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ABSTRACT OF THE DISSERTATION

Essays on Accounting Data Differences and Audit

Learning

by Roman Chychyla

Dissertation Director: Dr. Alexander Kogan

The dissertation comprises of three essays that 1) compare accounting numbers in

Capital IQ’s Compustat North America Fundamentals Annual, the most popular

accounting database in accounting research, to the original numbers in corporate

reports, 2) study the effects of Compustat’s data standardization procedures on

accounting-based bankruptcy prediction models, and 3) develop a framework to en-

hance the performance of analytical learning models in a multi-period auditing setting.

In the first essay, we conduct the first large-scale comparison of Compustat and

10-K data. Specifically, we compare 30 accounting line items of approximately 5,000

companies for the period from October 1, 2011, to September 30, 2012. We find that

the values reported in Compustat significantly differ from the values reported in 10-K

filings. We also find that the amount and magnitude of the original data alterations

introduced by Compustat depend on the type of the accounting item and company

characteristics such as industry and size.

Numbers that appear in Compustat are standardized – adjusted to fit fixed vari-

able definitions – to ensure “...consistent and comparable data across companies,
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industries and business cycles...” However, there has been no evidence in the aca-

demic literature that Compustat’s standardized numbers provide more benefits than

the original numbers in financial statements. In the second essay, we examine the

effects of Compustat’s data standardization using Altman’s 1968 and Ohlson’s 1980

bankruptcy prediction models as examples. We find that Compustat’s data standard-

ization not only yields no improvements for bankruptcy prediction models, but also

has a significant negative impact on the predictive accuracy of Altman’s model (up

to 8.56%)

There are several challenges in applying analytical models to the auditing prob-

lem of identifying irregular transactions. We argue that because of these challenges

standard statistical models may not be well-suited for auditing and have to be mod-

ified to achieve better performance. In the third essay, we propose a framework to

boost the performance of analytical learning models in auditing. The results of frame-

work’s testing on the real data show a significant increase of performance of the tested

models.
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Introduction

The single most important part of any empirical study is data. Empirical research

studies data to understand various phenomena and contribute to our knowledge of

the world. Data is also at the very heart of accounting. Accounting systems cap-

ture, store, and process business data, and report the resulting information to the

interested parties. The quality of information outputted by accounting systems and

the accounting research depends on the inputted data and the way it is processed.

Therefore, its is important to study both the properties of data and the procedures

that transform the data into useful information. The first part of this dissertation

consists of two related essays that study the type of data provided by Compustat

North America Fundamentals, the most popular database in empirical accounting re-

search. The second part develops a framework that utilizes distributional properties

of transactional data to enhance processing performance of analytical models in a

multi-period auditing setting.

The first essay is presented in Chapter 1. It studies the amount and magni-

tude of discrepancies in Compustat North America Fundamentals, an accounting

database that is frequently used for both research and decision-making. It has been

documented that information found in Compustat database differs from both the

information found in other accounting databases and the information disclosed in

corporate financial filings (San Miguel 1977; Rosenberg and Houglet 1974; Yang,

Vasarhelyi, and Liu 2003; Tallapally, Luehlfing, and Motha 2011; 2012; Boritz

and No 2013). However, previous studies that compare numbers in Compustat to

numbers in the original corporate reports share a major limitation – they analyze

samples of small sizes that may not fully reflect the “true” amount and magnitude of
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data alterations introduced by Compustat. The challenge of utilizing larger samples

is that it results in a very high cost, if the number comparison is carried out manually.

We overcome this limitation by automating the number comparison procedures with

the help of the recently introduced eXtensible Business Reporting Language (XBRL)

reporting technology.

We conduct the first large-scale comparison of Compustat and 10-K data. Specif-

ically, we compare 30 accounting line items of approximately 5,000 U.S. companies

for the period from October 1, 2011, to September 30, 2012. We find that the values

reported in Compustat significantly differ from the values reported in 10-K filings. We

also find that the amount and magnitude of the original data alterations introduced

by Compustat depend on the type of the accounting item and company characteristics

such as industry and size.

Chapter 2 of this dissertation is the natural extension of Chapter 1. It presents

an essay that examines the effects of data standardization procedures implemented in

Compustat database. Compustat’s data standardization is the process of adjusting

original numbers reported in companies’ reports to match Compustat’s fixed vari-

able definitions, and is the main driver of differences between Compustat numbers

and original numbers reported by companies. Compustat argues that “[s]tandardized

data ensures that you have consistent and comparable data across companies, indus-

tries and business cycles, and offers a solid foundation for your rigorous analysis.”

However, there has been no evidence to support this statement in academic literature.

The original numbers in financial reports often are not constrained by fixed defini-

tions under current Generally Accepted Accounting Principles (GAAP) standards.

Moreover, the developer of GAAP, Financial Accounting Standards Board (FASB),

in Statement of Financial Accounting Concepts No. 2, discourages the use of fixed def-

initions of accounting items saying that “[t]hat kind of uniformity may even adversely

affect comparability of information if it conceals real differences between enterprises.”
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The study introduced in Chapter 2 is the first to examine the effects of Compus-

tat’s data standardization using bankruptcy prediction models as examples. Specifi-

cally, we study whether using Compustat’s standardized data as opposed to original

10-K data improves Altman’s 1968 and Ohlson’s 1980 bankruptcy prediction mod-

els. We find that Compustat’s data standardization not only yields no improvements

for bankruptcy prediction models, but also has a significant negative impact on the

predictive accuracy of Altman’s model (up to 8.56%).

Chapter 3 is an essay that discusses challenges in applying analytical learning mod-

els in a multi-period audit to identify irregular transactions, and develops a framework

for analytical models to overcome these challenges. The advantage of using analytical

models (as opposed to manual procedures) in auditing is that they are able to process

large populations of transactional data (as opposed to samples) with a relatively low

cost. In addition, analytical models are more effective in identifying data patterns

than humans are. The problem associated with applying analytical models, that has

not received much attention in the literature, is that most of them are not designed

to operate in an auditing setting where the number of irregular transactions is low

relative to the number all transactions (the problem of unbalanced data), and the

incremental statistical learning in each audit period is limited to a small portion of

transactions chosen to be investigated (the problem of one-sided feedback).

In Chapter 3, we introduce a framework for analytical learning models that

changes the way the models learn and predict. The framework exchanges the im-

mediate gain from investigating the most suspicious and important transactions in

return for more accurate statistical model by spending audit resources to learn more

about the underlying distribution of the transactional data. A more accurate statis-

tical model may yield more benefits in the future. The proposed framework is tested

on real-world data. The results show a significant boost in performance of analytical

models under the proposed framework.
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Chapter 1

Using XBRL to conduct a large-scale study of

discrepancies between the accounting numbers in

Compustat and SEC 10-K filings

1.1 Introduction

Compustat is a popular source of financial information for both academics and practi-

tioners. It has been maintained by Standard and Poor’s1 company since 1962. Many

accounting empirical studies are based on Compustat data. However, it has been

questioned how reliable the data found in Compustat is (and by extension in other

accounting databases). Prior studies have shown that Compustat data may differ

from the real-world financial data (San Miguel 1977; Kinney and Swanson 1993;

Tallapally, Luehlfing, and Motha 2011; 2012; Boritz and No 2013) and data found

in other accounting databases (Rosenberg and Houglet 1974; Yang, Vasarhelyi, and

Liu 2003).

Compustat relies on companies’ original reporting documents (such as 10-Qs and

10-Ks) to populate its fundamentals data set. However, the original companies’ data

is standardized per Compustat’s variable definitions to ensure “consistent and com-

parable data across companies, industries and time periods without reporting biases

or data discrepancies”.2 This fact generates two important questions: 1) should Com-

pustat standardize the original data reported by companies, and 2) what is the extent

of this standardization. In this Chapter we address the second question, and leave the

1. Standard & Poor’s is a division of The McGraw-Hill Companies.

2. www.compustat.com, as of February 16, 2014.

www.compustat.com
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first question for the future research. In addition to data standardization, Compustat

numbers may differ from the original numbers reported by companies due to typos,

missing values, not-up-to date values, etc. It is important to estimate the amount

and magnitude of differences between Compustat data and the original data, since

these differences may affect the results of accounting studies that utilize Compustat.

The best way to assess the extent of data alteration in Compustat is to compare

Compustat numbers to the numbers in the original reports. Unfortunately, this is a

very costly procedure, if done manually. Prior studies that contrasted Compustat and

original reports’ numbers had an important limitation of using small samples in their

analyses. Small samples may not fully represent the population, and omit uncommon

types of observations (that are likely to result in discrepancies between Compustat

and original reports). In this study, we utilize XBRL (eXtensible Business Reporting

Language) reporting technology to automatically extract accounting numbers from

XBRL 10-K financial reports and compare them to Compustat numbers. The SEC

has mandated the use of XBRL reporting by all U.S. GAAP filers starting from June

2011. To our best knowledge, this is the first study to conduct such a large-scale data

comparison.

Specifically, we study the amount and magnitude of discrepancies between Com-

pustat North America Fundamentals Annual and 10-K reports of U.S. companies for

the period from October 1, 2011 to September 30, 2012. Our analysis includes more

than 5,000 companies, and 30 accounting items that are often used in empirical ac-

counting research. We limit our analysis to 10-K reports only since they are audited,

and to one 10-K report per company to make our sample unbiased and study whether

company characteristics are related to the amount and magnitude of discrepancies.

Although we use the XBRL technology to extract data from XBRL 10-K reports,

our objective is not to compare Compustat and XBRL 10-Ks, but rather to compare

Compustat and traditional 10-Ks. XBRL 10-K reports sometimes contain errors

that make them different from plain-text 10-Ks. We develop automated and manual
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procedures to eliminate XBRL-related errors.

We find that Compustat significantly alters numbers reported in the 10-K filings.

In particular, we find that Compustat values of 17 out of 30 analyzed variables sig-

nificantly differ from values reported in the 10-K filings. We also find that the type

of statement where variable is reported and company characteristics such as indus-

try and size are related to the amount and magnitude of discrepancies. Specifically,

the amount of discrepancies is significantly affected by 1) type of financial statement

(except for the telecommunications industry), 2) industry regardless of financial state-

ment type, and 3) revenue size for the financial industry or balance sheet items.

Our contributions to the literature are as follows. Firstly, we contribute to the

studies of Rosenberg and Houglet (1974); Bennin (1980); Kinney and Swanson (1993);

Yang, Vasarhelyi, and Liu (2003); Boritz and No (2013), and others that analyze

differences between Compustat and other accounting data sources, by conducting the

first large-scale comparison of Compustat North America Fundamentals Annual and

10-K data. This comparison provides a more accurate and comprehensive statistics

of discrepancies between Compustat and 10-K data. Secondly, we contribute to the

existing XBRL literature by demonstrating how XBRL data can be utilized in an

automated fashion to extract and process commonly used accounting numbers. We

develop a methodology for an automated large-scale comparison of Compustat and

XBRL data. The methodology comprises of several steps: data extraction, data

merging, concept mapping, difference calculation, automated error detection, and

discrepancy analysis.

The Chapter is organized as follows. Section 1.2 reviews academic literature

relevant to this study. Section 1.3 discusses types of data alterations in Compustat.

Section 1.4 presents Compustat data comparison methodology. Section 1.5 reports

the main findings of this study. Finally, Section 1.6 concludes the Chapter.
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1.2 Relevant literature

In this section, we review relevant literature that studies the impact of discrepancies

in accounting databases. Since there are two main causes of discrepancies – errors

and different data definitions – we consider the respective literature separately.

1.2.1 Erroneous data

Rosenberg and Houglet (1974) is the first paper to consider the quality of data found

in Compustat. The authors match and merge Compustat and CRSP data on monthly

price relatives for 844 industrial sector companies from January 1963 to June 1968,

and for 97 utilities sector companies from March 1962 to June 1968. In total, they

compare 41,296 monthly price relatives between Compustat and CRSP data sets. Out

of these, they find 1,202 (2.91%) to be erroneous including 294 (0.71%) that differ by

more than 5%, and 125 (0.3%) that differ by more than 20%. The authors compare

34 discrepancies between utilities price relatives to the original published sources; 4

(12%) discrepancies were due to CRSP errors, and 30 (88%) were due to Compustat

errors suggesting that CRSP is a more reliable database for monthly price relatives.

The study finds these errors to change the data distribution, with higher moments

being affected more significantly.

Bennin (1980) did a follow-up study of Rosenberg and Houglet (1974) using up-

dated Compustat and CRSP data, and for a longer time period. He compares monthly

relative prices of both industrials and utilities for the period from January 1962

through July 1978. Out of 187,460 prices, he finds 471 (0.25%) to differ by more than

5%. This is a huge drop of error rate compared to Rosenberg and Houglet (1974) –

0.25% versus 0.71%. The study suggests that Compustat had corrected a number of

errors after Rosenberg and Houglet (1974) study.

Beedles and Simkowitz (1978) replicate the study of McEnally (1974) that in-

vestigates the return behavior of high-risk common stocks extracted from the CRSP
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database. After correcting the CRSP database errors, Beedles and Simkowitz find

that the results changed significantly due to changes in higher moments of data dis-

tribution.

San Miguel (1977) is the first study to compare Compustat data to 10-K reports.

Specifically, he compares Research and Development (R&D) expense data in Com-

pustat with the original 10-K reports for a sample of 256 companies that reported

R&D expense in 1972.3 He finds 78 (30%) discrepancies between the two datasets.

At least 52 (66.67%) discrepancies were due to errors in Compustat. Out of those

15% were rather significant - the discrepancies amounted to more than 100% of the

Net Income values of the respective companies. The author also finds that there was

insufficient information in the 10-K reports to classify the remaining 26 discrepancies.

He attributes part of the errors to the new rules for the 10-K Form R&D disclosure re-

quirements that became effective in 1972, and to the complexity of some 10-K reports

that Compustat personnel had to deal with.

Kinney and Swanson (1993) examine the accuracy of tax data in Compustat. The

authors randomly select 100 Compustat companies from fiscal 1985 listings. They

compare 19 tax variables as reported by Compustat and the original financial reports

for the years of 1986-1988. The error rates for the considered variables ranged from

0.76% to 11.65% with the error magnitudes being substantial. The authors find the

tax error rates to be: 1) high for utility companies, 2) low for balance sheet items,

and 3) high for cash flow statement items. They also find a significant number of

missing values for some variables whereas these values are reported in the financial

statements.

Kern and Morris (1994) study the data differences between Compustat and Value

Line databases. The authors compare Sales and Total Assets data for the years of

1971-1990. They find that there is no statistically significant difference with respect

3. In 1972, 1,357 Compustat firms reported R&D expense. A sample used in San Miguel (1977)
represents 19% of those.
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to Total Assets. However, they find significant differences between Sales values. The

number of discrepancies between Sales ranged from 31.4% to 33.9% across different

years. The years of 1985-1990 had the highest number of material discrepancies (137

in Total Assets and 378 in Sales). The authors examined the annual reports for those

years to identify the sources of the discrepancies. Many discrepancies (40.9% for Total

Assets and 15.1% for Sales) were due to Value Line reporting data in currency other

than U.S. dollars. The largest source of discrepancies for Sales was the difference

in data definitions used in the databases. For example, Value Line include only the

income items in Sales that are related to the company’s major line of business, while

Compustat reports Sales for the entire consolidated entity; this resulted in 47.6% of

all discrepancies. But the authors also find some unexplainable differences (at least

1.5% of all discrepancies).

Yang, Vasarhelyi, and Liu (2003) compare Compustat and Value Line values of

seven frequently used accounting variables for the years of 1976-1981.4 Out of 10,353

observations (of 1,479 companies), 1,284 (12.5%) were discrepancies larger than 1%.

To identify the cause of discrepancies, the authors draw a subsample of 200 companies

and compare the Compustat and Value Line 1981 data to the original 1981 financial

statements data. Out of 1,400 observations, they find 320 mismatches. Out of those

mismatches, 185 (57.81%) were explainable discrepancies (i.e., discrepancies due to

different data definitions, currency and industry factors), and 135 were unexplainable

that were either due to errors or undisclosed coding rules. Compustat amounted to

more unexplained discrepancies – 99 (73% of all unexplained differences) – than Value

Line. The authors also replicate a part of the Rosenberg and Houglet (1974) study

by computing and comparing data distribution moments of Compustat and Value

Line databases. At least for some variables (e.g., Current Assets) the differences were

4. Yang, Vasarhelyi, and Liu (2003) examined The Accounting Review, The Journal of Account-
ing Research and The Journal of Accounting and Economics for the 1976-1981 period to find the
most frequently used variables in accounting research. They identified the following variables: To-
tal Assets, Net Sales, Inventories, Net Income, Current Liabilities, Depreciation, Depletion, and
Amortization, and Gross Plant.
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found to be statistically significant. The authors conclude that accounting databases

of data aggregators contain a certain level of erroneous data and do not always agree

on data definitions and industry classifications.

Tallapally, Luehlfing, and Motha (2011) compare EDGAR Online5 and Compus-

tat values of the Cost of Goods Sold (COGS) item for a subset of DOW 30 companies

for the fiscal year of 2009. Out of 26 companies considered, there was only one match

in COGS between Compustat and EDGAR Online. The average magnitude of re-

maining 25 discrepancies is 14.23% with Compustat reporting, overall, lower numbers.

The authors were not able to reconcile the numbers, but assume that these differences

are due to data definitions used in Compustat.

Tallapally, Luehlfing, and Motha (2012) is a very similar study to the previous

one with the same authors (Tallapally, Luehlfing, and Motha 2011). It compares

Compustat and 10-K XBRL (eXtensible Business Reporting Language) data for the

same year (2009) and for almost the same set of companies6 but with regards to

Sales/Revenue item instead of COGS. The data extracted from 10-K XBRL should

be similar (most likely the same) to the data extracted from EDGAR Online.7 The

authors find differences in Sales/Revenues between Compustat and 10-K XBRL fil-

ings, but not as many and not as large as in the study that compared COGS values.

Namely, the authors find 6 discrepancies (22% of all observations) with the average

magnitude equal to 5.19%. As in the previous study, the authors do not reconcile the

discrepancies.

Boritz and No (2013) manually compare financial items reported in 150 XBRL

10-K filings of 75 companies to the corresponding items provided by three data ag-

gregators: Compustat, Yahoo Finance, and Google Finance. The study finds that

5. Not to be confused with SEC’s EDGAR. EDGAR Online is a public for-profit company that
provides SEC fillings information extracted from SEC’s EDGAR.

6. In this study (2012), the authors added additional company to their sample, making total
number of companies equal to 27.

7. EDGAR Online extracts information directly from SEC’s XBRL filings.
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around 50% of financial items that are reported in XBRL 10-Ks are not present in

the aggregators’ data sets, and that the percentage of mismatches between XBRL

and aggregators’ data ranges from 4.8% to 8% with 56% of all differences being ma-

terial. Out of three financial statements – Balance Sheet, Income Statement, and

Cash Flow Statement – Balance Sheet was associated with the smallest percentage

of mismatches. In addition, Compustat data resulted in the largest percentage of

mismatches (44.3%) and the lowest number of omissions (50.9%).

The most related studies to ours are Tallapally, Luehlfing, and Motha (2011);

Tallapally, Luehlfing, and Motha (2012), and Boritz and No (2013). Therefore, we

would like point out some key differences with them. Firstly, this study focuses on

the accounting data provided by Compustat. The objective is to compare Compustat

numbers to the numbers found in the 10-K filings. Although, we utilize XBRL 10-K

filings to extract the numbers, we do not aim to compare Compustat and XBRL data

since XBRL data also may differ from plain-text 10-K data. In our study, we try to

remove all XBRL 10-K values that differ from 10-K values (using both manual and

automated procedures described in §1.4). Secondly, we conduct a large-scale com-

parison that involves more than 5,000 companies (as opposed to 75 in Boritz and No

(2013) and 27 in Tallapally, Luehlfing, and Motha (2012)) by automating the compar-

ison procedure. Thirdly, we study not only the amount of discrepancies between the

data sets, but also the magnitude of discrepancies and their effect on non-discrepancy

observations. Fourthly, we develop and present a methodology for an automated (as

opposed to manual) XBRL and Compustat data comparison. This methodology is

critical for our study since such a large-scale study would not be possible without it.

Finally, some of our findings differ from the above mentioned studies (e.g., we do not

find significant differences in Total Liabilities between Compustat and 10-K data as

Boritz and No (2013) do).
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1.2.2 Data definitions and comparability

Stone (1968) is one of the first studies to caution researchers about the use of digital

accounting databases and Compustat, in particular. The study recognizes several

shortcomings of Compustat in terms of data comparability. First, it argues, the

Compustat annual data inherits SEC 10-K filings weaknesses. Companies may not

be directly comparable based only on the 10-K reports since they may use different

accounting, e.g., FIFO versus LIFO, or straight line depreciation versus accelerated

depreciation, etc. Second, the data definitions used to adjust 10-K data to make it

more comparable may fail because of the previous point and may significantly alter

the accounting used by a company. Moreover, it creates the appearance of uniformity

of data, and a user of Compustat data may draw wrong conclusions assuming items

to be comparable. Also, users not fully aware of data definitions are likely to run into

problems when creating their own financial ratios or proxies. Last but not least, the

study argues that Compustat does not provide qualitative disclosures that may be

essential to understand the financial position of a company.

Thies and Revsine (1977) examine the implications of Compustat definitions and

policies for the Capital Expenditures item on the empirical inflation accounting re-

search, and specifically for the purpose of asset layering. Empirical inflation ac-

counting studies often require to transform conventional accounting numbers to their

inflation-adjusted estimates. This is generally done by arraying fixed assets in layers

with respect to their acquisition (cost and dates). The study argues that Compu-

stat item Capital Expenditures cannot be used effectively for the purpose of fixed

asset layering since: 1) Compustat definition of the item does not include fixed assets

acquired through merger or acquisition, and 2) Compustat report capital expendi-

tures net of retirements (if this net figure is shown in a financial report). To test the

adequacy of Compustat Capital Expenditures data, the authors impute fixed assets

retirements from the Compustat data for the years 1960 through 1974 for S&P 425

industrial firms. They use a simple criterion: check how many imputed retirements
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are negative.8 The proportion of negative values ranged from 7.5% to 30.7% across

different years, indicating that Compustat data is too distorted to be used for the

purpose of fixed asset layering. The authors suggest to use SEC’s 10-K data directly

instead of Compustat data, even though it is less accessible and convenient.

Collins and O’Connor (1978) criticize Eskew (1975) study due to its failure to

adjust data across different databases: Compustat, Moody’s Industrial Reports, and

companies’ annual reports. They argue that data definitions in Compustat differ from

the ones in Moody’s and annual reports. The researchers should take special care of

data definitions when matching and merging data from several databases, since it

can lead to false conclusions. Collins and O’Connor replicate Eskew (1975) study by

addressing shortcomings of the latter. The results obtained differ significantly from

the original ones.

Guenther and Rosman (1994) study the differences between SIC codes assigned

to companies by Compustat and CRSP databases and their effect on accounting

research. Using a sample of 1,810 companies, the authors find 1989 Compustat and

CRSP databases disagree: on 71% of all companies at the 4-digit SIC level, on 54%

of companies at the 3-digit level, on 38% of companies at the 2-digit level, and on

22% of companies at the 1-digit level. The authors also examine the homogeneity of

Compustat and CRSP. They find that the Compustat SIC code classification yields

both higher correlation of intra-industry monthly stock returns and lower variances

of intra-industry financial ratios than CRSP SIC classification. To test the impact

of the differences in SIC classification between two databases, the authors replicate

the study of Freeman and Tse (1992) using both Compustat and CRSP SIC codes.

The results obtained using Compustat codes are similar to the results of Freeman and

Tse since they also use Compustat. However, the results obtained by utilizing CRSP

codes were significantly different from the original ones.

Kahle and Walkling (1996) do a follow-up study of Guenther and Rosman (1994)

8. Clearly, fixed assets retirements cannot be negative
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by examining the differences in SIC classification of Compustat and CRSP databases

for approximately 10,000 firms over the years of 1974-1993. They find similar level of

discrepancies as Guenther and Rosman: there is 79% disagreement at the 4-digit SIC

level, and 35% disagreement at the 2-digit SIC level. To further analyze the impact

of these differences, the authors choose six financial characteristics9, draw a random

sample of firms for each characteristic, and conduct simulations to measure the power

and specification of Compustat and CRSP SIC classifications based on these random

samples. The authors find that Compustat’s SIC classification is better at detecting

abnormal performance10 than CRSP’s SIC classification.

1.3 Data alterations in Compustat

Compustat North America Fundamentals Annual data items may differ from the orig-

inal accounting data items disclosed by companies in their annual financial reports.

We identify four reasons for having such differences:

1. Compustat transformed original value to match Compustat’s standard defini-

tion of the variable,

2. Compustat’s value is erroneous (due to typos, rounding, etc.),

3. Compustat’s value is not up to date,

4. Compustat does not provide a value for the data item (i.e., missing data).

We found data standardization to be the main source of discrepancies between

Compustat and 10-K data. Compustat argues that data standardization results in

9. Specifically, the authors choose: Operating Return on Sales, Operating Return on Assets,
Leverage, Asset Turnover, Payout ratio, and Market-to-Book ratio.

10. Abnormal performance in Kahle and Walkling (1996) is simulated by adding errors to the
variables to increase the difference between sample and control firms’ characteristics.
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more “consistent and comparable data” that provides “solid foundation for your rig-

orous analysis”.11 However, some studies have expressed skepticism on whether such

alterations improve data comparability (e.g. Stone 1968). All data in Compustat

is standardized by default, and in most cases footnotes and data codes do not in-

dicate whether the values have being altered.12 However, Compustat does provide

transparency and analyst notes data that explain adjustments that have been made

to obtain standardized items. In this study, we do not rely on Compustat’s trans-

parency and analyst notes data to avoid potential data provider bias, and use XBRL

10-K filings as an independent source of original financial data provided by companies

to compare values between Compustat and 10-K, and reconcile discrepancies between

the two data sets.

An example of data standardization is Compustat reporting Total Assets of Amer-

ican Water Works Company at the end of December 2011 to be $13,809,643,000, while

the value of Total Assets in the 10-K being $14,776,391,000. The difference is the

value of Contributions in Aid of Construction of $966,748,000.13 It is not obvious

whether this adjustment enhances data comparability - by not including Contribu-

tions in Aid of Construction item in Total Assets Compustat underreports the amount

of resources that the company has.

Erroneous data is another reason why Compustat numbers may differ from the

original numbers reported by companies. Unlike standardized data, errors are un-

intentional alterations of the original or standardized data. Errors may occur due

to input typos, use of wrong accounts and balances, data misinterpretation, data

11. www.compustat.com, as of February 16, 2014

12. A very small number of alterations is reported through footnotes. For example, footnote “JE”
indicates that the reported value differs form the reported amount by deferred taxes.

