Equation 2.2, which makes LQED0 invariant under the local gauge

transformation. Based on the principle of local gauge invariance we have now introduced

interaction terms between the fermionic field ψ(x) and the vector field Aµ(x) into the

theory, describing the well known interaction between fermions and photons. An additional

kinematic term is necessary to fully describe the vector field Aµ(x). The full Lagrangian
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for electromagnetic interactions then reads:

LQED = iψ(x)γµ∂µψ(x)−mψ(x)ψ(x)− eQAµ(x)ψ(x)γµψ(x)− 1
4Fµν(x)Fµν(x), (2.5)

where Fµν(x) = ∂µAν − ∂νAµ is the electromagnetic field strength tensor. A mass term of

the form 1
2m

2AµAµ is forbidden to preserve the local gauge symmetry, therefore predicting

massless photons. The electric charge is related to the electromagnetic coupling constant,

also called the finestructure constant, α = e2

4π = 1
137 .

2.1.2 Electroweak interactions

Two kinds of weak interactions are observed in nature: charged and neutral, both mediated

by massive vector bosons the W± and Z, respectively [5]. Neutral processes, for example,

include neutrino-electron or electron-electron scattering, where a neutral Z0 is exchanged

(shown on the left in Figure 2.2). Charged weak interactions are responsible for flavor

changing processes, with the well known examples of the muon decay µ− → e− + νµ + νe

(shown on the right in Figure 2.2) and the β decay of the neutron n→ p+ +e−+νe. To fully
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Figure 2.2: Feynman diagrams for the weak interaction. Left: neutral (electron-electron
scattering), Right: charged (muon decay).

describe weak interactions a more complicated structure is needed than in QED. However,

we can use again the principle of gauge invariance to combine weak and electromagnetic

interactions and make use of the combined symmetry group SU(2)L×U(1)Y to characterize

an electroweak theory. In this model leptons and quarks appear as left-handed isospin
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doublets and right-handed isospin singlets, as shown below:

(
u

d

)
L

(
c

s

)
L

(
t

b

)
L

(
νe
e

)
L

(
νµ
µ

)
L

(
ντ
τ

)
L

uR cR tR

dR sR bR eR µR τR

(2.6)

In general, fermions are represented by spinor fields ψ(x), however since the weak interaction

only couples to left-handed particles, projection operators are used to separate the fields

into ψL(x) = 1
2(1 − γ5)ψ(x) and ψR(x) = 1

2(1 − γ5)ψ(x). One can now start with the

Lagrangian:

LEW0 = iψ(x)γµ∂µψ(x), (2.7)

and require that LEW0 to be invariant under the local gauge transformation:

ψL(x)′ = eigα(x)·T+ig′β(x)Y ψL(x), ψR(x)′ = eig
′β(x)Y ψR(x), (2.8)

where α(x) is an arbitrary three-dimensional vector and β(x) is a one-dimensional function.

T is the weak-isospin operator and Y is the weak hypercharge, which in combination with

the third component of T relates both quantities to the physical charge Q = T3 + Y/2.

The invariance of the Lagrangian under this combined SU(2)L × U(1)Y symmetry can be

restored by replacing ∂µ by

Dµ = ∂µ + igWµ ·T + ig′
1
2BµY. (2.9)

The two new gauge fields are Wµ and Bµ and they contain the photon, and the W±, and

Z0 bosons. Additionally, kinematic terms of the gauge fields −1
4Wµν ·Wµν − 1

4Bµν · B
µν

can be added to the Lagrangian. The coupling constants for electromagnetic and weak

interactions are denoted by g and g′, respectively. Mass terms are again forbidden because

they would destroy the gauge invariance, fermion mass terms are excluded as well since

they would combine left- and right-handed fields. However, from experimental observation

we know that W± and Z0 are massive and the proposed process through which they acquire
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mass is called electroweak symmetry breaking (EWSB).

2.1.3 Electroweak symmetry breaking

Since mass terms for the gauge bosons and fermions are forbidden in Equation 2.7 the

symmetry has to be ”spontaneously” broken for them to acquire mass. One starts with

introducing a single isospin doublet of a complex scalar field Φ = (φ1, φ2) into the theory.

The EWSB Lagrangian is then described by:

LEWSB = (DµΦ)†(DµΦ)− V (Φ), V (Φ) = −µ2Φ†Φ + λ

4 (Φ†Φ)2, (2.10)

where µ2 and λ are constants that can be chosen such that a non-vanishing vacuum expec-

tation value (vev) of |Φvev| =
√

1
2
µ2

λ is created. When LESWB is added to LEW0 and local

gauge symmetry is required for the combined Lagrangian, three of the four gauge bosons

acquire mass, while one state for the photon stays massless [6]. The gauge bosons are no

longer the original fields Bµ and Wµ but rather mixtures of the form W±µ = (W 1
µ±W 2

µ)/
√

2.

The Z0 boson and the photon field Aµ are related through the Weinberg angle θW , where

tan θW = g′

g . Fermion masses are generated as well through a Yukawa coupling of the lepton

or quark field with the scalar field. Another additional consequence of this model is the

prediction of a new scalar particle, the Higgs boson. A new particle compatible with the

Higgs boson was discovered in 2012 by the two main experiments at the LHC simultane-

ously, CMS [7] and ATLAS [8]. The mass of this new particle given by the particle data

group is mH = 125.9± 0.4 GeV [9].

2.1.4 Quantum chromodynamics

In this analysis the main background arises from QCD multijet production and we discuss

the underlying theory of the strong interaction in more detail in this section. The same

gauge principle as previously discussed applies also for QCD, however, instead of one type

of electric charge, the strong interaction is described by three different color charges red (r),

green (g), and blue (b). The underlying symmetry group here is SU(3)C and in addition

to the Dirac spinor every quark is assigned a three-component vector giving its color. The
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mediators of the strong interaction are colored gluons, where each gluon carries one unit of

color and one unit of anti-color of a different type. The two quark-gluon interaction vertices

are shown in the top row in Figure 2.3. Starting with three possible colors and anti-colors

one obtains nine different gluon states, a color octet and one color singlet [5], one possible

representation is:



(rb̄+ br̄)/
√

2 −i(rḡ − gr̄)/
√

2

(bḡ + gb̄)/
√

2 −i(rb̄− br̄)/
√

2

(rr̄ − bb̄)/
√

2 −i(bḡ − gb̄)/
√

2

(rḡ + gr̄)/
√

2 (rr̄ + bb̄− 2gḡ)/
√

6


[
(rr̄ + bb̄+ gḡ)/

√
3
]
. (2.11)

The color singlet state is the colorless combination (r̄r + ḡg + b̄b) which stays unchanged

under rotation in the color space, and does not participate in QCD interactions. The two

possible diagrams for gluon-gluon interactions are shown in the bottom row in Figure 2.3.

From a field theoretical point of view these eight gluon states correspond to the 3× 3 Gell-
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Figure 2.3: Feynman diagrams for interactions in QCD.Top: gluon emission, gluon absorp-
tion, Bottom: gluon-gluon interaction

Mann matrices λa, which are the generators of the group SU(3)C and a = 1, ..., 8. These
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matrices satisfy the commutation relation
[
λa

2 ,
λb

2

]
= ifabc λ

c

2 with fabc being the structure

constants for the group. Therefore, when building the Lagrangian the covariant derivative

is replaced by [1]:

Dµ = ∂µ − igs
λa
2 G

a
µ. (2.12)

The field strength tensor for the gluon fields is given by:

Gaµν = ∂µG
a
ν − ∂νGaµ + gsfabcG

b
µG

c
ν . (2.13)

The coupling constant gs used here is related to the strong coupling constant αs = g2
s

4π . If

we introduce the notation of color-triplet of fermion fields Ψ = (q1, q2, q3)T one can write

the full QCD Lagrangian as:

LQCD = Ψ(iγµ∂µ −m)Ψ + gsΨγµ
λa
2 ΨGaµ −

1
4G

a
µνG

a,µν . (2.14)

Asymptotic freedom

As was shown in the previous sections the Lagrangians describing QED and QCD can be

derived in a very similar form. However, there are a few major differences. Unlike the

neutral mediator in QED, gluons carry color charge and can interact among themselves.

Furthermore, we recall the coupling constant in electromagnetic interactions to be very

small α = 1
137 , this is in general not true for the strong coupling constant αs, making the

usage of perturbation theory difficult. In order to evaluate physical quantities such as decay

rates or cross sections one makes use of Feynman diagrams, examples were already shown

in Figures 2.3 and 2.2. For a given process, all possible Feynman diagrams need to be added

up, in principle including an infinite amount of inner vertices. In QED each of these inner

vertices brings a factor of α into the calculation, and because it is such a small number

higher order corrections contribute less to the result [5]. A feature of the strong interaction,

called asymptotic freedom, salvages the situation and makes perturbation theory applicable

in QCD calculations for short distances and high energies. The strong coupling constant is

not actually constant, it decreases for high momentum transfer (large q2, short distances)

and increases for low momentum transfer (small q2, long distances). Due to this dependence
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on the momentum transfer, we call αs a running coupling constant.

2.1.5 QCD at hadron colliders

At the LHC new particles are produced through the head-on collision of two protons. Their

quantum numbers and microscopic properties are well described by the assumption of a

bound state of three-quarks (uud), the so-called valence quarks. When collisions occur

at sufficiently high energy, a closer look at the internal structure of the proton is needed.

Through the observation deep inelastic scattering (DIS) of charged electrons off protons it

became clear that the three valence quarks cannot be the only constituents of the proton.

Parton distribution function

Parton distribution functions (PDF) describe the parton content of the proton and how the

total momentum is distributed internally over all the constituents. They give the probability

fa(xa, αs, µ) of finding a parton a carrying a momentum fraction xa within the proton

at a given energy scale µ. In order to determine the PDFs global fits are performed to

experimental data from fixed-target experiments, the electron-proton collider HERA, and

hadron colliders [10].

Cross section calculation

Cross sections in QCD are calculated through a factorization approach, where the short-

distance part is described by perturbation theory and the long-distance part is approximated

by the above mentioned PDFs extracted from experimental measurements. The differential

cross section of an observable O of the process ab→ F may be written as [11]:

dσ
dO =

∑
a,b

∫
dxadxb

∑
F

∫
dΦF f

h1
a (xa, µF )fh2

b (xb, µF )dσ̂ab
dÔ

DF (Ô → O,µF ), (2.15)

where the sum runs over all partons a and b from the two protons h1 and h2. The PDFs

fa,b(xa,b, µF ) describe the parton content of the incoming protons calculated at the factor-

ization scale µF , which provides the energy scale that divides short-range from long-range

interactions. The fragmentation function DF parametrizes the transition from partons in
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the final state towards hadronic jets, as discussed in more detail below. The partonic cross

section dσ̂ab depends on the two scales µF and the renormalization scale µR. Renormaliza-

tion is a method frequently used to treat infinities that arise in perturbative calculations.

While the choice of the two scales µF and µR is in principle arbitrary, using µF = µR and

choosing a common value corresponding to the invariant mass of the final state F , is an

often used approach.

Parton shower evolution and hadronization

As discussed before due to the nature of αs being small for high energies and small distances

perturbation theory can be used for calculations in that regime. However, the long distance

interaction is not very well understood. From experiments we know that quarks and gluons

are not observed as free particles. They appear in bound states of quark-antiquark pairs

(mesons) or three-quark states (baryons). During high energy collisions quarks and gluons

are produced in great abundance, either directly through QCD processes or as decay prod-

ucts of heavy states like the top quark or the W± boson. While these quarks are traveling

outward from the hard interaction the coupling constant starts to increase.

At first they undergo the so-called parton shower, which can be approximately calculated

with perturbative QCD. While moving outwards the quarks start emitting gluons, which in

return emit new quarks and gluons themselves and a shower evolves.

After the parton shower the distance increases further and perturbative treatment starts

to break down. Phenomenological models are used to describe how the additional quarks

and gluons clump together to form hadrons, the so-called hadronization. Two models for

hadronization are the string and the cluster models [12].

• String model: The color field between the outgoing partons is described by a string-

like linear potential. The string is stretched as the partons move further apart and

eventually breaks up into hadron-sized pieces through qq̄ production.

• Cluster model: As a first step gluons from the parton shower are split up into colorless

qq̄ pairs. The colorless states form colorless clusters, which then decay into hadrons.

A simplified schematic description of parton shower and hadronization process is shown
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in Figure 2.4. Experimentally we can observe a spray of charged and neutral particles in

the direction of the outgoing parton, which we call jets. The goal is to identify these jets

with specially designed algorithms to reconstruct, as close as possible, the original parton.
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Figure 2.4: Cartoon of the hadronization model from the hard collision to final state
hadrons.

2.2 Beyond the Standard Model and Supersymmetry

The SM of particles physics is one of the most precise and experimentally tested theories

of the last century. With the discovery of the new boson in 2012 believed to be the SM

Higgs one missing piece of the SM is has been found. Continuing efforts are necessary to

determine the exact nature of this new particle. Measurements of its coupling, spin, parity,

and mass should draw a conclusive picture if it is in fact the long sought-after Higgs boson

predicted by EWSB. However, there are still unresolved questions, which make searches for

new phenomena necessary. One of the most puzzling phenomena in particles physics is the

so-called hierarchy problem, describing the vastly different scales of, for example the weak

force and gravity. Another aspect arising from the hierarchy problem is the “light” mass

of the Higgs boson. The Higgs mass itself depends on loop corrections from couplings to

fermions pushing its value in principle up to the Planck scale. One proposed solution of the

hierarchy problem is the introduction of a new symmetry, called Supersymmetry (SUSY).
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As a consequence new particles are predicted, which cancel the fermion loop corrections

keeping the Higgs mass on the order of ≈ 100 GeV [13].

One of the basic ideas of this new symmetry is a supersymmetric operator Q that can

act on fermions as well as bosons.

Q|fermion> = |boson> Q|boson> = |fermion>.

This implies that every SM fermion (boson) has a corresponding bosonic (fermionic) super-

partner. The operator Q satisfies the algebra:

[Q,Q†] = Pµ, (2.16)

[Q,Q] = [Q†, Q†] = 0, (2.17)

[Pµ, Q] = [Pµ, Q†] = 0, (2.18)

where Pµ is the four-momentum generator. A single-particle state is introduced, called a

supermultiplet, which consists of fermions and bosons. Particles in the same supermultiplet

have the same mass, electric charge, weak isospin, and color degree of freedom. This is due

to the fact the generators [Q,Q†] commute with the generators of the gauge transformations

[13]. As for the naming convention, for every bosonic state an “s-” is attached to the original

SM particle: sleptons and squarks. Every fermionic superpartner gets the syllable “-ino”

attached to the name: gauginos and higgsinos. For example, the superpartner of the gluon

is called the gluino.

2.2.1 Minimal Supersymmetric Standard Model

We discuss here as an example the Minimal Supersymmetric Standard Model (MSSM).

In order to exactly cancel the loop corrections from SM particles one would expect that

the supersymmetric partners have the same mass as their SM counterparts, however none

of these new particles have been observed so far. One simple conclusion can be drawn

from this experimental observation, SUSY has to be a broken symmetry. Therefore, a
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theoretical description needs to be developed including a Lagrangian that preserves exact

supersymmetry and introduces a spontaneous symmetry breaking. This is similar to the

EWSB introduced in the SM. The superpotential for a MSSM can be written as:

WMSSM = uyuQHu − dydQHd − eyeLHd + µHuHd, (2.19)

where Hu, Hd, Q, L, u, d, e are chiral supermultiplets which can be seen in Table 2.2. The

dimensionless Yukawa couplings yd,yu,ye have the form of 3×3 matrices. The last term in

equation 2.19 represents the supersymmetric Higgs boson. As said before, SUSY itself must

be broken, however, the mechanism is unknown. It turns out that to introduce symmetry

breaking terms into the MSSM one obtains 105 new parameters (masses, phases, and mixing

angles), leading to a large arbitrariness in terms of building physical models.

names spin 0 spin 1
2 SU(3), SU(2), U(1)

squarks, quarks Q (ũL d̃L) (uL dL) (3, 2, 1
6)

(× 3 families) u ũ∗R u†R (3̄, 1, -2
3)

d d̃∗R d†R (3̄, 1, 1
3)

sleptons, leptons L (ν̃ ẽL) (ν eL) (1, 2, -1
2)

(× 3 families) e ẽ∗R e†R (1, 1, 1)
Higgs, higgsinos Hu (H+

u H0
u) (H̃+

u H̃0
u) (1, 2, +1

2)
Hd (H0

d H
−
d ) (H̃0

d H̃
−
d ) (1, 2, -1

2)

names spin 1
2 spin 1 SU(3), SU(2), U(1)

gluino, gluon g̃ g (8,1,0)
winos, W± bosons W̃± W̃ 0 W± W0 (1, 3, 0)
bino, B bosons B̃0 B0 (1,1,0)

Table 2.2: Chiral supermultiplets in the Minimal Supersymmetric Standard Model [13].

Unlike in the SM, where only one Higgs boson is included, the MSSM introduces two

complex Higgs doublets Hu = (H+
u , H

0
u) and Hd = (H0

d , H
−
d ), which makes EWSB more

complicated. Similar to EWSB in the SM model a mixing of the gauginos and higgsinos

occurs during the process. The neutral Higgsinos (H̃0
u, H̃0

d) and the neutral gauginos (B̃,

W̃ 0) build four different neutral mass eigenstates called neutralinos. The charged Higgsinos

(H̃+
u , H̃−d ) and the charged winos (W̃−, W̃+) also combine into four states with charge

±1 called chargino. In certain mass hierarchies the neutralino is a good candidate for the
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Lightest Supersymmetric Particle (LSP). The partners of the SM gluons, the gluinos, form a

Majorana fermion color octet, but no mixing with other particles in the MSSM occurs. The

superpartners of quarks and leptons are all bosonic in nature. A wide variety of scenarios

for experimentally detecting these new particles through their decays is predicted, however

no significant deviation from the SM has been observed so far.

2.2.2 R-Parity

In the last section we have already introduced the term LSP, which is a consequence of a

conversation law. To distinguish SM particles from SUSY particles a new quantum number

called R-parity is introduced. R-parity is defined as:

R = (−1)(3B−L+2s), (2.20)

where B is baryon number, L is lepton number, and s stands for the spin. All SM particles

as well as the Higgs boson have even-parity R=1. On the other hand, all supersymmetric

particles (sleptons, squarks, gauginos, higgsinos) have odd-parity R=-1. The aforemen-

tioned LSP is one consequence of a R-parity conserving scenario, resulting in at least one

LSP in the final state of sparticle decays. Since the decay into SM particles is forbidden

this LSP cannot decay any further and usually escapes detection, leaving a signature of

missing energy. This missing energy can be deducted from an imbalance in energy when all

other energies of visible particles in the final state are summed up. The LSP would also be

a very good candidate for dark matter, which we know comprises roughly 25% of our uni-

verse. Additionally, if R-parity is conserved then sparticles can only be produced in pairs.

However, there is also the possibility for non R-parity conserving processes. R-parity viola-

tion (RPV) could either be realized by baryon-number violation (BNV) or lepton-number

violation (LNV). If there is no conservation of R-parity then single SUSY particles could

be produced and the LSP would not necessarily be stable. Experimentally this means that

a final state consisting of SM particles is possible, removing the powerful handle of missing

energy in the search for SUSY. The most general R-parity odd superpotential, obeying the
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gauge symmetries and consistent with the MSSM that can be added is [14]:

WR = µiHuLi + 1
2λijkLiLjek + λ′ijkLiQjdk + 1

2λ
′′
ijkuidjdk, (2.21)

where the indices i, j, k = 1, 2, 3, Q and L represent the left-handed doublets, and e, u, d

are the right-handed leptons and up or down type quarks. The three different couplings

denoted with λ represent either LNV (λ and λ′) or BNV (λ′′). Figure 2.5 shows the three

possible new interactions corresponding to the aforementioned couplings.
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Figure 2.5: RPV vertices. From left to right λ, λ′, and λ′′

While the all three λ couplings are possible there is already one very strict constraint

that only either lepton or baryon number is violated, but not both at the same time. If both

quantum numbers would be violated then the proton could undergo the decay p → e+π0

through the two vertices including λ′ and λ′′, making the universe unstable. Therefore, we

will only focus on cases where one of the couplings is non-zero.

In the case of BNV one expects new physics signals mostly involving jets and no intrinsic

missing energy, which is be the focus of this thesis. In particular, in this thesis an analysis

is presented searching for pair-produced new hadronic resonances each decaying into three

quarks. Gluinos decaying through RPV couplings are chosen as a benchmark process to

evaluate the sensitivity to new physics in this channel. Each of the gluinos decays into a

quark and off-shell squark, which then decays through λ′′ into two quarks, where different

choices of i, j, or k lead to different flavors in the final state. The diagram for gluino pair

production and decay can be seen on the left in Figure 2.6. On the right one gluino decay

is shown in more detail pointing out which baryon numbers are violated and at what vertex



20

this violation happens.
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Figure 2.6: Pair-produced gluinos decaying into three jets each.

Searches for these gluinos assuming λ′′112 6= 0 have been performed at the Tevatron

and the LHC. Gluino masses between 77 – 144 GeV [15] were excluded at CDF using

3.2 fb−1 of data collected at
√
s =1.96 TeV at the Tevatron. Both CMS (exclusion below

460 GeV [16, 17]) and ATLAS (exclusion below 666 GeV [18]) extended the previous existing

limit based upon 5 fb−1 of data collected at
√
s =7 TeV at the LHC. While the CMS search

was performed as “bump-hunt” the ATLAS search was based on a counting experiment.

Depending on which coupling is chosen the new predicted resonance can either decay into

only light-flavor quarks or at least one b quark and two light-flavor quarks. The latter has

not yet been searched for and a dedicated analysis for this final state is presented for the

first time in this thesis. Two different scenarios for λ′′ are considered:

• Scenario 1 (decay to light flavors, g̃ → uds): λ′′112 6= 0

• Scenario 2 (decay including heavy flavors, g̃ → udb or csb ): λ′′113 and λ′′223 6= 0

The coupling is chosen such that only prompt decays are allowed. Additionally, the inter-

mediate squark mass is set to be decoupled from the gluino mass and the branching ratio to

three quarks is assumed to be 100%. ATLAS has presented a search for these two scenarios

as well using the data collected in 2012 at
√
s =8 TeV [19]. All of the experimental results

are summarized in Table 2.3.



21

Experiment and
√
s Coupling Observed mass limits Reference

luminosity at 95% C.L.
CDF
3.2 fb−1 1.96 TeV λ′′112 77–144 GeV [15, 20]
CMS
36 pb−1 7 TeV λ′′112 200–280 GeV [16]
5 fb−1 7 TeV λ′′112 460 GeV [17]
19.4 fb−1 8 TeV λ′′112 650 GeV [21]

λ′′113 or λ′′223 835 GeV this thesis
ATLAS
4.6 fb−1 7 TeV λ′′112 100–666 GeV [18]
20.3 fb−1 8 TeV λ′′112 917 GeV [19]

λ′′113 or λ′′223 929 GeV

Table 2.3: Searches for gluinos decaying through RPV couplings in the all-hadronic final
state by the CDF, CMS, and ATLAS collaboration.

2.3 Searching for multijet resonances

The analysis presented in this thesis is a model independent search for a pair-produced new

hadronic resonance decaying into three quarks each using the CMS detector. As described

in Section 2.1.4 quarks cannot be observed as single particles due to the nature of the strong

force and an increasing potential energy at large distances. Experimentally we can only de-

tect a spray of particles, a jet, mainly identified by its energy deposits in the calorimeters

of the detector and tracks of charged particles. Our current experimental understanding of

jets are described in more detail in Section 5.4. Since perturbation theory is only applicable

for short distance interactions described by the parton shower model, large uncertainties are

usually associated with multijet physics. However, measurements executed at the Tevatron

and the LHC show remarkable agreement and constant improvements of our current un-

derstanding of strong interactions; for example, the inclusive jet cross section measurement

of CMS [22]. Many new physics models predict strongly coupled new resonances decaying

into quarks and gluons. Despite their relatively large cross sections, all-hadronic final states

pose the challenge of a copious amount of QCD background, which is theoretically difficult

to model. Additionally, in a search for pair-produced three-jet resonances another challenge

arises from finding the correct combination of three jets out of the six jet final state.
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To get around these problems, we present the so-called jet ensemble technique [23, 20].

This technique makes use of kinematic features that are present in heavy particle decays, but

cannot be observed in the QCD multijet background. With the choice of trigger (described

in more detail in Section 3.2.6) in 2012 at CMS and the addition of b-jet identification in

the final state we are also sensitive to a known all-hadronic SM process, the production and

subsequent decay of a tt̄ pair.

