Appendix A: Transcript of Session 1 with Group 1, June 25, 2003.

3 Romina: That is way to too much college right there.
4 Pantozzi: Now I want you to know before you begin, this is not a test of what you

7 Pantozzi: You're not going to be rated upon what you say, whether it's right or

45	Romina:	remember the guy on it.
46	Pantozzi:	[inaudible]
47	Angela:	I don't think I looked...We want Mike Aiello's paper, right?
48	Romina:	You guys.. if you're getting your papers, can I have mine? Ha ha.
49	Magda:	This one is.
50	Pantozzi:	Here's a whole bunch of stuff.
51	Romina:	I actually took notes Magda...see now they're helping us..
52	Angela:	Oh Yeah, I got a four on that one!
53	Pantozzi:	[inaudible]
54	Romina:	In class... oh Angela too.
55	Magda:	[inaudible]
56	Romina:	I'm probably the only one of us who took notes...
57	Magda:	We took some notes too.
58 59	Romina:	Oh, I remember this...the Riemann sum we're going to stop there [laughs] that's the one where he draws the little boxes and you add them up
60	Magda:	Yeah.
61	Romina:	I was I couldn't remember I was like I hope that's what it is... remember
63	Angela:	I didn't remember that's what it was called.
64 65	Romina:	Yeah, that was the first words, so I figured... Guys, I have all this, do you want me to read it... this was our actual textbook.
66	Magda:	I think she's got a different book.
67 68	Romina:	OK, do you want me to read...guys I have all this, do you want me to read it? This was our actual textbook...
69	Angela:	Do we have to each do this, or can we like come up with one big thing?
70	Romina:	We have to come up with one big thing.
71	Angela:	All right, good.
72	Romina:	I think, you're the one who said I should read the question...
73	Angela:	It says we can ask other students for help, but I don't know.
74	Magda:	I don't like how this is written.
75	Angela:	Let's look through papers that might be more helpful, right?
76		(Angela and Magda point at a paper, laughing together)
77	Romina:	Is there not just like a definition of what the Fundamental Theorem is?
78	Magda:	Well I have this, you can read this, but I don't like this book.
79	Angela:	Get another one Magda.
80 81 82	Romina:	The Fundamental Theorem of Calculus... If f is an integrable.. I can't even say it.. function... blah blah blah $g(b)$ and $g(a)$ etc. I remember that... all right, we're good to go...
83	Angela:	This one... All right, teach me...
84	Romina:	Angela, I have to look at my stuff... I remember seeing it
85	Angela:	You guys took calculus in college... I can't remember this stuff.
86 87	Magda:	Basically, isn't it just taking the integral of the thing, of the function and then ...
88	Romina:	[reading out of the Foerster text] $\mathrm{OK}, \mathrm{g}(\mathrm{x})$ equals the integral of ... OK
89		from point a to b of this, the function... equals $\mathrm{g}(\mathrm{b})-\mathrm{g}(\mathrm{a})$
90	Angela:	Do that.

91	Magda:	Come again, OK, then it's.
92	Romina:	So OK...
93	Magda:	Just take the integral between the interval
94	Romina:	OK, isn't that the one where.. the a, b... the integral of all of this minus
95		the integral of all of this equals the area from here to here. [draws figure]
96	Magda:	Yes.
97	Romina:	All right, I got it.
98	Magda:	Well basically...
99	Angela:	I got it now that you drew that.
100	Magda:	The integral is like the area underneath the graph, right?
101	Romina:	I'm not going to be able to understand Mike Aiello's work.
102	Angela:	Then let's get rid of Mike Aiello's work...
103	Romina:	And Brian...
104	Angela:	[laughs]
105	Angela:	There are none of Magda's, by the way...
106	Romina:	Did you do that on purpose?
107	Magda:	Where's yours?
108	Romina:	Robert I can't understand.
109	Angela:	Ah ha, my homework.
110	Romina:	Well.
111	Magda:	What exactly are we looking for?
112	Romina:	I don't know. That's you.
113	Angela:	Something to jog our memory. That's me.
114	Romina:	Michelle.
115	Angela:	That's not me. My handwriting is not that neat.
116	Romina:	That's me, it has hearts on it.
117	Angela:	That's you, too.
118	Romina:	That's me, I don't even know why I...
119	Angela:	That's you, too.
120	Romina:	That's me.
121	Magda:	[inaudible]
122		[laughter]
123	Romina:	Where is he, is this just my pile of work?
124	Angela:	You did a lot of homework.
125	Romina:	Oh Jeff, there we go.
126	Angela:	I saw him this weekend.
127	Romina:	I saw him too... I don't do things in pen. Maybe it is mine. This when we
128		went for the afterschool thing.
129	Angela:	This looks like my handwriting.
130	Romina:	The three of use when we were practicing for stuff... yeah.
131	Magda:	Yeah.
132	Angela:	Something of Magda's.
133	Romina:	Ankur, we can take some of Ankur's stuff because he writes neat.
134	Angela:	Does Angela do anything? That's me writing in red pen.
136	Angela:	Angela, here we're getting into Angela. Robert I won't understand.
[inaudible]		

137	Magda:	He was so smart.
138	Romina:	They think on a different level.
139	Magda:	I took a math class with him... and he only came to class once... and he
140		aced... came to class, took the exam in 40 minutes and left...got A's...
141	Angela:	He didn't do so well on that one though.
142	Romina:	Oh, me neither, 80 percent. Ugh.
143	Angela:	Oh God, Eighty is terrible.
144	Romina:	Now it's good. Take so damn long...
145	Angela:	That's definitely me..., I think it's me.
146	Romina:	[inaudible]
147	Magda:	How do I know what I got on this?
148	Romina:	Angela... oh no, the second one.
149	Angela:	All right, that's it. OK.
150	Magda:	[inaudible]
151	Angela:	Let's look at this stuff.
152	Magda:	Oh my god I wrote like, such a... so much.
153	Angela:	You still write like that Magda.
154	Romina:	What exactly do you want us to look for?
155	Magda:	Yeah, I don't know...
156	Angela:	I just thought this might help jog our memory, kind of thing, I don't know.
157	Romina:	Because they [pointing to the Foerster textbook] go through a big long
158		explanation, and I just, I was like OK.
159	Angela:	OK, we can do that...
160	Romina:	No, I just like what do we...
161	Magda:	What does the theorem mean? Doesn't the theorem mean that it just shows
162		the area underneath like a function?
163	Romina:	Yeah.
164	Magda:	You know, there's like definite integrals and like indefinite integrals, you
165		know what I'm saying?
166	Angela:	What if we...
167	Romina:	I don't remember.
168	Angela:	What if we...
169	Magda:	You know, definite is between a and b,
170	Romina:	Oh, OK, so this gives us the area for a definite integral.
171	Angela:	OK, so we should define it, like start off by saying this is what this is...
172		no?
173	Magda:	Finish it...
174	Angela:	OK.
175	Romina:	You can be the writer, this is the first time ever I'm not the writer - I never
176		worked with you guys
177	Romina:	But after that, OK now what are we looking for?
178		[silence]
179	Romina:	OK, thanks for answering me...
180	Angela:	I'm sorry, I can't talk and write at the same time
	Magda:	What am I writing down?

Romina: I wrote actual write-ups... so maybe that will... I wrote something about the Fundamental Theorem of Calculus.
Magda: OK, talk.
Romina: This one isn't through... this one is about continuous functions. I don't think I did. (Angela whispers.) Do you want paper?
Angela: Yeah, that could help.
Romina: I don't know what that is...
[silence]
Magda: Do you have grades on your stuff?
Angela: 4's and stuff like that.
Magda: I have... one paper.
Romina: I don't know what.
Angela: No grade on this test.
Magda: A circle. [inaudible]
Angela: Mmmm.
Romina: Do you think it was the first thing we did?
Angela: What?
Romina: The fundamental theorem of calculus - when we got to class.
Magda: I think we started with
Angela: I don't know.
Magda: Derivatives first.
Romina: And then we...
Magda: And then we did that.
Angela: \quad How the heck do you people remember this?
Romina: I have no idea what half this stuff is
Angela: [inaudible]
Magda: Yeah, well, then...
Angela: Don't write on there.
Magda: You know, then like $\mathrm{a}, \mathrm{b} . . \mathrm{f}$ of x dx that equals that [Magda writes
$\int_{a}^{b} f(x) d x=F(\mathrm{~b})-F(\mathrm{a})$ on the paper]
Romina: Why don't you write it on a clean piece of paper?
Magda: No, I'm just saying...
Angela: Magda... So this is it, this is what this is
Magda: Yeah, it says exactly that on here [pointing at the Foerster textbook]
Angela: Oh look at that, it does, but here it uses g's
Magda: This is basically it, you take the function and then you, you know...
Romina: Read this read after this out loud and see if that...
Angela: \quad Read out loud? You want me to read this, or after this?
Romina: So we can hear... Read, I guess read...I don't know... up to that wasn't that read where it says fundamental theorem of calculus highlighted Angela: But it doesn't really say anything it just says in this section you are going to use what you discovered to put together the fundamental theorem of calculus
Magda: [inaudible]
Romina: Read out loud so I can hear it.

Angela: \quad The top graph in figure $5-8$ is a function g, an indefinite integral of F.
That is, $g(x)=$ (integral sign) how do I say that?
Magda: Integral of f of $x d x$.
Angela: \quad By the definition of indefinite integral, g prime of $x=f$ of x. because g is differentiable, the mean value theorem applies to it on a, b, in brackets, or on any subinterval of a, b. do you want me to continue?
Magda: So...
Romina: OK.
Magda: What exactly are looking for, really? I don't...
Romina: So basically this is like... we learned about the Riemann sum first, which is like our very primitive way of getting the area underneath the
Magda: Integral.
Romina: I remember he taught us this, you make it smaller and smaller.
Magda: You do the... and then we had the midpoint, is what he starting off with, I think.
Angela: [reading a paper] inaudible.
Romina: So then...Isn't it impossible to get the area under like an indefinite... don't you need like two points to ... do you know what I'm saying? How would we get the area underneath this (pointing to the book)
Magda: \quad You take the integral between a and b
Romina: So that's how we make an indefinite definite? I don't know what that is, I just remember is that what it kinda is? Do you have any idea what l'm saying?
Magda: No.
Romina: If they gave us a line, we couldn't figure out
Angela: Why don't you just draw things
Romina: How to figure out the area I'm just saying, if they just give as a line, we couldn't... if they... if we... we had like the bell curve for example, [Romina draws graph] we really couldn't... we couldn't figure out the area, because this would always gets smaller... don't we have to kind of make it an approximation so we take a really far corner here and a really far corner here... and take the area between like that.
Magda: Yes.
Romina: So this is basically what that is.
Magda: But it doesn't have to go to infinity, it could be like any curve.
Romina: But if it's any curve, wouldn't I be able to figure it out? Like, [draws on paper] can't I figure it out?
Angela: \quad But not if it was like this and this and that [draws a wiggle that crosses the x axis and then increases]
Romina: But if it goes like that then.
Angela: I don't know...
Romina: How do you do... break it up...
Angela: I guess...
Romina: You're the math one...
Angela: I'm not.
Romina: \quad She is. Do we really have to break it up, is there a way, I don't remember.