13. American Water Works Company in its 10-K describes Contributions in Aid Of Constructions
as follows: “Regulated utility subsidiaries may receive advances and contributions from customers,
home builders and real estate developers to fund construction necessary to extend service to new
areas . . . Advances that are no longer refundable are reclassified to contributions in aid of construc-
tion. Contributions in aid of construction are permanent collections of plant assets or cash for a
particular construction project.”

www.compustat.com
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rounding, data calculations, etc. The danger of having errors in the data is that they

are hard to identify – they may appear to be standardized numbers. For example,

Compustat reports the Gross Profit of Transwitch Corp for the year of 2011 to be

$19,932,000, while the company reports the value of Gross Profit to be $17,932,000.

The difference of 2 million U.S. dollars might be due to Compustat’s adjustment,

although we failed to reconcile this discrepancy. It may also be due to input typo

since the two numbers differ only in one digit.

Accounting researchers are well-aware of the existence of erroneous data in popular

data sets. Sometimes they assume that errors in the data will result in some extreme

values. Therefore, they use outlier detection techniques to find extreme values, and

either delete them or transform them (using techniques such as winsorising). However,

this approach is not ideal since erroneous values do not have to be extreme, and

extreme values do not have to be erroneous. In many cases, extreme values that

are not erroneous should be included in a study sample since they represent possible

states of the object studied. Moreover, deleting extreme observations is very likely

to affect the output of most empirical models due to their sensitivity to outliers, and

this may drastically change the results of the study.

A different type of data discrepancy between Compustat and companies’ financial

reports is when Compustat does not update accounting numbers due to amendments.

Compustat uses amended filings (i.e., 10-K/A and 8-K/A) to update North America

Fundamentals Annual data, but does not use restated numbers from the subsequent

10-K or 8-K forms to update its annual data.14 Unfortunately, in some cases, Com-

pustat fails to updates its data items after amendments in a timely manner. For

instance, on March 15, 2012, ADA-ES reported its Net Loss to be $19,851,000; how-

ever, on October 19, 2012, the company issued a 10-K/A and restated its Net Loss

14. According to Standard & Poor’s “Compustat Understanding the Data”, March 2014, document:
“When a company files an amended source, such as a 10-Q/A or 10-K/A, S&P updates this data and
treats it as a new source for that period. The amended source overrides the original source...Quarterly
income statement data is restated by S&P and Annual data is not.”
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to be $22,819,000. As of February 22, 2013, Compustat has not updated the origi-

nally reported number with the restated one. The resulting difference of $2,968,000

amounts to more than 10% of the Net Loss.

Data that are not updated should be considered separately from erroneous data

since there were no errors in recording the original (not restated) numbers from fi-

nancial reports. On the other hand, the fact the numbers were restated indicates

that there is a material difference between the original and updated numbers. Hence,

using accounting data that has not been updated may result in significantly different

results of an empirical study.

Another reason why Compustat data may differ from is the absence of data values

for some variables in Compustat database. For example, Compustat did not report

the Total Assets of Airwave Labs ($1,139,182) at the end of 2012, although Com-

pustat did report company’s Total Liabilities and Stockholder’s Equity. Accounting

researchers usually drop observations with missing data, or in rare cases substitute

missing data with estimated values (e.g., industry averages). Clearly, in some cases

a variable is not applicable to a company (e.g., Sales), or may not be reported in

financial reports (e.g., non-GAAP measures). However, if an accounting number is

reported in a financial statement, and there is a corresponding Compustat variable

for that number, then it should be present in Compustat. Missing data does not

allow researchers to study the whole population, and similarly to data alterations,

may change the results of empirical studies.

1.4 Comparison of Compustat annual data with 10-K num-

bers using XBRL

The best way to assess the amount and magnitude of data alterations in Compustat

is to compare the numerical financial data reported in Compustat to the original

data reported in companies’ financial reports. In particular, the annual accounting
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numbers in Compustat can be compared to the accounting numbers found in the

10-K financial reports.

However, a large-scale comparison of accounting data items reported in Compustat

and corporate 10-K filings would be a very costly procedure, if done manually. It was

the only option not so long ago. However, since the SEC mandated the use of the

XBRL reporting technology in the SEC filings for all U.S. GAAP filers for the fiscal

years ending on or after June 15th, 2011, it has become possible to automate this

process.

1.4.1 XBRL as a means for data comparison

In our study, we take advantage of the newly available XBRL financial reporting to

compare the annual data items reported in Compustat North America Fundamentals.

In essence, XBRL is a formal language for communicating business information. Data

items are described using meta-information, and are linked together through various

relationships. Information carried by XBRL is both human- and computer-readable.

A special software can render an XBRL document and present it to an end-user as an

electronic document humans are used to dealing with. However, the real advantage

of XBRL is that it allows computer software to parse XBRL documents, and find,

extract, and present information in an automated fashion. This drastically reduces

the cost of manual labor needed to process such documents. It also allows to process

a large amount of documents within a matter of seconds.

The SEC has realized the benefits of XBRL reporting, and in April 2005 the SEC

adopted XBRL Voluntary Filing Program (SEC 2005). This program enabled U.S.

GAAP filers to voluntarily prepare financial statements using XBRL. The objective

of the program was to determine the usefulness of XBRL as a format for report-

ing financial information by analyzing volunteers’ feedback comments. In 2009, the

SEC adopted Interactive Data to Improve Financial Reporting final rules (2009) that

mandated companies that prepare their financial statements in accordance with the
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U.S. GAAP to file supplemental XBRL documents for 10-Q, 10-K, and 8-K reports

in addition to plain-text ones. This mandate was implemented in several phases. In

the first phase, domestic and foreign large accelerated filers with worldwide public

common equity float above $5 billion and the fiscal periods ending on or after June

15, 2009, were required to file with XBRL. In the last phase, all the U.S. GAAP

companies were required to file using XBRL for the fiscal years ending on, or after

June 15, 2011.

One of the most fundamental uses of corporate accounting data is for financial

data comparison. Users of financial statements need to compare financial positions of

various companies for their decision-making. Since XBRL is just a language that can

be used for business data reporting, it does not have built-in capabilities for multi-

document data comparison. Therefore, the SEC has created the XBRL U.S. GAAP

Financial Reporting Taxonomy. This taxonomy is a collection of common accounting

data concepts, definitions, types, and relations that is meant to accommodate most

of companies’ financial reporting needs. Since most accounting items in financial

reports is fairly standard, the XBRL U.S. GAAP Financial Reporting Taxonomy

defines common rules how to present this standard information in XBRL filings.

Therefore, in theory, standard accounting numbers can be easily compared across

different filings using the XBRL U.S. GAAP Financial Reporting Taxonomy.

Accounting information that is not standard, i.e., company- and filing-specific

information, is represented in XBRL documents through so-called extensions. Ex-

tensions are an important part of XBRL filings that provide additional reporting

flexibility. However, the cost of utilizing extensions is the reduced comparability

since extensions are not necessarily created in the same manner by different filers.

Before using an extension concept in a filing, the filer should search the XBRL U.S.

GAAP Financial Reporting Taxonomy for a possible match. If no suitable match is

found, the filer is allowed to create an extension. Debreceny et al. (2011) examined

67 XBRL filings from the period of April 15,2009 to June 2010, and found that more
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than 40% of all extensions were unnecessary because the corresponding elements exist

in the U.S. GAAP Financial Reporting Taxonomy.

As mentioned above, all public U.S. GAAP companies are required to file their

financial reports using the XBRL reporting technology starting from June 15, 2011,

with standard accounting data items being formally reported in a similar manner due

to the use of common XBRL U.S. GAAP Financial Reporting Taxonomy. Given that

accounting variables found in Compustat are fairly standard, it becomes clear that

XBRL filings can be utilized to automatically extract standard accounting numbers

from corporate financial reports and compare them to numbers found in Compustat.

1.4.2 Comparison methodology

In our study, we compare annual accounting data of 5014 company-unique XBRL

filings (10-Ks) to the appropriate Compustat data for the period from October 1, 2011,

to September 30, 2012.15 There are several reasons why we consider this particular

period. First of all, to better assess the data quality in Compustat we analyze only

one annual filing per company. This ensures that we do not introduce additional bias

and noise to the data and cover all possible companies and industries. Secondly, we

analyze filings for the recent 2011-2012 period to capture the current data quality state

of the Compustat data set. Moreover, a more recent period makes more sense from

the XBRL perspective since annual XBRL filings are a recent addition to corporate

10-K filings, and recent XBRL filings are likely to be more accurate than the older

ones (e.g., Du, Vasarhelyi, and Zheng 2013). Finally, we downloaded the data on

February 22, 2013 which introduces a 145-day lag between the latest date in the

considered period (September 30, 2012) and the data download date. This ensures

that most of the late filings are captured in our data, and that Compustat has had

sufficient amount of time to update missing and restated (as reported in companies’

15. We only consider annual (and quarterly) reports since these are verified by audit firms.
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amendments) data items.

Our comparison methodology comprises of six steps:

1. Extracting data from Compustat.

2. Extracting data from XBRL 10-K filings.

3. Merging Compustat and XBRL data.

4. Creating mappings between Compustat variables and XBRL reporting concepts.

5. Calculating differences between Compustat variables and the associated XBRL

reporting concepts.

6. Analyzing discrepancies between Compustat and XBRL 10-K filings.

Below, we explain each step in more details.

Extracting data from Compustat

One of the main advantages of using Compustat is that the data extraction process

is fairly simple. This feature is particularly attractive to researchers that rely on

accounting numbers in their studies. However, some users of Compustat may not

realize that some accounting numbers reported by companies have been altered to fit

Compustat’s definitions of variables. It is important to understand the data alter-

ations and the effects they may have on the output of a research that relies on the

Compustat data.

We extracted all the available variables from Compustat North America Funda-

mentals Annual through Wharton Research Data Services (WRDS) interface for the

U.S. companies for the period from October 1, 2011, to September 30, 2012. If there

was more than one observation for a company, we kept only the latest one.

Dollar values in XBRL filings are measured in $1 denominations. However,

in the Compustat data set, different variables use different units of measurement
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(numéraires). For example, the Net Income variable is measured in millions of U.S.

dollars ($1,000,000), while Earnings per Share (EPS) is measured in U.S. dollars ($1).

We used variable definitions in Compustat Manual to transform all Compustat values

to be measured in U.S. dollars ($1).

Extracting data from XBRL 10-K filings

We downloaded all the domestic XBRL 10-K filings (including amendments) from the

SEC’s Electronic Data-Gathering, Analysis, and Retrieval (EDGAR) system’s File

Transfer Protocol (FTP) server with the reported fiscal year being in the one-year

range from October 1, 2011, to September 30, 2012.16 The filings were downloaded

on February 22, 2013. Hence, most of the late filings and filing amendments are likely

to be included in the data set. For each company, we kept only the latest 10-K filing,

and, where applicable, all of its amendments (i.e., 10-K/As). We kept only the latest

company filing to ensure that the reported amount and magnitude of discrepancies

are not biased by certain types of companies and data alterations. And the reason

to have both amendments and the original filings is to verify whether Compustat

updates original numbers to restated ones in a timely fashion.

As mentioned previously, XBRL 10-K filings use the XBRL U.S. GAAP Finan-

cial Reporting Taxonomy, a collection of common financial and reporting concepts,

definitions, types and relationships. Although, filers can define their own XBRL data

concepts (extensions), SEC encourages them to use standard concepts found in the

XBRL U.S. GAAP Financial Reporting Taxonomy whenever possible. By doing this,

filers in their XBRL fillings would report similar accounting concepts using similar

XBRL U.S. GAAP elements, which would greatly enhance data comparability across

different companies and filings.

In our study, we compare 30 common accounting concepts from Balance Sheet,

Income Statement, and Statement of Cash Flows between Compustat and 10-K data

16. SEC’s EDGAR’s FTP server can be reached at ftp://ftp.sec.gov/edgar/.

ftp://ftp.sec.gov/edgar/.
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sets.17 All of these concepts are present in the XBRL U.S. GAAP Financial Reporting

Taxonomy. We do not consider extensions. In addition, we only consider numbers

that were tagged in XBRL 10-K filings individually (detailed tagging) as opposed to

being a part of a text block (block tagging) to ensure accurate data extraction. We

also only consider numbers measured in U.S. dollars (or dollars per share) to avoid

us introducing bias of currency conversion.

Unfortunately, extracting data from XBRL documents is not a simple process.

The main problem is that filers do not utilize XBRL reporting technology in a consis-

tent manner. The current SEC’s implementation of the XBRL U.S. GAAP Financial

Reporting taxonomy allows a certain amount of flexibility in reporting. In addition,

we and other researchers (2013) find that many XBRL filings contain errors. These

findings should be viewed in the context of 24-month liability provision for the first-

time filers.18 The end result is that even though filers use the same XBRL U.S. GAAP

Financial Reporting Taxonomy, different filers describe similar standard accounting

items differently in their XBRL reports. As a consequence, it is quite a challenge

to extract accurately the information of interest from many filings in an automated

fashion.

A particularly problematic current XBRL reporting practice is the use of XBRL

contexts. An XBRL context provides additional information about the concept re-

ported, usually including such information as the concept’s associated period of re-

port, entity, dimension, etc. Although a useful instrument, companies tend to use it

differently, thus reducing the benefit of XBRL reporting standardization. For exam-

ple, the XBRL U.S. GAAP Financial Reporting Taxonomy defines “LegalEntityAxis”

dimension that identifies the specific entity that a concept is related to. For an XBRL

concept associated with a parent company, different fillings may provide: 1) no value

for the XBRL “LegalEntityAxis” dimension, 2) “ParentCompanyMember” value for

17. See Table A.2 for the full list of 30 accounting concepts analyzed.

18. The limited liability provision was set to expire on October 31, 2014.



24

the “LegalEntityAxis”, or 3) a custom member definition for the “LegalEntityAxis”

dimension. This example shows two major issues. The first one is that it is not clear

what context should a concept of interest have. In other words, there can be many

instances of the same concept, each having its own context; the problem is to pick

the correct one. The other issue is the concepts’ entity attribution – in many cases,

a filing reports accounting information for many entities, and it may be problem-

atic to attribute each concept to its corresponding entity since each entity may have

its own value for the “LegalEntityAxis” dimension that is usually an extension (i.e.,

not defined in the XBRL U.S. GAAP Financial Reporting Taxonomy). For example,

Huntsman Corporation and Huntsman International LLC are manufacturers of chem-

ical goods that jointly file annual and quarterly filings. However, each company has

different values for similar accounts and a different unique identifier with both SEC

and Compustat. Since these companies share a common XBRL filing it is important

to attribute numbers to the correct entities.

Theoretically, if one filing is associated with several U.S. GAAP filers that have

Central Index Keys (CIKs) assigned to them, the XBRL filing may include informa-

tion about those filers through the means of special “Document and Entity Informa-

tion” (DEI) XBRL concepts. However, in practice, this is rarely the case, and not

much information is revealed about the entities other than the main one in the XBRL

filing. In the case of the above-mentioned Huntsman Corporation and Huntsman In-

ternational LLC, only the entity information of Huntsman Corporation is disclosed

through DEI XBRL Concepts in their joint 2011 10-K filing.

The issues described above make the processes of extraction of relevant infor-

mation and its attribution to various entities very complicated and perhaps even

ambiguous. It is true that those issues are irrelevant when a user of financial state-

ments is concerned with only one filing – an XBRL software can render the filing in a

comprehensible format. However, the same functionality is provided by a plain-text
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filing without the cost of utilizing the XBRL reporting technology. The main ad-

vantage of XBRL is that computer software can automatically process the embedded

tags in the XBRL document without any need for user intervention. This is especially

important when a software processes many XBRL documents and compares the data

within those documents. Hence, the value of XBRL decreases when filers become too

frivolous in the way they utilize XBRL.

To overcome the problem of attributing a filing’s reporting concepts to entities

associated with that filing, we need to identify the correspondence between the values

of the XBRL “EntityLegalAxis” dimension embedded in the concept contexts and the

actual entities. In this study, we utilize the following method:

1. Use the EDGAR index file to extract information about entities, such as legal

names, Central Index Keys (CIKs), addresses, etc.19

2. Whenever possible extract entity context information from “Document and En-

tity Information” (DEI) XBRL concepts embedded in the XBRL instance doc-

ument.

3. Analyze common entity member values such as “ParentCompanyMember”,

“SuccessorMember”, etc. in the XBRL instance document.

4. Extract textual descriptions (labels) for all possible values of the “EntityLe-

galAxis” dimension found in the XBRL label linkbase document.

5. Match entities’ information found in the EDGAR index files with the values

found in the XBRL filing.

The last step involves comparing the values of CIKs (whenever possible), or the

descriptions (labels) of the XBRL entity member values with the entities’ legal names.

19. Every 10-K filing in EDGAR is associated with an index file that contain basic information
about the filing and filing entities.
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Since the entity names are often not exact, e.g. “Microsoft Corporation” and “Mi-

crosoft Corp.”, we use the Jaccard text similarity measure (Jaccard 1901) to compare

labels and EDGAR legal names. The Jaccard similarity measure is defined as follows.

Formally, given two pieces of text, let T1 be the set of all words in the first text, and

T2 be the set of all words in the second one. The Jaccard similarity measure between

these two pieces of text is defined as

J(T1, T2) =
|T1 ∩ T2|
|T1 ∪ T2|

. (1.1)

That is, the Jaccard similarity measure is equal to the number of shared words divided

by the number of all words. We consider two pieces of text to be similar, only if the

similarity measure between them is 0.3 or greater.

Finally, by means of their contexts, XBRL concepts may be defined in other

dimensions than the entity dimension, such as geographical area. Since we want to

compare XBRL data items with Compustat data items that are usually general in

nature, we do not extract the concepts that are defined in dimensions other than the

entity dimension. The only exceptions are dimensions that indicate a restatement,

type of financial report, or components of partner capital.

For the purpose of our study, we created our own applications that would pro-

cess XBRL 10-K filings due to unavailability of such software in the public domain.

However, recently a number of tools have appeared that are able to process a large

number of XBRL filings. Many of these tools are still in the development stage, and

may not be fully functional. However, potentially they can be used by academics and

practitioners to obtain the original data as reported by companies.

To ensure that our applications reliably process XBRL data, we adopt a software

verification technique called software walk-through. This peer review technique is

one of the standard procedures defined in the IEEE Standard for Software Reviews

and Audits (IEEE 2008). This procedure has been empirically shown to outperform
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other common software validation procedures such as functional and structural testing

(Basili and Selby 1987) and computer-based testing (Myers 1978).

Merging Compustat and XBRL 10-K data

Data items in Compustat and XBRL 10-K observations should be merged based on

the same entity and reporting period. Matching data by reporting periods does not

present a particular problem. However, matching by entities does.

Each company in the EDGAR database is identified by the SEC’s unique identifier

– Central Index Key (CIK). In addition, EDGAR’s XBRL filing document name

convention requires to identify the main entity through its Ticker code, a unique

identifier for stock market public traders. Compustat has its own unique identifier

called Gvkey. However, Compustat does provide values for both CIK and Ticker.

Central Index Key is the best unique entity identifier to match data items from

both data sets since EDGAR may not provide Ticker codes for all entities associated

with a filing. However, for many observations, the value of the CIK variable in

Compustat is missing. In those cases, we use either 1) the combination of Ticker

code, company name and address, or 2) the company name and address to match the

entities across data sets. As before, since the company name and address may not be

represented uniquely (e.g. “One Green Avenue” versus “1 Green Ave.”), we use the

Jaccard text similarity measure (described in §1.4.2) to match the appropriate text

fields.20

Overall, we extracted 7,466 XBRL 10-K company-unique observations, and 7,375

Compustat company-unique observations for the period from October 1, 2011, to

September 30, 2012. Out of those, we were able to merge 5,014 observations. Most

of the companies that we were unable to match were either 1) too small to be present

20. Using textual similarity techniques to match Compustat and 10-K companies adds 12 more
companies to our analysis. We have repeated the discrepancy analysis without those 12 companies.
The results did not change.
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in Compustat 2) not present in the EDGAR database, or 3) did not file 10-K with

XBRL.21

Creating mappings between Compustat variables and XBRL reporting

concepts

To calculate differences between Compustat and XBRL 10-K data sets, each Compu-

stat item has to be matched to the appropriate XBRL reporting concept. It is impor-

tant to note that this is not a one-to-one match. For example, Compustat’s variable

“Depreciation and Amortization” can be represented in the XBRL U.S. GAAP Finan-

cial Reporting Taxonomy by means of either “Depreciation,” “DepreciationAndAmor-

tization,” or “DepreciationDepletionAndAmortization” reporting concept. That is,

depending on the filing either of those three XBRL concepts can match Compustat’s

Depreciation and Amortization variable.

Creating a mapping between Compustat variables and XBRL manually would be

very costly and, most likely, inefficient. For this study, we developed an algorithm

that creates mappings between variables in the data sets in an automated fashion.

The algorithm is implemented under the assumption that Compustat variables and

the corresponding 10-K XBRL concepts should have similar values in most cases when

the values in Compustat are not altered. In other words, we assume the number of

discrepancies between the two data sets to be rather small for the unaltered data.

For each Compustat variable, the algorithm identifies a set of XBRL U.S. GAAP

concepts that may match the variable using the information from the merged data

set. In this study we compare 30 common accounting items that are present in the

XBRL U.S. GAAP Financial Reporting Taxonomy, and therefore the algorithm does

not utilize XBRL extensions.

21. The SEC’s mandate to file using XBRL as of June 15, 2011, required to file all financial reports
starting with the first 10-Q. That is, if for some company the first filing after June 15, 2011, was
not 10-Q, but 10-K, the company was allowed not to file this 10-K using XBRL. For more details
see item 601, Regulation S-K.
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The mapping algorithm works as follows. For each Compustat variable, it iden-

tifies all observations from the merged data set where that Compustat variable has

a non-zero value.22 Then, for each of those observations, the algorithm finds all the

U.S. GAAP XBRL concepts whose values are equal to the ones of the Compustat

variable (up to a rounding error), if there are any. XBRL concepts that match the

Compustat variable in at least 10% of all cases are considered to be mapping candi-

dates for that Compustat variable. Ideally, a Compustat variable should match at

least one of its mapping candidates in all the observations. Finally, the algorithm

assesses how well the mapping candidates fit a Compustat variable, by calculating a

measure that we call mapping coverage. Mapping coverage is defined as the number

of observations where Compustat variable was matched by at least one of the XBRL

mapping candidates divided by the number of all observations with non-zero values of

that Compustat variable. For example a mapping coverage of 0.5 means that the ob-

tained variable mapping explains at least 50% of Compustat values for that variable.

Most variables that we used in our analysis have relatively high values of mapping

coverage, but some do not due to large amounts of Compustat data alterations.

To sum up, for each Compustat variable, we use the sample of merged observations

to find a set of standard XBRL concepts that often match (up to rounding error) that

Compustat variable. These standard XBRL concepts (mapping candidates) are then

used to calculate differences between the values of that Compustat variable and the

values reported in XBRL 10-K reports.

Calculating differences between Compustat variables and the associated

XBRL reporting concepts

Once the data sets have been merged and the mappings between Compustat and

XBRL 10-K items have been established, it is possible to calculate the data differences

22. Although, Compustat data allows variables to have no value, we found that sometimes zero
values may also indicate no value. We decided to excluded zero values since they may yield unreliable
mappings.
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between the two data sets.

For each Compustat variable, we compare values of that variable to values of

the appropriate XBRL concepts as defined by the mappings that we have previously

established. If a value of a Compustat variable matches the value of at least one

matching XBRL concept, then we assume that there is no difference between the

Compustat value and the XBRL 10-K value. In general, when we compare values of

Compustat and XBRL 10-K filings, three cases are possible:

1. There is no difference between values.

2. There is a difference between values.

3. Either Compustat or XBRL value is missing.

It is not clear why the Compustat data set would have missing values apart from

the case where the values are not applicable or not reported by a filer. From the XBRL

perspective, if Compustat reports a value and XBRL 10-K filing does not report

matching concepts, then this is an artifact of either Compustat reporting calculated

values, shortcomings of the variable mapping process, or errors in the XBRL filing.

Unfortunately, we found that there are a number of issues with XBRL 10-K reports

that result in missing values. Some typical problems are:

• Accounting number is not reported in a 10-K filing.23

• Accounting number is not reported in an XBRL filing.

• Accounting number is reported using a wrong XBRL U.S. GAAP concept.

• A standard accounting number is reported through the use of extension.

23. In some cases, 10-K filings do not explicitly provide values of accounting items. For example,
many U.S. GAAP companies (approximately 30%) do not directly report values of Total Liabilities in
their financial reports – Total Liabilities are often reported together with Stockholder’s equity as one
number. An advantage of using Compustat, is that Compustat calculates many accounting numbers
that are not directly reported in financial statements. However, verification of those numbers may
not be an easy task due to the complex nature of calculations of some accounting items.
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• Accounting number refers to a wrong period.

In many cases, there is a difference between the values reported in Compustat

and XBRL 10-K. We express this difference as a relative difference. We utilize the

relative difference measure as opposed to the absolute one since it better reflects the

magnitude of differences and allows to compare the extent of differences between

different Compustat variables.

In cases where there is just one matching XBRL concept with a non-zero value,

the calculation of the relative difference between Compustat and XBRL data items is

straightforward. However, there may be cases where there are more than one matching

XBRL concepts with different non-zero values. In such cases, we choose the XBRL

concept whose value differs from the Compustat value the least, and calculate the

relative difference between that XBRL concept and the Compustat value.

Formally, if c is the value of the Compustat variable, and x1, x2, . . . , xn are the

values of the matching XBRL concepts, we choose the value x from x1, x2, . . . , xn

such that

x = argmin
i=1...n

xi − c. (1.2)

The chosen value of x is then used to calculate the relative difference between

10-K and Compustat values:

x− c
c

(1.3)

This is a generalization of the regular relative difference – i.e., if there is only one

matching XBRL value, than expressions (1.2)-(1.3) are equivalent to the regular rel-

ative difference.

Analyzing discrepancies between Compustat and XBRL 10-K filings

The aim of this study is to compare numbers in Compustat to the original numbers

in 10-K filings. We utilize XBRL technology to extract numbers from XBRL 10-

K reports and compare them to Compustat numbers. There is a risk that some
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discrepancies obtained by this method are the products of XBRL reporting. To

address this issue, we examine the causes of each discrepancy through both automated

and manual procedures.

Ideally, the numbers as reported in XBRL 10-K filing should precisely match the

numbers as reported in the corresponding plain-text 10-K filings. However, XBRL 10-

K reports may (and do) contain errors.24 For example, values may be reported without

minus signs making them positive when they should be negative, or values may be

reported in thousands of dollars instead of dollars. These will result in discrepancies.

In addition, XBRL reports may use extensions or non-conventional dimensions to

describe the data items. The algorithm we utilize to extract and match XBRL data

may not be able to capture such XBRL items. If this happens, then in the best case

it will result in a missing XBRL value in our matched data. In the worst case, it will

result in a difference in the matched data set since the algorithm could have extracted

other XBRL items that could sometimes match a Compustat variable (i.e., mapping

candidates, see §1.4.2).