The all-hadronic top quark decay is used to test the analysis technique and its contribu-

tion is included into the background model. With a mass of mt = 173.07± 0.52± 0.72 GeV

[9] it is the heaviest observed particle. The top quark has an extremely short lifetime of

only τ = 10−25s [24] and it decays almost 100% of the time into W± and b quark before

it can hadronize. At the LHC tt̄ pairs are produced through gluon fusion (85%) or quark-

antiquark annihilation (15%). The W± undergoes decays into either lepton + neutrino or a

qq̄ pair. The diagram in Figure 2.7 shows the possible decay channels. As a result of the W±

decay we expect an all-hadronic decay of tt̄ with six quarks, two of which are b quarks, in

the final state with a probability of 46%. These all-hadronic top events are used to validate

the analysis technique and dedicated studies measuring the pair production cross section

are discussed in Appendix C.
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Figure 2.7: tt̄ decay modes: leptonic (both W± decay leptonically), semi-leptonic (one W±
decays leptonically), and all-hadronic (both W± decay hadronically).
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Chapter 3

The experimental setup

In this chapter we discuss the experimental setup including the accelerator complex of the

Large Hadron Collider (LHC) and the Compact Muon Solenoid (CMS) experiment, which

collected the data used in this thesis.

3.1 The Large Hadron Collider

The LHC is the world’s most energetic particle accelerator with a circumference of 27 km

situated at the French-Swiss border just outside of the city of Geneva, Switzerland. Design

and construction were performed at the research facility of the European Organization for

Nuclear Research (CERN). CERN has a long history of research in elementary particle

physics and operation of large scale accelerator complexes, for example, the Large Electron-

Positron collider (LEP, 1989 – 2000). The original LEP tunnel is situated an average of

100 m underground and now houses the LHC accelerator. The LHC has collided two proton

beams with energies between 3.5 TeV and 4 TeV per beam leading to a center-of-mass energy
√
s of 7 and 8 TeV, respectively. These are the energies that were reached so far, and the

goal is to achieve the design energy of 14 TeV in the future.

Figure 3.1 shows the accelerator complex at CERN. In order to obtain free protons

one starts off with hydrogen where electrons are removed through an electric field. These

protons are injected into the Linac 2, a linear accelerator, where they are accelerated up to

an energy of 50 MeV. Three more accelerating steps follow: the Proton Synchrotron Booster

(PSB, energy up to 1.4 GeV), the Proton Synchrotron (PS, energy up to 25 GeV) and then

finally the Super Proton Synchrotron (SPS) where they reach an energy up to 450 GeV [25].

Instead of having one continuous stream of protons, the LHC beams were designed to be

separated into 2808 bunches with 1×1011 protons per bunch and a spacing of 25 ns. During
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the 2012 data-taking period the nominal operating conditions used a spacing of 50 ns with

a maximum number of 1278 bunches [26]. These high energy protons are then fed into the

LHC ring where they are further accelerated.

The LHC is a synchrotron accelerator ring consisting of over 1200 superconducting dipole

magnets (NbTi) that where designed to provide a magnetic field of up to 8 T to keep the

protons on their circular path around the ring. These dipole magnets operate at a tem-

perature below 2 K using superfluid helium for cooling. Radio frequency (RF) cavities are

used to accelerate the proton bunches within the LHC, there are eight RF cavities per beam

operating at 400 MHz. The beams circulate in two separate rings and are brought together

for collision within the four experiments distributed around the ring ATLAS, LHCb, CMS,

and ALICE. Quadrupole magnets reduce the beam size at the collision points.

An important quantity for the machine is the instantaneous luminosity [cm−2s−1]:

L = N2
b n

2
bfrevγr

4πεnβ∗
F, (3.1)

which depends on the following beam quantities: Nb the number of particles per bunch, nb

the number of bunches per beam, frev the revolution frequency, γr the relativistic gamma

factor, εn the normalized transverse beam emittance, which describes the transverse spread

in position and momentum of the protons, β∗ gives a measure for the transverse width of the

beam at the collision point, and F is a geometric reduction factor due to the crossing angle

at the interaction point. The design luminosity for the LHC is L = 1034cm−2s−1, during the

2012 data-taking period the peak luminosity reached a value of L = 7.7 × 1033cm−2s−1 as

shown in the left plot of Figure 3.2. The total integrated luminosity delivered to the CMS

experiment in 2012 amounted to L=
∫
L · dt = 23.3 fb−1 (where 1 b ≡ 1 barn ≡ 10−24 cm2)

as shown by the blue curve on the right hand side of Figure 3.2. More details about the

measurement of the luminosity is given in Section 3.2.7.

3.2 The CMS experiment

The CMS experiment is one of the two general purpose particle detectors at the LHC, the

second one being ATLAS. The detector itself is situated 100 m underground in the french
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Figure 3.1: The CERN accelerator complex [27].

Figure 3.2: CMS peak instantaneous luminosity (left), delivered (blue) and recorded (yellow)
integrated luminosity (right) [26].
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village of Cessy close to the Jura mountains in the Lake Geneva region. It is 21.6 m long,

has a diameter of 14.6 m and weighs over 12,500 tons. An onion-like structure covering a

2π azimuthal angle around the beamline is used to measure products of the high energy

proton-proton collisions, which are delivered by the accelerator. The CMS detector consists

of a superconducting solenoid, a tracking system, calorimeters, and a muon system, which

are described in more detail in the following sections. A graphical overview of the CMS

detector is shown in Figure 3.3. The discussion closely follows [28], where a more detailed

description of the CMS detector can be found.

Figure 3.3: CMS detector overview [29].

3.2.1 Detector coordinates and transverse variables

The coordinate system used by CMS has its origin at the center of the detector, where

the nominal collision point is expected. The y-axis points vertically upwards and the x-

axis points radially inwards to the middle of the LHC ring, while the z-axis points along

the beamline. Two angles are defined in this cylindrical coordinate system, the azimuthal

angle φ and the polar angle θ, where φ is calculated with respect to the x-axis in the xy-

plane and θ is measured from the z-axis. At a center-of-mass energy of 8 TeV we have to
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consider relativistically invariant coordinates. A boost along the z-axis might occur during

the collision, therefore we define the Lorentz invariant rapidity y as follows:

y = 1
2 ln E + pz

E − pz
, (3.2)

where E represents the energy and pz the z-component of the momentum vector of a particle.

Additionally, a quantity called pseudorapidity η is defined:

η = − ln tan θ2 , (3.3)

which in the massless limit is equal to the rapidity. A value of η = 0 corresponds to a

direction perpendicular to the beamline, while η = 4 points almost parallel to the beamline.

Variables defined in the transverse plane provide a framework that is independent of a

boost in the z-direction. We denote the transverse momentum pT and the transverse energy

ET of a particle by:

pT = p sin θ and ET = E sin θ. (3.4)

Some particles like neutrinos and the LSP predicted in some SUSY models escape detection

and, therefore, leave an energy imbalance in the transverse plane. This missing transverse

energy is defined as:

EmissT = −
∑
i

piT , (3.5)

which describes the negative sum of the pT of all visible particles i in the event.

3.2.2 Magnet

In order to measure charged particle tracks with high precision, a large bending power

of the surrounding magnet is necessary. The design of the CMS magnet system is based

on the physics goal to achieve a momentum resolution of ∆p/p ≈ 10% for muons with a

momentum of 1 TeV. This is needed to unambiguously identify the sign of the charge of

muons at that energy and reconstruct states like the Z0 boson decaying into two muons with

opposite charge. A large superconducting solenoid with a length of 12.9 m and an inner

diameter of 5.9 m is used. With this setup a constant field of 3.8 T can be produced which
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accommodates the inner tracking and calorimetry systems of CMS. In order to contain the

magnetic field, an iron return yoke interlaced by the muon detectors is placed outside the

solenoid.

3.2.3 Tracking System

The inner tracking system of CMS consists of two major parts: the high precision pixel

detector and the outer strip tracker. Both parts are fully emerged in the 3.8 T magnetic

field and allow a precise reconstruction of charged particle tracks and their momenta coming

from the primary interaction point, as well, as secondary vertices that are present during

decays of hadrons composed of heavy-flavor quarks. The pT resolution of the tracks is

approximately 1.5% for charged particles with a pT of 100 GeV.

The entire tracking system utilizes modern silicon technology, which can withstand the

harsh radiation environment as the part of the detector closest to the proton beams. In

simplified terms, a silicon detector is similar to a pn-junction (diode) run in the reverse

bias mode (negative voltage at the p-doped side and positive voltage at the n-doped side).

When a charged particle traverses the sensor it creates electron-hole pairs in the material, by

moving electrons from the valence band into the conduction band. The negative and positive

charge carriers travel then to their respective electrodes and a signal can be measured.

Inner silicon pixel detector

This part of the tracking system is closet to the proton-proton collision point and is therefore

under heavy exposure to radiation, with an expected particle flux of 107/s at a radial

distance of 10 cm from the beamline. Silicon pixel technology is used for this inner part

of the tracking system, where each pixel has a size of 100×150 µm in (r,φ) and z. Three

cylindrical layers with a length of 53 cm of silicon pixels are placed around the beamline at

radii of 4.4 cm, 7.3 cm, and 10.2 cm. This setup is referred to as the pixel barrel detector.

Each layer is divided into ladders such that the full cylinder surface is covered (20 ladders

for layer 1, 32 ladders for layer 2, 44 ladders for layer 3). Each ladder consists of 8 modules,

where each module has 2×8 read-out chips. The pixel barrel detector is comprised of a

total of 768 pixel modules. A forward pixel detector is also installed in the form of two
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disks, consisting of blades arranged in a fan-like structure, on either side of the pixel barrel.

The endcap disks contain a total of 672 pixel modules with seven different modules on each

blade. The pixel detector covers an |η| range of up to a value of 2.5 with the addition of

the forward detector in a range of 1.5 < |η| < 2.5.

A schematic overview of the pixel layout is shown in Figure 3.4 with the barrel detector

in green and the forward disks in pink. On the right hand side of Figure 3.4 a schematic

drawing of a charged particle traversing the pixel barrel detector is shown. Due to the

strong magnetic field the particles experience a force perpendicular to the direction of

motion, which is referred to as Lorentz drift. Electrons have a higher mobility than holes

and their deflection angle is larger. This has the advantage that the signal can be read out

by more than one pixel leading to an improved resolution [30]. A total of almost 80 million

pixels cover an area of ≈ 1 m2 (barrel and endcap combined) .

Figure 3.4: Left: Schematic view of the CMS pixel detector [28]. Right: Due to a Lorentz
drift of the charge carriers the charge is distributed to neighboring pixels [30].

Outer silicon strip tracker

The outer tracker covers a much larger area than the pixel detector and uses silicon strip

technology. Figure 3.5 shows an overview of the complete tracking system with all the parts

of the strip tracker. The barrel region consist of two parts: the TIB (Tracker Inner Barrel)

and TOB (Tracker Outer Barrel), which are arranged concentrically around the beamline.

The TIB has a length of 130 cm in the z-direction, consists of four layers and uses sensors

with a thickness of 320 µm and a strip pitch between 80–120 µm. The TOB has a length
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of 220 cm in the z-direction and contains 6 layers using a module thickness of 500 µm and

a strip pitch of 120 – 180 µm. In Figure 3.5 each line represents a silicon strip module and

double lines represent so-called “stereo” modules, where two modules are mounted back-to-

back. Stereo modules allow a more precise measurement in two dimensions. To cover the

forwards regions two endcap systems are installed on either side of the strip barrel detector:

the TID (Tracker Inner Disk) and the TEC (Tracker End Cap). Both of these detectors

are disks around the beamline. The TID comprises three layers and fills the empty region

between TIB and TEC. While the full strip tracker covers a range of up to |η| = 2.5, the TEC

consists of 9 layers and adds additional tracking information in the region of 0.9 < |η| < 2.5.

Figure 3.5: CMS silicon strip tracker system including the corresponding |η| ranges [28]

3.2.4 Calorimetry

Besides knowing the precise track and momentum of a particle it is also of crucial importance

to know its energy. The same is true for neutral particles that do not leave a signature in

the tracking system. Within CMS, the calorimeter system is split up into two separate

detectors: the electromagnetic calorimeter (ECAL) and the hadronic calorimeter (HCAL).

The goal is to have a hermetic system which captures all particles that originate from the

proton-proton collisions. While the tracking system is built to have as little material as

possible, the calorimeters are designed such that charged and neutral particles, apart from

minimum ionizing particles such as muons, deposit all of their energy while traversing them.



31

Electromagnetic calorimeter

The electromagnetic calorimeter (ECAL) system is specifically designed to measure the

energy of charged electromagnetic particles (mostly electrons) and neutral ones (photons).

Electrons predominantly loose energy due to ionization and scattering with the electric field

of the nuclei in the material and subsequent emission of bremsstrahlung. Photons interact

with material through the development of an electromagnetic shower, which is started by

pair production of electrons. The shower then evolves in the material producing secondary

photons and electrons with lower energies until the threshold for pair production is reached.

The final particles then dissipate their energy through ionization and excitation processes.

The material specific quantity called radiation length, X0, is defined as the amount of

material that an electron has to traverse until its energy reaches 1/e of its original value [9].

CMS employs a crystal technology for its ECAL made of 61,200 separate lead tungstate

(PbWO4) crystals, which are arranged cylindrically around the tracking system, comprising

the barrel detector up to |η| < 1.479. To cover the forward regions, additional 7,324 crystals

are placed on either side of the barrel detector. The endcap regions extend the coverage up

to |η| < 3.0. Lead tungstate is a scintillating crystal with a radiation length of X0= 0.89 cm.

Photodiodes are used to measure the emitted scintillator light. They operate on the basis of

the photoelectric effect, the capability of a photon to free an electron from its bound state in

a material, and turning the light signal into a measurable current. The initial photons hitting

the photodiodes start an amplification process where secondary electrons are produced.

Specially designed silicon avalanche photodiodes (APDs) and vacuum phototriode (VPT)

are used for the barrel and endcap regions, respectively, to measure the signal.

The ECAL energy (E) resolution is given by:

(
σ

E

)2
=
(
S√
E

)2
+
(
N

E

)2
+ C2, (3.6)

where S stands for the stochastic term, which describes statistics-related fluctuations, N

represents the contribution from electronic noise, and C is a constant term, which describes

detector non-uniformity and energy calibration uncertainties [9]. The energy resolution for

photons measured from Higgs boson decays ranges from 1.1–2.6% in the barrel and from
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2.2–5% in the endcap. For electrons originating from Z0 boson decays the energy resolution

is determined to range from 2–5% from the barrel region to the endcap [31]. Figure 3.6

shows the CMS ECAL system.
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Figure 3.6: CMS the electromagnetic calorimeter system including the respective |η|
ranges [32].

Hadronic calorimeter

The hadronic calorimeter (HCAL) is important to measure the energy of heavy particles

such as protons, neutrons, and pions, which do not deposit all of their energy in the ECAL.

These particles account for the energy measurements of jets, which are discussed in more

detail in Section 5.4. Another crucial aspect is the indirect measurement of EmissT as defined

in Equation 3.5 through an imbalance of the total energy in an event. When heavy particles

traverse a dense material they loose energy due to inelastic collisions with the electrons of

the material causing excitation and ionization or interact through the strong force with the

nuclei of the material. A characteristic quantity of hadronic calorimeters, the interaction

length λI , defines the distance after which the incident particle has reduced its energy to

1/e.

The CMS hadronic calorimeter is situated radially between the outer radius of the

ECAL (R = 1.77 m) and the superconducting solenoid (R = 2.95 m). With the constraint

to have most of the calorimeter system within the magnetic field, the goal is to maximize
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the amount of material, meaning the number of interactions lengths λI , in that region.

A sampling structure is chosen using brass (mixture of 70% copper and 30% zinc) as the

absorber material, interlaced with plastic scintillator tiles as the active material. When

particles go through the absorber they interact with the material and produce a shower

of secondary particles. These particles cause a scintillation in the active material, which

emits blue-violet light. Wavelength shifting fibers are used to shift the emitted wavelength

towards green light which is then transported with optical fibers to the readout electronics

consisting of hybrid photodiodes (HPDs). When photons hit the photocathode of the HPD

they free electrons, which are then accelerated towards a pixelated silicon diode to amplify

the signal through secondary electrons.

Figure 3.7 shows the complete hadronic calorimeter system of CMS. The barrel region

of the HCAL (HB) consists of 36 identical azimuthal wedges. The barrel is split up into

two half-barrels (HB+ and HB-) and covers a range of |η| < 1.4 with a granularity of

∆η × ∆φ = 0.087 × 0.087. For structural strength, the innermost (thickness 40 mm)

and outermost (thickness 75 mm) layers are made of stainless steel. The brass absorber

layers vary in thickness between 50.5 mm and 56.5 mm. Perpendicular to the beamline

this amounts to 5.82 λI which increases to 10.6 λI at |η| = 1.3. The ECAL material

adds another 1.1 λI . The hadronic endcap region of the HCAL (HE) covers an additional

pseudorapidity range of 1.3 < |η| < 3.0 and employs a similar sampling structure as the

HB. In order to reduce the amount of energy that escapes detection, the HCAL extends

beyond the solenoid of the magnet in both the barrel and the endcap. This outer hadronic

calorimeter (HO) uses the iron return yoke as passive absorber material and scintillator

plates as active material to detected the emitted light. The |η| coverage is further increased

up to a value of |η| < 5.0 through the forward hadronic calorimeter (HF), which is situated

11.2 m away from the z-coordinate of the interaction point. When charged particles travel

faster than the speed of light in a specific medium they emit so-called Cherenkov radiation,

which is used to measure the signal in the HF.

When the HCAL is combined with ECAL measurements, jets energies are reconstructed

with an energy resolution of (σ/E)2 = (100%/
√
E)2 + (5%)2.
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Figure 5.1: Longitudinal view of the CMS detector showing the locations of the hadron barrel
(HB), endcap (HE), outer (HO) and forward (HF) calorimeters.

Table 5.1: Physical properties of the HB brass absorber, known as C26000/cartridge brass.

chemical composition 70% Cu, 30% Zn
density 8.53 g/cm3

radiation length 1.49 cm
interaction length 16.42 cm

(∆η ,∆φ) = (0.087,0.087). The wedges are themselves bolted together, in such a fashion as to
minimize the crack between the wedges to less than 2 mm.

The absorber (table 5.2) consists of a 40-mm-thick front steel plate, followed by eight 50.5-
mm-thick brass plates, six 56.5-mm-thick brass plates, and a 75-mm-thick steel back plate. The
total absorber thickness at 90◦ is 5.82 interaction lengths (λI). The HB effective thickness increases
with polar angle (θ ) as 1/sinθ , resulting in 10.6 λI at |η | = 1.3. The electromagnetic crystal
calorimeter [69] in front of HB adds about 1.1 λI of material.

Scintillator

The active medium uses the well known tile and wavelength shifting fibre concept to bring out the
light. The CMS hadron calorimeter consists of about 70 000 tiles. In order to limit the number of
individual elements to be handled, the tiles of a given φ layer are grouped into a single mechanical
scintillator tray unit. Figure 5.5 shows a typical tray. The tray geometry has allowed for construc-
tion and testing of the scintillators remote from the experimental installation area. Furthermore,
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Figure 3.7: CMS the hadronic calorimeter system including the respective |η| ranges [28].

3.2.5 Muon system

Muons belong to the second generation of fermions and are roughly 200 times heavier than

electrons, but otherwise carry the same quantum numbers. As charged particles they leave

a signal in the tracking system, however they interact very little with the material of the

electromagnetic and hadronic calorimeters. Therefore, the muon system is the outermost

part of the CMS detector. Different types of gaseous detectors are used: drift tube chambers

(DT), cathode strip chambers (CSC), and resistive plate chambers (RPC). When a muon

travels through the gas in the detector it ionizes the gas atoms. Once an electric field

is generated through a voltage difference between the anode and cathode (for example

realized through wires), the negatively charged electrons and positively charged ions are

used to measure a current indicating the signal.

The different components of the muon system are shown in Figure 3.8. As can be seen

from the figure, they are interlaced with the iron return yoke. Drift tubes are installed in the

barrel region and cover an |η| range of 1.2 with four concentric cylinders and a total of about

250 chambers. Over 172,000 sensitive wires are used in this part of the detector. To cover
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the region of 0.9 < |η| < 2.4, CSCs are placed on either side of the CMS detector consisting

of four stations with a total of 468 chambers. Each of the chambers is composed of six anode

wire planes and seven cathode plates, which measure the position of the traversing muon

based on ionization of the surrounding gas. One crucial aspect of the CMS muon system is

that it should be able to “trigger” on the pT of a muon with high efficiency. The concept of

triggers within CMS is discussed in more detail in Section 3.2.6. In order to achieve this,

a dedicated additional muon system is installed in the barrel and endcap regions covering

an |η| region up to 1.6, consisting of RPCs shown in red in Figure 3.8. The RPCs are

gaseous parallel-plate detectors, where one plate functions as the anode and another one as

the cathode.
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Figure 3.8: CMS the muon system [28].

3.2.6 Trigger system

During 2012, the peak luminosity delivered by the LHC was 8×1033 cm−2s−1. This mul-

tiplied by a total inelastic cross section of about 70 mb leads to a maximum event rate of

5.6×107 s−1. It is impossible to store every single event, therefore the rate needs to be

reduced significantly in order to allow for processing of the delivered collisions. This rate

reduction is motivated by physics aspects in order to single out interesting events that are
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worth keeping for further analysis, for example, precision measurements or searches for new

physics. In CMS the so-called trigger system is responsible for the rate reduction based on

interesting physics phenomena. The trigger system is designed with two separate steps, the

level-1 (L1) trigger and the high level trigger (HLT), and both are described in this section

in more detail.

Level-1 trigger

The L1 trigger is based on customized and programmable electronics and is designed to

decrease the rate of events down to 100 kHz. The decision whether to accept or reject

an event occurs within 3.2 µs. This part of the trigger uses coarse information from the

calorimeters and the muon system and keeps the high-resolution data in memory. The

two major components of the L1 system, the muon trigger and calorimeter triggers, can

be further subdivided into local, regional, and global components, ordered by increasing

complexity. A schematic setup of the L1 trigger system is shown in Figure 3.9.

2008 JINST 3 S08004

Figure 8.1: Architecture of the Level-1 Trigger.

determine the highest-rank calorimeter and muon objects across the entire experiment and transfer
them to the Global Trigger, the top entity of the Level-1 hierarchy. The latter takes the decision
to reject an event or to accept it for further evaluation by the HLT. The decision is based on al-
gorithm calculations and on the readiness of the sub-detectors and the DAQ, which is determined
by the Trigger Control System (TCS). The Level-1 Accept (L1A) decision is communicated to the
sub-detectors through the Timing, Trigger and Control (TTC) system. The architecture of the L1
Trigger is depicted in figure 8.1. The L1 Trigger has to analyze every bunch crossing. The allowed
L1 Trigger latency, between a given bunch crossing and the distribution of the trigger decision to
the detector front-end electronics, is 3.2 µs. The processing must therefore be pipelined in order to
enable a quasi-deadtime-free operation. The L1 Trigger electronics is housed partly on the detec-
tors, partly in the underground control room located at a distance of approximately 90 m from the
experimental cavern.

8.1 Calorimeter trigger

The Trigger Primitive Generators (TPG) make up the first or local step of the Calorimeter Trigger
pipeline. For triggering purposes the calorimeters are subdivided in trigger towers. The TPGs sum
the transverse energies measured in ECAL crystals or HCAL read-out towers to obtain the trigger
tower ET and attach the correct bunch crossing number. In the region up to |η | = 1.74 each trigger
tower has an (η ,φ )-coverage of 0.087× 0.087. Beyond that boundary the towers are larger. The
TPG electronics is integrated with the calorimeter read-out. The TPGs are transmitted through
high-speed serial links to the Regional Calorimeter Trigger, which determines regional candidate
electrons/photons, transverse energy sums, τ-veto bits and information relevant for muons in the
form of minimum-ionizing particle (MIP) and isolation (ISO) bits. The Global Calorimeter Trigger
determines the highest-rank calorimeter trigger objects across the entire detector.
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Figure 3.9: Schematic overview of the L1 trigger system layout [28].

