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Bayesian approaches have been widely used in designing, monitoring and analyzing 

clinical studies in recent years.  We utilize Bayesian parametric and non-parametric 

statistical methods in interim monitoring and decision-making for a phase II dose-finding 

trial with survival endpoint.  The objective of the clinical trial is to find an optimal 

treatment schedule at the end of the study for planning future studies, using Bayesian 

decision rules.  The primary efficacy outcome is time to progression.  Binomial-Beta 

model and Exponential-Gamma model are included in parametric methods.  Non-

parametric methods include Bayesian life-table, Beta process model, Dirichlet process 

model and Gibbs sampling.  Simulations are conducted for each of the statistical methods 

under 9 different scenarios including truncated exponential entry time, and the probability 

of a treatment-schedule being chosen is calculated based on 1,000 simulation studies.  

Finally, these different statistical methods are used to find optimal treatment-schedule 

among 3 arms in the phase II CLL clinical trial using the most recent unblinded data.   
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1. INTRODUCTION 

1.1. Background 

Chronic lymphocytic leukemia (CLL) is the most prevalent adult leukemia in the Western 

world (National Cancer Institute, 2010).  CLL patients who relapse following purine-

analog or bendamustine-based treatment have poor prognosis (Wendtner et al., 2011).  

These patients have limited treatment options and new agents or treatment strategies are 

needed.   

Both safety and efficacy are major concerns of CLL patients in clinical trials, so dose 

selection and treatment management of biological agents are important and critical in 

such disease population.  Ferrajoli et al. (2008) used a dose escalation scheme starting 

with 10 mg/day of lenalidomide given for 21 days in the first 28-day cycle followed by 

titration upward by 5 mg increments every 28 days to a maximum dose of 25 mg daily.  

In the Ferrajoli study, time to best response was 6 months in 11 patients and 9 months in 

3 patients.  The study demonstrated the starting dose of 10 mg resulted in 32% overall 

response rate with no episodes of tumor lysis syndrome (TLS) and a tumor flare reaction 

(TFR) rate of 30%.  To achieve clinical efficacy, a higher starting dose such as previously 

reported by Ferrajoli et al. (2008) may be needed.   

To identify a safe and clinically active starting dose, a phase II study to evaluate 

lenalidomide at different starting dose levels had been recently conducted in the setting of 

relapsed or refractory B-cell CLL (Wendtner et al., 2011, 2012a, 2012b).  In this phase II, 
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multicenter, randomized, double-blind, parallel-group trial, three different starting dose 

administration schedules of 5 mg, 10 mg and 15 mg daily respectively were evaluated.  

These starting doses of 5 mg, 10 mg and 15 mg were followed by a step-wise dose 

escalation every 28 days to a maximum dose of 25 mg daily as tolerated to allow for 

fewer escalations to reach a higher dose.  The study had n = 104 subjects enrolled in the 

three dose-administration schedules. 

The objectives of this Phase II clinical trial (Wendtner et al., 2011, 2012a, 2012b) were to 

evaluate the efficacy and safety of different lenalidomide dose administration schedules 

in subjects with relapsed or refractory B-cell CLL.  The study endpoints include type and 

frequency of toxicities, response rate and time to response, time to progression, 

progression-free survival (PFS) and overall survival (OS).  The trial used Bayesian 

adaptive design in interim monitoring both efficacy and safety outcomes.    

1.2. Trial Design 

1.2.1. Randomization 

It was reported by Wendtner et al. (2011, 2012a, 2012b) that subjects met all eligibility 

criteria specified in the protocol to be randomized for the clinical trial.  Initially subjects 

were randomized (1:1:1) in a double-blind fashion to the 5 mg, 10 mg, and 15 mg starting 

dose administration schedules (denoted as schedule A, B and C, respectively).  The 

randomization procedure was conducted by a validated interactive voice response system 

(IVRS).  Subjects that initially were allocated to three different administration schedules 

escalated dose every 28 days, based on individual subject tolerability, as follows: 
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Administration Schedule A: 5 mg →10 mg →15 mg →20 mg →25 mg/daily 

Administration Schedule B: 10 mg →15 mg →20 mg →25 mg/daily 

Administration Schedule C: 15 mg →20 mg →25 mg/daily 

Toxicities requiring dose interruption or modification followed detailed guidelines in the 

protocol.  Subjects unable to escalate to the 25 mg maximum dose due to toxicity might 

continue with the highest dose achieved in the previous cycle or as indicated in the dose 

interruption/modification guideline in the trial. 

Subjects continued in the clinical trial and received study drug until discontinuation from 

the study for any of the following reasons: disease progression; unacceptable AEs at the 

discretion of the investigators, subject withdrawal consent, subject lost to follow-up, 

death, protocol violation and other reasons that in the judgment of the investigator might 

rule out continuation of study drug.  For those subjects who discontinued study drug for 

reasons other than disease progression or withdrawal of consent, study visits might 

continue every 28 days to assess response until documentation of disease progression or 

until a new CLL therapeutic administration schedule was started, whichever came first.   

The protocol (Wendtner et al., 2011, 2012a, 2012b) stated that, after 18 subjects 

completed one 28 day cycle, an interim analysis was to be conducted to review the safety 

of each starting dose arms.  Subsequent interim analyses to review the safety and 

progression rate of each starting dose arms occurred at 13-week intervals.  After review 

of each interim analysis, an administration schedule might be dropped according to 

interim decision rules.  At any time accrual to a starting dose administration schedule was 
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also stopped if unacceptable toxicities were observed in that schedule.  If an 

administration schedule was dropped then all new subjects would be randomized equally 

into the remaining schedules. 

1.2.2. Bayesian Adaptive Design 

The trial protocol specified using a Bayesian approach to evaluate both efficacy and 

toxicity outcomes.  This was a Bayesian adaptive design which considered modeling 

efficacy and toxicity outcomes to stop randomization of less promising schedules (Bekele 

and Shen, 2005; Ji and Bekele, 2009) following interim analysis.  The efficacy outcome 

was probability of progression.  The safety outcomes were several critical toxicities.  

Accrual to a starting dose schedule was stopped if unacceptable toxicities or progression 

rate were observed in that schedule.  If an administration schedule was dropped then all 

new subjects would be randomized equally into the remaining schedules.  If no schedule 

was dropped in any interim, all schedule arms would continue for a final decision 

making.  The detailed interim monitoring and stopping rules using Bayesian posterior 

probabilities are presented in Section 2.1 of Chapter 2. 

1.3. Data Collection 

1.3.1. Response Assessment 

Tumor response was assessed according to the International Workshop on Chronic 

Lymphocytic Leukemia (iwCLL) guidelines for the diagnosis and treatment of CLL 

(Hallek, 2008), including complete response (CR), partial response (PR), stable disease 
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(SD) and progressive disease (PD).  Evaluation of response was performed after 3 cycles 

of therapy and every 4 weeks thereafter.   

An independent Response Adjudication Committee (iRAC) performed a blinded, 

independent assessment of response (including the development of PD) prior to database 

lock.  The iRAC adjudicated response data was used in the efficacy analysis for the trial.  

Probability of progression (development of PD) was estimated using the protocol-

specified method in Chapter 2 and would also be evaluated by other Bayesian statistical 

methods in Chapter 3.  Time to progression from randomization was used for survival 

analysis to estimate and compare the probability of progression for all dose schedules. 

1.3.2. Toxicities Assessment 

Based on initial clinical data from other trials, the most important toxic events for 

treatment in patients with relapsed or refractory CLL include grade ≥ 2 Tumor Lysis 

Syndrome (TLS), grade 4 neutropenia and/or thrombocytopenia, and febrile neutropenia.  

For this B-cell CLL trial, toxicity was characterized into various types with varying 

degrees of severity.  Three major types of toxicities were assigned by different weight for 

clinical importance and a toxicity score was defined as weighted average of rates of 

toxicities in expression (2.1) in Chapter 2.  Based on pre-simulation of the study, weight 

0.13 =w  was chosen for grade ≥ 2 TLS, 6.02 =w for grade 4 neutropenia and/or 

thrombocytopenia, and 1.01 =w  for febrile neutropenia.  The ordering of lw  reflected the 

toxicity severity level which represented the PIs expert opinion and might take on any  
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positive values.  Because only relative magnitudes of the toxicity weights mattered, any 

scores from the PIs could be scaled to be between 0 and 1.   

Since multiple toxicities were being considered, a means of reducing the dimensionality 

of the toxicity parameters was introduced.  The protocol used the approach in Bekele and 

Thall (2004) and Bekele et al. (2010) which incorporated medical knowledge into the 

dimension reduction process and assigned toxicity severity weights characterizing the 

importance of each type of toxicity.       

1.4. Objectives of the Dissertation 

The phase II dose-finding study with lenalidomide (Wendtner et al., 2011, 2012a, 2012b) 

in patients with B-cell CLL has been conducted by Celgene Corporation since 2009.  The 

company has completed several interim analyses to evaluate efficacy and safety of 

different dose schedules.  The sample size at each interim analysis was small, and no 

administration schedule has been stopped according to interim stopping rules.  In order to 

establish an optimal dose regimen for larger phase III study, the protocol proposed 

decision rules on final data to choose optimal regimen.  The company is preparing for 

final database lock in later 2014.   

Bayesian statistics has become more and more popular in statistical literature in recent 

years.  However, Bayesian approaches and their applications to real clinical trial data are 

very limited in pharmaceutical industry (Brannath et al., 2009; Scala and Glimm, 2011).  

The primary objective of the dissertation is to apply several different Bayesian statistical 

methods to the most recent unblinded data from the phase II clinical trial (Wendtner et 
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al., 2011, 2012a, 2012b) as of January 2014 and to evaluate its efficacy parameter – 

probability of progression.  These Bayesian approaches can be classified into Bayesian 

parametric and non-parametric methods.  To the best of my knowledge, systematic 

exploration of these Bayesian methods and their applications to clinical trials with 

survival endpoint have not appeared in literatures.      

Another objective of the dissertation is to conduct simulations and compare the results 

from these Bayesian methods.  Applying several different Bayesian methods in one 

clinical trial has not been seen in literature.  In addition, using Bayesian posterior 

probability to quantify clinical outcomes is intuitively acceptable and easily understood 

by clinicians.  Thus the Bayesian approaches offer new views and perspectives to clinical 

researchers.                    

Since no treatment schedule has been dropped so far during this clinical trial, I will not 

consider the interim analyses and related issues in the dissertation.  Instead, I will focus 

on the Bayesian statistical methods and apply them to the January 2014 unblinded data.  

The statistical methods evaluate the probability of progression and compare dose 

schedules according to efficacy parameter - progression rate so that an optimal schedule 

can be recommended for future studies.  The same statistical methodology can be applied 

to safety parameters such as toxicities and to each interim dataset as well as to other 

similar studies. 

The remainder of the thesis is organized as follows.  In Chapter 2, I will briefly review 

the protocol pre-specified method.  Chapter 3 introduces other Bayesian statistical  
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approaches.  Simulation results from different statistical methods are presented in 

Chapter 4.  Chapter 5 presents results from the CLL clinical trial by several Bayesian 

approaches, followed by discussion and conclusion in Chapter 6.    
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2. REVIEW OF PROTOCOL PRE-SPECIFIED METHOD  

The phase II CLL clinical trial was a schedule-administration (or treatment strategy) 

design.  The sponsor was interested in evaluating whether various intra-patient dose-

escalation schemes were safe and effective while monitoring safety and efficacy.  

Specifically, while treatment started at various doses ranging from very low doses (5 

mg/daily) to moderately low (15 mg/daily), the goal was to perform intra-patient dose 

escalation (every 28 days as tolerated) until a maximum dose of 25 mg/daily was 

achieved.  The decision to escalate was based on how well the subject tolerates the lower 

dose levels.  While these dose escalations were taking place, toxicity and the progression 

rates were monitored. 

The trial protocol pre-specified a Bayesian method that modeled both toxicity and disease 

progression using an extension methods developed by Ji and Bekele (2009).  Toxicity and 

disease progression were major events to be monitored so time-to-event models were 

used.  These models were not used to characterize time-to-event outcomes but to compare 

toxicity risk and progression rates among treatment schedules so as to help decision 

makers in selecting dose schedule(s) for a larger phase III study.  

2.1. Decision Rules 

Subjects were randomized to one of the three administration schedules.  Interim analyses 

occurred at 13-week intervals to monitor both toxicity and disease progression.  Interim 

decision rules: accrual into any of the three administration schedules was stopped if: 
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• The probability that schedule had the smallest progression rate was less than 

0.05 or 

• The probability that schedule had the highest toxicity score was greater than 

0.90 or 

• The probability that schedule’s toxicity score was more than 0.20 was greater 

than 0.90 or 

• The probability that schedule had a more than 5% ≥ Grade 2 TLS rate was 

greater than 0.90. 

Let kr ,θ  denote the probability of progression for the kth administration schedule, )(, kr −θ  

the probability of progression for administration schedule(s) other than k, and klt ),(θ  the 

probability of toxicity type l for the kth administration schedule.  Toxicity type and 

weight were described in subsection 1.3.2.  Dimension reduction is achieved by 

calculating the toxicity score for the kth administration schedule as 

                 
∑
=

=
L

l
kltlk w

1
),(θψ         (2.1) 

where lw  is the weight of toxicity type l.  Excessive toxicity is defined as when toxicity 

score is over cutoff 20.00 =ψ for this specific trial.  The 0ψ  is called targeted average 

toxicity score and is determined by similar approach in Bekele and Thall (2004) and 

Bekele et al. (2008).     
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Based on the decision rules, while the study was ongoing, the kth administration schedule 

was declared unacceptable if, for the posterior probabilities,   

05.0)|Pr( )(,, << − datakrkr θθ  or 

90.0)|Pr( )( >> − datakk ψψ  or 

90.0)|20.0Pr( >> datakψ  or 

90.0)|05.0Pr( ),3( >> dataktθ  

If an administration schedule was dropped then all new subjects would be randomized 

equally into the remaining schedules.  If no schedule was dropped in any interim, all 

schedule arms would continue for a final decision making. 

Final decision rules: at the end of the study, the schedule arm with the highest 

probability of having the lowest progression rate and having lower than cutoff 90.0=ξ  

probability of excessive toxicity would be chosen; i.e., arm k would be selected for phase 

III study if 

))|(Pr( )(,, dataMax krkr −< θθ ,  

and              (2.2) 

ξψψ <> )|Pr( 0 datak   
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where 90.0=ξ was chosen to reflect the PIs wish the algorithm to behave conservatively 

and was guided by preliminary computer simulations (Bekele et al., 2008; Bekele et al., 

2010). 

As noted previously, in this dissertation I will use the January 2014 unblinded data to 

study Bayesian methods and to focus on the decision rule for disease progression which 

is to select a dose schedule with ))|(Pr( )(,, dataMax krkr −< θθ .  The same methodology 

can be applied to decision rule for toxicity ξψψ <> )|Pr( 0 datak  and to any interim 

data.   

2.2. Protocol Pre-specified Bayesian Method 

The following briefly reviews the basis of the methodology given in the study protocol (Ji 

and Bekele, 2009). 

2.2.1. Discrete Time Hazard, Survival and Likelihood 

The protocol uses a so-called ordinal sequential model with discrete time hazards to 

define the likelihood for progression and toxicity.  For ease of following presentation, we 

suppress the administration schedule (A, B or C) and event (progression or toxicity) as 

well as patient subscripts.  For a given patient, let Y represent either the time-interval in 

which an event is observed or the last follow-up visit (whichever is less); JY ,...,1= .  Let 

d  be a failure (or censoring) indicator where d = 1 indicating a failure event and d = 0 

indicating a censored observation.  Ignoring censoring for the moment, note that for this 
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equally spaced interval and each interval being one unit time, the discrete time hazard for 

the jth interval is equal to 

,
)Pr(
)Pr()|Pr(

j

j
j SjY

jYjYjYh
θ

=
≥
=

=≥==
    

Jj ,...,1=  

where jS  is survival function at interval j (probability of event at the beginning or 

beyond interval j) and jθ  is probability of event at “tiny” interval j for discrete-time case 

which is also called probability mass function.    

Moreover note that 

j

j

j

jj
j S

S
S

S
h 11 +=

−
=−

θ
 

This allows us to exploit a recursive relationship between the hazard function during 

interval j and the probability of event beyond interval j via 

1)1( +=−=− jjjjj SShS θ
 

Since 11 =S , we then have 

12 1 hS −=  

)1)(1( 213 hhS −−=  

               

∏
−

=

−=
1

1

)1(
j

i
ij hS  
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So the contribution to the likelihood of an event that occurs in the jth interval is  

∏
−

=

−=====
1

1

)1()1,Pr(
j

i
ijjjj hhShdjY θ  

The contribution to the likelihood for a censored observation having maximum follow-up 

in the jth interval is the discrete time survival function: 

∏
−

=

−==≥===
1

1

)1()Pr()0,Pr(
j

i
ij hSjYdjY

 

We can write the two contributions in a single expression so contribution to the 

likelihood for an observation is:  

∏
−

=

−==
1

1

)1(
j

i
i

d
jj

d
jj hhShL

 

2.2.2. Likelihood and Probability of Event 

The likelihood of progression event that occurs in the jth interval for the kth schedule arm 

can be constructed as described in Section 2.2.1.  We only need to add subscript r to 

represent progression event, )(lt to represent toxicity event of type l (for l = 1, …L), and 

k to represent kth schedule arm. 

For purposes of study monitoring, independence among the various toxicity types and 

between these toxicities and progression is assumed.  Overall progression rate for the kth 

schedule arm at  j intervals having elapsed is    

               )1(1
1

,,, ∏
=

−−=
j

i
kirkr hθ        (2.3) 
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and  j intervals toxicity rate for the lth type of toxicity for the kth schedule arm is 

             )1(1
1

,),(),( ∏
=

−−=
j

i
kiltklt hθ        (2.4) 

Note that the θ  in (2.3) and (2.4) doesn’t have time interval subscript j and indicates 

overall event rate up to interval j, but jθ  indicates event rate at interval j.  Apparently the 

overall event rate can be obtained through (2.3) or (2.4) when hazard or survival is 

known.  One can also simply accumulate si 'θ  for ji ≤  to get the overall event rate when 

si 'θ  are known. 