Given that discrepancies between data sets may exist due to XBRL-related errors,

it is necessary to eliminate all such discrepancies from our analysis in order to assess

the true amount and magnitude of data alterations in Compustat. Fortunately, it is

possible to identify sources of most discrepancies in an automated fashion. For exam-

ple, a simple check against a Compustat value may help identify if an XBRL value

has a wrong sign. In addition to simple checks that compare data values against each

other, we employ other automated procedures described below that target specific

sources of discrepancies.

To find out whether the extraction algorithm was unable to extract the correct

value from XBRL 10-K due to the value being reported in a non-standard manner or

24. For this study, the most important errors are errors that result in wrong values of wrong XBRL
concepts. These may affect the results of our study, and are the ones that we try to eliminate.
However, there may be other errors in XBRL data that do not affect the results of our study. For
more information on 10-K XBRL quality, please see Hoffman (2013) and Boritz and No (2008).
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with an error (e.g. extension, wrong tag name, non-conventional dimensions, etc.),

we employ an algorithm that automatically scans the XBRL 10-K filing to see if any

other XBRL concept matches the Compustat value. If there is such a concept, the

algorithm reports the reason for the XBRL concept being not extracted or matched.

For example, a standard accounting item may be reported through the use of XBRL

extensions, or the item may be attributed to a different entity.

As mentioned previously, Compustat sometimes fails to update numbers after a

10-K/A with restated numbers has been filed. If the original 10-K filing was filed

using the XBRL reporting technology, it is possible to check whether a discrepancy

between Compustat and XBRL filing is due to the Compustat value being not up to

date by comparing the Compustat value to the matching XBRL values in the original,

pre-amendment 10-K filing.

Finally and most importantly, Compustat often alters original numbers reported

in corporate filings to standardize values according to Compustat’s definitions. It

would be very costly to identify such alterations using manual procedures. There-

fore, we developed an algorithm that tries to explain a difference between Compustat

and XBRL 10-K filing by searching the XBRL filing for concepts whose values could

explain the difference (up to a rounding error). Essentially, the algorithm attempts

to find the adjustments made to the original 10-K number by Compustat. The algo-

rithm first tries to find an XBRL concept in the XBRL 10-K filing that if subtracted

or added to the matching XBRL value results in no discrepancy with the Compustat

value. If no such item is found, the algorithm tries to find a combination of two

XBRL concepts and combination of subtractions/additions that would result in no

discrepancy. Finally, if no such combination was found, the algorithm will search for

a combination of three XBRL concepts and their respective combination of subtrac-

tions/additions that would result in no discrepancy. If no such ternary combination

is found, the algorithm stops.

It should be noted that although the algorithm described above is very powerful
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at explaining Compustat data standardization, it may yield a spurious combination

of complementing XBRL items - i.e., a combination that by chance results in adjust-

ments that yield no discrepancies between Compustat and XBRL items. Therefore, it

is imperative to identify such spurious combinations. For each variable, and each au-

tomatically found combination, we manually scan the adjustment and assess whether

it appears suspicious or not. For example, it is very likely that Compustat may adjust

the value of Cost of Goods Sold by adding the value of Labor and Related Expense

item; however, it is highly unlikely that Compustat will adjust the value of Cost of

Goods Sold by adding the value of Current Assets. The latter incident must be inves-

tigated manually by comparing the Compustat’s value to the plain-text 10-K’s value.

Although we do apply our best judgment when deciding whether an automatically-

found adjustment should be investigated manually or not, this is still an ambiguous

process, and hence is a limitation of our study. On the other hand, we are interested

only in those spurious combinations that help us eliminate XBRL errors, and we have

found that the number of XBRL errors among these is very low (around 0% to 3%,

depending on the variable).25

The automated procedures described below are able to explain most of discrepan-

cies. However, some discrepancies still require manual checks in order to be explained.

In those cases, we compare values found in Compustat and XBRL 10-Ks to the values

in the corresponding plain-text 10-K reports. It should be noted that the nature of

discrepancies that require manual checks is such that it may be impossible to iden-

tify the exact reasons for having these discrepancies. However, we can usually tell

whether the discrepancy is due to adjustment/error in Compustat, XBRL 10-K re-

port, or both. Overall, we have manually compared 1,800 discrepancy items (around

1.5% of all items) using original 10-K filings.

25. Most XBRL errors are usually found by applying other checks described in the section that
targets XBRL errors specifically.
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1.5 Analysis and results

For our analysis of differences between Compustat and 10-K numbers, we have chosen

30 top-level Compustat variables that are commonly reported by financial entities and

frequently used in accounting academic literature. For the full list of variables, their

description and descriptive statistics, please see Table A.2. Half of the analyzed

variables are Balance Sheet variables, 11 variables are Income Statement variables,

and 4 variables are Cash Flow Statement variables.

For all 30 Compustat variables we have performed the comparison procedure de-

scribed in §1.4, i.e., we have merged the Compustat and XBRL 10-K data, created

mappings between data sets, calculated differences and analyzed discrepancies. Most

variable values reported in Compustat have been successfully matched to the appro-

priate XBRL 10-K values. However, some have not – this is mostly due to filers not

reporting numbers that can be calculated from other 10-K numbers, or due to the use

of XBRL extension concepts. It is interesting to note from Table A.2 that in some

cases Compustat did not report values that were present in the 10-Ks (e.g., Compu-

stat did not report Total Assets values for 42 companies in our sample). Although,

the number of missing observations is not very large, this is a cause for concern.

As mentioned in §1.4.2, we were able to reconcile most of the discrepancies be-

tween Compustat and 10-K data. This indicates that the main reason for the differ-

ences between Compustat and 10-K reports are the data standardization procedures

implemented by Compustat.

1.5.1 Discrepancy analysis by variables

Table A.3 reports the amount and magnitude of discrepancies for each Compus-

tat variable. As mentioned before, we define a discrepancy as a difference between

Compustat and XBRL 10-K numbers that exceeds a rounding error. Many of these
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discrepancies would be considered “material” from the audit perspective. To mea-

sure the amount of “material” discrepancies we adopt a rule-of-thumb definition of

material discrepancies – a Balance Sheet discrepancy is “material” if it exceeds 0.5%

of Total Assets, an Income Statement discrepancy is “material” if it exceeds 5% of

Net Income, and a Cash Flow Statement discrepancy is “material” if it exceeds 5% of

reporting periods’ change in Cash amount. These definitions of materiality are com-

monly used in practice and were utilized in Boritz and No (2013). In addition, we

consider an Earnings per Share discrepancies to be material if the absolute difference

between data set values exceeds 5 cents.26

Although out sample size is quite large, it does not cover the whole population of

available observations in Compustat. Assuming that our sample is representative of

the population, for each variable, we estimate the minimum percentage of “material”

discrepancies between Compustat and 10-K in the population (with 99% probabil-

ity) based on the amount of material discrepancy observations in our sample. This

estimate is a lower bound of a 99% confidence interval of a one-tailed binomial test

that compares the number of material discrepancies to the number of all matched

observations for a given variable. The estimates are provided in Table A.3.

In Table A.3, we report two types of discrepancy statistics with mean, median,

and standard deviation information. The first one summarizes difference information

about the observations that resulted in discrepancies, i.e., this is descriptive statistics

of discrepancy observations. Specifically, for each discrepancy observation we calcu-

late the absolute relative difference between 10-K and Compustat values, and report

mean, median, and standard deviation of all such differences for a given accounting

variable.

The second type of descriptive statistics summarizes difference information about

all matched Compustat and XBRL 10-K observations. These statistics are meant

26. Some audit practices set the amount of materiality to the level that would change the value of
EPS by 1 cent. We decided to take a more conservative (with respect to deciding what a discrepancy
is) approach and define a discrepancy in EPS to be material if it exceeds 5 cents.
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to show the effects of discrepancy observations on the whole population of observa-

tions. We calculate (non-absolute) relative differences between all matched 10-K and

Compustat values. The mean value indicates the average relative difference between

all Compustat and XBRL 10-K matched observations with positive values indicating

that 10-K values on average are greater than Compustat values, and negative values

indicating vice versa. For each variable, we test whether there is a significant dif-

ference between Compustat and XBRL 10-K numbers by conducting non-parametric

Wilcoxon’s signed-rank test.27 The results of these tests show that values of 17 (out

of 30) variables significantly differ across Compustat and XBRL 10-K data sets (with

the significance level of at least 95%). In addition to the mean values, we also report

the median values of relative differences between Compustat and XBRL matched

population, but since median is the “middle value”, these values are equal to 0 un-

less the amount of discrepancy observations for a variable exceeds the amount of

non-discrepancy observations.

The results in Table A.3 indicate that there are significant differences between

Compustat and 10-K numbers. In addition, we would like to point out a couple of

interesting observations. Firstly, the amount of discrepancies, their magnitude, and

their overall effect on all matched observations differ by variable. High-level variables

that have simple definitions (e.g. Total Assets = all assets, Total Liabilities = all

liabilities, Net Income = all revenues - all expenses) tend to have less discrepancies

than variables that have more complex definitions (e.g. Cost of Goods Sold, or Gross

Profit).2829 Since the components of more complex variables are more likely to differ

27. We do not use absolute relative differences between 10-K and Compustat for the Wilcoxon
signed-rank tests, but instead use singed (non-absolute) relative differences. This may result in
differences’ effects being statistically underestimated since opposite sign values may cancel out each
other. Using absolute relative differences would invalidate Wilcoxon signed-rank tests (as well as
t-tests) and overestimate the effecst of the differences.

28. A smaller number of discrepancies does not necessarily result in smaller magnitude or overall
effect on all matched observations.

29. A significant amount of discrepancies in Stockholder’s Equity variables is caused by Compustat
including temporary, minority, and other equity often not included by companies in their reported
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across companies, industries and time, such variables tend to be more heavily adjusted

by Compustat to fit Compustat’s variable standard definitions.

Secondly, Compustat provides two variables of Retained Earnings item that we

include in our analysis – Retained Earnings (RE) and Retained Earnings Unadjusted

(REUNA). The difference is that the former is the Compustat-adjusted (standardized)

version of Retained Earnings, while the latter should represent numbers as reported

in 10-Ks. From Table A.3, it follows that the values of REUNA do differ from XBRL

10-K values in 1.36% of all cases (with 0.76% being material). However, more striking

is the fact that RE values differ from XBRL 10-K values in 72.21% of all cases (with

37.94% being material). Such a large difference between REUNA and RE variables

cannot be an artifact of the XBRL reporting or due to limitations of our study (as

discussed in §1.4.2) since REUNA values have matched XBRL 10-K values in 98.64%

of all cases. This example indicates that Compustat heavily adjusts original numbers

reported in 10-Ks.

Finally, as already mentioned, for most variables, relative differences between

Compustat and XBRL 10-K numbers are statistically significant. This means that

the distributions of accounting variables in Compustat and 10-Ks are significantly

different which may have a profound effect on the results of accounting studies that

utilize the Compustat data set. This, in particular, is true for studies that utilize

linear regression models since these models are very sensitive to changes in data

distribution (Klein and Rossin 1999).

Our results agree with the results of Tallapally, Luehlfing, and Motha (2011);

Tallapally, Luehlfing, and Motha (2012), that compared Cost of Goods Sold and Sales

values between Compustat and XBRL 10-K filings for a sample of 27 companies, in

a sense that the Cost of Goods Sold item tends to have more discrepancies and with

larger magnitudes than the Sales item. Some of our results differ slightly from the

results of Boritz and No (2013). For example, we do not find Total Liabilities to be

Stockholder’s Equity.
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significantly different across the data sets (both in number and magnitude), but we

do find higher rate of discrepancies for the Receivables item (17% versus 7.3%). The

differences are most likely due to us studying a much larger sample and have only

one observation per company in our sample.

1.5.2 Discrepancy analysis by industry, size, and XBRL

adoption phase

Company characteristics such as industry and size affect what is reported in 10-K

statements and how it is reported. The same items will often have different contexts

for different companies – e.g., things that comprise Cost of Goods Sold item of a

retailing company are very different from components of Cost of Goods Sold item of

a manufacturing company. Therefore, it is important to study the amount and mag-

nitude of discrepancies with regard to different characteristics of companies. In our

study, we look at three company characteristics: industry, size and XBRL adoption

phase.

There are several ways to define company industry (e.g., using SIC or NAICS

codes). In this study, we utilize Fama/French 12-industry classification system (Fama

and French 1997) since it has been used extensively in accounting literature. In

addition, there are only 12 industry groups (as opposed to 75 groups defined by 2-

digit SIC codes) that facilitates better delivery and comprehension of results. Please

refer to Table A.1 for the list and description of Fama/French 12 industries.

As has been mentioned previously, in 2009 the SEC adopted Interactive Data

to Improve Financial Reporting final rules that mandated U.S. GAAP companies to

report their financial statements with XBRL. The mandate was implemented in three

phases. Phase one with the deadline in June 2009 required all large accelerated filers

with worldwide public common equity float above $5 billion to adopt XBRL. Phase

2 with the deadline in June 2010 required all other large accelerated filers to adopt
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XBRL. Finally, Phase 3 with the deadline in June 2011 required all U.S. GAAP

companies to file with XBRL. We use the XBRL adoption phase as a characteristic

of a company – XBRL adoption phase can be thought as one measure of company

size.30 In addition, we use company revenues as yet another, more refined, measure

of size.

We provide discrepancy information by industry and XBRL adoption phase in

Tables A.4 and A.5. Table A.4 reports the number of observations, percentage of

discrepancy observations, and the median relative value of discrepancies for each

Compustat variable and Fama/French industry.31 In Table A.5, we report discrep-

ancy statistics by industry and by XBRL adoption phase. These statistics include

information about discrepancy counts as well as mean and median relative discrep-

ancies.

Results in Tables A.4 and A.5 suggest that there is a difference in amounts and

magnitude of discrepancies for different variables, industries, and sizes. To test it

formally, we utilize analysis of deviance of discrepancy observations. Analysis of

deviance is similar to analysis of variance (ANOVA) and analysis of covariance (AN-

COVA), but can be used for generalized linear models (instead of linear regressions).

It allows to test whether there are significant differences between the values of a re-

sponse variable for different groups (categorical variables) while controlling for other

continuous variables.

We utilize analysis of deviance in two ways. First, we test whether the propen-

sity of an observation to be a discrepancy is related to company characteristics. In

other words, we assume that an observation can have two states – either being a

discrepancy or not – and test whether the value of that state depends on company

30. XBRL adoption phase has also been shown to reduce the number of errors (Du, Vasarhelyi, and
Zheng 2013; Boritz and No 2013) and extensions (Debreceny et al. 2011) in XBRL filings. However,
these effects are less relevant to the analysis in our study since we do not consider extension elements
and attempt to remove all XBRL-related errors from the sample.

31. We report median values instead of means because the former are less biased statistics, i.e.
they are not influenced by extreme values of discrepancies as much as the mean values.
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characteristics. Since the response variable in this case is a state of an observation,

this type of an analysis is an observation-level analysis. Second, we test whether

company characteristics are related to the number of discrepancies for that company.

For each company in the matched data set, we calculate the ratio of the number of

discrepancy observations to the number of all matched observations for that com-

pany. The resulting ratio is a number between 0 and 1, with 0 indicating that there

are no discrepancy observations for that company, and 1 indicating that all matched

observations are discrepancies. Then, we test whether such company ratios depend

on company characteristics. This kind of analysis is a company-level analysis since

discrepancy ratios are defined at the company level. Because response variables’ val-

ues are not unbounded real numbers – in the first case it is a binary variable, and in

the second case it is a number between 0 and 1 – we cannot assume that they are

normally distributed and utilize ANCOVA. However, we can use generalized linear

models (logistic regressions) and analysis of deviance instead.

Analysis of deviance results are presented in Table A.6. In addition to studying

how company characteristics are related to discrepancies, we also study how these

characteristics are related to material discrepancies. Hence, Table A.6 shows results

both when we use discrepancy notion for our response variables and when we use

material discrepancy notion. In addition to company characteristics, in our analysis,

we include the type of statement where the accounting variables are reported since

Tables A.3 and A.4 suggest that the amount and magnitude of discrepancies also

depend on the type of a variable.

Panel A of the table contains the results of deviance analyses that study the

effects of revenue (size), industry, phase, variable statement, and various interactions

between industry, phase, and variable statement. These results are fairly consistent

and show that effects of all characteristics and their interactions are statistically

significant except for the XBRL adoption phase in all cases, and revenue in one

case. Also, the interaction terms are less significant (or not statistically significant
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in some cases) when only material discrepancies are considered. Although the main

effect of XBRL adoption phase is not statistically significant, its interactions with

other characteristics are. The insignificance of the main effect can be explained by

XBRL adoption phase being related to revenue since they both represent the size

of a company.32 To avoid this effect, we conduct another set of analyses with the

XBRL adoption phase variable removed. The results are reported in Panel B of

Table A.6, and show that all characteristics and their interactions are statistically

significant, including revenue. Moreover, the significance of company revenue has

increased drastically.

The interaction effect between industry and statement type categorical variables

is significant according to Panel B in Table A.6. This indicates that the effects of

independent variables may depend on the level of the other independent variables. To

understand this relationship, we analyze so-called “simple main effects” – we study the

effects of independent variables when the level of other categorical variables is fixed.

In other words, we partition observations into groups by one categorical variable

(either by industry or statement type), and then, for each group, run the analysis of

deviance to study the effect of the other independent variables.

The results for simple main effects analysis are reported in Table A.7.33 Panel A of

this Table describes the effects of revenue and statement type for different industries.

In particular, we observe that the amount of discrepancies significantly depends on

the statement type except for the case of the telecommunications industry. Also,

the effect of revenue size on discrepancy amounts is only significant for the financial

industry. Panel B reports the effects of revenue size and industry type for each type

32. This was confirmed by the results of an additional ANOVA test (not reported in the study) that
showed the differences between mean values of revenues across different XBRL adoption phases being
99.9% significant. Phase 1 companies had on average the largest revenues, and phase 3 companies
the smallest.

33. Table A.7 contains results when all discrepancies (both material and not) are included in
the dependent variables. We do not report separate results when only material discrepancies are
considered since they are qualitatively the same.
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of considered financial statements. The results indicate that industry significantly

affects the amount of discrepancies for all financial statements. In addition, only for

Balance Sheet variables, the amount of discrepancies depends on the revenue size.

Overall, the results show that the type of variable, industry, size, and XBRL

adoption phase are related to the amount and magnitude of discrepancies. The results

are slightly different from Boritz and No (2013) in a sense that we do find industry

to be a significant factor (with significance levels of 99.9% in all cases) as related to

the number of discrepancies.

1.6 Summary

In this study, we conduct the first large-scale comparison of Compustat and 10-K

accounting numbers to study the amount and magnitude of data alterations in the

Compustat North America Fundamentals Annual data set. Specifically, we compare

30 accounting items commonly used in the accounting literature for more than 5,000 of

domestic U.S. GAAP companies for the period from October 1, 2011, to September

30, 2012. This large-scale comparison has become possible due to SEC-mandated

XBRL financial reporting for all U.S. GAAP filers as of June 2011, since XBRL

allows to extract data from XBRL 10-K filings in an automated fashion

We have developed and presented a methodology to compare Compustat numbers

to XBRL numbers. This methodology addresses issues of data extraction, merging,

variable mapping, difference calculation, automated error detection, and discrepancy

analysis. It not only provides insights about data alterations in the Compustat data

set, but also is a useful tool for accounting researchers to validate their data.

We find that Compustat significantly alters numbers reported in the 10-K filings.

Specifically, we find that Compustat values of 17 (out of 30) variables significantly

differ from values reported in 10-K filings. Variables that usually do not have sig-

nificant number of discrepancies are variables that have fairly simple definitions (e.g.
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Total Assets, Total Liabilities or Net Income). Variables that have more complex

definitions (e.g. Cost of Goods Sold or Gross Profit) are more likely to differ across

the data sets.

We also find that the type of statement where variable is reported and company

characteristics such as industry, size, and XBRL adoption phase are related to the

amount and magnitude of discrepancies. Specifically, we show that the amount of

discrepancies is significantly affected by 1) type of financial statement (except for the

telecommunications industry), 2) industry regardless of financial statement type, and

3) revenue size for the financial industry or balance sheet items.

Our findings suggest that data alterations in Compustat are non-trivial, and may

potentially influence results of accounting studies that utilize the Compustat data

set. Compustat itself argues that its data standardization practices improve data

comparability across companies. More research and discussion are needed on this

matter.
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Chapter 2

Does Compustat data standardization improve

bankruptcy prediction models?

2.1 Introduction

In Chapter 1 of this dissertation, we show that there are significant differences be-

tween accounting numbers in Compustat and the original 10-K reports. Most of these

differences are caused by data standardization practices implemented in Compustat,

i.e., accounting numbers are adjusted to match Compustat standard definitions of

accounting concepts. According to S&P Capital IQ’s website, “[s]tandardized data

ensures that you have consistent and comparable data across companies, industries

and business cycles, and offers a solid foundation for your rigorous analysis.”1 How-

ever, the benefits of Compustat data standardization have been rarely questioned

in accounting research community. o the best of our knowledge, there has been no

academic research that measures the impact of Compustat’s data standardization.

Stone (1968) is one of the few and most likely the first study to warn researchers

about potential problems with Compustat’s standardized reporting. Specifically,

Stone (1968) argues that data standardization “creates the appearance of absolute

uniformity” while it is “in reality, a uniformity of classification only, and not a uni-

formity of accounting methods.” This concern is also echoed by Financial Accounting

Standards Board (FASB) in Statement of Financial Accounting Concepts No. 2 that

warns against using standardized charts of accounts – “[t]hat kind of uniformity may

1. http://www.compustat.com, as of January 13, 2014.

http://www.compustat.com
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even adversely affect comparability of information if it conceals real differences between

enterprises.”.2 In addition, FASB cautions against “over-improving” data compara-

bility since “[i]mproving comparability may destroy or weaken relevance or reliability

if, to secure comparability between two measures, one of them has to be obtained by

a method yielding less relevant or less reliable information.”3 In fact, FASB’s Gener-

ally Accepted Accounting Principles (GAAP) provide firms with a certain amount of

discretion when reporting accounting numbers.

In this Chapter, we examine whether data standardization practices implemented

in Compustat result in enhanced data, and as a consequence, improved empirical mod-

els that rely on the data provided in Compustat. Specifically, we study whether two

popular models of financial distress, Altman’s Z Score (Altman 1968) and Ohlson’s O

Score (Ohlson 1980), are enhanced by standardized numbers provided in Compustat

as compared to the original numbers of 10-K reports.

We choose Atlman’s and Ohlson’s bankruptcy prediction models for a number of

reasons. Firstly, bankruptcy prediction is an important problem for market partic-

ipants that is directly related to their decisions. Bankruptcy prediction models are

not only used to predict bankruptcies, but also to measure the overall financial health

of firms. Secondly, Altman’s and Ohlson’s models are often used in both contempo-

rary research and practice despite them being more than 30 years old. Thirdly, both

models rely on fundamental financial accounting ratios and numbers (e.g., measures

of liquidity, leverage, profitability, debt financing, etc.) that are important charac-

teristics of business performance. Fourthly, the models are easy to replicate with

little ambiguity with respect to sample and variable selection. Fifthly, in order to

be accurate, these models require a significant level of comparability and consistency

of accounting numbers across firms and time. The objective of data standardization

is to enhance comparability and consistency, and thus improve the accuracy of the

2. Statement of Financial Accounting Concepts No. 2, ¶116.

3. See footnote 2.
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models. Hence these models are valid test subjects to study the consequences of data

standardization. Finally, it is possible to statistically infer whether either of these

models perform better if Compustat’s standardized data is used instead of the original

10-K data.

We find that Compustat data standardization not only yields no improvements

for these models, but also has a negative impact on Altman’s model predictive ability.

Specifically we show that using Compustat standardized numbers instead of original

10-K numbers yields 1) significantly different outputs of both Altman’s and Ohlson’s

models, 2) significantly worse predictive accuracy of Altman’s model (up to 8.56%),

and 3) no significant improvement for Ohlson’s model.

In this essay, we first test whether the choice of input, original 10-K or standard-

ized Compustat data, results in significant differences in models’ outputs. Then, we

replicate Ohlson’s and Altman’s studies using recent cases of bankruptcy events, and

compare how well the models discriminate between bankrupt and non-bankrupt ob-

servations when different data sources are used. Finally, we study how the choice of

data affects the predictive ability of the cross-validated models, i.e., models that are

estimated and tested on different observation sets. In addition, we perform a number

of robustness checks to validate our findings.

Our contributions to the literature are as follows. Firstly, we first empirically

study the effects of data standardization in Compustat, and empirically show that

numbers in the original 10-K reports are at least as good, or better measures of fi-

nancial health of a firm as standardized numbers in Compustat are. An important

implication of this finding is that accounting researchers need to re-evaluate the bene-

fits of using standardized data, and perhaps consider alternative sources of data such

as SEC’s eXtensible Business Reporting Language (XBRL) data. Secondly, we con-

tribute to the literature that studies discrepancies between Compustat and other data

sets (including 10-K reports) by demonstrating that significant differences across data

sets may lead to significant differences in performances of empirical models derived
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from these data sets. Thirdly, we show that bankruptcy prediction models that use

accounting data may be enhanced by using 10-K data instead of Compustat’s data.

This Chapter is organized as follows. In Section 2.2, we describe data and method-

ology we use to conduct the study. In Section 2.3, we present results of our multi-step

analysis, and perform a number of robustness checks to validate the main results. Sec-

tion 2.4 summarizes the Chapter. Brief overviews of Altman’s 1968 and Ohlson’s 1980

models as well as supplemental tables are provided in Appendix B.

2.2 Data and methodology

2.2.1 Model comparison methodology

To study the effects of Compustat’s data standardization on Altman’s 1968 and

Ohlson’s 1980 models, we first test if using Compustat data results in different scores

and models as compared to the original 10-K numbers.4 We create two matched data

samples - one based on Compustat numbers, and the other based on the original

10-K numbers. We use these data samples to perform three comparison procedures

for each model (see Figure 2.1). The procedures are meant to test for any differences

resulting from using Compustat standardized versus original 10-K data with regards

to three dimensions: output, explanatory power, and predictive ability.

The first procedure is a simple test of whether standardized Compustat data yield

significantly different model scores as compared to 10-K data. We apply the original

models to our matched sample of Compustat and 10-K numbers to calculate two

sets of scores for each model. We test these two sets of scores for any statistically

significant difference.

The second procedure is meant to test the explanatory power of models con-

structed using Compustat and 10-K numbers. For this test, we use the recent cases

4. Brief summaries of Altman’s and Ohlson’s models are provided in the Appendix.
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Figure 2.1: Comparison methodology.
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of bankruptcies (from 2009 - 2013) to replicate the studies of Altman (Altman 1968)

and Ohlson (Ohlson 1980) by re-estimating the models with recent data. For the

re-estimated Altman and Ohlson models, we then compare accuracies and fit of the

model built using original 10-K numbers to the model built using Compustat stan-

dardized data. We use the same data sample that was used to re-estimate a model

to calculate the accuracy and fit of the model.

