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ABSTRACT OF THE DISSERTATION 

 

Hippocampal Neural Firing Dynamics During Sleep 

 

By ANDRES D. GROSM0ARK 

 

Dissertation Director: 

Dr. György Buzsáki 

 

 The focus of my thesis was the assessment of the presence and dynamics of non-

specific, putatively homeostatic, as well as specific memory-related, modifications in the 

structure of hippocampal firing patterns during sleep. As a step toward understanding 

sleep function, I developed an appropriate, open-source Matlab-based application for the 

visualization, annotation and detailed sleep scoring of long-time scale 

electrophysiological data relevant to brain state dynamics. 

 In my study of putatively homeostatic changes in excitability I found that the 

overall firing rates of hippocampal CA1 neurons  decreased across sleep concurrent with 

an increased recruitment of neuronal spiking to brief ‘ripple’ episodes, resulting in a net 

increase in neural synchrony. Unexpectedly, within non-REM episodes overall firing 

rates were found to gradually increase together with a decrease in recruitment of spiking 

to ripples. The rate increase within non-REM rate episodes was counteracted by a larger 

rapid decrease of discharge frequency during the interleaving REM episodes. Both the 

decreasing firing rates and the increasing synchrony during the course of sleep were 

correlated with the power of theta activity during REM episodes. These findings suggest 

a prominent role of REM sleep in sleep-related neuronal plasticity.  

 Lastly, in order to gauge the interaction between non-specific and memory-

specific contributions to sleep-related firing dynamics, I recorded hours of sleep in rats 

before and after exposure to a completely novel maze environment. While both replay 

and 'pre-play' were observed, both were found to be dominated by non-local (different 

silicon-probe shank) interactions. However, while replay was observed in both pair-wise 

and higher-order interactions, pre-play was surprisingly specifically restricted to higher-

order sequential interactions. This analysis also included the assessment of several 

traditional as well as novel methods for measuring replay, leading to significant 

methodological insights into their sensitivity to the established non-stationary nature of 

excitability in sleep, and to several suggestions for future work. 
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Introduction 

 

The behavioral patterns of nearly all animals are characterized by alternations 

between the awake and sleeping states. While most of the overt behaviors canonically 

associated with survival and reproduction, such as feeding, mating and exploration., 

occur in the awake state, many animals spend more than half their lives asleep (Siegel, 

2005). Moreover, while sleep patterns are often adjusted in response to external 

pressures, the lack of sleep produces cognitive deficits in the short term (Killgore, 2010) 

and can prove fatal if prolonged (Everson et al., 1989). The necessity of sleep for survival 

is also highlighted by the fact that sleep is a period of decreased motor activity 

and vigilance, thus increasing the risk of predation. Furthermore, animals whose 

evolutionary niche precludes canonical sleep have evolved mechanisms for preserving 

this behavioral state. Thus for instance cetaceans such as whales and dolphins who must 

swim continuously in order not to drown have evolved unihemispheric sleep - a state that 

allows each hemisphere of the brain to sleep while the other hemisphere remains online, 

ensuring that swimming is not interrupted (Mukhametov, 1987; Rattenborg et al., 2000). 

In placental mammals and many birds sleep is further divided into alternating REM and 

non-REM sleep states. Notably, the presence of REM and non-REM states in both 

mammals and birds is thought to have evolved independently in each of these lineages, 

suggesting that the differentiation of sleep into these two states is strongly beneficial for 

survival (Lee Kavanau, 2002; Siegel, 1995). However, despite the overwhelming amount 

of evidence suggesting a fundamental role for sleep in general, and REM and non-REM 

sleep in particular, in survival, the functions of sleep remains little understood. Here I 

examine some of the basic characteristics of sleep as well as theories regarding its 
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functional outcomes, with particular emphasis on the hippocampus, a structure 

extensively implicated in memory and memory consolidation. This chapter will motivate 

the specific aims of my research in advancing our understanding of the characteristics 

and functional outcomes of mammalian sleep.  

 

non-REM and REM Sleep Physiology  

Mammalian arousal states, and sleep in particular are regulated through the 

ascending influence of subcortical neuromodulatory systems. The effect of these diverse 

nuclei are mediated by signals including glutamate, GABA, monoamines, acetylcholine, 

as well as various neuropeptides (see Jones, 2003 for review). However, while the 

mechanisms for initiation and maintenance of sleep states, and in particular REM and 

non-REM sleep, are subcortical, these sleep states produce profoundly unique patterns of 

activity in forebrain structures. From the dynamic point of view, global sleep can be 

conceived of as a dampening oscillator in which the opposing forces are represented by 

non-REM and REM states. In humans sleep begins with a large amplitude cycle, with 

deep sleep (slow wave sleep) terminated by the first short REM episode. In the course of 

sleep, non-REM episodes become shorter and more shallow as they lose to the increasing 

duration of REM episodes (Buzsáki, 2006). In short, sleep is a dynamically organized 

event with two opposing components. 

 

non-REM Sleep Physiology 

 While the investigation on the mechanisms for the transition from waking to non-

REM sleep is ongoing, a canonical 'wake-sleep' neural switch has been extensively 
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studied. In this switch GABAergic and glycinergic neurons in the medial and particular 

ventrolateral preoptic nuclei of the hypothalamus (MnPO and VLPO, respectively) 

reciprocally inhibit most major subcortical neuromodulatory systems. These include the 

serotonergic dorsal raphea (DR), the histeminergic tuberomammillary nucleus (TMN), 

the noradrenergic locus coeruleus (LC), the dopaminergic ventral periaqueductal grey 

matter (vPAG), the acetylcholinergic lateral dorsal tagmental area (LDT) and 

peduncolopontine tagmental (PPT) nucleus, as well as several ascending glutametergic 

nuclei (Saper et al., 2010). In turn, the suppression of these ascending modulatory 

systems removes the bulk of the excitatory drive from the basal forebrain, the main 

acetylcholinergic input to the thalamus and cortical mantle (Zaborszky and Duque, 2003). 

The decrease in neuromodulatory concentrations, and particularly the near absence of 

acetylcholine, increases the activity of several mostly inhibitory membrane currents such 

as the muscarine sensitive current (IM), the potassium ‘leak’ current (IK,l), as well as the 

after-hyperpolarization current (IAHP, McCormick, 1993). In turn, this increase in intrinsic 

inhibitory drive, coupled with the related decrease in excitatory drive from neighboring 

neurons, results in network dynamics dominated by intrinsic pacemaking currents such as 

the hyperpolarization current (IH) and the low-threshold Ca
2+

 current (IT, McCormick, 

1992; Steriade, 2004; Steriade et al., 1993). This un-masked intrinsic oscillatory drive, 

coupled with complex synaptic interactions (many of which are also oscillatory), results 

in the synchronization of much of the thalamocortical network into discrete periods of 

activity and inactivity. This synchrony is reflected in the high-amplitude, low-frequency 

activity, known as slow oscillations, observed in cortical EEG during non-REM sleep 

(Riedner et al., 2011). Importantly, this unmasked oscillatory drive causes 
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thalamocortical neurons to switch from their regular spiking mode in which spiking 

events reflect sensory and cortical input, to their intrinsic ‘bursting’ mode in which 

spiking dynamics are dominated by intrinsic oscillations (Steriade et al., 1993). This has 

the effect of isolating cortical activity from sensory input during sleep, resulting in the 

familiar loss of consciousness.  

In the cortex non-REM periodic activity is organized into two, perhaps three main 

oscillatory types: the spindle (12-20Hz) oscillation of thalamic origin (Steriade, 1995), as 

well as the delta (1-4 Hz) and slow (0.1-1Hz) oscillations which are believed to be the 

result of intrinsic and synaptic mechanisms in both the cortex and the thalamus (Crunelli 

and Hughes, 2010; Steriade and Amzica, 1998; Steriade et al., 1993, 2001). In the cortex 

the slow and delta oscillations observed in the EEG reflect the presence of alternating 

periods of synchronized activity (‘UP’ periods) or hyperpolarization (‘DOWN’ periods) 

each lasting several hundred milliseconds . Spindles on the other hand, are discrete events 

which can occur during UP periods and last approximately 1 to 3 seconds in which much 

of cortex receives strong synchronizing excitatory drive from the thalamus (Steriade et 

al., 1993, 2001).  

In the hippocampus, the suppression of ascending modulatory input likewise 

results in synchronized, periodic network dynamics. However, consistent with the 

relative sparseness of thalamic input to the hippocampus, spindles are not generally 

thought to be a major driver of hippocampal activity during non-REM sleep (though see 

Sullivan et al., 2014). Instead, hippocampal activity during non-REM is largely organized 

into brief (~120ms) ripple events with a characteristic LFP frequency of ~150 to 250Hz 

and which are generated by the recurrent CA3 layer network  (Buzsáki, 1986; Buzsáki et 
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al., 1983, 1992; Csicsvari et al., 1999a; Ylinen et al., 1995). Notably, the low frequency 

oscillations observed in non-REM are thought to be coherent across much of the cortex, 

though the extent, dynamics and mechanism of this synchronization remains a subject of 

debate (Destexhe et al., 1999; Huber et al., 2004; Steriade, 2003; Vyazovskiy et al., 

2011a). Consistent with the partly global nature of low frequency oscillations, it has been 

reported that ripples events are partially predicted by cortical spindles and UP states  

(Battaglia et al., 2004; Benchenane et al., 2010; Siapas and Wilson, 1998; Siapas et al., 

2005; Sirota and Buzsáki, 2005; Wierzynski et al., 2009). However, this coordination, 

though clearly present, is rather weak. The relatively weak coordination between 

oscillations in the hippocampus and cerebral cortex during non-REM sleep is consistent 

with separate, though interacting, mechanisms for the generation of these oscillations.  

 

 

REM Sleep Physiology  

Complementing the diversity of neural dynamics observed in non-REM sleep, 

REM sleep represents an additional and fundamentally different type of sleep. Notably, it 

is REM sleep that is thought to be the state most conducive to those periods of bizarre 

ideation commonly referred to as dreams (Hobson, 1990; Hobson et al., 2000; Siegel, 

2011). While varying between species, the amount of sleep spent in REM is typically 

shorter than that spent in non-REM, making up approximately  24% of human sleep and  

19% of rodent (specifically rat) sleep (Lesku et al., 2008). However, in both birds and 

mammals REM episodes invariably occur only immediately subsequent to a non-REM 

episode (Siegel, 1995). Paralleling the state transition from the awake to the non-REM 
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state, REM sleep is established and supported by subcortical circuitry which reciprocally 

inhibits non-REM sleep promoting cells (Saper et al., 2010).The core REM ‘flip-flop’ 

switch consists of the REM promoting sublaterodorsal nucleus (SLD) of the pontine 

tegmentum and a population of REM inhibiting GABAergic cells in the ventrolateral 

periaqueductal grey (vlPAG). As non-REM sleep progresses the discharge of 

noradrenergic neurons of the LC, serotonergic neurons of the DR, as well as the 

discharge of VLPO neurons containing the neuropeptide orexin gradually decrease 

(Hassani et al., 2009; Luppi et al., 2012). This decrease has the effect of inhibiting the 

REM inhibiting vlPAG neurons, thus dis-inhibiting the SLD. When the SLD becomes 

sufficiently dis-inhibited a rapid state transition occurs in which GABAergic SLD cells 

inhibit the vlPAG, as well as the LC and DR, and resulting in the near complete 

elimination of both noradrenergic and serotonergic tone, in turn further disinhibiting the 

SLD (Gervasoni et al., 1998; Saper et al., 2010).Concurrently, disinhibited REM 

promoting glutamatergic neurons in the preocoeruleus region (PC) and parabrachial 

nucleus (PB) of the pons strongly activate cholinergic neurons of the basal forebrain as 

well as other forebrain targets (Saito et al., 1977; Vazquez and Baghdoyan, 2001). 

Excitation from these nuclei as well as from the cholinergic PPT is thought to be 

organized into waves first observed in the pons, lateral geniculate nucleus and occipital 

cortex (PGO waves) of cats (Jouvet, 1967). In rodent models these waves are simply 

referred to as P-waves, reflecting their origin in the pons. The activation of the basal 

forebrain results in the strong efflux of acetylcholine, leading to low-amplitude, high-

frequency cortical EEG patterns remarkably similar to those observed during active 

waking (Aserinsky and Kleitman, 1953; Llinás and Paré, 1991).  However, unlike waking 
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or non-REM sleep, locomotion is actively inhibited during REM sleep by the descending 

projections of glutamatergic cells in the SLD which activate medullar and spinal 

inhibitory interneurons (Vetrivelan et al., 2009). These interneurons in turn actively 

inhibit α-motor neurons leading to the loss of muscle tone and paralysis unique to REM 

(Chase, 2008; Kohyama, 2000). Notably, since the cranial nerves controlling the eye-

muscles bypass this circuit, large rapid eye movements (REM) are observed in humans 

during this state (Lai et al., 2010). 

 The above REM promoting switch results in a state characterized by 

desynchronized EEG similar to waking concurrent with the diminution of muscle tone to 

levels lower than those observed during non-REM sleep. Also unique to this state is the 

concurrence of high acetylcholinergic and low noradrenergic and serotonergic tone in the 

forebrain. This unique juxtaposition of characteristics has led this sleep state to also be 

referred to as paradoxical sleep by subsequent researchers (Jouvet and Michel, 1960). 

The resulting desynchronized state is characterized by tonic neural firing and gamma (30-

80Hz) LFP oscillations as well as strong theta (5 – 10Hz) oscillatory activity in the 

hippocampus, amygdala, and in cortical theta generators such as the medial prefrontal 

cortex (mPFC) of rats (Buzsáki, 1998; Montgomery et al., 2008; Popa et al., 2010; Siapas 

et al., 2005).  Contrasting non-REM, which is characterized by largely global 

fluctuations, the coherence of network activity during both waking and REM falls off 

sharply with distance, suggesting that local interactions dominate during these ‘active’ 

EEG states (Bullock et al., 1995; Destexhe et al., 1999; Steriade, 2003). In the 

hippocampus this bias towards local network processing may be reflected  in the 

inhibition of the tri-synaptic (dentate gyrus to CA3 layer to CA1 layer) pathway, in effect 
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partially isolating each of these layers (Montgomery et al., 2008; Sil’kis, 2009). 

However, it should be noted that REM sleep is also capable of sustaining longer range 

interactions as evidenced by the theta frequency coherence observed in neurons and LFPs 

between the hippocampus and mPFC during REM (Benchenane et al., 2010; Siapas et al., 

2005; Wierzynski et al., 2009).   

 Consistent with their role in the generation of theta band oscillatory activity, 

hippocampal interneurons show a pronounced increase in firing rate during the REM and 

active wake states (Buzsáki et al., 1983; Csicsvari et al., 1999a; Mizuseki et al., 2012). 

Despite the increase in inhibitory activity, CA1 layer pyramidal cell population firing 

rates are similar across both non-REM and REM and higher during waking (Csicsvari et 

al., 1999a). However, unlike the transient and sporadic periods of activity observed 

during non-REM, during REM CA1 layer pyramidal cells can exhibit episodes of 

sustained elevated firing lasting several hundred milliseconds to seconds and which are 

reminiscent of the place fields (see below) observed during active waking (Harris et al., 

2002; Louie and Wilson, 2001). As I presented in a poster in the 2010 Society for 

Neuroscience conference (Grosmark et al., 2010), hippocampal neural discharge during 

REM further contrasts that observed during non-REM in that: 

1) The firing rates of CA1 layer pyramidal cells and interneurons are more variable 

during individual REM episodes than individual non-REM episodes. 

2) The firing rates of CA1 layer pyramidal cells and interneurons are more highly 

preserved across pairs of non-REM episodes than across pairs of REM episodes.  
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These findings were unaffected by yoking the amount of analyzed non-REM to REM, 

and were also similar for the pair-wise correlations observed between cells. 

Consequently, when compared to non-REM, REM sleep represents a period characterized 

by increases in inhibitory sculpting, decreased synchrony, decreased global connectivity, 

sustained activation, and variability in hippocampal neural discharge.  

 

Functions of sleep 

 As alluded to earlier in this chapter, while many questions remain concerning the 

neurophysiological characteristics of sleep, the most puzzling outstanding question 

regarding this state may well be its function. Though this question has received many 

speculative answers from Aristotle to Freud, here we will discuss the two contemporary 

theories most related to the thesis research: 1) non-REM sleep promotes the homeostatic 

decrease in excitability, opposing the buildup in excitability from synaptic potentiation 

during waking, 2) non-REM and/or REM sleep support offline memory consolidation.    

 

Sleep and Synaptic Homeostasis 

 As we all know the propensity for sleep is governed by both circadian and 

homeostatic processes. The circadian process, referred to as process C, is simply our 

heightened propensity to sleep at certain times of the day (Borbély and Achermann, 

1999). The homeostatic process, process S, is evident in our heightened propensity for 

sleep after long bouts of waking, after sleep deprivation and after bouts of taxing physical 
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or mental activity. An updated version of the homeostatic theory proposed by Giulio 

Tononi and Chiara Cirelli argues that process S reflects the build-up of cellular 

excitability from synaptic potentiation during waking (Hanlon et al., 2011; Tononi, 2009; 

Tononi and Cirelli, 2003, 2006a). During subsequent sleep, this build-up is reversed 

specifically by non-REM slow-wave activity resulting in synaptic downscaling 

(depotentiation) and a reduction of process S. Slow-wave dependent synaptic 

downscaling thus would have the effect of keeping cellular excitability within a 

physiologically viable range, as well as limiting the energy expenditure needed for the 

maintenance of potentiated synapses and increased excitability (Vyazovskiy et al., 2008). 

This model fits well with the earlier ‘sequential hypothesis’ of sleep-related memory 

consolidation in which non-REM downscales all synapses by an approximately equal 

factor, with the effect of leaving only those synapses most potentiated during awake still 

potentiated above baseline (Giuditta et al., 1995). Subsequently, REM sleep promotes 

further potentiation specifically at these ‘surviving’ synapses, effectively reducing the 

noise (weak synapse) to signal (strong synapse) ratio.  However, it should be noted that 

the sequential hypothesis does not identify process S with the build-up of excitability 

during awake, and indeed does not require that such net build-up take place.  

 Converging evidence for the homeostatic hypothesis has been obtained through 

several different paradigms: 

1) Cortical expression of several genes associated with synaptic potentiation is 

highest during waking and lowest during non-REM (Cirelli, 2005; Cirelli and 

Tononi, 2000a; Pompeiano et al., 1995; Ribeiro et al., 2002).  
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2) Non-circadian sleep propensity (process S) is associated with an increase in 

cortical delta wave activity both during awake and during ensuing recovery sleep 

(Vyazovskiy et al., 2011b). 

3) Extracellularly recorded neurons in the somatosensory cortex of rats increase their 

firing across waking bouts and decrease their firing rate across sleep (Vyazovskiy 

et al., 2009) . 

4) Extra-cellular glutamatergic tone, as measured by in vivo voltometry, increases 

during waking and REM sleep and decreases during non-REM sleep (Dash et al., 

2009). 

5) Excitability as measured in vitro by the frequency of mEPSCs in neurons of the 

frontal cortex of rats and mice  is highest in sleep deprived animals, intermediate 

in spontaneously waking animals, and lowest in spontaneously sleeping animals 

(Liu et al., 2010). 

6) Cortical brain regions which are specifically recruited (and presumably 

potentiated) during a behavioral task, show increased delta activity during ensuing 

sleep (Hanlon et al., 2009; Huber et al., 2004, 2007). 

7) Low-frequency stimulation mimicking slow-wave activity leads to synaptic 

depotentiation (Kemp and Bashir, 2001). 

8) Low neuromodulatory, and particularly noradrenergic tone, as observed during 

sleep, is conducive to synaptic depotentiation (Cirelli, 2005; Cirelli and Tononi, 

2000b). 

9) In sleep deprived rats, individual cortical neurons can spontaneously display 

slow-wave like activity patterns during waking, presumably revealing latent 
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homeostatic influences otherwise hidden by the externally enforced waking state 

(Vyazovskiy et al., 2011a).  

Though supported by an impressive array of evidence, the homeostatic hypothesis faces 

several largely unresolved challenges. Firstly, it is well documented that homeostatic 

mechanisms controlling excitability are already present during waking (Abbott and 

Nelson, 2000; Burrone and Murthy, 2003; Turrigiano, 1999). For instance, lateral 

inhibition, a nearly universal feature of both cortical and subcortical networks closely 

links overall excitation and inhibition, actively preventing runaway excitation. Likewise, 

in a network with stochastic activity, spike-timing dependent plasticity (STDP) is thought 

to result in approximately equal levels of synaptic potentiation and depotentiation 

(Lubenov and Siapas, 2008; Turrigiano, 1999). Furthermore, while the evidence above 

supports the dominance of LTP over LTD during waking in the neocortex and vice-versa 

during sleep it does not support that this is the case in other brain regions (note that points 

1 through 9 above only pertain to the neocortex). In fact, it might be expected that brain 

regions with distinct network architectures and which support different forms of LTP and 

LTD, may well display alternate forms of synaptic homeostasis. Consequently, the 

neocortex may prove to be a special case and other brain regions may not display a 

dominance of LTP over LTD during waking. This is problematic because in this case it is 

unclear why the build-up of excitability in the neocortex alone would be the sole 

determinant of the homeostatic process S. Similarly, it is clear that process S can be built 

up through seemingly non-mental energy expenditures. For instance, performing a well-

known (so as to minimize learning) heavy exercise clearly leads to an increase in process 

S. Though it is known that exercise stimulates synaptic potentiation (Farmer et al., 2004), 
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it is not evident that in the marked increase in process S is proportional to (cortical) 

synaptic potentiation in this case. Furthermore, the homeostatic hypothesis predicts that 

the blockade of synaptic potentiation, for instance through the administration of NMDA 

blocker AP-5 or other pharmacological agents inhibiting LTP pathways, should lead to a 

virtual abolition of process S. Consequently, AP-5 should abolish the need for recovery 

sleep following sleep deprivation, while no such effect has been reported (Melik et al., 

2006; Prospero-García et al., 1994).   

 Beyond the correspondence between the build-up of excitability during waking 

and process S, or the generalizability of this build-up to non-neocortical structures, the 

attribution of synaptic downscaling to the non-REM state is also problematic. While low-

frequency stimulation is generally observed to induce LTD (though see also Habib and 

Dringenberg, 2010), it is not clear that such stimulation carried out in vivo or in vitro 

captures the dynamics of observed concurrently with the slow-wave oscillation. 

Specifically, it is unclear that such stimulation accounts for the presence of spindles or 

gamma frequency oscillations during non-REM UP periods (Mölle and Born, 2011), 

while both of these oscillations have been linked to synaptic potentiation (Rosanova and 

Ulrich, 2005; Whittington et al., 1997).  Moreover, low frequency stimulation fails to 

reflect slow wave activity in that the latter results in periodic, highly synchronous neural 

firing. Notably, the arrival of coincident inputs as is promoted by the synchronous 

activity observed during slow-wave sleep, is thought to promote to LTP (Axmacher et al., 

2006; Hebb, 1949). Furthermore, the researchers proposing the homeostatic theory of 

sleep maintain that high noradrenergic tone during waking, and low noradrenergic tone 

during non-REM sleep are instrumental in build-up and diminution of synaptic 
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potentiation and thus process S (Cirelli and Tononi, 2000a, 2000b; Cirelli et al., 1996, 

2005; Pompeiano et al., 1995; Tononi et al., 1990, 1994). Indeed, noradrenaline’s role in 

promoting neural excitability is well established (Gu, 2002; Mallick et al., 2010; Saar and 

Barkai, 2009). However, noradrenergic tone is lowest not during non-REM sleep but 

during REM sleep, when in fact it is virtually absent (Aston-Jones and Bloom, 1981; 

Hobson et al., 1975). The homeostatic hypothesis does not seem to account for this 

discrepancy or in fact for REM sleep generally. Finally, only one study (item 4 in the list 

above) has presented support for a decrease of excitability within individual non-REM 

episodes. However, this study looked at levels of extracellular glutamate, a signal that is 

known to not only reflect the synaptic activity of neurons but is also known to be 

extensively regulated by local astrocytes (Chuquet et al., 2010; Hansson and Rönnbäck, 

1995; Schousboe and Waagepetersen, 2005). Notably, astrocyte activity is also thought to 

change with sleep (Frank, 2011; Halassa et al., 2010). Consequently this is at best an 

indirect measure of excitability changes occurring within individual non-REM episodes. 

Surprisingly, changes occurring within individual non-REM or REM sleep episodes were 

either absent or not presented in a recent analysis of extracellular recorded  neurons 

across sleep (item 3 above).  

To establish the general validity of the homeostatic model, it is essential to test its 

predictions in multiple cortical areas. Moreover, since sleep consists of two competing 

physiological processes, non-REM and REM sleep, it is important to learn how these 

distinct sleep stages contribute to the hypothesized homeostatic function of sleep. 

Notably, homeostatic models do not attribute an explicit role to REM sleep, even though 

alterations of REM sleep are intricately related to cognitive and affective disorders 
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manifested in the waking brain (Born et al., 2006; Campbell and Gillin, 1987; Gierz et 

al., 1987; Walker, 2010). 

 

Memory Consolidation  

Far from being a unitary event, memory formation and maintenance has been 

found to be an ongoing process persisting for many days or weeks after initial learning. 

This ongoing mnemonic processing is termed memory consolidation, reflecting the 

observation that memories can become strengthened after initial learning without the 

need for further exposure to the learned stimulus (Stickgold and Walker, 2007). 

Consolidation is thought to be dependent on the coordinated ‘reactivation’ of those neural 

activity patterns established during learning (Buzsáki, 1989, 1998; Hebb, 1949). 

Moreover, for reactivation to accurately reflect learned activity patterns it must be 

protected from interference from evoked and ongoing neural activity, leading to the 

hypothesis that ‘off-line’ modes of minimal sensory input, most notably sleep, represent a 

privileged window for memory consolidation (Buzsáki, 1998; Diekelmann and Born, 

2010; Hebb, 1949; Stickgold and Walker, 2007). While reviewing the extensive literature 

in support of this hypothesis is beyond the scope of this chapter, some pertinent aspects 

of memory consolidation, and particularly hippocampal-dependent memory 

consolidation, will be here discussed.  

  The link between the hippocampus and memory first became evident 1957 

through the extraordinary clinical case of patient H.M., whose entire medial temporal 

lobe, including the hippocampal formation, were surgically removed in an attempt to treat 
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seemingly intractable epilepsy (Scoville and Milner, 1957). Surprisingly, after the 

surgery it was found that H.M. displayed severe temporally graded anterograde amnesia, 

in other words, while H.M. could remember facts learned up to several weeks before the 

surgery, he failed to remember information learned shortly before the surgery, or indeed 

to make new memories. Notably, this anterograde amnesia applied to a class of memories 

broadly described a ‘declarative’ due to the fact that they can be explicitly stated. 

However, ‘procedural’ memory, i.e. implicit motor learning such as that required for 

typing dexterity, was largely spared in subject H.M. This led to the hypothesis that the 

hippocampus serves as a temporary storage site for newly formed declarative memories 

until they are gradually transferred to their final storage site, presumably in the neocortex 

(Buzsáki, 1998; Eichenbaum, 2000; Quinn et al., 2008; Rauchs et al., 2005; Wiltgen et 

al., 2004).  

