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ABSTRACT OF THE DISSERTATION

SOLVING THE EMERGENCY OPERATIONS SCHEDULING PROBLEM WITH
MULTI-STAGE LEAD TIMES AND TARDINESS PENALTIES
By Hui Dong

Dissertation director: Professor Lei Lei

The present study works on the operations scheduling problem of an emergency supply
chain that provides relief goods to affected areas after a disaster. Specifically, we focus
on the production and distribution of the disaster relief kit, an emergency package used in
disaster relief which includes critical resources for coping with the situation after a
disaster.

The whole dissertation includes three essays and a simulation chapter. In the first
essay, a thorough literature review is conducted which includes two parts. The first part
investigates general integrated distribution and production problems (IPDP), and
models/solution approaches used to solve these problems. The second part of the
literature review is on the emergency supply chain in disaster relief specifically. In this
part, both survey papers and papers dealing with specific problems in this field are
reviewed. Based on the review, we compare the commercial supply chain and the
emergency supply chain in disaster relief, and identify gaps in the research and practice

of disaster relief supply chain management.



The second and third essays study the specific supply chain network that produces
and distributes the disaster relief kits. First of all, a structure is proposed for the supply
chain network, assumptions are made, and the general problem of optimally scheduling
and operating the supply chain is defined which is NP hard. Following that, the second
essay investigates a special variation of the general problem and proves it to be strongly
polynomial solvable. In the third essay, the structural properties of the general problem
are analyzed, and an LP relaxation based heuristic is proposed to solve the general
problem efficiently. The performance of the heuristic is tested through extensive
numerical experiments. Finally, we evaluate two policies on the strategic level of the
supply chain through simulation. Observations obtained through the simulation studies
are used to support the development of managerial policies for the future disaster relief.

In this dissertation, the three essays are structured to form a coherent body as
described above on the topic of the emergency scheduling operations of a supply chain in

disaster relief considering lead time and tardiness penalties.
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CHAPTER 1 INTRODUCTION

Natural disasters, such as hurricanes, earthquakes, wildfires and tornados, have occurred
frequently in recently years. According to the National Earthquake Information Centre of

the US Geological Survey (http://www.usgs.gov/), the number of earthquakes above the

magnitude 4.0 exceeded 158,000 worldwide between 2000 and 2012. Emergency supply
chains, which are formed to meet the needs of disaster relief, are responsible for the
collection and distribution of rescue supplies to affected areas. Holguin-Veras et al.
(2012) compare the commercial supply chain and humanitarian supply chain in
emergencies from multiple perspectives, including 1) different objectives: the
commercial supply chain focuses on reducing cost while the emergency supply chain
emphasizes responsiveness; 2) information: the commercial supply chain has better
information transparency while in disasters, information is usually fractional; 3) demand
patterns: the commercial supply chain has known or well-forecasted demand, but it is
very difficult to forecast demands in disasters, and 4) commercial logistics are large in
volume but have a stable and repeating pattern, while emergency logistics spike right
after the disaster and taper off as time goes by, etc. These major differences make the

operations of the emergency supply chain and logistics a more challenging task.

This dissertation is devoted to studying the effective operations of emergency
supply chain that provides relief supplies to the affected areas after a disaster. According
to Sheu (2007a), the goal of emergency logistics is to meet the urgent needs of the
affected people under emergency conditions. Therefore, coordinated and integrated

operations planning and scheduling is particularly critical during an emergency situation



for timely provision of life-saving supplies to people in the affected areas. Besides the
high expectation of responsiveness, emergency supply chains also need to confront
challenges such as poor information/communication, uncertainties in network capacity,
limited resource availability, lack of coordination, and frequent last-minute priority

change in the content, quantity, and destinations of shipments.

Gaps exist in the current literature of emergency supply chain operations. Altay
and Green (2006) mention that the organizational and network structures are not well
defined, and that many assumptions about disaster relief are not realistic, which is
emphasized again later on by Galindo and Batta (2013). Caunhye et al. (2012) point out
there is a lack of comprehensive models for the disaster relief supply chain because of the
potential computational inefficiency. Therefore, the motivation of this study is to provide
meaningful tools for the practice of emergency operations scheduling and potentially

contribute to bridging the gaps in this field.

The relief product studied in this dissertation is called an emergency rescue kit. It
has been commonly used in various real-life disaster relief operations. A rescue kit
typically consists of multiple components (e.g., emergency trauma dressing, latex gloves,
blood-stoppers, bandages, alcohol wipes, etc.) from various suppliers. Since different
areas hit by a natural disaster may experience different levels/types of damage, both
common-purpose (i.e., standard) rescue kits and area-dependent (i.e., customized) rescue
kits are usually needed. In general, only standard kits are inventoried in advance in the

network, while various customized kits are provisioned during and after a disaster since



the contents of customized kits are highly dependent on the types of disasters, damage,

seasons, and areas, and are therefore not built to inventory.

In this study, we consider and analyze an integrated replenishment, production
and distribution problem defined upon an emergency supply chain for both standard and
customized rescue kits. The hypothetical supply chain network consists of component
suppliers, manufacturers, regional distribution centers, and customer demand points. The
bill of materials for assembling standard kits is identical regardless of customers, while
the bills of materials for assembling customized kits are customer/area-dependent. Each
customer orders standard kits, or customized kits, or both, and specifies the preferred
time and quantity for orders to be fulfilled. The order for the standard kit may be fulfilled
by either existing inventories in the network or a newly produced batch by a
manufacturer. There is no inventory for customized kits which are usually ordered by the
customers according to their local needs after the disaster. The order lead time, including
shipping time, assembly time and waiting time (for the component supplies) must be
explicitly considered and modeled. The optimization problem is to find an integrated
inventory allocation and a production/assembly plan together with a shipping schedule
for inbound component supplies and outbound product deliveries so that the total

tardiness in customer order fulfillment is minimized.

The main difference between the focus of our study and those considered in the
literature for the integrated operations planning is that our problem involves the multi-

stage lead time of a supply chain network and our objective is to minimize the delivery



tardiness instead of cost minimization, the two of which together introduce new

challenges in modeling and algorithm design.

In general, the problem is a complicated integrated production and distribution
problem in an emergency supply chain in disaster relief. Before we start working on the
specific problem, we conduct an extensive literature review which includes two parts: the
first part is about models and methodologies in the general integrated production and
distribution problem, and the other part is specifically about emergency operations of

relief goods supply chains in disaster relief.

The rest of the dissertation is organized as follows. In Chapter 2, a thorough
literature review is given on both general integrated production and distribution problems
and emergency operations of relief goods supply chains. In Chapter 3, the key problem of
this dissertation is defined and the general mathematical model is presented which is NP-
hard to solve. In Chapter 4, a special variation of the general model is investigated which
is strongly polynomial solvable and practically meaningful. We propose an LP-relaxation
based heuristic to solve the general problem efficiently in Chapter 5 and test its
performance through numerical experiments. Chapter 6 uses simulation to evaluate
strategies in emergency supply chains under the general model structure. Finally,

conclusions and future research directions are discussed in Chapter 7.



CHAPTER 2 LITERATURE REVIEW

In this chapter, we present an extensive literature review for our study in this dissertation.
The literature review includes two parts: Section 2.1 is about the general integrated
production and distribution problems (IPDP), and Section 2.2 is about emergency supply
chain in disaster relief specifically. We give discussions for both parts and propose

research motivations and topics based on the survey.

2.1 Integrated Production and Distribution Problems (IPDP)
A supply chain is defined as an integrated business process with bidirectional flows of
products, information, cash, and services, between tiers of suppliers, manufacturers,
logistics partners, distributors, retailers, and customers. Due to fast changes in the
marketplace and the rapid expansion of supply chains (Eksioglu et al., 2007), ensuring
highly coordinated production, inventory, and distribution over a multi-echelon supply
chain network is vital, and has an immediate impact on customer service and profit
margins. This importance will continue to increase along with the following trends:
Globalization: All functions in a supply chain network, such as procurement,
production, distribution and consumptions, have now become more globalized. Most
multi-national firms have business facilities located over multiple continents, with many
local markets to serve; face the need for emerging market penetration and the challenge
of capacity shortages and rising shipping costs; and are constantly confronting
environmental/sustainability concerns. At the same time, the promises and flexibility of

third-party logistics and subcontracting opportunities offer a great incentive to expand



supply chains globally. As supply chains expand, the need to ensure a more precise match
between demand and supply increases the importance of integrated operations planning.

Pressure on lead time reduction and profit margin improvement: Since customer
demand for both products and services typically changes over time, time-to-market is
more important than ever in order to meet the expectations of demanding customers. For
most supply chains, production is not the only major process to be considered; there are
many other stages, such as sourcing, distribution, inventory, packaging, and order
processing that together could account for a significant portion of the lead time. A less-
coordinated supply chain process could easily diminish or eliminate the profit margin and
lead to poor customer service.

Advances in information technology: Advances in information technology during
the past two decades have significantly improved data visibility (e.g., inventory visibility
and shipping status) and information accessibility along the supply chain. Data can be
automatically collected, retrieved, and manipulated in various ways and shared by many
supply chain partners (e.g., through RFID). Furthermore, today’s computing power
allows us to solve some larger-scale integrated operations planning problems relatively
easily and more rapidly, which were difficult, if not impossible, only a few decades ago
when optimization problems of a combinatorial nature were considered computationally
intractable.