2.2.3. Prior Distributions of Hazard Rate 

An informative prior represents existing knowledge of parameter(s) of interest, which can 

come either from historical clinical trial data, or from expert opinions.  There is no firm 

guideline on method of prior elicitation.  Usually it is desirable to have investigators to 

provide prior data and to weight it so that statisticians can derive clinically meaningful 

and computationally feasible prior distribution.  The prior distribution is then 

incorporated into the current study and help make decisions. The appropriate weight or 

prior sample size controls its impact on current study.  Non-informative prior can also be 

used if no prior information is available.            

When the study was designed, the clinical team consulted expert physicians regarding the 

rate of progression for the patient population in B-cell CLL.  The following clinical priors 

for hazard rate of progression and hazard rate of toxicity event are set for the study: 
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)975.0,025.0(~,, Betah kjr ,  

and  

)99.0,01.0(~,),( Betah kjlt  

where l = 1,2,3, and  j = 1,…, J, and k = 1,2,3. 

The expected hazard rate in a given time interval is 2.5% for the prior of progression 

event and is 1.0% for toxicity event.  The prior sample size is set to be 1 since the prior 

information is weak according to expert physicians.  Other priors with the same expected 

rate but increasing sample size are plotted in Figure 1 (plot_beta.R).  With very small 

sample size, prior plays very limited role in posterior estimation.  Compared to other 

priors, Beta(0.025, 0.975) or Beta(0.01, 0.99) distribution is so disperse that they reflect 

weak information about the prior hazard rate.   
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Figure 1: Prior Probability Density Functions of Hazard Rate 
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2.2.4. Posterior Distributions of Hazard and Probability of Event 

Posterior distributions of hazard of progression and toxicity events in each time interval 

are also beta distributions since the data is binomially distributed with conjugate priors.  

Section 3.2.1 will detail the posterior distribution for binomially distributed data.  If we 

replace with the posterior distributions of hazard of progression or toxicity event in the 

right-hand side of (2.3) and (2.4), we get posterior probability of progression or toxicity 

event.  If posterior probabilities of toxicity events are utilized in the right-hand side of 

(2.1), we have posterior toxicity score.  By applying decision rules of (2.2) we can make 

final dose schedule selection.  

2.2.5. Relationship Between Event and Survival Probabilities 

Some methods to be presented focus on event probability and some focus on survival 

probability.  As a general note, event probability )(tθ and survival probability )(tS  at 

time t are complementary, i.e., )(1)( tSt −=θ .  Event probability during interval 

],( 1 jj ttj −=  is jjj SS −= −1θ  where )( jj tSS = .   

2.2.6. Bayesian Simulation 

Bayesian inference uses simulation draws from (2.3) and (2.4) and will be further 

discussed in Section 3.1.2.  Simulation results guide interim and final schedule arm 

selections following decision rules.  In this dissertation, I will apply this protocol pre-

specified method along with other Bayesian statistical methods presented in Chapter 3 to 

the January 2014 unblinded data from the CLL phase II clinical trial.   
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3. BAYESIAN STATISTICAL METHOD 

The present thesis will apply several statistical methods to the estimation of event 

probability (progression or toxicity rate).  Since the data is time to event variable, the 

survival probability is usually to be focused in many of these methods.  The methodology 

can be classified as parametric and non-parametric methods.  One of the Bayesian non-

parametric methods is protocol pre-specified which was reviewed in Section 2.2.  In this 

Chapter, we present the statistical methodology of the other five Bayesian models.  

Figure 2 describes relationship among these methods and traditional methods including 

MCMC (Markov chain Monte Carlo), life-table and Kaplan-Meier.  Bayesian methods 

are basically extension of traditional methods by incorporating prior information.  Figure 

2 also shows some relationship among and complexity of these methods in terms of 

posterior computation.  In the next Chapter, we will apply these methods to the B-cell 

CLL phase II clinical trial data.  

1. Binomial-Beta model – Beta prior in conjunction with binomially distributed data 

2. Exponential-Gamma model – Gamma prior in conjunction with exponentially 

distributed data 

3. Protocol pre-specified Bayesian life-table method 

4. Bayesian Beta process (BP) model 

5. Bayesian Dirichlet process (DP) model 

6. Monte Carlo Bayesian method or Gibbs sampler 

http://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo


20 

 

Figure 2: Statistical Methods and Some Relationships  
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3.1. Bayesian Method Overview 

The essential characteristic of Bayesian method is its explicit use of probability for 

quantifying uncertainty in statistical inferences.  Bayesian analysis is to calculate and 

interpret the appropriate posterior distribution – the conditional probability distribution 

of the unobserved quantities of interest (parameter of interest) given the observed data.       

In general, we use θ to denote unobservable vector quantities or population parameters of 

interest (unknown probability of event or survival in our case), y denote the observed data 

(outcome – number of event or time interval in which the event is observed).  Bayesian 

inference about a parameter θ is made in terms of probability statement conditional on 

observed value of y which is denoted by ).|( yp θ  A general discussion of Bayesian 

methods in clinical trials is given by Spiegelhalter, et al. (2004).       

3.1.1. Bayesian Rule 

The core of Bayesian inference is to perform necessary computations to summarize 

)|( yp θ  in appropriate ways.  The Bayesian rule states that resulting posterior 

distribution of θ is proportional to the product of prior distribution )(θp  and data (or 

sampling) distribution )|( θyp : 

     )|()(
)(

)|()(
)(
),()|( θθθθθθ ypp

yp
ypp

yp
ypyp ∝==     (3.1) 

To evaluate the fit of the model, the dependence (or sensitivity) of conclusions on 

‘subjective’ prior distribution should be examined and explored.  Sampling distribution 

can play an important role in checking model assumptions.  An applied Bayesian 
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statistician should be willing to apply Bayes’ rule (3.1) under a variety of possible models 

(Gelman et al., 2004).  In most cases, scientific judgment is necessary to specify both 

prior distribution and data distribution.  In this research, we will utilize both Bayesian 

parametric models and non-parametric models to estimate probability of progression and 

probability of toxicity, which are our parameters of interest, and then use simulations in 

Chapter 5 to compare these parameters among administration schedule to guide decision-

making.   

3.1.2. Bayesian Inferences by Simulation of Posterior Distribution 

Simulation is an important part of applied Bayesian analysis.  We will use simulation to 

make random draws from joint posterior distribution of parameter(s) of interest.  The 

basic structure of simulation draws is shown in Figure 3 (Gelman et al., 2004).  We let g 

= 1, 2, … , G denote simulation draws and ),...,,( 21
g
k

gg θθθ the corresponding joint 

draw of parameters from their joint posterior distribution.  Here we have a total of G 

simulations.  Parameters ),...,,( 21 kθθθ can represent probabilities of event (such as 

progression or toxicity) at each time interval from 1 to k for non-parametric statistical 

methods.  After drawing random samples from the posterior probability distribution, we 

can make inferences such as mean, median and 95% posterior interval for the parameters 

of interest from these samples.   We can also estimate the posterior probability of any 

event such as Pr( jθ  < a) which usually answers some scientific questions for clinical 

trials and is actually one of the features of Bayesian statistics.   
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Histogram of a set of random draws from the distribution is a very useful and intuitive 

tool for summary statistics.  Given a large enough sample, histogram can provide  

practically complete information about the density, such as mean, median, percentiles and 

other summary statistics thus providing estimates of any aspects of the distribution.    

 

Figure 3: Structure of Simulation Draws From Joint Distribution of Parameters  
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3.1.3. Bayesian Decision Rules in Literature 

Bayesian approaches to the design, monitoring and analysis of randomized clinical trials 

have received great attention in recent years.  Suppose that a group sequential clinical 

trial is to compare two treatments and that the true treatment difference is summarized by 

a parameter θ , where large value of θ  corresponds to superiority of the new treatment.  

For survival data with time-to-event endpoint, θ  usually denotes a log hazard ratio.  

Under the Bayesian paradigm, at interim stage m , interim stopping rule are usually 

defined as (Spiegelhalter, Freedman and Parmar, 1994): 

(1) stop the trial early for futility, if 1)|( δθθ <> mL YP ;  

(2) stop the trial early for overwhelming efficacy, if 2)|( δθθ >> mU YP ;  

where mY  denotes the data accumulated up to stage m , Lθ denotes the lower bound of 

clinical equivalence, Uθ  denotes the upper bound of equivalence which is also the 

amount of improvement or margin of benefit.  In practice, Lθ  and Uθ  can be fixed 

constants for inferiority or superiority specified by clinician, and 1δ  and 2δ  are stopping 

boundaries and might set to be 2.5% and 97.5% respectively.  Similar rules have been 

proposed by Berry (1985), Freedman and Spiegelhalter (1989), Thall and Simon (1994).  

These interim decision rules for futility or efficacy are based on posterior distribution.  

Most recently, Bayesian predictive power (PP) is used to guide interim treatment 

adaptations in confirmatory oncology trials (Schmidli et al., 2007; Brannath et al., 2009; 

Scala and Glimm, 2011).  These decision rules use only efficacy endpoint(s) as a 

guideline but toxicity endpoint is not formally incorporated into the decision making.   
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In many circumstances, especially in oncology trials, treatments may be so unequal in 

their risk in terms of toxicity.  Treatment schedule- or regimen-related severe toxicity 

occurs routinely and the case of multiple patient outcomes is quite common, so one needs 

to consider both benefit and risk (efficacy and toxicity) to decide whether to stop the trial 

early or to make interim treatment selections.  Thall, Simon and Estey (1995, 1996) use 

Bayesian strategy for monitoring safety and efficacy in single-arm clinical trials, where 

response rate is the primary efficacy endpoint.  Thall and Sung (1998) extend the 

application for monitoring multiple outcomes using Dirichlet distribution and specify the 

early stopping rules as follows for randomized controlled clinical trials: 

(1) stop the trial early for toxicity, if 10,,, )|( δθθθ >+> mtCtEt YP ;  

(2) stop the trial early for futility, if 20,,, )|( δθθθ <+> mrCrEr YP ;  

(3) stop the trial early for overwhelming efficacy, if 30,,, )|( δθθθ >+> mrCrEr YP  

where Et ,θ and Ct ,θ  denote toxicity rates for experimental and control arms; Er ,θ and Cr ,θ  

denote response rates for experimental and control arms; 00, >tθ  and 00, >rθ  denote 

maximum allowed increase in toxicity and desired increase (targeted improvement) in 

efficacy so they represent the trade-off between safety and efficacy (Conaway M. and 

Petroni G, 1996; Thall and Sung, 1998); 1δ , 2δ  and 3δ  are stopping boundaries.  In these 

applications, both efficacy and safety outcomes are modeled as binary or multinomial 

data, and timing of the outcome is not considered.  Bekele and Shen (2005) propose a 

Bayesian approach to a phase I/II dose-finding trial by jointly modeling a binary toxicity 

outcome and a continuous biomarker expression outcome via a bivariate continuous-
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binary model, and their decision rules are based on the posterior distributions of both 

toxicity and activity.  Basically, for multi-arm trials, stop enrollment in the specific 

administrative schedule if toxicity rate is unacceptably high or response rate is 

unacceptably low.  Thall (2012) recently presents a utility-based clinical trial design and 

analysis which uses utility score to obtain a one dimensional criterion reflecting the 

relative importance of two or more outcomes for decision making.  The approach to dose-

finding is based on joint utilities of ordinal (response and toxicity) outcomes.    

In oncology trials, response is actually a surrogate efficacy endpoint for time to 

progression, especially for short-term or phase II clinical studies.  Disease progression is 

usually a primary efficacy endpoint for long-term or phase IIB/III studies and it’s a time-

to-event variable.  Follmann and Albert (1999) address the case of a binary outcome 

defined in terms of a censored time-to-event variable.  They assume a Dirichlet prior on 

discrete-time probabilities and approximate posterior distribution which is a mixture of 

Dirichlet processes by a data augmentation algorithm.  Rosner (2005) takes a similar 

approach but uses Gibbs sampling to generate posteriors.  Cheung and Thall (2002) 

propose an adaptive Bayesian method for continuous monitoring the probabilities of 

composite time-to-events in phase II trials.  They use an approximate posterior to 

compute an early stopping criterion and extend to a 3-arm leukemia trial.  In their 

proposed interim monitoring, arm k is dropped if it is inferior to the others in terms of 

response rate: 90.0)|)max(( >< − dataP kk θθ , where k−θ  denotes response rate(s) for all 

arm(s) except the kth arm.  Ji and Bekele (2009) present an outcome-adaptive 

randomization scheme for comparative trials in which the primary endpoint is a joint 
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efficacy/toxicity outcome.  They extend the approximate Bayesian posterior model in 

Cheung and Thall (2002) to bivariate time-to-event outcomes by data augmentation 

algorithm or latent model.          

The goal of phase II trial is not to obtain confirmatory comparative results, but to select 

one or more of the experimental treatments (or schedules) for subsequent evaluation.  If 

the trial does not stop early, one may use any appropriate criteria using final data at the 

end of the study to determine if further evaluation is warranted in a phase III trial.  The 

Bayesian approaches we present in this Chapter make a number of simplifying 

assumptions.  In contrast to the bivariate model (Cheung and Thall, 2002), we do not 

consider jointly modeling efficacy and safety parameters but only combining evidence 

from efficacy and safety outcomes due to the reasons as discussed by Scala and Glimm 

(2011): (i) setting up a reasonable bivariate prior for progression and toxicity jointly in 

the absence of strong prior beliefs is a very difficult task; (ii) estimation of the joint 

probabilities of progression and toxicity and correlation between efficacy and safety 

outcomes are usually not of concern in practice; (iii) a relatively simple rule or 

methodology serves our purpose well enough as the statistical approach is used for 

selecting an administrative schedule to be continued into phase III trial and not for 

ultimate claim about efficacy of a treatment schedule.   

The CLL clinical trial combines the efficacy and toxicity outcomes in decision making 

using criteria described in Section 2.1.  In this dissertation, we only model the efficacy 

outcome which is probability of progression.  Similar models can be applied to toxicity 

outcomes.   These approaches model the parameters of interests directly without using 
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latent variable so as to straighten the applications.  The rest of this Chapter describes 

these Bayesian parametric and non-parametric models for any administration schedule. 

3.2. Bayesian Parametric Method 

3.2.1. Binomial-Beta Model 

Our aim is to estimate probability of progression θ (from now on we will only mention 

progression event, and toxicity event will apply to the same statistical methodology) at a 

time point of or the end of a clinical trial for the population under study.  This is a typical 

problem in clinical trials such as estimating the probability of failure (or success) in a 

population.   

The outcome or data y from the clinical trial is the number of failures (patients having 

progressive disease - PD) from a total of n patients at risk in a given time period.  In this 

section, we assume that we only know patient’s disease status (PD or not) at a given time 

but we don’t know the exact time of PD.  We simply consider binomially distributed data 

first.  In section 3.2.2, we will incorporate time of PD into modeling. 

Data distribution - binomial model 

ynyyp −−∝ )1()|( θθθ  

or 

                                     ),|(~| θθ nyBiny         (3.2) 

where θ  is event rate or probability of event (unknown). 
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Prior distribution 

11 )1()( −− −∝ βα θθθp  

or 

      ),(~ βαθ Beta         (3.3) 

This is a conjugate prior for the binomial model, where 0,0 >> βα  and βα +  implies 

prior sample size.   

Posterior distribution 

11 )1()|( −−+−+ −∝ ynyyp βα θθθ  

or 

                                         ),(~| ynyBetay −++ βαθ       (3.4) 

which has mean and variance, 

n
yyE
++

+
=

βα
αθ )|(  

)1()(
))(()|var( 2 +++++

−++
=

nn
ynyy

βαβα
βαθ  

We can think of the first parameter of a beta distribution (3.4) as the number of failures 

(or PDs) and the second parameter as the number of successes (non-PDs). 
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3.2.2. Exponential-Gamma Model 

If our interest is to model time to progression, we can use exponential model.  The 

problem then becomes to a typical survival analysis issue and survival or event 

probability at any time point can be estimated by methods of survival data – where 

outcome y is time to failure (or survival time).  Note that in most cases throughout the 

thesis other than in exponential-gamma model here, the outcome y represents number of 

failures.  

Data distribution - exponential model 

           ),exp()|( θθθ yyp −=  for 0>y         

                      or 

                   )|(~| θθ yExpy         (3.5) 

where )|(/1 θθ yE= is called ‘rate’ or ‘hazard rate’ (unknown).  Exponential distribution 

is a special case of gamma distribution and has a ‘memoryless’ property that makes it a 

natural model for survival or lifetime data.   

The sampling distribution of n independent exponential observations, ),...,( 1 nyyy = , 

with constant rate θ, or likelihood of θ  is: 

       ),exp()|(
1
∑
=

−=
n

i
i

n yyp θθθ  for 0>iy      (3.6a) 

For right-censored data, denote failure (or censoring) indicators by ),...,( 1 ndd  where 

0=id  if iy  is right-censored and 1=id  if iy  is a failure time.  It can be shown that  
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       ),exp()|(
1
∑
=

−=
n

i
i

d yyp θθθ  for 0>iy      (3.6b) 

where ∑
=

=
n

i
idd

1
which is number of failures. 

Prior distribution 

        ),exp()( 1 βθθθ α −∝ −p  0>θ          

                         or 

          ),(~ βαθ Gamma         (3.7) 

This is a conjugate prior for the exponential model, where 0,0 >> βα .  Comparing 

(3.7) to (3.6a), this prior density is equivalent to )1( −α prior exponential observations 

with total timeβ .   

Note that the equivalent prior distribution for the mean of event time (or survival time) is 

inverse-gamma: 

        ),(~1)|( βα
θ

θµ gammaInvyE −==  

where α  represents number of events and β  represents total follow-up time for all 

patients.  Mean of survival time (FU time) 
1

)(
−

=
α
βµE , and Median = Mean * log(2).  

In survival analysis, statistical inference on median of survival time is usually of interest.  