Magda:	Well... Romina: There's not a way you could just figure it out, is there? you'd have to get the equation of the line,
Magda:	No well, if you take the integral, knowing that, if you take any integral between a set of points, you don't even have to know how the graph looks Yeah.
Angela:	
Magda:	To figure the area underneath it cause you could be taking like sine of blah blah blah of like some ridiculous equations, and some of the equations, you wouldn't even know what they look like... you wouldn't even have
to know what the graph looks like, you can take the integral of it, you can	
just plug the numbers and get the answer	

Romina: Minus all the area under this, but how does that relate to the actual... do you understand what I'm asking?
Magda: Well, the actual graph, the point right here, [pointing to the points labeled $F(b)$ and $F(a)$ minus this point right here, is the area underneath the graph
Romina: I don't understand that; how can... say this point is two, and this point is one, you can't, what do you mean?
Magda: OK well,
Romina: Two two.
Magda: \quad Say this point is two and this point is one, like this, so its $2-1=1$ so the area underneath that is one.
Romina: I'm not getting that
Magda: OK, let's use...
Angela: Yeah.
Magda: \quad This is x squared, and the integral of that is $1 / 3 x^{\wedge} 3$, alright, so and say you want to take the integral between 2 and 0 , and say this is like 2 and this is 0 .
Angela: [inaudible]
Romina: Good call, Mags.
Magda: So that 2, and that's zero, so plug in 2 here, two to the third is $8,8 / 3$, right.
Romina: Uh hummm.
Magda: Minus ... minus that is zero, so the slope...no, not the slope, the area under here is $8 / 3$.
Romina: OK, now I understand what you're saying.
Magda: So that's and this... I kind of like drew it in the wrong direction, this graph is supposed to be on top here
Romina: Where's my...
Magda: And then if you go back...
Romina: Do we have down what the theorem means.
Angela: I don't have it written down.
Romina: Like I'm saying, is that all that it...
Angela: What the theorem means, what the theorem is for, and why the theorem is true.
Romina: Someone read this, because I mean... I think that's like right after we probably did it.
Magda and Angela read what the paper Romina gives them (see appendix)
Romina: I got all excited and then I got to limits and then I stopped...
Angela: [laughs]
Romina: [inaudible]
Angela: \quad This is this, right? [pointing to paper (see appendix)]
Magda: $\quad \mathrm{F}(\mathrm{t})$ will be this, this line...
Angela: Right.
Magda: \quad The integral will be this line.
Angela: OK, sorry, I'm like all I'm Englished out I can't read anything that's math anymore.
Romina: Can you guys read my handwriting?
Angela: Absolutely not!

365

Romina: We're getting closer - this is what I learned right before I learned the Fundamental Theorem...
[laughs]
Romina: I swear, it really is.
Magda: Wow, you have... Did we have to write journals like this?
Romina: Apparently not!
Magda: I could have sworn I did work in this class.
Romina: You did it with me.
Magda: \quad So why isn't my name on here?
Romina: Ask him. No. I wrote my own Magda. What's the date on that?
Magda: October 8.
Romina: We're
Angela: This is October 14.
Romina: Almost there.
Angela: Kind a.
Magda: ...[inaudible] intervals...
Angela: A calculator...
Magda: A calculator wouldn't....
Angela: I don't know Magda, You know more than me...
Magda: I don't know anything... this is like Analysis I wanted to plug and chug the numbers.
Magda: You don't understand, I learned so many different ways of taking integrals, it's... I don't even... now my sister is taking calc 2 so I'm like refreshing my memory
Romina: This is too old. Or we could have looked at a test that said the FTC... All right, here it is, let's see...
Angela: [inaudible]
Romina: You look at this, I'll look at the other ones.
Angela: What am I going to look at?
Magda: Oh my god, that's... [inaudible]
Angela: You just handed me something.
Romina: No, I was keeping that, I was going to show that to you in a second.
Angela: I'm not going to understand this. [students are looking at papers]
Romina: I formed the name of a country using all of our initials,
Angela: [laughs]
Romina: And I wonder why I don't know what the fundamental theorem of calculus is.
Angela: I used to know...
Romina: Did you read my statement?
Angela: No, it had something to do with limits and derivatives...
Romina: OK, what the FTC is
Magda: [inaudible]
Angela: I remember this paper.
Romina: Would it have stuff to do with, like uh, tying in the whole idea like, like you know, how a derivative and an integral is kind of like tied together,
and the whole limit, finding the specific slope, and using the integral to find a specific slope of a point.
Yeah, because if you take an integral,
Isn't that what the question...
And you take it back to it that's kind of like the integral.
The derivative of the integral
The derivative of the integral is the actual function.
And when we take the integral to find like the slope of certain points on.
On the integral?
Say there's a line.
OK.
And you like, you want to know the slope at a certain.
So you take the derivative.
OK.
Slope is derivative, area is the integral
Area is the integral... OK.. I don't..
[inaudible]
I don't... did you get anything off that test on the thing...
Well, I don't know what I'm looking at - I can like do, figure out the problems, but that doesn't tell me what...|laughs|
Angela: Everyone's got this test but it doesn't quite help.
Magda: Which...what is the graph
Romina: I don't know... do you guys... Is that the graph? I don't even know what the graph is.
Angela: I have no idea.
Magda: Hold on...
Romina: Which one's the graph?
Magda: When the graph of f is shown in the graph... I'm guessing this is the graph right here.
Romina: No I drew that in. Is that the graph?
Angela: This... it probably is, you found that out, that out (pointing to the area) that and that, you shaded that in so this is probably the graph.
Magda: That's the graph, OK. Then what is it asking?
Angela: No, that's the graph.
Romina: That's the graph Magda it goes boom boom boom boom... that's, I don't know what that is yet.
Magda: OK.
Angela: You should be more thorough in your explanations.
Magda: \quad Oh, this one's the integral, probably, because you're adding this area, this area up, and then this area.
Angela: And it keeps going up... and here it's negative, so it goes down.
Romina: Didn't we take these tests in uh...blue books... didn't we, because we don't have the answers to the tests?
Angela: Didn't we do it with loose leaf? We didn't take these in blue books... maybe the final or the midterm...

Romina: Well I'm just saying maybe... I have something written in there that I don't have now?
Angela: Probably. Yeah, probably.
Romina: All right, here's something... the integral from a to b minus the integral from a to c equals the integral... a to b minus a to c .
Magda: Can I see?
Romina: [inaudible]
Magda: [inaudible]
Romina: [inaudible]
Angela: What are we trying to figure out?
Romina: I just want to see it has anything if this is leading us anywhere I'm not sure what he wants.
Magda: \quad So the integral of this is this, so say this is "a",
Angela: We basically have to teach a class on the fundamental theorem of calculus. That's...
Romina: It's from b to c , right?
Magda: Area right here, that's the area... ... from a to b minus the area from a to c is the area between here and here \ldots so it's like.
Romina: Zero.
Magda: No, You're subtracting more, so it's the area left over...so it's the area between b to c. [Magda draws on the graph representing $x^{\wedge} 2$ she drew earlier]
Romina: That's what I said Magda...[laughs]
Magda: Anyway, I like drawing stuff...uh yeah.
Romina: I need to talk to him because I don't know exactly what he wants.
Angela: 5 points...
Romina: Is he out there? I'm like, I don't have a direction here. ..
Angela: We have like 400 books... like I think the point of this is to be teaching ourselves... reteaching ourselves how to do this. That's what the point of this is.
Romina: Angela...so stand in a corner and don't listen...
Angela: I'm just thinking... the point of this...
Romina: We have a question for you.
Pantozzi: Sounds like I'm being called down. to the principal's office.
Romina: Please, sit... no. We're like just like going through our old stuff.
Magda: What exactly are we looking for?
Romina: We knew what it was right off the bat, you'd be pretty impressed.
Pantozzi: OK.
Romina: We knew.
Pantozzi: Well, the collective we.
Romina: We know what it is, what exactly are you looking for?
Pantozzi: Well, lets go back to the task...I was doing this for Anna you know, a couple of months ago, she asked me, something I learned, something that.
Romina: So if I told someone...
Pantozzi: If someone came up to you and said that they're in calculus now, and they've taken the first three chapters, four chapters of the book, and
they've gotten to this fundamental theorem section... I think I might have told you the story of what happened at my final exam...in calculus I, I took it early because I needed to help my dad with catering... and so they just gave it to me in a room in the math department office...so I was in there, I got to question 10 , it was something about the FTC but I didn't really know what it meant, but I knew it was a big F and a little f and ag, and an integral sign, so I tried to string some of that together.
Angela: A's and b's
Pantozzi: \quad So I tried to write something and make some sense out of it but I wasn't really sure what to say about it... so as I said, imagine this person has come to you and has just done this section and I really didn't get it so and you took calculus before, so.
Romina: Isn't it just the area underneath the curve...
Pantozzi: Well, I can't answer that question, right now. [laughter]
Pantozzi: However what I want you to do is put together, you know, I can be that person when I come back in again but you want to put together something to say to this person.
Magda: Oh, so we're going to present to you...
Angela: A presentation...
Magda: Present to you....and then you're going to be asking us questions...
Pantozzi: I might ask you some questions, I don't know what I'll say.
Angela: That's WRONG... sorry...
Pantozzi: No, I definitely won't do that, because that's not my role in what I'm doing now...no but that's the way I want you to think about it... you looked, looked at some textbooks, you knew something right off the bat...but imagine you're telling, you're trying to help this person do those three things that you underlined before. So you are going to put together, you are going to meet with them tomorrow morning, and I want to sound like I know what I'm talking about because I took calculus and this person's coming to me for help, you know, so plan together what you would say to them. You know, start here, you understand this... what exactly would you say to them... plan that out, you can put diagrams on the board...reenact it, try it out first with yourselves. And then try it out on me, that sort of thing.
Angela: When we try it out I'll be the student who doesn't know anything Kidding... not really.
Magda: I think what it means is, I'd say it's the area under a graph [Pantozzi leaves
Angela: Of any graph?
Magda: Under a function, under some kind of function
Romina: I guess we would have to would we have to go into Riemann sums ?
Magda: The example of this and this... it's really not a function... I don't know...
Angela: \quad Shouldn't we define under - under could be like all the way under.
Magda: The x axis cutting off at the x axis.
Angela: Yeah, but How do we word that?