Calorimeter trigger at L1

The lowest layer of the calorimeter trigger is called Trigger Primitive Generator (TPG)
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and defines a list of trigger towers. A trigger tower in the barrel region is defined by

mapping single HCAL cells on to 5×5 ECAL crystal arrays and summing up their

respective energies [33] with an (η, φ)-coverage of 0.087×0.087. These trigger towers

are sent to the Regional Calorimeter Trigger (RCT) which finds electron/photon can-

didates and sums the energy deposits further into regions, where a region is defined

as 4×4 towers. Electrons/photons are identified by finding the trigger towers with

the largest energy deposits and applying quality selection criteria depending on the

ratio of energy deposited in the HCAL and ECAL (typically up to 5%) and the ex-

tension of the electromagnetic shower. An isolated electron is found when all eight

neighboring towers also satisfy the same criteria on the ratio of the HCAL and ECAL

energy deposits. Four isolated and four non-isolated electron/photon candidates are

sent to the Global Calorimeter Trigger (GCT). The GCT provides an ordering of

the electron/photon candidates by their transverse energies and determines jets, HT

(transverse sum of jets above a threshold), and EmissT . At this level, jets are recon-

structed by a four-stage clustering algorithm described in detail in Reference [34] and

the result is a 3×3 cluster of region sums (seeds) provided by the RCT. The variable

HT , which is a useful L1 seed for multijet triggers, is calculated from the previously

found jets with |η| < 3.0 and ET >10 GeV. The result from the GCT is then for-

warded to the Global Trigger (GT) which makes the final L1 decision. During the

2012 data-taking period a strong dependence of the HT trigger rate was observed on

the instantaneous luminosity. To mitigate this effect a 5 GeV threshold was introduced

on the seeds used in the jet-finding algorithm in June 2012.

Muon trigger at L1

All three muon subsystems, DT, CSC, and RPC, participate in identifying muons for

trigger purposes. The first local level of reconstruction comes from the electronics in

the DT (barrel region) and CSC (endcap region) systems delivering information for

each of the muon chambers separately. This information is collected by the so-called

Track Finders (TF), which combine the hits in the different chambers, reconstruct

the track of the muon, and assign a transverse momentum to the candidate. Each

TF sends the four highest pT candidates to the Global Muon Trigger (GMT). The
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RPC system does not use the first local steps, but instead reconstructs the track of

the muon candidate directly and sends a total of eight candidates (four for barrel and

four for endcap) to the GMT. The GMT tries to match the DT and CSC candidates

with the information from the RPC. It also uses information about the calorimeters

from the RCT to determine whether the muon candidates are isolated. Finally the

four best muon candidates, based on pT , isolation criteria, and correlations of the

different muon subsystems, are sent to the GT, which makes the final decision to keep

an event or reject it, before passing it to the HLT.

High Level Trigger

The HLT is the second level of the CMS trigger system and is based on software that is

run on a farm of commercial computers with over 13,000 CPU cores [35]. The goal is to

further reduce the output rate of the L1 trigger (≈100 kHz) down to a manageable rate of

≈100Hz. The event reconstruction performed by the HLT is referred to as “online recon-

struction”, whereas the event reconstruction performed further downstream is called “offline

reconstruction”, and is described in more detail in Chapter 5. The online reconstruction

is designed to minimize CPU usage and time needed to make a decision whether or not to

keep an event. Each trigger path consists of certain L1 seeds, which could be, for example,

muons, jets, or HT , followed by selection criteria applied to the objects reconstructed by the

HLT system. The name of the trigger gives an indication of the HLT selection. For instance,

HLT Mu20 eta2p1 refers to events that contain a muon above 20 GeV and |η| < 2.1. In

order to control the rate of certain trigger paths, without having to alter the HLT setup,

the concept of a prescale is introduced. The prescale value gives the suppression factor for

a given trigger path. For example, a prescale value of 100 means that only one event is

recorded for every 100 where the trigger would have resulted in a positive decision. This

reduction factor is adjusted dynamically depending on the instantaneous luminosity deliv-

ered by the LHC in order to keep the output rate roughly constant. For physics analysis

un-prescaled triggers are used when the integrated luminosity is important. Prescaled trig-

gers can be used for trigger efficiency studies or measurements of branching ratios, where

the overall integrated luminosity is not important since ratios of quantities are determined.
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For this analysis we are mostly interested in events with multiple jets, namely the trigger

path HLT QuadJet60 DiJet20 where events are required to have four jets above 60 GeV

and two additional jets above 20 GeV. Jets are reconstructed at the HLT with the anti-kt

algorithm based on calorimeter information only. This is similar to the offline reconstruction

and a description of different jet algorithms can be found in Section 5.4.1. This trigger was

un-prescaled for the duration of the 2012 data-taking. As mentioned before, each HLT

path is seeded by a L1 requirement. At first the HLT QuadJet60 DiJet20 was seeded by

requiring four jets above 32 GeV at L1, collecting about 12 fb−1 of data. For the last

7.4 fb−1, the seed was extended to include an “or” of HT and dijet (two jets above 52 GeV)

L1 seeds in addition to the previously mentioned four-jet seed. The choice of trigger and

measurements of its efficiency are discussed in Section 6.1.

Depending on the HLT path events are categorized and stored in different primary

datasets.

3.2.7 Luminosity measurement

The measurement of the luminosity delivered to and recorded by CMS is of great importance

to most physics analyses and the recent results for the 2012 data-taking are presented in

Reference [36]. Whenever the LHC goes into the mode of “stable beams”, meaning proton-

proton collisions for physics measurements are delivered, the CMS detector needs to be in a

state where it is able to record events. After all subdetectors are configured, a new “run” is

started manually by the shift crew in the CMS control room. At this point data is recorded

with a granularity that is referred to as “luminosity section” (LS), which is defined as the

time interval ts = 23.31 s. Two parts of the CMS detector can be used to measure the

luminosity, the hadronic forward calorimeter and the pixel detector. The latter method is

chosen due to its smaller dependence on multiple interactions and other beam conditions.

The luminosity is then evaluated from the average number of pixel clusters 〈n〉, groups of

sufficiently charged adjacent pixels in zero-bias events (zero-bias triggers only require the

occurrence of a bunch crossing), and given by:

L = 〈n〉 frev
σvis

, (3.7)
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where frev = 11246 Hz is the beam revolution frequency, and σvis the visible cross section,

which is calibrated through a Van der Meer (VdM) scan. During a VdM scan the two beams

are moved with respect to each other in the horizontal and vertical plane. This allows one to

measure the beam overlap in the x- and y-directions, which is needed to determine σvis. To

estimate the integrated luminosity for a given dataset the average number of pixel clusters

per event is calculated for a given LS and multiplied by ts. The total integrated luminosity is

then the sum of all LS that are used in the analysis. The uncertainty on the measurement

is estimated to be about 2.6% [36]. Figure 3.2 shows the delivered (blue) and recorded

(yellow) integrated luminosity for the 2012 data-taking period.
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Chapter 4

Data and simulated samples

A general overview is given of the collected data and quality criteria that are applied before

further physics analysis is performed. The chapter ends with a discussion of the simulated

signal and background samples important for this analysis.

4.1 Data sample

This analysis uses a total integrated luminosity of 19.4 fb−1 of proton-proton collisions

collected with the CMS experiment during the 2012 run of the LHC at
√
s = 8 TeV. After a

positive trigger decision is made, as described in Section 3.2.6, events are stored in primary

datasets and reconstructed following algorithms described in Chapter 5. For this analysis we

use the “Multijet primary dataset”, which contains several different trigger paths requiring

at least two or more jets in the event. A dedicated Data Quality Monitoring (DQM) system

is in place to ensure a high efficiency and quality of the recorded data. Real-time online

monitoring of all parts of the detector is available during data-taking, to spot problems

quickly and act accordingly. The second step of the monitoring occurs simultaneously with

the reconstruction of events. Characteristic distributions, for example of pixel clusters and

their charge, or track parameters, are compared to reference distributions. Depending on

the agreement with the reference distributions a quality flag is set to “good” or “bad”. The

data is split up into different runs and further subdivided into several LS, as mentioned in

Section 3.2.7. Ideally all subdetectors have a “good” flag set for a given LS. This information

is stored and a list is created containing all good runs and LS, which is used to select data for

further physics analyses. Events that are reconstructed shortly after they have been recorded

are referred to as prompt reconstruction. These datasets are used to derive measurements

of quantities like jet energy corrections (see Section 5.4.2) or general updates on detector
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alignment conditions, which then in return can be included when the data is reprocessed at a

later stage, referred to as re-reconstruction. In this analysis, we use a combination of prompt

and re-reconstructed data. Table 4.1 shows the different datasets and the corresponding

integrated luminosity for each dataset based upon the aforementioned list of good runs.

Runbegin Runend
∫
L [pb] Dataset

190782 190949 81 /MultiJet/Run2012A-recover-06Aug2012-v1
190645 193621 796 /MultiJet/Run2012A-13Jul2012-v1
194305 196432 4387 /MultiJet/Run2012B-13Jul2012-v1
198049 198522 470 /MultiJet/Run2012C-PromptReco-v1
198941 202016 6320 /MultiJet/Run2012C-PromptReco-v2
205515 208686 7295 /MultiJet/Run2012D-PromptReco-v1

Table 4.1: Multijet primary dataset.

4.2 Simulated samples

Simulations of physics processes and expected detector performance are of crucial impor-

tance in the field of high energy physics and used to understand the measured detector

responses, make comparisons of collision data with SM processes, and to aid in the search

for new physics signals. These simulations are based on so-called Monte Carlo (MC) tech-

niques to numerically solve complex matrix elements, model parton showering, and produce

events similar to recorded data. These events are then passed through the CMS detector

simulation based on the geant4 [37] package and the output is treated almost the same

way as are the data. The two event generators dominantly used in this analysis are the gen-

eral purpose generator pythia [38] and the matrix element calculator madgraph [39]. The

explicit version number is given when the different samples are discussed. While pythia is

preferably used to model parton shower evolution, madgraph can be used to easily imple-

ment new physics models based on Feynman diagrams implemented in FeynRules [40].

A common procedure is to interface both generators, making use of the matrix element

calculation in madgraph and the hadronic shower evolution in pythia.
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MLM matching scheme between madgraph and pythia

When a matrix element generator is interfaced with the parton shower program both can

contribute additional partons in the final state. In order to avoid double counting of final

state particles a matching scheme is implemented following the MLM [41] prescription using

kt based clustering, as described in Section 5.4.1. For this approach, two values denoted

with:

• xqcut: defines the minimum kt measure for additional partons in madgraph

• Qcut: the matching scale parameter, defines the scale of the transition region between

matrix element and parton shower generator

are introduced. After the showering has been performed jets are reconstructed with a kt

algorithm using the final state partons in the event. These jets are compared to original

partons generated by the matrix element calculation. If any jet remains without a matched

partner the event is rejected, resulting in samples of exclusive jet multiplicities. For the

highest multiplicity, extra jets are allowed and, in combination with the exclusive jet mul-

tiplicity samples, one obtains a final inclusive sample [42].

4.2.1 Benchmark MC signal samples

The new physics model of pair-produced gluinos each decaying through RPV couplings

into three quarks has already been discussed in detail in Section 2.2.2. This signal is

modeled using the pythia event generator (v6.424). The baryon number violating decay

parameters (RVLAMB) are set to non-zero values to allow gluino decays into three quarks,

i.e., g̃ → uidjdj , where u represents up-type quarks and d represents down-type quarks, and

the indices i, j, k run over the three generations. Two different scenarios of this decay are

considered and the respective pythia settings are given below. The cteq6l1 [43] PDF set

is used for the generation of events. More details of the pythia input parameters for the

signal generation can be found in Appendix A.

• Scenario 1 (decay to three light-flavor quarks):

– g̃ → uds
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– pythia : RVLAMB(1,1,2) = 0.005

• Scenario 2 (decay to at least one heavy-flavor and two light-flavor quarks):

– g̃ → udb or csb

– pythia : RVLAMB(1,1,3) = 0.005

– pythia : RVLAMB(2,2,3) = 0.005

We produce samples with gluino masses of 200 – 500 GeV in 50 GeV increments, and from

750 – 1500 GeV in 250 GeV increments. The invariant mass of the intermediate squark in the

decay is taken to be decoupled from the gluino, set to 2 TeV for gluino masses up to 500 GeV

and to 7.5 TeV for higher gluino masses. This leads to prompt decays, meaning the gluino

decays immediately after its production through a virtual squark. The intrinsic width of

the gluino, however, is such that it is negligible with respect to the mass resolution resulting

from the reconstructed jets. In addition to the decoupled mass spectrum we assume a 100%

branching ratio of the gluino decaying into quarks. Several other processes are proposed in

the context of these so-called simplified models, which were designed to reduce the number

of free parameters and involve usually only a few particles and their interactions [44].

The production cross section for some of these models is determined from next-to-

leading-order (NLO) and next-to-leading-logarithm (NLL) calculations [45, 46, 47, 48, 49]

as a function of the particle mass and shown in Figure 4.1. Most notably the gluino pair

production cross section in grey is the highest followed by the squark-antisquark produc-

tion cross section in red. The shaded bands around the solid line represent uncertainties

associated with the calculation due to the choice of PDF and renormalization and factor-

ization scale [50]. Two sets of PDFs are used cteq6.6 and mstw2008 and the average of

the two calculations determines the nominal value. Table 4.2 summarizes the gluino pair

production cross sections with corresponding uncertainties for the mass points considered

in this analysis. The uncertainties range from 15% to 43% for the highest masses.

4.2.2 Background samples: QCD and tt̄

The main background in this analysis arises from QCD multijet production, which is theo-

retically difficult to model. Especially final states with six or more jets are computationally
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Figure 4.1: NLO+NLL theory cross section simplified topology used for SUSY searches at
the LHC. The gluino pair production cross section and its uncertainties are shown in grey
as a function of gluino mass [51].

Gluino mass [GeV] Cross section [pb]
200 1010 ± 15%
250 302 ± 15%
300 106 ± 15%
350 43 ± 15%
400 19 ± 15%
450 8.9 ± 15%
500 4.5 ± 16%
750 0.26 ± 19%
1000 0.024 ± 26%
1250 0.0029 ± 34%
1500 0.00039 ± 43%

Table 4.2: NLO + NLL cross sections for pair-produced gluinos with all squark masses
decoupled [45, 46, 47, 48, 49].
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very time intensive. The samples used here to compare QCD multijet background and data

are produced with the madgraph event generator (v5.1.3.30) which is interfaced with the

pythia generator (v.6.424) to model the parton shower. The cteq6l1 PDF set is used for

the production and at the matrix element level up to four partons are included in the final

state. During the parton shower evolution and subsequent hadronization pythia adds ad-

ditional jets to the event. The matching procedure follows the MLM prescription with the

parameters xqcut = 40 GeV and Qcut = 60 GeV. Millions of events are necessary in these

samples, since the cross section decreases drastically for high jet multiplicities, roughly by

one order of magnitude going from one jet multiplicity (n jets) to the next (n+1 jets). Due

to the size of the samples several different ones are produced containing events where the

sum of the pT of all particles in the event HT lies between 250–500 GeV, 500-1000 GeV,

and higher than 1000 GeV.

Another background that becomes important when events are required to contain b

jets, is the contribution from all-hadronic tt̄ events. These samples are also produced with

madgraph and showered with pythia, with the same version numbers and choice of PDF

as noted above for the QCD multijet samples. The top mass is set to mt = 172.5 GeV and up

to three additional partons in the final state are included by the matrix element calculation.

The matching scheme is again following the MLM prescription with the parameters set to

xqcut = 20 GeV and Qcut=40 GeV. In these tt̄ madgraph samples the scale of the hard

interaction is set to Q2 = m2
t +

∑
p2
T , with mt being the mass of the top quark and the sum

pT of all additional partons from the matrix element calculation.

Table 4.3 shows a summary of the QCD and tt̄ samples for this analysis. The first column

gives the number of events generated and the second column represents the theoretical cross

section that is used to estimate the expected number of events of a given sample in data. The

cross section for QCD is calculated at leading-order LO and the one tt̄ is determined at next-

to-next-to-leading-order NNLO [52]. Theory uncertainties associated with the modeling of

events are discussed in more detail later in Section 9.3, however we also list in Table 4.3

alternative simulated tt̄ samples for the evaluation of some of these uncertainties.
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# of Events Cross section [pb] Dataset name
QCD multijet samples (madgraph+pythia, TuneZ2star)
26 292 779 276000 250 GeV < HT < 500 GeV
31 302 905 8426 500 GeV < HT < 1000 GeV
13 879 218 204 1000 GeV < HT < Infinity
tt̄+ jets (madgraph+pythia, Tauola, TuneZ2star)
6 923 750 245.8 tt̄+ jets

xqcut = 20 GeV and Qcut=40 GeV
nominal scale → Q2 = m2

t +
∑
p2
T

5 476 728 245.8 tt̄+ jets matching scale down
xqcut = 10 GeV and Qcut=30 GeV

5 415 010 245.8 tt̄+ jets matching scale up
xqcut = 40 GeV and Qcut=60 GeV

5 387 181 245.8 tt̄+ jets renormalization/factorization scale down
nominal scale × 0.5

5 009 488 245.8 tt̄+ jets renormalization/factorization scale up
nominal scale × 2.0

Table 4.3: Monte Carlo samples for QCD multijet events (top three rows) and tt̄ pair
production including dedicated samples to study the effect of modeling uncertainties.
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Chapter 5

Event Reconstruction

After a positive decision from the HLT the events are sent to the so-called storage manager

that writes the data to disks at P5 (the location of CMS in Cessy). Afterwards the data

is transferred to CERN for further processing, where the offline event reconstruction is

performed after 48 hours of recording the data. In this chapter we discuss the algorithms

used by CMS to reconstruct objects such as tracks, vertices, jets, and leptons, with a focus

on jets, which are important for this analysis.

5.1 Particle-flow algorithm

Event reconstruction in CMS is performed with the so-called particle-flow algorithm, which

attempts a description of the full event based on single identified particles [53]. The goal

is to reconstruct all stable particles like electrons, muons, photons, charged hadrons, and

neutral hadrons, using a combination of all subdetectors of CMS. Each particle traversing

the detector leaves either a track (if charged), deposits energy in the calorimeters (charged

or neutral), or leaves hits in the muon chambers (charged). The challenge is to combine the

information from the different detector parts and to link all elements together properly to

identify each of the aforementioned particle types. Since charged hadrons leave signals in

the pixel and strip trackers, their momenta can be measured with very high precision. The

final result is a list of particles for each event.

5.2 Charged particle tracks

A crucial part of the particle-flow algorithm is to identify tracks for charged particles with

high precision. Particles moving outwards from the collision point have to traverse the

CMS detector following a helix path, due to the strong magnetic field. An iterative tracking
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Iteration Seeding Layers pT (GeV) d0 (cm) |z0|
0 three pixel hits > 0.8 < 0.2 < 3σ
1 two hits + primary vertex > 0.6 < 0.2 < 2 cm
2 three pixel hits > 0.075 < 0.2 < 3.3σ
3 three hits in pixel or strip tracker > 0.35 < 1.2 < 10 cm
4 TIB 1+2 & TID/TEC ring 1+2 > 0.5 < 2.0 < 10 cm
5 TOB 1+2 & TEC ring 5 > 0.6 < 5.0 < 30 cm

Table 5.1: Requirements on seeds used for the six iterations of the track finding algo-
rithm [57]. From left to right for each iteration the seed layers are defined followed by the
minimum pT requirement, and the maximum transverse (d0) and longitudinal (z0) distance
from the beamspot (σ here denotes the Gaussian width of the beamspot in z-direction).

algorithm called the combinatorial track finder (CTF) is used in CMS [54], where the seeding

and pT requirements are changed for each iteration. A seed is an initial estimate of a track

and its uncertainty based only on two or three hits in the tracking system. These seeds are

propagated outwards by a Kalman filter [55] to find hits that coincide with the predicted

trajectory of the charged particle. A Kalman filter is a recursive algorithm that can be

used to predict the evolution of dynamical systems [56], which in this case is the trajectory.

It combines information about the current state of the trajectory with uncertainties, the

statistical noise, and the underlying physical process of a particle moving in a magnetic field.

With each new hit the track and its uncertainty is recalculated until either the outer layer

of the tracker is reached or no additional compatible hits can be found. Six iterations are

performed ordered by how difficult it is to identify the track; iteration 0, for example, looks

for tracks with pT > 0.8 that originate close to the interaction point (prompt tracks) and

have at least three hits in the pixel detector. After each iteration tracks that satisfy certain

selection criteria, such as the number of layers that have hits, the χ2 per degree of freedom

for the fitted track and the distance to the primary vertex, are marked as “high purity”.

The associated hits from these tracks are removed from the hit collection used in subsequent

iterations. Iterations 1 and 2 try to find tracks with only two hits in the pixel detector or

have lower pT than in iteration 0. Iterations 3-5 then try to reconstruct non-prompt tracks

that originate further away from the primary interaction point [57]. Table 5.1 shows the

different seeding requirements for all six iterations.
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5.3 Vertex reconstruction

With the increasing instantaneous luminosity and center-of-mass energy the effects of pile-

up, multiple interactions of different protons in one bunch crossing, become increasingly

difficult to handle. Additionally, there is a finite probability that two or more hard interac-

tions occur between partons in the same proton-proton collision. For many physics analyses

it is important to determine the position of these interactions. The vertex reconstruction

is performed in two steps in CMS. First, tracks are selected that are produced promptly

and grouped together in clusters based on their z-coordinate. This first step of grouping

the tracks is performed with a deterministic annealing (DA) algorithm [58]. For each track

the z-coordinate of the point of closest approach to the beamline is denoted by zi with a

measured uncertainty of σi. The goal is to assign these tracks to an unknown number of

vertices denoted by a z-coordinate of zk. As an example, a χ2 is defined as the figure of

merit:

χ2 =
∑
ik

pik
(zi − zk)2

σ2
i

, (5.1)

where pik can be interpreted as a probability with values between 0 and 1. Instead of just

finding the setup that minimizes this χ2, the DA algorithm finds the most likely distribution

for a given value χ2
0. This χ2

0 is then decreased until it finds a good reliable minimum [58].

Once the tracks are assigned to the different vertices a three dimensional fit is performed

using the AdaptiveVertexFitter [59]. In this fit each track is assigned a weight between

0 and 1. After the last step of the fitting most tracks are either categorized as 1 (good)

or close to 0 (outliers). Then the sum of the weights corresponds roughly to the number

of tracks associated with the vertex. Based on these track weights each vertex is assigned

a number of degrees of freedom ndof = 2
∑
wi − 3. A quality selection is applied to only

consider vertices with ndof > 4, which corresponds here to having at least four tracks

assigned to the vertex [58]. All reconstructed vertices are ordered by the sum of the p2
T

of the tracks associated with them. The average number of reconstructed vertices for the

dataset of this analysis is around 15.
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Figure 5.1: Graphical representation of a jet [60].

5.4 Jets

As discussed in Section 2.1.4, quarks and gluons cannot be observed as single particles,

since due to the nature of the strong force they undergo the process of parton showering

and hadronization. What we observe is a spray of hadrons that are clustered together by

algorithms which then define what we call a “jet”. Experimentally these hadrons leave

certain signatures in the detector by depositing their energy in the electromagnetic and

hadronic calorimeters, and if charged, leave tracks in the pixel and silicon strip tracker. The

graphic in Figure 5.1 shows schematically how a quark or gluon leaves the hard interaction,

undergoes the processes of parton showering and hadronization, and finally how the hadrons

deposit their energy in the calorimeters. Within CMS three different methods, making use of

information from different parts of the detector, are used as input to the jet reconstruction

algorithm. Jets can be reconstructed based solely on calorimeter information, or based

on tracking and calorimeter information (“jets-plus-tracks”), or the particle-flow approach

discussed in Section 5.1. With the particle-flow algorithm one obtains a list of all charged

and neutral particles in the event, which is used to form the jet. We mostly focus on particle-

flow jets in this thesis, since they have the advantage of an improved jet energy resolution

and smaller uncertainties with respect to the other two approaches. Much theoretical work

has gone into studying jet algorithms, their properties, and how closely they can represent

the original parton that was produced.
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5.4.1 Jet algorithms

To understand processes that involve quarks and gluons in the final state, a set of rules,

in the form of a jet algorithm, needs to be defined on how particles are clustered together.

Theoretical interests, as well as experimental constraints in terms of computing time, need

to be considered for this task. In this section, we briefly discuss different types of jet

algorithms emphasizing the ones important for CMS and for this thesis.

Cone algorithms

Some of the first jet algorithms involved using fixed “cones” in y−φ space to define jets. In

case of “iterative cone” algorithms one starts with a seed i, for example, the highest energy

ECAL tower or highest pT particle in the event. Iteratively all four-vectors of the particles

j within a radius of:

∆R2
ij = (yi − yj)2 + (φi − φj)2 < R2, (5.2)

are added to the four-vector of the original seed particle i. The variable R in Equation 5.2

is called the jet radius, and y and φ are the rapidity and azimuthal angle respectively, of

the particles i and j. This basic approach has multiple drawbacks, for example, it is not

clear what to do with overlapping cones. The more serious issue is that it is infrared and

collinear unsafe (IRC unsafe). Having an algorithm that is IRC safe is an important feature

since it ensures that the final set of hard jets is unchanged when collinear splitting of hard

particles or soft emission of radiation occurs. One way of avoiding these issues is the use

of a seedless algorithm which identifies all stable cones in an event and uses a split-merge

approach when overlapping cones are found. This split-merge step either merges two jets or

splits them if the ratio of the pT associated with both cones is larger or smaller than some

fraction f [61].

