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ABSTRACT OF THE DISSERTATION

Essays on Accounting Data Differences and Audit

Learning

by Roman Chychyla

Dissertation Director: Dr. Alexander Kogan

The dissertation comprises of three essays that 1) compare accounting numbers in
Capital 1Q’s Compustat North America Fundamentals Annual, the most popular
accounting database in accounting research, to the original numbers in corporate
reports, 2) study the effects of Compustat’s data standardization procedures on
accounting-based bankruptcy prediction models, and 3) develop a framework to en-
hance the performance of analytical learning models in a multi-period auditing setting.

In the first essay, we conduct the first large-scale comparison of Compustat and
10-K data. Specifically, we compare 30 accounting line items of approximately 5,000
companies for the period from October 1, 2011, to September 30, 2012. We find that
the values reported in Compustat significantly differ from the values reported in 10-K
filings. We also find that the amount and magnitude of the original data alterations
introduced by Compustat depend on the type of the accounting item and company
characteristics such as industry and size.

Numbers that appear in Compustat are standardized — adjusted to fit fixed vari-
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able definitions — to ensure “...consistent and comparable data across companies,
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” However, there has been no evidence in the aca-

industries and business cycles...
demic literature that Compustat’s standardized numbers provide more benefits than
the original numbers in financial statements. In the second essay, we examine the
effects of Compustat’s data standardization using Altman’s 1968 and Ohlson’s 1980
bankruptcy prediction models as examples. We find that Compustat’s data standard-
ization not only yields no improvements for bankruptcy prediction models, but also
has a significant negative impact on the predictive accuracy of Altman’s model (up
to 8.56%)

There are several challenges in applying analytical models to the auditing prob-
lem of identifying irregular transactions. We argue that because of these challenges
standard statistical models may not be well-suited for auditing and have to be mod-
ified to achieve better performance. In the third essay, we propose a framework to
boost the performance of analytical learning models in auditing. The results of frame-

work’s testing on the real data show a significant increase of performance of the tested

models.
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Introduction

The single most important part of any empirical study is data. Empirical research
studies data to understand various phenomena and contribute to our knowledge of
the world. Data is also at the very heart of accounting. Accounting systems cap-
ture, store, and process business data, and report the resulting information to the
interested parties. The quality of information outputted by accounting systems and
the accounting research depends on the inputted data and the way it is processed.
Therefore, its is important to study both the properties of data and the procedures
that transform the data into useful information. The first part of this dissertation
consists of two related essays that study the type of data provided by Compustat
North America Fundamentals, the most popular database in empirical accounting re-
search. The second part develops a framework that utilizes distributional properties
of transactional data to enhance processing performance of analytical models in a
multi-period auditing setting.

The first essay is presented in Chapter 1. It studies the amount and magni-
tude of discrepancies in Compustat North America Fundamentals, an accounting
database that is frequently used for both research and decision-making. It has been
documented that information found in Compustat database differs from both the
information found in other accounting databases and the information disclosed in
corporate financial filings (San Miguel 1977; Rosenberg and Houglet 1974; Yang,
Vasarhelyi, and Liu 2003; Tallapally, Luehlfing, and Motha 2011; 2012; Boritz
and No 2013). However, previous studies that compare numbers in Compustat to
numbers in the original corporate reports share a major limitation — they analyze

samples of small sizes that may not fully reflect the “true” amount and magnitude of



data alterations introduced by Compustat. The challenge of utilizing larger samples
is that it results in a very high cost, if the number comparison is carried out manually.
We overcome this limitation by automating the number comparison procedures with
the help of the recently introduced eXtensible Business Reporting Language (XBRL)
reporting technology.

We conduct the first large-scale comparison of Compustat and 10-K data. Specif-
ically, we compare 30 accounting line items of approximately 5,000 U.S. companies
for the period from October 1, 2011, to September 30, 2012. We find that the values
reported in Compustat significantly differ from the values reported in 10-K filings. We
also find that the amount and magnitude of the original data alterations introduced
by Compustat depend on the type of the accounting item and company characteristics
such as industry and size.

Chapter 2 of this dissertation is the natural extension of Chapter 1. It presents
an essay that examines the effects of data standardization procedures implemented in
Compustat database. Compustat’s data standardization is the process of adjusting
original numbers reported in companies’ reports to match Compustat’s fixed vari-
able definitions, and is the main driver of differences between Compustat numbers
and original numbers reported by companies. Compustat argues that “/s/tandardized
data ensures that you have consistent and comparable data across companies, indus-
tries and business cycles, and offers a solid foundation for your rigorous analysis.”
However, there has been no evidence to support this statement in academic literature.
The original numbers in financial reports often are not constrained by fixed defini-
tions under current Generally Accepted Accounting Principles (GAAP) standards.
Moreover, the developer of GAAP, Financial Accounting Standards Board (FASB),
in Statement of Financial Accounting Concepts No. 2, discourages the use of fixed def-
initions of accounting items saying that “[t/hat kind of uniformity may even adversely

affect comparability of information if it conceals real differences between enterprises.”



The study introduced in Chapter 2 is the first to examine the effects of Compus-
tat’s data standardization using bankruptcy prediction models as examples. Specifi-
cally, we study whether using Compustat’s standardized data as opposed to original
10-K data improves Altman’s 1968 and Ohlson’s 1980 bankruptcy prediction mod-
els. We find that Compustat’s data standardization not only yields no improvements
for bankruptcy prediction models, but also has a significant negative impact on the
predictive accuracy of Altman’s model (up to 8.56%).

Chapter 3 is an essay that discusses challenges in applying analytical learning mod-
els in a multi-period audit to identify irregular transactions, and develops a framework
for analytical models to overcome these challenges. The advantage of using analytical
models (as opposed to manual procedures) in auditing is that they are able to process
large populations of transactional data (as opposed to samples) with a relatively low
cost. In addition, analytical models are more effective in identifying data patterns
than humans are. The problem associated with applying analytical models, that has
not received much attention in the literature, is that most of them are not designed
to operate in an auditing setting where the number of irregular transactions is low
relative to the number all transactions (the problem of unbalanced data), and the
incremental statistical learning in each audit period is limited to a small portion of
transactions chosen to be investigated (the problem of one-sided feedback).

In Chapter 3, we introduce a framework for analytical learning models that
changes the way the models learn and predict. The framework exchanges the im-
mediate gain from investigating the most suspicious and important transactions in
return for more accurate statistical model by spending audit resources to learn more
about the underlying distribution of the transactional data. A more accurate statis-
tical model may yield more benefits in the future. The proposed framework is tested
on real-world data. The results show a significant boost in performance of analytical

models under the proposed framework.



Chapter 1

Using XBRL to conduct a large-scale study of
discrepancies between the accounting numbers in
Compustat and SEC 10-K filings

1.1 Introduction

Compustat is a popular source of financial information for both academics and practi-
tioners. It has been maintained by Standard and Poor’s! company since 1962. Many
accounting empirical studies are based on Compustat data. However, it has been
questioned how reliable the data found in Compustat is (and by extension in other
accounting databases). Prior studies have shown that Compustat data may differ
from the real-world financial data (San Miguel 1977; Kinney and Swanson 1993;
Tallapally, Luehlfing, and Motha 2011; 2012; Boritz and No 2013) and data found
in other accounting databases (Rosenberg and Houglet 1974; Yang, Vasarhelyi, and
Liu 2003).

Compustat relies on companies’ original reporting documents (such as 10-Qs and
10-Ks) to populate its fundamentals data set. However, the original companies’ data
is standardized per Compustat’s variable definitions to ensure “consistent and com-
parable data across companies, industries and time periods without reporting biases
or data discrepancies”.? This fact generates two important questions: 1) should Com-
pustat standardize the original data reported by companies, and 2) what is the extent

of this standardization. In this Chapter we address the second question, and leave the

1. Standard & Poor’s is a division of The McGraw-Hill Companies.

2. www . compustat.com, as of February 16, 2014.
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first question for the future research. In addition to data standardization, Compustat
numbers may differ from the original numbers reported by companies due to typos,
missing values, not-up-to date values, etc. It is important to estimate the amount
and magnitude of differences between Compustat data and the original data, since
these differences may affect the results of accounting studies that utilize Compustat.

The best way to assess the extent of data alteration in Compustat is to compare
Compustat numbers to the numbers in the original reports. Unfortunately, this is a
very costly procedure, if done manually. Prior studies that contrasted Compustat and
original reports’ numbers had an important limitation of using small samples in their
analyses. Small samples may not fully represent the population, and omit uncommon
types of observations (that are likely to result in discrepancies between Compustat
and original reports). In this study, we utilize XBRL (eXtensible Business Reporting
Language) reporting technology to automatically extract accounting numbers from
XBRL 10-K financial reports and compare them to Compustat numbers. The SEC
has mandated the use of XBRL reporting by all U.S. GAAP filers starting from June
2011. To our best knowledge, this is the first study to conduct such a large-scale data
comparison.

Specifically, we study the amount and magnitude of discrepancies between Com-
pustat North America Fundamentals Annual and 10-K reports of U.S. companies for
the period from October 1, 2011 to September 30, 2012. Our analysis includes more
than 5,000 companies, and 30 accounting items that are often used in empirical ac-
counting research. We limit our analysis to 10-K reports only since they are audited,
and to one 10-K report per company to make our sample unbiased and study whether
company characteristics are related to the amount and magnitude of discrepancies.

Although we use the XBRL technology to extract data from XBRL 10-K reports,
our objective is not to compare Compustat and XBRL 10-Ks, but rather to compare
Compustat and traditional 10-Ks. XBRL 10-K reports sometimes contain errors

that make them different from plain-text 10-Ks. We develop automated and manual



procedures to eliminate XBRL-related errors.

We find that Compustat significantly alters numbers reported in the 10-K filings.
In particular, we find that Compustat values of 17 out of 30 analyzed variables sig-
nificantly differ from values reported in the 10-K filings. We also find that the type
of statement where variable is reported and company characteristics such as indus-
try and size are related to the amount and magnitude of discrepancies. Specifically,
the amount of discrepancies is significantly affected by 1) type of financial statement
(except for the telecommunications industry), 2) industry regardless of financial state-
ment type, and 3) revenue size for the financial industry or balance sheet items.

Our contributions to the literature are as follows. Firstly, we contribute to the
studies of Rosenberg and Houglet (1974); Bennin (1980); Kinney and Swanson (1993);
Yang, Vasarhelyi, and Liu (2003); Boritz and No (2013), and others that analyze
differences between Compustat and other accounting data sources, by conducting the
first large-scale comparison of Compustat North America Fundamentals Annual and
10-K data. This comparison provides a more accurate and comprehensive statistics
of discrepancies between Compustat and 10-K data. Secondly, we contribute to the
existing XBRL literature by demonstrating how XBRL data can be utilized in an
automated fashion to extract and process commonly used accounting numbers. We
develop a methodology for an automated large-scale comparison of Compustat and
XBRL data. The methodology comprises of several steps: data extraction, data
merging, concept mapping, difference calculation, automated error detection, and
discrepancy analysis.

The Chapter is organized as follows. Section 1.2 reviews academic literature
relevant to this study. Section 1.3 discusses types of data alterations in Compustat.
Section 1.4 presents Compustat data comparison methodology. Section 1.5 reports

the main findings of this study. Finally, Section 1.6 concludes the Chapter.



1.2 Relevant literature

In this section, we review relevant literature that studies the impact of discrepancies
in accounting databases. Since there are two main causes of discrepancies — errors

and different data definitions — we consider the respective literature separately.

1.2.1 Erroneous data

Rosenberg and Houglet (1974) is the first paper to consider the quality of data found
in Compustat. The authors match and merge Compustat and CRSP data on monthly
price relatives for 844 industrial sector companies from January 1963 to June 1968,
and for 97 utilities sector companies from March 1962 to June 1968. In total, they
compare 41,296 monthly price relatives between Compustat and CRSP data sets. Out
of these, they find 1,202 (2.91%) to be erroneous including 294 (0.71%) that differ by
more than 5%, and 125 (0.3%) that differ by more than 20%. The authors compare
34 discrepancies between utilities price relatives to the original published sources; 4
(12%) discrepancies were due to CRSP errors, and 30 (88%) were due to Compustat
errors suggesting that CRSP is a more reliable database for monthly price relatives.
The study finds these errors to change the data distribution, with higher moments
being affected more significantly.

Bennin (1980) did a follow-up study of Rosenberg and Houglet (1974) using up-
dated Compustat and CRSP data, and for a longer time period. He compares monthly
relative prices of both industrials and utilities for the period from January 1962
through July 1978. Out of 187,460 prices, he finds 471 (0.25%) to differ by more than
5%. This is a huge drop of error rate compared to Rosenberg and Houglet (1974) —
0.25% versus 0.71%. The study suggests that Compustat had corrected a number of
errors after Rosenberg and Houglet (1974) study.

Beedles and Simkowitz (1978) replicate the study of McEnally (1974) that in-

vestigates the return behavior of high-risk common stocks extracted from the CRSP



database. After correcting the CRSP database errors, Beedles and Simkowitz find
that the results changed significantly due to changes in higher moments of data dis-
tribution.

San Miguel (1977) is the first study to compare Compustat data to 10-K reports.
Specifically, he compares Research and Development (R&D) expense data in Com-
pustat with the original 10-K reports for a sample of 256 companies that reported
R&D expense in 19727 He finds 78 (30%) discrepancies between the two datasets.
At least 52 (66.67%) discrepancies were due to errors in Compustat. Out of those
15% were rather significant - the discrepancies amounted to more than 100% of the
Net Income values of the respective companies. The author also finds that there was
insufficient information in the 10-K reports to classify the remaining 26 discrepancies.
He attributes part of the errors to the new rules for the 10-K Form R&D disclosure re-
quirements that became effective in 1972, and to the complexity of some 10-K reports
that Compustat personnel had to deal with.

Kinney and Swanson (1993) examine the accuracy of tax data in Compustat. The
authors randomly select 100 Compustat companies from fiscal 1985 listings. They
compare 19 tax variables as reported by Compustat and the original financial reports
for the years of 1986-1988. The error rates for the considered variables ranged from
0.76% to 11.65% with the error magnitudes being substantial. The authors find the
tax error rates to be: 1) high for utility companies, 2) low for balance sheet items,
and 3) high for cash flow statement items. They also find a significant number of
missing values for some variables whereas these values are reported in the financial
statements.

Kern and Morris (1994) study the data differences between Compustat and Value
Line databases. The authors compare Sales and Total Assets data for the years of

1971-1990. They find that there is no statistically significant difference with respect

3. In 1972, 1,357 Compustat firms reported R&D expense. A sample used in San Miguel (1977)
represents 19% of those.



to Total Assets. However, they find significant differences between Sales values. The
number of discrepancies between Sales ranged from 31.4% to 33.9% across different
years. The years of 1985-1990 had the highest number of material discrepancies (137
in Total Assets and 378 in Sales). The authors examined the annual reports for those
years to identify the sources of the discrepancies. Many discrepancies (40.9% for Total
Assets and 15.1% for Sales) were due to Value Line reporting data in currency other
than U.S. dollars. The largest source of discrepancies for Sales was the difference
in data definitions used in the databases. For example, Value Line include only the
income items in Sales that are related to the company’s major line of business, while
Compustat reports Sales for the entire consolidated entity; this resulted in 47.6% of
all discrepancies. But the authors also find some unexplainable differences (at least
1.5% of all discrepancies).

Yang, Vasarhelyi, and Liu (2003) compare Compustat and Value Line values of
seven frequently used accounting variables for the years of 1976-1981.* Out of 10,353
observations (of 1,479 companies), 1,284 (12.5%) were discrepancies larger than 1%.
To identify the cause of discrepancies, the authors draw a subsample of 200 companies
and compare the Compustat and Value Line 1981 data to the original 1981 financial
statements data. Out of 1,400 observations, they find 320 mismatches. Out of those
mismatches, 185 (57.81%) were explainable discrepancies (i.e., discrepancies due to
different data definitions, currency and industry factors), and 135 were unexplainable
that were either due to errors or undisclosed coding rules. Compustat amounted to
more unexplained discrepancies — 99 (73% of all unexplained differences) — than Value
Line. The authors also replicate a part of the Rosenberg and Houglet (1974) study
by computing and comparing data distribution moments of Compustat and Value

Line databases. At least for some variables (e.g., Current Assets) the differences were

4. Yang, Vasarhelyi, and Liu (2003) examined The Accounting Review, The Journal of Account-
ing Research and The Journal of Accounting and Economics for the 1976-1981 period to find the
most frequently used variables in accounting research. They identified the following variables: To-
tal Assets, Net Sales, Inventories, Net Income, Current Liabilities, Depreciation, Depletion, and
Amortization, and Gross Plant.
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found to be statistically significant. The authors conclude that accounting databases
of data aggregators contain a certain level of erroneous data and do not always agree
on data definitions and industry classifications.

Tallapally, Luehlfing, and Motha (2011) compare EDGAR Online® and Compus-
tat values of the Cost of Goods Sold (COGS) item for a subset of DOW 30 companies
for the fiscal year of 2009. Out of 26 companies considered, there was only one match
in COGS between Compustat and EDGAR Online. The average magnitude of re-
maining 25 discrepancies is 14.23% with Compustat reporting, overall, lower numbers.
The authors were not able to reconcile the numbers, but assume that these differences
are due to data definitions used in Compustat.

Tallapally, Luehlfing, and Motha (2012) is a very similar study to the previous
one with the same authors (Tallapally, Luehlfing, and Motha 2011). It compares
Compustat and 10-K XBRL (eXtensible Business Reporting Language) data for the
same year (2009) and for almost the same set of companies® but with regards to
Sales/Revenue item instead of COGS. The data extracted from 10-K XBRL should
be similar (most likely the same) to the data extracted from EDGAR Online.” The
authors find differences in Sales/Revenues between Compustat and 10-K XBRL fil-
ings, but not as many and not as large as in the study that compared COGS values.
Namely, the authors find 6 discrepancies (22% of all observations) with the average
magnitude equal to 5.19%. As in the previous study, the authors do not reconcile the
discrepancies.

Boritz and No (2013) manually compare financial items reported in 150 XBRL
10-K filings of 75 companies to the corresponding items provided by three data ag-

gregators: Compustat, Yahoo Finance, and Google Finance. The study finds that

5. Not to be confused with SEC’s EDGAR. EDGAR Online is a public for-profit company that
provides SEC fillings information extracted from SEC’s EDGAR.

6. In this study (2012), the authors added additional company to their sample, making total
number of companies equal to 27.

7. EDGAR Online extracts information directly from SEC’s XBRL filings.
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around 50% of financial items that are reported in XBRL 10-Ks are not present in
the aggregators’ data sets, and that the percentage of mismatches between XBRL
and aggregators’ data ranges from 4.8% to 8% with 56% of all differences being ma-
terial. Out of three financial statements — Balance Sheet, Income Statement, and
Cash Flow Statement — Balance Sheet was associated with the smallest percentage
of mismatches. In addition, Compustat data resulted in the largest percentage of
mismatches (44.3%) and the lowest number of omissions (50.9%).

The most related studies to ours are Tallapally, Luehlfing, and Motha (2011);
Tallapally, Luehlfing, and Motha (2012), and Boritz and No (2013). Therefore, we
would like point out some key differences with them. Firstly, this study focuses on
the accounting data provided by Compustat. The objective is to compare Compustat
numbers to the numbers found in the 10-K filings. Although, we utilize XBRL 10-K
filings to extract the numbers, we do not aim to compare Compustat and XBRL data
since XBRL data also may differ from plain-text 10-K data. In our study, we try to
remove all XBRL 10-K values that differ from 10-K values (using both manual and
automated procedures described in §1.4). Secondly, we conduct a large-scale com-
parison that involves more than 5,000 companies (as opposed to 75 in Boritz and No
(2013) and 27 in Tallapally, Luehlfing, and Motha (2012)) by automating the compar-
ison procedure. Thirdly, we study not only the amount of discrepancies between the
data sets, but also the magnitude of discrepancies and their effect on non-discrepancy
observations. Fourthly, we develop and present a methodology for an automated (as
opposed to manual) XBRL and Compustat data comparison. This methodology is
critical for our study since such a large-scale study would not be possible without it.
Finally, some of our findings differ from the above mentioned studies (e.g., we do not
find significant differences in Total Liabilities between Compustat and 10-K data as

Boritz and No (2013) do).
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1.2.2 Data definitions and comparability

Stone (1968) is one of the first studies to caution researchers about the use of digital
accounting databases and Compustat, in particular. The study recognizes several
shortcomings of Compustat in terms of data comparability. First, it argues, the
Compustat annual data inherits SEC 10-K filings weaknesses. Companies may not
be directly comparable based only on the 10-K reports since they may use different
accounting, e.g., FIFO versus LIFO, or straight line depreciation versus accelerated
depreciation, etc. Second, the data definitions used to adjust 10-K data to make it
more comparable may fail because of the previous point and may significantly alter
the accounting used by a company. Moreover, it creates the appearance of uniformity
of data, and a user of Compustat data may draw wrong conclusions assuming items
to be comparable. Also, users not fully aware of data definitions are likely to run into
problems when creating their own financial ratios or proxies. Last but not least, the
study argues that Compustat does not provide qualitative disclosures that may be
essential to understand the financial position of a company.

Thies and Revsine (1977) examine the implications of Compustat definitions and
policies for the Capital Expenditures item on the empirical inflation accounting re-
search, and specifically for the purpose of asset layering. Empirical inflation ac-
counting studies often require to transform conventional accounting numbers to their
inflation-adjusted estimates. This is generally done by arraying fixed assets in layers
with respect to their acquisition (cost and dates). The study argues that Compu-
stat item Capital Expenditures cannot be used effectively for the purpose of fixed
asset layering since: 1) Compustat definition of the item does not include fixed assets
acquired through merger or acquisition, and 2) Compustat report capital expendi-
tures net of retirements (if this net figure is shown in a financial report). To test the
adequacy of Compustat Capital Expenditures data, the authors impute fixed assets
retirements from the Compustat data for the years 1960 through 1974 for S&P 425

industrial firms. They use a simple criterion: check how many imputed retirements
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are negative.® The proportion of negative values ranged from 7.5% to 30.7% across
different years, indicating that Compustat data is too distorted to be used for the
purpose of fixed asset layering. The authors suggest to use SEC’s 10-K data directly
instead of Compustat data, even though it is less accessible and convenient.

Collins and O’Connor (1978) criticize Eskew (1975) study due to its failure to
adjust data across different databases: Compustat, Moody’s Industrial Reports, and
companies’ annual reports. They argue that data definitions in Compustat differ from
the ones in Moody’s and annual reports. The researchers should take special care of
data definitions when matching and merging data from several databases, since it
can lead to false conclusions. Collins and O’Connor replicate Eskew (1975) study by
addressing shortcomings of the latter. The results obtained differ significantly from
the original ones.

Guenther and Rosman (1994) study the differences between SIC codes assigned
to companies by Compustat and CRSP databases and their effect on accounting
research. Using a sample of 1,810 companies, the authors find 1989 Compustat and
CRSP databases disagree: on 71% of all companies at the 4-digit SIC level, on 54%
of companies at the 3-digit level, on 38% of companies at the 2-digit level, and on
22% of companies at the 1-digit level. The authors also examine the homogeneity of
Compustat and CRSP. They find that the Compustat SIC code classification yields
both higher correlation of intra-industry monthly stock returns and lower variances
of intra~-industry financial ratios than CRSP SIC classification. To test the impact
of the differences in SIC classification between two databases, the authors replicate
the study of Freeman and Tse (1992) using both Compustat and CRSP SIC codes.
The results obtained using Compustat codes are similar to the results of Freeman and
Tse since they also use Compustat. However, the results obtained by utilizing CRSP
codes were significantly different from the original ones.

Kahle and Walkling (1996) do a follow-up study of Guenther and Rosman (1994)

8. Clearly, fixed assets retirements cannot be negative
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by examining the differences in SIC classification of Compustat and CRSP databases
for approximately 10,000 firms over the years of 1974-1993. They find similar level of
discrepancies as Guenther and Rosman: there is 79% disagreement at the 4-digit SIC
level, and 35% disagreement at the 2-digit SIC level. To further analyze the impact
of these differences, the authors choose six financial characteristics’, draw a random
sample of firms for each characteristic, and conduct simulations to measure the power
and specification of Compustat and CRSP SIC classifications based on these random
samples. The authors find that Compustat’s SIC classification is better at detecting

abnormal performance!® than CRSP’s SIC classification.

1.3 Data alterations in Compustat

Compustat North America Fundamentals Annual data items may differ from the orig-
inal accounting data items disclosed by companies in their annual financial reports.

We identify four reasons for having such differences:

1. Compustat transformed original value to match Compustat’s standard defini-

tion of the variable,
2. Compustat’s value is erroneous (due to typos, rounding, etc.),
3. Compustat’s value is not up to date,
4. Compustat does not provide a value for the data item (i.e., missing data).

We found data standardization to be the main source of discrepancies between

Compustat and 10-K data. Compustat argues that data standardization results in

9. Specifically, the authors choose: Operating Return on Sales, Operating Return on Assets,
Leverage, Asset Turnover, Payout ratio, and Market-to-Book ratio.

10. Abnormal performance in Kahle and Walkling (1996) is simulated by adding errors to the
variables to increase the difference between sample and control firms’ characteristics.
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more “consistent and comparable data” that provides “solid foundation for your rig-
orous analysis”.!'* However, some studies have expressed skepticism on whether such
alterations improve data comparability (e.g. Stone 1968). All data in Compustat
is standardized by default, and in most cases footnotes and data codes do not in-
dicate whether the values have being altered.'> However, Compustat does provide
transparency and analyst notes data that explain adjustments that have been made
to obtain standardized items. In this study, we do not rely on Compustat’s trans-
parency and analyst notes data to avoid potential data provider bias, and use XBRL
10-K filings as an independent source of original financial data provided by companies
to compare values between Compustat and 10-K, and reconcile discrepancies between
the two data sets.

An example of data standardization is Compustat reporting Total Assets of Amer-
ican Water Works Company at the end of December 2011 to be $13,809,643,000, while
the value of Total Assets in the 10-K being $14,776,391,000. The difference is the
value of Contributions in Aid of Construction of $966,748,000.13 It is not obvious
whether this adjustment enhances data comparability - by not including Contribu-
tions in Aid of Construction item in Total Assets Compustat underreports the amount
of resources that the company has.

Erroneous data is another reason why Compustat numbers may differ from the
original numbers reported by companies. Unlike standardized data, errors are un-
intentional alterations of the original or standardized data. Errors may occur due

to input typos, use of wrong accounts and balances, data misinterpretation, data

11. www.compustat.com, as of February 16, 2014

12. A very small number of alterations is reported through footnotes. For example, footnote “JE”
indicates that the reported value differs form the reported amount by deferred taxes.