557	Magda:	I don't know... like copy it right from of the book.
548	Romina:	What if the graph goes underneath the...
549	Angela:	That's plagiarism...
550	Romina:	Magda...
551	Angela:	Copy my papers... I'm not just going to steal something out of the book
552		we're not going to learn anything it if we do it like that.
553	Romina:	Iinaudible]
554	Magda:	Page 49.
555	Romina:	I have a question for you: What's the integral of that? Is it all of this
556		Ipointing at an area that extends off the page to the left \|
557	Angela:	This and this, right?
558	Romina:	Just this.
559	Angela:	This stuff, or is it that?
560	Magda:	It's all that. It depends on...
561	Romina:	What's under this, nothing?
562	Angela:	It would be here too?
563	Magda:	Yes. That's what it would be.
564	Angela:	So between the graph and the x axis.
565	Magda:	Um hum.
566	Romina:	How would we find.. like is it all this?
567	Magda:	Well that could go into infinity.
568	Romina:	Does it go to infinity?
569	Magda:	There could be a cut off point.
570	Romina:	Like here? (She draws a point)
571	Magda:	You can take limits like as x approaches infinity or something like that
572		and then.
573	Angela:	Can you do this without a graph? Is it formalized?
574	Magda:	You can have definite or indefinite integrals and then take limits I
575		remember I did something with indefinite integrals where you take limits
576	Romina:	He saved that for 4 years and you're writing on it!
577	Magda:	Like integral from infinity to infinity...infinity to infinity it's something
578		like the limit as x approaches or is it t approaches infinity from in or is it
579	Romina:	You're getting into letters here... what's h?
580	Magda:	F of t ... I don't remember you change it to $t .$. it's something with t's and
581		you start taking limits.
582	Angela:	What?
583	Magda:	I don't know, I was actually helping my sister do this yesterday.
584	Angela:	This is why you know things.. right?
585	Romina:	We're not getting very far here.
586	Angela:	OK. can we talk about defining this I know you said it's the area, but what
587		about if you're like not doing a graph.
588	Romina:	Should we like...
589	Angela:	Do we have to do a graph to do this
590	Romina:	Should be start really basic?
591	Angela:	Yeah, we should.

592
593
594
595
596
597
598
599
600
601
602
603
604
605
606

638	Romina:	Oh, so it was distance.
639	Magda:	Distance is the integral, then it was speed, acceleration. Speed is the
-		
641 642	Angela:	Speed is the function... So let's write that down, so Angela can understand things. Speed is the function, this would be like $f(x)$,
643	Romina:	Distance...
644	Angela:	And distance
645	Magda:	Do distance is the integral,
646	Angela:	I did something right.
647	Romina:	I don't know if that's right... and acceleration is the derivative,
648	Angela:	Distance, acceleration.
649	Magda:	[inaudible]
650	Romina:	D / dx or the little thing.
651	Angela:	What did you just say?
652	Romina:	D/dx.
653	Magda:	Intervals...
654	Angela:	[inaudible]
655	Romina:	All I'm saying is this Angela.
656	Angela:	Oh, OK.
657	Romina:	Doesn't sound... Are we sure that's right.
658	Angela:	No.
659 660	Magda:	I'm pretty sure that's right. That makes sense. If you have speed you travel, you accumulate distance.
661 662	Romina:	Cause then, we could explain that, break that down, with rectangles, and trapezoids, and then whatever
663	Magda:	No, no no, I agree agree agree
$\begin{aligned} & 664 \\ & 665 \\ & 666 \end{aligned}$	Romina:	This theorem lets you evaluate definite integrals exactly by algebra using indefinite integrals - so that's what it does - I guess we missed that line before. (reading from the book.)
667	Angela:	We can't copy that out of the book.
668 669	Romina:	We saw that before we were like wa ha? That's what we were saying before.
670	Magda:	[inaudible]
671	Romina:	You get a definite with an indefinite.
672 673	Magda:	Well an indefinite integral just means you don't have bounds on it, isn't that it.
674	Angela:	[inaudible]
675	Romina:	Yeah...you're the one who taught me what...
676	Angela:	What it does.
677	Romina:	It makes an indefinite...no, you don't need to write that down, it's just.
678 679	Angela:	Don't we have to answer...Isn't that part of the question? No, what it's
680	Romina:	What it means.
681	Angela:	What it means, what it is for.
682	Romina:	Well, we have the equation...
683	Angela:	Why is it true? That's the third part of the question.

684	Magda:	Because we read it in every single book.
685	Romina:	No, didn't we just explain that?
686	Angela:	The textbook tells us so. Mr. Pantozzi...
687	Romina:	You just sat there before and explained it,
688	Magda:	Oh with my little...sign.
689	Romina:	With the.. yeah...put in the numbers.
690	Angela:	Can we...
691	Romina:	Do we assume they know what an integral is?
692	Angela:	Let's assume that they don't...
693	Romina:	We need to explain what an integral is?
694	Angela:	[inaudible]
695		[Magda excuses herself to use the restroom.]
696	Angela:	All work ceases until Magda returns. I think we should start with the
698		like start in the middle he'll ask us questions and we might not be prepared
699		to answer them... get away from it...
700	Romina:	Do we have to get into derivatives, explain that?
701	Angela:	I don't know.
702	Romina:	I don't think I can... I don't...
703	Angela:	Excuse me...I'm going to steal Magda's book. Is that the textbook we
704		used?
705	Romina:	Yeah.
706		[Romina is reading.]
707	Angela:	Remember this guy Euler?
708	Romina:	What's the mean value theorem?
709	Angela:	A what?
710	Romina:	The mean value theorem.
711	Angela:	I have no idea. I'm telling you I really remember nothing, it's terrible. It
712		makes me sad. I should take calculus next year.
713	Romina:	Do you know what the mean value theorem is?
714	Angela:	Of course she does, she's Magda.
715	Magda:	Mean mean... isn't that over b-a I don't know. I think that's what it is.
716 717	Magda:	I came up with, how about we start, OK, say you have a function [she draws a parabola) maybe this.
718	Angela:	X squared.
719	Magda:	And then the, OK well, the integral of it would be, well, it's the area
720		underneath the graph, say, all right, so basically, lets start plotting it little
721		by little kind of deal.
722	Angela:	Can we use graph paper?
723	Romina:	Here, wouldn't.
724	Magda:	[inaudible]
725	Romina:	Here wouldn't, Magda, look at this, isn't this like the mathematical
726		explanation of it [pointing out the explanation in Foerster page 216) Do
727		you understand it?
728	Angela:	I'll plot x squared.
729	Romina:	I don't really OK , so g is the, is the integral of the function?

Magda: G, I don't know what g is, how do they define it. G is... Well, $g(x)$ is the integral of $f(x)$ [on page 216 it says integral (no limits of integration) of $\mathrm{f}(\mathrm{x}) \mathrm{dx}=\mathrm{g}(\mathrm{x})$
Romina: So the derivative of the integral is the actual function.
Magda: So the derivative is... do you have a pencil so I can like...
Romina: Rewrite it on...
Angela: Pencil doesn't show up on camera.
Romina: Here, rewrite it on the thing. Give me the paper...
Magda: OK, basically this says that, OK...hold on. $G(x)$ equals the integral of $f(x)$, right.
Romina: Yeah.
Magda: So that means...
Romina: What does c1 mean - I just read this I really don't remember.
Magda: Let cl be the points, the first and second... that's the different cut-off points.
Romina: OK.
Magda: \quad So $g\left(c_{1}\right)$ is [she writes $g^{\prime}\left(c_{1}\right)$ on her paper]
Romina: Is the function.
Magda: Is the function It's $f(x)$
Romina: So here, write like an arrow underneath it, so we know it's $f(x)$.
Magda: Which is $\mathrm{f}(\mathrm{x})$, [she draws an arrow between $g^{\prime}\left(c_{1}\right)$ and $f\left(c_{1}\right)$]no, $\mathrm{f}\left(\mathrm{c}_{1}\right)$
Romina: Is equal to
Magda: $\quad G\left(x_{1}\right)-g(a)$ over the change in x. [She writes $\frac{g\left(x_{1}\right)-g(a)}{\Delta x}$ equal to

$$
\left.g^{\prime}\left(c_{1}\right) .\right]
$$

Angela: What's this then?
Magda: It's f of c_{1}. The actual function.
Angela: OK.
Romina: Go g of...can you draw.
Magda: The graph of..
Angela: Do that.
Magda: \quad So $f(x)$ would be, say this, right?
Romina: Um hum.
Magda: Use like simple functions, [she draws a parabola]
Romina: Then the integral would be...
Magda: Then the integral of it would be the $x^{\wedge} 3$ graph.
Romina: OK.
Magda: \quad So then here this says that the actual function at some point c_{1}.
Angela: Just draw a point on there.
Romina: Is our "a" constant?
Angela: What? from zero, OK, this is your a and this is your b...
Angela: [inaudible]
Romina: [inaudible]