Though ‘declarative memory’ cannot be directly assessed in non-human animals, 

subsequent lesion work in rats has supported a central role for the hippocampus in 

‘declarative-like’ memory, particularly in memory of temporal and spatial relational 

information, such as that required for non-cued maze running (Buzsáki, 2005). The 

importance of the hippocampus in spatial memory as observed by lesion studies is  also 

consistent with the observation that in rats many hippocampal neurons are ‘place cells’, 

that is, during maze or open field running these cells become active only when the animal 

is in a circumscribed spatial location referred to as the cell’s ‘place field’ (Bird and 

Burgess, 2008; O’Keefe and Dostrovsky, 1971). Notably, similar to the amnesia observed 

in subject H.M., spatial memories in rats show a temporally graded anterograde 

dependence on the hippocampus after initial learning, even without further exposure to 
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the learning context (Squire, 1992). The hippocampo-fugal, cortico-petal transfer of 

declarative (or ‘declarative-like’) memories, often referred to a ‘system consolidation’, is 

thought to be a dominant (though not unique) mechanism of memory consolidation. Not 

surprisingly then, sleep has been implicated in system consolidation. For instance, in an 

elegant experiment Ribeiro and colleagues showed that unilateral stimulation of the 

entorhino-hippocampal perforant path during waking, led to waves of up-regulation of 

synaptic plasticity related immediate early genes (IEGs) in the ipsilateral neocortex 

during subsequent REM sleep (Ribeiro et al., 2002). Notably, the intimate relationship 

between the hippocampus and memory consolidation, and memory consolidation and 

sleep, motivates much of the research, including my own, into the physiology of the 

hippocampus during sleep.  

 Though initial behavioral experiments with human subjects failed to show a clear 

link between declarative memory and sleep (Smith, 2001), subsequent work using more 

demanding declarative memory tasks has shown that sleep does promote declarative 

memory consolidation (Barrett and Ekstrand, 1972; Binder et al., 2012; Plihal and Born, 

1997). In one such study overnight sleep subsequent to learning a (declarative) word-

pairing task led to a modest increase in remembered word-pairs when compared to awake 

controls. More notably however, when compared to awake controls, subjects allowed to 

sleep after initial word-pair learning showed markedly improved retention of these word 

pairs after this memory had been challenged by the learning of a separate, but similar, 

word-pair list (Ellenbogen et al., 2006a). The protective effect of sleep on newly formed 

memory from subsequent interference is referred to as memory stabilization. In another 

study, it was found that sleep promoted the formation transitive inferences from 
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previously learned item pairings (Ellenbogen et al., 2007). This transitive inference effect 

as well as the stabilization effect both imply that sleep not only can strengthen, but also 

modify memory content, thus suggesting an active, rather than passive or permissive 

function of sleep in memory consolidation (see Ellenbogen et al., 2006b for review).  

 While much evidence supports a memory consolidating function for sleep, 

attributing this function to particular sleep states remains a subject of active debate. 

Reflecting intuitions that memory consolidation would be facilitated by active off-line 

states, early theories of memory consolidation assumed a dominant role for REM sleep 

(Horne and McGrath, 1984). However, several preliminary observations that time spent 

in non-REM correlates with declarative memory (i.e. hippocampal-dependent) memory 

consolidation, while time spent in REM predicts procedural and emotional memory 

consolidation were formalized in the ‘dual process’ hypothesis of sleep-dependent 

memory consolidation (Barrett and Ekstrand, 1972; Borbély, 2009; Gujar et al., 2011; 

Maquet, 2001; Plihal and Born, 1997; Rauchs et al., 2005; Wagner et al., 2001). Though 

a majority of experiments agree with this general dichotomy, other experiments showing 

opposite patterns correlations of declarative and procedural memory with time spent in 

non-REM and REM complicate the interpretation of the dual process hypothesis 

(Aeschbach et al., 2008; Gais et al., 2000; Huber et al., 2004). Interpreting these results is 

further confounded by the fact that time spent in non-REM sleep, particularly at the 

beginning of the night, is correlated to time spent in REM sleep, particularly at the end of 

the night (Stickgold et al., 2000). Likewise, though declarative and procedural learning 

has been linked to the intensity of cortical spindle and slow oscillations (Bódizs et al., 

2002; Fogel et al., 2007; Gais et al., 2002), other studies have linked these forms of 
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learning to REM-related increases in theta-band power (Fogel et al., 2007; Jackson et al., 

2008).   

 

Replay 

 Off-line reactivation of behaviorally relevant neuronal patterns is a central tenet 

of neural models of system consolidation (Buzsáki, 1996). Given the hippocampus' 

unique role in temporary storage of memory traces, this structure was one of the first to 

be examined for evidence of reactivation. The first such evidence was presented in 1989 

with the demonstration that single hippocampal cells that display elevated firing rates 

during running in a maze, also show elevated firing rates during subsequent sleep 

(Pavlides and Winson, 1989a). With the advent of multi-electrode recordings techniques, 

it was shown that pairs of pyramidal cells which showed overlapping place fields during 

maze running also preferentially co-activated during the subsequent sleep epoch (Dupret 

et al., 2010; Kudrimoti et al., 1999; O’Neill et al., 2008; Wilson and McNaughton, 1994). 

Subsequently, it was shown that during sleep the sequential activation of groups of 

hippocampal pyramidal cells preserve the sequential structure observed during the 

preceding behavior -  a phenomenon termed 'replay'  (Davidson et al., 2009; Dragoi and 

Tonegawa, 2011; Gupta et al., 2010; Ji and Wilson, 2007; Johnson and Redish, 2005; 

Lansink et al., 2009; Lee and Wilson, 2002; Louie and Wilson, 2001; Nádasdy et al., 

1999). Notably, the off-line reinstatement of sequential activity as observed in replay is in 

line with several models describing the propagation of excitation through the 

hippocampal network (Battaglia and Pennartz, 2011; Hasselmo, 2008; Káli and Dayan, 
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2004). Moreover, because of the complexity and specificity of the reactivated sequences 

involved, replay has been taken as one of the strongest lines of evidence supporting the 

existence of memory trace reactivation. However, many important questions about 

replay, and more generally about the mechanisms by which sequential activity is 

generated in the hippocampus, remain unanswered.  

 The notable success of replay research is tempered by the presence of several 

confounds, addressed with varying degree of success in different studies. Firstly, it 

should be noted that while residual replay signals have been reported up to 24 hours after 

initial learning (Dupret et al., 2010; Louie and Wilson, 2001), several reports show a 

rapid decay of replay within the first 15 to 60 minutes of Post sleep (Kudrimoti et al., 

1999; Schwindel and McNaughton, 2011; Wilson and McNaughton, 1994).  It is unclear 

how this rapid initial decay can be reconciled with the slow time course of hippocampal-

dependent memory consolidation, typically thought to take days to weeks. Consequently, 

the mechanisms and functional implications of the observed time-course of replay 

remains an outstanding questions.   

 Other confounds relate to the specificity of replay to learning related effects. For 

instance, due to the high degree of non-stationarity in neural discharge during non-REM 

(i.e. the presence active and inactive states precluding the modeling of non-REM 

discharge as a simple Poisson process), pairs of pyramidal cells display a baseline 

positive correlations in the absence of learning specific co-modulation (Battaglia et al., 

2005; Peyrache et al., 2010; Tatsuno et al., 2006). Furthermore, this positive correlation 

is proportional to the cells’ firing rates (de la Rocha et al., 2007). Consequently, an 

increase in pair-wise correlations may reflect an increase in firing rate rather than an 
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increase in learning-specific co-modulation during Post sleep. Likewise, the use of Pre 

sleep as a control for Post sleep replay assumes the absence of non-learning specific 

changes between Pre and Post sleep, an assumption that is not typically explicitly tested. 

Finally, the observed replay signal, though highly statistically significant, accounts for 

only a small fraction of the variance observed in Post sleep pair-wise or sequential 

discharge dynamics. The structure and origin of the remaining, non-task specific 

dynamics and their relationship to the assumed specific replay of memory remain largely 

unanswered questions. 

 

Types of Replay 

 While often considered a unitary phenomena replay has in fact been measured in 

by variety of methods, which can potentially be dissociated and in turn each of which 

may be generated by unique physiological processes. In particular there are at least two 

general types of replay (see also table 1): 

1. Rate replay - the 'off-line' reactivation of single-cell (Hirase et al., 2001; Pavlides 

and Winson, 1989), pair-wise (Kudrimoti et al., 1999; Wilson and McNaughton, 

1994), or higher-order (Abeles and Gerstein, 1988; Peyrache et al., 2009) firing 

rate patterns observed during behavior. 

2. Sequence replay -the 'off-line' reactivation of pairs (Euston et al., 2007; Skaggs 

and McNaughton, 1996) or larger groups (Diba and Buzsáki, 2007; Dragoi and 

Tonegawa, 2011; Foster and Wilson, 2006)  of neurons in the sequence in 

which they fired during behavior.   
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Note that in all cases in which it is specifically sleep-related replay that is of interest 

(rather than wake related replay, Carr et al., 2011) a Pre behavioral epoch is used to 

control for non-learning specific changes which occur during the Maze epoch. 

Importantly, note that for both rate replay and sequence replay both pair-wise as well as 

higher-order (event based) methods have been developed. Moreover, pair-wise and 

higher-order methods each offer their own unique advantages and disadvantages in the 

study of replay.   

 

Pair-Wise Rate Replay 

 Motivated by research predicting and indicating the strengthening of pair-wise 

connectivity during learning (Bliss and Lømo, 1973; Hebb, 1949), the first instance of 

(none-single cell) replay was the report by Wilson and McNaughton in 1994 in which 

place cells that were correlated on a maze (i.e. had overlapping place fields) were 

selectively correlated (in 100 ms bins) during the subsequent Post sleep. Note that the 

pair-wise nature of their analysis enabled them to focus on particular interactions of 

interest, particularly, on the interactions between pairs of place cells with overlapping 

place fields recorded on different tetrodes. In addition, the pair-wise nature of the 

analysis also increased its statistical power by increasing the n of the analysis (for every i 

number of cells there are i*(i - 1)/2 unique pairs).  However, since the correlations were 

taken across many 100 ms bins recorded in the Post sleep, the fine time-scale temporal 

dynamics of the observed correlations were poorly defined - as is the case for most pair-

wise analysis (Perkel et al., 1967a). It should also be noted that the task-dependence of 
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the pair-wise interactions observed by Wilson and McNaughton were thought to be 

largely independent (and more robustly task-specific) from the task-dependent single-cell 

firing rate increases observed by Pavlides and Winson (1989). However, it is now known 

that pair-wise measures of co-activity are highly sensitive to task-specific and non-

specific changes in the firing rates of individual cells (Battaglia et al., 2005; de la Rocha 

et al., 2007). It is partly due to the ambiguity between single cell and pair-wise (as well as 

higher-order) effects, that these are here all grouped in the Rate Replay category.   

 

Event-Based Rate Replay 

 While long-term potentiation occurs at the pair-wise level, these pair-wise 

interactions are thought to aggregate into the recruitment of higher-order (that is, more 

than two cell) ensembles (Hebb, 1949) which function synergistically to affect their 

downstream targets (Buzsáki, 2010). This has motivated several groups to examine high 

order structure (Chapin and Nicolelis, 1999; Peyrache et al., 2009; Ribeiro et al., 2004). 

One such group, Peyrache et al., 2009, used a principal component analysis based 

technique to reveal the replay of rule-learning specific changes in the medial prefrontal 

cortex. Crucially, the ability to assign a particular quantifiable 'replay' value to each 

activity time-bin analyzed during the Post epoch allowed them to determine that the 

medial prefrontal replay of rule learning was impressively time-locked to ripple/sharp-

wave occurrence as detected in the posterior hippocampus. Thus, the putatively higher 

order (i.e. 'ensemble') structure observed, as well as the fine temporal resolution afforded, 

are two main advantages associated with the event based approach. The term 'putatively 
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higher-order' is highlighted because putatively higher-order based effects may be caused 

by a few (or a single) single-cell or second-order (i.e. pair-wise) interactions (Tatsuno et 

al., 2006). The difficulty associated with determining the particular cells or interactions 

which are determinate of the overall effect, may thus be considered a primary drawback 

of event based methods generally1. 

  

Pair-Wise Sequence Replay 

 Nearly all the types of memory known to be hippocampus-dependent in the rodent 

share the commonality of being memories of sequentially experienced events 

(Wallenstein et al., 1998). Thus memory of the sequence by which a tone predicts a 

temporally displaced noxious air-puff (Millenson et al., 1977), the sequence of places 

(i.e. a trajectory) leading to a submerged platform (Morris et al., 1982), and the sequence 

of odors indicating correct reward (Kesner et al., 2002) all rely on an intact (specifically 

dorsal) hippocampus. This known hippocampal-dependence of sequential activity 

motivated Skaggs and McNaughton (1996) to demonstrate that the pair-wise sequence of 

firing (i.e. A before B, versus B before A) as estimated by using 400 ms - wide 

crosscorrelograms (both on the maze and during the Pre/Post epochs) was preserved from 

behavior to the Post epoch. Similarly to Wilson and McNaughton (1994), Skaggs and 

McNaughton (1996) took advantage of the pair-wise nature of their method to restrict 

their analysis to pairs of cells which displayed overlapping place-fields and which were 

                                                           
1
To be clear, Peyrache et al. 2009, though not some others (e.g. Ribeiro et al., 2004), went some ways to 

convincingly show that their effect was not due to a small number of cells, and to specify which pairs of 

cells contributed the most to the effect. Here we simply note that this analysis was carried out separately 

to, and was not necessarily implied by, their main result.   



25 

 

 

 

recorded on separate tetrodes. Notably, the temporal specificity of the observed effects 

was taken to be less sensitive to non-specific effects than the earlier pair-wise co-activity 

measure (though see Moore et al., 1996 and Peyrache et al., 2010) and more reflective of 

the putatively sequentially structured activity expected in the highly recurrent 

hippocampal layer CA3 network (Skaggs and McNaughton, 1996).  

 

Event-Based Sequence Replay  

 Similarly to the logic that motivated research into activity ensembles (see Event-

Based Rate Replay above), the discovery of pair-wise sequence replay (Qin et al., 1997; 

Skaggs and McNaughton, 1996) led researchers to theorize the presence of higher-order 

sequential structure. As noted above the hippocampus is necessary for the coding of 

memory of sequential events generally, and spatial sequences in particular. In a simple 

model, hippocampal encoding of a spatial sequence such as A-B-C purely results from 

B's pair-wise tendency to fire after A, and C's pair-wise tendency to fire after B, with no 

interaction present between A and C - such as is predicted by ‘synfire’ chain models 

(Abeles et al., 1993). Notably, in this case interference between pair-wise interactions 

could result in corrupted sequences. This is due to the fact that the same cell may be 

involved in coding different sequences in different mazes. So for instance, hypothetical 

cell B may also participate in sequence X-B-Z in addition to sequence A-B-C. In this 

case, cell A's discharge would predict cell B's discharge which in some cases would lead 

to cell Z's discharge, resulting in the corrupted sequence A-B-Z – a sequence with no 

behavioral correlate (Nádasdy, 2000). Preventing this type of sequence corruption is one 
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of the reasons why neural models of memory consolidation typically predict network 

(that is neural-group) level mechanisms for the coordination of sequential reactivation 

(Hebb, 1949). In addition to this theoretical consideration, work on event-based sequence 

replay was motivated by the observation of the presence and imporatance of sharp-

wave/ripples in the hippocampus (Buzsáki et al., 1983, 1992). Importantly sharp-

wave/ripples dominate neural firing during 'off-line' states and are thought to facilitate the 

'binding' of cells that were sequentially but non-contiguously activated during behavior 

by inducing their co-activity within the small time-constants relevant to learning and 

memory(Buzsáki, 1989; Girardeau et al., 2009). Importantly, due to the fact that sharp-

wave/ripples are typically defined by LFP criteria and may not involved the cells being 

recorded, most studies of hippocampal event-based sequence replay have instead 

analyzed population activity events as defined directly from the spiking of the recorded 

pyramidal cell population using various criteria (these events are also referred to as 'ON 

events' (Dragoi and Tonegawa, 2011) or 'Frames' (Ji and Wilson, 2007) in the literature). 

 Notably, most of the studies measuring event-based sequential activity in the 

hippocampus were carried out in the awake state (Diba and Buzsáki, 2007; Foster and 

Wilson, 2006; Karlsson and Frank, 2009; Pfeiffer and Foster, 2013) during which 

hippocampal replay may be stronger (Carr et al., 2011). The first report of event-based 

sequential structure during non-REM was conducted by Lee and Wilson (2002). They 

used a 'combinatorial' method by which they examined the distribution of 'words': 

uninterrupted sequences of place cell activity occurring during population activity events 

and matching the sequence of their place fields on a linear track. While groundbreaking 

and thorough the method employed by Lee and Wilson (2002) can be criticized in at least 
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two regards. Firs, in stipulating that 'words' have no interruptions (i.e. a place cell spiking 

out of order) their method is very sensitive to the noise associated with single cells. 

Indeed, this method is somewhat unique in that, though requiring a minimum number of 

place cells, its quality would be expected to decrease with increasing cell number, as the 

'miss-firing' of any additional cell could cause the termination of the sequence in any 

given event - leading to temporally shorter and shorter sequences. Secondly, the null 

distribution Lee and Wilson (2002) used to compute the significance of their effect was 

based on the permutations of the spike sequences in each event. This is problematic in 

that this null assumes the lack of any common sequence content across population 

activity events - an assumption that could statistically bias the results (Diba and Buzsáki, 

2007; Pfeiffer and Foster, 2013).  

Partly in order address these concerns regarding the method of Lee and Wilson 

(also used in Ji and Wilson, 2007), a novel spike-sequence replay method was developed 

based on the Spearman (rank-order) correlation between sequence of activity of place-

fields on a maze and their sequence of activity in a given population activity event (Diba 

and Buzsáki, 2007; Dragoi and Tonegawa, 2011, 2013; Foster and Wilson, 2006). By use 

of the rank-ordered correlation (rather than longest matching 'word'), this method is more 

robust against the noise of the single noisiest cell in any given event and is thus expected 

to become more, rather than less, precise as a function of number of cells in the sample. 

Secondly, in this method it is the order of place fields on the maze, rather than the order 

of activity in any given event, that is permutated to generate the null distribution - 

ensuring that the null distribution of rank-order correlations preserves the effect of any 

sequence structure intrinsic to the population activity events themselves. The rank-order 
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correlation method was used to discover the presence of reverse replay, the discharge of 

place cells during a population activity event in the opposite order as the sequence of 

their place fields on a maze (Diba and Buzsáki, 2007; Foster and Wilson, 2006). Note 

that since on the linear maze hippocampal neurons tend to display a distinct set of place 

fields when running in the left and right directions, replay is typically assessed 

independently in each of these directions (Davidson et al., 2009; Diba and Buzsáki, 2007; 

Dragoi and Tonegawa, 2011; Foster and Wilson, 2006). In addition, as a consequence of 

the discovery of reverse replay, researchers studying replay in general also must take the 

potential for this additional, reverse, direction into account for replay of either left or 

right runs on a linear track (Davidson et al., 2009; Dragoi and Tonegawa, 2011, 2013). 

As is the case for event-based methods when compared against the pair-wise methods 

discussed above, rank-order replay has the advantage of providing fine temporal  (i.e. 

event-by-event) resolution in the measurement of the replay signal. However, it is also 

expected to necessarily be biased towards higher firing rate cells proportionally to the 

extent to which these are 'over-represented' in the number of events in which they 

participate.    

There are currently only two studies that have used the rank-order method for 

studying activity patterns during sleep rather than awake: the two pre-play studies 

(discussed below) performed by Dragoi and Tonegawa (2011, 2013).  

 

Bayesian Decoding of Replay 
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 Another, and more recent, approach to the study of replay is the use of 'decoding' 

algorithms which, rather than mapping individual neuron's receptive fields, map the 

activity of populations of neurons onto stimulus space (Chen, 2013; Kloosterman, 2012). 

While several Bayesian decoding methods for neural data have been proposed (see Chen, 

2013 for review), we will here concentrate on a relatively recent uniform-prior 

probability, memory-less algorithm (Davidson et al., 2009; Kloosterman, 2012) which 

has been increasingly used in hippocampal memory research (Davidson et al., 2009; 

Dragoi and Tonegawa, 2011, 2013; Pfeiffer and Foster, 2013). This method, itself a 

member of a much wider set of dimensionality reduction algorithms, is powerful in 

several regards. First, the Bayesian method considered here uses a set of previously 

collected stimulus induced population firing rate patterns whose evoking stimuli are 

known, as the probability distribution against which the evidence provided by a new set 

of population firing rate patterns is used to predict the identity of an unknown stimulus. 

Consequently, the Bayesian algorithm is a transform from population activity data to 

stimulus space and is thus well suited for the study of memory in which 'unlabeled' 

activity contains 'evidence' of stimulus-specific memory content. In addition, because its 

output is in terms of stimulus space, Bayesian decoding can also be usefully validated 

(and cross-validated) by tracking its performance in decoding neural content of perceived 

(rather than remembered) stimuli.  Finally, by performing this labeling using the evidence 

provided by all the population activity in a given time bin - it is very robust against the 

noise associated with individual neurons and is informed by an individual cell's activity 

as well as it's silence (Kloosterman, 2012).  
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 Yet, the Bayesian technique also has some important draw-backs. In particular it 

requires the data to first be binned into arbitrary (typically 15 or 20 ms, Davidson et al., 

2009; Pfeiffer and Foster, 2013) windows. Perhaps more importantly however, the 

physiological nature of the transformation involved is often opaque, and so it can be 

difficult to determine the individual cells contributing to the observed effect, similarly to 

other methods for dimensionality reduction. 

 In the Bayesian method variant relevant to hippocampal memory research 

proposed in Davidson et al., 2009, stimulus induced activity vectors are defined as the 

average population activity as binned in (2 to 5 cm, Davidson et al., 2009; Dragoi & 

Tonegawa, 2011) spatial bins along a linear (or linearized, Davidson et al., 2009) track. 

The population activity within individual population activity events is divided into (15 to 

20 ms) temporal bins, the posterior probability of position given each binned activity 

vector is calculated and normalized to one across all positions (within each bin). For each 

bin in a population activity event, each element of the posterior probability vector 

represents the estimate that the animal is directly experiencing or remembering that 

spatial bin. In other words, for each temporal bin, each element of the posterior 

probability vector is a measure of the similarity of the population activity vector in that 

temporal bin to the population activity vector associated with a particular spatial bin.  

 The sequence replay content of a particular population activity event is calculated 

across all the temporal bins in that event via a 'line-casting' algorithm. In this algorithm a 

dense sampling (i.e. exhaustive search) is performed across all linear trajectories (i.e., 

across 15 to 20 ms temporal bins and 2 to 5 cm spatial bins) to determine the particular 

linear trajectory associated with the maximal average posterior probability (Davidson et 
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al., 2009; Kloosterman, 2012). This average posterior probability (i.e. the one associated 

with the 'best' trajectory) is taken as the event's 'replay score'. A null distribution is 

similarly derived from permuted versions of the stimulus evoked activity vectors.  

 The 'line-casting' algorithm is an elegant solution in that the trajectories it derives 

make use of the entire space of posterior probability of position, rather than just the peak 

(i.e. best estimate) at each bin. However, while the dense sampling involved is well suited 

for small number of events such as those that occur during waking maze-running or 

during short sleep recordings, the computational demands of the dense-sampling 

algorithm (which must also be run on each shuffled controls) can be prohibitively time 

consuming when analyzing larger data sets. In addition, and in contrast to the tied-rank 

correlation method, this algorithm is restricted to linear, rather simply sequential, 

trajectories - an assumption made for computationally-relevant (i.e., in order to make full 

use of the entire distribution of posterior probabilities) rather than physiologically-

relevant reasons. Finally, and perhaps most importantly, in this method the posterior 

probability (a measure of how much each temporal bin's activity resembles a particular 

spatial bin's activity) is only assessed as a function of trajectory (a measure of spatial 

sequence). This conflation assumes that rate replay, and sequence replay are 

physiologically an entirely unitary phenomenon with identical dynamics, though perhaps 

different noise (see Huxter et al., 2003 for a counter-instance). This assumption, however, 

is not tested. 

 As it should be clear from the above summary of the currently available methods, 

each method has its advantages and shortcomings and the statistical results obtained with 

the respective methods may identify different, occasionally opposing, relationships and, 
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thus may lead to unique insights. Without assuming a ‘best’ method(s) (as is 

traditionnally done), I used several of them in my dissertation work and illustrate how the 

choice of the method can affect the interpretation of complex, spike-based measurements 

of memory replay and preplay. 

 

Pre-Play 

 Sequential replay (both pair-wise and event-based) has previously been taken as 

one of the strongest pieces of available evidence of the maze-specificity of replayed 

memory content (Lee and Wilson, 2002; Nádasdy et al., 1999; Skaggs and McNaughton, 

1996). However, two recent studies by Dragoi and Tonegawa (2011, 2013), show that the 

sequence of place fields which place cells form on a novel maze can be statistically 

predicted by their sequential activation during population activity events occurring before 

first exposure to the maze. The novelty of the maze to the experimental subject is in this 

case crucial to establishing that the sequential content observed is not in fact replay of a 

previous exposure. Note that in perhaps most other brain structures, the prediction of 

stimulus-specific responses during 'off-line' states would be considered rather 

unsurprising. Indeed, in the sensory neocortex, cells with overlapping receptive fields are 

known to co-vary even during 'off-line' states (Kenet et al., 2003; Luczak et al., 2009), 

due to the fact that receptive fields in these arise from largely hard-wired developmental 

programs (Hubel and Wiesel, 1962; Yoshimura et al., 2005). However, the finding of pre-

play in the hippocampus was largely unexpected because place coding in this structure is 

known to be radically modulated by the specific context of the space being coded in that 

both stimulus-specific single cell responses (Muller and Kubie, 1987) as well as pair-wise 
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interactions (Hayman et al., 2003; Jeffery, 2011) do not reliably correlate across 

environments. Dragoi and Tonegawa interpret their results as implying the presence of 

discrete, hidden attractors within the recursive layer CA3 network (Dragoi and 

Tonegawa, 2014), though this particular interpretation has yet to be confirmed. 

Furthermore, in both replay papers Dragoi & Tonegawa (20011, 2013) show sequential 

higher-order replay using the rank-order and Bayesian decoding methods. Indeed, 

establishing which other metrics display the pre-play effect may be a useful step in 

elucidating its origins. It should be stressed, however, that regardless of its mechanisms 

the discovery of pre-play highlighted our crude understanding of the structure and 

mechanics governing non-task specific 'off-line' hippocampal firing and how this non-

specific component may interact with stimulus coding and memory formation.  

 Recent work on the statistical properties of firing rate, synaptic weight and the 

magnitude of population synchrony distributions, however, may shed light to the 

physiological origin of pre-play. All these, and many other, distributions show long-

tailed, typically lognormal distributions. Moreover, the log distributions remain 

statistically correlated across brain states, environments and situations (Buzsaki and 

Mizuseki, 2014; Grosmark et al., 2010). An inevitable consequence of such 

preconfigured networks with a minority of neurons and synapses dominating every brain 

state include pre-play, preserved activity across multiple sleep sessions and a large part of 

the replay process. Thus, it is no longer surprising that rates and cell pairs correlate and 

the task is to demonstrate what aspects of these parameters change during learning 

beyond what is expected from the preconfigured brain dynamic. 
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Goal of the Thesis  

 To advance our understanding of both sleep physiology and function I have used 

both hippocampal layer CA1 silicon-probe based sleep recordings (figure 1.4) previously 

performed by other members in the lab as well as implanted and recorded my own 

animals during both sleep and the performance of a novelty task. The goal of these 

experiments and analyses, and the goal of my thesis, was to further our knowledge 

regarding the dynamics and functional significance of sleep in the hippocampus. During 

the course of these studies, it has further been my goal to make a contribution to building 

a richer analytical vocabulary in which the nuances and complexities of the diverse 

phenomena observed in sleep can be better understood and more readily related to known 

hippocampal function.  
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Methods 

TheStateEditor: Behavioral State Scoring and Data Visualization and Annotation 

Software 

 In order to perform thorough and efficient behavioral state scoring and large time-

scale data visualization and annotation, software was developed that integrates the three 

primary data types used in behavioral state scoring: 1) whitened, log-transformed time-

resolved spectrograms, 2) movement or EMG data, and 3) raw LFP visualization in one 

portable and end-user friendly application. Furthermore such an application should be 

stable, self-contained (ideally, not requiring extensive background library of sub-

functions), have wide cross-platform support, be adaptable to many potential  uses of 

large time-scale electrophysiological data, be able to interact with costume-made user 

data and produce easily interpretable outputs. Importantly, such software should present 

the end-user with an intuitive, interactive and user friendly experience – all features that 

maximize the efficiency of use. Finally, the software should be able to accept data entry 

in the widely accessible Matlab vector format, making the utility accessible to other labs 

which do not regularly use our lab’s data formatting conventions (Hazan et al., 2006).  