13. American Water Works Company in its 10-K describes Contributions in Aid Of Constructions
as follows: “Regulated utility subsidiaries may receive advances and contributions from customers,
home builders and real estate developers to fund construction necessary to extend service to new
areas ... Advances that are no longer refundable are reclassified to contributions in aid of construc-
tion. Contributions in aid of construction are permanent collections of plant assets or cash for a
particular construction project.”


www.compustat.com
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rounding, data calculations, etc. The danger of having errors in the data is that they
are hard to identify — they may appear to be standardized numbers. For example,
Compustat reports the Gross Profit of Transwitch Corp for the year of 2011 to be
$19,932,000, while the company reports the value of Gross Profit to be $17,932,000.
The difference of 2 million U.S. dollars might be due to Compustat’s adjustment,
although we failed to reconcile this discrepancy. It may also be due to input typo
since the two numbers differ only in one digit.

Accounting researchers are well-aware of the existence of erroneous data in popular
data sets. Sometimes they assume that errors in the data will result in some extreme
values. Therefore, they use outlier detection techniques to find extreme values, and
either delete them or transform them (using techniques such as winsorising). However,
this approach is not ideal since erroneous values do not have to be extreme, and
extreme values do not have to be erroneous. In many cases, extreme values that
are not erroneous should be included in a study sample since they represent possible
states of the object studied. Moreover, deleting extreme observations is very likely
to affect the output of most empirical models due to their sensitivity to outliers, and
this may drastically change the results of the study.

A different type of data discrepancy between Compustat and companies’ financial
reports is when Compustat does not update accounting numbers due to amendments.
Compustat uses amended filings (i.e., 10-K/A and 8-K/A) to update North America
Fundamentals Annual data, but does not use restated numbers from the subsequent
10-K or 8-K forms to update its annual data.'* Unfortunately, in some cases, Com-
pustat fails to updates its data items after amendments in a timely manner. For
instance, on March 15, 2012, ADA-ES reported its Net Loss to be $19,851,000; how-

ever, on October 19, 2012, the company issued a 10-K/A and restated its Net Loss

14. According to Standard & Poor’s “Compustat Understanding the Data”, March 2014, document:
“When a company files an amended source, such as a 10-Q/A or 10-K/A, S&P updates this data and
treats it as a new source for that period. The amended source overrides the original source...Quarterly
income statement data is restated by S&P and Annual data is not.”
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to be $22,819,000. As of February 22, 2013, Compustat has not updated the origi-
nally reported number with the restated one. The resulting difference of $2,968,000
amounts to more than 10% of the Net Loss.

Data that are not updated should be considered separately from erroneous data
since there were no errors in recording the original (not restated) numbers from fi-
nancial reports. On the other hand, the fact the numbers were restated indicates
that there is a material difference between the original and updated numbers. Hence,
using accounting data that has not been updated may result in significantly different
results of an empirical study.

Another reason why Compustat data may differ from is the absence of data values
for some variables in Compustat database. For example, Compustat did not report
the Total Assets of Airwave Labs ($1,139,182) at the end of 2012, although Com-
pustat did report company’s Total Liabilities and Stockholder’s Equity. Accounting
researchers usually drop observations with missing data, or in rare cases substitute
missing data with estimated values (e.g., industry averages). Clearly, in some cases
a variable is not applicable to a company (e.g., Sales), or may not be reported in
financial reports (e.g., non-GAAP measures). However, if an accounting number is
reported in a financial statement, and there is a corresponding Compustat variable
for that number, then it should be present in Compustat. Missing data does not
allow researchers to study the whole population, and similarly to data alterations,

may change the results of empirical studies.

1.4 Comparison of Compustat annual data with 10-K num-

bers using XBRL

The best way to assess the amount and magnitude of data alterations in Compustat
is to compare the numerical financial data reported in Compustat to the original

data reported in companies’ financial reports. In particular, the annual accounting
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numbers in Compustat can be compared to the accounting numbers found in the
10-K financial reports.

However, a large-scale comparison of accounting data items reported in Compustat
and corporate 10-K filings would be a very costly procedure, if done manually. It was
the only option not so long ago. However, since the SEC mandated the use of the
XBRL reporting technology in the SEC filings for all U.S. GAAP filers for the fiscal
years ending on or after June 15th, 2011, it has become possible to automate this

process.

1.4.1 XBRL as a means for data comparison

In our study, we take advantage of the newly available XBRL financial reporting to
compare the annual data items reported in Compustat North America Fundamentals.
In essence, XBRL is a formal language for communicating business information. Data
items are described using meta-information, and are linked together through various
relationships. Information carried by XBRL is both human- and computer-readable.
A special software can render an XBRL document and present it to an end-user as an
electronic document humans are used to dealing with. However, the real advantage
of XBRL is that it allows computer software to parse XBRL documents, and find,
extract, and present information in an automated fashion. This drastically reduces
the cost of manual labor needed to process such documents. It also allows to process
a large amount of documents within a matter of seconds.

The SEC has realized the benefits of XBRL reporting, and in April 2005 the SEC
adopted XBRL Voluntary Filing Program (SEC 2005). This program enabled U.S.
GAAP filers to voluntarily prepare financial statements using XBRL. The objective
of the program was to determine the usefulness of XBRL as a format for report-
ing financial information by analyzing volunteers’ feedback comments. In 2009, the
SEC adopted Interactive Data to Improve Financial Reporting final rules (2009) that

mandated companies that prepare their financial statements in accordance with the
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U.S. GAAP to file supplemental XBRL documents for 10-Q, 10-K, and 8-K reports
in addition to plain-text ones. This mandate was implemented in several phases. In
the first phase, domestic and foreign large accelerated filers with worldwide public
common equity float above $5 billion and the fiscal periods ending on or after June
15, 2009, were required to file with XBRL. In the last phase, all the U.S. GAAP
companies were required to file using XBRL for the fiscal years ending on, or after
June 15, 2011.

One of the most fundamental uses of corporate accounting data is for financial
data comparison. Users of financial statements need to compare financial positions of
various companies for their decision-making. Since XBRL is just a language that can
be used for business data reporting, it does not have built-in capabilities for multi-
document data comparison. Therefore, the SEC has created the XBRL U.S. GAAP
Financial Reporting Taxonomy. This taxonomy is a collection of common accounting
data concepts, definitions, types, and relations that is meant to accommodate most
of companies’ financial reporting needs. Since most accounting items in financial
reports is fairly standard, the XBRL U.S. GAAP Financial Reporting Taxonomy
defines common rules how to present this standard information in XBRL filings.
Therefore, in theory, standard accounting numbers can be easily compared across
different filings using the XBRL U.S. GAAP Financial Reporting Taxonomy.

Accounting information that is not standard, i.e., company- and filing-specific
information, is represented in XBRL documents through so-called extensions. FEx-
tensions are an important part of XBRL filings that provide additional reporting
flexibility. However, the cost of utilizing extensions is the reduced comparability
since extensions are not necessarily created in the same manner by different filers.
Before using an extension concept in a filing, the filer should search the XBRL U.S.
GAAP Financial Reporting Taxonomy for a possible match. If no suitable match is
found, the filer is allowed to create an extension. Debreceny et al. (2011) examined

67 XBRL filings from the period of April 15,2009 to June 2010, and found that more
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than 40% of all extensions were unnecessary because the corresponding elements exist
in the U.S. GAAP Financial Reporting Taxonomy.

As mentioned above, all public U.S. GAAP companies are required to file their
financial reports using the XBRL reporting technology starting from June 15, 2011,
with standard accounting data items being formally reported in a similar manner due
to the use of common XBRL U.S. GAAP Financial Reporting Taxonomy. Given that
accounting variables found in Compustat are fairly standard, it becomes clear that
XBRL filings can be utilized to automatically extract standard accounting numbers

from corporate financial reports and compare them to numbers found in Compustat.

1.4.2 Comparison methodology

In our study, we compare annual accounting data of 5014 company-unique XBRL
filings (10-Ks) to the appropriate Compustat data for the period from October 1, 2011,
to September 30, 2012.1> There are several reasons why we consider this particular
period. First of all, to better assess the data quality in Compustat we analyze only
one annual filing per company. This ensures that we do not introduce additional bias
and noise to the data and cover all possible companies and industries. Secondly, we
analyze filings for the recent 2011-2012 period to capture the current data quality state
of the Compustat data set. Moreover, a more recent period makes more sense from
the XBRL perspective since annual XBRL filings are a recent addition to corporate
10-K filings, and recent XBRL filings are likely to be more accurate than the older
ones (e.g., Du, Vasarhelyi, and Zheng 2013). Finally, we downloaded the data on
February 22, 2013 which introduces a 145-day lag between the latest date in the
considered period (September 30, 2012) and the data download date. This ensures
that most of the late filings are captured in our data, and that Compustat has had

sufficient amount of time to update missing and restated (as reported in companies’

15. We only consider annual (and quarterly) reports since these are verified by audit firms.
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amendments) data items.

Our comparison methodology comprises of six steps:

1. Extracting data from Compustat.

2. Extracting data from XBRL 10-K filings.

3. Merging Compustat and XBRL data.

4. Creating mappings between Compustat variables and XBRL reporting concepts.

5. Calculating differences between Compustat variables and the associated XBRL

reporting concepts.
6. Analyzing discrepancies between Compustat and XBRL 10-K filings.

Below, we explain each step in more details.

Extracting data from Compustat

One of the main advantages of using Compustat is that the data extraction process
is fairly simple. This feature is particularly attractive to researchers that rely on
accounting numbers in their studies. However, some users of Compustat may not
realize that some accounting numbers reported by companies have been altered to fit
Compustat’s definitions of variables. It is important to understand the data alter-
ations and the effects they may have on the output of a research that relies on the
Compustat data.

We extracted all the available variables from Compustat North America Funda-
mentals Annual through Wharton Research Data Services (WRDS) interface for the
U.S. companies for the period from October 1, 2011, to September 30, 2012. If there
was more than one observation for a company, we kept only the latest one.

Dollar values in XBRL filings are measured in $1 denominations. However,

in the Compustat data set, different variables use different units of measurement
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(numéraires). For example, the Net Income variable is measured in millions of U.S.
dollars ($1,000,000), while Earnings per Share (EPS) is measured in U.S. dollars ($1).
We used variable definitions in Compustat Manual to transform all Compustat values

to be measured in U.S. dollars ($1).

Extracting data from XBRL 10-K filings

We downloaded all the domestic XBRL 10-K filings (including amendments) from the
SEC’s Electronic Data-Gathering, Analysis, and Retrieval (EDGAR) system’s File
Transfer Protocol (FTP) server with the reported fiscal year being in the one-year
range from October 1, 2011, to September 30, 2012.'6 The filings were downloaded
on February 22, 2013. Hence, most of the late filings and filing amendments are likely
to be included in the data set. For each company, we kept only the latest 10-K filing,
and, where applicable, all of its amendments (i.e., 10-K/As). We kept only the latest
company filing to ensure that the reported amount and magnitude of discrepancies
are not biased by certain types of companies and data alterations. And the reason
to have both amendments and the original filings is to verify whether Compustat
updates original numbers to restated ones in a timely fashion.

As mentioned previously, XBRL 10-K filings use the XBRL U.S. GAAP Finan-
cial Reporting Taxonomy, a collection of common financial and reporting concepts,
definitions, types and relationships. Although, filers can define their own XBRL data
concepts (extensions), SEC encourages them to use standard concepts found in the
XBRL U.S. GAAP Financial Reporting Taxonomy whenever possible. By doing this,
filers in their XBRL fillings would report similar accounting concepts using similar
XBRL U.S. GAAP elements, which would greatly enhance data comparability across
different companies and filings.

In our study, we compare 30 common accounting concepts from Balance Sheet,

Income Statement, and Statement of Cash Flows between Compustat and 10-K data

16. SEC’s EDGAR’s FTP server can be reached at ftp://ftp.sec.gov/edgar/.
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sets.!” All of these concepts are present in the XBRL U.S. GAAP Financial Reporting
Taxonomy. We do not consider extensions. In addition, we only consider numbers
that were tagged in XBRL 10-K filings individually (detailed tagging) as opposed to
being a part of a text block (block tagging) to ensure accurate data extraction. We
also only consider numbers measured in U.S. dollars (or dollars per share) to avoid
us introducing bias of currency conversion.

Unfortunately, extracting data from XBRL documents is not a simple process.
The main problem is that filers do not utilize XBRL reporting technology in a consis-
tent manner. The current SEC’s implementation of the XBRL U.S. GAAP Financial
Reporting taxonomy allows a certain amount of flexibility in reporting. In addition,
we and other researchers (2013) find that many XBRL filings contain errors. These
findings should be viewed in the context of 24-month liability provision for the first-
time filers.'® The end result is that even though filers use the same XBRL U.S. GAAP
Financial Reporting Taxonomy, different filers describe similar standard accounting
items differently in their XBRL reports. As a consequence, it is quite a challenge
to extract accurately the information of interest from many filings in an automated
fashion.

A particularly problematic current XBRL reporting practice is the use of XBRL
contexts. An XBRL context provides additional information about the concept re-
ported, usually including such information as the concept’s associated period of re-
port, entity, dimension, etc. Although a useful instrument, companies tend to use it
differently, thus reducing the benefit of XBRL reporting standardization. For exam-
ple, the XBRL U.S. GAAP Financial Reporting Taxonomy defines “LegalEntity Axis”
dimension that identifies the specific entity that a concept is related to. For an XBRL
concept associated with a parent company, different fillings may provide: 1) no value

for the XBRL “LegalEntityAxis” dimension, 2) “ParentCompanyMember” value for

17. See Table A.2 for the full list of 30 accounting concepts analyzed.
18. The limited liability provision was set to expire on October 31, 2014.
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the “LegalEntityAxis”, or 3) a custom member definition for the “LegalEntityAxis”
dimension. This example shows two major issues. The first one is that it is not clear
what context should a concept of interest have. In other words, there can be many
instances of the same concept, each having its own context; the problem is to pick
the correct one. The other issue is the concepts’ entity attribution — in many cases,
a filing reports accounting information for many entities, and it may be problem-
atic to attribute each concept to its corresponding entity since each entity may have
its own value for the “LegalEntityAxis” dimension that is usually an extension (i.e.,
not defined in the XBRL U.S. GAAP Financial Reporting Taxonomy). For example,
Huntsman Corporation and Huntsman International LLC are manufacturers of chem-
ical goods that jointly file annual and quarterly filings. However, each company has
different values for similar accounts and a different unique identifier with both SEC
and Compustat. Since these companies share a common XBRL filing it is important
to attribute numbers to the correct entities.

Theoretically, if one filing is associated with several U.S. GAAP filers that have
Central Index Keys (CIKs) assigned to them, the XBRL filing may include informa-
tion about those filers through the means of special “Document and Entity Informa-
tion” (DEI) XBRL concepts. However, in practice, this is rarely the case, and not
much information is revealed about the entities other than the main one in the XBRL
filing. In the case of the above-mentioned Huntsman Corporation and Huntsman In-
ternational LLC, only the entity information of Huntsman Corporation is disclosed
through DEI XBRL Concepts in their joint 2011 10-K filing.

The issues described above make the processes of extraction of relevant infor-
mation and its attribution to various entities very complicated and perhaps even
ambiguous. It is true that those issues are irrelevant when a user of financial state-
ments is concerned with only one filing — an XBRL software can render the filing in a

comprehensible format. However, the same functionality is provided by a plain-text
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filing without the cost of utilizing the XBRL reporting technology. The main ad-
vantage of XBRL is that computer software can automatically process the embedded
tags in the XBRL document without any need for user intervention. This is especially
important when a software processes many XBRL documents and compares the data
within those documents. Hence, the value of XBRL decreases when filers become too
frivolous in the way they utilize XBRL.

To overcome the problem of attributing a filing’s reporting concepts to entities
associated with that filing, we need to identify the correspondence between the values
of the XBRL “EntityLegal Axis” dimension embedded in the concept contexts and the

actual entities. In this study, we utilize the following method:

1. Use the EDGAR index file to extract information about entities, such as legal

names, Central Index Keys (CIKs), addresses, etc.’

2. Whenever possible extract entity context information from “Document and En-
tity Information” (DEI) XBRL concepts embedded in the XBRL instance doc-

ument.

3. Analyze common entity member values such as “ParentCompanyMember”,

“SuccessorMember”, etc. in the XBRL instance document.

4. Extract textual descriptions (labels) for all possible values of the “EntityLe-

galAxis” dimension found in the XBRL label linkbase document.

5. Match entities’ information found in the EDGAR index files with the values

found in the XBRL filing.

The last step involves comparing the values of CIKs (whenever possible), or the

descriptions (labels) of the XBRL entity member values with the entities’ legal names.

19. Every 10-K filing in EDGAR is associated with an index file that contain basic information
about the filing and filing entities.
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Since the entity names are often not exact, e.g. “Microsoft Corporation” and “Mi-
crosoft Corp.”, we use the Jaccard text similarity measure (Jaccard 1901) to compare
labels and EDGAR legal names. The Jaccard similarity measure is defined as follows.
Formally, given two pieces of text, let 77 be the set of all words in the first text, and
T5 be the set of all words in the second one. The Jaccard similarity measure between

these two pieces of text is defined as

T} N Ty|
J(11,T») = T UD) (1.1)

That is, the Jaccard similarity measure is equal to the number of shared words divided
by the number of all words. We consider two pieces of text to be similar, only if the
similarity measure between them is 0.3 or greater.

Finally, by means of their contexts, XBRL concepts may be defined in other
dimensions than the entity dimension, such as geographical area. Since we want to
compare XBRL data items with Compustat data items that are usually general in
nature, we do not extract the concepts that are defined in dimensions other than the
entity dimension. The only exceptions are dimensions that indicate a restatement,
type of financial report, or components of partner capital.

For the purpose of our study, we created our own applications that would pro-
cess XBRL 10-K filings due to unavailability of such software in the public domain.
However, recently a number of tools have appeared that are able to process a large
number of XBRL filings. Many of these tools are still in the development stage, and
may not be fully functional. However, potentially they can be used by academics and
practitioners to obtain the original data as reported by companies.

To ensure that our applications reliably process XBRL data, we adopt a software
verification technique called software walk-through. This peer review technique is
one of the standard procedures defined in the IEEE Standard for Software Reviews

and Audits (IEEE 2008). This procedure has been empirically shown to outperform
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other common software validation procedures such as functional and structural testing

(Basili and Selby 1987) and computer-based testing (Myers 1978).

Merging Compustat and XBRL 10-K data

Data items in Compustat and XBRL 10-K observations should be merged based on
the same entity and reporting period. Matching data by reporting periods does not
present a particular problem. However, matching by entities does.

Each company in the EDGAR database is identified by the SEC’s unique identifier
— Central Index Key (CIK). In addition, EDGAR’s XBRL filing document name
convention requires to identify the main entity through its Ticker code, a unique
identifier for stock market public traders. Compustat has its own unique identifier
called Gvkey. However, Compustat does provide values for both CIK and Ticker.

Central Index Key is the best unique entity identifier to match data items from
both data sets since EDGAR may not provide Ticker codes for all entities associated
with a filing. However, for many observations, the value of the CIK variable in
Compustat is missing. In those cases, we use either 1) the combination of Ticker
code, company name and address, or 2) the company name and address to match the
entities across data sets. As before, since the company name and address may not be
represented uniquely (e.g. “One Green Avenue” versus “1 Green Ave.”), we use the
Jaccard text similarity measure (described in §1.4.2) to match the appropriate text
fields.?°

Overall, we extracted 7,466 XBRL 10-K company-unique observations, and 7,375
Compustat company-unique observations for the period from October 1, 2011, to
September 30, 2012. Out of those, we were able to merge 5,014 observations. Most

of the companies that we were unable to match were either 1) too small to be present

20. Using textual similarity techniques to match Compustat and 10-K companies adds 12 more
companies to our analysis. We have repeated the discrepancy analysis without those 12 companies.
The results did not change.
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in Compustat 2) not present in the EDGAR database, or 3) did not file 10-K with
XBRL.*

Creating mappings between Compustat variables and XBRL reporting

concepts

To calculate differences between Compustat and XBRL 10-K data sets, each Compu-
stat item has to be matched to the appropriate XBRL reporting concept. It is impor-
tant to note that this is not a one-to-one match. For example, Compustat’s variable
“Depreciation and Amortization” can be represented in the XBRL U.S. GAAP Finan-
cial Reporting Taxonomy by means of either “Depreciation,” “DepreciationAndAmor-
tization,” or “DepreciationDepletionAndAmortization” reporting concept. That is,
depending on the filing either of those three XBRL concepts can match Compustat’s
Depreciation and Amortization variable.

Creating a mapping between Compustat variables and XBRL manually would be
very costly and, most likely, inefficient. For this study, we developed an algorithm
that creates mappings between variables in the data sets in an automated fashion.
The algorithm is implemented under the assumption that Compustat variables and
the corresponding 10-K XBRL concepts should have similar values in most cases when
the values in Compustat are not altered. In other words, we assume the number of
discrepancies between the two data sets to be rather small for the unaltered data.
For each Compustat variable, the algorithm identifies a set of XBRL U.S. GAAP
concepts that may match the variable using the information from the merged data
set. In this study we compare 30 common accounting items that are present in the
XBRL U.S. GAAP Financial Reporting Taxonomy, and therefore the algorithm does

not utilize XBRL extensions.

21. The SEC’s mandate to file using XBRL as of June 15, 2011, required to file all financial reports
starting with the first 10-Q. That is, if for some company the first filing after June 15, 2011, was
not 10-Q, but 10-K, the company was allowed not to file this 10-K using XBRL. For more details
see item 601, Regulation S-K.
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The mapping algorithm works as follows. For each Compustat variable, it iden-
tifies all observations from the merged data set where that Compustat variable has
a non-zero value.??> Then, for each of those observations, the algorithm finds all the
U.S. GAAP XBRL concepts whose values are equal to the ones of the Compustat
variable (up to a rounding error), if there are any. XBRL concepts that match the
Compustat variable in at least 10% of all cases are considered to be mapping candi-
dates for that Compustat variable. Ideally, a Compustat variable should match at
least one of its mapping candidates in all the observations. Finally, the algorithm
assesses how well the mapping candidates fit a Compustat variable, by calculating a
measure that we call mapping coverage. Mapping coverage is defined as the number
of observations where Compustat variable was matched by at least one of the XBRL
mapping candidates divided by the number of all observations with non-zero values of
that Compustat variable. For example a mapping coverage of 0.5 means that the ob-
tained variable mapping explains at least 50% of Compustat values for that variable.
Most variables that we used in our analysis have relatively high values of mapping
coverage, but some do not due to large amounts of Compustat data alterations.

To sum up, for each Compustat variable, we use the sample of merged observations
to find a set of standard XBRL concepts that often match (up to rounding error) that
Compustat variable. These standard XBRL concepts (mapping candidates) are then
used to calculate differences between the values of that Compustat variable and the

values reported in XBRL 10-K reports.
Calculating differences between Compustat variables and the associated
XBRL reporting concepts

Once the data sets have been merged and the mappings between Compustat and

XBRL 10-K items have been established, it is possible to calculate the data differences

22. Although, Compustat data allows variables to have no value, we found that sometimes zero
values may also indicate no value. We decided to excluded zero values since they may yield unreliable
mappings.
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between the two data sets.

For each Compustat variable, we compare values of that variable to values of
the appropriate XBRL concepts as defined by the mappings that we have previously
established. If a value of a Compustat variable matches the value of at least one
matching XBRL concept, then we assume that there is no difference between the
Compustat value and the XBRL 10-K value. In general, when we compare values of

Compustat and XBRL 10-K filings, three cases are possible:
1. There is no difference between values.
2. There is a difference between values.
3. Either Compustat or XBRL value is missing.

It is not clear why the Compustat data set would have missing values apart from
the case where the values are not applicable or not reported by a filer. From the XBRL
perspective, if Compustat reports a value and XBRL 10-K filing does not report
matching concepts, then this is an artifact of either Compustat reporting calculated
values, shortcomings of the variable mapping process, or errors in the XBRL filing.
Unfortunately, we found that there are a number of issues with XBRL 10-K reports

that result in missing values. Some typical problems are:
e Accounting number is not reported in a 10-K filing.*
e Accounting number is not reported in an XBRL filing.
e Accounting number is reported using a wrong XBRL U.S. GAAP concept.

e A standard accounting number is reported through the use of extension.

23. In some cases, 10-K filings do not explicitly provide values of accounting items. For example,
many U.S. GAAP companies (approximately 30%) do not directly report values of Total Liabilities in
their financial reports — Total Liabilities are often reported together with Stockholder’s equity as one
number. An advantage of using Compustat, is that Compustat calculates many accounting numbers
that are not directly reported in financial statements. However, verification of those numbers may
not be an easy task due to the complex nature of calculations of some accounting items.
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e Accounting number refers to a wrong period.

In many cases, there is a difference between the values reported in Compustat
and XBRL 10-K. We express this difference as a relative difference. We utilize the
relative difference measure as opposed to the absolute one since it better reflects the
magnitude of differences and allows to compare the extent of differences between
different Compustat variables.

In cases where there is just one matching XBRL concept with a non-zero value,
the calculation of the relative difference between Compustat and XBRL data items is
straightforward. However, there may be cases where there are more than one matching
XBRL concepts with different non-zero values. In such cases, we choose the XBRL
concept whose value differs from the Compustat value the least, and calculate the

relative difference between that XBRL concept and the Compustat value.

Formally, if ¢ is the value of the Compustat variable, and x1, s, ..., x, are the
values of the matching XBRL concepts, we choose the value x from zi,xs,...,x,
such that

xr = argminz; — c. (1.2)

i=1...n
The chosen value of z is then used to calculate the relative difference between

10-K and Compustat values:
T —c

- (1.3)

This is a generalization of the regular relative difference — i.e., if there is only one
matching XBRL value, than expressions (1.2)-(1.3) are equivalent to the regular rel-

ative difference.

Analyzing discrepancies between Compustat and XBRL 10-K filings

The aim of this study is to compare numbers in Compustat to the original numbers
in 10-K filings. We utilize XBRL technology to extract numbers from XBRL 10-

K reports and compare them to Compustat numbers. There is a risk that some
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discrepancies obtained by this method are the products of XBRL reporting. To
address this issue, we examine the causes of each discrepancy through both automated
and manual procedures.

