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ABSTRACT OF THE DISSERTATION 

 

Can Random Matrix Theory resolve Markowitz Optimization Enigma? 

The impact of “noise” filtered covariance matrix on portfolio selection. 

 

by Kim Wah Ng 

 

Dissertation Director: 

Professor Michael Long 

 

Modern finance theory is based on the simple concept of risk and return trade-off. Risk is 

based upon one holding a diversified portfolio to get the lowest level of risk for a given 

expected return. This is the foundation of Markowitz’s mean-variance (MV) efficient 

portfolio.  

 

For nearly six decades since Markowitz’s pioneering work, it is still a puzzle as to 

why there are persistent doubts about the performance of MV approach to portfolio 

selection and the lack of acceptance as a viable tool in the investment community. This 

puzzle is coined as the “Markowitz optimization enigma”. The major problem with MV 

optimization is its tendency to maximize the effects of estimation errors in the risk and 

return estimates.  
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The latest attempt to reduce the noise in covariance estimates is a branch from 

physics that uses Random Matrix Theory (RMT) prediction. The prediction is that when 

the number of securities is large relative to the number of observations, the eigenvalues 

of the covariance matrix within a predicted band closely resemble the distribution as if 

they were generated from purely random returns. These studies believe that by modifying 

the eigenvalues within the predicted band, the “filtered” covariance matrix would contain 

better information than the raw sample matrix. 

 

One proprietary commercial product, called the Neutron QuantumApp which was 

released in mid-2013, based its filtration technique on RMT prediction. The motivation of 

this dissertation is to examine the effectiveness of the Neutron product in terms of risk 

measurement, mean-variance efficiency and portfolio performance. More specifically, 

does the filtered covariance contain superior information as compared to the raw 

covariance?   

 

The evidence shows that the efficient frontier, generated from filtered covariance, 

indeed dominates the raw efficient frontier for the unconstrained case. When short-sale 

constraint is imposed, the result is similar except for the minimum variance portfolio 

(MVP). The MVP from the raw matrix dominates the MVP from the filtered matrix. In 

general, the filtered covariance appears to be better for the purpose of risk measurement 

and risk management. The filtered correlation structure is considerably higher. 
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However, more efficient portfolios do not translate into better performers. For the 

period 2006 to 2013, one cannot reject the null hypothesis that the filtered portfolios 

perform similarly to the raw portfolios. Therefore, my conclusion is that the Neutron 

product cannot resolve Markowitz optimization enigma. 
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PREFACE 

 

This Ph.D. dissertation started while I was at the last stage of my consulting 

contract with Teknavo Group Ltd. in 2013. They partnered with Market Memory 

Trading, L.L.C. in developing the Neuron QuantumApp. Surprisingly, the claims of this 

application did not arouse the interest of many portfolio managers. Thus, my quest and 

curiosity regarding whether this particular application could resolve Markowitz’s long-

standing enigma began. 

  

 When I started researching the topic on Random Matrix Theory (RMT), I had 

very little knowledge of this subject. Fortunately, several studies on RMT had already 

been published since 1999 and they all pointed to the random nature of estimation noise 

in correlation matrix. In the past, there have been many examples of successful 

application of physics theory to solving financial problems. Could RMT be the answer to 

better portfolio selection and better risk management? 

 

 Although I was not able to get clear answers for many questions regarding the 

Neutron QuantumApp, I was able to reverse engineer the eigen system of the filtered 

correlation matrix. The main clue that mattered most was found to be what one does to 

the random portion or noisy part of the eigen system. There are clear implications and 

impact to the correlation and variance structure of the transformed covariance matrix and 

these will impact the ultimate portfolio selection decision. 
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I believe that RMT can be useful in Finance, but one has to be cautious of the 

limitations. It cannot be a one-size-fits-all solution. In fact, my research shows that the 

simple naïve strategy of portfolio selection is more powerful during a financial crisis in 

terms of risk diversification and portfolio performance. Portfolio managers would do 

more good to their investors by comparing their strategies to the performance of random 

naïve portfolios.  
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Can Random Matrix Theory resolve Markowitz Optimization Enigma?  

The impact of “noise” filtered covariance matrix on portfolio selection. 

 

 

Introduction 

 

 Modern finance theory is based on the simple concept of risk and return trade-off. 

Risk is based upon one holding a diversified portfolio to get the lowest level of risk for a 

given expected return. Now, the problem comes in estimating this risk when many 

different securities exist, and when the returns of these securities often move in similar 

fashion.  Estimating these risks can be tricky and often computational intensive.  In light 

of new evidences, that these risk estimates are subject to estimation “noise”, the issue 

becomes further complicated. This study examines a new approach that claims to “filter” 

out the noise of the risk estimate which may in turn, produce better portfolio allocation 

decisions 
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Chapter 1 

Markowitz Optimization Enigma 

 

 Markowitz’s (1952, 1956) seminal idea, that investors should hold mean-variance 

(MV) efficient portfolios, is the milestone of modern finance theory for optimal portfolio 

construction, asset allocation and investment diversification.  Not only did he highlight 

the benefit of naive diversification of unsystematic risk or idiosyncratic risk by merely 

increasing the number of securities in a portfolio, but also one can do better by forming 

“efficient” portfolios based on optimizing risk and expected return trade-off.  Markowitz 

defines “efficient” portfolios in the following sense: (a) any portfolio possessing a higher 

expected yield
1
 than an efficient portfolio also has a higher variance of yield (i.e., it is 

riskier); and (b) any portfolio that is less risky than an efficient portfolio must have a 

lower expected yield.  The identification of riskiness with the variance of the yield results 

from the assumption that the investor’s utility function is concave, with the form  

   Utility = Yield – θ(Yield)
2 
 

where θ is some constant, or else from the assumption that yields are distributed 

according to a distribution that can be described by second-order moments.  From the 

optimal set of efficient portfolios available, the investor selects that efficient portfolio 

that yields him the maximum utility. That is at the point where his utility curve is 

tangential to the efficient frontier. In other words, portfolio optimizers respond to the 

                                                           
1
 Markowitz defines yield as “(the closing price for the year) minus (the closing price for the previous year) 
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uncertainty of an investment by selecting portfolios that maximize profit subject to 

achieving a specified level of calculated risk or, equivalently, minimize variance subject 

to obtaining a predetermined level of expected gain, (See Kroll, Levy and Markowitz, 

(1984)). 

 

 Implementing Markowitz’s technique involves a critical-path method of quadratic 

programming, a vector of estimated expected yields for the securities under consideration 

and a matrix of estimated variances and covariances
2
. Roughly speaking, optimal 

portfolios are achieved by reducing the covariance term in the portfolio variance 

expression through diversification. The main problem is that of estimating the expected 

yields and covariance matrix. This must come either from (a) historical data (objective 

estimation of the parameters of the multivariate distribution), (b) subjective estimation by 

an expert in the securities market, or else (c) via estimates of the correlation of individual 

yields with an index or several independent indexes. 

  

For nearly six decades since Markowitz pioneering work in MV portfolio 

framework, there have been persistent doubts about the performance of MV approach to 

portfolio selection, despite the fact that several procedures for computing the 

corresponding risk-return estimates were developed. 
3
  Michaud (1981) notes that MV 

optimization is one of the outstanding puzzles in modern finance and that it has yet to 

                                                           
2
 An alternative measure is to use semi-variance estimates as mentioned by Markowitz (1956). 

3
 Sharpe 1967, 1971, Stone 1973, Elton, Gruber, and Padberg 1976, 1978, Markowitz and Perold 1981, 

Perold 1984). 
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meet with widespread acceptance by the investment community, particularly as a 

practical tool for active equity investment management. He coins this puzzle the 

“Markowitz optimization enigma” and calls the MV optimizers “estimation-error 

maximizers”.  More specifically, Michaud (1981) states  

“The major problem with MV optimization is its tendency to maximize 

the effects of errors in the input assumptions. Unconstrained MV optimization 

can yield results that are inferior to those of simple equal-weighting schemes
4
… 

Risk and return estimates are inevitably subject to estimation error. 

MV optimization significantly overweights (underweights) those securities 

that have large (small) estimated returns, negative (positive) correlations 

and small (large) variances”. 

 

The latest attempt to reduce the noise in the risk estimates is a branch from 

physics that uses Random Matrix Theory (RMT) prediction. The prediction is that when 

the number of securities is large relative to the number of observations, the eigenvalues 

of the covariance matrix within a predicted band closely resemble the distribution as if 

they were generated from purely random returns. These studies believe that by modifying 

the eigenvalues within the predicted band, the “filtered” covariance matrix would contain 

better information than the raw sample matrix. 

 

 The motivation of this dissertation is to examine the effectiveness of the “filtered” 

covariance estimates in terms of risk measurement, mean-variance efficiency and 

portfolio performance. Specifically, the research is focused on a proprietary commercial 

product, called the Neutron QuantumApp which was released in mid-2013. This 

application directly applies RMT prediction to its filtration technique. The goal of this 

                                                           
4
 See Jobson and Korkie (1981) 
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dissertation is to examine the effectiveness of the Neutron product in terms of risk 

measurement, mean-variance efficiency and portfolio performance. More specifically, 

does the filtered covariance contain superior information as compared to the raw 

covariance?   

 

Mathematical Framework 

 

 This section presents a mathematical framework of the evolution of portfolio 

selection from Markowitz’s MV optimization to issues relating to estimation.  The aim is 

to better understand the nature of noise relating to RMT and the competing techniques 

with respect to the estimation of the covariance matrix.   

 

The starting point is MV portfolio selection theory. First, define the following
5
  

                              
  as the vector of expected returns 

      C = covariance matrix of the returns where        
          and                

       w = [w1, w2, …, wN]
T 

 is the vector of weights where wi is the fraction of the total 

amount of invested capital in asset i. Given these definitions, the expected return and 

variance of the portfolio can be written as: 

                 
          (1) 

               
            (2) 

 

                                                           
5
 Bold letter denotes both matrix and vector 
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Excluding any risk free asset and allowing for unlimited short selling, the MV 

optimization problem can be written as: 

         
   

 

 
                      (3) 

where 1 denotes a N x 1 vector of ones and the parameter   is the MV investor’s risk 

tolerance parameter which relates expected return to risk trade-off.  The optimal portfolio 

to the MV optimization problem can be written as:  

      
    

 
          

  

 
        (4) 

where 

           

            

 

The minimum variance portfolio (MVP) is thus given by: 

      
    

 
        (5) 

which is independent of the expected return vector μ. It is easy to see that the solution 

requires the inversion of the covariance matrix C. Equation (4) states that the optimal 

portfolio to the investor is the linear combination of the MVP and another “risky” 

portfolio (governed by expected return) scaled by the risk tolerance of the investor. 

 

 The solution in (4) depends on both the vector of expected return estimates and 

the sample covariance estimates.  Under the assumption of normal distribution in returns, 
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the sample covariance is the best unbiased maximum likelihood (ML) estimator. 

However, the ML estimator is desirable and useful property if there is enough data for the 

estimation process. In a small sample size, there is the danger of over-fitting the data. 

This implies that the sample covariance matrix performs the best in-sample but may 

perform poorly out-of-sample.  

 

 For N assets, there are N(N+1)/2 parameters to be estimated in a covariance 

matrix. Given 150 assets, one has to estimate 11,325 parameters. This requires a lot of 

data for estimation. In order to comprehend the nature of this large-scale problem, first 

define                  as an N X T matrix with 

     
 

 
     

 

 
    

    

and the sample covariance matrix as 

    
 

   
      
 
                = 

 

   
      

 

 
            (6) 

where   is the identity matrix and T is the number of historical observations on each of 

the assets.  As quoted by Ledoit and Wolf (2003) 

 “Equation (6) shows why the sample covariance matrix is not  

              invertible when N ≥ T: the rank of S is at most equal to the rank  

              of the matrix I – 11’/T, which is T-1. Therefore, when the dimension 

              N exceeds T-1, the sample covariance matrix is rank-deficient.  

              Intuitively, the data do not contain enough information to estimate  

              the unrestricted covariance matrix.”
6
 

 

                                                           
6
 See page 608 of Ledoit and Wolf (2003) and also page 4 of Bengtsson and Holst (2002) 
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Clearly when one multiplies the matrices fully in (6), S becomes a NxN matrix of rank N. 

 

 The second stage of the evolution in resolving the aforementioned scale problem 

is the class of “factor” models. These models assume that the returns are generated by 

specific exogenous factors with some underlying economic interpretation. The most 

famous of these is Sharpe’s (1963) single-index market model.  For the i
th

 asset, the 

single index model can be written as: 

                            (7) 

where     is the return on the market.  For all N assets, the matrix form is given by 

                        (8) 

where    is a N X 1 vector containing the zero mean uncorrelated residuals    . The 

covariance matrix for the asset returns, as implied by the market model, is simply  

       
                (9) 

where   
  is the variance of the market portfolio and  ’s are estimated using (8). 

 

 The main advantage of the single index model is that it only requires 2N + 1 

parameter estimates. This is a major reduction in parameters as compared to the full 

sample covariance estimator. Since there are more data per estimated parameter, one 

would expect a substantial reduction in estimation error.  However, this is at the expense 



-9- 
 

 
 

of introducing specification error because of the restrictive assumptions that the asset 

returns are generated by a linear function of the market.  

 

In general, all factor models impose some form of structural assumptions and the 

fewer the factors, the stronger the structure. The single index model follows the well-

known capital asset pricing model (CAPM), and the strong structure can introduce 

specification error. Therefore, one encounters two types of error in the sample covariance 

estimation: estimation error versus specification error.  One way around this issue is by 

introducing more “factors” into the structure. By doing so, one would hope to reduce the 

specification error. An alternative class of “factor” model arises from the Arbitrage 

Pricing Theory (APT), which is an extension of the single index model. Thus, in addition 

to the market factor, there may be other uncorrelated factors that could explain the returns 

of assets. Using (8), the matrix form can be written as: 

                                       (10) 

with the covariance matrix as: 

      
     

     
     

         
     

         (11) 

where     
  is the variance of the k

th
 factor and           for all factors. The factors are 

orthogonal to each other. 
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 Clearly, the more factors there are, the less restrictive the structure becomes. 