Sequential recombination algorithms

These types of algorithms do not rely on a fixed cone but rather perform the clustering of

particles based on a minimum distance measure between the particles i and j and between
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the beamline B and particle i:

dij = min(k2p
ti , k

2p
tj )

∆R2
ij

R2 , (5.3)

diB = k2p
ti , (5.4)

where ∆R2
ij = (yi − yj)2 + (φi − φj)2 and kt is the transverse momentum, y the rapidity,

and φ the azimuthal angle of the i’th or j’th particle [62]. The distance parameter R is

similar to the one introduced in the previous section. The variable p can be either 1 (kt

algorithm [63]), 0 (Cambridge/Aachen algorithm [64]), or -1 (anti-kt algorithm [62])), and

defines different types of clustering algorithms. Sequential clustering algorithms are infrared

and collinear safe and are therefore favored from a theoretical point of view. For each par-

ticle and pair of particles the two aforementioned values are calculated and the minimal

dij or diB is determined. If the minimum is the pair dij , both four-vectors are combined

into a new single particle four-vector and the procedure starts from the beginning. If diB

is the minimal value then this particle i is called a jet and removed from the available list

of particles for clustering. These steps are repeated until no particles remain [61]. Fig-

ure 5.2 shows a comparison of the reconstructed jets when the same event is clustered with

the three different choices of p. While the kt and Cambridge/Aachen jets show a rather

irregular shape, the anti-kt algorithm produces nearly conical jets. This is attributed to

the fact that soft particles tend to cluster with the harder ones first, since the distance to

the dij is mostly defined by the transverse momentum of the hard particle [62]. For this

analysis we focus on jets clustered with the anti-kt algorithm and a distance parameter of

R = 0.5. Cambridge/Aachen jets offer the possibility to make use of newly developed sub-

structure techniques and are in addition to anti-kt jets used within the CMS collaboration,

for example, in searches for decays of heavy particles in boosted topologies [65].

5.4.2 Jet energy scale corrections

The reconstructed jets and their energy need to be corrected to take into account the

nonlinear and nonuniform response of the calorimeters, to reduce the effect of pile-up, and
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Figure 5.2: The same event is clustered with three different algorithms, from left to right
kt, Cambridge/Aachen, and anti-kt [62].

L1	  
pile-‐up	  
Coffset	  

L2	  	  
rela2ve	  	  
CrelMC	  

L3	  	  
absolute	  	  
CabsMC	  

L2L3	  
Residual	  
Cabs/relres	  

MC	  

data	   Correc&ons	  applied	  to	  data	  and	  MC	  

Residuals	  applied	  to	  data	  

Figure 5.3: Factorized approach for jet energy scale corrections.

to correct for small residual effects in the data after corrections based on MC simulation

are applied. The precise knowledge of the jet energy scale is of crucial importance for many

physics analyses and the uncertainty in the corrections is one of the leading uncertainties

for the analysis presented in this thesis. The discussion here follows mainly Reference [66],

where a more detailed description can be found. A factorized approach was developed by

CMS to apply all of these corrections, labeled from L1 to L3, as shown in a schematic

overview in Figure 5.3. Equation 5.5 shows the factorized approach mathematically, where

the correction factors C are applied to each of the four-vector components of the uncorrected

reconstructed momentum prawµ , to obtain a calibrated jet denoted with pcorrµ . The corrected

momentum is given by:

pcorrµ = Coffset(prawT ) · Cabs,relMC (p′T , η) · Crel
res(η) · Cabs

res (p′′T ) · prawµ , (5.5)



55

where p′T and p′′T are the transverse momenta after applying the offset and relative/absolute

corrections, respectively. First, an offset correction (L1) is applied to subtract energy that is

not associated with the hard scattering, and originates from electronic noise, pile-up, or the

underlying event. Afterwards corrections are derived from MC simulation (L2, L3) to match

the energy of reconstructed jets to the energy of simulated particle jets, these corrections are

then applied to simulation and data. The last step in the standard chain is applied in data

only, where residual corrections are determined with data driven techniques. The different

corrections are discussed in more detail below and we will focus on jets reconstructed with

the anti-kt algorithm with R = 0.5 based on inputs from the particle-flow event description.

Additionally, a procedure is applied to the jets where charged particles are removed that are

not compatible with the primary vertex. This is referred to as charged hadron subtraction

(CHS).

• L1 offset correction: To estimate and subtract energy that does not originate from

the hard scattering an average pT density (ρ) per unit area is calculated in data as

well as in simulated samples. For each event a large number of infinitely soft four-

vectors are added artificially, clustered by the jet algorithm, and used to define an

active jet area Aj for each jet j. The average pT density ρ is then defined as the

median of all ρi = pT i/Ai where i runs over all jets. Additionally, the η dependence

for this correction is taken into account. The pT offset as a function of η is shown in

Figure 5.4 for data and MC simulation as well as different number of primary vertices.

• L2, L3 relative/absolute MC correction: These corrections are derived from

simulated QCD events enriched in low-pT gluon jets, where each reconstructed jet is

matched in η − φ space to a simulated particle jet within ∆R < 0.25. The response

variable R = precoT /pgenT is then determined from the detector jet precoT and MC particle

jet pgenT for each bin of pgenT . The average correction factor is defined as Crel,absMC (precoT ) =
1

<R> and described as a function of the average detector jet pT < precoT >. The

correction factor is shown on the right of Figure 5.4 for different corrected jet pT as a

function of η. The large variations as a function of η arise due to non-linear response

of the detector, for example, the feature around |η| ≈ 1.3 is due to the barrel-endcap



56

η
-5 -4 -3 -2 -1 0 1 2 3 4 5

(O
ffs

et
), 

G
eV

Tp

0

5

10

15

20

25

=5PVN
=10PVN
=15PVN
=20PVN

PFJets
Data
Simulation

CMS Preliminary  = 8 TeVs
 

-4 -2 0 2 4

C
or

r. 
Fa

ct
or

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
Anti-kT R=0.5, Particle-Flow Jets

 = 30 GeVTP
 = 100 GeVTP
 = 300 GeVTP

 = 8 TeVsCMS Simulation Preliminary

Figure 5.4: Left: L1 offset correction shown for PF jets for data and MC simulation, Right:
L2, L3 correction shown for three different jet pT bins as a function of pseudorapidity η [67].

boundary and a large amount of tracker material in this region.

• absolute/residual correction: After the L2 and L3 corrections derived from sim-

ulation are applied to the data, additional measurements are necessary to validate

the corrections and derive residual correction factors. The absolute scale is measured

using γ+ jets or Z0 + jets events in data, where the Z0 boson or γ are measured more

precisely than the jet. Under the assumption of a balanced two-object event the jet

energy is calibrated with respect to the energy of the other object. The relative energy

scale can be determined with the dijet pT -balancing method, where one jet (central

jet) is required to lie in the barrel region with |η| < 1.3 and the other jet (probe jet)

can have an arbitrary η.

As mentioned before, the current corrections are derived from simulated QCD events with a

flavor compositions that is enriched in low-pT gluon jets. Gluons and heavier quarks result

in jets with a higher particle multiplicity with a softer pT spectrum, resulting in a different

energy response than jets from light-flavor quarks. Flavor dependent corrections could be

added in the future as an additional step in the multiplicative chain described above.

Jet energy scale corrections uncertainties

The correction factors derived from data and MC simulation are subject to effects of sys-

tematic uncertainties, which need to be taken into account for physics analyses. Each of
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the steps in the jet energy scale correction chain has its own uncertainties. Figure 5.5 shows

from left to right: the uncertainty as a function of pT for central jets |η| = 0, the uncertainty

as a function of pT for jets with |η| = 2.7, and the uncertainty as a function |η| for a jet

pT of 100 GeV. As can be seen, low-pT jets are more affected by uncertainties where the

pile-up corrections carry more weight. In the pT and |η| ranges important for this analysis

the effect on the jet corrections is of the order of 2%. The uncertainty on the absolute

scale arises mainly from the reference energy scale for γ and Z0 bosons and corrections for

initial and final state radiation. The dominant contribution to the relative scale originates

from the modeling of the jet energy resolution in MC simulation (discussed in the following

section). In general, the dijet sample includes jets with much higher pT than available in

the γ+ jets sample. For the measurement of the residual absolute correction a comparison

between data and MC is performed in the energy range where γ+ jets are available. The

result is then extrapolated for higher pT jets in the dijet sample. The uncertainty on the

pile-up corrections is large for low-pT jets but significantly decreases for pT > 30 GeV. The

jet flavor uncertainty arises from the modeling of the flavor content of the QCD MC sam-

ples used to derive the L2/L3 corrections. A small effect for central jets is the time stability

uncertainty, which is presumed to originate from radiation damage in the forward regions

of the detector.
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Figure 5.5: Uncertainties on the jet energy scale corrections. From left to right: uncertainty
as a function of pT for central jets |η| = 0, uncertainty as a function of pT for jets with
|η| = 2.7, and uncertainty as a function |η| for a jet pT of 100 GeV [67].
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or from the UE. The resulting asymmetry distributions are broadened and the jet pT resolution
is systematically underestimated. Other effects can also cause jet imbalance. For example,
fragmentation effects cause some energy to be showered outside the jet cone (“out of cone
radiation”). The width of the asymmetry distribution is thus a convolution of these different
contributions:

σA = σintrinsic ⊕ σimbalance (20)

To account for soft radiation in dijet events, the measurement of the asymmetry in each η and
pave

T bin is carried out multiple times, for decreasing amounts of extra activity, and the jet pT
resolution is extracted by extrapolating the extra event activity to zero, as discussed in Sec-
tion 5.4.2. The ratio of the transverse momentum of the third jet in the event over the dijet
average pT, pJet3,rel

T = pJet3
T /pave

T , is used as a measure of the extra activity. The extrapolation
procedure is illustrated in Fig. 30 (left) for the 120 < pave

T < 147 GeV bin of PF jets and for the
corresponding bin of MC particle jets (right). The width of each asymmetry distribution σA, as
well as the resolutions obtained using generator-level MC information, are derived based on
the RMS of the corresponding distributions. Some characteristic example distributions for the
raw asymmetry are shown for PF jets in Fig. 31.

To account for the particle-level imbalance contribution to the measured jet pT resolution, the
asymmetry method is applied to the generated MC particle jets. Then the extrapolated particle-
level resolution is subtracted in quadrature from the measurement. Figure 32 illustrates the
different steps of the asymmetry procedure for CALO, JPT, and PF jets respectively. The total
pT resolution derived from the extrapolation of the reconstructed asymmetry is shown in green
circle, the estimation of the particle-level imbalance resolution from the application to MC par-
ticle jets is shown in magenta diamond, and the quadrature subtraction to the final asymmetry
result is shown in blue square. All three can be described by a fit to a variation of the standard
formula for calorimeter-based resolutions,

Figure 5.6: Jet energy resolution in MC. The distribution shows the ratio precoT /pgenT for
simulated QCD events and calorimeter jets with |η| < 0.5 and 250 < pgenT < 320 GeV.
The distribution is modeled by a Gaussian core and a Crystal Ball function to describe the
tails [66].

5.4.3 Jet energy resolution

The jet energy resolution gives a measure of how accurately we can measure the pT of a

jet. In MC simulation this resolution is derived from generator level jets which are spatially

matched to reconstructed jets after the full detector simulation and reconstruction have

been performed. The pT response is then defined as the ratio of reconstructed precoT over

generator jet pgenT . The resulting distribution is shown in Figure 5.6 for calorimeter jets

with |η| < 0.5 and 250 < pgenT < 320 GeV and consists of a Gaussian core and a Crystal

Ball function to model the tails. The Gaussian width of this distribution gives a measure

for the jet energy resolution.

In data the resolution is measured with the previously mentioned dijet or γ+jet balancing

methods. The resolution in data is slightly worse than it is in MC and correction factors are

derived. Figure 5.7 shows the measured resolution for 36 pb−1 of data collected at
√
s =

7 TeV in black for central jets reconstructed from calorimeter information only (left) and

reconstructed using the particle-flow approach (right). The original MC resolution is shown
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Figure 5.7: Jet energy resolution measured in data with the dijet balancing method in
black compared to the uncorrected (red dashed) and corrected resolution (red solid) in MC.
Systematic uncertainties are shown in yellow. The plot on the left shows jets reconstructed
from calorimeter information only while the right one uses jets reconstructed with the
particle-flow algorithm [66].

by a red dashed line and the corrected resolution by a solid red line. As mentioned before

the particle-flow approach yields an improved energy resolution, which is about 10% for

central jets of pT ≈ 100 GeV.

5.4.4 b-jet identification

For many physics analyses it is important to distinguish between jets that originate from

light- or heavy-flavor quarks. During the hadronization process b quarks produce mostly

B hadrons, which have a lifetime that allows them to travel a few millimeters before they

decay, leading to a so-called secondary vertex within the jet. This and other quantities

allows us to “tag” jets as b jets and the current algorithms employed by CMS are discussed

in this section following Reference [68].

Two major b-tagging algorithms, called taggers, are used in CMS: the jet probability

tagger (JP) and the combined secondary vertex tagger (CSV). Both of these algorithms

produce a discriminating variable that can successfully distinguish light- from heavy-flavor

jets. Several selection criteria, referred to as working points, are denoted by loose “L”,

medium “M”, and tight “T”, based on a misidentification probability of 10%, 1%, and
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0.1%, respectively. For each jet the impact parameter (IP) is calculated in three dimensions

and describes the distance of the jet from the primary vertex (the vertex with the highest

sum p2
T of all associated tracks). This signed quantity is more likely to be positive for decays

of particles that travel along the jet axis. The impact parameter significance SIP is given

by the IP divided by its uncertainty and is used as a discriminating variable to distinguish

between light- and heavy-flavor jets, since it has similar properties as the IP. The JP tagger

makes use of the IP information of several tracks in one jet and estimates a likelihood that

they originated from the same primary vertex.

Given the very fine granularity of the CMS pixel detector it is also possible to reconstruct

secondary vertices within jets. A neural network approach is used for the CSV tagger,

combining track based lifetime information with the secondary vertex reconstruction. For

a medium working point (CSVM) a b-tagging efficiency of around 70% for central jets with

pT between 100 and 200 GeV as is shown on the left in Figure 5.8 is achieved. For higher

transverse momenta beyond 800 GeV this efficiency reduces to about 55%. Several methods

are employed by CMS to measure these efficiencies in data. For example, in data jets can

be selected that have a muon close by (within ∆R = 0.4), due to the large semi-leptonic

branching fraction of B hadrons into muons these jets are more likely to originate from

the hadronization products of a b quark. Other methods are discussed in more detail in

Reference [68] and all yield comparable results. The misidentification rate for the CSVM

working point is shown on the right in Figure 5.8 and lies between 1-2% for jets up to

300 GeV. One can clearly see in Figure 5.8 that the efficiency in data and simulation is

different, therefore scale factors are derived and applied to the MC to match the measured

efficiency in data. For this analysis we tested different taggers as well as working points, to

determine which is most optimal for the analysis. This optimization procedure is described

in more detail in Section 6.4.3.
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Figure 5.8: Left: Efficiency to identify b jets with the CSV tagger and medium working
point for data and simulation Right: Misidentification rate for the CSVM tagger [69].

5.5 Leptons, photons, and missing transverse energy

While this analysis heavily relies on jets and their reconstruction, we briefly discuss how

other objects such as electrons, muons, taus, and photons are identified [32]. The particles

build the foundation of a variety of physics analyses performed by the CMS collaboration.

5.5.1 Electrons and photons

Electrons and photons both deposit a large fraction of their energy into the ECAL with ≈

94% of their energy contained in 3×3 crystals. Due to the tracker material in front of the

ECAL electrons and photons start producing electromagnetic showers before reaching the

ECAL. This shower spreads in φ-direction, because of the strong magnetic field. In order

to account for that effect, “superclusters” are formed that extend in the φ-direction. The

energy of the supercluster is corrected in order to account for non-linear responses of the

detector and to compensate for the interaction occurring before the ECAL is reached.

• Photons are reconstructed from the superclusters and a momentum is assigned based

on the supercluster position and the position of the primary reconstructed vertex.

Quality criteria are applied in order to distinguish photons from electrons, for example,

by requiring them not to match pixel hits consistent with a track from the interaction

region. Additionally, the photon should be isolated, where several isolation variables
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are calculated based on the ECAL and HCAL energy deposits and sum of track pT

in a cone of radius 0.4 around the photon candidate [70].

• Electrons are reconstructed by two complementary algorithms either starting with

ECAL superclusters or with hits measured in the tracking detector. The first method

is geared towards isolated electrons in the pT range of W± and Z0 boson decays,

whereas the second one is more suitable for low-pT non-isolated electrons. Electron

candidate tracks are seeded similarly as general tracks described in Section 5.2 and

the reconstructed tracks are spatially matched to the ECAL cluster. The energy sum

of all bremstrahlung photons associated with the track are included in the electron

energy. Similar criteria on the isolation as discussed for photons is also applied to

electron candidates.

5.5.2 Muons

Muon reconstruction has already been mentioned in the discussion of the L1 muon trigger

system. Candidates found in the L1 reconstruction define a region of interest in the muon

system, which is used to perform the offline reconstruction in three steps. The first step tries

to align hits in the DT or CSC chambers and form an initial track segment. At the second

step, the previously found track segments are linked together to form a full muon track in

the muon system only (standalone tracks). Finally in the last stage, these standalone tracks

are combined with hit information from the silicon tracker building a so-called global muon.

5.5.3 Tau leptons

Tau leptons can be identified through their decay products, which include semi-leptonic

decays into a neutrino and electron or muon (in 35% of the cases) or hadronic decays

(65%) resulting in a so-called tau-jet [9]. The hadronic decays are further subdivided into

one-prong (one charged hadron and multiple neutral pions) or three-prong decays (three

charged hadrons) and produce an experimental signature of narrow jets with low particle

multiplicity. The reconstruction algorithm starts with a particle-flow jet with a distance

parameter of R = 0.5 and identifies first neutral pions and then charged hadrons within
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that jet. These components are used to calculate the hadronic tau (one- and three-prong)

and its four-vector.

5.5.4 Missing transverse energy

The CMS detector is designed in such a way that all particles that interact with matter

and are produced in a proton-proton collision deposit their energy completely within the

calorimeters or are measured by the muon system. Many electroweak decays include neu-

trinos, which do not interact with the detector material. This results in an imbalance of

energy in the transverse plane. Also non-interacting particles are predicted by new physics

models like SUSY where the LSP escapes detection. EmissT is defined as the negative of the

vector sum of the transverse momenta of all reconstructed particles. Three different defini-

tions of EmissT are used in CMS based on the either the particle-flow algorithm, the sum of

the calorimeter energies, or the sum of the calorimeter energies plus tracks reconstructed in

the tracking system.
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Chapter 6

Event selection

While the reconstruction of events is performed centrally, every physics analysis defines

criteria for the specific physics goal to be achieved. In this analysis we are are looking for

pair-produced three-jet resonances, which indicates, for example, the minimum number of

jets we are looking for. Other aspects of the event selection include choices like the trigger

path, pT thresholds, and optimization procedures. In this chapter we discuss these general

choices as well as the analysis technique and selection optimization based on the model of

a heavy resonances decaying 100% into three jets.

6.1 Trigger selection

Events are recorded using a two-tiered trigger system as described in Section 3.2.6. First,

they are selected by the L1 trigger and then passed to the HLT system. At the HLT jets are

reconstructed only from calorimeter information and we use the HLT QuadJet60 DiJet20

trigger path for this analysis. For this trigger four jets with pT above 60 GeV and two jets

with pT above 20 GeV are required. This six-jet trigger was unprescaled during the course

of the 2012 data-taking period, making it suitable for this analysis. In order to measure

the efficiency of the chosen trigger path we use fully reconstructed events as described in

Chapter 5. At the analysis stage jets are reconstructed from particle-flow candidates and

not only from calorimeter information, as is the case at the trigger level.

Given that there are two separate pT thresholds we measure the trigger efficiency as

a function of the fourth-jet and sixth-jet pT simultaneously with respect to a trigger with

lower thresholds or a different L1 requirement. For this measurement events are selected

with at least six particle flow jets above 35 GeV. Figure 6.1 shows the trigger efficiency of

the HLT QuadJet60 DiJet20 trigger path with respect to the HLT QuadJet50 path, where
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Figure 6.1: Trigger efficiency for the HLT QuadJet60 DiJet20 trigger. The efficiency is
measured as a function of 4th (y-axis) and 6th (x-axis) pT threshold. We find that requiring
the 4th jet pT to be above 80 GeV and the 6th jet pT to be above 60 GeV gives an efficiency
greater than 99%, which remains flat as a function of jet pT .

only four jets above 50 GeV are required at the HLT. We find that for a selection of four jets

above 80 GeV and two additional jets above 60 GeV the trigger is more than 99% efficient

and the efficiency remains flat as a function of jet pT . When additional jets are present in

the events we require them to have at least a pT > 35 GeV, to reduce the effect of low pT

jets from pile-up.

6.2 Basic event selection

Events that pass the trigger requirement must satisfy further selection criteria as discussed

in this section. We require events to have at least one primary vertex that has at least four

degrees of freedom ndof > 4. Additionally, the vertex position in z-direction zvtx is required

to be less than 24 cm away form the geometric center of the detector. The maximum

distance in the transverse plane measured from the same reference point dtvxo has to be less

than 2 cm.

Jets are reconstructed based on the particle-flow algorithm, as described in Section 5.1.

The default CMS anti-kt [62] jet-clustering algorithm is used with a distance parameter
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of R = 0.5 and a list of particle-flow candidates as input. Further jet identification (ID)

criteria are imposed in order to reduce the effect of electronic noise in the ECAL and HCAL

system and other particles that are misidentified as jets. The energy composition of each

jet is attributed to neutral or charged particles depositing their energy in the ECAL and

HCAL. The ratio of these deposits with respect to the total energy can be used as a measure

to identify jets. A large fraction of hadronic energy from neutral particles is an indication

of noise in the HCAL, whereas a large fraction of electromagnetic energy from charged

particles indicate electrons that are misidentified as jets. Each jet has to have more than

one constituent and for jets in the central region |η| < 2.4 at least one of the constituents

has to be charged. In summary, the following specific criteria are applied to uncorrected

jets [71]:

• General selection

– Neutral hadron energy fraction< 0.99

– Neutral electromagnetic energy fraction < 0.99

– Number of constituents > 1

• for |η| < 2.4

– Charged electromagnetic energy fraction < 0.99

– Charged hadron energy fraction > 0.0

– Charged multiplicity > 0

Figure 6.2 shows the different variables for the jet ID in data compared with simulated

QCD MC events, where at least six jets are selected in the event with the fourth-jet above

80 GeV and the sixth-jet above 60 GeV. In these distributions jets are shown where the

jet pT has been corrected to compensate for inefficiencies in the detector response. The

corrections are discussed in more detail in Section 5.4.2 and applied on a jet-by-jet basis

depending on η and uncorrected pT of the jet. In Figure 6.3 we show kinematic distributions

(pT , η and φ) for the six highest pT jets. We find good agreement between data and QCD

simulation for these kinematic variables. Table 6.1 summarizes the basic event selection, as

discussed in this section up to now.
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Figure 6.2: Comparison of QCD Monte Carlo (madgraph + pythia) with data for events
containing at least six jets with fourth-jet ≥ 80 GeV and sixth-jet ≥ 60 GeV. Shown are
(from left to right and top to bottom) charged hadron fraction, charged electromagnetic
energy fraction, neutral hadron fraction, neutral electromagnetic energy fraction, number
of constituents, and charged multiplicity.

Basic event selection
≥ 1 good primary vertex
zvtx < 24 cm dvtx0 < 0.2 cm
≥ 6 particle-flow anti-kt jets with R = 0.5
pT ≥ 35 GeV |η| < 2.5
4th-jet pT ≥ 80 GeV 6th-jet pT ≥ 60 GeV

Table 6.1: Basic event selection criteria.
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Figure 6.3: Comparison of QCD Monte Carlo (madgraph + pythia) with data for events
containing at least six jets with fourth-jet ≥ 80 GeV and sixth-jet ≥ 60 GeV. Shown are
from left to right pT , η and φ of the six highest pT jets from top to bottom.
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6.3 Analysis strategy

In this analysis we search for new pair-produced heavy resonances that decay exclusively into

three jets each. Besides the copious amount of QCD multijet background there is another

major challenge arising from a combinatorial problem in finding the correct combination

of jets representing one of the two new particles. In this section we discuss the so-called

jet ensemble technique, which makes use of kinematic features that are present in heavy

particle decays but not in QCD multijet events and random combinations of jets.