Here hazard rate is our parameter of interest.  
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Posterior distribution 

For right-censored data with likelihood in (3.6b), the posterior distribution is 

})(exp{)|(
1

1 θβθθ α ∑
=

−+ +−∝
n

i
i

d yyp  

or 

            ),(~|
1
∑
=

++
n

i
iydGammay βαθ       (3.8) 

which has mean and variance, 

∑
=

+

+
= n

i
iy

dyE

1

)|(
β

αθ  

2

1
)(

)|var(
∑
=

+

+
= n

i
iy

dy
β

αθ  

We can think of the first parameter of a gamma distribution (3.8) as the number of events 

and the second parameter as the total follow-up time of all patients including those with 

censored events. 

The Beta distribution (3.4) only involves modeling event rate and does not consider the 

time to event feature.  The Gamma distribution (3.8) actually models hazard rate which 

considers the event time (or survival time) and includes censored data.    

In most applications of survival analysis, we either model survival function )(tS (see  
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Dirichlet process method in Section 3.3.3) or cumulative hazard function )(tH (see Beta 

process method in Section 3.3.2).  Note that there is one-to-one relationship between the 

two: )).(exp()( tHtS −=  We present these nonparametric methods in the next Section. 
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3.3. Bayesian Nonparametric Method 

Parametric method relies on restrictive parametric specifications and may limits the scope 

and type of inference.  Nonparametric method has been widely used for survival data 

analysis, providing flexible modeling.  Nonparametric Bayesian approach also allows the 

incorporation of prior information into the traditional models.  

Nonparametric Bayesian data analysis has become part of the survival analysis following 

the introductory work of Ferguson (1973) on Dirichlet process (DP) and the 

denomination of Beta process by Hjort (1990).  Kalbfleisch (1978) models the 

cumulative hazard function as a gamma process and provides the estimation of regression 

parameters in semi-parametric modeling for survival data.  Rolin (1997) provides a 

review of the posterior distribution of hazard function (and survival function) in models 

with censored observations and without explanatory variables.  Muller and Quintana 

(2004) provide a recent review of nonparametric Bayesian inference including density 

estimation using Dirichlet process, regression, survival analysis and hierarchical models.  

Review of nonparametric Bayesian inference in survival analysis including proportional 

hazards and multivariate survival data can also be found in Sinha and Dey (1997, 1998) 

and Dey et al. (1998).  As extension, nonparametric Bayesian mixture models have been 

developed since the pioneer work of Antoniak (1974) on mixtures of Dirichlet processes 

(MDP).  In terms of simulation and recent computational development, Gelfand and 

Smith (1990), Kuo and Smith (1992), and Arjas and Gasbarra (1994) use MCMC 

simulation for right censored data in nonparametric Bayesian inference.       
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In Chapter 2, we described protocol pre-specified Bayesian life-table method which 

incorporates the Bayesian paradigm into classic life-table.  In this section, we first briefly 

review the classic nonparametric approaches to right censored survival data – life-table 

method and Kaplan-Meier method.  The Bayesian approaches are generally extensions to 

the traditional nonparametric methods.  We then present two other Bayesian 

nonparametric methods, both of which belong to a class of random probability measures 

(RPM): Beta process and Dirichlet process.  As a more flexible Monte Carlo simulation 

method, Gibbs sampler will be reviewed later.  We will also discuss the possible 

relationships and advantages/disadvantages among these methods.         

Traditional Life-Table Estimator 

Based on numbers of patients alive or censored at each time interval, several statistics can 

be computed: 

Effective Sample Size ( jN ): this is the number of cases that entered the respective 

interval alive, minus half of the number of cases lost/withdrawal or censored in the 

respective interval.  

Conditional Probability of Failure: this probability is computed as the ratio of the 

number of cases failing in the respective interval, divided by the effective sample size in 

the interval.  Denote as 
j

j
j N

yp =ˆ for  j’th interval.  

Estimate of Cumulative Probability of Surviving (Survival Function, jŜ ): this is the 

cumulative proportion of cases surviving up to the respective interval. Since the 
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probabilities of survival are assumed to be independent across the intervals, this 

probability is computed by multiplying out the probabilities of survival across all 

previous intervals. The resulting function is also called the survivorship or survival 

function.  Denote the estimate of survival function at the beginning of the j’th interval as  

             ∏
−

=

−=
1

1

)ˆ1(ˆ
j

i
ij pS         (3.9) 

Estimate of Probability Density ( jf̂ ): this is the estimated probability of failure in the 

respective interval, computed per unit of time, that is: 

j

jj
j L

SSf )ˆˆ(ˆ 1+−
=  

where jL  is the width of the respective interval.  

Estimate of Hazard Rate ( jĥ ): the hazard rate (the term was first used by Barlow, 1963) 

is defined as the conditional probability per unit of time that a case that has survived to 

the beginning of the respective interval will fail in that interval.  
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Kaplan-Meier Product-Limit Estimator 

Rather than classifying the observed survival times into a life table, we can estimate the 

survival function directly from the continuous failure times.  To allow for possible ties in 

the data, suppose that the event occurs at K distinct times Kttt <<< ...21 , and that at 
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time it there are iy  events observed.  Let iN  be the number of individuals at risk at time 

it : 

        ∏
≤

−=
tt i

i

i
N
y

tS )1()(ˆ
 
,   if 1tt ≥        (3.10) 

and ,1)(ˆ =tS  if 100 ttt <≤= .  In (3.10), )(ˆ tS  is the estimated survival function at time 

),[ 1+∈ ii ttt or actually at the event time it  until next event occurs.  This estimate of the 

survival function is also called the product-limit estimator, and was first proposed by 

Kaplan and Meier (1958).  The product-limit estimator is a step function with jumps at 

the observed event time. 

The advantage of the Kaplan-Meier product-limit method over the life table method for 

analyzing survival and failure time data is that the resulting estimates do not depend on 

the grouping of the data (into a certain number of time intervals).  Actually, the product-

limit method and the life table method are identical if the intervals of the life table 

contain at most one observation.  

Dirichlet process and Beta process deal with any set of intervals and assume a 

distribution function to each of these intervals.  Dirichlet process is used to estimate 

survival function.  Beta process is to estimate cumulative hazard function.  Both 

processes incorporate conjugate prior information.   
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3.3.1. Bayesian Life-table Method 

We presented protocol-specified method in Chapter 2 and reviewed the traditional life-

table method.  We call the protocol-specified approach as a Bayesian life-table method 

since it’s basically life-table but incorporates a beta prior at each interval.  It is classified 

as one of the nonparametric methods in this Chapter.  We have a brief summary of the 

method here, and then illustrate its relationships with Binomial-Beta parametric model 

(presented in Section 3.2.1) and Beta process model. 

 

Figure 4: Relationships Among Beta Models 
 

 

 
To simplify the notation on subscript, only one administration-schedule group is used 

here. 

  j :  time interval, Jj ≤≤1 , 

jn :   effective sample size at risk during interval  j, 

jy : number of failures during interval  j, 

jp :  conditional probability of failure during interval  j (discrete-time hazard), 

Data:   
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       jjj pnyE *)( =  

Prior:   

       ),(~ βαBetap j  

       βα
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=)( jpE  

Posterior:  

),(~| jjjjj ynyBetayp −++ βα  
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Traditional life-table method uses jj ppE =)ˆ( , and cumulative probability of failure to 

interval J  is:   

∏
=

−−=
J

j
jJ p

1

)1(1θ  

or 

∏
=

−−=
J

j
jJ p

1

)ˆ1(1θ̂  

where  
j

j
j n

y
p =ˆ  

Bayesian life-table method incorporates prior information so jp is replaced by posterior 

estimator jp~  given data jy : 
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The Binomial-Beta parametric model doesn’t consider individual event time and combine 

all intervals (treat the whole study as one large interval: ∞~0 ) to estimate the overall 

probability of failure: 
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where ).,|(~| JJ pNYBinpY  

If the same prior ),(~ βαBetap j  is used for each interval and probability of progression 

(failure event) is independent among intervals, we can prove that posterior of 

JJ yyyp ,...,,| 21 at the last interval: 

∑∑∑ ===
−++

J

j j
J

j j
J

j jJJ ynyBetayyyp
11121 ),(~,...,,| βα  

It’s the same as if we get posterior from jth interval, and use it as prior of the (j+1)th 

interval, where .,...,2,1 Jj =   At the last interval, one can also get the above posterior. 

Parameter Jθ is more appropriate to use life-table method to estimate.  Parameter Jp has 

the property of “additive” and it doesn’t consider the individual event time.  The 

estimator of the above Jp  is an estimate of the overall probability of failure event.  As 
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discussed earlier, if one combines all intervals or treat the whole study as one interval, 

then Jθ and Jp are the same. 

Like Bayesian life-table method, Beta process model assumes beta priors for jH∆  

(increment of cumulative hazard) or jh (hazard at time jt or at the jth interval).  We 

present Beta process model in next subsection. 
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3.3.2. Beta Process Model 

Another approach to modeling survival data is to provide a prior distribution for the 

cumulative hazard function.  Hjort (1990) introduces a Beta process prior on cumulative 

hazard function ).(tH   Hjort assumes independent, beta-distributed priors for jh (hazard 

at time jt ) or for jH∆ (increment of cumulative hazard, see below for discrete case).  

This generates a beta process with independent increments for the cumulative hazard 

function ).(tH   Full Bayesian inference for a model with a Beta process prior for the 

)(tH using Gibbs sampling can be found in Damien et al. (1996).   

Survival data in practice is commonly grouped with some grid of intervals, it is more 

convenient and often sufficient to use a discretized version of the beta process (Hjort, 

1990; Sinha, 1997; Ibrahim et al., 2001) for survival data subject to right censoring.  We 

focus on discrete-time case of the beta process below.  Note that one consequence of the 

discreteness is that the relationship between cumulative hazard and survival with 

)](ln[)( tStH −=  for continuous-time case does not hold anymore. 
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Figure 5: Chart of Time, Interval and Parameters of Interest  
 

Time  T                                        0t                     1t                                                                                1−Jt                           Jt  

Interval (1,…,J)                      1A                                ……                                JA  

Hazard                     1h                      Jh  

Probability of Event               1θ                                 ……                                 Jθ  

 

Hjort (1990) uses the term beta processes to describe processes to produce cumulative 

hazard rates whose increments are independent and approximately beta distributed.  The 

principal is that if H is a beta process priori, then it still is a posteriori.        

Data distribution 

Let JjttA jjj ,...,1),,[ 1 == −  be a series of nonoverlapping intervals with discrete random 

variable T  that takes the values Jtttt <<<<= ...0 210  (Figure 5).  Let hazard rate and 

cumulative hazard rate be  

j

j

j

j
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i
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Note that S and f can be recovered from knowledge of hazard rate: 



44 

 

,)1(
0
∏
=

−=
j

i
ij hS  

j

j

i
ij hhf 







−= ∏

−

=

1

0

)1(  

Note that notation )Pr( jj tTf == with jt  representing a discrete-time point is little 

different from that in Chapter 2 where )Pr( jYj ==θ  with j denoting tiny interval j.   

We assume data is right censored with observations nidT ii ,...,1),,( = , where iT  is failure 

time or censoring time and id  is failure indicator for individual i.  Consider the failure 

counting process Y and the number-at-risk process N, given by 

∑
=

− =≤<=
n

i
ijijj dtTtIY

1
1 }1,{ , 

∑
=

≥=
n

i
jij tTIN

1
}{  

where jY  and jN  denote number of failures at interval j and number at risk at time ,jt

respectively. 

Hjort (1990) proves that the likelihood of what is observed can be written  

[ ]∏
=

−−=
j

i

Y
i

YN
i

iii hhdataL
0

)1()(       (3.11) 

So the nonparametric maximum likelihood  (ML) estimator of (.)h is given by 

jjj NYh /ˆ =  
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and 

∑
=

=
j

i i

i
j N

Y
H

0

ˆ      and     ∏
=

−=
j

i i

i
j N

Y
S

0

)1(ˆ  

These are the proper discrete-time analogues of the Nelson-Aalen estimator and the 

Kaplan-Meier estimator. 

Beta process prior 

In order to construct a class of nonparametric Bayesian estimators for H (and for h and 

S), Hjort assumes that a beta process prior for H,  

),(~ 00 HNBPH         (3.12) 

has independent summands 

)}1(,{~ 0000 jjjjj hNhNBetah −       (3.13) 

where jj hhE 0)( =  is prior guess whereas )1()1()( 000 +−= jjjj NhhhVar is prior 

uncertainty, and jN 0  is a measure of confidence around the prior guess jh0  (or prior 

sample size). 

Beta process posterior distribution 

Given censored data set ),( ii dT and beta process prior in (3.12) which constitutes a 

natural class of conjugate prior distributions, the posterior is (Hjort, 1990) 
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where ii dHh 00 = .  

Furthermore, the nonparametric Bayesian estimator of H is given by 

                                         { } ∑
= +

+
==

j

i ii

iii
jj NN

YhN
dataHEH

0 0

00|ˆ
                              

(3.15) 

Note that ,00 →N then the above is Nelson-Aalen estimator; ∞→0N , then the Ĥ

simply becomes the prior guess 0H .  The combined sample size for the posterior is 

,0 NN +  0N of them having hazard 00 dHh =  and N of them having hazard N
Y . 

The conditional variance of jH  is useful when constructing Bayesian confidence band 

for H.   

Moreover, survival estimate is given by 

∏
=









+

+
−=

j

i ii

iii
j NN

YdHN
S

0 0

001ˆ  

When ,00 →N the above is Kaplan-Meier estimator; ∞→0N , then the Ŝ simply 

becomes the prior guess 0S .   

Note that another perfect way to estimate H is to simulate realizations of H from the 

posterior distribution as described by Ibrahim et al. (2001).  Ibrahim et al. (2001) present 

the posterior for jh in discrete-time case as   

 JjYNhNYhNBetadatah jjjjjjjj ,...,1},)1(,{~| 0000 =−+−+   (3.16) 
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In Chapter 5, we will use simulation to draw posterior samples from (3.16) and then 

transform the simulation results to the estimates of survival or probability of event for the 

CLL clinical trial data. 

Bayesian estimator of the survival function 

At any time t  where 1+<≤ jj ttt , the Bayesian estimator of the survival function under 

squared-error loss is given by (Klein and Moeschberger, 2007): 

i

i tti i

ii
j

i j

j
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ii
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tHtHN
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)]()([)]()([
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for  Jjttt jj ,...,0,1 =<≤ +    

                      (3.17) 

For large N (data sample size) or relatively ,00 →N  the Bayesian estimator (3.17) 

reduces to Kaplan-Meier estimator.  For small N or when ∞→0N , the Bayesian 

estimator is close to the prior guess at )(tS .   

Notes about Beta process model and its Bayesian estimator of survival 

From prior distribution in (3.13): JjhNhNBetah jjjjj ,...,1)},1(,{~ 0000 =−  and 

posterior distribution in (3.16), we can see the similarity and difference between Beta 

process model and Bayesian life-table method.  Beta distribution prior can be considered 

as a special case of beta process prior.  The life-table method arbitrarily classifies the 

time intervals while beta process model intervals are based on actual event or censor 

time.  In the protocol pre-defined Bayesian life-table method, clinical priors Beta(0.025, 
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0.975) and Beta(0.01, 0.99) are used for hazards of progression and toxicity at each time 

interval.  These prior distributions assume that prior sample size 10 =jN  and prior guess 

of hazard 025.00 =jh  or 01.00 =jh , where .,...,2,1 Jj =   The prior Beta(0.01, 0.99) 

corresponds to the Beta process prior parameters of ttH 01.0)(0 =  and .1)(0 =tN   On the 

other hand, as we already shown, Binomial-Beta parametric model is a special case of 

Bayesian life-table method when we treat the whole study as a single interval in which 

case event time is not considered into modeling.       

Results from Bayesian estimator in (3.17) may not exactly match results calculated by 

posterior samples from Beta process model (3.16) due to the following reasons: (1) Beta 

process model assumes small time intervals.  In each such tiny interval filling in between 

observed life times, the posterior cumulative hazard has, approximately, a beta 

distribution (Hjort, 1990; Damien et al., 1996).  In practice, intervals may not be short 

enough in clinical trials.  (2) For discrete lifetime data, after drawing posterior samples, 

we define cumulative hazard function by ∑
≤

=
tt

j
j

thtH )()( but the relationship of 

)}(exp{)( tHtS −=  for this definition no longer holds true (Klein and Moeschberger, 

2007).  We may need to re-define the cumulative hazard for discrete lifetime as 

∑
≤

−−=
tt

j
j

thtH )](1ln[)(  (Cox and Oakes, 1984) so that the relationship of 

)}(exp{)( tHtS −=  for continuous-time is preserved for discrete-time data.  Alternatively 

we can directly use ∏
≤

−=
tt

j
j

thtS )](1[)(  as in life-table method for survival estimate.          
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3.3.3. Dirichlet Process Model 

The Dirichlet process is perhaps the most important and popular prior process in modern 

day nonparametric Bayesian inference (Ibrahim et al., 2001).  Ferguson (1973, 1974) 

introduces the Dirichlet process (DP) as one of the random process measures (RPM).  

Susarla and Van Ryzin (1976) and Ferguson and Phadia (1979) discuss inference with a 

DP prior in the context of survival data.  For a review of related approaches applying the 

DP see Ferguson et al. (1992).    

DP model is to estimate survival function directly while BP is to model hazard rate.  With 

conjugate prior and right censored survival data, posterior distribution of the survival 

function )(tS follows Dirichlet process with parameter function α .   

Dirichlet distribution 

Dirichlet distribution is conjugate prior distribution for the parameters of the multinomial 

distribution.  The probability density of the Dirichlet distribution for variables 

),...,( 1 Jθθθ =  with parameters ),...,( 1 Jααα = is defined by 
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0 α  representing prior sample size.  

Mean and variance of jθ  are: 
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Dirichlet process prior  

On a positive real line X (Figure 5) or a sample space, a stochastic process is said to be a 

Dirichlet process (prior) if, for any set of disjoint intervals JAA ,...,1 or any partition of the 

sample space, the joint distribution of the (prior) probabilities 11 ]Pr[ θ=∈ AX , …, 

JJAX θ=∈ ]Pr[  has a )1( −J -dimentional Dirichlet distribution with parameters 

)](),...,([ 1 JAA αα .  This property must hold for any set of intervals and any J (Klein and 

Moeschberger, 2007).  Hence, different partition of line X  or sample space leads to 

Dirichlet distribution with different parameters.  