However, APT does not give the identity of each factor. Instead, many researchers rely 

on factor decomposition techniques on the sample covariance matrix in order to infer the 

hidden factors.  Principal Component analysis (PCA) is probably the most famous tool 

used for this purpose.  The goal of PCA is to explain covariance structures using only a 

few linear combinations of the original stochastic variables. For an N X N covariance 

matrix, N principal components are needed to reproduce all variability in the system. In 

other words, PCA uses orthogonal transformation to convert a set of correlated variables 

into a set of linearly uncorrelated components. However, most variability in the system 

can be explained by a lesser number of P, P < N, principal components without losing 

much information. What PCA accomplishes is both data reduction and interpretability. In 

fact, PCA often proves to reveal relationships that otherwise would have been hard to 

detect.  

 Let’s define the sample principal components as linear combinations of returns 

        
          

 
                    (12) 

For which the variances and covariances are given by: 

              
                       (13) 

                
                     

   
                     

where     is the loading for the i
th

 component, S is the sample covariance matrix.  
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 The optimal weight function to the i
th

 Principal Component is given by: 

         
  
    

  
   

                                   }   (14) 

Note that the optimal weight functions     are solely dependent on the covariance matrix 

S.  The sample covariance matrix S can be decomposed into its eigenvalues,         

            and eigenvalue-eigenvector pairs                            with 

eigenvectors                    
 . 

 

Using spectral decomposition of S, the solution for the i
th

 (sample) Principal 

Component is given as:
7
 

        
          

 
                            (15) 

and                  
                          (16) 

               
               

Therefore, each principal component is determined by its eigenvector.  The variance of 

each component is its corresponding eigenvalue. The principal components are 

uncorrelated with each other. Furthermore, the (sample) correlation between the i
th

 asset 

and the j
th

 principal component is given by
8
 

            
      

   
        (17) 

                                                           
7
 See Johnson and Wichern (1992) for the proof. 

8
 See Johnson and Wichern (1992) for the proof. 
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 When analyzing financial assets, it is more common to apply PCA on the 

correlation matrix rather than the covariance matrix. The reason is that variables are 

measured on different scales with differing ranges.  Using correlation, assets with 

differing magnitude of volatility are standardized to avoid an unreasonable large impact 

on the principal components by only a few variables. In this way, the first principal 

component for asset returns usually resembles a market factor, and other principal 

components often mirror industry specific effects (see King 1966). 

   

 An alternative method to PCA is the Factor Analysis model. The factor analysis 

model is based on the assumption that the variables all depend on a number of underlying 

and unobservable stochastic factors, denoted by F1, F2, …., Fk, as well as the variable 

specific errors / variations ε1, ε2, …., εN..  Denote the sample mean of the N dimensional 

stochastic vector r by m.  In matrix notation, the factor model is written as: 

                   (18) 

where L contains the loading coefficients ϒij on variable i by factor j. F is an 

unobservable vector of the factors. The following assumptions are made: 

                                 ’        an identity matrix 

                              ’          a diagonal matrix of residual 

variances, 

Cov[F, ε] = 0  

The implied covariance structure for r from the factor model is 
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                 –       –                                  

                                                        

                     (19) 

It then follows that  

              
     

         
         

           

                                             (20) 

                           

Using spectral decomposition of the sample covariance matrix S into its eigenvalue-

eigenvector pairs, the following holds: 

          
         

             
       

      

                            [         
           

            
      (21) 

 

 

This decomposition of S in terms of its eigenvalue-eigenvector pairs is equivalent to (19) 

when the residual variance Ψ = 0.  In terms of factor loadings, S can be written as: 

 

               (22) 
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where L is a N x N matrix. The loadings on the j
th

 factor are the coefficients in the j
th

 

principal component multiplied by a scale factor    .                                                       

       

      

 The practical aspect of choosing how many “significant” factors or principal 

components to describe the covariance matrix is usually based on the cumulative variance 

that can be explained by K components, (where K < N) as a percentage of total 

variability.  In equation (16), the variance of each component is actually its own 

eigenvalue.  Suppose the cut-off point is 90%.  Then, one would select K such that  

           
   
 
 

   
 
 

       

However, knowing K does not reveal the true nature of the components or factors in the 

real world.  Many practitioners would then attempt to find economic variables, industry 

or firm specific variables that are highly correlated to the eigenvectors associated with the 

K components. In this case, these factors can be explained intuitively to investors as the 

“risk” premiums. This approach is more appealing and sellable than simply using MV 

optimization for asset selection. The factor model becomes the portfolio manager’s black-

box, and the real-world variables become her secret weapon in generating alphas.  

Moreover, the portfolio manager appears to understand the portfolio risk better by 

“managing” and “monitoring” their risk premiums. This would not be possible with the 

raw covariance matrix.  
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 In recent years, there has been renewed interest in portfolio selection theory based 

on the relatively new field of econophysics and the works of Plerou et al. (1999, 2001), 

Laloux et al. (1998) and Guhr (2001).  The application of Random Matrix Theory (RMT) 

to large correlation matrix in finance has provided new excitement in the portfolio field. 

The idea behind this research is to separate the real correlation from the estimation error 

by comparing the sample correlation matrix with known results for a completely random 

correlation matrix.  Suppose    is defined as a random correlation matrix 

        
 

   
            (23) 

where    contains mutually uncorrelated time series with zero mean and unit variance 

from an empirical distribution. According to RMT when N and T tend to infinity such 

that Q = T/N is fixed, the eigenvalue distribution ρRM(λ) of a matrix like    is given by 

 

          
 

  
 
                   

 
          (24)  

where  

                   

and the bounded region of eigenvalues is given by 

 

       
       

 

 
    

 

 
            (25)   

 



-16- 
 

 
 

In other words, for a purely random matrix such as   , the eigenvalues are expected to be 

distributed according to equation (24) and the boundary of this distribution is given by 

(25).  If one, then, compares the distribution of eigenvalues from a real-world sample 

correlation matrix, S, to the distribution as described in (24) then the overlapping part of 

the eigenvalues in S with those eigenvalues in    is considered “noisy” or random.  The 

real correlation or information contained in S is the non-overlapping eigenvalues outside 

λmax. There are abundant evidences that a large portion of the sample correlation of asset 

returns is random noise due to estimation errors. This approach gives a systematic way to 

identify the seriousness of estimation error in any large scale covariance matrix. 

Appendix A contains more detail discussion on RMT. 

  

 There are several empirical evidences to support the RMT.  These findings 

show a consistent pattern, in that the bulk of the eigenvalue distribution of the cross 

correlation matrix of a major index [S&P 500 of the NYSE and Tokyo Stock Exchange 

(TSE)] is found to follow the eigenvalue distribution of the Wishart matrix
9
, which is a 

random correlation matrix constructed from mutually uncorrelated time series.  In short, 

the eigenvalue distribution obeys the RMT prediction in the bulk, but there are some 

deviations at the larger eigenvalues.  Utsugi et al. (2004) further examine the nearest-

neighbor spacing, the next-nearest-neighbor spacing, and the rigidity of the eigenvalues 

and  

 

                                                           
9
 Laloux et al. (1999),  Plerou et al. (1999), (2002) and Utsugi et al. (2004). 
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“found that they follow the universality of Gaussian Orthogonal Ensemble  

(GOE) ....  implying that the large eigenvalues are due to the existence of true  

correlations while the eigenvalues distributed in the bulk are due to randomness”. 

 

When they examine the properties of the eigenvectors associated with the large 

eigenvalues, they found sector effect – in the S&P data, the electric power sector and oil 

and gas related sectors play major parts in the correlations. In the TSE, the electric 

products sector and construction sector play major parts.
10

 These results are consistent 

with the findings of sector effect by King (1966). 

 

The noise impact, due to insufficient number of observations relative to the 

number of variables, is serious enough in affecting decision making based on large 

correlation matrix. The distortion can have serious implications in terms of trading, asset 

allocation and risk management. The question is what can be done to mitigate the 

randomness. Clearly, one can simply increase the number of data such that the Q ratio is 

sufficiently large. That is fine when dealing with a small number of variables, but merely 

increasing the number of observations may not be suitable if there is non-stationary 

property in the underlying correlation structure.  If one believes there is a regime change 

in the economy, there may be insufficient data to estimate the correlation for the new 

regime.  If an effective method can be found to “clean” the estimation error from the 

sample correlation matrix, then it is a preferred approach, as it avoids any specification 

error.   

                                                           
10

 The data period for TSE was from January 1993 to June 2001, and January 1991 to July 2001 for the S&P 
500. Daily data were used in the study. 
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The chapters in this dissertation are organized as follow. Chapter 2 discusses the 

competing methods for reducing the error in sample covariance matrix. Chapter 3 

examines the characteristics of “filtered” correlation matrices that are generated by a 

commercial product, called the “Neutron QuantumApp”, are examined. The data samples 

and the properties of the filtered correlation matrices are also analyzed. Subsequent tests 

compare the ‘filtered” matrices from Neutron with the “raw” sample correlation matrices. 

Chapter 4 examines the predictive power of the filtered risk measure as compared to the 

raw risk measures. Chapter 5 investigates the effectiveness of using the filtered 

correlation matrix in passive strategy.  

 

Chapter 6 examines the return performance of MV optimization using filtered 

correlations and excluding the effect from expected return estimates. Chapter 7 further 

examines the performance using the passive strategy. Chapter 8 includes the expected 

return estimates in the MV optimization process and examines the effectiveness in 

enhancing return performance. Chapter 9 implements a modified version of the three 

fund separation strategy in an attempt to improve portfolio performance. Chapter 10 

attempts to explain the puzzle surrounding the RMT filtering method. The summary and 

final remarks are contained in Chapter 11. 
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Chapter 2 

 

Reducing Error in Covariance Matrix 

 

 

 The previous chapter laid the mathematical framework around the estimation 

error in sample covariance matrix and the implication on portfolio selection. This chapter 

reviews three competing methods of reducing the error in sample covariance matrix.  The 

first type is the class of shrinkage estimators. The second method of error reduction is the 

portfolio of estimators. The third method deals with modifying the eigenvalues that are 

associated with noise, as predicted by RMT.  In this chapter, these three methods are 

briefly described along with the empirical findings relating to their estimators.  

 

 Like any other estimation process, the estimation of the covariance matrix 

contains an error.  However, there is a distinction between estimation error and 

specification error. The estimation error occurs when there are not enough degrees of 

freedom per estimated parameter. This typically occurs when the number of observations 

in the sample is not big enough compared to the number of the estimated parameters.  As 

stated by Pafka et al. (2004), the simple sample covariance matrix estimator often suffers 

from the “curse of dimensions”.   
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 The second source of error is specification error. This type of error occurs when 

some form of structure is imposed on the model that is being used in the estimation 

process. As a result, the estimator becomes too specific in comparison with reality. 

Therefore, there exists a trade-off between the estimation error and the specification 

error.  Clearly, an improved estimator must ideally reduce the large estimation error 

without creating too much specification error.  

  

 All shrinkage techniques date back to Stein (1955) seminal work. At the core, 

Stein estimator is a Bayesian statistical procedure which assumes a “prior” or a structure 

such that the estimated parameters can shrink toward it. In the context of estimating a 

covariance matrix, the estimation error in a sample matrix can be reduced by shrinking 

the sample matrix towards an existing prior covariance matrix. The prior can either be 

derived from an assumption or from a model.  

 

The shrinkage estimator is often computed as a weighted average between the 

sample covariance matrix and the prior covariance matrix (or the shrinkage target).  The 

weight assigned to the prior matrix is known as the shrinkage intensity parameter and is 

usually solved by minimizing a quadratic error function of the combined estimator.  If the 

prior covariance matrix is invertible, then the shrinkage estimator will always be 

invertible. 
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 Ledoit and Wolf (2003) develop a shrinkage estimator that is a weighted average 

of the sample covariance matrix and the covariance matrix implied by the market model 

of Sharpe (1963).  In this case, the market model is the imposed structure or the prior and 

the sample covariance matrix shrinks toward the structure model. The resulting optimally 

weighted average matrix of the two supposedly minimizes the estimation error.  Denoting 

the estimated covariance matrix implied by the single-index market model as F and as 

    , it is assumed to converge to Ω.  Also denote S as the sample covariance and as 

    , it is assumed to converge to ∑ for which Ω ≠ ∑.  In other words, F is an 

asymptotically biased estimator. The shrinkage estimator can be written as: 

                  (26) 

The assumption made is that asset returns are independent and identically distributed (iid) 

and that they have finite fourth moments. For a fixed N, S will be consistent, while F is 

not. Thus, the shrinkage intensity should vanish asymptotically (as   ).  In order to 

solve for the optimal α, Ledoit and Wolf employs the quadratic loss function 

                          
      (27) 

The key aspect of this approach is that while the optimal solution α* is complex the 

procedure does not depend on inverting the covariance matrix. Therefore, this shrinkage 

estimator does not break down when N ≥ T. 

 

 Jagannathan and Ma (2000) use the concept of a portfolio of covariance 

estimators. A portfolio of estimators is an estimator consisting of an equally weighted 
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average of the sample matrix and several other estimators of the covariance matrix whose 

diagonal elements are the sample variance and at least one of them is invertible.
1
  The 

portfolio approach also builds on the tradeoff between estimation and specification error. 

By averaging the sample matrix with other estimators whose primary error is 

specification error, an improved covariance matrix can be obtained.  Jagannathan and Ma 

(2000) basically extend the Ledoit-Wolf’s model by adding a third matrix that is the 

diagonal part of the sample covariance matrix but using simple equal weights among the 

three matrices. In this case, the technique is less complex than that of the shrinkage 

estimator method because it does not require solving for optimal shrinkage parameters. 

Their model can be represented by: 

 

   
 

 
  

 

 
   

 

 
        (28) 

 

where F and S are identical in (26) and  

 

       
     
   
     

  

In essence, their model contains a one-factor model (F), an N-factor model (S) and a zero 

factor model (D).  They argue that the equal weight is the safest bet because little is 

known about the covariance structure of the estimation errors of the different estimators. 