6.3.1 Jet ensemble technique and simulated signal samples

The jet ensemble technique has been successfully employed previously by the CDF [15] as

well as the CMS [16, 17] collaborations. The ensemble here consists of all the possibilities to

associate exactly six jets into unique sets of three jets (triplets) which is given mathemati-

cally by
(6
3
)

= 20. Once the basic requirements from Table 6.1 for an event are satisfied, the

leading six jets in pT are associated into these 20 triplet combinations such that each unique

combination of jets is represented. It is important to note that, for the signal MC events,

at best two of the event’s 20 jet triplet combinations correspond to the correct daughters

of any pair-produced particle decaying into three jets.

In order to reject incorrectly combined triplets, we make use of kinematic features that

can distinguish correctly assigned triplets from random combinations. For uncorrelated

triplets, the triplet invariant mass (Mjjj) scales with the scalar sum of the transverse mo-

menta of its constituents (
∑
jjj
|pjetT |), whereas for correct combinations of jets in the signal

samples the invariant mass is independent of this sum. Figure 6.4 show schematically the

final state of six jets on the left and all of the 20 possible combinations in the middle. On the

right hand side of this figure we show an illustration of the described correlation between

Mjjj (plotted on the y-axis) and
∑
jjj
|pjetT | (plotted on the x-axis). Correct combinations

should pile up along the horizontal dashed line, while incorrect combinations tend to fall

along the diagonal line and above shown in the red area. To select predominately correct
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✔ ý 20	  unique	  jet	  	  combina0ons:	  
	  	  	  123,	  124,	  125,	  126,	  134,	  	  
	  	  	  135,	  136,	  145,	  146,	  156,	  	  
	  	  	  234,	  235,	  236,	  245,	  246,	  	  
	  	  	  256,	  345,	  346,	  356,	  456	  	  

Figure 6.4: Illustration of the jet ensemble technique.

combinations we require each triplet to satisfy the following relation:

Mjjj <
∑
jjj

|pjetT | − ∆, (6.1)

where ∆ is an adjustable offset also referred to as the “diagonal” offset. For example, a

the black solid line along the diagonal of the rectangle on the right hand side of Figure 6.4

corresponds to ∆ = 0. Imposing Equation 6.1 on each triplet selects the ones that fall into

the green framed area in Figure 6.4. In order to demonstrate the discussed ideas, we apply

the above described method to a hypothetical gluino signal sample as shown in the Mjjj

vs.
∑
jjj
|pjetT | plot on the top in Figure 6.5 for a gluino with light-flavor jets in the final state

and a mass of 400 GeV.

In order to visualize the correctly and incorrectly combined triplets we perform the

following procedure. Each selected jet is compared to the generated parton content of the

event in MC simulation by calculating the spatial distance ∆R between the MC parton

and the reconstructed jet. Each pair is ordered by this spatial distance and if the smallest

value of ∆R is less then 0.4 we call the jet matched to a generator level parton. Since

the full decay chain is known in MC simulation one can now trace back where this parton

originated from, finding its mother particle. If all three jets in the triplet are matched

to a generator level parton whose mother is identified as the gluino, we call the triplet a

“correct” combination. If a triplet consist of jets that are either not matched to a generator

level parton (smallest ∆R to large) or if jets originate from both parent gluinos, we call this
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triplet an “incorrect” combination.

The right hand side of Figure 6.5 shows again the Mjjj vs.
∑
jjj
|pjetT | distribution but this

time we make use of the aforementioned technique in order to identify correct and incorrect

combinations. In this plot the correct combinations are represented by the solid colored

region, and as predicted these triplets pile up along a horizontal line around 400 GeV, the

mass of the simulated gluino. Incorrect combinations are represented by the grey scatter

plot with colored contour lines, and they populate the left top corner of two dimensional

space. The red dashed line corresponds to the ∆ value of 110 GeV, and we keep all triplets

that fall to the right of this line. Figure 6.6 shows the triplet invariant mass distribution

for all 20 combinations on the left, where no ∆ requirement is imposed. Correct triplets are

shown in the gold shaded area and incorrect ones, also referred to as intrinsic combinatorial

background, are represented by the white histogram. Without the ∆ requirement, correct

and incorrect combinations peak at the same position. The shape of the combinatorial

background, even for simulated signals containing a three-jet resonance, is not known,

making it therefore difficult to pick out a potential signal peak. The right hand side of the

same figure shows the triplet invariant mass distribution for triplets that satisfy Equation 6.1

with ∆ = 110 GeV. After this selection criterion is imposed the combinatorial background

distribution moves further to the left while the correct combinations stay at the resonant

mass, allowing a separation of a signal peak from its intrinsic combinatorial background.

The combinatorial background for signal triplets is smoothly falling with increasing

triplet mass and is modeled by a functional form that exhibits the same smoothly falling

behavior. We define the following four-parameter function, which has been used to model

the triplet invariant mass distribution in the previous two CMS analyses [17, 16] and is also

widely used in searches for dijet resonances [72]:

P comb = P0
(1− x√

s
)P1

( x√
s
)P2+P3 log x√

s

. (6.2)

The signal peak is modeled with a Gaussian function, which we find suitable to describe

the shape. For the gluino model tested here the intrinsic width of the new resonance is

negligible with respect to the jet energy resolution, which affects the three-jet invariant
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∑
jjj
|pjetT | is for signal gluinos of mass 400
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mass resolution [73].

6.3.2 Jet ensemble technique and simulated QCD multijet events

In the previous section we have discussed the jet ensemble technique in the context of a

new hypothetical three-jet resonance. This section focuses on the technique tested with

simulated QCD multijet events, where no actual resonance is present. The top plot in

Figure 6.7 shows the Mjjj vs.
∑
jjj
|pjetT | distribution for the simulated QCD events. The

two plots in the bottom row show the triplet invariant mass distribution on the left when

no ∆ requirement is imposed (all 20 combinations per event) and on the right when each

triplet must satisfy Equation 6.1 with ∆ = 110 GeV. The behavior of the triplet invariant

mass distribution of jets originating from QCD is very similar to the one described in the

previous section for incorrect triplet combinations. The shape is again smoothly falling and

the peak position of the distribution changes when the ∆ requirement is imposed.

QCD MC is used in the analysis to cross-check results of optimization procedures and

for comparisons of kinematic distributions in data with the expectation from simulation.

However, it is important to note that whenever the QCD simulation is used we obtain

the overall normalization from the data. For the following section, where event selection
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Figure 6.6: Mjjj distributions for a 400 GeV gluino with light-flavor jets in the decay. The
distribution on the left shows all possible 20 combinations per event. Correct triplets are
shown in the gold shaded area and incorrect ones are represented by the white histogram.
The plot on the right shows the Mjjj distribution for all triplets that satisfy Equation 6.1
with a ∆ = 110 GeV . It can clearly be seen that imposing the ∆ requirement separates out
the correct combinations in gold from the incorrect ones in white. The distribution is fit
with a four-parameter function (black line) and a Gaussian (blue line), where the Gaussian
is used to model the expected signal for the search.

optimization is discussed, we estimate the background from the data shape itself using a

parametrized function.

6.4 Advanced selection and optimization

One major advantage to this analysis is its simplicity. We probe essentially any hadronic

final state where the particle decays to three daughters and do so using only the jet in-

formation in the event. To best select signal events, we use two “lever arms” available in

the analysis: the pT threshold of the sixth leading jet in pT and the offset value ∆ for the

jet triplet mass requirement in Equation 6.1. Additionally, we study other variables that

distinguish between signal and QCD background by comparing event shape variables [38].

6.4.1 Diagonal offset ∆ selection

The effect of ∆ on the distribution of either incorrectly assigned signal triplets or uncorre-

lated jet combinations in QCD events is very similar; the peak position moves as a function
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Figure 6.7: Mjjj vs.
∑
jjj
|pjetT | and Mjjj distributions for simulated QCD MC events. The

top plot shows the two dimensional distribution for all 20 possible triplet combinations.
The bottom row shows the one dimensional Mjjj distribution when no ∆ requirement is
used on the left and for ∆ = 110 GeV on the right. All three distributions are shown in
arbitrary units.
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of ∆. In order to separate the Gaussian signal peak of correct combinations, as shown in Sec-

tion 6.3.1 for the case of the hypothetical new three-jet resonance with a mass of 400 GeV,

from the peak of the intrinsic combinatorial background it is advantageous to chose ∆ such

that the background peaks to the left of the potential new signal. Changes in the minimum

pT requirements on the jets have the effect of moving the peak position, however not in

exactly the same way as ∆. While an increase on the minimum sixth-jet pT pushes the

peak position to higher values, we find that the peak position first decreases and after a

minimum increases again as a function of ∆. In order to determine this minimum position

we use the triplet invariant mass distributions in data corresponding to 19.4 fb−1 for events

that pass the selection criteria summarized in Table 6.1 with the additional requirements

that events are vetoed that contain b jets. This veto reduces the effect of all-hadronic tt̄

events that contribute to the triplet invariant mass distribution around 175 GeV, and could

bias the estimate of the peak position in that region. The ∆ requirement is varied in steps

of 10 GeV, and the triplet invariant mass distributions are shown in Figure 6.8 for three

different ∆ (70, 110, and 150 GeV) values. In order to determine the peak position, the

triplet invariant mass distribution is fit with a Landau function, which describes the area

around the peak reasonably well. The Landau function has three parameters: the most

probably value (MPV indicates the peak position), the amplitude (indicates the height of

the distribution), and the width. We use the MPV as an estimate for the peak position in

data and plot this value as a function of ∆ as shown in the right bottom plot in Figure 6.8

in red. We find that for a value of ∆ = 110 GeV the peak position reaches its minimum.

Since we are considering two different scenarios of RPV gluino decays into either light-

flavor jets or one heavy-flavor and two light-flavor jets, we are also testing if the use of b-jet

identification has any effect on the peak position of the triplet invariant mass distribution.

We repeat the procedure of fitting the Mjjj peak position for events where b jets are not

vetoed, and find overall the same behavior as a function of ∆. This is shown by the

black curve in the bottom right plot of Figure 6.8. The minimum again is reached for

∆ = 110 GeV. The difference in the two curves can be explained by the non-negligible

contribution of all-hadronic tt̄ triplets in the distribution where b jets are not explicitly

vetoed, which results in a slightly lower fit value for the peak position.
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Figure 6.8: The data distributions for the exclusive 0-b jet case for 19.4fb−1, with a Landau
function to fit the peak position of the data. The bottom right plot shows the MPV of the
different Landaus as a function of the diagonal offset. The minimum is reached for ∆ of
110 GeV.

We chose a value of ∆ = 110 GeV for all subsequent optimization studies.

6.4.2 Optimization of the sixth-jet pT

After the diagonal offset is chosen, we optimize the sixth-jet pT for each of the different

resonance masses. With increasing particle mass the jets it decays to also increase in pT ,

which is the second handle in the analysis that improves the sensitivity to the new physics

model under consideration.

The distribution of the pT of the sixth-jet in data, QCD MC, and three different signal

masses is shown in Figure 6.9. Changing the minimum pT threshold has an effect on triplet

invariant mass distribution, pushing the lowest accesible Mjjj point to higher values. In

order to find the optimal selection criteria we increase the minimum requirement on the
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sixth-jet pT in 10 GeV steps, for brevity referred to as operating point, from 60 GeV to

130 GeV. While the reconstructed Gaussian peak stays at a fixed mass the shape of the

QCD multijet background changes.

The optimization procedure is performed as follows:

• Events from simulated MC signal samples and data are selected that pass the minimum

event selection criteria given in Table 6.1.

• For each of those events, triplet combinations are formed from the six leading jets.

Each jet within a triplet is required to pass the pT threshold for a given operating

point that is being tested.

• Each triplet has to satisfy Equation 6.1 with ∆ = 110 GeV.

• The triplet invariant mass distribution is plotted for all triplets surviving the above

mentioned criteria. The distribution of signal triplets is divided by the number of

events generated and multiplied by the theory cross section from Table 4.2 and by the

integrated luminosity to estimate how many triplets one would expect in the given

dataset.
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• The expected signal distribution is fitted with the sum of the four-parameter function

in Equation 6.2 and a Gaussian component, where the Gaussian is defined as the signal

in the search. The distribution for a 400 GeV gluino with light-flavor jets in the decay

is shown on the left of Figure 6.10 with the aforementioned fits and the estimated

Gaussian signal (red). The data distribution is fitted with the same four-parameter

function as given in Equation 6.2 and repeated here for convenience:

P bkg = P0
(1− x√

s
)P1

( x√
s
)P2+P3 log x√

s

, (6.3)

in order to estimate the expected multijet background for a given operating point.

This background estimate for a sixth-jet minimum pT of 60 GeV is shown on the right

hand side of Figure 6.10 in red. The expected Gaussian signal from the plot on the

left is added to the background as depicted with the blue dashed line.

• For each operating point we define a metric, the signal significance for triplets:

StripSig =
NSig
trip√

NSig
trip +NBkg

trip

, (6.4)

where NSig
trip is the number of signal triplets given by the integral of the expected

Gaussian signal within a ±2σ window and NBkg
trip is the number of background triplets

estimated from the data background fit, which is integrated in the same window as the

Gaussian signal. This is depicted by the black dash-dotted vertical lines in Figure 6.10.

The optimization procedure is conducted for both RPV scenarios considered. Figure 6.11

shows two triplet invariant mass distributions for a gluino with a mass of 400 GeV decaying

only into light-flavor jets on the left and a gluino decaying into one heavy-flavor and two

light-flavor jets on the right.

For each operating point we repeat the optimization procedure outlined above and obtain

a value of the metric StripSig . The top two plots in Figure 6.12 show the metric for each

operating point on the x-axis and all gluino masses considered on the y-axis. The left

plot corresponds to gluinos with light-flavor decays and the right one shows gluinos with

heavy-flavor jets in the final state.
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Figure 6.10: Mjjj distribution and signal + background distribution for a 400 GeV gluino.
The left plot shows the triplet invariant mass distribution for a 400 GeV gluino with light-
flavor jets in the decay. Correctly assigned triplets are shown in the gold shaded area
while the incorrect triplet combinations are represented by the black lined histogram. The
Gaussian component of the signal is shown in red and represents the expected signal in
data. The right plot shows the background estimation obtained from a fit to the data
triplet invariant mass distribution. The Gaussian signal from the left hand side is added
on top of the expected background shown by the blue dashed line. Both distributions are
integrated within a ±2σ window depicted by the vertical black dash-dotted lines.
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Figure 6.11: Mjjj distribution for 400 GeV gluino decaying into only light-flavor jets (left)
or one heavy-flavor and two light-flavor jets (right). The distributions are fitted with a
Gaussian and the four-parameter function. The gold shaded area in both plots represents
triplets matched to MC gluino particles, whereas incorrect combinations are shown by the
black lined histogram.
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Figure 6.12: The output of the optimization metric of the different signal masses as a
function of the sixth-jet pT with a diagonal offset of 110 GeV. The left plot corresponds to
gluinos with light-flavor decays and the right one shows gluinos with heavy-flavor jets in
the final state. The bottom row shows the normalized signal significance.
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In order to make trends more easily visible we calculated a normalized signal significance,

which is defined as the ratio of StripSig divided by the average of StripSig over all optimization

points for a given gluino mass. The bottom two plots in Figure 6.12 show the values of

the normalized signal significance for each mass as a function of sixth-jet pT . The color

code represents the highest values of the metric in red and the lowest ones in green and

blue. Low-mass three-jet resonances favor lower jet pT thresholds, which gradually increase

towards higher resonance masses. Both flavor scenarios show the same behavior for this

optimization. Gluinos with light-flavor decays were already excluded up to a mass of 460

GeV in the 2011 CMS analysis [17], therefore, we are particularly interested in higher

masses. We refer to this search as the “inclusive” search since no specific requirements are

imposed to identify the flavor content of the final state and we choose one operating point,

requiring the sixth-jet pT to be above 110 GeV. For the gluinos with heavy-flavor jets in the

decay we are also interested in the low-mass range, since this is the first search of its kind

and the additional handle of b-jet identification is available to further increase sensitivity

as discussed in the following Section 6.4.3. We choose two operating points, one for lower

resonance masses (< 600 GeV) and one for higher resonance masses (> 600 GeV). The

values of 60 GeV and 80 GeV are chosen for the sixth-jet and fourth-jet pT , respectively,

for masses below 600 GeV. Finally, a higher pT requirement of 110 GeV for gluino masses

above 600 GeV is chosen. Table 6.2 summarizes the kinematic selection criteria discussed

so far. This full procedure was repeated with QCD MC simulation instead of data for the

background estimate which resulted in the same optimization points.

Selection Inclusive Heavy-flavor search
criteria search low mass high mass

Mass range 400–1500 GeV 200–600 GeV 600–1500 GeV
∆ 110 GeV 110 GeV 110 GeV

Fourth-jet pT 110 GeV 80 GeV 110 GeV
Sixth-jet pT 110 GeV 60 GeV 110 GeV

Table 6.2: Kinematic selection requirements for the three search regions in the analysis.
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6.4.3 b-tagging optimization

Using b-jet identification in order to determine the heavy-flavor content of the final state is

a natural extension to the previously conducted search for three-jet resonances. In the case

of gluinos with RPV decays it is possible to probe a different set of couplings and increase

the sensitivity of the analysis with this additional handle. Specifically selecting events,

where one or more of the six leading jets is b-tagged, allows us to study the effectiveness of

the jet ensemble technique on all-hadronic tt̄ events. Several different b-tagging algorithms

and working points are available within CMS as discussed in Section 5.4.4. Efficiencies for

these taggers are measured in data and compared to simulated MC samples. Scale factors

are derived based on the ratio of the efficiency measured in data with respected to the one

measured in simulation and they are parametrized as a function of pT and η of the jet [74].

The scale factors need to be applied to MC events to match the efficiency in data. Instead

of defining a weight for each event, we are using a method were the b-tagging status of each

jet is either changed from true to false or vice versa, such that on average the measured

efficiency in data is reproduced. A simple example is the case where the scale factor is

less than one, then a fraction of the b tagged jets corresponding to one minus the scale

factor need to be downgraded and regarded as non-tagged. Each jet in MC that can be

spatially matched to a generator level particle is assigned a parton flavor (u, d, g, c, or b).

Based on this matching, sample dependent b, c, and mis-tag efficiencies are calculated and

parametrized as a function of pT and η of the jets, which are needed to correctly apply the

scale factors to the MC samples.

After finding the optimal choice of kinematic variables for both light- and heavy-flavor

scenarios, we next focus on finding the best b-tagging selection for the heavy-flavor search,

testing the various algorithms and working points, as well as different categories based on

the number of tagged jets. The five categories are defined as:

• ≥ 0 b tags in the event

• ≥ 1 b tag in the event

• ≥ 1 b tag in the event and ≥ 1 b tag in the triplet (removes some incorrect combined

triplets)
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• ≥ 2 b tags in the event

• ≥ 2 b tags in the event and ≥ 1 b tag in the triplet

Based on these categories, events and triplets are selected in data and the gluino samples

that included heavy-flavor jets in the final state. We perform a similar optimization proce-

dure as outlined for finding the optimal sixth-jet pT selection. Adding b tags to the event

selection increases the contribution from all-hadronic tt̄, and it is therefore necessary to

start the fit for estimating the QCD multijet background above the tt̄ mass region around

200 GeV. The metric is again the signal significance as defined in Equation 6.4, which is

evaluated for the different b-tagging categories for each of the heavy-flavor RPV samples.

The top plots in Figure 6.13 show this metric for the Combined Secondary Vertex (CSV)

tagger with the medium working point. The bottom plots show each row from the top with

the signal significance normalized to its average, to identify trends. Going from no b tags to

at least one b tag in the event increases the sensitivity by over 30%. Placing the additional

requirement of at least one b tag in the triplet helps to reduce the number of incorrectly

combined triplets and increases the sensitivity further.

Considering the different masses, we choose the category of≥ 1 b tag in the event and≥ 1

b tag in the triplet for the heavy-flavor search. After choosing the b-tagging requirements,

we compare the signal significance for different working points of the CSV tagger (light,

medium, tight) and of the medium working point of the JP tagger. The outcome is shown

in Figure 6.14. The CSV medium working point proves to be the most efficient for the

heavy-flavor model considered.

6.4.4 Event shape variables

To further improve the sensitivity for higher mass resonances we study the use of different

event shape variables. With increasing mass these new particles are produced almost at rest

with very little boost, leading to a more isotropic decay in the detector. QCD events, even

with high jet multiplicity, should show a more dijet-like structure. One way to examine
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events passing the full event selection. The data, QCD, and signal shapes are normalized
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events with these features is to calculate the sphericity tensor defined as [38]:

Sαβ =
∑
i p
α
i p

β
i∑

i |pi|2
, (6.5)

where the sum runs over all jets in the event, for events that satisfy the criteria mentioned

in Table 6.1. After diagonalizing this tensor, the eigenvalues which satisfy λ1 > λ2 > λ3 and

λ1 + λ2 + λ3 = 1 are computed, giving two event shape variables sphericity S = 3
2(λ2 + λ3)

and aplanarity A = 3
2(λ3). Sphericity measures the p2

T with respect to the event axis. For

dijet events, S will be close to 0, whereas for isotropic events S approaches 1. The variables

are calculated on an event-by-event basis using all jets with the basic event selection applied

but before triplet combinations are formed. Figure 6.15 shows the variables aplanarity (left)

and sphericity (right) for data, QCD MC and three different gluino masses. The QCD MC

agrees well with the shapes observed in data and shows that the majority of the events lean

toward lower values of S, because of their more dijet-like event structure. Shown in green

and red are the distributions for the high-mass gluinos with masses of 750 GeV and 1250

GeV, respectively.

The heavier the resonance, the more spherical an event becomes. For lower masses

(shown in blue in Figure 6.15 for a 300 GeV gluino), the shape resembles closer the one
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Figure 6.16: Sphericity optimization. Shown is the normalized event signal significance
SEvtSig for all three-jet resonance masses considered (y-axis) and for the different minimum
sphericity requirements.

from background. In order to determine the optimal selection criteria we perform another

optimization based on the sphericity variable. Unlike changes in the kinematic selection,

requirements on the event shape variables have little effect on the shape of the signal

and background triplet invariant mass distributions, therefore, the optimization can be

performed at the event level. We define the event signal significance as:

SEvtSig = NSig
evt√

NSig
evt +NBkg

evt

, (6.6)

where NSig
evt denotes all expected events passing the minimum sphericity requirement for a

given signal mass, and NBkg
evt represents the number of background events passing the same

requirement. Figure 6.16 shows the normalized event signal significance for all three-jet

resonance masses considered. Red colors represent minimum requirements on the sphericity

variable where the analysis sensitivity improves. Low-mass resonances have a more dijet-like

event structure similar to QCD events, therefore, using the sphericity as a discriminating

variable is not advantageous. However, for higher masses we find that the sensitivity of the

analysis increases when we require events to have S ≥ 0.4.
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6.5 Event selection and optimization summary

We have discussed the basic event selection and analysis strategy for a search for pair-

produced three-jet resonances. In order to further optimize the selection criteria we use the

model of pair-produced gluinos decaying through RPV into either only light-flavor jets or

into one heavy-flavor and two light-flavor jets. Three different search regions are defined:

the inclusive search, and the low-mass and high-mass heavy-flavor searches. Table 6.3

summarizes the kinematic and b-tagging selection criteria for all three regions.

Selection Inclusive Heavy-flavor search
criteria search low mass high mass

Mass range 400–1500 GeV 200–600 GeV 600–1500 GeV
Jets at least six jets with pT ≥35 GeV and |η| < 2.5
∆ 110 GeV 110 GeV 110 GeV

Fourth-jet pT 110 GeV 80 GeV 110 GeV
Sixth-jet pT 110 GeV 60 GeV 110 GeV
b-tagging - ≥ 1 b tags in triplet
Sphericity 0.4 - 0.4

Table 6.3: Selection requirements for the three search regions in the analysis.
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Chapter 7

Statistical methods and background modeling

The main background in this search arises from QCD multijet and tt̄ pair production,

whereas the latter plays a more important role for the heavy-flavor search. The previous

chapter discussed the event and triplet selection criteria as well as optimization strategies

based on the benchmark model for three-jet resonances, the gluino with RPV decay. As an

introduction to this chapter we start with a discussion of statistical methods for performing

fits followed by a more specific description of the background estimates for each of the three

search regions as summarized in Table 6.3.

