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ABSTRACT OF THE DISSERTATION

Dynamic Revenue and Inventory Mangement Models

By Yifeng Liu

Dissertation Director: Dr. Jian Yang

E�ective pricing and inventory controls are very important for the success of a com-
pany, especially in an environment with many uncertainties such as random demand
and �uctuating cost.

In this work, we �rst consider pure dynamic pricing. Indeed, we consider three cases:
markup in which price can only go up, markdown in which price can only go down,
and reversible pricing in which price can go either direction.

We also consider a joint pricing and inventory control model in which the raw material
price evolves as a Markov process. For this model, we suppose production is make-
to-order, so that the conversion from raw material to �nished product is carried out
only when demand arrives.

For the pure pricing model, we establish the optimality of threshold-like policies.
We also develop e�cient and numerically stable algorithms. For the make-to-order
joint inventory-pricing model, we demonstrate the optimality of a base-stock-list-
price policy. In addition, we identify conditions under which policy parameters would
exhibit monotone trends. Moreover, we showed the signi�cant bene�t of adopting
cost-dependent base-stock list-price policy.
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CHAPTER 1

Introduction

Dynamic pricing is also called time-based pricing which is a price strategy based on

the time when the service or commodity is provided. It is playing a more and more

important role in the success of business. As time goes by, the situation that a �rm

faces, like the quality, attractiveness, substitute, or the inventory of a product as well

as the appetite of customers, will change. For example, �ight ticket becomes more

attractive when the time closes to the departing date; on the other hand, there are

probably only a few �ight tickets remaining available at that time. Demand is also

�uctuating with higher rate during peak season like in the Christmas holiday and

lower rate in normal business time. The �rm may miss the chance to obtain more

revenue, or lose demand on the other side, by charging a same price when environment

changes. Therefore, it is necessary for �rms to adopt dynamic pricing to capture the

evolvement of market to maximize their revenues. According to Davis (1994), airlines

increase at least $500 millions annually through dynamic pricing.

However, dynamic pricing is not the only issue to be concerned by companies, espe-

cially for manufacturers. Due to demand uncertainty, �rms need to make e�ective

production planning to hedge supply and demand risk. All the demand can be sat-

is�ed if they produce large enough inventory which, unfortunately, will introduce

huge inventory holding cost that includes cost of capital, material handling, storage,

damage, insurance, and tax. Should they produce less, they will pay penalty for the

demand which can not be satis�ed immediately due to lost good will, promotion to
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hold demand, or even lost sales. On the upstream of the supply chain, �uctuating

raw material price is also an important factor to a�ect the production decision. It

is intuitive that a �rm should purchase more to save purchasing cost when the raw

material is cheap. However, it is really hard to determine when the raw material

price has touched the bottom and how much should be ordered. Therefore, e�ective

production planning is also very critical to building a successful company.

Almost every company faces demand uncertainty. As the mentioned airline industry,

people may prefer to travel during holiday seasons which brings high book rates

for the �ight tickets. Even though we can imagine the demand will be higher in the

holidays than normal business days, we still can not be sure what is the exact number

of demand on a special day due to diverse preference of travelers. Besides seasonal

factor, demand for a product or a service is also a�ected by many other reasons such

as available substitutes, quality, popularity, necessity and so on. Those factors will

lead to �uctuating demand as time goes by. Another important factor to in�uence

the demand is the sales price. Due to di�erent income, customers' ability to a�ord

a good or a service ranges widely. Expensive products like luxury cars are designed

for a few rich people and cheap products like shampoos are suitable for everyone.

Thus, it is straightforward to see, even for the same product, high price will incur less

demand than lower price. Simply speaking, we can think demand is time-�uctuating,

price-sensitive, and random.

Because of regulation, wars, technology, and many other elements, raw material price

is �uctuating as well. Take crude oil as an example to illustrate. It increases gradually

from around $60 in Jan 2006 to $145 in Jul 2008, and suddenly drops sharply to

around $60 in Oct 2008. Then, it rebounds from $40 in Dec 2008 to more than $100

in May 2011, and decreases again after that. Even during the long trend of increasing

or decreasing, the crude oil price vibrates frequently and goes to the opposite direction
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very often. Some experts predict the crude oil price will soar to $200 before it goes

to $145 in Jul 2008. However, the prediction never comes true. Besides crude oil,

the prices of steel, copper, latex, and others also �uctuate wildly. Thus, it is very

hard to predict the price of raw material. To purchase raw material earlier, �rms may

overleap the chance to get a even lower price and have to pay a holding cost in the

meantime; to procure later, they may come across a higher price and lose customer

demand. Taking uncertain raw material price into account is therefore a big concern

for production planning.

To satisfy customer demand, �rms can either build raw material inventory and make

production when order comes, or build both raw material and �nished product in-

ventories before order comes. The former case is called the make-to-order and the

latter is make-to-stock. The make-to-order case �ts the situation where it is very ex-

pensive to hold �nished product inventory, the �rm has very good relationships with

customers, and customers are willing to wait. For example, producers of automobiles,

computer servers, and aircrafts can adopt this production strategies. Make-to-stock

can be suitable for almost every manufacturer. Normally, the holding cost is more

expensive for �nished product than raw material. As we can imagine, holding an

aircraft would be less economical than holding its parts. To avoid high holding cost,

�rms may prefer to store raw material instead of �nished product. Due to price un-

certainty of raw material, building raw material inventory can also hedge input price

risk.

In this work, we will consider a pure dynamic pricing model and a make-to-order

inventory control model with pricing. The pure dynamic pricing model contains

three cases: the markup case where the concerned �rm can only charge consecutively

increasing prices, the markdown case where the price can be changed in a decreasing

direction, and the reversible pricing case where any price can be adopted at any time.



- 4 -

In all these cases, the concerned �rm aims to maximize revenue through dynamic

pricing where price can be switched to another one from a given �nite set at any time

of the sales season. Demand follows a poisson process with rates in the form of a

price-dependent term multiplying a time-sensitive term. Product inventory is built in

advance and can not be replenished. In the make-to-order inventory control model,

the concerned �rm needs to periodically make decisions on raw material purchase

and product pricing to maximize its pro�t. Raw material price evolves as a Markov

process with �nite supports. The random demand takes a general non-stationary

price-elastic form. The �rm makes immediate production with available raw material

inventory when demand comes and unsatis�ed demand is backlogged.

For applications, we can consider the following stories. An airline company usually

starts to sell tickets one year ahead of departing time. In the beginning, all the seats

are available and customers face too many uncertainties for traveling one year later.

The airline company usually o�ers very cheap price for the seats to capture some

cash �ow. When it closes to the departing date, the airline company carrying only

a few empty seats will charge a much higher even full price since it now targets at

the customers who are urgent to �y and care less about the price. The markup case

is designed for such companies as the airlines or hotels who consecutively charge an

increasing sequence of prices along the time. Retailers who sell fashion goods like

the down jacket or new technologies like the iPhone4 usually adopt the markdown

pricing strategy in which they charge prices in a decreasing direction. Fashion goods

are usually very attractive or good to use when launched, but are less popular as time

goes by because newer products will come to compete for the same customer base.

As a result, those retailers will tend to charge higher prices in the beginning and

gradually decrease the price as time goes by. In many other cases, �rms can freely

charge prices. The reversible case is appropriate for this situation.
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When inventory replenishment and production are involved, �rms need to be aware

of the �uctuating raw material price. Consider a die making shop which purchases

metals, stores them, and carries out production when order arrives. At the beginning

of each month, the company needs to make joint decisions on how much raw material

should be procured and how much it should charge for the die. In case that the on-

hand raw material is not enough to satisfy all the demand, the unsatis�ed demand is

backlogged to the next month with some rebates. The time for shipping raw material

is negligible and production can be �nished in less than one month to the extent that

lead time and production time can be assumed to be zero. Then, this die making

shop can apply our make-to-order model to its practice.

We have found optimal pricing strategies for all three cases of the pure dynamic

models and for the make-to-order model as well as an optimal purchasing strategy for

the make-to-order model. Threshold-like pricing policy are optimal for all the three

dynamic pricing cases. For the make-to-order model, we establish the optimality of

base-stock-list-price policy. Such policy says the �rm should increase its inventory

level up to a base stock level and charge a list price when its inventory level is

lower than the base stock level; when starting with a higher inventory level, the

�rm should charge a even lower price. In addition, we identify monotone trends for

the various policies. In particular, we �nd the threshold levels of the markup and

markdown cases hold decreasing trend in inventory, while that of the reversible case

is decreasing in both inventory and price. In the make-to-order model, the base

stock level is decreasing in the raw material price. List price may be expected to

decrease as well. However, this turns out to be false. Instead, it is the average

inventory of the next period that is decreasing in the raw material price. Moreover,

we develop algorithms to solve the threshold policies and o�er guidance to e�ciently

�nd the base-stock-list-price policy. We conduct numerical experiments which show

that our threshold policies, considering non-stationary demand, generate much more
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revenue than that in the literature, considering stationary demand, does and our

cost-adjusted base-stock-list policy outperforms the cost-independent policy in the

literature signi�cantly as well. Our numerical study also con�rms, for the pure pricing

model, that threshold policies may not be optimal under general demand forms, and

for the make-to-order model, monotone trends may not be retained when certain

conditions are violated.

This work is organized as in the following. In chapter 2, we review the related liter-

ature; in chapter 3, we concentrate on the pure dynamic pricing model; in chapter 4,

we analyze the make-to-order model; in chapter 5, we provide numerical examples

that supplement theoretical results; �nally, we make conclusion in chapter 6.
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CHAPTER 2

Literature Review

Research on dynamic pricing/revenue management (RM) has been �ourishing for

many decades. One earlier work Rothstein (1971) studied an overbooking model for

the airline industry. Glover et al. (1982) studied a network model with di�erent fare

classes, di�erent �ight segment. Weatherford and Bodily (1992) provided a detailed

review on the literature of revenue management by that time. Gallego and van

Ryzin (1994) started treating dynamic pricing from the perspective of control theory.

They showed the monotonicity of pricing policies with respect to the inventory and

remaining time. In addition, they proposed a �xed-price heuristic method to reach

the optimal pricing policy asymptotically. Feng and Gallego (1995) established the

optimality of threshold policies for both the markup and markdown case that evolve

only one price change. Feng and Xiao (2000b) made generalization to cases involving

multiple price switch.

When demand is time-varing, Bitran and Mondschein (1997) characterized an optimal

pricing policy which has time-monotonicity and inventory-monotonicity when the

customers' valuation distribution is homogeneous. Zhao and Zheng (2000) extended

their work to nonhomogeneous valuation distribution and showed that the inventory-

monotonicity of the optimal threshold pricing policy is still preserved. As for time-

monotonicity, they found that it is preserved under the condition that the willingness

of a customer to pay a premium is not increasing over time.

One of the earliest works on inventory management is Harris (1913) in which the
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classical economic order quantity model was studied. Another important basic model

in inventory is the newsvendor model which can date back to Arrow et al. (1951).

Based on these two basic model, numerous inventory control models were developed;

see Axsater (2006). In terms of the times of inventory monitoring, the literature

on inventory control can be divided into continuous review, in which inventory is

monitored continuously, and periodic review, in which inventory is only reviewed after

certain time. Papers considering continuous review include Moinzadeh and Nahmias

(1988), Qi et al. (2009), Yang and Xia (2009), and so on; papers dealing with periodic

review include Tsitsiklis (1984), Cheng and Sethi (1999), Jian et al. (2006) Zhao and

Katehakis (2006), Katehakis and Sonin (2014), and so on. However, as mentioned in

the introduction, they are the same in some sense.

Quite a few works have dealt with inventory management under �uctuating raw

material prices. Kalymon (1971) considered a Markov raw material price and showed

that a price-dependent (s; S) policy can minimize the total discounted expected cost.

Golabi (1985) studied a periodic-review inventory control problem with stochastic

input cost but deterministic demand. Li and Kouvelis (1999) compared two type of

supply contracts that can be used to hedge the risk evolved in uncertain sourcing cost.

With random demand and purchasing costs, Ozekici and Parlar (1999) established

the optimality of a base-stock policy when the ordering cost is linear and that of

an (s; S) policy when there is a �xed cost. However, these papers mentioned above

did not take into account pricing, neither did they show policy trend with respect

to �uctuating raw material prices. Yang and Xia (2009) treated a continuous-time

version of our joint control problem without pricing. They identi�ed time-continuity

and mean-reversion as su�cient conditions for the acquisition base-stock level to be

monotone in the raw material price. Secomandi (2010) also took advantage of the

time-continuity property in his study of a raw commodity speculation problem.



- 9 -

Many authors have worked on pricing problems involving procurement as well. Whitin

(1955) considering a single-period deterministic problem. Thomas (1974) proposed

a heuristic method to study a multi-period joint pricing and production problem

with random demand. For a detailed review, readers are refered to Eliashberg and

Steinberg (1993). On this subject, recent major breakthroughs were accomplished

by Federgruen and Heching (1999) and Chen and Simchi-Levi (2004). Federgruen

and Heching considered a linear ordering cost. They characterized one optimal policy

as base-stock-list-price for both �nite and in�nite horizons. Chen and Simchi-Levi

extended the above work to the case with �xed costs and introduced the concept

of symmetric-k-convexity to cope with the added di�culty. Under additive demand

form, they identi�ed an (s; S; p) policy which says the inventory policy follows (s; S)

policy and the price should be charged based on the inventory level.

Next, we turn to the Markovian assumption of the raw material price process. There

is ample literature in support of the Markov-process modeling of commodity prices.

On the validation of treating actual price processes as Markov processes, we have

Ryan (1973) and Fielitz and Bhargava (1973); on estimating for transition matrices

of Markov processes, there are Anderson and Goodman (1957) and Ryan (1973);

also, quite some operations management papers base their studies on the premise

that their commodity price process follows a Markov process; see, e.g., Fabian et al.

(1959), Andersen (2010), and Secomandi (2010). Some times, one can obtain the

transition matrix of a Markov chain relatively easily when the chain is the discrete-

state counterpart of a well-behaving continuous-state Markov process; see Yang and

Xia (2009).

As mentioned, the linear in�nite-location model used to motivate our demand func-

tion is intimately related to Hotelling (1929)'s linear two-location model and Salop

(1979)'s circular multi-location model. Hotelling (1929) studied a two-player compe-
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tition problem and found an equilibrium price. In this model, two sellers, locating at

two ends of a line, and competes customers which are evenly distributed on the line

and buy products based on their evaluation on the prices of and their distances to

the sellers. Salop (1979) extended the above work and considered multiple suppliers

and customers that are located on a circle. He introduced customers' preference over

the supplies/brand and showed the existence and properties of a symmetric zero-

pro�t Nash-equilibrium. Many more works examined the e�ects of input costs and

competition on demand; see, e.g., Dixit and Stiglitz (1977) and Perlo� and Salop

(1985).

The part of irreversible-pricing cases, including the markup and the markdown cases,

is a generalization of Feng and Xiao (2000b) which considered stationary demand.

Similarly, we have reached the threshold-like optimal pricing policy. However, we have

identi�ed a minor error in their markup case. In addition, to characterize the optimal

policy, we use quite di�erent approaches such as an ordinary di�erential equation

and its solution, instead of advanced tools like Karlin's (1968) total positivity results.

Moreover, we demonstrate the di�erence between the markup and the markdown

cases. In particular, the markup case possesses a complementary property between

price �exibility and inventory, while is not enjoyed by the markdown case. Besides, our

construction of threshold policies and value functions lead to e�cient and numerically

stable algorithms to solve for optimal policies.

Works most relevant to our make-to-order are Federgruen and Heching (1999) on

joint pricing-procurement control and Yang and Xia (2009) on acquisition manage-

ment with �uctuating raw material prices. Comparing to Federgruen and Heching

(1999), we have identi�ed the monotone trend of the optimal base stock level and the

expected next-period inventory with the raw material price. In particular, when the

input cost goes up, the targeted base stock level should be lowered, while the sales
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price may not necessarily increase; and even when it does, it should be charged to aim

at attracting an expected demand that will lead to the expected next-period inven-

tory position being reduced. Contrasting against Yang and Xia (2009), we have added

the pricing component and demonstrated the monotone trends for the corresponding

pricing policy. In addition, Chen et al. (2014) studied a joint pricing and inventory

control model with both on-site sales market and long-distance market. They showed

that the long-distance market has advantage because of delivery �exibility when in-

ventory level is low. Yang (2014) introduced time-consistent coherent and Markov

risk measure in the literature of joint inventory and pricing activities.

Besides the above most relevant literature, we note that some authors took into ac-

count the strategic behavior of buyers. Strategic customers will monitor prices and

decide when and which price to buy a product. Su (2007) studied a revenue man-

agement problem evolving strategic customers with di�erent valuations and di�erent

patient level. He identi�ed dynamic pricing policies under di�erent compositions of

strategic customers. Aviv and Pazgal (2008) proposed a model to study the impact

of customers' strategic behavior on retailer's pricing strategies. They considered two

pricing schemes and identi�ed a subgame-perfect equilibrium for both cases. Liu and

van Ryzin (2008) investigated how rationing would a�ect both monopoly market and

oligopoly market in presence of strategic customers. In addition, due to the devel-

opment of the E-commerce, auction becomes a popular procurement strategy. Kate-

hakis and Puranama (2012a) addressed an auction problem in which a �rm, aiming

to maximize the revenue, procures products through sequencial bidding actions and

resells them to customers. In Katehakis and Puranama (2012b), a �rm adopts two

procurement strategies, buy-it-now and sequencial auctions, to meet �xed demand

with minimum cost. Monotone properties for the optimal value function and bidding

strategies are identi�ed. Yang et al. (2005) and Yang and Qi (2010) considered the

availability of outsoucing when the �rm has to make both production and inventory
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management decisions. Yin et al. (2009) explored a game-theoretical model between

a retailer who has two choices of displaying its inventory and customers who behave

strategically. There is also a sizable body of literature involving competition. Perakis

and Sood (2006) used the robust optimization approach to study dynamic pricing

under competition. Xu and Hopp (2006) found a weakly perfect Bayesian equilib-

rium for an oligopolistic pricing model. Lin and Sibdari (2008) established a Nash

equilibrium for retailers with complete information of competitors' inventory levels.

Meanwhile, Araman and Caldentey (2009), Besbes and Zeevi (2009), and Farias and

van Roy (2010) brought di�erent approaches to bear on the task of fusing together

dynamic pricing decisions and real-time learning of demand information. Also re-

cently, Xu and Hopp (2009) gave conditions under which optimal price paths would

exhibit monotone trends in a stochastic sense.
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CHAPTER 3

Pure Dynamic Pricing Model

We will consider three cases: markup case, markdown case, and reversible case to em-

ulate real practice. For airlines, markup is more probable; for retailers, markdown is

more prevalent; for most other cases, reversible pricing is more commonly seen.

3.1 Problem Setup

We consider a concerned �rm that wants to sell N items of its product during the

sales season [0; T ]. After the end time T , all the products unsold will become useless

and have salvage value 0. Therefore, the �rm will try to maximize the revenue it can

get by selling its inventory through e�ective pricing. The prices the �rm can choose

are given, denoted by f�pk; k = 0; 1; :::; Kg, with pk1 � pk2 for 0 � k1 � k2 � K.

In the markup case, the �rm can only choose ever increasing prices as time goes by.

Similarly, in the markdown case, the �rm can only charge decreasing prices as time

goes by. The reversible case doesn't have any restriction on which direction the prices

can go.

Demand follows a Poisson process with rate ��k�(t) when the �rm charges price �pk

at time t. We assume �(�) is continuous on time t. The Poisson process means

that the demand coming during [s; t] at price �pk, Nk(t) � Nk(s), follows a Poisson

distribution with rate
R t
s
��k�(�)d� . In addition, Nk(s2)�Nk(s1) is independent with
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Nk(t2)�Nk(t1) for 0 � s1 � s2 � t1 � t2 � T . For n = 0; 1; :::, we have

P [Nk(t)�Nk(s) = n] = exp(���k � �̂(s; t)) �
(��k � �̂(s; t))n

n!
: (3.1)

The Poisson arrival process is commonly assumed in literature; see Gallego and van

Ryzin (1994) and Feng and Xiao (2000b). The term ��k re�ects the elasticity of de-

mand to the price �pk and the term �(t) implies the sensitivity of demand to the time

t. To understand a time-varying �(t), we may take the example of Christmas tree.

Demand is very high one month before Christmas, while it will all but disappear after

Christmas. Another example is that demand for hotel rooms follows very clear sea-

sonal patterns. Furthermore, for high-tech products like iPhone 4S, demand usually

peaks right after release time and then it starts to decline. It can be said that we use

the �(t) to re�ect factors like seasonality, new product release, and so on so forth.

We make the following assumptions:

(S1) for the revenue rates �pk ��k�(t), we have

�p0��0 > �p1��1 > � � � > �pK ��K ;

which results in the weaker condition:

(S1
0

) for the demand arrival rates ��k�(t), we have

��0 > ��1 > � � � > ��K :

Assumption (S1) is reasonable because if it were not true, people would always choose

the high price.Now, de�ne �, so that

� = ��0 � sup
t2[0;T ]

�(t): (3.2)
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By the continuity of �(�) and the compactness of [0; T ], we know that � is a strictly

positive and �nite constant. By (S1'), we know that � is the highest instantaneous

arrival rate that can ever be achieved.

Let's de�ne a threshold policy. Simply put, we denote it by � = (� kn j k = 1; 2; :::; K; n =

1; 2; :::; N) 2 (�N)
K , where �N � [0; T ]N is de�ned through

�N = f(�1; �2; :::; �N) j 0 � �N � �N�1 � � � � �1 � Tg: (3.3)

The presence of (3.3) implies the inventory monotonicity property. In the markup

case, a �rm adopting policy � should increase its price to �pk when the current price

is lower than �pk and the inventory level drops to n before the threshold point � kn . For

the markdown case, a �rm adopting policy � should decrease its price from �pk to �pk�1

when the inventory is n and time passes the threshold point � kn . For the reversible

pricing case, a �rm adopting policy � should charge price �pk when the current time t

satis�es � k+1
n � t � � kn and the inventory is n.

We de�ne the value function as the maximum value or revenue the �rm can make

during the rest of sales season when it charges a given price with a certain inventory

level. For irreversible cases, including markup case and markdown case, let us de�ne

vkn(t) as the maximum revenue the �rm can make when it starts at time t with price

�pk and inventory level n. For the reversible pricing case, let us de�ne vn(t) as the

maximum revenue the �rm can make when it starts at time t with inventory n. When

the �rm has zero inventory, it will have nothing to sell to generate revenue. Therefore,

it holds that vk0(t) = v0(t) = 0. When the sales season ends, we assume there is no

salvage value which means vkn(T ) = vn(T ) = 0.
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3.2 The Markup Case

Since the highest price �pK is the last price for the �rm to charge, we have

vKn (t) = �pK � E[(NK(T )�NK(t)) ^ n]: (3.4)

For k = K � 1; K � 2; :::; 0, the �rm still has the chance to increase its price to �pk+1

when it is currently charging �pk. Hence,

vkn(t) = sup
�2T

E[�pk � f(Nk(�)�Nk(t)) ^ ng+ vk+1
(n�Nk(�)+Nk(t))+

(�)]: (3.5)

Here, it is obvious to see that stopping time � is the moment to switch the price from

pk to pk+1. However, the problem is how we can �nd these stopping times which also

compose the threshold policy de�ned above. In the following, we will provide the

procedure to �nd this threshold policy and prove its optimality. In addition, we will

show how to obtain the value functions.