Magda: X sub 1, into intervals of equal width...g of one so OK, so basically, Angela: \quad Uou're
Magda: So.
Romina: So it's kind of like...You're dividing them until, you get like one... is that what that's saying?
Magda: Well yeah this would be like $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3$ right.
Angela: Um hum.
Magda:
So this is x 1 , so that would be $\mathrm{g}\left(\mathrm{x}_{1}\right)$ [pointing to the x axis and the cubic graph] So that would be like this is the $x 1$ here, so this, minus $g(a)$ which is the original point which is here, over the change which is the distance here.
Romina: OK, so that gets us the area? Does it?
Magda: Did $\mathrm{I} .$. gets us $\mathrm{c}_{1} \ldots$ (as she points to the $g^{\prime}\left(c_{1}\right)$ she wrote on the paper.]
Angela: That gets us this...right?
Magda: Which is on the original curve is... yes, that gets you the area.
Romina: The slope of...
Magda: No, that gets you the area.
Romina: Isn't the slope on our f the area on the g ?
Magda: Isn't the slope on our f this is our f... no...
Romina: Isn't that what an integral is...
Magda: This is our $\mathrm{f} .$. .
Romina: By finding the area you find the actual slope...
Magda: \quad This is our $f(x)$ so what are you saying?
Romina: Like the slope from..
Magda: Of a...
Romina: Of a point is the area under it.
Magda: The slope of a point\%
Angela: Slope between these two points is the area here is what she's saying. Like from a to x 1 would the area under here.
Romina: No, isn't that why we take the integral?
Magda: No no no no. The slope would be this... like the slope would be this...
like the slope at x one. [Magda draws a linear graph underneath the graph of the parabola.]
Romina: The derivative is the slope.
Magda: Yeah.
Romina: So what is the purpose of the integral? Why do I need to know the area?
Magda: The whole thing like with the distance, with traveling the distance, and stuff like that
Angela: Ok, what is that whole thing?
Magda: Ok, if you're traveling some speed over like whatever, and you want to find the
Romina: Wouldn't that be the slope?
Magda: Well, the slope...
Romina: What's velocity?
Angela: Distance over...no...[laughs]

Romina:
Angela:
Romina:
Magda:
Angela: I don't know Magda. I have no idea what you're talking about.
Magda: How about if we go ahead and draw...the graph.
826
827
828
863 Magda:

864 Romina: Yeah, I don't... did you see the time?
865 Magda: C one.

Romina: There's another one with like time and height...it might.. that might...
Magda: It looks like it's the points on the first, second, and third subintervals... so it basically like c 3 is any point on this interval? Is that what it's saying?
Romina: I don't know, that's why I didn't learn like that. Isn't it something about like our intervals getting smaller and smaller and smaller... is that what it is for?
Magda: Yeah, well, if the intervals are smaller and smaller, it's more accurate...
Romina: Yeah, so is that what that is trying to say? Then we add together like the, like if our intervals are getting smaller, so we have more intervals, and we add them together, and it's getting smaller, it's more accurate,
Magda: Because if this... doesn't make sense, OK because if this is actually that, and you are multiplying it by the change of x so this like say this is two...this is two...[pointing a point on the graph of the parabola]
Romina: Is the C in the point or the area.
Magda: No, it has to be the point, it's a point.
Romina: So if we're doing height times width,
Magda: Yes.
Romina: OK. SO we're doing height, that's
Magda: Well, no, it's not height, it's whatever,
Romina: [inaudible]
Magda: \quad Say this is 2, you're multiplying whatever the function, so whatever the function is, if it's 2 , then it's 4 , times whatever the change is so basically what you are doing is like $2 \ldots$ if it's 4 times .5 say that's like change of x, so that little thing equals 2 .
[Romina draws a graph, and labels points a and b on the x axis.]
Romina: What are the x's ?
Magda: $\quad \mathrm{X}$ is this.
Romina: Well, but.
Magda: This is your x.
Romina: So what they're saying is...like at the bottom [pointing to the bottom of page 216]
Magda: You divide by the change in x .
Romina: No like I don't, so... so like xl.
Magda: \quad X2.
Romina: They're taking x2, x3, x4.
Magda: Yeah.
Romina: So they're taking this minus this which will get me this [draws area under her graph between x 1 and x 2 .) Am I wrong?
Magda: G is.. yes, that's right.
Romina: And they're adding this plus this to get this...so they're doing all this, so eventually, you get $b-a$.
Romina: OK, I got the bottom half figured out.
Magda: Where are you looking? [Romina points to the bottom of page 216 in the Foerster text \dagger OK that makes sense.
Romina: OK, here, they're doing... this isn't our g function, this is our g prime (referring to the graph she has drawn.)

912	Magda:	Yes,
913	Romina:	So here they're doing g of x 1 .
914	Magda:	No, no, this is your g function, because f of... no.
915	Romina:	Then, how is that.
916	Magda:	No it is g prime.
917	Romina:	So here... x one minus $g(a)$
918	Magda:	Hold on... g prime.. Which is also f of x.
919	Romina:	I don't get why you're dividing the change over x , I don't get why you're doing that, if it's the derivative.
921	Magda:	Well draw the integral of that... no, the integral? [Romina begins to draw a new graph.]
923	Romina:	I don't know the integral, I was just guessing x to the third. Is that right?
924	Angela:	Is that it? [inaudible] Forget it, never mind.
925	Magda:	Yeah...
926 927	Romina:	So I did it backwards. I'm not going crazy here. [Referring to what the integral of the graph she drew would look like.] This is a negative x
928		squared, yeah, so it's that.
929	Magda:	Yeah.
930	Romina:	You guys looked at me like I had five heads. It's the same...
931	Angela:	Wait a second... did I just do this wrong?
932	Romina:	OK, so what is this?
933	Magda:	So now...
934	Romina:	$\mathrm{G}(\mathrm{x} 1)$ - g(a) over.
935	Magda:	You're doing this?
936	Romina:	Yeah, I'm just writing it down cause I can't...
937	Magda:	G of x .
938	Romina:	Then what's the next one just so I can see what the pattern.. is that g.. oh, that's g prime.
940	Magda:	No it's g.
941	Romina:	Equals g prime (c2) I don't understand what this is.
942	Magda:	That's what I'm trying to figure out. So let's try this.
943	Magda:	$\mathrm{G}(\mathrm{xl})$ so this is your $\mathrm{xl} 1 \ldots$ so $\mathrm{g}(\mathrm{xl})$ [she places a point on the x axis of the
944		"integral" graph Romina has drawn] is right here.
945	Romina:	Um hum.
946	Magda:	So $\mathrm{g}(\mathrm{xl})$ is right here.
947	Romina:	OK. Minus...
948	Magda:	Minus $\mathrm{g}(\mathrm{a})$ which is this point right here,
949	Romina:	All right...divided by...
950	Magda:	The change.
951	Romina:	When they say, OK, the change, they mean this part [she indicates the change in x between the two points she has drawn on the x axis.
953	Magda:	Yes. Which is just $\mathrm{x} 1-\mathrm{a}$.
954	Romina:	All right. Why did I have to make it so damn complicated.
955	Magda:	So...
956	Angela:	I think we have to figure that out.
957	Magda:	Explain this.

958
959

Romina: OK, see that's where I was going wrong, I wasn't looking at this as this is the integral function. That's why I was not getting it.
Angela: But this is the integral function, right?
Romina: No see how she... this all...All this (referring to the symbols in the text) was happening on this graph. I was not understanding that... that all is happening on that.. am I not...
Angela: Isn't this... this?
Magda: Isn't this the slope at the point there (pointing to Romina's g' graph.)
Romina: Yeah. Isn't that what you just did? And the slope that's what I was saying - isn't the slope the area?

Angela: \quad Yes! Yes it is.
Romina: No, no I don't know, that's why I'm.. I don't know...
Magda: If you're dividing by the change, it is...
Angela: This is also the change, is it not?
Magda: Yes, yes this is the whole... we did it, somewhere... here, isn't that it?
Angela: Yeah.
Romina: Yeah.
Angela: All right. Now, how does that pertain to what we're doing? Now that we've figured out what the book is trying to say...
Romina: No I am just... I still am lost. This is the slope. [pointing to the calculation of slope on her paper.]
Angela: Right.
Magda: Yes.
Romina: Oh, so this is saying the derivative is the slope. Isn't that.. that's all it's saying.
Angela: Yeah.
Romina: I'm sorry we wasted all that time trying to figure that out.
Angela: \quad Well, maybe it will help.
Romina: I still don't know where... did the other people go about this a lot faster with this?
Magda: This is one, this is...
Angela: Where's Mike Aiello when you need...this is one two, three, oh man. Nice job Magda.
Magda: \quad Say our $g(x)$ was this, we're doing this area manually. This is point five.
Angela: OK.
Magda: So the area...
Angela: Can we get different colors. Can we get different color pens, is that possible?
Romina: This is why I don't like working with girls.
Elena: Do you need pens?
Angela: We can use those, that will work. No, just because everything like would look the same...
Magda: [inaudible]
Romina: [reading from the Teacher's guide to AP Calculus] Use the Fundamental Theorem to evaluate definite integrals, That's what we're doing.

1004	Magda:	[inaudible]
1005	Romina::	Wait wait wait... [reading from the Teacher's guide to AP Calculus] Use
1006		the FTC to represent a particular antiderivative and the analytical and
1007		graphical analysis of functions so defined.
1008	Angela:	I have no idea what that said. So the area.
1009	Romina:	The antiderivative. Isn't that the integral... of the derivative?
1010	Angela:	You're asking me? Magda?
1011	Romina:	I'll just it here and talk to myself.
1012	Angela:	I don't know what that is. I have no idea. I'm like re-learning this all right
1013		now.
1014	Romina:	This is a very poorly made teachers manual.
1015	Angela:	He gave us a teacher's manual?
1016	Romina:	Yeah, that's what I'm saying...
1017	Angela:	... isn't it?
1018	Romina:	It's like a how to teach.
1019	Angela:	Oh, that should help a lot, right, Because that's what we have to do?
1020	Romina:	Thanks...
1021	Magda:	What are we going to use - a midpoint kind of deal.
1022	Romina:	You can use all of them...
1023	Angela:	Can we do that thing...
1024	Magda:	Can you elaborate?
1025	Angela:	Are you going to do this? Is that going to help? [She draws the graph of a function and rectangles under it.\|
1027	Magda:	Yes, that's what I'm trying going to do.
1028	Angela:	Midpoints...
1029	Magda:	That's what I'm... so we're going to use the midpoints.
1030	Angela:	Yeah, that's what I meant.
1031	Magda:	OK, so this is one bar.
1032	Angela:	So we have to find the midpoint there. I'm sorry Magda, I should have made it better.
1034	Magda:	This is the second point.
1035	Angela:	Is there an exact..
1036	Magda:	Hold on, hold on. Which one is which?
1037	Angela:	Ignore that, it's this one. It's x squared....x squared.
1038	Magda:	Right here.
1039	Angela:	No, Magda, I think halfway would be higher up I think.
1040	Magda:	No, about right here.
1041	Angela:	Oh, from here, to here, I was like, what are you talking about Magda?
1042	Magda:	Then here, it would probably be like...right?
1043	Angela:	Do you want me to start getting numbers for you?
1044	Magda:	Yeah.
1045	Angela:	Ooh, a graphing calculator, I haven't used one of these in a long time. [Whispers to Magda.]
1047	Magda:	Well, just...
1048	Angela:	Find the area of the rectangles.
1049	Magda:	Um hum.