In order to develop such a utility we used Matlab (a widely used, cross-platform, 

commercially available software (MATLAB and Statistics Toolbox 2012b) for data 

analysis and visualization) scripts previously developed and tested in our lab. For 

instance, we employed the excellent, computationally efficient and widely used scripts 

for the whitening of EEG/LFP signals and for the calculation of time-resolved 

spectrograms previously developed by Dr. Anton Sirota during his time at our lab. While 
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an exhaustive elaboration of the intricacies of coding analytical and graphical utilities in 

Matlab is not here appropriate (see Gilat, 2010), it should be noted that in many instances 

the native Matlab functionalities were found to be ill-suited for the current purposes. As 

an example, Matlab’s built-in zooming function has the undesired effect of ‘grabbing’ 

incoming keystrokes, making the overall utility insensitive to further user input. 

Consequently, TheStateEditor’s, zooming utility, as well as its scrolling, resizing, and 

color-limit selection utilities, as well as others functions such as the different effects of 

single, double and sustained clicks, were all costume built within the Matlab frameowork.  

 

REM Sleep Reorganizes Hippocampal Excitability 

Animals, Surgery and Data Collection 

Five male Long-Evans rats (250-400 g) were implanted with a 4- or 8-shank silicon probe 

in the right dorsal hippocampus under isoflurane anesthesia (1-1.5%) and recorded from 

CA1 pyramidal layers, as described earlier (Diba and Buzsáki, 2007; Mizuseki et al., 

2009; Pastalkova et al., 2008). Each shank of the silicon probe had eight recording sites 

(160 µm
2
 each site, 1–3-MΩ impedance) and the inter-shank distance was 200 µm. 

Recordings sites were staggered to provide a two-dimensional arrangement (20-µm 

vertical separation). The silicon probes were attached to micromanipulators and moved 

slowly to the target over several days/weeks. Two stainless steel screws inserted above 

the cerebellum were used as indifferent and ground electrodes. The position of the 

electrodes was confirmed histologically and reported previously in detail (Mizuseki et al., 

2009). Sleep recordings were performed in the animal’s home cage during the day (i.e., 

during the sleep cycle of the nocturnal rodent), while the behavior of the rat and LFPs 
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from several channels were monitored by the experimenter. For the detection of head 

movements, two small light-emitted diodes (5-cm separation), mounted above the 

headstage, were recorded by a digital video camera and sampled (at 40 Hz). All protocols 

were approved by the Institutional Animal Care and Use Committee of Rutgers 

University. 

 

Identification of Non-REM and REM Episodes 

Rapid eye movement sleep (REM) and non-REM episodes were detected offline using 

the ratio of the power in theta band (5–11 Hz) to delta band (1–4 Hz) of LFP, followed 

by manual adjustment with the aid of visual inspection of whitened power spectra (using 

a low-order autoregressive model) and the raw traces (Mizuseki et al., 2009, 2011; Sirota 

et al., 2008). The manual adjustment was necessary to remove falsely detected short 

segments of data. REM episodes shorter than 50 sec were discarded. REM epochs were 

cross-validated with experimenter notes taken during recording to confirm that the rat 

was immobile and sleeping (Mizuseki et al., 2009). During sleep recording, the rat 

typically curled up in one of the corners of the home cage. Occasionally, behavioral 

signs of phasic REM sleep were present, including limb movements and twitching of 

whiskers. Although electromyogram was not recorded in the present experiments, 

several previous studies have compared hippocampal and neocortical activities during 

waking and sleep stages (Ribeiro et al., 2004; Robinson et al., 1977) and demonstrated 

that the presence of hippocampal theta oscillation in an animal with sleeping posture is 

sufficient to identify REM sleep (Robinson et al., 1977). Across all rats and sleep 

sessions, 82 non-REM episodes (mean length 498.3 sec ± 30.98 SEM) and 45 REM 
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episodes (mean length 167.8 sec ± 12.5 SEM) were detected. 

 

Unit Clustering and Cell Classification 

Detailed information about the recording system and spike sorting has been 

described (Diba and Buzsáki, 2007; Mizuseki et al., 2009; Pastalkova et al., 2008). 

Briefly, signals were amplified (1,000×), bandpass-filtered (1 Hz to 5 kHz) and acquired 

continuously at 20 kHz (RC Electronics) or 32 kHz (NeuraLynx) at 16-bit resolution. 

After recording, the signals were down-sampled to 1,250 Hz for the local field potential 

(LFP) analysis. For offline spike sorting, the wideband signals were digitally high-pass 

filtered (0.8-5 kHz) and the waveforms were resampled. Neurophysiological and 

behavioral data were explored using NeuroScope (http://neuroscope.sourceforge.net). 

Spike sorting was performed automatically, using KlustaKwik 

(http://klustawik.sourceforge.net), followed by manual adjustment of the clusters (using 

“Klusters” software package;  http://klusters.sourceforge.net). Within the remaining data, 

only units with clear refractory periods and well-defined cluster boundaries were 

included in the analyses (Harris et al., 2000). While refractory periods of 

autocorrelograms of single units and cross-correlograms of unit pairs do not guarantee 

perfect neuron isolation, they indicate spike ‘contamination’ from other neurons (Harris 

et al., 2000). After spike sorting, we plotted the spike features of units (principal 

components) as a function of time to assess recording stability, and the units with signs of 

significant drift over the period of recording were discarded. The amplitudes of the units 

included in this study, from the first to the last non-REM sleep episodes, were highly 
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preserved (r=0.94, r=0.98 for putative pyramidal cells and interneurons, respectively; 

figure 3.5). 

Hippocampal principal cells and interneurons were separated on the basis of their 

auto-correlograms, combination of trough to peak latency and the asymmetry index of the 

filtered (0.8 kHz – 5 kHz) spike waveform, bursting properties and mean firing rates 

(Barthó et al., 2004; Csicsvari et al., 1998; Harris et al., 2000; Mizuseki et al., 2009). 

Bursting was quantified as the fraction of interspike intervals shorter than or equal to 6 

miliseconds (Mizuseki et al., 2009). It should be emphasized that there are no generally 

accepted methods for the segregation of principal cells and interneurons. However, 

several previous studies, using either simultaneous intracellular and extracellular 

recordings (Marshall et al., 2002; Quilichini et al., 2010) or optogenetic identification of 

interneurons (Royer et al., 2012), indicate that the above single cell features can reliably 

separate at least the fast spiking interneuron population from the bursting pyramidal cells. 

In addition, we applied a physiologically identification of the recorded units, using their 

short-latency temporal interactions with other neurons (Barthó et al., 2004; Mizuseki et 

al., 2009) to a subgroup of neurons. Monosynaptic connections between pairs of units 

were detected by a non-parametric significance test based on jittering of spike trains as 

described previously in detail (Fujisawa et al., 2008). Briefly, for each cell pair, each 

spike in each neuron in the original data set was randomly and independently perturbed 

(or "jittered") on a uniform interval of [-5,+5] ms, to form a surrogate data set. The 

process was repeated independently 1000 times to form 1000 such surrogate data sets. 

Then, the cross-correlograms were constructed for surrogate data sets as a function of 

latency across the interval [-20, +20] msec. Global bands at acceptance level 99% were 
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constructed for the cross-correlogram from the maximum and minimum of each jitter 

surrogate cross-correlogram across the interval [-20, +20] msec. The short latency peak in 

the original cross-correlogram was determined to be statistically significant (at p<0.01) 

when the counts in the cross-correlogram were atypical with respect to the upper global 

band anywhere at the latency [1,5] msec (Fujisawa et al., 2008). Similarly, short latency 

significant troughs were considered to be due to inhibition when at least one 1 msec bin 

was significantly depressed (p<0.01) anywhere at the latency [1,5] msec. Approximately 

30% of the units included in the statistical analyses were identified by the short-term 

cross-correlation method. This physiology-based classification method reliably correlated 

with unit classification based on single spike features (Mizuseki et al., 2009). Units with 

mean firing rates of less 0.2 Hz were excluded to avoid ‘noise’ in the statistical tests. A 

total of 618 CA1 putative principal neurons (mean rate 0.575Hz ±0.016 SEM) and 111 

putative interneurons (mean rate 15.69±0.90 SEM) were identified and used for analyses. 

 

Firing Pattern and LFP Activity Changes Across Sleep, Within non-REM and Within 

REM 

Firing pattern changes ‘across sleep’ were defined as changes occurring from the 

first to the last non-REM episode of each sleep session. To examine rate changes within 

non-REM or REM episodes, the first or last thirds of each episode were concatenated 

independently for REM and non-REM within each sleep session. 

To assess changes in the alternating periods of enhanced and diminished network 

activity observed during non-REM sleep, pyramidal layer LFP traces were scored for 

high-frequency 'activity' and 'inactivity' epochs. For each session, pyramidal layer LFPs 
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were filtered in the gamma and epsilon frequency bands (30 to 300 Hz), z-scored, 

rectified and re-filtered between 0.1 and 5 Hz. 'Activity' events were detected as periods 

in which filtered high-frequency activity exceeded 0.5 standard deviations from the 

session mean. Similarly, 'inactivity' events were detected as periods in which filtered 

high-frequency activity was at least 0.5 SD's below the mean. Events occurring within 50 

ms of each other were merged independently for inactivity and activity events. Only 

events lasting >50 ms were included for further analysis. A complementary assessment of 

the activity and inactivity periods observed during non-REM was performed on the 

neural spiking data (figure, 2.6, panel b). For this ON and OFF period detection spikes 

were pooled across all well-isolated cells (Vyazovskiy et al., 2009). Briefly, OFF periods 

were defined as all epochs at least 50 ms long in which no spikes (from either pyramidal 

cells or interneurons) were detected. ON periods were periods immediately subsequent to 

a detected OFF period. Only ON periods between 50 ms and up to 4000 ms long in which 

at least 10 spikes from any recorded neuron or a combination of neurons were detected 

were included in subsequent analysis (Vyazovskiy et al., 2009). 

Within-ripple firing rates were assessed from concatenated ripple epochs of a 

given episode  (e.g., first non-REM episode of a session). Synchrony was defined as the 

mean pair-wise correlations between all pairs of pyramidal cells’ firing rates binned in 

non-overlapping 100 ms bins. To detect the firing rate changes within the same state, 

non-REM and REM episode lengths were normalized, considering each episode length as 

100%. The normalized episodes then were divided into three thirds and the values were 

averaged across episodes. 
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REM Sleep LFPs Correlate with Firing Rate Decrease 

For further analysis spectrograms were normalized independently for each 

frequency as the z-score from mean non-REM power for that frequency. The correlation 

between spectral power and firing rate change across REM was assessed independently 

for each frequency and taken as the correlation between that frequency’s power during 

REM and the mean population firing rate change from the non-REM episode immediately 

preceding (non-REMn) to the non-REM episode immediately following REM across all 

45 such non-REMn – REM – non-REMn+1 triplets. These correlations were assessed 

independently for the pyramidal cell and interneuron populations. 

 

Spike-Weighted Spectra (Sp.W.S) 

To quantify a neuron’s preference to a particular LFP band, we introduced a 

‘spike-weighted spectrum’ method. The steps of the Sp.W.S computation are illustrated in 

figure 3.8. The firing rates of pyramidal cells (R) during REM were binned in 1-second 

bins with 0.5 second overlap and concatenated within session across REM episodes. 

Likewise, CA1 pyramidal layer LFP spectra were taken using the same time bins and 

concatenated across REM episodes. The concatenated REM time-resolved spectra were z-

scored independently for each frequency across bins (i). Thus, we generated two time 

series, one for the neuron’s firing rate and another for the z-scored power for each 

frequency band. For each frequency band (f), the binned firing rate (R) and the z-scored 

spectral power (Sz) were multiplied bin by bin to produce Swz. For each frequency band (f), 

the Sp.W.S. power (S(f))  was defined as the sum of Swz (f, 1:N) divided by the sum of the 

binned firing rate (R). Only pyramidal cells with a REM firing rate (Re) greater than 0.4 
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Hz (336/618 cells) were included in the Sp.W.S analyses.  

Two methods were used to assess the relationship between Sp.W.S. and ‘across-

sleep’ (first to last non-REM episode) changes. First, within each sleep session, a partial 

correlation (ρ) was computed between the neuron’s Sp.W.S. (S(f)) and its rate change 

across sleep (∆H) normalizing (i.e. ‘partializing’) by each neuron’s mean within-REM 

firing rate  (Re, figure 3.4, panel e).  For each Sp.W.S. frequency S(f), partial correlations 

were assessed within each session (n = 22) across pyramidal cells as: 

   

Partial correlations were computed independently for either within-ripple or 

between-ripple change of firing rate across sleep (figure 3.4, panel e). For each 

frequency, the 95% confidence intervals of the partial correlations were computed across 

sleep sessions (n = 22) via bootstrap analysis. The relationship was determined to be 

significant when the confidence intervals excluded the baseline (0 correlation).  

In addition, for each session we independently pooled the Sp.W.S. of those cells 

that belonged to either the top (i.e. most positive) or bottom (i.e. most negative) 20% of the 

distributions of either between-ripple (figure 3.4, panel b) or within-ripple (figure 3.4, 

panel c) firing rate change. Each of these 4 groups contained 68 pyramidal cells and the 

bootstrapped 95% confidence intervals were computed. Lack of overlap between the 95% 

confidence intervals of the top and bottom 20% of rate changers in a given frequency band 

was considered a significant effect between frequency preference of neurons during REM 

and their rate change across sleep. The mean ‘across sleep’ rate changes for the top 20% 

and bottom 20% subgroups are given in the panels of figure 3.7, panel b and c. 
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Methods for Pre-Play and Replay Analysis: 

Animals, Surgery and Data Collection 

 Three male Long-Evans rats (250-350g) were bilaterally implanted in the dorsal 

hippocampus with either two 8 shank (n = 2) or two 6 shank (n = 1) silicon probes.  Each 

shank of the 8 shank silicon probes had 8 sites while each shank of the 6 shank silicon 

probes had 10 sites. All sites were vertically staggered along the shank with 20 µm 

spacing between sites. Each site had an area of 160 µm
2
 and an impedance of 1–3 MΩ. In 

each rat 50 µm wires were placed gently abutting the left, right mastoid masseter as well 

as the back neck muscle for electromyographic (E.M.G.) recordings used in sleep 

classification. All silicon probes were implanted parallel to the septo-temporal axis of the 

hippocampusl. A bundle of six staggered 50 µm wires with a total vertical extent of 1 mm 

were placed in the left hippocampus to obtain a constant LFP reference used for sleep 

scoring. Finally, each rat was fitted with a small 3-dimensional accelerometer (ADXL-

330, Analog Devices, Mansfield, Texas) which was used to record the animals’ 

movement, or its absence, during sleep. Two stainless steel screws implanted above the 

cerebellum were used for referencing and grounding. Implantation was performed under 

isoflurane (1-1.5%) anesthesia as described in detail in Vandecasteele et al., 2012. Each 

silicon probe was attached to a micromanipulator and lowered over the course of several 

days until hippocampal layer CA1 was reached as determined by the appearance of 

hippocampal CA1 sharp-wave/ripples and pyramidal cell activity. Probe placement was 

histologically confirmed post hoc.  
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 Animals were extensively handled both before and after surgery. Water restriction 

was initiated one week after the surgery; animals were restricted to 90% of their ad lib 

weight and given one day a week of ad lib water access.  Animals were well acclimatized 

and recorded in the ‘familiar’ room (where all sleep recordings were performed) for at 

least one week prior to novelty maze sessions, this time was used to gradually lower the 

silicon probes into position. All hippocampal, E.M.G. and accelerometer signals were 

recorded continuously at 20 kHz using three identical 256-channel Amplipex Systems 

(Ampiplex, Szeged, Hungary; 16-bit resolution; analog multiplexing; one in the familiar 

room and one in each of the two novelty rooms). Cell isolation and classification was 

performed as previously described above (Unit Clustering and Cell Classification). In 

total 322 well isolated pyramidal cells were included in this study (28, 39, 128, 35 and 92 

putative pyramidal cells in each of the five novelty sessions respectively).  All protocols 

were approved by the Institutional Animal Care and Use Committees of Rutgers 

University and New York University. 

 

Behavioral Procedures and Sleep Scoring 

 In order to acclimatize the rats to running for reward, rats were pretrained to 

search for water on a geometrically unrelated open-field 'cheese-board' maze (O’Neill et 

al., 2008) for several days before novelty maze sessions. Once electrodes reached the 

CA1 pyramidal layer and the animals were well acclimatized running for water reward as 

well as to the ‘familiar’ room as determined by the observation that the animals engaged 

in uninterrupted sleep in this room, a ‘novelty’ session was recorded. A novelty session 
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consisted of a ‘Pre’ epoch in the familiar room, a novelty run (lasting between 40 minutes 

to 1 hour) in one of the two novel rooms and ‘Post’ epoch back in the familiar room.  

Only one novelty room was used per novelty session. Note also that in recent studies 

(Dragoi and Tonegawa, 2011, 2013) novelty to the context of the experimental room was 

established by occluding the experimental room by placing walls around the home cage 

during ‘Pre’ and ‘Post’ epochs. In contrast, in the present study the animals had never 

been inside of the novel rooms, ensuring that the animals had no experience of the maze 

context, even fleeting ones during the plugging of the electrophysiological headstages, 

prior to novelty exposure.   

On novelty days the animals were recorded in their home cage in the familiar 

room and allowed to sleep for two and a half to four and a half hours, constituting the Pre 

novelty epoch.  At the end of the Pre epoch, the animals were transferred to one of two 

novelty rooms, one housing a linear maze (n = 3 sessions) and the other a circular maze 

(n = 2 sessions). The linear maze was 1.9 meters long with 15 cm ‘reward areas’ on either 

end where water reward was delivered via an automatic infrared-beam triggered system, 

and a 1.6 cm ‘stem’.  Rats only received water reward (~0.2 ml) for trials in which they 

travelled from one reward site to the other. On circular maze (diameter 1m, 

circumference 3.14 m) rats were made to run in a clockwise direction by manually 

preventing the counter-clockwise movement until the rats behavior became stereotyped 

(~10 minutes).  Water reward (~0.2 ml) was delivered in a predetermined 30 cm reward 

area only when the animals had performed a full clockwise run. The novelty sessions 

were terminated once the animals were satiated and no longer ran for reward. In both the 

circular and the linear maze the animal’s position was monitored by the continuous 
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tracking at 39.69 Hz of two LEDs (red and blue) positioned 5 cm apart and clipped onto 

the animal’s headmounted Faraday cage. Subsequent to novelty exposure, the animal was 

transferred back to its homecage in the familiar room and allowed to sleep for three to 

four hours, constituting the ‘Post’ epoch. All sleep and novelty recordings were 

performed during the animal’s day-cycle when rats are prone to sleep.   

 Sleep scoring was performed using the StateEditor and employing hippocampal 

LFP, accelerometer (movement), and E.M.G. data as previously described (see 

TheStateEditor: Behavioral State Scoring and Event Selection in the Results chapter). For 

each session all Pre and Post epoch analysis was yoked to the duration of the shortest of 

the two epochs of each session (mean yoked Pre/Post duration:  3.7 hours, minimum 

duration: 2.2 hours, maximum duration: 4.4 hours, n = 5 sessions). On any given novelty 

day the animals were exposed to only one of the two novelty conditions (circular or linear 

maze). Note however, that due to the corruption of the LED tracking information for one 

animal’s circular maze novelty session only two circular sessions are included in the 

analysis.  

 

Place Field Analysis 

 For each well isolated principal cell a spike firing-by-position vector was 

constructed by binning its spikes in non-overlapping 2 cm bins. This vector was 

smoothed with a 5 cm Gaussian kernel, and divided by the smoothed (5 cm Gaussian 

kernel) occupancy-by-position resulting in a smoothed position by-firing rate vector. In 

the case of the circular maze location was linearized and defined as starting at the edge of 
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reward area, and increasing clockwise, terminating at the opposing edge of the reward 

area. The hypothesis of place-selective firing was tested by constructing 5,000 null firing 

rate vectors in which the cell’s spikes were randomly sampled using the un-smoothed 

occupancy-by-position vector as the probability density function, smoothed with a 5cm 

Gaussian kernel and divided by the smoothed occupancy-by-position vector. The 

resulting firing rate vectors were, on average, flat with respect to position, while the 

between null vector variance at each bin reflected the extent of uncertainty of the rate 

estimate associated with the overall sampling (occupancy) of each bin. A cell was 

determined to have a place field (and thus, to be a place cell) if at least 5 consecutive bins 

were above the 99
th

 percentile of their null distributions. If a cell was determined to have 

more than one place field, only the place field containing the bin with higher peak firing 

rate was used for further analysis (Diba and Buzsáki, 2007; Dragoi and Tonegawa, 2011; 

Foster and Wilson, 2006). For each place field, the location of the within-field peak firing 

rate bin was used as the place field’s location (Diba and Buzsáki, 2007; Dragoi and 

Tonegawa, 2011; Foster and Wilson, 2006). All place field detection analysis was 

restricted to epochs during which the animals’ velocity was at least 5 cm/s and in which 

the animal were outside of the reward areas.  For linear track maze runs all place field 

analysis was carried out independently for left and right directions of movement (Diba 

and Buzsáki, 2007; Dragoi and Tonegawa, 2011; Foster and Wilson, 2006). 

 

Population Activity Events 

For each session the combined spiking of all recorded CA1 pyramidal cells were 

binned in 1ms bins and convolved with a 15 ms Gaussian kernel (Pfeiffer and Foster, 
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2013). For each session a trigger rate was defined as being 3 standard deviations above 

the mean of all 1 ms bins within NREM epochs of both Pre and Post epochs combined. 

Population activity events were detected when the smoothed firing rate vector crossed the 

trigger rate. The beginning and end of the events were defined as the time points at which 

the convolved firing rate vector returned to the mean of all within-NREM firing rate bins. 

Only events lasting between 50 to 500 ms, occurring during drowsy/light, NREM or 

intermediate sleep and in which at least five distinct pyramidal cells each fired at least 

one spike were considered for further analysis. For each event the center of mass of all 

pyramidal cell spiking within the event was taken as its time of occurrence for all 

analysis requiring a point time estimate. Only cells with firing rates between 0.15 Hz and 

2.5 Hz and which participated in between 5% to 50% of the Pre and Post epoch 

population activity events were considered for further analysis. For each cell active in 

each event a ‘within-event spike timing’ value was assessed as the center of mass of all 

the spikes that that cell discharged within that event, relative to the center of mass of all 

the spikes fired by pyramidal cells within that event.   

 

Place Cell Pair Activity and Timing Co-Modulation 

 As a first order assay of place specific pre-play and replay three pair-wise 

measures of cell co-activity were defined. All measures were taken independently from 

population activity events in the pre and post epochs. For consistency, only those events 

meeting the criteria for ‘Pre-Play and Replay of Sequential Spiking Activity: Rank-order 

correlations’ (next section below) were included in this analysis. Only pairs that were co-
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active in at least 10 events in each epoch, and which were detected on different silicon 

probe shanks, were included in these analyses. Pair rate correlation, was taken as 

correlation coefficient between place cell pair’s within-event rate vectors across events. 

Participation correlation was measured as the correlation of the participation vectors, 

which were binary vectors indicating whether the cell had fired at least one spike in each 

event, across events. Final rate correlation in co-active events was defined as the 

correlation of firing rates in events in which both place cells of the pair participated (fired 

at least one spikes).  

Similarly three measures of place cell timing co-modulation were taken for place 

cell pairs which were co-active in at least 10 events in each epoch and which were 

detected on different silicon probe shanks. Spike timing correlations were assessed as the 

Pearson’s correlation between the within event spike timings (see Population Activity 

Events above) across events in which both cells were active. The mean difference of 

within-event spike timing was taken as the absolute value of the mean difference between 

the within-event spike timings of place cell pairs in events in which they were co-active. 

Finally, the variance of the difference of within event spike timing was taken across 

events in which both place cells were co-active. Note that since these last two measures 

are ‘signed’ (that is, the value of the difference in timing could be either positive or 

negative), one member of the pair was taken as the ‘reference’ and the other as the 

‘comparison’.  

 These six measures were compared against the distance between the place field 

locations on the maze. The null distribution for these comparisons was determined by 

taking the place field distances of 1,000 shuffled place field vectors in which place fields 
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were resampled without replacement across cells (Diba and Buzsáki, 2007; Dragoi and 

Tonegawa, 2011; Foster and Wilson, 2006).  For linear maze sessions all measures were 

taken independently for the right and left run directions.  

 

Pre-Play and Replay of Sequential Spiking Activity: Rank-order correlations 

 For each event rank-order correlation pre-play and replay  (Diba and Buzsáki, 

2007; Dragoi and Tonegawa, 2011; Foster and Wilson, 2006) of sequential spiking 

activity was assessed as the Spearman (rank-order) correlation of the within-event spike 

timing (center of mass) of place cells active in that event against the location of  these 

cells’ place field peaks on the maze, across place cells. In order to account for the 

possibility of both forward and reverse replay, the absolute value of the correlation 

coefficient was taken as the rank-order sequential activity score. Since a minimum 

number of place cells must be active in order to assess the spike-timing to place coding 

correlation, only events in which at least 5, or 10%, whichever was greater, of all place 

cells were active were included in this analysis. The hypothesis of place sequence 

selective firing was tested by comparing the observed distributions of sequential activity 

scores against the distributions obtained from performing the rank-order correlation 

analysis on 1,000 shuffled place field vectors. For linear maze sessions, this analysis was 

carried out independently for the left and right running directions.  

 In order to measure the contribution of individual place cells to the mean absolute 

rank-order sequential activity score, we took advantage of the fact that for a given event 
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with n active place cells the rank-order correlation can be given as the dot product of the 

z-scored place and timing vectors divided by the number of active cells minus one: 
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Where Pr and Tr are the rank-ordered place field and spike timing vectors of the n cells 

active in that event, and S is the standard deviation operator.  Note that the first step of 

computing the correlation coefficient is to compute the product of each z-scored element 

pair. Consequently, the contribution, cj, of the j
th

 cell to the rank order correlation of a 

given event is straightforwardly given by: 
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In order to account for the fact that in the current case it is the absolute value of the 

correlation coefficient that is of interest this equation must be normalized by the sign of 

the correlation coefficient: 
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for non-zeros values of r, and zero otherwise. Finally, the contribution of the j
th

 cell to 

mean of N absolute correlation coefficients  ���∑ |��|�
�  is given by: 
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Notably the sum all such absolute correlation contribution (cam) values for all n place 

cells equals the mean of the absolute correlation coefficients of the N correlations to 

which they contribute: 

   5)               ���∑ |�
$�	� �$| = ∑ ����

�
���   

This measure was used to assess the possible biases in the influence of individual cells 

over the observed distribution of sequential rank-order correlations.  

 

Pre-Play and Replay of Sequential Spiking Activity: Paired-Latency Method 

 In order to assess the correspondence of the sequential place activity on the maze 

and within event sequential timing in a non-biased manner (see Results) a parallel, pair-

wise and computationally efficient approach was developed. For a given event with n 

active and inactive cells, a paired latency vector PL of length (n)(n – 1)/2 corresponding 

to the number of unique non-self pairs was constructed. For each comparison one cell 

was chosen as the reference and the other as the comparison – the choice of which cell of 

the pair is the reference and which the comparison is arbitrary but must be applied 

consistently across all events and conditions. Any given element of the paired latency 

vector PL was assigned one of three possible values: 

• 1 if the comparison cell’s within-event center of mass of spiking (c.o.m.) occurred 

 after the reference cell’s within-event c.o.m.  