3.2.1 A Constructing Procedure

Before deriving the value functions and threshold policy, we de�ne the in�nitesimal

generator Gkn(t) corresponding to price �pk, inventory level n, and time t. When this

operator applies to a well-de�ned function vector u = (un(t) j n = 0; 1; :::; N; t 2

[0; T ]), it will follow that

Gkn(t) � u = dtun(t) + ��k � �(t) � (un�1(t)� un(t)): (3.6)

Note that it will be an abuse of notation to call the left-hand side Gkun(t), as knowing

un(t) at the particular n and t alone will not help one get to the right-hand side. If
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we consider the sequence u as a sequence of value function, then the �rst term of this

generator stands for the change of time value of the value function and the second

term represents the change of the value function when demand occurs. The time

value can be understood as the longer the sales season is, the more chance to sell

more inventory the �rm have. Also note that if we set Gkn(t) � u+ ��k�(t) � �pk equal to

zero, then it can be simpli�ed into the following form:

dsf(s) = b(s)� a(s) � f(s); 8s 2 (0; t): (3.7)

where, f(s) = un(s), a(s) = ���k � �(s), and b(s) = ���k � �(s) � (un�1(s) + �pk).

For this ordinary di�erential equation, we know from Carrier and Pearson (1991) that

it has a unique solution f(�), so that for any s 2 [0; t],

f(s) = f(0) � exp(�
R s
0
a(u)du) +

R s
0
b(u) � exp(�

R s
u
a(v)dv) � du

= f(t) � exp(
R t
s
a(u)du)�

R t
s
b(u) � exp(

R u
s
a(v)dv) � du:

(3.8)

Late, we will see (3.7) and (3.8) will play critical role in our derivation.

For the case where the time multiplier �(�) is stationary, Theorem 1 of Feng and Xiao

(2000b) o�ers su�cient conditions for a vector of functions to be the value functions

vkn(t). But this result can be easily generalized to the case where �(�) is time-variant.

In the same spirit of this theorem, we have the following.

Proposition 3.1. For any k = K � 1; K � 2; :::; 0, a function vector u � (un(t) j

n = 0; 1; :::; N; t 2 [0; T ]) that is uniformly bounded and absolutely continuous in t

for every n will be vk � (vkn(t) j n = 0; 1; :::; N; t 2 [0; T ]), if it satis�es the following:

(i) un(t) � vk+1
n (t) for every n = 0; 1:::; N and t 2 [0; T ],

(ii) un(T ) = 0 for every n = 0; 1; :::; N and u0(t) = 0 for every t 2 [0; T ],

(iii) for n = 1; 2; :::; N and t 2 [0; T ], un(t) = vk+1
n (t) implies Gkn(t)�u+�pk ��k ��(t) �

0,
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(iv) for n = 1; 2; :::; N and t 2 [0; T ], un(t) > vk+1
n (t) implies Gkn(t)�u+�pk ��k ��(t) =

0.

Proposition 3.1 provides a hint as to how the value functions vkn(t) and threshold levels

� kn can be constructed. First, due to (3.4), we can show GKn (t)�vK(t)+ �pK ��K�(t) = 0.

Hence, we can establish all the vKn (t) values in an n-loop by using the equation (3.7)

and its solution (3.8) as well as the fact that vK0 (t) = 0,

Then, for any k = K � 1; K � 2; :::; 0, suppose vk+1
n (t) is known for all n and t.

We can then go through an n-loop to �nd all the vkn(t)'s. First, let vk0(t) = 0 as

suggested by (ii) of the proposition. Second, suppose vkn�1(t) is known for all t and

some n = 1; 2; :::; N . Then, we have vkn(T ) = 0 due to (ii) of the proposition. Next,

we can obtain vkn(t) for ever smaller t values by solving the di�erential equation

Gkn(t) � v
k + �pk ��k � �(t) = 0 as indicated by (iv) of the proposition. We stop at the

t when vkn(t) is to sink below vk+1
n (t), which is not allowed by (i) of the proposition.

For time t0 earlier than this t, which is marked as � k+1
n , we let vkn(t

0) be vk+1(t0).

According to (iii) of the proposition, we still need Gkn(t
0) � vk + �pk ��k � �(t0) � 0 for

t0 < � k+1
n for the thus constructed vkn(�) to be the true value function. Nevertheless,

let us go ahead with the construction procedure thus outlined. Not knowing whether

what shall be constructed are the true value functions, we call them u's instead

of v's. Formally, here is the iterative procedure for constructing function vector

u = (ukn(t) j k = 0; 1; :::; K; n = 0; 1; :::; N; t 2 [0; T ]) and point vector � = (� kn j k =

1; 2; :::; K; n = 1; 2; :::; N).

First, let

uk0(t) = 0; 8k = K;K � 1; :::; 0; t 2 [0; T ]: (3.9)
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Then, for n = 1; 2; :::; N and t 2 [0; T ], let

uKn (t) = ��K �

Z T

t

�(s) � (�pK + uKn�1(s)) � exp(���K � �̂(t; s)) � ds: (3.10)

Next, we go over an outer loop on k = K � 1; K � 2; :::; 0 and an inner loop on

n = 1; 2; :::; N . At each k and n, �rst let

ukn(t) = ��k �

Z T

t

�(s) � (�pk+ukn�1(s)) � exp(���k � �̂(t; s)) � ds; 8t 2 [0; T ]: (3.11)

Then, let

� k+1
n = infft 2 [0; T ] j ukn(t) > uk+1

n (t)g; (3.12)

with the understanding that � kn = 0 when the concerned inequality is always true and

� kn = T when it is never true. Finally, let

ukn(t) = uk+1
n (t); 8t 2 [0; � k+1

n ]: (3.13)

3.2.2 Optimality and Characteristics

First, let's introduce a few concepts such as concavity, supermodularity, and increas-

ing di�erences.

De�nition 3.1. For a set S � Rn, we say it is convex, if for any � 2 [0; 1] and

x; y 2 S, �x+ (1� �)y 2 S.

De�nition 3.2. Given a continuous function f(s) de�ned on a convex subset S � Rn,

it is concave on S, if for any � 2 [0; 1] and x; y 2 S, �f(x) + (1 � �)f(y) � f(�x +

(1 � �)y). For a discrete function f(s) on a convex subset S of all integers Z, it is

concave, if for any s 2 S, (f(s� 1) + f(s + 1))=2 � f(s). A function f(s) is convex

on S if �f(s) is concave.
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As shown in Howe (1982), a continuous concave or convex function is di�erentiable al-

most everywhere. The �rst-order derivative of a continuous concave(convex) function

is decreasing(increasing).

De�nition 3.3. Given a set S � Rn, it is called a lattice, if for any x = (x1; x2; :::; xn),

y = (y1; y2; :::; yn) 2 S, x ^ y = (minfx1; y1g;minfx2; y2g; :::;minfxn; yng) 2 S and

x _ y = (maxfx1; y1g;maxfx2; y2g; :::;maxfxn; yng) 2 S.

De�nition 3.4. Given a real-valued function f(s) de�ned on a lattice S � Rn, it is

supermodular on S if f(x _ y) + f(x ^ y) � f(x) + f(y). If �f(s) is supermodular

on S, then f(s) is submodular on S.

De�nition 3.5. For a function f(x; y) de�ned on X � Y where X and Y are both

interval subsets of the integer set Z, we say f(x; y) has increasing di�erences in

(x; y), if f(x2; y2)� f(x1; y2) � f(x2; y1)� f(x1; y1) for any x1; x2 2 X and y1; y2 2 Y

satisfying x1 < x2 and y1 < y2. If �f(x; y) has increasing di�erences, then f(x; y)

has decreasing di�erences.

Now we show that the construction process in the previous subsection will lead to an

optimal threshold policy and the true value function. Let us �rst prove two properties

of the value function vkn(t) using induction and sample-path arguments that were �rst

used by Zhao and Zheng (2000) in the dynamic pricing context.

Proposition 3.2. For any �xed k = 0; 1; :::; K and t 2 [0; T ], the value function vkn(t)

is concave in n.

The above shows that decreasing marginal value of inventory.

Proof: We can use a sample-path argument to prove that

vkn(t) �
vkn�1(t) + vkn+1(t)

2
: (3.14)

We allow four pools of inventories, termed 1, 2, �1, and �2, to start at time t with the

same price �pk and experience the same sample path over the interval [t; T ]. These
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pools have di�erent starting inventory levels and may exert di�erent price controls,

though. Pools 1 and 2 start with n+1 and n� 1 initial items and pools �1 and �2 with

n items.

Besides applying optimal time-increasing stopping-time pricing policies to pools 1

and 2, we apply the higher of the two prices for pools 1 and 2 to pool �1 and the lower

of the two prices to pool �2, until the �rst moment, say s, when pool 1 is to have

generated one more demand arrival than pool �1. After s, we let pool �1 follow pool 1's

decisions and pool �2 follow pool 2's decisions. As both the minimum and maximum

of two decreasing functions are decreasing functions themselves, pools �1 and �2 can be

considered as adopting time-increasing stopping-time pricing policies as well.

Suppose the moment ever occurred, i.e., s 2 [t; T ). Then, it has already been shown

by Zhao and Zheng that the total sales revenue made by pools �1 and �2 amounts to

the same as that by pools 1 and 2. Suppose the moment never occurred, i.e., s = T .

Then, it has been shown by Zhao and Zheng that pools �1 and �2 can generate as

high a total sales revenue as pools 1 and 2. So regardless, on every sample path,

pools �1 and �2 can generate as high a total revenue as pools 1 and 2. Thus, we have

proved (3.14).

Proposition 3.3. For any �xed t 2 [0; T ], the value function vkn(t) has decreasing

di�erences between k and n.

This proposition means vkn+1(t)�v
k
n(t) � vk+1

n+1(t)�v
k+1
n (t). It re�ects that the marginal

value of inventory is decreasing in price. Note that a lower price stands for more price

choices in this markup case. This relationship therefore means the complementarity

between price �exibility and inventory.

Proof: We use a sample-path approach to show the following: for any n = 0; 1; :::; N�
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1,

vkn+1(t)� vkn(t) � vk+1
n+1(t)� vk+1

n (t); 8k = 0; 1; :::; K � 1; t 2 [0; T ]: (3.15)

We prove by induction on the inventory level n. Let us �rst prove

vk1(t)� vk0(t) � vk+1
1 (t)� vk+1

0 (t); 8k = 0; 1; :::; K � 1; t 2 [0; T ]: (3.16)

For every possible k and t, we introduce four pools of inventories, 1, 2, �1, and �2, that

experience identical sample paths. At time t, pools 1 and �1 are with price index k+1,

and pools 2 and �2 are with price index k. Also, pools 1 and �2 have one item, while

pools �1 and 2 are out of stock. Apparently, pools �1 and 2 will continue to hold zero

inventory. On the other hand, pool �2 can immediately raise its price to �pk+1 and then

match actions taken by pool 1. Hence, (3.16) is true.

Now, for some n = 1; 2; :::N�1, suppose it is true that, for anym = 0; 1; :::; n�1,

vkm+1(t)� vkm(t) � vk+1
m+1(t)� vk+1

m (t); 8k = 0; 1; :::; K � 1; t 2 [0; T ]: (3.17)

We now prove that

vkn+1(t)� vkn(t) � vk+1
n+1(t)� vk+1

n (t); 8k = 0; 1; :::; K � 1; t 2 [0; T ]: (3.18)

For any possible k and t, we rely on pools 1, 2, �1, and �2 that experience identical

sample paths. At time t, pools 1 and �1 are with price index k + 1, and pools 2 and

�2 are with price index k. Also, pools 1 and �2 both have n + 1 items, while pools �1

and 2 both have n items. For s 2 [t; T ], let us use Ni(s) to denote the inventory level

of pool i at time s. For instance, we have N�1(t) = n and N�2(t) = n + 1. We let

pools 1 and 2 execute their respective optimal decisions. For a certain period, we let
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pool �1 follow pool 1's decisions and pool �2 follow pool 2's decisions. Note that prices

adopted by all pools are increasing over time.

We let this certain period end at the �rst moment, say s 2 [t; T ), when (a) pools 1

and 2 have reached the same price, (b) pools 2 and �2 have just experienced one more

arrival than pools 1 and �1, or (c) pools 1 and �2 both have just one item left while

pools �1 and 2 have no item left. We may denote the case where none of the above

occurs by s = T . This is the case when by time T , at any moment the price taken

by pool 2 has always been strictly lower than that taken by pool 1, yet all pools have

admitted the same demand arrivals, and none of the pools have run out of stock. We

caution that the opposite to (b) will not occur, since before its price �catches up� with

that of pool 1, pool 2 always charges a strictly lower price than pool 1 and hence, by

(S1'), has more chance to realize sales.

For all cases, pools �1 and �2 will have together generated the same revenue as pools 1

and 2 by time s. This also means that we are already done when s = T .

When (a) ever occurs, we may let pools �1 and �2 both execute optimal decisions from

time s on. Then, within the time interval [s; T ], pool �1 will behave exactly the same

as pool 2, and pool �2 will behave exactly the same as pool 1. So, pools �1 and �2 will

continue to together produce the same revenue as pools 1 and 2 do.

When (b) ever occurs, denote the price taken by pool 1 at time s by k1 and the price

taken by pool 2 at time s by k2. We have k1 > k2, and

n+ 1 = N1(t) � N1(s) = N�1(s) + 1 = N�2(s) + 1 = N2(s) + 2: (3.19)

Hence, from the induction hypothesis (3.17), we have

vk2N�2(s)
(s)� vk2N2(s)

(s) � vk1N�2(s)
(s)� vk1N2(s)

(s): (3.20)
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But from Proposition 3.2, we also have

vk1N�2(s)
(s)� vk1N2(s)

(s) � vk1N1(s)
(s)� vk1N�1(s)

(s): (3.21)

Combining (3.20) and (3.21), we obtain

vk2N�2(s)
(s)� vk2N2(s)

(s) � vk1N1(s)
(s)� vk1N�1(s)

(s): (3.22)

In view of the memorylessness property of the Poisson process, (3.22) means that,

conditioned on the same sample path up to the provocation of (b), pools �1 and �2 will

on average together earn more than pools 1 and 2 in the time interval [s; T ].

When (c) ever occurs, denote the price taken by pool 1 at time s by k1 and the price

taken by pool 2 at time s by k2. We have k1 > k2, and

N1(s) = N�1(s) + 1 = N�2(s) = N2(s) + 1 = 1: (3.23)

From the induction hypothesis (3.17), we have

vk2N�2(s)
(s)� vk2N2(s)

(s) � vk1N1(s)
(s)� vk1N�1(s)

(s): (3.24)

In view of the memorylessness property of the Poisson process, (3.24) means that,

conditioned on the same sample path up to the provocation of (c), pools �1 and �2 will

on average together earn more than pools 1 and 2 in the time interval [s; T ].

In view of all the above, we see that (3.18) is true. We have hence completed the

induction process. Therefore, (3.15) is true.

We now demonstrate the optimality of threshold policy obtained from the constructive

procedure. For convenience, we let the yet unde�ned �K+1
n = 0 for n = 1; 2; :::; N and

vK+1
n (t) = uKn (t) for n = 0; 1; :::; N and t 2 [0; T ].
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Theorem 3.1. The u and � as constructed from (3.9) to (3.13) satisfy the following

for k = K;K � 1; :::; 0:

(a[k]) for any n = 1; 2; :::; N , (Gkn)
+(� k+1

n ) � vk+1 + �pk ��k � �(� k+1
n ) � 0;

(b[k]) Gkn(t) � v
k+1=�(t) is increasing in t for n = 1; 2; :::; N and t 2 (0; T );

(c[k]) ukn(t) = vkn(t) for any n = 0; 1; :::; N and t 2 [0; T ];

(d[k]) for any n = 1; 2; :::; N , we have vkn(t) = vk+1
n (t) and Gkn(t)�v

k+�pk ��k ��(t) � 0

for t 2 (0; � k+1
n ), and Gkn(t) � v

k + �pk ��k � �(t) = 0 for t 2 (� k+1
n ; T );

(e[k]) � k+1
n is decreasing in n;

(f[k]) on top of vkn(t) having decreasing di�erences between n and t, it is further true

that dtv
k
n(t)=�(t) is decreasing in t for n = 1; 2; :::; N and t 2 (0; T ).

As a consequence, � provides an optimal policy for the �rm; under this policy, the

�rm should switch to price �pk+1 when its inventory level drops to n before time � k+1
n

while its price level is �pk.

In this theorem, (Gkn)
+ is just Gkn with dt being replaced by d+t . c[k] declares that

the constructed function ukn(t) is just the true value function. The �rst half of d[k]

states that the �rm should charge �pk+1 when it has inventory n before the threshold

time � k+1
n , and the second half implies that the �rm should choose �pk when it has

inventory n and the time passes � k+1
n . The equation of the second half is the optimal

condition, i.e. the change rate of value function is equal to the revenue rate at price

�pk, for choosing �pk between the time interval (� k+1
n ; T ). e[k] shows the inventory

monotonicity of the threshold policy, implying that the more inventory the �rm has,

the earlier it should switch price. As we will see later, inventory monotonicity of the

threshold policy holds for both irreversible and reversible cases, the time monotonicity

only exists in the reversible case. f[k] says that the ability of an additional unit to

capture revenue will fade away as time passes. The last sentence of this theorem tells

how the concerned �rm should apply this optimal pricing strategy. Once another

demand comes, check � in�1 for i = 1; 2; :::; K to see if price can be raised. We provide
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the proof of this theorem in the following. The proof uses Proposition 3.3.

Proof: The proof has use of the following lemma, which was originated in Karlin

(1968) and also used in Feng and Xiao (2000b).

Lemma 3.1. Let k > 0 and �(t) =
R +1
t

�(s) � exp(�k � (s� t)) � ds. Then, �(t) will

be decreasing in t � 0 if �(s) is decreasing in s � 0.

We prove by induction on k. Let us focus on proving (a[K]) to (f[K]) �rst. Take

n = 1; 2; :::; N . From (3.4), we have

vKn (t) = �pK �E[(NK(T )�NK(t))^n] = �pK �(n�
n�1X
m=0

(n�m)�P [NK(t; T ) = m]); (3.25)

which, by (3.1), amounts to

vKn (t) = �pK � n� �pK � exp(���K � �̂(t; T )) �
n�1X
m=0

(n�m) � (��K � �̂(t; T ))m

m!
: (3.26)

Taking derivative over t, we �nd that, for t 2 (0; T ),

dtv
K
n (t) = ��pK ��K � �(t) � exp(���K � �̂(t; T )) �

n�1X
m=0

(��K � �̂(t; T ))m

m!
: (3.27)

Taking di�erences over n, we �nd that

vKn (t)� vKn�1(t) = �pK � (1� exp(���K � �̂(t; T )) �
n�1X
m=0

(��K � �̂(t; T ))m

m!
): (3.28)

From (3.27) and (3.28), it can be checked that

GKn (t) � vK(t) + �pK ��K � �(t) = 0; 8t 2 (0; T ): (3.29)
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Consulting (3.7) and (3.8), we obtain

vKn (t) = ��K �

Z T

t

�(s) � (�pK + vKn�1(s)) � exp(���K � �̂(t; s)) � ds: (3.30)

In view of the construction (3.10), we may see (c[K]), that

uK = (uKn (t) j n = 0; 1; :::; N; t 2 [0; T ]) = vK = (vKn (t) j n = 0; 1; :::; N; t 2 [0; T ]):

(3.31)

From (3.29), we may con�rm (d[K]) with the understanding that �K+1
n = 0 for

n = 1; 2; :::; N . The convention for the �K+1
n 's also leads directly (e[K]). By (3.29)

and the convention on �K+1
n and vK+1

n (t), we may see that (a[K]) and (b[K]) are both

true. To verify (f[K]), we can use the same method on (f[k]) for k = K�1; K�2; :::; 0,

which is presented near the end of this proof.

Suppose for some k = K � 1; K � 2; :::; 0, we have (a[k + 1]), that

(Gk+1
n )+(� k+2

n ) � vk+2 + �pk+1��k+1 � �(� k+2
n ) � 0; 8n = 1; 2; :::; N; (3.32)

(b[k+1]), that Gk+1
n (t) � vk+2=�(t) is increasing in t for n = 1; 2; :::; N and t 2 (0; T ),

(c[k + 1]), that

uk+1
n (t) = vk+1

n (t); 8n = 0; 1; :::; N; t 2 [0; T ]; (3.33)

(d[k + 1]), that, for n = 1; 2; :::; N ,

vk+1
n (t) = vk+2

n (t) and Gk+1
n (t) � vk+1 + �pk+1��k+1 � �(t) � 0; 8t 2 (0; � k+2

n );

(3.34)

and

Gk+1
n (t) � vk+1 + �pk+1��k+1 � �(t) = 0; 8t 2 (� k+2

n ; T ): (3.35)
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(e[k + 1]), that � k+2
n is decreasing in n, and (f[k + 1]), that vk+1

n (t) has decreasing

di�erences between n and t.

Now we embark on showing (a[k]) to (f[k]). For n = 1; 2; :::; N , by the de�nition of

� k+1
n through (3.12), we know that

ukn(t) > vk+1
n (t); 8t 2 (� k+1

n ; T ); (3.36)

ukn(�
k+1
n ) = vk+1

n (� k+1
n ); (3.37)

and

d+t u
k
n(�

k+1
n ) � d+t v

k+1
n (� k+1

n ): (3.38)

By (3.7) and (3.8), we may see that the construction (3.11) renders

Gkn(t) � u
k + �pk ��k � �(t) = 0; 8t 2 (� k+1

n ; T ): (3.39)

Our construction through (3.11) to (3.13) also guarantees that

ukn�1(�
k+1
n ) � vk+1

n�1(�
k+1
n ): (3.40)

Combining (3.37), (3.38), (3.39), and (3.40), we obtain

(Gkn)
+(� k+1

n ) � vk+1 + �pk ��k � �(� k+1
n ) � 0: (3.41)

Thus we have (a[k]).

Note that (a[k + 1]) means (3.32). This, (b[k + 1]), and (d[k + 1]) together lead to

the fact that Gk+1
n (t) � vk+2=�(t) is increasing in t and below ��pk+1��k+1. From the

de�nition of uk+1
n (t) for t 2 [0; � k+2

n ] through (3.13), (c[k+1]), and (e[k+1]), we may
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see that

Gk+1
n (t) � vk+1

�(t)
=
Gk+1
n (t) � vk+2

�(t)
; 8t 2 (0; � k+2

n ): (3.42)

Hence, in view of the above and (b[k+1]) again, we may see that Gk+1
n (t) � vk+1=�(t)

is increasing in t and below ��pk+1��k+1 when t 2 (0; � k+2
n ), and is �at at ��pk+1��k+1

for t 2 (� k+2
n ; T ). Now, note that

Gkn(t) � v
k+1 � Gk+1

n (t) � vk+1

�(t)
= (��k � ��k+1) � (vk+1

n�1(t)� vk+1
n (t)); (3.43)

which, by (S1') and (f[k + 1]), is increasing in t. This and the just proved result

together lead to the increase of Gkn(t) � v
k+1=�(t) in t. Hence, we have (b[k]).

From (a[k]) and (b[k]), we obtain, for n = 1; 2; :::; N ,

Gkn(t) � v
k+1 + �pk ��k � �(t) � 0; 8t 2 (0; � k+1

n ): (3.44)

Our construction (3.13) and (c[k + 1]) dictate that

ukn(t) = vk+1
n (t); 8t 2 [0; � k+1

n ]: (3.45)

By its construction, ukn(t) is uniformly bounded by N�T ; it is also Lipschitz continu-

ous in t with coe�cient N�, and hence absolutely continuous in t. By (3.36), (3.39),

(3.44), and (3.45), and as well as the fact that vk+1
n (T ) = 0 for every n, we may see

that uk � (ukn(t) j n = 0; 1; :::; N; t 2 [0; T ]) satis�es the su�cient conditions (i) to

(iv) stipulated in Proposition 3.1. Hence, we have shown (c[k]), that ukn(t) = vkn(t)

for every n = 0; 1; :::; N and t 2 [0; T ].