We assume prior distribution of survival function )(tS  follows 

))(,(~)( 00 tSNDPtS  

or  

)(~)( αDPtS  

where the parameter function α  is determined by 0N  and )(0 tS and usually takes the 

form of ).()),([ 00 tSNt =∞α   Note that )(0 tS  is prior expectation of survival function 

and 0N  is a measure of how much weight to put on the prior (or sample size of prior).  

So the meaning of the parameter function )()),([ 00 tSNt =∞α can be interpreted as the 

number of patients survived at or beyond time t, and 
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where jα  represents number of failures at jth interval jA .   

Mean and variance of the prior of )(tS  which follows Dirichlet process are: 

)(
)(

),0[
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tSNttSE ==
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00
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Assume a Dirichlet process prior with parameters )1.0exp()(0 ttS −= and 50 =N (or 

10 =N ),  we will simulate or draw samples from this form of Dirichlet process prior and 

show how prior sample paths look like and how they change with the increase (or 

decrease) with prior sample size in Chapter 5.   

Data distribution 

The right-censored survival data consists of J distinct times (or J time intervals), denoting 

as ∞=<<<= Jttt ...0 10  (Figure 5).  At time jt , Jj ,...,0= , let jN  be the number of 

patients at risk, jy  be the number of events ( jd  event indicator: 1=jd  if 0>jy  and 

0=jd  if 0=jy ) and jλ  the number of right-censored observations.   

Posterior distribution 
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Combining the survival data distribution with the Dirichlet process prior, it can be shown 

(Ibrahim et at., 2001; Klein and Moeschberger, 2007) that the posterior distribution of 

survival function )(tS  is also Dirichlet.   

Without considering censoring, the parameter R  of the posterior distribution is the 

original parameter α  from the prior distribution plus a point mass of one at points where 

events occur, i.e., for any interval (a, b) and the kth subject’s study time ,,...,1, NkTk =  

  )),(()),((],1[)),(()),((
1

baybabTadIbabaR
N

k
kk +=<<=+= ∑

=

αα
  
  (3.18) 

where []I  is the indicator function and ∑
=

<<==
N

k
kk bTadIbay

1
],1[)),((  is number of 

failures observed in interval (a, b).  Original proof can be found in Ferguson (1973).  

Considering right-censored observations, posterior distribution of the survival function is 

a mixture Dirichlet process (MDP) in which case MCMC scheme is to be used for 

posterior inference.  We will refer to Gibbs sampling in Kuo and Smith (1992) in 

subsection 3.3.4.      

Bayesian estimator of the survival function 

Susarla and Ryzin (1976) present a Bayesian nonparametric estimator – the posterior 

expected values of the survival distribution, assuming a Dirichlet process prior 

(Ferguson, 1973).  The Bayesian estimator of the survival function under squared-error 

loss (Susarla and Ryzin, 1976, 1978a, 1978b; Klein and Moeschberger, 2007) is: 



53 

 

      =)(~ tSDP ∏
= +

++

+∞
++∞

+∞

+∞ j

k kk

kkkj

Nt
Nt

N
Nt

0 1

11

),(
),(

),0(
),(

α
λα

α
α

     

     
                    = ∏

= +

++

+
++

+

+ j

k kk

kkkj

NtSN
NtSN

NN
NtSN

0 100

100

0

100

)(
)()( λ

   (3.19) 

            for  Jjttt jj ,...,0,1 =<≤ +   

Susarla and Ryzin (1976, 1978b) use notation )(tN +  instead of 1+jN  to denote the 

number of patients at risk at time t>  in (3.19).  The asymptotic properties of this 

Bayesian estimator are discussed in Susarla and Ryzin (1978a, 1978b).  For large N (data 

sample size) or very small 0N (prior sample size), Susarla and Ryzin (1976) show that the 

Bayesian estimator (3.19) reduces to Kaplan-Meier estimator.  For small N, the prior 

information dominates and the Bayesian posterior estimator is close to the prior guess 

)(0 tS .  So the Bayesian estimator can be considered as weighted average of the Kaplan-

Meier estimator and the prior guess.  

Note that the above Bayesian estimator, when t  is close to the end of the study, the 

number at risk 1+kN  can be smaller than .kλ   In extreme case, if 01 =+kN  at the end, the 

prior information dominates the estimate and may result in unreasonable large value of 

the estimate.  In general, a better way is to utilize MCMC Gibbs sampling method, which 

is discussed in next subsection. 
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3.3.4. MCMC Bayesian Method or Gibbs Sampler 

Gibbs sampling or a Gibbs sampler is a Markov chain Monte Carlo (MCMC) algorithm 

for obtaining a sequence of random samples from the joint probability distribution of two 

or more random variables.  This sequence can be used to approximate the joint 

distribution; to approximate the marginal distribution of one of the variables, or some 

subset of the variables (for example, the unknown parameters or latent variables).  Gibbs 

sampling is applicable when the joint distribution is not known explicitly or is difficult to 

sample from directly.  It can be shown (for example, Gelman et al., 2004) that the 

sequence of samples constitutes a Markov chain, and the stationary distribution of that 

Markov chain is just the sought-after joint distribution. 

Kuo and Smith (1992) discuss Dirichlet process priors with interval censored survival 

data and demonstrate the posterior distribution is to be a mixture of Dirichlet processes 

(Antoniak, 1974).  Kuo and Smith (1992) use Gibbs sampler to generate samples from 

the posterior distribution.  Gibbs sampler approach is more flexible than previous two 

nonparametric process models.  In this subsection we utilize this MCMC method for 

right-censored data, even though it’s a general approach for sampling posterior 

distribution and can be easily extended to interval-censored data.  We start with data 

distribution and prior distribution which are similar to those presented in the Dirichlet 

process method.  For posterior distribution, this method imputes failure time of censored 

observations conditional on observed failures and re-distributes these censored 

observations to later individual time intervals.  Because the method is nonparametric, it 

can be easily used in situations where hazards cross or are suspected to cross.   

http://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Sampling_(statistics)
http://en.wikipedia.org/wiki/Joint_probability
http://en.wikipedia.org/wiki/Random_variables
http://en.wikipedia.org/wiki/Marginal_distribution
http://en.wikipedia.org/wiki/Parameter
http://en.wikipedia.org/wiki/Latent_variable
http://en.wikipedia.org/wiki/Markov_chain
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Kuo and Smith (1992) method is also introduced in Ibrahim et al. (2001), Rosner (2005), 

and Klein and Moeschberger (2007).  One can use the random samples from the posterior 

distribution of the survival function to calculate data summaries and make statistical 

inference.  In this subsection, we present the Gibbs sampling algorithm for survival 

distribution with Dirichlet process prior and right-censored data introduced in subsection 

3.3.3.  In next Chapter, we will use Gibbs sampler in our B-cell CLL clinical trial data 

and also compare the numerical results from this method to those obtained directly from 

Bayesian estimator (3.19).      

 

Figure 6: Chart of Time, Interval and Parameters of Interest  
 
 
Probability   1θ     2θ        ……        jθ               ……                    Jθ            1+Jθ  
Interval              1           2         ……          j                ……                     J             J+1  

                                                                                                                            

 

Time          00 t=     1t          2t    ……    1−jt     jt           ……           1−Jt         Jt       ∞=+1Jt  

 

Data distribution 

Let Jtt <<< ...0 1 be J time points.  

jy :  number of events in the time interval ],( 1 jj tt − , 

:jλ number of right-censored observations at time jt , 
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:)( jj tSS =  survival function at time jt , 

So the likelihood function is ∏
+

=
− −∝

1

1
1 )()|,(

J

j
j

y
jj

jj SSSSyL λλ .  

Let jjj SS −= −1θ  be parameter of interest which is probability of event for interval j for 

Jj ,...,1=  and ,1 JJ S=+θ  where interval j is for time interval ],( 1 jj tt −  and 

∑
=

−=>==
j

i
ijjj tTPtSS

1
1)()( θ .  Note that  1

1

1
=∑

+

=

J

j
jθ . 

 Prior distribution  

We specify a Dirichlet process prior for the s'θ and thus joint prior distribution of s'θ

(probability of event) is a Dirichlet distribution with density function 

∏
+

=

−∝
1

1

1
1 )(),...,(

J

j
jJ

jf αθθθ  

or 

),...,,(~ 121 +JDirichlet αααθ  

where parameters )]()([ 0100 jjj tStSN −= −α  for j=1,…,J+1 with )(0 tS indicating prior 

survival function, where 0)( 10 =+JtS  and 0N is prior sample size or weight of prior. 

To generate a sample of θ from ),...,,( 121 +JDirichlet ααα distribution, one can use the 

definition by generating independent gamma random variables.  In R’s MCMC package, 

rdirichlet(alpha) function can be used directly to generate a random vector sample of θ 

following Dirichlet distribution where alpha is vector of shape parameters.  
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We denote the first realization of θ from the Dirichlet prior as 0θ and will use it as the 

starting values of the following Gibbs sampling. 

Posterior distribution approximation via MCMC  

Gibbs sampling approach to Bayesian estimation approximates the posterior distribution 

via Monte Carlo simulation.  The basic idea here is that we treat censored observations as 

missing data.  First, we impute event times for each censored observation, then use the 

new event times to update the parameter of Dirichlet distribution and so are the sample 

draws of θ ’s.  This process repeats over and over, and the procedure converges to a 

realization of θ  drawn from the posterior distribution of θ given the data (Gelfand and 

Smith, 1990). 

Let jλ > 0 be the number of right-censored observations at time jt  or the beginning of 

the (j+1)th interval ],( 1+jj tt .  These censored observations will eventually fall in 

intervals ],( 1+hh tt with .jh ≥   Denote the number of failures jλ  that might fall in these 

intervals as ,,..., ,1,1 jJjj ZZ ++  so .1

1 ,∑ +

+=
=

J

jh jhj Zλ  

The posterior full conditionals for ),...,,( 121 += Jθθθθ  given the Z’s and the data is an 

updated Dirichlet distribution, and the posterior full conditional for the Z’s given 

),...,,( 121 += Jθθθθ  and the data is a multinomial distribution.  Suppose at the ith 

iteration of the Gibbs sampler, we have the realization ),...,,( 121
i
J

iii
+= θθθθ with 
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11

1
=∑ +

=

J

j
i
jθ .  Practically the sampler starts from 0θ as described above from prior 

distribution.  

An iteration of the Gibbs sampler consists of imputing failures for censored observations 

from multinomial distribution, combining the prior with the observed and imputed 

failures to update the parameters of the Dirichlet distribution, and generating a random 

sample from the Dirichlet distribution (Rosner, 2005).   The Gibbs sampling algorithm 

follows procedures below in detail (Kuo and Smith, 1992; Ibrahim et al., 2001; Klein and 

Moeschberger, 2007): 

(1) Sample 1
,1

1
,1 ,..., +

+
+
+

i
jJ

i
jj ZZ  from a multinomial distribution with sample size jλ and 

parameters :,..., 11
i
J

i
j ++ ρρ  

),...,;(~),...,( 11
1

,1
1

,1
i
J

i
jj

i
jJ

i
jj lMultinomiaZZ ++
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+ ρρλ    (3.20) 

where       1,...,1,1
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(2) Having sampled the random variables Z’s, we revise the number of failures at 

time ht by ∑ =
++

J

j
i

jhh Zy
1

1
,  

and update the Dirichlet distribution parameters:           
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h α      (3.21) 
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iii θθθθ from Dirichlet distribution with 
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(3) By running S parallel chains, after the ith iteration assuming we start with 0θ , 

we have  i
sJ

i
s

i
s ,121 ,...,, +θθθ  and i

sJ
i
s

i
s RRR ,121 ,...,, +  for Ss ,...,1=  where S and i have 

been chosen to achieve convergence to smooth estimates.  Typically i is 

relatively small, of the order of 10 or 20, and S is of the order of 1,000 – 10,000.   

The posterior mean estimate of hθ  is, then given by: 

          ∑
∑= +

=

−=
S

s J

j
i
js

i
hs

h
R

R
S

1 1

1

1~θ        (3.23) 

Note the clinical meaning of the parameter function R of the Dirichlet process in (3.22) 

and (3.23): hR  represents the number of events at interval h; ∑ +

=

1

1

J

h hR is total sample size; 

and hθ is the probability of event at interval h.     

The posterior estimator of hθ  from the Gibbs sampler (3.23) is based on the fact that 

posterior distribution of hθ  for 1,...,2,1 += Jh  can be approximated by a beta random 

variable with parameters hR and ∑
≠hk

kR (Ibrahim et al., 2001; Klein and Moeschberger, 

2007): 

),(~ ∑
≠hk

khh RRBetaθ  

An alternative approach to estimate hθ  from the posterior distribution is to use the 

empirical distribution function of the simulated values of θ : Ssi
hs ,...,2,1, =θ (Klein and 

Moeschberger, 2007).  One can make inference about θ  based on these S samples.  The 
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precisions of these two approaches are different.  The standard error of the means from 

(3.23) is much smaller than that from this alternative approach.   

To estimate the survival function at ,jt  we accumulate the iθ  for ,ji >  so  

         ∑∑
≤>

−==
ji

i
ji

ijS θθ ~1~ˆ             (3.24) 

The overall probability of event up to time jt  is to accumulate the iθ  for .ji ≤   

With the parameters of the posterior Dirichlet distribution in (3.21) at the ith iteration, 

one can also estimate the posterior distribution of the survival probability )(tS at any time 

t  in the following way (Rosner, 2005): 

        ),(~|)(
::
∑∑

<≥ tth

i
h

tth

i
h

hh

RRBetadatatS       (3.25) 

By drawing random samples from the above Beta distribution at time t , say, 2 or 3 years, 

one can make inference on posterior survival distribution.  
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4. SIMULATIONS 

Chapter 3 describes Bayesian parametric and non-parametric statistical methods to 

evaluate accumulative event rate for survival endpoint.  In this Chapter, simulation results 

from these methods are presented.  The purpose of simulation is to ensure each of the 

methods provides valid and realistic results with given scenarios and samples so as to 

clear the path to apply these methods to the phase II CLL clinical trial data in Chapter 5.       

Simulations are conducted using efficacy endpoint which is probability of progression.  

The same simulation approach can be applied to safety endpoints and is not included 

here.  The operating characteristics of the design of the phase II trial (the design’s 

average behavior - probability of being selected for each arm) under different scenarios 

are summarized by 1,000 simulation studies (500 studies for Gibbs sampler method) per 

scenario.  The protocol considered 6 scenarios under different levels of probability of 

progression for each arm (from high and medium to low) and we also consider these 

similar scenarios in simulation. 

Generating Simulation Data 

During clinical trials with survival type of endpoint, patient’s enrollment is staggered.  

For the ith patient, ,,...,2,1 ni =  let iX  be the entry time (in calendar time) with density 

function g, let iT  be the failure time with density function  f, and let iC  be the censoring 

time with distribution function 1 - H.  Note that iT  and iC  are measured from iX  and 

assume that iX , iT , and iC  are mutually independent for all patients. 
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At any calendar time t when the data is reviewed, for the ith patient, the observation time 

is                  

))(,,min()( +−= iiii XtCTtY  

and censoring status is  

)},min({)(
iii XtCTi It −≤=∆   

where 1=∆  indicating a failure and 0=∆  being censored.   

The accumulative failure rate by time t is (Li, Shih and Wang, 2005): 

                       { } ∫ ∫ 



=−≤=

−t yt

iii dyygduufuHXtCTPt
0 0

)()()(),min()(θ                 (4.1) 

Enrollment can be modeled as exponential, poisson, uniform, or truncated exponential 

distribution (Lachin and Foulkes, 1986), etc.   

Assume entry time is uniformly distributed, both failure time and censoring time are 

exponentially distributed, i.e., 

b
yg 1)( =  , ueuf λλ −=)( , ueuH η−=)(  

Then 
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       dyygduufuHt
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Note that when ,∞→t
λη

λθ
+

→)(t , which is the case when only considering failure 

time and censoring time. 

We can also model the enrollment with the family of truncated exponential distribution 

(Lachin and Foulkes, 1986; Li, Shih and Wang, 2005) indexed by γ 
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The family includes entry rate being uniform ( 0=γ ), concave ( 0<γ ), or convex 

( )0>γ . 

In the case 0≠γ ,   

dyygduufuHt
b yt

)()()()(
0 0∫ ∫ 
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Derive as follows: 
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In simulation, in order to generate enrollment time y which follows truncated exponential 

distribution                 

                                              0;0,
1

)( ≠≤≤
−

= −

−

γγ
γ

γ

by
e

eyg b

y

 

we start with CDF of y which is   

                                                         b

y

e
eyG γ

γ

−

−

−
−

=
1
1)(   

Let )(yGz = , so  

                                                   ( ))1(1ln1 bezy γ

γ
−−−−=  

where )1,0(~ Uz . 
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The following first 6 simulation scenarios are based on (4.2) – uniform distribution for 

enrollment and exponential distribution for event and censor time. The additional 3 

simulation scenarios (scenarios 7, 8 and 9) are based on (4.3) – truncated exponential 

distribution for enrollment and exponential distribution for event and censor time.  

The parameter of exponential distribution for time to progression event is estimated as 

follows: according to preliminary data (one of the interim analyses) from the real clinical 

trial data, survival rates at month 24 for 3 arms were approximately 0.20, 0.40 and 0.60.  

Assume event time is exponentially distributed and the corresponding accumulative event 

rates are 0.80, 0.60 and 0.40, then the parameters are 

0671.0,0375.0,0213.0 321 === λλλ , respectively for the ith arm ( 3,2,1=i ) showing in 

Figure 7 (Simul_data_plot_exp.R). 