Serving the needs of emerging non-commercial supply chains: A network for
disaster relief operations is a typical illustration of a non-commercial supply chain.
Disaster relief and emergency logistics (e.g., in response to Hurricane Katrina in

Louisiana in 2005, the tsunami in Japan in 2011, and Hurricane Sandy in New Jersey and



New York in 2012) usually cannot be effectively handled by a single state or a single
local government. Today’s internet allows the need for disaster relief to be communicated
cross-country and internationally within minutes of an event, and the rapid formation of
disaster relief supply chains for quick response to people in the affected areas. A highly
effective and fully integrated production and distribution operation that pulls supplies
from different industries and states to ensure delivery of these resources to the people in
an affected area is critical to human well-being.

In this study we focus on the solution methodologies for solving various
integrated/coordinated production and distribution operations planning problems
reported in the current literature. This survey does not focus on results related to
decisions for supply chain designs (e.g., facility location and/or facility capacity, which
will be briefly mentioned in Chapter 6 below), or on those results that only deal with a
single operation such as inventory, or routing, or production scheduling, but rather
addresses issues unique to process integration.

There have been several survey papers dealing with integrated operations
problems, each with its own focus. Among these, the pioneering review by Thomas and
Griffin (1996) defines a generic structure for a supply chain network, and classifies
published results at both the strategic planning level and the operational planning level,
where the latter falls into our scope. The models related to operational planning are
classified into buyer and vendor coordination, production-distribution coordination, and
inventory-distribution coordination; up to the time of this study, most researchers,
because of limitations on computational capability, have decomposed such multi-stage

problems into several two-stage problems which are then solved separately. Erenguc et al.



(1999) review the studies on managing supply chain networks with three distinct stages
consisting of suppliers, plants, and distribution centers, and focus on the results for joint
operational decision-making across the three stages. Decisions that need to be made
jointly regarding optimizing production/distribution planning are discussed. Sarmiento
and Nagi (1999) consider integrated production/distribution planning systems at both the
strategic and tactical levels with an explicit consideration of transportation. They classify
the problems based on the type of decisions being modeled (e.g. decisions on production,
distribution, or inventory management) and on the number of locations per echelon in the
model. Three categories of two-echelon models are identified, and the differences
between such models and those in classical Inventory Routing studies are discussed.
Fahimnia et al. (2008b) review existing production/distribution planning models and
provide a table summarizing 19 papers according to problem attributes (e.g. numbers of
plants, distribution centers, and customers, multi-periods, multi-products, routing), types
of modeling approaches (e.g. mathematical programming, optimization, simulation and
combinations of these), and the solution methods applied.

There are also two recent survey papers on integrated operations planning: Mula
et al. (2010) and Fahimnia et al. (2013). Mula et al. (2010) cite 44 papers published since
1985 among the 54 references, and classify these works based on the decision levels (e.g.
strategic, tactical, and operational), modeling approach (e.g., linear programming, and
multi-objective integer linear programming), objective (e.g., total cost, and customer
satisfaction), level of information sharing (e.g., production cost, lead time, inventory
level, and demand), and solution methodologies. Fahimnia et al. (2013) cite 139 papers

related to integrated operations planning, and classify these papers by two criteria:



complexity of the network structure and solution methodologies. Interestingly, in spite of
the large number of references listed in these surveys, only 19 papers were common to
both surveys. However, there is no analysis in either survey on the relationship between
problem structures and the methodologies reported in these works.

Unlike the existing surveys, we focus here on the relationships between the
problem structures and solution methodologies. Such a survey provides information to
the researchers on the solution approaches, developed for solving problems defined over
different types of network structures, and their effectiveness. We classify the integrated
operations planning problems into two categories. For each category, we present a basic
mathematical model and, based upon the properties of the respective network structure,
analyze the existing solution methodologies. We define the two categories by deciding
whether there is time constraint in the model. Most integrated operations planning
problems involve multiple time periods. For each period, the ending inventory level,
production quantity, and distribution amount must be determined. Since a continuous
time scale within a period has to be considered in some studies to describe time
constraints like arbitrary delivery deadlines or travel times, there is a need to model the
time constraints explicitly. Note that without such explicit modeling of time constraints,
as many studies in the past have done, we often have to assume that any quantity
produced in one period is delivered to customers in the same period, which leads to a gap
between the models and real-world practice. We categorize the problems into two

categories in Table 2.1.
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Table 2.1 Categories of the Integrated Operations Planning Problems

Issues in the Literature Production | Distribution | Time constrains
Problem Categories issues issues
Production and Distribution Problem (PDP) X X
PDP with Time Constraints (PDPT) X X X

We also refer readers to another survey by Yossiri et al. (2012), in which the
authors categorize the studies according to their inclusion of decision variables related to
the flow quantity of production, inventory, distribution and routing.

The first part of the literature review about the IPDP is organized as follows: in
Section 2.1.1, we introduce the basic assumptions of the integrated operations planning
problems. In particular, the assumptions of two categories shown in Table 2.1, PDP and
PDPT, will be presented. In Section 2.1.2, we focus on the studies and solution
approaches for the integrated production and distribution problems (PDPs) that involve
no time constraint; most of the papers from the related literature belong to this class of
problems. In Section 2.1.3, we extend PDP to include time constraints. Discussions and

future research directions for IPDP will be presented in Section 2.1.4.

2.1.1 Assumptions and preliminaries

In this section, we introduce the common assumptions and notation used to define the
four categories of problems (PDP and PDPT). For each assumption, we then discuss the
extensions or variations that are found in literature.

Product and Time Dimension:

e We consider the multi-product problem (i.e., with multiple commodities) over a
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given planning horizon of multiple time periods.
Network Structure and Material Flow:

e The supply chain network has three stages: manufacturers, distribution centers
(DCs) and customers, as shown in Figure 2.1. Each customer has a certain
demand to be fulfilled in each period. Both manufacturers and DCs hold
inventories of products. Manufacturers produce and fill their own inventories, and

send products to DCs, which in turn send the products to customers.

Manufacturers Distribution centers Customcrs

Figure 2.1 Network structure and material flows.

e Extensions or variations in the literature:
0 There exist suppliers to provide manufacturers with raw material.
0 There exist third parties that serve as contract manufacturers or DCs. The
third parties usually charge higher prices than regular players.
O In some cases, manufacturers may deliver the product directly to
customers.

Production and Transportation Capacity:
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e FEach manufacturer has a maximum production capacity (i.e., the maximum
quantity that it is able to produce) in each period. Both manufacturers and DCs
have a maximum transportation capacity (i.e., the maximum outgoing flow
quantity) in each period.

e Extensions or variations in the literature:

0 Manufacturer’s production capacity can be increased at an additional fixed
and/or variable cost (e.g., overtime work).

0 Transportation capacity can be defined by the vehicle attributes (e.g., the
fleet size, the vehicle loading capacity, the maximum number of trips, and
the total working hours in one period, etc.).

Customer Demand Fulfillment and On-time Delivery:

e All customer orders must be fulfilled on time, and no customer carries inventory.

e Extensions or variations in the literature:

0 Ifan order is not fulfilled on-time, it is lost (called a lost-sale).

0 If an order is not fulfilled on-time, it can be fulfilled later with a penalty
cost (either as a backorder delivered in a subsequent period, or as a late
shipment within the same period).

Cost Components:

e Each manufacturer has a fixed, and variable, cost of production, and each DC has
a fixed, and variable, cost for handling the product. Both manufacturers and DCs
incur inventory holding costs. The shipments from manufacturers to DCs, and
from DCs to customers, result in a shipping cost.

e Extensions or variations in the literature:
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0 When raw materials are required, the purchase cost is considered.
0 When a third party is involved, the respective costs (e.g., contract fees) are
included.
o0 If a late delivery (backorder) is allowed, the relevant penalty cost is
included.
0 Ifalost-sale is allowed, the shortage penalty is included.
While a representative mathematical model for each of the following sections is built
upon these basic assumptions, its variations are introduced as we discuss individual
papers.
Throughout this survey, we will use the following notation: let M={m}, B={i},
J={j} and K={k} denote the set of manufacturing facilities, the set of
distribution/transshipment centers (DCs), the set of customers, and the set of products

ordered by customers, respectively. When routing decisions are involved, let V(m)
denote the set of vehicles of manufacturer m. Let T = {t} denote the set of periods. For
simplicity, Vm , Vi, Vj, VK, ¥V and Vt may be used instead of Vme M | VieB,

Vield, VkeK, vweV(m) and VteT.

2.1.2 The production and distribution problem (PDP)

The production and distribution problem, or PDP, is primarily concerned with
coordinating production and outbound distributions to minimize the total costs associated
with production, inventory, and transportation over a discrete multi-period planning
horizon. Since PDP does not explicitly include the routing and shipping times, the models

for PDP involve only inventory flow balance, facility capacity and transportation capacity
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constraints (e.g., see Thomas and Griffin, 1996).