From (3.39), (3.44), (3.45), and (c[k]), we easily have (d[k]).
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For n = 1; 2; :::; N � 1, we have, from (3.12), (c[k + 1]), and (c[k]),

vkn(t)� vk+1
n (t) > 0; 8t 2 (� k+1

n ; T ): (3.46)

By Proposition 3.3, however, we have

vkn+1(t)� vk+1
n+1(t) � vkn(t)� vk+1

n (t): (3.47)

Combining (3.46) and (3.47), we obtain

vkn+1(t)� vk+1
n+1(t) > 0; 8t 2 (� k+1

n ; T ): (3.48)

But in view of (3.12), (c[k + 1]), and (c[k]), this leads to � k+1
n+1 � � k+1

n . Therefore, we

have (e[k]).

Let us now turn to the proof of (f[k]). For convenience, we denote dtv
k
n(t)=�(t) by

wk
n(t). When t 2 (0; � k+1

n ), which is ; when k = K, we have wk
n(t) = wk+1

n (t)

from (d[k]). Hence, following (f[k + 1]), we know that wk
n(t) is decreasing in t. Let

t 2 (� k+1
n ; T ) then. By (d[k]), we know

vkn(t)� vkn�1(t) = �pk +
wk
n(t)

��k
: (3.49)

By the boundary conditions vkn(T ) = vkn�1(T ) = 0, we therefore have

wk
n(T

�) = ��pk ��k: (3.50)

Taking derivative on (3.49), it follows that

Gkn(t) � w
k = 0; 8t 2 (� k+1

n ; T ): (3.51)
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In view of (3.7), (3.8), and (3.50), we can solve (3.51) to obtain, for t 2 (� k+1
n ; T ),

wk
n(t) = ��pk ��k �exp(���k ��̂(t; T ))+��k �

Z T

t

�(s)�wk
n�1(s)�exp(���k ��̂(t; s))�ds; (3.52)

which, by the identity

��k �

Z T

t

�(s) � exp(���k � �̂(t; s)) � ds = 1� exp(���k � �̂(t; T )); (3.53)

results in

wk
n(t) = ��pk ��k + ��k �

Z T

t

�(s) � (�pk ��k + wk
n�1(s)) � exp(���k � �̂(t; s)) � ds: (3.54)

Since �̂(0; �) is a strictly increasing function on [0; T ], we can de�ne strictly increasing

function �(�) on [0; �̂(0; T )], so that

�̂(t; �(y)) = �̂(0; �(y))� �̂(0; t) = y � �̂(0; t); 8y 2 [0; �̂(0; T )]: (3.55)

This then leads to

dy�(y) =
1

ds�̂(0; s)
js=�(y)=

1

�(�(y))
: (3.56)

In view of the above, we can bring a change of variables to the integral involved

in (3.54), so that the latter becomes

wk
n(t) = ��pk ��k+ ��k �

Z �̂(0;T )

�̂(0;t)

(�pk ��k+wk
n�1(�(y))) � exp(���k � (y� �̂(0; t))) �dy: (3.57)

Suppose wk
n�1(t) is decreasing in t for t 2 (0; T ), then since �(�) is increasing, we know

wk
n�1(�(y)) is decreasing in y for y 2 (0; �̂(0; T )). From (3.50) which also applies to

wk
n�1(T

�), we may see that

�pk ��k + wk
n�1(�(y)) � 0; 8y 2 (0; �̂(0; T )); (3.58)
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and

�pk ��k + wk
n�1(�((�̂(0; T ))

�)) = 0: (3.59)

Hence, (3.57) can be rewritten as

wk
n(t) = ��pk ��k+ ��k �

Z +1

�̂(0;t)

(�pk ��k+wk
n�1(�(y)))

+ � exp(���k � (y� �̂(0; t))) � dy: (3.60)

By the decrease of (�pk ��k + wk
n�1(�(y)))

+ in y � 0, the increase of �̂(0; t) in t, and

Lemma 3.1, we can get the decrease of wk
n(t) in t on (� k+1

n ; T ). But combining with the

earlier result on the other half interval, we may get the decrease of wk
n(t) in t on the

entire (0; T ) from that of wk
n�1(t). As w

k
0(t) = 0 for all t 2 (0; T ), we can therefore use

induction on n to prove the decrease of wk
n(t) in t 2 (0; T ) for all n = 0; 1; :::; N .

For t 2 (0; � k+1
n ), which is ; when k = K and a subset of (0; � k+1

n�1) by (e[k]), we have,

by (d[k]),

vkn(t)� vkn�1(t) = vk+1
n (t)� vk+1

n�1(t): (3.61)

Hence, vkn(t) � vkn�1(t) is decreasing in t by (f[k + 1]). For t 2 (� k+1
n ; T ), we can

achieve the same property by (3.49) and the just proved decrease of wk
n(t) in t. Thus,

we have shown (f[k]). Note that, when k = K, the proof has no involvement of any

[k + 1]-property.

We have now completed the induction process. Therefore, (a[k]) to (f[k]) are all true

for k = K;K � 1; :::; 0. From these, we see that, for any k = K � 1; K � 2; :::; 0 and

n = 1; 2; :::; N ,

vkn(t)

8><
>:

= vk+1
n (t); 8t 2 [0; � k+1

n ];

> vk+1
n (t); 8t 2 (� k+1

n ; T ):
(3.62)

Hence, we may see that each � k+1
n o�ers an optimal time by which the �rm is to raise

its price from �pk to �pk+1 when it has n remaining items.
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Figure 3.1: Illustration for the Markup Case

While the threshold point � kn is a zero-crossing point for vk�1n (t)�vkn(t) for the markup

case, it is not necessarily one for Gk�1n (t)�vk+�pk�1��k�1��(t): Though the term is below

0 when t 2 (0; � kn), we can verify through computation that the term is not necessarily

above 0 when t 2 (� kn ; T ) is not too much above � kn . This marks a huge contrast with

the markdown case, for which we can learn from chapter 3.3 that the threshold point

� kn is the zero-crossing point for both Gkn(t) � v
k�1+ �pk ��k ��(t) and vkn(t)� vk�1n (t); see

Figures 3.1 and 3.2 for a demonstration of this discrepancy. This previously unnoticed

point determines that, in order to obtain the n-monotone pattern of the � kn points for

the markup case, we have to deal with the dependence of vk�1n (t)� vkn(t) on n rather

than that of Gk�1n (t) � vk.

Feng and Xiao's (2000b) treatment of the stationary-demand markup case relied on

properties of Gk�1n (t) � vk rather than those of vk�1n (t) � vkn(t). Temporarily, let us

consider the stationary-demand case where �(t) = 1 for all t 2 [0; T ]. Their Lemma

1 claimed that the increase of Gk�1n (t) � vk in t and n alone, without other bene�ts
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Figure 3.2: Illustration for the Markdown Case

that might come from the vkn(�)'s being truly value functions of a markup problem,

would lead to optimal threshold levels � kn that necessarily satisfy 0 � � kN � � kN�1 �

� � � � k1 � T . While its counterpart for the markdown case is correct, we have a counter

example in the following to the current claim.

Consider an example with T = 1, K = 1, N = 2, and ��0 = 2. Let v10(t) = 0, v11(t) =

�2t+2, and v12(t) = t2�4t+3. We can check that dtv
1
1(t) = �2 and dtv

1
2(t) = 2t�4.

These lead to G0
1(t) � v

1 = 4t� 6 and G0
2(t) � v

1 = �2t2+6t� 6. Hence, G0
1(t) � v

1 and

G0
2(t)�v

1 are both increasing in t 2 [0; 1]. In addition, G0
2(t)�v

1�G0
1(t)�v

1 = �2t2+2t,

which is positive for t 2 [0; 1]. That is, G0
n(t) � v

1 is increasing in n too. On the other

hand, we may let v01(t) = �t2 � t + 2 and v02(t) = v12(t) = t2 � 4t + 3. Now,

v01(t)� v11(t) = �t2 + t, which is strictly positive for t 2 (0; 1), and v02(t)� v12(t) = 0.

Thus, it is not true that v01(t) � v11(t) � v02(t) � v12(t) on t 2 [0; 1]. Among other

violations, the last point consists of a violation of Proposition 3.3. So the possibility

that these vkn(�)'s form actual value functions for a markup problem has been ruled
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out.

When we pretend that these vkn(t)'s form value functions for a markup problem,

however, we should have � 11 as the smallest t such that v01(t) � v11(t) > 0 and � 12 the

smallest t such that v02(t) � v12(t) > 0; also, each threshold level should be set at 0

when the corresponding strict positivity is always true and set at T = 1 when the

corresponding strict positivity is never true. Therefore, we should have � 11 = 0 and

� 12 = 1 for this example. It is therefore not true that � 11 � � 12 . But the latter is

required for a threshold policy.

The above should su�ce as a main justi�cation for our new approach for the markup

case. In this approach, Proposition 3.3 has been set aside for the sole purpose of illus-

trating the complementarity between price �exibility and inventory, a property that

is both previously unknown and not possessed by the seemingly symmetric markdown

case. In addition, property (a[k]) in Theorem 3.1, concerning right derivatives of the

value functions, has no counterpart in earlier literature. Moreover, Feng and Xiao

(2000b) used the increase of Gk�1n (t)�vkn in n (their Lemmas 1 and 2) that we have no

use of. Our computational studies con�rmed that this is not necessarily true.

From Theorem 3.1, we know that the threshold policy holds the inventory monotonic-

ity which is � kn � � kn�1. It may be straightforward to think that it also possesses time

monotonicity or k monotonicity, i.e. � k+1
n � � kn . Time monotonicity says the �rm

should switch to a higher price at an earlier time for a given inventory. However, it

is not always true, as we can see from the following result which is directly from the

de�nition (3.12) and Theorem 3.1.

Proposition 3.4. Suppose � kn < T for some k = 1; 2; :::; K � 1 and n = 1; 2; :::; N .

Then, we have � k+1
n � � kn if and only if vk�1n (t)�vkn(t) > 0 will lead to vkn(t)�v

k+1
n (t) >

0.

As con�rmed by one of our computational studies, the threshold level � kn for the
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markup case is not necessarily decreasing in k. Hence, this case may have its �leapfrog�

phenomenon: When it is time to switch to the price level �pk+1, it may also be the

time to switch to the next higher price �pk+2, and so on and so forth. Therefore,

when it is time to make the price swith from �pk, the ultimate target should be some

�p
~k+(k;n), where ~k+(k; n) is not necessarily k + 1. For each n = 1; 2; :::; N , we can use

the following iterative procedure to �nd (~k+(k; n) j k = 0; 1; :::; K � 1):

for k = K � 1 down to 0

let l = k + 1;

while l � K � 1 and � l+1
n � � k+1

n do

let l = ~k+(l; n);

let ~k+(k; n) = l.

3.2.3 Algorithm

We now can conclude the constructed threshold policy is optimal and the constructed

value function is true. Based on the construction procedure, we can establish an e�-

cient and numerical stable algorithm to calculate the optimal threshold policy and the

value function. The time interval [0; T ] is discretized by a grid 0;�T; 2�T; :::; Q ��T ,

where Q is a large positive integer and �T = T=Q. For k = 0; 1; :::; K and q =

0; 1; :::; Q, let �kq be �
k(q ��T ) and vknq be v

k
n(q ��T ). We note that for 0 � t1 � t2 � T

and certain k values, (3.10) and (3.11) will lead to

ukn(t1) =

Z t2

t1

�k(s)�(�pk+ukn�1(s))�exp(��̂
k(t1; s))�ds+exp(��̂k(t1; t2))�u

k
n(t2); (3.63)

where �̂k(s; t) means
R t
s
�k(u) � du. When t2 = t1 +�T and �T is very small, (3.63)

can be approximated by

ukn(t1) = �k(t1) � (�p
k + ukn�1(t1)) ��T + exp(��k(t1) ��t)) � u

k
n(t2): (3.64)
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Then, we can follow the recursive procedure described from (3.9) to (3.13) to the

following algorithm Markup1.

for k = 0 to K

for q = 0 to Q

let vk0q = 0;

for n = 1 to N

let vKnQ = 0;

for q = Q� 1 down to 0

let vKnq = �Kq ��T � (�p
K + vKn�1;q) + exp(��Kq ��T ) � v

K
n;q+1;

for k = K � 1 down to 0

for n = 1 to N

let q = Q and vknq = 0;

while q = Q, or q � 0 and vknq > vk+1
nq do

let q = q � 1;

if q � 0

let vknq = �kq ��T � (�p
k + vkn�1;q) + exp(��kq ��T ) � v

k
n;q+1;

let � k+1
n = (q + 1) ��T ;

for r = q down to 0

let vknr = vk+1
nr .

The algorithm's time complexity is apparently O(KNQ).

3.3 The Markdown Case

In the markdown case, the �rm has to consecutively charge a decreasing sequence

of prices �pK ; �pK�1; :::; �p0. For example, a fashion product such as a down jacket will

lose attractiveness as spring comes. The retailers would try to deplete its inventory

by providing discounts or rebates when the time closes to the end of winter. Again,
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we establish a threshold policy � = (� kn j k = 1; 2; :::; K; n = 1; 2; :::; N) 2 (�N)
K

and the value function vkn(t) for k = 0; 1; :::; K, n = 0; 1; :::; N , and t 2 [0; T ]. As

addressed earlier, under such threshold policy, the �rm should switch its price to �pk�1

when it charges price �pk with inventory n and the time has passed � kn . Also, v
k
n(t) is

the maximum revenue the �rm can make during the time interval [t; T ] when it starts

at time t with price �pk and inventory level n.

We know the last price a �rm can charge, before running out of stock, is the lowest

prie �p0. Then, we have

v0n(t) = �p0 � E[(N0(T )�N0(t)) ^ n]: (3.65)

When the �rm is charging any other price �pk for k = 1; 2; :::; K, it has yet to dynam-

ically decide the time to switch to the next price �pk�1. Hence, we have

vkn(t) = sup
�2T

E[�pk � f(Nk(�)�Nk(t)) ^ ng+ vk�1
(n�Nk(�)+Nk(t))+

(�)]: (3.66)

Here, stopping time � is the moment that the �rm will switch price from pk to pk�1,

k = 1; 2; :::; K.

3.3.1 A Constructing Procedure

Similar to the markup case, we have the following proposition to o�er the hint of how

to construct the threshold policy and value function.

Proposition 3.5. For any k = 1; 2; :::; K, a function vector u � (un(t) j n =

0; 1; :::; N; t 2 [0; T ]) that is uniformly bounded and absolutely continuous in t for

every n will be the value-function sub-vector vk � (vkn(t) j n = 0; 1; :::; N; t 2 [0; T ]),

if it satis�es the following:

(i) un(t) � vk�1n (t) for every n = 0; 1:::; N and t 2 [0; T ],
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(ii) un(T ) = 0 for every n = 0; 1; :::; N and u0(t) = 0 for every t 2 [0; T ],

(iii) for n = 1; 2; :::; N and t 2 [0; T ], un(t) = vk�1n (t) implies Gkn(t)�u+�pk ��k ��(t) �

0,

(iv) for n = 1; 2; :::; N and t 2 [0; T ], un(t) > vk�1n (t) implies Gkn(t)�u+�pk ��k ��(t) =

0.

Here is the idea of establishing the value functions vkn(t) and threshold levels �
k
n . First,

due to (3.65), v0n(t) can be constructed in an n-loop as vKn (t) was in the markup

case.

Then, for any k = 1; 2; :::; K, suppose vk�1n (t) is known. We can next go through

an n-loop to �nd all the vkn(t)'s. First, let vk0(t) = 0 as suggested by (ii) of the

proposition. Second, suppose vkn�1(t) is known for some n = 1; 2; :::; N , we can equate

vkn(t) to vk�1n (t) for bigger t values, starting with t = T , until it is to occur that

Gkn(t)�v
k+�pk ��k ��(t) > 0. The latter is not allowed by (iii) and (iv) of the proposition.

For time t0 earlier than this t, which we mark as � kn , we let v
k
n(t

0) be the solution to

Gkn(t
0) � vk + �pk ��k � �(t0) = 0.

According to (i) of the proposition, we still need vkn(t
0) � vk�1n (t0) for t0 < � kn for the

thus constructed vkn(�) to be the true value function. Nevertheless, let us go ahead

with the construction procedure thus outlined. Not knowing whether what shall be

constructed are the true value functions, we call them u's instead of v's. Formally,

here is the iterative procedure.

First, let

uk0(t) = 0; 8k = 0; 1; :::; K; t 2 [0; T ]: (3.67)

Then, for n = 1; 2; :::; N and t 2 [0; T ], let

u0n(t) = ��0 �

Z T

t

�(s) � (�p0 + u0n�1(s)) � exp(���0 � �̂(t; s)) � ds: (3.68)



3.3. THE MARKDOWN CASE - 40 -

Next, we go over an outer loop on k = 1; 2; :::; K and an inner loop on n = 1; 2; :::; N .

At each k and n, �rst let

� kn = infft 2 [0; T ] j Gkn(t) � u
k�1 + �pk ��k � �(t) � 0g; (3.69)

with the understanding that � kn = 0 when the concerned inequality is always true and

� kn = T when it is never true. Then, let

ukn(t) = uk�1n (t); 8t 2 [� kn ; T ]; (3.70)

and when t 2 [0; � kn),

ukn(t) = uk�1n (� kn)�exp(���k ��̂(t; � kn))+��k �

Z �kn

t

�(s)�(�pk+ukn�1(s))�exp(���k ��̂(t; s))�ds:

(3.71)

3.3.2 Optimality and Characteristics

To prove the optimality of the threshold policy and value function, we also need the

concavity of the value function.

Proposition 3.6. For any �xed k = 0; 1; :::; K and t 2 [0; T ], the value function vkn(t)

is concave in n.

This proposition implies the same meaning as Proposition 3.2. The marginal revenue

of unit product is decreasing in inventory. The more inventory the �rm has, the less

marginal revenue it captures. The decreasing margin of revenue always appears in

the literature of economics. Since the proof is similar to Proposition 3.2, we omit it

here.

Now, we introduce the main result of markdown case in Theorem 3.2. For convenience,

we have let the yet unde�ned � 0n = T for n = 1; 2; :::; N and v�1n (t) = u0n(t) for
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n = 1; 2; :::; N and t 2 [0; T ].

Theorem 3.2. The u and � as constructed from (3.67) to (3.71) satisfy the following

for k = 0; 1; :::; K:

(a[k]) Gkn(t) � v
k�1=�(t) is decreasing in t for n = 1; 2; :::; N and t 2 (0; T );

(b[k]) ukn(t) = vkn(t) for any n = 0; 1; :::; N and t 2 [0; T ];

(c[k]) for any n = 1; 2; :::; N , we have Gkn(t) � v
k+ �pk ��k � �(t) = 0 for t 2 (0; � kn) and

Gkn(t) � v
k + �pk ��k � �(t) � 0 for t 2 (� kn ; T );

(d[k]) � kn is decreasing in n;

(e[k]) more than having decreasing di�erences between n and t, vkn(t) satis�es the

following for every t 2 (0; T ):

dtv
k
1(t) � 0;

and for n = 1; 2; :::; N � 1,

dtv
k
n+1(t)� dtv

k
n(t) � ��k � �(t) � (vkn�1(t)� 2vkn(t) + vkn+1(t));

which is negative due to Proposition 3.6.

As a consequence, � provides an optimal policy for the �rm; under this policy, the

�rm should switch to price �pk�1 when time t hits � kn while its price level is �pk and

inventory level is n.

In Theorem 3.2, b[k] con�rms that the constructed function ukn(t) is the true value

function. c[k] shows the structural characteristic of the threshold points. Its �rst half

tells the �rm to charge price �pk before time � kn when it has n items; its second half

tells the �rm to charge price �pk�1 when the time has passed � kn and it has n items. d[k]

states that the threshold policy in the markdown case is also inventory monotone.

e[k] says that the marginal revenue of a unit product under a �xed price is decreasing

in time. In addition, the decreasing rate of the marginal revenue in time is bounded.

The last sentence clari�es how the �rm should apply this pricing strategy.
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Proof: We prove by induction on k. Let us �rst focus on proving (a[0]) to (e[0]).

Take n = 1; 2; :::; N . Following the same logic in Theorem 3.1 from (3.25) to (3.30),

we obtain

G0
n(t) � v

0(t) + �p0��0 � �(t) = 0; 8t 2 (0; T ): (3.72)

and (b[0]), that

u0 = (u0n(t) j n = 0; 1; :::; N; t 2 [0; T ]) = v0 = (v0n(t) j n = 0; 1; :::; N; t 2 [0; T ]):

(3.73)

From (3.72), we may con�rm (c[0]) with the understanding that � 0n = T for n =

1; 2; :::; N . The convention for the � 0n's also leads directly (d[0]). From (3.65), we

have

v01(t) = �p0 � E[N0(t; T ) ^ 1] = �p0 � P [N0(t; T ) � 1] < �p0: (3.74)

As v00(t) = 0 for any t 2 [0; T ], we can apply (3.72) at n = 1 to get

dtv
0
1(t) = ��0 � �(t) � (v01(t)� �p0); 8t 2 (0; T ): (3.75)

which is negative by (3.74). For n = 1; 2; :::; N � 1, we can apply (3.72) at both n

and n+ 1 to obtain

dtv
0
n+1 � dtv

0
n(t) = ��0 � �(t) � (v0n�1(t)� 2v0n(t) + v0n+1(t)); 8t 2 (0; T ): (3.76)

So (e[0]) is satis�ed as well. Finally, by our default de�nition of v�1n (t) and (3.72), we

know that (a[0]) is true.

Suppose for some k = 1; 2; :::; K, we have (a[k � 1]), that Gk�1n (t) � vk�2=�(t) is

decreasing in t for n = 1; 2; :::; N and t 2 (0; T ), (b[k � 1]), that

uk�1n (t) = vk�1n (t); 8n = 0; 1; :::; N; t 2 [0; T ]; (3.77)
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(c[k � 1]), that, for n = 1; 2; :::; N ,

Gk�1n (t) � vk�1 + �pk�1��k�1 � �(t) = 0; 8t 2 (0; � k�1n ); (3.78)

and

Gk�1n (t) � vk�1 + �pk�1��k�1 � �(t) � 0; 8t 2 (� k�1n ; T ); (3.79)

(d[k � 1]), that � k�1n is decreasing in n, and (e[k � 1]), that, for t 2 (0; T ),

dtv
k�1
1 (t) � 0; 8t 2 (0; T ); (3.80)

and for n = 1; 2; :::; N � 1,

dtv
k�1
n+1 � dtv

k�1
n (t) � ��k�1 � �(t) � (vk�1n�1(t)� 2vk�1n (t) + vk�1n+1(t)); 8t 2 (0; T ):

(3.81)

Now we embark on showing (a[k]) to (e[k]). Take n = 1; 2; :::; N . From the de�nition

of � k�1n through (3.69), (b[k � 1]), and (c[k � 1]), we may see that

Gk�1n (t) � vk�1 + �pk�1��k�1 � �(t) = 0 < Gk�1n (t) � vk�2 + �pk�1��k�1 � �(t); (3.82)

for t 2 (0; � k�1n ), and

Gk�1n (t) � vk�1 + �pk�1��k�1 � �(t) = Gk�1n (t) � vk�2 + �pk�1��k�1 � �(t) � 0; (3.83)

for t 2 (� k�1n ; T ). Therefore,

Gk�1n (t) � vk�1 + �pk�1��k�1 � �(t) = [Gk�1n (t) � vk�2 + �pk�1��k�1 � �(t)] ^ 0; (3.84)
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and hence by the strict positivity of �(�),

Gk�1n (t) � vk�1

�(t)
= [

Gk�1n (t) � vk�2

�(t)
+ �pk�1��k�1] ^ 0� �pk�1��k�1: (3.85)

Note that the above is even true for k = 1 due to the default de�nitions. Combining

(a[k � 1]) and (3.85), we obtain the decrease of Gk�1n (t) � vk�1=�(t) in t. Now, note

that

Gkn(t) � v
k�1 � Gk�1n (t) � vk�1

�(t)
= (��k�1 � ��k) � (vk�1n (t)� vk�1n�1(t)); (3.86)

which, by (S1') and (e[k � 1]), is decreasing in t. This and the just proved result

together lead to the decrease of Gkn(t) � v
k�1=�(t) in t. Hence, we have (a[k]).