Finally, we compare the predictive accuracy of the models built using Compustat

standardized numbers and 10-K original numbers. The procedure described in the

previous paragraph cannot be used to draw inference about predictive abilities of the

models, since the same data is used to both estimate and test the models (Joy and

Tollefson 1975; Mensah 1984). We use a popular method of comparing predictive

accuracy of classification models, k-fold stratified cross validated paired t test (see

Dietterich (1998) for more details), to compare the predictive ability of the mod-

els. This test uses both resampling and cross-validation methods to create several

instances of the models whose predictive accuracy rates are then compared by a t

test. We also impose stratified cross-validation since observations used to estimate

the Ohlson model are highly unbalanced (i.e., the number of bankrupt observations

is much smaller than the number of non-bankrupt ones).

2.2.2 Data extraction and sample selection

We use the methodology developed in Chapter 1 of this dissertation to retrieve the

original accounting numbers from 10-K reports and match them to the appropriate

Compustat Fundamentals Annual numbers.5 This methodology leverages eXtensible

Business Reporting Language (XBRL), a formal language of communicating business

information that was mandated by the U.S. Securities and Exchange Commission

5. We use Compustat Fundamentals Annual data as opposed to other versions of Compustat data,
such as Compustat Point-in-Time, since this dataset is used most frequently in research, including
cases when Altman’s and Ohlson’s models are utilized.
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(SEC) to be used in preparing quarterly and annual reports by all U.S. GAAP com-

panies as of June 2011.

The usage of XBRL 10-K reports limits our samples to the years of 2009 - 2013.

Furthermore, not all accounting numbers can be directly extracted from XBRL re-

ports due to various XBRL-related reasons.6 In addition, Compustat data set does

not include all public companies and may have missing values needed to calculate

financial ratios for Altman’s and Ohlson’s models. Also, Altman’s model requires

market data that we extract from CRSP database. Although, Ohlson’s model does

not require market data, Ohlson (1980) considers only companies that are traded on

stock exchanges or over-the-counter markets. Hence, we exclude company-year obser-

vations that could not be matched to CRSP market data. Finally, following Ohlson

(1980), we do not include companies classified as utilities, transportation companies,

and financial service companies.7

Since we study the effects of Compustat’s data standardization, it is important to

remove other causes of number discrepancies between Compustat and 10-K data. The

methodology developed in Chapter 1 allows us to find XBRL data errors, Compus-

tat data errors, and reconcile discrepancies between 10-K and Compustat data, i.e.,

identify adjustments made by Compustat to obtain standardized data. We remove

all erroneous data (both XBRL- and Compustat-related) and data that cannot be

reconciled from our samples. As a consequence, any discrepancies in our data sam-

ples are most likely due to data standardization. The only exception is the sample of

bankrupt observations described in the following section. We used the original, not

restated 10-K forms to extract 10-K data related to bankrupt observations. For some

of these observations, Compustat has updated the numbers with the restated ones.

Hence, Compustat numbers would be not only standardized in those cases, but also

6. See Section 1.4 for more details.

7. Altman (1968) considers only manufacturing companies. We repeat our analysis using manu-
facturing companies alone as a robustness check.
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restated. We expect this to give a slight advantage to Compustat data over 10-K

data since the restated numbers should be more accurate.

Overall, our sample contains 5,015 observations with accounting ratios needed for

Altman’s model, and 3,449 observations that can be used in Ohlson’s model. The

number of observations for Ohlson’s model is smaller since Ohlson’s model requires

values for Net Income for both the current and the previous fiscal years. Tables B.1

and B.2 report descriptive statistics for these samples.

Compustat database is biased toward large companies. As a result the average

Total Assets in the Altman sample are around 4 billion U.S. dollars and the me-

dian Total Assets are 706 million U.S. dollars. Companies in the Ohlson’s sample

are slightly larger with the mean assets of about 4.7B$ and the median assets of

approximately 787M$.

For both models, there is a significant difference in Total Liabilities between 10-

K and Compustat data. This appears to be unexpected given the findings of prior

literature (Boritz and No 2013; Chychyla and Kogan 2013). However, after manually

analyzing these differences, we found that they are caused by us using non-restated 10-

K numbers for bankrupt observations that are restated in Compustat Fundamentals

Annual database.

For Altman’s sample, there is a significant difference in Retained Earnings and

Earnings before Interest and Tax between Compustat and 10-K data. For Ohlson’s

sample, there is a significant difference in Operating Income before Depreciation be-

tween the two data sets. We discuss how those differences impact the accounting

ratios scores of the bankruptcy models in the results section.

Selecting bankrupt and non-bankrupt observations

To assess the explanatory power and predictive ability of the models, we need to

re-estimate the original models with company-year observations that are known to

be either bankrupt or non-bankrupt.
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The reason behind this is two-fold. Firstly, the original models are more than 30

years old and may require calibration. Secondly and more importantly, the original

models have been estimated on different data than ours – Altman (1968) used data

from Moody’s Manual, and Ohlson (1980) used a combination of 10-K reports and

Compustat data.8 Since we want to test the impact of data sources on the models,

we have to be consistent with respect to the data we use to estimate and train the

models. E.g., in the case of Compustat, we use Compustat data to estimate the

model, and Compustat data to test the model.9

We adopt Ohlson’s (1980) definition of bankruptcy, that of any indication of

bankruptcy proceedings. We also use his measure of time to bankruptcy which is

the time from the date a pre-bankruptcy 10-K report was filed to the date of the

bankruptcy event.

Public companies are required to notify shareholders about the bankruptcy or re-

ceivership events by filing an 8-K form that includes a special Item 1.03, Bankruptcy

or Receivership, that describes the event. To create a sample of bankrupt observa-

tions, we first identify all 8-K forms that include bankruptcy or receivership item

that were filed after January 1, 2009. We then manually read the selected 8-K forms

to confirm a bankruptcy event, establish the type of the bankruptcy (e.g., Chap-

ter 11, 7, etc.), and record the date of the bankruptcy event. For all bankruptcy

events, we identify related 10-K forms with filing dates preceding the bankruptcy

event. We consider only pre-bankruptcy original 10-K reports filed after January

1, 2009 since, as mentioned previously, XBRL 10-K reports we use to extract 10-K

data became available in 2009, and it is important to avoid any out-of-the-sample

year-specific biases that may affect financial positions of companies. In addition, as

already mentioned, we exclude certain industries and require a presence of matching

8. According to Collins and O’Connor (1978), data definitions in Moody’s Manual differ from the
ones of Compustat.

9. We do compare the predictive accuracies of the original (not re-estimated) models on our
sample as robustness check.
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data in both Compustat and CRSP data sets. We extract accounting numbers from

the 10-K reports meeting these criteria (either manually, or if possible using XBRL),

and use them to create 10-K version of the bankrupt observations. The matching

Compustat company-year observations provide standardized data for those bankrupt

observations.

We limit our analysis only to bankrupt observations whose time period from the

release of the 10-K form to the bankruptcy event is not greater than 2 years (730

days). This would make our study consistent with both Altman (1968) and Ohlson

(1980). Our final sample of bankrupt observations consists of 146 company-year ob-

servations with 85 10-K forms released within one year prior to bankruptcy events,

and 61 10-Ks released between one and two years prior to bankruptcy events. Chap-

ter 11 filings amount to 128 bankruptcy observations, Chapter 7 filings amount to

9 bankruptcy observations, and other types of bankruptcy filings amount to the re-

maining 9 observations. It is worth noting that 45 companies in our bankrupt sample

are associated with two observations, i.e., we include two 10-Ks of the same company

in our bankrupt sample if the time lag between the earlier 10-K and the bankruptcy

event is not greater than 2 years. This bankrupt sample is used in re-estimation

of both Altman’s and Ohlson’s models. The descriptive statistics for the bankrupt

sample are provided in Table B.3.

Not surprisingly, on average bankrupt company-year observations have smaller

assets compared to the whole samples of matched observations – the mean Total

Assets equals to 1043.5M$, and the median to 363.828M$. Interestingly, the average

Total Liabilities are of the same size as the average Total Assets – 1043.5M$. In

contrast, the average Total Liabilities for the whole matched samples are a little

above half of the Total Assets (see Tables B.1 and B.2). This effect is exploited in

Ohlson’s model by one of the model’s ratios – Total Liabilities over Total Assets.

Similarly to the whole matched samples, there are significant differences in Total

Liabilities, Retained Earnings, Operating Income after Depreciation, and Earnings
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before Interest and Taxes between 10-K and Compustat data. In addition, there is a

significant difference in Total Assets. Similarly to the difference in Total Liabilities,

the difference in Total Assets is caused by us using the original, non-restated 10-K

numbers for bankrupt observations while Compustat Fundamentals Annual dataset

comprises of restated standardized numbers. As mentioned previously, we believe

that restated numbers should give a slight edge to Compustat numbers over 10-K

numbers due to increased data reliability.

We also create a sample of “non-bankrupt” observations. We consider a company-

year observation to be non-bankrupt if the company 1) was not identified as bankrupt

in the previous step, and 2) filed a 10-K form on or after June 1, 2012. The latter re-

quirement is meant to provide additional assurance that the company has not incurred

bankruptcy-related event. While we use the same sample of bankrupt observations

for both Altman’s and Ohlson’s model, we use different samples of non-bankrupt

firms following approaches used in Altman (1968) and Ohlson (1980). We explain the

sample selection procedures of non-bankrupt companies for each model separately

below.

Non-bankrupt sample used to re-estimate Altman’s 1968 model

The Altman’s 1968 Z Score model uses Multiple Discriminant Analysis (MDA) to cre-

ate a linear discriminant model that tries to best separate two group of observations,

bankrupt and non-bankrupt. The linear discriminant is based on the financial ratios

that Altman empirically found to yield the best predictions of bankruptcy. Altman

(1968) matches all bankrupt company-year observations with similar in terms of in-

dustry and size non-bankrupt observations. Altman (1968) uses the matched sample

of bankrupt and non-bankrupt observations to estimate his MDA model.

We follow Altman (1968) by assigning each bankrupt company-year observation

in our sample to a non-bankrupt observation on a stratified random basis with respect
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to company size, industry, and reporting fiscal year.10 This gives us a sample of 292

observations that comprises of 146 bankrupt observations, and matching 146 non-

bankrupt observations. The descriptive statistics of non-bankrupt observations are

reported in Table B.4.

Our non-bankrupt sample consists of larger companies than the non-bankrupt

one, but not as large as the ones in the sample with all matched observations (see

Table B.1). This is the result of our random stratified matching procedure and a

larger likelihood for smaller companies to experience a bankruptcy event. In fact, the

non-bankrupt observations used in Altman (1968) are also larger in terms of company

size than the respective bankrupt observations.

There is only one variable with statistically significant differences between Com-

pustat and 10-K data – Retained earnings. Earnings before Interest and Tax is not

statistically significantly different across two sources of data for this sample (as op-

posed to us finding significant differences in all other considered samples).

Non-bankrupt sample used to re-estimate Ohlson’s 1980 model

Unlike Altman’s Z Score, Ohlson’s 1980 model uses logistic regression to estimate a

model for predicting financial distress. The logistic model has slightly weaker mathe-

matical assumptions than MDA model making it preferable to MDA in many applica-

tions. The output of Ohlson’s logistic model are O scores. Unlike Altman’s Z scores,

O scores can be converted to probabilities of firms experiencing financial distress

within a certain period of time. In other words, O scores have precise probabilistic

meanings that are easy to interpret.

Ohlson (1980) uses the whole population of non-bankrupt companies as opposed

to a matched sample. Although this is a more realistic approach, it also results in a

10. We performed matching in the following way. First, for every company-year observation, we
identified all non-bankrupt company-year observations in the same industry and the same fiscal year
as the bankrupt observation. Then we chose five observations whose Total Assets were the closest
to one of the bankrupt observation. Finally, we randomly choose an observation out of those five.
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highly unbalanced data with number of non-bankrupt observations being significantly

greater than the number of bankrupt observations. Unbalanced data is known to have

a significant negative impact on performance of statistical models estimated using

such data (He and Garcia 2009). A trivial model that predicts everything to be non-

bankrupt may have as good accuracy as a statistical model based on an unbalanced

data. In fact, Ohlson’s 1980 model that predicts bankruptcy within one year achieves

accuracy of 96.12%. Olson compares this accuracy to the 91.15% accuracy achieved by

a trivial model (Ohlson 1980, p. 120). However, 91.15% accuracy of the trivial model

is a typo – the correct number is 95.15% (calculated as 2,058/(105+2,058)×100%).

Hence, Ohlson’s model resulted in less than 1% accuracy improvement over the trivial

one.

We follow Ohlson (1980) by first identifying all observations in our matched sample

that can be classified as non-bankrupt according to the definition in §2.2.2. We then

randomly keep only one observation per company. Our non-bankrupt sample consists

of 2,525 observations, and the descriptive statistics of this sample is reported in Table

B.5.

Our non-bankrupt sample for Ohlson’s model consists of larger-size companies

than the ones in the bankrupt sample, but not as large as in the whole matched

sample. The mean and median Total Assets are approximately 2.9B$ and 360M$.

As in the case of the whole matched sample, we find significant differences in Total

Liabilities and Operating Income after Depreciation between 10-K and Compustat

data sets.

2.3 Results

2.3.1 Differences in scores

First, we test whether using Compustat numbers instead of 10-K numbers would

yield any significant differences in output scores of the original Altman’s and Ohlson’s
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model. The descriptive statistics for the samples used for these tests, and the out-

comes of these tests are given in Tables B.1 (for Altman’s model) and B.2 (for Ohlson’s

model).

Altman’s model

For the Altman’s original 1968 model, we find that the choice of data source (10-K

or Compustat) significantly impacts the scores produced by the model (with 99%

confidence level). On average, Altman’s Z scores produced by the 10-K model are

larger by 0.009. Altman’s Z score is a continuous number that is hard to interpret.

For that reason, Altman (1968) defines three discrimination zones by creating two

cutoff score values, 1.81 and 2.99. Scores below 1.81 indicate bankrupt zone, between

1.81 and 2.99 indicate “gray” zone, and above 2.99 indicate non-bankrupt zone. We

test whether there are any differences in Altman’s discrimination zones between the

two sources of data. We code each score as either 1, 2, or 3 based on its value with

1 indicating bankrupt zone, 2 indicating “gray” zone, and 3 indicating non-bankrupt

zone. We then use Wilcoxon signed-rank test to compare the codes between the two

sources of data.11 We find that there are significant differences in discrimination zones

yielded by 10-K and Compustat data (see Table B.1). Note that the test involving

discrimination zones is much stronger than the test involving Z scores since different

Z scores may result in the same discrimination zones.

Out of five ratios used in the original Altman’s model, three, X2 (Retained Earn-

ings/Total Assets), X3 (Earnings before Interest and Tax/Total Assets), and X4

(Market Value of Equity/Total Liabilities), are significantly different across 10-K and

Compustat datasets. Difference in X4 is caused by difference in Total Liabilities due

to us using original 10-K numbers for bankrupt observations that are not restated as

11. In this case, Wilcoxon’s signed-rank test is more appropriate than the regular t test. Wilcoxon’s
signed-rank test does not require variables to be numerical, but only ordinal (i.e., given two different
zones of discrimination, the test only requires to know what zone is “greater”, but not how much
one zone is “greater” than the other).
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explained above. Removing all observations in our sample with non-zero differences in

Total Liabilities between 10-K and Compustat datasets does not change the results.

Differences in X2 and X3 are due to significant differences in Retained Earnings

and Earnings before Interest and Tax (EBIT) across the datasets. In fact, substituting

Compustat values of Retained Earnings and EBIT with 10-K values of these variables

would result in no significant difference between Z scores. However, substituting only

one of the Compustat variables with the matching 10-K variable would not make the

difference in Z scores and discrimination zones statistically insignificant.

Ohlson’s model

We also find significant differences between O scores of Ohlson’s 1980 model generated

using 10-K and Compustat data. Ohlson (1980) constructs three logistic models to

predict bankruptcy: 1) within one year of the 10-K filing date, 2) in the second

year after the 10-K filing date, and 3) within two years of the 10-K filing date. In

Table B.2 we label these models “Model 1”, “Model 2”, and “Model 3”, respectively.

We calculate O scores for all three models, and compare them. “Raw” O scores do

not carry much meaning; hence we convert them first to probabilities of companies

experiencing bankruptcy events in the future, and then to predicted classes with 1

indicating predicted future bankruptcy, and 0 otherwise. We compare the resulting

bankruptcy classifications. For all models, we find significant differences in O scores

and predicted classes between 10-K and Compustat data.

Differences in Total Liabilities and Operating Income after Depreciation (OIADP)

between 10-K and Compustat data yield significant differences in the respective ver-

sions of TLTA and FUTL variables in Ohlson’s model (see Table B.2). As in the

case of Altman’s model, removing all observations from the sample that result in

non-zero differences in Total Liabilities does not change the results. However, replac-

ing Compustat values of OIADP with the matching 10-K values yields no significant

differences in O scores and predicted classes. This means that differences in OIADP
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values drive differences in output of Ohlson’s model between 10-K and Compustat

datasets.

2.3.2 Differences in explanatory power

As detailed in the previous section, for both original Altman’s and Ohlson’s models,

we find statistically significant differences in models’ output if Compustat standard-

ized data is used instead of the original 10-K data. These results suggest that the

effects of Compustat data standardization are non-trivial, and cannot be ignored. We

examine whether these effects are positive or negative with regards to bankruptcy pre-

diction in this and the next section.

In this section, we compare the explanatory power of the Altman’s and Ohlson’s

models derived using 10-K and Compustat data. Both Altman’s and Ohlson’s models

were derived from different data sets than ours more than 30 years ago. Hence, it

is essential to re-estimate both models using our data. We use the recent cases of

bankruptcies to re-estimate the model and compare their accuracy and overall fit. In

other words, we compare how much variance with respect to bankruptcy predictions

are explained by a model based on standardized Compustat numbers as opposed to

a model based on the original 10-K numbers.

For both Altman’s and Ohlson’s model, we estimate three types of predictive

models – one that predicts bankruptcy in the first year after the release of the 10-K

form, one that predicts bankruptcy in the second year after the release of the 10-K

form, and one that predicts bankruptcy within two years after the 10-K form was

released. To estimate these three types of models, we accordingly create three groups

of bankrupt observations based on the amount of time between the release of 10-

K form and the bankruptcy event. Then we merge those three groups of bankrupt

observations with the non-bankrupt ones to obtain the samples used to re-estimate

the models. For Altman’s model, observations in each bankrupt group are merged

with the same number of matched non-bankrupt observations. For Ohlson’s model,
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observations in each bankrupt group are merged with all non-bankrupt observations

(i.e., non-bankrupt observations are the same for all bankrupt groups).

Accuracy and fit metrics of the re-estimated models are reported in Tables 2.1

and 2.2 for Altman’s and Ohlson’s models respectively. In those tables, Accuracy is

the overall accuracy of a model, and Trivial Accuracy is the accuracy of a model that

predicts everything to be non-bankrupt, i.e., it is the percentage of non-bankrupt

observations in a sample. Trivial model accuracies are used as baselines for the

predictive abilities of re-estimated models. We test whether a model accuracy is

significantly different from the accuracy of the trivial model by performing a one-sided

binomial test with null hypothesis being that accuracies are the same, and alternative

being that model’s accuracy is greater than the trivial one. P-values of those tests are

reported as P-value (Acc. > Trivial). We also measure Cohen’s Kappa between the

predicted observation classes (i.e., bankrupt or non-bankrupt) and the actual ones.

Cohen’s Kappa is a measure of agreement between two classifications. Its values

are between 0 and 1, with 0 value meaning total disagreement and 1 meaning total

agreement. Values of Cohen’s Kappa are adjusted for both sample class bias (i.e.,

number of bankrupt versus non-bankrupt observations in a sample) and model class

bias (i.e., the overall propensity of a model to assign a particular class to random

observation). For Altman’s model we report the P-value of the F likelihood ratio

test as P(> F). This test indicates the significance of the discriminatory power of

Altman’s model. Similarly, for Ohlson’s model we report P-value of the χ2 likelihood

ratio test as P(> χ2). We also report the value of pseudo R2 for the Ohlson’s model.

Altman’s model

We find that all re-estimated Altman’s models yield significantly better accuracies

on the fitted samples than the respective trivial models that predict everything to be

non-bankrupt. For all three types of models that predict bankrupt events in the first,

second, and first two years after the release of 10-K statements, 10-K data based
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Metrics

10-K models Compustat models

first year second year
within two

years
first year second year

within two

years

Accuracy 84.71% 75.41% 78.42% 79.41% 72.95% 76.03%

Trivial Accuracy 50.00% 50.00% 50.00% 50.00% 50.00% 50.00%

P-value (Acc. > Trivial) 0.000 0.000 0.000 0.000 0.000 0.000

Cohen’s Kappa 0.694 0.508 0.568 0.588 0.459 0.521

P(> F) 0.000 0.000 0.000 0.000 0.000 0.000

Table 2.1: Accuracy and fit statistics of fitted Altman’s models.

models have higher accuracies than similar Compustat data based models. These

results also hold with respect to Cohen’s Kappa measure.

The largest difference between 10-K and Compustat models is in the case of

bankruptcy prediction within the first year of 10-K release – 10-K model achieved

84.71% accuracy that is 5.29% higher than 79.11% accuracy of the respective Com-

pustat model. Both 10-K and Compustat are less accurate in the case of bankruptcy

prediction in the second year after the 10-K release, their respective accuracies are

75.41% and 72.95%. This is not surprising given longer time horizon. Accuracies of

the models that try to predict bankruptcy within two years are somewhere in the

middle.

The differences in the accuracies of fitted models are mainly driven by differences

in values of the Earnings before Interest and Tax (EBIT) variable. Replacing Compu-

stat values of EBIT with the appropriate 10-K values would make Compustat models

to be on par with 10-K models. This result may seem to suggest that standardized

EBIT variable may negatively impact the prediction performance of some statisti-

cal models. However, it would be a mistake to draw any substantive conclusions

based on the outcomes of fitted models alone since these models are estimated on the

same sample they are tested on. For this reason, we test the predictive ability of the

cross-validated models in the following section.
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Metrics

10-K models Compustat models

first year second year
within two

years
first year second year

within two

years

Accuracy 96.70% 97.64% 94.61% 96.70% 97.64% 94.57%

Trivial Accuracy 96.74% 97.64% 94.53% 96.74% 97.64% 94.53%

P-value (Acc. > Trivial) 0.572 0.533 0.454 0.572 0.533 0.488

Cohen’s Kappa 0.097 0.000 0.121 0.097 0.000 0.120

P(> χ2) 0.000 0.000 0.000 0.000 0.000 0.000

Pseudo R2 0.264 0.134 0.235 0.258 0.146 0.240

Table 2.2: Accuracy and fit statistics of fitted Ohlson’s models.

Ohlson’s model

For Ohlson’s fitted models we find that 1) the accuracies of Compustat and 10-K

models are very similar, and that 2) the accuracies of all models are not statistically

different from the respective trivial models that predict all observations to be non-

bankrupt. The latter finding is indicated by large P-values of the one-sided binomial

tests reported as P-value (Acc. > Trivial) in Table 2.2. This is the result of using

very unbalanced samples to estimate logistic regression models – in the best scenario

the percentage of bankrupt observations is only 5.47%. This fact is also captured by

low values of Cohen’s Kappa despite the high values of model accuracies – Cohen’s

measure of agreement is adjusted by class biases both in a sample and a model. In

fact, models that predict bankruptcy in the second year after the release of 10-K

are identical to the trivial models. Note that unlike in the case of Altman’s model,

the overall best accuracy is achieved when predicting bankruptcy in the second year

after the 10-K release since the ratio of non-bankrupt to bankrupt observations is the

largest in this case – 0.9764; for Altman’s model, this ratio is always 0.5 regardless

of the time horizon since we keep only those non-bankrupt observations that match

the bankrupt ones.

As already discussed in Section 2.2.2, unbalanced data samples tend to result

in weak statistical models (2009), and the fitted models estimated in Ohlson’s 1980
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study yielded marginally better accuracies than their respective non-trivial models.

Interestingly, model that predicts bankruptcy in the second year (Model 2) in Ohlson

(1980) is not statistically more accurate than the trivial model as measured by the

binomial test. In our case such 10-K and Compustat models are equivalent to their

trivial models.

2.3.3 Differences in predictive ability

In the previous section, we tested whether Compustat standardized numbers increase

the explanatory power of Altman’s and Ohlson’s models. However, these tests do

no tell us whether Compustat’s data standardization has any effects on predictive

ability of the models since we used the same sample to estimate the models and make

predictions. To assess the predictive ability of the re-estimated models we utilize a

common cross-validation technique, k-fold cross-validated paired t test (see Dietterich

(1998) for details). Specifically, we perform a 10-fold cross-validated comparison 10

times and compare the differences in predictive accuracies using a t test. In addition

to t test, we utilize a more powerful Wilcoxon signed-rank test as a robustness check.

In addition, we employ the stratified sampling technique to randomly select folds for

cross-validation. This allows us to more accurately compare models when the sample

is unbalanced which is the case for the Ohlson’s model (only 5.4% of the sample are

bankrupt observations).

The results of the cross-validated comparison of predicative accuracy of both Alt-

man’s and Ohlson’s model are summarized in Table 2.3. For both Altman’s and

Ohlson’s models, Table 2.3 reports mean prediction accuracies of cross-validated mod-

els that predict bankruptcy in the first year, second year, and within two years of the

release of 10-K form. It also reports prediction accuracies of trivial models, models

that predict everything to be non-bankrupt. As mentioned previously, trivial models

are very accurate for samples used to estimate Ohlson’s model since those samples

are highly unbalanced. In addition, Table 2.3 reports differences in accuracy means
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Mean

prediction

accuracy

Altman’s model Ohlson’s model

first year second year within two years first year second year within two years

10-K 80.87% 75.01% 77.10% 96.82% 97.66% 94.70%

Compustat 72.31% 71.08% 71.57% 96.83% 97.66% 94.71%

Trivial 50.00% 50.00% 50.00% 96.74% 97.64% 94.53%

Difference 8.56% 3.93% 5.53% −0.01 % 0.00% −0.01 %

P-value 0.000 0.001 0.000 0.158 0.566 0.320

Table 2.3: Predictive accuracies of cross-validated Altman’s and Ohlson’s models.

of 10-K and Compustat based models, and the p-values of the mean difference t tests.

The p-values of similar Wilcoxon signed-rank tests were of the same magnitudes as

the ones reported in Table 2.3.

Altman’s model

In all cases, we find that predictive accuracies of Altman’s 10-K data based mod-

els significantly outperform similar models based on standardized Compustat data.