We generate 1,000 simulation studies (replicates).  Each simulation study includes 3 arms 

and each arm has 35 subjects.  Assume failure time and censoring time are independently 

exponentially distributed.  Recruitment (enrollment) period is 12=b months.  We have 

simulated enrollment in several different way, including uniform, exponential, and 

truncated exponential distributions, but only present results here from exponential 

distribution (Scenarios 1 to 6) and truncated exponential distribution (Scenarios 7 to 9).     
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Figure 7: Exponentially Distributed Survival Function  
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4.1. Cases with Uniform Entry 

Simulation data is generated as follows for cases with uniform entry rate: 

The simulation data is generated by: 

)exp(~ iiT λ , )exp(~ iiC η , ),0(~ buniformX i  

So observation time is                  

))(,,min()( +−= iiii XtCTtY  

and censoring status is  

)},min({)(
iii XtCTi It −≤=∆   

for the ith patient, .,...,2,1 ni =  

Scenario 1: The Null Case (case 11: medium, medium, medium) 

The null case assumes the probabilities of event are equivalent for all 3 arms,  

321 θθθ ==  

where 3,2,1, =iiθ  denotes probability of progression (or hazard of progression) for the 

ith schedule arm.  The hazard rates  

0375.0=λ , 010.0=η  
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are chosen for failure time and censoring time.  Per (4.2), accumulative failure rate is 

45.0)24( =θ  at month 24 and 60.0)36( =θ  at month 36.   

The parameters used to generate simulation data are shown in Table 1. 

Summary statistics for the 1,000 simulation studies is listed in Table 2. 

For each of the Bayesian statistical method, the following priors are assumed: 

Method 1 – Beta Model: event rate ~ )975.0,025.0(Beta for all arms; 

Method 2 – Gamma Model: hazard ~ )10,1(Gamma for all arms; 

Method 3 – Bayesian Life-Table: event rate ~ )975.0,025.0(Beta for all arms and at all 

intervals; 

Method 4 – Beta Process Model: prior is determined by 2 parameters: cumulative hazard 

thH 00 =  where 025.00 =h and prior weight 10 =N ; 

Method 5 – Gibbs Sampler: prior is determined by 2 parameters: survival theS 0
0

−=  

where 025.00 =h and prior weight 10 =N . 

For each of the Bayesian statistical method, 10,000 posterior samples for each of the 3 

arms from each simulation study are drawn and compared to determine which arm is 

selected for the simulation study.  Then 1,000 simulation studies (500 studies for Gibbs 

sampling method) are conducted and simulation results for the probability of being 

chosen for each of the 3 arms are summarized is Table 3 for the null case scenario.   
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Table 1: Parameters of Simulation Data for the Null Case 

b λ  η  t )(tθ  

12 0.0375 0.010 24 0.45 

12 0.0375 0.010 36 0.60 

 

 

Table 2: Summary Statistics for Simulation Studies for the Null Case 

 Schedule A Schedule B Schedule C 

N 35 35 35 

Number of events, mean (SD) 20.855 (2.978) 20.889 (2.885) 20.767 (2.851) 

Number of censored, mean (SD) 14.145 (2.978) 14.111 (2.885) 14.233 (2.851) 

Proportion of events, mean (SD) 0.596 (0.0851) 0.597 (0.0824) 0.593 (0.0815) 

Proportion of censored, mean 
(SD) 

0.404 (0.0851) 0.403 (0.0824) 0.407 (0.0815) 
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Table 3: Simulation Result: Probability of Being Chosen for Each Schedule by 
Different Statistical Methods for the Null Case 

  

Schedule A 

 

Schedule B 

 

Schedule C 

Simulation  

run time for 
1000 studies 

Method 1 (Beta 
model): Based on 
prob. of PD event 

0.324 0.334 0.342 7 minutes 

 (1000*10000) 

Method 2 (Gamma 
model): 

Based on hazard rate  

0.345 0.330 0.325 6 minutes 

(1000*10000) 

Method 3 (non-
parametric – Bayesian 
life-table) 

0.325 0.346 0.329 1.4 hours 

(1000*10000) 

Method 4 (non-
parametric – Beta  
process model) 

0.324 0.346 0.330 4.4 hours 

(1000*10000) 

Method 5 (non-
parametric – Dirichlet 
process & Gibbs 
model) 

0.318 0.350 0.332 ~ 40 hours 

(500*10000*15) 

 



71 

 

Scenario 2: The Alternative Case (case 21: low, medium, high) 

For the alternative case which assumes the event rates are different at =)(tθ (low, 

medium, high) levels for 3 arms, the hazard rates  

0671.0,0375.0,0213.0 321 === λλλ , 010.0=η  

are chosen for failure time of each arm and for censoring time.  Per (4.2), accumulative 

failure rates )24(θ at month 24 and )36(θ at month 36 for each of the 3 arms are listed in 

Table 4.   

The parameters used to generate simulation data are shown in Table 4. 

Summary statistics for the 1,000 simulation studies is listed in Table 5. 

Simulation results from different statistical methods for the probability of being chosen 

for each of the 3 arms are summarized is Table 6 for scenario 2.   
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Table 4: Parameters of Simulation Data for the Alternative Case 

Schedule b λ  η  t )(tθ  

A  

12 

0.0213  

0.010 

 

24 

0.30 

B 0.0375 0.45 

C 0.0671 0.65 

A  

12 

0.0213  

0.010 

 

36 

0.40 

B 0.0375 0.60 

C 0.0671 0.80 

 

 

Table 5: Summary Statistics for Simulation Studies for the Alternative Case 

 Schedule A Schedule B Schedule C 

N 35 35 35 

Number of events, mean (SD) 14.384 (3.004) 20.889 (2.885) 27.150 (2.402)  

Number of censored, mean (SD) 20.616 (3.004) 14.111 (2.885) 7.850 (2.402) 

Proportion of events, mean (SD) 0.411 (0.0858) 0.597 (0.0824) 0.776 (0.0686) 

Proportion of censored, mean 
(SD) 

0.589 (0.0858) 0.403 (0.0824) 0.224 (0.0686) 
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Table 6: Simulation Result: Probability of Being Chosen for Each Schedule by 
Different Statistical Methods for the Alternative Case 

  

Schedule A 

 

Schedule B 

 

Schedule C 

Simulation  

run time for 
1000 studies 

Method 1 (Beta model):  

Based on prob. of PD 
event 

0.944 0.055 0.001 10 minutes 

 (1000*10000) 

Method 2 (Gamma 
model): 

Based on hazard rate 

0.956 0.043 0.001 9 minutes 

(1000*10000) 

Method 3 (non-
parametric – Bayesian 
life-table) 

0.947 0.052 0.001 5.8 hours 

(1000*10000) 

Method 4 (non-
parametric – Beta  
process model) 

0.947 0.052 0.001 8.0 hours 

(1000*10000) 

Method 5 (non-
parametric – Dirichlet 
process & Gibbs 
model) 

0.820 0.164 0.016  ~ 40 hours 

(500*10000*15) 
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Scenario 3: The Alternative Case (case 31: medium, medium, high) 

For the alternative case which assumes the event rates are different at =)(tθ (medium, 

medium, high) levels for 3 arms, the hazard rates  

0671.0,0375.0,0375.0 321 === λλλ , 010.0=η  

are chosen for failure time of each arm and for censoring time.  Per (4.2), accumulative 

failure rates )24(θ at month 24 and )36(θ at month 36 for each of the 3 arms are listed in 

Table 7.   

The parameters used to generate simulation data are shown in Table 7. 

Summary statistics for the 1,000 simulation studies is listed in Table 8. 

Simulation results from different statistical methods for the probability of being chosen 

for each of the 3 arms are summarized is Table 9 for scenario 3.   
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Table 7: Parameters of Simulation Data for the Alternative Case 

Schedule b λ  η  t )(tθ  

A  

12 

0.0375  

0.010 

 

24 

0.45 

B 0.0375 0.45 

C 0.0671 0.65 

A  

12 

0.0375  

0.010 

 

36 

0.60 

B 0.0375 0.60 

C 0.0671 0.80 

 

 

Table 8: Summary Statistics for Simulation Studies for the Alternative Case 

 Schedule A Schedule B Schedule C 

N 35 35 35 

Number of events, mean (SD) 20.855 (2.978) 20.889 (2.885) 27.150 (2.402)  

Number of censored, mean (SD) 14.145 (2.978) 14.111 (2.885) 7.850 (2.402) 

Proportion of events, mean (SD) 0.596 (0.0851) 0.597 (0.0824) 0.776 (0.0686) 

Proportion of censored, mean 
(SD) 

0.404 (0.0851) 0.403 (0.0824) 0.224 (0.0686) 
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Table 9: Simulation Result: Probability of Being Chosen for Each Schedule by 
Different Statistical Methods for the Alternative Case 

  

Schedule A 

 

Schedule B 

 

Schedule C 

Simulation  

run time for 
1000 studies 

Method 1 (Beta model):  

Based on prob. of PD 
event 

0.489 0.499 0.012 10 minutes 

 (1000*10000) 

Method 2 (Gamma 
model): 

Based on hazard rate 

0.512 0.483 0.005 9 minutes 

(1000*10000) 

Method 3 (non-
parametric – Bayesian 
life-table) 

0.493 0.499 0.008 2 hours 

(1000*10000) 

Method 4 (non-
parametric – Beta  
process model) 

0.494 0.498 0.008 5.5 hours 

(1000*10000) 

Method 5 (non-
parametric – Dirichlet 
process & Gibbs 
model) 

0.482 0.470 0.048 ~ 40 hours 

(500*10000*15) 
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Scenario 4: The Alternative Case (case 41: low, low, high) 

For the alternative case which assumes the event rates are different at =)(tθ (low, low, 

high) levels for 3 arms, the hazard rates  

0671.0,0213.0,0213.0 321 === λλλ , 010.0=η  

are chosen for failure time of each arm and for censoring time.  Per (4.2), accumulative 

failure rates )24(θ at month 24 and )36(θ at month 36 for each of the 3 arms are listed in 

Table 10.   

The parameters used to generate simulation data are shown in Table 10. 

Summary statistics for the 1,000 simulation studies is listed in Table 11. 

Simulation results from different statistical methods for the probability of being chosen 

for each of the 3 arms are summarized is Table 12 for scenario 4.   
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Table 10: Parameters of Simulation Data for the Alternative Case 

Schedule b λ  η  t )(tθ  

A  

12 

0.0213  

0.010 

 

24 

0.30 

B 0.0213 0.30 

C 0.0671 0.65 

A  

12 

0.0213  

0.010 

 

36 

0.40 

B 0.0213 0.40 

C 0.0671 0.80 

 

 

Table 11: Summary Statistics for Simulation Studies for the Alternative Case 

 Schedule A Schedule B Schedule C 

N 35 35 35 

Number of events, mean (SD) 14.384 (3.004) 14.485 (2.892) 27.150 (2.402)  

Number of censored, mean (SD) 20.616 (3.004) 20.515 (2.892) 7.850 (2.402) 

Proportion of events, mean (SD) 0.411 (0.0858) 0.414 (0.0826) 0.776 (0.0686) 

Proportion of censored, mean 
(SD) 

0.589 (0.0858) 0.586 (0.0826) 0.224 (0.0686) 
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Table 12: Simulation Result: Probability of Being Chosen for Each Schedule by 
Different Statistical Methods for the Alternative Case 

  

Schedule A 

 

Schedule B 

 

Schedule C 

Simulation  

run time for 
1000 studies 

Method 1 (Beta model):  

Based on prob. of PD 
event 

0.509 0.491 0.000 10 minutes 

 (1000*10000) 

Method 2 (Gamma 
model): 

Based on hazard rate 

0.503 0.497 0.000 5 minutes 

(1000*10000) 

Method 3 (non-
parametric – Bayesian 
life-table) 

0.508 0.492 0.000 2 hours 

(1000*10000) 

Method 4 (non-
parametric – Beta  
process model) 

0.508 0.492 0.000 5.5 hours 

(1000*10000) 

Method 5 (non-
parametric – Dirichlet 
process & Gibbs 
model) 

0.502 0.498 0.000 ~ 40 hours 

(500*10000*15) 
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Scenario 5: The Alternative Case (case 51: low, low, medium) 

For the alternative case which assumes the event rates are different at =)(tθ (low, low, 

medium) levels for 3 arms, the hazard rates  

0375.0,0213.0,0213.0 321 === λλλ , 010.0=η  

are chosen for failure time of each arm and for censoring time.  Per (4.2), accumulative 

failure rates )24(θ at month 24 and )36(θ at month 36 for each of the 3 arms are listed in 

Table 13.   

The parameters used to generate simulation data are shown in Table 13. 

Summary statistics for the 1,000 simulation studies is listed in Table 14. 

Simulation results from different statistical methods for the probability of being chosen 

for each of the 3 arms are summarized is Table 15 for scenario 5.   
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Table 13: Parameters of Simulation Data for the Alternative Case 

Schedule b λ  η  t )(tθ  

A  

12 

0.0213  

0.010 

 

 

24 

 

0.30 

B 0.0213 0.30 

C 0.0375 0.45 

A  

12 

0.0213  

0.010 

 

36 

 

0.40 

B 0.0213 0.40 

C 0.0375 0.60 

 

 

Table 14: Summary Statistics for Simulation Studies for the Alternative Case 

 Schedule A Schedule B Schedule C 

N 35 35 35 

Number of events, mean (SD) 14.384 (3.004) 14.485 (2.892) 20.767 (2.851)  

Number of censored, mean (SD) 20.616 (3.004) 20.515 (2.892) 14.233 (2.851) 

Proportion of events, mean (SD) 0.411 (0.0858) 0.414 (0.0826) 0.593 (0.0815) 

Proportion of censored, mean 
(SD) 

0.589 (0.0858) 0.586 (0.0826) 0.407 (0.0815) 

 



82 

 

Table 15: Simulation Result: Probability of Being Chosen for Each Schedule by 
Different Statistical Methods for the Alternative Case 

  

Schedule A 

 

Schedule B 

 

Schedule C 

Simulation  

run time for 
1000 studies 

Method 1 (Beta model):  

Based on prob. of PD 
event 

0.491 0.494 0.015 6 minutes 

 (1000*10000) 

Method 2 (Gamma 
model): 

Based on hazard rate 

0.500 0.492 0.008 5 minutes 

(1000*10000) 

Method 3 (non-
parametric – Bayesian 
life-table) 

0.498 0.487 0.015 1 hours 

(1000*10000) 

Method 4 (non-
parametric – Beta  
process model) 

0.498 0.487 0.015 10 hours 

(1000*10000) 

Method 5 (non-
parametric – Dirichlet 
process & Gibbs 
model) 

0.454 0.466 0.080 ~ 40 hours 

(500*10000*15) 
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Scenario 6: The Alternative Case (case 61: low, medium, medium) 

For the alternative case which assumes the event rates are different at =)(tθ (low, 

medium, medium) levels for 3 arms, the hazard rates  

0375.0,0375.0,0213.0 321 === λλλ , 010.0=η  

are chosen for failure time of each arm and for censoring time.  Per (4.2), accumulative 

failure rates )24(θ at month 24 and )36(θ at month 36 for each of the 3 arms are listed in 

Table 16.   

The parameters used to generate simulation data are shown in Table 16. 

Summary statistics for the 1,000 simulation studies is listed in Table 17. 

Simulation results from different statistical methods for the probability of being chosen 

for each of the 3 arms are summarized is Table 18 for scenario 6.   
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Table 16: Parameters of Simulation Data for the Alternative Case 

Schedule b λ  η  t )(tθ  

A  

12 

 

0.0213  

0.010 

 

 

24 

 

0.30 

B 0.0375 0.45 

C 0.0375 0.45 

A  

12 

 

0.0213  

0.010 

 

36 

 

0.40 

B 0.0375 0.60 

C 0.0375 0.60 

 

 

Table 17: Summary Statistics for Simulation Studies for the Alternative Case 

 Schedule A Schedule B Schedule C 

N 35 35 35 

Number of events, mean (SD) 14.384 (3.004) 20.889 (2.885) 20.767 (2.851)  

Number of censored, mean (SD) 20.616 (3.004) 20.515 (2.885) 14.233 (2.851) 

Proportion of events, mean (SD) 0.411 (0.0858) 0.597 (0.0824) 0.593 (0.0815) 

Proportion of censored, mean 
(SD) 

0.589 (0.0858) 0.403 (0.0824) 0.407 (0.0815) 
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Table 18: Simulation Result: Probability of Being Chosen for Each Schedule by 
Different Statistical Methods for the Alternative Case 

  

Schedule A 

 

Schedule B 

 

Schedule C 

Simulation  

run time for 
1000 studies 

Method 1 (Beta model):  

Based on prob. of PD 
event 

0.895 0.047 0.058 7 minutes 

 (1000*10000) 

Method 2 (Gamma 
model): 

Based on hazard rate 

0.920 0.040 0.040 6 minutes 

(1000*10000) 

Method 3 (non-
parametric – Bayesian 
life-table) 

0.910 0.044 0.046 1 hours 

(1000*10000) 

Method 4 (non-
parametric – Beta  
process model) 

0.910 0.044 0.046 10 hours 

(1000*10000) 

Method 5 (non-
parametric – Dirichlet 
process & Gibbs 
model) 

0.718 0.140 0.142 ~ 40 hours 

(500*10000*15) 
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4.2. Cases with Truncated Exponential Entry 

Simulation data is generated as follows for cases with truncated exponential entry: 

1,000 simulation studies are generated.  Each simulation study includes 3 arms and each 

arm has 35 subjects.  Recruitment period is 12=b months and assume patient enrollment 

is truncated exponential.  Assume failure time and censoring time are independently 

exponentially distributed.   

Scenario 7: The Null Case (case 11a: medium, medium, medium) 

For the null case which assumes the event rates are equivalent for 3 arms, the hazard rates  

0375.0=λ , 010.0=η , 0003.0−=γ  

are chosen for failure time, censoring time and entry time for all arms.  Per (4.3), 

accumulative failure rate is 45.0)24( =θ  at month 24 and 60.0)36( =θ  at month 36.   

The parameters used to generate simulation data are shown in Table 19. 

Summary statistics for the 1,000 simulation studies is listed in Table 20. 