By the de�nition of � kn through (3.69) and (b[k � 1]), we have

Gkn(t) � v
k�1 + �pk ��k � �(t) > 0; 8t 2 (0; � kn): (3.87)

Due to the strict positivity of �(�) and (b[k� 1]), the threshold � kn also satis�es

� kn = infft 2 [0; T ] j
Gkn(t) � v

k�1

�(t)
+ �pk ��k � 0g: (3.88)

But this and (a[k]) will lead to

Gkn(t) � v
k�1

�(t)
+ �pk ��k � 0; 8t 2 (� kn ; T ): (3.89)

Combining (3.87), (3.89), and the strict positivity of �(�), we arrive to

Gkn(t) � v
k�1 + �pk ��k � �(t)

8><
>:

> 0; 8t 2 (0; � kn);

� 0; 8t 2 (� kn ; T ):
(3.90)



3.3. THE MARKDOWN CASE - 45 -

Our construction (3.70) and (b[k � 1]) dictate that

ukn(t) = vk�1n (t); 8t 2 [� kn ; T ]: (3.91)

Also, by (3.7) and (3.8), we may see that the construction (3.71) renders

Gkn(t) � u
k + �pk ��k � �(t) = 0; 8t 2 (0; � kn); (3.92)

From the �rst half of (3.90), we have, for any n = 1; 2; :::; N and t 2 [0; � kn),

vk�1n (t) < vk�1n (� kn)�exp(���k��̂(t; � kn))+��k�

Z �kn

t

�(s)�(�pk+vk�1n�1(s))�exp(���k��̂(t; s))�ds:

(3.93)

Using (3.71) and (3.93), as well as the fact that uk0(t) = vk�10 (t) = 0 for any t 2 [0; T ],

we can use induction over n to prove that

ukn(t) > vk�1n (t); 8n = 1; 2; :::; N and t 2 [0; � kn): (3.94)

By its construction, ukn(t) is uniformly bounded by N�T ; it is also Lipschitz continu-

ous in t with coe�cient N�, and hence absolutely continuous in t. By (3.92), (3.90),

(3.91), and (3.94), as well as the fact that vk�1n (T ) = 0 for every n, we may see that

uk � (ukn(t) j n = 0; 1; :::; N; t 2 [0; T ]) satis�es the su�cient conditions (i) to (iv)

stipulated in Proposition 3.5. Hence, we have shown (b[k]), that ukn(t) = vkn(t) for

every n = 0; 1; :::; N and t 2 [0; T ].

From (3.92), the second half of (3.90), as well as (3.91), and (b[k]), we easily have

(c[k]).
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Now take n = 1; 2; :::; N � 1. By (S1'), (e[k� 1]), and Proposition 3.6, we have

dtv
k�1
n+1(t)� dtv

k�1
n (t) � ��k�1 � �(t) � (vk�1n�1(t)� 2vk�1n (t) + vk�1n+1(t))

� ��k � �(t) � (vk�1n�1(t)� 2vk�1n (t) + vk�1n+1(t)) � 0:
(3.95)

We therefore have the negativity of

Gkn+1(t) � v
k�1 � Gkn(t) � v

k�1

= dtv
k�1
n+1(t)� dtv

k�1
n (t) + ��k � �(t) � (2vk�1n (t)� vk�1n�1(t)� vk�1n+1(t)):

(3.96)

But by the de�nition of � kn and � kn+1, this leads to � kn+1 � � kn . Therefore, we have

(d[k]).

Let us turn to the proof of (e[k]). When t 2 (� k1 ; T ), we have

dtv
k
1(t) = dtv

k�1
1 (t); (3.97)

which is negative by (3.80). When t 2 (0; � k1 ), we have

dtv
k
1(t) = ��k � �(t) � (vk1(t)� �pk)

= ��k � �(t) � [vk�11 (� k1 ) � exp(���k � �̂(t; � k1 ))

+�pk ��k �
R �k

1

t
�(s) � exp(���k � �̂(t; s)) � ds� �pk]

= ��k � �(t) � exp(���k � �̂(t; � k1 )) � (v
k�1
1 (� k1 )� �pk);

(3.98)

where the �rst equality is due to (c[k]), the second equality is from (b[k]) and (3.71),

and the last equality is by the following result from integration by parts:

��k �

Z �k
1

t

�(s) � exp(���k � �̂(t; s)) � ds = 1� exp(���k � �̂(t; � k1 )): (3.99)

But from (3.65), (3.66), and the fact that �pk > �pk�1 > � � � > �p0, it is obvious that

vk�11 (� k1 ) � �pk�1 < �pk. So we know that dtv
k
1(t) � 0 for t 2 (0; � k1 ) as well.
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Now let n = 1; 2; :::; N�1. For t 2 (� kn ; T ), we have t 2 (� kn+1; T ) as well due to (d[k]).

Thus, we have

vkn(t) = vk�1n (t) and vkn+1(t) = vk�1n+1(t); (3.100)

and hence

dtv
k
n+1(t)� dtv

k
n(t) = dtv

k�1
n+1(t)� dtv

k�1
n (t)

� ��k�1 � �(t) � (vk�1n�1(t)� 2vk�1n (t) + vk�1n+1(t))

� ��k � �(t) � (vk�1n�1(t)� 2vk�1n (t) + vk�1n+1(t))

� ��k � �(t) � (vkn�1(t)� 2vkn(t) + vkn+1(t));

(3.101)

where the �rst inequality is by (e[k�1]), the second inequality is by (S1') and Propo-

sition 3.6, and the last inequality is from (3.100) and the fact that vkn�1(t) � vk�1n�1(t).

For t 2 (0; � kn), we have, by (c[k]),

Gkn+1(t) � v
k + �pk ��k � �(t) � 0 = Gkn(t) � v

k + �pk ��k � �(t): (3.102)

This leads to

dtv
k
n+1(t)� dtv

k
n(t) � ��k � �(t) � (vkn�1(t)� 2vkn(t) + vkn+1(t)): (3.103)

Therefore, we have (e[k]).

We have thus completed the induction process. Therefore, (a[k]) to (e[k]) are all

true for k = 0; 1; :::; K. From these, we see that, for any k = 1; 2; :::; K and n =

1; 2; :::; N ,

vkn(t)

8><
>:

> vk�1n (t); 8t 2 [0; � kn);

= vk�1n (t); 8t 2 [� kn ; T ]:
(3.104)

Hence, we may see that each � kn o�ers an optimal time beyond which the �rm is to

drop its price from �pk to �pk�1 when it has n remaining items.
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For the thus constructed threshold levels, it may be tempting to conjecture that � kn

is decreasing in k as well. We have the following relevant result.

Proposition 3.7. Suppose � kn > 0 for some k = 1; 2; :::; K � 1 and n = 1; 2; :::; N .

Then, we have � k+1
n � � kn if and only if

vkn(�
k
n)� vkn�1(�

k
n) �

�pk ��k � �pk+1��k+1

��k � ��k+1
:

Proof: If � kn = T , we have both � k+1
n � T = � kn and, due to (S1),

vkn(T )� vkn�1(T ) = 0 �
�pk ��k � �pk+1��k+1

��k � ��k+1
: (3.105)

Now suppose � kn 2 (0; T ). From Theorem 3.2, we know that

Gkn(t) � v
k + �pk ��k � �(t) = 0; 8t 2 (0; � kn ]; (3.106)

we have � k+1
n � � kn if and only if

Gk+1
n (� kn) � v

k + �pk+1��k+1 � �(� kn) � 0: (3.107)

Due to (S1') and (3.106), the above (3.107) is equivalent to

vkn(�
k
n)� vkn�1(�

k
n) �

�pk ��k � �pk+1��k+1

��k � ��k+1
: (3.108)

This completes our proof.

In the last inequality in Proposition 3.7, the left-hand side is independent of �pk+1 or

��k+1; yet, the right-hand side is dependent on both, and can be arbitrarily small.

Hence, we may see that � kn is not necessarily decreasing in k. Thence, there exists

a possibility for the following �leapfrog� phenomenon: Right after the time has gone
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past � kn , it has also passed the time � k�1n , and so on and so forth. Therefore, when

the time passes beyond � kn and it is currently charging �pk while with n items, the

�rm should ultimately switch to some price �p
~k�(k;n), where ~k�(k; n) is not necessarily

k � 1. For each n = 1; 2; :::; N , we can use the following iterative procedure to �nd

(~k�(k; n) j k = 1; 2; :::; K):

for k = 1 to K

let l = k � 1;

while l � 1 and � ln � � kn do

let l = ~k�(l; n);

let ~k�(k; n) = l.

One of our computational studies shall con�rm that a threshold policy for the mark-

down case is not necessarily k-monotone.

3.3.3 Algorithm

According to subsection 3.3.1, we can also establish an e�cient and numerically sta-

ble algorithm to compute the optimal threshold policy and value function for the

markdown case. Similar to the markup case, we denote �k(q ��t) by �kq and v
k
n(q ��t)

by vknq. For 0 � t1 � t2 � T , (3.68) leads to (3.63) for certain k values; through

integration by parts, (3.71) for 0 � t1 � t2 � � kn leads to

ukn(t1) = uk�1n (� kn) +
R �kn
t1

�k(s) � (�pk + ukn�1(s)� uk�1n (� kn)) � exp(��̂
k(t1; s)) � ds

= uk�1n (� kn) +
R t2
t1
�k(s) � (�pk + ukn�1(s)� uk�1n (� kn)) � exp(��̂

k(t1; s)) � ds

+exp(��k(t1; t2)) � (u
k
n(t2)� uk�1n (� kn)):

(3.109)

The same approach can be applied to (3.119). In this algorithm, we will use (3.63)

and (3.109) when t2 � t1 is as small as the single-step size �T .
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We can adapt the recursive procedure described from (3.67) to (3.71) into the following

algorithm Markdown1.

for k = 0 to K

for q = 0 to Q

let vk0q = 0;

for n = 1 to N

let v0nQ = 0;

for q = Q� 1 down to 0

let v0nq = �0q ��T � (�p
0 + v0n�1;q) + exp(��0q ��T ) � v

0
n;q+1;

for k = 1 to K

for n = 1 to N

let q = Q;

do

let G = vk�1nq � vk�1n;q�1 + �kq ��T � (v
k�1
n�1;q � vk�1nq ) + �pk�kq ��T ;

if G � 0

let q = q � 1;

while G � 0 and q � 1;

let � kn = q ��T ;

for r = Q down to q

let vknr = vk�1nr ;

for r = q � 1 down to 0

let vknr = vk�1nq + �kr ��T � (�p
k + vkn�1;r � vk�1nq ) + exp(��kr ��T ) � (v

k
n;r+1� vk�1nq ).

The algorithm's time complexity is apparently O(KNQ).
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3.4 The Reversible Case

In this section, we consider the reversible pricing case in which the �rm can choose

any price from a given set of price choices to maximize its pro�t. For instance, HP

touchpad 32G was sold using this reversible pricing strategy. It was priced at $499.99

when just released. The price declined by $100 one month later. To spur demand,

management sold the product even cheaper at $149.99 later. When customers reacted

enthusiastically, the price was brought back up to $280.

3.4.1 Threshold Policy and Value Function

Once again, the concerned �rm can choose any price from �p0; �p1; :::; �pK at any time

to suit its needs. It concerns the threshold policy � = (� kn j k = 1; 2; :::; K; n =

1; 2; :::; N) 2 (�N)
K , under which, the �rm should charge price �pk when its inventory

level is n at a time t 2 [� k+1
n ; � kn), with the understanding that the latter interval is ;

when � k+1
n = � kn , and that �K+1

n = 0 and � 0n = T for n = 1; 2; :::; N .

Note that vn(t) is the �rm's optimal remaining value function when it has n remaining

items at time t. Because the �rm can choose any price at any time now, the value

function is not related with the price �pk. The value functions satisfy the following

Hamilton-Jacobi-Bellman (HJB) equations:

K
max
k=0

[Gkn(t) � v + �pk ��k � �(t)] = 0; 8n = 1; 2; :::; N; t 2 (0; T ): (3.110)

In addition, boundary and terminal conditions are that v0(t) = 0 for every t 2 [0; T ]
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and vn(T ) = 0 for every n = 1; 2; :::; N . Equation (3.110) can be rewritten as

dtvn(t) + �(t) �maxKk=0[�p
k ��k � ��k � (vn(t)� vn�1(t))] = 0;

8n = 1; 2; :::; N; t 2 (0; T ):
(3.111)

To solve (3.111), we can consider the following convex function f(�) on [0;+1)

through

f(x) =
K

max
k=0

fk(x); where for k = 0; 1; :::; K; fk(x) = �pk ��k � ��k � x: (3.112)

In fact, some prices may not be selected, depending on the shape of f(x). To �nd

f(x) rigorously, we de�ne an increasing sequence (�xk j k = 0; 1; :::; K;K + 1) with

�x0 = 0 and �xK+1 = +1, so that �U = fk = 0; 1; :::; K j �xk < �xk+1g forms the set

of un-dominated price indices. As for the sequence itself, we rely on the following

procedure for its generation.

�xk =
k�1
max
j=0

�pj ��j � �pk ��k

��j � ��k
; (3.113)

which is allowed by (S1'). Let l be the smallest index among 0; 1; :::; k � 1 such

that

f l(�xk) = fk(�xk): (3.114)

Now, let �xl+1 = �xl+2 = � � � = �xk�1 = �xk. Then, let k = l and go back to the

step involving (3.113) unless k = 0 already. By (S1), this procedure will guarantee

that

�x0 � 0 < �x1 � �x2 � � � � � �xK < +1 � �xK+1: (3.115)

From (3.113), one may see that the sequence is linked with the maximum concave

envelope of Feng and Xiao (2000a).
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With (3.113) to (3.115), we will have the following proposition which tells the value

of f(x) for each x.

Proposition 3.8. For k = 0; 1; :::; K, we have fk(x) = maxKj=0 f
j(x) for x 2

(�xk; �xk+1], with the understanding that the latter set is ; when �xk = �xk+1.

Proof: For j; k = 0; 1; :::; K with j < k, de�ne �yjk so that

�yjk =
�pj ��j � �pk ��k

��j � ��k
: (3.116)

Using (3.112), (S1), and (S1'), it is easy to see that f j(x) � fk(x) if and only if

x � �yjk. By (3.113), we see that �xk = maxk�1j=0 �y
jk, and hence

fk(x) �
k�1
max
j=0

f j(x); if and only if x � �xk: (3.117)

By our construction at k = K + 1 and K, we may see the veracity of our claim at

k = K. That is, fK(x) = maxK�1k=0 fk(x) when x 2 (�xK ; �xK+1]. Suppose the claim is

true for K;K�1; :::; k+1 for some k = 0; 1; :::; K�1. Let j � k+1 be the index such

that �xk+1 = �xk+2 = � � � = �xj < �xj+1. That is, �xj is the last point that is constructed

through (3.113). There are two possibilities: fk(�xj) < f j(�xj) or fk(�xj) = f j(�xj).

When the �rst possibility is true, we have �xk = �xk+1 = � � � = �xj by (3.114), and hence

the claim is always true by virtue of its condition being void.

Depending on whether there is any l � k � 1 satisfying f l(�xj) = f j(�xj), we have

two sub-cases under the second possibility. When there is such an l, we have �xl+1 =

� � � = �xk = �xk+1 = � � � = �xj by (3.114), and hence the claim is again true. Otherwise,

we see that �xk will be constructed through (3.113). By (3.117), this will guarantee

that fk(x) � maxk�1u=0 f
u(x) when x > �xk. On the other hand, note the following

three facts: fk(�xk+1) = fk(�xj) = f j(�xj), the dominance of f j(�xj) over all fu(�xj)

by the induction hypothesis along with the continuity of the fu(�) functions, and



3.4. THE REVERSIBLE CASE - 54 -

(S1'). These together will guarantee that fk(x) � maxKu=k+1 f
u(x) when x � �xk+1.

Therefore, we will have fk(x) = maxKu=0 f
u(x) when x 2 (�xk; �xk+1].

Equipped with the sequence (�xk j k = 0; 1; :::; K;K + 1), we can construct function

vector u = (un(t) j n = 0; 1; :::; N; t 2 [0; T ]) and point vector � = (� kn j k =

1; 2; :::; K; n = 1; 2; :::; N) through an iterative procedure. First, let

u0(t) = 0; 8t 2 [0; T ]: (3.118)

Then, we go over an outer loop on n = 1; 2; :::; N . At each n, we �rst let un(T ) = 0

and � 0n = T , and then go over an inner loop on k = 0; 1; :::; K � 1. At each k, we

let

un(t) = un(�
k
n) �exp(���k � �̂(t; � kn))+ ��k �

Z �kn

t

�(s) �(�pk+un�1(s)) �exp(���k � �̂(t; s)) �ds;

(3.119)

for t 2 [� k+1
n ; � kn ], where �

k+1
n is de�ned through

� k+1
n = infft 2 [0; � kn ] j un(t)� un�1(t) � �xk+1g; (3.120)

with the understanding that � k+1
n = 0 when the concerned inequality is always true

and � k+1
n = � kn when it is never true.

The following theorem demonstrates that the above constructed threshold policy is

optimal and un(t) is the true value function. Its proof relies on some results of Zhao

and Zheng (2000).

Theorem 3.3. The u and � as constructed from (3.118) to (3.120) satisfy the fol-

lowing:

(a) un(t) = vn(t) for any n = 0; 1; :::; N and t 2 [0; T ];

(b) � kn is decreasing in both n and k.
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As a consequence, � provides an optimal policy for the �rm. Indeed, only prices in

�U = fk = 0; 1; :::; K j �xk < �xk+1g will be charged.

The information implied by this theorem is straightforward. (a) veri�es the con-

structed function is just the value function. (b) shows the threshold policy has both

time monotonicity and inventory-monotonicity, which means that the price should de-

crease along the time given a �xed inventory and that higher inventory leads to lower

price at a �xed time. The last sentence con�rms the constructed threshold policy is

optimal. Under such a policy, the �rm with inventory n should choose price �pk when

the time is between � k+1
n and � kn . The last sentence also conveys the information that

some prices may not be chosen in the whole sales season. To go further, if a company

wants to decide what price should be selected as a potential one, instead of choosing

from a given set, it can check whether the price is in �U = fk = 0; 1; :::; K j �xk < �xk+1g.

Since our product-form arrival pattern satis�es Zhao and Zheng's (2000) key assump-

tion that �k(t) has log-decreasing di�erences between k and t, time monotonicity has

been predicted by the earlier paper. Later analysis actually takes much advantage of

the earlier paper, to the extent that it appears simpler than the derivation employed

in Feng and Xiao (2000a) for the stationary-demand case.

Proof: Let pn(t) be the lowest price that achieves the supremum in (3.110). We have

the following:

Fact 1, that vn(t) is increasing in n, as having more items will not hurt the revenue;

and,

Fact 2, that vn(t) is decreasing in t, as having less time to sell will not boost the

revenue.

Zhao and Zheng (2000) also proved the following:

Fact 3, that vn(t) is concave in n (their Theorem 1);

Fact 4, that vn(t) has decreasing di�erences between n and t (their Theorem 2; note
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the di�erent t-de�nitions); and,

Fact 5, that the optimal pricing policy p = (pn(t) j n = 1; 2; :::; N; t 2 [0; T )) is in

existence and for each t 2 [0; T ), pn(t) is decreasing in n (their Theorem 3).

By fact 4, we know that vn(t) � vn�1(t) is decreasing in t. Hence, we may de�ne ~� kn

for k = 1; 2; :::; K and n = 1; 2; :::; N , such that

~� kn = infft 2 [0; T ] j vn(t)� vn�1(t) � �xkg; (3.121)

with the understanding that ~� kn = 0 when the concerned inequality is always true

and ~� kn = T when it is never true. By the terminal condition vn(T ) = 0, it follows

that

~�K+1
n � 0 � ~�Kn � ~�K�1n � � � � � ~� 1n < T � ~� 0n; (3.122)

also, we will have ~� k+1
n < ~� kn when both k 2 �U and ~� kn > 0, and ~� k+1

n = ~� kn otherwise.

From (3.111) and Proposition 3.8, we may see that

pn(t) = �pk; 8t 2 [~� k+1
n ; ~� kn): (3.123)

Note that [~� k+1
n ; ~� kn) will be nonempty if and only if k 2 �U and ~� kn > 0, with the latter

condition amounting to �xk < vn(0) � vn�1(0). Therefore, only prices in some lower

end of �U will be chosen. Thus, we have

Fact 6, that pn(t) is decreasing in t.

Indeed, we can also obtain fact 5 from fact 3. The latter says that vn(t)� vn�1(t) is

decreasing in n. This and fact 4 lead us to conclude that ~� kn as de�ned by (3.121) is

decreasing in n.

From (3.111) and (3.123), we have, for t 2 (~� kn+1; ~�
k
n),

dtvn(t)� ��k � �(t) � vn(t) + ��k � �(t) � (�pk + vn�1(t)) = 0: (3.124)
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By (3.7) and (3.8), this leads to

vn(t) = vn(~�
k
n) �exp(���k � �̂(t; ~� kn))+ ��k �

Z ~�kn

t

�(s) �(�pk+vn�1(s)) �exp(���k � �̂(t; s)) �ds;

(3.125)

for t 2 [~� k+1
n ; ~� kn ]. Comparing the way in which we obtain un(t) and �

k
n through (3.118)

to (3.120) with the current vn(t) and ~� kn , we may see that un(t) is merely vn(t), while

� kn merely ~� kn .

3.4.2 Algorithm

We can adapt the recursive procedure described from (3.113) to (3.114) as well as

from (3.118) to (3.120) to the following algorithm Reversible1.

let k = K;

while k � 1

let l = k � 1 and �xk = (�pl��l � �pk ��k)=(��l � ��k);

for j = k � 2 down to 0

let x = (�pj ��j � �pk ��k)=(��j � ��k);

if x � �xk

let l = j and �xk = x;

for j = l + 1 to k � 1

let �xj = �xk;

let k = l;

for q = 0 to Q

let v0q = 0;

for n = 1 to N

let q = Q, vnq = 0, and k = 0;

for r = Q� 1 down to 0
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let vnr = vnq + �kr ��T � (�p
k + vn�1;r � vnq) + exp(��kr ��T ) � (vn;r+1 � vnq);

if vnr � vn�1;r > �xk+1

let r = r + 1, q = r, k = k + 1, and � kn = q ��T ;

while k � K � 1 and �xk+1 = �xk

let k = k + 1 and � kn = q ��T .

In Reversible1, the �rst part up to the end of the while loop is devoted to an analysis

of the convex function f(�) de�ned in (3.112). Here, we have utilized the fact that for

j � k � 1, one will have f j(�xk) < fk(�xk) when (�pj ��j � �pk ��k)=(��j � ��k) < �xk. The

algorithm's time complexity is O(N � (K +Q)).
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CHAPTER 4

Make-to-order Inventory Control with

Pricing

Now we add the production component into revenue management. The concerned

�rm can purchase the raw material from an external market and convert the material

into �nished product. The �rm takes control of its raw material acquisition activities

and the pricing of the �nished product. At the same time, the raw material price is

assumed to follow a Markov process.