The largest gap between the models’ mean predictive accuracies is in the case of

bankruptcy prediction within one year – the models based on the original 10-K data

are on average 80.87% accurate in their predictions, while the models that use Com-

pustat standardized data are on average 72.31% accurate. The difference of more

than 8% is economically non-trivial suggesting that standardized data may not only

fail to enhance prediction models, but actually worsen them.

The models that predict bankruptcy in the second year after the release of 10-

K form are less accurate than the models that predict bankruptcy within one year

for obvious reasons. Mean accuracies of the models that predict bankruptcy within

two years are somewhere in between. Yet, in all cases 10-K data based models are

superior. This seems to agree with our previous finding that 10-K data yield higher

explanatory power of Altman’s model than standardized Compustat data.

We empirically find that replacing Compustat values of Earnings before Interest
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and Tax (EBIT) with 10-K values of the same variable would enhance Compustat

models, and make all the differences in mean predictive accuracies of cross-validated

models insignificant. Hence, in case of predictive accuracy of Altman’s model, EBIT

is the main driver of models’ performance differences.

Ohlson’s model

Results for Ohlson’s model are very similar to the ones from the previous section.

Specifically, we find no statistically significant differences between 10-K and Com-

pustat models. Although the accuracies of those models are fairly high (94.7% and

above), they are not better than accuracies of the trivial models that predict every-

thing to be non-bankrupt. As discussed previously, such poor performance is probably

due to highly unbalanced data set. For this reason, in the next section we perform

a robustness check with the Ohlson’s model being estimated on the matched sample

we use to re-estimate Altman’s model.

2.3.4 Drivers of differences

Overall, our findings indicate that Compustat data standardization does not improve

bankruptcy prediction models. Moreover, it has a significantly negative impact on

the predictive accuracy of Altman’s model. We also find that outputs of the models

differ significantly if Compustat data is used instead of the original 10-K data. In this

section we report common adjustments made by Compustat to variables that drive

differences between 10-K and Compustat data.

In Section 2.3.1 we find that differences in Retained Earnings and Earnings Before

Interest and Tax (EBIT) cause the differences in output of Altman’s model, and

differences in Operating Income after Depreciation (OIADP) cause the differences in

output of Ohlson’s model. Significant differences in predictive accuracies of Altman’s

model are caused by differences in EBIT variable.
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In case of Retained Earnings, among 4,056 discrepancies, around 85% are caused

by inclusion of accumulated other comprehensive income (loss), 4% are caused by

inclusion of equity attributable to non-controlling interest, and 3% are caused by

including foreign currency translation adjustment in Compustat data.

Differences in OIADP are driven by many items: out of all 1,980 discrepancies,

around 9% are related to restructuring charges, 9% to impairment of assets and

goodwill, and 8% to business acquisitions, 2.2% to asset disposition, etc. A few other

studies find similar items to drive differences between GAAP and pro forma earnings

(e.g., Bradshaw and Sloan 2002, p. 44; Bowen, Davis, and Matsumoto 2005, p. 1021;

Elliott 2006, p.121).

Differences in EBIT are similar to the ones in OIADP. In addition, items like

other operating income, severance cost, advertising expense, litigation costs, etc. con-

tribute to the differences in EBIT. Interestingly, Compustat does not fully include

non-operating income into its definition of EBIT. According to Compustat’s manual,

EBIT is equal to “Sales - Net (SALE) minus Cost of Goods Sold (COGS) minus Sell-

ing, General & Administrative Expense (XSGA) minus Depreciation/Amortization

(DP)”. EBIT is a non-GAAP measure, but it is often used in literature and practice.

We used its common definition as a sum of Operating Income and Non-operating

Income (e.g., see Bodie, Kane, and Marcus (2008)) for the 10-K version of the vari-

able.12 As a robustness check, we apply similar definition to Compustat’s data and

re-evaluate the predictive ability of Compustat based models; the results do not

change (see Section 2.3.5).

12. We also exclude Interest Expense from Non-operating Income if it was a part of it.
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Mean

prediction

accuracy

Altman’s model Ohlson’s model

first year second year within two years first year second year within two years

10-K 76.47% 74.59% 75.68% 82.18% 82.79% 77.76%

Compustat 75.29% 72.13% 73.97% 82.41% 83.02% 78.14%

Trivial 50.00% 50.00% 50.00% 96.74% 97.64% 94.53%

Difference 1.08% 2.46% 1.71% −0.23 % −0.23 % −0.38 %

P-value 0.790 0.614 0.549 0.758 0.753 0.640

Table 2.4: Predictive accuracies of the original Altman’s and Ohlson’s models.

2.3.5 Robustness checks

Our main results indicate that Compustat standardized data yield no improvements

for original Altman’s 1968 and Ohlson’s 1980 bankruptcy prediction models. More-

over, in the case of Altman’s model, Compustat standardized data seem to have a

negative impact on the model performance. We perform additional robustness check

detailed below to confirm our findings.

Assessing predictive accuracies of original (not re-estimated) Altman’s and

Ohlson’s model

To asses both the explanatory power and predictive ability, we re-estimate both

Altman’s and Ohlson’s model on the recent 2009-2013 data using recent cases of

bankruptcies. As mentioned in Section 2.2.2, we do this because the original models

1) are more than 30 years old and likely need to be updated, and 2) were estimated

using different data sources than ours that does not allow us to rigorously test whether

Compustat data standardization improves models or not. However, as a robustness

check, we asses and compare the predictive accuracies of the original models on our

10-K and Compustat samples. Note, that we do not need to cross-validate the models

because the original models were estimated on different samples. However, we do test

for significant differences in accuracies using binomial test.

The results are reported in Table 2.4. The results tend to agree with our main
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Mean prediction

accuracy first year second year within two years

10-K 78.44% 79.33% 79.57%

Compustat 78.75% 78.91% 79.85%

Trivial 50.00% 50.00% 50.00%

Difference −0.31 % 0.41% −0.28 %

P-value 0.401 0.511 0.284

Table 2.5: Predictive accuracies of cross-validated Ohlson’s model estimated on the matched
sample.

finding that Altman’s model predicts better if 10-K numbers are used instead of Com-

pustat standardized numbers, although the differences in accuracies are not as large

as in the case of cross-validated models and not statistically significant. Interestingly,

original Altman’s model yields higher accuracies than cross-validated re-estimated

model if applied to Compustat data set, but not better than fitted model. Atlman’s

10-K cross-validated re-estimated models achieve higher accuracies than the original

Altman’s model.

For Ohlson’s model, 10-K models perform slightly (less than 0.4%) worse; however

both Compustat and 10-K models are much worse than trivial models that predict

everything to be non-bankrupt.

Re-estimating Ohlson’s model on the matched sample

We find that Ohlson’s re-estimated models do not achieve better accuracies than

trivial models that predict everything to be non-bankrupt. The reason for that is

the highly unbalanced sample we use to replicate Ohlson’s model. This may be also

be the reason why we find no significant differences between Compustat and 10-K

Ohlson’s models. Therefore, we re-estimate Ohlson’s model on the matched sample

we use to re-estimate Altman’s model to check whether it will result in any significant

difference between Compustat and 10-K versions of the model.
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The predictive accuracies of the re-estimated cross-validated Ohlson’s models are

reported in Table 2.5. As previously, we find no statistically significant differences be-

tween 10-K and Compustat based models. However, the models are better than their

trivial counterparts. The Ohlson’s model also seems to yield better accuracies than

Altman’s model on the matched sample (except in the case of bankruptcy prediction

within the first year of 10-K release).

Re-estimating Altman’s model on the sample with manufacturers only

Altman (1968) developed Z score model for manufacturing firms only. Score mod-

els for private and non-manufacturing companies were developed later (see Altman

(2000)). In all our samples we have included firms other than manufacturers (although

we did exclude utilities, transportation companies, and financial service companies

following Ohlson (1980)). This may have had a negative impact on the predictive abil-

ity of Altman’s model. We exclude non-manufacturing companies from our matched

sample and re-estimate Altman’s model on the resulting sample.

The reduced sample contains 41 bankrupt observations one year prior to

bankruptcy, and 32 bankrupt observations two years prior to bankruptcy. The num-

ber of non-bankrupt observations matches the number of the bankrupt ones. Because

of the smaller sample size we perform 5-fold cross validated comparison (as opposed

to 10-fold) 10 times to assess whether difference in accuracies between 10-K and

Compustat models are significant.13 The results are reported in Table 2.6.

The results are consistent with our previous findings. In all cases, we find that

Atlman’s models based on 10-K numbers outperform respective models based on

Compustat standardized numbers. It seems that including non-manufacturing com-

panies did not have any negative impact on the models’ accuracies since excluding

them did not yield any improvement. Moreover, the models estimated on the reduced

sample are weaker.

13. The results still hold if we use 10-fold cross validation.
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Mean prediction

accuracy first year second year within two years

10-K 70.00% 67.33% 68.33%

Compustat 65.50% 64.50% 64.67%

Trivial 50.00% 50.00% 50.00%

Difference 4.50% 2.83% 3.66%

P-value 0.000 0.008 0.007

Table 2.6: Predictive accuracies of cross-validated Altman’s models estimated on the
matched sample of manufacturing companies.

We also re-estimate Ohlson’s model on the sample that comprises of manufacturers

only. The results do not change.

Recalculating Compustat’s Earnings Before Interest and Tax for Altman’s

model

To re-estimate values of the Altman’s model, we need values of Earnings before Inter-

est and Tax that is a non-GAAP measure. As mentioned previously, we defined EBIT

as a sum of Operating and Non-Operating Income with interest being removed. Ac-

cording to Compustat’s online manual, the definition of EBIT in Compustat is “Sales

- Net (SALE) minus Cost of Goods Sold (COGS) minus Selling, General & Admin-

istrative Expense (XSGA) minus Depreciation/Amortization (DP)”. To test whether

different definitions of non-GAAP EBIT measure drive our results, we recalculate

Compustat’s EBIT according to our definition of EBIT, and use this variable to

re-estimate Compustat’s version of Altman’s model.14 We compare this alternative

Compustat’s model to the 10-K model in terms of predictive ability. The results are

reported in Table 2.7.

The results do not change if Compustat’s definition of EBIT is matched to the

one we use in our 10-K sample. Note, that mean prediction accuracies of 10-K models

14. We calculate this alternative value of Compustat’s EBIT as OIADP+NOPI-XINT.
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Mean prediction

accuracy first year second year within two years

10-K 80.44% 74.83% 77.11%

Compustat 71.25% 72.08% 70.68%

Trivial 50.00% 50.00% 50.00%

Difference 9.19% 2.75% 6.43%

P-value 0.000 0.006 0.000

Table 2.7: Predictive accuracies of cross-validated Altman’s models with an alternative
definition of Compustat’s EBIT variable.

are slightly different than in Table 2.3 since the cross-validation technique we employ

involves random selection of samples used to estimate and test models.

2.4 Summary

S&P Capital IQ’s Compustat reports standardized accounting numbers that are dif-

ferent from the original numbers in 10-K reports. This essay is the first study to

empirically measure the benefits of Compustat’s data standardization by examin-

ing whether Compustat’s data improves two popular bankruptcy prediction models,

Altman’s 1968 Z score and Ohlson’s 1980 O score.

Our main finding is that Compustat’s data standardization not only yields no

significant improvements for Altman’s and Ohlson’s model, but also has significantly

negative impact on Altman’s predictive accuracy. This result is supported by several

robustness checks. We also find that using Compustat’s standardized data instead of

the original 10-K data results in significantly different outputs of both Ohlson’s and

Altman’s models.

Our findings suggest that Compustat’s standardized data may not be better than

the original 10-K data for the purposes of bankruptcy prediction. However, more

research is needed to evaluate the effects of Compustat data standardization on other

important accounting models.
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Chapter 3

Exploration and exploitation in deciding what to

audit

3.1 Introduction

In this Chapter, we consider the problem of identifying irregular transactions from

a set of observed transactions in a multi-period auditing setting. A transaction is

irregular, if it is either fraudulent or erroneous. Since there is a cost to investigating

a transaction by the internal audit, it would be prohibitively expensive to investigate

each and every transaction to find the irregular ones. Therefore, an audit team may

investigate only a portion of transactions. A question, then, arises: what transactions

to investigate? The traditional audit approach is to choose a random sample from the

population of all transactions. However, this approach tends to ignore the information

that is known about transactions. A better approach is to ask internal audit to look

into transactions that are identified as suspicious. Such reduction of the problem

may be effective only if one has a good method of identifying suspicious transactions.

In a perfect case each irregular transaction would be marked as suspicious and each

suspicious transaction would be irregular with a probability close to one.

In the era of technology and computers, it seems natural to apply analytical models

to identify suspicious transactions. It is cheap, fast, and, possibly, accurate. Clearly,

this approach cannot be worse than the traditional audit approach of choosing a

random sample from the population of all transactions. The question is how good it is.

We believe that the answer depends not only on what analytical models are utilized,

but also on how they are utilized. In this essay, we find that some popular analytical
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models (e.g., logistic regression) may not perform that well in the auditing setting if

applied traditionally. This finding is due to the peculiarities of the auditing setting

itself which will be discussed below. However, by changing the way the analytical

models are used we were able to achieve much better performance.

In this essay, we create a framework for analyitical models that can be used to

identify suspicious transactions. We argue that most standard analytical models may

not be well-suited for auditing and have to be modified in order to achieve better

performance.

In order for a statistical model to be effective it should be able to learn from its

past predictions. Just as people gain experience, a statistical model updates itself

over time by taking into account how accurate it was with its previous predictions.

Such information about the past predictions and their successes and failures is often

called a feedback.

In the auditing problem of identifying irregular transactions, a model receives

feedback only from the past transactions that were identified by it as suspicious and

were investigated. In other words, the model uses only the information from one part

of previous transactions to update itself, the part which was found to be suspicious.

This is called the problem of one-sided feedback, and it may introduce significant

difficulties for a statistical model, or even make it useless. The pitfall here is that the

model will be biased towards certain types of irregular transactions seen so far and

may fail to recognize irregular transactions of other types. Since the audit data is

usually unbalanced, i.e., the number of irregular transactions is relatively small, such

bias may be very significant.

In this essay, we try to mitigate the one-sided feedback problem by building a

framework on top of the statistical model that changes the way the model learns

and predicts. The idea behind this framework is to separate the prediction and in-

vestigation decision problems. The framework trades offs the immediate gain from

investigating the most suspicious and important transactions for developing a more
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accurate statistical model by spending audit resources to learn more about the under-

lying distribution of the transactional data. A more accurate statistical model may

yield more benefits in the future. The proposed framework is tested on the real-world

data. The results show a significant boost in performance for some statistical models.

The remainder of this Chapter is laid out as follows. In Section 3.2, we for-

malize a typical setting of auditing transactions when analytical models are used to

decide which transactions to investigate. We introduce the framework to increase

performance of analytical models in Section 3.3. Section 3.4 demonstrates how this

framework can be applied to some statistical models. We test one implementation of

the framework on the real-world data and discuss the results in Section 3.5. Finally,

we summarize the Chapter in Section 3.6.

3.2 Auditing transactions with analytical models

Let us briefly discuss a setting where transactions are audited with the help of ana-

lytical models. We assume that audit is conducted periodically where periods can be

rather short (e.g., days, hours, etc.). In each period, business generates transactions

that are to be audited at the end of that period. Due to limited audit staff and time,

internal audit can investigate only a certain number of transactions. Thus, the main

problem is to choose which transactions to investigate.

In the traditional audit approach, the choice of which transactions to investigate

is random. However, it might not be the most effective approach: it does not take into

account any known information about the transactions (e.g. amount, date and time,

product or service, payee, payer, etc...). Instead, we consider a more modern setting

where a set of analytical models is used to choose which transactions to investigate.

Such models may analyze the information about the current transactions and use the

information about previous transactions and audit investigations to predict whether a

particular transactions is irregular or not. Moreover, once a new transaction has been
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investigated and its true nature (i.e., irregular or non-irregular) has been revealed, a

model may learn from this information and update its beliefs to make better predic-

tions in the future. Such models are known as statistical models. Examples of these

are regression models, decision trees, neural networks, support vector machines, and

many more. We will assume that in such an audit setting at least one statistical

model is utilized.

Transactions are represented by a set of attributes that are believed to reasonably

describe them. For each transaction one can observe the values of its attributes.

Each transaction may result in a certain amount loss if being irregular. An example

of such loss may be a dollar amount of a check, a cost of restating financial statements

due to errors in accounts’ balances, etc. We assume that a business can estimate an

amount of a loss that can result if the transaction is indeed irregular. This is a

reasonable assumption: based on the past history business can produce an estimate

of the loss that may result if the transaction is irregular. Given a transaction, a set

of analytical models decides which transactions to investigate based on its attributes

and available past information. Of course, the number of such decisions depends on

the available resources of the internal audit for that particular period. The internal

audit investigates each chosen transaction, and finds it as either irregular or not.

If the transaction was found to be irregular, we assume that the business bears no

loss associated with it, since it has been handled in a timely manner. We assume

that transactions are independent in a sense that an investigation of a particular

transaction would result in revealing only its true nature, i.e., not the nature of other

transactions. Hence, investigation of an irregular transaction will prevent the loss

associated only with this particular transaction. Finally, learning models utilize all

this information to update their beliefs.

Let us formally describe this setting. In each period t, transactions are generated

by various business activities. Let xjt ∈ X be the jth transaction in period t with

X indicating the set of transactional attributes, and let Nt be the total number of
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An audit setting

for period t = 1, 2, . . . do

1. Business generates transactions Xt = {x1
t , x

2
t , . . . , x

Nt
t }, where

xjt ∈ X, j = 1 . . . Nt.

2. Business estimates potential losses Lt = {l1t , l2t , . . . , lNtt }, where

ljt ∈ R, j = 1 . . . Nt.

3. Auditor announces audit capacity ct ∈ R.

4. Analytical models choose transactions to investigate

It = {xi1t , xi2t , . . . x
ikt
t } ⊆ Xt,

such that kt ≤ ct.

5. Auditor investigates transactions It and reveals their true nature

Yt = {yi1t , yi2t , . . . y
ikt
t }, where yij ∈ {0, 1}, j = 1 . . . kt.

6. Statistical (learning) models store information about Xt, Lt, It, and Yt

for the future decisions.

end for

Figure 3.1: A formal representation of a setting for auditing transactions with ana-
lytical models.

transactions in that period. Therefore, in period t business produces a set Xt =

{x1
t , x

2
t , . . . , x

Nt
t } of transactions. For simplicity, we will assume that this and other

related sets are ordered.1 For each transaction xjt , business produces an estimate ljt ∈

R of the potential loss that may occur if transaction xjt is irregular. Hence, for a set of

transactions Xt there is a corresponding set of estimated losses Lt = {l1t , l2t , . . . , lNtt }.

At the end of each period, the internal audit decides on the number of transactions

that may be investigated in that period. We will call this number an audit capacity,

and denote it as ct. Once all transactions has been observed and the audit capacity for

the period has been determined, a set of analytical model decides which transactions

to investigate based on the available current and past information. In other words,

analytical models choose a subset of transactions It = {xi1t , xi2t , . . . x
ikt
t } from the set

Xt of all transactions in that period, such that the number of chosen transactions

1. One can always create a one-to-one mapping between related sets to achieve the same effect.
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kt does not exceed the available audit capacity ct in that period. After that, the

internal audit investigates the chosen transactions It, and for each such transaction

x
ij
t reveals its true nature y

ij
t ∈ {0, 1}, with y

ij
t = 1 indicating that transaction x

ij
t is

irregular, and y
ij
t = 0 that it is not. Therefore, for the set It = {xi1t , xi2t , . . . x

ikt
t } of

transactions chosen to be investigated, the audit team generates a set of their true

labels Yt = {yi1t , yi2t , . . . y
ikt
t }. This setting is summarized in Figure 3.1.

The benefits from auditing transactions depends not only on whether the audit

team was able to identify irregular transactions, but also on what irregular trans-

actions were identified. For example, identifying an irregular transaction that may

result in a loss of $100 may not be as good as identifying an irregular transaction that

may result in $1000. Therefore, we assume that for every transaction xjt , a certain

utility is derived when the transaction is investigated. Let u(·) be a utility function

that for every transaction xjt gives its utility u(xjt). A straightforward example of such

utility function is a function that for every transaction gives the dollar amount of loss

associated with the transaction, i.e., u(xjt) = yjt l
j
t . Note that if xjt is not irregular, the

latter function will be equal to 0 since the transaction does not result in a loss. The

objective is to maximize the total utility across all periods.

The audit utility for period t is the sum of utilities of transactions that were

investigated in period t, i.e., it is equal to

Ut(It) =
kt∑
j=1

u(x
ij
t ). (3.1)

Here Ut(·) is the set function that for every possible set It ⊆ Xt of transactions

chosen to be investigated, outputs the corresponding audit utility. Then, the total

audit utility for the first T periods is equal to

UT (I1, I2, . . . , IT ) =
T∑
t=1

Ut(It) =
T∑
t=1

kt∑
j=1

u(x
ij
t ). (3.2)
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Now we can define the problem of auditing transactions as

maximize UT (I1, I2, . . . , IT )

subject to It ⊆ Xt, t = 1, . . . , T

|It| ≤ ct, t = 1, . . . , T.

(3.3)

3.3 The exploration and exploitation framework for improv-

ing analytical models

In previous section we discussed a general setting for auditing transactions with an-

alytical models. Figure 3.1 list six steps that have to be taken in each period in such

a setting. Steps 1-3, and 4 are somewhat idiosyncratic with respect to a business

and an audit team. In this essay, we concentrate more on step 4 – analytical models

deciding which transactions to investigate – and on the related step 6 – statistical

models updating themselves with the new information.

Let us discuss what qualities are desirable for a set of analytical models used to

decide which transactions to investigate. Firstly, statistical models should be able to

learn from previous information, and update themselves to achieve better performance

in the future. Secondly, all of the available audit capacity in each period should be

used effectively. Thirdly, transactions that may result in higher losses should have

a priority when deciding whether they are suspicious or not. Finally, the analytical

models should be able to learn more about the underlying distribution of transactional

attributes in order to find new types of irregularities, or change their bias towards the

known ones. Achieving these qualities is not an easy task due to one-sided feedback

presence in the auditing setting, i.e., only the true nature of investigated transactions

is revealed; the analytical models learn nothing about transactions that were not

found suspicious.

The reader may have noticed that the described above qualities of analytical

models are not well aligned with each other. There is a conflict between the need
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to investigate the transactions that may result in the highest losses and the need to

learn more about the intrinsic distribution of the transactional attributes. Therefore,

there has to be a trade-off between these two objectives. This is known as the ex-

ploration/exploitation trade-off. This problem was primarily studied for multi-armed

bandit problems (Berry and Fristedt 1985; Robbins 1952; Auer, Cesa-Bianchi, and

Fischer 2002). Techniques to achieve a good balance of exploration and exploitation

were also applied in other areas such as reinforcement learning (Sutton and Barto

1998) and evolutionary programming (Holland 1992). In our setting, exploration

refers to forcing a statistical model to mark some transaction as suspicious (even if

the model does not find them suspicious at all) in order to learn more about the un-

derlying distribution of the transactional attributes and, thus, avoid potential bias.

Too much exploration may lead to model yielding too many false suspicious trans-

actions (suspicious transactions that are not irregular). The other side of the coin

is exploitation, which refers to allowing the model to choose those transactions to

investigate that are expected to yield the highest loss. The goal is to strike a fine

balance between exploration and exploitation.

A high-level representation of the proposed framework is shown in Figure 3.2.

An input to analytical models is the information about the current transactions (i.e.,

transactions, their attributes and estimated losses in the current period) as well as

the information about past transactions (transactions, attributes, estimated losses,

investigated transactions and their true nature, etc. in the previous periods). An

output from the analytical models are transactions that have to be investigated. These

transactions are then investigated by the audit team that reveals their true nature.

The information about investigated transactions and their true nature is a valuable

feedback used by analytical models in the later periods. Analytical models themselves

are divided into three categories: preprocessing models, exploitation models, and

exploration models.

Preprocessing models are utilized before exploitation and exploration models.
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Input

Exploitation
Models

Exploration
Models

Transactions to investigate

Analytical
Models

Information about current transactions.

Information about past transactions

Filter transactions.

Merge related transactions.

Determine the balance between
exploration and exploitation stages.

Choose transactions to investigate
that would yield highest benefits in
the current period.

Choose transactions to investigate
that would yield better performance
of statistical models, thus yielding
higher benefits in future.

.

Preprocessing
Models

Audit
Team

Investigate transactions chosen by
analytical models.

Output True nature of the investigated transactions

Feedback

Figure 3.2: The exploration and exploitation framework for improving analytical
models.

This models are used to filter transactions (e.g. remove all transactions with an

estimated loss being less than $100), merge transactions (e.g., merge split payments

into one transaction), and apply other user-defined rules. In other words, these mod-

els transform an initial input to facilitate the process of deciding which transactions to

investigate. Preprocessing models may also define how many investigation decisions

should be allocated for exploration and exploitation based on the available audit ca-

pacity and other information (e.g., expected losses for current transactions, accuracy

of the statistical models employed, internal audit preferences, etc.).

Exploitation models are used after the preprocessing models, but before the ex-

ploration models. The objective of the exploration models is to choose transactions to

investigate so that to obtain the highest benefits in the current period (e.g. maximize
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the total prevented loss in this period). Therefore, exploration models try to achieve

a short-term goal. Given a set of transactions, exploitation models make a portion

of decisions which transactions to investigate. The second part of such decisions are

made by exploration models.

Exploration models are the last analytical models to be utilized. Their objective

is to choose transactions to investigate that will benefit the learning of the analytical

models the most. Some transactions are more valuable than others from the models’

learning point of view. Investigating such transactions and discovering their true

nature may increase the accuracy and performance of the statistical models, thus

potentially increasing the benefits in the future. Exploration models try to choose

such transactions to be investigated. In this sense, exploration models are forward-

looking.

In the following section, we show one way how to define exploration and exploita-

tion models based on some popular statistical models, and how to utilize these models

in conjunction in the auditing setting.

3.4 How to build exploration and exploitation models

In this section, we show how to build exploration and exploitation models for the

proposed framework. Note that the method described here is one of the many possible

ways to do it.

For simplicity, we will utilize only one statistical model to build one exploration

and one exploitation model. In principle, many different statistical models may be

utilized. The proposed method can be applied to a large number of statistical models.

The only requirement for the statistical model is its ability for each transaction xjt

to produce a probability estimate pjt , a number between 0 and 1, of the transaction

been irregular. If this probability is close to 1, we interpret it as the statistical model

deeming the transaction to be irregular almost certainly. If it is close to 0, then
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statistical model regards the transaction to be non-irregular almost certainly.