                                                           
1
 A weighted average of two matrices, one of which is invertible, is also invertible. 
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In a later paper, Jagannathan and Ma (2003) show that imposing constraints on 

the portfolio weights such as no short selling and upper bounds, may sometimes prove to 

reduce out-of-sample volatility of the investor’s optimal portfolio. No short selling 

constraint is realistic in that it is often very hard for an ordinary investor to short sell an 

asset. In fact, no short selling constraint can be interpreted as shrinking the largest 

variances and covariances, which cause the negative weights, towards more standard 

values, since it can be argued that these extreme estimates are those most likely caused by 

estimation error.  In order to appreciate their argument, consider the case of minimizing a 

portfolio’s risk with no short selling constraint: 

 

        
 

 
                            (29) 

 

whereby the solution for the MVP is given by       .  Denoting    as the Lagrangian 

multiplier associated with the non-negative constraint, the authors derived the 

unconstraint covariance matrix as: 

 

            [ 
              
   

              

 ]   (30) 
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and the solution for the MVP is given by        .  In this case, the variance of S is 

reduced by     and the off-diagonal is reduced by      .  Thus, the new covariance 

matrix     is constructed by shrinking the largest elements in the initial covariance matrix 

estimate towards more standard values. 

 

 Bengtsson and Holst (2002) recognize that estimators based on different 

assumptions make errors in different directions.  They combine the shrinkage method 

(Ledoit-Wolf) and the predictions from random matrix theory (Pleoru et al. 2001). They 

essentially replace the covariance matrix implied by the market model with a K factor 

principal component covariance matrix, PK, where the choice of the number of factors K 

is based on random matrix theory.  In fact, K is the number of eigenvalues of the sample 

correlation matrix that deviates significantly from the maximum eigenvalue prediction of 

λmax as defined in (25).
2
  The principal component matrix PK is the shrinkage target and 

the shrinkage estimator is given by: 

                   (31) 

where the optimal α is solved using the Ledoit-Wolf (2003) procedure.  

 

The last methods of reducing estimation error (or noise) are those proposed by the 

studies in covariance matrix using RMT.  In this section, I explore two methods in the 

literature that deal with “cleaning” the noise from the sample correlation matrix Coriginal.  

                                                           

2
     
       

 

 
    

 

 
       is in Chapter 1, equation (25). 
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The first method treats the noisy eigenvalues as containing no useful information.  As a 

result of the assumption, the eigenvalues are either ignored or “flattened” out.  The 

second method examines the eigenvectors associated with the noisy eigenvalues.  In 

particular, the overlapping part of eigenvector may contain useful information and may 

affect the stability of the transformed covariance matrix. 

 

The first method of filtering or cleaning the noise of the correlation matrix is that 

proposed by Bouchaud and Potters (2000). They first separate out the “noisy” part from 

the “non-noisy” parts of the correlation matrix C.  The noisy part is comprised of the 

eigenvalues that conform to the properties of randomness as predicted by RMT. The non-

noisy part or the “information” part is that set of eigenvalues that deviates from RMT 

predictions.
3
  The whole idea is to obtain a background measure of the noise element 

while retaining the information trace; based on the fact that the eigenvalues 

corresponding to the noise band are not expected to contain real information, they are all 

equally useless.   

 

 One obvious implication is that to ignore all eigenvalues within the noisy band, 

i.e., set them to zeros.  However, many studies are unwilling to do so because the noise 

band may still contain some correlation information.  Bouchaud and Potters (2000) 

suggestion is to keep the non-noisy eigenvalues the same and to flattening each 

eigenvalue associated with the noisy part by the average of those eigenvalues.  Finally, 

                                                           
3
 As shown previously in Chapter 1, the RMT prediction is that segment of the distribution of eigenvalues 

that is bounded by the theoretical minimum and maximum eigenvalues. 
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they reconstruct the correlation matrix, Cclean, from the cleaned eigenvalues and the 

original eigenvectors using the following 

                        (32) 

where V is the matrix of eigenvectors and Dclean is the reconstructed diagonal matrix of 

eigenvalues by replacing the noisy eigenvalues with the average eigenvalues. 

 

The authors used 600 data points for 200 stocks from S&P 500 intraday data to 

test whether the cleaned correlation matrix is better in predicting risk. They divided the 

period into two sub-periods. They calculate the efficient frontier for the first sub period 

using the actual return on the second sub-period and the correlation matrix from the first 

sub-period.  In other words, they use the actual return from the second-period as the first-

period expected return in the MV optimization. The assumption made is that the investor 

has “perfect” foresight in predicting the future average returns.  The efficient frontier is 

called the prediction of the portfolio and the associated risk as predicted risk. 

 

 The realized risk and return are computed using the second-period correlation 

matrix and returns with the weights of the same family of portfolios as the predicted ones.  

Bouchaud and Potters (2000) argued that the predicted and realized risks are closer when 

the cleaned matrix is used in delineating the efficient frontier. According to the authors, 

the closeness of the predicted and realized curves is due to the power of Cclean in 
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predicting the future risk.  Hence, they conclude that the stability of Cclean is higher than 

the stability of Coriginal.  

 

 Jolliffe (1986) argued that eigenvectors and principal components can only be 

confidently interpreted if they are stable. Therefore, the issue of stable correlation matrix 

is important following this argument.   Sharifi et. al (2004) argue that the cleaning 

method as suggested by Bouchaud and Potters (2000) does not improve the stability of 

the cleaned correlation matrix. In fact, the opposite effect of reducing stability is created 

by the cleaning method. The issue is how to determine the stability of Cclean after cleaning 

it. The goal clearly is to remove noisy elements from Coriginal in such as way that 

maximum stability is conserved.   

 

Fortunately, the works done by Laloux et. al (2000) and Lee (2001) indicate that 

the overlap of the eigenvectors of two consecutive time sub-periods determines the 

consistency (or convergence) of the eigenvectors.  This follows from the fact that the dot 

product of two normalized vectors represents the cosine of the angle between them and 

gives a measure of overlap. The cosine value should be large if the directions of the 

eigenvectors remain similar over the two sub-periods. Small cosine values indicate less 

overlap and thus less stability. 
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Sharifi et. al (2004) introduce the second method of cleaning the original 

correlation matrix which is based on the Krzanowski (1984) technique. According to 

their argument, the stability does not depend on the absolute size of eigenvalues alone, 

but on the separation or distance between eigenvalues’ size. They employ a principal 

component technique to measure the stability of the matrix and its eigenvectors. The 

information on the stability of the principal components can be seen from the effect on 

the k
th

 eigenvector    of small changes in the associated eigenvalue   . By examining the 

perturbation of an eigenvector derived for a small increase / reduction, ϵ, in the 

corresponding eigenvalues, they can find the component      that diverges the most from 

the i
th

 eigenvector,   , but still has an eigenvalue which is at most ϵ greater  / less than 

that of   .  The angle   between      and    can be calculated by 

 

      
    

 

       
                                    

     
 

       
                                    

        (33) 

 

where λ1 ≥ λ2 ≥ λ3 ≥ ….. ≥ λn.  Clearly, the effect on    of an ϵ change in    is an inverse 

function of        .  Therefore, it is the relative separation of eigenvalue size from the 

next component that determines the overlap and stability of the matrix.  The cleaning 

method proposed by Sharifi et. al is to replace the noisy eigenvalues with components 

that have maximal separation from each other while maintaining a fixed sum.  
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The next section discusses the findings on these error reducing covariance 

estimators.  In one way or another, each study claims that their estimators are better. The 

first study is that of Ledoit and Wolf (2003). Their shrinkage estimator to the Single-

Index model can be seen as a way to account for extra-market covariance without having 

to specify an arbitrary multi-factor structure. They found that for NYSE and AMEX stock 

returns from 1972 to 1995, their shrinkage estimator can be used to select portfolios with 

significantly lower out-of-sample variance than a set of existing estimators, including 

multi-factor models. 

 

In a follow up study, Ledoit and Wolf (2004) use a shrinkage estimator to a 

constant correlation model – in which the covariance matrix estimator is obtained by 

assuming that each pair of stocks has the same correlation joins the sample matrix in the 

weighted average. They find the performance of this estimator comparable to the 

performance of the shrinkage to the single-index model estimator. 

 

The portfolio approach as suggested by Jagannathan and Ma (2000), which is an 

equally weighted average of the sample matrix, the single index matrix and the diagonal 

matrix, was found to be one of the best performers in Bengtsson and Holst’s (2002) study 

of the Swedish stock market. 
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Jagannathan and Ma (2003) argue that when no-short-sale constraints are imposed 

in MV optimization, the sample covariance matrix performs as well as covariance matrix 

estimates based on factor models, shrinkage estimators, and daily data. This conclusion is 

in direct contrast to Green and Hollifield (1992), who argue that the presence of a 

dominant factor would result in extreme negative weights in the MV efficient portfolios 

even in the absence of estimation errors. Another result from Jagannathan and Ma (2003) 

shows that tangency portfolios, whether constrained or not, do not perform as well as the 

global MVPs in terms of the out-of-sample Sharpe ratio, implying that the estimates of 

mean returns are so noisy as to distort the expected results. They also found that when 

short sales are allowed, MVP and minimum tracking error portfolios constructed using 

daily return covariance matrix performs the best. 

 

 Disatnik and Benninga (2007) ran a “horse race” between various shrinkage 

estimators and portfolios of estimators. Using the ex-post standard deviation of the global 

MVP as their betterment criterion, they found no statistically significant gain from using 

more sophisticated shrinkage methods and thus recommend the simpler portfolio of 

estimator. This is when no short sale constraint is imposed. But a big drawback is that the 

global MVP consists of large short sale positions, which is clearly an undesirable feature 

of portfolio optimization. When short sale constraint is imposed, both the shrinkage 

estimator and the portfolio of estimators perform statistically significantly better than the 

sample matrix.1 
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Over the years, there has been a big flaw in many of the empirical studies on 

covariance estimation and MV optimization. Most of the existing studies, including those 

mentioned above, use a less frequent time series, such as monthly return data, T, with a 

much larger number of stocks, N, resulting in a, Q=T/N, ratio being typically less than 1. 

Cohen and Pogue (1967) use ten annual return data to estimate the covariance of 75 and 

150 stocks. Elton and Gruber (1973) use 60 monthly returns to estimate a covariance 

matrix of rank 76. Eun and Resnick (1992) use 84 monthly data to estimate a covariance 

matrix of 140 stocks.  Chan et al. (1999) use 60 monthly returns for 250 stocks; Ledoit 

and Wolf (2003) use 120 monthly return data for 1,000 stocks; Jagannathan and Ma 

(2003) use 60 monthly data to cover 500 stocks. The Q ratios range from 0.07 to 0.79 in 

these studies. 

 

 Is the flaw really that serious so as to invalidate the findings in these studies?  

There are four reasons that many of their conclusions may be suspect. First, when N is of 

the same order of magnitude as the number of historical returns per stock T, the total 

number of parameters to estimate is of the same order as the total size of the data set. 

There is zero degree of freedom. This can lead to degenerate solutions in the MV 

optimization. How is it possible that almost all the studies that have insufficient data is 

able to construct a global MVP?
4
 

 

                                                           
4
 Both Shrinkage and Portfolio of estimator went around the singularity problem by combining the sample 

matrix with a non-singular matrix. 
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 Second, under normality assumption of returns, the sample covariance matrix has 

the desirable maximum likelihood property. It means letting the data speak for itself as to 

the most likely parameter values. Maximum likelihood is justified asymptotically as the 

number of observations per variable goes to infinity. It is a general disadvantage of the 

maximum likelihood method as it performs badly in small sample. For the covariance 

matrix, small sample problems occur unless T > N. 

 

 Third, Pafka and Kondor (2003), (2004) use a simulation-based approach to 

systematically compare the relative performance of different correlation matrix 

estimators. They find that T/N is indeed an important factor that influences the relative 

performance of alternative correlation estimation methods.  Liu and Lin (2010) provide 

empirical support to their findings.  

 

 Finally, in the most extensive test of 14 estimation models and across seven 

datasets, DeMiguel et.al (2009) conclude the following: 

 

 “Based on parameters calibrated to the US equity market, our analytical  

results and simulations show that the estimation window needed for the  

sample-based mean-variance strategy and its extensions to outperform  

the 1/N benchmark is around 3000 months for a portfolio of 25 assets and  

about 6000 months for a portfolio with 50 assets” 
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Chapter 3 

 

Characteristics of “Filtered Correlation Matrix” 

 

 

 The primary aim of this chapter is to introduce a commercially available product 

that claims to filter the noise contained in a covariance or correlation matrix, along the 

lines of research in Random Matrix Theory.  The secondary aim is to examine the 

characteristics of the cleaned matrix vis-à-vis the raw sample correlation matrix. This 

will, hopefully, lead to a better understanding of how it may affect the portfolio selection 

procedure. 

 

 The first commercially available product that is using the studies of RMT is called 

“Neutron QunatumApp”
1
. This product was built and released in June of 2013 to 

Bloomberg’s users on a monthly subscription basis. It is a third-party product that utilizes 

Bloomberg’s infrastructure and data. The user can access this application by typing 

“APPS Neutron <GO>” in the Bloomberg terminal. The product taps into the Bloomberg 

data source either through a real-time basis or through historical data. The user can search 

for ticker symbol of stock, bond, index or economic variable using the tool, save the 

portfolio to a file, and reload the file containing the tickers. Alternatively, a user can 

upload a custom generated covariance or correlation matrix into the Neutron application 

                                                           
1
 As far as this author is aware of. 
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and define the N and T parameters. There is one other parameter that is required – the 

filtering intensity parameter that ranges from 0 to 1. A value of zero means no filtering of 

estimation noise, 1 means maximum filtering, and value in between measures the 

intensity required. Figure 1 illustrates an example of the Neutron Application. The top 

half is the raw sample correlation matrix while the lower half is the filtered correlation 

matrix. 

  Figure 1 Neutron Screen Shot 

  

The green color represents positive correlation; yellow color indicates negative 

correlation and white color indicates low correlation. Darker color shade implies higher 

correlation values.  
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 The brochure and white papers relating to the Neutron product make many 

claims. Some of these claims include:
2
 

1. “Neutron provides stable estimates (clean statistical inputs) for increased Profit-

ability/ Sharpe Ratio (by a factor of 2-3)” 

 

2. “Dynamically hedge short or long positions with securities reliably and highly, 

positively or negatively, correlated with such positions”. 