4.1 Problem Setup

We name periods in a backward fashion and let period 0 be the terminal period. Each

period t can be understood as the time interval [t; t� 1). There is also a per-period

discount factor � 2 [0; 1). All exogenous model features are taken as stationary

over time. This is mostly to ensure simplicity of presentation only; our �nite-horizon

results can be easily extended to the case with time-varying exogenous features. We

suppose that the unit raw material cost evolves as a homogeneous Markov process

with states in [�; �] for some strictly positive constants � and �. We use (�0 j �) to

denote, generically, the next-period random cost �0 conditioned on the present-period

cost �. Also, we use s(�) to denote the discounted version of the expected next-period
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cost given current period's �:

s(�) = � � E[�0 j �]: (4.1)

We use a stylized model in the spirit of Hotelling (1929) and Salop (1979) to further

motivate the impact of a commonly felt input cost on the demand curve of a �rm

under price competition. In it, �rms are located at points 0;�1;�2; :::. At cost � � 0

and demand level w, a �rm can earn (p� �) �w in pro�t when it charges a unit sales

price p. Customers are evenly distributed on the entire real line, and the potential

demand generated by customers in any interval [a; b] is b � a. Customers have very

high valuations for the product sold by �rms, and each one of them goes to the �rm

with the lowest p+ d value, where p is the unit price charged by the �rm and d is the

distance between the customer and the �rm. Through the analysis in section 4.1.1, we

can show that the only symmetric equilibrium arrangement is for all �rms to charge

the same �-dependent unit sales price

p�(�) = � + 1: (4.2)

Then, when one particular �rm charges a unit sales price p 2 [�; �+2] while all other

�rms abide by the equilibrium price given in (4.2), the former �rm would be able to

attract demand

w(�; p) = � � p+ 2: (4.3)

Naturally, the demand level w(�; p) is decreasing in the �rm's sales price p. That

w(�; p) is increasing in the input cost � is a more noteworthy phenomenon. It can be

explained by the tendency for a raised input cost to push competitors' prices higher,

thus making it easier for the current �rm to attract demand at any particular price

level.
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Now, we model the interplay, in a given period t, between the realized raw material

cost, the sales price, and demand through the use of a positive function w(�; �) as

well as a positive random variable �t. When the raw material cost is � and the �rm

charges a unit sales price p, demand �t for this period will follow

�t = w(�; p) + �t: (4.4)

For instance, w(�; p) can take the form in (4.3). The demand �t can thus be under-

stood as resulting from the current �rm's competition with other �rms, all under the

sway of the common raw material cost. The extra term �t emphasizes uncontrollable

factors in the model, stating that the �rm can control demand up to an additive

random error. This additive-demand form was adopted by many researchers; see,

e.g., Mills (1959) on a study of the price-demand relationship and Petruzzi and Dada

(1999) on an investigation of a newsvendor who faces price-sensitive demands. Note

the positivity requirement on �t is used to ensure the positivity of �t; it is not

required for later derivation.

We suppose w(�; �) is continuous and strictly decreasing, to the e�ect that it has a

continuous and strictly decreasing inverse p(�; �) on the positive real line <+. We let

p(�;w) be continuous in � too. We now take the view that the �rm uses the lever

w = w(�; p) to in�uence its demand�when it decides on a w, it will charge p(�;w)

for every unit of the �nished product, and its demand will satisfy

�t = w +�t: (4.5)

We suppose the �t's are independent across di�erent periods. Also, the process

(�t j t = 1; 2; :::) is independent of the raw material cost process (�t j t = 0; 1; 2; :::).

In addition, each �t is distributed as a generic random variable � with E[�] = � �



4.1. PROBLEM SETUP - 62 -

0.

Let h(�) be the �rm's holding-backlogging cost per period. We suppose that h(x) � 0

for x 2 <, h(0) = 0, and that h(�) is convex. A concave or convex function de�ned on

the real line < is continuous; it is di�erentiable almost everywhere as well; see, e.g.,

Howe (1982). In the sequel, we will apply derivative to a concave or convex function,

even though left- and right-derivatives may not agree on a measure-zero set of points.

For the just de�ned convex function h(�), we assume that b1 � � limx!�1 dh(x)=dx

and h1 � limx!+1 dh(x)=dx are both �nite values. That is, upper bounds exist for

unit backlogging and holding costs.

In every period t, the �rm �rst observes the current raw material cost � and its own

inventory level x. It then decides the raw material replenishment quantity z, which,

upon immediate delivery, would bring the �rm's post-procurement inventory level up

to y = x + z. Next, the �rm decides on the demand lever w which would translate

into a retail price p(�;w) and imply a random demand �t in the form of (4.5). When

the realized demand is �t, the �rm's inventory level would be reduced to y � �t. In

the ensuing period t � 1, the random raw material cost the �rm expects to face is

(�0 j �).

We suppose that the �rm's choice w is within the range [0; wU ] for some �nite wU .

As wU can be made arbitrarily large, its �niteness would not render our results less

practicable. For � 2 [�; �] and w 2 [0; wU ], de�ne the revenue function

r(�;w) = E[p(�;w) � (w +�)] = p(�;w) � (w + �): (4.6)

It stands for the average revenue the �rm can make under raw material cost � and

demand lever w. Recall that unsatis�ed orders will still earn the �rm revenue in the

current period, though they will cost it delay penalties in ensuing periods.
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Let ~ft(�; x) be the maximum total discounted average pro�t that the �rm can earn

from period t onward till the terminal period 0, when the raw material cost is � and

the �rm's inventory level is x. For any period t = 1; 2; :::, we have the following

recursive relationship:

~ft(�; x) = supw2[0;wU ];z2<+ E[p(�;w) � (w +�)� �z � h(x+ z � w ��)

+� � ~ft�1(�
0; x+ z � w ��)j�]:

(4.7)

In (4.7), the expectation is conditioned on the period-t raw material cost �. Inside

this expectation, the �rst term is the revenue the �rm can earn from the demand, the

second term is the �rm's raw material acquisition cost, the third term is its inventory

holding-backlogging cost, and the last term is the total discounted pro�t from period

t� 1 onward that the �rm can earn. For the terminal period, we assume

~f0(�; x) = �x: (4.8)

That is, the �rm can sell its remaining inventory or �ll up its shortage using the raw

material market. For convenience, we make the transformation

ft(�; x) = ~ft(�; x)� �x: (4.9)

The newly de�ned ft(�; x) is the maximum total discounted average pro�t the �rm

can make minus its present net inventory worth. Now, (4.8) will result in

f0(�; x) = 0: (4.10)

Meanwhile, (4.7) will lead to

ft(�; x) = sup
w2[0;wU ];y2[x;+1)

gt(�;w; y); 8t = 1; 2; :::; (4.11)
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where

gt(�;w; y) = �� � s(�)� s(�) � w + r(�;w)� (� � s(�)) � y

�E[h(y � w ��)] + � � E[ft�1(�
0; y � w ��) j �]:

(4.12)

In (4.12), the post-procurement inventory level y has replaced the acquisition level z

as one of the �rm's main decision variables.

4.1.1 Derivation of the Stylized Model

Let us �nd a price p�(�) that can be adopted by all �rms to reach equilibrium when

all of them experience the same unit cost �. Under the same cost �, suppose all �rms

at locations �1;�2; ::: have adopted a common sales price p. Let us use ~p�(�; p) to

denote the largest best response that the �rm at location 0 can muster. When ~p�(�; �)

is obtainable, we can just let p�(�) be a �xed point for the function, given that such

a point exists.

It turns out that ~p�(�; p) for an arbitrary (�; p)-pair is di�cult to compute. Instead,

we shall �rst deal with the �lesser� entity ~p0(�; p), merely location 0's largest best

response to the (�; p)-pair under the extra restriction of it being between p � 1 and

p+ 1. Under this restriction, the best response turns out to be solvable and unique.

We shall then identity a unique �xed point p0(�) for the function ~p0(�; �).

Since p�(�) must also be a �xed point for ~p0(�; �), it either does not exist or is exactly

p0(�). The latter is actually true, as we can show that p0(�) is a �xed point for

not only ~p0(�; �), but also ~p�(�; �). Indeed, p0(�) is the unique best response to the

(�; p0(�))-pair, without the requirement that the best response be in [p0(�)�1; p0(�)+

1].

In summary, we can avoid analyzing ~p�(�; p) for every (�; p)-pair in order to ultimately
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reach p�(�). Rather, a thorough understanding of the �lesser� ~p0(�; p) is more attain-

able, and based on it, we can obtain a unique�tied-hand equilibrium� price p0(�). But

we have p0(�) = ~p�(�; p0(�)) as well. Thus, there is a unique p�(�) in the form of

p0(�).

Here comes our detailed derivation. Under a given �, suppose all �rms at locations

�1;�2; ::: have adopted a common sales price p. Now let the �rm at location 0

use some price p0 2 [p � 1; p + 1]. Then the customers attracted to this �rm would

lie in the interval [�a0(p0; p);+a0(p0; p)], where the boundary point a0(p0; p) 2 [0; 1]

satis�es

p0 + a0(p0; p) = p+ (1� a0(p0; p)): (4.13)

This guarantees that customers in the interval [�a0(p0; p);+a0(p0; p)] would prefer

the �rm at 0, while those in [+a0(p0; p);+1] would prefer the �rm at +1 and those in

[�1;�a0(p0; p)] the �rm at �1. We can solve (4.13) to obtain a0(p0; p) = (p�p0+1)=2.

Therefore, the �rm at 0 can attract demand

w0(p0; p) = 2 � a0(p0; p) = p� p0 + 1; (4.14)

and earn pro�t q0(p0; �; p) = (p0 � �) � w0(p0; p) = (p0 � �) � (p � p0 + 1). Re-express

this and we can get

q0(p0; �; p) = �(p0 �
� + p+ 1

2
)2 +

(� + p+ 1)2

4
� � � p� �: (4.15)

By our earlier de�nition, we reckon that

~p0(�; p) = max argmaxp�1�p0�p+1q
0(p0; �; p): (4.16)
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From the quadratic form exhibited in (4.15), we can get

~p0(�; p) =

8>>>><
>>>>:

p� 1; when p > � + 3;

(� + p+ 1)=2; when � � 1 � p � � + 3;

p+ 1; when p < � � 1:

(4.17)

At each (�; p)-pair, the thus obtained ~p0(�; p) is actually the unique maximizer for

q0(�; �; p) at p0 2 [p � 1; p + 1] since the objective function, as shown in (4.15), is

strictly concave. Due to (4.17), any �xed point p0(�) for ~p0(�; �) must be in the range

[� � 1; � + 3]. Within this range, we can solve p0(�) = (� + p0(�) + 1)=2 to obtain

the unique solution

p0(�) = � + 1; (4.18)

which is indeed within the range [� � 1; � + 3].

Any �xed point for ~p�(�; �) must �rst be a �xed point for ~p0(�; p), so the �xed point

p�(�) is either nonexistent or exactly equal to p0(�). We shall verify the latter.

Under an input cost �, suppose �rms at locations �1;�2; ::: all charge the same price

p0(�) = � + 1 and the �rm at location 0 charges some price p0. When p0 < �, the

�rm at location 0 would surely not make any pro�t. When p0 > � + 2, it would not

attract any demand when even customers at 0 are siphoned away by �rms at �1. So

to make any pro�t, the �rm must choose p0 2 [�; �+2] even though it is allowed a free

reign over [0;+1). That is, the �rm would voluntarily use p0 2 [p0(�)� 1; p0(�)+ 1].

But within this range, we know the best choice is p0(�) itself. Indeed, by charging

p0(�) = �+1, the �rm would earn q0(�+1; �; �+1) = 1, a strictly positive sum.

By our earlier de�nition, this line of reasoning amounts to

p0(�) = ~p�(�; p0(�)): (4.19)
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That is, p0(�) is a �xed point for ~p�(�; �). Thus, it follows that

the unique p�(�) = p0(�) = � + 1: (4.20)

We have thus obtained a unique symmetric equilibrium pricing policy p�(�) in the

form of � + 1.

4.2 Properties under a Changing �

Now we introduce the following assumptions:

(MO1) For every � 2 [�; �], the revenue function r(�; �) is concave on [0; wU ].

(MO2) b1 � [(1� �) � �] _ [@+r(�; 0)=@w � s(�)].

(MO3) h1 � s(�) _ (�� � �)+ _ [s(�)� @�r(�;wU)=@w].

(MO4) For every w 2 (0; wU), the term @r(�;w)=@w � s(�) is increasing in �.

(MO5) For every w 2 (0; wU), the term @r(�;w)=@w � � is decreasing in �.

(MO6) The random next-period raw material cost (�0 j �) is stochastically increas-

ing in the current-period raw material cost � 2 [�; �]; namely, for any increasing

function u(�), the conditional average E[u(�0) j �] is increasing in �.

Assumption (MO1) is the concavity requirement used for our derivation. When not

concerning randomness, r(�;w) can be understood as p(�;w) �w, where p(�; �) is the

inverse of the demand function w(�; �) mentioned earlier. This concavity requirement

implies the price elasticity of demand, and is widely used in the literature; see, e.g.,

Feichtinger and Hartl (1985), Gallego and van Ryzin (1994), and Ziya, Ayhan, and

Foley (2004). Actually, we can obtain from (4.3) the relationship p(�;w) = ��w+2.

This would result in

r(�;w) = (� � w + 2) � w = (
�

2
+ 1)2 � (w � (

�

2
+ 1))2: (4.21)
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The latter is certainly concave in w. To see the price elasticity of demand implied

by (MO1), let us suppose that p(�; �) is twice di�erentiable. From (4.6), we see that

(MO1) is equivalent to

@2r(�;w)

@w2
=
@2p(�;w)

@w2
� (w + �) + 2 �

@p(�;w)

@w
� 0; 8w 2 [0; wU ]: (4.22)

By the inverse relationship between w(�; �) and p(�; �), we may derive that

8><
>:

@p(�;w)=@w = 1=(@w(�; p)=@p) jp=p(�;w);

@2p(�;w)=@w2 = �@p(�;w)=@w � @2w(�; p)=@p2 jp=p(�;w) =(@w(�; p)=@p jp=p(�;w))
2:

(4.23)

Plugging (4.23) into (4.22) and noting the negativity of @p(�; �)=@w, we obtain

@2w(�; p)

@p2
�

2 � (@w(�; p)=@p)2

w(�; p) + �
: (4.24)

The inequality (4.24) and hence (MO1), means that, the pace at which demand de-

creases with the sales price does not slow down much as the sales price increases.

By (4.6),

@r(�;w)

@w
=
@p(�;w)

@w
� (w + �) + p(�;w): (4.25)

So, by considering (4.23), we must have

�
@w(�; p)

@p
�
w(�; p) + �

p
: (4.26)

This means that the rate at which demand decreases with the sales price is greater

than the ratio between demand and price. Therefore, imposing (MO1) con�nes us to

products with elastic demands.

Conditions (MO2) and (MO3) are introduced to ensure the �niteness of certain
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optimal solutions. By bloating up unit backlogging and holding costs at rarely-

encountered extreme inventory levels, they can always be realized.

Assumptions (MO4) and (MO5) indicate that the growth rate of the revenue with

respect to the expected sales is increasing with the current-period cost at a rate

sandwiched between the unit rate of one and the increasing rate of the discounted

average next-period cost. As the current raw material cost increases, (MO4) says that

it will be more likely for the former to justify the deferment of acquisition to the next

period, and (MO5) says that it will be less likely for the marginal revenue per unit

demand to justify any immediate acquisition. If we follow (4.3) and hence (4.21), we

will have

@r(�;w)

@w
= � � 2w: (4.27)

With (4.27), we see that (MO4) would be true if s(�) � � is decreasing in �; also,

(MO5) would always be true.

By (MO6), we have the positive growth of the discounted average next-period cost

s(�) = � � E[�0 j �] in �. Note that an equivalent expression for (MO6) is that

of P [�0 � �0 j �] being increasing in � for any given �0. So, (MO6) also means

that a higher present-period cost is more likely to lead to a higher next-period cost.

Therefore, we may view (MO6) as a time-continuity requirement, stipulating that cost

is not expected to change drastically in a very short period of time. Taken together,

(MO4) to (MO6) would imply that s(�) is increasing in � at a mild pace, or when

s(�) is di�erentiable,

0 �
ds(�)

d�
� 1: (4.28)

The second inequality in (4.28) means the following mean-reversion tendency: as the

raw material cost increases, it will become more di�cult for the next-period cost to

have the same degree of increase.
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To see that time-continuity and mean-reversion are reasonable assumptions, note that

the continuous-time iron ore spot price process (�s j s 2 <
+) may roughly be treated

as an Ornstein-Uhlenbeck (OU) process. Under this setup, one has

d�s = � � (�0 � �s) � ds+ � � dWs; (4.29)

where (Ws j s 2 <
+) is the Wiener process, and �, �0, and � are positive constants.

Meanwhile, Yang and Xia (2009) have shown that a discrete-state approximation of

the OU process meets the mean-reversion requirement exactly and the time-continuity

requirement asymptotically.

Let's give an example to illustrate all the assumptions (MO1)-(MO6) can be satis�ed.

In this example, there are �ve constants A, B, C, D, and 
 with A 2 [0; 1), B;C 2 R+,

D 2 [0; �� ^ A], and 
 2 (0; 1), as well as, a random variable �0 with its support on

[�; �] and mean at a certain �0 � E[�0] 2 [�; �]. For the inverse-demand function,

we let

p(�;w) = A� +
B

(w + � + C)

; (4.30)

while for the raw material price process, we let

(�0j�) =
D

�
� + (1�

D

�
)�0: (4.31)

From (4.6), we obtain that

r(�;w) = (A� +
B

(w + � + C)

) � (w + �); (4.32)

which can be easily checked that r(�;w) is concave. In addition, we get

@r(�;w)

@w
= A� +

B

(w + � + C)

�


B � (w + �)

(w + � + C)1+

: (4.33)
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Thus, we can veri�ed that assumptions (MO1) and (MO3)-(MO6) can be all satis�ed.

With large enough b1 and h1, (MO2) and (MO3) can be satis�ed as well.

Theorem 4.1. For t = 0; 1; 2; :::, ft(�; x) is concave in x; and, for t = 1; 2; :::,

gt(�;w; y) is both jointly concave and supermodular in (w; y).

The �rst concavity on ft(�; �) means that the marginal value of any additional in-

ventory decreases with the present inventory level; the joint concavity of gt(�; �; �)

makes the optimization problem (4.11) relatively easy to solve; also, the last super-

modularity asserts the often-seen complementarity between supply (y) and demand

(w).

Proof: We prove by induction. First, by (4.10), f0(�; x) = 0 is clearly concave in

x 2 <. Then, suppose that ft�1(�; x) is concave in x 2 < for some t = 1; 2; :::.

We �rst prove that gt(�;w; y) is jointly concave in (w; y) 2 <2. Let (w0; y0); (w1; y1) 2

<2 and � 2 [0; 1]. By (4.12), we have

gt(�; (1��)w
0+�w1; (1��)y0+�y1)�(1��)�gt(�;w

0; y0)���gt(�;w
1; y1) = T1+T2+T3;

(4.34)

where

8>>>>>>>>>><
>>>>>>>>>>:

T1 = r(�; (1� �)w0 + �w1)� (1� �) � r(�;w0)� � � r(�;w1);

T2 = E[(1� �) � h((y0 � w0)��) + � � h((y1 � w1)��)

�h((1� �)(y0 � w0) + �(y1 � w1)��)];

T3 = � � E[ft�1(�
0; (1� �)(y0 � w0) + �(y1 � w1)��)

�(1� �) � ft�1(�
0; (y0 � w0)��)� � � ft�1(�

0; (y1 � w1)��) j �]:

(4.35)

We know that T1 � 0 because of (MO1); we know that T2 � 0 due to the convexity of

h(�); and, by the induction hypothesis that ft�1(�; x) is concave in x, we know that

T3 � 0. Therefore, the left-hand side of (4.34) is positive.
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We then prove that gt(�;w; y) is supermodular in (w; y) 2 <2. Let (w; y) 2 <2 and

(�w; �y) 2 (<+)2. By (4.12), we have

gt(�;w+�w; y+�y)+gt(�;w; y)�gt(�;w+�w; y)�gt(�;w; y+�y) = T4+T5; (4.36)

where

8>>>>>>><
>>>>>>>:

T4 = E[h(y � w ��� �w) + h(y � w ��+ �y)

�h(y � w ��+ �y � �w)� h(y � w ��)];

T5 = � � E[ft�1(�
0; y � w ��+ �y � �w) + ft�1(�

0; y � w ��)

�ft�1(�
0; y � w ��� �w)� ft�1(�

0; y � w ��+ �y) j �]:

(4.37)

We know that T4 � 0 due to the convexity of h(�); and, by the induction hypothesis

that ft�1(�; x) is concave in x, we know that T5 � 0. Therefore, the left-hand side

of (4.36) is positive.

Lastly, we prove that ft(�; x) is concave in x 2 <. Let x0; x1 2 < and � 2 [0; 1]. Let

(w0(1); y0(1)) be the optimal (w; y)-pair for (4.11) corresponding to ft(�; x
0(1)). Hence,

we have 0 � w0(1) � wU , y0(1) � x0(1), and

ft(�; x
0(1)) = gt(�;w

0(1); y0(1)): (4.38)

Therefore, we have

8><
>:

0 � (1� �)w0 + �w1 � wU ;

(1� �)y0 + �y1 � (1� �)x0 + �x1:
(4.39)
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Thus, we may obtain

ft(�; (1� �)x0 + �x1) � gt(�; (1� �)w0 + �w1; (1� �)y0 + �y1)

� (1� �) � gt(�;w
0; y0) + � � gt(�;w

1; y1) = (1� �) � ft(�; x
0) + � � ft(�; x

1);

(4.40)

where the �rst inequality is from (4.11) and (4.39), the second inequality is due to

the joint concavity of gt(�;w; y) in (w; y), and the last equality is apparently due

to (4.38).

We have thus completed the induction procedure.

To go any further, we �nd it necessary to carry out a re-formulation of the problem.

In it, we change decision variables from (w; y) to (y; v), where v = y � w. Note that

vt � � = yt � (wt + �) is the average period-(t� 1) starting inventory level. Also, we

de�ne jt(�; y; v) so that

jt(�; y; v) = gt(�; y � v; y); and equivalently, gt(�;w; y) = jt(�; y; y � w): (4.41)

The earlier optimization problem involving (4.11) and (4.12) will now become

ft(�; x) = sup
y2[x;+1);v2[y�wU ;y]

jt(�; y; v); (4.42)

where

jt(�; y; v) = �� � s(�)� �y + s(�) � v + r(�; y � v)� E[h(v ��)]

+� � E[ft�1(�
0; v ��) j �]:

(4.43)

At this particular t, we can obtain some useful properties for jt(�; y; v). Taking
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derivatives on (4.12), we obtain

(
@

@w
+

@

@y
)gt(�;w; y) =

@r(�;w)

@w
� �: (4.44)

From Theorem 4.1, we already know that

(f1) @ft(�; x)=@x is decreasing in x;

(g1) @gt(�;w; y)=@w is decreasing in w;

(g2) @gt(�;w; y)=@y is decreasing in y; and,

(g3) @gt(�;w; y)=@w is increasing in y, which is equivalent to the increase of

@gt(�;w; y)=@y in w.

Also, we see from (MO1) and (4.44) that

(g4) (@=@w + @=@y)gt(�;w; y) is decreasing in w; and,

(g5) (@=@w + @=@y)gt(�;w; y) is invariant in y.