Formally, we assume that in period t, there is a statistical model st such that

for each transaction xjt from the set Xt = {x1
t , x

2
t , . . . , x

Nt
t } of all transactions in

period t, generates a probability estimate pjt ∈ [0, 1], i.e., st(x
j
t) = pjt . The reason

why statistical model st depends on t is that it is updated every period with new

information available from the previous period(s). Statistical model st will be used

as an underlying model to generate exploration and exploitation models for period t.

For this example, we will assume that the objective is to maximize the total

prevented loss across all periods. In other words, the utility function is defined as

u(xjt) = yjt l
j
t , (3.4)

where ljt is the estimate of loss for transaction xjt , and yjt is the true nature of xjt , with

yjt = 1 indicating that xjt is irregular, and yjt = 0 meaning that it is not.

The objective function (3.2), then, is equal to

UT (I1, I2, . . . , IT ) =
T∑
t=1

kt∑
j=1

yjt l
j
t . (3.5)

3.4.1 Trade-off between exploration and exploitation

Exploration and exploitation models have different goals that usually contradict each

other. Exploitation aims to choose transactions to investigate that will allow to reap

the highest benefits in the current period (e.g. minimize loss in the current period).

Exploration, on the other hand, tries to choose transactions to investigate that will

increase performance of the statistical models, thus, allowing to get more benefits in

the future. Exploration often means sacrificing today to gain more benefit tomorrow.

Since, in period t, the number of transactions that can be investigated is limited

to audit capacity ct, we have to decide how many investigation decisions to allocate

for exploration and exploitation. We will assume that the number of investigated
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transactions in each period is equal to the audit capacity, i.e., kt = ct. Let εt,

εt ≤ ct, be the number of decisions allocated for exploration. Let us cal this number

the exploration capacity for period t. Then the number of decisions allocated for

exploitation is equal to ct − εt. Therefore, in each period t, we have to decide on the

value of εt.

We propose a natural way to dynamically balance exploration and exploitation in

each period. The idea is the following: in period t, assess the accuracy of statistical

model st−1 in period t − 1; if the accuracy is high, concentrate on exploitation in

period t, and if the accuracy is low, concentrate on exploration in period t to improve

the accuracy of the model in the future periods. We consider the accuracy of the

statistical model only in the most recent (t − 1) period, since it reflects the current

accuracy of the statistical model, i.e., the one we are likely to get in the current (t)

period.

Let Pt−1 = {pi1t−1, p
i2
t−1, . . . p

ict−1

t−1 } be the probability estimates of the transac-

tions It−1 = {xi1t−1, x
i2
t−1, . . . x

ict−1

t−1 } investigated in the period t − 1, and let Yt−1 =

{yi1t−1, y
i2
t−1, . . . y

ict−1

t−1 } be the corresponding true labels of these transactions. These

probability estimates Pt−1 and true labels Yt−1 can be considered as two distinct

probability distributions and, hence, we can compute a distance between them. Such

distance would indicate how close the probability estimates yielded by the statistical

model are to the true labels of these transactions, and, therefore, how accurate they

are. A good measure to calculate such distance is the cross-entropy. In our case it is

equal to

Dt−1(Y, P ) = −
ct−1∑
j=1

{
y
ij
t−1 log2 p

ij
t−1 + (1− yijt−1) log2(1− pijt−1)

}
(3.6)

with 0 · log2 0 defined as 0.

The value of Dt−1(Y, P ) is an absolute measure of the statistical model accu-

racy and can take any value greater or equal than 0. It may be hard to interpret
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when choosing the exploration capacity εt. We need a benchmark value to compare

Dt−1(Y, P ) to. Consider a case when the statistical model has no information about

the previous transactions. In this case the best probability estimate that the model

can yield for a transaction being irregular is 0.5 (a fifty-fifty chance). The value of

the cross-entropy for this random-guessing model, therefore, would be

Dt−1(Y, 0.5) = −
ct−1∑
j=1

{
y
ij
t−1 log2 0.5 + (1− yijt−1) log2 0.5

}
= −

ct−1∑
i=1

log2 0.5 = −
ct−1∑
i=1

−1 = ct−1.

(3.7)

That is Dt−1(Y, 0.5) is equal to the audit capacity in period t−1. Dividing Dt−1(Y, P )

by Dt−1(Y, 0.5) = ct−1 yields a relative measure of the statistical model accuracy with

respect to the accuracy of the random-guessing model. If this fraction is less than 1,

then the statistical model does a better job than simply random guessing. Otherwise,

its performance is alarmingly poor. In the latter case, we would require a lot of

exploration to calibrate the statistical model and increase its future performance.

Theoretically, there is no upper bound on the possible values of Dt−1(y, p), i.e., it

may be arbitrarily large. However, for our purposes, we may limit its highest value to

be twice the value of ct−1. To put it simply, if the statistical model’s performance is

two times worse than the random guessing, it is bad enough to impose the maximum

exploration on the model. This way, our relative measure of the statistical model’s

accuracy is equal to

min

(
Dt−1(Y, P )

ct−1

, 2

)
, (3.8)

and its normalized version (the one that lies between 0 and 1) would be

Rt−1(Y, P ) = min

(
Dt−1(Y, P )

2ct−1

, 1

)
. (3.9)
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Determining the exploration capacity

Input: exploration rate ρ

1. Compute cross-entropy Dt−1(Y, P ) as in (3.6)

2. Compute measure of accuracy Rt−1(Y, P ) as in (3.9)

3. Compute the exploration capacity εt = bρRt−1(y, p)ctc
Output: exploration capacity εt

Figure 3.3: A way to calculate the exploration capacity εt for period t to determine
the balance between exploration and exploitation in that period.

Then, we can define the exploration capacity as

εt = bρRt−1(Y, P )ctc, (3.10)

where b·c is the floor function, and ρ ∈ [0, 1] is the exploration rate parameter.

The exploration rate parameter is set by the audit team, and defines the exploration

capacity’s sensitivity to the statistical model accuracy. The greater it is, the more

transactions would be reserved for exploration. In the worst case scenario, when

Rt−1(Y, P ) = 1, the exploration rate equals the fraction of the audit capacity reserved

for exploration. For example, if Rt−1(Y, P ) = 1 and ρ = 0.95, then 95% of the audit

capacity will be used for exploration in period t. For a brief summary of how the

exploration capacity is calculated see Figure 3.3.

3.4.2 Exploitation model

The objective of exploitation model is to reap the highest benefits in the current

period. In our case, we may assume that this objective is to minimize the total

expected loss in the current period.

Given the value of the exploration capacity εt (see previous section), the number

of investigation decisions in the exploitation stage is equal to ct − εt. Therefore

we need to choose ct − εt transactions from the set Xt = {x1
t , x

2
t , . . . , x

Nt
t } of all
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Exploitation Model

1. Define Et = {e1
t , e

2
t , . . . , e

Nt
t } where ejt = xjt · p

j
t .

2. Define Ēt = {ej1t , e
j2
t , . . . , e

jNt
t } where ej1t ≥ ej2t ≥ · · · ≥ e

jNt
t .

3. Choose transactions xj1t , x
j2
t . . . , x

jct−εt
t to investigate.

Output: transactions xj1t , x
j2
t . . . , x

jct−εt
t

Figure 3.4: The procedure of choosing transactions for exploitation.

transactions in period t. For every transaction xjt ∈ Xt, the statistical model generates

a probability estimate pjt of this transaction being irregular. Therefore, the statistical

model generates a set Pt = {p1
t , p

2
t , . . . , p

Nt
t } of probability estimates in period t.

The value ejt = pjt · l
j
t is the expected loss associated with the transaction xt under

the utilized statistical model. Let Et = {e1
t , e

2
t , . . . , e

Nt
t } be the set of expected losses

that corresponds to the set of transactions Xt. Let Ēt = {ej1t , e
j2
t , . . . , e

jNt
t } be the

ordered set of expected losses such that ej1t ≥ ej2t ≥ · · · ≥ e
jNt
t . Then, indexes j1,

j2, . . . , jct−εt correspond to ct − εt transactions for which the expected losses are the

highest. Hence, the exploitation model will choose transactions xj1t , x
j2
t . . . , x

jct−εt
t to

investigate. A summary of the process is given in Figure 3.4.

3.4.3 Exploration model

The purpose of the exploration is to learn more about the underlying distribution of

the transactional attributes by investigating transactions possibly other than the ones

with the highest expected losses. Therefore, the exploration model does not decide

which transaction to investigate based on the expected loss of transactions.

The exploration model has to choose εt transactions out of mt = Nt − ct + εt

transactions (because the exploitation model has already chosen ct− εt transactions).

In this essay, we propose to randomly choose transactions to investigate out the

remaining ones. However, the chance of a particular transaction being chosen is

proportional to how uncertain the statistical model is about its true nature. In other

words, the less certain the statistical model is about a transaction, the greater the
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Figure 3.5: Illustration of an idea to choose transactions to investigate based on the
statistical model’s uncertainty about them.

chance it will be investigated. Transactions that the statistical model is least certain

about may be very useful in exploring the underlying distribution of transactional

attributes. By learning from such observations the statistical model may enhance its

accuracy of predicting irregular transactions.

This idea is somewhat similar to the one in Lewis and Gale (1994). However, in

our case the choice of transactions is non-deterministic. Such randomization may be

more beneficial in the auditing problem where the number of irregular transactions

is relatively small.

To illustrate the above point, consider the case of a margin statistical model (such

as support vector machines) as in Figure 3.5. This margin statistical model tries to

separate observations of different classes by dividing the space of attributes with a

hyperplane. The hyperplane creates a margin as in Figure 3.5. The statistical model

assumes an observation to belong to the one class (circles) if it is on the one side of

the margin, and to belong to the other class (rectangles) if it is on the other side. The

larger the distance from the observation to the margin, the higher is the probability

of it belonging to the respective class. Therefore, the model is least certain about the
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observations that are very close to the margin (black circles and triangles in Figure

3.5). Each time the model learns from new observations the margin is re-estimated.

Learning from the observations close to the margin may change it more drastically

than learning from the observations far from the margin. Therefore, such observations

may provide the most valuable “experience” to the model.

Let Xm
t = {xq1t , x

q2
t , . . . , x

qmt
t } be the set of transactions in period t inputted to

the exploration model (all transactions except those decided to be investigated in the

exploitation stage). For each transaction xjt ∈ Xm
t , we may define the measure of

the statistical model’s uncertainty about the transaction’s true nature by calculating

how close its probability estimate pjt is to the value of 0.52:

ujt = |pjt − 0.5|. (3.11)

The number ujt is between 0 and 0.5, with 0 indicating the highest uncertainty and

0.5 indicating the highest confidence about the true nature of transaction by the

statistical model.

Let us randomly generate mt numbers drawn from the uniform distribution on

the interval [0, 1]. Let Rt = {rq1t , r
q2
t , . . . , r

qmt
t } be the set of those numbers. The

product gjt = rjt · u
j
t is a random number between 0 and 0.5. The smaller is the

ujt , the higher is the probability of gjt being close to 0 (rather than to 0.5). Choos-

ing εt transactions for which such products are the smallest is equivalent to ran-

domly choosing εt transactions out of a pool of mt transactions, in a way that the

chance of choosing a particular transaction is proportional to the degree of the sta-

tistical model’s uncertainty about it. Let Gt = {gq1t , g
q2
t , . . . , g

qmt
t } be the set of all

such products, and Ḡt = {gw1
t , gw2

t , . . . , g
wmt
t } be the ordered set of those products,

where gw1
t ≤ gw2

t ≤ · · · ≤ g
wmt
t . Then, the exploration model chooses transactions

2. In our case, the probability estimate of 0.5 represents the statistical model’s total uncertainty
about the true nature of a transaction.
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Exploration Model

1. For each xjt ∈ Xm
t , compute the measure of uncertainty ujt = |pjt − 0.5|.

2. For each xjt ∈ Xm
t , generate a random number rjt ∈ [0, 1] ∼ U(0, 1).

3. Define Gt = {gq1t , g
q2
t , . . . , g

qmt
t }, where gqit = uqit · r

qi
t .

4. Define Ḡt = {gw1
t , gw2

t , . . . , g
wmt
t }, where gw1

t ≤ gw2
t ≤ · · · ≤ g

wmt
t .

Choose transactions xw1
t , x

w2
t , . . . , x

wε
t to investigate.

Output: transactions xw1
t , x

w2
t , . . . , x

wε
t to investigate.

Figure 3.6: The procedure of choosing transactions for exploration.

xw1
t , x

w2
t , . . . , x

wε
t to investigate. A summary for exploration is provided in Figure 3.6.

3.5 Empirical testing

In this section, we test the described above implementation of the proposed explo-

ration/exploitation auditing framework on the two real-world data sets and evaluate

the results. The data sets used to demonstrate the performance of the framework are:

credit card data of a large multinational bank and census data of the U.S. Census

Bureau. The first data set is of a business nature and, arguably, resembles a real

audit data in out setup. The second data set is a well-studied data utilized in many

studies (e.g. Kohavi 1996; Cohen and Singer 1999) and in the Data Mining and

Knowledge Discovery (KDD) Cup competition.

3.5.1 Measures for comparison

In order to compare the performance of the unmodified statistical model (which we

will call normal model for short) with the derived exploration/exploitation models we

need a benchmark. Each set of analytical models in each period outputs transactions

to be investigated, i.e., it outputs I1, I2, . . . , IT . A benchmark measure should take

these as an input and produce a number as an output that we can use to compare
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the models.

Since in Section 3.4 we assumed that the objective is to maximize the total pre-

vented loss, we will use the objective function (3.5) in our comparison:

UT (I1, I2, . . . , IT ) =
T∑
t=1

kt∑
j=1

yjt l
j
t . (3.12)

This measure is an absolute measure of the prevented loss. We also would like to

have a relative measure of the prevented loss. The relative prevented loss in period t

is equal to

Pt(It) =

∑kt
d=1 y

id
t l

id
t∑Nt

n=1 y
n
t l
n
t

. (3.13)

In the above equation, the nominator is equal to the prevented loss, and the

denominator is equal to the total loss in period t. We, then, define the mean relative

prevented loss (MRLP) for the first T periods as

MRLPT =
1

T

T∑
t=1

Pt. (3.14)

We will also use MRLP in our testing. It is a better measure to compare the

accuracy of the analytical models than (3.12). It gives a fairer comparison of the

models’ performance across all periods.

3.5.2 Statistical models

In our testing, we use two statistical models: logistic regression, and support vector

machines (SVM) with a linear kernel. Logistic regression is a widely used statistical

model that yields probabilities of observations belonging to particular classes. SVM

is a popular classification model that originated in machine learning literature. Stan-

dard versions of SVM output only class predictions. However, Wu, Lin, and Weng

(2004); Platt (2000); Lin, Lin, and Weng (2003) develop methods for SVM to yield
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probability estimates for observations. We use LIBSVM library (Chang and Lin 2011)

implementation of SVM outputs probability estimates.

For each statistical model, we construct the appropriate exploration and exploita-

tion models as described in Section 3.4. For each exploration and exploitation model,

we report results for different values of the exploration rate; namely, for ρ = 0.25,

ρ = 0.5, ρ = 0.75 and ρ = 1.

3.5.3 Multinational bank credit card data

We first test the exploration and exploitation auditing framework using a credit card

data of a large multinational bank.

Data description

The credit card data we used in this study contains information about the bank’s

credit cards opened in 2011 and their status as of the first quarter of 2012. Each

observation indicates a rather general information about the credit card account and

its owner. The list of variables is provided in Appendix C.

To simulate an irregular transaction, we assume that an observation is irregular if

the credit card was canceled by the bank. The bank may cancel credit card because of

various reasons including fraud. We also assume that each observation carries a loss

if being irregular with the value of the loss being equal to the amount of the credit

limit associated with the account. Credit limit is an intuitive estimate for the loss

associated with a credit card. We randomly selected 500,000 observations in a way

that 1% (5,000) of these are irregular. The small percentage of irregular observations

is used to emulate the small number of irregular transactions, and therefore creates

the unbalanced data set problem.

We partitioned all 500,000 observations into 500 periods with 1,000 observations

each. We set the number of transactions that can be investigated (audit capacity) in
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Normal model
Exploration/exploitation models

ρ = 0.25 ρ = 0.5 ρ = 0.75 ρ = 1

Logistic Regression

Total prevented loss 938823 2038096 2347275 2295943 2274050

Difference 0 1099273 1408452 1357120 1335227

Linear SVM

Total prevented loss 2132940 2272404 2215005 2162068 2156688

Difference 0 139464 82065 29128 23748

Table 3.1: Credit card data testing results as measured by the total prevented loss.
The difference row indicates the difference in the prevented loss between the explo-
ration/exploitation models and the normal model. Higher values are better.

each period to 100 (10% of all transactions).

Testing results

The results of the exploration and exploitation framework testing are reported in

Tables 3.1 and 3.2.

The results show that the logistic regression model is improved a lot if the ex-

ploration and exploitation technique is utilized. The mean relative prevented loss

increased from 11.56% to 24.58% when the exploration and exploitation model was

used with the exploration coefficient parameter of ρ = 0.75. This translates to more

then 110% better performance of the exploration and exploitation logistic regression

model as compared to the normal logistic regression model. Also the exploration and

exploitation logistic regression model demonstrated the best results across all models

tested for the credit card data set.

The results for the SVM model are not as impressive as the ones for the logistic

regression model. The normal SVM model yields better results than the normal

logistic regression model, but the exploration and exploitation framework was able

to improve the normal SVM model only by a little – in the best case by 8% (for

ρ = 0.25).
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Normal model
Exploration/exploitation models

ρ = 0.25 ρ = 0.5 ρ = 0.75 ρ = 1

Logistic Regression

MRPL 11.56% 21.35% 23.37% 24.58% 23.90%

Difference 0% 9.79% 11.81% 13.02% 12.34%

Linear SVM

MRPL 15.89% 17.20% 16.62% 16.26% 16.24%

Difference 0% 1.31% 0.73% 0.37% 0.35%

Table 3.2: Credit card data testing results as measured by the Mean Relative Pre-
vented Loss (MRPL) in percentage. The difference row indicates the difference in
MRLP between the exploration/exploitation models and the normal model. Higher
values are better.

It appears that the choice of the exploration coefficient parameter, ρ, is important.

Moreover, the optimal value seems to be model-dependent. For the logistic regression,

the optimal exploration coefficient value is 0.75, while for the SVM the optimal value

is 0.25 for the credit card data set.

It is interesting to see how the performance of the exploration and exploitation

model changes over time. Figure C.1 in Appendix C shows the period performance

differences, as measured by the relative prevented loss measure, between the logistic

regression exploration and exploitation model (with ρ = 0.5) and logistic regression

normal model. Negative values indicate a better performance of the normal model,

while positive values indicate a better performance of the exploration and exploitation

model.

To have a clearer picture what happens on average, we fitted the difference points

in Figure C.1 to a quadratic polynomial curve in Figure C.1. From Figure C.1 it

follows that at first the sacrifice of investigation decisions for exploration yields a

worse performance of the exploration and exploitation model compared to the normal

model. However, over time the exploration model performance becomes significantly

better on average. Hence, the exploration and exploitation model yields a high value

in the future for a price of slightly worse performance in the present.
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Also note that the fitted curve in Figure C.1 is concave (as opposed to convex)

meaning that the marginal benefit of the model decreases over time and less explo-

ration is required in the later periods. This indicates that exploration capacity should

be allocated dynamically based on some performance criteria (in our implementation

of the framework, it is based on the accuracy of the underlying statistical model,

see §3.4.1). At some time the difference in performance begin to decrease as the

exploration and exploitation model reaches its potential and the normal model gains

more experience. At this point, it may be also beneficial to decrease the value of the

exploration coefficient of the exploration and the exploitation model.

3.5.4 Census data

The second test data we utilize in this study is large a census data set obtained from

the University of California, Irvin (UCI) Machine Learning repository (Asuncion and

Newman 2007).

Data description

The census data is extracted from the 1994 and 1995 Current Population Surveys

conducted by the U.S. Census Bureau. It was used in dozens of studies (Kohavi 1996;

Cohen and Singer 1999) and in the Data Mining and Knowledge Discovery (KDD)

Cup competition of 1999. We use the KDD version of the data. Out of 42 fields in

the data, we kept only 12 since most data variables are categorical and, thus, would

yield too many dummy variables in the model if used in full. The list of the used

variables can be found in Appendix C.

Each observation in the data is treated as a transaction. We used the variable

“Education” as a class label in our testing. If the value of the variable is “Doctor-

ate degree” or “Master’s degree”, then the transaction is considered to be irregular.

Otherwise, it is not irregular. For the loss variable we used the variable “Age”. This

way the loss may be partially correlated with the true label of the transaction that
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Normal model
Exploration/exploitation models

ρ = 0.25 ρ = 0.5 ρ = 0.75 ρ = 1

Logistic Regression

Total prevented loss 266675 238314 315292 310742 305592

Difference 0 46937 48617 44047 38917

Linear SVM

Total prevented loss 260974 288969 288380 273592 266439

Difference 0 27995 27406 12618 5465

Table 3.3: Census data testing results as measured by the total prevented loss.
The difference row indicates the difference in the prevented loss between the ex-
ploration/exploitation models and the normal model. Higher values are better.

would probably be the case in the real-world setting.

We consider 200 auditing periods. For each period, we randomly choose 1000

observations from the data set (without repeating). In each period the audit capacity

is set to 100 (10% of the number transactions in each period). The total number of

irregular transactions is equal to 7881 (3.94% of all transactions) which results in the

highly unbalanced data set.

Testing results

The results of the framework testing on the census data is presented in Tables 3.3

and 3.4.

Similarly to the credit card data testing, the results show that the logistic re-

gression model yields the best results. For logistic regression, the exploration and

exploitation models significantly outperform the normal one. The total prevented

loss for the exploration/exploitation models with exploration rate ρ = 0.5 is 18.23 %

greater than the total prevented loss of the normal one. The model performance is

increased by 57.3% as measured by the MRPL. It is interesting to observe, that the

results tend to be better as we increase the exploration rate at first (ρ = 0.5 yields

better results than ρ = 0.25), and then decrease as we increase the exploration rate
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Normal model
Exploration/exploitation models

ρ = 0.25 ρ = 0.5 ρ = 0.75 ρ = 1

Logistic Regression

MRPL 22.53% 35.44% 35.93% 34.67% 33.24%

Difference 0% 12.91% 13.4% 12.14% 10.71%

Linear SVM

MRPL 20.92% 28.68% 28.76% 25.44% 22.47%

Difference 0 7.76% 7.84% 4.52% 1.55%

Table 3.4: Census data testing results as measured by the Mean Relative Prevented
Loss (MRPL) in percentage. The difference row indicates the difference in MRLP
between the exploration/exploitation models and the normal model. Higher values
are better.

even more (ρ = 0.5 is better than ρ = 0.75, and ρ = 0.75 is better than ρ = 1).

This suggests, that there is a sweet point for the exploration parameter somewhere

between ρ = 0.25 and ρ = 0.75, that blends the optimal amount of exploration and

exploitation.

SVM model is the second best model. Again, the exploration and exploitation

models are better than the normal one. The exploration and exploitation model

performs the best with ρ being equal to 0.25 or 0.5. The testing shows that the

exploration and exploitation SVM models can outperform the normal one by 37.59%

in terms of model accuracy. The total prevented loss increased by 10.73% compared

to the normal model. As in the case with the logistic regression model, the SVM

model performance is decreased if the exploration rate ρ is too large.

3.6 Summary

In this Chapter, we consider the auditing problem of identifying irregular transactions

from a set of observed transactions. Specifically, we consider a multi-period setting

where a set of analytical models is used to identify suspicious transactions which

would be later investigated by the audit staff.
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Although, some statistical models are able to learn from the past history of trans-

actions, they may not be able to learn effectively due to the nature of the auditing set-

ting. In particular, a model only learns from the past transactions that were identified

by it as suspicious and were investigated. This may result in model biasing towards

certain types of irregular transactions that have been previously investigated. There-

fore, it might be unable to identify the other types of irregularities. This is known

as the problem of one-sided feedback. This problem may be even more pronounced

in the auditing setting where the number of irregular transactions is significantly less

than the number of non-irregular transaction.

In this essay, we develop a framework, that boosts the performance of analytical

models in the auditing setting. The framework utilizes the exploration and exploita-

tion technique, and separates the prediction and investigation decisions to learn more

about the transactional attributes distribution while pursuing the main goal (e.g.,

maximization of the prevented loss).

We demonstrate how to build simple exploration and exploitation models from

a class of statistical models that outputs probability predictions (e.g. logistic re-

gression). We also show how to dynamically adjust the degree of exploration and

exploitation based on past accuracy of the analytical models.

We test the framework on large-scale, real-world data with two popular statistical

models: logistic regression, and support vector machines. The results show that he

performance of the statistical models can be drastically improved if the exploration

and exploitation framework is used.
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Conclusions

This dissertation studies the properties of accounting data and their implications from

two different perspectives. The first part of the dissertation examines the differences

between Compustat North America Fundamentals, the most frequently used financial

database in accounting research, and annual financial reports filed by U.S. companies,

and empirically studies the effects of these differences on accounting-based bankruptcy

prediction models. The second part of the dissertation discusses the unique charac-

teristics of transactional data and how these characteristics aggravate the problem of

applying analytical learning models in a multi-period audit setting, and develops a

solution to address this problem.

Chapter 1 is the first essay, in which we utilize the XBRL reporting technology to

conduct the first large-scale comparison of numbers found in Compustat North Amer-

ica Fundamentals Annual and numbers as reported in the original financial reports

filed by domestic U.S. GAAP companies with the SEC. We develop a comparison

methodology that allows automated data extraction from XBRL 10-K reports, map-

ping XBRL data to the appropriate Compustat variables, and reconciliation of any

identified discrepancies between the two sources of data. We apply this methodology

to compare 30 popular accounting line items between Compustat and 10-K reports

of more than 5,000 companies with filing period end dates ranging from October 1,

2011, to September 30, 2012. The results show that 17 out of 30 compared account-

ing items significantly differ across the data sets. The differences are mostly due to

Compustat’s standardization practices that involve adjustments of the original num-

bers to fit Compustat’s standardized definitions of variables. Accounting items with

more complex definitions (e.g., Cost of Goods Sold) tend to differ more than the
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accounting items with less complex definitions (e.g., Total Assets). In addition, we

show that company’s characteristics such as industry and size, and the type of finan-

cial statement where the numbers are reported affect the amount and magnitude of

discrepancies. These results show that the differences between Compustat and 10-K

filings are non-trivial, and are likely to affect outcomes of the studies that utilize

Compustat as opposed to 10-K data.

Chapter 2 extends the study of Chapter 1 by examining the effects of using stan-

dardized Compustat data as opposed to the original 10-K data for the purposes of

bankruptcy prediction. We consider two popular accounting-based bankruptcy pre-

diction models, Altman’s 1968 and Ohlson’s 1980 models. For each model, we com-

pare the output, explanatory power, and predictive ability between two versions of

the model - one based on Compustat data and the other based on the original 10-K

data. We find that there is a significant difference in outputs of both Altman’s and

Ohlson’s models if Compustat data is utilized instead of the original 10-K data. We

also find that Altman’s model based on 10-K data has a significantly better predictive

accuracy (up to 8.56%) than the corresponding Compustat-based model. The results

suggest that Compustat’s standardization practices may have a negative effect on the

performance of bankruptcy prediction models.