1050	Angela:	I'll wait until you're done.
1051	Magda:	Yeah. So like you're going to be doing . 25 squared.
1052	Angela:	Why .25?
1053	Magda:	Because we're using our...
1054	Angela:	Oh, because it's the midpoint.
1055	Magda:	Yeah.
1056	Angela:	[inaudible]
1057	Romina:	You know what I think we should do? We should first, explain, explain the calculus and the area,
1059		[laughter]
1060 1061	Romina:	Then we should explain definite integrals, and then we're going to do calculus and area by the Riemann sums,
1062	Angela:	Isn't that cheating, using the teacher's manual?
1063	Romina:	It's not telling me how to do it, because apparently the teacher's supposed
1064		to know, because they've taken these math classes over and over. And
1065		then we're going to go into definite integrals and antiderivatives, and then
1066		comes the FTC. We have this stuff, just don't have integrals and
1067		antiderivatives, that's the whole thing that I made you look at that you
1068		apparently didn't ...
1069	Magda:	Well, integrals and antiderivatives, aren't they the same thing?
1070	Romina:	Well that's what I thought, but why did they write it out like that?
1071	Angela:	Shouldn't we assume that the student knows that?
1072	Magda:	Well, antiderivative, it's like one has like how the graph moves up and
1073		down because you can kind of start taking the integral at any point. It's
1074		something...
1075	Romina:	I'll keep that open just in case we decide to uh...
1076	Magda:	Isn't that the whole issue with plus C. that's the difference between and
1078	Romina:	That sounds really familiar, Magda, but I don't know.
1079	Angela:	it's not really helping much.
1080	Romina:	I just, there was, there was a thing... antiderivative
1081	Magda:	So the height right here is what?
1082	Angela:	Oh, I just have to do that thing... squared...point 0625.
1083	Magda:	Times the change in x is point 5 .
1084	Angela:	I knew that Magda.
1085	Magda:	So the area of this little... the first triangle.
1086	Angela:	So it's like, hold on. Times the change in x, that's what we're
1087		doing...equals area of..
1088	Magda:	Area of...
1089		[laughter]
1090	Romina:	What are you guys doing?
1091	Angela:	I'm trying to write this down so I know what I'm doing.
1092	Magda:	It's the area, OK. It's the area, that's it.
1093	Romina:	I can't find it in here.
1094	Angela:	I'm going to make a little chart. Yeah!
1095	Romina:	What are you...?

1096	Angela:	I was good at this stuff back then.
1097	Romina:	... oh doing a Riemann sum.
1098	Magda:	Using the midpoint.
1099	Angela:	This is .5 though, right? X is .5 ? No?
1100	Magda:	Yes. No, change of x is point 5 .
1101	Angela:	And.. wait that doesn't help, that messed up my chart. So why are we
1102		using point 5... oh
1103	Magda:	Because it's the mid.
1104	Angela:	Because it's the midpoint? I'm sorry. And that's the area. [Angela is
1105		making a chart of values of x and A. Her first entry is .25 and .03125 .]
1106	Magda:	Yes, that's the area.
1107	Angela:	So we're doing... if the change is . 5 then we're doing .75 , right?
1108	Magda:	No, no no, the change is always point 5 .
1109	Angela:	Right. But from .25 to .75 it's .5 .
1110	Romina:	I don't have any clue what you guys are doing and I'm sitting right here.
1111	Angela:	We're just finding the areas of rectangles
1112	Magda:	Rectangles.
1113	Romina:	The whole rectangle?
1114	Magda:	Finding the area and like ...our change in x is .5 . So that's our change in x
1115		right here.
1116	Romina:	Why is it . 5 if it goes over... oh.
1117	Magda:	And we're using the midpoint which is the midpoint between .5 which is
1118		. 25 ...to figure it out. So .25 into that function.
1119	Romina:	But you're not doing... It looks like you're using the rectangles on the left.
1120	Magda:	Well no, we're using the midpoints, we're using the whole thing.
1121	Romina:	It's not... it just doesn't look like that OK.
1122	Magda:	But what are you saying?
1123	Romina:	When you're saying midpoints aren't you supposed to be taking ...
1124	Magda:	[inaudible]
1125	Romina:	Which ones are... oh that graph. Midpoint. OK, now I... it just looked
1126		funny. It looked like it was.. I don't know. And you're going to add all
1127		those together to get the area.
1128	Magda:	Um hum.
1129	Angela:	How far are we going up?
1130	Magda:	Like 3.
1131	Angela:	OK.
1132	Angela:	So this is 2.75 .
1133	Magda:	Uh hum.
1134	Angela:	Oh, that was wrong. [laughter]
1135	Romina:	All right now what are we doing after this?
1136	Magda:	We kind of want to prove...
1137	Romina:	That's our intro to area and calculus right there.
1138	Angela:	Yeah, we did something.
1139	Magda:	1,2,3.
1140	Angela:	You really should label these things, Magda.

1141 1142	Magda:	Alright so, the area, like of the little things, the little things, when you add that all up, that's our estimate of the area between the interval of 0 to 3 .
1143	Angela:	Um hum.
1144	Romina:	Hold on, what are we doing, right now, are you finding the area
1146	Magda:	X squared.
1147	Romina:	OK, and then...
1148	Magda:	OK, can you add that up so, that's our estimate of the area.
1149	Romina:	How does that connect to the integral?
1150	Magda:	Well now, this is our integral.
1151	Romina:	Yes.
1152	Magda:	of an $x^{\wedge} 2$ function, so this is $f(x)=1 / 3 x^{\wedge} 3$, right, and basically this is.
1153		we're finding the area on the interval of 0 to 3 . So using our like theorem
1154		of calculus, or... just substitute that in. 3 cubed is 27 divided by 3 .
1155	Romina:	But why, why does that work?
1156	Magda:	Just because it does.
1157	Romina:	I think that's what he's asking, we have to know that.
1158	Magda:	Hold on, well first we're explaining what it means,
1159	Romina:	OK.
1160	Magda:	and then why it works. Isn't that the last question.
1161	Romina:	What is the theorem for,
1162	Angela:	That's the area.
1163	Romina:	And why the theorem is true.
1164 1165	Magda:	So this is the estimate. So hold on $3^{\wedge} 3$ is what, 27 , divided by three is 9 , and it's nine,
1166	Angela:	So this is very close, yeah, we did something.
1167	Magda:	OK, so that's like the estimate.
1168	Angela:	Ok, now explain what you just explained to her to me, because I was
1169		typing in numbers and 1 missed it.
1170	Romina:	No, we didn't get anywhere, that's what we have to do like, why does that
1171		like, why does that work?
1172	Angela:	This is this, right.
1173	Magda:	Yes.
1174	Angela:	OK.
1175	Romina:	Yeah, that's it. When we plug in, 3 , we get the area,
1176	Angela:	We get 9, which is close to.
1177	Romina:	Why does that work, that's the question.
1178	Angela:	[writes $F(x)=1 / 3 x^{\wedge} 3$ on the paper.] Well it's there already.
1179	Romina:	Rewrite it. Forget the teacher's manual. This is the part where we're
1180		[Magda draws a new figure]
1181	Magda:	So basically what we're doing here is we're doing the distance, isn't that
1183	Romina:	I don't know if that's right though, I think but...
1184	Magda:	I don't know...
1185	Romina:	I think it's speed acceleration, distance.

$\begin{aligned} & 1186 \\ & 1187 \end{aligned}$	Magda:	Hold on, I'm not saying that, I'm not going into that...I'm just drawing this line,
1188	Romina:	What are you asking me then?
1189	Magda:	I'm trying to see, I mean, what $f(x)$ I mean $F(3)-F(0)$
1190	Angela:	Whatever, that's close.
1191	Magda:	Is this number minus this number. [Magda points to two points on the
1192		graph she has just drawn.] So what does that give us? I know that gives us
1193		the area, because we know that.
1194	Angela:	[whispering] but why...
1195	Romina:	Here, let me look...[Romina picks up the Foerster book.]
1196	Magda:	Well basically what we're doing here is\%OK, basically what we're doing
1197		here is taking the area... OK, give me the numbers...
1198	Angela:	Point 3.
1199	Magda:	Ok, it's 1, 2, 3, 4, 5, right, it's like point 3, right? so it's here. I mean, it's
1200		at .25 OK , so it's here,
1201	Angela:	No, it's . 28.
1202	Magda:	So it's here...
1203	Angela:	It doesn't help, it's tiny.
1204	Magda:	This is one, so at .25 , it's point 3 so it's somewhere here.
1205	Angela:	OK.
1206	Magda:	Then at .75 let's see this is one. it's like a third way up.
1207	Angela:	Um hum.
1208	Magda:	then at 1.5.
1209	Angela:	1.25 .
1210	Magda:	1.25.
1211	Angela:	It's .78, it's like here, right?
1212	Magda:	Then at...
1213	Angela:	1.75.
1214	Magda:	1.75 it's 1.5.
1215	Angela:	1.5.
1216	Magda:	So this is two. [making a mark on the y axis.\| So this is like here.
1217	Angela:	OK, and 2.25 it's 2.5.
1218	Magda:	2.5 ?
1219	Angela:	Um hum.
1220	Magda:	OK.
1221	Angela:	And then it's 3.7 at $2.75 . .$. maximum, I'm sorry.
1222	Magda:	So basically, if you plot those points you get this.
1223	Angela:	Um hum...
1224	Magda:	That's what it looks like, right?
1225	Angela:	That's that? Is that that? [Referring to the previous graph that Magda drew $f(3)$ and $f(0)$ on I
1227	Magda:	Well, yes, that's what it looks like.
1228	Romina:	[whispering] Speed velocity, distance.
1229		[laughter]
1230	Angela:	You can explain that one.
1231	Romina:	No, I.