7.1 Statistical analysis

This section describes the statistical methods used in the analysis. We discuss general ideas

of fitting data distributions with parametrized functions or binned shapes and estimating

their parameters.

7.1.1 Background parameter estimation

Given a set of data points one tries to describe the distribution with a specific model and

estimate the best values of the model parameters based on the goodness-of-fit to the data.

In this case the data distribution corresponds to the invariant mass of jet triplets that

satisfy all selection criteria as outlined in Chapter 6. The expected distribution of Mjjj is

smoothly falling with increasing triplet invariant mass and we model this background with

a four-parameter function:

P4(x, θ) = dN

dx
= P0

(1− x√
s
)P1

( x√
s
)P2+P3 log x√

s

, (7.1)
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where N is the number of triplets, x is the triplet invariant mass,
√
s represents the center-

of-mass energy, and θ ≡ (P0, P1, P2, P3) are parameters of the function that are estimated

by the fit. We discuss three commonly used methods to estimate fit parameters as described

in [9]: unbinned and binned maximum likelihood methods, and the method of least squares.

In particle physics we count number of occurrences (events), which are distributed ac-

cording to a discrete Poisson probability function. In the central limit theorem (i.e. large

counts) the Poisson distribution can be approximated by a Gaussian distribution.

7.1.2 Unbinned maximum likelihood method

The unbinned maximum likelihood method for estimating parameters of the model is the

default method implemented in the RooFit/RooStats [75] package, and is especially suited

for low event counts. We assume there is a set of M measured quantities x = (x1, ..., xm),

for example, the triplet invariant mass where xi ≡ M i
jjj of the i’th triplet, that follow a

certain probability density function (pdf) f(x, θ), which is normalized to unity (such as a

normalized version of Equation 7.1 from above). If the M measurements are independent of

each other one can write the combined likelihood for all of the measurements as a product

of probabilities :

L(θ) =
M∏
i

f(xi, θ). (7.2)

Our best estimates of the values of θ is then represented by θ̂, which maximizes the likelihood

L(θ). It is usually more convenient to work with the negative natural logarithm of the

likelihood which allows the product to be written as a sum:

− lnL = −
M∑
i

ln f(xi, θ). (7.3)

In order to find θ̂, the likelihood equation (equation for maximizing the log-likelihood, or

minimizing the negative log-likelihood) needs to be solved for each parameter:

∂ lnL
∂θj

= 0, j = 0, 1, 2, 3. (7.4)
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For this computation the overall sample size M is assumed to be fixed. However, it is also

possible to treat it as a Poisson-distributed number which is then referred to as extended

unbinned maximum likelihood method.

One disadvantage of the unbinned fit is that it does not provide a measure of goodness-

of-fit, which quantifies the agreement of the model with the measured data. If the number

of measurements is very large, the calculation of the maximum likelihood can be very

computing time intensive, therefore it is advisable to bin the data without a loss of precision,

and use histograms to perform a binned maximum likelihood fit. This is the method used

in the analysis presented.

7.1.3 Binned maximum likelihood method

In case of sufficient statistics one can use binned data to perform a maximum likelihood fit.

The method is used in the description of the background as discussed later in Section 7.2.

We assume there is a set of M measured quantities, and in the case of the triplet invariant

mass distribution this is the bin content at the middle of each bin in the Mjjj distribution,

assuming a bin width of 10 GeV. If these M measurements are independent of each other,

one can write the likelihood of the full histogram as a product of Poisson probabilities

for each bin P (ni, µi), with the expected number of events µi given by P4(xi, θ) and the

observed number of events is ni. The negative log-likelihood is therefore defined as:

NLL = − lnL(θ) = −
N∑
i

lnP (ni, µi) = −
N∑
i

ln
(
µni
i e
−µi

ni!

)
. (7.5)

One can add a constant term to Equation 7.5, since the minimization procedure is inde-

pendent of terms that do not depend on xi. Therefore, the modified negative log-likelihood

can be written as:

− lnLLR = −
N∑
i

ln
(
µni
i e
−µi

ni!

)
+

N∑
i

ln
(
nni
i e
−ni

ni!

)
, (7.6)

where the second term represents the probability of observing ni events given that ni events

are expected [76]. Equation 7.6 is also referred to a the negative log of the likelihood ratio
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(− lnLLR ≡ − lnλ):

− lnλ = − ln L(ni, µi)
L(ni, ni)

. (7.7)

In the limit of large ni, when Poisson errors can be approximated by Gaussian errors, one

can derive a relation between the LLR and the χ2 (see Section 7.1.4) distribution:

− lnLLR = − lnλ = χ2

2 , (7.8)

therefore giving a measure of the goodness-of-fit, discussed in more detail in following sec-

tion. This method is used for the background estimates and all fits that are performed with

the RooFit/RooStats packages.

7.1.4 Least square method

If the number of entries in each bin of a histogram is sufficiently large the errors can be

approximated by a Gaussian distribution. The χ2 distribution for the entire histogram is

then defined as a sum over all bins:

χ2 =
M∑
i

(ni − µi)
σi

, (7.9)

where the σi is the error on the bin content ni, which can be approximated by √ni, and

µi is the expected number of events in each bin. With the minimization of this χ2 one can

determine the best values of the parameters θ̂. Since the χ2 distribution itself follows a

Gaussian function one can define uncertainties on the fit parameters as the values where

χ2 → χ2 + 1. The minimal χ2
min provides an estimate for the goodness-of-fit when divided

by the number of degrees of freedom (ndf), which is defined as M (number of bins) - n

(number of parameters of the fit). The value of χ2
min/ndf ≈ 1 indicates a good agreement

between the fit and the observed data within the statistical uncertainties. This method is

the standard implementation within the Root package [77], and we use it, for example, in

modeling the Gaussian signal parameters as a function of mass, as discussed in Chapter 8.
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7.2 Background estimate

In this section we discuss more specifically the background estimates for the three search

regions defined in Table 6.3. After applying all event and triplet selection criteria to the

data we find that the triplet invariant mass distribution is smoothly falling in the mass

range of interest. For the background estimate we do not rely on QCD MC simulation but

use a fit directly to the data to extract the expected multijet background. This fit is either

based on the function given in Equation 7.1 or estimated from a control region in data. The

contribution from tt̄ becomes more important when b tags are added, which we will show

in Section 7.2.2. Besides being a background for the heavy-flavor RPV search, it also plays

an important role to validate the jet ensemble technique on a known SM process.

7.2.1 Inclusive search for three-jet resonances

The event and triplet selection criteria for this part of the search are given in the left most

column in Table 6.3 and are summarized below for convenience:

• ∆ = 110 GeV

• 6th-jet pT ≥ 110 GeV

• Sphericity ≥ 0.4

The data Mjjj distribution is smoothly falling and we use the function given in Equa-

tion 7.1 in a fit directly to the data distribution to model multijet background. The

RooFit/RooStats package is used to perform this fit using the binned maximum likeli-

hood method as discussed in Section 7.1.3. The result of this fit is shown in Figure 7.1

on a normal scale on the left and a log scale on the right in the top row. The data Mjjj

distribution is represented by the black points and a bin size of 10 GeV is used. The bottom

row of the same figure shows the residual (data – fit) and pull ((data – fit)/error) distribu-

tions, which show good agreement of the data with fit function. The plot on the right of

Figure 7.2 shows a comparison of the fit with the data using a binning which is based on

the expected resolution of ≈ 7% for a given triplet mass leading to the following values for
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the lower bin edge in GeV:

bins = {0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 121, 131, 141, 151, 162, 174, 187,

201, 216, 232, 249, 267, 286, 307, 329, 353, 379, 406, 435, 466, 500, 536, 575,

617, 662, 710, 761, 816, 875, 938, 1006, 1079, 1157, 1241, 1331, 1427, 1530,

1641, 1760, 1887, 2024, 2170, 2327, 2495, 2677, 3000}.

(7.10)

Each bin content is divided by the width of the bin to retain the proper shape resulting in a

differential triplet invariant mass distribution. Also shown are potential signals of a gluino

with masses of 500 GeV in pink (750 GeV in blue).

As a cross-check we also use simulated QCD and tt̄ events modeled by the parameters

given in Table 4.3. Both shapes of the Mjjj distribution are extracted and a combined

binned maximum likelihood fit is performed to the data, determining the normalization

of the QCD component. The tt̄ contribution is scaled to the next-to-next-to-leading-order

(NNLO) cross section of 245.8 +8.7
−10.5 pb [52]. The outcome of this comparison is shown on the

right hand side of Figure 7.2 with QCD in yellow and tt̄ in red. For this event selection with

the high thresholds on jet pT the contribution from tt̄ is almost negligible and no distinct

mass peak is observed. Comparing the shape of the Mjjj distribution of QCD MC and tt̄

one can see how similar are the shapes of incorrectly combined tt̄ triplets and background

triplets from QCD multijet events.

We find no significant deviation of the data from the background prediction indicating

signs of new physics. We will use the background determined from the four-parameter fit in

order to set limits on the production cross section of new heavy three-jet resonances, which

is discussed in more detail in Section 9.6.

7.2.2 Search for three-jet resonances with heavy-flavor jets

Here we describe the background modeling for the search for three-jet resonances with

heavy-flavor jets in the final state. As determined in Section 6.4.2, we choose the CSV tag-

ging algorithm with the medium working point for this part of the analysis and require each

event to have at least one b tag to increase sensitivity to the potential signal. Furthermore,
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Figure 7.2: Comparison of the differential Mjjj distribution in data with the four-parameter
fit function (right) and simulation (left). A hypothetical signal is shown on the right plot
for a gluino with a mass of 500 GeV (pink) and 750 GeV (blue). The pull distribution are
shown for both background estimates underneath the respective plot.

removing triplets without b tags helps to reduce the number of incorrect combinations. The

selection requirements for the heavy-flavor search are given in the middle and right column

of Table 6.3. The search is divided into two mass regions, which are discussed separately in

the following sections.

Low mass region 200 < Mjjj < 600 GeV

Events and triplets are selected based on the following criteria:

• ∆ = 110 GeV

• 4th-jet pT ≥ 80 GeV

• 6th-jet pT ≥ 60 GeV

• ≥ 1 b tag in triplet (CSV medium)

Because of the large contribution from tt̄ triplets in the low-mass region of the Mjjj

distribution, we choose to model the background here by a combination of tt̄ MC simulation
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and a data control region, which models the QCD multijet component. For this control

region events are selected where b jets are explicitly vetoed, creating a data sample that

is statistically independent from the signal region. The triplet invariant mass distribution

from tt̄ simulation is scaled to the integrated luminosity of the dataset and the theoretical

cross section of 245.8 pb. The sum of this tt̄ shape and the expected shape of the multijet

background are fitted simultaneously to the triplet invariant mass distribution in data,

where the normalization of the QCD background estimate is allowed to float freely. This

fit can be seen in Figure 7.3 along with residuals and pulls. The fit range here is choosen

to start at 180 GeV, to search for new heavy resonances above 200 GeV. Figure 7.4 shows

a comparison of the data and background prediction using resolution based binning. As a

cross-check a dedicated study to measure the tt̄ cross section is presented in Appendix C

and shows good agreement within uncertainties with the theory prediction.

High mass region from 600 < Mjjj < 1500 GeV

Events and triplets are selected based on the following criteria:

• ∆ = 110 GeV

• 6th-jet pT ≥ 110 GeV

• ≥ 1 b tag in triplet (CSV medium)

• Sphericity ≥ 0.4

Here the same technique for estimating the background is used as discussed previously for

the inclusive search in Section 7.2.1. The data is fitted directly with a four-parameter

function and the parameters and normalization are determined with the binned maximum

likelihood method. Figure 7.5 shows the data distribution with the fit in the top row on a

linear (left) and logarithmic (right) scale. Underneath are the residual and pull distributions

based on a 10 GeV bin size. Finally, the bottom plot shows a comparison of the fit and the

data with resolution based binning.
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Figure 7.3: Binned maximum likelihood fit to the data distribution in the low-mass region of
the heavy-flavor search. The background consists of the triplet invariant mass distribution
of simulated tt̄ triplets (red) and a QCD prediction from a b-jet control region in data
(black). The plots in the bottom row show the residual and pull distributions based on a
bin size of 10 GeV.
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Figure 7.4: Binned maximum likelihood fit to the data distribution in the low-mass region
of the heavy-flavor search. The plot shows the data and background fit in resolution based
binning. The background from simulated tt̄ triplets is shown in red and the QCD multijet
prediction is represented by the blue shaded area. The corresponding pull distribution is
shown underneath.
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Overall we find no significant deviation from the predicted background in neither of the

two search regions. Limits on the production cross section of heavy-flavor three-jet reso-

nances will be calculated using the above mentioned methods to estimate the backgrounds

for the low- and high-mass heavy-flavor analysis.

Comparison with QCD MC

As an additional cross-check, we use QCD MC simulation as the background template both

for the low-mass and high-mass heavy-flavor search. To increase the amount of available

statistics the QCD MC sample does not have the b-tagging requirements applied, since the

normalization is determined from the fit to the data directly. We find that adding b-tagging

requirements to the event selection does not alter the shape of the Mjjj distribution for

the simulated QCD events as can be seen in Figure 7.6. In Figure 7.7 we show both data

distributions in comparison with a background composed of simulated QCD and tt̄ triplets.

The pull distributions underneath show good agreement between the data and prediction.

The shaded error bands represent only the statistical uncertainties on the simulated samples.
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Figure 7.5: Binned maximum likelihood fit to the data distribution in the high-mass region
of the heavy-flavor search in linear (left) and log (right) scale. The plots in the middle show
the residual and pull distributions. The plot on the bottom shows resolution based binning
and a potential gluino signal with a mass of 500 GeV in pink.
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Figure 7.7: Comparison of data Mjjj distribution with QCD MC and simulated tt̄ events.
The tt̄ (red) is scaled to the integrated luminosity of the dataset and the theoretical NNLO
cross section, while the normalization of the QCD (yellow) component is allowed to float
freely when a fit to the data distribution is performed.
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Chapter 8

Signal modeling

This search is conducted as a “bump-hunt” looking for a localized Gaussian deviation on

top of a smoothly falling spectrum. With the background estimate coming directly from

fits to the data distribution we make use of the very similar shapes of incorrectly combined

triplets and triplets from QCD multijet background. Both contributions can be described

by the same functional form given in Equation 7.1. An example of this can be seen in the

two signal fits overlaid on the data distribution on the left in Figure 7.2. Given that the

resolution of the reconstructed resonances is solely determined by the jet energy resolution

we model the signal using a Gaussian line shape.

8.1 Acceptance and efficiency

To evaluate the sensitivity to the new physics signal, we define two separate quantities,

the signal event acceptance (f1) and the efficiency to select a correct triplet combination

(f2×f3). The event acceptance f1 is defined as the fraction of events passing the kinematic

and b-tagging requirements as given in Table 6.3, with the additional condition that at least

one triplet from the event has to satisfy Equation 6.1 with ∆ = 110 GeV. To determine

the efficiency of selecting a triplet we start with defining the average number of triplets

per event passing the ∆ requirement denoted by f2. This value depends on the resonance

mass and b-tagging selection and ranges between 1.6 and 4. The third quantity f3 is

the ratio of triplets within the Gaussian signal peak over all triplets that passed the ∆

requirement. The evaluation of f3 is performed for each gluino mass by a similar method to

the optimization technique described in Section 6.4. The Mjjj distribution for the signal is

fitted with a Gaussian for the correctly combined triplets plus a four-parameter function for

the distribution of incorrectly combined triplets, with the integral of the Gaussian divided
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by all the triplets in the distribution giving f3. This value also represents an estimate of how

often we find the correct combination of three jets out of all 20 possible ones. In summary,

the acceptance and efficiency are factorized into three quantities, f1, f2, and f3, defined as

follows:

• f1: Fraction of events passing the kinematic and b-tagging selection, where at least

on triplet passed the diagonal offset requirement of ∆ = 110 GeV

f1 = Npass
evt

Ngen
evt

, (8.1)

• f2: Average number of triplets per event passing the ∆ requirement

f2 =
〈
Ntrip

event

〉
, (8.2)

• f3: Ratio of triplets in the Gaussian peak over all triplets passing the ∆ requirement

f3 =
NGauss
trip

Nall
trip

. (8.3)

To calculate the expected number of triplets for a sample, we combine acceptance times

efficiency (f1 × f2 × f3) and multiply by the corresponding cross section and the total

integrated data luminosity. This calculation is equivalent to the ratio of triplets in the

Gaussian signal peak divided by the number of events generated:

f1 × f2 × f3 = Npass
evt

Ngen
evt

×
〈
Ntrip

event

〉
×
NGauss
trip

Nall
trip

=
NGauss
trip

Ngen
evt

. (8.4)

Fits to the Mjjj distribution of the signal MC sample are shown in shown in Figure 8.1

for gluinos with light-flavor jets in the decay and a minimum sixth-jet pT of 110 GeV.

Figure 8.2 shows fits to the signal MC samples for gluinos decaying into one heavy-flavor

and two light-flavor jets. For masses below 600 GeV the fourth-jet pT has to be above

80 GeV and the sixth-jet pT above 60 GeV, whereas for higher resonances masses the sixth-

jet pT requirement is increase to 110 GeV. Figure 8.3 shows the variables f1, f2, and f3

(from left to right) as a function of gluino mass. The top row represents the event selection
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Figure 8.1: Fits used for acceptance parametrization for the inclusive search.
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Figure 8.2: Fits used for acceptance parametrization for the heavy-flavor search.



106

used for the inclusive search, and the two bottom rows show the results for the heavy-flavor

search. The top plot in Figure 8.4 shows the event acceptance times triplet efficiency A× ε
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Figure 8.3: From left to right f1, f2, and f3 as a function of gluino mass. The top row shows
the values for the inclusive search, and the two bottom rows show the values used in the
heavy-flavor search.

for a Gaussian signal for the light-flavor search as a function of gluino mass, with the same

kinematic selection criteria used for all masses. The values are fitted with a third-order

polynomial, which empirically describes the behavior well. Since two separate kinematic

selection criteria are chosen for the heavy-flavor search, the A× ε changes significantly, and

therefore the two respective mass ranges are separated. The bottom left plot in Figure 8.4

shows A × ε versus gluino mass for the mass range below 600 GeV, and the right plot
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Figure 8.4: Event acceptance times triplet efficiency for a Gaussian signal as function of
gluino mass. The values for the inclusive search are shown in the top row. The bottom row
corresponds to the A× ε used in the heavy-flavor search.

shows the higher masses. The points are also fitted with a third-order polynomial, and the

parameters based on a χ2 fit are displayed in the figures. The green shaded areas represent

systematic uncertainties on A× ε and are discussed in more detail in Chapter 9.

8.2 Gaussian signal parameters

In addition to the A × ε two more parameters are needed to describe the Gaussian line

shape, the mean and width. Since we search for a Gaussian signal in a large mass range the

mean is set to the point of interest while performing the search. As expected, the Gaussian

width increases with the mass of the particle, with the mass resolution ranging from 9% to

5% from lower to higher masses, respectively . Similar values have been obtained for the

three-jet mass resolution measurement in Reference [73]. Figure 8.5 shows the signal width
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Figure 8.5: Gaussian width as a function of gluino mass. Light-flavor search (top), heavy-
flavor search (bottom).

as function of gluino mass. The top plot shows the values of the width used for the inclusive

search, while the bottom plots represent the values used in the heavy-flavor search. We find

a second-order polynomial to describe the shape, and the estimated parameters based on

a χ2 fit are shown in the plot. The green shaded areas around the values of the Gaussian

width correspond to the square sum of the actual uncertainty on the fitted width, as shown

in the third column of Tables 9.1 and 9.2, and a 10% uncertainty, which is assigned to

account the uncertainty on the three-jet mass resolution. These uncertainties are taken

into account when searching for this new physics signal.

8.3 Summary on signal modeling

For this analysis we use a Gaussian line shape to model the potential signal of a pair-

produced hadronic resonances decaying into three jets. The expected number of triplets is
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defined by the integral of the Gaussian shape and estimated based on the values of A × ε

estimated from simulated gluino signal samples, multiplied by the theory cross section,

and the total integrated luminosity of the data sample. The Gaussian width parameter is

derived from MC and parametrized as a function of gluino mass.
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Chapter 9

Systematic uncertainties and limit setting

As previously noted we find no significant deviation in the data distribution with respect to

the background estimates described in Section 7.2. In this chapter we discuss the effect of

systematic uncertainties on the analysis followed by a general discussion of setting limits.

9.1 Sources of systematic uncertainties for signal and tt̄ background MC

Sources of uncertainties that affect the background from tt̄ and signal models derived from

MC simulation are considered first and include, for example, effects of jet energy scale

uncertainties, b-tagging scale factor uncertainties, pileup uncertainties, and the uncertainty

on the measurement of the luminosity.

Uncertainty on jet energy scale correction

Section 5.4.2 describes in detail how jet energy corrections and their uncertainties

are derived for CMS. Figure 5.5 in the same section shows from left to right: the

uncertainty as a function of pT for central jets |η| = 0, the uncertainty as a function

of pT for jets with |η| = 2.7, and the uncertainty as a function |η| for a jet pT of

100 GeV. To evaluate the effect on the MC signal samples a ±1σ correction is applied

to each jet, based on the aforementioned distributions, and the pT and |η| of the jet.

Simultaneously, the EmissT is recalculated as well. We find the effect on the signal

A× ε to be on the order of 10%, which is evaluated based on the method described in

Section 9.2.1. We estimate the effect on the fit position of the Gaussian mean to be

± 1%. For tt̄ the effect on the overall normalization is also on the order of 10% and

the effect on the shape of the triplet invariant mass distribution is shown in the top

left plot in Figure 9.3.
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Pile-up re-weighting uncertainties

Additional interactions that occur in the same bunch crossing are referred to as pile-

up interactions. They are not part of the hard interaction and contribute additional

low pT objects to the event. The number of pile-up interactions in data depends on

the luminosity in each bunch crossing and on the total inelastic cross section, which

is used to determine the distribution of additional interactions for the dataset used

in this analysis. This method does not rely on the vertex reconstruction algorithms

as described in Section 5.3 to avoid any potential biases. Additional interactions

are also modeled in simulated MC samples, where each event is assigned a number

corresponding to these pile-up interactions. The distribution in simulation is based

on the expected distribution in data, however both do not match exactly. The MC

truth distribution is shown in Figure 9.1 (left) in green. Each event in simulation

is then assigned a weight to reproduce the distribution measured in data shown in

black. Uncertainties associated with this procedure originate from the luminosity

and inelastic cross section measurements. For the central value of the inelastic cross

section we use the CMS recommendation of 69.4 mb [78] and assign a 5% uncertainty

corresponding to ± 3.5 mb leading to new pile-up histograms for the re-weighting. The

nominal distribution (black) and the distributions corresponding to a ±1σ change in

the inelastic cross section (blue and red) can be seen in Figure 9.1 (right). The analysis

is repeated using the blue and red pile-up distribution from Figure 9.1 and the effect

on the signal A× ε is on the order of 3%.

Uncertainty on the measurement of the integrated luminosity

The measurement of the luminosity is described in detail in Section 3.2.7. The un-

certainty on this measurement is estimated to be 2.6% [36] leading to a value of the

total integrated luminosity used in this analysis of 19.4 ± 0.5 fb−1. This uncertainty

effects the yield of all MC samples the same way, for example, scaling the expected

number of triplets up or down by 2.6%.

Uncertainties on the b-tagging scale factors

As can be seen from Figure 5.8 b-tagging and mis-tagging efficiencies differ between
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Figure 9.1: Distribution for pile-up re-weighting. The left plot shows the generated MC
pile-up distribution in green. The re-weighted distribution is shown in black. On the right
hand side the nominal pile-up distribution in data is shown in black and the histograms
corresponding to a ±1σ shift in the inelastic cross section are shown in blue and red.

data and MC. To correct the MC samples to match the efficiency in data, scale

factors are applied to the MC samples, and these factors have associated systematic

uncertainties. We vary both types of scale factors simultaneously by ±1σ up and

down and generate systematic signal and tt̄ histograms. The effect is small fairly

small, about 3% on the A× ε for most masses.

Jet energy resolution uncertainties

Uncertainties on the jet energy resolution will effect the expected Gaussian width of

the potential signal. The jet energy resolution is described in more detail in Sec-

tion 5.4.3. In order to take into account the effect on the three-jet invariant mass

due to uncertainties on the jet energy resolution we assign a 10% uncertainty on the

Gaussian width parameter. This uncertainty is taken into account when fitting data

for a hypothetical signal where the width is allowed to vary within the said 10% of its

width predicted by MC simulation.