 

 

3. “Diversify alpha portfolios by adding positions in those names that are reliably 

and highly correlated with securities in such portfolios”. 

 

 

4. “Trade option strategies more reliably given the high sensitivity to volatility of 

the underlying securities’ returns”. 

 

 

5. “Reveals up to 30% increased volatility post noise-filtering” 

 

 

6. “Efficiently allocate capital for substantially higher returns, at a fixed risk, or 

substantially lower risk, at a fixed return”. 

 

 

7. “Reliably hedge any portfolio by identifying those ETF(s) and indices that are 

now reliably and highly correlated or anti-correlated with a majority of names in 

the portfolio”. 

 

 

8. “Reveals up to 200-300% higher returns (at fixed risk) and Lower Volatility (at 

fixed return) post noise-filtering” 

 

 

9. “Assess VaR and Shortfall with substantially increased accuracy using Noise-

filtered covariances”. 

 
                                                           
2
 See “Introducing Neutron from Teknavo Quantum Apps Product Suite”, 2013,  by Teknavo / Market Memory Trading 

Joint Venture. Refer to www.teknavo.com/en/applications/neutronbrochure.pdf  The White papers can be obtained 
via www.teknavo.com/en/applications/whitepapers.php  

http://www.teknavo.com/en/applications/neutronbrochure.pdf
http://www.teknavo.com/en/applications/whitepapers.php
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10. “Rebalance departmental portfolios in order to significantly reduce VaR and 

optimize shortfall” 

 

The exact methodology used by the Neutron product in filtering the estimation 

error (or noise) is not reveal because of its proprietary nature.  Nevertheless, the literature 

that was discussed in previous chapters has pointed to three methods of dealing with the 

eigenvalues that conform to the predictions of RMT. One of the earliest studies simply 

assigns these smaller eigenvalues zero values in the belief that there is no useful 

information associated with these eigenvalues. Only the larger eigenvalues explain most 

of the variability of the correlation matrix and thus contain the real information in the 

correlation structure. Another study suggests setting these eigenvalues to their average 

value, thus flattening the correlation structure for the smaller eigenvalues.  Another study 

suggests using a stability measure to reset the eigenvalues.  

 

It is not certain as to which of the three methods Neutron is adopting. Perhaps it 

may adopt an entirely different approach. Due to the complexity of the method, my 

purpose here is to examine the validity, the usefulness and practicality of this commercial 

product.  Since it is an easy to use application and it has the advantage of working with 

custom generated matrices, my goal is to adopt this complex and advanced technique in 

order to examine the performance and usefulness of “cleaned” correlation matrix vis-à-

vis the raw sample matrix. 
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 The sample data used throughout this dissertation comes directly from 

Bloomberg. The sample interval is from 3-Jan-2006 to 30-Aug-2013 and consists of 

1,929 daily closing prices. This period contains the financial crisis of 2008. It is crucial to 

examine portfolio behavior during this period. The first data set consists of 87 stocks 

listed under the NSDAQ 100 Index. This sample is further divided into 4 random 

portfolios. The first three portfolios contain 20 randomly selected stocks from the 87 total 

samples; the fourth portfolio has the remaining 27 stocks.  In the second sample set, 80 

stocks were randomly selected from the S&P 500 Index universe. These 80 stocks in the 

S&P sample do not overlap with the stocks in the NASDAQ sample.  Again, the sample 

is divided into 4 random portfolios, each containing 20 stocks. Therefore, my study 

consists of 10 portfolios – 2 large portfolios (with N ≥ 80) and 8 smaller portfolio (with N 

≥ 20). It is important to see if there is consistency in the performance and behavior of 

these correlation matrices irrespective of sample size. The number 20 was chosen 

because this usually corresponds to the minimum number of stocks required in portfolio 

diversification. The aim is not simply to include very large numbers of securities, as 

many studies have done, but to analyze the consistency of the correlation given a 

relatively fixed Q=N/T ratio. 

 

  The log return ln(Pt / Pt-1) is used to generate the return series of each stock.  For 

every 10 trading days (approximately 2 weeks), the sample covariance matrix is 

estimated for the entire NASDAQ sample and for the S&P stock sample.
3
 The number of 

                                                           
3
 The NASDAQ 100 Index is included in the covariance matrix generated. Thus there are 88 stocks in the matrix. 

Similarly, the S&P 500 Index is included in the other sample covariance matrix (81 stocks). 
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log returns used to compute the covariance matrix is fixed at T=119 (6-month of data 

points).  Thus, a total of 180 sample covariance matrices were created for each market. 

The raw covariance matrix is then loaded into Neutron using the “Custom Matrix” 

feature and the intensity parameter is set to 0.7.  After the cleansing process, both raw 

and filtered covariance and correlation matrices were downloaded in Excel files. In total, 

I am working with 180 raw and ‘filtered” pairs of covariance matrices.   

 

The full sample period (June-23-2006 to Aug-19-2013) of 180 correlation 

matrices is also divided into three sub-periods of non-overlapping 60 correlation 

matrices. Period 1 is from June-23-2006 to Oct-27-2008. Period 2 is from Nov-10-2008 

to Mar-16-2011. Finally, period 3 is from Mar-30-2011 to Aug-19-2013.  The first 

analysis is to examine the histogram of the raw correlations vs. the filtered correlations. 

The elements in the half matrix of the correlation matrix are divided into 12 buckets – 

from the lowest correlation value of -0.02 to the highest 0.9. Each bucket represents the 

number of stocks with correlation ≥ the assigned bucket value and less than the next 

bucket value. For example, a correlation coefficient of 0.05 falls into the 0 bucket, 0.601 

falls into the 0.6 bucket and 0.99 falls into the highest bucket of 0.9. Ignoring the 

diagonal values of 1.0, the total number of elements in the half diagonal correlation 

matrix is N(N—1)/2. The number in each bucket is then converted into frequency or the 

percentage of total elements.  
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Table 3.1 shows the frequency table of the correlations for the NASDAQ sample. 

The full period and the three sub-period results are reported along with the average 

entropy values for the “raw” and “filtered” cases. The frequency plots corresponding to 

the full period and sub-periods are shown in Figure 3.1A, 3.1B, 3.1C and 3.1D. 

 

Table 3.1 – Frequency Table of Correlation for NASDAQ sample 

     
NASDAQ Sample 

      
Full Period 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -0.1 Entropy 

   Raw 0.0% 0.6% 3.3% 8.8% 13.6% 18.2% 21.5% 18.6% 10.7% 3.8% 0.7% 2.978 

   Filtered 2.9% 21.1% 26.4% 20.7% 13.4% 7.8% 4.3% 2.0% 0.8% 0.3% 0.1% 1.742 
2006 to 
2008 

            
   Raw 0.0% 0.0% 0.5% 2.1% 6.2% 15.2% 25.4% 26.8% 16.6% 5.8% 0.0% 3.280 

   Filtered 0.6% 9.2% 25.0% 25.3% 18.1% 11.3% 6.3% 2.6% 1.1% 0.4% 0.0% 1.969 
2008 to 
2011 

            
   Raw 0.0% 0.8% 4.8% 14.4% 21.0% 21.9% 18.2% 11.3% 5.4% 1.9% 0.1% 2.728 

   Filtered 4.0% 30.9% 29.2% 17.0% 9.3% 4.8% 2.6% 1.3% 0.5% 0.3% 0.0% 1.547 
2011 to 
2013 

            
   Raw 0.0% 0.9% 4.7% 9.8% 13.7% 17.6% 20.8% 17.7% 10.2% 3.6% 0.0% 2.926 

   Filtered 4.1% 23.2% 25.0% 19.8% 12.9% 7.4% 4.1% 2.1% 0.9% 0.4% 0.3% 1.710 
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Figure 3.1A (NASDAQ sample – Full Period)       

 

 

Figure 3.1B   (NASDAQ Sample - Period 1) 
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Figure 3.1C   (NASDAQ Sample - Period 2) 

 

 

Figure 3.1D (NASDAQ Sample - Period 3) 

 

 

-5.0% 

0.0% 

5.0% 

10.0% 

15.0% 

20.0% 

25.0% 

30.0% 

35.0% 

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -0.1 -0.2 

Avg. Frequency for NASDAQ sample 
2008 - 20011 

   Raw 

   Filtered 

0.0% 

5.0% 

10.0% 

15.0% 

20.0% 

25.0% 

30.0% 

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -0.1 -0.2 

Avg. Frequency for NASDAQ sample 
20011- 20013 

   Raw 

   Filtered 



-42- 
 

 
 

The most noticeable difference between the distributions of the raw correlation 

and the filtered correlation is that the former is more centered between 0.3 and 0.4 

whereas the latter is more centered between 0.6 and 0.7. The filtered correlations are 

skewed more towards the higher correlation values than the raw correlation. In fact, less 

than 1% of the raw correlations ever exceed 0.8. In comparison, more than 20% of the 

filtered correlations exceed 0.8. During the second period, where the majority of the 

correlations are estimated using prices that straddle the financial crisis period, the average 

frequency of correlation exceeding 0.8 is around 35% for the filtered case, whereas it is 

only 0.8% for the raw case. The filtering process was able to reduce the impact of 

estimation noise, thus resulting in more realistic and stronger correlated relationship 

among stocks; especially during periods of high systemic risk.  In addition, the reduction 

in the Shannon Entropy, which is a measure of noise, ranges between 66% and 76%.  

(See Appendix A for a brief discussion of Shannon Entropy).  

 

Table 3.2 presents the frequency table of correlation for the S&P sample. The full 

period and the three sub-period results are reported along with the average entropy values 

for the “raw” and “filtered” cases. The frequency plots corresponding to the full period 

and sub-periods are shown in Figure 3.2A, 3.2B, 3.2C and 3.2D. 
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Table 3.2 Frequency Table of Correlation for S&P sample 

Full Period 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -0.1 Entropy 

   Raw 0.0% 1.2% 4.8% 9.7% 14.3% 17.5% 18.9% 16.7% 10.8% 4.5% 1.2% 2.860 

   Filtered 3.8% 20.8% 23.2% 18.4% 13.1% 8.7% 5.4% 3.1% 1.7% 1.0% 0.5% 1.742 
2006 to 
2008 

            
   Raw 0.0% 0.3% 1.3% 3.6% 8.5% 15.9% 21.6% 22.2% 16.2% 7.5% 0.0% 3.124 

   Filtered 1.0% 7.8% 17.8% 21.3% 17.9% 13.1% 8.6% 5.2% 3.2% 2.0% 0.0% 2.026 
2008 to 
2011 

            
   Raw 0.0% 1.3% 6.0% 14.9% 21.2% 20.9% 16.8% 11.1% 5.5% 1.9% 1.2% 2.635 

   Filtered 4.3% 30.7% 29.2% 16.4% 9.1% 5.2% 2.7% 1.3% 0.7% 0.3% 0.0% 1.521 
2011 to 
2013 

            
   Raw 0.1% 1.9% 7.0% 10.7% 13.3% 15.7% 18.3% 16.9% 10.9% 4.3% 0.0% 2.822 

   Filtered 6.0% 23.8% 22.6% 17.4% 12.3% 7.8% 5.1% 2.7% 1.3% 0.5% 0.4% 1.680 

 

Figure 3.2A (S&P Sample - Full period) 
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Figure 3.2B  (S&P Sample - Period 1) 

 

 

Figure 3.2C (S&P Sample - Period 2) 
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Figure 3.2D (S&P Sample - Period 3) 

 

 

The results reported for the S&P sample are very similar to those for the 

NSADAQ sample.  Again the filtered correlations are skewed towards the higher values 

whereas the raw correlations appear to be centered between 0.3 and 0.4. During the high 

volatility second period, the average frequency of correlation exceeding 0.8 is around 

35% for the filtered case whereas it is only 1.3% for the raw case.  The reduction in the 

Shannon entropy ranges from 54% to 73%. 
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is consistent with the fact that a positive real eigenvalue is in fact a scalar or a stretching 

factor. 

 

 The next analysis is to compare the variance of each stock prior to and after the 

filtering process.  First, the variance of each stock is extracted from the raw sample 

covariance matrix. This is denoted as        
   Next, this variance is then compared to the 

variance extracted from the filtered covariance which is denoted by           
  If the 

Neutron’s  filtering process was to produce lower risk measure (in terms of volatility), 

then one would expect overwhelmingly lower          
  in comparison to the raw variance. 

Define the following change in variance as a percentage of the filtered variance as: 

     
         

            
            

    for j = 1,…., N securities 

If risk is reduced, one expects positive value for    
 , otherwise it will be negative. After 

completing the above change in variance, I then average these changes across stocks in 

the sample portfolio. The median is also computed for comparison purposes. The results 

for the NASDAQ sample of 87 stocks are reported here. 

 

 Figure 3.3 shows the time series average of    
  across the 87 stocks. That is  

     
      

    
 /N for t =  ,…,T. The average values are all positive falling 

between 2.334% and 13.554%. It appears that the filtering process reduces the volatility 
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across stocks. However, this is not necessarily true for the median values as displayed in 

Figure 3.4. There are periods when the post-filtered variance actually increased. 

 

Figure 3.3    Average change in Variance 

 

Figure 3.4    Median change in Variance 
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 I further examine the average and median    
  for each individual stock across the 

entire sample period. Figure 3.5 shows the ranking order from positive value to negative 

value for all 87 stocks. 

Figure 3.5  

 

 

The number of stocks that have positive average    
  is 59 stocks (68% of the 

sample) and only 45 stocks (51%) have positive median value. Comparing the absolute 

changes in variance, the magnitude is higher for the positive    
  than the negative ones.  

Therefore it is not conclusive that the filtering method indeed reduces volatility risk 

across most stocks. 
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 The results for the S&P sample of 80 stocks are reported in Figures 3.6, 3.7 and 

3.8. The results for the S&P sample are in line with the results for the NASDAQ sample. 

Only around 50% of stocks show reduced variance while the other half show increased in 

variance. The conclusion here is that while Neutron appears to enhance the correlation 

effect in most cases, the corresponding effect on the variance is not conclusive. It appears 

that for those stocks whose variance has been reduced, the reduction magnitude can reach 

as high as 70%. For others, the variance increase can go as high as 23%. 