1232

1278	Angela:	And you said it was wrong.
1279	Romina:	Magda, try to explain it to us instead of being like just sh sh. We don't
1280		follow you if you're four steps ahead.
1281	Angela:	[inaudible] Come on, help us out Mags. You're the accounting major. You
1282		take math.
1283	Romina:	.03125 is the area of...? The first?
1284	Angela:	That first little section there.
1285	Romina:	See, we need...
1286	Angela:	That whole rectangle thingie.
1287	Romina:	OK.
1288	Angela:	Yes, rectangle, not rectangle thingie.
1289	Magda:	So now the point at \ldots isn't it at point .5 , is supposed to equal the area, so
1290		this is .5 , so this is supposed to equal....03125... I mean, around.
1291	Romina:	Yes.
1292	Angela:	That's what I'm doing.
1293	Magda:	Point 5 [cubed] divided by $3 .$.
1294	Angela:	.41. . 041.
1295	Magda:	Well, it's because it's an estimate.
1296	Romina:	But OK, I understand what you're doing but, then, don't we, to take the
1297		integral of this, blah blah blah blah it's this, right.
1298	Magda:	[inaudible]
1299	Romina:	My question was not important.
1300	Magda:	Hold on, hold on, hold on. I think I got it now.
1301	Angela:	We have clean paper.
1302	Romina:	Yeah.
1303		[laughter]
1304	Angela:	...to keep crossing things out.
1305	Magda:	At . 5 , the area is..
1306	Angela:	The area is .03 .
1307	Romina:	Is this the integral? that you're.
1308	Magda:	The same thing...
1309	Angela:	Are we drawing the same thing we drew 2 minutes ago?
1310	Romina:	Yeah, and we can't go on...Magda, my only question, is going to be really
1311		basic, just listen to me.
1312	Magda:	OK.
1313	Romina:	You know what I... what function is this? [she draws a graph with area
1314		filled in underneath.]
1315	Magda:	Of what though?
1316	Romina:	What is this.
1317	Angela:	F of x ?
1318	Romina:	This is my g prime?
1319	Angela:	Integral?
1320	Magda:	What function?
1321	Romina:	That's what I don't get...
1322	Magda:	$\mathrm{OK}, \mathrm{f}(\mathrm{x})$ is $\mathrm{x}^{\wedge} 2$ that is our example.
1323	Romina:	OK. [Pointing to the graph she just drew] Is this our $\mathrm{f}(\mathrm{x})$?

Magda: No.
Angela: No. x squared is our f of x.
Romina: This is our integral.
Angela: Yeah.
Romina: But see You know how when we draw the integral, and then we do the area underneath...
Magda: Yes.
Romina Isn't that what we do with our g prime?
Magda: No, it's not the area underneath the integral, it's the area underneath the function.
Romina: But when we.. I understand that but I'm saying that's how we've been drawing it so every time we say this is our g of $x . .$. this really is, this is... if you figure out the area of this [she traces the area under the graph] this [pointing to the graph that she has drawn the area under] would be the integral of our g of x [she writes integral symbol $g(x)]$
Magda: Correct.
Romina: So why do we keep drawing this [She traces the graph] and trying to figure that out [she traces over the area]
Angela: Were not doing that this is the F of x.
Romina: \quad So my question is how does this [She traces over the area she has filled in] change into that other graph that's the part I'm not getting.
Magda: What do you mean.
Angela: I think that's what we're trying to get too.
Magda: This...
Romina: So we're all lost at the same spot
Angela: I think so
Romina: Do you understand what I'm saying - how does this OK, this is our f of x, or our G prime this is my G prime [she traces over the graph again] and I want to figure out the area under my g prime to get to my G yes.
Angela: When did we switch to G's.
Romina: That's what the problem was in the book.
Angela: OK. I'm like...
Romina: $\quad G$ is the integral and G prime is the derivative.
Angela: OK.
Romina: OK no it's the function and not the derivative of the function Angela: I know what you meant.
Romina: Yeah OK. This is our g prime, this is our g, when 1 get all this [she runs her pen up and down across the area under the graph| how do I graph this to get my I don't know I don't even know whatever.
Magda: \quad Ok well this is your f of x.
Romina: OK, so we went from...[she draws a new graph, the graph of a parabola] so I want to go from here to here [She marks off points on the x axis labeling them a and b] and when I graph my integral [she draws the graph of a cubic function]

1368

Romina: I don't get how this [she fills in the area between the graph of the parabola and the x axis] turns into all this [she fills in the area above the cubic graph)
Magda: \quad No no no, no area.
Angela: The line.
Magda: The point.
Romina: \quad That do you mean equals this point [she draws a point on the cubic graph above the location of b on the x axis.| you mean this point is the area of all these together.
Magda: Yes. Well this point...
Romina: Say this area here, this area is 2 [she traces over the area between the x axis and the parabola between the points at $x=a$ and $x=b$)
Magda: OK. And this areas is $2 \ldots$
Romina: And this starts at $-1 \ldots$ is this 1 ? [Pointing to the point above the point at x $=b$.]
Magda: Well.
Angela: Is it?
Magda: Whatever b is.. oh this point is 1 ?
Romina: \quad This point is equal with my b and this point is equal with my a.
Magda: OK.
Romina: And the area of this is 2 .. so this is negative one, say [she points to the lower point| does this have to be 1 .
Magda: Well, 1 minus 1 minus...is, yeah, um hum... Correct 1 minus minus... is a plus, correct.
Romina: So each point on this [she makes points on the graph of the cubic function] is like a really skinny rectangle kind of [she makes little rectangles between the x axis and the parabola]
Magda: Yes and that's what I was saying here.
Romina: But I wasn't getting you and that's why I wanted to ask this.
Magda: Yes.
Romina: All right now go.
Magda: Well basically what we're graphing here is the areas at point 5 the area is that and at 1 the area if that [she points to points she has just drawn above the x axis at $x=.5$ and $x=1 \mid$ and it kind of builds up so when you the... get to the final point you get that 9 [she draws a third point to the right of the first two at $x=3$, with a greater y value than the first two points.]
Angela: And this graph [pointing to what Magda has just drawn] is that? [pointing to $1 / 3 \mathrm{x}$ cubed on the graph paper drawn earlier]
Magda: Is that, yeah...[pointing to the symbols $F(x)=1 / 3 x^{\wedge} 3$] so you're kind of like stacking it up.
Magda: Yeah.
Romina: So you're just putting it on top of each other\%
Magda: Um hum.
Romina: Yeah, OK...so I think we know what the integral is.
[laughter]

1413
1414
1415
1416
1417
1418 Romina:
1419
1420
1421
1422
1423
1424
1425
1426 Romina:
1427 Magda
1428 Romina:
1429 Magda:
1430 Romina:
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446

1447

1448
1449
Magda:
Magda:

Romina: I think we've beat that to the ground... why does that.. like why does that math work.
Angela: And on to the fundamental theorem of calculus.
Romina: No I mean well then.
[inaudible]
... the a and the b that's the fundamental theorem of calculus.
Well then of you take like the area between - not of this graph of course like the point between here and here that's going to give you this little area right here [pointing to the graph on the graph paper]
Angela: Approximately.
Magda: Approximately.
Romina: The fundamental theorem of calculus is just an easier way...
Magda: No, look.
...to do the integral it's like the definite integral, right?
Well no because...
It's a way to figure it out...
...you've got to take the integral to figure out the actual area
Yeah.
It's not an easy way of taking the integral because you have to take the integral anyway you know what I'm saying.
Romina: Yeah, I... so you're saying that that we didn't discuss what the fundamental theorem of calculus is.
Angela: No.
Romina: We didn't.
Magda: Will technically we did.
Romina: All I thought we did because I thought were moving on after that.
Magda: Yeah because if you think about it if OK then you have this point.
Romina: We don't even know we discussed the fundamental theorem.
Magda: We did, OK.
Angela: We did?
Magda: Yeah.
Romina: Because I thought we're done with the theorem part like what it is... are you not done?
Angela: I am done.
Romina: Really... Are you not done? Angela, for all I know we could have just breezed right over that part.
Angela: what we just did that's what that is right... that this area is this graph [She points to the graph of the cubic function on the graph paper.]
Magda: Yes.
Angela: OK... I'm hearing voices... and that's what the fundamental theorem of calculus is.
Magda: And this would be $.03125 \ldots$ hold on a second...this will be .03125 and this will be .03125 plus .28125 .
Romina: Yes.
Magda: Yes so we accomplished that

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488

Romina: I am with you there, but does that explain the fundamental theorem of calculus.
Magda: Well technically yes I guess.
Romina: Well the student should be able to jump from this point to that conclusion now why does it work.
Magda: Well if you take that and say you want to the integral between .5 and 1
Romina: You just...
Magda: Of the F of x function right so you take this number and you take that so you'll get...
Romina: Scary...Ok, so why does it work.
Angela: That's f of a, right....I'm wrong...I don't know...forget what I just said...
Romina: What do you mean? No, ask.
Angela: It doesn't make sense to me. I'm confused.
Romina: What's not making sense?
Angela: Nothing I'm OK.
Magda: Well the slope of that.
Romina: Angela, you know how we always say I get it,. and then they ask us questions and we don't know... Just ask us a question then.
Angela: I'm ok I was just going off on a tangent because I have...
Magda: Well the slope between this would will be $f(1)$ minus $f(.5)$ over. 5
Angela: Over the change in x.
Magda: \quad That will be the slope of this.
Angela: Yes.
Magda: Of our "integral" (signals with quotes with her hands)
Angela: Right.
Romina: Which will be the derivative of our integral.
Angela: Which would be the...
Magda: Which would be the...
Romina: Which would be our g prime.
Angela: Wouldn't that be the area...isn't that the area like Romina just drew here... cause it's like.
Romina: \quad You just told me slope was derivative.
Magda: \quad Yes slope is derivative.
Angela: Isn't that the same thing? [inaudible]
Romina: So if that's our integral, we just figured out of the slope of the integral that would be the derivative.... Yeah, We're not doing well.. Am I completely off?
Magda: I don't know what you're asking.
Romina: This what you did right here didn't you just figure out the slope from here to here.
Angela: Yeah.
Romina: And isn't this our integral.
Magda: Correct.
Romina: So the slope of the integral would be the derivative of the integral would be the function we started with\% I just didn't understand what you guys for doing that's why I said that.