Recall that the re-formulation is about changing decision variables from (w; y) to

(y; v) where v = y � w. From (4.41), we see that

8>>>>>>><
>>>>>>>:

@jt(�; y; v)=@y = @gt(�; y � v; y)=@y = (@gt(�;w; y)=@w + @gt(�;w; y)=@y) jw=y�v;

@jt(�; y; v)=@v = @gt(�; y � v; y)=@v = �@gt(�;w; y)=@w jw=y�v;

(@jt(�; y; v)=@y + @jt(�; y; v)=@v) = (@gt(�; y � v; y)=@y + @gt(�; y � v; y)=@v)

= @gt(�;w; y)=@y jw=y�v :

(4.45)

Before translating the properties of function gt(�;w; y) into those of jt(�; y; v), let us

de�ne diagonal dominance �rst:

De�nition 4.1. An n� n matrix A is called diagonal dominant if jaiij �
Pn

i6=j jaijj,

where aij is the element in the ith row and jth column. A real valued function,

f(s), de�ned on s 2 Rn is called diagonal dominant if its hessian matrix, 52f(s), is

diagonal dominant.
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With this de�nition, we know a joint concave function f(x; y) is diagonal dominant if it

has the property that (@2=@x2+@2=@x@y)f(x; y) � 0 and (@2=@y2+@2=@x@y)f(x; y) �

0. Thsi means (@=@x+ @=@y)f(x; y) is decreasing in x and y.

Now, (g1) to (g5) translate into the following, respectively:

(j1) @jt(�; y; v)=@v is decreasing in v, meaning that jt(�; y; v) is concave in v;

(j-) (@=@y + @=@v)jt(�; y; v) jy=y0+u;v=v0+u is decreasing in u;

(j2) @jt(�; y; v)=@v jy=y0+u;v=v0+u is decreasing in u, or equivalently, (@=@y + @=@v)

jt(�; y; v) is decreasing in v, meaning that jt(�; y; v) has the (v; y)-diagonal dominance

property;

(j3) @jt(�; y; v)=@y is increasing in v, or equivalently, @jt(�; y; v)=@v is increasing in

y, meaning that jt(�; y; v) is supermodular in (y; v); and,

(j4) @jt(�; y; v)=@y jy=y0+u;v=v0+u is invariant in u, or equivalently, (@=@y + @=@v)

jt(�; y; v) is invariant in y, meaning that jt(�; y; v) has the (y; v)-diagonal balance

property.

Note that (j3) and (j4) will together lead to

(j5) @jt(�; y; v)=@y is decreasing in y, meaning that jt(�; y; v) is concave in y.

At the same time, (j1), (j2), (j4), and (j5) shall guarantee that jt(�; y; v) is jointly

concave in (y; v).

Let w0(�) be the largest w 2 [0; wU ] that maximizes the function fr(�;w) � �wg,

i.e.,

w0(�) = sup argmaxw2[0;wU ]fr(�;w)� �wg: (4.46)

By (MO1), the following must be true:

w0(�)

8>>>><
>>>>:

= wU ; if @�r(�;wU)=@w � �;

2 (0; wU); else, if @r(�;w0(�))=@w = �;

= 0; otherwise:

(4.47)
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Here as well as later, du(x)=dx = 0 for a concave function means that d�u(x)=dx �

0 > d+u(x)=dx.

Before going to the next theorem, let's �rst propose the following lemma:

Lemma 4.1. Let t(�) and t(�) be two mildly increasing functions satisfying t(s) � t(s)

for every s 2 <. Consider function u(�; �) de�ned on the lattice f(s; t) j s 2 <; t 2

[t(s); t(s)]g. Suppose u(s; �) is concave on [t(s); t(s)] for every s 2 <, and t̂(s) is the

largest solution for supt2[t(s);t(s)] u(s; t). Then, t̂(�) will be an increasing function when

u(�; �) is supermodular; furthermore, the increasing trend will be mild, i.e., with rate

between 0 and 1, when @u(s; t)=@t js=s0+�s;t=t0+�s is decreasing in �s for every (s0; t0).

Proof: As u(s; �) is concave on [t(s); t(s)], the solution t̂(s) will satisfy the follow-

ing:

t̂(s)

8>>>><
>>>>:

= t(s); if @�u(s; t(s))=@t � 0;

2 (t(s); t(s)); else, if @u(s; t̂(s))=@t = 0;

= t(s); otherwise:

(4.48)

For the increasing part, let �s � 0. When t̂(s) � t(s+�s), we are done since

t̂(s+�s) � t(s+�s) � t̂(s): (4.49)

Otherwise, t̂(s) > t(s+�s), and by the increasing property of t(�),

t̂(s) � t(s) � t(s+�s): (4.50)

Therefore, t̂(s) is a feasible candidate for t̂(s + �s). But by the supermodularity of

u(�; �) and (4.48),

@�u(s+�s; t̂(s))

@t
�
@�u(s; t̂(s))

@t
� 0: (4.51)
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This, the concavity of u(s; �), and (4.48) will together lead to

t̂(s+�s) � t̂(s): (4.52)

Thus, we are done with the increasing part.

For the mildness part, let again �s � 0. When t̂(s) + �s � t(s + �s), we are done

since

t̂(s+�s) � t(s+�s) � t̂(s) + �s: (4.53)

Otherwise, t̂(s) + �s < t(s+�s), and by the mild increasing of t(�),

t̂(s) + �s � t(s) + �s � t(s+�s): (4.54)

Therefore, t̂(s) +�s is a feasible candidate for t̂(s+�s). But by the last hypothesis

on u(�; �) and (4.48),

@+u(s+�s; t̂(s) + �s)

@t
�
@+u(s; t̂(s))

@t
< 0: (4.55)

This, the concavity of u(s; �), and (4.48) will together lead to

t̂(s+�s) � t̂(s) + �s: (4.56)

Thus, we are done with the mildness part as well.

The following now partially characterizes one optimal policy in terms of (y�t (�; x),

v�t (�; x) j t = 1; 2; :::; � 2 [�; �]; x 2 <).

Theorem 4.2. For t = 0; 1; ::, we have limx!�1 @ft(�; x)=@x = 0 and limx!+1

@ft(�; x)=@x � 0. For t = 1; 2; :::, let � 2 [�; �] be given. There is in the (y; v)-plane

a mildly increasing curve v = ~vt(�; y), i.e., ~vt(�; y) � ~vt(�; y +�y) � ~vt(�; y) + �y,



4.2. PROPERTIES UNDER A CHANGING � - 78 -

such that

~vt(�; y) = sup argmaxv2[y�wU ;y]jt(�; y; v):

This curve intersects the curve y = v+w0(�) at a point (y0t (�); y
0
t (�)�w

0(�)) and the

curve y = v + wU at a point (yUt (�); y
U
t (�)� wU). It turns out that yUt (�)� y0t (�) �

wU �w0(�) � 0, and one optimal solution pair (y�t (�; x); v
�
t (�; x)) for (4.42) satis�es

the following:

(y�t (�; x); v
�
t (�; x)) =

8>>>><
>>>>:

(y0t (�); y
0
t (�)� w0(�)); when x � y0t (�);

(x; ~vt(�; x)); when y0t (�) < x � yUt (�);

(x; x� wU); when x > yUt (�):

The policy identi�ed by the theorem can be interpreted as a base-stock-list-price

policy with the extra � dependence, and hence the raw-cost-dependent version of

Federgruen and Heching's (1999) main result. We can think of y0t (�) as a base-stock

point for the �rm's procurement activity. It should make raw material acquisition to

bring its inventory level up to this point when its starting inventory level x is below

the level, and should do nothing otherwise. At the same time, p(�;w0(�)) serves as

the �rm's list price, which is to be charged when the �rm's starting inventory level is

below y0t (�). When its starting as well as post-procurement inventory level x grows

beyond the base-stock point, the �rm should charge the price p(�; ~vt(�; x)) which is

decreasing in x. When x reaches the exorbitantly high level yUt (�), the �rm should

start to charge its lowest allowed price p(�;wU). Without discussing the range of x,

we can concisely express the �rm's sales price as

p�t (�; x) = p(�; y�t (�; x)� v�t (�; x)) = p(�; ~wt(�; (x _ y
0
t (�)) ^ y

U
t (�))); (4.57)

where ~wt(�; y) = y � ~vt(�; y) is mildly increasing in y as well.
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The above policy dictates that the (�; x)-plane [�; �]�< be divided into three regions

R1
t to R

3
t , so that

ft(�; x) =

8>>>>>>><
>>>>>>>:

jt(�; y
0
t (�); y

0
t (�)� w0(�));

when (�; x) 2 R1
t ; where x � y0t (�);

jt(�; x; ~vt(�; x)); when (�; x) 2 R2
t ; where y

0
t (�) < x � yUt (�);

jt(�; x; x� wU); when (�; x) 2 R3
t ; where x > yUt (�):

(4.58)

Remark 4.1. A comparable but more complex result than Theorem 4.2 can be

obtained when demand follows a more general form than (4.4):

�t = 
t � w(�; p) + �t; (4.59)

where 
t is a random multiplicative factor. Unfortunately, our forthcoming main

result, Theorem 4.3, can only be reached for the additive-demand case.

Proof: We prove the theorem through induction. For a convex or concave function

g(�), limits on dg(x)=dx exist when x ! �1. We shall use dg(�1)=dx to denote

limx!�1 dg(x)=dx.. By (4.10), we know

@f0(�;�1)

@x
=
@f0(�;+1)

@x
= 0: (4.60)

Suppose for some t = 1; 2; :::, we have

@ft�1(�;�1)

@x
� 0; and

@ft�1(�;+1)

@x
� 0: (4.61)

For each � 2 [�; �], let ~yt(�; v) be the largest y 2 [v; v+wU ] that maximizes jt(�; y; v)

for every v 2 <, and let ~vt(�; y) be the largest v 2 [y�wU ; y] that maximizes jt(�; y; v)
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for every y 2 <. On the other hand, note that (4.43) leads to

8>>>><
>>>>:

@jt(�; y; v)=@y = �� + @r(�; y � v)=@w;

@jt(�; y; v)=@v = s(�)� @r(�; y � v)=@w � E[dh(v ��)=dx]

+� � E[@ft�1(�
0; v ��)=@x j �]:

(4.62)

This and (j5) would together result in

~yt(�; v)

8>>>><
>>>>:

= v + wU ; if @�r(�;wU)=@w � �;

2 (v; v + wU); else, if @r(�; ~yt(�; v)� v)=@w = �;

= v; otherwise:

(4.63)

Comparing this with (4.47), we see that ~yt(�; v) = v + w0(�). Note that v = y � wU

and v = y are both mildly increasing curves in the (y; v)-plane. Hence, by (j2), (j3),

and Lemma 4.1, we know that ~vt(�; y) is mildly increasing in y.

From (4.62), we have

lim
y!�1

@�jt(�; y; y)

@v
= s(�)�

@+r(�; 0)

@w
+ b1 + � � E[

@ft�1(�
0;�1)

@x
j �]; (4.64)

which is positive by (MO2), (MO4), and the induction hypothesis (4.61). By (j1),

this means that ~vt(�; y) = y when y is small enough. From (4.62) again,

lim
y!+1

@+jt(�; y; y � wU)

@v
= s(�)�

@�r(�;wU)

@w
�h1+��E[

@ft�1(�
0;+1)

@x
j �]; (4.65)

which is strictly negative by (MO1), (MO3), and the induction hypothesis (4.61). By

(j1), this means that ~vt(�; y) = y � wU when y is large enough.

Let y0t (�) be the smallest y that satis�es y�w0(�) = ~vt(�; y) when w
0(�) = wU and the

largest such y otherwise. Let yUt (�) be the smallest y that satis�es y�wU = ~vt(�; y).

From the conclusions of (4.64) and (4.65), we know that both y0t (�) and yUt (�) are
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�nite. As ~vt(�; �) is mildly increasing, we have yUt (�)� wU � y0t (�)� w0(�); that is,

yUt (�)� y0t (�) � wU � w0(�) � 0.

By the Karush-Kuhn-Tucker condition, (y�t (�; x); v
�
t (�; x)) will be an optimal solution

pair for (4.42) if and only if the following are true: for y�t (�; x),

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

either y�t (�; x) = v�t (�; x) + wU = x;

or y�t (�; x) = x < v�t (�; x) + wU and @+jt(�; x; v
�
t (�; x))=@y � 0;

or y�t (�; x) = v�t (�; x) > x and @+jt(�; y
�
t (�; x); v

�
t (�; x))=@y � 0;

or y�t (�; x) = v�t (�; x) + wU > x and @�jt(�; y
�
t (�; x); v

�
t (�; x))=@y � 0;

or y�t (�; x) > x; v�t (�; x) < y�t (�; x) < v�t (�; x) + wU ;

and @jt(�; y
�
t (�; x); v

�
t (�; x))=@y = 0;

(4.66)

for v�t (�; x),

8>>>><
>>>>:

either v�t (�; x) = y�t (�; x)� wU and @+jt(�; y
�
t (�; x); v

�
t (�; x))=@v � 0;

or v�t (�; x) = y�t (�; x) and @�jt(�; y
�
t (�; x); v

�
t (�; x))=@v � 0;

or y�t (�; x)� wU < v�t (�; x) < y�t (�; x) and @jt(�; y
�
t (�; x); v

�
t (�; x))=@v = 0:

(4.67)

We can check that the chosen solution pair has satis�ed the above requirements.

Finally, we derive limiting conditions for @ft(�; x)=@x. According to the policy chosen,

we have

@ft(�;�1)

@x
= 0; (4.68)

whereas

@ft(�;+1)

@x
= lim

x!+1
[
@jt(�; x; x� wU)

@y
+
@jt(�; x; x� wU)

@v
]: (4.69)
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By (4.62), the latter results in

@ft(�;+1)

@x
= �� + s(�)� h1 + � � E[

@ft�1(�
0;+1)

@x
j �]: (4.70)

Using (MO3) to (MO5), as well as the induction hypothesis (4.61), we can con�rm

that the above left-hand side is strictly below 0. We are thus done with the induction

process.

Now we show that, with a higher raw material cost �, each additional unit of ini-

tial inventory brings less marginal pro�t to the �rm; consequently, all �-dependent

points and curves that help de�ne the �rm's policy as delineated in Theorem 4.2 are

decreasing in �.

Theorem 4.3. For t = 0; 1; 2; :::, the function ft(�; x) is submodular in (�; x). Also,

for t = 1; 2; :::, the function jt(�; y; v) is submodular in both (�; y) and (�; v). More-

over, for t = 1; 2; :::, ~vt(�; y), y
0
t (�), y

U
t (�), and v0t (�) � y0t (�) � w0(�) are all de-

creasing in �; as a consequence, y�t (�; x) is decreasing in �, and v�t (�; x) is decreasing

in �.

In Theorem 4.3, the submodularity of ft(�; x) in (�; x) is expected. Under a higher

raw material cost, the �rm will be able to extract less pro�t from each additional unit

in inventory. Similarly, the submodularity of jt(�; y; v) in (�; y) and (�; v) re�ects the

decreasing marginal value of inventory with respect to the raw material cost. The

theorem also says that boundaries of the three-region description of ft(�; x) given

in (4.58) have declining trends in �. Figure 4.1 is a depiction of ft(�; x).

From the theorem's decreasing trend of y�t (�; x) in �, we know that the �rm should

lower its acquisition target level when there is an increase in the raw material cost.

This is the same message conveyed by the main result of Yang and Xia (2009), which

is not concerned with pricing. The lowered acquisition target level helps the �rm's

pro�tability in the present period.
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Figure 4.1: Depiction of ft(�; x) in the (�; x)-plane

When the raw material inventory level is lower than the base stock level, the �rm will

charge list price p(�;w0(�)). Assume p(�;w) is increasing the cost � which is not

used in our model. Then, p(�;w0(�)) is increasing in � because w0(�) is decreasing in

� and p(�;w) increases in w. However, when the raw material inventory level is too

high, the �rm will charge sales price p(�; x� ~vt(�; x)) which may increase or decrease

in �. As veri�able by numerical tests, no de�nitive conclusion can be reached on the

direction in which the �rm should adjust its sales price or its targeted sales volume in

the face of a changing raw material cost. Meanwhile, the decreasing trend of v�t (�; x)

in � indicates that the pricing policy should be carried out to lower the expected

next-period inventory level when the raw material cost increases.

Note (a) the relation

expected next-period inventory level = post-procurement inventory level

� expected sales volume;

(b) the decreasing trend of the post-procurement inventory level over the raw material

cost, and (c) the fact that the sales volume is negatively correlated with the sales price

charged. Hence, the trend is about �moderation in pricing�. In the face of higher raw
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material costs, the �rm should not charge too high a sales price to raise the expected

next-period inventory level. A lowered expected next-period inventory level is actually

reasonable, as it prepares the �rm for in�ated raw material costs to come in the near

future.

Before providing the proof of Theorem 4.3, we �rst present the following lemma which

is from Lemma 2.8.1 of Topkis (1998).

Lemma 4.2. Let t and t be two constants satisfying t � t. Consider function u(�; �)

de�ned on < � [t; t]. Suppose u(s; �) is concave on [t; t] for every s 2 <, and t̂(s) is

the largest solution for supt2[t;t] u(s; t). Then, t̂(�) will be a decreasing function when

u(�; �) is submodular.

We now prove the Theorem 4.3 through induction.

Proof: First, by (4.10), f0(�; x) = 0 is clearly submodular in (�; x). Then, for some

t = 1; 2; :::, suppose that ft�1(�; x) is submodular in (�; x).

Now, we prove that jt(�; y; v) is submodular in (�; y). Recall (4.62) says

@jt(�; y; v)

@y
= �� +

@r(�; y � v)

@w
: (4.71)

From (MO5), we know that @jt(�; y; v)=@y is decreasing in �.

Then, we prove that jt(�; y; v) is submodular in (�; v). Recall (4.62) says

@jt(�; y; v)

@v
= s(�)�

@r(�; y � v)

@w
�E[

dh(v ��)

dx
]+��E[

@ft�1(�
0; v ��)

@x
j �]: (4.72)

By (MO4), we know that s(�)�@r(�; y� v)=@w is decreasing in �. By the induction

hypothesis, we know that E[@ft�1(�; v ��)=@x] is decreasing in �. This and (MO6)

lead to that E[@ft�1(�
0; v � �)=@x j �] is decreasing in �. Therefore, @jt(�; y; v)=@v

is decreasing in �.
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Lastly, we prove that ft(�; x) is submodular in (�; x) and along the way, the �-

monotonicity of the policy-de�ning constants and curves. Because we are to use

Theorem 4.2 extensively, we will call upon its results without further mentioning the

theorem. From (MO1) and (MO5), we may know that w0(�) is decreasing in �. By

jt(�; y; v)'s submodularity in (�; v) and its concavity in v, we may use Lemma 4.2 to

establish that ~vt(�; y) is decreasing in � at any �xed y.

Note that (y0t (�); y
0
t (�) � w0(�)) is the intersection of the two curves y = v + w0(�)

and v = ~vt(�; y). For �� � 0, suppose curves y = v + w0(�) and v = ~vt(� + ��; y)

intersect at (y0; v0). Then, since ~vt(�; y) is decreasing, we have that v
0 � y0t (�)�w

0(�).

But ~vt(� + ��; �) is itself increasing, so y0 � y0t (�). Because w0(�) is decreasing, the

y-component of the intersection between y = v + w0(� + ��) and v = ~vt(� + ��; y)

must be below that of the intersection between y = v + w0(�) and v = ~vt(� + ��; y).

That is, y0t (� + ��) � y0. Therefore, we have

y0t (� + ��) � y0 � y0t (�): (4.73)

Hence, y0t (�) is decreasing in �. This, together with that ~vt(�; y) is decreasing in �

and increasing in y, lead to v0t (�) = y0t (�)� w0(�) = ~vt(�; y
0
t (�)) being decreasing in

�. Meanwhile, (yUt (�); y
U
t (�)� wU) is the intersection of the two curves y = v + wU

and v = ~vt(�; y). Since ~vt(�; y) is decreasing in �, yUt (�) is decreasing in �.

Let x0 = �x, y0 = �y, and v0 = �v. Then jt(�; y
0; v0) = jt(�;�y;�v) is supermodular

in (�; y0) and (�; v0). Due to (j3), jt(�; y
0; v0) is also supermodular in (y0; v0). As a

result, jt(�; y
0; v0) is supermodular in (�; y0; v0). To prove that f(�; x) is submodular in

(�; x), we can equivalently show that f(�; x0) = f(�;�x) is supermodular in (�; x0).

It is easy to verify that S 0 = f(�; x0)j� 2 [�; �]; x 2 <g and D0 = f(�; y0; v0)jy0 �

x0; y0 � v0 � y0 + wUg are lattices. Let �1 < �2, x
0
1 < x02, (y

0
1; v

0
1) and (y02; v

0
2) be the
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optimal solution for f(�1; x
0
1) and f(�2; x

0
2), respectively. Then, we have

ft(�1; x
0
1) + ft(�2; x

0
2) = jt(�1; y

0
1; v

0
1) + jt(�2; y

0
2; v

0
2)

� jt(�1 _ �2; y
0
1 _ y

0
2; v

0
1 _ v

0
2) + jt(�1 ^ �2; y

0
1 ^ y

0
2; v

0
1 ^ v

0
2)

� ft(�1 _ �2; x
0
1 _ x

0
2) + ft(�1 ^ �2; x

0
1 ^ x

0
2):

(4.74)

Therefore, ft(�; x
0) is supermodular in (�; x0) and ft(�; x) is submodular in (�; x).

We have thus completed the induction procedure.

For the �nal trends at a particular t, let us suppose � increases while (�; x) 2 R1
t .

Then, y�t (�; x) will be y0t (�), which is decreasing in �; meanwhile, v�t (�; x) will be

v0t (�), which is decreasing in � as well. Suppose � increases while (�; x) 2 R2
t . Then,

y�t (�; x) will be �xed at x, while v�t (�; x) will be ~vt(�; x), which is decreasing in �.

Suppose � increases while (�; x) 2 R3
t . Then, y

�
t (�; x) will be �xed at x, while v

�
t (�; x)

will be �xed at x� wU .

At the boundary between R1
t and R2

t , the policy is continuous, as x = y0t (�) =

~vt(�; x) +w0(�). At the boundary between R2
t and R3

t , the policy is also continuous,

as x = yUt (�) = ~vt(�; x) + wU .

Therefore, we have that, on any trajectory in the (�; x)-plane with a varying �, both

y�t (�; x) and v�t (�; x) will decrease with �.

4.3 The In�nite Horizon Case

We can extend earlier structural results on value functions and policies to the case

where the �rm faces statistically the same environment in an in�nite number of pe-

riods. Let ~f(�; x) be the maximum total discounted expected pro�t the �rm can

earn when starting with state (�; x) and given an in�nite number of periods. For the
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terminal period, we now assume the following instead of (4.8):

~f0(�; x) = �
h(x)

1� �
�

b1�

(1� �)2
: (4.75)

By (4.9), this would lead to

f0(�; x) = ��x�
h(x)

1� �
�

b1�

(1� �)2
: (4.76)

For the current in�nite-horizon case, the presence of in�nite discountings renders the

choice of the terminal-period value function immaterial. But our current choice (4.75)

serves to simplify analysis, as can be seen from the following monotone result.

Proposition 4.1. The sequence (ft(�; x) j t = 0; 1; 2; :::) is ascending. That is, for

any � 2 [�; �] and x 2 <, we have

f0(�; x) � f1(�; x) � f2(�; x) � � � � :

Proof: Suppose the �rm starts period t with state (�; x). In the �rst t� 1 periods,

it may execute an optimal policy suitable for the situation where time 1, instead of

time 0, is the end of the planning horizon; in the last period, period 1, the �rm may

opt to acquire nothing and charge the demand-minimizing price p(�1; 0).

Note that

1

(1� �)2
= 1 + 2� + 3�2 + 4�3 + � � � ; (4.77)

while b1 is the maximum penalty cost to the �rm for any one unit loss of its inventory.

