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ABSTRACT OF THE THESIS 

QUANTITATIVE STRUCTURE ACTIVITY RELATIONSHIP MODELING OF 

SEROTONIN TYPE-6 RECEPTOR ANTAGONISTS 

By DANIEL P. RUSSO 

Thesis Director: 

Joseph V. Martin 

The serotonin type-6 receptor (5-HT6) is a drug target for many psychotic 

diseases, especially cognitive disorders.  The traditional method to design novel 5-HT6 

binding agents (e.g. antagonists) is to experimentally screen a large chemical dataset that 

is randomly selected from a drug-like chemical library.  This process is normally very 

costly and has a low success rate. Computer Aided Drug Discovery (CADD) uses 

computational models to virtually screen a chemical library and select promising 

candidates for experimental testing. Using CADD, the resources could be saved and the 

success rate could be increased by excluding unsuitable compounds. Quantitative 

Structure-Activity Relationship (QSAR) is the most frequently used method for 

developing various predictive models within the drug discovery process. In this work, a 

5-HT6 dataset of 488 unique compounds was compiled. Among them, 225 were 

experimentally identified as 5-HT6 antagonists and the remaining were diverse anti-

cancer compounds, which were considered to be unable to bind to 5-HT6. I applied 

various QSAR modeling approaches to develop several computational binary 5-HT6 

models. The resulting models were validated by a five-fold cross-validation approach and 

the resulting predictivity, which was measured using Correct Classification Rate (CCR), 
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was 96%. The resulting models were used to predict an external data set and the 

predictivity (CCR=88%) was similar to the cross validation.  Thus, the models developed 

in this study could be used to detect novel 5-HT6 ligands in the future drug discovery 

process.   
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Introduction 

The neurotransmitter serotonin (5-HT) is critical in a variety of neurological and 

cognitive dysfunctions including anxiety, migraines, depression, and schizophrenia.
1,2

 

The serotonin receptors are classified into seven major families with 14 distinctive 

receptor subtypes.
3,4

  Among them, the serotonin type-6 receptor (5-HT6) contains a 440 

amino acid chain with seven hydrophobic, membrane-spanning regions placing it in the 

G-protein-coupled receptor (GPCR) family.
5,6

  The 5-HT6 receptor has attracted great 

attention since it is almost exclusively localized to the central nervous system and is 

primarily expressed in regions of the brain known to be associated with learning and 

memory.
7
  It is also relevant to adenylate cyclase stimulation.

6
  The inhibition of the 5-

HT6 receptor will, specifically, cause an increase of neurotransmission in glutamatergic 

and cholinergic pathways, and ultimately increases cognition in rats.
8–13

  All these 

characteristics make the 5-HT6 receptor a potential therapeutic target for many CNS 

diseases, such as Alzheimer’s disease.
13,14

  Additionally, 5-HT6 shows high-affinity to 

many non-selective anti-depressant and anxiolytic compounds.
15

  Thus, there has been 

lots of research on the development of novel and selective 5-HT6 antagonists.  

The Computer Aided Drug Discovery (CADD) techniques, such as Quantitative 

Structure-Activity Relationship (QSAR) modeling, have been applied to reduce the 

experimental costs of developing new drugs.  Several QSAR studies have been published 

to discover novel 5-HT6 antagonists. In 2004, Doodareddy et al. investigated a three-

dimensional QSAR study consisting of 33 compounds with dissociation constant (Ki) 

values ranging from 1.3 to 1700 nM.
16

  In another study, they developed hologram-

QSAR models for two data sets; one consisting of 48 congeneric 5-HT6 antagonists and 
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another one with 30 structurally diverse 5-HT6 antagonists.
17

  In 2005,  López-Rodríguez 

et al. developed a pharmacophore model based on 45 diverse 5-HT6 antagonists.
18

  In 

2010, Goodarzi et al. modeled 52 antagonists and agonists.
19

  Sharma et al. used 50 

compounds, representing 5 different classes of chemicals, to develop the predictive 

models.
20

  In a recent study, a comprehensive data set consisting of 223 compounds was 

compiled by Hao et al. and used for modeling purposes.
21

  These compounds were either 

5-HT6 receptor agonists or antagonists.  However, the applicability of these models is 

limited, mostly due to the small number of compounds used to develop the models. 

Furthermore, most of these modeling set compounds are congeneric and not very useful 

for identifying novel agents with new chemical scaffolds. 

In this study, I compiled a modeling set consisting of 488 structurally diverse 

active and inactive 5-HT6 receptor antagonists and developed several QSAR models 

based on this set.  The resulting models were validated by a five-fold cross validation 

approach.  Furthermore, all the models were used to predict a data set which was 

compiled after the models were developed.  The models developed in this study could be 

used to prioritize compounds with novel chemical scaffolds for future experimental 

testing.  