Figure 3.6 
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Figure 3.7 

 

 

Figure 3.8 
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 The above impact analysis on correlation and variance may be interesting, 

however, it is more interesting to analyze the implication of filtering on efficient 

portfolios. In this section, I analyze the efficient frontier by minimizing the portfolio’s 

variance for various levels of expected return.  In particular, the two sets of efficient 

frontiers are traced out – one based on the raw sample covariance matrix; the other based 

on the filtered covariance matrix.  

 

Two cases are under examination.  The first case (Case A) is imposing the “No 

Short Sale” constraint. The second case (Case B) is when “Short Selling Allow”.  Three 

dates from the sample period are chosen, based on the level of variance of the Minimum 

Variance Portfolio (MVP) under the “No Short Sale” case and using the raw covariance 

matrix for the NASDAQ sample. The first date is February-13-2014. The MVP shows a 

variance of 0.439%. The second date is March-9-2009 where the MVP’s variance is 

2.419%. This data set contains the returns during the height of the financial crisis. The 

third date is January-13-2012 where MVP’s variance is 1.184%. The results for the 

NASDAQ sample of 87 stocks are reported here. Only the graphs for the NASDAQ 

sample are reported. The results for the S&P are consistent and similar in nature and 

magnitude to the NASDAQ sample.  Figure 3.9A shows the efficient frontier for Case A 

on 2/13/2014. Figure 3.9B shows the Case B efficient frontier on the same date. 
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  Figure 3.9A 

 

 Figure 3.9B 
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  Figure 3.10A 

 

 

  Figure 3.10B 
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  Figure 3.11A

 

 

  Figure 3.11B 
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Under the short sale restriction, the MVP for the raw covariance actually 

dominates the MVP for the filtered covariance.  But as the level of expected return 

increases, the filtered frontier dominates the raw frontier. This can be seen clearly in 

Figures 3.9A, 3.10A and 3.11A. At the same time, the number of securities selected in 

the optimal portfolios declines as expected return increases. This reflects the fact that as 

the expected return and risk trade-off is further away from the MVP, the expected return 

input dominates the risk input. Recall that the solution for the MVP is solely dependent 

on the covariance risk.  

 

     When the short sale restriction is removed, the filtered efficient frontier dominates the 

raw efficient frontier in all cases. Figures 3.9B, 3.10B and 3.11B clearly show the result. 

The question is whether this ex ante dominance can translate into ex post superior 

performance. The answer to this important question will be tested in later chapters. 
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Chapter 4 

 

Testing the noise of sample portfolios and predictive risk. 

 

 The main objectives of this chapter are twofold. First, it is important to measure 

and access how “noisy” the empirical covariance matrices are with respect to the 

“filtered” covariance matrices.  Second, it is more important to compare the accuracy of 

“predicted risks” that are generated from the filtered matrices versus those predicted risks 

from the raw empirical matrices.  Of particular interest is the period surrounding the 

financial crisis of 2008. 

   

 This chapter follows the experiment put forth by Pafka and Kondor (2002, 2003).  

Consistent to those explained elsewhere in prior chapters, they find that the effect of 

noise strongly depends on the ratio r = N/T, where N is the size of the portfolio and T the 

length of the available time series.
1
   Their simulation results show that for larger r (e.g. 

0.6) noise does have the pronounced effect as suggested by Galluccio et al. (1998) and 

Laloux et al. (2000) 

 

 Pafka and Kondor argue that in addition to noise coming from finite length of 

time series, real data always contain additional sources of error.  Examples of such error 

                                                           
1
 In Chapter 1, the ratio Q=T/N is the inverse of ratio r 
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can arise from non-stationarity in risks and returns, changes in the composition of the 

portfolio, changes in regulation and changes in fundamental market conditions.  In order 

to isolate their experiments from such additional errors, they based their analyses on 

artificially generated data from some “toy” models. The advantage is that the “true” 

parameters of the underlying stochastic process and the statistics of the covariance matrix 

are exactly known. 

 

 In both papers, Pakfa and Kondor (2002, 2003) investigated the impact of noisy 

covariance matrices on the portfolio optimization problem.  Specifically, the objective 

function is to 

 Minimize          
 
        

subject to a linear budget constraint: 

         
    

wi denotes the weight of asset i in the portfolio while σij represents the covariance matrix 

of returns. Short sale is allowed in the optimization.  Only the minimal risk portfolio 

(MVP) is under investigation.  Using the method of Lagrange multipliers, the solution to 

the optimization problem is simply 

     
   

    
   

   

    
   

     

     (34) 
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Let the “noiseless” covariance matrix be denoted by    
   

 and the “noisy” covariance 

matrices by    
   

 such that 

 

      
   

  
 

  
        

 
          (35) 

 

where              
 
     with     ~ i.i.d. N(0,1)  and     is the Cholesky decomposition 

of the matrix    
   

 such that        
 
        

   
.  In other words, the “noisy” matrix is 

randomly generated off from the “noiseless” matrix by a standardized Gaussian 

distribution.  Thus,    
   

 can be seen as representing the empirical noisy covariance 

matrix while     
   

 represents the “true” covariance matrix.  As     the noise 

disappears and    
   
      

   
. 

 

 Their experiments employ two toy models. The first toy model (Model I) is to 

simply use the identity matrix for    
   

 (unit variance for all assets and zero correlations 

elsewhere).  The second toy model (Model II) has one distinct eigenvalue set to be 25 

times larger than the rest of the eigenvalues and with corresponding eigenvector 

(representing the “whole market”).
2
 

 

                                                           
2
 In Appendix 2, I find the largest eigenvalue to be around 16 times larger than the maximum predicted 

eigenvalue. 
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Define the set of risk for the MVP as  

1)        
       

   
  
     

      as the “true” risk of MVP without noise, where   
    

 is 

the optimal weight without noise. 

2)       
       

   
  
     

     as the “true” risk of MVP with noise, where   
    

 is the 

optimal weight in the presence of noise. 

3)       
       

   
  
     

     as the “predicted” risk of MVP, that is the risk that can be 

observed if the optimization is based on a return series of length T. 

4)       
       

   
  
     

     as the “realized” risk of MVP, that is the risk that would 

be observed if the portfolio were held one more period of length T, where    
   

 is the 

covariance matrix calculated from the returns in the second period. 

In addition, denote the following three ratios as:  

      
   

   
 = “true” risk with noise per unit of the “true” risk in the absence of noise.  

      
   

   
 =“predicted” risk with noise per unit of the “true” risk in the absence of noise. 

       
   

   
 =“realized” risk with noise per unit of the “true” risk in the absence of noise. 

One would expect that q0 > 1 for all values of N and T since the “optimal” portfolio 

obtained from the ‘noisy’ covariance matrix must be less efficient than the one obtained 

from the “true” covariance matrix. 
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Pakfa and Kondor (2003) find that q0 is indeed greater than 1 for all simulated 

cases and that q2 is also very close to q0. This suggests that “realized” risk can be a good 

proxy for the “true” risk when the “true” covariance matrix is not known.  Unfortunately, 

this is not true for the “predicted” risk. They find that q1 is always smaller than q0 and q2.  

This implies that optimization in the presence of noise will bias risk measurement 

and lead to the underestimation of the risk of the optimal portfolio. These results are  

in perfect qualitative agreement with those in Laloux et al. (2000) and Plerou et al. 

(1999). 

 

In fact both ratios q0 and q1 can be calculated analytically.  For        and for 

a fixed  
 

 
 , the eigenvalue density of the covariance matrix is given as:

3
 

         λ   
 

   

   λ    λ   λ    λ  

 λ
       (36) 

 where   λ             are the upper(+) and lower (-) bounds of the eigenvalues. 

Accordingly, q0  can be written as  

      
     λ  λ  λ 

    λ   λ  λ
       (37) 

thus yielding              by simple integration.  By the same token,         .  

These asymptotic formulae are useful in checking the real empirical covariance matrices 

below. 

                                                           
3
 See Crisanti and Sompolinsky (1987) 
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Finally, as quoted by the Pakfa and Kondor (2003),  

“Our main finding was that for parameter values typically  

encountered in practice the ‘true’ risk of the minimum-risk portfolio 

determined in the presence of noise (i.e., based on the covariance matrix 

deduced from finite time series) is usually no more than 10-15% higher 

than that of the portfolio determined from the ‘true’ covariance matrix”.   

 

It appears that noise has relatively small effect on the portfolio variance under linear 

constraints.  This seems to be in contradiction with the reported conclusion by Laloux et 

al. (1999) that about 94% of the spectrum of these matrices can be fitted by that of a 

completely random matrix. The large discrepancy between “predicted” and “realized” 

risk in previous studies can be explained by the relatively high values in N/T used in 

these studies.
4
  However, the authors caution that in the presence of non-linear constraints 

of the type:         
 
     , the presence of noise may create high degree of instability 

and degenerate solutions.  

  

 At this juncture, one can easily apply the formulae above for both q0 and q1 to my 

current studies.  For the NASDAQ sample N = 87 and T = 119 which means r = 0.7311 

which is relatively high. Most of the random noise is expected to be in the range of the 

eigenvalue between λ- = 0.021 and λ+ = 3.441. The calculated values for q0 and q1 are 

1.928 and 0.518, respectively.  As for the S&P sample, N =80 and T=119 with r = 0.6722 

is slightly lower than the NASDAQ sample.  The eigenvalue with the most random noise 

is between λ- = 0.0324 and λ+ = 3.312. The calculated values for q0 and q1 are 1.747 and 

0.572, respectively. 

                                                           
4
 See Laloux et al. (2000) and Plerou et al. (1999) 
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 These values imply that one would expect a lot of differences between predicted 

risk and realized risk on a MVP. Clearly, in my studies, the “true” covariance matrix is 

not known.  Neither can I isolate other sources of data error.  However, one can judge 

how well the Neutron filtering process is by analyzing the          to            . 

Define the following: 

1)         
         

     
  
       

      as the “predicted” risk of MVP with noise, 

where   
      

 is the optimal weight in the presence of noise in the empirical 

covariance matrix. 

 

2)            
         

   
        

  
          

      as the proxy of “true” risk for MVP 

using the filtered covariance matrix.  

 

 

3)        
     

         
        

  
       

      as the “predicted” true risk of MVP with 

noise, where   
      

 is the optimal weight in the presence of noise. 

 

4) Define     
     

        
   to be the “predicted” risk with noise per unit of the 

“predicted” risk in the filtered-out noise. 

 

 

5) Define     
     

        
 

   to be the “predicted” risk with noise per unit of the 

“predicted” risk in the filtered-out noise, but using the optimal weights generated  

 

from the raw matrices. 
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This section presents the results for the Q ratios. In addition to reporting the 

results for the full period (2006 to 2013), I divide the period into three sub-samples. The 

first sub-period is from 6/23/2006 to 10/27/2008. The second sub-period is from 

11/10/2008 to 3/16/2011. The last sub-period is 3/30/2011 to 8/19/2013. The results of 

the Q1 ratios using the MVP from both raw and filtered matrices 

Table 4.1 Q1 ratios of MVPs 

   
--- No Short Sale -- ----- Short Sale  ----- 

 

  
N Avg Q(1) Stdev Avg Q(1) Stdev 

 NASDAQ Full Period 180 0.926 0.078 1.381 0.097 
 

 
Sub-period 1 60 0.882 0.073 1.416 0.113 

 

 
Sub-period 2 60 0.945 0.046 1.355 0.083 

 

 
Sub-period 3 60 0.950 0.090 1.372 0.084 

 

        S&P Full Period 180 0.933 0.075 1.338 0.090 
 

 
Sub-period 1 60 0.892 0.068 1.327 0.087 

 

 
Sub-period 2 60 0.961 0.050 1.337 0.092 

 

 
Sub-period 3 60 0.945 0.086 1.351 0.091 

 

         

In the case where there is short sale constraint, the average Q1 for both NASDAQ and 

S&P samples is consistently less than 1.0 but much higher than the expected values of 0.5 

to 0.6. The average value of Q1 falls between 0.88 and 0.96.  On the other hand, when the 

short sales constraint is removed, the average value of Q1 > 1. Under this scenario, it 

appears that the risk of the MVP, generated using the raw correlation matrices, is 

significantly higher than the risk of the MVP using the filtered matrices. 
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 Table 4.2 compares the average standard deviation of both MVP Raw and MVP 

Filter under short sale constraint. In every period, the risk of the MVPFilter exceeds the risk 

of MVP Raw (4% to 11% higher). The coefficient of variation (Average/Std deviation) is 

also higher for the filtered case. But there are less stocks being selected in the MVP Filter 

than those contained in the MVP Raw -- at least two to three times more stocks in MVP 

Raw.  This can be explained by the efficiency in the filtered covariance case whereby 

fewer stocks are required to generate the minimum variance portfolio.  In other words, 

since there is less noise in the filtered correlation matrix, less number of securities are 

required to “efficiently” diversify the risk to a minimum level. 

Table 4.2 Average MVP Risk under No Short Sale 

    
No Short Sale 

    

  
Raw Covariance 

  

Filtered 

Covariance 

  

NASDAQ N Avg Stdev 

Coef 

Var  W > 0 Avg Stdev 

Coef 

Var 

 W > 

0 

Full Period 180 0.847% 0.44% 1.91 16.3 

0.914

% 

0.46

% 1.98 6.4 

Sub-period 

1 60 0.745% 0.25% 3.03 21.9 

0.842

% 

0.26

% 3.28 8.7 

Sub-period 

2 60 1.115% 0.62% 1.81 13.0 

1.179

% 

0.65

% 1.82 5.7 

Sub-period 

3 60 0.683% 0.22% 3.13 14.1 

0.725

% 

0.23

% 3.09 4.8 

          S&P 

         

Full Period 180 0.716% 0.41% 1.75 15.0 

0.761

% 

0.42

% 1.83 6.7 

Sub-period 

1 60 0.605% 0.22% 2.72 17.2 

0.671

% 

0.22

% 3.03 7.7 

Sub-period 

2 60 0.957% 0.58% 1.65 12.2 

0.995

% 

0.61

% 1.64 5.3 

Sub-period 

3 60 0.589% 0.18% 3.23 15.7 

0.620

% 

0.17

% 3.75 7.3 
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 In Table 4.3, when short sale restriction is lifted, the MVP Filter is showing less risk 

than its MVP Raw counterpart.  The latter’s average risk is at least 31% higher than the 

average risk for MVP Filter . The coefficient of variation is also higher for the MVP Raw. 