Finally, Chapter 3 considers the problem of applying analytical learning models

for the purpose of identifying irregular transactions in a multi-period auditing setting.

Transactional data presents two major challenges for using analytical models: 1) the

data is highly unbalanced – the number of irregular transactions is usually a small

fraction of all transactions that reduces the likelihood of detection of irregularities, and

2) in each auditing period, due to constrained audit resources, only a limited number

of transactions can be investigated that does not provide an optimal learning expe-

rience for analytical models that utilize historical data for calibration. To mitigate

these effects, we propose a framework for analytical models that is based on the con-

cepts of data exploration and exploitation (Berry and Fristedt 1985; Robbins 1952;
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Auer, Cesa-Bianchi, and Fischer 2002). The framework exchanges the immediate gain

from investigating the most suspicious and important transactions (exploitation) in

return for more accurate statistical model by spending audit resources to learn more

about the underlying distribution of the transactional data (exploration). We test

the framework on two real-world data sets. The results show significant increase in

performance of analytical models when the framework is utilized.
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Appendix A

Compustat and 10-K data comparison tables

Table A.1: Fama/French 12 industry classification

Industry Variable Variable Description Examples of Industries Included

NoDur Consumer non-durables Food, Tobacco, Textiles, Apparel,

Leather, Toys

Durbl Consumer durables Cars, Television Sets, Furniture,

Household Appliances

Manuf Manufacturing Machinery, Trucks, Planes, Office Fur-

niture, Paper, Printing

Enrgy Energy Oil, Gas, Coal Extraction and Prod-

ucts

Chems Chemicals Chemicals and Allied Products

BusEq Business equipment Computers, Software, and Electronic

Equipment

Telcm Telecommunications Telephone and Television Transmission

Utils Utilities Water, Gas, Electricity Utilities

Shops Shops Wholesale, Retail, and Some Services

(Laundries, Repair Shops)

Hlth Health Healthcare, Medical Equipment, and

Drugs

Money Money Finance
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Table A.2: Descriptive statistics of Compustat variables

Statement Variable Variable Description
Observation counts Descriptive Statistics of Matched Data

Available Missing Matched (Perc.) Mean St. Dev. Median

Balance Sheet ACT Current Assets 3,946 0 3,902 (99.11%) 1,073.53 4,237.43 132.31

CH Cash 4,848 0 4,791 (99.07%) 374.64 2,899.25 26.70

RECTR Receivables (Trade) 3,849 0 3,414 (88.93%) 536.88 6,365.74 42.93

INVT Inventories 3,374 0 2,435 (72.26%) 330.71 1,317.23 36.44

PPENT Property, Plant and Equip-

ment

4,582 0 4,381 (95.84%) 1,213.73 6,164.46 40.05

DPACT Depreciation, Depletion and

Amortization

3,978 0 2,122 (54.61%) 1,621.78 7,357.35 231.16

GDWL Goodwill 2,659 0 2,541 (95.71%) 991.02 4,162.30 80.75

AT Total Assets 4,958 42 4,932 (99.74%) 8,581.13 84,465.52 509.03

LCT Current Liabilities 3,978 0 3,880 (97.76%) 737.45 3,153.04 59.06

AP Accounts Payable (Trade) 4,862 0 4,591 (94.66%) 1,883.37 30,076.04 23.54

DLTT Long-Term Debt 3,586 0 2,726 (76.19%) 2,173.00 12,316.16 238.59

LT Liabilities 4,965 0 3,540 (71.60%) 8,411.89 93,457.13 255.79

RE Retained Earnings 4,860 0 4,462 (92.29%) 802.39 8,133.42 9.45

REUNA Retained Earnings (Unad-

justed)

4,714 0 4,329 (92.46%) 876.40 8,526.66 8.51

TEQ Stockholders’ Equity 4,980 0 4,856 (97.80%) 1,652.20 8,795.99 145.95

Available – observations present in Compustat; Missing – observations present in XBRL 10-K filings, but not in Compustat.

Matched – observations present both in Compustat and XBRL 10-K filings excluding erroneous XBRL observations.

Mean, St. Dev., Median – values of descriptive statistics based on Compustat values of the matched observations.

Mean and median values are measured in millions of U.S. dollars, except for per share numbers that are measured in U.S. dollars.

(continued on the next page)



108

Table A.2 : (continued from the previous page)

Statement Variable Variable Description
Observation counts Descriptive Statistics of Matched Data

Available Missing Matched (Perc.) Mean St. Dev. Median

Income Statement REVT Revenue 4,679 0 3,619 (77.73%) 3,489.00 15,996.30 359.45

SALE Sales/Turnover 4,679 0 2,410 (51.58%) 3,499.89 14,993.02 402.63

IDIT Interest and Related Income 1,973 0 1,600 (82.09%) 6.51 39.61 0.26

COGS Cost of Goods Sold 4,684 4 2,621 (56.11%) 2,129.08 10,312.62 164.34

XAD Advertising Expense 1,948 0 1,012 (52.16%) 124.25 497.74 5.15

XINT Interest and Related Expense 1,862 0 1,605 (86.85%) 147.38 688.97 16.10

XRD Research and Development

Expense

1,861 0 1,601 (86.78%) 147.58 689.81 16.10

GP Gross Profit (Loss) 4,708 0 2,028 (43.08%) 783.94 3,418.41 97.46

NI Net Income (Loss) 4,972 34 4,920 (99.29%) 198.94 1,387.93 5.83

EPSPI Earnings Per Share (Basic) 4,657 0 4,435 (95.66%) 0.33 45.01 0.39

EPSFI Earnings Per Share (Diluted) 4,658 0 4,436 (95.67%) 0.33 45.00 0.39

CF Statement OANCF Operating Activities 4,967 0 4,910 (99.25%) 424.75 2,703.35 21.57

FINCF Financing Activities 4,882 0 4,826 (99.12%) -225.77 9,147.81 0.01

IVNCF Investing Activities 4,793 0 4,727 (99.16%) -186.48 9,372.46 -18.44

CHECH Cash and Cash Equivalents -

Increase (Decrease)

4,909 58 4,841 (98.90%) 22.05 685.63 0.03

Available – observations present in Compustat; Missing – observations present in XBRL 10-K filings, but not in Compustat.

Matched – observations present both in Compustat and XBRL 10-K filings excluding erroneous XBRL observations.

Mean, St. Dev., Median – values of descriptive statistics based on Compustat values of the matched observations.

Mean and median values are measured in millions of U.S. dollars, except for per share numbers that are measured in U.S. dollars.
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Table A.3: Difference statistics of Compustat and XBRL 10-K numbers

Statement Variable Variable Description

Observation counts
Discrepancy statistics

Difference between 10-K and

Compustat
Discrepancies

Matched All (Perc.) Material

(Perc.)

Material

Pop. Estim.

Mean Median St. Dev. Mean Median St. Dev.

BS ACT Current Assets 3,902 13 (0.33%) 7 (0.18%) 0.06% 8.27% 1.41% 16.13 -0.01% 0.00% 1.01

CH Cash 4,791 40 (0.83%) 18 (0.38%) 0.20% 86.65% 9.75% 239.18 0.61% 0.00% 22.98

RECTR Receivables (Trade) 3,414 580 (16.99%) 414 (12.13%) 10.86% 32.98% 18.75% 42.27 -3.05%*** 0.00% 21.88

INVT Inventories 2,435 115 (4.72%) 100 (4.11%) 3.23% 35.04% 26.19% 28.35 -1.65%*** 0.00% 9.64

PPENT Property, Plant and

Equipment

4,381 213 (4.86%) 184 (4.20%) 3.53% 44.21% 30.19% 38.95 -2.11%*** 0.00% 12.81

DPACT Depreciation, Deple-

tion and Amortiza-

tion

2,122 98 (4.62%) 81 (3.82%) 2.91% 44.70% 30.78% 39.77 -1.94%*** 0.00% 12.68

GDWL Goodwill 2,541 18 (0.71%) 2 (0.08%) 0.01% 7.27% 0.68% 15.23 0.03% 0.00% 1.39

AT Total Assets 4,932 17 (0.34%) 12 (0.24%) 0.11% 164.69% 1.70% 647.02 0.54% 0.00% 38.10

LCT Current Liabilities 3,880 20 (0.52%) 10 (0.26%) 0.11% 3,273.67% 0.90% 14,605.82 16.84% 0.00% 1,048.76

AP Accounts Payable

(Trade)

4,591 383 (8.34%) 312 (6.80%) 5.96% 622.75% 46.93% 6,199.09 48.48%** 0.00% 1,796.72

DLTT Long-Term Debt 2,726 628 (23.04%) 448 (16.43%) 14.81% 617.82% 11.53% 13,815.95 134.17%*** 0.00% 6,632.49

LT Total Liabilities 3,540 50 (1.41%) 27 (0.76%) 0.46% 1,374.34% 0.88% 9,669.96 19.31%** 0.00% 1,149.35

RE Retained Earnings 4,462 3,222 (72.21%) 1,693 (37.94%) 36.25% 24.13% 2.94% 165.02 -0.83%*** 0.00% 141.71

REUNA Retained Earnings

(Unadjusted)

4,329 59 (1.36%) 33 (0.76%) 0.49% 106.82% 0.84% 357.43 -0.58%** 0.00% 43.21

TEQ Stockholders’ Equity 4,856 213 (4.39%) 158 (3.25%) 2.69% 243.70% 6.01% 3,123.11 8.39%*** 0.00% 654.56

Matched – observations present both in Compustat and XBRL 10-K filings excluding erroneous XBRL observations.

All (Perc.) – number (and percentage of matched observations) of discrepancy observations.

Material (Perc.) – number (and percentage of matched observations) of material discrepancy observations.

Material Pop. Estim – a 99% probability estimate of the minimum amount of material discrepancies in the population of all observations (yielded by the binomial test).

Discrepancy statistics – descriptive statistics of absolute relative value differences between Compustat and XBRL 10-K observations with discrepancies.

Difference between 10-K and Compustat – descriptive statistics of (non-absolute) relative value differences between all matched 10-K and Compustat observations.

***, **, * indicate significance of Wilcoxon’s signed-rank test at 99%, 95%, and 90% levels respectively.

(continued on the next page)
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Table A.3 : (continued from the previous page)

Statement Variable Variable Description

Observation counts
Discrepancy statistics

Difference between 10-K and

Compustat
Discrepancies

Matched All (Perc.) Material

(Perc.)

Material

Pop. Estim.

Mean Median St. Dev. Mean Median St. Dev.

IS REVT Revenue 3,619 345 (9.53%) 209 (5.78%) 4.91% 7.44% 0.80% 22.91 0.00% 0.00% 7.43

SALE Sales/Turnover (Net) 2,410 122 (5.06%) 85 (3.53%) 2.71% 14.42% 1.57% 27.42 -0.18%*** 0.00% 6.95

IDIT Interest and Related

Income

1,600 36 (2.25%) 8 (0.50%) 0.18% 1,895.10% 95.90% 9,367.97 32.16% 0.00% 1,414.48

COGS Cost of Goods Sold 2,621 2,229 (85.04%) 1,989 (75.89%) 73.89% 24.55% 5.78% 350.61 8.56%*** 3.10% 324.00

XAD Advertising Expense 1,012 24 (2.37%) 12 (1.19%) 0.54% 2,475.41% 47.74% 9,888.73 58.35%** 0.00% 1,538.40

XINT Interest and Related

Expense

1,605 55 (3.43%) 34 (2.12%) 1.37% 42.92% 8.04% 81.48 0.67% 0.00% 16.92

XRD Research and Devel-

opment Expense

1,601 51 (3.19%) 31 (1.94%) 1.22% 42.07% 6.78% 84.12 0.75% 0.00% 16.64

GP Gross Profit (Loss) 2,028 1,756 (86.59%) 1,595 (78.65%) 76.45% 23.14% 8.28% 106.29 -6.28%*** -6.70% 101.03

NI Net Income (Loss) 4,920 45 (0.91%) 15 (0.30%) 0.15% 252.44% 0.90% 1,630.73 2.19% 0.00% 156.09

EPSPI Earnings Per Share

(Basic)

4,435 132 (2.98%) 100 (2.25%) 1.77% 1,321.48% 36.11% 6,758.45 37.80%*** 0.00% 1,183.24

EPSFI Earnings Per Share

(Diluted)

4,436 133 (3.00%) 100 (2.25%) 1.77% 1,292.78% 33.53% 6,735.06 37.22%*** 0.00% 1,182.72

CF OANCF Operating Activities 4,910 134 (2.73%) 80 (1.63%) 1.24% 43.63% 2.27% 222.85 0.05%** 0.00% 37.38

FINCF Financing Activities 4,826 40 (0.83%) 23 (0.48%) 0.28% 81.94% 4.59% 329.64 0.26% 0.00% 30.56

IVNCF Investing Activities 4,727 82 (1.73%) 49 (1.04%) 0.72% 119.20% 4.92% 642.18 -0.94% 0.00% 85.52

CHECH Cash and Cash

Equivalents - In-

crease (Decrease)

4,841 119 (2.46%) 42 (0.87%) 0.59% 24.96% 1.93% 93.45 -0.36% 0.00% 15.10

Matched – observations present both in Compustat and XBRL 10-K filings excluding erroneous XBRL observations.

All (Perc.) – number (and percentage of matched observations) of discrepancy observations.

Material (Perc.) – number (and percentage of matched observations) of material discrepancy observations.

Material Pop. Estim – a 99% probability estimate of the minimum amount of material discrepancies in the population of all observations (yielded by the binomial test).

Discrepancy statistics – descriptive statistics of absolute relative value differences between Compustat and XBRL 10-K observations with discrepancies.

Difference between 10-K and Compustat – descriptive statistics of (non-absolute) relative value differences between all matched 10-K and Compustat observations.

***, **, * indicate significance of Wilcoxon’s signed-rank test at 99%, 95%, and 90% levels respectively.
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Table A.4: Discrepancy statistics by industries

Variable Statistics Description
Industry statistics

NoDur Durbl Manuf Enrgy Chems BusEq Telcm Utils Shops Hlth Money Other

ACT
Observation count 225 109 381 228 126 745 132 200 415 555 137 649

Discrepancy percentage 0.00% 0.00% 0.52% 0.00% 0.79% 0.27% 0.00% 0.00% 0.24% 0.18% 0.73% 0.77%
Median discrepancy – – 0.75% – 4.67% 6.67% – – 0.00% 0.64% 0.44% 1.41%

CH
Observation count 222 112 375 227 125 741 132 185 408 551 1040 673

Discrepancy percentage 0.00% 0.00% 0.27% 0.00% 1.60% 0.27% 0.00% 0.00% 0.25% 1.09% 1.92% 1.19%
Median discrepancy – – 17.84% – 0.07% 1.00% – – 9.94% 0.03% 24.68% 1.25%

RECTR
Observation count 206 101 353 184 116 684 124 171 335 407 191 542

Discrepancy percentage 12.62% 18.81% 12.18% 28.26% 12.93% 10.96% 16.13% 45.03% 15.52% 8.85% 46.07% 14.21%
Median discrepancy 5.28% 11.41% 6.92% 11.32% 4.49% 13.13% 7.80% 34.65% 15.19% 10.16% 77.12% 18.30%

INVT
Observation count 195 105 362 97 110 501 53 86 336 323 26 241

Discrepancy percentage 1.54% 4.76% 8.29% 3.09% 4.55% 5.19% 5.66% 8.14% 0.60% 1.86% 7.69% 9.54%
Median discrepancy 34.84% 17.27% 23.91% 61.62% 7.73% 28.69% 30.55% 24.04% 53.00% 6.39% 28.32% 56.74%

PPENT
Observation count 214 108 378 184 122 725 125 198 399 526 780 622

Discrepancy percentage 5.14% 11.11% 5.03% 13.59% 3.28% 1.79% 2.40% 7.58% 3.51% 1.52% 3.72% 9.65%
Median discrepancy 17.16% 36.69% 5.92% 94.21% 15.05% 28.01% 3.37% 7.70% 23.34% 5.65% 61.53% 59.39%

DPACT
Observation count 123 53 233 144 72 385 64 164 223 206 136 319

Discrepancy percentage 1.63% 5.66% 2.58% 16.67% 0.00% 1.30% 1.56% 10.37% 5.83% 1.94% 2.94% 5.96%
Median discrepancy 10.41% 5.84% 22.42% 96.67% – 25.21% 14.07% 2.96% 8.11% 1.71% 90.30% 61.62%

GDWL
Observation count 134 67 259 66 71 477 100 33 253 223 462 396

Discrepancy percentage 0.75% 0.00% 0.77% 0.00% 0.00% 0.42% 0.00% 3.03% 0.00% 1.35% 1.73% 0.25%
Median discrepancy 0.10% – 4.65% – – 2.47% – 0.01% – 17.83% 0.62% 0.71%

AT
Observation count 227 115 388 233 127 752 131 202 421 558 1083 695

Discrepancy percentage 0.00% 0.00% 0.26% 0.00% 0.79% 0.27% 0.00% 1.49% 0.24% 0.36% 0.28% 0.58%
Median discrepancy – – 0.34% – 17.55% 1.50% – 7.00% 0.01% 2.19% 0.35% 10.26%

LCT
Observation count 226 108 377 225 125 741 131 200 416 552 140 639

Discrepancy percentage 0.00% 0.93% 0.27% 0.00% 0.00% 0.67% 0.00% 0.00% 0.24% 0.72% 0.00% 1.25%
Median discrepancy – 66.23% 0.15% – – 1.66% – – 0.24% 0.01% – 2.50%

AP
Observation count 221 108 376 217 124 736 128 180 413 542 888 658

Discrepancy percentage 8.14% 4.63% 4.26% 22.12% 12.10% 3.94% 11.72% 5.56% 8.23% 6.64% 10.92% 9.12%
Median discrepancy 24.61% 37.58% 49.21% 34.44% 53.16% 78.22% 76.10% 26.64% 19.89% 121.69% 52.45% 69.40%

Observation count – number of matched observations in an industry.
Discrepancy percentage – percentage of discrepancy observations of matched observations in an industry.
Median discrepancy – value of the median absolute relative discrepancy between Compustat and 10-K in an industry.
For information about industry variables, please see Table A.1.

(continued on the next page)
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Table A.4 : (continued from the previous page)

Variable Statistics Description
Industry Statistics

NoDur Durbl Manuf Enrgy Chems BusEq Telcm Utils Shops Hlth Money Other

DLTT
Observation count 153 72 275 162 89 335 103 194 295 278 360 410

Discrepancy percentage 13.07% 6.94% 14.55% 12.96% 14.61% 18.51% 24.27% 15.98% 20.34% 17.63% 62.78% 18.54%
Median discrepancy 11.03% 1.04% 9.32% 1.74% 9.01% 20.61% 3.59% 2.42% 7.66% 11.25% 17.12% 7.16%

LT
Observation count 146 71 232 140 84 532 101 57 254 393 1038 492

Discrepancy percentage 0.00% 1.41% 1.29% 1.43% 0.00% 0.38% 0.00% 5.26% 0.79% 1.53% 1.83% 2.44%
Median discrepancy – 3.60% 0.51% 12.53% – 1.31% – 1.51% 0.13% 8.23% 0.41% 1.60%

RE
Observation count 210 110 376 196 115 717 125 150 382 514 956 611

Discrepancy percentage 80.00% 78.18% 77.66% 51.53% 76.52% 74.20% 70.40% 79.33% 67.80% 60.12% 82.53% 63.99%
Median discrepancy 5.44% 7.60% 7.95% 2.63% 10.43% 1.46% 1.86% 2.41% 1.62% 0.36% 4.71% 2.11%

REUNA
Observation count 210 110 376 194 114 715 127 25 382 514 955 607

Discrepancy percentage 0.95% 0.00% 1.06% 0.52% 1.75% 0.98% 1.57% 0.00% 0.52% 1.75% 2.41% 1.15%
Median discrepancy 1.67% – 0.00% 0.01% 29.58% 1.67% 61.09% – 6.18% 0.07% 1.41% 1.65%

TEQ
Observation count 225 115 387 217 124 749 134 172 414 561 1070 688

Discrepancy percentage 1.33% 3.48% 2.84% 5.07% 5.65% 2.94% 8.96% 24.42% 4.11% 4.63% 2.99% 3.78%
Median discrepancy 4.67% 24.40% 0.76% 22.10% 19.20% 8.19% 27.78% 2.19% 9.62% 18.39% 5.12% 9.54%

REVT
Observation count 212 110 380 151 118 686 115 121 396 433 406 491

Discrepancy percentage 7.55% 3.64% 3.95% 16.56% 5.08% 3.35% 4.35% 4.13% 5.05% 4.39% 46.06% 4.07%
Median discrepancy 1.82% 0.19% 0.26% 2.28% 0.84% 0.80% 3.03% 0.73% 0.56% 1.47% 0.74% 0.56%

SALE
Observation count 175 98 348 51 100 539 68 29 332 315 51 304

Discrepancy percentage 8.57% 4.08% 4.31% 9.80% 5.00% 3.15% 5.88% 0.00% 5.42% 5.40% 13.73% 4.93%
Median discrepancy 2.17% 11.73% 0.26% 5.14% 0.43% 1.92% 1.89% – 1.43% 2.34% 6.61% 0.68%

IDIT
Observation count 92 42 179 87 55 299 49 48 148 257 51 293

Discrepancy percentage 0.00% 4.76% 1.12% 1.15% 0.00% 3.01% 2.04% 0.00% 2.70% 1.95% 13.73% 1.71%
Median discrepancy – 166.21% 135.37% 0.30% – 73.33% 125.98% – 200.00% 19.28% 68.01% 187.53%

COGS
Observation count 189 106 361 34 109 663 84 25 323 337 63 327

Discrepancy percentage 88.89% 96.23% 94.74% 73.53% 90.83% 91.40% 58.33% 84.00% 70.59% 89.61% 87.30% 70.95%
Median discrepancy 4.56% 4.18% 4.30% 11.65% 4.79% 7.61% 12.41% 17.21% 2.75% 12.27% 30.32% 6.94%

XAD
Observation count 76 26 53 2 19 155 34 0 137 56 349 105

Discrepancy percentage 3.95% 0.00% 0.00% 0.00% 0.00% 0.00% 2.94% – 4.38% 3.57% 2.29% 3.81%
Median discrepancy 110.25% – – – – – 56.14% – 31.55% 1.95% 22.36% 515.03%

Observation count – number of matched observations in an industry.
Discrepancy percentage – percentage of discrepancy observations of matched observations in an industry.
Median discrepancy – value of the median absolute relative discrepancy between Compustat and 10-K in an industry.
For information about industry variables, please see Table A.1.

(continued on the next page)
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Table A.4 : (continued from the previous page)

Variable Statistics Description
Industry Statistics

NoDur Durbl Manuf Enrgy Chems BusEq Telcm Utils Shops Hlth Money Other

XINT
Observation count 55 64 190 9 75 581 20 3 25 452 22 109

Discrepancy percentage 1.82% 0.00% 2.11% 0.00% 2.67% 1.89% 0.00% 0.00% 0.00% 7.30% 0.00% 3.67%
Median discrepancy 97.21% – 9.77% – 35.48% 2.68% – – – 11.33% – 15.43%

XRD
Observation count 55 64 190 9 74 579 20 3 25 451 22 109

Discrepancy percentage 1.82% 0.00% 2.11% 0.00% 1.35% 1.55% 0.00% 0.00% 0.00% 7.10% 0.00% 3.67%
Median discrepancy 97.21% – 9.77% – 5.57% 1.66% – – – 10.52% – 15.43%

GP
Observation count 158 93 298 18 86 544 23 25 280 237 36 230

Discrepancy percentage 91.14% 95.70% 95.64% 100.00% 88.37% 91.91% 52.17% 96.00% 69.64% 88.19% 91.67% 74.35%
Median discrepancy 7.54% 10.29% 10.77% 40.77% 8.47% 7.30% 13.25% 73.15% 5.59% 7.89% 24.57% 12.18%

NI
Observation count 227 116 390 231 124 750 130 199 424 561 1072 696

Discrepancy percentage 0.88% 0.86% 0.00% 2.16% 1.61% 0.27% 0.77% 1.51% 0.47% 0.89% 1.31% 1.15%
Median discrepancy 1.01% 0.01% – 0.60% 7.56% 3.70% 1.60% 0.11% 1.10% 4.53% 2.04% 1.18%

EPSPI
Observation count 203 101 366 202 117 697 116 107 376 528 1016 606

Discrepancy percentage 1.97% 0.99% 1.91% 2.97% 7.69% 2.73% 4.31% 0.93% 2.13% 4.36% 2.36% 4.13%
Median discrepancy 167.19% 34.78% 36.36% 66.40% 46.74% 60.18% 90.00% 747.37% 26.52% 116.55% 9.41% 33.33%

EPSFI
Observation count 203 101 366 202 117 697 116 107 376 528 1017 606

Discrepancy percentage 1.97% 0.99% 1.91% 2.97% 7.69% 2.73% 4.31% 0.93% 2.13% 4.36% 2.46% 4.13%
Median discrepancy 63.62% 14.49% 21.12% 66.40% 46.74% 60.18% 90.00% 747.37% 26.52% 116.55% 9.92% 33.33%

OANCF
Observation count 227 116 387 231 126 748 132 199 420 560 1071 693

Discrepancy percentage 2.20% 0.00% 3.62% 3.03% 3.97% 2.81% 8.33% 0.50% 3.10% 2.14% 1.77% 3.75%
Median discrepancy 0.57% – 2.43% 1.11% 1.87% 1.62% 8.46% 2.29% 1.59% 10.15% 2.81% 4.46%

FINCF
Observation count 223 113 382 225 124 729 133 199 417 546 1055 680

Discrepancy percentage 0.45% 0.00% 0.79% 0.44% 0.81% 0.82% 5.26% 0.50% 0.24% 0.55% 0.47% 1.62%
Median discrepancy 0.01% – 0.85% 156.82% 72.52% 0.73% 11.86% 1.15% 0.20% 34.01% 5.38% 10.99%

IVNCF
Observation count 217 112 378 223 123 716 128 197 403 526 1048 656

Discrepancy percentage 1.38% 0.00% 1.32% 3.14% 4.07% 1.26% 7.81% 0.51% 1.24% 1.52% 1.15% 2.59%
Median discrepancy 11.71% – 158.80% 1.11% 0.73% 2.74% 17.63% 0.10% 6.75% 1.70% 5.05% 4.62%

CHECH
Observation count 224 115 379 225 124 747 130 190 414 554 1060 679

Discrepancy percentage 6.25% 2.61% 3.69% 1.33% 2.42% 2.68% 6.92% 0.00% 2.66% 1.26% 1.13% 3.39%
Median discrepancy 2.41% 23.27% 2.07% 0.19% 8.22% 1.39% 10.09% – 3.01% 0.72% 0.62% 1.93%

Observation count – number of matched observations in an industry.
Discrepancy percentage – percentage of discrepancy observations of matched observations in an industry.
Median discrepancy – value of the median absolute relative discrepancy between Compustat and 10-K in an industry.
For information about industry variables, please see Table A.1.
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Table A.5: Discrepancy statistics by industry and XBRL adoption phase

Industry

Phase I Filers Phase II Filers Phase III Filers

Discrepancies (as %) Discrepancy Stats Discrepancies (as %) Discrepancy Stats Discrepancies (as %) Discrepancy Stats

Count All Material Mean Median Count All Material Mean Median Count All Material Mean Median

NoDur 443 12.87% 11.29% 18.64% 7.55% 1,057 11.26% 10.12% 14.76% 5.49% 3,973 11.55% 9.11% 47.96% 5.84%

Durbl 150 16.00% 14.67% 36.06% 12.19% 437 11.90% 10.76% 10.17% 5.97% 2,254 12.07% 10.20% 24.47% 6.52%

Manuf 1,001 11.99% 10.69% 53.71% 10.36% 2,267 11.65% 9.70% 13.71% 6.13% 6,507 12.36% 10.27% 30.00% 6.40%

Enrgy 761 11.17% 7.75% 22.18% 6.38% 606 10.73% 6.93% 26.71% 9.87% 3,247 7.61% 5.45% 269.44% 13.19%

Chems 333 12.91% 11.41% 16.06% 8.03% 601 11.98% 10.32% 23.08% 7.11% 2,201 11.86% 9.45% 460.46% 6.52%

BusEq 1,253 12.21% 9.50% 19.58% 6.92% 3,052 11.34% 8.52% 19.30% 6.70% 14,360 10.85% 8.37% 26.37% 5.94%

Telcm 402 11.19% 9.70% 24.05% 8.46% 533 10.88% 6.94% 27.02% 7.40% 2,073 8.97% 5.98% 103.03% 5.58%

Utils 927 9.71% 6.04% 14.66% 5.91% 1,306 12.56% 8.27% 26.85% 7.29% 1,436 8.98% 5.50% 35.72% 7.17%

Shops 837 9.32% 7.29% 12.98% 3.39% 2,042 10.28% 7.25% 13.04% 3.19% 6,963 9.91% 7.24% 57.11% 4.59%

Hlth 837 11.35% 9.20% 29.24% 7.15% 1,356 11.36% 7.96% 19.91% 6.53% 10,851 8.81% 6.02% 652.87% 6.67%

Money 1,241 14.59% 9.11% 25.41% 9.12% 2,827 11.78% 7.18% 388.03% 6.67% 13,533 9.13% 4.60% 118.35% 6.66%

Other 929 9.90% 7.75% 25.71% 10.98% 2,732 8.75% 5.60% 22.71% 5.26% 11,165 9.28% 6.57% 239.36% 7.41%

Count – number of matched observations for specific industry and XBRL adoption phase.