To formally define the mathematical model for the PDP, we introduce the

following notation: for any given period t, let C:\,t be the production capacity of
manufacturer m for product k, C,, be the transportation capacity from location a to
location b for (a,b)e M xBuUBxJ, and d;‘,l be the demand for product k by customer j.
Let 15, be the initial inventory of product k at location a for ae M UBUJ . For

decision variables, let W, and Z¥ ., respectively, be the binary variables denoting the

mt >
decision for a flow from location a to location b for (a,b)e M xBUBxJ in period t, and
the decision for a production batch for product k by manufacturer m in period t. Let S, Q,
P, and |, each with proper superscript and subscript indices, be continuous variables
denoting the shortage amount, flow quantity, production quantity, and inventory level,

respectively. For example, QF., denotes the flow quantity of product k from

m,i,t
manufacturer m to DC i in period t. In addition, we use M||J, and B|[J, to denote a
network involving only manufacturers and customers, and distribution centers and
customers, respectively, and M||B|[|J to denote a network involving all three stages. A

basic PDP model can then be described as follows:

Minimize:  G(W,; W, Zoo, S5 Qi Qs Pros T s 1) (2.1.2.1)

s.t.

mtl+Pk ZWlet:I;t’ vm, k.t (2.1.2.2)

D Qui —Zv,- Qi =1t Vi, k.t (2.1.2.3)
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L+, Q- =Sf) =15, Vi, k.t (2.1.2.4)
P <Chi - Znos vm,k,t (2.1.2.5)
D it <Coiy Wosis vm,i,t (2.1.2.6)
2 Qi SCije W vi, jit 2.1.2.7)
W, W0z e o) St Qi Qe P e 115 =0 vmyi, jk,t (2.1.2.8)

The objective function (2.1.2.1) minimizes the total operations cost, consisting of
raw materials, facility setup, production, inventory, and transportation costs. Constraints
(2.1.2.2) - (2.1.2.4) ensure the flow balances at the manufacturing facilities, DCs and
customer sites, respectively, while constraints (2.1.2.5) - (2.1.2.7) are network capacity
constraints.

While special cases of PDP, such as the classical transportation problem and the
transshipment problem, can be solved in strongly polynomial time, the general version of
the PDP is difficult to solve. More precisely, the multi-product PDP defined by (2.1.2.1) -
(2.1.2.8) is strongly NP-hard, because a special case of this PDP is a multi-product multi-
period lot-sizing problem which has been proved to be strongly NP-hard by Chen and
Thizy (1990). Therefore, a general version of PDP could require an excessive amount of
computational time to verify the solution optimality when the network size becomes large.

In this section, we focus on the existing solution methodologies for variations of
the PDP defined by (2.1.2.1) - (2.1.2.8), and classify them into three categories. The first
one is heuristic and metaheuristic algorithms, in which a solution (or a set of solutions) is
constructed according to relatively simple rules and then improved through an iterative

process. The other two are both mathematical programming-based solution approaches,
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and differ on how the PDP model is relaxed: constraints relaxation approaches and
variables relaxation approaches. Note that while the routing decision is not considered in

this section, we do include those problems that assume fixed routing.

Heuristic and Meta-heuristic Algorithms
Because of the intractability of the general PDP, feasible solutions with acceptable quality
and minimal solution time have been commonly discussed in the literature.
Representative solution approaches in this category are greedy heuristics and genetic
algorithms.

Park (2005) proposes a two-phase heuristic for solving a multi-product PDP
defined upon an M||J network to maximize the total profit. The Phase I problem is

formed by aggregating the demand of all customers in each period, defined by
Dtk = Zvj d lj(,t and then replacing constraint (2.1.2.4) by I, +Qf —=Df =1, Vk,t, in

the model, which reduces the problem to a single-customer multi-period model and

allows one to quickly determine the values of Pnf,t by solving a production lot-sizing

problem (Fumero and Vercellis, 1999) with constant production capacity. All unsatisfied

demand is penalized as shortage and no backorder is considered. Given P¥,, the author

m;t?°

then solves a distribution problem in phase II to determine the values of Q¥ ., by

m, .t
applying a bin-packing heuristic together with local improvement procedures which
consolidate partial loads by shifting shipping periods and reducing the level of stock-out
using leftover production capacity. Through computational experiments on 21 test

problems of three sizes, this heuristic achieves an error gap, or a difference between the
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optimal and heuristic solutions, of 5.6~6.8% for small-size cases and no more than 9.2%
for all the test cases. The computation time is less than 3 seconds for small cases and no
more than 1200 seconds for large cases.

Ahuja et al. (2007) study a two-echelon M||J single product PDP with single
sourcing constraint, which means that each customer receives shipment from at most one
supplier in each period. In addition to constraints (2.1.2.2) - (2.1.2.7), the authors also
include a constraint on inventory perishability, so that the maximum inventory time for
the product is bounded by a given constant N. Thus, at any period t, the ending inventory

at DC i, i e |, cannot exceed its future demand from all customers in the next N periods,
N . . .
or I, < ZHZV,- Q..j1en - The resulting PDP is decomposed into two sub-problems. One

includes only binary facility-customer assignment variables, and the other includes
variables for transportation flow and inventory levels. A proposed greedy heuristic is used
to assign the facility-customer pairs, upon which a very-large-scale-neighborhood (VLSN)
search heuristic is applied to improve the quality of the solution. Extensive tests on
randomly generated problem sets are conducted, and the error gap obtained by comparing
the heuristic with the best lower bound obtained by CPLEX within 15 minutes of CPU
time is less than 3% in all cases. The authors also report that their error gaps have a
decreasing tendency as the number of customers is increased, and it is less than 0.1 % in
the largest size case. The computation time is less than 40 seconds in all cases.

Some researchers consider PDP with extensions such as fixed routes for
transportation or direct shipment. Lei et al. (2006) investigate an integrated production,
inventory and distribution routing problem encountered from the practices of after-merge

operations of a chemical company. A two-phase approach is proposed, where the Phase |
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problem is defined by assuming direct shipment between manufacturing plants and
customers. The assumptions on direct shipments allow the authors to solve an
optimization problem with a significantly reduced complexity, which yields a feasible
solution to the original problem. The problem in Phase II is to improve the solution from
Phase I, and is modeled as a shortest path problem on a directed acyclic graph. An
empirical study that evaluates the computational performance of this solution approach is
also reported. Liu et al. (2008) study a multi-product packing and delivery problem with a
single capacitated truck and a fixed sequence of customer locations. The authors first
apply a network flow-based polynomial time algorithm to solve the problem assuming no
split deliveries, and then allow the split delivery to improve the truck efficiency by using
a greedy heuristic with a time complexity of O(|J [ log| J|). In both papers, optimal
solutions of the special cases (with restriction) are modified to obtain feasible solutions to
the original problems.

During the past two decades, the genetic algorithm (GA), inspired by the process
of natural evolution, has been quickly gaining in popularity. In Jang et al. (2002), the
problem of production and distribution planning over a three-echelon M||B||J network is
considered. Constraints similar to (2.1.2.1) - (2.1.2.7) are included and a material
transform factor I' is used to define the rate of raw materials consumption:

Lo+ Poc =2 T - Quii = Iy » VM,t. The solution of the proposed GA algorithm is

compared with that obtained by CPLEX. Among randomly generated test problems, the
solution time of GA is quite stable, averaging from 334 to 546 seconds, while that

required by the CPLEX solver exhibits exponential growth with respect to problem size,
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from 32 to 67,854 seconds to obtain the optimal solutions. The proposed GA also
demonstrates strong performance, with an average error gap of 0.2%. Gen and Syarif
(2005) propose a GA-based approach for their M||J network. A new solution approach
called the spanning-tree-based genetic algorithm is presented together with the fuzzy
logic controller concept for auto-tuning the GA parameters. The proposed method is also
compared with a traditional spanning-tree-based approach. This comparison shows that
the proposed approach achieves a better result in every experiment, with an average
improvement from 0.05% to 0.65% for six different settings. Kannan et al. (2010)
develop an M||B||J network model for battery recycling. Besides production, inventory
and transportation cost, the objective function contains additional cost factors for
recycling such as collection, disposal and reclaiming cost. The authors introduce a
heuristic-based genetic algorithm to solve the problem and compare the result with that
obtained by GAMS, a commercial solver. In experiments with different problem sizes
and heuristic parameters (population and iteration), the maximum error observed is 7.4%
compared with the results from GAMS. Moreover, the average computation time of the
GA-based approach is less than 315 seconds for the largest problem while that by GAMS

is at least 2800 seconds for the smallest problem.