The number of long securities and the number of short securities are very close for both 

cases. Therefore, one can safely conclude that the portfolio risk in the filtered case, as 

measured by the MVP, is significantly lower than the corresponding portfolio risk in the 

unfiltered case. The optimization process reduces risk more efficiently when noise is 

reduced. 

Table 4.3 Average MVP Risk under Short Sale Allowed 

    

Short Sale 

Allowed 

    

  
Raw Covariance 

  

Filtered 

Covariance 

  

 NASDAQ N Avg Stdev 

Coef 

Var  W > 0 Avg Stdev 

Coef 

Var  W > 0 

 Full Period 180 0.340% 0.13% 2.64 45.6 0.249% 0.10% 2.44 45.7 

 Sub-period 1 60 0.325% 0.09% 3.60 45.6 0.233% 0.08% 2.92 46.0 

 Sub-period 2 60 0.407% 0.18% 2.26 44.9 0.302% 0.14% 2.19 45.5 

 Sub-period 3 60 0.291% 0.05% 5.40 46.3 0.213% 0.05% 4.67 45.7 

           S&P 

          Full Period 180 0.322% 0.13% 2.49 43.7 0.243% 0.11% 2.30 43.0 

 Sub-period 1 60 0.285% 0.07% 3.89 44.2 0.215% 0.06% 3.75 43.0 

 Sub-period 2 60 0.415% 0.17% 2.42 42.9 0.317% 0.14% 2.19 42.9 

 Sub-period 3 60 0.267% 0.05% 5.13 44.0 0.197% 0.04% 5.48 43.2 

 

 The next step is to compare the risk for any constant weighted portfolio. The 

natural candidate for this study is an equally weighted portfolio. This is an interesting 

comparison because it shows the portfolio risk due to naïve diversification strategy.  In 

Chapter 3, I examined the impact on the correlation structure after the filtration process. 
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The immediate effect is higher correlated values in general for the filtered matrix.  If that 

is the case, one expects the        
       

     The result is borne out in Table 4.4 and the 

risks are computed for 15 non-overlapping periods.  The implication of this is that given 

any existing portfolio, the risk measure (as defined by the standard deviation of the 

portfolio) is always higher using the filtered covariance matrix than the risk measure 

derived from the raw covariance matrix. In terms of risk management and VaR analysis, 

this is critical because the raw covariance leads to underestimation of the actual 

portfolio risk. The filtered covariance gives a better (higher) risk measure for the 

portfolio. 

 Table 4.4 Risk Comparison for Equally Weighted Portfolio 

  
 Equally Weighted Portfolio 

 
NASDAQ (87 stocks) S&P (80 stocks) 

Date     
          

       
          

   

6/23/2006 0.950 1.557 0.842 1.245 

12/13/2006 1.028 1.527 0.747 1.049 

6/8/2007 0.864 1.262 0.730 1.026 

11/28/2007 1.262 1.747 1.243 1.613 

5/21/2008 1.514 1.983 1.374 1.709 

11/10/2008 2.765 3.376 3.048 3.552 

5/5/2009 3.006 3.616 3.543 4.163 

10/23/2009 1.350 1.780 1.541 1.989 

4/19/2010 1.014 1.365 1.082 1.449 

10/7/2010 1.608 1.946 1.560 1.883 

3/30/2011 0.894 1.254 0.801 1.144 

9/20/2011 1.692 2.000 1.693 1.975 

3/13/2012 1.487 1.867 1.574 1.913 

8/31/2012 1.123 1.470 1.027 1.338 

2/27/2013 0.839 1.205 0.831 1.210 
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 At this juncture, I also compare the predictive risk of the MVP to the realized or 

actual risk.  The sample period is divided into 15 predictive non-overlapping dates. The 

dates are shown below: 

 

 

Predictive date Realized date 

6/23/2006 12/13/2006 

12/13/2006 6/8/2007 

6/8/2007 11/28/2007 

11/28/2007 5/21/2008 

5/21/2008 11/10/2008 

11/10/2008 5/5/2009 

5/5/2009 10/23/2009 

10/23/2009 4/19/2010 

4/19/2010 12/3/2010 

12/3/2010 7/25/2011 

7/25/2011 3/13/2012 

3/13/2012 10/31/2012 

10/31/2012 6/21/2013 
 

The root mean square error (RMSE) is chosen as the criterion to measure the 

effectiveness of risk prediction. The mean square error (MSE) is defined as  

 

                
         

       
   /T   and 

            

 



-68- 
 

  
 

The detail results are contained in various tables (Tables B-1 to B-14) that are delegated 

to Appendix B. Instead the summary of the RMSE results are shown in Table 4.5 

 

Table 4.5 

  
Summary of RMSE for Predictive Risk 

 

        No Short Sale Short Sale Allow Equally Weighted 

 

MVP(Raw) MVP(Filter) MVP(Raw) MVP(Filter) Raw Filter 

NSADAQ 0.571 0.674 1.221 0.893 0.658  0.708 

S&P 0.477 0.508 1.103 0.716 0.796  0.855 

       

 
Use MVP w*(raw) Use MVP w*(raw) 

  NSADAQ 0.571 0.650 1.221 0.957 

  S&P 0.477 0.504 1.103 0.790 

  

       

 
Use MVP w*(filter) Use MVP w*(filter) 

  NSADAQ 0.559 0.674 0.995 0.893 

  S&P 0.465 0.508 0.844 0.716 

   

 

Both “No Short Sale” and “Short Sale Allow” cases are examined. The first test is 

to examine how the predicted risk of each MVP is measured against realized risk for non-

overlapping periods. Using the NASDAQ results as the example, under short sale 

restriction, MVP Raw has a smaller predictive error (0.571) than MVP Filter (0.650). But the 

reverse holds when the short sale constraint is removed (1.221 for MVP Raw vs. 0.893 for 

MVP Filter). When I replaced the weights, w*, from MVP Raw, the results are still 

consistent (0.571 for MVP Raw vs. 0.650 for MVP Filter). Likewise, when the weights are 

replaced by MVP Filter, the same results hold. It becomes clear that when short sale 
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constraint is imposed, the filtered risk is less effective in its predictive power than the raw 

sample risk. But for unconstrained optimization, there is a big advantage using the 

filtered data.  For the equally weighted portfolio, the predictive risk for the raw sample 

data is better than the filtered data (0.658 for MVP Raw vs. 0.708 for MVP Filter). 

 

  Finally, the question is whether there is any improvement in the predictive risk 

for the raw sample if one were to use the “filtered” weights of MVP Filter. Indeed, there is 

improvement using the filtered weights. Under the no short sale case, the RMSE for the 

raw sample is reduced from 0.571 to 0.559 for the NASDAQ stocks and from 0.477 to 

0.465 for the S&P stocks. On average, the improvement in RMSE is around 2.3%. The 

improvement is more pronounced when the short sale restriction is removed. The RMSE 

is reduced from 1.221 to 0.995 for NASDAQ and from 1.103 to 8.44 for the S&P. The 

average improvement in RMSE is around 19%. The implication is that optimal weights 

that are derived from filtered covariance have better risk prediction.  Furthermore, under 

the short sale restriction, the MVP Filter contains an average of 6 stocks versus an average 

of 15 stocks for MVP Raw.   This implies that optimization using the filtered data requires 

less number of stocks in reducing risk to a minimal. 
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Chapter 5 

 

Index Tracking 

 

 Many investors manage portfolios (or parts of portfolios) to match index returns.  

Active managers may fall back to passive index tracking in times when they have no 

definite views. Many of the Electronic Traded Funds (ETFs) are simply index tracking 

funds. The simplest form of tracking the performance of an index, for example the S&P 

500 Index, is the straightforward replication technique. This involves duplicating the 

target index precisely, holding all its securities in their exact proportions.  Once 

replication is achieved, trading in the indexed portfolio becomes necessary only when the 

composition of the portfolio changes or as a way of reinvesting cash flows. 

 

While the straightforward index replication method may be applicable to the 

largest of funds, it becomes overwhelming costly for smaller funds. These funds require a 

smaller set of securities in order to duplicate the index.  This is especially true in the bond 

fund world, where many of the bonds in the Bond Index are thinly traded and bonds often 

mature, thereby changing the composition of the Index. 
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Alternative methods such as stratified sampling, tracking error minimization and 

factor-based replication were invented in order to reproduce the overall attributes of the 

Index with a limited number of securities.  As Martellini et al. (2003) quote,  

“While this may sound simple in theory, it is difficult to achieve 

in practice. Passive does not mean inactive. In fact, it takes a very 

active portfolio management process to deliver reliable index 

performance with low tracking error. It requires extensive portfolio 

modeling and monitoring, together with very disciplined and 

cost-conscious trading capabilities.”
1
 

 

The stratified sampling method is cell-matching the Index’s attributes (example 

Sector matching) while the factor-based replication attempts to match the exposure of the 

replicating portfolio with respect to a set of common factors with that of the index 

(example BARRA Equity model
2
).  The tracking error optimization method tries to 

replicate the index return directly. It is the latter method that is of interest in this chapter.  

 

Some active equity funds may choose to trade only a smaller number of stocks 

(10 to 20) in the hope of beating the index (or benchmark).  A neutral view for these 

funds is to replicate the benchmark’s return.  An active view for the fund may consist of 

over-allocation of some stocks while under-allocation of other stocks within the same 

portfolio.  In any case, tracking error minimization approach may be their starting point 

of active portfolio allocation. 

 

                                                           
1
 Page 214. 

2
 www.msci.com/products/portfolio_management_analytics/equity_models/ 
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The aim of this chapter is to compare the effectiveness of using Neutron’s filtered 

covariance matrices vis-à-vis the raw covariance matrices in tracking the stock 

benchmarks. The NSADAQ 100 and the S&P 500 Index are the two benchmarks chosen 

for the experiment.  As mentioned before, there are 5 randomly chosen portfolios for each 

benchmark index. In addition, the larger portfolios, consisting of all the securities in the 5 

random subsets, are also included in the test. The null hypothesis is that filtered 

covariance matrix produces lower actual tracking error than the tracking error using the 

corresponding unfiltered matrix. 

 

According to Roll (1992), the mean-variance optimization method can be applied 

for tracking error optimization. Stocks with higher correlation with the benchmark are 

more effective than stocks with lower correlation. The problem is to replicate as closely 

as possible the stock index return with a portfolio invested in M individual stocks.  

Denote RB as the return on the benchmark (i.e., the index), {w1 ,……, wM } the weights 

of M stocks in the replicating portfolio, σij i,j=1,….,M the variance-covariance matrix of 

these stocks, and Rp the return on the replicating portfolio.  Then 

           
 
    

The objective function for the tracking error optimization is given by: 

          
                

 
                    

  
   

 
     (38) 

subject to the constraint 
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and with or without the short sale constraint 

                       

Note that    is the covariance between the return on the ith stock in the replicating 

portfolio and the benchmark return, and   
  the variance of the benchmark. 

 The quality of replication is measured by the tracking error (denoted by TE) 

which is the standard deviation of the difference between the actual return on the 

replicating portfolio and that of the benchmark: 

 

                       (39) 

 

Note that the tracking error optimization does not require the expected return of stock as 

an input. It behaves like a minimum variance portfolio (MVP) except that the variance of 

the portfolio is minimized with respect to the benchmark. 

 

 The efficient frontiers, under both constrained and unconstrained short-sale, are 

first evaluated. The results for the NASDAQ sample, at three separate dates: 2/13/2007, 

3/9/2009 and 1/13/2012, are presented in Figures 5.1, 5.2 and 5.3. The “A” graphs are 

associated with the constrained optimization, whereas the “B” graphs are unconstrained 

frontiers. 

 



-74- 
 

  
 

 

Figure 5.1A 

 

Figure 5.1B 
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Figure 5.2A 

 

 

Figure 5.2B 
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Figure 5.3A 

 

 

Figure 5.3B 
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 In every case, the minimal tracking risk portfolio (MTP) is slightly more efficient 

for the raw covariance than the filtered covariance.  However, as the tracking error 

standard deviation increases, the filtered efficient frontier dominates the raw efficient 

frontier. This is true for both constrained and unconstrained optimization. The number of 

securities with positive weights is very similar for both constrained and unconstrained 

results. The implication is that while the raw covariance produces slightly better results in 

the minimum tracking error than the filtered covariance, the latter produces more 

dominant efficient frontiers than the former.  