• -1 if the comparison cell’s within-event c.o.m. occurred before the reference cell’s 

 within-event c.o.m. 
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• 0 if the two members of the pair had the same within-event c.o.m. or if either 

 member of the pair did not fire in the event 

Paired distance, PD, vectors were similarly constructed from the relationship between 

linearized place field peaks such that each element of the PD vector had one of three 

possible values:  

• 1 if the comparison cell’s place field was to the right of the reference cell’s place 

 field  

• -1 if the comparison cell’s place field was to the left of the reference cell’s place 

 field 

• 0 if place field peaks of both members of the pair occurred on the same bin or if 

 either member of the pair was not a place cell 

For linear maze sessions separate PD vectors were constructed for left and right 

directions of movement. Note that starting from these vectors it is possible to fully 

reconstruct rank-ordered sequence content.  

 The similarity of within-event sequence to the order of place fields on the maze 

was calculated as the dot product of PD and PL divided by the dot product of the absolute 

values of PD and PL: 

 6)   %&'	( = 	(∙	*
|	(|∙|	*| 

In other words, the sum of all the non-zero elements which had the same value in both PL 

and PD normalized by the sum of the elements that were non-zero in both PL and PD. 

Similarly to the Spearman correlation coefficient this value is a measure of order 
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similarity and is bounded between -1 (when one sequence is the reverse of the other) to 1 

(when the two sequences being compared are the same). However, it is different in at 

least three salient ways 1) the absence of a z-scoring step reduces the observed bias 

towards a disproportionate contribution of cells near the edges of the maze to the overall 

sequence similarity  effect, 2) the pair-wise relationship of cells with same c.o.m. or place 

field peak location values have no contribution on the overall sequence similarity value, 

and 3) more generally all 0 valued pairs in either the PL or PD vectors do not contribute 

to the net result, eliminating the necessity for the event by event selection of active place 

cells and thus increasing the computational efficiency of the analysis.  

 Paralleling the rank-order analysis, only events in which 5 or 10%, whichever was 

greater, of the place cells were active were included in the analysis and the absolute value 

of the paired latency score was used as the final measure of sequence similarity strength.  

 In order to assess the contribution of individual cells to the overall distribution of 

absolute PL sequence similarity scores a similar analysis as was carried out in the rank-

order case was performed.  The contribution k of the j
th

 cell to a particular paired latency 

comparison is given by:  

 7)   +� =
	(�∙	*�
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Where PLj and PDj are the sub-vectors consisting of the elements of PL and PD 

respectively in which the j
th 

cell was used as either the reference or the comparison. The 

division by two is necessary to avoid the effects of counting each pair twice (once by the 

reference cell, the other by the comparison cell). The j
th

 cell’s contribution to the absolute 

value of SeqPL is then given by  



56 

 

 

 

8)   +�� = � 	(�∙	*�
,|	(|∙|	*|� -./0�12 ∙ 13� 

And the j
th

 cell contribution to the mean of the absolute value of N paired latency scores 

is given by: 

 9)   +��� =	∑ 4��, ! "#
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Again, the addition of the by-cell contribution kamj across all n place cells equals the 

mean of the absolute value of the paired latency similarity scores across N events: 

 10)  ���∑ |�
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a result which was confirmed empirically.  

 Where indicated, within-shank pairs were excluded from the analysis by setting 

their values in the PD vectors to 0.  

Pre-Play and Replay: Bayesian Decoding 

 Memory-less, smooth-prior probability, Bayesian classifiers of position 

(Davidson et al., 2009) given a time-binned place-cell population spiking vector spikes 

were constructed from the smoothed firing rate-by-position vectors as: 

 11)  1��56-|-5.+&-� = 	 �∏ 8��56-�9:��
��� �&�;∑ <��:=9�>

�"#   

Where fi(pos) is the value of the firing rate-by-position vector of the i
th

 cell at position 

pos, sp
i
 is the number of spikes fired by the i

th
 cell in the time bin being decoded, and τ is 

the duration of the time bin. Posterior probability were subsequently normalized to one: 
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Where Pn is the total number of positions (2-cm bins). All Bayesian analysis was 

performed independently for the left and right direction of movement. 

 Five-hundred null Bayesian classifiers were constructed by independent random 

circular rotations (Davidson et al., 2009) of each cell's unsmoothed firing-rate by position 

vector and subsequently smoothing with a 5 cm standard deviation Gaussian kernel. This 

approach was chosen because it selectively disrupts spatial tuning while preserving each 

cell's firing rate. Smoothing was performed after circular rotation to ameliorate the rate 

discontinuities expected at the edges of the rotated firing rate-by-position vectors.  

 In order to test the performance of the classifier's estimates of position, population 

spiking was binned in non-overlapping 500 ms bins during maze periods in which the 

animal's velocity was at least 5 cm/s and was not in a reward area. The method was 

further cross-validated by omitting every fifth lap from the construction of firing rate-by-

position vectors and subsequently using these vectors to decode position on these 

excluded laps.  

 In order to assess Bayesian decoded pre-play and replay effects the spiking of 

place cells in population activity events were further divided into 20 ms non-overlapping 

bins (Davidson et al., 2009). This size of bin was chosen as a compromise between the 

temporal coarseness of decoded sequential activity, and the number of spikes (and thus 

the available information content) expected per bin. Bins in which no spiking was 

detected were excluded from the analysis. Only those events which met the criteria for 

inclusion in the 'Sequential Spiking Activity' analysis (see above) and which had at least 
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five non-zero spiking bins and which showed a decoded trajectory span (see below) of at 

least 30 cm (Davidson et al., 2009), were included in this analysis. For each bin the 

decoded position was established as the peak of that posterior probability density of 

position. The decoded trajectory span was taken as the maximal pair-wise distance 

between all pairs of decoded positions within an event. For each qualifying population 

activity event two measures of pre-play and replay were taken. First, Bayesian decoding 

quality was assessed as the mean of the posterior probability across within-event bins of 

the peak posterior probabilities of the bins within the event. Second, Bayesian decoded 

sequence strength was assessed across the within-event decoded positions by using a 

modified version of the paired latency vector. Bayesian paired distance (PDBayes) vectors 

were constructed as described above and compared against a reference paired distance 

vector (PDRef) assuming a constant trajectories (that is, constantly increasing position)  

as: 

 13)   %&'@�A$9 =
	*BCD E∙	*F G

|	*BCD E|∙|	*F G|
  

 Note that this measures the overall directionality of the decoded trajectory, and in 

contrast with previous techniques (Davidson et al., 2009; Kloosterman, 2012) does not 

test the linearity of the trajectory.  
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Results 

TheStateEditor: Behavioral State Scoring and Data Visualization and Annotation 

Software 

Loading and Pre-processing files 

 TheStateEditor script is a fully stand-alone Matlab function for behavioral state 

scoring and large-time scale data visualization. In order to use this program, the user need 

only obtain the script (available upon request) and add it to his or her Matlab ‘path’. For 

users whose data is in the format used by our lab (binary/ASCII file format, Hazan et al., 

2006),  the user navigates his or her Matlab command prompt to the directory housing the 

required files: an ‘.xml’ parameter file containing information about channel numbering 

and order as well sampling rate, an ‘.eeg’ or ‘.lfp’ file which contains the (typically 1250 

Hz) LFP data, as well as an optional ‘.whl’ LED tracking file (see Hazan et al., 2006 for a 

full description of these formatting conventions).  TheStateEditor automatically detects 

the name of the relevant session from the first ‘.xml’ file in the folder and loads the 

relevant session information. If the directory contains multiple ‘.xml’ files the name of 

the session of interest can be entered manually. Once the correct files are found, the 

channel selection window is launched (figure 2.1). Here users are asked to choose up to 

three EEG/LFP channels for visualization. The chosen channels are then loaded into 

memory, whitened and used for the computation of time-resolved multi-tapered 

spectrograms (Sirota et al., 2003) in non-overlapping one second bins. This time 

resolution was chosen as being coarse enough not to cause graphics memory problems 

when displaying the full spectrograms over long sessions, while still being fine enough 



60 

 

 

 

for thorough behavioral state classification. The spectrograms are then log10-transformed 

to yield spectrographic power in decibels, and then truncated between their first and 99
th

 

percentiles (across all time bins and frequencies) in order to suppress outliers. The 

channel selection window also prompts the user to optionally select a motion signal. 

Three motion signal types are supported: 1) head tracking of head mounted LED’s in our 

lab’s native ‘.whl’ format, 2) accelerometer or kinetic motion pad data which detects the 

animal’s movements, or 3) MEG channel data. In each case, the motion signals are 

transformed into one dimensional motion amplitude signals by rectifying, filtering 

between 0.1 to 10 Hz, and binning into non-overlapping one second bins. Motion outliers 

were similarly suppressed by truncating the motion signal between its first and 99
th

 

percentile.  Conversely, users may input motion data directly from ‘.mat’ files. This is 

useful for those who wish to perform costume pre-processing of motion data, or who 

wish to use the motion panel in order to display a different type of data altogether. Note 

that when two channels of a long (~9.8 hour recording) are loaded into the 

TheStateEditor all the pre-processing steps take about three minutes to complete on a 

standard windows desktop computer.   

 Users who use different file format must first load (up to three) LFP or EEG 

channels of interest into Matlab and pass them, as well as other information such file 

name and sampling rate, into the TheStateEditor as part of a structure whose field names 

are specified in TheStateEditor’s help section.  

 Once the spectrograms are created and the motion signals are processed, 

TheStateEditor saves an auxiliary file (with the default suffix ‘.eegstates.mat’). This 

auxiliary file contains the processed spectrograms and motion signal, as well as other 
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session information such as channel number and sampling rate. In order to reduce 

redundant disk usage, by default the raw LFP signals are not saved in this auxiliary file 

and must be loaded from the ‘.eeg’  or ‘.lfp’ file on each use. However, when calling 

TheStateEditor the user may toggle the ‘MakePortable’  flag (which is set to off by 

default), in which case the raw LFP channels will also be saved into this auxiliary file. 

Importantly, in this latter case, the auxiliary file is fully independent of the original data 

files, and can be used for launching TheStateEditor from different computers or for data 

sharing. Note that the next time TheStateEditor is launched from this directory, if a  

‘.eegstates.mat’ is detected it will load all the processed data directly from this auxiliary 

file, eliminating the need for repeated pre-processing.  

 

TheStateEditor: Data Visualization and Navigation 

 Once pre-processing is complete and the auxiliary file is saved, the 

TheStateEditor’s main panel is launched (figure 2.2). This is the main window for 

visualizing and interacting with the data. The main display utilizes two different time-

frames, the spectrograms and the motion display (which each have a resolution of one 

second) display the entire session when the main panel first opens, and are appropriate 

for visualizing  tens to thousands of seconds at a time. The raw LFP displays have a 

default length of two seconds, appropriate for the visualization of LFP features – but can 

be resized by the user from 0.5 to 60 seconds.  Note that the epochs displayed in the 

spectrograms and the motion signal display are locked to each other such that they always 

show data from the same time frame. The LFP display on the other hand, displays the 
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LFP traces corresponding to the center of the spectrogram displays and is synced 

automatically.  

 When first using the TheStateEditor, users can press the ‘H’ key to load a pop-up 

screen displaying the different commands (figure 2.3). Users can navigate through the 

data in one of several ways. Pressing the right or left arrow keys incrementally progresses 

the display forward or backward , respectively, by 20%. Conversely, users can click and 

hold any of the displays to ‘drag’ them forward and backward. Note that the syncing 

between the various panels is automatically preserved in all cases. Zooming in and out of 

the temporal viewing pane may be achieved either by scrolling the mouse wheel forward 

or backward, by double –clicking on the display, or by entering the ‘Zoom’ functionality 

by pressing ‘Z’. Users can also jump to a given point or set the temporal extent of the 

viewing window by manually entering values into the ‘Go to second’ or ‘Window length’ 

input boxes on the right side of the main display. Note that in each of these cases, only 

the temporal extent (x-axis) is affected by zooming. The extent of the color limits for 

each spectrogram window is manipulated by first clicking on the spectrogram window 

and then pressing the up (for ‘warmer’ colors) or down (for ‘cooler’ colors) arrow keys. 

In order to change the extent of the frequency axis (the y-axis of the spectrogram 

displays)  users enter the ‘Frequency rescale’ function by pressing ‘F’ and then change 

the extent of displayed frequencies (from 20 to 200 Hz) by pressing the up and down 

arrows. The default frequency extent shown is from 0.4 to 40 Hz. Note that the lowest 

frequency (0.4 Hz) is always used as the lower bound of the spectrogram displays.  

 Note that, while by default, spectrogram data is smoothed (within frequency) with 

a Gaussian window with a standard deviation of 10 seconds, users may select 0, 10, 15, 
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20, 30, 45, or 60 second smoothing windows from the ‘Smoothing Window’ drop down 

menu, causing the spectrograms to be dynamically re-smoothed at the desired coarseness. 

Finally, users may choose to overlay data onto the spectrogram displays through the 

‘Overlay display’ drop down menu on the right of the main panel. A default overlay type 

(thick white lines in figure 2.2), the theta (5 to 10 Hz) to delta (0.4 to 4 Hz) ratio, may be 

selected. Conversely, users can choose the ‘Choose from file’ option from the overlay 

display in order to load costume data. All overlay displays are fitted to the top half of 

each spectrogram window as shown in figure 2.2.  

 

TheStateEditor: Behavioral State Scoring and Event Selection 

 Behavioral state scoring using TheStateEditor is performed by labeling using five 

number and color coded possible behavioral states.  

1) The awake state, color-coded black, is characterized in the hippocampus by the 

theta (5 to 10 Hz) oscillation, and behaviorally by active movement and EMG 

activity (Gervasoni et al., 2004; Gottesmann, 1992).  

2) The drowsy/light sleep stage, color coded yellow, is characterized in the 

hippocampus by low spectral power with characteristics intermediate between the 

synchronized and de-synchronized state (Gottesmann, 1992), the presence of 

sharp-wave/ripples and is behaviorally characterized by a small, though present 

motion and sustained EMG activity.  

3) NREM (non-REM), color coded blue, is characterized by large amplitude low 

frequency spectral activity and sharp-wave ripples in the hippocampus and 
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behaviorally characterized by the lack of motion, interrupted by occasional small 

movements or twitches, and a low EMG signal (Crunelli and Hughes, 2010; 

Steriade and Amzica, 1998; Steriade et al., 1993, 2001).  

4) Intermediate sleep, color coded green, is a short (~1 to 3 second) sleep state 

typically observed before REM episodes in which hippocampal spectral shows 

both low-amplitude theta activity as well as pronounced spindle-frequency (10 to 

20 Hz) spectral power, possibly due to volume-conduction from neocortical 

spindling (Glin et al., 1991; Gottesmann, 1992; Gottesmann et al., 1998).  

5) REM sleep, color-coded red, is characterized in the hippocampus by persistent 

theta activity in the virtual absence of motion or EMG activity (Aserinsky and 

Kleitman, 1953; Jouvet, 1967).   

In order to label a given epoch as a given behavioral state, users press the numeric key 

associated with that behavioral state. The first click (which can be made on any of the 

data displays) sets the first bound ('edge') of the labeled state, while the second click sets 

the second bound, and completes that state's selection. Mistakes in state scoring can be 

undone by overriding with state '0' (no state) or by using the 'Undo State' or 'Redo State’ 

buttons at the bottom right of the main display. Behaviorally scored epochs are 

automatically color labeled on the 'state ribbon' near the top of the display. Note that in 

the state ribbon (as well as the 'State vector' output explained below) - all selections are 

rounded to the nearest second bin and are mutually exclusive (one bin cannot be labeled 

as two different states). However, TheStateEditor also keeps track of the fine-scale 

information of the precise time at which each state epoch's edges were selected in a 

'transition matrix'. Thus if, for instance, a user desires to terminate an NREM episode at 
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precisely the time of the last observed sharp-wave/ripple as observed in the LFP displays, 

he or she can terminate the NREM epoch selection at this time point (chosen from the 

LFP displays) and recover it from the precise timing from the transition matrix, even if 

for the purposes of the state ribbon this time point will be rounded to the nearest second.  

 Finally, users may add or load up to ten classes of discrete, fine temporal 

resolution events. Event classes (labeled with the numbers 1 to 10) are chosen from the 

'Event #'  drop down menu on the right side of the main panel (figure 2.2). Once an event 

class is chosen users can add discrete events by pressing the 'E' key and clicking on a 

time point, or delete particular events by pressing the 'D' key and clicking on a particular 

event. Events are shown as vertical pink dashed lines, and only those events from the 

selected event class are shown at a given time. Events are defined with high temporal 

resolution and may be added directly to the LFP display, allowing for a great deal of 

flexibility in data annotation.    

 Saving scored behavioral states and selected events is accomplished by pressing 

the 'S' key  which brings up TheStateEditor's saving console (figure 2.4, panel a). This 

console allows the user to choose the name of the saved output as well as which features 

to save. The StateVector is a vector of n second bins where each entry corresponds to a 

labeled state (none-labeled bins are labeled '0'). The users may also optionally choose to 

save a matrix with all the labeled events, as well as separate structure containing the 

event selection history for that session. States and events can similarly be loaded (by 

pressing 'L') from TheStateEditor's loading console.   

 TheStateEditor has been observed to work stably in Matlab running on Windows, 

Macintosh, and Linux platforms and is now used in our lab for behavioral sleep scoring 
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as well as other large-time scale data analysis, such as examining the long-lasting spectral 

effects of various kinds of optogenetic stimulations, or the tracking of firing rates over 

session-wide time scales. 

 

REM Sleep Reorganizes Hippocampal Excitability  

Excitability changes across sleep 

 Local field potentials (LFP) and spiking activity of isolated CA1 putative 

pyramidal cells and putative interneurons were recorded in the home cage while the rat 

was immobile and assumed a characteristic sleep posture. The ratio of theta (5-11 Hz) 

and delta (1-4 Hz) power was used to identify non-REM and REM episodes (figure 3.1, 

Methods), as described previously (Montgomery et al., 2008).
 
Twenty two sleep sessions 

(38.2 min ± 5.8 S.E.M) with at least one non-REM--REM--non-REM cycle were 

recorded in 5 rats. Mean firing rates of pyramidal cells (n=618) were similar between 

non-REM and REM episodes, whereas firing rates of interneurons (n=111) were 

significantly higher during REM (p <0.00018; sign-rank test; (Csicsvari et al., 1999b). In 

the majority of our analyses, we focused on the following comparisons. First, changes 

‘across sleep’ were defined as differences between the first and the last non-REM 

episodes in a sleep session. Second, changes ‘within non-REM’ episodes refer to 

differences between the first and the last thirds of each non-REM. Third, changes ‘within-

REM’ episodes refer to differences between the first and the last thirds of each REM. 

Finally, we examined the relationship between these categories. 

 Since non-REM sleep is characterized by alternating periods of population 

activity and inactivity in both the neocortex (Steriade et al., 1993) and hippocampus 
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(Isomura et al., 2006; Ji and Wilson, 2007), we defined active periods as those in which 

smoothed gamma and epsilon band (30 to 300 Hz) LFP activity was at least 0.5 S.D's 

above the mean for at least 50 ms. Conversely, inactive periods were detected as those in 

which gamma and epsilon band activity was 0.5 S.D's below the mean for at least 50ms 

(see figure 3.6 for an analogous spike-based analysis). The incidence of active periods 

decreased, whereas the incidence of inactive periods increased significantly from the first 

to the last non-REM episodes of each session (i.e., across-sleep; figure 3.1, panel b; table 

2). The firing rates of both pyramidal cells and interneurons decreased significantly 

across sleep (figure 3.1, panel b). These findings are in accord with the two-process 

model of sleep and indicate similarities between sleep-related activity of neurons between 

the neocortex and hippocampus (Borbély, 1982; Tononi and Cirelli, 2006b; Vyazovskiy 

et al., 2009). 

During sleep hippocampal neurons fire in population synchrony during sharp-

wave ripple events and relatively asynchronously between ripples (Buzsáki et al., 1992). 

The discharge rate of pyramidal neurons between ripples decreased significantly across 

sleep (figure 3.1, panel b), similar to the decrease in global firing rate. Conversely, the 

mean firing rate of pyramidal cells within the short-lived ripple events increased during 

the course of sleep (figure 3.1, panel b). This increase in ripple-related activity across 

sleep was the result of an increase in the percentage of ripples within which pyramidal 

cells participated (i.e., fired at least one spike) rather than an increase of the within-ripple 

firing rates of individual neurons in individual ripples (figure 3.1, panel b, figure 3.7). 

Concurrent with the increase of within-ripple participation, the coefficient of variation of 

within-ripple firing rate across cells decreased (figure 3.1, panel b, figure 3.7), suggesting 
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that the within-ripple participation was more evenly distributed across the population of 

pyramidal cells at the end compared to the beginning of sleep. Synchrony, as measured 

by the correlation strength of pyramidal cell pairs in non-overlapping 100 msec bins 

(Wilson and McNaughton, 1994) also increased across sleep (figure 3.1, panel b), likely 

due to the more consistent participation of pyramidal cells in ripples. In short, the 

decreased firing rate across sleep was associated with a ‘paradoxical’ increase in 

pyramidal cell synchrony and more consistent recruitment of spikes to ripple events 

(table 2). 

Excitability changes within non-REM and REM episodes 

 Next, we investigated which sleep state might be responsible for the global 

‘across-sleep’ changes of firing patterns. Since the duration of individual non-REM and 

REM episodes vary, their lengths were normalized (see Methods) and the pattern of 

changes within episodes were quantified. In non-REM episodes, we found that firing 

rates significantly increased between the first and last thirds of the episodes, both in 

pyramidal cells (p < 1.99E-14, n = 618) and in interneurons (p < 4.6E-5, n = 111) (figure 

3.2, panel b, figure 3.6). Other measures, such as incidence of active and inactive epochs, 

the percentage of ripples in which pyramidal cells participated and population synchrony, 

as measured by pyramidal cell pair-wise correlations, also showed significant and 

opposite changes within non-REM compared to those observed across sleep (figure 3.2, 

panel b). In contrast, firing rates significantly decreased within REM epochs, both in 

pyramidal cells (p < 0.012, n = 618) and in interneurons (p < 1.23E-5, n = 111) (Figure 

3.2 panel a, figures 2.6).  
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LFP spectral changes across sleep and within non-REM and REM episodes 

In addition to unit firing, the LFP spectral changes across sleep were also 

calculated. For each sleep session, the LFP spectra in individual non-REM and REM 

episodes, recorded from the CA1 pyramidal layer, were normalized independently for 

each frequency by the power of concatenated non-REM episodes and expressed as a z-

score. Spectral power decreased significantly in a broad range of frequencies (4-50 Hz) 

across sleep (i.e., from the first to last non-REM episode; figure 3.3, panel a; n = 22 sleep 

sessions; change in 0-50 Hz integrated power, p< 0.0024; sign-rank test). In contrast, a 

significant increase in power (0-50 Hz) was present within non-REM episodes (Figure 

3.3, panel b; n=82 non-REM episodes p<2.11E-9; sign rank test). Within REM episodes, 

a power decrease was observed in the theta-beta (5-20 Hz) and lower gamma (40-50 Hz) 

band (Figure 3.3, panel c; n=45 REM episodes; 0-50Hz power; p<2.85E-4; sign-rank 

test). Changes in the delta band (1-4 Hz) may reflect changes in the hippocampus or 

volume-conducted LFP from the neocortex (Isomura et al., 2006; Wolansky et al., 2006). 

Relationship between non-REM and REM sleep 

Since the evolution of firing patterns and LFP across sleep was similar to those 

observed within-REM sleep but dissimilar to the changes observed within non-REM 

episodes, we examined how REM episodes might contribute to the overall reorganization 

of firing patterns during the course of sleep. The mean firing rate decrease of both the 

pyramidal cell and interneuron populations from the non-REM episode preceding a REM 

(non-REMn) to the non-REM episode following a REM episode (non-REMn+1) was 

significantly correlated with the theta power of the interleaving REM episode but not the 

power of other frequencies (figure 3.4, panels a and b), except for the lower gamma band 



70 

 

 

 

for pyramidal cells. Similar calculations were performed to examine the relationship 

between population synchrony (pairwise correlation) during non-REM and spectral 

power of REM. The increase in synchrony of both pyramidal cells and interneurons from 

non-REMn to non-REMn+1 was significantly correlated with the theta and gamma (around 

40 Hz) power of the interleaving REM episode but not the power of other frequencies 

(figure 3.4, panels c and d).  

To examine how the rate change of individual neurons across sleep was related to 

their network pattern-related activity during REM sleep, we introduced the method of 

spike-weighted spectra (Sp.W.S.) by relating the instantaneous firing rates of single cells 

to the power distribution of the simultaneously detected LFP. LFP spectra and firing rates 

of individual pyramidal cells were computed in 1-second bins with 0.5 second overlap 

during REM (figure 3.8, Methods). For normalization purposes, the LFP spectrograms 

were z-scored independently for each frequency band and the LFP power spectrum was 

multiplied bin-by-bin by the neuron's within-bin firing rate and divided by its overall 

REM rate (figure 3.8). Since power in each frequency of Sp.W.S is first z-scored, 

stochastic firing results in power nearing zero, while positive values for a given Sp.W.S. 

frequency band reflect a cell's selective firing preference in that band. To quantify the 

relationship between the neuron’s frequency preference during REM sleep and its firing 

pattern change across sleep, the correlation between the neuron’s Sp.W.S. in REM and its 

rate change between the first and last non-REM episodes of sleep was normalized by the 

neuron’s REM mean firing rate (see Methods ‘partialization’ procedure). These partial 

correlations were computed separately for changes occurring across sleep in either 

within-ripple or between-ripple firing rates (n=22 sleep sessions). Pyramidal cells with 
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firing rates less than 0.4 Hz during REM (n=281 of 618 cells) were excluded from the 

Sp.W.S. analysis. The Sp.W.S analyses (figure 3.4, panel 8; see also figure 3.8) 

demonstrated that within the same population of simultaneously recorded pyramidal cells 

the across-sleep decrease of between-ripple firing rate was correlated with the pyramidal 

neurons’ preference to discharge selectively during high power theta (~5 - 10 Hz) and 

gamma epochs during REM. Similarly, a neuron’s theta and gamma power preference 

reliably predicted its across-sleep firing rate increase within ripples (figure 3.4, panel e).  

 

Pre-Play and Replay 

Pre-Play and Replay: Population Activity Events 

 In order to assess the specific and non-specific contributions to the establishment 

and replay of hippocampal spatial coding of novel maze experiences, population activity 

events (see Methods:Population Activity Events) were detected during drowsy/light, 

NREM and intermediate sleep during the Pre and Post novel maze exploration epochs.  

An average of 4,408.4 (st.d  ±1,324.43) Pre events and 4,463.6 (st.d. ±1,494.24) Post 

events were detected in an average of the 9,521.2 (st.d  ±3,006.51) seconds and 10,897 

(st.d  ±2,749.84) seconds the animals spent in drowsy/light, NREM and intermediate 

sleep during the Pre and Post epochs respectively (n = 5 novelty sessions). Notably, in the 

Post epoch it took the animals an average of 629.58 seconds to settle into drowsy/light 

sleep (minimum latency to drowsy/light sleep: 269 seconds, maximum latency to 

drowsy/light sleep: 1394 seconds, n = 5 Post epochs) and an average of 1620.18 seconds 

to reach NREM sleep (minimum latency to NREM: 906.3 seconds, maximum latency to 

NREM: 2145 seconds). This is contrast to other studies which have reported to show 
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sleep-related effects in the first 600 to 900 (10 to 15 minutes) of Post epoch recordings 

(Kudrimoti et al., 1999; Wilson and McNaughton, 1994). 