Constraints Relaxation-Based Approaches

Another popular solution approach to PDP in the current literature is to relax a subset of
constraints in order to make the relaxed problem easier to solve. The major approach in
this regard is the well-known Lagrangian relaxation, by which difficult constraints are

placed into the objective function with coefficients called Lagrangian multipliers so that
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the resulting problem is “easily solvable”. One example of such an easily solvable
problem is a network flow problem (Ahuja et al., 1993). Another important approach is
based upon problem decomposition, by which a subset of constraints is temporarily
simplified or removed from the original model to make the remaining problem
decomposable. When a Lagrangian relaxation is adapted to achieve the decomposition,
the resulting process is called Lagrangian decomposition. In constraints relaxation-based
approaches, identifying the constraints to be relaxed and ensuring that the search
converges to the optimal or near-optimal solution quickly are two critical steps for
achieving the quality and effectiveness of such solution approaches. For example, in the
basic model defined by (2.1.2.1) — (2.1.2.8), when we relax constraint (2.1.2.3) and
incorporate it in the objective function with penalty factors, the problem is decomposed
into two problems as follows:

o Minimize: G W, ,ZQ0nPWulk) st (2.122),(2.1.2.5), (2.1.2.6)

m.

e Minimize:  G*(W,,,S, Q15 1%) 5.t (2.1.2.4), (2.1.2.7), (2.1.2.8)
where both G* and G? include the penalty terms for violating constraint (2.1.2.3).

Yung et al. (2006) use constraints relaxation to solve a multi-product single-period
PDP, and thus the time index t is dropped from all the notations, defined upon an M||J
network. Their study involves decisions on production and transportation, as well as on

lot-sizing and order quantity. The average inventory level is used to define the inventory

cost, and variables z¥ and X,‘;j are added to denote production lot size and shipping

quantity for product K. The model contains flow balance constraints similar to (2.1.2.2) —

(2.1.2.4), and capacity constraints similar to (2.1.2.5) — (2.1.2.7). However, the objective
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function includes terms P /z‘ as the number of production lots for product k at
manufacturer m and terms Qr';j / Xr';j as the number of shipments of product k from m to j,

which lead to a non-linear objective function that is neither convex nor concave. In order

to apply Lagrangian relaxation, an artificial variableR ; , where:
k
D.Qn =R, (2.1.2.9)
. o . Kk k
is utilized, and redundant -constraints Zk P, :Zj Ry > dej —Zm R, , and
0<R, <> di are added to the model. By relaxing constraint (2.1.2.9), the original

model is decomposed into two independent sub-models. The first one deals with joint

decisions on production and lot-sizing and thus contains variables P*, z' and the

aggregated transportation flow, R . In the second model, the constraints for

transportation planning involving Q:“. and ordering quantity x ‘. are included. By

j
continuously updating the Lagrangian multipliers and the artificial variables, two sub-
problems are iteratively solved. The test result is compared with that obtained by
Fmincon, a non-linear programming tool box in MATLAB 6.1. Among seven problem
settings, Fmincon cannot terminate for three cases while the proposed algorithm is able to
solve all the cases. In terms of the solution performance, the proposed algorithm saves
1.5% to 8% in cost, with less CPU time, over what Fmincon achieves for all the cases
solved.

Eksioglu et al. (2007) consider a variation of multi-product multi-period PDP on

an M||J network where only the production facility carries an inventory and there are no

capacity limits for inventory and transportation. The model contains flow balance
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constraints:

s+ Poe =2 Qi = I (2.1.2.10)
instead of (3.1) and (3.2). Since the model does not allow shortages, it has:

D Qne =0 2.12.11)

instead of (2.1.2.4), and capacity constraint (2.1.2.5) with binary indicator variables for
production. Unlike the previous solution approach, which uses redundant aggregated

variables, this approach introduces redundant disaggregated variables. The authors

reformulate the original model by introducing a new variable Q¥ , which defines the

mjtz >
amount of product k from manufacturer m to customer j to satisfy demand in period 7
using the quantity produced in period t, where t < 7. Thus, the original variables can be

expressed by new variables as follows:

:ZLZ;%H , Ym,k,t (2.1.2.12)
t -
Qi = D, Qe » Y, .k, t (2.1.2.13)
J T
:ijlztszlzz-:Hlerr(ﬂsT ’ Vmakat (21214)

By using constraints (2.1.2.12) — (2.1.2.13), the original model becomes a facility
location problem. The authors then show that the linear programming (LP) relaxation of
the location model provides a tighter lower bound than the LP relaxation of the original
model. Lagrangian decomposition is applied to the resulting location problem by

introducing z*. , clone or copy of Q¥

mjtz > mjtr :

Qe = 2 (2.1.2.15)

mjtr
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k.

Accordingly, redundant constraints for z;; :

M T k _ k
Zmzl Zt:1 ijtr - djr (21216)
3 K ~T _k
ijlzkzlzrzl Zinjtr <Chy (2.1.2.17)
Zpjte 20 (2.12.18)

are then added into the model. By relaxing (2.1.2.15) using a Lagrangian multiplier, the

model is decomposed into two sub-problems. The first one containing Qr';jtr is an
uncapacitated multi-product problem and is further decomposed into |K| single product

sub-sub-problems which are NP-hard but solvable by dynamic programming. On the

other hand, the second one containing z;, can be modeled as an LP problem. For test

problems of large sizes, the sub-problems are solved by using the primal-dual algorithm
and the total running times vary from 4 to 87 CPU seconds with empirical error gaps no
more than 5%.

Karakitsiou and Migdalas (2008) consider a single product PDP defined on an
M||J network. The model has flow balance constraints similar to (2.1.2.2) — (2.1.2.4), and

capacity constraints similar to (2.1.2.5) — (2.1.2.7). Defining a new variable:
Foe = 2, Qe (2.1.2.19)

the inventory flow balance constraint at m is replaced by:

L+ P~ =1 (2.1.2.20)

m,t-1 it
and the transportation capacity constraint is replaced by:

o<r, <CS, (2.12.21)
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where C?

m,t

is the maximum outbound shipping quantity. Moreover, a redundant

constraint;

Dot =2,45 (2.1.2.22)

is added. In order to apply Lagrangian decomposition, a clone variable of r_ ., denoted as

m,t?

z,,» 1s introduced:

Mot = Zm e (2.1.2.23)
so that constraint (3.20) can be replaced by:

Lot + Pt = 2o = Ly (2.1.2.24)

0<z, <Cp, (2.1.2.25)

By relaxing (2.1.2.23) and using Lagrangian multipliers, the original model is

decomposed into two independent parts: the first one deals with variables P ., I., and

o it

z,, along with constraints (2.1.2.5), (2.1.2.24), and (2.1.2.25), while the second one deals

with Q_ ., and r_ . along with constraints (2.1.2.4), (2.1.2.19), (2.1.2.21) and (2.1.2.22).

m.j.t t
The first sub-problem can be further decomposed, over the manufacturing facilities, into
IM| sub-sub-problems that can each be modeled as a linear programming problem. The
second sub-problem can also be further decomposed, over the time horizon, into |T| sub-
sub-problems, each as a network flow problem. In order to check the quality of the
solutions produced by the Lagrangian relaxation, the results are compared with the
optimal solution obtained by GLPK solver, a free and open source piece of software. For

six randomly generated problems involving 30 to 1200 nodes, the empirical error gaps

are no more than 6% and the required computation time is no more than 350 seconds.
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Variables Relaxation-Based Approaches

During the past decade, the variables relaxation-based approaches, in which a selected
subset of integer variables is relaxed so that the reduced problem can be relatively easy to
solve, have gained a significant amount of attention from researchers. While the
Lagrangian relaxation procedures aim at reducing the duality gaps, most variables
relaxation-based approaches focus on reducing the sub-optimality due to rounding linear
values to integers.

Dogan and Goetschalckx (1999) introduce a multi-product multi-period PDP
model involving strategic decisions on the network and detailed production planning on
the machine level along with deterministic seasonal customer demands. The network
under consideration includes candidates for suppliers, potential manufacturing facilities,
and DCs with multiple possible configurations and customers. The manufacturing
facilities have alternative facility types, which introduce binary variables for the facility
selections, and integer variables are used to define the number of machines used in each
facility during each period. In addition to the ending inventory, the authors also consider
the work-in-process inventory which defines part of the inventory holding cost.
Replenishment of raw material may happen more than once during each period.
Transportation flow quantities and production quantities on each machine at each facility
are also decision variables. Benders decomposition is used as the solution methodology.
In the mixed integer master problem, the status of the facilities, the production lines, and
the production and inventory quantities are determined. The reduced problem becomes a
minimum-cost transportation flow problem, and its optimal cost is added to the mixed

integer master problem to find a feasible schedule satisfying the obtained flow cost. The
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search terminates when the master problem can find no lower cost solutions. For the real
life problem that motivated this study, the proposed approach saves the company an
additional 2% over the hierarchical approach, where optimal strategic and tactical
decisions are made sequentially. The Benders decomposition solution method with
acceleration techniques utilizing disaggregated cuts, dual variables and the LP relaxation
in the initial iterations reduces the running time by a factor of 480, versus a standard
Benders decomposition algorithm.

Yilmaz and Catay (2006) consider a variation of PDP involving a single product,
multiple suppliers, multiple producers, and multiple distributors, with an option of
capacity expansion at additional fixed and variable costs. New continuous variables
representing increased capacity, and binary variables indicating capacity expansion
decisions for transportation and facility, are introduced. Only manufacturers are allowed
to carry inventory, and thus the inventory balance is only considered at the manufacturers’
sites. Three different LP relaxation-based heuristics are used to solve the problem, and the
relaxed variables are then adjusted to 0 or 1 according to different search mechanisms.
The results are then compared with CPLEX solutions obtained with a 300-second time
limit.