 

The optimal portfolio, as according to equation (38), is first selected based on the 

raw covariance matrix. Then the actual returns of the benchmark index and the 

replicating portfolio are measured during the following 10 business days. The portfolio is 

then rebalanced with the updated raw covariance matrix. The process repeats itself until 

the entire sample period ends. The tracking error as given in (39) is then computed over 

the entire sample period and for the three sub-periods. The experiment is repeated for the 

‘filtered” covariance matrices. The results are shown in Table 5.1 and Table 5.2 below. 
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Table 5.1 Average MTP Risk under No Short Sale 

    

No Short 
Sale 

    

  
Raw Covariance 

  

Filtered 
Covariance 

  
NASDAQ N Avg. Stdev 

Coef 
Var 

 W > 
0 Avg Stdev 

Coef 
Var 

 W > 
0 

Full Period 180 0.072% 0.029% 2.49 63.3 0.080% 0.028% 2.84 63.5 

Sub-period 1 60 0.083% 0.020% 4.10 62.6 0.095% 0.018% 5.40 64.0 

Sub-period 2 60 0.082% 0.038% 2.18 62.9 0.087% 0.035% 2.46 63.1 

Sub-period 3 60 0.052% 0.009% 5.77 64.4 0.059% 0.010% 5.95 63.5 

          S&P 
         Full Period 180 0.105% 0.036% 2.95 60.0 0.115% 0.033% 3.48 63.5 

Sub-period 1 60 0.099% 0.021% 4.62 58.4 0.114% 0.021% 5.47 64.4 

Sub-period 2 60 0.124% 0.052% 2.36 61.5 0.132% 0.048% 2.76 63.6 

Sub-period 3 60 0.092% 0.009% 10.24 60.1 0.099% 0.008% 11.89 62.5 

 

Table 5.2 Average MTP Risk under Short Sale Allowed 

    
Short Sale Allow 

   

  
Raw Covariance 

  

Filtered 
Covariance 

  
NASDAQ N Avg Stdev 

Coef 
Var 

 W > 
0 Avg Stdev 

Coef 
Var  W > 0 

Full Period 180 0.057% 0.021% 2.68 62.6 0.074% 0.025% 2.94 63.5 

Sub-period 1 60 0.065% 0.014% 4.59 62.2 0.089% 0.016% 5.60 64.4 

Sub-period 2 60 0.064% 0.028% 2.33 62.8 0.079% 0.031% 2.60 63.2 

Sub-period 3 60 0.042% 0.008% 5.55 62.8 0.055% 0.010% 5.55 63.1 

          S&P 
         Full Period 180 0.085% 0.026% 3.29 55.8 0.106% 0.027% 3.89 57.9 

Sub-period 1 60 0.085% 0.018% 4.83 56.6 0.109% 0.019% 5.65 59.7 

Sub-period 2 60 0.098% 0.037% 2.64 55.0 0.118% 0.038% 3.08 56.5 

Sub-period 3 60 0.073% 0.007% 11.03 55.8 0.092% 0.009% 10.17 57.7 
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 The results clearly show that the average tracking error of MTP Raw is lower than 

the tracking error of MTP Filter for all three sample periods as well as the full sample 

period. However, the information ratio or coefficient variation is higher for MTP Filter in 

all cases and in all sub periods. This means the expected return per unit of risk is higher 

for the filtered case than the raw case.  These findings are consistent with the earlier 

observation that while the MTPRaw dominates the MTP Filter, the filtered efficient frontier 

dominates the raw efficient frontier. 

 

 It is one thing to desire a more efficient portfolio during asset allocation, but it is 

another thing as to whether the efficient portfolio can translate into better performance.  

The next chapter will focus on the performance of both MVP and MTP.  More 

specifically, I investigate whether the MVP Filter and MTP Filter can outperform their rivals 

MVP Raw and MPT Raw.  In addition, one desires to see if these “efficient” portfolios can 

even outperform their market benchmarks or the naïve portfolio. 
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Chapter 6 

 

Portfolio Performance of MVP 

 

 This chapter examines the return performance of MV optimization using various 

objective functions and constraints.  Specifically, the objective is to uncover whether the 

“filtered” covariance matrix can lead to better security selection and whether this 

translates into superior performance rather than the corresponding portfolio selected 

based on “unfiltered” covariance matrix. 

 

 In order to isolate the influence of expected return on the portfolio optimization 

process, this chapter focuses on portfolio performance strictly based on optimizing risk 

alone.  In particular, the minimum variance portfolio (MVP) and the minimum tracking 

error (MTP), with and without short sale constraint, are analyzed. The full sample period, 

from 2006 to 2013, and the three sub-periods are analyzed.  In addition, the five 

randomly selected portfolios plus the entire sample stocks under the two benchmarks -- 

NSADAQ 100 and S&P 500 indices, were examined in details. 

 

  For each randomly selected sample of securities, the MVP Raw is first generated 

using the “raw” covariance matrix. The covariance matrix is computed using the entire     
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securities sample under each benchmark using 119 log return series. The optimal weights 

     
       

   are computed via  

           
        
 
      

 subject to 

                              
    

                           (no short sale constraint)  

 

The optimal portfolio is held for the next 10 business days (proxy for bi-weekly) and its 

realized return is computed as: 

     
      

   
  
         p = ,…,6  portfolios 

The portfolio is then re-optimized using the newly generated covariance matrix, based on 

moving 119 log return series. The process is repeated for every 10 business days, yielding 

a total of 181 realized returns. The same experiment is repeated using the “filtered” 

covariance matrices to generate the MVP Filter. 

  

 Both naïve (or equally weighted) portfolio and the benchmark index (value 

weighted) are included as side-by-side comparison.  However, one cannot directly 

compare the performance of the naïve portfolio to the MVPs because the former has 

higher ex ante risk.  One would expect the naive portfolio to outperform the MVP over 

time because the latter has lower volatility. In other words, it is not a “horse-race” 

between the MVPs and the naive strategy. Rather it is a horse-race between the two 

MVPs. 
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Each of the four portfolios’ realized returns are geometrically compounded into 

an equivalent “Index” with 100 as the base value on 6/23/2006: 

                                 
   

                                

The compounded annual growth rate (CAGR) is computed as: 

             
        

   
    

 

 
      

The Sharpe ratio is computed as: 

           
 

    
     

  
 

 
  

   
  

 
     where         

    
      

   
  

     

Table 6.1 (page 89) shows the performance of the MVP for Portfolio A. The results for 

all other portfolios are contained in Appendix C.  The shaded line represents the best 

performing portfolio based on the CAGR. The bold number under the Sharpe column 

indicates the best performance based on Sharpe ratio.  

 

In this table, Port A (Filter) scores 5 wins, EQW scores 2 wins based on CAGR. 

Port A (Raw) and the NASDAQ 100 benchmark index both underperform using this 

criteria. Using the Sharpe ratio as the performance measurement, Port A (Filter) scores 5 

wins, EQW scores 2 wins and Port A (Raw) also scores 2 wins. The benchmark did not 

score a win. But this type of analysis is not complete because the focus is only on 
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winners.  Therefore, I devise a numerical scoring system.  Under each performance 

measure, CAGR and Sharpe, one assigns a 4 to the winner, 3 to the runner up and 1 to  

the worst performer for each Portfolio. The average score across all 5 portfolios in each 

sample are tallied.  The highest possible score is 4.0 and the lowest possible score is 1.0. 

Table 6.2 (page 90) contains the ranking score under the Short Sale restriction.  

 

First, looking at the CAGR score, one can see that the naïve portfolio (EQW) 

outperforms the MVP Raw, MVP Filter and the benchmark Indexes for the full sample 

period.  MVP Filter beats the competition during the first period; EQW wins in the second 

period while MVP Raw wins the last period. The results hold for both NASDAQ and S&P 

stocks. In general, the benchmark NASDAQ 100 performs the worst. 

   

Second, using the Sharpe scores, MVP Filter beats the others during the first period 

and the full period. EQW performs best in the second period while MVP Raw wins the last 

period. The results are for the NASDAQ sample. However, in the S&P sample, the naïve 

portfolio clearly dominates during the entire period and during the second period. On the 

other hand, MVP Filter wins the first and last periods. Again, the benchmark NASDAQ 

100 performs the worst.  

 

The total scores indicate that the naïve strategy is the overall best performer, 

followed by MVP Filter , MVP Raw  and the benchmark index. MVP Filter appears to slightly 
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outperform the MVP Raw. This bears out for the full period and for both NASDAQ and 

S&P samples.  Surprisingly, all three portfolios appear to easily outperform the 

benchmark indexes.   

 

The experiment is repeated for the case when Short Sale restriction is removed. 

The results for all the portfolios are contained in Appendix C. Table 6.3 (page 91) 

presents the results of the scores.  Using the CAGR scores, the naive portfolio clearly 

dominates the full period. The average CAGR is 15.81% as compared to the NASDAQ 

CAGR of 9.88%. The naive’s average CAGR for the S&P sample is 9.13% as compared 

to 4.77% of MVP Filter . The runner up is clearly MVP Filter. Using the Sharpe scores, EQW 

wins both the full and second periods whereas MVP Filter wins the first and third periods. 

Basing on the total score, the conclusion for the short sale restriction case is that the  

naïve strategy is the winner, followed by MVP Filter (at least for the S&P sample), but  

both MVPs are neck-to-neck in the NASDAQ sample. 

 

 Another simple measure to confirm this conclusion is to compute the excess 

return of each portfolio return over the benchmark return.  In my case, the benchmark is 

either the NASDAQ 100 Index or the S&P 500 Index. Defining the “Benchmark Excess 

Return” for portfolio A as:  

      
                                        

 where the average excess return is simply 

                                            
       

       , 
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and dividing the mean excess return by its standard deviation gives the “Benchmark 

Excess Ratio” or BER: 

                              

A positive value for      implies that portfolio A outperforms the benchmark index. A 

negative value implies underperforming the benchmark index. The higher the value, the 

more superior is the excess return per unit of volatility of excess return.  This is a more 

stringent performance measure than the Sharpe’s ratio as the portfolio must be able to 

beat the benchmark itself. It is equivalent to a risk adjusted alpha measure.  Table 6.4 

presents the result of      for the raw MVP, the filtered MVP and the naïve portfolio. 

Table 6.4 Benchmark Excess Ratio (BERK) for MVP (2006-2013) 

  
     

 2006 to 2013 
     

  
No Short Sale 

 
Short Sale Allow 

NASDAQ 
MVP 
Raw 

MVP 
Filter Naïve 

MVP 
Raw 

MVP 
Filter Naïve 

 All stocks  2.47% 4.28% 19.38% -3.40% -2.48% 19.38% 

 Port A  1.86% 3.83% 6.51% -0.05% 0.21% 6.51% 

 Port B  -4.00% -3.56% 15.05% -9.00% -11.16% 15.05% 

 Port C  3.96% 5.52% 10.78% 0.27% 0.50% 10.78% 

 Port D  9.11% 6.32% 22.31% 0.79% 0.38% 22.31% 

       S&P 
       All stocks  -2.47% -1.37% 19.88% 0.61% 1.71% 19.88% 

 Port A  -1.72% -1.36% 12.77% -2.33% -1.41% 12.77% 
 Port B  -1.02% 0.17% 13.51% 2.77% 3.18% 13.51% 
 Port C  -3.43% -0.72% 13.86% -3.02% -0.85% 13.86% 
 Port D  1.20% 0.70% 17.76% 0.80% 0.61% 17.76% 
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The results clearly show that the naïve portfolio beats the NASDAQ 100 Index for all 

cases and its BER is far larger than both MVPs can achieve. The MVP for the filter case 

appears to do better than the raw MVP when there is no short sale constraint.  Without 

the short sale constraint, the results are not conclusive.  The following graphs summarize 

the portfolio performances for the full sample period. 

 

Figure 6.1A MVP Performance for NASDAQ Full Sample – No Short Sale 
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Figure 6.1B MVP Performance for NASDAQ Full Sample – Short Sale Allow 

 

 

Figure 6.2A MVP Performance for S&P Full Sample – No Short Sale 
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Figure 6.2B MVP Performance for S&P Full Sample – Short Sale Allow 
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Performance of MVP 

  Table 6.1 No Short Sale Short Sale Allowed 

 
Terminal CAGR% Sharpe Terminal CAGR% Sharpe 

Full Period             

NASDAQ 100 197.91 9.88 0.107 197.91 9.88 0.107 

EQW 244.11 12.92 0.132 244.11 12.92 0.132 

Port A (Raw) 242.81 12.85 0.175 218.29 11.30 0.159 

Port A (Filter) 284.68 15.16 0.197 217.20 11.23 0.141 

Period 1             

NASDAQ 100 80.66 -9.30 -0.053 80.66 -9.30 -0.053 

EQW 73.61 -13.24 -0.098 73.61 -13.24 -0.098 

Port A (Raw) 98.69 -0.57 0.009 106.93 2.90 0.053 

Port A (Filter) 102.36 1.01 0.029 121.55 8.47 0.112 

Period 2             

NASDAQ 100 186.77 27.21 0.238 186.77 27.21 0.238 

EQW 220.75 34.54 0.271 220.75 34.54 0.271 

Port A (Raw) 137.68 13.89 0.176 109.33 3.87 0.062 

Port A (Filter) 154.16 18.82 0.228 89.42 -4.84 -0.031 

Period 3             

NASDAQ 100 131.38 11.85 0.136 131.38 11.85 0.136 

EQW 150.23 17.70 0.204 150.23 17.70 0.204 

Port A (Raw) 178.69 25.28 0.382 186.73 27.20 0.374 

Port A (Filter) 180.40 25.69 0.387 199.83 30.17 0.371 
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Table 6.2  

 

 

 

 

 

 

 

   

MVP Performance under No Short 

Sale 

 

  

CAGR 

Ranking 

  

Sharpe 

Ranking 

 

 

NASDAQ EQW Raw Filter NASDAQ EQW Raw Filter 

Full Period 1.40  3.60  2.20  2.80  1.40  2.80  2.80  3.00  

Period 1 1.20  2.20  2.60  4.00  1.20  2.40  2.60  3.80  

Period 2 2.80  4.00  1.80  1.40  2.60  4.00  2.00  1.40  

Period 3 1.60  2.20  3.20  3.00  1.40  2.00  3.40  3.20  

Total 7.00  12.00  9.80  11.20  6.60  11.20  10.80  11.40  

 

S&P 500 EQW Raw Filter S&P 500 EQW Raw Filter 

Full Period 2.00  4.00  1.60  2.40  1.80  4.00  1.80  2.60  

Period 1 1.20  2.20  3.00  3.60  1.00  2.80  2.80  3.40  

Period 2 3.00  4.00  2.00  1.00  3.20  3.80  2.00  1.00  

Period 3 1.60  2.00  2.60  3.80  1.60  1.80  2.80  3.80  

Total 7.80  12.20  9.20  10.80  7.60  12.40  9.40  10.80  

  

Average 

CAGR% 

  

Average 

Sharpe 

 

 

NASDAQ EQW Raw Filter NASDAQ EQW Raw Filter 

Full Period 9.88  15.81  12.61  13.58  0.107  0.152  0.154  0.158  

Period 1 (9.30) (6.71) (2.49) 0.09  (0.053) (0.017) (0.001) 0.026  

Period 2 27.21  37.51  17.96  17.64  0.238  0.298  0.210  0.198  

Period 3 11.85  16.82  22.44  23.07  0.136  0.181  0.306  0.314  

         

 

S&P 500 EQW Raw Filter S&P 500 EQW Raw Filter 

Full Period 4.04  9.13  3.81  4.30  0.059  0.097  0.063  0.067  

Period 1 (13.10) (9.38) (6.49) (5.49) (0.125) (0.059) (0.053) (0.041) 