Simulation results from different statistical methods for the probability of being chosen 

for each of the 3 arms are summarized is Table 21 for scenario 7.   
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Table 19: Parameters of Simulation Data for the Null Case 

b λ  η  γ  t )(tθ  

12 0.0375 0.010 -0.0003 24 0.45 

12 0.0375 0.010 -0.0003 36 0.60 

 

 

Table 20: Summary Statistics for Simulation Studies for the Null Case 

 Schedule A Schedule B Schedule C 

N 35 35 35 

Number of events, mean (SD) 20.854 (2.979) 20.888 (2.886) 20.766 (2.850) 

Number of censored, mean (SD) 14.146 (2.979) 14.112 (2.886) 14.234 (2.850) 

Proportion of events, mean (SD) 0.596 (0.0851) 0.597 (0.0825) 0.593 (0.0814) 

Proportion of censored, mean 
(SD) 

0.404 (0.0851) 0.403 (0.0825) 0.407 (0.0814) 
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Table 21: Simulation Result: Probability of Being Chosen for Each Schedule by 
Different Statistical Methods for the Null Case 

  

Schedule A 

 

Schedule B 

 

Schedule C 

Simulation  

run time for 
1000 studies 

Method 1 (Beta model):  

Based on prob. of PD 
event 

0.323 0.335 0.342 7 minutes 

 (1000*10000) 

Method 2 (Gamma 
model): 

Based on hazard rate  

0.345 0.330 0.325 6 minutes 

(1000*10000) 

Method 3 (non-
parametric – Bayesian 
life-table) 

0.325 0.346 0.329 1.1 hours 

(1000*10000) 

Method 4 (non-
parametric – Beta  
process model) 

0.324 0.346 0.330 4.6 hours 

(1000*10000) 

Method 5 (non-
parametric – Dirichlet 
process & Gibbs 
model) 

0.320 0.348 0.332 ~ 40 hours 

(500*10000*15) 
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Scenario 8: The Alternative Case (case 21a: low, medium, high) 

For the alternative case which assumes the event rates are different at =)(tθ (low, 

medium, high) levels for 3 arms, the hazard rates  

0671.0,0375.0,0213.0 321 === λλλ ,  

010.0=η ,  0003.0−=γ  

are chosen for failure time, censoring time, and entry time for each arm.  Censoring time 

and entry time are assumed the same for each of the 3 arm.  Per (4.3), accumulative 

failure rates )24(θ at month 24 and )36(θ at month 36 for each of the 3 arms are listed in 

Table 22.   

The parameters used to generate simulation data are shown in Table 22. 

Summary statistics for the 1,000 simulation studies is listed in Table 23. 

Simulation results from different statistical methods for the probability of being chosen 

for each of the 3 arms are summarized is Table 24 for scenario 8.   
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Table 22: Parameters of Simulation Data for the Alternative Case 

Schedule b λ  η  γ  t )(tθ  

A  

12 

 

0.0213  

0.010 

 

-0.0003 

 

24 

 

0.30 

B 0.0375 0.45 

C 0.0671 0.65 

A  

12 

 

0.0213  

0.010 

 

-0.0003 

 

36 

 

0.42 

B 0.0375 0.60 

C 0.0671 0.78 

 

 

Table 23: Summary Statistics for Simulation Studies for the Alternative Case 

 Schedule A Schedule B Schedule C 

N 35 35 35 

Number of events, mean (SD) 14.382 (3.002) 20.888 (2.886) 27.147 (2.400)  

Number of censored, mean (SD) 20.618 (3.002) 14.112 (2.886) 7.853 (2.400) 

Proportion of events, mean (SD) 0.411 (0.0858) 0.597 (0.0825) 0.776 (0.0686) 

Proportion of censored, mean 
(SD) 

0.589 (0.0858) 0.403 (0.0825) 0.224 (0.0686) 
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Table 24: Simulation Result: Probability of Being Chosen for Each Schedule by 
Different Statistical Methods for the Alternative Case 

  

Schedule A 

 

Schedule B 

 

Schedule C 

Simulation  

run time for 
1000 studies 

Method 1 (Beta model):  

Based on prob. of PD 
event 

0.943 0.056 0.001 7 minutes 

 (1000*10000) 

Method 2 (Gamma 
model): 

Based on hazard rate 

0.956 0.043 0.001 6 minutes 

(1000*10000) 

Method 3 (non-
parametric – Bayesian 
life-table) 

0.947 0.052 0.001 1.2 hours 

(1000*10000) 

Method 4 (non-
parametric – Beta  
process model) 

0.947 0.052 0.001 ~10 hours 

(1000*10000) 

Method 5 (non-
parametric – Dirichlet 
process & Gibbs 
model) 

0.820 0.164 0.016  ~40 hours 

(500*10000*15) 
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Scenario 9: The Alternative Case (case 31a: low, medium, medium) 

For the alternative case which assumes the event rates are different at =)(tθ (low, 

medium, medium) levels for 3 arms, the hazard rates  

0375.0,0375.0,0213.0 321 === λλλ ,  

010.0=η ,  0003.0−=γ  

are chosen for failure time, censoring time, and entry time for each arm.  Censoring time 

and entry time are assumed the same for each of the 3 arm.  Per (4.3), accumulative 

failure rates )24(θ at month 24 and )36(θ at month 36 for each of the 3 arms are listed in 

Table 25.   

The parameters used to generate simulation data are shown in Table 25. 

Summary statistics for the 1,000 simulation studies is listed in Table 26. 

Simulation results from different statistical methods for the probability of being chosen 

for each of the 3 arms are summarized is Table 27 for scenario 9.   

 



93 

 

Table 25: Parameters of Simulation Data for the Alternative Case 

Schedule b λ  η  γ  t )(tθ  

A  

12 

 

0.0213  

0.010 

 

-0.0003 

 

24 

 

0.30 

B 0.0375 0.45 

C 0.0375 0.45 

A  

12 

 

0.0213  

0.010 

 

-0.0003 

 

36 

 

0.42 

B 0.0375 0.60 

C 0.0375 0.60 

 

 

Table 26: Summary Statistics for Simulation Studies for the Alternative Case 

 Schedule A Schedule B Schedule C 

N 35 35 35 

Number of events, mean (SD) 14.382 (3.002) 20.888 (2.886) 20.766 (2.849)  

Number of censored, mean (SD) 20.618 (3.002) 14.112 (2.886) 14.234 (2.849) 

Proportion of events, mean (SD) 0.411 (0.0858) 0.597 (0.0825) 0.593 (0.0814) 

Proportion of censored, mean 
(SD) 

0.589 (0.0858) 0.403 (0.0825) 0.407 (0.0814) 
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Table 27: Simulation Result: Probability of Being Chosen for Each Schedule by 
Different Statistical Methods for the Alternative Case 

  

Schedule A 

 

Schedule B 

 

Schedule C 

Simulation  

run time for 
1000 studies 

Method 1 (Beta model):  

Based on prob. of PD 
event 

0.895 0.048 0.057 9 minutes 

 (1000*10000) 

Method 2 (Gamma 
model): 

Based on hazard rate 

0.920 0.040 0.040 9 minutes 

(1000*10000) 

Method 3 (non-
parametric – Bayesian 
life-table) 

0.910 0.044 0.046 1.2 hours 

(1000*10000) 

Method 4 (non-
parametric – Beta  
process model) 

0.910 0.044 0.046 ~10 hours 

(1000*10000) 

Method 5 (non-
parametric – Dirichlet 
process & Gibbs 
model) 

0.718 0.140 0.142  ~40 hours 

(500*10000*15) 
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Table 28: Summary of Simulation Result by Bayesian Life-Table Method 

Scenario* Operating 
Characteristics 

Schedule 
A 

Schedule 
B 

Schedule 
C 

Uniform entry     

Scenario 1 (MMM) True Prob. of PD 0.60 0.60 0.60 

Prob. of Being Selected 0.325 0.346 0.329 

Scenario 2 (LMH) 

 

True Prob. of PD 0.40 0.60 0.80 

Prob. of Being Selected 0.947 0.052 0.001 

Scenario 3 (MMH) 

 

True Prob. of PD 0.60 0.60 0.80 

Prob. of Being Selected 0.493 0.499 0.008 

Scenario 4 (LLH) 

 

True Prob. of PD 0.40 0.40 0.80 

Prob. of Being Selected 0.508 0.492 0.000 

Scenario 5 (LLM) 

 

True Prob. of PD 0.40 0.40 0.60 

Prob. of Being Selected 0.498 0.487 0.015 

Scenario 6 (LMM) 

 

True Prob. of PD 0.40 0.60 0.60 

Prob. of Being Selected 0.910 0.044 0.046 

Truncated 
exponential entry 

    

Scenario 7 (MMM) 

 

True Prob. of PD 0.60 0.60 0.60 

Prob. of Being Selected 0.325 0.346 0.329 

Scenario 8 (LMH) 

 

True Prob. of PD 0.40 0.60 0.80 

Prob. of Being Selected 0.947 0.052 0.001 

Scenario 9 (LMM) 

 

True Prob. of PD 0.40 0.60 0.60 

Prob. of Being Selected 0.910 0.044 0.046 

*Note: L is for low, M for medium and H for High. 
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Summary of Simulations 

As discussed at the beginning of this Chapter, the purpose of simulation is to confirm that 

these Bayesian approaches are valid and applicable in dose-finding studies.  These 

Bayesian methods use the posterior probability to quantify efficacy (and safety) outcomes 

and help clinicians make decisions on choosing the most appropriate schedule(s) to 

advance to next phase of clinical studies.   

In most of the scenarios, method 5 (Dirichlet process model and Gibbs sampling) seems 

reducing the differences among 3 schedules and showing about 10%-20% differences in 

probability of being chosen, as compared to simulation results from other methods.  This 

is probably due to the imputation of number of failures from previous censored 

observations which leads to closer total number of failures among 3 schedules at a later 

time.  Method 5 also takes much longer running time in simulations.  The objective of the  

dissertation is not trying to pick the best models and further research may be needed to 

understand the characteristics of these different methods which drive these differences.   

Bayesian life-table method and Beta process model are almost identical in simulation 

results.  Here we take the protocol pre-specified Bayesian life-table method as an 

example, and the simulation results for all 9 scenarios are summarized in Table 28. 

Below we enclose the R codes for each of the Bayesian methods used for simulation.   

In next Chapter, we will apply all these methods to the most recent unblinded data from 

the phase II B-cell CLL clinical trial.      
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5. RESULTS 

Bayesian inference has two significant features as compared to Frequentist approach.  

One is that the conclusion is made in term of probability and the concept of probability is 

easy for clinicians to understand and accept.  Another feature is that Bayesian approach 

can use prior belief (or prior knowledge) and incorporate it into the data model from the 

trial itself to make inference.    

This chapter summarizes the results from each of the Bayesian statistical methods 

described in previous chapters, based on the most recent unblinded interim data from the 

phase II CLL clinical trial dated on January, 2014.  Only efficacy outcome (probability of 

progression) is discussed and presented in this dissertation.  Efficacy results from all 

three administration schedules are compared.  Conclusions and recommendations will be 

made in terms of which administration schedule is chosen for planning future phase III 

clinical study.        

Generally speaking, Schedule B had lower proportion of progression disease (PD) but 

Schedules A and C had similar proportion of PDs (Table 29).  Patients enrollment (Figure 

8) was slow during the first 3 months and then stabilized after month 4.  This enrollment 

pattern can be considered approximately uniform (Scenario 6 in Chapter 4) or truncated 

exponential with 0<γ  but close to zero (Scenario 9 in Chapter 4).  Both Scenarios 6 and 

9 in Chapter 4 simulated the (low, medium, medium) probability of PD for 3 schedule 

arms and the results were very similar.    
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Below we present the results from each of the Bayesian statistical methods introduced in 

Chapters 2 and 3 using the most recent unblinded data from the CLL clinical trial. 

Figure 8: Patient Enrollment Over Time  
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5.1. Bayesian Parametric Method 

5.1.1. Binomial-Beta Model 

Histogram of simulation draws is intuitive and a very useful tool in helping make 

Bayesian inference.  We focus on efficacy outcomes including data distribution, prior and 

posterior distributions.  In some cases, we use histogram to illustrate the outcomes.      

Data distribution 

As of January 2014, the study has enrolled 104 patients and all of them have had at least 

one response assessment.  Out of 104 patients, 59 had PDs (progressive diseases).  The 

proportions of PDs [95% confidence interval] for 3 administration schedules are 

summarized in Table 29: 61.8% [45.4%, 78.1%]] for administration-schedule A; 48.6% 

[32.0%, 65.1%]] for administration-schedule B; 60.0% [43.8%, 76.2%]] for 

administration-schedule C.  Frequentist would conclude that there is no statistically 

significant difference in the probability of PD among 3 schedules since these confidence 

intervals are overlapped.  Bayesian analysis makes additional inference about the 

probability of Schedule B being selected via comparing posterior samples.         

Prior distribution 

Clinical prior Beta(0.025, 0.075) is used for the probability of progression for all 

schedules and it’s conjugated prior to binomially data (details see Chapter 2). 

Posterior distribution 
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Posterior distribution has closed form for Binomial-Beta model.  The posterior 

probability distribution is 

11 )1()|( −−+−+ −∝ ynyyp βα θθθ . 

Posterior distributions of the probability of progression for 3 administration-schedules are 

shown in Figure 9 (plot_beta.R) and histogram in Figure 10 (probcalc_beta.R).  
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Figure 9: Posterior Probability Density Function of Progression Rate   
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Figure 10: Histogram of Posterior Samples of Probability of Progression  
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Calculation and comparison of posterior distributions 

At the end of the study, one administration-schedule will be selected and advanced to a 

phase III clinical trial.  The administration-schedule with the highest probability of 

having the lowest progression rate and having lower than a 90% probability of excessive 

toxicity score will be chosen.  We use the calculation of posterior probability of 

progression as an example to illustrate the comparisons.   

Simulation is used to compare the posterior probabilities of progression among 3 

administration-schedules.  In order to make comparisons, 10,000 posterior samples are 

drawn from each of the 3 posterior distributions simultaneously (probcalc_beta.R).  

Simulation results show that Schedule A has 10.74% probability of having the lowest 

probability of PD, and Schedule B has 74.92% probability of having the lowest 

probability of PD, and Schedule C has 14.34% probability of having the lowest 

probability of PD. 

Recall the decision criteria in (2.2), 

))|(Pr( )(,, dataMax krkr −< θθ ,  

and                 

ξψψ <> )|Pr( 0 datak   

In this dissertation, we only consider efficacy criterion of ))|(Pr( )(,, dataMax krkr −< θθ  so 

Schedule B is selected to advance to phase III study according to Binomial-Beta model. 



104 

 

Note that this method is to estimate the overall probability of  progression without 

considering time to progression or adjusting for censoring. 

5.1.2. Exponential-Gamma Model 

Data distribution 

Consider PD as an event and time to progression (TTP) as a time-to-event variable, as of 

January 2014 data, there are 59 PDs out of 104 patients.  The total follow-up time for all 

104 patients is 1053 months (total of TTP including censored observations), so there is 

about 1 event per 10 months.  This information can also be used as clinical prior for 

Exponential-Gamma model.  We assume TTP is exponentially distributed.  Number of 

PDs and total follow-up time for each of the 3 arms are used as input data in this model 

(Table 29). 

Table 29: Number (%) of Patients with PD and Follow-up Time 

Administration-

schedule 

Schedule A  Schedule B Schedule C 

PD, n/N (%) 

[95% CI] 

21/34 (61.8%) 

[45.4%, 78.1%] 

17/35 (48.6%) 

[32.0%, 65.1%] 

21/35 (60.0%) 

[43.8%, 76.2%] 

Total Follow-up Time 

(months) 

349 355 349 
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Prior distribution 

Clinical prior Gamma(1, 10) is used for hazard rate of progression for all arms and it’s 

conjugated prior to exponentially distributed data.  Compared to data samples, this prior 

is considered similar to non-informative priors such as Gamma(1, 0) or Gamma(0, 1) in 

posterior determination since it only represents a very small sample. 

Posterior distribution 

Posterior distribution has closed form for Exponential-Gamma model.  The posterior 

probability distribution is  

})(exp{)|(
1

1 θβθθ α ∑ =
−+ +−∝

n

i i
n yyp  . 

Note that here we model the hazard rate of progression instead of probability of 

progression.   Posterior distributions of the hazard rates for 3 administration-schedules as 

of January 2014 unblinded data are shown in Figure 11 (plot_gamma.R).   

Figure 12 is histogram of simulation results for all 3 schedule arms (probcalc_gamma.R).   
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Figure 11: Posterior Probability Density Function of Hazard of Progression 
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Figure 12: Histogram of Posterior Samples of Hazard of Progression  
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Calculation and comparison of posterior distributions 

Simulation is used to compare the posterior probabilities of the hazard rate of progression 

among 3 administration-schedule arms.  In order to make comparisons, 10,000 posterior 

samples are drawn from each of the 3 posterior distributions simultaneously.  The 

administration-schedule arm with the highest probability of having the lowest hazard rate 

of progression is chosen to advance to phase III study if the criterion on toxicity score for 

that arm is also met.  

Based on the January 2014 interim unblinded data, simulation results show that Schedule 

A has 18.25% probability of having the lowest hazard rate of PD, and Schedule B has 

63.15% probability of having the lowest hazard rate of PD, and Schedule C has 18.60% 

probability of having the lowest hazard rate of PD (probcalc_gamma.R).  Schedule B is 

selected to advance to phase III study according to Exponential-Gamma model. 

Note that the Exponential-Gamma model is to estimate the hazard rate of progression 

while the Binomial-Beta model is to estimate the overall probability of progression.  

When we use hazard to approximate the probability of progression which will be 

discussed later, Schedule A has 16.64% probability of having the lowest probability of 

PD, and Schedule B has 62.81% probability of having the lowest probability of PD, and 

Schedule C has 20.55% probability of having the lowest probability of PD 

(probcalc_gamma.R).      
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5.2. Bayesian Nonparametric Method 

We first briefly discuss the results from traditional nonparametric life-table and Kaplan-

Meier methods, and then present the results from Bayesian nonparametric methods. 

Life-Table Method 

The life-table method specifies an arbitrary time interval.  Event rate and survival 

probability are calculated for each time interval.  The CLL clinical trial data has been 

updated every 3 months since DMC meetings were held every 3 months before 

unblinding.  We use interval of 3-month for the calculations.  Estimate of cumulative 

probability of PD at month 24 is listed in Table 30. 