  While the numbers of detected population activity events were similar between 

the Pre and Post epochs, the composition of these population activity events was found to 

change. Notably, within population-activity event firing rates increased significantly from 

the Pre to Post epochs (figure 4.2, panel a, Pre mean: 2.87Hz, Post mean: 2.94Hz, p ≈ 0, 

rank-sum test), a trend which was observed in all sessions and significant in four of them 

(figure 4.2, panel b). Likewise the percentage of pyramidal cells participating (firing at 

least one spike) in each event was significantly higher during Post compared to Pre for 

the population of events (figure 4.2, panel c, Pre mean: 24.42%, Post mean: 25.59%, p ≈ 

0, rank-sum test), a trend observed in 4 sessions and significant in 3 of them, with 1 

session significantly showing the opposite effect (figure 4.2, panel d). Finally, while the 

population average showed a slight, but significant, increase in event duration from the 

Pre to the Post epochs (figure 4.2, panel e, Pre mean: 175.15 ms, Post mean: 178.97 ms, p 

< 0.0135, rank-sum test), this trend was not consistently observed across sessions (figure 

4.2, panel f). Consequently, any experience-specific changes in hippocampal CA1 firing 

from the Pre to Post epochs, must be understood within this wider context of increases in 

excitability.  

 

Place Cell Pair Activity and Timing Co-Modulation 

 As a first order confirmation of the validity of our data set in assessing the replay 

(and by extension, pre-play) phenomenon we measured pair-wise co-activity and spike 
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timing co-modulation as a function of the distance of place fields on the novel maze. This 

approach was chosen as is it is closely related to the earliest measures of replay and is a 

particularly statistically robust measurements of the replay phenomena (see Introduction).  

This analysis was carried out independently for the linear (n = 7,738 place cell pairs) and 

circular (n = 3,802 place cell pairs) maze conditions. It was observed that in accordance 

with previous measurements of pair-wise reactivation of place cells with overlapping 

place fields (Kudrimoti et al., 1999; Wilson and McNaughton, 1994),  elevated 

correlations were observed between the within-event firing rate vectors for pairs of place 

cells with place field peaks that were within 20 cm of each other on the novel maze (i.e. 

strongly overlapping pairs; figure 4.3, panels a and b). This effect was only observed 

during Post epoch events and was also true for the correlation between these place cell’s 

activity vectors (figure 4.3, panels c and d). Notably, it was also found that place cell 

pairs with peaks more than 140 cm apart (i.e. non-overlapping pairs), showed a 

pronounced deficit in correlation strength in both of these measures, again, only during 

the Post epochs. While we also measured the modulation strength of rate correlations 

only within events in which both place cells were active, only the circular maze condition 

showed this effect (figure 4.3, panels e and f), and this measure is included in order to 

illustrate some of the observed across condition variability.  

 Similarly we conducted pair-wise measures of within-event place cell spike timing 

co-modulation by place field peak distance. Consistent with previous findings (Qin et al., 

1997; Skaggs and McNaughton, 1996) and the pair-wise co-activity effects described 

above, we found striking co-modulation of spike-timing as a function of place field peak 

distance on the maze. The spike timing of pairs of place cells with nearby place fields 
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tended to be highly correlated across events (figure 4.4, panels a and b). Moreover, these 

place cells with nearby place fields tended to fire in closer temporal proximity to each 

other (figure 4.4, panels c and d) and the latency between their firing was subject to 

reduced variability (figure 4.4, panels e and f). With one exception (figure 4.4 panel d) 

the inverse of these effects, that is, reduced temporal correlation, increased spike timing 

latencies, and increased spike timing variability, was seen for place cells with far (~140 

cm or greater) place fields peaks on the novel maze. Notably, the appearance of robust 

and specific pair-wise activity and timing changes in Post epoch events is strongly 

supportive of the presence of the replay phenomenon in our data set. By contrast, activity 

and spike timing in Pre epoch events was rarely, and then only very weakly, modulated 

by place field peak distances on the subsequent exposure to the novel maze. Notably, this 

pre-play-like activity, when observed, was limited to place cell pairs with place field 

peaks within 20 cm of each other on the linear maze, and was in all three instances 

opposite in direction to the Post epoch effects (figure 4.3. panel c and figure 4.4 panels a 

and e). Thus, through the use of pair-wise measure it was established that classical replay 

was present in our data set, while pre-play was found to be nearly negligible under this 

pair-wise approach.  

 

Pre-Play and Replay of Sequential Spiking Activity: Rank-order correlations 

Next we sought to examine the event-resolved characteristics of pre-play and 

replay using an established measure in which pre-play and replay strength is taken as the 

rank-order correlation between the sequence of place fields of cells on a maze to their 
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temporal sequence of activation during offline events (Diba and Buzsáki, 2008; Dragoi 

and Tonegawa, 2011, 2013; Foster and Wilson, 2006). Note that since these correlations 

are only taken over the place cells active in each event, only events in which at least 10% 

or 5, whichever was higher, of the isolated place cells fired at least one spike each were 

included in this analysis (52.0% (± 27.7% st.d.) of Pre events and 57.2% (± 28.0% st.d.) 

Post events, n = 5 Pre and 5 Post epochs, respectively). The results of this analysis were 

compared (rank-sum tests, significance threshold: p < 0.025) with a null (shuffle) 

distributions derived by randomly resampling the location of place fields on the maze 

without replacement (that is, random re-assignment of place field peaks to place cells) 

1,000 times and recalculating each event’s sequence score for each shuffle. In order to 

account for both forward and reverse pre-play or replay the absolute value of each of the 

correlation coefficients was taken as the sequence correlation score. Using this measure, 

we observed only two cases of significant Pre versus Post sequence score differences, and 

each of these showed effects in opposite direction (figure 4.5, panel a). In contrast to the 

recent literature concerning the pre-play phenomena and also utilizing the rank-order 

correlation methodology, the observed sequence correlation scores were found to be 

higher than the null in only three of five Pre epochs, and significant in only one of these 

(figure 4.5, panel b). Finally, and perhaps most surprisingly, given the limited amount 

known from the literature (see Introduction, Dragoi and Tonegawa, 2011, 2013) and our 

findings concerning pair-wise replay effects, though all five Post epochs showed absolute 

sequence correlation scores higher than their associated shuffled distributions, this effect 

was only significant in one Post epoch (figure 4.5, panel c).  
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In order to examine the origin of the observed rank-order pre-play and replay 

effects (or their absence), we calculated the per-cell contribution to the observed overall 

mean of the absolute rank-order correlation values across the events of each Pre and Post 

epochs (see Methods). It was found that those cells with place-fields near the ends of the 

maze contributed much more heavily to the mean absolute rank-order sequence effect 

than those cells near the center of the maze (figure 4.6, panel a). While there is 

physiological evidence to support selective coding for salient maze features such as 

rewards (around which the ends of the mazes were defined (Diba and Buzsáki, 2008; 

Gothard et al., 1996; Hollup et al., 2001; Redish et al., 2000)), the same effect was found 

in the per-cell contribution distributions of 100 shuffled place cell vectors (figure 4.6, 

panel b). Thus, while there may be relevant saliency effects at play in determining per-

cell contributions to the overall sequence correlation, it was found that the rank-order 

correlation methodology itself, when applied to the estimation of sequence similarity is 

mostly determined by the activity of those cells with place fields near the end of the 

maze. This is in line with our intuitions of the working of correlation coefficients in that 

it is known, for instance, that one outlier can have a larger effect on the position of the 

line of best (and thus the resulting correlation coefficient) than a large number of points 

clustered near each other (Gideon and Hollister, 1987). Conversely, this effect can be 

thought of algebraically in that, since z-scoring is the first step in the taking of a 

correlation coefficient (see Methods), values that tend to fall into the middle of the 

distribution will have a z-scores near 0, and a similarly small contribution to the overall 

correlation coefficient.  

 



77 

 

 

 

Pre-Play and Replay of Sequential Spiking Activity: Paired-Latency Method 

 An alternative method for event-resolved sequential pre-play and replay 

estimation was developed as an event-based version of the method of Skaggs et al., 1996. 

Briefly, in the Paired Latency (P.L.) method, for each event a template was constructed 

in which each element indicated the relative order (i.e. before or after) of a given pair of 

active cells. Similarly, Paired Distance vectors were constructed from the paired relative 

positions of place fields on the novel maze. Note that these vectors constitute an 

expansion of the original sequence into pair-wise elements and thus contain all the rank-

ordered information of the original sequence. Importantly, while each element of these 

templates conveys information about a particular pair-wise interaction, the templates 

were assessed on a per-event basis. For a given event, a P.L. sequence similarity measure 

was taken between its P.L. vector and a P.D. vector as the number of similarly ordered 

co-active pairs minus the number of differently ordered pairs, normalized by the total 

number of co-active pairs. Note that only cells that were both active in both event and 

that had place fields (and that thus contributed to the P.L. and P.D. vectors, respectively) 

influenced the overall measure. Consequently, the same criteria for event inclusion (5 

each or 10% percent of place cells, whichever was greater, active in the event) were used 

as in the rank-order replay analysis.  

 The per-cell contribution to the overall absolute mean P.L. score for each Pre and 

Post epochs was measured for both for the observed and place-field shuffled P.L. 

sequence scores (figure 4.7, panel a, see Methods). Note that, when compared to the rank-

order correlations the distribution of contributions to the overall absolute sequence 

similarity effect is much more uniform in the P.L. case. In addition, note that the P.L. 
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sequence similarity measure is highly correlated with sequence rank-order correlation in 

all sessions (figure 4.8, mean correlation coefficient: 0.983, ± 0.004 st.d.). This is 

consistent with the fact that these are two closely related measures of sequence similarity. 

     In line with the similarity between these two measures, it was found that the 

overall pre-play and replay estimates content were also qualitatively similar between 

these two measure (compare tied-rank pre-play and replay in figure 4.3 to P.L. sequence 

pre-play and replay in figure 4.9). However, taking advantage of the paired nature of the 

P.L. sequence similarity analysis, and following earlier work (Skaggs and McNaughton, 

1996; Wilson and McNaughton, 1994) in which pairs of cells isolated on the same 

tetrodes were excluded from analysis, we defined non-local P.L. sequence pre-play and 

replay scores by excluding all pairs of place cells detected on the same silicon probe 

shank (mean percentage of same shank pairs: 18.5% (± 8.6% st.d.), n = 5 sessions). In 

contrast to the previous conditions, using this non-local measure we found that all five 

Pre epoch and all five Post epochs means of absolute non-local P.L. sequence similarity 

scores tended to be higher than their respective shuffle controls (figure 4.10, panels b and 

c). Under this non-local measure, two out of five cases of significant pre-play (figure 

4.10, panel b) and four out of five cases of significant replay (figure 4.10, panel c) were 

observed. Notably, this difference suggests that the replay is more consistent and robust 

than is pre-play. Interestingly, however, the Post distribution of absolute P.L. sequence 

scores was found to be higher than the Pre distribution in only three sessions, and 

significant in one of these cases (figure 4.10, panel a), while another session (figure 4.10, 

panel a, fourth row) showed significantly higher Pre than Post values. Thus though we 

were able to observe both pre-play and replay (with the latter being found to be stronger 
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and more consistent than the former) when each Pre and Post distributions were 

compared to their respective shuffled distributions, the relationship between these, and 

the comparison of Pre directly to Post, was not straight-forward.  

In order to elucidate this relationship we examined the effect of a variable known 

to increase from the Pre to Post epochs, participation rate (that is, the number of place 

cells which fired at least one spike in a given event, and thus were included in that 

event’s sequence statistics) on the null (shuffled) P.L. sequence similarity scores. If the 

entire distribution is considered (i.e. if the absolute value is not taken)  only the variance 

is found to increase with participation (figure 4.11, panel a, compare green to black line). 

However, after taking the absolute value, both the variance and the mean, are strongly 

modulated by the number of participants (figure 4.11, panel b). For instance, the mean 

shuffled absolute sequence score of events with 5 to 9 participating cells was found to be 

0.362,  approximately 2.7 times higher than the sequence score for shuffled events with 

35 to 39 participants (mean: 0.134). Note that this effect does not apply to any particular 

event, but rather to the average of the distribution of many random events. One 

consequence of this is that if within-event sequences were random,  given that the 

majority of sessions showed a significant increase in participation rate from the Pre to the 

Post epochs (figure 4.2, panel c) we would expect that Pre epochs would show 

significantly higher P.L. sequence scores than did the Post sessions – the fact that this is 

usually not the case may implies the presence of at least a higher proportion of maze 

specific structured sequence content in the Post compared to the Pre epochs.  

Subsequently, we examined the correlation of event duration, within-event place 

cell firing rate, within-event number of participants, and within event participating firing 



80 

 

 

 

rate (that is, the within-event firing rate across place cells which fired at least one spike in 

that event) against non-local absolute P.L. sequence similarity scores in the Pre and Post 

conditions (figure 4.12, panels a, b, c and d, respectively). Event duration, place cell 

firing rate, and number of participants were all found to correlate negatively with 

absolute PL. sequence score. Note that these correlations, some of them quite robust 

(figure 4.12, a and c) were observed in both the Pre and Post epochs and largely are 

predicted by the interaction between participant number and mean absolute P.L. sequence 

score previously described in the null case (figure 4.12). The one positive correlation 

observed, that between participating (non-zero) place cell firing rate and absolute P.L. 

score is harder to attribute to the null participant and sequence strength negative 

correlation. However, the possibility that short duration events both tend to have fewer 

cells (leading to a higher null sequence score mean) and higher firing rates due to the 

smaller value of the denominator in assessing the rate cannot be discarded. These cases 

are illustrative how similarly the observed and null distributions are modulated by 

number of participants implying that a large part of the variance of sequence similarity 

scores across events is attributable to random, non-maze specific sequence content. These 

cases are also illustrative of how, without taking into account the behavior of the null 

distribution, it can be possible to mistake these random effects for a physiological signal 

(Tatsuno et al., 2006).  

Importantly, since only place field identities were shuffled to construct the null 

(shuffled) sets and subsequently tested against the observed (unperturbed) events the 

participation rate is fully preserved between the observed and each of its null 

comparisons. In order to test how changes in the null distribution from Pre to Post affect 



81 

 

 

 

the observed pre-play and replay effects, we compared the within session null 

distributions to each other as well comparing the observed distributions against the null 

derived from the opposing epoch of the same session (figure 4.13). A majority (three out 

of five) sessions show a significant decrease from Pre to Post in the mean of their null 

distributions (figure 4.13, panel d). In fact, while comparing the observed Pre distribution 

to shuffled Post distribution shows that the same two sessions remain significant, only 

two out of five observed Post distributions are higher than the observed Pre null 

distribution. Consequently, it may be that both changes in the strength of sequential 

content as well as changes in the context of the expected null distribution in which these 

content-specific sequences are observed, that drive the increased significance of the 

replay as compared to pre-play. 

Next we examined the evolution of the observed absolute P.L sequence 

correlation values as well as the within-event firing place cell firing rates over the course 

of the Pre and Post epochs.  Across all five Post epochs only one instance of significant 

replay decay (that is, a decrease in the replay signal) was observed (figure 4.14, panels e 

and f). No significant changes in non-local sequence strength were observed across any 

of the five Pre epochs (figure 4.14, panels a and b). However, within-event firing rates of 

place cells were found to decrease both across the Pre epochs (three out of five Pre 

epochs with significant correlations, figure 4.14, panels c and d) and across Post epochs 

(four out of five significant correlations, figure 4.14, panels g and h).  

Next, we examined changes in firing rate and non-local absolute P.L sequence 

scores within NREM episodes lasting at least 100 seconds. Consistent with previous 

results (Grosmark et al., 2012), normalized pyramidal firing rates were found to increase 
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within NREM (figure 4.15, panels a, b and c). While within-events changes in firing rates 

were not as pronounced as those previously presented for within-ripple changes 

(Grosmark et al., 2012), a consistent decrease of normalized within-event firing rates was 

observed within NREM session (figure 4.15, panels d, e and f). However, no significant 

changes in non-local absolute P.L. sequence score were observed during within NREM 

episodes (figure 4.15, panels h, i, and j). We need to emphasize though, that the 

possibility that this dissociation between changes in excitability and pre-play/replay 

strength is attributable to the divergent statistical power of the two measurements cannot 

be discarded.   

 

Pre-Play and Replay: Bayesian Decoding 

Pre-play and replay were further examined using a Bayesian decoding technique 

(Davidson et al., 2009) which is complementary to the pair-wise and sequence similarity 

approaches (see Introduction). For each session Bayesian classifiers were constructed 

from the population of smoothed firing-rate by-position vectors (see Methods) with a 

smooth prior distribution for position. For linear track sessions this analysis was carried 

out independently for each run direction. Five-hundred null Bayesian classifiers were 

constructed by randomly circularly rotating each place cell’s un-smoothed firing rate 

vector independently, and subsequently smoothing. Five-hundred null (shuffled) 

Bayesian decoders were constructed by random circular rotations of each place cell’s 

firing-rate by position vectors and re-smoothing.  
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In order to establish the quality of the classifiers, the animals' trajectories were 

reconstructed from place cell population activity vectors binned in non-overlapping 500 

ms bins during epochs in which the animal’s velocity was at least 5 cm/sec. In order to 

validate the classifiers, trajectories were decoded from place cell population activity in 

these same bins using either the real or shuffled decoders. Prediction accuracy was found 

to robustly exceed the shuffled decoding both for linear maze (figure 4.16, panel b, mean 

decoded position error: 10.88 cm, mean shuffled decoder error: 50.19 cm, rank-sum test p 

≈ 0, n = 1,145 bins) and circular maze (figure 4.16,  panel c, mean decoded position error: 

14.18  cm,  mean shuffled decoder error:  94.72 cm, rank-sum test p ≈ 0, n = 1,820 bins). 

Note that the magnitude of the decoding errors is in line with those previously reported 

(Davidson et al., 2009; Dragoi and Tonegawa, 2013; Pfeiffer and Foster, 2013). To 

ascertain that the data was not being over-fit, we cross-validated the quality of the 

decoder on one fifth of all laps (see Methods). Cross validated trajectory reconstructions 

robustly out-performed shuffled trajectory reconstructions in both the linear maze (figure 

4.16, panel e, mean decoder error: 11.33 cm, mean shuffled decoder error: 49.77 cm, p ≈ 

0,  n = 207 bins) and the circular maze (figure 4.16,  panel f, mean decoder error: 13.01 

cm, mean shuffled decoder error: 93.71 cm, p ≈ 0,  n = 334 bins).  

After justifying our method for coding the trajectory of the animal, we used the 

Bayesian decoder to examine pre-play and replay in population activity events divided 

into non-overlapping 20 ms bins. In addition to the event inclusion criteria articulated 

above for the ‘Pre-Play and Replay of Sequential Spiking Activity’ analysis, only events 

which had at least five non-zero firing rate 20 ms bins, and whose decoded trajectory 

extended a minimum distance of 30 cm were included in this analysis (see Methods, n = 
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11,640 Pre and 11,818 Post events in total). For each of these 20 ms bins, the position 

corresponding to the maximal decoded posterior probability, as well the value of this 

maximal posterior probability were obtained. Using templates derived from the novel run 

epochs two measures were obtained for each population event 1) Bayesian decoding 

quality was assessed as the mean maximal posterior probability across all the bins in the 

events (figure 4.17, panels a-d) , 2) Bayesian decoded sequence Pre-play and Replay 

strength was assessed as the sequence score, using a modified version paired-latency 

method across the sequences of decoded positions in each event (figure 4.17, panels  e-f, 

see Methods for details of the modified P.L. method). Note that similarly to the analysis 

above, the absolute value of P.L. sequence similarity was taken to account for both 

forward and reverse sequential content. The measures were also taken using each of 500 

shuffled decoders, establishing the null distributions. Bayesian decoding quality (mean 

posterior probability) increased significantly (significance threshold: p < 0.025, rank-sum 

test) from the Pre to Post epochs in four out five novelty sessions (figure 4.17, panels a 

and b). However, the observed Bayesian decoding quality was only significantly better 

than the null distribution of Bayesian decoding qualities in two of the Post epochs and in 

none of the Pre epochs (figure 4.17, panels a, c and d).  Conversely, only two sessions 

showed significant increases Bayesian decoded sequence strength (figure 4.17, panels e 

and f). However, all five Post and three Pre epochs showed Bayesian decoded sequence 

strength higher than their shuffled controls (figure 4.17, panels e, g and h). These findings 

confirm that both replay and pre-play are detectable using the Bayesian framework 

(Dragoi and Tonegawa, 2011, 2013), and that, similarly to the Pre-Play and Replay of 

Sequential Spiking Activity analysis, replay is the more robust phenomenon. The fact that 
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it is the Bayesian decoding quality which shows the most robust changes from Pre to 

Post, while decoded sequence strength shows the most robust differences against the null 

distributions should be interpreted cautiously, but may be suggestive of the underlying 

specific and non-specific structure underlying pre-play and replay. Moreover, it should be 

noted that these two measures (decoding quality and decoded sequence strength) are not 

typically measured separately and are in fact conflated in the recent literature (Davidson 

et al., 2009; Kloosterman, 2012).  

Finally, we examined the correlations of Bayesian decoding quality and sequence 

strength against each other as well as against non-local P.L. absolute sequence strength 

(see, ‘Pre-Play and Replay of Sequential Spiking Activity: Paired-Latency Method’ 

above). Bayesian decoding strength and Bayesian sequence strength were significantly 

correlated (p < 0.025, Fisher Z-Test) in four out of five Pre epochs and in three out of five 

post epochs (figure 4.18, panel a). Notably, while this effect might be expected in the 

Post epoch, the strength of this coupling during the Pre epoch may be suggestive of 

possible mechanisms of pre-play. Bayesian sequence strength and non-local P.L. 

sequence strength were found to be significantly correlated in all conditions (figure 4.18, 

panel b), confirming that these two measures of sequence content are in fact related. 

Notably however, Bayesian decoding quality (which also correlates with Bayesian 

sequence strength, see above) did not show consistent correlations with P.L. spike 

sequence strength (figure 4.18, panel c).  

In our final comparison we measured the correlations of these three measures 

(Bayesian decoding quality, Bayesian sequence strength, and non-local P.L. spike 

sequence strength) against within-event mean firing rate. The strongest of these 
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relationships, was that between Bayesian decoding quality and within event mean-firing 

rate in which all five Pre and all five Post epochs show positive and significant 

correlations (figure 4.18, panel e). Given that spiking is the evidence used by the 

Bayesian decoder to estimate position this is an expected result. However, it was found 

that contrary to the generally negative correlation between P.L absolute spike sequence 

strength and firing rate (figure 4.18, panel f and figure 4.12, panel b), Bayesian sequence 

strength showed a positive correlation with within-event firing rate (figure 4.18, panel d, 

five and three significant correlations for the Pre and Post epochs respectively).  The 

strong coupling between Bayesian sequence strength and P.L. strength (figure 4.18, panel 

b), combined with the fact that they show opposite interactions with within-event firing 

rate is of particular interest, and may have applications in understanding the physiological 

relationships between firing rate and sequential activity.  
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Discussion 

TheStateEditor: Behavioral State Scoring, Data Visualization and Annotation 

Software 

 Historically the field of neuroscience has relied on a wide and increasing array of 

analysis and visualization techniques for small-timescale (millisecond to second 

resolution) phenomena. For electrophysiological data in particular, with its emphasis on 

single or clusters of spikes, the most common analysis and visualization techniques, 

including raster plots, auto and cross-correlegrams, peri-event time histograms, evoked 

response potentials amongst many others (Ostojic et al., 2009; Perkel et al., 1967a, 

1967b), are most readily interpretable and interpreted in sub-second time scales. This 

emphasis on small-timescales is often straight-forwardly explained by the many cellular 

and network phenomena of interest which occur at sub-second time scales. However, the 

visualization and analysis of electrophysiological and behavioral phenomena that occur at 

large time-scales (tens to thousands of seconds), and particularly the analysis of 

behavioral state dynamics, poses a distinct set of challenges. Particularly, precisely 

because many cellular and network dynamics occur at small time scales, ‘raw’ 

physiological signals are typically not easily interpretable at large time-scales. For 

instance, there is typically little information that can be gleaned from a raster or LFP plot 

displayed over thousands of seconds, except perhaps in the overall amplitude of the 

activity. Large-time scale analysis is typically performed over second-order data such as 

time-resolved spectrograms of LFP data, with the drawback of the loss of finer-time scale 

dynamics. Consequently, researchers are often faced with a choice of interacting with 

representations of large time-scale data that are either faithful or intelligible. 
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TheStateEditor presents one attempt to bridge this gap in a practical and intuitive way. 

The program presents both large (in the form of spectrogram and motion signal display) 

and small (in the LFP displays) time-scale data in one coherent, readily navigable and 

interactive display. 

While many of the features of TheStateEditor, such as the StateRibbon and the 

motion display, are designed to facilitate the scoring of behavioral states it can also be 

used to visualize and annotate many types of large time-scale data. This is particularly 

facilitated by the program’s ability to load properly formatted Matalb vectors of arbitrary 

data types and to load and edit up to ten different event classes. Thus it may be used in 

contexts far removed from the current study. For instance, a researcher performing an 

EEG study on infant speech processing may find TheStateEditor a relatively easy to use 

method for examining attention related changes that occur during the course of a 

particular session. He or she would be able to load simultaneously recorded galvanic skin 

response data from a ‘.mat’ (Matlab format) file as well as load events, perhaps 

representing the presentation of certain word stimuli, as well as edit these events. 

Importantly, if this theoretical researcher was versed in the Matlab programming 

language and wished to change aspects of TheStateEditor to better suit their particular 

needs, they would be free to modify the script to better suit their interests.  

In addition, TheStateEditor is useful in that it allows the extraction of particular 

(up to three) EEG channels, as well as the related time-resolved spectrograms, motion, 

state and event data. These data can all be saved in two files (the ‘auxiliary’ file and the 

‘state’ file discussed in the Results) and readily shared. The sharing of data in this format, 

which contains both the ‘raw’ data as well as the processed state and event labels, may be 
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of particular use for the cross-validation of analyses such as state scoring in which the 

hand-labeling of data by experts, with or without a prior unsupervised step, remains the 

current best practice (Schulz, 2008; Silber et al., 2007). 

 

REM Sleep Reorganizes Hippocampal Excitability  

In our study of putatively homeostatic changes in excitability we found that firing 

rates in hippocampal layer CA1 change during sleep and that these changes display a 

sawtooth pattern, so that the modest increase in discharge activity within non-REM 

episodes are overcome by the larger rate deceleration within the intervening REM 

episodes, resulting in an overall rate decrease during the course of sleep. Theta power of 

REM sleep is coupled with an increase in synchrony and decrease in rate variability of 

pyramidal cells during the brief ripple events across sleep. REM mechanisms are thus 

implicated in both the rate and synchrony changes. These findings suggest that different 

stages of sleep have different contributions to firing pattern changes. Moreover, a simple 

global discharge rate measure in the hippocampus does not faithfully characterize the 

firing pattern reorganization that takes place during the course of sleep. 

 

Models of Sleep Function 

There are two dominant views on the role of sleep in firing pattern regulation. 

According to the ‘consolidation’ model, neurons that are activated by recent waking 

experience remain selectively active during sleep, firing mainly within hippocampal 
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ripples and neocortical sleep spindles (Born et al., 2006; Buzsáki, 1989; Carr et al., 2011; 

McClelland et al., 1995; Sejnowski and Destexhe, 2000; Stickgold, 2005). The increased 

firing of the active neurons is balanced by a commensurate decrease in the remaining 

neuronal population so that the global firing rates and population excitability remain 

relatively constant (Dragoi et al., 2003). In contrast, ‘homeostatic’ models suggest that 

waking experience-related neurons add to the overall excitability of the cortical networks 

and sleep (i.e., non-REM) serves to equalize and reduce rates (Borbély, 1982; Lubenov 

and Siapas, 2009; Tononi and Cirelli, 2006b). Thus, both models attribute importance to 

sleep-related plasticity, as manifested in the rate changes of individual neurons and/or 

synaptic weight changes. While our findings do not provide direct information on these 

issues, they show that rate and synchrony effects should be treated separately (Wilson 

and McNaughton, 1994) and that it is REM sleep that may be instrumental in bringing 

about both rate effects and increased synchrony in the hippocampus.  