Ideally, the numbers as reported in XBRL 10-K filing should precisely match the
numbers as reported in the corresponding plain-text 10-K filings. However, XBRL 10-
K reports may (and do) contain errors.>* For example, values may be reported without
minus signs making them positive when they should be negative, or values may be
reported in thousands of dollars instead of dollars. These will result in discrepancies.
In addition, XBRL reports may use extensions or non-conventional dimensions to
describe the data items. The algorithm we utilize to extract and match XBRL data
may not be able to capture such XBRL items. If this happens, then in the best case
it will result in a missing XBRL value in our matched data. In the worst case, it will
result in a difference in the matched data set since the algorithm could have extracted
other XBRL items that could sometimes match a Compustat variable (i.e., mapping
candidates, see §1.4.2).

Given that discrepancies between data sets may exist due to XBRL-related errors,
it is necessary to eliminate all such discrepancies from our analysis in order to assess
the true amount and magnitude of data alterations in Compustat. Fortunately, it is
possible to identify sources of most discrepancies in an automated fashion. For exam-
ple, a simple check against a Compustat value may help identify if an XBRL value
has a wrong sign. In addition to simple checks that compare data values against each
other, we employ other automated procedures described below that target specific
sources of discrepancies.

To find out whether the extraction algorithm was unable to extract the correct

value from XBRL 10-K due to the value being reported in a non-standard manner or

24. For this study, the most important errors are errors that result in wrong values of wrong XBRL
concepts. These may affect the results of our study, and are the ones that we try to eliminate.
However, there may be other errors in XBRL data that do not affect the results of our study. For
more information on 10-K XBRL quality, please see Hoffman (2013) and Boritz and No (2008).
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with an error (e.g. extension, wrong tag name, non-conventional dimensions, etc.),
we employ an algorithm that automatically scans the XBRL 10-K filing to see if any
other XBRL concept matches the Compustat value. If there is such a concept, the
algorithm reports the reason for the XBRL concept being not extracted or matched.
For example, a standard accounting item may be reported through the use of XBRL
extensions, or the item may be attributed to a different entity.

As mentioned previously, Compustat sometimes fails to update numbers after a
10-K/A with restated numbers has been filed. If the original 10-K filing was filed
using the XBRL reporting technology, it is possible to check whether a discrepancy
between Compustat and XBRL filing is due to the Compustat value being not up to
date by comparing the Compustat value to the matching XBRL values in the original,
pre-amendment 10-K filing.

Finally and most importantly, Compustat often alters original numbers reported
in corporate filings to standardize values according to Compustat’s definitions. It
would be very costly to identify such alterations using manual procedures. There-
fore, we developed an algorithm that tries to explain a difference between Compustat
and XBRL 10-K filing by searching the XBRL filing for concepts whose values could
explain the difference (up to a rounding error). Essentially, the algorithm attempts
to find the adjustments made to the original 10-K number by Compustat. The algo-
rithm first tries to find an XBRL concept in the XBRL 10-K filing that if subtracted
or added to the matching XBRL value results in no discrepancy with the Compustat
value. If no such item is found, the algorithm tries to find a combination of two
XBRL concepts and combination of subtractions/additions that would result in no
discrepancy. Finally, if no such combination was found, the algorithm will search for
a combination of three XBRL concepts and their respective combination of subtrac-
tions/additions that would result in no discrepancy. If no such ternary combination
is found, the algorithm stops.

It should be noted that although the algorithm described above is very powerful
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at explaining Compustat data standardization, it may yield a spurious combination
of complementing XBRL items - i.e., a combination that by chance results in adjust-
ments that yield no discrepancies between Compustat and XBRL items. Therefore, it
is imperative to identify such spurious combinations. For each variable, and each au-
tomatically found combination, we manually scan the adjustment and assess whether
it appears suspicious or not. For example, it is very likely that Compustat may adjust
the value of Cost of Goods Sold by adding the value of Labor and Related Expense
item; however, it is highly unlikely that Compustat will adjust the value of Cost of
Goods Sold by adding the value of Current Assets. The latter incident must be inves-
tigated manually by comparing the Compustat’s value to the plain-text 10-K’s value.
Although we do apply our best judgment when deciding whether an automatically-
found adjustment should be investigated manually or not, this is still an ambiguous
process, and hence is a limitation of our study. On the other hand, we are interested
only in those spurious combinations that help us eliminate XBRL errors, and we have
found that the number of XBRL errors among these is very low (around 0% to 3%,
depending on the variable).?

The automated procedures described below are able to explain most of discrepan-
cies. However, some discrepancies still require manual checks in order to be explained.
In those cases, we compare values found in Compustat and XBRL 10-Ks to the values
in the corresponding plain-text 10-K reports. It should be noted that the nature of
discrepancies that require manual checks is such that it may be impossible to iden-
tify the exact reasons for having these discrepancies. However, we can usually tell
whether the discrepancy is due to adjustment/error in Compustat, XBRL 10-K re-
port, or both. Overall, we have manually compared 1,800 discrepancy items (around

1.5% of all items) using original 10-K filings.

25. Most XBRL errors are usually found by applying other checks described in the section that
targets XBRL errors specifically.
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1.5 Analysis and results

For our analysis of differences between Compustat and 10-K numbers, we have chosen
30 top-level Compustat variables that are commonly reported by financial entities and
frequently used in accounting academic literature. For the full list of variables, their
description and descriptive statistics, please see Table A.2. Half of the analyzed
variables are Balance Sheet variables, 11 variables are Income Statement variables,
and 4 variables are Cash Flow Statement variables.

For all 30 Compustat variables we have performed the comparison procedure de-
scribed in §1.4, i.e., we have merged the Compustat and XBRL 10-K data, created
mappings between data sets, calculated differences and analyzed discrepancies. Most
variable values reported in Compustat have been successfully matched to the appro-
priate XBRL 10-K values. However, some have not — this is mostly due to filers not
reporting numbers that can be calculated from other 10-K numbers, or due to the use
of XBRL extension concepts. It is interesting to note from Table A.2 that in some
cases Compustat did not report values that were present in the 10-Ks (e.g., Compu-
stat did not report Total Assets values for 42 companies in our sample). Although,
the number of missing observations is not very large, this is a cause for concern.

As mentioned in §1.4.2, we were able to reconcile most of the discrepancies be-
tween Compustat and 10-K data. This indicates that the main reason for the differ-
ences between Compustat and 10-K reports are the data standardization procedures

implemented by Compustat.

1.5.1 Discrepancy analysis by variables

Table A.3 reports the amount and magnitude of discrepancies for each Compus-
tat variable. As mentioned before, we define a discrepancy as a difference between

Compustat and XBRL 10-K numbers that exceeds a rounding error. Many of these
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discrepancies would be considered “material” from the audit perspective. To mea-
sure the amount of “material” discrepancies we adopt a rule-of-thumb definition of
material discrepancies — a Balance Sheet discrepancy is “material” if it exceeds 0.5%
of Total Assets, an Income Statement discrepancy is “material” if it exceeds 5% of
Net Income, and a Cash Flow Statement discrepancy is “material” if it exceeds 5% of
reporting periods’ change in Cash amount. These definitions of materiality are com-
monly used in practice and were utilized in Boritz and No (2013). In addition, we
consider an Earnings per Share discrepancies to be material if the absolute difference
between data set values exceeds 5 cents.?8

Although out sample size is quite large, it does not cover the whole population of
available observations in Compustat. Assuming that our sample is representative of
the population, for each variable, we estimate the minimum percentage of “material”
discrepancies between Compustat and 10-K in the population (with 99% probabil-
ity) based on the amount of material discrepancy observations in our sample. This
estimate is a lower bound of a 99% confidence interval of a one-tailed binomial test
that compares the number of material discrepancies to the number of all matched
observations for a given variable. The estimates are provided in Table A.3.

In Table A.3, we report two types of discrepancy statistics with mean, median,
and standard deviation information. The first one summarizes difference information
about the observations that resulted in discrepancies, i.e., this is descriptive statistics
of discrepancy observations. Specifically, for each discrepancy observation we calcu-
late the absolute relative difference between 10-K and Compustat values, and report
mean, median, and standard deviation of all such differences for a given accounting
variable.

The second type of descriptive statistics summarizes difference information about

all matched Compustat and XBRL 10-K observations. These statistics are meant

26. Some audit practices set the amount of materiality to the level that would change the value of
EPS by 1 cent. We decided to take a more conservative (with respect to deciding what a discrepancy
is) approach and define a discrepancy in EPS to be material if it exceeds 5 cents.
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to show the effects of discrepancy observations on the whole population of observa-
tions. We calculate (non-absolute) relative differences between all matched 10-K and
Compustat values. The mean value indicates the average relative difference between
all Compustat and XBRL 10-K matched observations with positive values indicating
that 10-K values on average are greater than Compustat values, and negative values
indicating vice versa. For each variable, we test whether there is a significant dif-
ference between Compustat and XBRL 10-K numbers by conducting non-parametric
Wilcoxon’s signed-rank test.?” The results of these tests show that values of 17 (out
of 30) variables significantly differ across Compustat and XBRL 10-K data sets (with
the significance level of at least 95%). In addition to the mean values, we also report
the median values of relative differences between Compustat and XBRL matched
population, but since median is the “middle value”, these values are equal to 0 un-
less the amount of discrepancy observations for a variable exceeds the amount of
non-discrepancy observations.

The results in Table A.3 indicate that there are significant differences between
Compustat and 10-K numbers. In addition, we would like to point out a couple of
interesting observations. Firstly, the amount of discrepancies, their magnitude, and
their overall effect on all matched observations differ by variable. High-level variables
that have simple definitions (e.g. Total Assets = all assets, Total Liabilities = all
liabilities, Net Income = all revenues - all expenses) tend to have less discrepancies
than variables that have more complex definitions (e.g. Cost of Goods Sold, or Gross

Profit).?? Since the components of more complex variables are more likely to differ

27. We do not use absolute relative differences between 10-K and Compustat for the Wilcoxon
signed-rank tests, but instead use singed (non-absolute) relative differences. This may result in
differences’ effects being statistically underestimated since opposite sign values may cancel out each
other. Using absolute relative differences would invalidate Wilcoxon signed-rank tests (as well as
t-tests) and overestimate the effecst of the differences.

28. A smaller number of discrepancies does not necessarily result in smaller magnitude or overall
effect on all matched observations.

29. A significant amount of discrepancies in Stockholder’s Equity variables is caused by Compustat
including temporary, minority, and other equity often not included by companies in their reported
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across companies, industries and time, such variables tend to be more heavily adjusted
by Compustat to fit Compustat’s variable standard definitions.

Secondly, Compustat provides two variables of Retained Earnings item that we
include in our analysis — Retained Earnings (RE) and Retained Earnings Unadjusted
(REUNA). The difference is that the former is the Compustat-adjusted (standardized)
version of Retained Earnings, while the latter should represent numbers as reported
in 10-Ks. From Table A.3, it follows that the values of REUNA do differ from XBRL
10-K values in 1.36% of all cases (with 0.76% being material). However, more striking
is the fact that RE values differ from XBRL 10-K values in 72.21% of all cases (with
37.94% being material). Such a large difference between REUNA and RE variables
cannot be an artifact of the XBRL reporting or due to limitations of our study (as
discussed in §1.4.2) since REUNA values have matched XBRL 10-K values in 98.64%
of all cases. This example indicates that Compustat heavily adjusts original numbers
reported in 10-Ks.

Finally, as already mentioned, for most variables, relative differences between
Compustat and XBRL 10-K numbers are statistically significant. This means that
the distributions of accounting variables in Compustat and 10-Ks are significantly
different which may have a profound effect on the results of accounting studies that
utilize the Compustat data set. This, in particular, is true for studies that utilize
linear regression models since these models are very sensitive to changes in data
distribution (Klein and Rossin 1999).

Our results agree with the results of Tallapally, Luehlfing, and Motha (2011);
Tallapally, Luehlfing, and Motha (2012), that compared Cost of Goods Sold and Sales
values between Compustat and XBRL 10-K filings for a sample of 27 companies, in
a sense that the Cost of Goods Sold item tends to have more discrepancies and with
larger magnitudes than the Sales item. Some of our results differ slightly from the

results of Boritz and No (2013). For example, we do not find Total Liabilities to be

Stockholder’s Equity.
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significantly different across the data sets (both in number and magnitude), but we
do find higher rate of discrepancies for the Receivables item (17% versus 7.3%). The
differences are most likely due to us studying a much larger sample and have only

one observation per company in our sample.

1.5.2 Discrepancy analysis by industry, size, and XBRL

adoption phase

Company characteristics such as industry and size affect what is reported in 10-K
statements and how it is reported. The same items will often have different contexts
for different companies — e.g., things that comprise Cost of Goods Sold item of a
retailing company are very different from components of Cost of Goods Sold item of
a manufacturing company. Therefore, it is important to study the amount and mag-
nitude of discrepancies with regard to different characteristics of companies. In our
study, we look at three company characteristics: industry, size and XBRL adoption
phase.

There are several ways to define company industry (e.g., using SIC or NAICS
codes). In this study, we utilize Fama/French 12-industry classification system (Fama
and French 1997) since it has been used extensively in accounting literature. In
addition, there are only 12 industry groups (as opposed to 75 groups defined by 2-
digit SIC codes) that facilitates better delivery and comprehension of results. Please
refer to Table A.1 for the list and description of Fama/French 12 industries.

As has been mentioned previously, in 2009 the SEC adopted Interactive Data
to Improve Financial Reporting final rules that mandated U.S. GAAP companies to
report their financial statements with XBRL. The mandate was implemented in three
phases. Phase one with the deadline in June 2009 required all large accelerated filers
with worldwide public common equity float above $5 billion to adopt XBRL. Phase

2 with the deadline in June 2010 required all other large accelerated filers to adopt
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XBRL. Finally, Phase 3 with the deadline in June 2011 required all U.S. GAAP
companies to file with XBRL. We use the XBRL adoption phase as a characteristic
of a company — XBRL adoption phase can be thought as one measure of company
size.?Y In addition, we use company revenues as yet another, more refined, measure
of size.

We provide discrepancy information by industry and XBRL adoption phase in
Tables A.4 and A.5. Table A.4 reports the number of observations, percentage of
discrepancy observations, and the median relative value of discrepancies for each

Compustat variable and Fama/French industry.3!

In Table A.5, we report discrep-
ancy statistics by industry and by XBRL adoption phase. These statistics include
information about discrepancy counts as well as mean and median relative discrep-
ancies.

Results in Tables A.4 and A.5 suggest that there is a difference in amounts and
magnitude of discrepancies for different variables, industries, and sizes. To test it
formally, we utilize analysis of deviance of discrepancy observations. Analysis of
deviance is similar to analysis of variance (ANOVA) and analysis of covariance (AN-
COVA), but can be used for generalized linear models (instead of linear regressions).
It allows to test whether there are significant differences between the values of a re-
sponse variable for different groups (categorical variables) while controlling for other
continuous variables.

We utilize analysis of deviance in two ways. First, we test whether the propen-
sity of an observation to be a discrepancy is related to company characteristics. In

other words, we assume that an observation can have two states — either being a

discrepancy or not — and test whether the value of that state depends on company

30. XBRL adoption phase has also been shown to reduce the number of errors (Du, Vasarhelyi, and
Zheng 2013; Boritz and No 2013) and extensions (Debreceny et al. 2011) in XBRL filings. However,
these effects are less relevant to the analysis in our study since we do not consider extension elements
and attempt to remove all XBRL-related errors from the sample.

31. We report median values instead of means because the former are less biased statistics, i.e.
they are not influenced by extreme values of discrepancies as much as the mean values.
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characteristics. Since the response variable in this case is a state of an observation,
this type of an analysis is an observation-level analysis. Second, we test whether
company characteristics are related to the number of discrepancies for that company.
For each company in the matched data set, we calculate the ratio of the number of
discrepancy observations to the number of all matched observations for that com-
pany. The resulting ratio is a number between 0 and 1, with 0 indicating that there
are no discrepancy observations for that company, and 1 indicating that all matched
observations are discrepancies. Then, we test whether such company ratios depend
on company characteristics. This kind of analysis is a company-level analysis since
discrepancy ratios are defined at the company level. Because response variables’ val-
ues are not unbounded real numbers — in the first case it is a binary variable, and in
the second case it is a number between 0 and 1 — we cannot assume that they are
normally distributed and utilize ANCOVA. However, we can use generalized linear
models (logistic regressions) and analysis of deviance instead.

Analysis of deviance results are presented in Table A.6. In addition to studying
how company characteristics are related to discrepancies, we also study how these
characteristics are related to material discrepancies. Hence, Table A.6 shows results
both when we use discrepancy notion for our response variables and when we use
material discrepancy notion. In addition to company characteristics, in our analysis,
we include the type of statement where the accounting variables are reported since
Tables A.3 and A.4 suggest that the amount and magnitude of discrepancies also
depend on the type of a variable.

Panel A of the table contains the results of deviance analyses that study the
effects of revenue (size), industry, phase, variable statement, and various interactions
between industry, phase, and variable statement. These results are fairly consistent
and show that effects of all characteristics and their interactions are statistically
significant except for the XBRL adoption phase in all cases, and revenue in one

case. Also, the interaction terms are less significant (or not statistically significant
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in some cases) when only material discrepancies are considered. Although the main
effect of XBRL adoption phase is not statistically significant, its interactions with
other characteristics are. The insignificance of the main effect can be explained by
XBRL adoption phase being related to revenue since they both represent the size

32 To avoid this effect, we conduct another set of analyses with the

of a company.
XBRL adoption phase variable removed. The results are reported in Panel B of
Table A.6, and show that all characteristics and their interactions are statistically
significant, including revenue. Moreover, the significance of company revenue has
increased drastically.

The interaction effect between industry and statement type categorical variables
is significant according to Panel B in Table A.6. This indicates that the effects of
independent variables may depend on the level of the other independent variables. To
understand this relationship, we analyze so-called “simple main effects” — we study the
effects of independent variables when the level of other categorical variables is fixed.
In other words, we partition observations into groups by one categorical variable
(either by industry or statement type), and then, for each group, run the analysis of
deviance to study the effect of the other independent variables.

The results for simple main effects analysis are reported in Table A.7.3% Panel A of
this Table describes the effects of revenue and statement type for different industries.
In particular, we observe that the amount of discrepancies significantly depends on
the statement type except for the case of the telecommunications industry. Also,
the effect of revenue size on discrepancy amounts is only significant for the financial

industry. Panel B reports the effects of revenue size and industry type for each type

32. This was confirmed by the results of an additional ANOVA test (not reported in the study) that
showed the differences between mean values of revenues across different XBRL adoption phases being
99.9% significant. Phase 1 companies had on average the largest revenues, and phase 3 companies
the smallest.

33. Table A.7 contains results when all discrepancies (both material and not) are included in
the dependent variables. We do not report separate results when only material discrepancies are
considered since they are qualitatively the same.
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of considered financial statements. The results indicate that industry significantly
affects the amount of discrepancies for all financial statements. In addition, only for
Balance Sheet variables, the amount of discrepancies depends on the revenue size.
Overall, the results show that the type of variable, industry, size, and XBRL
adoption phase are related to the amount and magnitude of discrepancies. The results
are slightly different from Boritz and No (2013) in a sense that we do find industry
to be a significant factor (with significance levels of 99.9% in all cases) as related to

the number of discrepancies.

1.6 Summary

In this study, we conduct the first large-scale comparison of Compustat and 10-K
accounting numbers to study the amount and magnitude of data alterations in the
Compustat North America Fundamentals Annual data set. Specifically, we compare
30 accounting items commonly used in the accounting literature for more than 5,000 of
domestic U.S. GAAP companies for the period from October 1, 2011, to September
30, 2012. This large-scale comparison has become possible due to SEC-mandated
XBRL financial reporting for all U.S. GAAP filers as of June 2011, since XBRL
allows to extract data from XBRL 10-K filings in an automated fashion

We have developed and presented a methodology to compare Compustat numbers
to XBRL numbers. This methodology addresses issues of data extraction, merging,
variable mapping, difference calculation, automated error detection, and discrepancy
analysis. It not only provides insights about data alterations in the Compustat data
set, but also is a useful tool for accounting researchers to validate their data.

We find that Compustat significantly alters numbers reported in the 10-K filings.
Specifically, we find that Compustat values of 17 (out of 30) variables significantly
differ from values reported in 10-K filings. Variables that usually do not have sig-

nificant number of discrepancies are variables that have fairly simple definitions (e.g.
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Total Assets, Total Liabilities or Net Income). Variables that have more complex
definitions (e.g. Cost of Goods Sold or Gross Profit) are more likely to differ across
the data sets.

We also find that the type of statement where variable is reported and company
characteristics such as industry, size, and XBRL adoption phase are related to the
amount and magnitude of discrepancies. Specifically, we show that the amount of
discrepancies is significantly affected by 1) type of financial statement (except for the
telecommunications industry), 2) industry regardless of financial statement type, and
3) revenue size for the financial industry or balance sheet items.

Our findings suggest that data alterations in Compustat are non-trivial, and may
potentially influence results of accounting studies that utilize the Compustat data
set. Compustat itself argues that its data standardization practices improve data
comparability across companies. More research and discussion are needed on this

matter.
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Chapter 2

Does Compustat data standardization improve
bankruptcy prediction models?

2.1 Introduction

In Chapter 1 of this dissertation, we show that there are significant differences be-
tween accounting numbers in Compustat and the original 10-K reports. Most of these
differences are caused by data standardization practices implemented in Compustat,
i.e., accounting numbers are adjusted to match Compustat standard definitions of
accounting concepts. According to S&P Capital 1Q’s website, “[s/tandardized data
ensures that you have consistent and comparable data across companies, industries
and business cycles, and offers a solid foundation for your rigorous analysis.” ' How-
ever, the benefits of Compustat data standardization have been rarely questioned
in accounting research community. o the best of our knowledge, there has been no
academic research that measures the impact of Compustat’s data standardization.
Stone (1968) is one of the few and most likely the first study to warn researchers
about potential problems with Compustat’s standardized reporting. Specifically,
Stone (1968) argues that data standardization “creates the appearance of absolute
uniformity” while it is “in reality, a uniformity of classification only, and not a uni-
formity of accounting methods.” This concern is also echoed by Financial Accounting
Standards Board (FASB) in Statement of Financial Accounting Concepts No. 2 that

warns against using standardized charts of accounts — “[t/hat kind of uniformity may

1. http://www.compustat.com, as of January 13, 2014.
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even adversely affect comparability of information if it conceals real differences between
enterprises.” > In addition, FASB cautions against “over-improving” data compara-
bility since “[i/mproving comparability may destroy or weaken relevance or reliability
if, to secure comparability between two measures, one of them has to be obtained by
a method yielding less relevant or less reliable information.”? In fact, FASB’s Gener-
ally Accepted Accounting Principles (GAAP) provide firms with a certain amount of
discretion when reporting accounting numbers.

In this Chapter, we examine whether data standardization practices implemented
in Compustat result in enhanced data, and as a consequence, improved empirical mod-
els that rely on the data provided in Compustat. Specifically, we study whether two
popular models of financial distress, Altman’s Z Score (Altman 1968) and Ohlson’s O
Score (Ohlson 1980), are enhanced by standardized numbers provided in Compustat
as compared to the original numbers of 10-K reports.

We choose Atlman’s and Ohlson’s bankruptcy prediction models for a number of
reasons. Firstly, bankruptcy prediction is an important problem for market partic-
ipants that is directly related to their decisions. Bankruptcy prediction models are
not only used to predict bankruptcies, but also to measure the overall financial health
of firms. Secondly, Altman’s and Ohlson’s models are often used in both contempo-
rary research and practice despite them being more than 30 years old. Thirdly, both
models rely on fundamental financial accounting ratios and numbers (e.g., measures
of liquidity, leverage, profitability, debt financing, etc.) that are important charac-
teristics of business performance. Fourthly, the models are easy to replicate with
little ambiguity with respect to sample and variable selection. Fifthly, in order to
be accurate, these models require a significant level of comparability and consistency
of accounting numbers across firms and time. The objective of data standardization

is to enhance comparability and consistency, and thus improve the accuracy of the

2. Statement of Financial Accounting Concepts No. 2, §116.
3. See footnote 2.
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models. Hence these models are valid test subjects to study the consequences of data
standardization. Finally, it is possible to statistically infer whether either of these
models perform better if Compustat’s standardized data is used instead of the original
10-K data.

We find that Compustat data standardization not only yields no improvements
for these models, but also has a negative impact on Altman’s model predictive ability.
Specifically we show that using Compustat standardized numbers instead of original
10-K numbers yields 1) significantly different outputs of both Altman’s and Ohlson’s
models, 2) significantly worse predictive accuracy of Altman’s model (up to 8.56%),
and 3) no significant improvement for Ohlson’s model.

In this essay, we first test whether the choice of input, original 10-K or standard-
ized Compustat data, results in significant differences in models’ outputs. Then, we
replicate Ohlson’s and Altman’s studies using recent cases of bankruptcy events, and
compare how well the models discriminate between bankrupt and non-bankrupt ob-
servations when different data sources are used. Finally, we study how the choice of
data affects the predictive ability of the cross-validated models, i.e., models that are
estimated and tested on different observation sets. In addition, we perform a number
of robustness checks to validate our findings.

Our contributions to the literature are as follows. Firstly, we first empirically
study the effects of data standardization in Compustat, and empirically show that
numbers in the original 10-K reports are at least as good, or better measures of fi-
nancial health of a firm as standardized numbers in Compustat are. An important
implication of this finding is that accounting researchers need to re-evaluate the bene-
fits of using standardized data, and perhaps consider alternative sources of data such
as SEC’s eXtensible Business Reporting Language (XBRL) data. Secondly, we con-
tribute to the literature that studies discrepancies between Compustat and other data
sets (including 10-K reports) by demonstrating that significant differences across data

sets may lead to significant differences in performances of empirical models derived
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from these data sets. Thirdly, we show that bankruptcy prediction models that use
accounting data may be enhanced by using 10-K data instead of Compustat’s data.
This Chapter is organized as follows. In Section 2.2, we describe data and method-
ology we use to conduct the study. In Section 2.3, we present results of our multi-step
analysis, and perform a number of robustness checks to validate the main results. Sec-
tion 2.4 summarizes the Chapter. Brief overviews of Altman’s 1968 and Ohlson’s 1980

models as well as supplemental tables are provided in Appendix B.

2.2 Data and methodology

2.2.1 Model comparison methodology

To study the effects of Compustat’s data standardization on Altman’s 1968 and
Ohlson’s 1980 models, we first test if using Compustat data results in different scores
and models as compared to the original 10-K numbers.* We create two matched data
samples - one based on Compustat numbers, and the other based on the original
10-K numbers. We use these data samples to perform three comparison procedures
for each model (see Figure 2.1). The procedures are meant to test for any differences
resulting from using Compustat standardized versus original 10-K data with regards
to three dimensions: output, explanatory power, and predictive ability.