Another representative study on variables relaxation-based approaches is
performed by Lei et al. (2009). The authors consider a single product multi-period PDP
defined upon a M||B]||J network with both forward and reverse flows. Because of the

need to model the reverse flow in the supply chain network, new constraints such as

Hi,t—l +ZVj Ri,j,t _ZVm Rm,i,t = Hi,ta Vi,t
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are added, where variable R refers to the reverse flow quantity, and H refers to the reverse
product inventory levels. A partial LP relaxation-based rolling horizon method is
proposed. With this approach, a given multi-period planning horizon is partitioned into
three intervals: the current period, the immediate next period, and a consolidated period
covering all future time periods. In the first interval, all the original constraints and the
integer requirements remain unchanged. For the second and the third intervals, only the
integer requirements on the number of truck trips between the DC and customers are
relaxed. To reduce the computational effort of each iteration, the forward and backward
demands in the third interval are equal to the sum of the forward and backward demands
of all the time periods in that interval, respectively. The ending inventories obtained from
the solution to the first interval are then fixed as the beginning inventories for the second
interval, and this process repeats by redefining intervals until all the time periods achieve
integer solutions. Randomly generated test cases are used to benchmark the
computational performance of the proposed algorithm against that obtained by the
CPLEX within one-hour CPU time. Over 70 test cases are randomly generated, and the
largest error gap observed is 0.16%, and the required computation time is less than 5
seconds; the average computation time required by CPLEX for solving these cases far

exceeds 700 CPU seconds.

Remarks on PDP
In general, if the particular PDP problem being studied has a relatively simple structure,
the well-known solution methodologies from the literature can often be effectively

adapted. For example, when a PDP problem is defined on a two-stage supply chain
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network and the constraints are limited to those defined by (2.1.2.2) - (2.1.2.8), the
original problem can be decomposed by either a sequential decomposition or Lagrangian
decomposition, which allows the decomposed problem to be modeled as an easy-to-solve
problem such as the lot-sizing problem, or a linear programming or network flow
problem.

While not included in this survey, it should be pointed out that there has also been
a significant amount of work in the literature focusing on production and distribution
involving uncertainty in demand, processes, and/or supplies, for which stochastic and
fuzzy models have been applied extensively. The difference between stochastic and fuzzy
models is that a stochastic model usually follows a known probabilistic distribution,
while a fuzzy model is described by a simple distribution, such as a triangular distribution,
based on expert knowledge. Representative work in stochastic PDP can be found in
studies by Park (2005), Aliev et al. (2007), Lejeune and Ruszczynski (2007), and Liang
and Cheng (2009). Also note that while the exact methods have rarely been discussed in
the literature for solving PDP problems, they could be appropriate if the problem has a

special structure, such as that given by Wang et al. (2010).

2.1.3 The production and distribution problem with time constraints (PDPT)

PDP with time constraints (PDPT) is a natural extension of the PDP model, which
explicitly takes into account production and transportation time and usually assumes a
deadline for the shipment arrival to the customer. To define the shipment arrival times,

additional notation must be introduced. Let r¥ be the production rate for product k at
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manufacturer m. Let 7, ; and z; ; be the transportation times from manufacturer m to DC
i, and from DC i to customer j, respectively. Let L, be the deadline at customer site j in

period t, by which time the shipment of commodities should have arrived at j; otherwise a
shortage or tardiness cost would be incurred. Let MM be a very large positive number.

The deadline constraints are defined as follows.

k

= GB=Zp W —W  OMM <L, vm,i, jk,t (2.1.3.1)

mit

The basic PDPT model is defined by (2.1.2.1) - (2.1.2.8) and (2.1.3.1).
Some papers study PDPT problems involving production lead times and delivery

lead times over a multi-period planning horizon. Let | ; and I, ; represent lead times

from manufacturer m to DC i, and from DC i to customer j, respectively. In this case,

(2.1.2.2) — (2.1.2.4) should be replaced by the following constraints.

U L S o LI vmk,t  (2.1.3.2)
|ik,t_1+zwqg,i,t_,ml > Q=1 Vi, k,t (2.1.3.3)
o+ 20 Qi — @i =Sfo =110 Vi, k.t (2.1.3.4)

Due to the complexity of PDPT, using a single methodology, such as a
Lagrangian relaxation or a simple heuristic algorithm, may not be effective enough to
solve the problem. In the literature, two major approaches have been discussed. One is

iteration-based, and starts with an initial solution (or a group of solutions), and then
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continuously improves the solution (or a set of solutions) iteratively by a relatively
simple procedure; most metaheuristic-based algorithms belong to this category. The other
is to formulate the original problem into a mathematical model and then use optimization
software to derive the optimal or near-optimal solutions. The latter approach has typically
been used for solving some case-specific problems.

There are also several papers using simulations to deal with PDPT involving
uncertainty. Most such studies (e.g., Lee et al., 2002; Lee and Kim, 2002; and Safaei et
al., 2010) start with a deterministic version of the problem and solve it to find an initial
solution. Through simulation, the solution is evaluated and the parameters of the
respective deterministic problem are modified until the solution stabilizes. In this survey,
we only include such simulation studies that report on the approaches to solve respective
deterministic versions of the PDPT problem.

In this section, we focus on the existing solution methodologies for solving PDPT.
Two categories of solution approaches are reviewed: 1) metaheuristic and iterative
approach, and 2) mathematical modeling and the use of an optimization solver. Again,
we do not consider detailed routing decisions in this section, and hence we treat all

transportation operations as direct shipping or fixed routing.

Metaheuristic and Iterative Approach

Naso et al. (2007) consider the integrated problem of finding an optimal schedule for the
just-in-time (JIT) production and delivery of ready-mixed concrete with manufacturers
and customers. The study involves a single product in a single period with no inventory

permitted. Times required for the loading, unloading and shipping operations of each
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truck must be explicitly modeled. In addition, outsourcing options of production and
third-party (or overtime) trucks are permitted at an additional cost. All decision variables

are binary, where x,, =1 if job j is assigned to truck Vv as the r-th task: y , =1if job j is
produced at manufacturer m, and y, =1 if job j is outsourced. The scheduling algorithm

combines a GA and a set of constructive heuristics, which are guaranteed to terminate in
a feasible schedule for any given set of jobs.

Gebennini et al. (2009) consider a multi-period strategic and operational planning
problem for a single manufacturer that offers a single product with uncertain demand on
an M||B|[J network. Production lead times and delivery lead times are considered, where
lead time may be an integer multiple of one time period, and inventory and stockout costs
are considered with safety stock (SS) determination. Thus, the problem to minimize the
total cost is modeled as a mixed-integer non-linear programming problem in which the

ieB

objective function includes a non-linear term representing the SS cost, ZCfIZ /z 639
jed

A

where ¢’ is the inventory cost for DC i, K is a safety factor to control the customer
service level, &5 is the combined variance at DC i serving customer j, and J; is a 0-1
decision variable equal to 1 if DC i supplies customer j in any time period. This non-

. o . I .
linear term is linearized to ) » ¢’ — k69, where S§ is a lower bound on the

ieB jed i
optimal amount of SS carried at DC i, because the closer S§ is to the optimal SS level at

DC i, the closer the formula is to the optimal SS cost. A recursive procedure based on the
modified linear model is developed in order to find an admissible solution to the non-

linear model and quantify the minimized global logistic cost, while also taking the effect
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of safety-stock management into consideration. Since the optimal safety-stock level is
unknown, the value is initially set to a lower bound on the effective safety-stock quantity
for each DC. It is claimed that the proposed recursive procedure converges to the global
optimal solution of the original non-linear problem in a finite number of iterations.

Yimer and Demirli (2010) address a multi-period, multi-product scheduling
problem in a multi-stage build-to-order supply chain manufacturing system with
consideration of lead times for production and delivery. For the sake of efficient
modeling performance, the entire problem is first decomposed into two sub-problems: 1)
an upstream part: from suppliers through fabricators to manufacturers, and 2) a
downstream part: from manufacturers through distributors and retailers to customers.
Both sub-problems are then formulated as MIP models with the objective of minimizing
the associated aggregate costs while improving customer satisfaction. A GA-based
heuristic is proposed with a chromosome of three parts: 1) product ID, total production
quantity at each plant, and inventory level at each DC in the period; 2) flow proportion
floating values; and 3) status values for feasibility. If a candidate solution is infeasible, it
is revised by a proposed repairing heuristic. The fitness value is measured by the original
objective function value and the degree of infeasibility. Using some test instances, the
best solutions obtained from GA are of high quality compared with the lower bounds
obtained from LINGO, a non-linear programming solver.

Sabri and Beamon (2000) develop an integrated multi-objective supply chain
model that facilitates simultaneous strategic and operational planning using an iterative
method in a four-tier network. They consider stochastic demand and capacity constraints

in all layers of the supply chain, and shortages are allowed but penalized, while a fixed
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setup production cost is incurred. Total production lead time at manufacturer m for

k
Qm k k Ik

product k is g% +r_k+|r|:‘ +6¥ where gs,Qk,r and ¢* are production setup time,

m?>» m>'m
m

production quantity, production rate, waiting time, and material delay time respectively.
0¥ is determined by the bill of material of product k and customer service level. They
first find a solution for the strategic model and then use the solution as an input to solve
the operational model. New parameters determined in solving the operational model are

used to solve the strategic model, and this iteration terminates when all binary variables

no longer change. LINGO is used in solving each sub-problem.