 

Potential Confounds to a REM Dependent Effect 

As is the intrinsic limit of all studies dealing with observations rather than 

manipulations, we cannot unambiguously ascertain the mechanism of the observed rate 

increase during non-REM or its decrease during REM. One potentially linked factor to 

the observed firing rate changes during sleep is a parallel change in core and brain 

temperature. As observed in rabbits, the temperature of the brain decreases during sleep, 

interrupted by rapid increases of up to 0.4°C during REM episodes (Baker and Hayward, 

1967; Kawamura and Sawyer, 1965). However, temperature change is unlikely to be the 
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sole cause of the saw-tooth discharge pattern of non-REM and REM, since in the waking, 

exploring rat, elevation of brain temperature during running is associated with increased 

neuronal discharge rate and higher excitability (Moser et al., 1993).  

Perhaps a more serious confound however, is our inability to determine from the 

current data whether the changes observed are intrinsic to the hippocampus or are due to 

changes in firing rate in one or more of layer CA1's input structures. In addition,  REM 

and non-REM are treated here as being stationary states imposing a uniform effect on 

excitability over time, each of these states are known to host a diversity of micro-states 

and associated network oscillations . Indeed, frontal spindling is known to increase within 

non-REM epochs (Gottesmann, 1992; Terrier and Gottesmann, 1978) and amygdala 

activity displays the elevated metabolic activity during REM in humans (Maquet et al., 

1996). However, while non-hippocampal sources of excitation certainly affect CA1 firing 

during sleep (Hahn et al., 2012; Isomura et al., 2006; Sirota and Buzsáki, 2005; Sullivan 

et al., 2011), it would be un-parsimonious to assume that these non-local sources 

completely mask and override local changes. Furthermore, even if the sources of the 

observed changes are indeed found to be non-local and opposite of local changes, then 

these latter upstream structures, rather than the hippocampus proper, would still be found 

to be in disagreement with the standard homeostatic theory (Tononi and Cirelli, 2006b). 

Finally, while the methods used in this study preclude the definitive establishment of a 

cellular basis for the observed effects, we stress that spiking remains the sina qua non of 

neural information flow (Barlow, 1972). Consequently, the observed dynamics in spiking 

during both non-REM and REM, while perhaps not uniquely determinant, are at the very 

least relevant to the dynamics of information processing during these states. 
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REM Represents a Unique Neuromodulatory Regime 

Of the two brain states here considered (non-REM and REM), only REM 

episodes are associated with decreasing firing rates in the hippocampus (Montgomery et 

al., 2008). Although both active waking and REM sleep are associated with similar 

network states, characterized by theta oscillations and sustained neuronal firing, these 

states are fundamentally different when viewed from the perspective of the brain stem 

(McCarley, 2007; Vertes, 1984).  Exploration is strongly linked to elevated activity of 

cholinergic, serotoninergic, histaminergic and noradrenergic neurons, whereas during 

REM sleep only the cholinergic tone is high (Steriade, 2004). It is thus possible that 

serotonin and/or norepinephrine are responsible for producing different directions of rate 

and excitability changes during waking and REM, especially because these 

neuromodulators have been shown to strongly affect long-term synaptic plasticity (Bliss 

et al., 1983) and REM sleep deprivation results in impaired synaptic plasticity 

(McDermott et al., 2006). 

 

Hippocampal Excitability and Synchrony Are Decoupled During Sleep  

Another unexpected observation in our experiments was the parallel changes of 

decreased global firing rates and increased synchrony during sharp wave ripples across 

sleep (Diekelmann et al., 2011). Increased firing rates are typically accompanied by 

spurious increases in synchrony measures (Perkel et al., 1967a). However, in the 

hippocampus, large, non-linear increases in population synchrony are brought about by 
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ripples (Buzsáki et al., 1992), and increased synchrony in our experiments occurred 

almost exclusively during hippocampal ripples. In fact, within non-REM episodes firing 

rates between ripples decreased in parallel with the increased participation of neurons in 

ripples. We hypothesize that the two types of changes, i.e., decreasing firing rates and 

increased synchrony during the course of sleep, are due to the same mechanism(s) since 

both changes were significantly correlated with the power of theta oscillations during 

REM episodes. 

 

Future Directions 

It remains to be demonstrated whether the described sleep-related firing patterns 

changes are unique to the hippocampal CA1 region or can be generalized to other cortical 

regions. According to a current influential model, the most important role of non-REM 

sleep is to decrease firing rates (Tononi and Cirelli, 2006b). Since this prediction is 

opposite to the present observations in the hippocampus, one potential outcome is that 

firing rate regulations in the neocortex and hippocampus follow different rules. Another 

alternative is that downscaling of neocortical firing rates are also brought about by the 

intervening REM episodes, as observed in the hippocampus.  

In addition to testing the whether the effects observed in the current study are also 

found outside of the hippocampus the mechanisms which bring it about may also be 

usefully examined through various manipulations. The ever-progressing field of 

optogenetics offers a broad array of tools suitable for testing the precise nature of the 
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observed changes in firing rate and structure (Anikeeva and Deisseroth, 2012; Boyden et 

al., 2005; Stark et al., 2012). Indeed, in principle, intrinsic excitability can be examined in 

channel rhodopsin expressing neurons by testing the robustness over time of the local 

neural response to a set light stimulus intensity (Chen et al., 2012). In addition, the 

composition of sleep itself can be usefully manipulated through a variety of  

pharmacological (Datta et al., 2004, 2008; Gais and Born, 2004; Gottesmann et al., 1998) 

and optogenetic (Adamantidis et al., 2010; Carter et al., 2010; Rolls et al., 2011) 

techniques, allowing the dissection of the specific functional contribution of each of its 

components. 

 

Hippocampal Pre-Play and Replay of Novel Experiences   

 Having developed an understanding of the general framework of hippocampal 

excitability across and within behavioral states, we next sought to study how 

hippocampal firing patterns relate to the learning of novel environments. In other words, 

having gained an understanding of the general context of firing rate changes during sleep, 

we next sought to understand how this context interacted with the coding of the specific 

memory content associated with the learning of a novel set of stimuli. This is a critical 

issue because learning-induced specificity and the role of sleep in memory consolidation 

were often contrasted to homeostatic models of memory. Our research covering both 

topics indicates that the two models are complementary rather than exclusionary. 

Furthermore, our study was methodologically distinct from previous work on the pre-play 

and replay phenomena in at least three salient features. First, and most important, in all 

previous studies concerning these phenomena all Pre and Post recordings were carried 
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out in the same, familiar, room in which maze epoch (whether novel or familiar) was also 

recorded (Dragoi and Tonegawa, 2011, 2013; Euston et al., 2007; Hirase et al., 2001; Ji 

and Wilson, 2007; Kudrimoti et al., 1999; Lansink et al., 2009; Lee and Wilson, 2002; 

Louie and Wilson, 2001; Nádasdy et al., 1999; Nakashiba et al., 2009; O’Neill et al., 

2008; Pavlides and Winson, 1989b; Pennartz et al., 2004; Peyrache et al., 2009; Poe et 

al., 2000; Qin et al., 1997; Ribeiro et al., 2004; Skaggs and McNaughton, 1996; Tatsuno 

et al., 2006; Wikenheiser and David Redish, 2013; Wilson and McNaughton, 1994). By 

contrast, our Pre and Post epoch recordings were carried out in a different (and familiar) 

room than that in which novelty maze exposure was recorded, thus presenting a totally 

novel context for the animal. Notably, the novelty of ‘novel maze’ exposure condition is 

critical in order to establish that the activity observed during the Pre epoch (i.e. pre-play, 

(Dragoi and Tonegawa, 2011, 2013) is truly non-specific with respect to the novel 

scenario into which the animal is introduced.  Testing an animal in a different room 

(context) and not only in a novel arm of a familiar maze or a different apparatus in the 

same room is critical, since research has shown that strong changes in firing rate 

representations occur only in different rooms (Leutgeb et al., 2005). Secondly, in order to 

contextualize any novel maze-specific content within more general putatively 

homeostatic changes in hippocampal activity, our Pre and Post recordings were, on 

average, each more than 3 hours long, while most previous studies on the subject only 

analyzed fifteen minutes to an hour of Pre and Post maze activity (Dragoi and Tonegawa, 

2011, 2013; Euston et al., 2007; Hirase et al., 2001; Nakashiba et al., 2009; O’Neill et al., 

2008; Pennartz et al., 2004; Peyrache et al., 2009; Skaggs and McNaughton, 1996; 

Wilson and McNaughton, 1994). Finally, though not strictly unique, the current study 
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was carried out with a particular focus on how background patterns of excitability (and 

particularly firing and event participation rates) affect measurements of the relationship 

between the temporal sequences of activity observed in ‘off-line’ states and the spatial 

distribution of place fields on a novel maze. These features in the design of our 

experimental and analysis methods, were included in order to obtain a more global 

perspective of the dynamics of both the non-specific context of 'off-line' hippocampal 

activity as well as the putative maze-specific content nested within it.   

 

Excitability Changes In Population Activity Events 

 In accordance with the previous work relating to changes in excitability across 

behavioral states (Vyazovskiy et al., 2009) we found and increase in firing rate and 

participation in population activity events from the Pre to the Post epochs. While in our 

previous study (see ‘REM Sleep Reorganizes Hippocampal Excitability’ above; 

Grosmark et al., 2012) we did not directly test hippocampal firing rate changes during the 

waking state, our observation that firing rate decreases across sleep strongly implicated 

the waking state in their commensurate increase, a hypothesis supported by the current 

findings (figure 4.2). Importantly, these expected, putatively non-task specific, increases 

in the levels of excitability informed much of our subsequent analysis into the nature of 

maze-related activity content.  
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Replay Is Robustly Present in Place Cell Pair Activity and Timing Co-Modulation 

Given the novel aspects of our study, we first sought to replicate earilier work 

concerning (non-local) pair-wise measures of place cell co-activity (Kudrimoti et al., 

1999; O’Neill et al., 2008; Pennartz et al., 2004; Wilson and McNaughton, 1994) and 

timing co-modulation (Euston et al., 2007; O’Neill et al., 2008; Skaggs and McNaughton, 

1996) as a function of place field peak distance (figures 3.3 and 3.4, respectively). 

Notably, while, as expected, place cells with overlapping place-fields (20 cm or less pair-

field peak distance) were found to be strongly co-modulated both in terms of activity and 

spike-timing, we also observed that cells with strongly segregated place fields (120 cm or 

more place field distance) were selectively segregated in terms of these measures. 

Interestingly, the spike-timing segregation of pairs with far place fields, appeared more 

robust on the linear track condition (figure 4.4, left column) than in the circular maze 

condition (figure 4.4, right column). The linear and circular mazes are distinct in at least 

two important respects. First, in the linear case, the animals were made to run in both the 

left and right direction to earn reward, while in the circular maze running was generally 

limited to one (clockwise) running direction and only runs in this direction were 

rewarded. All the pre-play and replay analysis presented deals with the bi-directionality 

of the linear maze condition by taking all measurements separately for the left and right 

running directions (Diba and Buzsáki, 2007; Dragoi and Tonegawa, 2011, 2013; Foster 

and Wilson, 2006). Secondly, running on the linear maze was strongly modulated by the 

maze’s two ends at which points the animals were rewarded and had to change running 

direction. This is in contrast to the ‘endless’ nature of circular maze runs. Consequently, 

it may be that as compared to the circular maze condition, the replay of linear maze 
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experience is biased such that the two ends of the maze are selectively temporally 

segregated. Notably, this hypothesis is supported by the strong bimodality we observed in 

the place field distance effects on spike-timing on the linear maze (figure 4.4, left 

column, note that relatively little modulation is observed at intermediate place-field 

distances).  Importantly, a unique role for the ends of the linear track in replay (or pre-

play) is also suggested by findings showing that hippocampal place cells tend to 

aggregate around behaviorally salient landmarks (Gothard et al., 1996; Hollup et al., 

2001; Redish et al., 2000), and specifically around the ends of linear mazes (Diba and 

Buzsáki, 2008). The relationship between the putative over-representation of the ends of 

the linear maze and the segregation of the timing of spikes corresponding to opposite 

ends of the maze, and in turn the relationship of each to pre-play and replay signals, 

presents an interesting subject for future detailed analysis.   

 Another interesting result regarding the pair-wise analysis was the virtual 

absence of a pre-play signal which will be discussed in more detail below.  

 

Absence of Pre-Play and Replay Using the Rank-order Correlation Method 

 Having established the presence of pair-wise replay (but not pre-play) in our data 

set, we next sought to examine this phenomena using the event-based rank-order 

correlation method, where the template of the neuronal sequences is obtained from the 

place field sequences on the maze (Diba & Buzsáki, 2007; Dragoi & Tonegawa, 2011, 

2013; Foster & Wilson, 2006). To our surprise, we found that contrary to both previous 

work (Dragoi and Tonegawa, 2011, 2013) and our observation concerning pair-wise 



99 

 

 

 

effects, neither replay nor pre-play was observed using this method. This discrepancy 

may be attributable to several substantive differences between the previously employed 

methods and our own. While the rank-order method has been employed by several groups 

(Diba and Buzsáki, 2007; Dragoi and Tonegawa, 2011, 2013; Foster and Wilson, 2006) 

all but one of these groups (Dragoi and Tonegawa, 2011, 2013) restricted their analysis to 

the awake state, while in turn one of these (Diba and Buzsáki, 2007) was carried out 

mostly in the CA3 rather than CA1 hippocampal layer. Importantly, in the 

aforementioned studies carried out Dragoi and Tonegawa, and in contrast to our own 

study, both the Pre and Post sleep sessions were recorded in the same room as the novelty 

run. In those studies the animal's of view of the room was occluded during Pre and Post 

epochs by placement of walls around the animal's home cage during recordings. 

However, the possibility that the animal had, even a fleeting, view of the experimental 

room during transportation into the room or during the plugging in of its head-stage 

cannot be excluded. Moreover, the animal would be expected to have had a clear view of 

the experimental room's ceiling and any cues, such as the placement of lights, shelving, 

etc., found on it. In addition, during the transfer onto the maze the animal would 

presumably have had ample visual and vestibular input to indicate that it was moving 

entirely within the context of the experimental room. While these stimuli may each seem 

insignificant, hippocampal place coding is known to be radically modulated by the 

context in which a place is experienced (this, indeed, is part of the motivation for the re-

play experiments, see Introduction, Leutgeb et al., 2005). In turn, the establishment of the 

context of hippocampal place maps, as well as the 'anchoring' of the head direction 

system is known to rely on vestibular cues (Taube, 2007) and more importantly on visual 
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cues and specifically, distal visual cues (Cressant et al., 1997; Zugaro et al., 2001, 2004). 

Consequently, it may be that in the pre-play studies, as well as in all the studies of replay 

of which we are aware, at least part of the similarity found in the 'off-line' and maze 

conditions may be explained by the common context in which they were both recorded. 

Importantly, the claim here is not that these studies are thus invalid, rather that the 

specific contribution of contextual cues to pre-play and replay remains largely unknown, 

and cannot be excluded based on the methods of these studies.  

 Two further differences between the present study and previous work on pre-play 

(Dragoi and Tonegawa, 2011, 2013) should also be considered. Firstly, in order to 

exclude potential behavioral variability attributable to the reward areas, and in contrast to 

the pre-play studies, in our study the reward areas at the ends of the maze were not 

included in the place cell analysis (Diba and Buzsáki, 2007). This difference is 

particularly notable because, as previously shown (Results, figure 4.6), the rank-order 

method is heavily biased by the activity of cells with fields near the edges of the maze. 

Finally, another difference comes from the differing recording apparatuses employed in 

these studies. Specifically, in the present studies hippocamapal neurons were recorded 

using either 6 or 8 shank silicon probes, which offer geometrically precise, spatially 

dense sampling of the hippocampal CA1 layer (Bragin et al., 2000).  In contrast, in the 

pre-play studies hippocampal neurons where recorded using multi-tetrode arrays, which 

offer low geometrical precision and more diffuse spatial sampling. As a consequence, the 

current study contained a higher percentage of neural pairs recorded at proximate (local) 

anatomical locations. The possible local versus non-local pair recordings are discussed 

below. 
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Replay and Pre-Play Are Observed in the Non-Local Higher Order Structure 

  Having developed and verified (Methods, Results, figures 3.7 and 3.8) the novel 

Paired Latency (P.L.) method for assessing the higher-order similarity of rank-ordered 

sequence content we proceeded to examine pre-play and replay using this new method. 

As expected from the results of the P.L. method's similarity to the tied-rank correlation 

approach (figure 4.8), a similar absence of pre-play and replay effects was observed 

(figure 4.9). However, the P.L. method also enabled us to follow previous work (Skaggs 

and McNaughton, 1996; Wilson and McNaughton, 1994) in restricting our analysis to 

pairs recorded on different (non-local) silicon probe shanks. Interestingly, when only 

non-local pairs were considered we found four Post epochs with significant replay and 

two Pre epochs with significant pre-play (figure 4.10). Furthermore, the observed replay 

and pre-play strength was higher than that of the shuffle controls in all five Post epochs 

and all five Pre epochs, respectively. The fact that non-local pairs contributed to the 

wake-sleep sequence similarities is in line with a previous study which used a method 

based on principal component analysis to detect replay of rule learning (Peyrache et al., 

2009). Notably, the authors demonstrate that nearly all of the observed replay effect is 

accounted for by pairs of cells recorded on different tetrodes, even though interactions 

between pairs of cells recorded on the same tetrode dominate the correlation structure. 

However, it should be noted that this study was carried out in the prefrontal cortex, 

whose anatomical organization is quite different for that of the hippocampus. While the 

putative roles of anatomically distributed coding in the non-columnar hippocampus will 

be discussed further below, it is here worth noting that in both Peyrache et al., 2009 as 

well as in the current study differences between distal and local interactions should be 
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interpreted cautiously in light of the fact that the latter are subject to spike cross-

contamination.  However, the use of silicon probe based recordings in the current study, 

together with the increased sampling density and spike waveform resolution afforded by 

this technique may enable us to fruitfully test the null hypothesis of spike cross-

contamination in future analysis.  

 

Changes in Participation Rate Lead to an Increase in the Signal to Noise Ratio During 

the Post Epoch 

  In order to assess how the observed non-local sequential pre-play and replay 

signals co-varied with the previously observed changing context of excitability we first 

sought to characterize the way that the null (shuffled order) sequence similarity structure 

co-varied with within-event participation (that is, number of pyramidal cells that fired at 

least one spikes). Participation was chosen both because in the P.L. sequence similarity 

method (as well as in the rank-order correlation method) each cell that fires at least one 

spike contributes only one value (i.e. the timing of the temporal center of mass of all the 

spikes it emitted within that event) and because participation was a measure of 

excitability observed to change from the Pre to the Post epochs (figure 4.2). Notably, we 

observed a strong inverse relationship between the number of participants in an event, 

and the expected absolute value of the null P.L. sequence similarity strength of that event 

(figure 4.11). Importantly, given that within-event participation rates tended to increase 

from the Pre to the Post epoch, a commensurate decrease in the null distribution was 

expected and observed (figure 4.13). Moreover, without this observed decrease in the null 
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distribution from the Pre to the Post epoch, only two out of the previously four epochs 

displaying significant replay, retained this effect (figure 4.13). Consequently, our analysis 

implies that both changes in the signal content of sequential activity as well as changes in 

the noisy context of sequential activity from the Pre to the Post may play part in the 

emergence of replay.  

 While the particular signal and noise components described here are specific to 

the method employed and its relationship to participation rate, we emphasize that 

increases in neuronal excitability as expressed by firing rate were reliably observed from 

the Pre to the Post epochs (figure 4.2). Whether the increase in excitability (intrinsic or 

synaptic) is entirely restricted to task-specific network components  or  affect both task-

specific and non-specific components of network activity needs to be investigated further. 

We consider the task-specific excitability hypothesis less plausible due to several 

considerations. Firstly, wake-related increases (Vyazovskiy et al., 2009) as well as 

commensurate sleep-related decreases in excitability have been observed to occur in the 

absence of any particular learning task (Grosmark et al., 2012). This observation was 

confirmed in the current study by our result showing that similar sleep-related decreases 

in hippocampal firing rates occurred both within the Post sleep, which occurred 

subsequent to a novel and salient spatial task as well as within the Pre sleep, which 

occurred following the absence of such novel stimuli (figure 4.14 panels g and c, 

respectively). Furthermore, if the observed increases in excitability were entirely 

restricted to task-specific cells, the increased firing of these cells, together with their 

enhanced excitation of local interneurons (Buzsáki and Chrobak, 1995; Pelletier and 

Lacaille, 2008), would be expected to lead to an unobserved drastic increase in the signal 
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to noise characteristics of task-specific network activity.  Finally, given that individual 

hippocampal cells as well as individual hippocampal cell pairs may contribute to the 

encoding of more than one set of stimuli (Hayman et al., 2003; Jeffery, 2011), it is 

unclear that wholly task-specific changes in excitability are theoretically possible. Given 

our current knowledge, we hypothesize that the consistently observed increases in 

excitability from the Pre to the Post epochs are due to both task-related as well as 

unrelated, putatively homeostatic, changes in excitability. While the none-specific 

component of these changes has been traditionally treated as a confound in much of the 

replay literature (Tatsuno et al., 2006; Wilson and McNaughton, 1994), we emphasize 

that given the observation that following learning both task-related and none-related 

changes in excitability are found to be physiologically reliable phenomena, a 

physiological role for both in the processes governing hippocampal-dependent memory 

consolidation cannot be excluded (Buzsáki, 1989; Ermentrout et al., 2008). While the 

precise nature and contribution to memory of each these components is beyond the scope 

of a single study, we note that a careful cataloging of each of these putative components 

is a necessary first step in such an exercise.  

 

Much of the Variability of the Observed Pre-Play and Replay Signal is Attributable to the 

Noise Distribution 

 While the null distribution absolute P.L. sequence similarity strength was found to 

be strongly modulated by the participation rate, this effect was also robustly present in 

the observed (non-shuffled) distributions of absolute P.L. sequence similarity strengths 
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(figure 4.12).  Consequently, much of the variance in the observed pre-play and replay 

signals may be straight-forwardly explained as noise with regard to the sequence of place 

cells on the novel maze. The sources of this noise, both physiological and experimental 

are worth taking into consideration.   

 

Physiological Sources of ‘Noise’ 

 Firstly, it should be remembered that, though reproducible (including in the 

present study), the presence of sequential replay (or pre-play) of the sequence of place 

fields on a maze in discrete 'off-line' events, remains hypothetical and is not without its 

confounds or competing hypotheses (Lubenov and Siapas, 2008; Moore et al., 1996; 

Tononi and Cirelli, 2006b).  Moreover, even if the sequential replay hypothesis is 

accepted, it should not be assumed that this effect would be observed in all events and by 

all analyses equally. Particularly, there may be different types of population activity 

events (Carr et al., 2012; Patel et al., 2013) which preferentially support sequence 

reinstatement. More importantly however, even if it is assumed that all population 

activity events carry memory-related sequence content, the experimental paradigm 

inevitably constitutes only small fraction of the totality of the animal's memories, and 

thus perhaps only a small fraction of the sequence variance within population activity 

events (Dupret et al., 2010).  
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Experimental Sources of Noise 

In addition to physiological sources of noise in detecting pre-play and replay, 

there are many other sources which may contribute to our imperfect ability to sample, 

control and decode on-going hippocampal activity. Firstly, replay is the re-instantiation 

of stimulus-specific neural activity patterns during ‘off-line’ states. Consequently, replay 

(and by extension, pre-play) is constrained by the accuracy with which neural patterns 

can be attributed as being specific to a particular stimuli – in our case, the attribution of a 

CA1 cell’s place field to a particular place. Furthermore, the methods we employed 

impose certain assumptions about the behavior of this place coding. For instance, we 

assume that within the cell’s place-field the spatial bin with the highest firing rate is a 

suitable discrete representation of the place-cell’s place coding (Kim et al., 2012). 

Perhaps more importantly, pyramidal cells can have more than one place field, however, 

only the place field with the highest firing rate is usually considered (see Methods, (Diba 

and Buzsáki, 2007; Dragoi and Tonegawa, 2011, 2013).  Moreover, since the analyses are 

carried out on the rank-ordered sequences, the actual spatial or temporal distances 

between consecutive pairs are not taken into account. However, it is not clear that, for 

instance, two place cells which have place field peaks on adjacent 2 cm bins on the maze 

truly code for different consecutive places in a physiologically meaningful sense. Note 

that this last critique also applies to the rank-ordering of the centers of mass of spike 

timing of the participating cells within population activity events: it is unclear whether 

the fact that one cell discharged a spike one sample (our sampling rate for spike detection 

was 20,000 Hz) before or after the spiking of another cell can have physiological 

relevance in terms of hippocampal neural function. Notably, the paired nature of the P.L. 
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methodology may be well suited for answering some of these questions, which involve 

the particular subset of pairs which contribute to the replay signal.  

While some of these issues, particularly the discrete nature of place preference 

and spike timing estimation for the rank-order correlation and P.L. methods, do not affect 

replay or pre-play estimates obtained through Bayesian decoding methods (Kloosterman, 

2012), the Bayesian method as here employed, suffers from other draw-backs. The most 

obvious of these, is that it requires the division of population activity events into 

physiologically arbitrary bins for place decoding. In the present work a bin size of 20 ms 

was chosen based on the tradeoff between decoding precision (temporal resolution) and 

decoding accuracy (which is related to the amount of spiking activity within each bin). 

While it would be interesting to delineate bins in a more physiologically relevant way, if 

the resulting bins were not of a uniform length, such binning would be expected to 

introduce noise due to Bayesian decoders’ sensitivity to rate, since in this latter case rate 

would be expected to co-vary with the length of each bin (Kloosterman, 2012).  

Other experimental contributors to noise affect both spike-sequence and Bayesian 

decoding approaches. One is the assumption that all cells with place fields on the novel 

maze are part of the replayed (or pre-played) ‘ensemble’ during the ‘off-line’ states. 

Finally, the possibility of artifactual neuronal drift or spike cross-contamination is a 

pervasive concern when dealing with long time epoch electrophysiological data. While in 

the present study we only considered stable, well isolated, principal cells that fired at at 

least 0.15 Hz in both the Pre and Post epochs, issues relating to isolation quality and 

stability can never be entirely discarded in the context of extracellular electrophysiology.  
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 Sources of Inter-Animal Variability 

 Another source of noise evident when examining the data arises from putative 

differences between animals and sessions. Much of this, in turn, is directly attributable to 

number of well isolated cells obtained in each case. Particularly, since both the rank-

order correlation and P.L. similarity methods rely a minimum number of cells being 

active in each event (for instance, no correlation can be obtained between two points) 

differing number of recorded cells will result in a different number of analyzable events. 

Furthermore, the number of participants in each event was also shown to affect the null 

distribution of P.L. similarity strength. More generally, given the numerous sources of 

noise listed above, for instance the potential for misattribution of a cell’s firing selectivity 

to a particular place, which would be expected a priori to be random with respect to the 

replay or pre-play signal being analyzed, a significant number of ‘noise’ neurons must be 

expected to reside within the sample. Consequently, an increase in the number of neurons 

recorded would, in general, be expected to increase the signal to noise characteristics of 

the replay and pre-play signals. Obviously, addressing the issue of variability as a 

function of sample size quantitatively would require much larger numbers of 

simultaneously recorded neurons. With current methods, this is not realistic though. We 

need to emphasize that the number of neurons recorded in the current study are similar to 

those reported in previous studies of replay and pre-play (Dragoi and Tonegawa, 2011, 

2013; Lee and Wilson, 2002; Wilson and McNaughton, 1994). 

Other contributors to inter-animal and inter-session variability may not be clearly 

attributable to the numbers of cells recorded and many remain unknown. For instance, the 

reasons explaining why some animals perform or learn tasks faster than others remains an 
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active area of research (Ray and Hansen, 2004; Ray et al., 2006). Likewise, the depth and 

composition of sleep may be expected to vary between animals. Indeed, in our own 

experience, we have observed that certain animals fall asleep much more readily than 

others. The causes of these differences, but more importantly for the current purposes, the 

impact they have on memory replay and pre-play presents an interesting topic for future 

research.  