The first procedure is a simple test of whether standardized Compustat data yield
significantly different model scores as compared to 10-K data. We apply the original
models to our matched sample of Compustat and 10-K numbers to calculate two
sets of scores for each model. We test these two sets of scores for any statistically
significant difference.

The second procedure is meant to test the explanatory power of models con-

structed using Compustat and 10-K numbers. For this test, we use the recent cases

4. Brief summaries of Altman’s and Ohlson’s models are provided in the Appendix.
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Figure 2.1: Comparison methodology.
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of bankruptcies (from 2009 - 2013) to replicate the studies of Altman (Altman 1968)
and Ohlson (Ohlson 1980) by re-estimating the models with recent data. For the
re-estimated Altman and Ohlson models, we then compare accuracies and fit of the
model built using original 10-K numbers to the model built using Compustat stan-
dardized data. We use the same data sample that was used to re-estimate a model
to calculate the accuracy and fit of the model.

Finally, we compare the predictive accuracy of the models built using Compustat
standardized numbers and 10-K original numbers. The procedure described in the
previous paragraph cannot be used to draw inference about predictive abilities of the
models, since the same data is used to both estimate and test the models (Joy and
Tollefson 1975; Mensah 1984). We use a popular method of comparing predictive
accuracy of classification models, k-fold stratified cross validated paired ¢ test (see
Dietterich (1998) for more details), to compare the predictive ability of the mod-
els. This test uses both resampling and cross-validation methods to create several
instances of the models whose predictive accuracy rates are then compared by a t
test. We also impose stratified cross-validation since observations used to estimate
the Ohlson model are highly unbalanced (i.e., the number of bankrupt observations

is much smaller than the number of non-bankrupt ones).

2.2.2 Data extraction and sample selection

We use the methodology developed in Chapter 1 of this dissertation to retrieve the
original accounting numbers from 10-K reports and match them to the appropriate
Compustat Fundamentals Annual numbers.> This methodology leverages eXtensible
Business Reporting Language (XBRL), a formal language of communicating business

information that was mandated by the U.S. Securities and Exchange Commission

5. We use Compustat Fundamentals Annual data as opposed to other versions of Compustat data,
such as Compustat Point-in-Time, since this dataset is used most frequently in research, including
cases when Altman’s and Ohlson’s models are utilized.
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(SEC) to be used in preparing quarterly and annual reports by all U.S. GAAP com-
panies as of June 2011.

The usage of XBRL 10-K reports limits our samples to the years of 2009 - 2013.
Furthermore, not all accounting numbers can be directly extracted from XBRL re-
ports due to various XBRL-related reasons.® In addition, Compustat data set does
not include all public companies and may have missing values needed to calculate
financial ratios for Altman’s and Ohlson’s models. Also, Altman’s model requires
market data that we extract from CRSP database. Although, Ohlson’s model does
not require market data, Ohlson (1980) considers only companies that are traded on
stock exchanges or over-the-counter markets. Hence, we exclude company-year obser-
vations that could not be matched to CRSP market data. Finally, following Ohlson
(1980), we do not include companies classified as utilities, transportation companies,
and financial service companies.”

Since we study the effects of Compustat’s data standardization, it is important to
remove other causes of number discrepancies between Compustat and 10-K data. The
methodology developed in Chapter 1 allows us to find XBRL data errors, Compus-
tat data errors, and reconcile discrepancies between 10-K and Compustat data, i.e.,
identify adjustments made by Compustat to obtain standardized data. We remove
all erroneous data (both XBRL- and Compustat-related) and data that cannot be
reconciled from our samples. As a consequence, any discrepancies in our data sam-
ples are most likely due to data standardization. The only exception is the sample of
bankrupt observations described in the following section. We used the original, not
restated 10-K forms to extract 10-K data related to bankrupt observations. For some
of these observations, Compustat has updated the numbers with the restated ones.

Hence, Compustat numbers would be not only standardized in those cases, but also

6. See Section 1.4 for more details.

7. Altman (1968) considers only manufacturing companies. We repeat our analysis using manu-
facturing companies alone as a robustness check.
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restated. We expect this to give a slight advantage to Compustat data over 10-K
data since the restated numbers should be more accurate.

Overall, our sample contains 5,015 observations with accounting ratios needed for
Altman’s model, and 3,449 observations that can be used in Ohlson’s model. The
number of observations for Ohlson’s model is smaller since Ohlson’s model requires
values for Net Income for both the current and the previous fiscal years. Tables B.1
and B.2 report descriptive statistics for these samples.

Compustat database is biased toward large companies. As a result the average
Total Assets in the Altman sample are around 4 billion U.S. dollars and the me-
dian Total Assets are 706 million U.S. dollars. Companies in the Ohlson’s sample
are slightly larger with the mean assets of about 4.7B$ and the median assets of
approximately 787MS$.

For both models, there is a significant difference in Total Liabilities between 10-
K and Compustat data. This appears to be unexpected given the findings of prior
literature (Boritz and No 2013; Chychyla and Kogan 2013). However, after manually
analyzing these differences, we found that they are caused by us using non-restated 10-
K numbers for bankrupt observations that are restated in Compustat Fundamentals
Annual database.

For Altman’s sample, there is a significant difference in Retained Earnings and
Earnings before Interest and Tax between Compustat and 10-K data. For Ohlson’s
sample, there is a significant difference in Operating Income before Depreciation be-
tween the two data sets. We discuss how those differences impact the accounting

ratios scores of the bankruptcy models in the results section.

Selecting bankrupt and non-bankrupt observations

To assess the explanatory power and predictive ability of the models, we need to
re-estimate the original models with company-year observations that are known to

be either bankrupt or non-bankrupt.
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The reason behind this is two-fold. Firstly, the original models are more than 30
years old and may require calibration. Secondly and more importantly, the original
models have been estimated on different data than ours — Altman (1968) used data
from Moody’s Manual, and Ohlson (1980) used a combination of 10-K reports and
Compustat data.® Since we want to test the impact of data sources on the models,
we have to be consistent with respect to the data we use to estimate and train the
models. E.g., in the case of Compustat, we use Compustat data to estimate the
model, and Compustat data to test the model.”

We adopt Ohlson’s (1980) definition of bankruptcy, that of any indication of
bankruptcy proceedings. We also use his measure of time to bankruptcy which is
the time from the date a pre-bankruptcy 10-K report was filed to the date of the
bankruptcy event.

Public companies are required to notify shareholders about the bankruptcy or re-
ceivership events by filing an 8-K form that includes a special Item 1.03, Bankruptcy
or Receivership, that describes the event. To create a sample of bankrupt observa-
tions, we first identify all 8-K forms that include bankruptcy or receivership item
that were filed after January 1, 2009. We then manually read the selected 8-K forms
to confirm a bankruptcy event, establish the type of the bankruptcy (e.g., Chap-
ter 11, 7, etc.), and record the date of the bankruptcy event. For all bankruptcy
events, we identify related 10-K forms with filing dates preceding the bankruptcy
event. We consider only pre-bankruptcy original 10-K reports filed after January
1, 2009 since, as mentioned previously, XBRL 10-K reports we use to extract 10-K
data became available in 2009, and it is important to avoid any out-of-the-sample
year-specific biases that may affect financial positions of companies. In addition, as

already mentioned, we exclude certain industries and require a presence of matching

8. According to Collins and O’Connor (1978), data definitions in Moody’s Manual differ from the
ones of Compustat.

9. We do compare the predictive accuracies of the original (not re-estimated) models on our
sample as robustness check.
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data in both Compustat and CRSP data sets. We extract accounting numbers from
the 10-K reports meeting these criteria (either manually, or if possible using XBRL),
and use them to create 10-K version of the bankrupt observations. The matching
Compustat company-year observations provide standardized data for those bankrupt
observations.

We limit our analysis only to bankrupt observations whose time period from the
release of the 10-K form to the bankruptcy event is not greater than 2 years (730
days). This would make our study consistent with both Altman (1968) and Ohlson
(1980). Our final sample of bankrupt observations consists of 146 company-year ob-
servations with 85 10-K forms released within one year prior to bankruptcy events,
and 61 10-Ks released between one and two years prior to bankruptcy events. Chap-
ter 11 filings amount to 128 bankruptcy observations, Chapter 7 filings amount to
9 bankruptcy observations, and other types of bankruptcy filings amount to the re-
maining 9 observations. It is worth noting that 45 companies in our bankrupt sample
are associated with two observations, i.e., we include two 10-Ks of the same company
in our bankrupt sample if the time lag between the earlier 10-K and the bankruptcy
event is not greater than 2 years. This bankrupt sample is used in re-estimation
of both Altman’s and Ohlson’s models. The descriptive statistics for the bankrupt
sample are provided in Table B.3.

Not surprisingly, on average bankrupt company-year observations have smaller
assets compared to the whole samples of matched observations — the mean Total
Assets equals to 1043.5M$, and the median to 363.828M$. Interestingly, the average
Total Liabilities are of the same size as the average Total Assets — 1043.5M$. In
contrast, the average Total Liabilities for the whole matched samples are a little
above half of the Total Assets (see Tables B.1 and B.2). This effect is exploited in
Ohlson’s model by one of the model’s ratios — Total Liabilities over Total Assets.

Similarly to the whole matched samples, there are significant differences in Total

Liabilities, Retained Earnings, Operating Income after Depreciation, and Earnings
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before Interest and Taxes between 10-K and Compustat data. In addition, there is a
significant difference in Total Assets. Similarly to the difference in Total Liabilities,
the difference in Total Assets is caused by us using the original, non-restated 10-K
numbers for bankrupt observations while Compustat Fundamentals Annual dataset
comprises of restated standardized numbers. As mentioned previously, we believe
that restated numbers should give a slight edge to Compustat numbers over 10-K
numbers due to increased data reliability.

We also create a sample of “non-bankrupt” observations. We consider a company-
year observation to be non-bankrupt if the company 1) was not identified as bankrupt
in the previous step, and 2) filed a 10-K form on or after June 1, 2012. The latter re-
quirement is meant to provide additional assurance that the company has not incurred
bankruptcy-related event. While we use the same sample of bankrupt observations
for both Altman’s and Ohlson’s model, we use different samples of non-bankrupt
firms following approaches used in Altman (1968) and Ohlson (1980). We explain the
sample selection procedures of non-bankrupt companies for each model separately

below.

Non-bankrupt sample used to re-estimate Altman’s 1968 model

The Altman’s 1968 Z Score model uses Multiple Discriminant Analysis (MDA) to cre-
ate a linear discriminant model that tries to best separate two group of observations,
bankrupt and non-bankrupt. The linear discriminant is based on the financial ratios
that Altman empirically found to yield the best predictions of bankruptcy. Altman
(1968) matches all bankrupt company-year observations with similar in terms of in-
dustry and size non-bankrupt observations. Altman (1968) uses the matched sample
of bankrupt and non-bankrupt observations to estimate his MDA model.

We follow Altman (1968) by assigning each bankrupt company-year observation

in our sample to a non-bankrupt observation on a stratified random basis with respect
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to company size, industry, and reporting fiscal year.'® This gives us a sample of 292
observations that comprises of 146 bankrupt observations, and matching 146 non-
bankrupt observations. The descriptive statistics of non-bankrupt observations are
reported in Table B.4.

Our non-bankrupt sample consists of larger companies than the non-bankrupt
one, but not as large as the ones in the sample with all matched observations (see
Table B.1). This is the result of our random stratified matching procedure and a
larger likelihood for smaller companies to experience a bankruptcy event. In fact, the
non-bankrupt observations used in Altman (1968) are also larger in terms of company
size than the respective bankrupt observations.

There is only one variable with statistically significant differences between Com-
pustat and 10-K data — Retained earnings. Earnings before Interest and Tax is not
statistically significantly different across two sources of data for this sample (as op-

posed to us finding significant differences in all other considered samples).

Non-bankrupt sample used to re-estimate Ohlson’s 1980 model

Unlike Altman’s Z Score, Ohlson’s 1980 model uses logistic regression to estimate a
model for predicting financial distress. The logistic model has slightly weaker mathe-
matical assumptions than MDA model making it preferable to MDA in many applica-
tions. The output of Ohlson’s logistic model are O scores. Unlike Altman’s Z scores,
O scores can be converted to probabilities of firms experiencing financial distress
within a certain period of time. In other words, O scores have precise probabilistic
meanings that are easy to interpret.

Ohlson (1980) uses the whole population of non-bankrupt companies as opposed

to a matched sample. Although this is a more realistic approach, it also results in a

10. We performed matching in the following way. First, for every company-year observation, we
identified all non-bankrupt company-year observations in the same industry and the same fiscal year
as the bankrupt observation. Then we chose five observations whose Total Assets were the closest
to one of the bankrupt observation. Finally, we randomly choose an observation out of those five.
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highly unbalanced data with number of non-bankrupt observations being significantly
greater than the number of bankrupt observations. Unbalanced data is known to have
a significant negative impact on performance of statistical models estimated using
such data (He and Garcia 2009). A trivial model that predicts everything to be non-
bankrupt may have as good accuracy as a statistical model based on an unbalanced
data. In fact, Ohlson’s 1980 model that predicts bankruptcy within one year achieves
accuracy of 96.12%. Olson compares this accuracy to the 91.15% accuracy achieved by
a trivial model (Ohlson 1980, p. 120). However, 91.15% accuracy of the trivial model
is a typo — the correct number is 95.15% (calculated as 2,058/(105+2,058)x100%).
Hence, Ohlson’s model resulted in less than 1% accuracy improvement over the trivial
one.

We follow Ohlson (1980) by first identifying all observations in our matched sample
that can be classified as non-bankrupt according to the definition in §2.2.2. We then
randomly keep only one observation per company. Our non-bankrupt sample consists
of 2,525 observations, and the descriptive statistics of this sample is reported in Table
B.5.

Our non-bankrupt sample for Ohlson’s model consists of larger-size companies
than the ones in the bankrupt sample, but not as large as in the whole matched
sample. The mean and median Total Assets are approximately 2.9B$ and 360MS$.
As in the case of the whole matched sample, we find significant differences in Total
Liabilities and Operating Income after Depreciation between 10-K and Compustat

data sets.

2.3 Results

2.3.1 Differences in scores

First, we test whether using Compustat numbers instead of 10-K numbers would

yield any significant differences in output scores of the original Altman’s and Ohlson’s
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model. The descriptive statistics for the samples used for these tests, and the out-
comes of these tests are given in Tables B.1 (for Altman’s model) and B.2 (for Ohlson’s

model).

Altman’s model

For the Altman’s original 1968 model, we find that the choice of data source (10-K
or Compustat) significantly impacts the scores produced by the model (with 99%
confidence level). On average, Altman’s Z scores produced by the 10-K model are
larger by 0.009. Altman’s Z score is a continuous number that is hard to interpret.
For that reason, Altman (1968) defines three discrimination zones by creating two
cutoff score values, 1.81 and 2.99. Scores below 1.81 indicate bankrupt zone, between
1.81 and 2.99 indicate “gray” zone, and above 2.99 indicate non-bankrupt zone. We
test whether there are any differences in Altman’s discrimination zones between the
two sources of data. We code each score as either 1, 2, or 3 based on its value with
1 indicating bankrupt zone, 2 indicating “gray” zone, and 3 indicating non-bankrupt
zone. We then use Wilcoxon signed-rank test to compare the codes between the two
sources of data.!! We find that there are significant differences in discrimination zones
yielded by 10-K and Compustat data (see Table B.1). Note that the test involving
discrimination zones is much stronger than the test involving Z scores since different
Z scores may result in the same discrimination zones.

Out of five ratios used in the original Altman’s model, three, X5 (Retained Earn-
ings/Total Assets), X3 (Earnings before Interest and Tax/Total Assets), and X,
(Market Value of Equity/Total Liabilities), are significantly different across 10-K and
Compustat datasets. Difference in X, is caused by difference in Total Liabilities due

to us using original 10-K numbers for bankrupt observations that are not restated as

11. In this case, Wilcoxon’s signed-rank test is more appropriate than the regular ¢ test. Wilcoxon’s
signed-rank test does not require variables to be numerical, but only ordinal (i.e., given two different
zones of discrimination, the test only requires to know what zone is “greater”, but not how much
one zone is “greater” than the other).
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explained above. Removing all observations in our sample with non-zero differences in
Total Liabilities between 10-K and Compustat datasets does not change the results.

Differences in X5 and X3 are due to significant differences in Retained Earnings
and Earnings before Interest and Tax (EBIT) across the datasets. In fact, substituting
Compustat values of Retained Earnings and EBIT with 10-K values of these variables
would result in no significant difference between Z scores. However, substituting only
one of the Compustat variables with the matching 10-K variable would not make the

difference in Z scores and discrimination zones statistically insignificant.

Ohlson’s model

We also find significant differences between O scores of Ohlson’s 1980 model generated
using 10-K and Compustat data. Ohlson (1980) constructs three logistic models to
predict bankruptcy: 1) within one year of the 10-K filing date, 2) in the second
year after the 10-K filing date, and 3) within two years of the 10-K filing date. In
Table B.2 we label these models “Model 17, “Model 2”7, and “Model 37, respectively.
We calculate O scores for all three models, and compare them. “Raw” O scores do
not carry much meaning; hence we convert them first to probabilities of companies
experiencing bankruptcy events in the future, and then to predicted classes with 1
indicating predicted future bankruptcy, and 0 otherwise. We compare the resulting
bankruptcy classifications. For all models, we find significant differences in O scores
and predicted classes between 10-K and Compustat data.

Differences in Total Liabilities and Operating Income after Depreciation (OIADP)
between 10-K and Compustat data yield significant differences in the respective ver-
sions of TLTA and FUTL variables in Ohlson’s model (see Table B.2). As in the
case of Altman’s model, removing all observations from the sample that result in
non-zero differences in Total Liabilities does not change the results. However, replac-
ing Compustat values of OIADP with the matching 10-K values yields no significant

differences in O scores and predicted classes. This means that differences in OIADP
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values drive differences in output of Ohlson’s model between 10-K and Compustat

datasets.

2.3.2 Differences in explanatory power

As detailed in the previous section, for both original Altman’s and Ohlson’s models,
we find statistically significant differences in models’ output if Compustat standard-
ized data is used instead of the original 10-K data. These results suggest that the
effects of Compustat data standardization are non-trivial, and cannot be ignored. We
examine whether these effects are positive or negative with regards to bankruptcy pre-
diction in this and the next section.

In this section, we compare the explanatory power of the Altman’s and Ohlson’s
models derived using 10-K and Compustat data. Both Altman’s and Ohlson’s models
were derived from different data sets than ours more than 30 years ago. Hence, it
is essential to re-estimate both models using our data. We use the recent cases of
bankruptcies to re-estimate the model and compare their accuracy and overall fit. In
other words, we compare how much variance with respect to bankruptcy predictions
are explained by a model based on standardized Compustat numbers as opposed to
a model based on the original 10-K numbers.

For both Altman’s and Ohlson’s model, we estimate three types of predictive
models — one that predicts bankruptcy in the first year after the release of the 10-K
form, one that predicts bankruptcy in the second year after the release of the 10-K
form, and one that predicts bankruptcy within two years after the 10-K form was
released. To estimate these three types of models, we accordingly create three groups
of bankrupt observations based on the amount of time between the release of 10-
K form and the bankruptcy event. Then we merge those three groups of bankrupt
observations with the non-bankrupt ones to obtain the samples used to re-estimate
the models. For Altman’s model, observations in each bankrupt group are merged

with the same number of matched non-bankrupt observations. For Ohlson’s model,
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observations in each bankrupt group are merged with all non-bankrupt observations
(i.e., non-bankrupt observations are the same for all bankrupt groups).

Accuracy and fit metrics of the re-estimated models are reported in Tables 2.1
and 2.2 for Altman’s and Ohlson’s models respectively. In those tables, Accuracy is
the overall accuracy of a model, and Trivial Accuracy is the accuracy of a model that
predicts everything to be non-bankrupt, i.e., it is the percentage of non-bankrupt
observations in a sample. Trivial model accuracies are used as baselines for the
predictive abilities of re-estimated models. We test whether a model accuracy is
significantly different from the accuracy of the trivial model by performing a one-sided
binomial test with null hypothesis being that accuracies are the same, and alternative
being that model’s accuracy is greater than the trivial one. P-values of those tests are
reported as P-value (Acc. > Trivial). We also measure Cohen’s Kappa between the
predicted observation classes (i.e., bankrupt or non-bankrupt) and the actual ones.
Cohen’s Kappa is a measure of agreement between two classifications. Its values
are between 0 and 1, with 0 value meaning total disagreement and 1 meaning total
agreement. Values of Cohen’s Kappa are adjusted for both sample class bias (i.e.,
number of bankrupt versus non-bankrupt observations in a sample) and model class
bias (i.e., the overall propensity of a model to assign a particular class to random
observation). For Altman’s model we report the P-value of the F likelihood ratio
test as P(> F). This test indicates the significance of the discriminatory power of
Altman’s model. Similarly, for Ohlson’s model we report P-value of the x? likelihood

ratio test as P(> x?). We also report the value of pseudo R? for the Ohlson’s model.

Altman’s model

We find that all re-estimated Altman’s models yield significantly better accuracies
on the fitted samples than the respective trivial models that predict everything to be
non-bankrupt. For all three types of models that predict bankrupt events in the first,

second, and first two years after the release of 10-K statements, 10-K data based
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10-K models Compustat models

Metrics o o

within two within two

first year  second year first year  second year

years years
Accuracy 84.71% 75.41% 78.42% 79.41% 72.95% 76.03%
Trivial Accuracy 50.00% 50.00% 50.00% 50.00% 50.00% 50.00%
P-value (Acc. > Trivial) 0.000 0.000 0.000 0.000 0.000 0.000
Cohen’s Kappa 0.694 0.508 0.568 0.588 0.459 0.521
P(> F) 0.000 0.000 0.000 0.000 0.000 0.000

Table 2.1: Accuracy and fit statistics of fitted Altman’s models.

models have higher accuracies than similar Compustat data based models. These
results also hold with respect to Cohen’s Kappa measure.

The largest difference between 10-K and Compustat models is in the case of
bankruptcy prediction within the first year of 10-K release — 10-K model achieved
84.71% accuracy that is 5.29% higher than 79.11% accuracy of the respective Com-
pustat model. Both 10-K and Compustat are less accurate in the case of bankruptcy
prediction in the second year after the 10-K release, their respective accuracies are
75.41% and 72.95%. This is not surprising given longer time horizon. Accuracies of
the models that try to predict bankruptcy within two years are somewhere in the
middle.

The differences in the accuracies of fitted models are mainly driven by differences
in values of the Earnings before Interest and Tax (EBIT) variable. Replacing Compu-
stat values of EBIT with the appropriate 10-K values would make Compustat models
to be on par with 10-K models. This result may seem to suggest that standardized
EBIT variable may negatively impact the prediction performance of some statisti-
cal models. However, it would be a mistake to draw any substantive conclusions
based on the outcomes of fitted models alone since these models are estimated on the
same sample they are tested on. For this reason, we test the predictive ability of the

cross-validated models in the following section.
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10-K models Compustat models

Metrics o o

within two within two

first year  second year first year  second year

years years
Accuracy 96.70% 97.64% 94.61% 96.70% 97.64% 94.57%
Trivial Accuracy 96.74% 97.64% 94.53% 96.74% 97.64% 94.53%
P-value (Acc. > Trivial) 0.572 0.533 0.454 0.572 0.533 0.488
Cohen’s Kappa 0.097 0.000 0.121 0.097 0.000 0.120
P(> x?) 0.000 0.000 0.000 0.000 0.000 0.000
Pseudo R2 0.264 0.134 0.235 0.258 0.146 0.240

Table 2.2: Accuracy and fit statistics of fitted Ohlson’s models.

Ohlson’s model

For Ohlson’s fitted models we find that 1) the accuracies of Compustat and 10-K
models are very similar, and that 2) the accuracies of all models are not statistically
different from the respective trivial models that predict all observations to be non-
bankrupt. The latter finding is indicated by large P-values of the one-sided binomial
tests reported as P-value (Acc. > Trivial) in Table 2.2. This is the result of using
very unbalanced samples to estimate logistic regression models — in the best scenario
the percentage of bankrupt observations is only 5.47%. This fact is also captured by
low values of Cohen’s Kappa despite the high values of model accuracies — Cohen’s
measure of agreement is adjusted by class biases both in a sample and a model. In
fact, models that predict bankruptcy in the second year after the release of 10-K
are identical to the trivial models. Note that unlike in the case of Altman’s model,
the overall best accuracy is achieved when predicting bankruptcy in the second year
after the 10-K release since the ratio of non-bankrupt to bankrupt observations is the
largest in this case — 0.9764; for Altman’s model, this ratio is always 0.5 regardless
of the time horizon since we keep only those non-bankrupt observations that match
the bankrupt ones.

As already discussed in Section 2.2.2, unbalanced data samples tend to result

in weak statistical models (2009), and the fitted models estimated in Ohlson’s 1980
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study yielded marginally better accuracies than their respective non-trivial models.
Interestingly, model that predicts bankruptcy in the second year (Model 2) in Ohlson
(1980) is not statistically more accurate than the trivial model as measured by the
binomial test. In our case such 10-K and Compustat models are equivalent to their

trivial models.

2.3.3 Differences in predictive ability

In the previous section, we tested whether Compustat standardized numbers increase
the explanatory power of Altman’s and Ohlson’s models. However, these tests do
no tell us whether Compustat’s data standardization has any effects on predictive
ability of the models since we used the same sample to estimate the models and make
predictions. To assess the predictive ability of the re-estimated models we utilize a
common cross-validation technique, k-fold cross-validated paired t test (see Dietterich
(1998) for details). Specifically, we perform a 10-fold cross-validated comparison 10
times and compare the differences in predictive accuracies using a ¢ test. In addition
to t test, we utilize a more powerful Wilcoxon signed-rank test as a robustness check.
In addition, we employ the stratified sampling technique to randomly select folds for
cross-validation. This allows us to more accurately compare models when the sample
is unbalanced which is the case for the Ohlson’s model (only 5.4% of the sample are
bankrupt observations).