Mathematical Modeling and the Use of Optimization Solver

While some researchers try to develop effective solution methodologies to solve the
PDPT, others put more effort into the modeling process. In this subsection, we
summarize research in which the models are solved by mathematical optimization
software such as CPLEX. The common feature of the following papers is that the authors
concentrate on the models rather than the design of methodologies. The size of the
computational testing instances is small enough for the solver to handle, or the problem
comes from real world practice so that the solution by a solver is applicable.

Rizk et al. (2006) examine a multiple-product production—distribution planning
problem with a single manufacturer and a single destination. The manufacturer operates a
serial production process with a bottleneck stage, subject to a predetermined production
sequence. The manufacturing cost consists of the changeover cost of intermediate

products and the inventory holding cost of final products. The transportation cost is
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characterized by a general piecewise linear function of transportation quantity with break

points of A, with A, =0. In the h-th interval (A, ,A,], let v, be the slope of its
straight line, A, be the discontinuity gap at the beginning of the interval and E, be the
ending value. Thus, the transportation cost is zZ(A)=(E,_, +A)+V 4, 4, =A—-A,,.

Valid inequalities to strengthen these formulations are proposed and the strategy of
adding extra 0—1 variables to improve the branching process is examined.

Chen and Lee (2004) investigate a multi-period simultaneous optimization of
multiple conflict objectives with market demand uncertainties and uncertain product
prices in a supply chain network consisting of manufacturers, DCs, retailers and
customers. The scenario-based approach is adopted for modeling uncertain market
demands, and the product prices are taken as fuzzy variables where the incompatible
preference on prices for different participants are handled simultaneously. The whole
model becomes a mixed-integer non-linear programming problem to compromise fair
profit distribution, safe inventory levels, maximum customer service levels, and decision
robustness to uncertain product demands. Incompatible preference of product prices for
all participants will be determined by applying the fuzzy multi-objective optimization
method. Non-linear MIP solvers, DICOPT and CONOPT, are used for the numerical
example.

Dhaenens-Flipo and Finke (2001) provide a multiple period model on an M||B|[J
network which comes from a practical case at the European industrial division of the
manufacturer. Since switching from one product to another on a production line may take
a long time, it is assumed that at most one switching per period and per production line is

allowed. There are three aggregated products and three line types according to capability
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to handle these products. All possible sequences in each manufacturing line are
enumerated, and they are used in a mixed integer programming model. The set of
available product sequences of the line m is denoted by S(m) and these sequences are
indexed by S. At this stage, the data involved concerns the total production time (Bp)

available on line m, the production time (TP, ) and cost (CP ) of product k on line m, the
changeover time (TC,,) and the cost (CC,,) associated with the products of sequence s

on line m. Let p* be a quantity of product kK manufactured on line m, and let Y, be 1 if

sequence S is chosen for the line m. Thus, we need to add the following constraints:

D V=1 VM (2.1.3.5)
seS(m)
o= D Ve xB,/TPX <0 Vm, vk (2.1.3.6)
seS(m):kes
Y paxTPr+ Yy, xTC, <B,  Vm (2.13.7)
k seS(m)

The proposed MIP has constraints (2.1.3.5) - (2.1.3.7), flow balance equations similar to
(2.1.2.2) - (2.1.2.4), and domain constraints. For problems of industrial sizes, the model is
able to provide a sub-optimal solution in less than 2 hours (23 minutes on the average) by
CPLEX.

Fahimnia et al. (2008a) survey 20 papers and define a representative mixed
integer program formulation for the integration of an aggregate production and
distribution plan on an M||B|[J network. Three production alternatives are considered:
regular-time production, overtime production, or outsourcing. They illustrate with an
example to show that considering production alternatives can give a more accurate and

better schedule than considering average production cost.
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Remarks on PDPT

Lagrangian relaxations and decomposition-based techniques are not effective for solving
the general PDPT problems because newly added time constraints often change the
model structure significantly. The production and transportation time as well as the
incurred deadline constraints all add more complexities to the original PDP, since a
feasible solution for a PDP may violate the deadline constraint in PDPT. Even after a
PDPT is decomposed, the resulting sub-problems may still be NP-hard and therefore
make Lagrangian relaxation and decomposition-based solution approaches fail to
function effectively. Therefore, most literature results reported are either customized
solution approaches for specific PDPTs or efficient algorithms for solving some special

cases of PDPT.

2.1.4 Discussion

In a realistic situation, such as multi-product, multi-echelon production and distribution,
the problem under consideration has a complicated structure with a huge size. Moreover,
each problem surveyed has its unique assumptions and definitions. Various approaches
are considered and analyzed for different problems, and therefore it is very difficult to
propose an integrated view of the entire set of methodologies. In this section, we provide
three different perspectives. The first is to classify the solution approaches with a
perspective on the decomposition framework, and solution methodologies applied to the
decomposed sub-problems. The second is to relate the problem structure to the utilized

solution approaches. The last is to address future research directions.
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Structure of Solution Approach

Most problems in the literature are computationally difficult to solve optimally, and thus
different decomposition approaches are utilized. When the problem is decomposed, the
optimality of the problem may not be guaranteed, but each decomposed problem is much
easier to solve and can sometimes be solved effectively (e.g., optimally or near-
optimally) and efficiently (e.g., in polynomial time or in pseudo-polynomial time).
Moreover, after the original problem is decomposed into sub-problems, each sub-problem
can be further decomposed according to the structure of the sub-problem. The overall
framework of the solution methodology in terms of decomposition has the following
three categories.

1) No Decomposition: The entire problem is solved at once.

2) Mathematical Decomposition: The original problem is decomposed according to
mathematical properties. Two representative decompositions are Lagrangian
decomposition and Benders decomposition. In Lagrangian decomposition, some
of the constraints are relaxed by Lagrangian relaxation and the problem under
consideration can be decomposed into independent sub-problems. In Benders
decomposition, some of the variables are fixed and the problem can be
decomposed.

3) Heuristic Decomposition: The original problem is decomposed according to
problem-specific properties. A common method is to decompose the problem
with respect to layers. Thus, the upstream problem and the downstream problem
are separately defined. Another method is to decompose the original problem into

a strategic problem and an operational problem.
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When the problem (or decomposed sub-problem) cannot be further decomposed, or is

going to be solved directly, several approaches are utilized. The major solution

approaches in the literature can be summarized:

1)

2)

3)

4)

Exact Algorithm Development: When the problem (or sub-problem) can be
formulated as a problem which has a known optimal algorithm in polynomial time
(or pseudo-polynomial time), it can be solved optimally. Typical examples are
Network Flow Problems, Linear Programming (LP), and Dynamic Programming.
Modeling with an Optimization Solver: Some papers describe the problem with an
exact mathematical formulation, such as Linear Programming (LP), Non-linear
Programming (NLP), and Mixed Integer Programming (MIP), and solve it with an
optimization solver. When the problem size is small enough or the problem has
unique properties, optimal solutions can be obtained in a reasonable time frame.
Various optimization solvers are found in the literature, such as CPLEX, GAMS,
AMPL, LINGO, and GLPK. In order to strengthen the formulation, additional
constraints, such as valid inequalities, can be inserted. In most cases, an
approximate solution by an optimization solver is acceptable, given the error limit
or running time limit.

Mathematical Programming Approach: When the sub-problem is still too hard to
be solved optimally, there are several approaches utilizing mathematical
programming techniques. Representative methods are Lagrangian relaxation and
LP relaxation.

Metaheuristic: Metaheuristics iteratively improve a candidate solution with regard

to a given measure of quality. A metaheuristic makes few or no assumptions
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about the problem being optimized and can search very large spaces of candidate
solutions. However, it does not guarantee that an optimal solution is ever found.
The solution quality and running times are highly dependent on the setup
parameters for the metaheuristic approach. Examples are Local Search (e.g., Tabu
Search, Simulated Annealing), Evolutionary Algorithms (e.g., Genetic
Algorithm), and Swarm Intelligence (e.g., Particle Swarm Optimization, Ant
Colony Optimization).

5) Problem-Specific Algorithms: According to the problem-specific property, an
algorithm can be developed only for the particular problem. In many cases, values
of variables are sequentially decided. A representative one is a greedy algorithm,
which makes a locally optimal choice at each stage with the hope of finding a
global optimum. After obtaining a solution, a local improvement procedure may

be applied.