9.2 Sources of systematic uncertainties for signal samples

The signal is modeled by a Gaussian shape whose parameters are extracted from a fit to

the triplet invariant mass distribution of simulated signal MC samples, the uncertainty on
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the estimated parameters are discussed in this section. Signal samples are generated with

the pythia event generator and the effect of an increased or decreased amount of initial

and final state radiation (ISR/FSR) is described as well.

Uncertainty on the fit parameters

Most of the signal fits are performed with the standard implementation in root using

the χ2 method, which is described in Section 7.1.4. The errors on the fit parameters are

automatically evaluated during the minimization procedure with the minuit package.

For each mass point we assign an uncertainty on the A × ε based on the error on

the Gaussian amplitude. Similarly, each width parameter is assigned an uncertainty

based on the error estimated by the fit.

Initial- and final-state radiation (ISR/FSR) uncertainties

Initial- and final-state radiation refers to the spontaneous emission of particles (mostly

gluons or photons) by incoming or outgoing partons of the hard interaction. The

modeling of these effects depends on the generator and as a consequence the energy

and number of jets present in each event could be affected. For the MC signal samples

we use the pythia event generator and follow a description similar to Reference [79] to

estimate the effect of an increased or decreased amount of ISR/FSR. In this reference

two parameters are identified that regulate the amount of ISR/FSR in pythia and

we use the same settings to evaluate the effect on the gluino model. The pythia

parameter kISR (PARP(67)), when multiplied by the hard scattering scale, gives the

maximal pT in the initial-state shower. The default value is set to 2.5 and we vary this

value by ±0.5. The second parameter in charge of modeling the final-state radiation

is PARP(71) which is set to 4.0 as a default value. We set this value to 2.5 or 8 for a

decreased or increased amount of FSR. Additional MC samples are generated where

the aforementioned parameters are varied up and down. In summary, the following

PYTHIA parameters are used for the MC signal generation:

• More ISR/FSR

– PARP(67)=3.0

– PARP(71)=8.0
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• Less ISR/FSR

– PARP(67)=2.0

– PARP(71)=2.5

We generate three mass points with these systematic variations 300, 500 and 750 GeV

and pass them through the full CMS detector simulation. The effect on the A× ε of

more or less ISR/FSR is evaluated based on the change of number of triplets matched

to parent gluinos, and is on the order of 10%.

9.2.1 Summary of systematic uncertainties on gluino signal samples

As noted earlier, the signal is modeled by a Gaussian function by its width, amplitude,

and mean. The integral of a Gaussian is simply related to width and amplitude through

the following relation: integral =
√

2π · amplitude · width, which is used to calculate the

A × ε. For most sources of uncertainties we reevaluate the A × ε, plot these values as

a function of gluino mass, and fit the values with a third order polynomial. Then we

assign an uncertainty on A× ε for each fitted mass based on the largest deviation from the

nominal parametrization. An example of the procedure can be seen for the case of the jet

energy scale uncertainty in Figure 9.2. The black line represents the nominal samples as

shown in the previous chapter. The blue and red lines represent systematic curves around

the central fit values where the jet energy scale is varied by ±1σ, respectively. Table 9.1

and 9.2 summarizes the effect of all systematic uncertainties discussed previously for the

signal samples for gluinos with only light-flavor and light- and heavy-flavor decay products,

respectively.

9.3 Sources of systematic uncertainties for tt̄ background

In addition to all the uncertainties mentioned in Section 9.1, we also consider uncertainties

for the tt̄ background. The tt̄ MC samples are generated with the madgraph event gener-

ator interfaced with pythia for parton the showering and hadronization procedure. Uncer-

tainties associated with the modeling in madgraph and the interface between madgraph

and pythia are discussed in more detail here. Parameter settings and their systematic
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Figure 9.2: Effects of jet energy scale systematic uncertainties on signal A× ε. The top left
plot shows the uncertainty on A× ε for the inclusive search and the bottom two plots show
the uncertainties for the heavy-flavor search.

Mass Gaussian fit parameters JES Pile-up ISR/FSR
[GeV] Amplitude ≡ A× ε Width A× ε A× ε A× ε
400 10% 12% 8% 1% 7%
450 10% 12% 12% 4% 6%
500 9% 12% 13% 4% 6%
750 6% 10% 9% 2% 5%
1000 6% 8% 4% 3% 5%
1250 6% 8% 4% 3% 5%
1500 7% 8% 4% 1% 5%

Table 9.1: Systematic uncertainties for the inclusive search. The second and third columns
represent uncertainties on the Gaussian fit parameters, where the uncertainty on the am-
plitude translates into an uncertainty on the A × ε. All other sources of uncertainty, such
as on the jet energy scale, pile-up reweighting, and modeling of ISR/FSR, are evaluated as
a change on A× ε.
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Mass Gaussian fit parameters JES Pile-up b-tagging SF ISR/FSR
[GeV] Amplitude ≡ A× ε Width A× ε A× ε A× ε A× ε
200 10% 11% 16% 4% 4% 11%
250 7% 8% 7% 2% 2% 11%
300 6% 6% 3% 2% 1% 11%
350 5% 7% 4% 1% 1% 7%
400 5% 6% 5% 1% 2% 7%
450 4% 5% 5% 1% 3% 7%
500 4% 6% 5% 1% 3% 7%
750 7% 7% 4% 2% 2% 5%
1000 8% 11% 5% 5% 3% 5%
1250 8% 10% 5% 5% 2% 5%
1500 9% 12% 5% 5% 7% 5%

Table 9.2: Systematic uncertainties for the heavy-flavor search. The second and third
columns represent uncertainties on the Gaussian fit parameters, where the uncertainty on
the amplitude translates into an uncertainty on the A× ε. All other sources of uncertainty,
such as on the jet energy scale, pile-up reweighting, b-tagging scale factors, and modeling
of ISR/FSR, are evaluated as a change on A× ε.

changes follow one of the CMS tt̄ cross section measurements [80].

madgraph/pythia matching scale uncertainty

The procedure of interfacing the madgraph and pythia MC generators has been

described in more detail in Section 4.2.2. To study the effect of the matching scale

parameters on the expected tt̄ background we use samples produced with different

generator level settings. The values of xqcut and Qcut are scaled up and down respec-

tively and the settings can be seen in the list of samples in Table 4.3. Changing these

values determines up to what pT threshold additional jets are produced by pythia,

and we study the effect on the shape and normalization of the tt̄ Mjjj distribution. We

do not evaluate this uncertainty for the background QCD multijets sample since these

are just used as cross-checks and producing additional samples with these different

settings would have been very computing intensive. The tt̄ contribution is modeled by

the full shape of correctly and incorrectly combined triplets and we compare shapes

obtained from the systematic samples to the default one. The effect on the normal-

ization is on the order of 10%, a comparison of the shapes with respect to the nominal

triplet invariant mass distribution is shown in bottom plot of Figure 9.3.
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Factorization and renormalization scale uncertainty

For tt̄ samples produced with madgraph the scale of the hard interaction is set to

Q2 = m2
t +
∑
p2
T , with mt being the mass of the top quark mass and the sum including

all additional partons from the matrix element calculation. To evaluate the effect

of the scale on the analysis the value is multiplied by a factor of 0.5 (scale down)

or 2.0 (scale up). A comparison of the two alternative distributions with respect

to the nominal sample is shown in the top right of Figure 9.3. The effect on the

normalization is on the order of 8% around the tt̄ mass peak and on the order of 15%

for the distribution of incorrectly combined triplets with masses above 200 GeV.

9.3.1 Summary of uncertainties on the tt̄ background

Systematic triplet invariant mass distributions are produced for each source of uncertainty.

The full shape information is included when limits are set, as discussed later in Section 9.6,

where an extrapolation is performed between the nominal value and the two alternative

distributions corresponding to a ±1σ variation. The three uncertainties with the largest ef-

fects are shown in Figure 9.3 for jet energy scale (top left), renormalization and factorization

scale (top right), and matching scale (bottom). An additional 5% uncertainty is assigned

to account for the uncertainty on the theoretical cross section that is used to determine the

expected number of tt̄ triplets in the dataset.

9.4 Uncertainties on the QCD multijet background prediction

For all three analysis signal regions the overall normalization of the multijet background

component is allowed to float freely and is determined from a fit to the data distribution.

In case where the four-parameter function is used to model this background, uncertainties

on the fit parameters are taken into account when limits are calculates. More details about

the statistical methods for evaluating fit parameters is given in Section 7.1.
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Figure 9.3: Shape uncertainties on the Mjjj distribution of simulated tt̄ events. Shown are
the effects from the uncertainties on the jet energy scale, renormalization scale (top right),
and matching scale (bottom). The default distribution is shown in black and the systematic
distributions in blue and red.
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9.5 Limit setting techniques

In this section we discuss the general theory behind hypothesis testing and limit setting

before going into a more detailed description of the method used in the analysis. One

needs to compare two different hypotheses with each other and we denote the background-

only hypothesis with H0 and the background + signal hypothesis H1. When placing a

limit on a potential new physics signal one quantifies how incompatible the data is with

the H1 hypothesis. In general there are two philosophies, the Bayesian and Frequentist

approaches, when it comes to calculating these limits. In Bayesian statistics, one assigns

a “degree of belief” for a parameter of interest by introducing a prior probability, which

describes the a-priori knowledge of where that parameter should be. This gives a natural

way of introducing systematic uncertainties on the parameters of interest. In the Frequentist

approach, probability is interpreted as the frequency of an outcome when the measurement

is repeated [9]. We will focus here on a Frequentist approach as discussed in the next

section.

9.5.1 Modified Frequentist method - CLs

In order to ensure a compatible statistical treatment for the CMS and ATLAS Higgs searches

and later discovery, a statistical procedure was formulated by the two experiments, and is

described in detail in Reference [81]. As mentioned in Section 7.2 we find no significant

deviation from the predicted SM background and proceed to set limits. The same approach

as used for the Higgs search is adopted for this analysis and we compute exclusion limits

based on the modified Frequentist method, also referred to as CLs [82, 83]. The quantities

needed for the calculation are the number of expected signal events (s) multiplied by a

signal strength (denoted by r) and the number of expected background events (b), for

example in a given bin of the Mjjj distribution. Uncertainties are included as so-called

nuisance parameters defined by θ, and they affect s = s(θ) and b = b(θ), respectively. A pdf

describing these nuisance parameters p(θ̃, θ) is introduced where θ̃ reflects what the true

value of θ should be. One can then define a likelihood function L(data|r, θ), where data
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represents the observation:

L(data|r, θ) = Poisson(data|r · s(θ) + b(θ)) · p(θ̃|θ). (9.1)

For a binned data distribution the Poisson function corresponds to a product of Poisson

probabilities over all bins M in the histogram with observed events ni and expected events

r · si + bi:

Poisson =
M∏
i

(r · si + bi)nie−(r·si+bi)

ni!
. (9.2)

The next step is to define a test statistic q̃r in order to compare the data with H0 and H1.

There is no unique rule on how to define this test statistic, but we follow the “LHC style”

prescription. For this prescription profiling is used, which means that the best estimator

for the nuisance parameters θ̂ is obtained from the data itself. This leads to the definition

of:

q̃r = −2 ln L(data|r, θ̂r)
L(data|r̂, θ̂)

, (9.3)

where r̂ and θ̂ represent the estimators of r and θ that maximize the likelihood in the

numerator, and θ̂r refers to the estimator of θ for fixed signal strength r given the data.

Another condition for the above definition is that 0 < r̂ < r, where the lower bound ensures

physical observables (the signal rate is positive) and the upper bound ensures that upward

fluctuations r̂ > r are not used to rule out the signal hypothesis.

Next we outline the steps to calculate observed and expected limits [81].

Observed limit

1. Calculate q̃obsr for the observed data and a fixed signal strength modifier r.

2. Determine values of the nuisance parameters θ̂obs0 (background-only, H0 with r = 0)

and θ̂obsr (signal + background H1) that maximize the likelihood in Equation 9.1.

3. Generate pseudo-data (toys) to construct pdfs for the two hypotheses, f(q̃r|r, θ̂obsr )

(for fixed r) and f(q̃0|0, θ̂obs0 ) (for r = 0). A generic example for both distributions is

shown in Figure 9.4, with f(q̃r=0|r = 0, θ̂obs0 ) in blue and f(q̃r=1|r = 1, θ̂obsr=1) in red,
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Figure 9.4: Distributions for the test statistic for the background-only hypothesis
f(q̃0|0, θ̂obs0 ) in blue and the signal+background hypothesis f(q̃r|r, θ̂obsr ) in red based on
2000 toys each. The value of q̂obsr for the observed data is shown with a black line. The
shaded red and blue areas represent the probabilities pr and 1− pb, respectively.

the value determined in the first step for q̃obsr is shown as a black line.

4. Define two p-values as integrals of the aforementioned pdfs:

pr = P (q̃r ≥ q̃obsr |H1) =
∫ inf

q̃obs
r

f(q̃r|r, θ̂obsr )dq̃r,

1− pb = P (q̃r ≥ q̃obsr |H0) =
∫ inf

q̃obs
0

f(q̃0|0, θ̂obs0 )dq̃r.
(9.4)

5. Calculate CLs as the ratio for the value of r that is being tested using

CLs = CLs+b
CLb

= pr
1− pb

. (9.5)

6. If for r = 1, CLs < α the signal model is excluded at the (1−α)% confidence level

(C.L.), where α is conventionally chosen to be 0.05. For this analysis we quote a

95% C.L. limit on the theory cross section times branching ratio (σ× BR), which

corresponds to a r95% multiplied by the respective σ× BR where CLs = 0.05.
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Expected limits

The expected sensitivity to the new physics model is determined from the background-only

hypothesis. Pseudo-data is generated based on the expected background, which is then

treated as if it had been the observed data. In this context one can simply follow the same

steps as outlined in Section 9.5.1 and calculate CLs values based on the prescription given.

The value of r95% is determined for each of the background-only pseudo-datasets and a

cumulative distribution of these r95% values is generated. The median of the expected limit

is then defined where this distribution crosses the 50% quantile. The ±1σ ≡ 68% and

±2σ ≡ 95% uncertainty bands on the expected limit are determined when the distribution

crosses the 16%/84% and the 2.5%/95% quantile, respectively.

Asymptotic description of the test statistic

The method of computing pdfs for the test statistic of the two hypotheses can become very

computationally intensive with increasing number of toys. The pdfs for the profile likelihood

test statistic as defined in equation 9.3 can be approximated by an asymptotic formula based

on Wilks and Wald theorems as derived in [84]. The pdfs of the test statistics for H1 is

given by:

f(q̃r|r) = 1
2δ(q̃r) +


1

2
√

2πq̃r
exp [−q̃r/2] 0 < q̃r ≤ r2/σ2

1√
2π(2r/σ) exp

[
−1

2
(q̃r+r2/σ2)2

(2r/σ)2

]
q̃r > r2/σ2

, (9.6)

where δ(q̃r) is a delta function at zero, and σ2 = r2

q̃r,A
represents the standard deviation on

r and is determined from the so-called “Asimov dataset”. The Asimov dataset represents a

dataset where all “observed” quantities are set to their expectation values and the procedure

of calculating the test statistic is repeated as if it was real data. Similar to Equation 9.6

one can define an asymptotic formula for the background-only hypothesis, which can be

used to derive the expected limit and the uncertainty bands based on the Asimov dataset.

Since this method does not generate toy experiments it is much less CPU intensive than

the previous method to extract expected limits. For this analysis we use this asymptotic

approximation to set limits. A cross-check performed with the full CLs method generating
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toys gives very similar results.

9.6 Limit setting procedure for a “bump hunt”

In this analysis we are examining the three-jet invariant mass distribution for a Gaussian sig-

nal peak on top of a smoothly falling background distribution. As mentioned in Section 7.2,

where the background estimates are described, we do not find any significant deviation from

the expected background distribution. The three different search regions are summarized

in Table 6.3 and the background model is either a parametrized function for the QCD mul-

tijet events or a binned background shape based on the QCD estimate from a data control

region and simulated tt̄ events. We use the RooFit package to perform binned maximum

likelihood fits of the expected background to the three-jet invariant mass distribution in

data. The normalization component of the multijets background is allowed to float freely

and is determined from the fit to the data itself. Uncertainties on the triplet invariant mass

distribution of tt̄ are determined as described in Section 9.3.1 and incorporated through a

quadratical extrapolation of the nominal shape for shifts below 1σ and a linear extrapola-

tion beyond 1σ. Uncertainties effecting the overall normalization of the tt̄ background from

the systematic shapes are included with a log-normal constraint. The log-normal function

is chosen over a Gaussian description of these uncertainties since it avoids the problem of

unphysical parameters, for example the cross section should be a non-negative value. When

the four-parameter function is used to model the background (high-mass, heavy- and light-

flavor search regions) the uncertainties on the original background parameters are included

and inflated by a factor of four. These increased uncertainties ensure that fit parameters are

not overly constrained, since profiling is used to find the best estimators for the nuisance

parameters.

The signal is modeled by a Gaussian with a width shown in Figure 8.5. The expected

number of signal triplets (the signal rate s) is given by:

s = σtheory ×A× ε
∫
L, (9.7)

where σtheory is the theory cross section from Table 4.1, A× ε as defined in Section 8, and
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the integrated luminosity is
∫
L = 19.4 fb−1. Systematic uncertainties on A×ε as described

in Section 9.2.1 are incorporated as nuisance parameters with log-normal constraints. In

order to incorporate the effect of the uncertainty on the jet energy resolution we include a

10% uncertainty on the Gaussian width in addition to the uncertainty assigned based on

the signal fits, given in the third column of Tables 9.1 and 9.2 . The total uncertainty on

the width is shown by the green shaded band in Figure 8.5.

We estimate the upper limit on the gluino pair production cross section by scanning

masses between 350–1500 GeV for the light-flavor search and 200-1500 GeV for the heavy-

flavor search in 50 GeV steps. The CLs profile likelihood calculator with the asymptotic

approximation evaluates the observed limit as well as the expected limit with a ±1σ and

±2σ bands. A tool referred to as “CombinedLimit”, which was developed by the CMS

collaboration, is used to perform the limit calculations. All previously discussed parameters

are organized in a so-called data-card which is then input to the CombinedLimit tool for

processing.

9.6.1 Signal injection test

For the limit setting procedure the background estimate is determined from a background-

only fit of Equation 7.1 to the data, while when we search for signal a s+ b fit is performed

described by the sum of Equation 7.1 and a Gaussian component for the signal. In order

to show the stability of the statistical method, we perform a so-called signal injection test

outlined in the steps below.

1. Pseudo-data is generated with a fixed signal injected. We choose for this test a signal

mass of 750 GeV with an expected signal rate multiplied by the input signal strength

of rin = 3. One of these pseudo-datasets is shown in the left upper plot in Figure 9.5

2. A background-only binned maximum likelihood fit is performed to the pseudo-data

generated in step 1 and the corresponding background parameters are extracted (up-

per left plot in Figure 9.5).

3. Then the same histogram is fit with the s+b function, using the previously determined

background parameters as input. These parameters are constrained the same way as
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Figure 9.5: Signal injection test. Pseudo-data is generated based on the s + b hypothesis.
The first plot on the top left shows the background-only fit in blue to the distribution of
one of they pseudo-datasets. On the right hand side the same distribution is fit with the
s+ b hypothesis, with the background component in blue and the Gaussian signal in green.
The bottom plot shows the pull distribution of the measured signal strength evaluated with
respect to the injected signal strength divided by the error on the measured value for 2000
pseudo-datasets.

it is done in the limit setting procedure. The fit result is shown in the upper right

plot in Figure 9.5.

4. For each pseudo-dataset we evaluate the pull on the measured signal strength rmeas,

where the pull is defined as (rmeas − rin)/rmeaserr , as can be seen in the bottom plot in

Figure 9.5 for 2000 pseudo-datasets. This distribution is a Gaussian centered around

zero with a width of one, showing that there is no under-coverage of the extracted

signal strength, and we are able to successfully extract the input signal strength.
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Chapter 10

Results

The statistical methods used in this analysis have been discussed in detail in Section 9.5.1. In

this chapter we discuss the experimental results and the limits placed on the pair production

cross section of new hadronic resonances.

10.1 Limit on hadronic RPV

Upper limits at the 95% C.L. are placed on cross section times branching ratio σ×BR(X →

jjj) of a new unknown particle X decaying into three jets. The specific interpretation here

assumes gluino pair production, where each gluino decays 100% into three jets as shown in

the Feynman diagram in Figure 2.6. Figure 10.1 shows the expected (black dashed line)

and observed limits (black solid line) as a function of the triplet invariant mass for the

assumed model of gluinos with light-flavor jets in the decay. Figure 10.2 shows these limits

for the heavy-flavor search. The green and yellow shaded areas represent the ±1σ and ±2σ

uncertainty bands on the expected limit. For both cases the theory cross section line in red

includes ±1σ uncertainties from Table 4.2 as dashed red line. As a conservative estimate, we

exclude gluinos with masses below the point where the −1σ theory line intersects with the

observed limit. A tabular form of these plots are shown in Table B.1 and B.2 in Appendix B.

We exclude the production of gluinos undergoing RPV decays through the coupling

λ′′112 into light-flavor jets at 95% C.L. for gluino masses below 650 GeV, with an expected

exclusion limit below 755 GeV. Previous exclusion limits for this scenario were summarized

in Table 2.3, and we are able to extend the last CMS limit by almost 200 GeV. Gluinos that

decay through the RPV couplings λ′′113 or λ′′223 into one heavy-flavor jet and two light-flavor

jets are excluded for masses between 200 and 835 GeV, which is the first mass limit on
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Figure 10.1: Observed and expected frequentist CLs cross section limits for λ′′112. Shown are
the observed (solid black line) and expected (black dashed line) 95% C.L. cross section limits
as a function of the triplet invariant mass for the inclusive search. The ±1σ and ±2σ bands
around the expected limit are represented by green and yellow shaded areas, respectively.
The theory cross section is represented by the solid red line and its uncertainties are shown
by the dashed red line [21].
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Figure 10.2: Observed and expected frequentist CLs cross section limits for λ′′113 or λ′′223
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section limits as a function of the triplet invariant mass for the heavy-flavor search. The
±1σ and ±2σ bands around the expected limit are represented by green and yellow shaded
areas, respectively. The theory cross section is represented by the solid red line and its
uncertainties are shown by the dashed red line [21].
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this model of RPV gluino decays, with the expected exclusion at 825 GeV. The sensitivity

increase for the heavy-flavor search is due to the reduction of background with respect to

the signal. Therefore, while this search probes a smaller part of phase space it is more

sensitive to the RPV couplings allowing heavy-flavor quarks in the final state. A summary

of the expected and observed limits is given in Table 10.1.

Mass limit RPV coupling
λ′′112 λ′′113 or λ′′223

observed (−1σ theory) 650 GeV 200-835 GeV
observed (central theory) 670 GeV 200-855 GeV
expected (−1σ theory) 755 GeV 200-825 GeV
expected (central theory) 795 GeV 200–860 GeV

Table 10.1: Observed and expected mass limits quoted at the −1σ or central theory cross
section intersection point with the expected and observed limits.

10.2 Extra material: Black hole limits applied to three-jet resonance

search

With increasing resonance mass, new heavy resonances would mostly be produced at rest

and therefore, have little boost. We introduced the use of event shape variables in Sec-

tion 6.4.4, which helps to distinguish background from high-mass signal events. The spheric-

ity variable as shown in Figure 6.15 provides clear separation between QCD events and

gluinos with a mass above 750 GeV. The signal events become more isotropic and therefore

also similar to the signatures that is assumed for the CMS analysis searching for black hole

production, based on 12 fb−1 of proton-proton collision at 8 TeV [85]. This analysis is

performed as a search for new heavy objects that decay into final states with high object

multiplicity N (jets, electrons, muons, taus, photons, and EmissT ) and a large scalar sum pT

of all these objects ST . Model-independent limits on cross section times acceptance (σ×A)

are presented in [85], depending on the object multiplicity and a minimum threshold value

of SminT . The value of ST is defined as ST =
∑
i p
i
T + EmissT , where the sum runs over all

N reconstructed objects with pT ≥ 50 GeV, and EmissT is only added if its value is above

50 GeV. In order to model these selection criteria we select events in the gluino sample



130

 [GeV]TS
0 500 1000 1500 2000 2500 3000 3500 4000

F
ra

ct
io

n

0

0.02

0.04

0.06

0.08

0.1

 distribution for different Gluino massesTnormalized S

RPV 112 Mass=400

RPV 112 Mass=500

RPV 112 Mass=750

RPV 112 Mass=1000

RPV 112 Mass=1250

RPV 112 Mass=1500

Figure 10.3: ST distributions for different gluino masses normalized to unity.

with at least six jets with pT ≥ 50 GeV and calculate ST for each event as defined above.