The results of the cross-validated comparison of predicative accuracy of both Alt-
man’s and Ohlson’s model are summarized in Table 2.3. For both Altman’s and
Ohlson’s models, Table 2.3 reports mean prediction accuracies of cross-validated mod-
els that predict bankruptcy in the first year, second year, and within two years of the
release of 10-K form. It also reports prediction accuracies of trivial models, models
that predict everything to be non-bankrupt. As mentioned previously, trivial models
are very accurate for samples used to estimate Ohlson’s model since those samples

are highly unbalanced. In addition, Table 2.3 reports differences in accuracy means
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Mean

prediction Altman’s model Ohlson’s model

accuracy first year  second year  within two years  first year second year  within two years
10-K 80.87% 75.01% 77.10% 96.82% 97.66% 94.70%
Compustat 72.31% 71.08% 71.57% 96.83% 97.66% 94.71%
Trivial 50.00% 50.00% 50.00% 96.74% 97.64% 94.53%
Difference 8.56% 3.93% 5.53% —0.01 % 0.00% —0.01 %
P-value 0.000 0.001 0.000 0.158 0.566 0.320

Table 2.3: Predictive accuracies of cross-validated Altman’s and Ohlson’s models.

of 10-K and Compustat based models, and the p-values of the mean difference t tests.
The p-values of similar Wilcoxon signed-rank tests were of the same magnitudes as

the ones reported in Table 2.3.

Altman’s model

In all cases, we find that predictive accuracies of Altman’s 10-K data based mod-
els significantly outperform similar models based on standardized Compustat data.
The largest gap between the models’ mean predictive accuracies is in the case of
bankruptcy prediction within one year — the models based on the original 10-K data
are on average 80.87% accurate in their predictions, while the models that use Com-
pustat standardized data are on average 72.31% accurate. The difference of more
than 8% is economically non-trivial suggesting that standardized data may not only
fail to enhance prediction models, but actually worsen them.

The models that predict bankruptcy in the second year after the release of 10-
K form are less accurate than the models that predict bankruptcy within one year
for obvious reasons. Mean accuracies of the models that predict bankruptcy within
two years are somewhere in between. Yet, in all cases 10-K data based models are
superior. This seems to agree with our previous finding that 10-K data yield higher
explanatory power of Altman’s model than standardized Compustat data.

We empirically find that replacing Compustat values of Earnings before Interest
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and Tax (EBIT) with 10-K values of the same variable would enhance Compustat
models, and make all the differences in mean predictive accuracies of cross-validated
models insignificant. Hence, in case of predictive accuracy of Altman’s model, EBIT

is the main driver of models’ performance differences.

Ohlson’s model

Results for Ohlson’s model are very similar to the ones from the previous section.
Specifically, we find no statistically significant differences between 10-K and Com-
pustat models. Although the accuracies of those models are fairly high (94.7% and
above), they are not better than accuracies of the trivial models that predict every-
thing to be non-bankrupt. As discussed previously, such poor performance is probably
due to highly unbalanced data set. For this reason, in the next section we perform
a robustness check with the Ohlson’s model being estimated on the matched sample

we use to re-estimate Altman’s model.

2.3.4 Drivers of differences

Overall, our findings indicate that Compustat data standardization does not improve
bankruptcy prediction models. Moreover, it has a significantly negative impact on
the predictive accuracy of Altman’s model. We also find that outputs of the models
differ significantly if Compustat data is used instead of the original 10-K data. In this
section we report common adjustments made by Compustat to variables that drive
differences between 10-K and Compustat data.

In Section 2.3.1 we find that differences in Retained Earnings and Earnings Before
Interest and Tax (EBIT) cause the differences in output of Altman’s model, and
differences in Operating Income after Depreciation (OIADP) cause the differences in
output of Ohlson’s model. Significant differences in predictive accuracies of Altman’s

model are caused by differences in EBIT variable.
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In case of Retained Earnings, among 4,056 discrepancies, around 85% are caused
by inclusion of accumulated other comprehensive income (loss), 4% are caused by
inclusion of equity attributable to non-controlling interest, and 3% are caused by
including foreign currency translation adjustment in Compustat data.

Differences in OIADP are driven by many items: out of all 1,980 discrepancies,
around 9% are related to restructuring charges, 9% to impairment of assets and
goodwill, and 8% to business acquisitions, 2.2% to asset disposition, etc. A few other
studies find similar items to drive differences between GAAP and pro forma earnings
(e.g., Bradshaw and Sloan 2002, p. 44; Bowen, Davis, and Matsumoto 2005, p. 1021;
Elliott 2006, p.121).

Differences in EBIT are similar to the ones in OIADP. In addition, items like
other operating income, severance cost, advertising expense, litigation costs, etc. con-
tribute to the differences in EBIT. Interestingly, Compustat does not fully include
non-operating income into its definition of EBIT. According to Compustat’s manual,
EBIT is equal to “Sales - Net (SALE) minus Cost of Goods Sold (COGS) minus Sell-
ing, General & Administrative Expense (XSGA) minus Depreciation/Amortization
(DP)”. EBIT is a non-GAAP measure, but it is often used in literature and practice.
We used its common definition as a sum of Operating Income and Non-operating
Income (e.g., see Bodie, Kane, and Marcus (2008)) for the 10-K version of the vari-
able.!? As a robustness check, we apply similar definition to Compustat’s data and
re-evaluate the predictive ability of Compustat based models; the results do not

change (see Section 2.3.5).

12. We also exclude Interest Expense from Non-operating Income if it was a part of it.
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Mean

prediction Altman’s model Ohlson’s model

accuracy first year  second year  within two years  first year second year  within two years
10-K 76.47% 74.59% 75.68% 82.18% 82.79% 77.76%
Compustat 75.29% 72.13% 73.97% 82.41% 83.02% 78.14%
Trivial 50.00% 50.00% 50.00% 96.74% 97.64% 94.53%
Difference 1.08% 2.46% 1.71% -0.23 % -0.23 % —0.38 %
P-value 0.790 0.614 0.549 0.758 0.753 0.640

Table 2.4: Predictive accuracies of the original Altman’s and Ohlson’s models.

2.3.5 Robustness checks

Our main results indicate that Compustat standardized data yield no improvements
for original Altman’s 1968 and Ohlson’s 1980 bankruptcy prediction models. More-
over, in the case of Altman’s model, Compustat standardized data seem to have a
negative impact on the model performance. We perform additional robustness check

detailed below to confirm our findings.

Assessing predictive accuracies of original (not re-estimated) Altman’s and

Ohlson’s model

To asses both the explanatory power and predictive ability, we re-estimate both
Altman’s and Ohlson’s model on the recent 2009-2013 data using recent cases of
bankruptcies. As mentioned in Section 2.2.2, we do this because the original models
1) are more than 30 years old and likely need to be updated, and 2) were estimated
using different data sources than ours that does not allow us to rigorously test whether
Compustat data standardization improves models or not. However, as a robustness
check, we asses and compare the predictive accuracies of the original models on our
10-K and Compustat samples. Note, that we do not need to cross-validate the models
because the original models were estimated on different samples. However, we do test
for significant differences in accuracies using binomial test.

The results are reported in Table 2.4. The results tend to agree with our main
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Mean prediction

accuracy first year  second year  within two years
10-K 78.44% 79.33% 79.57%
Compustat 78.75% 78.91% 79.85%
Trivial 50.00% 50.00% 50.00%
Difference —0.31 % 0.41% —0.28 %
P-value 0.401 0.511 0.284

Table 2.5: Predictive accuracies of cross-validated Ohlson’s model estimated on the matched
sample.

finding that Altman’s model predicts better if 10-K numbers are used instead of Com-
pustat standardized numbers, although the differences in accuracies are not as large
as in the case of cross-validated models and not statistically significant. Interestingly,
original Altman’s model yields higher accuracies than cross-validated re-estimated
model if applied to Compustat data set, but not better than fitted model. Atlman’s
10-K cross-validated re-estimated models achieve higher accuracies than the original
Altman’s model.

For Ohlson’s model, 10-K models perform slightly (less than 0.4%) worse; however
both Compustat and 10-K models are much worse than trivial models that predict

everything to be non-bankrupt.

Re-estimating Ohlson’s model on the matched sample

We find that Ohlson’s re-estimated models do not achieve better accuracies than
trivial models that predict everything to be non-bankrupt. The reason for that is
the highly unbalanced sample we use to replicate Ohlson’s model. This may be also
be the reason why we find no significant differences between Compustat and 10-K
Ohlson’s models. Therefore, we re-estimate Ohlson’s model on the matched sample
we use to re-estimate Altman’s model to check whether it will result in any significant

difference between Compustat and 10-K versions of the model.
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The predictive accuracies of the re-estimated cross-validated Ohlson’s models are
reported in Table 2.5. As previously, we find no statistically significant differences be-
tween 10-K and Compustat based models. However, the models are better than their
trivial counterparts. The Ohlson’s model also seems to yield better accuracies than
Altman’s model on the matched sample (except in the case of bankruptcy prediction

within the first year of 10-K release).

Re-estimating Altman’s model on the sample with manufacturers only

Altman (1968) developed Z score model for manufacturing firms only. Score mod-
els for private and non-manufacturing companies were developed later (see Altman
(2000)). In all our samples we have included firms other than manufacturers (although
we did exclude utilities, transportation companies, and financial service companies
following Ohlson (1980)). This may have had a negative impact on the predictive abil-
ity of Altman’s model. We exclude non-manufacturing companies from our matched
sample and re-estimate Altman’s model on the resulting sample.

The reduced sample contains 41 bankrupt observations one year prior to
bankruptcy, and 32 bankrupt observations two years prior to bankruptcy. The num-
ber of non-bankrupt observations matches the number of the bankrupt ones. Because
of the smaller sample size we perform 5-fold cross validated comparison (as opposed
to 10-fold) 10 times to assess whether difference in accuracies between 10-K and
Compustat models are significant.'® The results are reported in Table 2.6.

The results are consistent with our previous findings. In all cases, we find that
Atlman’s models based on 10-K numbers outperform respective models based on
Compustat standardized numbers. It seems that including non-manufacturing com-
panies did not have any negative impact on the models’ accuracies since excluding
them did not yield any improvement. Moreover, the models estimated on the reduced

sample are weaker.

13. The results still hold if we use 10-fold cross validation.
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Mean prediction

accuracy first year  second year — within two years
10-K 70.00% 67.33% 68.33%
Compustat 65.50% 64.50% 64.67%
Trivial 50.00% 50.00% 50.00%
Difference 4.50% 2.83% 3.66%
P-value 0.000 0.008 0.007

Table 2.6: Predictive accuracies of cross-validated Altman’s models estimated on the
matched sample of manufacturing companies.

We also re-estimate Ohlson’s model on the sample that comprises of manufacturers

only. The results do not change.

Recalculating Compustat’s Earnings Before Interest and Tax for Altman’s

model

To re-estimate values of the Altman’s model, we need values of Earnings before Inter-
est and Tax that is a non-GAAP measure. As mentioned previously, we defined EBIT
as a sum of Operating and Non-Operating Income with interest being removed. Ac-
cording to Compustat’s online manual, the definition of EBIT in Compustat is “Sales
- Net (SALE) minus Cost of Goods Sold (COGS) minus Selling, General & Admin-
istrative Expense (XSGA) minus Depreciation/Amortization (DP)”. To test whether
different definitions of non-GAAP EBIT measure drive our results, we recalculate
Compustat’s EBIT according to our definition of EBIT, and use this variable to

1.1 We compare this alternative

re-estimate Compustat’s version of Altman’s mode
Compustat’s model to the 10-K model in terms of predictive ability. The results are
reported in Table 2.7.

The results do not change if Compustat’s definition of EBIT is matched to the

one we use in our 10-K sample. Note, that mean prediction accuracies of 10-K models

14. We calculate this alternative value of Compustat’s EBIT as OIADP+NOPI-XINT.
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Mean prediction

accuracy first year  second year  within two years
10-K 80.44% 74.83% 77.11%
Compustat 71.25% 72.08% 70.68%
Trivial 50.00% 50.00% 50.00%
Difference 9.19% 2.75% 6.43%
P-value 0.000 0.006 0.000

Table 2.7: Predictive accuracies of cross-validated Altman’s models with an alternative
definition of Compustat’s EBIT variable.

are slightly different than in Table 2.3 since the cross-validation technique we employ

involves random selection of samples used to estimate and test models.

2.4 Summary

S&P Capital 1Q’s Compustat reports standardized accounting numbers that are dif-
ferent from the original numbers in 10-K reports. This essay is the first study to
empirically measure the benefits of Compustat’s data standardization by examin-
ing whether Compustat’s data improves two popular bankruptcy prediction models,
Altman’s 1968 Z score and Ohlson’s 1980 O score.

Our main finding is that Compustat’s data standardization not only yields no
significant improvements for Altman’s and Ohlson’s model, but also has significantly
negative impact on Altman’s predictive accuracy. This result is supported by several
robustness checks. We also find that using Compustat’s standardized data instead of
the original 10-K data results in significantly different outputs of both Ohlson’s and
Altman’s models.

Our findings suggest that Compustat’s standardized data may not be better than
the original 10-K data for the purposes of bankruptcy prediction. However, more
research is needed to evaluate the effects of Compustat data standardization on other

important accounting models.
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Chapter 3

Exploration and exploitation in deciding what to
audit

3.1 Introduction

In this Chapter, we consider the problem of identifying irregular transactions from
a set of observed transactions in a multi-period auditing setting. A transaction is
wrreqular, if it is either fraudulent or erroneous. Since there is a cost to investigating
a transaction by the internal audit, it would be prohibitively expensive to investigate
each and every transaction to find the irregular ones. Therefore, an audit team may
investigate only a portion of transactions. A question, then, arises: what transactions
to investigate? The traditional audit approach is to choose a random sample from the
population of all transactions. However, this approach tends to ignore the information
that is known about transactions. A better approach is to ask internal audit to look
into transactions that are identified as suspicious. Such reduction of the problem
may be effective only if one has a good method of identifying suspicious transactions.
In a perfect case each irregular transaction would be marked as suspicious and each
suspicious transaction would be irregular with a probability close to one.

In the era of technology and computers, it seems natural to apply analytical models
to identify suspicious transactions. It is cheap, fast, and, possibly, accurate. Clearly,
this approach cannot be worse than the traditional audit approach of choosing a
random sample from the population of all transactions. The question is how good it is.
We believe that the answer depends not only on what analytical models are utilized,

but also on how they are utilized. In this essay, we find that some popular analytical
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models (e.g., logistic regression) may not perform that well in the auditing setting if
applied traditionally. This finding is due to the peculiarities of the auditing setting
itself which will be discussed below. However, by changing the way the analytical
models are used we were able to achieve much better performance.

In this essay, we create a framework for analyitical models that can be used to
identify suspicious transactions. We argue that most standard analytical models may
not be well-suited for auditing and have to be modified in order to achieve better
performance.

In order for a statistical model to be effective it should be able to learn from its
past predictions. Just as people gain experience, a statistical model updates itself
over time by taking into account how accurate it was with its previous predictions.
Such information about the past predictions and their successes and failures is often
called a feedback.

In the auditing problem of identifying irregular transactions, a model receives
feedback only from the past transactions that were identified by it as suspicious and
were investigated. In other words, the model uses only the information from one part
of previous transactions to update itself, the part which was found to be suspicious.
This is called the problem of one-sided feedback, and it may introduce significant
difficulties for a statistical model, or even make it useless. The pitfall here is that the
model will be biased towards certain types of irregular transactions seen so far and
may fail to recognize irregular transactions of other types. Since the audit data is
usually unbalanced, i.e., the number of irregular transactions is relatively small, such
bias may be very significant.

In this essay, we try to mitigate the one-sided feedback problem by building a
framework on top of the statistical model that changes the way the model learns
and predicts. The idea behind this framework is to separate the prediction and in-
vestigation decision problems. The framework trades offs the immediate gain from

investigating the most suspicious and important transactions for developing a more



5

accurate statistical model by spending audit resources to learn more about the under-
lying distribution of the transactional data. A more accurate statistical model may
yield more benefits in the future. The proposed framework is tested on the real-world
data. The results show a significant boost in performance for some statistical models.

The remainder of this Chapter is laid out as follows. In Section 3.2, we for-
malize a typical setting of auditing transactions when analytical models are used to
decide which transactions to investigate. We introduce the framework to increase
performance of analytical models in Section 3.3. Section 3.4 demonstrates how this
framework can be applied to some statistical models. We test one implementation of
the framework on the real-world data and discuss the results in Section 3.5. Finally,

we summarize the Chapter in Section 3.6.

3.2 Auditing transactions with analytical models

Let us briefly discuss a setting where transactions are audited with the help of ana-
lytical models. We assume that audit is conducted periodically where periods can be
rather short (e.g., days, hours, etc.). In each period, business generates transactions
that are to be audited at the end of that period. Due to limited audit staff and time,
internal audit can investigate only a certain number of transactions. Thus, the main
problem is to choose which transactions to investigate.

In the traditional audit approach, the choice of which transactions to investigate
is random. However, it might not be the most effective approach: it does not take into
account any known information about the transactions (e.g. amount, date and time,
product or service, payee, payer, etc...). Instead, we consider a more modern setting
where a set of analytical models is used to choose which transactions to investigate.
Such models may analyze the information about the current transactions and use the
information about previous transactions and audit investigations to predict whether a

particular transactions is irregular or not. Moreover, once a new transaction has been
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investigated and its true nature (i.e., irregular or non-irregular) has been revealed, a
model may learn from this information and update its beliefs to make better predic-
tions in the future. Such models are known as statistical models. Examples of these
are regression models, decision trees, neural networks, support vector machines, and
many more. We will assume that in such an audit setting at least one statistical
model is utilized.

Transactions are represented by a set of attributes that are believed to reasonably
describe them. For each transaction one can observe the values of its attributes.
Each transaction may result in a certain amount loss if being irregular. An example
of such loss may be a dollar amount of a check, a cost of restating financial statements
due to errors in accounts’ balances, etc. We assume that a business can estimate an
amount of a loss that can result if the transaction is indeed irregular. This is a
reasonable assumption: based on the past history business can produce an estimate
of the loss that may result if the transaction is irregular. Given a transaction, a set
of analytical models decides which transactions to investigate based on its attributes
and available past information. Of course, the number of such decisions depends on
the available resources of the internal audit for that particular period. The internal
audit investigates each chosen transaction, and finds it as either irregular or not.
If the transaction was found to be irregular, we assume that the business bears no
loss associated with it, since it has been handled in a timely manner. We assume
that transactions are independent in a sense that an investigation of a particular
transaction would result in revealing only its true nature, i.e., not the nature of other
transactions. Hence, investigation of an irregular transaction will prevent the loss
associated only with this particular transaction. Finally, learning models utilize all
this information to update their beliefs.

Let us formally describe this setting. In each period ¢, transactions are generated
by various business activities. Let a:i € X be the jth transaction in period ¢ with

X indicating the set of transactional attributes, and let N; be the total number of
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An audit setting

for periodt=1,2,... do

1. Business generates transactions X; = {z}, 22, ..., 2}, where

] eX,j=1...N,.

2. Business estimates potential losses L, = {I},12,..., 1"}, where
leR,j=1...N,.

3. Auditor announces audit capacity ¢; € R.

4. Analytical models choose transactions to investigate

I = {2 2, .. xzkt} C X,

such that k; < ¢;.

5. Auditor investigates transactions I; and reveals their true nature

Y, = {yi',y2, ... yzkt}, where y € {0,1},7 =1... k.

6. Statistical (learning) models store information about X, Ly, I;, and Y;

for the future decisions.

end for

Figure 3.1: A formal representation of a setting for auditing transactions with ana-
lytical models.

transactions in that period. Therefore, in period ¢ business produces a set X; =
{zl, 22, ... ,xivt} of transactions. For simplicity, we will assume that this and other
related sets are ordered.! For each transaction 27, business produces an estimate & €
R of the potential loss that may occur if transaction 7 is irregular. Hence, for a set of
transactions X, there is a corresponding set of estimated losses L, = {I},12,... I)}.
At the end of each period, the internal audit decides on the number of transactions
that may be investigated in that period. We will call this number an audit capacity,
and denote it as ¢;. Once all transactions has been observed and the audit capacity for
the period has been determined, a set of analytical model decides which transactions
to investigate based on the available current and past information. In other words,

analytical models choose a subset of transactions I, = {z!' 2, ... xikt} from the set

X, of all transactions in that period, such that the number of chosen transactions

1. One can always create a one-to-one mapping between related sets to achieve the same effect.
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k; does not exceed the available audit capacity c¢; in that period. After that, the
internal audit investigates the chosen transactions I;, and for each such transaction
2} reveals its true nature i’ € {0,1}, with i = 1 indicating that transaction z} is
irregular, and y;” = 0 that it is not. Therefore, for the set I, = {zi', 2%, . .. xikt} of
transactions chosen to be investigated, the audit team generates a set of their true
labels Y; = {yi*, y?, . .. yzkt} This setting is summarized in Figure 3.1.

The benefits from auditing transactions depends not only on whether the audit
team was able to identify irregular transactions, but also on what irregular trans-
actions were identified. For example, identifying an irregular transaction that may
result in a loss of $100 may not be as good as identifying an irregular transaction that
may result in $1000. Therefore, we assume that for every transaction x{, a certain
utility is derived when the transaction is investigated. Let u(-) be a utility function
that for every transaction x{ gives its utility u(x{ ). A straightforward example of such
utility function is a function that for every transaction gives the dollar amount of loss
associated with the transaction, i.e., u(xi ) = y1J. Note that if « is not irregular, the
latter function will be equal to 0 since the transaction does not result in a loss. The
objective is to maximize the total utility across all periods.

The audit utility for period t is the sum of utilities of transactions that were

investigated in period t, i.e., it is equal to
ke A
UL) = ulxy). (3.1)
j=1

Here U(-) is the set function that for every possible set I, C X, of transactions
chosen to be investigated, outputs the corresponding audit utility. Then, the total

audit utility for the first T periods is equal to

Ur(Dy, Iy, ... Ip) = > Uy(L;) = Zzu(miﬂ'). (3.2)
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Now we can define the problem of auditing transactions as

maximize Ur(Iy, Iz, ..., I7)
subject to I; C X;, t=1,...,T (3.3)

’[t|§Ct, tzl,,T

3.3 The exploration and exploitation framework for improv-

ing analytical models

In previous section we discussed a general setting for auditing transactions with an-
alytical models. Figure 3.1 list six steps that have to be taken in each period in such
a setting. Steps 1-3, and 4 are somewhat idiosyncratic with respect to a business
and an audit team. In this essay, we concentrate more on step 4 — analytical models
deciding which transactions to investigate — and on the related step 6 — statistical
models updating themselves with the new information.

Let us discuss what qualities are desirable for a set of analytical models used to
decide which transactions to investigate. Firstly, statistical models should be able to
learn from previous information, and update themselves to achieve better performance
in the future. Secondly, all of the available audit capacity in each period should be
used effectively. Thirdly, transactions that may result in higher losses should have
a priority when deciding whether they are suspicious or not. Finally, the analytical
models should be able to learn more about the underlying distribution of transactional
attributes in order to find new types of irregularities, or change their bias towards the
known ones. Achieving these qualities is not an easy task due to one-sided feedback
presence in the auditing setting, i.e., only the true nature of investigated transactions
is revealed; the analytical models learn nothing about transactions that were not
found suspicious.

The reader may have noticed that the described above qualities of analytical

models are not well aligned with each other. There is a conflict between the need
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to investigate the transactions that may result in the highest losses and the need to
learn more about the intrinsic distribution of the transactional attributes. Therefore,
there has to be a trade-off between these two objectives. This is known as the ez-
ploration/exploitation trade-off. This problem was primarily studied for multi-armed
bandit problems (Berry and Fristedt 1985; Robbins 1952; Auer, Cesa-Bianchi, and
Fischer 2002). Techniques to achieve a good balance of exploration and exploitation
were also applied in other areas such as reinforcement learning (Sutton and Barto
1998) and evolutionary programming (Holland 1992). In our setting, exploration
refers to forcing a statistical model to mark some transaction as suspicious (even if
the model does not find them suspicious at all) in order to learn more about the un-
derlying distribution of the transactional attributes and, thus, avoid potential bias.
Too much exploration may lead to model yielding too many false suspicious trans-
actions (suspicious transactions that are not irregular). The other side of the coin
is exploitation, which refers to allowing the model to choose those transactions to
investigate that are expected to yield the highest loss. The goal is to strike a fine
balance between exploration and exploitation.

A high-level representation of the proposed framework is shown in Figure 3.2.
An input to analytical models is the information about the current transactions (i.e.,
transactions, their attributes and estimated losses in the current period) as well as
the information about past transactions (transactions, attributes, estimated losses,
investigated transactions and their true nature, etc. in the previous periods). An
output from the analytical models are transactions that have to be investigated. These
transactions are then investigated by the audit team that reveals their true nature.
The information about investigated transactions and their true nature is a valuable
feedback used by analytical models in the later periods. Analytical models themselves
are divided into three categories: preprocessing models, exploitation models, and
exploration models.

Preprocessing models are utilized before exploitation and exploration models.
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| t Information about current transactions.
npu
P Information about past transactions.

Feedback

S Filter transactions.
Preprocessing Merge related transactions.
Models Determine the balance between
@ exploration and exploitation stages.

) S Choose transactions to investigate
Analytical Exploitation that would yield highest benefits in
Models Models the current period.

. Choose transactions to investigate
Exploration that would yield better performance
Models of statistical models, thus yielding

higher benefits in future.

Transactions to investigate

Audit Investigate transactions chosen by
Team analytical models.

Output < True nature of the investigated transactions

Figure 3.2: The exploration and exploitation framework for improving analytical
models.

This models are used to filter transactions (e.g. remove all transactions with an
estimated loss being less than $100), merge transactions (e.g., merge split payments
into one transaction), and apply other user-defined rules. In other words, these mod-
els transform an initial input to facilitate the process of deciding which transactions to
investigate. Preprocessing models may also define how many investigation decisions
should be allocated for exploration and exploitation based on the available audit ca-
pacity and other information (e.g., expected losses for current transactions, accuracy
of the statistical models employed, internal audit preferences, etc.).

Exploitation models are used after the preprocessing models, but before the ex-
ploration models. The objective of the exploration models is to choose transactions to

investigate so that to obtain the highest benefits in the current period (e.g. maximize
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the total prevented loss in this period). Therefore, exploration models try to achieve
a short-term goal. Given a set of transactions, exploitation models make a portion
of decisions which transactions to investigate. The second part of such decisions are
made by exploration models.

Exploration models are the last analytical models to be utilized. Their objective
is to choose transactions to investigate that will benefit the learning of the analytical
models the most. Some transactions are more valuable than others from the models’
learning point of view. Investigating such transactions and discovering their true
nature may increase the accuracy and performance of the statistical models, thus
potentially increasing the benefits in the future. Exploration models try to choose
such transactions to be investigated. In this sense, exploration models are forward-
looking.

In the following section, we show one way how to define exploration and exploita-
tion models based on some popular statistical models, and how to utilize these models

in conjunction in the auditing setting.