Figure 2.2 gives an overview of the existing procedures for solving the integrated
problem. If a problem is directly solvable, it can be solved using an exact method.
Otherwise, we may try to decompose it into multiple sub-problems with minor changes
from the original problem, or try to use other solution approaches. If the problem is
decomposed, sub-problems can be solved separately and each of them is considered as an
independent problem. Then, we can iteratively check whether the sub-problems are
directly solvable or further decomposable. If the problem (or sub-problem) is not
decomposable or we do not attempt to further decompose it, several solution approaches

are applicable.
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' problem '

Mathematical Heuristic
Decomposition [l Decomposition
-Lagrangian -Production
-Bender & Distribution
-Strategic &
Operational
sub-
problems

Exact Modeling & Math. Prog. Meta- Problem
Algorithm Opt. Solver Approach Heuristic specific Alg.
-Polynomial -CPLEX -LP relaxation -Genetic Alg. -Aggregation
time alg. -GAMS -Lagrangian -Memetic Alg. -Intuitive rules
-Dynamic Prog. -AMPL relaxation -Tabu Search -Local
-B&B -LINGO -B&B heuristic -Simulated improvement
-B&P -B&P heuristic Anealing heuristic

Figure 2.2 An overview of existing procedures for solving the integrated problem.

Based on the above classification, the solution approaches used in the literature
surveyed in this paper can be classified in Table 2.2. We make the following

observations:
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e When the problem is solved without decomposition, the two major methodologies
are modeling with an optimization solver, and a metaheuristic, in which the
structural property is not well-utilized.

e When a mathematical decomposition is utilized as an overall framework, the sub-
problem is always solved by mathematical programming methods for optimal or
approximate solutions. In other words, if one would like to apply mathematical
decomposition, sub-problems should be able to be well-handled by mathematical
programming methods.

e When the problem is heuristically decomposed, metaheuristic and problem-
specific heuristics are frequently used.

Table 2.2 Summary of solution approaches.

Overall No Mathematical Heuristic

framework Decomposition Decomposition Decomposition
Sub-problem

Methodology

Modeling with Rizk et al. (2006) Sabri and Beamon (2000)

Optimization Solver Chen and Lee (2004)
Dhaenens-Flipo and  Finke

(2001)
Fahimnia et al. (2008a)
Exact Algorithm Yung et al. (2006)
Development Eksioglu et al. (2007)
Karakitsion and Migdalas
(2008)
Dogan and  Goetschalckx
(1999)
Mathematical Yilmaz and Catay (2006) Fumero and Vercellis (1999)
Programming Lei et al. (2009)
Approach
Metaheuristic Jang et al. (2002) Ahuja et al. (2007)

Gen and Syarif (2005) Yimer and Demirli (2010)
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Kannan et al. (2010) Yossiri et al. (2012)
Naso et al. (2007)
Problem-Specific  Lei et al. (2006) Park (2005)
Algorithm Liu et al. (2008) Lei et al. (2006)

Gebennini et al. (2009)

Problem Structure and Solution Approaches

In the reviewed papers, along with their problem structure and methodologies used, when

routing is involved as a part of the decision, the problem includes a vehicle routing

problem (VRP), which is one of the well-known difficult combinatorial optimization

problems. Thus, we separately discuss the problems where routing is considered, and

those where it is not.

The methodologies for PDP and PDPT are different.

The major solution methodology for PDP is to use Lagrangian decomposition as a
framework and mathematical programming for the decomposed problems.
Especially when the PDP is defined on a supply chain network with two stages,
Lagrangian decomposition works very well, because the sub-problems can be
solved optimally. However, when PDP is defined on a network with three or more
stages, Lagrangian decomposition is rarely used.

The major methodology of PDPT is to establish a mathematical model without
decomposition and use an optimization solver. Half of the papers dealing with
PDPT use an optimization solver, even though some mathematical models are
non-linear, while no papers use mathematical programming for overall or
decomposed problems. The reason is that the problem with time constraints can

be clearly defined in a mathematical model, but the time constraints make it
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difficult to utilize the mathematical structure for mathematical programming-type
algorithm development.
In addition, we observe the following relationships between problem structure and
methodologies used:
e The mathematical programming approach works better for problems without time
constraints.
e  When the problem structure is complicated, problem-specific algorithms and local
improvement heuristics are frequently used.

e Metaheuristics can be applied for most problem structures.

Future Research Directions
The trend in solution approaches for modern supply chain operations is to use a hybrid
methodology, by combining the aforementioned methods and the use of a simulation as a
framework, especially for practical and large-scale problems. When a simulation is used
as a framework for solving the problem, a mathematical model is first established by
relaxing some uncertain factors and solved with a variety of approaches. Its solution is
then used as the input to the simulation model, then incorporated with different
uncertainty sources such as demand, facility failure, delivery time, etc., and the output of
the simulation model gives feedback for the parameters of the mathematical model to be
revised accordingly. This procedure can be repeated until the obtained solution is
efficient and robust.

In most of the literature, we find that stochastic factors are seldom incorporated in

the models with time constraints and routing issues. Most papers dealing with routing
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issues only consider a supply chain with at most two or three echelons. A third party is
not considered by most models, and when it is considered, it usually has unlimited or
very large capacity and zero or very short lead time. Thus, future research may be
directed towards an extension of the models to cover more general cases.

One of most promising directions is to construct a general framework to deal with
an integrated problem of a practical size. Each component of the framework should be
separately modeled and possible solution methodologies should be proposed; the decision
process, including information granularity and the decision period, should be carefully
designed. We may need to consider more qualitative decisions beyond the total cost. A
big company may prefer amicable small companies as its partners even though they are
not currently cost-effective. Alternatively, an industry-dependent framework is a possible
direction. For example, the supply chain network in electronic manufacturing might have
a general framework to handle various operations-level decisions.

In this literature review, the focus has been on a collaborative environment such
that all information is shared and a decision is made by a central authority and applied to
all players in the supply chain. In practice, each player (or group of players) may pursue
its own objective and all players may not try to achieve the global optimal. Even though
all or some try to collaborate together, information sharing can be a critical issue. Each
entity may have a different management policy in terms of a given information item,
sharing scheme, updating period, etc. Although a competitive supply chain has been
studied in the past decade, researchers have generally assumed only two echelons: either
suppliers and manufacturers or manufacturers and retailers. In the case where competition

exists across the entire supply chain, or in a part of the supply chain, the global optimum
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may differ significantly from the local optimum. Thus, a game-theoretic approach to
modeling and solving competitive but integrated supply chain problems may also be a

promising area for future research.

2.2 Emergency Operations Scheduling of Relief Supply Chain

In the second part of the literature review, we survey recent work in the field of
emergency operations scheduling in disaster relief specifically, based on which we will
then compare commercial supply chain operations and emergency operations of relief
supply chain, discuss gaps in this field, and propose directions for related research. The

literatures will be reviewed in Section 2.2.1 and the discussion presented in Section 2.2.2.

2.2.1 Literatures

There have been significant efforts devoted by researchers to emergency operations of
relief supply chains during the past two decades. Altay and Green (2006) discuss the
potential applications of operations research (OR) in the field of disaster operations
management. They reviewed related literatures and categorized the results through four
programmatic phases in emergency management: mitigation, preparedness, response and
recovery. According to their report, a majority of the papers were on mitigation while
fewer were on the remaining categories. Caunhye et al. (2012) conduct a comprehensive
review on the applications of operations research to emergency logistics. The scope of
their review includes pre-disaster planning about facility locations, stock pre-positioning,
evacuations, and short-term post-disaster planning about resource allocations, commodity

flows, and a combination of both. They also categorize the literature into those related to



- 46 -

facility locations and those related to relief distribution and casualty transportation. They
point out the lack of models for explicit response time minimization because of the
potential complexity for tracking response time, and that computation efficiency is a
main reason for the absence of comprehensive operations models for emergency logistics.
The review by Galindo and Batta (2013) is a continuation of Altay and Green (2006)

which evaluates how research in disaster operations management has evolved since then.

There have been quite a few studies on specific disaster relief operations in practice.
Haghani and Oh (1996) study a logistics problem encountered in disaster relief
management. In their paper, a logistics network with multi-commodity, multi-modal and
time constraints is transformed into a time-space network, upon which a mixed integer
programming model was formulated. Two heuristics are proposed: one resorts to
Lagrangian decomposition by exploring the network structure property, and the other
uses linear programming relaxation. Barbarosoglu et al. (2002) develop a mathematical
model for helicopter mission planning during disaster relief operations. The planning
includes both tactical decisions and operations decisions. The authors propose a two-
level framework including two mixed integer programming models: the top level covers
helicopter fleet determination, helicopter crew assignment and tour numbers
determination to minimize the total cost, while the bottom level covers the helicopter
routing, transportation and refueling to minimize the make span. An iterative
coordination process is used to generate non-dominant solutions for the multi-objective
problem and then an interactive procedure is proposed for decision-making to choose the
best feasible solution. Ozdamar et al. (2004) study the dynamic time-dependent

transportation problem that is solved repetitively at given time intervals during
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emergency logistics planning. Their model integrates the multi-commodity network flow
problem and the vehicle routing problem (VRP). The authors also discuss the differences
between the VRP in a regular scenario and that in an emergency situation. Vehicles are
treated as commodities in their study. Therefore the problem is modeled as a multi-period
multi-commodity network flow problem with arc capacities as variables instead of
parameters (imposed by the capacity of vehicles). A Lagrangian decomposition based
iterative methodology is proposed to solve the problem. Sheu (2007) works on relief
distribution in the crucial rescue periods after a disaster, and proposes a three-tier
network with relief suppliers, urgent relief distribution centers and relief-demanding
areas. The affected areas are grouped according to the urgency extent, where the urgency
attribute is measured by a fuzzy method. A two-stage demand-driven multi-objective
(demand fill rate and time-varying distribution cost) dynamic programming optimization
model is proposed, with one stage for the distribution between relief suppliers and
distribution centers and the other for the distribution between distribution centers and the
affected areas. Yi and Ozdamar (2007) consider the evacuation planning of wounded
people and location selection for temporary medical centers. By further extending the
model of Ozdamar et al. (2004), the authors treat vehicles as commodities to avoid
individual tracking of each vehicle. After the initial solution is obtained, they solve a
system of linear equations to extract from the optimal solution an exact schedule for each
vehicle in pseudo-polynomial time. The location problem is also coped with implicitly by
allocating optimal service rates to medical centers. The two-stage procedure is shown to
be computationally more efficient comparing to a VRP based single-stage formulation.