Kaplan-Meier Method 

The Kaplan-Meier (KM) estimate of survival probability and KM curve is the most 

popular nonparametric method used in clinical trials with survival endpoint.  Figure 13 is 

the KM curve from January 2014 unblinded interim data.  Estimate of cumulative 

probability of PD at month 24 is listed in Table 30. 
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Table 30: Cumulative Probability of PD at Month 24 

 

Method 

Cumulative Probability (SE) of PD at Month 24 

Schedule A  Schedule B Schedule C 

Life-Table 0.684 (0.094) 0.578 (0.105) 0.714 (0.094) 

Kaplan-Meier 0.679 (0.093) 0.587 (0.105) 0.721 (0.093) 
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Figure 13: Kaplan-Meier Curve  
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5.2.1. Bayesian Life-Table Method 

Prior distribution 

See Chapter 2. 

Input Data 

In life-table method, the following data summary from each time-interval in each of the 3 

arms of the CLL clinical trial is used as input data to estimate survival or failure: number 

of PDs, number of censored patients, and effective sample size.  Nine intervals are used: 

[0, 3), [3, 6), [6, 9), [9, 12), [12, 15), [15, 18), [18, 21), [21, 24), [24, 27).  Data summary 

for the 9 time-intervals is listed in Table 31.  

Table 31: Input Data Summary for Each Time Interval in Bayesian Life-table 
Method 

 Schedule A  Schedule B Schedule C 

Number of PDs (10,4,3,0,0,2,0,1,1) (8,2,1,4,0,0,0,0,0) (6,7,0,1,0,2,2,1,1) 

Number of censored (2,1,2,0,0,3,0,1,2) (4,6,2,0,0,1,1,0,0) (5,2,2,0,1,0,0,0,1) 

Effective sample 

size 

(33,21.5,16,12,12, 

10.5,7,6.5,4) 

(33,20,14,12,8, 

7.5,6.5,6,6) 

(32.5,23,14,13, 

11.5,11,9,7,5.5) 
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Calculation and comparison of posterior distribution 

Posterior distribution for probability of PD for each time interval has closed form 

according to Binomial-Beta model.  Posterior cumulative probability of PD see formula 

(2.3) in Chapter 2 with prior Beta(0.025,0.975) for each time interval.  Cumulative 

probability of PD at month 24 is our target parameter. 

To compare the cumulative probability of PD at month 24 for 3 schedule arms, 

simulation of posterior is conducted.  Use Bayesian life-table method described in 

Chapter 2, incorporating prior Beta(0.025, 0.975) for hazard of progression for each time 

interval, and taking 10,000 posterior samples from each arm then making head-to-head 

comparisons.   

Based on the January 2014 interim unblinded data, simulation results show that Schedule 

A has 8.96% probability of having the lowest probability of PD, and Schedule B has 

82.78% probability of having the lowest probability of PD, and Schedule C has 8.26% 

probability of having the lowest probability of PD (Bayesian_LT.R).  Schedule B is 

selected to advance to phase III study according to Bayesian life-table method. 

Posterior density functions of the probability of PD at year 2 for 3 administration-

schedules as of January 2014 unblinded data are shown in Figure 14 (Bayesian_LT.R).   
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Figure 14: Posterior Probability Density Function of Progression Rate  
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5.2.2. Beta Process Model 

Beta Process Prior 

As discussed in subsection 3.3.2, ten sample paths are randomly drawn from Beta process 

prior with ttH 1.0)(0 = and different prior sample size ( ,10 =N ,50 =N 250 =N ).  The 

path curves are shown in Figure 15.  With the increase of prior sample size, the sample 

paths become closer to the prior guess )(0 tH (BP_prior_paths.R). 

Note that Beta process prior with parameters ttH 1.0)(0 = and 10 =N corresponds with 

prior distribution Beta(0.1, 0.9).  Both represent a distribution with constant hazard rate 

of 0.1 and prior sample size of 1.  Similarly, Beta process prior with parameters 

ttH 01.0)(0 = and 10 =N (BP_prior_paths2.R for ttH 01.0)(0 = ) corresponds with 

Beta(0.01, 0.99) (Figure 1).  In this sense, Bayesian life-table prior can be viewed as a 

special case of Beta process prior.  Beta process prior for cumulative hazard can be in 

more complicated forms than exponential distribution specified here. 

Input Data 

The input of the data from the CLL clinical trial is the same as for the Bayesian life-table 

method (see Table 31).  
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Figure 15: Beta Process Prior Sample Paths with Different Prior Parameters 

     
Figure 15A (above): Beta Process Prior with  ttH 1.0)(0 =  and 10 =N  

     
Figure 15B (above): Beta Process Prior with  ttH 1.0)(0 =  and 50 =N  
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Figure 15C (above): Beta Process Prior with  ttH 1.0)(0 =  and 250 =N  

     

Figure 15D (above): Beta Process Prior with  ttH 01.0)(0 =  and 10 =N  
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Beta Process Posterior 

According to (3.16): 

JjYNhNYhNBetadatah jjjjjjjj ,...,1},)1(,{~| 0000 =−+−+  

In this application, we use Beta process prior with jj ttH 1.0)(0 = and prior sample size 

JjN j ,...,1,10 ==  for each interval to draw posterior samples of hazard.   

The posterior of survival is then calculated according to the following algorithm: after 

hazard samples are drawn from Beta process in (3.16), the cumulative hazard is 

calculated by ∑
≤

−−=
tt

j
j

thtH )](1ln[)(  (Cox and Oakes, 1984).  The estimated cumulative 

hazard is finally converted to posterior survival by )}.(exp{)( tHtS −=  

The posterior estimate of survival is based on 10,000 samples draws of hazard: take 

10,000 samples of jh , then calculate 10,000 samples of jH  and converted to 10,000 

samples of )( jj tSS = .  Statistical inference or comparison is based on posterior samples 

of survival.   
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Calculation and comparison of posterior distribution 

To compare the cumulative probability of PD at month 24 for 3 schedule arms, 

simulation of posterior is conducted and head-to-head comparison of 10,000 posterior 

samples from each of the 3 arms is made.   

Based on the January 2014 interim unblinded data, simulation results show that Schedule 

A has 8.96% probability of having the lowest probability of PD, and Schedule B has 

82.78% probability of having the lowest probability of PD, and Schedule C has 8.26% 

probability of having the lowest probability of PD (BP_3arm_simul_update.R).  These 

probabilities are exactly the same as from Bayesian life-table method.  Schedule B is 

selected to advance to phase III study according to Beta process model. 

Posterior density functions of the probability of PD at year 2 for 3 administration-

schedules as of January 2014 unblinded data are shown the same as in Figure 14 from 

Bayesian life-table method (BP_3arm_simul_update.R).   

  



120 

 

5.2.3. Dirichlet Process Model and MCMC Gibbs Sampler 

Dirichlet process prior 

As discussed in subsection 3.3.3, ten random sample paths are drawn from Dirichlet 

process prior with )1.0exp()(0 ttS −= and different prior sample size ( ,10 =N ,50 =N

250 =N ).  The path curves are shown in Figure 16.  With the increase of prior sample 

size, the sample paths become closer to the prior guess )(0 tS (DP_prior_paths.R).  Just 

like for other models, 10 =N  will be used for posterior estimation in CLL clinical trial 

for Dirichlet process model. 

Note that Dirichlet process prior with parameters )1.0exp()(0 ttS −= and 10 =N

corresponds with distribution Beta(0.1, 0.9).  Both represent a distribution with constant 

hazard rate of 0.1 and sample size of 1.  Similarly, Dirichlet process prior with 

parameters )025.0exp()(0 ttS −= and 10 =N corresponds with Beta(0.025, 0.975) which 

is used in Bayesian life-table method and Beta process model for probability of 

progression (Figure 1).  In this sense, Dirichlet process prior and Beta process prior as 

well as Bayesian life-table prior all have similar properties in our application.  Like Beta 

process prior, Dirichlet process prior for survival function can be in more complicated 

forms than exponential distribution. 

Input Data 

The input of the data from the CLL clinical trial is similar to the one for Bayesian life-

table method or beta process model but includes more information beyond time intervals 
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at month 24  Table 32 summarizes input data for 12 time intervals: [0, 3), [3, 6), [6, 9), 

[9, 12), [12, 15), [15, 18), [18, 21), [21, 24), [24, 27), [27, 30), [30, 33), [33, ∞ ).  

 

Table 32: Input Data Summary for Each Time Interval in Dirichlet Process 
Model 

 Schedule A  Schedule B Schedule C 

Number of PDs (10,4,3,0,0,2,0,1,1, 

0,0,0) 

(8,2,1,4,0,0,0,0,0, 

2,0,0) 

(6,7,0,1,0,2,2,1,1, 

0,1,0) 

Number of 

censored 

(2,1,2,0,0,3,0,1,2, 

0,1,1) 

(4,6,2,0,0,1,1,0,0, 

1,1,2) 

(5,2,2,0,1,0,0,0,1, 

2,1,0) 
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Figure 16: Dirichlet Process Prior Sample Paths with Different Prior Weight  

     

Figure 16A (above): Dirichlet Process Prior with  )1.0exp()(0 ttS −=  and 10 =N  

     
 

Figure 16B (above): Dirichlet Process Prior with  )1.0exp()(0 ttS −=  and 50 =N  
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Figure 16C (above): Dirichlet Process Prior with  )1.0exp()(0 ttS −=  and 250 =N  
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Dirichlet process posterior approximation by MCMC Gibbs sampler  

Posterior distribution for  right-censored data and Dirichlet process prior follows mixture 

Dirichlet process (MDP).  We use MCMC Gibbs sampler method to draw posterior 

samples follows the 3 steps introduced in subsection 3.3.4 and make inference for the 

CLL clinical trial data. 

Calculation and comparison of posterior distribution 

To compare the cumulative probability of PD at month 24 for 3 schedule arms, 

simulation of posterior is conducted and head-to-head comparison of 10,000 posterior 

samples from each of the 3 arms is made.   

Based on the January 2014 interim unblinded data, simulation results show that Schedule 

A has 13.48% probability of having the lowest probability of PD, and Schedule B has 

71.53% probability of having the lowest probability of PD, and Schedule C has 14.99% 

probability of having the lowest probability of PD (Gibbs_3arm_simul_update.R).  

Schedule B is selected to advance to phase III study according to Dirichlet process model 

by Gibbs sampler. 

Posterior density functions of the probability of PD at year 2 for 3 administration-

schedules as of January 2014 unblinded data are shown in Figure 17 

(Gibbs_3arm_simul_update.R).   
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Figure 17: Posterior Probability Density Function of Progression Rate  
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5.2.4. Summary of Results from Different Bayesian Statistical Methods 

Results from different Bayesian statistical methods are summarized in Table 33. 

According to the decision rule for efficacy outcome specified in the protocol, all 5 

methods conclude that Schedule B is the optimal arm and being selected to advance to 

future confirmatory clinical study.     

Table 33: Summary of Bayesian Posterior Probability of Progression and 
Probability of a Schedule Being Chosen by Different Statistical 
Methods (Unblinded Interim Data as of January 2014) 

 Binomial-

Beta Model 

(1) 

Exponential-

Gamma Model  

(2) 

Bayesian    

Life-table 

(3) 

Beta Process 

Model 

(4) 

Gibbs  

Sampler  

(5) 

1̂θ  0.600 0.631 0.733 0.733 0.771 

2θ̂  0.473 0.501 0.563 0.563 0.638 

3̂θ   0.584 0.610 0.738 0.738 0.759 

)ˆˆPr( )11 −< θθ  0.1074 0.1664 0.0896 0.0896 0.1348 

)ˆˆPr( )22 −< θθ  0.7492 0.6281 0.8278 0.8278 0.7153 

)ˆˆPr( )33 −< θθ  0.1434 0.2055 0.0826 0.0826 0.1499 

Note:  iθ̂  is posterior probability of progression for ith arm, 3,2,1=i . )ˆˆPr( ii −< θθ  is the probability 
that the ith arm has the lowest probability of progression.   
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6. DISCUSSION AND CONCLUSION 

6.1. Discussion of Statistical Methods 

As discussed in previous chapters, the parametric models (Binominal-Beta and 

Exponential-Gamma models) assume data follows specific parametric distributions.  In 

clinical trials, the assumption of binomial distribution for binary data is reasonable but 

Binominal-Beta model ignores the time to event information.  Assumption of exponential 

distribution for time to event data is also generally acceptable but the constant hazard 

assumption is violated in some cases.     

Since Exponential-Gamma parametric method is to model hazard rate 3,2,1, =iiλ , the 

comparison of hazard rate from two different treatment arms is actually to model hazard 

ratio: 

)1Pr()1Pr()Pr(
2

1
21 <=<=< HR

λ
λ

λλ
 

In this regard, the Exponential-Gamma method should lead to the same conclusion as the 

Cox proportional hazard model.  Exponential distribution models the hazard rate, so we 

need to convert hazard rate of progression to cumulative hazard or probability of 

progression in order to compare results from other statistical models.  The Exponential-

Gamma parametric method in Table 33 computes and compares the cumulative hazard at 

t :  
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iiii ttH *)( λ=  

where it  is the average time to progression for the ith arm.  If non-informative prior 

)0,1(Gamma is used, the posterior distribution is actually only distribution of the data, so 

this cumulative hazard then approximately equals to the raw probability of progression:   
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So methods (1) and (2) in Table 33 should lead to the same conclusion if cumulative 

hazard at t  is used for method (2). 

Compared to parametric methods, non-parametric models don’t require parametric 

distributions so they are more popular for time to event variable in survival analysis.  

Note that method (1) is a special case of non-parametric methods (3) or (4).  If only one 

large interval [0, ∞) is used for Bayesian life-table method, then it simply becomes 

method (1).   

Methods (3) and (4) are basically the same statistical models: Bayesian life-table method 

computes survival from hazard rate of all intervals, and Beta process model computes 

survival from cumulative hazard.  But Beta process model is flexible for more 

complicated prior distribution other than Beta priors.   

Method (5) uses Gibbs sampler for Dirichlet process model.  The idea is to impute event 

time for right-censored observations and Gibbs sampling is a nice way for the imputation.  

But the implementation is computationally complicated and simulation running time is 
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long.  Dirichlet process model considers all time intervals including those beyond the 

evaluation time point say at 24 month or beyond the end of the study which are 

unobservable, so the estimation of the event probability depends on how you group the 

future intervals.   As discussed in Chapter 4, in most of the simulation scenarios, method 

(5) shows about 10%-20% differences in probability of being chosen of each schedule, as 

compared to simulation results from other methods.  This is a future research topic to 

understand the characteristics of these different methods which drive these differences.   

Model Selection 

One common issue related to statistical analysis is model selection.  We present results 

from several analysis models including both parametric and nonparametric methods, but 

it is difficult to give general advice on model selections.   

In order to understand which model is more appropriate for a specific problem, first of 

all, determine the study objective for the posterior inference.  For this dissertation, our 

aim is to provide a Bayesian computational tool to make administration-schedule 

selection and recommend an optimal administration-schedule for planning Phase III 

study.  When comparing different statistical models, we need to understand there is no 

super-model.  No model is perfect – scientific judgment plays an important role in 

applied Bayesian analysis.  As long as the correct administration-schedule is selected, or 

the conclusions from different Bayesian models are consistent, then our primary objective 

is reached. 

Secondly, we need to understand assumptions on which the model is based and whether 

these assumptions match the type or nature of the research data.  Parametric models 
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require certain type of distribution of the data, but non-parametric models are generally 

more robust to data distributions.   

Finally, one can rely on model checking and model fit statistics.  Bayesian model 

checking and fitting (such as using of DIC and Bayesian Factor) has a long history in 

Bayesian statistics and has become a popular research topic recently.  This feature of 

model selection is not the purposes of present dissertation and further investigation in this 

area including convergence of Gibbs sampling and the characteristics of these different 

methods is recommended for future work.   

6.2. Discussion of Study Design 

The purpose of the clinical trial is to characterize the risk/benefit profile of each starting 

dose administration schedules with respect to both toxicity and progression.  Higher 

starting dose administration schedules may have a higher risk of toxicity early on, while 

lower starting dose administration schedules have lower but increasing risk of toxicity.  

Operationally, this means that early in the study, the initial doses administered are 

compared, while later in the study (as subjects receive higher doses) the administration 

schedules are compared.   

A second aspect of this design is that early-onset hazards for toxicity but later-onset 

hazards for progression may be observed.  Under this scenario toxicity and progression 

events could occur at different times thus making the risk/benefit assessments of the 

various administration schedules difficult early in the study.  However, this clinical trial 

revealed that most progression events occurred during the first year of enrollment.   



131 

 

Since our major purpose of this research is to evaluate which treatment administration 

schedule should be carried to a larger phase III study, the decision is to be made in the 

later stage of the study so the impact of these scenarios is diminished.    

An underlying assumption of many survival methods is treatment’s proportional hazards 

over time.  Since CLL patients may experience multiple hazards (or composite events) 

during the course of the study, many scenarios can occur, such as earlier hazard of 

toxicity for higher starting dose as well as earlier hazard of progression for lower starting 

dose.  Hazard may cross over time among administration schedules for the CLL clinical 

trial.  Bayesian nonparametric analyses provide a way to estimate survival when 

proportional hazard assumption is violated. 

6.3. Discussion of Prior Selections 

Choosing a prior precision parameter ( 0N ) requires some consideration.  We also 

examined how much the priors might influence the posterior inference.  In this clinical 

trial, relatively vague priors (or weak informative priors) are used.  A fairly vague prior 

discounts the influence of prior data on posterior inference.  One can increase the weight 

of prior if one strongly believe the historical data or prior information.  Beta or Dirichlet 

process priors with total of all parameters equal to 1 which are generally considered as 

non-informative priors could be very informative in our case just as Rosner (2005) 

pointed out in their clinical trial, since the prior with a small sample size is applied to 

each time interval.  If a trial consists of a large number of intervals or sample size for 

each interval is very small, the prior information could play an important role in the 

posterior, especially at the end of a clinical trial when number of subjects at risk 
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decreases.  Dirichlet prior actually allows one to choose different prior weights over time.  

More complicated priors can be used if more information about the prior changes over 

time is available. 