3.4 How to build exploration and exploitation models

In this section, we show how to build exploration and exploitation models for the
proposed framework. Note that the method described here is one of the many possible
ways to do it.

For simplicity, we will utilize only one statistical model to build one exploration
and one exploitation model. In principle, many different statistical models may be
utilized. The proposed method can be applied to a large number of statistical models.
The only requirement for the statistical model is its ability for each transaction xi
to produce a probability estimate p{, a number between 0 and 1, of the transaction
been irregular. If this probability is close to 1, we interpret it as the statistical model

deeming the transaction to be irregular almost certainly. If it is close to 0, then
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statistical model regards the transaction to be non-irregular almost certainly.
Formally, we assume that in period ¢, there is a statistical model s; such that
for each transaction z] from the set X, = {z! 22,..., 2™} of all transactions in
period t, generates a probability estimate p] € [0,1], i.e., s;(z]) = p/. The reason
why statistical model s; depends on t is that it is updated every period with new
information available from the previous period(s). Statistical model s; will be used
as an underlying model to generate exploration and exploitation models for period t.

For this example, we will assume that the objective is to maximize the total

prevented loss across all periods. In other words, the utility function is defined as
u(x]) = yil], (3.4)

where I is the estimate of loss for transaction 27, and y/ is the true nature of z, with
yi = 1 indicating that xi is irregular, and yf = 0 meaning that it is not.

The objective function (3.2), then, is equal to

T kt
Up(I, I, Ip) =Y Y gl (3.5)

t=1 j=1
3.4.1 Trade-off between exploration and exploitation

Exploration and exploitation models have different goals that usually contradict each
other. Exploitation aims to choose transactions to investigate that will allow to reap
the highest benefits in the current period (e.g. minimize loss in the current period).
Exploration, on the other hand, tries to choose transactions to investigate that will
increase performance of the statistical models, thus, allowing to get more benefits in
the future. Exploration often means sacrificing today to gain more benefit tomorrow.

Since, in period ¢, the number of transactions that can be investigated is limited
to audit capacity ¢;, we have to decide how many investigation decisions to allocate

for exploration and exploitation. We will assume that the number of investigated
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transactions in each period is equal to the audit capacity, i.e., k; = ¢. Let ¢,
€; < ¢, be the number of decisions allocated for exploration. Let us cal this number
the exploration capacity for period t. Then the number of decisions allocated for
exploitation is equal to ¢; — €;. Therefore, in each period ¢, we have to decide on the
value of ¢;.

We propose a natural way to dynamically balance exploration and exploitation in
each period. The idea is the following: in period t, assess the accuracy of statistical
model s, 1 in period t — 1; if the accuracy is high, concentrate on exploitation in
period t, and if the accuracy is low, concentrate on exploration in period ¢ to improve
the accuracy of the model in the future periods. We consider the accuracy of the
statistical model only in the most recent (¢ — 1) period, since it reflects the current
accuracy of the statistical model, i.e., the one we are likely to get in the current ()
period.

Let Py = {pi*,,p2,,... pic_tf} be the probability estimates of the transac-
tions I,_, = {xl* 2, ... xicjl} investigated in the period t — 1, and let Y, ; =
{y Ly, .. yiﬁ{l} be the corresponding true labels of these transactions. These
probability estimates P;_; and true labels Y;_; can be considered as two distinct
probability distributions and, hence, we can compute a distance between them. Such
distance would indicate how close the probability estimates yielded by the statistical
model are to the true labels of these transactions, and, therefore, how accurate they
are. A good measure to calculate such distance is the cross-entropy. In our case it is

equal to

Ct—1

Dy (Y, P) = — Z {yiil 10%2]9;];1 +(1- yiil) log, (1 — pijq)} (3.6)

j=1

with 0 - log, 0 defined as 0.
The value of D, ;(Y, P) is an absolute measure of the statistical model accu-

racy and can take any value greater or equal than 0. It may be hard to interpret
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when choosing the exploration capacity €;. We need a benchmark value to compare
D;_1(Y, P) to. Consider a case when the statistical model has no information about
the previous transactions. In this case the best probability estimate that the model
can yield for a transaction being irregular is 0.5 (a fifty-fifty chance). The value of

the cross-entropy for this random-guessing model, therefore, would be

Ct—1
DFﬂK05%:—E:{%Qb&05+ﬂ—gﬁﬁb&05}
7= (3.7)

Ct—1 Ct—1

= — Zlog2 0.5 = —Z—l =Ciq.
i=1 i=1

That is D;_1(Y,0.5) is equal to the audit capacity in period ¢t —1. Dividing D;_1(Y, P)
by D;_1(Y,0.5) = ¢;_; yields a relative measure of the statistical model accuracy with
respect to the accuracy of the random-guessing model. If this fraction is less than 1,
then the statistical model does a better job than simply random guessing. Otherwise,
its performance is alarmingly poor. In the latter case, we would require a lot of
exploration to calibrate the statistical model and increase its future performance.
Theoretically, there is no upper bound on the possible values of D'"!(y, p), i.e., it
may be arbitrarily large. However, for our purposes, we may limit its highest value to
be twice the value of ¢;_;. To put it simply, if the statistical model’s performance is
two times worse than the random guessing, it is bad enough to impose the maximum
exploration on the model. This way, our relative measure of the statistical model’s

accuracy is equal to

min (M, 2> , (3.8)

Ci—1

and its normalized version (the one that lies between 0 and 1) would be

(3.9)

mqunwzmm(gigﬂﬁg).

Ct—1
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Determining the exploration capacity

Input: exploration rate p
1. Compute cross-entropy D;_1(Y, P) as in (3.6)

2. Compute measure of accuracy R;—1(Y, P) as in (3.9)
3. Compute the exploration capacity ¢; = |pR'™(y,p)ct]

Output: exploration capacity e

Figure 3.3: A way to calculate the exploration capacity ¢; for period t to determine
the balance between exploration and exploitation in that period.

Then, we can define the exploration capacity as

& = |pRi—1(Y, P)ey ], (3.10)

where |-] is the floor function, and p € [0,1] is the ezploration rate parameter.
The exploration rate parameter is set by the audit team, and defines the exploration
capacity’s sensitivity to the statistical model accuracy. The greater it is, the more
transactions would be reserved for exploration. In the worst case scenario, when
R,1(Y, P) = 1, the exploration rate equals the fraction of the audit capacity reserved
for exploration. For example, if R, 1(Y, P) =1 and p = 0.95, then 95% of the audit
capacity will be used for exploration in period ¢. For a brief summary of how the

exploration capacity is calculated see Figure 3.3.

3.4.2 Exploitation model

The objective of exploitation model is to reap the highest benefits in the current
period. In our case, we may assume that this objective is to minimize the total
expected loss in the current period.

Given the value of the exploration capacity €, (see previous section), the number
of investigation decisions in the exploitation stage is equal to ¢; — ¢;. Therefore

we need to choose ¢, — ¢ transactions from the set X, = {a}, 22 ..., 2} of all
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Exploitation Model

1. Define E; = {e%,e?, ...,eM} where 6{ - xi pi

2. Define By = {ef',¢f?,...,¢]™} where ¢f' > ¢f? > -+ > ¢]™.

3. Choose transactions z7', % .. xict*et to investigate.
Output: transactions z', 27> . . xict <t

Figure 3.4: The procedure of choosing transactions for exploitation.

transactions in period t. For every transaction xi € X;, the statistical model generates
a probability estimate p,{ of this transaction being irregular. Therefore, the statistical
model generates a set P, = {p}, p?,....p; t} of probability estimates in period t.

The value €/ = p! - I/ is the expected loss associated with the transaction z; under
the utilized statistical model. Let E, = {e},e?,...,el} be the set of expected losses
that corresponds to the set of transactions X,. Let E, = {el',e] ,...,eiNt} be the
ordered set of expected losses such that ej1 > ej2 > 0> eiNt. Then, indexes j,
J2y « vy Jes—e, correspond to ¢; — € transactions for which the expected losses are the
highest. Hence, the exploitation model will choose transactions ', 27> . .. ,J:gc“” to

investigate. A summary of the process is given in Figure 3.4.

3.4.3 Exploration model

The purpose of the exploration is to learn more about the underlying distribution of
the transactional attributes by investigating transactions possibly other than the ones
with the highest expected losses. Therefore, the exploration model does not decide
which transaction to investigate based on the expected loss of transactions.

The exploration model has to choose ¢; transactions out of m; = Ny — ¢; + ¢
transactions (because the exploitation model has already chosen ¢; — ¢, transactions).
In this essay, we propose to randomly choose transactions to investigate out the
remaining ones. However, the chance of a particular transaction being chosen is
proportional to how uncertain the statistical model is about its true nature. In other

words, the less certain the statistical model is about a transaction, the greater the
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Figure 3.5: Illustration of an idea to choose transactions to investigate based on the
statistical model’s uncertainty about them.

chance it will be investigated. Transactions that the statistical model is least certain
about may be very useful in exploring the underlying distribution of transactional
attributes. By learning from such observations the statistical model may enhance its
accuracy of predicting irregular transactions.

This idea is somewhat similar to the one in Lewis and Gale (1994). However, in
our case the choice of transactions is non-deterministic. Such randomization may be
more beneficial in the auditing problem where the number of irregular transactions
is relatively small.

To illustrate the above point, consider the case of a margin statistical model (such
as support vector machines) as in Figure 3.5. This margin statistical model tries to
separate observations of different classes by dividing the space of attributes with a
hyperplane. The hyperplane creates a margin as in Figure 3.5. The statistical model
assumes an observation to belong to the one class (circles) if it is on the one side of
the margin, and to belong to the other class (rectangles) if it is on the other side. The
larger the distance from the observation to the margin, the higher is the probability

of it belonging to the respective class. Therefore, the model is least certain about the



89

observations that are very close to the margin (black circles and triangles in Figure
3.5). Each time the model learns from new observations the margin is re-estimated.
Learning from the observations close to the margin may change it more drastically
than learning from the observations far from the margin. Therefore, such observations
may provide the most valuable “experience” to the model.

Let X = {af* 2%, ..., /" } be the set of transactions in period ¢ inputted to
the exploration model (all transactions except those decided to be investigated in the
exploitation stage). For each transaction xi € X", we may define the measure of
the statistical model’s uncertainty about the transaction’s true nature by calculating

how close its probability estimate p{ is to the value of 0.5%

ul = |p] — 0.5]. (3.11)

The number ui is between 0 and 0.5, with 0 indicating the highest uncertainty and

0.5 indicating the highest confidence about the true nature of transaction by the
statistical model.

Let us randomly generate m; numbers drawn from the uniform distribution on
the interval [0,1]. Let R, = {rf*,r# ..., 7™} be the set of those numbers. The
product g/ = r/ - u} is a random number between 0 and 0.5. The smaller is the
ui , the higher is the probability of g{ being close to 0 (rather than to 0.5). Choos-
ing ¢, transactions for which such products are the smallest is equivalent to ran-
domly choosing ¢; transactions out of a pool of m, transactions, in a way that the
chance of choosing a particular transaction is proportional to the degree of the sta-
tistical model’s uncertainty about it. Let Gy = {g7*, ¢{,...,g/™} be the set of all
;Ul

such products, and Gy = {g;", ¢;*,..., 9, "} be the ordered set of those products,

where ¢;* < ¢? < .- < giu ™. Then, the exploration model chooses transactions

2. In our case, the probability estimate of 0.5 represents the statistical model’s total uncertainty
about the true nature of a transaction.
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Exploration Model

1. For each 27 € X", compute the measure of uncertainty ul = |pl —0.5].

2. For each ] € X", generate a random number 7/ € [0,1] ~ 4(0, 1).

q . . .
3. Define Gy = {g/", 9¥*,..., 9, }, where g/ = uf" - r.

N [,W1 W2 Wimy w1 w2 Wmy
4. Deﬁnth_{gt 79t 55 Ot }7Wheregt Sgt Sggt :
Choose transactions x;*, x;?, ..., ;" to investigate.
Output: transactions z,*, x;%, ..., x; to investigate.

Figure 3.6: The procedure of choosing transactions for exploration.

xt xy? o ) to investigate. A summary for exploration is provided in Figure 3.6.

3.5 Empirical testing

In this section, we test the described above implementation of the proposed explo-
ration/exploitation auditing framework on the two real-world data sets and evaluate
the results. The data sets used to demonstrate the performance of the framework are:
credit card data of a large multinational bank and census data of the U.S. Census
Bureau. The first data set is of a business nature and, arguably, resembles a real
audit data in out setup. The second data set is a well-studied data utilized in many
studies (e.g. Kohavi 1996; Cohen and Singer 1999) and in the Data Mining and

Knowledge Discovery (KDD) Cup competition.

3.5.1 Maeasures for comparison

In order to compare the performance of the unmodified statistical model (which we
will call normal model for short) with the derived exploration/exploitation models we
need a benchmark. Each set of analytical models in each period outputs transactions
to be investigated, i.e., it outputs Iy, I, ..., Ir. A benchmark measure should take

these as an input and produce a number as an output that we can use to compare
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the models.

Since in Section 3.4 we assumed that the objective is to maximize the total pre-

vented loss, we will use the objective function (3.5) in our comparison:

T
Ur(Iy, 1o, ..., IT) :Z il (3.12)

This measure is an absolute measure of the prevented loss. We also would like to
have a relative measure of the prevented loss. The relative prevented loss in period t

is equal to

dlld
P(L) = PRy (3.13)
Zn 1yt ln

In the above equation, the nominator is equal to the prevented loss, and the
denominator is equal to the total loss in period t. We, then, define the mean relative

prevented loss (MRLP) for the first T' periods as
1
MRLPy = — > P (3.14)

We will also use MRLP in our testing. It is a better measure to compare the
accuracy of the analytical models than (3.12). It gives a fairer comparison of the

models’ performance across all periods.

3.5.2 Statistical models

In our testing, we use two statistical models: logistic regression, and support vector
machines (SVM) with a linear kernel. Logistic regression is a widely used statistical
model that yields probabilities of observations belonging to particular classes. SVM
is a popular classification model that originated in machine learning literature. Stan-
dard versions of SVM output only class predictions. However, Wu, Lin, and Weng
(2004); Platt (2000); Lin, Lin, and Weng (2003) develop methods for SVM to yield
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probability estimates for observations. We use LIBSVM library (Chang and Lin 2011)
implementation of SVM outputs probability estimates.

For each statistical model, we construct the appropriate exploration and exploita-
tion models as described in Section 3.4. For each exploration and exploitation model,

we report results for different values of the exploration rate; namely, for p = 0.25,

p=0.5,p=0.75and p=1.

3.5.3 Multinational bank credit card data

We first test the exploration and exploitation auditing framework using a credit card

data of a large multinational bank.

Data description

The credit card data we used in this study contains information about the bank’s
credit cards opened in 2011 and their status as of the first quarter of 2012. Each
observation indicates a rather general information about the credit card account and
its owner. The list of variables is provided in Appendix C.

To simulate an irregular transaction, we assume that an observation is irregular if
the credit card was canceled by the bank. The bank may cancel credit card because of
various reasons including fraud. We also assume that each observation carries a loss
if being irregular with the value of the loss being equal to the amount of the credit
limit associated with the account. Credit limit is an intuitive estimate for the loss
associated with a credit card. We randomly selected 500,000 observations in a way
that 1% (5,000) of these are irregular. The small percentage of irregular observations
is used to emulate the small number of irregular transactions, and therefore creates
the unbalanced data set problem.

We partitioned all 500,000 observations into 500 periods with 1,000 observations

each. We set the number of transactions that can be investigated (audit capacity) in
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Exploration/exploitation models
Normal model

p =025 p=205 p=0.75 p=1

Logistic Regression

Total prevented loss 938823 2038096 2347275 2295943 2274050
Difference 0 1099273 1408452 1357120 1335227
Linear SVM
Total prevented loss 2132940 2272404 2215005 2162068 2156688
Difference 0 139464 82065 29128 23748

Table 3.1: Credit card data testing results as measured by the total prevented loss.
The difference row indicates the difference in the prevented loss between the explo-
ration/exploitation models and the normal model. Higher values are better.

each period to 100 (10% of all transactions).

Testing results

The results of the exploration and exploitation framework testing are reported in
Tables 3.1 and 3.2.

The results show that the logistic regression model is improved a lot if the ex-
ploration and exploitation technique is utilized. The mean relative prevented loss
increased from 11.56% to 24.58% when the exploration and exploitation model was
used with the exploration coefficient parameter of p = 0.75. This translates to more
then 110% better performance of the exploration and exploitation logistic regression
model as compared to the normal logistic regression model. Also the exploration and
exploitation logistic regression model demonstrated the best results across all models
tested for the credit card data set.

The results for the SVM model are not as impressive as the ones for the logistic
regression model. The normal SVM model yields better results than the normal
logistic regression model, but the exploration and exploitation framework was able
to improve the normal SVM model only by a little — in the best case by 8% (for
p=0.25).
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Exploration/exploitation models
Normal model

p =025 p=0.5 p=07 p=1

Logistic Regression

MRPL 11.56% 21.35% 23.37% 24.58%  23.90%
Difference 0% 9.79% 11.81% 13.02%  12.34%
Linear SVM
MRPL 15.89% 17.20% 16.62% 16.26% 16.24%
Difference 0% 1.31% 0.73% 0.37% 0.35%

Table 3.2: Credit card data testing results as measured by the Mean Relative Pre-
vented Loss (MRPL) in percentage. The difference row indicates the difference in
MRLP between the exploration/exploitation models and the normal model. Higher
values are better.

It appears that the choice of the exploration coefficient parameter, p, is important.
Moreover, the optimal value seems to be model-dependent. For the logistic regression,
the optimal exploration coefficient value is 0.75, while for the SVM the optimal value
is 0.25 for the credit card data set.

It is interesting to see how the performance of the exploration and exploitation
model changes over time. Figure C.1 in Appendix C shows the period performance
differences, as measured by the relative prevented loss measure, between the logistic
regression exploration and exploitation model (with p = 0.5) and logistic regression
normal model. Negative values indicate a better performance of the normal model,
while positive values indicate a better performance of the exploration and exploitation
model.

To have a clearer picture what happens on average, we fitted the difference points
in Figure C.1 to a quadratic polynomial curve in Figure C.1. From Figure C.1 it
follows that at first the sacrifice of investigation decisions for exploration yields a
worse performance of the exploration and exploitation model compared to the normal
model. However, over time the exploration model performance becomes significantly
better on average. Hence, the exploration and exploitation model yields a high value

in the future for a price of slightly worse performance in the present.
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Also note that the fitted curve in Figure C.1 is concave (as opposed to convex)
meaning that the marginal benefit of the model decreases over time and less explo-
ration is required in the later periods. This indicates that exploration capacity should
be allocated dynamically based on some performance criteria (in our implementation
of the framework, it is based on the accuracy of the underlying statistical model,
see §3.4.1). At some time the difference in performance begin to decrease as the
exploration and exploitation model reaches its potential and the normal model gains
more experience. At this point, it may be also beneficial to decrease the value of the

exploration coefficient of the exploration and the exploitation model.

3.5.4 Census data

The second test data we utilize in this study is large a census data set obtained from
the University of California, Irvin (UCI) Machine Learning repository (Asuncion and

Newman 2007).

Data description

The census data is extracted from the 1994 and 1995 Current Population Surveys
conducted by the U.S. Census Bureau. It was used in dozens of studies (Kohavi 1996;
Cohen and Singer 1999) and in the Data Mining and Knowledge Discovery (KDD)
Cup competition of 1999. We use the KDD version of the data. Out of 42 fields in
the data, we kept only 12 since most data variables are categorical and, thus, would
yield too many dummy variables in the model if used in full. The list of the used
variables can be found in Appendix C.

Each observation in the data is treated as a transaction. We used the variable
“Education” as a class label in our testing. If the value of the variable is “Doctor-
ate degree” or “Master’s degree”, then the transaction is considered to be irregular.
Otherwise, it is not irregular. For the loss variable we used the variable “Age”. This

way the loss may be partially correlated with the true label of the transaction that
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Exploration/exploitation models
Normal model

p=0.25 p=05 p=075 p=1

Logistic Regression

Total prevented loss 266675 238314 315292 310742 305592
Difference 0 46937 48617 44047 38917
Linear SVM
Total prevented loss 260974 288969 288380 273592 266439
Difference 0 27995 27406 12618 5465

Table 3.3: Census data testing results as measured by the total prevented loss.
The difference row indicates the difference in the prevented loss between the ex-
ploration/exploitation models and the normal model. Higher values are better.

would probably be the case in the real-world setting.

We consider 200 auditing periods. For each period, we randomly choose 1000
observations from the data set (without repeating). In each period the audit capacity
is set to 100 (10% of the number transactions in each period). The total number of
irregular transactions is equal to 7881 (3.94% of all transactions) which results in the

highly unbalanced data set.

Testing results

The results of the framework testing on the census data is presented in Tables 3.3
and 3.4.

Similarly to the credit card data testing, the results show that the logistic re-
gression model yields the best results. For logistic regression, the exploration and
exploitation models significantly outperform the normal one. The total prevented
loss for the exploration/exploitation models with exploration rate p = 0.5 is 18.23 %
greater than the total prevented loss of the normal one. The model performance is
increased by 57.3% as measured by the MRPL. It is interesting to observe, that the
results tend to be better as we increase the exploration rate at first (p = 0.5 yields

better results than p = 0.25), and then decrease as we increase the exploration rate
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Exploration/exploitation models
Normal model

p =025 p=0.5 p=07 p=1

Logistic Regression

MRPL 22.53% 35.44% 35.93% 34.67%  33.24%
Difference 0% 12.91% 13.4% 12.14%  10.71%
Linear SVM
MRPL 20.92% 28.68% 28.76% 25.44%  22.47%
Difference 0 7.76% 7.84% 4.52% 1.55%

Table 3.4: Census data testing results as measured by the Mean Relative Prevented
Loss (MRPL) in percentage. The difference row indicates the difference in MRLP
between the exploration/exploitation models and the normal model. Higher values
are better.

even more (p = 0.5 is better than p = 0.75, and p = 0.75 is better than p = 1).
This suggests, that there is a sweet point for the exploration parameter somewhere
between p = 0.25 and p = 0.75, that blends the optimal amount of exploration and
exploitation.

SVM model is the second best model. Again, the exploration and exploitation
models are better than the normal one. The exploration and exploitation model
performs the best with p being equal to 0.25 or 0.5. The testing shows that the
exploration and exploitation SVM models can outperform the normal one by 37.59%
in terms of model accuracy. The total prevented loss increased by 10.73% compared
to the normal model. As in the case with the logistic regression model, the SVM

model performance is decreased if the exploration rate p is too large.

3.6 Summary

In this Chapter, we consider the auditing problem of identifying irregular transactions
from a set of observed transactions. Specifically, we consider a multi-period setting
where a set of analytical models is used to identify suspicious transactions which

would be later investigated by the audit staff.
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Although, some statistical models are able to learn from the past history of trans-
actions, they may not be able to learn effectively due to the nature of the auditing set-
ting. In particular, a model only learns from the past transactions that were identified
by it as suspicious and were investigated. This may result in model biasing towards
certain types of irregular transactions that have been previously investigated. There-
fore, it might be unable to identify the other types of irregularities. This is known
as the problem of one-sided feedback. This problem may be even more pronounced
in the auditing setting where the number of irregular transactions is significantly less
than the number of non-irregular transaction.

In this essay, we develop a framework, that boosts the performance of analytical
models in the auditing setting. The framework utilizes the exploration and exploita-
tion technique, and separates the prediction and investigation decisions to learn more
about the transactional attributes distribution while pursuing the main goal (e.g.,
maximization of the prevented loss).

We demonstrate how to build simple exploration and exploitation models from
a class of statistical models that outputs probability predictions (e.g. logistic re-
gression). We also show how to dynamically adjust the degree of exploration and
exploitation based on past accuracy of the analytical models.

We test the framework on large-scale, real-world data with two popular statistical
models: logistic regression, and support vector machines. The results show that he
performance of the statistical models can be drastically improved if the exploration

and exploitation framework is used.
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Conclusions

This dissertation studies the properties of accounting data and their implications from
two different perspectives. The first part of the dissertation examines the differences
between Compustat North America Fundamentals, the most frequently used financial
database in accounting research, and annual financial reports filed by U.S. companies,
and empirically studies the effects of these differences on accounting-based bankruptcy
prediction models. The second part of the dissertation discusses the unique charac-
teristics of transactional data and how these characteristics aggravate the problem of
applying analytical learning models in a multi-period audit setting, and develops a
solution to address this problem.

Chapter 1 is the first essay, in which we utilize the XBRL reporting technology to
conduct the first large-scale comparison of numbers found in Compustat North Amer-
ica Fundamentals Annual and numbers as reported in the original financial reports
filed by domestic U.S. GAAP companies with the SEC. We develop a comparison
methodology that allows automated data extraction from XBRL 10-K reports, map-
ping XBRL data to the appropriate Compustat variables, and reconciliation of any
identified discrepancies between the two sources of data. We apply this methodology
to compare 30 popular accounting line items between Compustat and 10-K reports
of more than 5,000 companies with filing period end dates ranging from October 1,
2011, to September 30, 2012. The results show that 17 out of 30 compared account-
ing items significantly differ across the data sets. The differences are mostly due to
Compustat’s standardization practices that involve adjustments of the original num-
bers to fit Compustat’s standardized definitions of variables. Accounting items with

more complex definitions (e.g., Cost of Goods Sold) tend to differ more than the
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accounting items with less complex definitions (e.g., Total Assets). In addition, we
show that company’s characteristics such as industry and size, and the type of finan-
cial statement where the numbers are reported affect the amount and magnitude of
discrepancies. These results show that the differences between Compustat and 10-K
filings are non-trivial, and are likely to affect outcomes of the studies that utilize
Compustat as opposed to 10-K data.

Chapter 2 extends the study of Chapter 1 by examining the effects of using stan-
dardized Compustat data as opposed to the original 10-K data for the purposes of
bankruptcy prediction. We consider two popular accounting-based bankruptcy pre-
diction models, Altman’s 1968 and Ohlson’s 1980 models. For each model, we com-
pare the output, explanatory power, and predictive ability between two versions of
the model - one based on Compustat data and the other based on the original 10-K
data. We find that there is a significant difference in outputs of both Altman’s and
Ohlson’s models if Compustat data is utilized instead of the original 10-K data. We
also find that Altman’s model based on 10-K data has a significantly better predictive
accuracy (up to 8.56%) than the corresponding Compustat-based model. The results
suggest that Compustat’s standardization practices may have a negative effect on the
performance of bankruptcy prediction models.