So ~f0(�; x) as de�ned by (4.75) is a lower bound to the �rm's in�nite-horizon total

discounted average pro�t when it starts with inventory level x. This bound is achieved

when the �rm receives no revenue, makes no acquisition, and keeps on charging

demand-minimizing prices. Thus, the �rm's total payo� will be above ~ft�1(�; x).
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As the �rm has the potential to do better with a di�erent policy, we have

~ft(�; x) � ~ft�1(�; x): (4.78)

This, through (4.9), translates into

ft(�; x) � ft�1(�; x): (4.79)

Therefore, the sequence (ft(�; x) j t = 0; 1; 2; :::) is ascending, and hence we are done

proving the proposition.

Also, we can establish loose bounds for post-procurement inventory levels.

Proposition 4.2. For x � 0, it is true that @ft(�; x)=@x � 0. For the optimal

post-procurement inventory level y�t (�; x) provided by Theorem 4.2, it is true that

y�t (�; x) � x _ y0;

for some positive constant y0.

Proof: When t � 2, Theorem 4.2 states that @ft�1(�;�1)=@x = 0, which, in

view of ft�1(�; �)'s concavity, leads to @ft�1(�; x)=@x � 0 for x 2 <. Combining this

with (4.76), we may see that, for any t = 1; 2; :::,

@ft�1(�; x)

@x
� 0; (4.80)

when x 2 <+. We now consider y 2 <+. Due to (4.12) and (4.80), we can establish

that

@gt(�;w; y)

@y
� �� + s(�)� E[

dh(y � w ��)

dx
]: (4.81)
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Due to the bounds of �, this will lead to

@gt(�;w; y)

@y
� �� � � � E[

dh(y � w ��)

dx
]: (4.82)

By the convexity of h(�) and (MO3), we know that there exists some x0, so that

dh(x)=dx � (h1+(����)+)=2 when x � x0. Due again to the convexity of h(�), we

may derive from (4.82) that

@gt(�;w; y)

@y
� ����+b1 �P [y < x0+w+�)]�

h1 + (�� � �)+

2
�P [y � x0+w+�]:

(4.83)

De�ne constant � so that

� =
�� � � + b1

(h1 + (�� � �)+)=2 + b1
; (4.84)

which is within [0; 1) by (MO2) and (MO3). Now let �0 be such that

P [� � �0] > �: (4.85)

For y � x0 + w + �0, we have

P [y � x0 + w +�] = P [� � y � x0 � w] � P [� � �0] > �; (4.86)

which, by (4.83), implies

@gt(�;w; y)

@y
< �� � � + b1 � (1� �)�

h1 + (�� � �)+

2
� � = 0: (4.87)

Due to (4.11), we must have

y�t (�; x) � x _ (x0 + wU + �0): (4.88)
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So, the claim of Proposition 4.2 is true with y0 = x0 + wU + �0.

The function r(�; �) as de�ned in (4.6) is continuous on the compact set [�; �]� [0; wU ]

as p(�; �) is. We may let rM � sup�2[�;�];w2[0;wU ] r(�;w), which is a �nite number.

Thus, even given an in�nite number of periods, the �rm's total discounted average

pro�t will not exceed rM=(1� �).

Using (4.10), (4.11), and (4.12), one can establish the loose bound

ft(�; x) � ��x+
�rM

1� ��
: (4.89)

This says that the sequence (ft(�; x) j t = 0; 1; 2; :::) is bounded from above. (4.89),

Proposition 4.1, and Proposition 4.2 together entail the pointwise convergence of

the sequence (ft(�; x) j t = 0; 1; 2; :::) to some f(�; x). We now suppose that the

random factors � are independent of each other. Let ~f(�; x) be the maximum total

discounted expected pro�t the �rm can earn when starting with state (�; x) and given

an in�nite number of periods. The following reveals that the limit point f(�; x) is

indeed the pro�t function for the in�nite-horizon problem, much like what ft(�; x)

is for the t-period problem. Also, there is more to the aforementioned pointwise

convergence.

The following shows that the limit of �nite-horizon value functions serves as the value

function for the limiting, in�nite-horizon, case.

Theorem 4.4. The sequence (ft(�; x) j t = 0; 1; 2; :::) converges to some f(�; x)

uniformly in any (�; x)-region with a bounded x-range. For every � 2 [�; �] and

x 2 <, we have, much like (4.9),

f(�; x) = ~f(�; x)� �x:

Proof: When given an in�nite number of periods, say periods t; t�1; :::; 1; 0;�1;�2; :::,
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a �rm may execute a t-period optimal policy for the �rst t periods. Then, starting

from period 0, the �rm may keep on charging demand-minimizing prices, p(�0; 0),

p(��1; 0); :::, while carrying out no acquisition. In view of (4.75), the �rm will earn

more than ~ft(�; x) on average. Therefore, we have

~f(�; x) � ~ft(�; x): (4.90)

On the other hand, when given t periods t; t � 1; :::; 1, the �rm may execute an

optimal in�nite-horizon policy till the end of the horizon. If it were given the chance

to continue executing the policy from period 0 onwards, the �rm would have earned

at most an extra �t � rM=(1��) in period-t money. Now, with time 0 as the terminal

point, the �rm will be charged with the inventory cost of �t �h(X0)=(1��) in period-

t money, where X0 is the �rm's inventory level at time 0 after it has started with

(�; x) and experienced random shocks �t; :::;�1, �t�1; :::;�1, as well as the optimal

in�nite-horizon policy. By Proposition 4.2, we know that

X0 �j x j +y
0; (4.91)

where y0 is a positive constant de�ned in the proposition. On the other hand, due to

w's bounded range, we have

X0 � � j x j �wU � t� (�t + � � �+�1): (4.92)

Therefore, we have

E[h(X0)] � h1 � (j x j +y
0) + b1 � (j x j +(w

U + �) � t): (4.93)
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Combining the above, we obtain

~f(�; x)� ~ft(�; x) �
�t

1� �
� (rM + E[h(X0)]) �

�t

1� �
� (a0� j x j +b0 � t+ c0); (4.94)

where we have let

a0 = h1 + b1; b0 = b1 � (w
U + �); c0 = h1 � y

0 + rM : (4.95)

Note that

lim
t!+1

�t = lim
t!+1

t � �t = 0: (4.96)

Therefore, we may know from (4.90) and (4.94) that the sequence ( ~ft(�; x) j t =

0; 1; 2; :::) converges to ~f(�; x). From (4.9) and the pointwise convergence of (ft(�; x) j

t = 0; 1; 2; :::) to f(�; x), we have

f(�; x) = ~f(�; x)� �x: (4.97)

By (4.9) and (4.97), we will derive from (4.94) that

f(�; x)� ft(�; x) �
�t

1� �
� (a0� j x j +b0 � t+ c0): (4.98)

This dictates that the aforementioned convergence is uniform in any (�; x)-region

with a bounded x-range.

Now we can follow (4.43) to de�ne j(�; y; v), so that

j(�; y; v) = �� �s(�)��y+s(�) �v+r(�; y�v)�E[h(v��)]+� �E[f(�0; v��) j �]:

(4.99)

The next result reaches three points. It shows that (i) j(�;w; y) is the limit point of

its �nite-horizon counterparts, (ii) the limiting version of the �nite-horizon relation-
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ship (4.42) is valid between the in�nite-horizon entities f(�; x) and j(�; y; v), and (iii)

one of the limiting control problem's optimal policies enjoys the same characteristics

as those described in Theorems 4.2 and 4.3 for �nite-horizon policies.

Theorem 4.5. For every � 2 [�; �] and (y; v) 2 <2, the sequence (jt(�; y; v) j t =

1; 2; :::) converges to j(�; y; v). Like in (4.42), we have

f(�; x) = sup
y2[x;+1);v2[y�wU ;y]

j(�; y; v):

Consequently, one optimal policy for the above problem has the same characteristics

as the one presented in Theorem 4.2; furthermore, the policy (y�(�; x); v�(�; x)) just

identi�ed possesses properties described for its �nite-horizon counterparts in Theo-

rem 4.3: y�(�; x) is decreasing in �, and v�(�; x) is decreasing in � unless x is high

enough to elicit the lowest possible sales price p(�;wU).

Theorem 4.5 asserts that policy structures known for the �nite-horizon case is still true

for the in�nite-horizon case. When remaining operational inde�nitely, the �rm should

still use a raw-cost-dependent base-stock-list-price policy to carry out its procurement

and sales activities; also, the base-stock level y0t (�) for acquisition should decrease in

the face of higher raw material costs �.

The theorem's last and most important claim is that the expected next-period starting

inventory level v�(�; x) + � should decrease with the material cost �. It conveys

the following message to practitioners: when raw material becomes more expensive,

acquisition should be scaled back; sales may or may not have to be reduced; regardless,

there should be �moderation in pricing,� in that the reduction in sales should not

exceed that in procurement.
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Proof: From (4.76) and Lemma 4.1, we know that ft(�; x) has a lower bound:

ft(�; x) � ��x�
h(x)

1� �
�

b1�

(1� �)2
: (4.100)

On the other hand, using (4.76), (4.11), and (4.12), one can establish the loose

bound

ft(�; x) � ��x+
rM

1� �
: (4.101)

where rM is de�ned in the proof of Theorem 4.4.Hence, loosely speaking,

j ft(�; x) j� �� j x j +
rM + h(x)

1� �
+

b1�

(1� �)2
: (4.102)

So, using Theorem 4.4 and the dominated convergence theorem, we can show that

the sequence (gt(�;w; y) j t = 1; 2; :::), de�ned through (4.12), converges to some

g(�;w; y); as for the latter, it is linked to j(�; y; v) already de�ned in (4.99) through

j(�; y; v) = g(�; y � v; y); and equivalently, g(�;w; y) = j(�; y; y � w): (4.103)

Due to Theorem 4.4, we also know that the convergence is uniform in any (�;w; y)-

region with a bounded (w; y)-range.

As concavity and modularity properties are preserved under even pointwise conver-

gence, we know from Theorems 4.1, 4.3, and 4.4, as well as the above, that f(�; x) is

concave in x and submodular in (�; x), g(�;w; y) is jointly concave and supermodular

in (w; y), and j(�; y; v) is submodular in both (�; y) and (�; v). From Theorems 4.2

and 4.4, we also know

@f(�;�1)

@x
= 0; and

@f(�;+1)

@x
� 0: (4.104)

With these, we can use the same reasoning as used in the proof of Theorems 4.2
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and 4.3 to establish that one optimal policy (y � (�; x); v�(�; x)) for the optimization

problem supy2[x;+1);v2[y�wU ;y] j(�; y; v) enjoys all properties possessed by its �nite-t

counterparts.

Let y0 be as de�ned in Lemma 4.2. As [0; wU ] � [x; x _ y0] is a bounded region

in the (w; y)-plane, we may use the earlier convergence to show that the sequence

(supw2[0;wU ];y2[x;x_y0] gt(�;w; y) j t = 1; 2; :::) converges to supw2[0;wU ];y2[x;x_y0] g(�;w; y)

for every (�; x)-pair. On the other hand, Lemma 4.2 says that @ft(�; x)=@x � 0 for

x � 0. This along with Theorem 4.4 leads to @f(�; x)=@x � 0 for x � 0. Using

the same argument as used in the proof of Lemma 4.2, we can then establish that

y�(�; x) � x _ y0. Hence,

sup
w2[0;wU ];y2[x;x_y0]

g(�;w; y) = sup
w2[0;wU ];y2[x;+1)

g(�;w; y): (4.105)

We already know the �nite-t counterpart of (4.105) through Lemma 4.2. There-

fore, we have the convergence of (supw2[0;wU ];y2[x;+1) gt(�;w; y) j t = 1; 2; :::) to

supw2[0;wU ];y2[x;+1) g(�;w; y) for every (�; x)-pair. In view of (4.12) and Theorem 4.4,

however, the only possibility is that

f(�; x) = sup
w2[0;wU ];y2[x;+1)

g(�;w; y): (4.106)

But by (4.103), this translates into

f(�; x) = sup
y2[x;+1);v2[y�wU ;y]

j(�; y; v): (4.107)

We have thus proved the theorem.
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CHAPTER 5

Numerical Study

In this chapter, we conduct numerical study to explore the results we haven't found

from the previous models. Through out this chapter, we focus on the following ques-

tions:

(a) whether the markdown case does not have complementarity between price �ex-

ibility and inventory, a property that is essential for the markup case;

(b) whether earlier treatment of the markup case needs minor corrections;

(c) whether k-monotonicity is in general not true for the threshold policies of the

irreversible-pricing cases;

(d) whether heeding the time-variability of �(t) helps reap huge bene�ts;

(e) whether optimal policies for arrival patterns more general than the current prod-

uct form in dynamic pricing models are not necessarily threshold-like;

(f) whether there is emperical evidence supporting for the assumption of Markovian

raw material cost;

(g) whether considering cost-dependent policy provides signi�cant pro�t bene�t;

(h) whether the increment of the cost can be fully passed to the customer; and,

(i) whether violation of assumption (M4)-(MO6) will lead to the break of �-monotone

properties of the optimal policy in the make-to-order model.
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5.1 Parameters Setup

For answering question (a)-(e) which are raised for the dynamic pricing cases, we

take the following setup: the horizon length T = 1, K = 4 so that there are �ve

di�erent price levels, the number of initial stock level N = 20, the price-level vector

(�pk j k = 0; 1; :::; K) = (1; 2; 3; 4; 5), the time-multiplier vector (��k j k = 0; 1; :::; K) =

(4N; 1:7N; 1:0N; 0:7N; 0:54N) unless otherwise speci�ed, and the number of discrete

time intervals Q = 1; 000; 000. Unless otherwise speci�ed, we de�ne the time multi-

plier �(�) to be used in the product form by

�(t) =
W

1� e�W
� eW �(t�T )=T ; 8t 2 [0; T ]; (5.1)

where parameter W 2 f1; 2; � � � ; 10g. It is easy to check that the time average
R T
0
�(t) � dt=T = 1 at all W values, and that W re�ects the degree of time-variability

of the arrival pattern �(�). We set the default value of W at 5.

In addition, we want to introduce brute-force algorithms for the markup, markdown,

and reversible cases, which we call Markup2, Markdown2, and Reversible2, respec-

tively. The brute-force algorithms will be used to test whether the optimal policy is

still threshold-like when demand is not product form. Also, Markup3, Markdown3,

and Reversible3 are proposed for checking the bene�t brought by considering �uctu-

ating �(t).

We �rst describe our brute-force algorithm Markup2.

for k = 0 to K

for n = 0 to N

let vknQ = 0;

for q = 0 to Q� 1
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let vk0q = 0;

for q = Q� 1 down to 0

for n = 1 to N

let vKnq = �Kq ��T � (�p
K + vKn�1;q+1) + (1� �Kq ��T ) � v

K
n;q+1;

for k = K � 1 down to 0

for q = Q� 1 down to 0

for n = 1 to N

let vknq = �kq ��T � (�p
k + vkn�1;q+1) + (1� �kq ��T ) � v

k
n;q+1, pknq = �pk,

and u = �k+1
q ��T � (�pk+1 + vk+1

n�1;q+1) + (1� �k+1
q ��T ) � vk+1

n;q+1;

if u > vknq

let vknq = u and pknq = �pk+1.

In this algorithm, each pknq indicates the new price taken by the �rm when it has n

items and is charging price �pk right before time q � �T . The following is algorithm

Markdown2.

for k = 0 to K

for n = 0 to N

let vknQ = 0;

for q = 0 to Q� 1

let vk0q = 0;

for q = Q� 1 down to 0

for n = 1 to N

let v0nq = �0q ��T � (�p
0 + v0n�1;q+1) + (1� �0q ��T ) � v

0
n;q+1;

for k = 1 to K

for q = Q� 1 down to 0

for n = 1 to N

let vknq = �kq ��T � (�p
k + vkn�1;q+1) + (1� �kq ��T ) � v

k
n;q+1, pknq = �pk,

and u = �k�1q ��T � (�pk�1 + vk�1n�1;q+1) + (1� �k�1q ��T ) � vk�1n;q+1;
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if u > vknq

let vknq = u and pknq = �pk�1.

The time complexity for either of the two brute-force algorithms is also O(KNQ).

The brute-force algorithm Reversible2 is as follows.

for n = 0 to N

let vnQ = 0;

for q = 0 to Q� 1

let v0q = 0;

for n = 1 to N

for q = Q� 1 down to 0

let vnq = �Kq ��T � (�p
K + vn�1;q+1) + (1� �Kq ��T ) � vn;q+1 and pnq = �pK ;

for k = K � 1 down to 0

let u = �kq ��T � (�p
k + vn�1;q+1) + (1� �kq ��T ) � vn;q+1;

if u � vnq

let vnq = u and pnq = �pk.

In the algorithm, each pnq stores the price to be taken at time q ��T when the �rm

has n items at that time. The complexity of Reversible2 is O(KNQ).

What follows is algorithm Markup3.

for k = 0 to K

for n = 0 to N

let v+0knQ = 0;

for q = 0 to Q� 1

let v+0k0q = 0;

for q = Q� 1 down to 0

for n = 1 to N

let v+0Knq = �Kq ��T � (�p
K + v+0Kn�1;q+1) + (1� �Kq ��T ) � v

+0K
n;q+1;
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for k = K � 1 down to 0

for q = Q� 1 down to 0

for n = 1 to N

if q < �+0;k+1
n �Q

let v+0knq = �k+1
q ��T � (�pk+1 + v+0;k+1

n�1;q+1) + (1� �k+1
q ��T ) � v+0;k+1

n;q+1 ;

else

let v+0knq = �kq ��T � (�p
k + v+0kn�1;q+1) + (1� �kq ��T ) � v

+0k
n;q+1.

Now comes algorithm Markdown3.

for k = 0 to K

for n = 0 to N

let v�0knQ = 0;

for q = 0 to Q� 1

let v�0k0q = 0;

for q = Q� 1 down to 0

for n = 1 to N

let v�00nq = �0q ��T � (�p
0 + v�00n�1;q+1) + (1� �0q ��T ) � v

�00
n;q+1;

for k = 1 to K

for q = Q� 1 down to 0

for n = 1 to N

if q � ��0kn �Q

let v�0knq = �k�1q ��T � (�pk�1 + v�0;k�1n�1;q+1) + (1� �k�1q ��T ) � v�0;k�1n;q+1 ;

else

let v�0knq = �kq ��T � (�p
k + v�0kn�1;q+1) + (1� �kq ��T ) � v

�0k
n;q+1.

Both Markup3 and Markdown3 are of complexity O(KNQ), and in both, we have

only allowed switches between neighboring prices, and hence have excluded �leapfrog-

ging�. But as K � Q, consecutive price changes in this discrete-time setting can

approximate the continuous-time phenomenon reasonably well. The following is al-
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gorithm Reversible3.

for n = 0 to N

let v0nQ = 0;

for q = 0 to Q� 1

let v00q = 0;

for n = 1 to N

let k = 0;

for q = Q� 1 down to 0

let v0nq = �kq ��T � (�p
k + v0n�1;q+1) + (1� �kq ��T ) � v

0
n;q+1;

while k � K � 1 and � 0k+1
n �Q > q

let k = k + 1.

The complexity of Reversible3 is O(N � (K +Q)).

To address questions (f)-(i) which are raised for the make-to-order inventory control

with pricing model, we focus on the in�nite horizon case. Both the state space, i.e., the

(�; x)-plane, and the control space, i.e., the (w; y)- or (y; v)-planare discretized. We

can get the same policy structures as predicted in Theorem 4.5, as long as we replace

derivatives used in earlier continuous-state derivations with di�erences. To facilitate

later de�nitions, we de�ne an operator INT(�) that converts a random variable with

a �nite support into a "nearby" random variable with an integer-valued support.

Suppose, for some n constants �1; :::; �n and n positive constants p1; :::; pn satisfying

p1 + � � � + pn = 1, we have that � is a random variable satisfying P [� = �i] = pi

for i = 1; 2; :::; n. Then, INT(�) is a random variable that satis�es, for every integer

k,

P [INT(�) = k] =
nX
i=1

pi �(1(�i 2 (k�1; k])�(�i�k+1)+1(�i 2 (k; k+1))�(k+1��i));

(5.2)

where 1(�) is the indicator function. Basically, INT(�) assigns weights to integer
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values based on densities of the �i points surrounding them.

We let � be an integer-valued random variable uniformly distributed in an interval

[� � S; � + S] for some S 2 [0; �]. For the inventory holding-backlogging cost, we

let

h(x) = H � (x+ ^X) + L � (x� ^X) +M � (x�X)+ +M � (�x�X)+; (5.3)

for positive constants X and M , as well as constants H;L 2 [0;M ]. Here, H serves

as an ordinary holding cost rate and L an ordinary backlogging cost rate. We shall

let X be a large �rarely exceeded� absolute value of the inventory level, and let M be

large enough to render the satisfaction of (MO2) and (MO3) concerning b1 and h1

a foregone conclusion.

We let the inverse-demand function in Section 4.1 be

p(�;w) = A� +
B

(w + �)C
; (5.4)

where A;B;C and D with A 2 [0; 1), B 2 <+, and C 2 (0; 1).

For the �rm to enjoy any premium p0 over A times the raw material cost �, (5.4)

suggests that competition will force the �rm to accept the expected demand size

(B=p0)1=C , which dwindles as p0 rises. From (5.4), we can check that p(�; 0) =

A� +B=�C is �nite and p(�; �) is continuous and strictly decreasing. We may obtain

from (4.6) and (5.4) that

r(�;w) = A� � (w + �) +B � (w + �)1�C ; (5.5)

and hence

@r(�;w)

@w
= A� +

B � (1� C)

(w + �)C
: (5.6)
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It can be easily checked that r(�;w) is concave in w.

Under any given scenario, we conduct value iteration on a variant of the formulation

involving (4.10), (4.11), and (4.12). This way, we may obtain the in�nite-horizon

pro�t values f(�; x) along with the corresponding optimal controls w�(�; x) and

y�(�; x), for � 2 [�; �] and x 2 [�X;X]. As for convergence criterion, we adopt

jj ft � ft�1 jj� max�����;�X�x�X j ft(�; x)� ft�1(�; x) j< 0:01: (5.7)

5.2 Computational Result

In test (a), we use v�knq to denote the maximum value achieved by Markdown1 in the

markdown case when the �rm charges price �pk at time q�t and remaining inventory

n. To check whether the markdown case possesses complementarity between price

choice and inventory, we de�ne the following ratio ��:

�� =

PQ
q=0

PN�1
n=0

PK�1
k=0 (v

�k
n+1;q + v�;k+1

nq � v�knq � v�;k+1
n+1;q )

+

PQ
q=0

PN�1
n=0

PK�1
k=0 j v

�k
n+1;q + v�;k+1

nq � v�knq � v�;k+1
n+1;q j

: (5.8)

Note that �� is always between 0 and 1; it will be 0 if and only if v�knq + v�;k+1
n+1;q �

v�kn+1;q + v�;k+1
nq for any (k; n; q), that is, if and only if v�knq has increasing di�erences

between k and n. For the markdown case, a higher k means more price choices

in the future. Thus, �� measures the degree to which complementarity between

price �exibility and inventory is violated for the markdown case. When W = 5, we

�nd �� � 25:0%. Figure 5.1 further shows the di�erent �� values at di�erent W

levels. From this �gure, we can see that the complementarity property doesn't exist

in the markdown case, which con�rms the distinction between the markdown case

and markup case.
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Figure 5.1: Violations of Complementarity between Price-�exibility and Inventory at Dif-
ferent W 's

In test (b), we only have to use �(t) = 1 for all t's. Concerning the sign of Gk�1n (t) �

vk + �pk�1��k�1 � �(t) within (� kn ; T ), we �nd that G3
6(t) � v

4 + �p3��3 � 1 < �1:7 when

t 2 [0:6065; 0:6165], where � 46 ' 0:6065 is the threshold level for k = 4 and n = 6.