Angela: It's like what you just did here (pointing to Romina's graph) that's what that is...this is 2 and that's going up 2 and that's why it ended up at 1 right... I'm thinking in very elementary terms here
Romina: Oh boy.
Angela: Yeah? No?
Romina: This is drawn...
Magda: Do you have that book with the g's in it.
[Pantozzi enters the room]
Romina: Can I just ask did the first group go in a completely different way.
Pantozzi: I didn't watch most of the first group just as I didn't watch most of this
Romina: You guys did.
[laughter]
Pantozzi: Their lips are sealed.
Romina: I feel our group can't really work apart we're not the same in parts.
Angela: What?
Romina: If everyone else was here we wouldn't be doing this.
Angela: Aren't the 3 of us working here together
Romina: The whole group I mean whole group.
Angela: If I had to work on these by myself I'd be in a lot of trouble.
Magda: OK so what are we saying.
Romina: I just asked you a question\% I had no idea what you guys were doing.
Angela: how about we use this to explain that... that should be our first part we need to organize ourselves a bit better it's driving me crazy.
Romina: I think we have the integral part down what the integral is all that stuff.
Angela: OK this and this can go together.
Romina: You can throw this in.
Angela: OK next step.
Romina: What the theorem means.
Angela: Isn't that we just did.
Romina: Yeah that we just did\% Ok, and what the theorem is for.
Angela: No I think we just did what it is for.
Romina: To find the area\%
Angela: Right, that is what it's for.
Magda: Hold on
Angela: \quad That it means is that [pointing to Foerster textbook]we can't copy that because I don't plagiarize.
Romina: Angela, I'm going to hit you, we're not plagiarizing it... obviously if we don't understand I can't plagiarize it. OK, what the theorem means can we do that like whole thing about the theorem is as our intervals reach zero...
Angela: What?
Romina: The Riemann sum, as our intervals reach zero
Angela: Getting smaller?
Romina: OK can we get that far.
[laughing]
Angela: \quad Words like get smaller that I understand.
Angela: Is that what it means Magda? (Magda looks)

1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578

Magda: [inaudible]
Romina: That's what an integral means but the fundamental theorem of calculus is an integral from a to b.
Magda: Yes. it's like on a defined area.
Romina: OK.
Magda: OK.
Romina: So what it means is if we take the Riemann sum from a to b as the intervals get smaller
Magda: It becomes more accurate.
Romina: It becomes the integral and as it reaches zero and That's like the whole limit thing if something is going to reach zero you can switch it and it's b

- a.

Magda: Um hum.
Romina: OK.
Angela: I missed that.
Romina: Remember the limit as h approaches zero.
Angela: I'm telling you, I don't remember
Romina: The limit...as h approaches infinity,
Angela: That looks familiar to me but I don't know what it means though.
Romina: No that's wrong as h approaches zero.
Magda: The intervals get smaller and smaller.
Romina: Does that\% am I on crack here.
Magda: How about you use slope.
Angela: OK you mean they're just getting smaller the change in $\mathrm{x} \%$
Romina: Yet to the point that they're not actually squares they're just [she motions up and down with her hands]
Angela: And what about.. blah blah blah this making it more accurate like making it not being a rectangle but a trapezoid.
Romina: No that's with a Riemann sum remember they did first they would have these all even with the left and the then they centered it and then we got really high powered and use the trapezoid did trapezoid come first.
Angela: OK. that's just what we did, OK.
Romina: [inaudible]
Magda: \quad Basically that's why it works because it isn't that cause like [looking at the book and pointingl
Angela: You need to complete a sentence first for us to understand.
Magda: \quad This will cancel that and this will cancel that and x will cancel that you know what I'm saying, then you'd be left with.
Romina: \quad B minus a.
Magda: Yeah.
Angela: All those steps in the middle don't count .
Romina: So we do have what it is for what it means and why it's true.
Angela: Why it's true?
Pantozzi: I sat down because you have about 15 minutes left on the tape.
Romina: We haven't gotten very far for you.

Pantozzi: That's not it like I said with the other group I don't know what you talked about, I gave this to you as a task to get you talking not for you specifically to answer this isn't a test of what you remembered or anything like that... so if you talked.. like I heard you say did we even talk about the fundamental theorem of calculus for the last hour... I mean even if you didn't if you talked around it that would be great stuff for me in terms of this research also so there is no problem there...um...reading my question now and listening to you for the last 10 minutes or so, perhaps I should give asked what does the theorem say.
Romina: Isn't that kind of like we did.
Pantozzi: Or maybe that's what it means, I don't know.
Angela: That area is that.
Romina: I don't get like "what it means" is that just stating the theorem.
Pantozzi: See I'm not sure what I meant by what I said either.
[laughter]
Romina: If you don't know...
Angela: You want us to directly answer each question
Pantozzi: Well sometimes people will say a theorem like you can read a sentence to me.
Romina: That's what I thought it means...
Pantozzi: And not understand what it means...so when you're going to meet with the student tomorrow who is taking calculus now, and wants to know about this what might you say to them first to help them.
Angela: We like started with the graph.
Romina: But probably tell them what the book says.
Magda: We'd start with like saying that, like a simple graph.
Angela: ...actually counts for something.
Pantozzi: OK , this is something you've talked about for a while,
Romina: Yeah...
Pantozzi: So for the last 10 minutes or so you can pretend I'm the student or pretend one of you are the student and just go through whatever you want to present to them just to summarize.
Angela: I can be the student.
Romina: OK, so you know what the fundamental theorem is, I mean you know what the equation states.
Pantozzi: I've seen the equation.
Romina: SO we have that.
Magda: [inaudible]
Pantozzi: Like I've seen that I've read that. [I point to the theorem in the Foerster textbook.]
Romina: OK. we went a lot of places with this.
[laughter]
Pantozzi: I know what a derivative is.
Angela: Well we basically did that but we made it with a graph.
Romina: The first thing we did was we took the function.
Angela: We used f of x, x squared as our function.

Romina: And essentially we talked about what the integral was, how we want to find the area underneath our x squared from point we designated points from like a ...
Magda: From like one to three, that's what it was.
Romina: So we did that and do you know what the Riemann sum is?
Pantozzi: Yes.
Romina: OK.
Angela: We did that.
Romina: So we took a Riemann sum underneath that area and then basically we... what the integral is is stacking on the each area\% under.. yeah I don't know where that went...
Angela: Points.. there you go...
Romina:
So do want to explain that? you wrote it.
Well basically what we did is that we figured out that at .5 the area would be .03125 and basically that is doing the change of x which in our case was .5 times the height which would be the.
Angela: [inaudible]
Magda: $\quad .$. y if you plug it into here [points to the equation $f(x)=x^{\wedge} 2$] and that's our area, so at .5 that would be that [she points to the point on her graph at $.5, .03125$] so at $.5 \ldots$ and at one you would just add this and this together and then you just keep going.
Angela: Keep adding.
Magda: Keep adding it up and then you get to the integral.
Pantozzi: You get a graph?
Magda: Yes which is the integral of the f of x.
Pantozzi: OK.
Romina: So then we went on to.. so if we add up all those areas right there, we get our area from... did we start at zero? Zero to 3 .
Magda: To 3 which equals 9 like which is if you actually take the function you get that.
Angela: It's right down there.
Magda: If you take that.
Magda: But with our estimates how we're showing it we're doing with the area of the rectangles it came out to 8.937 which is like the estimate and so basically and then as you make your change of x smaller and smaller will become.
Angela: More accurate.
Magda: More accurate... which is actually what the integral is.
Romina: So then if you take, that's kind of sloppy that was our first but if we have a graph and we want to know the area from a to b what you basically do is\% and this like after we know what a Riemann sum all that so we have an integral, you know what an integral is... you take the integral of all of this [from the left up to b] of all of b and then you take subtract the integral of a which is all of this, then you know exactly the integral from a to b and that's the fundamental theorem of calculus.
Angela: And it took that long for us to figure it out.

Pantozzi: This is the same question I asked the other group near the end given that you've just been talking about this for a long time there's going to be a second session where after I've watched the tape I'm going to see what ideas you guys brought out I'm going to have, going to bring some more things to that here I just gave you some books and said go ahead talk about it in the second session I'll bring some things that specifically you might be interested in knowing... so after you've talked about the fundamental theorem of calculus for this amount of time what questions do you still have about it if any.. like what might you want me to bring to the next section... next session... to either help you explain it more or to help you understand it more.
Romina: I'm not getting... go ahead.
Angela: \quad May be a specific problem with numbers or like what you were saying before speed velocity acceleration kind of thing.
Romina: Could you just answer that really quick? [laughter]
Romina: Speed velocity distance acceleration you know how one's a function one's the integral of the function...one's the derivative of the function... could you just tell us which one's the function and which one's the derivative and which one's the integral.
Pantozzi: Velocity is the derivative of position or distance
Romina: Position...
Pantozzi: Or distance.
Angela: Distance.
Romina: OK, and acceleration is the derivative of velocity.
Magda: [inaudible]
Angela: See I said that.
Magda: What is it again?
Pantozzi: It's position velocity acceleration (Pantozzi: Moves his hands in a downward vertical motion) position is the first thing, where you are, and the derivative of that is the velocity and the derivative of that is acceleration.
Magda: So we were right, we were saying we had velocity.
Angela: [inaudible]
Magda: We had that...
Romina: What we did...for a long time.
Pantozzi: So you still have some questions about that issue velocity acceleration.
Magda: But we didn't really know what acceleration was.
Romina: No we didn't know what velocity was.. I get...
Angela: What was the formula for that?
Romina: All that stuff we explained to you that I understand about it but.
Magda: \quad That more is there to it?
Romina: Yeah, like what?
Magda: \quad This is definitely like the big the most important thing but like what else do you like is there to it?
Angela: Like specific problems would be the only\%

Romina:	Why is it true like?
Pantozzi:	So that's something you didn't get to...
Angela:	We were supposed to figure that out.
Romina:	Yeah like we just hit a rut like we couldn't really I understand integral I understand all the stuff under... but I just don't see why the uh...
Magda:	But isn't this kind of why? (pointing to the book)
Romina:	Yeah, I understand that but\%
Angela:	Isn't what why we were doing like why isn't doing it out like that and plotting it out and figuring it out ... isn't that why.
Romina:	I don't know.
Pantozzi:	I don't know what to say...
Romina:	What more do you want for us to answer this?
Pantozzi:	I can't answer that question because I didn't watch the whole thing that you did.
Romina:	You're going to beat yourself over the head when you watch this [laughter]
Romina:	[inaudible]
Angela:	[inaudible]
Pantozzi:	Well as I said at the beginning the reason I'm researching this is that this is the fundamental theorem of calculus and they name it that for some reason and there's some interest in if you've if you've learned all the separate things what happens when you try to you know you've mentioned integrals you mentioned limits.. I don't know if you mentioned derivatives at all in your conversation.
Angela:	Sort of.
Romina:	That's where we sort of got into problems I understand integrals and the limits
Pantozzi:	Um hum.
Romina:	And I understand that the derivative of the integral would be the function and the integral of a function is that just didn't make sense but but I don't see how they're all tied together too much [looks to the other two students] do you understand what I'm trying to say?
Pantozzi:	You said the integral of a.
Romina:	No that was bad.. like the derivative of an integral would be the function [see motions down with her hands\| and like the integral of the derivative would be the function.
Magda:	Um.
Romina:	I don't know why I was trying to say that but I see how that process works see that
Angela:	[inaudible]
Romina:	But I don't understand it all.
Pantozzi:	l'll end this way then and then we can chat. suppose you had to put a bumper sticker on the back of my car about the FTC, perhaps you wouldn't put it on your car... is it possible to put it on a bumper sticker? Or um...
Angela:	How big is the font?