Notably, given the observed differences, both experimental (for instance cell 

number) as well as physiological (‘temperament’ and depth of sleep amongst others), 

between animals, and the relative weakness of the replay and pre-play signals, perhaps 

the preferred approach in replay research should be to perform statistical tests across 

animals rather than within them. The fact that this is not the preferred approach can be 

largely explained by the prohibitively expensive and time-consuming nature of 

implanting silicon probes, and testing a sufficient number of animals, each of with 

enough well isolated units and satisfactory behavioral performance, to pass standard 

statistical tests. For instance, current neuron clustering methods involving 100 potential 

neurons with manual adjustment may take up to a week. However, the increasing 

prevalence of data sharing may, in the future, enable individual laboratories to pool their 

resources to such an end, and in turn, allow individual researchers access to data from 

many more animals.  
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The Noisy Nature of Replay and Pre-Play May Explain the Lack of Within Pre and Post 

and Within Non-REM Effects 

 In the previous section, we described the excitability changes that occur within 

non-REM episodes and across sleep (see above, Grosmark et al., 2012). However, we did 

not find similar changes in either P.L. sequence similarity strength (figure 4.14) or 

Bayesian decoded sequence strength (figure 4.17) in either the Pre or the Post epochs. 

This may be attributable to the different statistical properties of the two measures. In the 

excitability case, comparisons were performed across simultaneously recorded cells. 

Within each session the replay and pre-play signals provide a single measurement for 

each event, thus greatly reducing the statistical power of measurements designed to test 

whether the signal significantly changes or is stationary. This statistical consideration, 

combined with the above-discussed numerous sources of noise associated with the replay 

and pre-play signals may thus explain the negative results. However, with the detailed 

knowledge concerning the mechanics governing the pre-play and replay signals, it may 

be possible to develop a more reliable detector of the replay and pre-play phenomena and 

re-examine this issue in the future.  

 

Partial Dissociation Between Pre to Post Changes in Bayesian Decoding Quality and 

Bayesian Decoded Sequence Strength  

 The bulk of our analysis dealt with the rank-order and P.L. sequence similarity 

score measurements of pre-play and replay since these measurements relate to the 
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underlying neural data in a (more) direct way. On the other hand, the results obtained 

from the Bayesian decoding analysis offered a convergent and complimentary second 

examination of the pre-play and replay phenomena. One important aspect in which the 

spike-sequence and the Bayesian decoding methods diverge is that the latter method is 

based on the decoded estimate of position, the estimated quality of which is given by the 

Bayesian posterior probability of position. Furthermore, this estimate of position, as well 

as its estimated quality, can be measured independently of the presence or absence of 

trajectory (i.e., sequential position) content across the time bins being decoded. 

Importantly, in the Bayesian-based method which is increasingly used for decoding 

replay and pre-play, these two measures are typically conflated into one overall replay 

score based on the linear trajectory which captures the maximal amount of posterior 

probability of position across the decoded time bins (see Introduction, (Davidson et al., 

2009; Kloosterman, 2012; Pfeiffer and Foster, 2013). By contrast, the current study 

examined these two measures separately. Note that the Bayesian decoder calculates the 

posterior probability of position by comparing the population activity vectors (a vector of 

within-bin firing rates across place cells) of the 20 ms bin being decoded against the 

template of population activity vectors as binned by the animal's position on the novel 

maze (see Methods, equation 11). The posterior probability of the animal 'being' at a 

given spatial bin (i.e. decoded position probability) is subsequently normalized to one 

across all spatial bins (see Methods, equation 12). Consequently, Bayesian decoding 

quality represents the specificity of the similarity of an observed population activity 

vector in a given time bin to the population activity vector in the given spatial (2 cm) bin 

to which it is most similar (in other words, the best estimate of position), normalized by 
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its 'non-specific' similarity to all spatial bins. Bayesian decoded sequence strength was 

subsequently measured across all (non-zero firing rate) bins as the constancy of the pair-

wise directionality of the decoded position across all pairs of bins within an event (see 

Methods). To put it slightly more intuitively, this method measured how consistently all 

the pairs of decoded position of 20 ms bins in a given event indicated that the animal was 

'moving' (in decoded position space) forwards or backwards across the bins of that event. 

Note that in contrast with previous methods for Bayesian decoding of sequence content 

(Davidson et al., 2009; Kloosterman, 2012; Pfeiffer and Foster, 2013), our method does 

not assume that the 'movement' through decoded position space is linear with respect to 

position and time.   

  Using these methods, we found that both Bayesian decoding quality as well as 

Bayesian decoded sequence strength tended to increase from the Pre to the Post epochs 

(figure 4.17). However, the nature of this increase was notably different for the two 

measurements. While Bayesian decoding quality increased significantly in four of the 

five sessions, a significant increase in Bayesian sequence strength was only observed in 

two out of the five sessions. Conversely, Bayesian decoding quality was significantly 

greater than the null distribution (generated by random circular shifting of each place 

cell's firing-rate by position vectors, see Methods) in two Post epochs and in none of the 

Pre epochs. The observed Bayesian decoded sequence strength was greater than the null 

distribution in all five Post epochs and in three Pre epochs (figure 4.17). Note that this 

last result - the observation of significant maze-related sequence content during Pre 

epochs - presents our second confirmation of the previously discussed reports of 

hippocampal pre-play (Dragoi and Tonegawa, 2011, 2013). However, the observation of 
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a divergence between Bayesian decoding quality and sequence content in their Pre to 

Post differences versus their relationships to their respective null distributions was 

facilitated by the novel Bayesian method employed in the current study and may bear 

further examination. Indeed, on first consideration, the observed divergence may seem to 

be in the opposite direction as would be expected. Consider that novel maze-specific 

sequential activity was, until the recent discovery of pre-play, thought to be almost 

entirely due to the de novo arrangement of place fields on the novel maze (Lee and 

Wilson, 2002; Louie and Wilson, 2001; Skaggs and McNaughton, 1996). And on the 

other hand, both firing rates (Hirase et al., 2001; Pavlides and Winson, 1989) and pair-

wise interactions (Kudrimoti et al., 1999; Wilson and McNaughton, 1994) (which are in 

turn intimately related; Luczak et al., 2007; Peyrache et al., 2010) are known to be highly 

preserved across brain states (Grosmark et al., 2010; Mizuseki and Buzsáki, 2013). 

However, note that in this latter context firing rates and pair-wise interactions are 

assessed across time while in the current context of Bayesian decoding the population 

activity vectors are assessed with respect to stimulus (i.e. maze position) space 

(Kloosterman, 2012). In other words, while it is known that, for instance, cells with high 

firing rates tend to be temporally highly correlated at small (e.g., 100 ms) time-scales 

across brain states (de la Rocha et al., 2007), this does not imply that they are correlated 

in terms of their place selectivity.  

 One interpretation of the current result, which will be examined more closely 

below, is that hippocampal sequential activity is largely hard-wired and similar during 

place coding and 'off-line' states (Dragoi and Tonegawa, 2011, 2013). On the other hand, 

population activity (i.e. firing rate) across the hippocampal CA1 network is able to 
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change dynamically, facilitating  novel and maze-specific firing patterns during the 'off-

line' state specifically in the Post epoch (Hirase et al., 2001; Wilson and McNaughton, 

1994). While the confirmation pre-play in the current study lends support to the presence 

of a common hard-wired component in the sequence structure of place coding, the robust 

increases in Bayesian decoding quality may be thought to be wholly attributable to 

putatively non-specific increases in firing rate (figures 4.2 and 4.17), particularly as these 

two measures were shown to be tightly linked (figure 4.18, panel e). However, the 

observation that two Post epochs showed a significantly greater degree of Bayesian 

decoding quality than their null controls (which preserve the firing rates of place cells on 

the maze) as well as previous work (e.g. Hirase et al., 2001; Wilson and McNaughton, 

1994) suggests that at least part of the firing patterns observed during the Post epoch arise 

de novo during exploration of the novel maze. Nonetheless, the observation that the de 

novo maze-specific component of activity during the Post epoch is dominated by changes 

in the firing rate and co-activity of individual place cells rather than in their sequence of 

activity, should be interpreted cautiously. In particular this finding must be confirmed 

with other, perhaps more transparent, methods than Bayesian decoding and with a 

particular emphasis on the contribution of specific and non-specific changes in 

population activity (including single-cell, pair-wise and higher order activity) to this 

effect.    
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Bayesian Decoding Quality Correlates With Bayesian Decoding Strength in Both the Pre 

and Post Epochs and Both are Correlated With Firing Rate 

 While we have elaborated on the subtle divergence in the behavior of Bayesian 

decoding quality and Bayesian decoding, the overall concurrence of these two measures 

is also of interest. Bayesian decoding quality and sequence strength were found to 

correlate significantly in three Post epochs (figure 4.18, panel a). This should be expected 

given that the estimation of the sequential position content signal is necessarily dependent 

on the quality of the estimate of position. Perhaps more surprisingly however was that 

these two measures were also significantly correlated in four out of the five Pre epochs 

(figure 4.18, panel a). Moreover, this coupling increased significantly from the Pre to the 

Post epochs in only one session. Notably, these findings suggest the expression of 

sequential pre-play is facilitated by population activity (i.e. population firing rate vectors) 

resembling those which will subsequently be expressed on the maze (Grosmark, 2013, 

Society for Neuroscience poster presentation), a theme that will be returned to below.   

 Other strong correlations were observed between both Bayesian decoding quality 

and sequence strength and within-event firing rate (figure 4.18, panels d and e). This 

relationship can be straight-forwardly explained by the dependence of Bayesian decoding 

quality on firing rate in position estimation. Yet, this relationship is of particular interest 

because the P.L. sequence similarity score was observed to have a tendency toward the 

opposite correlation with within-event firing (figure 4.18, panel f) rate, yet is strongly 

coupled to Bayesian decoded sequence strength (figure 4.18, panel b). Since these two 

are distinct measures of the same phenomena (i.e. replay and pre-play) the fact that they 

are found to co-vary in opposite directions with firing rate may be usefully leveraged to 
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construct a method for the detection of replay and pre-play that is on the whole less 

biased in either direction by firing rate variations and thus potentially more sensitive to 

the underlying replay and pre-play signals.  

 

Non-Local Firing Rate, Sequence and Place Coding Structure 

 When considered as a whole, the findings elaborated here may suggest some 

significant refinements for current models of the specific and non-specific contributions 

to hippocampal memory formation (Battaglia and Pennartz, 2011; Blum and Abbott, 

1996; Hasselmo, 2008; Káli and Dayan, 2004). We found that activity and co-activity of 

hippocampal layer CA1 neurons replay their activity on a novel maze in the neurons’ 

pair-wise co-firing patterns (rate replay, figure 4.3) as well as in the similarity between 

20 ms population activity vectors during the Post epoch and the activity vectors at 

particular 2 cm-long positions on the novel maze (figure 4.17). We also found sequential 

replay both in the pair-wise co-modulation of spike-timing by place field distance, as well 

as in the higher order sequence content as assessed by the non-local P.L. similarity 

method as well as the Bayesian decoding method. Replay of sequential activity patterns 

was observed both in the non-local P.L. sequence similarity measure as well as in the 

Bayesian decoded sequence strength measure. Interestingly however, pre-play was not 

observed in pair-wise measures of rate or spike-timing co-modulation or in Bayesian 

decoding quality (a measure of the stimulus specificity of firing rate patterns across the 

population of place cells).  Taking these results into account, our data favors a model 

in which sharp-wave/ripples (the dominant source of population activity events in the 
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hippocampus, (Buzsáki et al., 1992)) spread along the septo-temporal extent (parallel to 

our placement of the silicon probes) of the hippocampal formation (Patel et al., 2013). In 

turn, in a given sharp-wave/ripple the particular path of the anatomically constrained 

spread of excitation is guided by the coordinated activity of interneurons (Basu et al., 

2013), as well as high-firing rate principal cells. These high firing cells are known to be 

anatomically segregated, have strong efferent connections, and are thought to be crucial 

for the anatomically distributed flow of information in cortical structures (Buzsáki and 

Mizuseki, 2014; Mizuseki and Buzsáki, 2013; Yassin et al., 2010). Notably, this spread, 

like sharp wave bursts themselves, would originate in the uniquely recurrent layer CA3 

and then propagate to layer CA1 (Buzsáki, 1986; Buzsáki et al., 1983, 1992; Csicsvari et 

al., 1999a; Ylinen et al., 1995). In the 'naive' condition (Pre epoch) the spread of activity, 

though anatomically constrained, would recruit both future place-selective and non-

selective cells. However, the spread of the activity would be limited to either septal to 

temporal or temporal to septal direction (Patel et al., 2013). Under this hypothesis, any 

given cell pair along a given possible path of excitation would experience only a very 

weak interaction, proportional to the stochasticity of both the anatomical flow of activity 

and their recruitment on any given pre-play event. The average pair-wise interaction in 

this highly stochastic (though still constrained) context might be expected to lie below the 

detectable threshold. However, this structure (though weak) would be expected to be 

more apparent in the higher-order interactions between many, specifically anatomically 

distributed, cells - as we observed in non-local P.L. sequence similarity pre-play.  

 Furthermore, since high-firing rate cells tend to discharge more spikes per event, 

these cells would be expected to be more reliable marker of any underlying spread of 
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excitation (Buzsáki and Mizuseki, 2014; Peyrache et al., 2010). Notably, as discussed in 

the Introduction, event-based measures are inevitably biased towards higher firing rate 

cells since highly active neurons tend to participate in more events. This latter bias may 

also account for the presence of pre-play in event-based metrics but not in the un-biased 

pair-wise metrics. Recall that pre-play was also observed using Bayesian decoding of 

sequence, a method that does not differentiate between local and distal interactions. 

However, two factors may help explain this discrepancy. Firstly, since Bayesian decoding 

methods simultaneously 'weigh' all the 'evidence' (i.e., spiking) within each 20 ms bins, 

the estimates generated are expected to be more robust, and specifically less sensitive to 

the noise generated by individual cells or spikes to which the spike-sequence metrics are 

quite sensitive. Secondly, the binning involved in Bayesian decoding may generally 

discount short-time scale interactions (specifically below 20 ms) and is thus biased 

towards longer time scale interactions which are more likely to be anatomically 

distributed (Patel et al., 2013). 

 During novel maze running excitability spreads from the septal to temporal poles 

of the hippocampus (Lubenov and Siapas, 2009; Patel et al., 2012) - recruiting an 

ensemble of neurons, each in a place specific manner. This recruitment in turn imposes a 

lasting de novo structure of potentiation, as reflected by both the intrinsic biophysical 

properties of the neurons (Daoudal and Debanne, 2003; Disterhoft et al., 1986; Zhang and 

Linden, 2003) and synaptic placticity (Kentros et al., 1998; Nakazawa et al., 2004). As a 

result, cells recruited to place coding ensembles are more readily excitable (Hirase et al., 

2001; Pavlides and Winson, 1989) and discharge more synchronously (Kudrimoti et al., 

1999; Wilson and McNaughton, 1994) during the subsequent Post epoch. In this de novo 
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regime, a putatively non-specific increase in global excitability during the Post sleep, in 

turn leads to the preferential activation of the pre-potentiated ensemble (O’Neill et al., 

2008; Wilson and McNaughton, 1994). 

 The sequential firing content of the events may be explained by two 

complementary models. In the first, the anatomical spread of sharp-wave ripples is 

largely unresponsive to changes in excitability within the network, and remains the same 

between the Pre and Post sleep. However, the maze-specific sequence structure arises 

from the fact that cells participating in the ensemble are preferentially co-active, thus 

increasing the signal to noise characteristics of sequential activity (Dragoi and Tonegawa, 

2014). In the second model, changes in excitability, and particularly the strengthening of 

recurrent connections between neurons in CA3 (and particularly, of high-firing rate 

neurons) leads to a bias in the spread of sharp-wave/ripples towards paths which 

preferentially recruit the neurons of the ensemble in the order in which they became 

active on the maze (Abeles et al., 1993; Hasselmo, 2008). Notably, this second model 

may better account for the coupling between the population of activity and sequence 

content observed both in the Post and more importantly, in the Pre epoch (Bayesian 

decoding quality versus Bayesian sequence strength correlation, figure 4.18, panel b).  

 My thinking regarding the origin of organized events in both Pre and Post sleep is 

admittedly speculative at this stage. While several aspects of the current study support the 

plasticity model, I need to emphasize that a crucial tenet of the model, i.e., the presence 

and dynamics of the anatomical spread of excitability, has been analyzed only indirectly 

in the current work. The analysis of excitability in the spatial dimension and its 

relationship to sequence structure, thus represents an interesting direction for future work.  
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Conclusion 

 I have shown in my dissertation work that sleep is an active and functionally 

important aspect of hippocampal physiology, far from being a stationary 'off-line' state. 

First, I developed appropriate tools for visualizing and annotating long time-scale data 

relevant to brain state dynamics. In addition to being well suited for brain state scoring, 

the intuitive and open source aspects of this software make it useful for a wide range of 

long time-scale electrophysiological data applications.  

 In my analysis of putatively homeostatic changes in excitability during sleep, I 

found that the overall firing rates of both pyramidal cells and interneurons of 

hippocampal layer CA1 decrease over the course of sleep. Surprisingly however, within 

ripple events pyramidal cell firing rates increased over the course of sleep, due to the fact 

that, on average, more of them participated per ripple, leading to an overall increase in 

synchrony. Contrary to models of homeostatic regulation of excitability during sleep 

(Tononi and Cirelli, 2006b), the observed firing rate decrease occurred during REM, and 

not non-REM, sleep, and both the overall firing rate decrease and the increased 

recruitment of pyramidal cells to ripples were predicted by theta (5-10 Hz) LFP power 

during REM sleep. These findings place the role of REM sleep into a novel perspective.  

 Lastly, in the study concerning specific and non-specific contributions to the 

memory content observed during sleep, our experiments and extensive analyses 

demonstrated that sleep related firing patterns in the CA1 hippocampal region can both 

predict and be modified by hippocampal spatial coding in a novel environment. However, 

the findings also show that various measures introduced for the quantification of ‘replay’ 
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and ‘pre-play’ phenomena have numerous drawbacks and should be interpreted carefully. 

Our detailed analyses and the comparison of traditional or more novel methods spell out 

some of the specific issues related to each of these methods and make several suggestions 

for future work. 

 While many questions, specifically pertaining to cellular mechanisms, and how 

the current results relate to other brain structures remain outstanding, the experiments 

performed in this thesis provide a framework into future research related to the structure 

of memory content during sleep. My results also bear importance regarding the 

relationship between, specific (memory) and relatively non-specific (homeostatic) roles 

of sleep in the hippocampus.   
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Figure 1.1: The non-REM to REM transition. A. Pyramidal layer unfiltered LFP (black), and the 

rasters for 17 putative pyramidal cells (blue) and 5 interneurons (red) are show for the sixty 

seconds around a non-REM to REM transition. B and C show 3 seconds in non-REM and REM 

respectively. Note that the LFP during non-REM is irregular and high amplitude while the REM LFP 

is lower amplitude (here only slightly) and displays highly regular theta (5-10 Hz) oscillations. Also 

evident in REM is the appearance of ‘episode’ fields of sustained firing in some pyramidal cells 

(two such fields can be seen at the top right of A). Conversely, while pyramidal cell discharge looks 

highly unstructured at the resolution of tens of seconds, when viewed a few seconds at a time it is 

apparent that neural firing is structured into brief sporadic synchronous population firing events 

which are coupled to high-amplitude and frequency ripple events in the LFP (B, second -21). 

Finally, though not immediately evident in this example, it should be noted that interneuron firing 

rates increase during REM. 
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Figure 1.2: Firing rates are persevered across non-REM but not REM 

episodes (from Grosmark et al., 2010). A. Correlation matrix for pairs 

of firing rate vectors from 7 non-REM (SWS) and 6 REM episodes from 

1 uninterrupted sleep session. Firing rates are less preserved between 

pairs of REM than non-REM episodes and are least similar between 

these states. B. Group data for pyramidal cell firing rate vectors  

between all pairs of non-REM (blue) and REM (red) episodes. C. 

Interneuron firing rate vectors were likewise more highly preserved 

between non-REM than REM episodes, despite the fact that the firing 

rate of these interneurons was significantly greater during REM (data 

not shown).  
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Figure 1.3: Extra-cellular silicon-probe 

recordings. Waveforms (top) across 

eights of a single silicon probe shanks, 

and auto- and cross-correlograms 

(bottom), shown for one interneuron 

(left, purple) and 3 putative pyramidal 

cells recorded from hippocampal CA1 

pyramidal layer. Note that while 

waveforms between cells may look 

similar on one site, they display distinct 

waveforms on other sites. 
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Figure 2.1: TheStateEditor Channel Selection Window. This 

window is used for selecting up to three channels for visualization, 

annotation and state classification as well as an optional motion 

signal. Note that this window is skipped if the TheStateEditor 

auxiliary file, created automatically on the first loading of a 

session in TheStateEditor, is detected.  
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Figure 2.2: TheStateEditor Main Console: 1) The StateRibbon showing five labeled states. 

2) Time resolved spectrogram for one of the two selected LFP channels (up to three channels 

may be selected). 3) Three events (vertical pink dashed lines) selected during waking period. 

4) Motion display - this example shows data acquired from a  head-mounted accelerometer. 5) 

Raw LFP display of the two selected channels. 6) Theta/Delta ratio overlay display (selected 

from the 'Overlay Display' drop down menu on the right). 7) Current selected action. 8) Time 

point of last click as well as 'Go To Second' and 'Window Lengths’  boxes for manual 

specification of these paramaters. 9) 'Smoothing Window', 'Overlay Display' and 'Event #' 

selection (note that Event class 1 is currently selected). 10) 'Undo' and 'Redo' buttons which 

can be useful for fixing mistakes during state labeling.  
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Figure 2.3: TheStateEditor Help Panel: This panel summarizes 

TheStateEditor's main controls and is accessed from the main 

console by pressing 'H'.  
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Figure 2.4: TheStateEditor Saving and Loading 
Consoles: TheStateEditor outputs up to four 
different data object (see Results) which are saved 
into one '.mat' file (panel a) and used for further 
analysis or loaded back into the session for further 
editing (panel b).  

  

a) 

b) 
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Figure 3.1. Excitability changes across sleep. a. Time-resolved spectrum (top), 
and smoothed (60-sec) mean firing rate changes of pyramidal cells (black) and 
interneurons (green; middle panel) and mean pyramidal pair-wise correlation 
(‘synchrony’, bottom) across representative non-REM (blue) and REM (pink) 
episodes from one uninterrupted sleep session (dotted lines show session means). 
b. Significant changes across sleep, calculated between the first (black bars) and 
last (white bars) non-REM episodes of sleep, firing rates (panels i and ii), incidence 
of periods of high-frequency LFP activity (iii) and inactivity (iv), synchrony (v), firing 
rate of pyramidal cells between ripples (vi) and within ripples (vii), ripple-induced 
firing rate modulation (viii), percentage of ripples in which individual pyramidal cells 
participated (i.e., fired at least one spike, ix), and coefficient of variation of within-
ripple firing rate across cells (x). Note that the decrease in firing rates across sleep 
is concomitant with increasing synchrony. All comparisons were carried out as sign-
rank (paired) tests. *p<0.05; **p<0.005; ***p<0.0005. 
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Figure 3.2: Excitability changes within non-REM episodes are opposite to those across 
sleep. a. Time normalized power spectra of adjacent non-REMn--REM--non-REMn+1 episodes 
(mean of n=45 non-REMn--REM--non-REMn+1 cycles) and corresponding firing rates (±SEM) of 
pyramidal cells and interneurons shown within thirds of non-REM and REM episodes. Note that 
firing rates increase within non-REM episodes and decrease within REM episodes (Figure S2). 
Horizontal lines, mean rates at the beginning of the non-REMn--REM--non-REMn+1 cycle. b. 
Incidence of LFP high-frequency activity and inactivity epochs, percentage of ripples in which 
pyramidal cells participate, and pair-wise correlation of pyramidal cells across thirds of non-REM. 
Note opposite changes as those observed across sleep (Fig. 1). *p<0.05; **p<0.005; 
***p<0.0005. 
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Figure 3.3: LFP spectral power decreases 
across sleep and within REM episodes and 
increases within non-REM episodes. For 
each session pyramidal layer LFP spectra 
were normalized for each frequency bin as the 
z-score of non-REM power. a. Spectral power 
decreases from the first to last non-REM 
episode of a sleep session across a wide 
range of frequencies (n = 22 sleep sessions). 
Shaded regions show 95% confidence 
intervals. Top black bars show frequencies for 
which sign-rank test p < 0.05 b. Spectral 
power changes within non-REM episodes 
(n=82). c. Spectral power changes within REM 
episodes (n = 45). 
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Fig. 3.4. REM sleep affects firing patterns in non-REM. a. Correlation values 
between firing rate changes between non-REMn and non-REMn+1 episodes versus LFP 
power of the intervening REM (mean and 95% confidence intervals) in the 0-50 Hz 
frequency range. Top solid bars indicate frequency bands in 0.25Hz steps of significant 
correlation. Note significant effect of REM theta power on rate changes between 
successive non-REM episodes for both pyramidal cells and interneurons. b. Mean 
firing rate changes (Hz) between non-REMn and non-REMn+1 episodes (y axis) as a 
function of the theta power during the interleaving REM episode. Power during REM 
was normalized by the power of concatenated non-REM episodes (z score). c and d, 
Same as a and b but for synchrony change (pairwise correlation) between successive 
non-REM episodes. e. Correlation values between firing rate changes across sleep 
and spike-weighted spectra (Sp. W. S.; see Online Methods) during REM for pyramidal 
cells in the 0-50 Hz frequency range. Results are shown separately for spikes that 
occurred between ripples (red) and within-ripple (blue) events.  
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C. Figure 3.5: Cell stability. A. The filtered 

waveforms (left, mean ± St.D.) and first two 

principal components (right) are shown for five 

representative putative pyramidal cells and B. five 

representative putative interneurons. Both the 

waveforms and principal components are shown 

for the site on the silicon probe for which each 

neuron had the largest spike amplitude. C. Peak-

to-trough spike amplitudes obtained from the first 

and last non-REM episodes are shown across 

putative pyramidal cells (blue) and interneurons 

(green). Note that the mean spike amplitudes 

remain unchanged (p = 0.71 and p = 0.70 sign-

rank test for pyramidal cells and interneurons, 

respectively) and amplitudes are highly preserved 

across cells from the first to the last non-REM of 

each session (r = 0.94, r = 0.98 for pyramidal 

cells and interneurons, respectively). 

A. B. 
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Figure 3.6. Firing rate and synchrony changes 

across sleep and within non-REM or REM 

episodes. a. Firing rate increases of pyramidal 

cells and interneurons from the first to last third of 

non-REM episodes (top row) and rate decreases 

from the first to last third of REM episodes (bottom 

row). The non-REM data shown here reflect or 

combination of all the pre-REM and post-REM 

non-REM episodes shown in Fig. 2a. b. 'OFF' 

periods were defined as periods lasting at least 

50ms during non-REM in which no spikes were 

detected from any neuron or combination of 

neurons (see Supplementary Methods, 

Vyazovskiy et al. 2009). 'ON' periods were defined 

as periods between 50 and 4000ms long in which 

at least 10 spikes were detected from any neuron 

or combination of neurons. Only ON periods 

occurring immediately subsequent to OFF periods 

were considered. Note that the incidence of ON 

periods decreased across sleep (b, top left panel) 

but increased within non-REM episodes (b, 

bottom left panel), while the inverse pattern of 

changes was observed for OFF periods (b, right 

column).  c. Changes of mean pair-wise 

correlation between pyramidal cell pairs 

(‘synchrony’, as in Fig. 2b) across sleep (i.e. first 

to last non-REM episode of each session, n =22, 

c, top-panel) and within non-REM episodes (first 

to last third of each non-REM episode, n = 82, c, 

bottom panel). Note that synchrony changes are 

present across a wide range of bin sizes. (*p < 

0.05, **p < 0.005, ***p < 0.0005, sign-rank test).   
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Figure 3.7: Ripple changes across sleep and within non-REM episodes. LFP ripples show 

distinct changes across sleep sessions (a, top row, green crosses show population mean) and 

within non-REM episodes (bottom row). Each dot represents either a sleep session (top row) or a 

non-REM episode (bottom). b. Changes in the coefficient of variation (c.v.) of firing rates within 

ripples across sleep. c. Firing rates of each of 618 pyramidal cells within those subsets of ripples 

in which they participated (i.e. fired at least one spike) do not change significantly between the 

first and last non-REM of each sleep session. Consequently, increases in within-ripple pyramidal 

firing rates across sleep (Fig. 1b) were due to individual cells participating in more ripples rather 

than discharging at a higher rate in those subset of ripples in which they participated. d. 