 

Materials and Methods 

5-HT6 Antagonist Data Set  

 The active compounds for the modeling set were compiled from multiple 

resources. All of the assays compiled used the same radioligand, radiolabeled lysergic 

acid ([3H]-LSD).
5,22–29

  The activities of these compounds are expressed in Ki values, 
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which are defined as the concentration at which the inhibitor can displace 50% of the 

radiolabeled ligand.  In this study, I classified all the compounds with an experimental Ki 

less than 10,000 nM as 5-HT6 antagonists (or “actives”). Afterwards, I compiled around 

2,000 anti-cancer drug-like compounds. Since these anti-cancer drugs are cytotoxic 

compounds, it is reasonable to consider them as 5-HT6 non-binders (or inactives). After 

removing duplicates, inorganic compounds, and mixtures, 225 unique 5-HT6 actives and 

1,558 inactives were used for model development. In order to develop a more 

manageable dataset with better predictability, I used a fragment-based similarity search. 

Using our actives as probe molecules, I used a Tanimoto coefficient of 0.6 as a 

threshold.
30

 This generated 296 inactive compounds that were used for modeling.   

 After the models were developed, I found an external validation set consisting of 

82 compounds from other resouces.
31–33

  There are 38 5-HT6 antagonists and the 

remaining compounds are non-binders based on our above definitions.   

 

Chemical Descriptors 

The chemical descriptors used in this study were obtained from Dragon version 

6.0 (Talete SRL, Milano, Italy) and Molecular Operating Environment (MOE) version 

2011.  The Dragon descriptors include E-state values and E-state counts, constitutional 

descriptors, topological descriptors, walk and path counts, connectivity and information 

indices, 2D autocorrelations, Burden eigenvalues, molecular properties (i.e., the octanol-

water partition coefficient), Kappa, hydrogen bond acceptor/donor counts, molecular 

distance edge, and molecular fragment counts. The MOE descriptors include topological 

indices, structural keys, E-state indices, physical properties (i.e. LogP, molecular weight, 
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and molar refractivity), and topological polar surface area.  There were over 4,000 

Dragon descriptors (DRGN) initially generated but most of them were redundant.  I 

removed redundant Dragon descriptors by using pairwise comparisons between each pair 

of descriptors.  Eventually there were 1,052 Dragon descriptors left for the modeling set 

in this study. MOE generated 186 descriptors, all of which were used in the modeling 

process.  

 

Modeling Approaches  

The generated descriptors were used in the machine learning algorithms Random 

Forest (RF),
34

 Support Vector Machine (SVM),
35–38

 and k nearest neighbor algorithm 

(kNN). 
39

  RF and SVM algorithms available in R.2.15.1 were used.
40

  The kNN models 

were built using Chembench (chembench.mml.unc.edu).   

RF is a machine learning algorithm that can be used for either classification or 

regression models first described by Leo Breiman.
34

  Simply put, it involves the 

generation of decision trees based on input variables of a data set.  The trees are grown by 

selecting with replacement N samples from a training set of N.  With M variables for 

each data point, m variables are selected at random from M and the best split on these m 

are used.  At prediction time, each new data point is pushed down each tree and the 

predicted output for each tree is averaged.    

Support Vector Machine is a machine learning algorithm constructed by Vapnik, 

et al and is a popular method for classifying data.
35

  It works by mapping the training set 

in n-dimensional space.  A hyperplane is constructed that represents the largest separation 

between classes.   Compounds are assigned activity, active (1) or inactive (-1).  Using 
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optimization, a hyperplane is sought to find the separation of data according to 

classification with the largest marginalization possible.   

The k Nearest Neighbor algorithm employs a classification and variable selection 

procedure.
41

  During the building of the model, a random subset of descriptors are 

selected.  This subset is set to different values and the models are developed with leave-

one-out-cross validation.   Here, each compound is eliminated from the training set and 

its activity on 5-HT6 is predicted as the average activity of k most similar molecules 

where the value of k is optimized as well (k=1-5).  Similarity is characterized by 

Euclidean distance between compounds in multidimensional descriptor space.   

 

Modeling Workflow 

 Individual models were developed using Dragon or MOE descriptors and one of 

the modeling methods (RF, SVM, or kNN).  The combination of descriptors and 

modeling methods resulted in seven individual models: RF_MOE, SVM_MOE, 

kNN_MOE, RF_DRGN, SVM_DRGN, kNN_DRGN.  The predicted values for each 

compound obtained from all several individual models were averaged to generate a 

consensus prediction.   