More recently, Lee et al. (2013a) presents a structural analysis for an emergency logistics
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optimization problem involving both renewable resources (medical teams that perform
treatments to the patients in shelters after a disaster) and non-renewable resources

(medical and emergency supplies).

2.2.2 Discussion

Based on the literature we surveyed, there are some major differences between the
operations of commercial supply chains and emergency supply chains for disaster relief.
First of all, the two have different goals. The main purpose of the commercial supply
chain operations is to reduce the operations cost. Compared to that, the emergency supply
chain operations emphasize responsiveness after a disaster and aims to provide timely
supplies of relief resources. Second, commercial supply chains have relatively complete
information regarding the supporting system including highway, truck capacity, facility
status, etc, but emergency supply chains frequently deal with fragmented and limited
information after a disaster. For example, planned shipping could be seriously delayed
because of disruptions in the transportation system. Also, the demands of commercial
supply chain are more stable and predictable: as a result, the volume of commercial
logistical activities is usually large but has a repeating pattern. On the other hand, the
demands in disaster relief are highly uncertain, and it is hard to forecast them effectively.
The volume of logistical activities typically spikes up after the disaster hits, and tapers off

as time goes by.

These differences lead to changes in the modeling and solution methodology for
emergency supply chain operations, and open up new research topics. Several research

gaps are mentioned in the literature. Altay and Green (2006) point out that the
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organizational and network structure in emergency supply chains are not well defined,
and some assumptions in the current literature are not realistic or reasonable. Later on,
the survey by Galindo and Batta (2013) further discuss these gaps. Also, there is a lack of
a comprehensive model for the overall emergency supply chain, as many of them only
focus on a part of the whole supply chain, either relief goods distributions, inventory
preposition/management, or helicopter/truck scheduling and routing, etc. Caunhye et al.
(2012) suggest that the reason for this is the potential computational complexity of a large
comprehensive model. Therefore, proposing efficient and practical solution
methodologies is also of great interest for further research. Our work in this dissertation

aims to contribute to one or more of the topics discussed above.
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CHPATER 3 AFORMAL DEFINITION OF PROBLEM P

The key problem for the present study is defined upon a three-stage supply chain network
(see Figure 3.1) encountered in a real life project performed by Rutgers Center for Supply
Chain Management (Lei, et al., 2012). The network consists of customer demand points,
regional distribution centers (DC), manufacturers, and suppliers of components used in
the rescue kit assemblies. The network produces and delivers both standard and
customized rescue kits subject to non-negligible lead times and order delivery deadlines.

All rescue kits are assembled according to their respective bill of materials (BOMs).

Component Manufacturers Distribution Customer
Suppliers Centers Demand Points

v Component inventory v Standard product inventory
» Component flow —— Standard product flow from inventory
Standard product flow from production ==+ » Customized product flow from production

Figure 3.1 A hypothetical three-stage supply chain network of problem P.

Customer demand points that, without loss of generality, each customer h has two orders,

one is for the standard rescue kits with order quantity D, > 0, and the other is for
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customized rescue kits with order quantity ISh >0. When 5h =0, D, >0, vh,
our problem reduces to the one with a single product and customer-dependent
order sizes. However, when ISh >0, D, =0, Vh, our problem becomes the one
with heterogeneous products and customer-dependent order sizes. Let T, be the
delivery deadline specified by customer h so that any delivery after T, will result

in a penalty proportional to the tardiness and the order quantity. The order for
standard rescue kits can be fulfilled by existing inventories at manufacturers and
DCs, and newly produced batches by manufacturers. The network does not carry
any inventory for customized kits, so orders for customized rescue kits can only
be fulfilled by make—to—order assembly operations performed at DCs. Let H be
the set of customers.

Capacitated manufacturers that each is able to assemble standard rescue kits and ship
directly to customers (without going through any DC) because of the urgency of
shipments. Each manufacturer carries an outbound inventory of standard rescue
kits as well as inbound inventories of raw materials (i.e., components for the
assembly operations) that can be used to make more standard kits. When the
outbound inventory is not enough to fulfill the customer orders, a manufacturer
may produce a new batch of standard rescue kits. When the inbound inventories
for certain components are not enough for the new batch, additional shipments
from the suppliers must be made which imposes, however, additional lead times.

Let M be the set of manufacturers.
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Regional Distribution centers (DCs) have the responsibility to produce and deliver
customized rescue kits (because they are closer to affected areas and have more
information about local needs). In practices, such DCs could also be
manufacturers for customized products who donate directly or collaborate with a
NGO. For example, during Typhoon Haiyan, Amway at Manila assembled 10,000
disaster  relief kits and designated them for the Philippines

(Source:http://chiefexecutive.net/typhoon-haiyan-corporate-donations-list).

Whenever the inbound inventory of components is not enough for a new assembly
operation, a DC places orders of additional supplies from respective component
suppliers, which again results in additional lead times. Each DC only carries an
inventory of standard rescue kits (which were pre-positioned before the disaster),
and does not produce standard rescue kits. Let K denote the set of regional DCs in
the network.

Capacitated component suppliers that each produces, inventories, and delivers a
particular component to support the assembly needs of manufacturers (for
standard rescue kits) and DCs (for customized rescue kits). Each supplier has an
outbound inventory of a particular finished component. Whenever the outbound
inventory is not enough, a new batch of a component will be produced by the
supplier, which however extends the lead time to fulfill the replenishment orders

from manufacturers and/or DCs. Let S be the set of component suppliers.

Our problem is to 1) allocate the outbound inventories for standard kits, at both
manufacturers and DCs, to customers; 2) assign customized orders to DCs; 3) decide the

batch size, and which customers will be served by the new batch of standard kits
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produced by each manufacturer, so that the total weighted tardiness in customer order
fulfillment is minimized. Note that while we introduced these assumptions for an
emergency operation, our study can also be generalized to a non-emergency situation. For
example, the regional DCs can be considered as a subset of manufacturers that are
designated to customize the products. Also note that each customer (e.g., a hospital) may
submit multiple orders over the period of disaster relief. What we consider in this study is
the operations scheduling for a given set of customer orders under a given availability of
inventory supplies together with a given shipping time status at a particular time point

during disaster relief.

To define this problem more formally, we introduce the following notations.

r The production rate of supplier s to produce the component s, S€ S ;

The production rate of manufacturer m to produce the standard rescue kit, me M

M The production rate of DC K to produce the customized rescue kit for customer h,
keK,heH;
Tyn Shipping time from supplier S to manufacturerm, S€S, me M ;

Ty Shipping time from suppliersto DCk, Se€S, ke K ;

Shipping time from manufacturer m to customerh, me M, he H;

Shipping time from DC k to customer h, ke K, he H ;



Fab
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Available outbound inventory for component S at supplier s, S€S ;

Auvailable inbound inventory for component s at manufacturerm, S€eS, me M ;
Auvailable inbound inventory for component s at DCk, S€S, ke K ;

Available outbound inventory for the standard rescue kit at manufacturer m,

meM ;

2

Auvailable outbound inventory for the standard rescue kit at DC k, k € K ;
Order quantity for the standard rescue kit by customer h, he H ;

Order quantity for the customized rescue kit by customer h, he H ;
The order due date of customer h, he H ;

Bill of materials for the standard rescue kit (i.e., the conversion ratio from
component S to the standard rescue kit) , SE€S ;
Bill of materials for the customization rescue kit ordered by customer h (i.e., the
conversion ratio from component S to the customization rescue kit for customer
h),seS, heH;
An upper bound on the flow quantity between location a and location b,

(a,bh)eSxMUSxK UM xH UK xH where

= :max{o,[Bs -max{O,ZDh -~ |mH— |;},
h
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F, =max{o,z(|3,j B, )- |;} and

h

Frri1h:Dh’ th:Dh’ Fkihzqw Fkh:q

where Faib stands for an upper bound on the flow quantity from the inventory

prepositioned at location a to location b.

G"PP"  An upper bound on the total weighted tardiness.
Decision variables:

Q. Quantity of component s produced by supplier s, S€S ;

d,,  Quantity of component s shipped from supplier S to manufacturerm, S€S,

meM;
O Quantity of component