Distribution of firing rate changes within ripples across sleep (c, n = 618, p < 0.029, sign-rank 

test). For panel d, within-ripple firing rates were normalized for each cell as the ratio of the within-

ripple rate to the mean within-ripple firing rate of the neuron in the entire sleep session. The 

increase of within-ripple firing rate and the concurrent decrease in C.V. imply a preferential within-

ripple rate increase for those pyramidal cells which show low within-ripple firing rates in early 

sleep (*p< 0.05, **p< 0.005, sign-rank tests).   
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Figure 3.8: Spike-weighted spectrum (Sp.W.S.). A. For each session, z-scored time-resolved power spectra 

were calculated in 1-second bins (0.5 sec overlap) and concatenated across REM episodes. Firing rates of 

individual pyramidal cells were also calculated in the same bins. Only pyramidal cells with at least 0.4 Hz 

overall rate (337/618 cells) were included in the spike-weighted spectra (Sp.W.S.) analysis. Spike-weighted 

spectra (Sp.W.S.) were computed for each frequency (0.25 Hz steps) as the mean of the product of the 

cell’s firing rate and REM spectral power. Note that since power-spectra are z-scored, stochastic firing with 

respect to spectral power results in Sp.W.S. power near 0, while deviations from the 0 baseline imply 

spectral-power selective firing. B, C. Separate spectra are shown for subgroups of neurons whose rate 

increases across sleep were highest (top 20%, blue) and lowest (bottom 20%, green). Note that the strength 

of theta power (and some parts of gamma power) modulation of pyramidal cells during REM is correlated 

concurrently with across-sleep rate decreases for spikes between ripples and rate increases for spikes 

within ripples (B, C).  
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Figure 4.1: Novelty run place fields: water-deprived CA1 implanted rats were made to run 
either a linear (a) or a circular (b) maze for water reward. In each case the rat had no previous 
experience with either the experimental room or the maze. The reward was delivered at both 
ends of the linear arm, or at a constant position along the circular track. Panels c, d, e, show 
the smooth firing rate-by-position vectors for the three linear maze novelty run sessions. Place 
cells are shown as aligned by the peak place preference. For the linear maze sessions (c, d, 
e) 94, 16, and 26 left direction place cells and 93, 14 and 25 right direction place cells were 
found from a total of 128, 28 and 39 well isolated pyramidal cells for the session shown in c, 
d, and e, respectively. For the circular maze sessions (f and g), a total of 32 and 92 place 
cells were found out of a total of 35 and 92 well isolated pyramidal cells for f and g, 
respectively. Note that while many place cells show more than one place field, only the place 
field with the highest peak firing rate was used for the Pre-play/Replay analysis.  
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Figure 4.2: Population Events During Pre and Post 
Sleep. Panels a, c, and e show the Pre and Post 
distributions across all Pre and Post events (n = 22,042 
Pre and 22,318 Post events). In panels b, d, and f the 
comparisons are shown by session, horizontal and 
vertical bars show the 95% bootstrapped confidence 
intervals for the Pre and Post respectively. Significant 
Pre, Post differences (p < 0.025 rank-sum test) are 
colored in red. Notably, an increase in within-event firing 
rates was consistently observed from the Pre to Post 
epochs (a and b). Likewise the percentage of pyramidal 
cells participating (firing at least one spike) in each 
event increased from the Pre to the Post epoch (c and 
d). Finally, while the population average showed a slight 
increase in event duration from the Pre to the Post 
epochs this trend was not as consistent as that 
observed in the above changes in excitability observed 
across sessions (f).  
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Figure 4.3: Cell Activity Co-Modulation By Place Cell Distance. Three measures of activity co-
modulations were derived for all non-local shank place cell pairs: 1) correlations of each cell’s within-
event firing rate vector (a and b), 2) correlation of each cell’s binary participation vector (an estimate 
of how often the cells were co-active, c and d), and 3) the correlation of firing rates restricted to 
events in which both cells were active (e and f). Only events which met the criteria for inclusion in 
the sequential replay analysis were included in this analysis. Linear track (n = 7,738 pairs) and 
circular track (n = 3,802 pairs) sessions were analyzed separately. These pairs were subsequently 
binned by the distance between their place fields (20 cm bins). For circular maze sessions this 
distance was assessed as the shortest linearized path (either forward or backward) between the two 
place fields. For each 20 cm bin, blue and red lines show the mean of the Pre and Post distribution 
respectively. Error bars show ± standard error for each bin. Dashed blue and red lines show the 
mean of the null distribution of 1000 shuffles of the place field distance for the Pre and Post 
distributions respectively. Shaded areas show the 99% confidence interval of shuffled distributions. 
Three measures of significance were used 1) for each bin the Pre was determined to be significant if 
it it’s mean value was outside of the 99% confidence interval of its shuffled distribution (blue square), 
2) the same comparison was made between the Post and Post shuffled distribution (red squares), 
and 3) the Pre and Post distributions were compared using rank-sum tests Bonferroni corrected for 
bin number (p < 0.05, after Bonferroni correction: p < 0.00625). Note the significant and opposite 
effects of close and far place fields on the co-modulation of firing rate (a, b) and participation (c, d). 
Also note the small, but statistically significant supression in co-activity during Pre for cells which will 
subsequently show nearby place fields on the maze. 
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Figure 4.4: Cell Timing Co-Modulation By Place Cell Distance.  To assess the co-
modulation of place cell spike timing by cell distance all three measures were taken 1) 
the correlation of the timing each cell’s center of mass of spiking across all events in 
which they were coactive (a and b), 2) the absolute value of the mean within-event 
temporal difference between each cell’s center of mass of spiking (c and d), and 3) the 
variance of this difference.  For first of these measures, for each event the timing of each 
cell’s center of mass was referenced to the center of mass of all detected pyramidal cell 
spikes in that event (e and f). All graphical conventions and statistical tests are the same 
as in the last figure. Note that Post epoch cells with nearby place fields tend to fire in 
close temporal proximity to each other (a and b), with decreased temporal variability (c 
and d), and this temporal proximity is co-modulated (a and b), while the opposite is true 
for pairs of place cells with far place fields and absent during Pre epoch. Also potentially 
intriguing is the small but significant suppression of co-modulation of timing and elevated 
variability of pairs of cells during Pre which will have nearby place fields during the 
subsequent maze epoch, though this effect only observed in the linear track condition 

(first bins of a and e). 
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Figure 4.5: Rank-Order Sequence Correlation Pre-Play and Replay: The correlation derived 
pre-play or replay score for each event in each session was established as the Spearman 
(rank-order) correlation between the order of place fields on the maze and the time of the 
center of mass of each cell’s spiking activity in that event across all place cells which fired at 
least one spike in that event. For linear maze sessions, all analyses were carried out 
independently for the left and right run directions and subsequently re-combined to yield 
session-wide pre-play and replay scores. Column a shows the sequence correlation score 
comparison across all events in the Pre (blue) and Post (red) epochs, column b shows the 
comparison between the Pre (blue) and it corresponding shuffled distribution (yellow), and 
finally column c shows the Post (red) versus null comparison. Rows correspond to sessions, 
with the last two rows in each column corresponding to the circular maze sessions. For each 
panel, the y-axis indicates the percentage of events falling within that bin. All significance tests 
were performed via rank-sum tests, significant (p < 0.025) differences are highlighted in red 
type font. Note that only, two sessions show significant Pre to Post changes in sequence 
correlation score strength (with these changes occurring in opposite directions), while only one 
instance of significant pre-play (b, first row) and only one instance of significant replay (c, third 
row) were observed using the sequence correlation methodology.  



142 

 

 

 

 

            

 

  

Figure 4.6: Per Cell Contribution To Overall 
Abs. Sequence Pre-Play and Replay. The 
contribution of each cell to the correlation 
coefficient can be determined by taking the 
mean of the (n – 1) normalized z-product of 
each comparison across all comparisons for 
each cell (see Methods). Note that for a given 
panel in column a, summing all the values in 
either the pre-play (blue) or replay (red) 
conditions gives the value of the mean absolute 
sequence correlation coefficient for that 
condition. Note that in all cases, cells with place 
fields near the boundaries of the maze 
contribute much more heavily than do cells near 
the middle of the maze. Furthermore, this effect 
is also present if the place vectors are shuffled 
100 times (b) and so cannot be physiological in 

origin.  

 



143 

 

 

 

 

 

 

  

Figure 4.7: Per-Cell Contribution to Overall 
P.L. Abs. Sequence Pre-Play and Replay. 
The observed (a) per-cell contribution to 
absolute P.L. sequence score is shown for both 
the Pre (blue) and Post (epochs). Note that the 
summation of, for instance, all the blue values 
for a panel in a equals the mean of the absolute 
P.L. sequence similarity scores for Pre epoch 
events in that session. Per-cell contributions to 
mean absolute P.L. sequence similarity scores 
for 100 shuffles are shown in b. 
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Figure 4.8: Correlation of Seq. Correlation 
with P.L. Sequence Score. Values are 
shown across both Pre and Post epochs. 
Note that while not identical, sequence score 
obtained using rank-order and P.L. 
sequence correlation methods highly 
correlated. 
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Figure 4.9: Paired Latency Sequence Pre-Play and Replay: Using the paired latency (P.L.) 
method, pre-play and replay were assessed on the same events that met the criteria for 
inclusion in the rank-order correlation sequence analysis. Similarly, the null distribution was 
estimated by randomly resampling the location of place fields on the maze without 
replacement 1,000 times. For linear maze sessions all analyses were carried out 
independently for each run direction and then re-combined. The Pre versus Post, Pre versus 
Shuffle, and Post versus Shuffle comparisons are shown in columns a, b, and c respectively. 
All significance tests were performed using rank-sum tests with the threshold for significance 
set at p < 0.025. Significant effects are highlighted in red font. Note that the only major 
qualitative difference in the effects observed  between the rank-order correlation and paired 
latency method is that no case is significant pre-play observed. 
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Figure 4.10: Paired Distance Sequence Pre-Play and Replay On Non-Local Pairs: 
Taking advantage of the paired natured of the P.L. analysis, all the comparisons in which 
both place cells were isolated on the same shank of the silicon probe were censored by 
setting their paired latency values to zero. Note that by restricting our analysis to non-
local pairs, two significant instances of pre-play (b, second and fourth rows) and four 

significant instances of replay (c, bottom four rows) were observed. 
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Figure 4.11: Null Distribution By Number of 
Participating Cells. The distribution of shuffled P.L. 
sequence score values are shown plotted by the number 
of participants (the number of cells firing at least one spike 
during the event). Note that if the absolute value is not 
taken (a), the decreases with number of participants while 
the mean stays constant at zero. However, both the mean 
and the variance of the absolute value of non-local P.L. 
score increase with number of participants (b). Vertical 
dashed lines show the mean of each absolute distribution. 
Note that this same effect is also present if the rank-order 
correlation method is used instead (data not shown). 
Notably, this effect, together with the observed elevation in 
within-event firing rate and participation in the Pre to the 
Post epochs, would be expected to bias Post events 
towards lower sequence correlation values, and may thus 
explain the relative absence of significant increases in 
mean sequence scores from the Pre to the Post epochs. 
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Figure 4.12: Pre-Play and Replay Correlations With Event 
Duration and Rate. Non-local shank absolute P.L. sequence pre-
play or replay negatively correlates across population activity 
events with event duration (a) significantly in four Pre and four 
Post epochs. Likewise,  within-event place cell firing rate and 
number of participating place cells both also negatively correlate 
with absolute P.L. sequence score either weakly (b) or strongly 
(c). Conversely, the firing rates of participating place cells (that is, 
excluding cases of 0Hz rate), strongly positively correlates with 
absolute P.L. sequence scores. Note that the correlations 
observed in (a, b, and c) are directly predicted by the null 
distribution of sequence score by number of participants. The 
significance of individual correlation coefficients or changes in 
correlation coefficient were assessed using the Fisher Z-test.  
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Figure 4.13: Null Distribution Comparison: Each panel shows the comparison between two 
conditions, error bars show the bootstrapped 95% confidence interval for the corresponding 
axis. Significant differences (p < 0.025, rank-sum test) are shown in red. Panels a, b and c 
show the comparison of Pre versus Post, Pre versus Pre Shuffled, and Post versus Post 
Shuffled distributions of non-local shank absolute P.L. sequence scores, recapitulating the 
three columns of figure N and are shown for reference. Panel d shows comparison between 
Pre Shuffled and Post Shuffled distributions, note that four out of 5 of these are significantly 
different, with Pre distributions tending to have a higher mean. When the observed Pre 
sequence score distributions are compared against the Shuffled Post distributions (e), the 
same two Pre epochs continue showing significant ‘pre-play’. However, when the Post 
distribution is compared against the Pre Shuffled distribution, only two Post epochs retain a 
significant ‘replay’ effect (f), which may suggest that changes from Pre to Post in the 
background activity determinate of the null distribution, may contribute to the enhancement of 
the signal to noise characteristics of sequential replay, during the post novelty epoch. 
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Figure 4.14: P.L. Pre-Play and Replay and Place Cell Firing Rate Over Time: non-local P.L. 
sequence score (panels a and and b for Pre and Post respectively) and within event place cell 
firing rates (panels c and g) were first z-scored across both Pre and Post epochs in order to 
reduce intra-session variability, and binned in sliding one hour bins with a step size of five 
minutes. For each of the panels on the left (a, c, e, and g) the mean and bootstrapped 95% 
confidence interval are shown in blue (Pre) or red (Post). Note that the x-axis of panels a and b 
are inverted to reflect that time is measured as the latency from the start (Pre) or end (Post) of 
the maze epoch. For each session within-bin means are shown in light grey. Right panels (b, d, 
f, and h) display the per session correlation coefficients for each of the comparisons derived 
from the none-binned distributions. Note that while neither pre-play (a and b) or replay (c and 
g) consistently change over time, the within-event firing rates show a bias towards decreased 
firing over the course of either the Pre or Post epochs.  
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Figure 4.15: Within NREM Firing Rate and Replay/Pre-play Effects: For each cell firing 
rates in both the Pre and Post epochs were binned in 1 second bins. In order to decrease inter-
cell and inter session variability, all firing rates were normalized by cell by dividing each bin by 
that cell’s overall firing rate for the entire session. For each bin occurring during an NREM 
episode with a durations of at least 100 seconds  a ‘normalized NREM episode time’ value was 
defined as the corresponding percentage of that NREM episode’s duration such that the 
beginning of that NREM episode corresponded to 0 percent and the end of that episode 
corresponded to 100%. The mean normalized firing rate was taken for the first, middle and last 
NREM thirds (corresponding to values 0-33%, 33%-66%, and 66%-100% of normalized NREM 
episode time, respectively) during the Pre and Post sleep epochs (a). In accordance with 
previous finding, pyramidal cell firing was found to increase within NREM episodes (first NREM 
third to last NREM third comparison, Pre: p < 4.17x10

-5
, Post p < 0.0012, sign-rank (paired) 

test. Consistent with this effect individual pyramidal cells were found to correlate positively with 
normalized NREM episode time in both the Pre (b) and Post (c) epochs (n = 322 cells, sign-
rank test).  While normalized within-event firing rates were not found to change significantly 
from the first to last third of NREM episodes (d), within-event firing rates correlated negatively 
with normalized episode time in both the Pre (e) and Post (f) epochs (n = 322 cells, sign-rank 
test) which is consistent with the previously observed within ripple firing rate changes. However, 
no significant first to last third NREM effects were observed for absolute P.L. sequence pre-play 
or replay (h), and the correlation between normalized NREM episode time and absolute 
sequence score was not significant in any Pre (i) or Post (j) epoch. 
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Figure 4.16: Bayesian Decoding and Reconstruction: Panel a shows the Bayesian 
reconstruction of four linear maze trials, note that for making this panel as well as panel d 250 
ms bins were used and time spent at the reward (non-analyzed) locations were omitted for 
illustrative purposes. The cumulative error distribution is shown across all 500 ms bins on the 
linear (b, n = 1145 bins, mean error: 10.88 cm ± 0.505 cm standard error), and circular (c, n = 
1820 bins, mean error: 14.18  cm ± 0.401 cm standard error) mazes. Red shaded regions 
show the the 95 percent confidence interval of the shuffled cumulative error probability 
distributions. In order to cross-validate these measures, for each session, Bayesian classifiers 
were constructed after excluding every fifth lap on the maze and subsequently tested on the 
excluded laps. Panel d shows the reconstruction of two such circular maze laps. Bayesian 
decoding performance was found to be significantly better than chance in both the linear (e, n 
= 207 bins, mean error: 11.33 cm ± 1.02 cm standard error) and circular (f, n = 334 bins, 

mean error: 13.08 ± 1.86 cm standard error) maze conditions.  
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Figure 4.17: Bayesian Decoding of Pre-Play and Replay Summary: Bayesian decoding 
quality (panels a-d) and Bayesian decoded sequence Pre-play and Replay strength (panels e-h) 
were calculated within events divided into 20 ms bins. For each comparison in this figure 
significance (p < 0.025) was determined using rank-sum tests. For panels a and e red lines 
indicate significant differences between Pre and Post, while blue lines indicate non-significant 
effects, error bars show the boot-strapped 95% confidence interval for each condition. Green 
circles indicate conditions in which the experimental distribution was significantly greater than 
the null (shuffle) distribution. In order to visualize the effects shown in a and e, for each of the 
two measures for each of the three comparisons (pre vs. post, pre vs. shuffle, and post vs. 
shuffle) mean distributions were obtained by averaging the normalized distributions across all 5 
sessions. For each measure and comparison the median of the p-values across all 5 
comparisons is displayed in order to indicate effect robustness. While Bayesian decoding quality 
increased significantly in 4 of the 5 session (panels a and b), Pre epoch Bayesian decoding 
quality was not significantly greater than the null (0 out of 5 significant epochs, panels a and c), 
and was greater than the null distribution in 2 out of 5 Post epochs (panels a and d). Conversely, 
decoded sequence matching strength increased significantly from the Pre to Post epochs in 2 
out of 5 sessions (panels e and f), while 3 out of 5 Pre epochs (panels e and g) showed 
significant decoded Preplay and all 5 Post epochs showed decoded sequence Replay highly 
significantly greater than the null distribution (panels e and h). 
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Figure 4.18: Bayesian Decoding Relative to P.L. Sequence Score, Firing Rate and Time: All significance 

testing of correlation coefficients. Note that for this analysis, only those events that met the criteria for 

inclusion in the Bayesian analysis were included for all conditions. Mean posterior probability is 

significantly correlated with Bayesian sequence strength (a), which in turn is highly significantly 

correlated with P.L. spike sequence strength (b), however posterior probability and P.L. sequence 

strength do not show consistent correlations. Notably, while both Bayesian sequence strength, and 

especially mean posterior probability are strongly correlated with event rate (d and e, respectively), P.L. 

sequence strength showed the opposite trend (f, see also figure N), suggesting that while both of 

Bayesian and spike sequence analyses are highly influenced by rate, this influence is highly divergent, and 

indeed opposite. Notably, no consistent relationship (for instance, decay) was found with time for any 

the measurements (g, h, and i).  
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 Pair-Wise Methods Event-Based Methods 

Rate replay** • Correlation of firing rates in 

100 ms bins (Wilson and McNaughton, 

1994) 

• PCA based projection 

(Peyrache et al., 2009) 

 

• The posterior probability 

metric of Bayesian population activity 

decoding (Davidson et al., 2009; Foster 

and Wilson, 2006; Kloosterman, 2012; 

Pfeiffer and Foster, 2013)*** 

Sequence replay • Bias in pair-wise cross 

correllograms (Skaggs and McNaughton, 

1996) 

 

• Template matching (Louie and 

Wilson, 2001) 

 

• Combinatorial 'word' analysis 

of place cell spike-sequences (Lee and 

Wilson, 2002) 

 

• Rank-order correlations 

between place field sequence on a maze 

and spiking sequence during an 'off-line' 

event (Diba and Buzsáki, 2007; Dragoi 

and Tonegawa, 2011; Foster and Wilson, 

2006) 

 

• Bayesian decoded 

'trajectories' (Davidson et al., 2009; 

Pfeiffer and Foster, 2013)*** 

Table 1: Types of replay* 

* Note that this table is meant to provide a heuristic for the methods most relevant to this 
 thesis  and is not an exhaustive list of replay methodologies 
** Note that one type of relevant rate replay, the modulation of firing rates of one or 
 more cells (Hirase et al., 2001; Pavlides and Winson, 1989b) is not included in 
this  table.  
*** Most methods for assessing Bayesian decoded replay confound the posterior 
 probability measure (activity replay) and the trajectory measure (sequence 
 replay) into one over-all replay score, and the individual contributions of each 
 component are not reported. 
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Excitability changes across sleep (supplementary to Fig. 1b) 

First 
non-
REM 

Last 
non-
REM Change            Units        P <                   n  

Pyramidal Firing Rate  0.6 0.55 �*** Hz 3.58E−016 618 

Interneuron Firing Rate 15.92 14.74 �*** Hz 7.1282E−021 111 

Active Period Incidence 79.51 69.61 �*** Periods/Minute 0.00026 22 

Inactive Period Incidence  99.69 102.23 �* Periods/Minute 0.0203 22 

Within Ripple Pyr. Rate 2.62 2.73 �* Hz 0.029 618 

Between Ripple Pyr. Rate 0.543 0.493 �*** Hz 3.589E-16 618 

Pyr. Pair-Wise Corr. 0.024 0.027 �** r (100ms bins) 0.0033 22 

Pyr. Ripple Participation 17.56 18.56 
�*** 

%Ripples/Pyr 
Cell 0.00022 618 

Within Ripple Pyr. Rate 0.76 0.71 
�** 

C.V. (across 
cells) 0.0045 22 

 

Excitability changes within non-REM (supplementary to Fig. 2 a,b) 

First 
1/3rd 
of non-
REM 

Last 
1/3rd 
of 

non-
REM Change Units P < n 

Pyramidal Firing Rate  0.55785 0.596 �*** Hz 5.21E-14 618 

Interneuron Firing Rate 14.782 15.647 �*** Hz 5.03E-05 111 

Active Period Incidence 71.213 73.503 �*** Periods/Minute 3.87E-06 82 

Inactive Period Incidence  102.87 208.27 �** Periods/Minute 0.0014 82 

Within Ripple Pyr. Rate 2.7248 2.633 � Hz 0.146 618 

Between Ripple Pyr. Rate 0.491 0.541 �*** Hz 9.83E-23 618 

Pyr. Pair-Wise Corr. 0.0279 0.0246 �*** r (100ms bins) 5.08E-05 82 

Pyr. Ripple Participation 18.36 17.73 
�** %Ripples/Pyr 

Cell 0.003 618 

Within Ripple Pyr. Rate 0.739 0.7213 � C.V. (across cells) 0.3548 22 

 

Excitability changes within REM (supplementary to Fig. 2a) 
First 
1/3rd 
of REM 

Last 
1/3rd 
of REM Change Units P < n 

Pyramidal Firing Rate  0.61314 0.54577 �* Hz 0.012836 618 

Interneuron Firing Rate 20.052 16.959 �*** Hz 7.22E-06 111 

Pyr. Pair-Wise Corr. 0.0074 0.015 
� r (100ms 

bins) 0.225 45 

 
 
Table 2: Excitability changes across sleep, within non-REM episodes, or within REM 
episodes (n = 618 pyramidal cells, 111 interneurons, 22 sleep sessions, 82 non-REM episodes 
or 45 REM episodes, all significance values from (paired) sign-rank tests, *p<0.05; **p<0.005; 
***p<0.0005.).   
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Glossary of Terms 

Across Sleep Changes – in our study these are assessed by comparing the first and last 

non-REM episodes of each session. 

Bayesian Decoding Quality - assessed as the mean of the posterior probability across 

within-event bins of the peak posterior probabilities of the bins within the event. 

This is a measure  of the specificity of the similarity of an observed population 

activity vector in a given time bin to the population activity vector in the given 

spatial (2 cm) bin to which it is most similar (in other words, the best estimate of 

position), normalized by its 'non-specific' similarity to all spatial bins – and is thus 

a method for Rate Replay. 

Bayesian Decoded Sequence Strength – This measure was assessed across the within-

event decoded positions by using a modified version of the paired latency vector. 

To put it simply, this measure reflects how consistently all the pairs of decoded 

position of 20 ms bins in a given event indicated that the animal was 'moving' (in 

decoded position space) forwards or backwards across the bins of that event. It is 

thus a measure of Sequence Replay. 

Excitability - used broadly to refer to several statistical aspects of neural activity, 

including firing rate and synaptic strength.  

Novel Maze – a maze environment which the experimental subject has never previously 

experienced. Uniquely, in our experiment both the experimental maze as well as 

the experimental room were novel to the animal.  
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‘Off-Line’ State – generally this term reflects to behavioral states in which the animal is 

not actively engaging with its environment. In our study, we restrict the ‘off-line’ 

state analysis to drowsy/light-sleep, non-REM and intermediate sleep epochs 

occurring during either the Pre or the Post sleep recordings.  

Paired-Latency Method – a novel event-based method for assessing Sequence Replay. It 

is based on the similarity of two vectors each of who’s elements reflect the 

directionality (i.e. before or after or to the left or to the right of) of a particular 

pair-wise interaction. It may thus be thought of as an event-based adaptation of 

the method employed by Skaggs and McNaughton, 1996. 

Participant – a cell which discharged at least one spike in a given event. 

Place Cell – any hippocampal layer CA1 cell which showed at least one place field. 

Place Field – a series of at least five consecutive bins in which a principal cell’s firing 

rate was above the 99
th

 percentile of the shuffled firing rate. Note that while many 

neurons displayed more than one place field, only the place field which contained 

the highest place field peak firing rate was considered for further analysis.    

Place Field Peak – the spatial (2 cm) bin within a place field which displayed the highest 

firing rate. Note that this bin was taken as the place cell’s location for all the 

(non-Bayesian) replay and pre-play analysis. 

Population Activity Event – a short (50 to 500 ms) epoch in which population activity 

synchronously rises above a baseline. In the current study these were defined as 

epochs occurring in the ‘off-line’ state, in which the smoothed (Gaussian window, 
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15 ms st.d.) activity vector assessed across all pyramidal cell spikes rose 3 

standard deviation of its mean during non-REM (see Methods). 

Posterior Probability of Position – the Bayesian decoded estimate that the animal is 

‘perceiving’ (or ‘remembering’) a particular position (i.e. 2 cm bin) on the maze. 

This estimate is based on the similarity of the population activity being decoded 

to the population activity at each spatial bin on the maze. Note that posterior 

probability is normalized so that it sums to one across all spatial bins. 

Rate replay - the 'off-line' reactivation of single-cell, pair-wise, or higher-order firing rate 

patterns observed during behavior. 

Sequence Replay -the 'off-line' reactivation of pairs or larger groups of neurons in the 

sequence in which they fired during behavior. 

Synchrony – in general this term refers to the propensity of a population of neurons to 

discharge together and to be silent together in time. In our particular study it was 

defined as the mean pair-wise correlations between all pairs of pyramidal cells’ 

firing rates binned in non-overlapping 100 ms bins. 

Within non-REM Changes - in our study these are assessed by comparing the first and 

last thirds of each non-REM epoch.  
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