6.4. Conclusion 

Bayesian approaches have become more and more popular in designing, monitoring and 

analyzing clinical trials in recent years.  Health authorities encourage adaptive designs 

and the use of Bayesian methodology especially for early clinical studies such as phases I 

and II trials.  In this dissertation, we used 5 different Bayesian statistical methods to 

evaluate and compare the probability of progression for 3 different administration 

schedules in a phase II clinical trial with B-cell CLL patients.  According to the decision 

rule for efficacy outcome specified in the protocol, all 5 methods conclude that Schedule 

B is the optimal arm and being selected to advance to future confirmatory clinical study.   

Since time to event outcome is evaluated in the CLL trial, we recommend Bayesian life-

table method or Beta process model for the evaluation of such clinical endpoint among 5 

Bayesian statistical methods presented in the research.  Dirichlet process model with 

Gibbs sampling is computationally complex and running time is over 40 hours in 

simulation studies.      

Of limitation, the conclusion of selecting Schedule B is based upon January 2014 

unblinded data.  Since this phase II clinical trial enrolled only 35 subjects per schedule 

arm, with more data coming in the next several months, the conclusion may be altered if 

the hazard of progression changes its course dramatically, even though it’s very unlikely.                     
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This dissertation research also demonstrates that Bayesian approaches to clinical studies 

are more flexible in decision making and the use of posterior probability is acceptable to 

clinicians and to health authorities.  As applied statisticians in pharmaceutical or biotech 

industry, we should utilize different or alternative approaches in clinical research.  

Bayesian adaptive design in clinical trial is such one of the most efficient designs and 

popular research topics in recent years.           

As of a final note, the B-cell CLL clinical trial is not all finished yet and final database 

lock is scheduled for late 2014.  When final data is available, we will conduct another 

simulation using the newest incidence rate in Table 29 finally observed in the trial to 

understand the “power” (probability of selecting the optimal dose).  
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8. APPENDIX 

8.1. R Codings 

Simulation for Binomial-Beta Model (Method 1): 

rm(list=ls(all=TRUE)); start <- Sys.time (); library(Hmisc); library(foreign) 

survmtd1 <- read.csv("H:/Jack/CLL 009/simulation/case 11/SURVMTD1.csv") 

set.seed(123456); K=1000; # K = number of simulation studies; mark = matrix(NA,K,3) 

for (k in 1:K)  

{ 

N=10000 

#define prior for progression as Beta(0.025, 0.975) 

  alpha <- 0.025; beta <- 0.975 

n <- subset(survmtd1,study==k)[,6] 

nprog <- subset(survmtd1,study==k)[,3] 

#theta[i,j] is posterior dist for arm j from the ith posterior sample 

theta=matrix(NA,10000,3) 

for (i in 1:N) 

{ 

    for (j in 1:3)  

{ 

       theta[i,j] = rbeta(1,alpha+nprog[j], beta+n[j]-nprog[j]) 

    } 
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 } 

            

 mark123<- tabulate(apply(theta,1,which.min),nbins=3)/N 

 #print("mark123, probability that the Arm has the lowest progression rate =") 

 #print(mark123) 

 mark[k,] = mark123 

} 

method1 <- tabulate(apply(mark,1,which.max),nbins=3)/K 

print(method1) 

print(Sys.time () - start) 

 

Simulation for Exponential-Gamma Model (Method 2): 

rm(list=ls(all=TRUE)); start <- Sys.time (); library(Hmisc); library(foreign) 

survmtd1 <- read.csv("H:/Jack/CLL 009/simulation/case 21/SURVMTD1.csv") 

set.seed(123456); K=1000; # K = number of simulation studies; mark = matrix(NA,K,3) 

for (k in 1:K)  

{ 

 loop=10000 

 #define prior for progression hazard 

 alpha <- 1; beta <- 16 

 ntime <- subset(survmtd1,study==k)[,4] 

 nprog <- subset(survmtd1,study==k)[,3] 
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 n <- subset(survmtd1,study==k)[,6] 

 

 #theta[i,j] is posterior dist for arm j from the ith posterior sample 

 theta=matrix(NA,10000,3) 

 for (i in 1:loop)  

 { 

    for (j in 1:3)  

  { 

     #theta[i,j] = (ntime[j]/n[j])*rgamma(1,alpha+nprog[j], beta+ntime[j]) 

      theta[i,j] = rgamma(1,alpha+nprog[j], beta+ntime[j]) 

    } 

 } 

      mark123<- tabulate(apply(theta,1,which.min),nbins=3)/loop 

 #print("mark123, probability that the Arm has the lowest progression rate =") 

 #print(mark123) 

 mark[k,] = mark123 

} 

method2 <- tabulate(apply(mark,1,which.max),nbins=3)/K 

print(method2) 

print(Sys.time () - start) 
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Simulation for Bayesian Life-Table Method (Method 3): 

rm(list=ls(all=TRUE));start <- Sys.time ();set.seed(123456);K=1000; # K = number of 

simulation studies; mark = matrix(NA,K,3) 

for (k in 1:K)  

{ 

 loop=10000; maxgrps=3; maxtime=9 

 y <- t(subset(survmtd3,study==k)[1:9,6:8]) 

 d <- t(subset(survmtd3,study==k)[1:9,3:5]) 

 theta <- matrix(0, nrow=loop, ncol=maxgrps) 

  for (i in 1:loop)  

 { 

  for (j in 1:maxgrps)  

  { 

   temp.eff <- 1.0 

   for (h in 1:maxtime)  

   {  

                 a=0.025; b=0.975; event <- d[j,h]+a; nonevent <- y[j,h]-d[j,h]+b 

    out1 <- rbeta(1, event, nonevent)  

    temp.eff<-temp.eff*(1.0-out1)  

            } 

   theta[i,j]<-1-temp.eff 
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  } 

   } 

 mark123<- tabulate(apply(theta,1,which.min),nbins=3)/loop 

 #print("mark123, probability that the Arm has lowest progression rate =") 

 #print(mark123) 

 mark[k,] = mark123 

} 

method3 <- tabulate(apply(mark,1,which.max),nbins=3)/K 

print(method3) 

print(Sys.time () - start) 

 

Simulation for Beta Process Model (Method 4): 

rm(list=ls(all=TRUE)),start <- Sys.time (),set.seed(123456),K=1000, # K = number of 

simulation studies; mark = matrix(NA,K,3) 

for (k in 1:K)  

{ 

 loop=10000; maxgrps=3; maxtime=9 

 for (i in 1:loop)  

 { 

  for (j in 1:maxgrps) # begin loop for groups 
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  { 

   for (h in 1:maxtime)  

   {  

    h0=0.025;  N0=1;   

    evt <- N0*h0 + d[j,h];  nonevt <- N0*(1-h0) + y[j,h] - d[j,h] 

    hh[j,h] <- rbeta(1,evt, nonevt); logh[j,h] <- -log(1-hh[j,h]) 

   } # end loop of k 

   chf[j,] <- cumsum(logh[j,]); surv[j,] <- exp(-chf[j,]); event[j,] <- 1-surv[j,] 

  } # end loop for groups 

  theta[i,] <- t(event[, maxtime]) 

 } # end loop of i 

 mark123<- tabulate(apply(theta,1,which.min),nbins=3)/loop 

 #print("mark123, probability that the Arm has the lowest progression rate =") 

 #print(mark123) 

 mark[k,] = mark123 

}  #end loop of k 

method4 <- tabulate(apply(mark,1,which.max),nbins=3)/K 

print(method4) 

 

Simulation for Dirichlet Process Model (Gibbs Sampler) (Method 5): 
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rm(list=ls(all=TRUE));start <- Sys.time ();set.seed(123456); library(MCMCpack); 

library(VGAM); N=500; #N = number of simulation studies; mark = matrix(NA,N,3) 

for (n in 1:N)  

{ 

 N0 <- 1; interval <- length(tj); maxgrps <- 3; loop <- 10000;     

 for (l in 1:maxgrps) 

 { 

  alpha[l,] <- N0*(exp(-0.1*tj_1)-exp(-0.1*tj))     

  theta[l,] <- rdirichlet(1,alpha[l,]);   #this is a draw from the prior; 

 } 

for (m in 1:loop)  

{ 

 for (k in 1:15)  

 { 

  for (j in 1:maxgrps) 

  { 

   for(i in 1:(interval-1)) 

   { 

    Z[i,(i+1):interval]<rmultinom(1,size=lambda[j,i],prob=theta[j,-c(1:i)]) 

   }  #end loop of i 

   sumZ[j,] <- colSums(Z,na.rm=T), R[j,] <- alpha[j,]+d[j,]+sumZ[j,]   
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   theta[j,] <- rdirichlet(1,R[j,]), thetacumu[j,] <- cumsum(theta[j,])  

   thetaend[j,] <- thetacumu[j,(interval-1)] 

  }   #end loop of j 

 }    #end loop of k 

 Finaltheta[m,] <- thetaend      

}     #end loop of m 

mark123<- tabulate(apply(Finaltheta,1,which.min),nbins=3)/loop;  mark[n,] = mark123; 

}  #end loop of n 

method5 <- tabulate(apply(mark,1,which.max),nbins=3)/N 

print(method5);   print(Sys.time () - start); 
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Part of R code for Binomial-Beta model in Chapter 5 (probcalc_beta.R): 

N=10000; alpha <- 0.025; beta <- 0.975; n <- c(34,35,35); nprog <- c(21,17,21);  

#theta[i,j] is posterior dist for arm j from the ith posterior sample 

theta=matrix(NA,10000,3) 

for (i in 1:N) 

{ 

    for (j in 1:3)  

  { 

       theta[i,j] = rbeta(1,alpha+nprog[j], beta+n[j]-nprog[j]) 

    } 

} 

mark123<- tabulate(apply(theta,1,which.min),nbins=3)/N 

print("mark123, probability that the Arm has the lowest progression rate =") 

print(mark123) 
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Part of R code for Exponential-Gamma model in Chapter 5 (probcalc_gamma.R): 

N=10000 

#define prior for progression as gamma(1,10): assume 1 event per 10 month clinical 

prior, as of January 2014, average 1 event per 10 months.   

a <- 1; b <- 10; n <- c(34,35,35); nprog <- c(21,17,21); ntime <- c(349,355,349);  

#theta[i,j] is posterior dist for arm j from the ith posterior sample 

theta=matrix(NA,10000,3) 

for (i in 1:N)  

{ 

    for (j in 1:3)  

  { 

      #theta[i,j] = (ntime[j]/n[j])*rgamma(1,a+nprog[j], b+ntime[j]) 

      theta[i,j] = rgamma(1,a+nprog[j], b+ntime[j]) 

    } 

} 

mark123<- tabulate(apply(theta,1,which.min),nbins=3)/loop 

print("mark123, probability that the Arm has the lowest progression rate =") 

print(mark123) 
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Part of R code for Bayesian life-table method in Chapter 5 (Bayesian_LT.R): 

Alpha0 <- 0.025; beta0 <- 0.975  

EffProb <- matrix(0, nrow=loop, ncol=maxgrps) 

for (i in 1:loop) 

{ 

  for (j in 1:maxgrps) 

  { 

   temp.eff <- 1.0 

    for (h in 1:maxtime) 

    {  

     alpha <- EffEvents[j,h]+alpha0 

     beta <- N.eff[j,h]-EffEvents[j,h]+beta0 

     out <- rbeta(1, alpha, beta)  

     temp.eff<-temp.eff*(1.0-out)  

    } 

   EffProb[i,j]<-1-temp.eff 

  } 

} 

mark123 <- table(apply(EffProb,1,which.min))/loop 

print("mark123, probability that the Arm has the lowest progression rate =") 

print(mark123) 

par(mfrow=c(1,1)) 
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plot(density(EffProb[,1]),type="l",  col="red", lwd=2, ylim=c(0,5), xlim=c(0, 1), 

xlab="Probability of Progression", ylab="Posterior Density", main="Posterior Probability 

Density Function of Progression") 

lines(density(EffProb[,2]), lty=2,  col="blue", lwd=2) 

lines(density(EffProb[,3]), lty=3,  col="green", lwd=2) 

legend(0.1, 5, legend=c("Schedule A", "Schedule B", "Schedule C"), col=c("red", 

"blue","green" ),lty=c(1,2,3),lwd=c(2,2,2)) 
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Part of R code for Beta process prior in Chapter 5 (BP_prior_paths.R): 

library(MCMCpack) 

N0=1; t=seq(0,40,length=200) 

H=0.1*t; HM=c(H[2:length],4.020); W=HM-H; 

p=N0*W; q=N0*(1-W); 

rbetaf <- array(NA, dim=c(10,length)) 

chf <- array(NA, dim=c(10,length)) 

surv <- array(NA, dim=c(10,length)) 

for(i in 1:length) 

{ 

    rbetaf[,i] <- rbeta(10,p[i],q[i]) 

} 

chf <- t(apply(rbetaf,1,cumsum)) 

surv <- exp(-chf) 

curve(exp(-0.1*x),xlim=c(0,40),ylim=c(0,1),xlab="Time", 

ylab="Survival Probability",main="Beta Process Prior with H0(t)=0.1t and N0=1") 

lines(t,surv[1,],type="l",lty=2,lwd=2,col=2) 

…… 

lines(t,surv[10,],lty=2,lwd=2,col=11) 
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Part of R code for Gibbs sampling in Chapter 5 (Gibbs_3arm_simul_update.R): 

rm(list=ls(all=TRUE));start <- Sys.time (); 

library(MCMCpack);library(VGAM);library(foreign) 

for (n in 1:N)  

{ 

 set.seed(123456+n); N0 <- 1 

 tj_1   <- c(0,3,6, 9,12,15,18,21,24,27,30,33) 

 tj     <- c(3,6,9,12,15,18,21,24,27,30,33,99999) 

 interval <- length(tj); maxgrps  <- 3;  loop <- 10000 

 for (l in 1:maxgrps) 

 { 

 alpha[l,] <- N0*(exp(-0.1*tj_1)-exp(-0.1*tj))   

 #alpha=N0*(S0(t(j-1))-S0(t(j))) is prior for number of deaths at each interval 

 theta[l,] <- rdirichlet(1,alpha[l,])    

 #this is a draw from the prior: prior prob of death at each interval  

 } 

for (m in 1:loop)  

{ 

 for (k in 1:15)  
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 { 

  for (j in 1:maxgrps) 

  { 

   for(i in 1:(interval-1)) 

   { 

    Z[i,(i+1):interval]<-rmultinom(1,size=lambda[j,i],prob=theta[j,-c(1:i)]) 

   }  #end loop of i 

   R[j,] <- alpha[j,]+d[j,]+colSums(Z,na.rm=T) 

   theta[j,] <- rdirichlet(1,R[j,]) 

   thetacumu[j,] <- cumsum(theta[j,])     

   thetaend[j,] <- thetacumu[j,(interval-3)]   

  }   #end loop of j 

 }   #end loop of k 

 Finaltheta[m,] <- thetaend      

}    #end loop of m 

print("probability of progression for Arm A =") 

print(mean(Finaltheta[,1])) 

print("probability of progression for Arm B =") 

print(mean(Finaltheta[,2])) 
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print("probability of progression for Arm C =") 

print(mean(Finaltheta[,3])) 

mark123<- tabulate(apply(Finaltheta,1,which.min),nbins=3)/loop 

print("mark123, probability that the Arm has the lowest progression rate =") 

print(mark123) 

par(mfrow=c(1,1)) 

plot(density(Finaltheta[,1]),type="l",  col="red", lwd=2, ylim=c(0,5), xlim=c(0, 1), 

xlab="Probability of Progression", ylab="Posterior Density", main="Posterior Probability 

Density Function of Progression") 

lines(density(Finaltheta[,2]), lty=2,  col="blue", lwd=2) 

lines(density(Finaltheta[,3]), lty=3,  col="green", lwd=2) 

legend(0.1, 5, legend=c("Schedule A", "Schedule B", "Schedule C"), col=c("red", 

"blue","green" ),lty=c(1,2,3),lwd=c(2,2,2)) 

}  #end loop of n 

print(Sys.time () - start) 

  



154 

 

8.2. UMDNJ eIRB Study Approval Documentation 

Subject: UMDNJ eIRB: Study Approved 

 
  

  ** This is an auto-generated email. Please do not reply to this email message. 
The originating e-mail account is not monitored. 

If you have questions, please contact your local IRB office or log into eIRB.umdnj.edu ** 
DHHS Federal Wide Assurance Identifier:  
FWA00001861  

IRB Chair Person:  Nancy Fiedler    

IRB Director:  Donna Hoagland    

Effective Date:  4/15/2013    

eIRB Notice of IRB Determination   
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ID: 
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Title: 
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Other Study Staff:  There are no items to display 
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Type: Status: 

Determination 
Date: 

4/15/2013 
Expiration 
Date: 

N/A 

The activities described in this application does not meet the regulatory 
definition of human subjects research provided in 45 CFR 46.102. Therefore, this 
project does not require approval by the IRB as submitted. Please note that 
changes to the project must be submitted to the IRB for review prior to 
implementation to determine if the changes incorporate elements of human 
subjects research activities which require IRB oversight.  

ALL APPROVED INVESTIGATOR(S) MUST COMPLY WITH THE FOLLOWING:  

1. Conduct the project as submitted to the IRB.  
 

2. Amendments/Modifications/Revisions : If you wish to change any aspect of this 
project, you are required to obtain IRB review and approval prior to implementation of 
these changes unless necessary to eliminate apparent immediate hazards to subjects.   

3. Unanticipated Problems: Unanticipated problems involving risk to subjects or 
others must be reported to the IRB Office  (45 CFR 46, 21 CFR 312, 812) as required, in 
the appropriate time as specified in the attachment online at: 
http://www.umdnj.edu/hsweb 

 

4. Protocol Deviations and Violations : Deviations/violations of the project must be 
reported to the IRB Office (45 CFR 46, 21 CFR 312, 812) as required, in the appropriate 
time as specified in the attachment online at: http://www.umdnj.edu/hsweb  

5. Completion of Study: If your school requires, notify the IRB when your study has 
been stopped for any reason.   

6. The Investigator(s) did not participate in the review, discussion, or vote of this 
protocol.   

7. Letter Comments: There are no additional comments.  
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