1779	Pantozzi:	Good question.
1780	Romina:	See, I understand that when I look at it. (Referring to the book.)
1781	Pantozzi:	Yeah?
1782	Romina:	[inaudible]
1783	Angela:	Well I didn't when I looked at that I had to relearn this because it's been so
1784		long since I've done it I'm not going to say I understood it
1785	Romina:	Isn't this just what it is?
1786	Angela:	Now looking at it I get it...
1787	Pantozzi:	Well I can't answer that right now.
1788	Angela:	[inaudible]
1789	Pantozzi:	I could say yes, I could say no.
1790	Romina:	I mean like
1791	Pantozzi:	I'm interested in what you thought...
1792	Romina:	We probably have a shallow understanding of it.
1793	Pantozzi:	Why do you think that?
1794	Romina:	Just wait until you watch the tape.
1795	Pantozzi:	Well why do you think that right now. I didn't watch the tape.
1796	Romina:	Because it can't be that simple, it can't just be the graph from a to b... I think it is.
1798	Angela:	I think we learned why at one point didn't we? I remember knowing
1799		things.
1800	Romina:	We figured out why we didn't use the textbook in class.
1801	Pantozzi:	[inaudible]
1802	Romina:	We did... did we not go through this...We tried to understand this for a
1803		good like half hour.
1804	Angela:	Who needs a textbook when you got Pantozzi?
1805	Romina:	Yeah, I was really badgering.
1806	Pantozzi:	So let me end this way this time and I'll really end this time... the student
1807		hasn't taken this section yet - the way I posed it in the task is that they
1808		already took it and want some help with it so hey, you took calculus, and
1809		I'm supposed to learn the fundamental theorem of calculus, what's that
1810		going to be about? Now I'm going to leave and I don't know how much
1811		time there is on the tape, but answer that question in a short, bumper
1812		sticker sort of thing and the font can be about this big.
1813	Magda:	Basically what I would say...
1814	Angela:	Yeah, but we could say this and this... but generally speaking what is it.
1815	Magda:	The fundamental theorem is I would say its taking the integral on a
1816		defined interval.
1817	Romina:	Function.
1818	Magda:	Taking the integral of a function on a defined interval.
1819	Romina:	I like it.
1820	Angela:	Taking what?
1821	Romina:	Having never taken this class, would they know what an integral is, is
1822		that?
1823	Angela:	Well I'm sure they would if they're going to be learning the fundamental
1824		theorem next.

1825	Romina:	Well I think that's good for me.
1826	Angela:	Should we write that down for him.
1827	Magda:	[inaudible]
1828	Angela:	OK.
1829	Magda:	I don't know, right.
1830	Romina:	That's the fundamental theorem...it's kind of simple for... isn't it?
1831	Angela:	What?
1832	Magda:	Well basically what you're doing when\%
1833	Romina:	No I agree with you, that's why, I agree, but I just don't always, uh... I don't know how to go about...
1835	Magda:	I would probably draw a graph and be like.
1836		[laughter]
1837	Magda:	Do what we did here draw a graph.
1838	Angela:	Yeah but we're just putting something on a bumper sticker you can't just draw a graph you have to say something right.
1840	Magda:	I'd be like the area in green is this minus the area in blue.
1841 1842	Angela:	Obviously he's trying to get us to articulate everything we just did in, like a few short words.
1843	Romina:	This is what I would write. [She writes integral sign b-integral sign a]
1844	Angela:	That's what you're going to say to somebody.
1845 1846	Romina:	I don't know what else to say that makes sense - and I'd give them the picture.
1847	Magda:	You need an f there [she adds aft to Romina's equation]
1848	Romina:	OK, if we got all like.
1849	Angela:	So this is our bumper sticker.
1850	Romina:	No, but it's not, it's a point on the f. Oh yeah, you're right, you're right.
1851		And I would draw them that picture.
1852	Magda:	Hold on, hold on, then it wouldn't be the integral?
1853	Romina:	I know Magda, it just made sense to me. I'm just kidding.
1854	Magda:	Well then...
1855	Romina:	You guys took me all serious.
1856	Angela:	OK, this is our bumper sticker, what does it say?
1857	Romina:	No, but the area, the integral at point b is that, minus the integral at point a
1858		is that, equals integral from point b to a...how else would you write that?
1859		It does kind of that does make sense to me, that's why I'm not a calculus
1860		teacher.
1861	Angela:	The book...
1862	Magda:	That would be a and b [writes integral of $\mathrm{f}(\mathrm{x})$ from a to b]
1863	Romina:	Oh, yeah yeah yeah.
1864	Magda:	That's how I would write it.
1865	Romina:	I have no idea.
1866	Magda:	And that's what it equals.
1867	Romina:	And then draw.
1868	Angela:	OK.
1869	Romina:	I just don't think its...
1870	Magda:	And then that would equal $\mathrm{F}(\mathrm{b})-\mathrm{F}(\mathrm{a})$.

1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900

Angela: But how do we say this not using like math language and graphs though?
Magda: It's the area under...
Romina: The integral from negative infinity to b of f of x minus the integral of negative infinity...
Angela: No, no, I mean like, I don't know...
Magda: What's the... using position, velocity acceleration.
Romina: Shut up with that, we don't know what it is...can't use that, we don't understand it.
Angela: You're not supposed to be telling the person exactly what it is, he just wants the general idea.
Romina: If someone didn't understand it, I'd draw a graph, and be like, you have a function...
Angela: But that's what we're not supposed to do.
Magda: If they don't know about integrals, I don't think they would be asking us about the fundamental theorem of calculus. What he's saying is...
Romina: In my sophomore year of high school, I was driving with Mr. Pantozzi, I believe it was here, and his car was dusty... and we were talking about... or maybe it was precalculus, I don't know we were talking about calculus and whatever, and I told him, I really don't want to take calculus, and he was like, that was like blasphemy, but whatever, and he goes, well, you'll be fine, and he drew a graph, and he asked how much distance did they cover from here to here, and we like shaded it in, like with the dust, and all that distance, and he's like oh, the area, I'm like yeah, the area that is how someone explained it to me...
Angela: OK.
Romina: And he's a teacher, so I think that's fine that I explain it to someone like that.
Romina: And then we did...someone... and he was like, explain acceleration. He's like if someone starts here, if this is like speed, and this is distance, you go like this, what does that mean
Magda: You're accelerating.
Romina: That's how we learned it, in dust. If you can handle that, you'll be fine in calculus.
Magda: Well that's why you put in real life kind of like.
Angela: Words.
Magda: Terms.
Angela: I'm just a person who likes words.
Magda: And basically like the $f(x)$ would be like the different like accelerations you could be accelerating at like 5 , you could be accelerating at 10 , and that's going to be like your function, you know.
Romina: What more could we say? ... Call him back in. Tozzi! OK, good because that was just going from bad to worse.
Sergei: One minute left.
Romina: Just wrap it up, we're done.
Sergei: [inaudible]

Romina: That's a wrap, people. Do you remember how you explained calculus to me?
Pantozzi
Do I remember?
Romina
Yes. In your car on the dust?
Pantozzi: [silence]
Romina: He doesn't remember...
Pantozzi: Which one was this?
Romina: We were in your car... we had to have been coming here, where else would we go together?
Pantozzi: [inaudible]
Romina: And you were driving and you did it with the dust on your dashboard. [laughter]
Pantozzi: And what did I draw.
Romina: You drew...
Angela: A graph.
Romina: You drew this first, because I was like, I don't want to take calculus.
Pantozzi: I do remember this day, so don't worry about it.
Romina: I don't want to take calculus you said, well, it's going to be easy, you did this, and you're like, if this is speed, and no... no this is distance or time... time.. I think it's time... whatever, or something like that, and you're like what's happening here, and I said you're accelerating and then you did how much distance did you cover and I said all this... Do you remember this? ... why isn't it good enough for me to explain to you?
Pantozzi: What, just now, you mean, or...
Romina: That's exactly how we would explain it if you asked us what the fundamental theorem of calculus was.
Pantozzi: Did we get that on tape before.
Romina: What?
Angela: Yeah.
Romina: Yeah, oh yeah.
Pantozzi: What you just said before...
Romina: Yeah.
Pantozzi: OK.
Romina: Why is that bad?
Angela: OK.
Pantozzi: Has anyone said it was bad.
Angela: ... language.... I was like how would you say it with words?
Romina: I don't like learning math with language.
Angela: See I can't... I don't think I could do it any other way. It's the way I think.
Pantozzi: That's why I love talking to students, especially you guys, because there's always a difference of opinion.
Romina: Hey, you used to make us write remember?
Pantozzi: Um hum.
Angela: See how that's how I remember things... writing...
Romina: These books are really bad.

1961
1962

Angela: I can't read math language... I mean graphs help me more than other Romina: That's regular words for me.
Angela: Yeah, but without a graph. And without a formula...
Romina: [inaudible]
Pantozzi: You guys must have read my dissertation proposal, because that's one of the things I'm interested in, what representations of the idea do you like to use... so you said words are good...
Magda: Symbols and graphs...
Romina: Yeah, and I'll do words... but words are kind of just the filler, because you're explaining the graph.. if you sat there with hands folded....and the fundamental theorem of calculus, say you have a function... you have a function point a to point bits so much easier to just draw the graph if you just sat there hands folded if you have a function, a function point a to point b, from negative infinity... it's so much easier to just do this
Angela: I don't even mean like that. I mean like using plain simple.