 

Universal Statistical Figures of Merit for All Models  

Since various modeling approaches and different descriptors were used in the 

modeling process, universal statistical metrics were needed to evaluate the performance 

of the models developed individually.  The results were harmonized by 1) using 

sensitivity (percentage of active compounds predicted correctly), specificity (percentage 
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of inactive compounds predicted correctly), and CCR (correct classification rate or 

balanced accuracy).  These parameters are defined as follows: 

              (
              

                              
)      (1) 

 

               (
              

                              
)       (2) 

 

      ( 
                         

 
)       (3) 

   

Results 

Overview of Dataset 

The chemical space of all the compounds was analyzed by performing a Principle 

Component Analysis (PCA) of the chemical descriptor values used in this study.   After 

the PCA with the 186 MOE descriptors for the compounds in both modeling and external 

validation sets, I selected the three most important components to generate a three-

dimensional plot (Figure 1) for these 570 (488 modeling and 82 external set compounds) 

compounds.  These three principal components represented around 56% of the variance 

in the database.  This plot could be viewed as the chemical space covered by all the 

compounds used in this study.  

 

Modeling Results 

Six individual models and one consensus model was developed for 225 5-HT6 

antagonists (or “actives”) and 263 non-binders (or “inactives”) (see experimental 

section).  The consensus model was generated by averaging all individual model 
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predictions.  The five-fold external cross validation results for all models are shown in 

Figure 2a.  The sensitivity, specificity, and correct classification rate (CCR) values 

ranged from 89-99%, 94-98%, and 94-97%, respectively.  All the individual models have 

similarly good performance when considering the cross validation results.  The best 

models overall, by ranking of the CCR values, were those two models using kNN 

approach (kNN_MOE and kNN_DRGN models).  The consensus model showed 

comparable or superior results to individual models with a CCR of 97% (Figure 2a).   

The developed models were used to predict an external validation set of 82 

compounds (38 actives, 44 inactives).  These 82 compounds were collected after all the 

models were developed, so they are truly “unknown” compounds to the models.  The 

prediction results are shown in Figure 2b.  The sensitivity, specificity, and CCR values 

of individual models ranged from 66-97%, 71-91%, and 68-91%, respectively.  It is 

noticeable that for most models the predictivity of the new compounds is lower than the 

cross-validation results.  For example, the CCR of RF_MOE (the mode using random 

forest approach and MOE descriptors) has the CCR as 97% for the 5-fold cross 

validation, but the relevant CCR of external 82 compounds decreased to 78%, because of 

the poor prediction of actives.  The major reasons for this difference are due to 1) 

substantial different chemical structures of new compounds compared to the modeling 

set, as shown in the different chemical space locations of the modeling set and new 

compounds in Figure 1; 2) the hypothesis of using anticancer drugs as non-binders may 

be incorrect for some compounds and it may cause false negative predictions.  The first 

issue could be addressed when an applicability domain is correctly implemented with 

more experimental data available.  Similarly, if experimental non-binders could be 
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obtained from 5-HT6 binding assays, the second issue could also be addressed.  

Compared to individual models, the consensus prediction still showed superior results of 

new 82 compounds (CCR=88%), which is also similar to the cross validation 

predictivity. Although the consensus model requires the development of various QSAR 

models using different approaches, the clear advantage of predictivity without selecting 

individual models makes consensus prediction more suitable for virtual screening 

purpose compared to using a single model.  

 

Discussion 

Interpretation of QSAR Models 

I evaluated chemical features potentially related to 5-HT6 binding by analyzing 

the important descriptors that may be necessary for 5-HT6 binding.  The Dragon 

descriptors for kNN models are chosen for this analysis because: 1) as a result of the 

stochastic variable selection procedure, the kNN approach maximizes the correlation 

between descriptors and the target bioactivity; and 2) the Dragon descriptors contain 

more detailed structural information than MOE descriptors.  I reasoned that the analysis 

of the occurrence of various Dragon descriptors may be able to interpret their relative 

information contents with respect to the 5-HT6 binding potential.  I ranked all the Dragon 

descriptors by their occurrences and analyzed the top 20, with frequencies ranging from 

5% to 79% among all kNN models (Figure 3).   