Here, any dtu(t) is approximated by [u(t + �t) � u(t)]=�t. Therefore, Gk�1n (t) �

vk + �pk�1��k�1 � �(t) may be negative when t > � kn . Concerning the monotonicity of

Gk�1n (t) � vk in n, we �nd that G0
17(t) � v

1 � G0
16(t) � v

1 ' �0:340 when t ' 0:2622.

That is, we do not necessarily have the increase of Gk�1n (t) � vk in n.

In test (c), we use ��kn to denote threshold levels found by applying Markup(down)1

to the markup(down) problem. To check whether the irreversible cases enjoy the

k-monotonicity, we de�ne the �� ratios:

�� =

PN
n=1

PK�1
k=0 (�

�;k+1
n � ��kn )+PN

n=1

PK�1
k=0 j �

�;k+1
n � ��kn j

: (5.9)

Note that �� is always between 0 and 1; it will be 0 if and only if ��k+1
n � ��kn at

every possible (k; n). Thus, it measures the degree to which k-monotonicity has

been violated. For W = 5 and time-multiplier vector (��k j k = 0; 1; :::; K) =

(2:0N; 0:76N; 0:5N; 0:25N; 0:1N), we have �+ � 11:2% for the markup case. For

the markdown case, we have to use a di�erent time-multiplier vector (��k j k =

0; 1; :::; K) = (3N;N; 0:5N; 0:35N; 0:27N) to achieve unequivocal results. Under this
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Figure 5.2: Violations of k-monotonicity at Di�erent W 's

and W = 5, we �nd �� � 13:9%. We can also plot the �� values when W changes

in Figure 5.2. This �gure con�rms that the irreversible cases doesn't have the k-

monotonicity which distinguish them from the reversible case.

In test (d), let �
0

(t) = 1 when the �rm is not aware of the time-�uctuating demand.

Then, we denote v+knq and �+kn as the values and threshold points resulting from ap-

plying Markup1 to the markup problem de�ned by �(t). Also, we de�ne �+0kn be

the threshold levels resulting from applying Markup1 to the corresponding stationary

problem when �0(t) = 1. To �nd the values v+0knq by using the sub-optimal policy �+0kn

in the time-�uctuating situation with �(t), we adopt algorithm Markup3.

Corresponding to Markup3, we have algorithms Markdown3 and Reversible3 for the

markdown and reversible-pricing cases, respectively. For the markdown case, the

relevant values will be denoted by v�knq and v�0knq , while for the reversible-pricing case,

these values will be denoted by v0nq and v00nq.

To measure the losses due to neglecting the time-variability of �(�), we may de�ne

��(0) for the markup(down) and reversible-pricing cases:

�� =

PK
k=0(v

�k
N0 � v�0kN0 )PK

k=0 v
�k
N0

; �0 =
v0N0 � v00N0

v0N0

: (5.10)



5.2. COMPUTATIONAL RESULT - 106 -

Figure 5.3: Bene�ts of Heeding Demand's Time-variability at Di�erent W 's

When W = 5, we have �+ � 2:0%, �� � 18:9%, and �0 � 15:8%. Hence, the bene�t

of heeding demand's time-variability in each of the three cases is substantial. When

W varies, we show the ��(0) values in Figure 5.3. It is quite clear from the �gure that

the bene�t increases with the degree of the �uctuation.

In test (e), we choose the following form:

�k(t) = ��k � [1 + 0:8 � sin(2� � (
k

0:3
+ t))]: (5.11)

Note that (5.11) is not product-form demand rate. Since our algorithm Markup1,

Markdown1, and Reversible1 is achieved under product-form demand rate, we use

the brute-force algorithmsMarkup2,Markdown2, and Reversible2 to solve the optimal

pricing policy here. In fact, the results di�er widely between the threshold policy and

brute-force policy in the case of (5.11). We show, in �gure 5.4, the pricing decisions

obtained by Markup2, Markdown2, and Reversible2.

Since none of the above pricing decisions is decreasing in t, we simply can not de�ne

� kn for any of these cases. Therefore, threshold policies for those three cases stop at

the product-form case for the time being. Note that �k+1(t)=�k(t) under (5.11) is

not decreasing in t. Therefore, Zhao and Zheng's (2000) Assumption 1 is violated,

and our counter example for the reversible-pricing case is not in contradiction with
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Figure 5.4: Non-threshold Pricing Decisions when Arrival is not of Product Form

Zhao and Zheng's prediction for time-monotone policies when arrival patterns are

well behaved.

Then, we study the lost opportunity involved in the markup and markdown practices.

In this study, we let �(�) take the form

�(t) = [1 +X � sin(
2�Y

T
� t)]� [

2Z

T
� t+ 1� Z]; 8t 2 [0; T ]; (5.12)

where X is a constant in [0; 1), Y a constant in f1; 2; � � � ; 10g, and Z a constant in

(�1; 1). For the arrival pattern, X controls its oscillation volume, Y its oscillation

frequency, and Z its incremental trend. Under each (X; Y; Z) tuple, we compute the

optimal value v+0
N0 at k = 0, n = N , and t = 0 for the markup case using Markup1,

the optimal value v�KN0 at k = K, n = N , and t = 0 for the markdown case using

Markdown1, and the optimal value v0N0 at n = N and t = 0 for the reversible-pricing

case using Reversible1. De�ne �� by

�+ =
v0N0 � v+0

N0

v0N0

; �� =
v0N0 � v�KN0

v0N0

: (5.13)

Note that �+ re�ects the loss due to the obligation of always marking up, and ��
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Figure 5.5: Average �� Values when X Varies

Figure 5.6: Average �� Values when Y Varies

re�ects the loss due to the obligation of always marking down.

In Figures 5.5 to 5.7, we show average �� values when one of X, Y , and Z varies,

respectively, while at each such �xed parameter, the other two parameters go over

100 random samples generated from uniform distributions on their respective ranges.

These �gures always show �+ < 2:5% and �� < 2%. Also, the losses do not alter much

when the parameters vary. The only notable trend is that �� will increase when Z

increases. This is to be expected�when demand is on the rise, it is unwise to keep on

making price concessions. Our overall conclusion from this part of the computational

study may be that, at least for product-form demand, irreversible pricing practices are

viable alternatives to the less consumer-friendly practice of reversible pricing.

In test (f), we have gathered weekly LME Copper Cash Price, US dollar/tonne, from
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Figure 5.7: Average �� Values when Z Varies

Jan/2/2004 to Dec/27/2013 and monthly China Iron Ore Spot Price Shandong/Zibo,

CNY/tonne, from Jan/31/2008 to Dec/31/2013 from Bloomberg Terminal. Every

two-year period of copper prices makes up a time series, and every three-year period

of iron ore prices makes up a time series as well. We have �ve time series on cooper

prices and two time series on iron ore prices.

For each time series (Xt), we start o� with the following Autoregressive(AR) model

Xt = �(1�
kX
i=1

ri) +
kX
i=1

riXt�i + �t; (5.14)

where k is the order of the model re�ecting the depth at which each Xt is dependent

on the past, � is the mean of Xt, and �t represents noise. Each ri for i = 1; 2; :::; k

re�ects the correlation between Xt and Xt�i. Within the statistics software R, we can

call the �ar� function to get the order k and the �arima� function using the maximum

likelihood method to obtain other parameters.

Our tests show that all cases have order k = 1 except for two. For copper prices from

January 2012 to December 2013 and that from January 2008 to December 2009, we

�nd k to be 2 and 4, respectively. To be speci�c, the AR model for copper prices
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from January 2012 to December 2013 is

Xt = 325:23 + 0:895Xt�1 + 0:065Xt�2 + �t: (5.15)

However, the p-value for r2 is 0.42 indicating insigni�cance of the dependence. For

copper prices from January 2008 to December 2009, we have

Xt = 139:20 + 0:993Xt�1 + 0:181Xt�2 � 0:041Xt�3 � 0:156Xt�4 + �t: (5.16)

Here, p-values for r2, r3, and r4 are, respectively, 0.187, 0.763, and 0.112. Again,

the higher-order dependencies are not signi�cant. We can rerun the AR models after

excluding the insigni�cant terms.

In the following, we present all the AR(1) parameters for the seven time series.

Table 5.1: AR(1) Parameters

Date, Period Item r1 � p-value of r1 p-value of �
01/2004-12/2005, weekly copper 0.928 2856.86 � 0.001 � 0.001
01/2006-12/2007, weekly copper 0.986 4929.19 � 0.001 0.001
01/2008-12/2009, weekly copper 0.986 5388.00 � 0.001 0.002
01/2010-12/2011, weekly copper 0.996 6387.00 � 0.001 0.013
01/2012-12/2013, weekly copper 0.956 8116.30 � 0.001 � 0.001
01/2008-12/2010, monthly iron ore 0.902 1244.28 � 0.001 � 0.001
01/2011-12/2013, monthly iron ore 0.899 1259.02 � 0.001 � 0.001

Note �� 0:001� in Table 5.1 means that the concerned p-value is much less than

0.001. From the low p-values, we can see that the copper and iron ore price processes

are all accurately describable by AR(1) models. In other words, they are Markovian

in the sense that the present-period price can be predicted by the previous-period

one, but not anything more in the past.

In test (g), to assess the bene�t of adopting cost-dependent control, we compare

the total pro�t generated by our cost-dependent policy to that the best that a cost-
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blind policy can achieve when both face randomly evolving raw material costs. For

the latter alternative, we suppose the policy is tailored to the case where the raw

material cost stays the �at at �̂ = E[�̂]. Once the in�nite-horizon �-independent

policy (ŷ(x); v̂(x)) is found, we plug it back to the �-varying environment to obtain

in�nite-horizon pro�t function f̂(�; x). To be clear, we brie�y describe their model

in (5.17), (5.18), and (5.19). The raw material price for all the period is �̂ = E[�].

Let ~ft(x) be the maximum total discounted expected pro�t that the �rm can earn

from period t onward till the terminal period 0, when the �rm's inventory level is x.

For any period t = 1; 2; :::, the recursive relationship in (4.7) now becomes:

~ft(x) = supw2[0;wU ];z2<+ E[p(�̂; w) � (w +�)� �̂z � h(x+ z � w ��)

+� � ~ft�1(x+ z � w ��)]:
(5.17)

Let ft(x) = ~ft(x) � �̂x, we have the counterparts of (4.42) and (4.43) as the

following:

ft(x) = sup
y2[x;+1);v2[y�wU ;y]

jt(y; v); (5.18)

where

jt(y; v) = ����̂ � �̂y + ��̂v + r(�̂; y � v)� E[h(v ��)]

+� � E[ft�1(v ��)]:
(5.19)

Suppose the pro�t is f(�; x) when our truly �-dependent optimal policy is applied

to the �-varying environment. We then de�ne � to capture the relative loss of pro�t

due to the �rm's blindness to raw material cost changes:

� =
E[f(�̂; 0)� f̂(�̂; 0)]

E[f(�̂; 0)]
=

P�
�=� q(�) � (f(�; 0)� f̂(�; 0))P�

�=� q(�) � f(�; 0)
: (5.20)

Basically, we compute the relative loss in average pro�ts when the raw material cost
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is in steady state and the �rm starts with no product in inventory.

We let the raw material cost process be governed by the probability transition ma-

trix

M =

0
BBBBBBB@

m(�; �) m(�; � + 1) ::: m(�; �)

m(� + 1; �) m(� + 1; � + 1) ::: m(� + 1; �)

:::

m(�; �) m(�; � + 1) ::: m(�; �)

1
CCCCCCCA
;

where each m(�; �0) is the probability of moving from state � to �0 in one period. Let

vector Q = (q(�); q(� + 1); :::; q(�)) be the invariable probability distribution of the

raw material cost, which satis�es both QM = Q and
P�

q=� q(�) = 1. Let �̂ be the

generic random raw material cost in steady state.

At every �, we let V ar[�0j�] = E[(�0�E[�0j�])2j�] be the variance of the next-period

cost �0 conditioned on the present-period cost �, where for any function f(�), we have

E[f(�0)j�] =
P�

�=� f(�
0) �m(�; �0). We de�ne 
 =

P�
�=� q(�) � V ar[�

0j�] to capture

the randomness of the raw material cost's move from one period to the next.

We compute (
; �) for 1,000 randomly generated scenarios. With regard to how

the cost-transition matrix M is constructed, these scenarios can be divided into ten

100-strong batches. For each of the 100 scenarios within the b-th batch, where b =

1; 2; :::; 10, we let each or each pair of the middle elements in every row of M share

0:1b� 0:05. The remaining entries in every row of M are randomly generated so that

they occupy the entire 1:05� 0:1b in a uniform fashion. All 1,000 scenarios share the

same other parameters; e.g., discount factor � = 0:95, �-de�ning parameters � = 3

and S = 2, demand-lever upper bound wU = 70, cost bounds � = 1 and � = 20,

r(�;w)-de�ning constants A = 0:6, B = 100, and C = 0:6, and inventory-related

parameters X = 50 and M = 100. As for the two inventory-related constants, we

maintain the relationship L = 2H = 1.
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Figure 5.8: Pro�t vs. Price Variance

In �gure 5.8, we plot the (
; �)-points for the 1,000 scenarios.

In the range where 
 increases from 0 to 40, the relative loss � steadily grows from 2%

to 14%. So not only is the pro�t improvement from cost-sensitive control signi�cant,

it will also grow in importance as the cost changes more randomly and faster over

time.

In test (h), we let

�p(�; x) = p�(� + 1; x)� p�(�; x); (5.21)

where p�(�; x) is the optimal sales price under cost � and inventory level x. So

�p(�; x) � 1 means that cost increment is fully passed over to customers, 0 �

�p(�; x) < 1 means that cost increment is only partially passed over, and �p(�; x) <

0 means that price is dropped in the face of cost increase.

From now on, we let the per-period raw material cost evolution be guided by

(�0j�) =
D

�
� + (1�

D

�
)�0; (5.22)

where D 2 (0; A�) and �0 is a random variable uniformly distributed on [�; �].

Thus, the next-period cost is (D=�)-portion the current cost and (1�D=�)-portion
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the random update �0. This leads to ds(�)=d� = D. We also use real data to

calibrate the involved parameters. To track the monthly China Iron Ore Spot Price

Shandong/Zibo from January 31, 2010 to December 31, 2013 which range from 955 to

1,520 CNY/tonne and follow an AR(1) model with autocorrelation coe�cient 0.899,

we let � = 95, � = 152, and D=� = 0:9, so that per unit increase of � corresponds

to 10 CNY/tonne. For other parameters, we let � = 0:95, � = 3, S = 2, wU = 70,

A = 0:6, B = 300, C = 0:5, X = 50, M = 100, and L = 2H = 20.

In Figure 5.9, we use di�erent colors to re�ect di�erent �p(�; x) levels at various

(�; x)-points.

We can see from Figure 5.9 that the base stock level decreases in the raw material

cost with the maximum level y0(�) = 16 and the minimum level y0(�) = 5. In most

cases, the �rm passes cost increases to customers in various degrees. However, there

is no clear monotone trend of this behavior with respect to inventory-level changes.

There are even occasions where �p(�; x) < 0, indicating price drops in the face of

cost increases.

In test (i), we do not insist that Q = 0. Thus, 
 is not necessarily equal to 1 almost

surely. For some parameter Q 2 [0; 1], we let 
 take values 1 � Q, 1, 1 + Q, and

1+2Q with, respectively, probabilities 4P , 1�7P , 2P , and P for some P 2 [0; 0:125].

Demand will remain additive when P = 0 or Q = 0. The current arrangement ensures

that E[
] = 1 regardless. When 
 is involved, the expression (y�
w��) is changed

to INT(y � w ��). We let the 
-de�ning constant P = 0:11

For the inverse-demand function p(�; �) in (5.4) and raw material cost process (�0 j �)

in (5.22), we shall make sure that (MO1) on the concavity of r(�; �) is always satis�ed.

Yet, we allow (MO4) to (MO6) to be turned on and o� through adjustments of certain

parameters. In particular, A 2 [0; 2), B 2 <+, C 2 (0; 1), and D 2 [��; 2�].

When A 2 [0; 1) and D 2 [0; � ^ A], we may check that (MO4) to (MO6) will be
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Figure 5.9: Cost Increases Passed on to Pricing
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satis�ed. But when A 2 [1; 2) or D 2 [��; 0) [ (� ^ A; 2�], some of them may be

violated.

In all scenarios, we �x the discount factor � = 0:95, �-de�ning parameters � = 3 and

S = 2, the demand-lever upper bound wU = 70, the cost bounds � = 1 and � = 20,

the r(�;w)-de�ning constant B = 200 and C = 0:8, and the inventory-related param-

eters X = 50 and M = 100. As for the two inventory-related constants, we maintain

the relationship L = 2H = 1. As default values, we let the 
-de�ning parame-

ter Q = 0, the p(�;w)-de�ning parameters A = 0:8, and (�0j�)-de�ning parameter

D = 0:5� = 0:475.

In our study, we let Q, A, and D vary around their default parameters. We may

de�ne ratios of total variations R4 to R6 that measure, respectively, degrees to which

assumptions (MO4) to (MO6) are violated. More particularly, we let

Ri =
V +
i

V +
i + V �

i

; 8i = 4; 5; 6; (5.23)

where we take the convention that 0=0 = 0 and assume the following:

8>>>><
>>>>:

V �
4 =

P��1
�=�

Pw=wU

w=0 (�(�wr(�;w)� s(�)� �wr(� + 1; w) + s(� + 1)))+;

V �
5 =

P��1
�=�

Pw=wU

w=0 (�(�wr(� + 1; w)� (� + 1)� �wr(�;w) + �))+;

V �
6 =

P��1
�=�(�(s(�)� s(� + 1)))+;

(5.24)

where �wr(�;w) = r(�;w + 1) � r(�;w) is a proxy for @r(�;w)=@w. For i = 4; 5; 6,

each Ri is between 0 and 1. It will be 0 when assumption (MOi) is totally satis�ed.

For example, if (MO4) is satis�ed, then �wr(�;w)�s(�) � �wr(�+1; w)�s(�+1) for

any w 2 f0; 1; :::wMg and � 2 f�; �+1; :::; �g. Therefore, (�wr(�;w)��wr(�+1; w)+

s(� + 1) � s(�))+ = 0 which leads to V +
4 = 0 and R4 = 0. Basically, Ri; i = 4; 5; 6

o�ers the degree at which the assumption (MOi) has been violated.
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We may also de�ne ratios of total variations Rw, Rp, Ry, and Rv that measure,

respectively, degrees to which �-monotonicity properties have been violated by the

w�(�; x), p(�; w�(�; x)), y�(�; x), and (y�(�; x) � w�(�; x)) curves. More particularly, we

let

Rx =
V +
x

V +
x + V �

x

; 8x = w; p; y; z; (5.25)

where we take the convention that 0=0 = 0 and assume the following:

8>>>>>>><
>>>>>>>:

V �
w =

P��1
�=�

PX
x=�X(�(w

�(� + 1; x)� w�(�; x)))+;

V �
p =

P��1
�=�

PX
x=�X(�(p(�;w

�(�; x))� p(� + 1; w�(� + 1; x))))+;

V �
y =

P��1
�=�

PX
x=�X(�(y

�(� + 1; x)� y�(�; x)))+;

V �
v =

P��1
�=�

PX
x=�X(�(y

�(� + 1; x)� w�(� + 1; x)� y�(�; x) + w�(�; x)))+:

(5.26)

Interpretations of the Rw(p;y;v)'s are very similar to those of the Ri's. When the

raw material cost � is increased, Rw = 0 means the sales volume will always be

reduced, Rp = 0 means the sales price will always be raised, Ry = 0 means the post-

procurement inventory level will always be reduced, and Rv = 0 means the expected

next-period inventory level will always be lowered.

When Q = 0 and hence 
 = 1, and A and D are at their default values, we can

computationally con�rm that R4 = R5 = R6 = 0, and more importantly, that Rw �

43:7% > 0, Rp � 2:7% > 0, and Ry = Rv = 0. The strict positivity of Rw con�rms

that the �rm does not always have to scale back on its sales volume when the raw

material cost rises; meanwhile, Rp � 2:7% means that the �rm does not always

have to raise its sales price when the same thing happens, though it should under

majority of circumstances. The above understanding has in a sense absolved us from

not producing any monotone results on either the sales volume or the sales price.

That Ry = Rv = 0 is consistent with our theoretical monotone results, that both

post-procurement and expected next-period inventory levels should decrease in the
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Figure 5.10: Depictions of R4 to R6 when A and D Change

Figure 5.11: Depictions of Rw, Rp, Ry, and Rv when A and D Change

raw material cost.

Next, we conduct two experiments in which A and D vary, respectively. When one

of the two parameters varies, we present values R4 to R6 in Figure 5.10 and values

Rw, Rp, Ry, and Rv in Figure 5.11.

From Figures 5.10 and 5.11, we see that when A 2 [0:5; 1:0] and D is at its default

value, there are many occasions when R4 = R5 = R6 = 0 and yet Rw; Rp > 0. This

again suggests the �rm need not always try to pass on its cost burdens.

Furthermore, when A 2 [0:1; 0:4] and D is at its default value, we have R4 > 0

and Rv > 0; and, when A is at its default value and D=� 2 [1:1; 2:0], we have

R4 > 0, Ry > 0, and Rv > 0. Hence, it can be said that (MO4) is essential for

�-monotonicity properties of the optimal policy. On the other hand, we may see
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Figure 5.12: Depictions of Rw, Rp, Ry, and Rv when Q Changes

that, when A 2 [1:1; 2:0) and D is at its default value, we have R5 > 0, and yet

Ry = Rv = 0; also, when A is at its default value and D=� 2 [�0:9;�0:1], we have

R6 > 0, and yet Ry = Rv = 0; also, So thus far the indispensability of either (MO5)

or (MO6) has not been revealed.

Indeed, with Q = 0 and hence 
 being at 1 almost surely, we have not found cases

to con�rm the necessity of (MO5) or (MO6). But counter examples abound as long

as Q deviates from 0. For instance, when Q = 0:35, we have found an example

where the violation of (MO5) is the culprit: A = 1:3, D = 0:5�, and Ry � 7:7%; in

addition, we have found another example where the violation of (MO6) is the culprit

for the break-down of the �-monotonicity properties: A = 0:8, D = �0:5�, and

Ry � 14:9%.

On the other hand, we may still observe monotone trends when Q > 0 as long as A

and D are kept at their default values. Figure 5.12 plots Rw, Rp, Ry, and Rv values

at various Q points.

From Figure 5.12, we see that Ry = Rv = 0 as long as Q is below 0.15. That is,

the monotonicity result of Theorem 4.5 is robust within a small neighborhood of the

additive-demand setting. However, monotone trends will start to crumble when 


deviates further from 1, as we may observe Ry > 0 or Rv > 0 when Q > 0:15. This,

on the other hand, means that our main result can not be fully extended to the case
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with a more general demand form such as (4.59). Throughout, we have the strict

positivity of both Rw and Rp, indicating again that there is no guaranteed trend on

either the sales volume or the sales price.
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CHAPTER 6

Conclusion

In summary, we considered three dynamic pricing cases including the markup case,

the markdown case, and the reversible case for the �rms with perishable products

under product-form demand. We established an optimal threshold policy for each case

and developed e�cient and numerically stable algorithms to solve the corresponding

optimal policies. More importantly, we identi�ed the distinction between the markup

case and the markdown case as well as the di�erence between the irreversible cases

and the reversible case. Further, we studied a make-to-order inventory control with

pricing model for the �rms facing �uctuating raw material price. The optimal policy

was found to be a base-stock-list-price policy and the base stock level is decreasing

in the raw material price. When the raw material cost increases, the base-stock

level decreases. More interestingly, the trend of pricing is not necessarily increasing,

instead, the average next period inventory level is decreasing in the raw material

price. In addition, we found that the bene�t of considering cost-dependent policy is

very signi�cant.
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