Finally, Chapter 3 considers the problem of applying analytical learning models
for the purpose of identifying irregular transactions in a multi-period auditing setting.
Transactional data presents two major challenges for using analytical models: 1) the
data is highly unbalanced — the number of irregular transactions is usually a small
fraction of all transactions that reduces the likelihood of detection of irregularities, and
2) in each auditing period, due to constrained audit resources, only a limited number
of transactions can be investigated that does not provide an optimal learning expe-
rience for analytical models that utilize historical data for calibration. To mitigate
these effects, we propose a framework for analytical models that is based on the con-

cepts of data exploration and exploitation (Berry and Fristedt 1985; Robbins 1952;
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Auer, Cesa-Bianchi, and Fischer 2002). The framework exchanges the immediate gain
from investigating the most suspicious and important transactions (exploitation) in
return for more accurate statistical model by spending audit resources to learn more
about the underlying distribution of the transactional data (exploration). We test
the framework on two real-world data sets. The results show significant increase in

performance of analytical models when the framework is utilized.
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Appendix A

Compustat and 10-K data comparison tables

Table A.1: Fama/French 12 industry classification

Industry Variable

Variable Description

Ezxamples of Industries Included

NoDur

Durbl

Manuf

Enrgy

Chems
BusEq

Telem
Utils
Shops

Hlth

Money

Consumer non-durables

Consumer durables

Manufacturing

Energy

Chemicals

Business equipment
Telecommunications
Utilities

Shops

Health

Money

Food, Tobacco, Textiles, Apparel,
Leather, Toys

Cars, Television Sets, Furniture,
Household Appliances

Machinery, Trucks, Planes, Office Fur-
niture, Paper, Printing

Oil, Gas, Coal Extraction and Prod-
ucts

Chemicals and Allied Products
Computers, Software, and Electronic
Equipment

Telephone and Television Transmission
Water, Gas, Electricity Utilities
Wholesale, Retail, and Some Services
(Laundries, Repair Shops)

Healthcare, Medical Equipment, and
Drugs

Finance




Table A.2: Descriptive statistics of Compustat variables

Observation counts

Descriptive Statistics of Matched Data

Statement Variable  Variable Description
Awailable  Missing  Matched (Perc.) Mean St. Dev.  Median
Balance Sheet ACT Current Assets 3,946 0 3,902 (99.11%) 1,073.53 4,237.43  132.31
CH Cash 4,848 0 4,791 (99.07%) 374.64 2,899.25 26.70
RECTR Receivables (Trade) 3,849 0 3,414 (88.93%) 536.88 6,365.74  42.93
INVT Inventories 3,374 0 2,435 (72.26%) 330.71 1,317.23 36.44
PPENT Property, Plant and Equip- 4,582 0 4,381 (95.84%) 1,213.73  6,164.46  40.05
ment
DPACT  Depreciation, Depletion and 3,978 0 2,122 (54.61%) 1,621.78 7,357.35  231.16
Amortization
GDWL Goodwill 2,659 0 2,541 (95.71%) 991.02 4,162.30 80.75
AT Total Assets 4,958 42 4,932 (99.74%) 8,581.13 84,465.52 509.03
LCT Current Liabilities 3,978 0 3,880 (97.76%) 737.45 3,153.04  59.06
AP Accounts Payable (Trade) 4,862 0 4,591 (94.66%) 1,883.37 30,076.04 23.54
DLTT Long-Term Debt 3,586 0 2,726 (76.19%) 2,173.00 12,316.16 238.59
LT Liabilities 4,965 0 3,540 (71.60%) 8,411.89 93,457.13 255.79
RE Retained Earnings 4,860 0 4,462 (92.29%) 802.39 8,133.42 9.45
REUNA Retained Earnings (Unad- 4,714 0 4,329 (92.46%) 876.40 8,526.66  8.51
justed)
TEQ Stockholders’ Equity 4,980 0 4,856 (97.80%) 1,652.20 8,795.99 145.95

Awailable — observations present in Compustat; Missing — observations present in XBRL 10-K filings, but not in Compustat.

Matched — observations present both in Compustat and XBRL 10-K filings excluding erroneous XBRL observations.

Mean, St. Dev., Median — values of descriptive statistics based on Compustat values of the matched observations.

Mean and median values are measured in millions of U.S. dollars, except for per share numbers that are measured in U.S. dollars.

(continued on the next page)
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Table A.2 :

(continued from the previous page)

Observation counts

Descriptive Statistics of Matched Data

Statement Variable  Variable Description
Awvailable  Missing  Matched (Perc.) Mean St. Dev.  Median

Income Statement REVT Revenue 4,679 0 3,619 (77.73%) 3,489.00 15,996.30 359.45
SALE Sales/Turnover 4,679 0 2,410 (51.58%) 3,499.89 14,993.02 402.63
IDIT Interest and Related Income 1,973 0 1,600 (82.09%)  6.51 39.61 0.26
COGS Cost of Goods Sold 4,684 4 2,621 (56.11%) 2,129.08 10,312.62 164.34
XAD Advertising Expense 1,948 0 1,012 (52.16%) 124.25 497.74 5.15
XINT Interest and Related Expense 1,862 0 1,605 (86.85%) 147.38 688.97 16.10
XRD Research and Development 1,861 0 1,601 (86.78%) 147.58 689.81 16.10

Expense

GP Gross Profit (Loss) 4,708 0 2,028 (43.08%)  783.94 3,418.41  97.46
NI Net Income (Loss) 4,972 34 4,920 (99.29%) 198.94 1,387.93  5.83
EPSPI  Earnings Per Share (Basic) 4,657 0 4,435 (95.66%)  0.33 45.01 0.39
EPSFI  Earnings Per Share (Diluted) 4,658 0 4,436 (95.67%)  0.33 45.00 0.39

CF Statement OANCF  Operating Activities 4,967 0 4,910 (99.25%) 424.75 2,703.35  21.57
FINCF Financing Activities 4,882 0 4,826 (99.12%) -225.77  9,147.81 0.01
IVNCF  Investing Activities 4,793 0 4,727 (99.16%) -186.48  9,372.46  -18.44
CHECH Cash and Cash Equivalents - 4,909 58 4,841 (98.90%) 22.05 685.63 0.03

Increase (Decrease)

Awailable — observations present in Compustat; Missing — observations present in XBRL 10-K filings, but not in Compustat.

Matched — observations present both in Compustat and XBRL 10-K filings excluding erroneous XBRL observations.

Mean, St. Dev., Median — values of descriptive statistics based on Compustat values of the matched observations.

Mean and median values are measured in millions of U.S. dollars, except for per share numbers that are measured in U.S. dollars.
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Table A.3: Difference statistics of Compustat and XBRL 10-K numbers

Observation counts . L Difference between 10-K and
i i Lo Discrepancy statistics
Statement Variable Variable Description . K Compustat
Discrepancies
Matched All (Perc.) Material Material Mean Median  St. Dev.  Mean Median  St. Dev.
(Perc.) Pop. Estim.
BS ACT Current Assets 3,902 13 (0.33%) 7 (0.18%) 0.06% 8.27% 1.41% 16.13 -0.01% 0.00% 1.01
CH Cash 4,791 40 (0.83%) 18 (0.38%) 0.20% 86.65% 9.75% 239.18 0.61% 0.00% 22.98
RECTR Receivables (Trade) 3,414 580 (16.99%) 414 (12.13%) 10.86% 32.98% 18.75%  42.27 -3.05%*** 0.00% 21.88
INVT  Inventories 2,435 115 (4.72%) 100 (4.11%) 3.23% 35.04% 26.19%  28.35 -1.65%*** 0.00% 9.64
PPENT Property, Plant and 4,381 213 (4.86%) 184 (4.20%) 3.53% 44.21% 30.19% 38.95 -2.11%*** 0.00% 12.81
Equipment
DPACT Depreciation, Deple- 2,122 98 (4.62%) 81 (3.82%) 2.91% 44.70% 30.78%  39.77 -1.94%*** 0.00% 12.68
tion and Amortiza-
tion
GDWL Goodwill 2,541 18 (0.71%) 2 (0.08%) 0.01% 7.27% 0.68% 15.23 0.03% 0.00% 1.39
AT Total Assets 4,932 17 (0.34%) 12 (0.24%) 0.11% 164.69% 1.70% 647.02 0.54% 0.00% 38.10
LCT Current Liabilities 3,880 20 (0.52%) 10 (0.26%) 0.11% 3,273.67% 0.90% 14,605.82 16.84% 0.00% 1,048.76
AP Accounts Payable 4,591 383 (8.34%) 312 (6.80%) 5.96% 622.75%  46.93% 6,199.09  48.48%** 0.00% 1,796.72
(Trade)
DLTT Long-Term Debt 2,726 628 (23.04%) 448 (16.43%) 14.81% 617.82%  11.53% 13,815.95 134.17%*** 0.00% 6,632.49
LT Total Liabilities 3,540 50 (1.41%) 27 (0.76%) 0.46% 1,374.34% 0.88% 9,669.96  19.31%** 0.00% 1,149.35
RE Retained Earnings 4,462 3,222 (72.21%) 1,693 (37.94%) 36.25% 24.13% 2.94% 165.02 -0.83%*** 0.00% 141.71
REUNA Retained  Earnings 4,329 59 (1.36%) 33 (0.76%) 0.49% 106.82%  0.84% 357.43 -0.58%** 0.00% 43.21
(Unadjusted)
TEQ Stockholders’ Equity 4,856 213 (4.39%) 158 (3.25%) 2.69% 243.70%  6.01% 3,123.11  8.39%*** 0.00% 654.56

Matched — observations present both in Compustat and XBRL 10-K filings excluding erroneous XBRL observations.
All (Perc.) — number (and percentage of matched observations) of discrepancy observations.
Material (Perc.) — number (and percentage of matched observations) of material discrepancy observations.

Material Pop. Estim — a 99% probability estimate of the minimum amount of material discrepancies in the population of all observations (yielded by the binomial test).

Discrepancy statistics — descriptive statistics of absolute relative value differences between Compustat and XBRL 10-K observations with discrepancies.
Difference between 10-K and Compustat — descriptive statistics of (non-absolute) relative value differences between all matched 10-K and Compustat observations.
*kk Rk Ok indicate significance of Wilcoxon’s signed-rank test at 99%, 95%, and 90% levels respectively.

(continued on the next page)
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Table A.3 :

(continued from the previous page)

Observation counts

Discrepancy statistics

Difference between 10-K and

Statement Variable Variable Description . K Compustat
Discrepancies
Matched All (Perc.) Material Material Mean Median  St. Dev.  Mean Median  St. Dev.
(Perc.) Pop. Estim.
IS REVT Revenue 3,619 345 (9.53%) 209 (5.78%) 4.91% 7.44% 0.80% 22.91 0.00% 0.00% 7.43
SALE  Sales/Turnover (Net) 2,410 122 (5.06%) 85 (3.53%) 2.71% 14.42% 1.57% 27.42 -0.18%***  0.00% 6.95
IDIT Interest and Related 1,600 36 (2.25%) 8 (0.50%) 0.18% 1,895.10% 95.90% 9,367.97  32.16% 0.00% 1,414.48
Income
COGS Cost of Goods Sold 2,621 2,229 (85.04%) 1,989 (75.89%) 73.89% 24.55% 5.78% 350.61 8.56%*** 3.10% 324.00
XAD Advertising Expense 1,012 24 (2.37%) 2 (1.19%) 0.54% 2,475.41% 47.74% 9,888.73  58.35%** 0.00% 1,538.40
XINT  Interest and Related 1,605 55 (3.43%) 34 (2.12%) 1.37% 42.92% 8.04% 81.48 0.67% 0.00% 16.92
Expense
XRD Research and Devel- 1,601 51 (3.19%) 31 (1.94%) 1.22% 42.07% 6.78% 84.12 0.75% 0.00% 16.64
opment Expense
GP Gross Profit (Loss) 2,028 1,756 (86.59%) 1,595 (78.65%) 76.45% 23.14% 8.28% 106.29 -6.28%***  -6.70%  101.03
NI Net Income (Loss) 4,920 45 (0.91%) 15 (0.30%) 0.15% 252.44%  0.90% 1,630.73  2.19% 0.00% 156.09
EPSPI Earnings Per Share 4,435 132 (2.98%) 100 (2.25%) 1.77% 1,321.48% 36.11% 6,758.45  37.80%***  0.00% 1,183.24
(Basic)
EPSFI Earnings Per Share 4,436 133 (3.00%) 100 (2.25%) 1.77% 1,292.78% 33.53% 6,735.06  37.22%***  0.00% 1,182.72
(Diluted)
CF OANCF Operating Activities 4,910 134 (2.73%) 80 (1.63%) 1.24% 43.63% 2.27% 222.85 0.05%** 0.00% 37.38
FINCF Financing Activities 4,826 40 (0.83%) 23 (0.48%) 0.28% 81.94% 4.59% 329.64 0.26% 0.00% 30.56
IVNCF Investing Activities 4,727 82 (1.73%) 49 (1.04%) 0.72% 119.20%  4.92% 642.18 -0.94% 0.00% 85.52
CHECH Cash  and Cash 4,841 119 (2.46%) 42 (0.87%) 0.59% 24.96% 1.93% 93.45 -0.36% 0.00% 15.10
Equivalents - In-

crease (Decrease)

Matched — observations present both in Compustat and XBRL 10-K filings excluding erroneous XBRL observations.

All (Perc.) — number (and percentage of matched observations) of discrepancy observations.

Material (Perc.) — number (and percentage of matched observations) of material discrepancy observations.

Material Pop. Estim — a 99% probability estimate of the minimum amount of material discrepancies in the population of all observations (yielded by the binomial test).

Discrepancy statistics — descriptive statistics of absolute relative value differences between Compustat and XBRL 10-K observations with discrepancies.

Difference between 10-K and Compustat — descriptive statistics of (non-absolute) relative value differences between all matched 10-K and Compustat observations.

*¥Fk kR K indicate significance of Wilcoxon’s signed-rank test at 99%, 95%, and 90% levels respectively.
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Table A.4: Discrepancy statistics by industries

Industry statistics

Variable Statistics Description
NoDur Durbl Manuf Enrgy Chems BusEq Telem Utils Shops Hilth Money Other
Observation count 225 109 381 228 126 745 132 200 415 555 137 649
ACT Discrepancy percentage  0.00% 0.00% 0.52% 0.00% 0.79% 0.27% 0.00% 0.00% 0.24% 0.18% 0.73% 0.77%
Median discrepancy — — - 0.75% - 4.67% 6.67% - - 0.00% 0.64% 0.44% 1.41%
Observation count 222 112 375 227 125 741 132 185 408 551 1040 673
CH Discrepancy percentage  0.00% 0.00% 0.27% 0.00% 1.60% 0.27% 0.00% 0.00% 0.25% 1.09% 1.92% 1.19%
Median discrepancy — — 17.84%  — 0.07% 1.00% - - 9.94% 0.03% 24.68%  1.25%
Observation count 206 101 353 184 116 684 124 171 335 407 191 542
RECTR Discrepancy percentage  12.62% 18.81% 12.18% 28.26% 12.93% 10.96% 16.13% 45.03% 15.52% 8.85% 46.07% 14.21%
Median discrepancy  5.28% 11.41%  6.92% 11.32%  4.49% 13.13%  7.80% 34.65%  15.19%  10.16%  77.12%  18.30%
Observation count 195 105 362 97 110 501 53 86 336 323 26 241
INVT Discrepancy percentage  1.54% 4.76% 8.29% 3.09% 4.55% 5.19% 5.66% 8.14% 0.60% 1.86% 7.69% 9.54%
Median discrepancy  34.84% 17.27% 23.91% 61.62% 7.73% 28.69% 30.55% 24.04% 53.00% 6.39% 28.32% 56.74%
Observation count 214 108 378 184 122 725 125 198 399 526 780 622
PPENT Discrepancy percentage 5.14% 11.11%  5.03% 13.59%  3.28% 1.79% 2.40% 7.58% 3.51% 1.52% 3.72% 9.65%
Median discrepancy 17.16% 36.69% 5.92% 94.21% 15.05% 28.01% 3.37% 7.70% 23.34% 5.65% 61.53% 59.39%
Observation count 123 53 233 144 72 385 64 164 223 206 136 319
DPACT Discrepancy percentage 1.63% 5.66% 2.58% 16.67%  0.00% 1.30% 1.56% 10.37%  5.83% 1.94% 2.94% 5.96%
Median discrepancy  10.41%  5.84% 22.42%  96.67% - 25.21%  14.07%  2.96% 8.11% 1.71% 90.30%  61.62%
Observation count 134 67 259 66 71 477 100 33 253 223 462 396
GDWL  Discrepancy percentage 0.75% 0.00% 0.77% 0.00% 0.00% 0.42% 0.00% 3.03% 0.00% 1.35% 1.73% 0.25%
Median discrepancy  0.10% - 4.65% - - 2.47% - 0.01% - 17.83% 0.62% 0.71%
Observation count 227 115 388 233 127 752 131 202 421 558 1083 695
AT Discrepancy percentage  0.00% 0.00% 0.26% 0.00% 0.79% 0.27% 0.00% 1.49% 0.24% 0.36% 0.28% 0.58%
Median discrepancy  — - 0.34% - 17.55%  1.50% - 7.00% 0.01% 2.19% 0.35% 10.26%
Observation count 226 108 377 225 125 741 131 200 416 552 140 639
LCT Discrepancy percentage  0.00% 0.93% 0.27% 0.00% 0.00% 0.67% 0.00% 0.00% 0.24% 0.72% 0.00% 1.25%
Median discrepancy  — 66.23%  0.15% - - 1.66% - - 0.24% 0.01% - 2.50%
Observation count 221 108 376 217 124 736 128 180 413 542 888 658
AP Discrepancy percentage  8.14% 4.63% 4.26% 22.12%  12.10%  3.94% 11.72%  5.56% 8.23% 6.64% 10.92%  9.12%
Median discrepancy  24.61% 37.58% 49.21% 34.44% 53.16% 78.22% 76.10% 26.64% 19.89% 121.69% 52.45% 69.40%

Observation count — number of matched observations in an industry.

Discrepancy percentage — percentage of discrepancy observations of matched observations in an industry.
Median discrepancy — value of the median absolute relative discrepancy between Compustat and 10-K in an industry.
For information about industry variables, please see Table A.1.

(continued on the next page)
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Table A.4 : (continued from the previous page)

Industry Statistics

Variable Statistics Description
NoDur Durdl Manuf Enrgy Chems BusEq Telecm Utils Shops Hith Money Other
Observation count 153 72 275 162 89 335 103 194 295 278 360 410
DLTT Discrepancy percentage 13.07%  6.94% 14.55%  12.96%  14.61%  18.51%  24.27%  15.98%  20.34%  17.63%  62.78%  18.54%
Median discrepancy  11.03% 1.04% 9.32% 1.74% 9.01% 20.61% 3.59% 2.42% 7.66% 11.25% 17.12% 7.16%
Observation count 146 71 232 140 84 532 101 57 254 393 1038 492
LT Discrepancy percentage  0.00% 1.41% 1.29% 1.43% 0.00% 0.38% 0.00% 5.26% 0.79% 1.53% 1.83% 2.44%
Median discrepancy  — 3.60% 0.51% 12.53% - 1.31% - 1.51% 0.13% 8.23% 0.41% 1.60%
Observation count 210 110 376 196 115 717 125 150 382 514 956 611
RE Discrepancy percentage 80.00%  78.18%  77.66%  51.53%  76.52% = 74.20%  70.40%  79.33%  67.80%  60.12%  82.53%  63.99%
Median discrepancy  5.44% 7.60% 7.95% 2.63% 10.43%  1.46% 1.86% 2.41% 1.62% 0.36% 4.71% 2.11%
Observation count 210 110 376 194 114 715 127 25 382 514 955 607
REUNA Discrepancy percentage 0.95% 0.00% 1.06% 0.52% 1.75% 0.98% 1.57% 0.00% 0.52% 1.75% 2.41% 1.15%
Median discrepancy  1.67% - 0.00% 0.01% 29.58% 1.67% 61.09% - 6.18% 0.07% 1.41% 1.65%
Observation count 225 115 387 217 124 749 134 172 414 561 1070 688
TEQ Discrepancy percentage  1.33% 3.48% 2.84% 5.07% 5.65% 2.94% 8.96% 24.42%  4.11% 4.63% 2.99% 3.78%
Median discrepancy  4.67% 24.40%  0.76% 22.10%  19.20%  8.19% 27.78%  2.19% 9.62% 18.39%  5.12% 9.54%
Observation count 212 110 380 151 118 686 115 121 396 433 406 491
REVT Discrepancy percentage  7.55% 3.64% 3.95% 16.56%  5.08% 3.35% 4.35% 4.13% 5.05% 4.39% 46.06%  4.07%
Median discrepancy  1.82% 0.19% 0.26% 2.28% 0.84% 0.80% 3.03% 0.73% 0.56% 1.47% 0.74% 0.56%
Observation count 175 98 348 51 100 539 68 29 332 315 51 304
SALE Discrepancy percentage  8.57% 4.08% 4.31% 9.80% 5.00% 3.15% 5.88% 0.00% 5.42% 5.40% 13.73%  4.93%
Median discrepancy  2.17% 11.73% 0.26% 5.14% 0.43% 1.92% 1.89% — 1.43% 2.34% 6.61% 0.68%
Observation count 92 42 179 87 55 299 49 48 148 257 51 293
IDIT Discrepancy percentage  0.00% 4.76% 1.12% 1.15% 0.00% 3.01% 2.04% 0.00% 2.70% 1.95% 13.73% 1.71%
Median discrepancy  — 166.21% 135.37% 0.30% - 73.33% 125.98% - 200.00% 19.28% 68.01% 187.53%
Observation count 189 106 361 34 109 663 84 25 323 337 63 327
COGS Discrepancy percentage 88.89%  96.23%  94.74%  73.53%  90.83%  91.40%  58.33%  84.00%  70.59%  89.61%  87.30%  70.95%
Median discrepancy  4.56% 4.18% 4.30% 11.65% 4.79% 7.61% 12.41% 17.21% 2.75% 12.27% 30.32% 6.94%
Observation count 76 26 53 2 19 155 34 0 137 56 349 105
XAD Discrepancy percentage  3.95% 0.00% 0.00% 0.00% 0.00% 0.00% 2.94% — 4.38% 3.57% 2.29% 3.81%
Median discrepancy  110.25% — - - - - 56.14% - 31.55%  1.95% 22.36%  515.03%

Observation count — number of matched observations in an industry.
Discrepancy percentage — percentage of discrepancy observations of matched observations in an industry.
Median discrepancy — value of the median absolute relative discrepancy between Compustat and 10-K in an industry.
For information about industry variables, please see Table A.1.
(continued on the next page)
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Table A.4 : (continued from the previous page)

Industry Statistics

Variable Statistics Description
NoDur Durdl Manuf Enrgy Chems BusEq Telecm Utils Shops Hith Money Other
Observation count 55 64 190 9 75 581 20 3 25 452 22 109
XINT Discrepancy percentage  1.82% 0.00% 2.11% 0.00% 2.67% 1.89% 0.00% 0.00% 0.00% 7.30% 0.00% 3.67%
Median discrepancy 97.21%  — 9.77% — 35.48%  2.68% - - - 11.33% - 15.43%
Observation count 55 64 190 9 74 579 20 3 25 451 22 109
XRD Discrepancy percentage  1.82% 0.00% 2.11% 0.00% 1.35% 1.55% 0.00% 0.00% 0.00% 7.10% 0.00% 3.67%
Median discrepancy  97.21%  — 9.77% - 5.57% 1.66% - - - 10.52%  — 15.43%
Observation count 158 93 298 18 86 544 23 25 280 237 36 230
GP Discrepancy percentage 91.14%  95.70%  95.64%  100.00% 88.37%  91.91%  52.17%  96.00%  69.64%  88.19%  91.67%  74.35%
Median discrepancy  7.54% 10.29% 10.77% 40.77% 8.47% 7.30% 13.25% 73.15% 5.59% 7.89% 24.57% 12.18%
Observation count 227 116 390 231 124 750 130 199 424 561 1072 696
NI Discrepancy percentage  0.88% 0.86% 0.00% 2.16% 1.61% 0.27% 0.77% 1.51% 0.47% 0.89% 1.31% 1.15%
Median discrepancy  1.01% 0.01% - 0.60% 7.56% 3.70% 1.60% 0.11% 1.10% 4.53% 2.04% 1.18%
Observation count 203 101 366 202 117 697 116 107 376 528 1016 606
EPSPI Discrepancy percentage  1.97% 0.99% 1.91% 2.97% 7.69% 2.73% 4.31% 0.93% 2.13% 4.36% 2.36% 4.13%
Median discrepancy  167.19% 34.78% 36.36% 66.40% 46.74% 60.18% 90.00% 747.37%  26.52% 116.55% 9.41% 33.33%
Observation count 203 101 366 202 117 697 116 107 376 528 1017 606
EPSFI Discrepancy percentage 1.97% 0.99% 1.91% 2.97% 7.69% 2.73% 4.31% 0.93% 2.13% 4.36% 2.46% 4.13%
Median discrepancy  63.62% 14.49% 21.12% 66.40% 46.74% 60.18% 90.00% 747.37% 26.52% 116.55%  9.92% 33.33%
Observation count 227 116 387 231 126 748 132 199 420 560 1071 693
OANCF Discrepancy percentage  2.20% 0.00% 3.62% 3.03% 3.97% 2.81% 8.33% 0.50% 3.10% 2.14% 1.77% 3.75%
Median discrepancy  0.57% - 2.43% 1.11% 1.87% 1.62% 8.46% 2.29% 1.59% 10.15%  2.81% 4.46%
Observation count 223 113 382 225 124 729 133 199 417 546 1055 680
FINCF  Discrepancy percentage 0.45% 0.00% 0.79% 0.44% 0.81% 0.82% 5.26% 0.50% 0.24% 0.55% 0.47% 1.62%
Median discrepancy  0.01% - 0.85% 156.82% 72.52% 0.73% 11.86% 1.15% 0.20% 34.01% 5.38% 10.99%
Observation count 217 112 378 223 123 716 128 197 403 526 1048 656
IVNCF  Discrepancy percentage 1.38% 0.00% 1.32% 3.14% 4.07% 1.26% 7.81% 0.51% 1.24% 1.52% 1.15% 2.59%
Median discrepancy  11.71% - 158.80% 1.11% 0.73% 2.74% 17.63% 0.10% 6.75% 1.70% 5.05% 4.62%
Observation count 224 115 379 225 124 747 130 190 414 554 1060 679
CHECH Discrepancy percentage  6.25% 2.61% 3.69% 1.33% 2.42% 2.68% 6.92% 0.00% 2.66% 1.26% 1.13% 3.39%
Median discrepancy  2.41% 23.27%  2.07% 0.19% 8.22% 1.39% 10.09% - 3.01% 0.72% 0.62% 1.93%

Observation count — number of matched observations in an industry.