All – percentage of all discrepancy observations for specific industry and phase.

Material – percentage of material discrepancy observations for specific industry and phase.

Mean, Median – mean and median statistics of absolute relative value differences between Compustat and 10-K of discrepancy observations.
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Table A.6: Analysis of deviance of discrepancy observations

Panel A: Analysis of deviance with both Phase and Revenue variables included

Term

Observation level analysis Company level analysis

All discrepancies Material discrepancies All discrepancies Material discrepancies

χ2 df P(> χ2) χ2 df P(> χ2) χ2 df P(> χ2) χ2 df P(> χ2)

Revenue 4.36 1 0.037* 11.02 1 0.001*** 2.44 1 0.118 5.15 1 0.023*

Industry 63.53 11 0.000*** 54.25 11 0.000*** 66.57 11 0.000*** 49.18 11 0.000***

Phase 1.16 2 0.561 0.00 2 1.000 1.09 2 0.579 0.00 2 1.000

Statement 952.29 2 0.000*** 971.23 2 0.000*** 719.19 2 0.000*** 712.13 2 0.000***

Industry×Phase 42.94 22 0.005** 44.20 22 0.003** 43.95 22 0.004** 44.40 22 0.003**

Industry×Statement 443.78 22 0.000*** 358.55 22 0.000*** 318.23 22 0.000*** 262.87 22 0.000***

Phase×Statement 13.87 4 0.008** 10.44 4 0.033* 9.99 4 0.041* 6.37 4 0.173

Industry×Phase×Statement 76.41 44 0.002** 67.77 44 0.012* 67.21 44 0.014** 51.97 44 0.191

Panel B: Analysis of deviance with Phase variable excluded

Term

Observation level analysis Company level analysis

All discrepancies Material discrepancies All discrepancies Material discrepancies

χ2 df P(> χ2) χ2 df P(> χ2) χ2 df P(> χ2) χ2 df P(> χ2)

Revenue 10.56 1 0.001** 22.97 1 0.000*** 6.69 1 0.010** 11.32 1 0.001***

Industry 87.91 11 0.000*** 97.52 11 0.000*** 97.07 11 0.000*** 100.24 11 0.000***

Statement 1641.67 2 0.000*** 1559.81 2 0.000*** 1516.50 2 0.000*** 1390.22 2 0.000***

Industry×Statement 834.94 22 0.000*** 569.67 22 0.000*** 633.98 22 0.000*** 426.36 22 0.000***

***, **, * indicate significance of tests at 99.9%, 99%, and 95% levels respectively.

In all models, type III of sum of squares was utilized



116

Table A.7: Analysis of deviance for simple main effects

Panel A: Analysis of deviance within industry groups

Industry

Observation level analysis Company level analysis

Revenue Statement Revenue Statement

χ2 P(> χ2) χ2 P(> χ2) χ2 P(> χ2) χ2 P(> χ2)

NoDur 0.17 0.676 257.29 0.000*** 0.05 0.826 254.23 0.000***

Durbl 0.23 0.635 172.66 0.000*** 0.30 0.581 266.91 0.000***

Manuf 1.84 0.175 468.74 0.000*** 0.36 0.546 512.82 0.000***

Enrgy 1.24 0.266 76.88 0.000*** 0.57 0.451 50.41 0.000***

Chems 0.16 0.685 127.40 0.000*** 0.00 0.994 135.44 0.000***

BusEq 0.18 0.670 827.61 0.000*** 0.15 0.696 750.39 0.000***

Telcm 1.21 0.272 5.11 0.078* 1.33 0.250 3.82 0.148

Utils 0.51 0.474 187.15 0.000*** 0.24 0.623 123.87 0.000***

Shops 3.64 0.056* 334.19 0.000*** 1.96 0.161 341.73 0.000***

Hlth 0.08 0.774 459.01 0.000*** 0.06 0.804 373.31 0.000***

Money 16.00 0.000*** 764.24 0.000*** 11.77 0.001*** 533.46 0.000***

Other 0.00 0.993 245.35 0.000*** 0.18 0.672 201.33 0.000***

Panel B: Analysis of deviance within financial statement type groups

Statement

Observation level analysis Company level analysis

Revenue Industry Revenue Industry

χ2 P(> χ2) χ2 P(> χ2) χ2 P(> χ2) χ2 P(> χ2)

Balance Sheet 12.02 0.001*** 327.62 0.000*** 19.07 0.000*** 498.23 0.000***

Income Statement 0.67 0.413 502.56 0.000*** 1.80 0.180 621.15 0.000***

Cash Flow Statement 0.19 0.661 93.36 0.000*** 0.15 0.694 52.08 0.000***

***, **, * indicate significance of tests at 99.9%, 99%, and 95% levels respectively.

In all models, type III of sum of squares was utilized
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Appendix B

Compustat standardization and bankruptcy

prediction models and tables

Altman’s 1968 model

The original Altman’s Z score (Altman 1968) is a multiple discriminant function of

five financial ratios that were empirically found to be good predictors of bankruptcy

for manufacturing companies. The function is defined as:

Z = 1.2X1 + 1.4X2 + 3.3X3 + 0.6X4 + 0.999X5,

where

X1 = Working Capital / Total Assets,

X2 = Retained Earnings / Total Assets,

X3 = Earnings Before Interest and Taxes / Total Assets,

X4 = Market Value of Equity / Book Value of Total Debt,

X5 = Sales / Total Assets.

In the original study, the measure was used to define three zones of discrimination

based on the values of Z score. Specifically, firms with scores lower than 1.81 fell into

“bankrupt” zone, firms with scores higher than 2.99 fell into “non-bankrupt” zone,

and firms with scores between 1.81 and 2.99 fell into “zone of ignorance”.
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Ohlson’s 1980 model

Ohlson’s O score (Ohlson 1980) is a logistic regression model that predicts corporate

bankruptcy. In fact, Ohlson (1980) builds three types of models: Model 1 to predict

bankruptcy within the first year of 10-K release, Model 2 to predict bankruptcy in

the second year of 10-K release, and Model 3 to predict bankruptcy within two years

of 10-K release. The models are defined as follows:

Model 1 :

− 1.32− 0.407 · SIZE + 6.03 · TLTA− 1.43 ·WCTA+ 0.0757 · CLCA− 2.37 ·NITA

− 1.83 · FUTL+ 0.285 · INTWO − 1.72 ·OENEG− 0.521 · CHIN,

Model 2 :

1.84− 0.519 · SIZE + 4.76 · TLTA− 1.71 ·WCTA− 0.2970 · CLCA− 2.74 ·NITA

− 2.18 · FUTL− 0.780 · INTWO − 1.98 ·OENEG+ 0.4218 · CHIN,

Model 3 :

1.13− 0.478 · SIZE + 5.29 · TLTA− 0.99 ·WCTA+ 0.0620 · CLCA− 4.62 ·NITA

− 2.25 · FUTL− 0.521 · INTWO − 1.91 ·OENEG+ 0.212 · CHIN.

where

SIZE = log(Total Assets / GNP price-level index),

TLTA = Total Liabilities / Total Assets,

WCTA = Working Capital / Total Assets,

CLCA = Current Liabilities / Current Assets,

OENEG = 1 if Total Liabilities exceed Total Assets, 0 otherwise,

NITA = Net Income / Total Assets,

FUTL = Operating Income / Total Liabilities,

OENEG = 1 if Net Income was negative for the last two years, 0 otherwise,

CHIN = (NIt −NIt−1)/(|NIt|+ |NIt−1|),where NIt and NIt−1 are the current

and previous Net Incomes respectively.

The output of Ohlson’s model, O score, can be converted to probability of com-

pany experiencing bankruptcy event in the future.



119

Table B.1: Original Altman’s model. Descriptive statistics of all matched accounting variables, ratios, and Z scores (sample size n=5,015).

Variable Variable Description
10-K data Compustat data

Difference between 10-K and

Compustat

Mean Median St. Dev. Mean Median St. Dev. Mean Median St. Dev.

AT Total Assets 4003.897 705.991 12 209.882 4003.896 705.991 12 209.880 0.001 0.000 1.075

LT Total Liabilities 2344.390 315.777 7458.889 2344.120 315.777 7458.695 0.269*** 0.000 11.529

ACT Total Current Assets 1512.429 294.809 4628.785 1512.407 294.809 4628.791 0.022 0.000 1.300

LCT Total Current Liabilities 913.135 130.823 3114.309 913.120 130.823 3114.311 0.015 0.000 1.500

RE Retained Earnings 935.450 46.733 6131.564 816.519 38.959 5868.113 118.931*** 0.000 773.830

SALE Sales 3674.849 632.787 11 182.025 3627.582 629.685 11 006.760 47.267 0.000 1223.591

EBIT Earnings Before Interest and

Tax

428.733 47.948 1785.721 429.429 50.831 1699.630 −0.696*** 0.247 553.021

X1 (ACT-LCT)/AT 0.269 0.255 0.361 0.269 0.255 0.361 0.000 0.000 0.016

X2 RE/AT −0.821 0.115 4.137 −0.835 0.104 4.137 0.013*** 0.000 0.090

X3 EBIT/AT 0.011 0.079 0.318 0.015 0.076 0.296 −0.004*** 0.001 0.133

X4 MVALUE/LT 5.408 2.372 13.843 5.407 2.371 13.843 0.001*** 0.000 0.043

X5 SALE/AT 1.066 0.867 0.851 1.063 0.865 0.833 0.004 0.000 0.090

Z Original Altman’s Z Score 3.519 3.181 10.286 3.510 3.139 10.286 0.009*** 0.009 0.469

Zone Original Altman’s Zone of Dis-

crimination

2.263 3.000 0.857 2.254 3.000 0.858 0.008*** 0.000 0.182

All variable values and their differences are measured in billions of U.S. dollars. Ratios and Z scores are not scaled.

MVALUE denotes market value of equity. This value is obtained from CRSP dataset and is independent of Compustat and 10-K data sets.

***, **, * indicate statistical significance of mean difference at 99%, 95%, and 90% levels, respectively, as measured by Wilcoxon’s signed-rank test.
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Table B.2: Original Ohlson’s model. Descriptive statistics of all matched accounting variables, ratios, and O scores (sample size n=3,449).

Variable Variable Description
10-K data Compustat data

Difference between 10-K and

Compustat

Mean Median St. Dev. Mean Median St. Dev. Mean Median St. Dev.

AT Total Assets 4689.856 786.644 13 903.811 4689.854 786.644 13 903.809 0.002 0.000 1.288

LT Total Liabilities 2783.117 364.638 8464.851 2782.742 364.638 8464.625 0.375*** 0.000 13.799

ACT Total Current Assets 1741.348 297.776 5416.940 1741.311 297.776 5416.950 0.036 0.000 1.535

LCT Total Current Liabilities 1068.544 144.994 3543.294 1068.521 144.994 3543.298 0.023 0.000 1.791

OIADP Operating Income after Depre-

ciation

467.802 41.484 1995.980 524.276 54.743 1998.451 −56.474*** −0.504 684.197

NIt Net Income 297.643 18.198 1448.904 297.620 18.198 1448.918 0.022 0.000 1.909

NIt−1 Net Income for the previous

period

280.824 22.554 1261.797 280.814 22.440 1261.793 0.011 0.000 1.970

SIZE log(AT/GNP price-level index) 15.011 15.452 2.715 15.011 15.452 2.715 0.000 0.000 0.009

TLTA LT/AT 1.859 0.520 39.274 1.859 0.520 39.274 0.000** 0.000 0.017

WCTA (ACT-LCT)/AT −1.004 0.203 39.227 −1.004 0.203 39.227 0.000 0.000 0.025

CLCA LCT/ACT 4.897 0.523 74.211 4.897 0.523 74.211 0.000 0.000 0.047

OENEG 1 if LT > AT, 0 otherwise 0.100 0.000 0.300 0.100 0.000 0.300 0.000 0.000 0.024

NITA NIt/AT −0.936 0.036 28.608 −0.936 0.036 28.608 0.000 0.000 0.007

FUTL OIADP/LT −0.283 0.109 4.224 −0.232 0.123 3.881 −0.051*** −0.002 0.617

INTWO 1 if NIt < 0 and NIt−1 < 0, 0

otherwise

0.269 0.000 0.444 0.270 0.000 0.444 −0.001 0.000 0.024

CHIN (NIt-NIt−1)/(|NIt|+|NIt−1|) −0.023 0.021 0.498 −0.023 0.021 0.497 0.000 0.000 0.021

O1 Ohlson’s Model 1 Score 8.237 −4.920 319.110 8.145 −4.947 319.096 0.093*** 0.004 1.134

CLASS1 Ohlson’s Model 1 Class 0.138 0.000 0.345 0.133 0.000 0.340 0.005*** 0.000 0.081

O2 Ohlson’s Model 2 Score 5.922 −4.741 271.378 5.811 −4.784 271.354 0.111*** 0.005 1.346

CLASS2 Ohlson’s Model 2 Class 0.126 0.000 0.332 0.121 0.000 0.327 0.004*** 0.000 0.074

O3 Ohlson’s Model 3 Score 9.709 −4.162 308.840 9.594 −4.192 308.817 0.114*** 0.005 1.390

CLASS3 Ohlson’s Model 3 Class 0.167 0.000 0.373 0.162 0.000 0.369 0.005*** 0.000 0.088

All variable values and their differences are measured in billions of U.S. dollars. Ratios and O scores are not scaled.

GNP price-level index is calculated as (Nominal GNP/Real GNP)*100. GNP values are obtained from FRED, Federal Reserve Economic Data, from the Federal Reserve

Bank of St. Louis, and is independent of Compustat and 10-K data sets.

***, **, * indicate statistical significance of mean difference at 99%, 95%, and 90% levels, respectively, as measured by Wilcoxon’s signed-rank test.
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Table B.3: Descriptive statistics of bankrupt observations (sample size n=146).

Variable Variable Description
10-K data Compustat data

Difference between 10-K and
Compustat

Mean Median St. Dev. Mean Median St. Dev. Mean Median St. Dev.

AT Total Assets 1043.476 363.828 2113.252 1043.443 363.828 2112.913 0.033* 0.000 6.324
LT Total Liabilities 1043.501 261.931 2570.754 1034.961 261.931 2546.720 8.541** 0.000 67.235

ACT Total Current Assets 327.741 102.759 699.775 326.867 102.759 699.771 0.874 0.000 7.488
LCT Total Current Liabilities 330.899 94.562 693.205 330.346 94.562 693.172 0.553 0.000 8.780

RE Retained Earnings −530.044 −232.775 1682.962 −574.919 −243.747 1627.287 44.874** 0.000 237.290
SALE Sales 953.160 200.095 2110.238 947.715 200.096 2109.277 5.445 0.000 79.271

OIADP Operating Income after Depre-
ciation

−118.419 −38.800 227.397 −5.837 −12.193 133.978 −112.581*** −3.738 280.805

EBIT Earnings Before Interest and
Tax

−123.302 −42.610 264.093 −5.837 −12.193 133.978 −117.465*** −3.938 311.183

NIt Net Income −174.946 −60.432 348.924 −175.474 −59.506 349.643 0.528 0.000 9.362
NIt−1 Net Income for the previous

period
−94.042 −21.822 229.083 −93.764 −22.744 228.331 −0.278 0.000 6.756

X1 (ACT-LCT)/AT −0.142 0.043 1.487 −0.151 0.042 1.486 0.009 0.000 0.093
X2 RE/AT −3.530 −0.845 10.807 −3.537 −0.845 10.806 0.007* 0.000 0.081
X3 EBIT/AT −0.432 −0.192 0.755 −0.318 −0.062 0.722 −0.115*** −0.025 0.265
X4 MVALUE/LT 1.204 0.247 3.800 1.185 0.247 3.794 0.019 0.000 0.248
X5 SALE/AT 1.009 0.709 1.090 1.021 0.709 1.078 −0.012 0.000 0.165

SIZE log(AT/GNP price-level index) 14.407 14.747 1.821 14.411 14.747 1.819 −0.004 0.000 0.042
TLTA LT/AT 1.072 0.849 1.572 1.074 0.855 1.570 −0.002 0.000 0.085

WCTA (ACT-LCT)/AT −0.142 0.043 1.487 −0.151 0.042 1.486 0.009 0.000 0.093
CLCA LCT/ACT 1.936 0.893 3.368 1.952 0.905 3.365 −0.016 0.000 0.179

OENEG 1 if LT > AT, 0 otherwise 0.356 0.000 0.481 0.356 0.000 0.481 0.000 0.000 0.117
NITA NIt/AT −0.491 −0.260 0.821 −0.491 −0.260 0.819 −0.001 0.000 0.035
FUTL OIADP/LT −0.647 −0.240 1.428 −0.522 −0.078 1.407 −0.125*** −0.023 0.245

INTWO 1 if NIt < 0 and NIt−1 < 0, 0
otherwise

0.753 1.000 0.433 0.760 1.000 0.428 −0.007 0.000 0.083

CHIN (NIt-NIt−1)/(|NIt|+|NIt−1|) −0.214 −0.196 0.568 −0.212 −0.198 0.566 −0.002 0.000 0.037

All variable values and their differences are measured in billions of U.S. dollars. Ratios are not scaled.
MVALUE denotes market value of equity. This value is obtained from CRSP dataset and is independent of Compustat and 10-K data sets.
GNP price-level index is calculated as (Nominal GNP/Real GNP)*100. GNP values are obtained from FRED, Federal Reserve Economic Data, from the Federal Reserve
Bank of St. Louis, and is independent of Compustat and 10-K data sets.
***, **, * indicate statistical significance of mean difference at 99%, 95%, and 90% levels, respectively, as measured by Wilcoxon’s signed-rank test.
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Table B.4: Altman’s model. Descriptive statistics of matched non-bankrupt observations (sample size n=146).

Variable Variable Description
10-K data Compustat data

Difference between 10-K and

Compustat

Mean Median St. Dev. Mean Median St. Dev. Mean Median St. Dev.

AT Total Assets 2539.985 610.014 6630.507 2540.037 610.014 6630.491 −0.052 0.000 0.673

LT Total Liabilities 1415.503 211.452 3409.618 1414.770 211.452 3408.912 0.733 0.000 14.791

ACT Total Current Assets 941.515 269.726 2333.134 941.514 269.726 2333.134 0.001 0.000 0.010

LCT Total Current Liabilities 590.684 107.416 1771.342 590.692 107.416 1771.339 −0.007 0.000 0.087

RE Retained Earnings 574.152 50.856 2412.042 549.967 52.216 2440.207 24.184*** 0.037 135.888

SALE Sales 3703.519 479.438 12 957.675 3695.081 479.438 12 955.554 8.439 0.000 173.684

EBIT Earnings Before Interest and

Tax

239.119 35.831 922.459 247.460 34.142 899.257 −8.341 0.044 171.940

X1 (ACT-LCT)/AT 0.250 0.253 0.275 0.250 0.253 0.275 0.000 0.000 0.000

X2 RE/AT −0.934 0.168 6.387 −0.951 0.158 6.387 0.017*** 0.000 0.113

X3 EBIT/AT −0.017 0.070 0.404 −0.022 0.072 0.401 0.005 0.000 0.186

X4 MVALUE/LT 5.258 1.918 8.501 5.052 1.874 8.219 0.206 0.000 2.466

X5 SALE/AT 1.105 0.758 1.207 1.091 0.758 1.112 0.014 0.000 0.186

All variable values and their differences are measured in billions of U.S. dollars. Ratios are not scaled.

MVALUE denotes market value of equity. This value is obtained from CRSP dataset and is independent of Compustat and 10-K data sets.

***, **, * indicate statistical significance of mean difference at 99%, 95%, and 90% levels, respectively, as measured by Wilcoxon’s signed-rank test.
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Table B.5: Ohlson’s model. Descriptive statistics of non-bankrupt observations (sample size n=2,525).

Variable Variable Description
10-K data Compustat data

Difference between 10-K and

Compustat

Mean Median St. Dev. Mean Median St. Dev. Mean Median St. Dev.

AT Total Assets 2913.851 359.484 11 738.453 2913.851 359.484 11 738.453 0.000 0.000 0.022

LT Total Liabilities 1730.724 136.783 7200.847 1730.708 136.783 7200.846 0.016*** 0.000 0.322

ACT Total Current Assets 1058.297 160.443 4066.631 1058.297 160.443 4066.631 0.000 0.000 0.053

LCT Total Current Liabilities 643.582 73.004 2717.971 643.582 73.004 2717.971 0.000 0.000 0.027

OIADP Operating Income after Depre-

ciation

272.513 14.630 1507.214 306.634 19.386 1433.159 −34.121*** −0.016 656.316

NIt Net Income 174.908 5.935 1013.696 174.908 5.935 1013.695 0.000 0.000 0.026

NIt−1 Net Income for the previous

period

157.553 7.260 925.448 157.522 7.242 925.455 0.030 0.000 1.658

SIZE log(AT/GNP price-level index) 14.335 14.668 2.710 14.335 14.668 2.710 0.000 0.000 0.000

TLTA LT/AT 2.332 0.499 46.224 2.332 0.499 46.224 0.000 0.000 0.001

WCTA (ACT-LCT)/AT −1.448 0.222 46.170 −1.448 0.221 46.170 0.000 0.000 0.020

CLCA LCT/ACT 6.448 0.508 87.298 6.447 0.508 87.298 0.001 0.000 0.036

OENEG 1 if LT > AT, 0 otherwise 0.107 0.000 0.309 0.107 0.000 0.309 0.000 0.000 0.000

NITA NIt/AT −1.286 0.028 33.671 −1.286 0.028 33.671 0.000 0.000 0.000

FUTL OIADP/LT −0.432 0.094 4.944 −0.378 0.106 4.540 −0.055*** 0.000 0.721

INTWO 1 if NIt < 0 and NIt−1 < 0, 0

otherwise

0.304 0.000 0.460 0.304 0.000 0.460 0.000 0.000 0.020

CHIN (NIt-NIt−1)/(|NIt|+|NIt−1|) −0.013 0.029 0.516 −0.012 0.029 0.516 0.000 0.000 0.024

All variable values and their differences are measured in billions of U.S. dollars. Ratios are not scaled.

GNP price-level index is calculated as (Nominal GNP/Real GNP)*100. GNP values are obtained from FRED, Federal Reserve Economic Data, from the Federal Reserve

Bank of St. Louis, and is independent of Compustat and 10-K data sets.

***, **, * indicate statistical significance of mean difference at 99%, 95%, and 90% levels, respectively, as measured by Wilcoxon’s signed-rank test.
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Appendix C

Exploration and exploitation framework tables and

figures

Table C.1: List and description of the variables in the credit card data set.

Variable Type Description

Age Numerical Age of a customer

Gender Categorical Gender of a customer

Income Numerical Value of declared income

BehaviorScore Numerical Banks internal behavior score

IsHouseOwner Categorical Indicates whether a customer is a

house owner

AccAge Numerical Credit account age (in months)

NumPurachases Numerical Total number of purchases

NumCashWithdrawals Numerical Total number of cash withdrawals

NumLatePayments Categorical Total number of late payments

CreditLimit Numerical Credit limit

IsCanceled Categorical Indicates whether the account

was canceled by the bank
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Table C.2: List and description of the variables in the census data set.

Variable Type Description

Age Numerical Age of a person

Education Categorical Level of education

ClassWorker Categorical Class of worker

Gender Categorical Gender of a person

MaritalStatus Categorical Marital status of a person

TaxFillerStatus Categorical Tax filer status

HouseHoldSummary Categorical Household summary variable

NumberPersWorkEmplyer Numerical Number of persons working for an

employer

Citizenship Categorical Citizenship and origin (with re-

spect to the U.S.)

OwnBussinesOrSelfEmployed Categorical Owns business or is self-employed

VeteranBenef Categorical Value of the veteran benefits

WeeksWorkedYear Numerical Weeks worked in year
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Figure C.1: Period differences in relative prevented loss between the exploration and
exploitation logistic model (with exploration coefficient ρ = 0.5) and the normal
logistic model.Comparison methodology.
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(a) Pointwise differences.
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(b) Fitted differences.
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