In order to gain insight into the potential mechanisms, I selected eight fragmental 

type descriptors out of these twenty Dragon descriptors for further analysis.  The 

difference between the selected descriptor values in active and inactive compounds were 
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compared (Table 1).  Two descriptors (F04[C-S] and MAXDN) had much higher values 

among active compounds than inactives, suggesting they contribute positively to 5-HT6 

binding (Table 1).  Specifically, the F04[C-S] descriptor represents the number of 

fragments in which a carbon is separated by 4 bonds from a sulfur atom.  Besides the 

great difference between the average values of this descriptor in 5-HT6 antagonists and 

non-binders as shown in Table 1, I found that 91% of the actives containing this 

fragment, in comparison to 33% of the inactives. Sulfones and sulfonamides are two 

types of molecules containing this structural feature in the dataset. They are well-known 

5HT6 antagonists in previous reports.
22,23

  The other descriptor MAXDN is the maximal 

electrotopological negative variation and it represents the nucleophilicity of the 

molecules.  Although it does not specifically refer to any substructures, it is relevant to 

the hydrogen bond formation, which was considered to be critical for 5-HT6 binding.
18

  

Another relevant descriptor is O-058, which refers to the number of double-bonded 

oxygen atoms (Table 1).  This descriptor may still be relevant to the SO2 functional 

group in sulfonamides and sulfones.  Since this descriptor is defined very broadly and 

covers many other functional groups, the difference of descriptor values within actives 

and inactives is not significant (Table 1).  

Another descriptor that contributes potentially to 5-HT6 binding is NRS, which 

represents the number of rings in the chemical structures.  An aromatic ring is another 

validated substructural feature that is responsible for 5-HT6 binding, which is believed to 

interact with a phenylalanine group in the 6
th

 transmembrane segment of the 5-HT6 

receptor.
18,42

  The descriptor NRS was ranked high in the models and supported this 
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finding.  However, it is clear that it is another broadly defined descriptor which is 

important in the model but does not significantly contribute to the 5-HT6 binding. 

The other four descriptors, F03[N-N], nDB, TPSA and ndssC, all contribute to the 

inactives more than actives.  They represent some general features of chemical 

cytotoxicity, such as polyaromatic cyclic hydrocarbons.
43–46

  Due to the limitation of the 

current database (the use of cytotoxic compounds to define inactives), it is not that 

meaningful to discuss the effect of these features on 5-HT6 binding. However, it is 

interesting to notice that a di-amine system, represented by the descriptor F03[N-N], has 

almost equivalent impact on the actives and inactives.  The positively ionizable group, 

such as amines, is considered to interact with the aspartic acid in the third transmembrane 

segment of the 5-HT6 receptor.
18

  The contribution of this descriptor on 5-HT6 binding 

becomes obscure due to the cytotoxicity of compounds with amine groups.
47,48

 

 

Conclusions 

 CADD is a burgeoning field in pharmaceutics with promising and far-reaching 

applications.  The early stages of drug discovery have been shown to benefit greatly from 

the use of computer science and statistical methods. The quick and logical optimization 

of lead compounds by computer models has cut down drastically on this costly stage.  

The interest sparked by the most recently discovered serotonin receptor and its role in 

cognition has generated much attention in the development of novel binding agents and 

their possible exploitation for use in therapy of various behavioral disorders.   

In this study, I compiled a modeling set containing 225 antagonists and 263 non-

binders for the 5-HT6 receptor. This dataset was used to develop several various QSAR 
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models. The developed models were validated by using 5-fold cross validation approach 

and by predicting an external dataset of 82 compounds. The consensus model, which was 

the average of all seven individual models, shows advantages of predictivity, especially 

for new compounds. The models developed in this study will be useful to prioritize new 

compounds which are potential 5-HT6 antagonists for future experimental testing.    
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Figure 1. The chemical structure space of the modeling set (225 5-HT6 antagonists 

(green) and 263 non-binders (purple)) and the 82 compound external validation set (38 5-

HT6 antagonists (yellow) and 42 non-binders (red)) using top 3 principal components of 

MOE descriptors.  
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(a) 
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(b) 

 

Figure 2. Statistics of seven individual and consensus models: (a) the 5-fold cross 

validation results; (b) the prediction results of 82 external validation set. 
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Descriptor 

Name 

Description Illustration Normalized average 
values 

 
Actives Inactives 

F04[C-S] Frequency of C-S at 
a topological 
distance of 4 

 

0.42 0.08 

MAXDN Maximal 
electrotopological 
negative variation 

N/A 

0.70 0.43 

NRS Number of ring 
systems 

 

0.39 0.31 

O-058 Number of doubly 
bonded oxygen 
atoms 

 

0.31 0.29 

F03[N-N] Frequency of N-N 
at a topological 
distance of 3 

 

0.10 0.15 
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Table 1. A few of most important Dragon descriptors used to develop 5-HT6 antagonist 

kNN QSAR models. 

  

nDB Number of double 
bonds 

 

0.18 0.25 

TPSA(Tot) Topological polar 
surface area (TPSA) 
using Nitrogen, 
Oxygen, 
Phosphate, and 
Sulfur as polar 
contributors 

N/A 

0.21 0.32 

ndssC Number of atoms 
of type dssc 

 

0.01 0.20 
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Figure 3. Top 20 most frequently used descriptors in kNN_DRGN model.  Importance is 

the frequency of occurrence in acceptable models.   
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