The ST distribution for several different signal masses of gluinos with light-flavor decays is

shown in Figure 10.3, where each distribution is normalized to unity to show the trend of

an increasing pT sum with increasing mass. From the bottom right plot of Figure 6 (N ≥

6) in [85], we extract the expected limit at the 95% C.L. of σ × A for a given SminT value,

these values are summarized int Table 10.2. In order to compare with the gluino model we

SminT σ ×A
2200 GeV 1.5× 10−2

3000 GeV 2× 10−3

3600 GeV 7× 10−4

Table 10.2: Expected limit on σ ×A for a given SminT value.

evaluate σ × A based on the the number of events passing one of the three minimum ST

requirements from Table 10.2. This value is divided by the number of events generated and

multiplied by the theory cross section, which allows a direct comparison with the expected

limits of the black hole search. The resulting σ × A as a function of SminT is shown in

Figure 10.4 (left). If a point lies above the gray dashed line (values from Table 10.2), then

the black hole limits would have excluded this gluino mass already. Figure 10.4 (right)
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shows σ×A for the black hole analysis as a function of mass, so we can deduce an expected

mass exclusion limit around 600 GeV. This approach is less sensitive than the expected

exclusion obtained from the analysis presented in this thesis. The method of reconstructing

the three-jet resonances and looking for a localized deviation in the form of a Gaussian

distribution on top of a smoothly falling background, leads to an expected mass exclusion

of 795 GeV.
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10.3 Conclusion

A search for new hadronic three-jet resonances has been presented using 19.4 fb−1 of pp

collisions collected with the CMS detector at
√
s of 8 TeV. The jet ensemble technique

was used in order to reconstruct the pair-produced resonances each decaying into three jets.

While the technique is applicable to any pair-produced three-jet resonance, the experimental

results were interpreted in the context of a hadronic RPV SUSY model, where gluinos are

pair-produced and decay 100% of the time into three jets. Two different coupling scenarios

were considered allowing gluino decays into only light-flavor jets (λ′′112) and gluino decays

into one heavy-flavor and two light-flavor jets (λ′′113 or λ′′223).

The inclusive search region covers masses between 400 – 1500 GeV and does not apply

selection criteria in order to determine the flavor content of the final state. For this scenario,

gluinos decaying through the RPV coupling λ′′112 were excluded at the 95% C.L. below a

mass of 650 GeV.

The heavy-flavor search is the first of its kind. The search is split up into two regions, low-

mass (200 – 600 GeV) and high-mass (600 – 1500 GeV), and makes use of b-jet identification

techniques in order to probe a different set of RPV couplings. In this search gluinos decaying

through the RPV couplings λ′′113 and λ′′223 were excluded at the 95% C.L. between 200 –

835 GeV. While b-jet identification reduces the amount of probed phase space, it allows us

to validate the analysis technique with the known SM top pair production, where each of

the tops decays into three jets. A dedicated study extracting the tt̄ cross section is discussed

in Appendix C.
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Appendix A

PYTHIA cards for gluino pair production with RPV decay

We use the pythia event generator with the RPV violating UUD matrix element turned
on via the RVLAMB(1,1,2) parameter to generate the gluinos with only light-flavor quarks
in the decay or the RVLAMB(1,1,3) and RVLAMB(2,2,3) parameters to allow heavy-flavor
quarks. In this section, we list the pythia card used to generate a sample of pair-produced
gluinos with a mass of 200 GeV, where the squark masses are set to 2 TeV. For gluino
masses above 750 GeV the squark masses are increased to 7.5 GeV to ensure prompt decays
of the gluino.

MSEL = 39 ! turn on SUSY processes
IMSS( 1) = 1 ! generic SUSY scenario
IMSS( 3) = 1 !
IMSS(51) = 0 ! RPV LLE off
IMSS(52) = 0 ! RPV LQD off
IMSS(53) = 3 ! RPV UDD on with user specified couplings

------------------------------- Scenario 1 -----------------------------
RVLAMB(1,1,2) = 0.005 ! light-flavor coupling

------------------------------ Scenario 2 ------------------------------
RVLAMB(1,1,3) = 0.005 ! heavy-flavor coupling
RVLAMB(2,2,3) = 0.005 ! heavy-flavor coupling
------------------------------------------------------------------------
RMSS( 1) = 10000.0 ! bino
RMSS( 2) = 10000.0 ! wino
RMSS( 4) = 10000.0 ! mu
RMSS( 3) = 200. ! gluino
RMSS( 5) = 5.00 ! tan beta
RMSS( 8) = 2000.0 ! left squark (1st-2nd generation)
RMSS( 9) = 2000.0 ! right down squark (1st-2nd generation)
RMSS(10) = 2000.0 ! left squark (3rd generation)
RMSS(11) = 2000.0 ! right down squark (3rd generation)
RMSS(12) = 2000.0 ! right up squark (3rd generation)
RMSS( 6) = 10000.0 ! left slepton (1st-2nd generation)
RMSS( 7) = 10000.0 ! right slepton (1st-2nd generation)
RMSS(13) = 10000.0 ! left slepton (3rd generation)
RMSS(14) = 10000.0 ! right slepton (3rd generation)
RMSS(15) = 2.4 ! bottom trilinear
RMSS(16) = -3.3 ! top trilinear
RMSS(17) = 1.0 ! tau trilinear
RMSS(18) = -0.1020 ! Higgs mixing angle alpha
RMSS(19) = 10000.0 ! pseudo-scalar Higgs mass
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Appendix B
Tables for limits on gluino pair production with RPV decay

B.1 Hadronic RPV λ112

Gluino Mass observed limit expected limit −1σ +1σ −2σ +2σ
[GeV] [pb] [pb] [pb] [pb] [pb] [pb]
350 4.3276 3.6373 2.6249 5.0522 1.9734 6.7125
400 2.5654 1.7232 1.2436 2.3935 0.9349 3.1801
450 1.4154 1.1646 0.8404 1.6176 0.6318 2.1491
500 0.4558 0.8241 0.5947 1.1447 0.4471 1.5209
550 0.3303 0.6042 0.4360 0.8392 0.3278 1.1150
600 0.4412 0.4505 0.3251 0.6258 0.2444 0.8314
650 0.5924 0.3446 0.2487 0.4787 0.1870 0.6360
700 0.5426 0.2636 0.1902 0.3661 0.1430 0.4865
750 0.2286 0.2051 0.1480 0.2848 0.1113 0.3784
800 0.1233 0.1592 0.1149 0.2212 0.0864 0.2939
850 0.1099 0.1258 0.0908 0.1747 0.0682 0.2321
900 0.1707 0.1003 0.0724 0.1393 0.0544 0.1851
950 0.1633 0.0807 0.0583 0.1121 0.0438 0.1490
1000 0.0672 0.0660 0.0476 0.0917 0.0358 0.1218
1050 0.0271 0.0547 0.0395 0.0760 0.0297 0.1009
1100 0.0224 0.0456 0.0329 0.0634 0.0248 0.0842
1150 0.0230 0.0386 0.0279 0.0537 0.0210 0.0713
1200 0.0261 0.0326 0.0235 0.0453 0.0177 0.0602
1250 0.0273 0.0276 0.0199 0.0383 0.0150 0.0509
1300 0.0240 0.0235 0.0170 0.0327 0.0128 0.0434
1350 0.0187 0.0201 0.0145 0.0279 0.0109 0.0370
1400 0.0148 0.0174 0.0125 0.0241 0.0094 0.0321
1450 0.0128 0.0152 0.0110 0.0211 0.0082 0.0280
1500 0.0122 0.0135 0.0097 0.0187 0.0073 0.0249

Table B.1: The observed and expected limits including uncertainties on the gluino pair
production cross section at the 95% CL for the inclusive search and gluino masses up to
1500 GeV corresponding to Figure 10.1.
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B.2 Hadronic RPV λ113 or λ223

Gluino Mass observed limit expected limit −1σ +1σ −2σ +2σ
[GeV] [pb] [pb] [pb] [pb] [pb] [pb]
200 17.0946 13.3167 9.6104 18.4970 7.2250 24.5757
250 3.7787 3.6902 2.6631 5.1257 2.0021 6.8101
300 1.6560 1.9199 1.3855 2.6667 1.0416 3.5431
350 0.8063 1.1847 0.8550 1.6456 0.6428 2.1863
400 0.4487 0.7648 0.5520 1.0624 0.4150 1.4115
450 0.4630 0.5365 0.3872 0.7452 0.2911 0.9901
500 0.5893 0.3822 0.2758 0.5309 0.2074 0.7054
550 0.3485 0.2881 0.2079 0.4002 0.1563 0.5317
600 0.2346 0.2253 0.1626 0.3129 0.1222 0.4157
650 0.2813 0.1883 0.1359 0.2615 0.1022 0.3475
700 0.2401 0.1521 0.1098 0.2113 0.0825 0.2808
750 0.1266 0.1258 0.0908 0.1747 0.0682 0.2321
800 0.0830 0.1061 0.0765 0.1473 0.0575 0.1957
850 0.0916 0.0903 0.0651 0.1254 0.0490 0.1666
900 0.0930 0.0775 0.0559 0.1076 0.0420 0.1430
950 0.0774 0.0670 0.0484 0.0931 0.0364 0.1237
1000 0.0628 0.0584 0.0422 0.0811 0.0317 0.1078
1050 0.0457 0.0503 0.0363 0.0698 0.0273 0.0928
1100 0.0356 0.0434 0.0313 0.0603 0.0235 0.0801
1150 0.0263 0.0374 0.0270 0.0519 0.0203 0.0690
1200 0.0235 0.0323 0.0233 0.0449 0.0175 0.0596
1250 0.0194 0.0283 0.0205 0.0394 0.0154 0.0523
1300 0.0274 0.0249 0.0180 0.0346 0.0135 0.0460
1350 0.0245 0.0222 0.0160 0.0308 0.0120 0.0409
1400 0.0186 0.0200 0.0144 0.0278 0.0109 0.0369
1450 0.0131 0.0182 0.0132 0.0253 0.0099 0.0337
1500 0.0116 0.0170 0.0123 0.0236 0.0092 0.0314

Table B.2: The observed and expected limits including uncertainties on the gluino pair
production cross section at the 95% CL for the heavy-flavor search and gluino masses up
to 1500 GeV corresponding to Figure 10.2.
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Appendix C
Cross check: tt̄ cross section measurement

In this appendix we discuss an additional validation of the analysis technique by extracting the tt̄
production cross section, which is a known SM process. For this study we treat tt̄ as signal instead
of background in the heavy-flavor search. Two different methods are presented using either the
complete triplet invariant mass distribution or only the Gaussian approximation to extract the cross
section. Both methods yield similar results within uncertainties and are in good agreement with
the SM theory cross section prediction. The same event and triplet selection is applied as for the
low-mass heavy-flavor gluino search.

C.1 Full tt̄ shape for signal extraction

All-hadronic tt̄ (tt̄→Wb+Wb→ jjb+jjb) events account for a significant fraction of the background
in the heavy-flavor search. By requiring at least one b-tag in each triplet we reduce the amount
of QCD multijet background and enhance the visibility of tt̄. Instead of treating these triplets
as background we use the data-driven QCD multijet estimate and extract or measure the tt̄ cross
section. This multijet background is taken from a b-jet control region in the data, where b jets
are vetoed. With this event selection there is still a small contribution of tt̄ in the data, which is
subtracted based on MC estimates and the theoretical cross section of 245.8 +8.7

−10.5 pb [52]. We use
the Mjjj distribution of the resulting QCD multijet and the tt̄ MC as templates to fit the Mjjj

distribution in data with the binned maximum likelihood method. In this fit the background and tt̄
normalization are allowed to float freely and the number of signal triplets N trip

tt̄
its extracted from

the fit. We choose the range of the fit to be within 120 – 600 GeV enclosing the most relevant region
for the tt̄ signal. The result of the fit is shown in Figure C.1 and leads a cross section of:

σtt̄
meas =

N trip
tt̄∫

L×A× f2
= 205± 6 (stat. only) pb, (C.1)

where the A × f2 ≡ f1 × f2 is calculated for the full triplet invariant mass distribution from the
event acceptance times the average number of triplets passing the ∆ requirement, which is found
to be f1 × f2 = 0.432%, N trip

tt̄
is the number of triplets as measured by the fit, and

∫
L the total

integrated luminosity of the dataset.
To evaluate the effect of systematic uncertainties on the measured tt̄ cross section we use ded-

icated signal shapes for each uncertainty as discussed in Section 9.3.1. The following sources of
uncertainty are considered: jet energy scale, matching scale, factorization and renormalization scale,
pile-up, b-tagging scale factors, and jet energy resolution. The output fits to the data using these
systematic templates are shown in Figure C.2. Table C.1 shows fit output and A × f2 for each
systematic sample. The effect on the measured cross section is listed in the last column of the
table. Combining all uncertainties we obtain a measured value of the tt̄ cross section σtt̄, where the
uncertainties are symmetrized:

σtt̄
full = 205 ± 6 (stat.) ± 26 (syst.) ± 5 (lumi.) pb. (C.2)

This measured value agrees well within uncertainties with the theory prediction of 245.8 pb.
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Figure C.1: Result of the maximum binned likelihood fit used to extract the tt̄ cross section
based on the tt̄ template from MC and the QCD multijets template from the b-jet control
region in data.
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Figure C.2: Results of fits to the data for each systematic uncertainty considered. These
fits should be compared to the nominal result from Figure C.1. We considered the following
uncertainties: jet energy scale, matching scale, factorization and renormalization scale, pile-
up, b-tagging scale factors, and jet energy resolution.
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Luminosity 19.4 fb−1 N trip
tt̄

A× f2 σtt̄full[pb]
Measured values 17137 0.432% 205.2

Uncertainty N trip
tt̄

A× f2 σtt̄full [pb] δtt̄ [pb]
JES Up 17425 0.468% 192.6 -12.7

Down 16866 0.402% 217.0 11.8
Matching Up 16528 0.384% 222.3 17.1

Down 17909 0.454% 203.7 -1.5
Scale Up 15575 0.372% 216.4 11.2

Down 18493 0.495% 193.1 -12.2
b-tagging Up 17203 0.435% 204.4 -0.8

Down 17138 0.430% 206.1 0.8
pile-up Up 17161 0.431% 205.6 0.4

Down 17127 0.432% 205.0 -0.2
JER Up 17782 0.430% 213.82 8.6

Down 16702 0.436% 197.93 -7.3
Luminosity 2.6% ± 5.3
Statistical ± 6.5
Total 205 ± 6(stat.) ± 26 (syst.)±5 (lumi.)

Table C.1: Summary of the effect of different systematic uncertainties on the measured tt̄
cross section. The top part of the table shows the central measured cross section value. The
values in the fifth column shows the measured cross section when the systematic templates
are used. Column six denoted with δtt̄ represents the difference between the nominal value
and the systematic value for a given uncertainty.
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Figure C.3: Result of the fit to the simulated tt̄ Mjjj distribution to estimate the yield in
the Gaussian signal peak. The red line represents the sum of the four-parameter function
and a Gaussian.

C.2 Gaussian approximation for signal extraction

For the gluino search the new heavy resonances signal is parametrized as a Gaussian peak. In this
section we discuss the effectiveness of the Gaussian approximation by demonstrating its impact on
the measurement of the tt̄ cross section. First, we evaluate the expected yield with the Gaussian
peak from the tt̄ Mjjj distribution by fitting it with a four-parameter function plus a Gaussian, as
is shown in Figure C.3.

Based on this Gaussian fit we extract the width to model the tt̄ signal shape and the A × ε =
f1 × f2 × f3 is determined as previously described in Section 8.1. All systematic uncertainties
discussed in the previous section are also taken into account as a change on A× ε. Each distribution
is fit with the same function as the nominal one, the results jet energy scale, matching scale, and
factorization and renormalization scale are shown in Figure C.4, and for pile-up, b-tagging scale
factors, and jet energy resolution in Figure C.5. The jet energy resolution effect is evaluated as a
change of the width of the signal Gaussian. The kinematics of the Mjjj distribution for the incorrect
combination of triplets in the tt̄ MC and the QCD multijet background results in them peaking in
the same place, as shown in the previous section. Therefore, we use the QCD background estimate
from the b-jet control region in data and let it float freely in the signal+background fit, allowing it
to cover also the combinatorial background from the tt̄ triplets. The result of the combined binned
maximum likelihood fit of the multijet background template and the assumed Gaussian signal shape
is shown in Figure C.6 (top). The width of the Gaussian is fixed to that observed in the simulation
and the normalization and mean position are allowed to float. To account for a change in the
width due to jet energy resolution the fit is repeated twice with for the ±1σ variation on the width,
shown in in Figure C.3 (bottom). The effect of all other systematic uncertainties are summarized in
Table C.2. Using the Gaussian signal approximation we measure the tt̄ cross section as:

σtt̄
Gauss = 236 ± 7 (stat.) ± 41 (syst.) ± 6 (lumi.) pb. (C.3)

The uncertainties for this measurement are larger than when using the full shape in the previous
section since we are only evaluating the effect of systematic uncertainties on A × ε around the
mass peak of the triplet invariant mass distribution, instead of including the information on the
full spectrum. The measured value agrees well within uncertainties with the theory prediction of
245.8 pb.
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Figure C.4: Results of the fits to the systematic tt̄ Mjjj distribution to estimate the effect
of uncertainties on the signal yield. Shown is the effect of the following uncertainties: jet
energy scale, matching scale, and factorization and renormalization scale.
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Figure C.5: Results of the fits to the systematic tt̄ Mjjj distribution to estimate the effect of
uncertainties on the signal yield. Shown is the effect of the following uncertainties: pile-up,
b-tagging scale factors, and jet energy resolution.
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Figure C.6: Result of the fit to of the QCD multijet background template and a Gaussian
signal shape to measure number of tt̄ triplets. The top plot shows the nominal fit where
the width of the Gaussian is fixed to the expected value from MC simulation. The bottom
row shows the result of the two systematic fits where the width is increased or decreased to
account for uncertainties on the jet energy resolution.
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Luminosity 19.4 fb−1 N trip
tt̄

A× ε σtt̄meas [pb]
Nominal Gaussian signal 5111 0.1119% 235.9
Uncertainty A× ε σtt̄meas [pb] δtt̄ [pb]
JES Up 0.1211% 218.1 -17.9

Down 0.1033% 255.7 19.8
Matching scale Up 0.1083% 243.9 7.9

Down 0.1169% 225.9 -10
Scale Up 0.1123% 235.2 -0.8

Down 0.1300% 203.2 -32.8
b-tagging Up 0.1131% 233.4 -2.5

Down 0.1117% 236.42 0.5
pile-up Up 0.1123% 235.2 -0.8

Down 0.1123% 235.2 -0.8
JER Shape Up 4878 0.1119% 225.23 10.8

Down 5113 0.1119% 236.06 0.1
Luminosity 2.6% ± 6.1
Statistical ± 7.4
Total 236 ± 7 (stat.) ± 41 (syst.)±6 (lumi.)

Table C.2: Summary of the effect of different systematic uncertainties on the measured tt̄
cross section using the Gaussian signal approximation. The top part of the table shows
the central measured cross section value. The values in the fifth column shows the mea-
sured cross section when the systematic templates are used. Column six denoted with δtt̄
represents the difference between the nominal value and the systematic value for a given
uncertainty.
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C.3 Summary

We have shown in this chapter that we are able to reconstruct all-hadronic tt̄ events by using the
jet ensemble technique. Additionally, we successfully measured the tt̄ production cross section from
a fit of the triplet invariant mass distribution in data. Two methods were discussed, using either
the full triplet invariant mass distribution or a Gaussian approximation as the signal shape. Both
methods agree within uncertainties with each other and the theoretical NNLO prediction. This gives
confidence in the search strategy and shows that the technique is designed to discover new three-jet
resonances.
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Appendix D
Signal injection test with Gaussian approximation and full

mass shape

In Section 9.6.1 we discussed a signal injection test showing the stability of the limit setting technique.
In this chapter we will show a brief comparison between the Gaussian approximation and the full
Mjjj distribution for the signal. Therefore, another signal injection test is performed where the
complete signal shape of incorrectly and correctly combined triplets, as derived from MC simulation,
is injected as the potential signal.

Figure D.1 (left) represents the background four-parameter function for the inclusive search. In
the same figure (right) a potential signal Mjjj distribution for a gluino with a mass of 750 GeV is
shown accompanied by the Gaussian approximation for this mass point. The signal input signal
strength parameter rin is set to 1. Based on the background estimate and the full Mjjj shape we
generate pseudo-data. Figure D.1 shows one example of a signal + background Mjjj distribution
(the same distribution on left and right). Each of these pseudo-datasets is then fitted with either
the four-parameters function + a Gaussian (left, blue) or the four-parameters function + a template
of the full Mjjj shape (right, red), and the signal strength parameter rmeas is determined. In these
fits all of the parameters of the background four-parameter function are allowed to float freely.

The bottom plot of Figure D.2 shows distributions of rmeas extracted with the Gaussian signal
approximation (left, blue) or with the full Mjjj shape (right, red). Both fitting methods yield on
average rmeas ≈ rin.

We have already presented a similar test in Appendix C for the tt̄ cross section measurement,
which showed that the cross section measured with the Gaussian signal approximation agrees well
within uncertainties with the one measured by using the full Mjjj shape. With the signal injection
test presented here, we have demonstrated that the Gaussian approximation can also be used to
measure the cross section for higher resonances masses, where the QCD multijet background is
estimated from a parametrized fit to the data.

While both signal assumptions give a very similar result we use the Gaussian approximation for
the analysis since it allows for a more general search for three-jet resonances, with less parameters
to model the signal.
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Figure D.1: Background and full signal Mjjj distributions for signal injection test. The left
plot shows the background estimate for the inclusive search. On the right a potential signal
shape for a gluino with a mass of 750 GeV is shown, accompanied by a four-parameter +
Gaussian fit in red.
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Figure D.2: Pseudo-data for signal injection test and measured signal strength. The pseudo-
data is generated from the background + full Mjjj signal model and fitted with a four-
parameter function + Gaussian (left, blue) or a four-parameter function + the full expected
Mjjj distribution. For each pseudo-dataset the signal strength rmeas is measured and the
bottom plot shows the output for 1000 pseudo-datasets.
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Appendix E
Signal fits for systematic uncertainty studies

As discussed in Chapter 8, the Mjjj distribution is fitted by the sum of the four-parameter function
and a Gaussian to extract the A× ε for each mass point To assess systematic uncertainties, we vary
the parameter in question and determine the effect on the signal fit.

• For the jet energy scale uncertainty study we increase and decrease the jet four momentum
by a given uncertainty based on jet pT and η. The fits for the increased value are shown in
Figure E.1 for the inclusive search and Figure E.3 for the heavy-flavor search, and for the
decreased value in Figure E.2 for the inclusive search and Figure E.4 for the heavy-flavor
search.

• For the pile-up re-weighting systematic uncertainty study, we increase and decrease the inelas-
tic cross section used to calculate the re-weighting by 5%. The fits for the increased value are
shown in Figure E.5 for the inclusive search and Figure E.7 for the heavy-flavor search, and for
the decreased value in Figure E.6 for the inclusive search and Figure E.8 for the heavy-flavor
search.

• For the b-tagging systematic uncertainty study we increase and decrease the b-tagging scale
factors within their uncertainties. The fits for the increased values are shown in Figure E.9
and for the decreased values in Figure E.10.
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Figure E.1: Fit results to the simluated Mjjj distribution from adjusting jet energy scale
factors upwards for the inclusive search.
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Figure E.2: Fit results to the simluated Mjjj distribution from adjusting jet energy scale
factors downwards for the inclusive search.
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Figure E.3: Fit results to the simluated Mjjj distribution from adjusting the jet energy
scale factors upwards for the heavy-flavor search.
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Figure E.4: Fit results to the simluated Mjjj distribution from adjusting jet energy scale
factors downwards for the heavy-flavor search.
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Figure E.5: Fit results to the simluated Mjjj distribution from pile-up re-weighting with a
increased inelastic cross section for the inclusive search.
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Figure E.6: Fit results to the simluated Mjjj distribution from pile-up re-weighting with a
decreased inelastic cross section for the inclusive search.
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Figure E.7: Fit results to the simluated Mjjj distribution from pile-up re-weighting with
an increased inelastic cross section for the heavy-flavor search.
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Figure E.8: Fit results to the simluated Mjjj distribution from pile-up re-weighting with
an decreased inelastic cross section for the heavy-flavor search.
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Figure E.9: Fit results to the simluated Mjjj distribution from adjusting b-tagging scale
factors upwards for the heavy-flavor search.
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Figure E.10: Fit results to the simluated Mjjj distribution from adjusting b-tagging scale
factors downwards for the heavy-flavor search.
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