Discrepancy percentage — percentage of discrepancy observations of matched observations in an industry.
Median discrepancy — value of the median absolute relative discrepancy between Compustat and 10-K in an industry.
For information about industry variables, please see Table A.1.
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Table A.5: Discrepancy statistics by industry and XBRL adoption phase

Phase I Filers Phase II Filers Phase III Filers

Industry Discrepancies (as %) Discrepancy Stats Discrepancies (as %) Discrepancy Stats Discrepancies (as %)  Discrepancy Stats

Count All Material Mean Median  Count All Material Mean Median  Count All Material Mean Median
NoDur 443 12.87%  11.29% 18.64% 7.55% 1,067 11.26%  10.12% 14.76% 5.49% 3,973 11.55% 9.11% 47.96% 5.84%
Durbl 150 16.00%  14.67% 36.06% 12.19% 437 11.90%  10.76% 10.17% 5.97% 2,254 12.07%  10.20% 24.47% 6.52%
Manuf 1,001 11.99%  10.69% 53.71% 10.36% 2,267 11.65%  9.70% 13.71% 6.13% 6,507 12.36% 10.27% 30.00% 6.40%
Enrgy 761 11.17%  7.75% 22.18% 6.38% 606 10.73%  6.93% 26.71% 9.87% 3,247  7.61% 5.45% 269.44% 13.19%
Chems 333 12.91% 11.41% 16.06% 8.03% 601 11.98%  10.32% 23.08% 7.11% 2,201 11.86%  9.45% 460.46% 6.52%
BusEq 1,253  12.21%  9.50% 19.58% 6.92% 3,062 11.34%  8.52% 19.30% 6.70% 14,360 10.85% 8.37% 26.37% 5.94%
Telcm 402 11.19%  9.70% 24.05% 8.46% 533 10.88%  6.94% 27.02% 7.40% 2,073  8.97% 5.98% 103.03% 5.58%
Utils 927 9.71% 6.04% 14.66% 5.91% 1,306 12.56% 8.27% 26.85% 7.29% 1,436  8.98% 5.50% 35.72% 7.17%
Shops 837 9.32% 7.29% 12.98% 3.39% 2,042  10.28%  7.25% 13.04% 3.19% 6,963  9.91% 7.24% 57.11% 4.59%
Hlth 837 11.35%  9.20% 29.24% 7.15% 1,356  11.36%  7.96% 19.91% 6.53% 10,851 8.81% 6.02% 652.87% 6.67%
Money 1,241 14.59% 9.11% 25.41% 9.12% 2,827 11.78%  7.18% 388.03% 6.67% 13,533 9.13% 4.60% 118.35% 6.66%
Other 929 9.90% 7.75% 25.71% 10.98% 2,732  8.75% 5.60% 22.711% 5.26% 11,165 9.28% 6.57% 239.36% 7.41%

Count — number of matched observations for specific industry and XBRL adoption phase.
All — percentage of all discrepancy observations for specific industry and phase.
Material — percentage of material discrepancy observations for specific industry and phase.

Mean, Median — mean and median statistics of absolute relative value differences between Compustat and 10-K of discrepancy observations.
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Table A.6: Analysis of deviance of discrepancy observations

Panel A: Analysis of deviance with both Phase and Revenue variables included

Observation level analysis

Company level analysis

Term

All discrepancies Material discrepancies All discrepancies Material discrepancies

X i P>x* X i P>x* X i P>x* X df  P(>x?)
Revenue 4.36 1 0.037* 11.02 1 0.001*%** 2.44 1 0.118 5.15 1 0.023*
Industry 63.53 11 0.000***  54.25 11 0.000%**  66.57 11 0.000*** 49.18 11 0.000%**
Phase 1.16 2 0.561 0.00 2 1.000 1.09 0.579 0.00 2 1.000
Statement 952.29 2 0.000***  971.23 2 0.000***  719.19 0.000***  712.13 2 0.000***
Industry x Phase 42.94 22 0.005** 44.20 22 0.003** 43.95 22 0.004** 44.40 22 0.003**
Industry x Statement 443.78 22 0.000***  358.55 22 0.000***  318.23 22 0.000***  262.87 22 0.000***
Phasex Statement 13.87 4 0.008** 10.44 4 0.033* 9.99 4 0.041* 6.37 4 0.173
Industry x Phasex Statement  76.41 44 0.002** 67.77 44 0.012* 67.21 44 0.014** 51.97 44 0.191
Panel B: Analysis of deviance with Phase variable excluded

Observation level analysis Company level analysis

Term All discrepancies Material discrepancies All discrepancies Material discrepancies

X if P>x* X if P>x* X if P>x* X df  P(>x?)
Revenue 10.56 1 0.001** 22.97 1 0.000%**  6.69 1 0.010** 11.32 1 0.001%**
Industry 87.91 11 0.000*** 97.52 11 0.000%** 97.07 11 0.000%**  100.24 11 0.000***
Statement 1641.67 2 0.000***  1559.81 2 0.000***  1516.50 2 0.000*** 1390.22 2 0.000***
Industry x Statement 834.94 22 0.000***  569.67 22 0.000***  633.98 22 0.000***  426.36 22 0.000***

ok kKK indicate significance of tests at 99.9%, 99%, and 95% levels respectively.

In all models, type III of sum of squares was utilized
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Table A.7: Analysis of deviance for simple main effects

Panel A: Analysis of deviance within industry groups

Observation level analysis

Company level analysis

Industry

Revenue Statement Revenue Statement

X P(> x?) x? P(> x?) X P(> x?) X P(> x?)
NoDur 0.17 0.676 257.29 0.000%** 0.05 0.826 254.23 0.000***
Durbl 0.23 0.635 172.66 0.000*** 0.30 0.581 266.91 0.000***
Manuf 1.84 0.175 468.74 0.000%** 0.36 0.546 512.82 0.000***
Enrgy 1.24 0.266 76.88 0.000*** 0.57 0.451 50.41 0.000***
Chems 0.16 0.685 127.40 0.000*** 0.00 0.994 135.44 0.000***
BusEq 0.18 0.670 827.61 0.000*** 0.15 0.696 750.39 0.000***
Telem 1.21 0.272 5.11 0.078* 1.33 0.250 3.82 0.148
Utils 0.51 0.474 187.15 0.000%** 0.24 0.623 123.87 0.000***
Shops 3.64 0.056* 334.19 0.000*** 1.96 0.161 341.73 0.000***
Hlth 0.08 0.774 459.01 0.000*** 0.06 0.804 373.31 0.000***
Money 16.00 0.000*** 764.24 0.000*** 11.77 0.001%** 533.46 0.000***
Other 0.00 0.993 245.35 0.000*** 0.18 0.672 201.33 0.000***

Panel B: Analysis of deviance within financial statement type groups

Observation level analysis

Company level analysis

Statement Revenue Industry Revenue Industry

X P(> x?) X P(> x?) X P(> x?) X P(> x?)
Balance Sheet 12.02 0.001*** 327.62 0.000*** 19.07 0.000*** 498.23 0.000***
Income Statement 0.67 0.413 502.56 0.000*** 1.80 0.180 621.15 0.000%**
Cash Flow Statement 0.19 0.661 93.36 0.000*** 0.15 0.694 52.08 0.000***

kkk  kk ok
) )

In all models, type III of sum of squares was utilized

indicate significance of tests at 99.9%, 99%, and 95% levels respectively.
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Appendix B

Compustat standardization and bankruptcy
prediction models and tables

Altman’s 1968 model

The original Altman’s Z score (Altman 1968) is a multiple discriminant function of
five financial ratios that were empirically found to be good predictors of bankruptcy

for manufacturing companies. The function is defined as:
Z =12X;+1.4X5+3.3X5+ 0.6X4 + 0.999X5,

where

X; = Working Capital / Total Assets,

X5 = Retained Earnings / Total Assets,

X3 = Earnings Before Interest and Taxes / Total Assets,
X4 = Market Value of Equity / Book Value of Total Debt,
X5 = Sales / Total Assets.

In the original study, the measure was used to define three zones of discrimination
based on the values of Z score. Specifically, firms with scores lower than 1.81 fell into
“bankrupt” zone, firms with scores higher than 2.99 fell into “non-bankrupt” zone,

and firms with scores between 1.81 and 2.99 fell into “zone of ignorance”.
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Ohlson’s 1980 model

Ohlson’s O score (Ohlson 1980) is a logistic regression model that predicts corporate
bankruptcy. In fact, Ohlson (1980) builds three types of models: Model 1 to predict
bankruptcy within the first year of 10-K release, Model 2 to predict bankruptcy in
the second year of 10-K release, and Model 3 to predict bankruptcy within two years

of 10-K release. The models are defined as follows:

Model 1 :
—1.32—-0.407-SIZE+6.03-TLTA—1.43-WCTA+0.0757-CLCA—-237-NITA
—1.83-FUTL+0.285- INTWO —1.72-OENEG — 0.521 - CHIN,
Model 2 :

1.84 —0.519-SIZE +4.76 - TLTA—1.71 - WCTA —0.2970 - CLCA —2.74- NITA
—218-FUTL —0.780 - INTWO — 198 - OENEG + 0.4218 - CHIN,
Model 3 :

1.13-0478 - SIZE +5.29-TLTA—-0.99- WCTA+0.0620 - CLCA —4.62- NITA
—2.25-FUTL —0.521-INTWO —191-OENEG+0.212-CHIN.

where

SIZE = log(Total Assets / GNP price-level index),
TLTA = Total Liabilities / Total Assets,
WCTA = Working Capital / Total Assets,
CLCA = Current Liabilities / Current Assets,
OENEG =1 if Total Liabilities exceed Total Assets, 0 otherwise,
NITA = Net Income / Total Assets,
FUTL = Operating Income / Total Liabilities,
OENEG =1 if Net Income was negative for the last two years, 0 otherwise,
CHIN = (NI; — NI;_;)/(|NI;| + |NL;_1]), where NI; and NI;_; are the current

and previous Net Incomes respectively.

The output of Ohlson’s model, O score, can be converted to probability of com-

pany experiencing bankruptcy event in the future.



Table B.1: Original Altman’s model. Descriptive statistics of all matched accounting variables, ratios, and Z scores (sample size n=>5,015).

Difference between 10-K and

10-K data Compustat data
Variable Variable Description Compustat

Mean Median  St. Dev. Mean Median  St. Dev. Mean Median  St. Dev.

AT  Total Assets 4003.897 705.991  12209.882 4003.896 705.991  12209.880 0.001 0.000 1.075

LT Total Liabilities 2344.390 315.777 7458.889 2344.120 315.777 7458.695 0.269*** 0.000 11.529

ACT  Total Current Assets 1512.429 294.809 4628.785 1512.407 294.809 4628.791 0.022 0.000 1.300

LCT  Total Current Liabilities 913.135 130.823 3114.309 913.120 130.823 3114.311 0.015 0.000 1.500

RE Retained Earnings 935.450 46.733 6131.564 816.519 38.959 5868.113 118.931%** 0.000 773.830

SALE  Sales 3674.849 632.787  11182.025 3627.582 629.685 11 006.760 47.267 0.000 1223.591

EBIT Earnings Before Interest and 428.733 47.948 1785.721 429.429 50.831 1699.630 —0.696%** 0.247 553.021

Tax

X1 (ACT-LCT)/AT 0.269 0.255 0.361 0.269 0.255 0.361 0.000 0.000 0.016

X> RE/AT —0.821 0.115 4.137 —0.835 0.104 4.137 0.013*** 0.000 0.090

X3 EBIT/AT 0.011 0.079 0.318 0.015 0.076 0.296 —0.004%** 0.001 0.133

X4 MVALUE/LT 5.408 2.372 13.843 5.407 2.371 13.843 0.001*** 0.000 0.043

X5 SALE/AT 1.066 0.867 0.851 1.063 0.865 0.833 0.004 0.000 0.090

Z  Original Altman’s Z Score 3.519 3.181 10.286 3.510 3.139 10.286 0.009*** 0.009 0.469

Zone  Original Altman’s Zone of Dis- 2.263 3.000 0.857 2.254 3.000 0.858 0.008*** 0.000 0.182
crimination

All variable values and their differences are measured in billions of U.S. dollars. Ratios and Z scores are not scaled.
MVALUE denotes market value of equity. This value is obtained from CRSP dataset and is independent of Compustat and 10-K data sets.

FFE kKX indicate statistical significance of mean difference at 99%, 95%, and 90% levels, respectively, as measured by Wilcoxon’s signed-rank test.
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Table B.2: Original Ohlson’s model. Descriptive statistics of all matched accounting variables, ratios, and O scores (sample size n=3,449).

Difference between 10-K and

. . oo 10-K data Compustat data
Variable Variable Description Compustat
Mean Median ~ St. Dev. Mean Median ~ St. Dev. Mean Median  St. Dev.
AT  Total Assets 4689.856 786.644 13903.811 4689.854 786.644  13903.809 0.002 0.000 1.288
LT  Total Liabilities 2783.117 364.638 8464.851 2782.742 364.638 8464.625 0.375%** 0.000 13.799
ACT  Total Current Assets 1741.348 297.776 5416.940 1741.311 297.776 5416.950 0.036 0.000 1.535
LCT  Total Current Liabilities 1068.544 144.994 3543.294 1068.521 144.994 3543.298 0.023 0.000 1.791
OIADP  Operating Income after Depre- 467.802 41.484 1995.980 524.276 54.743 1998.451 —56.474*** —0.504 684.197
ciation
NI; Net Income 297.643 18.198 1448.904 297.620 18.198 1448.918 0.022 0.000 1.909
NI;—; Net Income for the previous 280.824 22.554 1261.797 280.814 22.440 1261.793 0.011 0.000 1.970
period
SIZE  log(AT/GNP price-level index) 15.011 15.452 2.715 15.011 15.452 2.715 0.000 0.000 0.009
TLTA LT/AT 1.859 0.520 39.274 1.859 0.520 39.274 0.000%* 0.000 0.017
WCTA  (ACT-LCT)/AT —1.004 0.203 39.227 —1.004 0.203 39.227 0.000 0.000 0.025
CLCA LCT/ACT 4.897 0.523 74.211 4.897 0.523 74.211 0.000 0.000 0.047
OENEG 1if LT > AT, 0 otherwise 0.100 0.000 0.300 0.100 0.000 0.300 0.000 0.000 0.024
NITA NI;/AT —0.936 0.036 28.608 —0.936 0.036 28.608 0.000 0.000 0.007
FUTL OIADP/LT —0.283 0.109 4.224 —0.232 0.123 3.881 —0.051%** —0.002 0.617
INTWO 1if NI < 0and NI;—; < 0,0 0.269 0.000 0.444 0.270 0.000 0.444 —0.001 0.000 0.024
otherwise
CHIN  (NI;-NIe—1)/(INT¢|+|NT—1]) —0.023 0.021 0.498 —0.023 0.021 0.497 0.000 0.000 0.021
O1  Ohlson’s Model 1 Score 8.237 —4.920 319.110 8.145 —4.947 319.096 0.093*** 0.004 1.134
CLASS;  Ohlson’s Model 1 Class 0.138 0.000 0.345 0.133 0.000 0.340 0.005*** 0.000 0.081
O2  Ohlson’s Model 2 Score 5.922 —4.741 271.378 5.811 —4.784 271.354 0.111%** 0.005 1.346
CLASS2  Ohlson’s Model 2 Class 0.126 0.000 0.332 0.121 0.000 0.327 0.004*** 0.000 0.074
O3  Ohlson’s Model 3 Score 9.709 —4.162 308.840 9.594 —4.192 308.817 0.114%%* 0.005 1.390
CLASS3  Ohlson’s Model 3 Class 0.167 0.000 0.373 0.162 0.000 0.369 0.005%** 0.000 0.088

All variable values and their differences are measured in billions of U.S. dollars. Ratios and O scores are not scaled.
GNP price-level index is calculated as (Nominal GNP /Real GNP)*100. GNP values are obtained from FRED, Federal Reserve Economic Data, from the Federal Reserve
Bank of St. Louis, and is independent of Compustat and 10-K data sets.

HHE KKK indicate statistical significance of mean difference at 99%, 95%, and 90% levels, respectively, as measured by Wilcoxon’s signed-rank test.
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Table B.3: Descriptive statistics of bankrupt observations (sample size n=146).

Difference between 10-K and

Variable  Variable Description 10-K data Compustat data Compustat
Mean Median St. Dev. Mean Median St. Dev. Mean Median  St. Dev.
AT  Total Assets 1043.476 363.828 2113.252 1043.443 363.828 2112.913 0.033* 0.000 6.324
LT  Total Liabilities 1043.501 261.931 2570.754 1034.961 261.931 2546.720 8.541%* 0.000 67.235
ACT  Total Current Assets 327.741 102.759 699.775 326.867 102.759 699.771 0.874 0.000 7.488
LCT Total Current Liabilities 330.899 94.562 693.205 330.346 94.562 693.172 0.553 0.000 8.780
RE Retained Earnings —530.044 —232.775 1682.962 —574.919 —243.747 1627.287 44.874** 0.000 237.290
SALE  Sales 953.160 200.095 2110.238 947.715 200.096 2109.277 5.445 0.000 79.271
OIADP  Operating Income after Depre- —118.419 —38.800 227.397 —5.837 —12.193 133.978 —112.581*** —3.738 280.805
ciation
EBIT Earnings Before Interest and —123.302 —42.610 264.093 —5.837 —12.193 133.978 —117.465%** —3.938 311.183
Tax
NI; Net Income —174.946 —60.432 348.924 —175.474 —59.506 349.643 0.528 0.000 9.362
NI; 1 Net Income for the previous —94.042 —21.822 229.083 —93.764 —22.744 228.331 —0.278 0.000 6.756
period
X1 (ACT-LCT)/AT —0.142 0.043 1.487 —0.151 0.042 1.486 0.009 0.000 0.093
X2 RE/AT —3.530 —0.845 10.807 —3.537 —0.845 10.806 0.007* 0.000 0.081
X3 EBIT/AT —0.432 —0.192 0.755 —0.318 —0.062 0.722 —0.115%** —0.025 0.265
Xy MVALUE/LT 1.204 0.247 3.800 1.185 0.247 3.794 0.019 0.000 0.248
X5 SALE/AT 1.009 0.709 1.090 1.021 0.709 1.078 —0.012 0.000 0.165
SIZE  log(AT/GNP price-level index) 14.407 14.747 1.821 14.411 14.747 1.819 —0.004 0.000 0.042
TLTA LT/AT 1.072 0.849 1.572 1.074 0.855 1.570 —0.002 0.000 0.085
WCTA  (ACT-LCT)/AT —0.142 0.043 1.487 —0.151 0.042 1.486 0.009 0.000 0.093
CLCA LCT/ACT 1.936 0.893 3.368 1.952 0.905 3.365 —0.016 0.000 0.179
OENEG 1 if LT > AT, 0 otherwise 0.356 0.000 0.481 0.356 0.000 0.481 0.000 0.000 0.117
NITA  NI;/AT —0.491 —0.260 0.821 —0.491 —0.260 0.819 —0.001 0.000 0.035
FUTL OIADP/LT —0.647 —0.240 1.428 —0.522 —0.078 1.407 —0.125%** —0.023 0.245
INTWO 1if NI < 0 and NI;—; <0, 0 0.753 1.000 0.433 0.760 1.000 0.428 —0.007 0.000 0.083
otherwise
CHIN  (NI;-NIe—q)/(INT¢|+|NT—1]) —-0.214 —0.196 0.568 —0.212 —0.198 0.566 —0.002 0.000 0.037

All variable values and their differences are measured in billions of U.S. dollars. Ratios are not scaled.

MVALUE denotes market value of equity. This value is obtained from CRSP dataset and is independent of Compustat and 10-K data sets.

GNP price-level index is calculated as (Nominal GNP /Real GNP)*100. GNP values are obtained from FRED, Federal Reserve Economic Data, from the Federal Reserve
Bank of St. Louis, and is independent of Compustat and 10-K data sets.

Rk RK K indicate statistical significance of mean difference at 99%, 95%, and 90% levels, respectively, as measured by Wilcoxon’s signed-rank test.
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Table B.4: Altman’s model. Descriptive statistics of matched non-bankrupt observations (sample size n=146).

Difference between 10-K and

10-K data Compustat data
Variable  Variable Description Compustat
Mean Median  St. Dev. Mean Median  St. Dev. Mean Median  St. Dev.
AT  Total Assets 2539.985 610.014 6630.507 2540.037 610.014 6630.491 —0.052 0.000 0.673
LT Total Liabilities 1415.503 211.452 3409.618 1414.770 211.452 3408.912 0.733 0.000 14.791
ACT  Total Current Assets 941.515 269.726 2333.134 941.514 269.726 2333.134 0.001 0.000 0.010
LCT  Total Current Liabilities 590.684 107.416 1771.342 590.692 107.416 1771.339 —0.007 0.000 0.087
RE  Retained Earnings 574.152 50.856 2412.042 549.967 52.216 2440.207 24.184%** 0.037  135.888
SALE  Sales 3703.519 479.438  12957.675 3695.081 479.438  12955.554 8.439 0.000 173.684
EBIT Earnings Before Interest and 239.119 35.831 922.459 247.460 34.142 899.257 —8.341 0.044 171.940
Tax
X1  (ACT-LCT)/AT 0.250 0.253 0.275 0.250 0.253 0.275 0.000 0.000 0.000
Xo> RE/AT —0.934 0.168 6.387 —0.951 0.158 6.387 0.017*** 0.000 0.113
X3 EBIT/AT —0.017 0.070 0.404 —0.022 0.072 0.401 0.005 0.000 0.186
X4+ MVALUE/LT 5.258 1.918 8.501 5.052 1.874 8.219 0.206 0.000 2.466
X5 SALE/AT 1.105 0.758 1.207 1.091 0.758 1.112 0.014 0.000 0.186

All variable values and their differences are measured in billions of U.S. dollars. Ratios are not scaled.

MVALUE denotes market value of equity. This value is obtained from CRSP dataset and is independent of Compustat and 10-K data sets.

Rk *x* indicate statistical significance of mean difference at 99%, 95%, and 90% levels, respectively, as measured by Wilcoxon’s signed-rank test.
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Table B.5: Ohlson’s model. Descriptive statistics of non-bankrupt observations (sample size n=2,525).

Difference between 10-K and

Variable Variable Description 10-K data Compustat data Compustat
Mean Median  St. Dev. Mean Median  St. Dev. Mean Median  St. Dev.
AT  Total Assets 2913.851 359.484  11738.453 2913.851 359.484  11738.453 0.000 0.000 0.022
LT Total Liabilities 1730.724 136.783 7200.847 1730.708 136.783 7200.846 0.016*** 0.000 0.322
ACT  Total Current Assets 1058.297 160.443 4066.631 1058.297 160.443 4066.631 0.000 0.000 0.053
LCT  Total Current Liabilities 643.582 73.004 2717.971 643.582 73.004 2717.971 0.000 0.000 0.027
OIADP  Operating Income after Depre- 272.513 14.630 1507.214 306.634 19.386 1433.159 —34.121%** —0.016 656.316
ciation
NI; Net Income 174.908 5.935 1013.696 174.908 5.935 1013.695 0.000 0.000 0.026
NI;—1 Net Income for the previous 157.553 7.260 925.448 157.522 7.242 925.455 0.030 0.000 1.658
period
SIZE  log(AT/GNP price-level index) 14.335 14.668 2.710 14.335 14.668 2.710 0.000 0.000 0.000
TLTA LT/AT 2.332 0.499 46.224 2.332 0.499 46.224 0.000 0.000 0.001
WCTA  (ACT-LCT)/AT —1.448 0.222 46.170 —1.448 0.221 46.170 0.000 0.000 0.020
CLCA LCT/ACT 6.448 0.508 87.298 6.447 0.508 87.298 0.001 0.000 0.036
OENEG 1if LT > AT, 0 otherwise 0.107 0.000 0.309 0.107 0.000 0.309 0.000 0.000 0.000
NITA NI;/AT —1.286 0.028 33.671 —1.286 0.028 33.671 0.000 0.000 0.000
FUTL OIADP/LT —0.432 0.094 4.944 —0.378 0.106 4.540 —0.055%** 0.000 0.721
INTWO 1if NI; <0and NI;_; <0,0 0.304 0.000 0.460 0.304 0.000 0.460 0.000 0.000 0.020
otherwise
CHIN  (NI;-NIe—1)/(INT¢|+|NI—1]) —0.013 0.029 0.516 —0.012 0.029 0.516 0.000 0.000 0.024

All variable values and their differences are measured in billions of U.S. dollars. Ratios are not scaled.
GNP price-level index is calculated as (Nominal GNP /Real GNP)*100. GNP values are obtained from FRED, Federal Reserve Economic Data, from the Federal Reserve
Bank of St. Louis, and is independent of Compustat and 10-K data sets.

*¥Fk kXX indicate statistical significance of mean difference at 99%, 95%, and 90% levels, respectively, as measured by Wilcoxon’s signed-rank test.
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Appendix C

Exploration and exploitation framework tables and
figures

Table C.1: List and description of the variables in the credit card data set.

Variable Type Description

Age Numerical Age of a customer

Gender Categorical Gender of a customer

Income Numerical  Value of declared income
BehaviorScore Numerical Banks internal behavior score
IsHouseOwner Categorical Indicates whether a customer is a

house owner
AccAge Numerical — Credit account age (in months)
NumPurachases Numerical Total number of purchases

NumCashWithdrawals Numerical Total number of cash withdrawals

NumULatePayments Categorical Total number of late payments
CreditLimit Numerical Credit limit
IsCanceled Categorical Indicates whether the account

was canceled by the bank




Table C.2: List and description of the variables in the census data set.

125

Variable Type Description

Age Numerical Age of a person

Education Categorical Level of education

ClassWorker Categorical Class of worker

Gender Categorical Gender of a person

MaritalStatus Categorical Marital status of a person

TaxFillerStatus Categorical Tax filer status

HouseHoldSummary Categorical Household summary variable

NumberPersWorkEmplyer Numerical ~Number of persons working for an
employer

Citizenship Categorical Citizenship and origin (with re-
spect to the U.S.)

OwnBussinesOrSelfEmployed Categorical Owns business or is self-employed

VeteranBenef Categorical Value of the veteran benefits

WeeksWorked Year Numerical ~Weeks worked in year
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Figure C.1: Period differences in relative prevented loss between the exploration and
exploitation logistic model (with exploration coefficient p = 0.5) and the normal

logistic model.Comparison methodology.
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