Period 2 16.00  26.74  4.97  2.46  0.150  0.198  0.074  0.044  

Period 3 9.31  10.17  13.00  15.97  0.121  0.120  0.200  0.227  
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Table 6.3 

   

 

  

MVP Performance under Short Sale 

Allow 

 

  

CAGR 

Ranking 

  
Sharpe Ranking 

 

 

NASDAQ EQW Raw Filter NASDAQ EQW Raw Filter 

Full 

Period 2.00  4.00  2.40  1.60  2.40  3.60  2.60  1.60  

Period 1 2.20  2.80  2.20  2.80  1.80  2.80  2.20  3.20  

Period 2 3.00  4.00  2.00  1.00  3.00  4.00  2.00  1.00  

Period 3 1.20  1.80  3.00  4.00  1.20  2.00  3.00  3.80  

Total 8.40  12.60  9.60  9.40  8.40  12.40  9.80  9.60  

 

S&P 500 EQW Raw Filter S&P 500 EQW Raw Filter 

Full 

Period 1.80  4.00  2.00  2.20  1.80  3.60  2.40  2.20  

Period 1 1.20  2.20  3.20  3.40  1.00  2.40  3.20  3.60  

Period 2 3.00  4.00  1.80  1.20  3.20  3.80  1.80  1.20  

Period 3 1.40  2.00  2.80  3.80  1.80  1.80  3.00  3.80  

Total 7.40  12.20  9.80  10.60  7.80  11.60  10.40  10.80  

  

Average 

CAGR% 

  
Average Sharpe 

 

 

NASDAQ EQW Raw Filter NASDAQ EQW Raw Filter 

Full 

Period 9.88  15.81  7.92  6.47  0.107  0.152  0.101  0.082  

Period 1 (9.30) (6.71) (5.87) (3.33) (0.053) (0.017) (0.021) 0.015  

Period 2 27.21  37.51  7.22  (4.32) 0.238  0.298  0.087  (0.019) 

Period 3 11.85  16.82  22.51  27.20  0.136  0.181  0.265  0.288  

         

 

S&P 500 EQW Raw Filter S&P 500 EQW Raw Filter 

Full 

Period 4.04  9.13  4.32  4.77  0.059  0.097  0.066  0.069  

Period 1 (13.10) (9.38) (0.03) (0.21) (0.125) (0.059) 0.018  0.021  

Period 2 16.00  26.74  (3.39) (4.32) 0.150  0.198  (0.017) (0.099) 

Period 3 9.31  10.17  16.43  18.92  0.121  0.120  0.249  0.278  
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Chapter 7 

 

Portfolio Performance of MTP 

 

 In the last chapter, the performance of the minimum variance portfolio (MVP) 

generated by both raw and filtered covariance matrices were compared to the benchmark 

index and the naïve portfolio. The naïve portfolio largely outperforms both MVPs. The 

filtered MVP is only marginally better than the raw MVP. All three portfolios generally 

outperform the benchmark indexes.  

 

In the same spirit, this chapter examines the return performance of the minimum 

tracking portfolios (MTP) generated by both raw and filtered covariance matrices. Their 

performances are then compared to the naïve portfolio and the benchmark index.  The 

same full sample period (2006 to 2013) and three sub periods are analyzed as well as the 

5 random portfolios plus the full sample size for both NASDAQ and S&P samples. 

 

All detailed Tables and graphs are contained in Appendix D. Only the summary 

of the performance results are shown here. These include the ranking score tables and the 

Benchmark Excess Ratio (BER). Table 7.1 gives the performance scores for the case 

where short sale is restricted. Table 7.2 shows the results when short sale is allowed. 

 

 



-93- 
 

  
 

 

 

Table 7.1 

   
MTP Performance under No Short Sale 

 

  
CAGR Ranking 

  
Sharpe Ranking 

 

 
NASDAQ EQW Raw Filter NASDAQ EQW Raw Filter 

Full 
Period 1.40  3.60  2.80  2.20  1.40  4.00  2.60  2.00  

Period 1 1.60  2.60  3.20  2.60  1.60  2.60  3.20  2.60  

Period 2 1.80  4.00  2.00  2.20  1.80  3.60  2.60  2.40  

Period 3 1.60  3.40  2.40  2.60  1.60  3.40  2.40  2.60  

Total 6.40  13.60  10.40  9.60  6.40  13.60  10.80  9.60  

 
S&P 500 EQW Raw Filter S&P 500 EQW Raw Filter 

Full 
Period 1.80  4.00  2.40  1.80  1.80  4.00  2.40  2.00  

Period 1 2.20  3.40  2.60  1.80  1.00  3.60  3.00  2.60  

Period 2 2.20  3.20  2.40  2.20  2.00  3.40  2.80  2.00  

Period 3 1.60  3.20  2.40  2.80  2.40  2.80  2.00  3.00  

Total 7.80  13.80  9.80  8.60  7.20  13.80  10.20  9.60  

  
Average CAGR% 

  
Average Sharpe 

 

 
NASDAQ EQW Raw Filter NASDAQ EQW Raw Filter 

Full 
Period 9.88  15.81  13.14  12.91  0.11  0.15  0.13  0.13  

Period 1 (9.30) (6.71) (7.08) (7.43) (0.05) (0.03) (0.04) (0.04) 

Period 2 27.21  37.51  30.70  30.08  0.24  0.30  0.26  0.26  

Period 3 11.85  16.82  15.95  16.22  0.14  0.18  0.17  0.17  

         

 
S&P 500 EQW Raw Filter S&P 500 EQW Raw Filter 

Full 
Period 4.04  8.71  5.13  4.81  0.06  0.10  0.07  0.07  

Period 1 (13.10) (8.69) (11.29) (11.79) (0.13) (0.06) (0.08) (0.08) 

Period 2 16.00  25.33  17.75  17.44  0.15  0.20  0.17  0.16  

Period 3 9.31  9.60  9.03  8.87  0.12  0.12  0.12  0.11  

 

  Using both CAGR and Sharpe scores, Table 7.1 shows that the naïve portfolio 

outperforms the Benchmark, the MPT Filter and MPT Raw.  The total score shows that MPT 
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Raw   beats the MPT Filter. ..Surprisingly, the worst performing portfolio are the two 

benchmark indexes. This means that using any random portfolios of 20 stocks, with or 

without optimization, one can easily beat the market benchmark index.  Figures 7.1A and 

7.1B shows the performances of these portfolios (full sample size) under the short sale 

constraint. After the 2008 – 2009 crash, the naïve portfolio clearly dominates all the other 

portfolios. Both MTPs are tracking their respective benchmarks closely during the first 

period but deviate further after the second period.  

 

Figure 7.1A NASDAQ Full Sample MTP Performance – No Short Sale 
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Figure 7.1B  S&P Full Sample MTP Performance – No Short Sale

 

Table 7.2 

   
MTP Performance under Short Sale Allowed 

 

  
CAGR Ranking 

  
Sharpe Ranking 

 

 
NASDAQ EQW Raw Filter NASDAQ EQW Raw Filter 

Full Period 1.40  4.00  2.20  2.40  1.40  3.80  2.20  2.60  

Period 1 2.00  2.80  2.40  2.80  2.00  3.00  2.40  2.80  

Period 2 1.80  4.00  1.80  2.40  1.40  3.60  2.20  2.80  

Period 3 1.60  3.80  2.20  2.40  1.60  3.60  2.40  2.60  

Total 6.80  14.60  8.60  10.00  6.40  14.00  9.20  10.80  

 
S&P 500 EQW Raw Filter S&P 500 EQW Raw Filter 

Full Period 2.20  4.00  2.20  1.60  2.20  4.00  2.40  1.40  

Period 1 2.40  3.40  2.40  1.80  1.20  3.60  3.00  2.20  

Period 2 2.40  3.60  2.20  1.80  2.40  3.80  2.20  1.80  

Period 3 1.60  3.20  2.20  3.00  2.20  2.80  2.40  3.00  

Total 8.60  14.20  9.00  8.20  8.00  14.20  10.00  8.40  

  
Average CAGR% 

  
Average Sharpe 

 

 
NASDAQ EQW Raw Filter NASDAQ EQW Raw Filter 

Full Period 9.88  15.81  12.23  12.29  0.107  0.152  0.128  0.128  

Period 1 (9.30) (6.71) (7.27) (7.39) (0.053) (0.033) (0.041) (0.040) 

Period 2 27.21  37.51  30.29  30.46  0.238  0.298  0.265  0.266  

Period 3 11.85  16.82  13.81  13.96  0.136  0.181  0.154  0.155  
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Full Period 4.04  8.71  3.89  3.76  0.059  0.097  0.058  0.057  

Period 1 (13.10) (8.69) (11.71) (12.31) (0.125) (0.059) (0.084) (0.090) 

Period 2 16.00  25.33  14.38  14.38  0.150  0.198  0.137  0.136  

Period 3 9.31  9.60  9.09  9.29  0.121  0.120  0.115  0.117  

 

The results in Table 7.2 confirm the superiority of the naïve strategy. In all four 

cases, it outscores the other three portfolios.  While the MTP Filter beats the MTP Raw in 

the NASDAQ sample, the opposite result occurs in the S&P sample. As before, the worst 

performers are the two benchmark indexes.  Therefore, there is no clear advantage using 

the filtered covariance over the raw covariance. Their results are almost identical.  In fact, 

both MTPs underperformed the S&P Index. The graphs of the performances are shown in 

Figures 7.2A and 7.2B. 

 

Figure 7.2A     Performance of MTP (NASDAQ sample) – Short Sale Allow 
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Figure 7.2B   Performance of MTP (S&P sample) – Short Sale Allow 

 

The results of the Benchmark Excess Ratio (BER) are reported in Table 7.3 

    Table 7.3 

   

Benchmark Excess Ratio of 
MTPs 

 2006 to 2013 
      

  
No Short Sale 

 
Short Sale Allow 

NASDAQ Raw Filter Naïve Raw Filter Naïve 

 All stocks  27.22% 26.55% 19.38% 23.25% 21.82% 19.38% 

 Port A  -5.01% -5.55% 6.51% -4.87% -5.08% 6.51% 

 Port B  14.22% 14.90% 15.05% 14.81% 14.99% 15.05% 

 Port C  9.42% 7.66% 10.78% 3.35% 4.92% 10.78% 

 Port D  10.89% 10.47% 22.31% 7.28% 7.65% 22.31% 

       S&P 
       All stocks  -1.36% -1.29% 19.88% -10.33% -11.44% 19.88% 

 Port A  -2.72% -2.66% 12.77% -3.30% -2.91% 12.77% 

 Port B  9.65% 8.54% 13.51% 9.52% 8.33% 13.51% 

 Port C  5.45% 3.97% 13.86% -0.82% -1.22% 13.86% 

 Port D  8.64% 7.13% 17.76% 8.07% 7.08% 17.76% 
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For the NASDAQ 87 stocks sample, both MTPs perform better than the naïve portfolio, 

with MTP Raw showing the highest Benchmark Excess Ratio. But the naïve portfolio 

shows the best BER for all five random portfolios (A to D). For the S&P 80 stocks 

sample, the naïve strategy clearly beats both raw and filtered MTPs and also for 

portfolios A to D. 

 

 The final test is to see if the mean excess return from the raw MTP is statistically 

different from the mean excess return of the filtered MTP.  First, the average and 

standard deviations of the excess returns are contained in Table 7.4. 

 Table 7.4 

   

Benchmark Excess Return of 
MTPs 

    2006 to 2013 
       

  

No Short 
Sale 

   
Short Sale Allow 

 

 
Raw Filtered Raw Filtered 

NASDAQ Mean Std Dev Mean Std Dev Mean Std Dev Mean 
Std 

Dev 

  All stocks  0.00144 0.00528 0.00142 0.00535 0.00179 0.00770 0.00159 0.0073 

  Port A  -0.00076 0.01514 -0.00087 0.01567 -0.00074 0.01513 -0.00079 0.0155 

  Port B  0.00156 0.01098 0.00169 0.01135 0.00165 0.01114 0.00175 0.0116 

  Port C  0.00268 0.02846 0.00239 0.03126 0.00056 0.01664 0.00082 0.0167 

  Port D  0.00167 0.01537 0.00162 0.01550 0.00117 0.01607 0.00124 0.0161 

         
S&P Mean Std Dev Mean Std Dev Mean Std Dev Mean 

Std 
Dev 

  All stocks  -0.00010 0.00739 -0.00010 0.00746 -0.00094 0.00915 -0.00099 0.0086 

  Port A  -0.00045 0.01650 -0.00043 0.01618 -0.00055 0.01659 -0.00048 0.0163 

  Port B  0.00106 0.01104 0.00094 0.01102 0.00107 0.01120 0.00093 0.0111 

  Port C  0.00120 0.02211 0.00087 0.02199 -0.00009 0.01099 -0.00014 0.0111 

  Port D  0.00099 0.01150 0.00086 0.01203 0.00095 0.01173 0.00087 0.0123 
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The null hypothesis is that  

                      

where      is the population mean excess return over the benchmark for raw covariance, 

and         is the population mean excess return for filtered covariance.  The t-statistic or 

t-score is used to test whether the two sample means conform to the null hypothesis. This 

is defined as 

                               

where        
     

 
 

       
 

 
    

                                         are the two sample means, and 

      
          

 
 are the two sample variances. 

The degree of freedom can be computed as 

     
    
 

 
   

       
 

 
       

  
    
 

 
   

   
 

  
       
 

 
    

   
   

The P-value is the probability that a t-score having DF degrees of freedom is more 

extreme than the computed t-value. The test is actually a two-tail test of the null 

hypothesis. The results are shown in Table 7.5 
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  Table 7.5 

   

Testing Mean Excess 
Return of MTPs 

   

  

No Short 
Sale 

   
Short Sale Allow 

 

    
1-tail 

   
1-tail 

  NASDAQ 
t-

score SE DF p-value t-score SE DF p-value 

  All stocks  0.028 0.00056 358 0.489 0.249 0.00079 357 0.402 

  Port A  0.069 0.00162 358 0.473 0.031 0.00161 358 0.488 

  Port B  -0.110 0.00118 358 0.456 -0.082 0.00120 357 0.467 

  Port C  0.091 0.00315 355 0.464 -0.150 0.00176 358 0.440 

  Port D  0.031 0.00163 358 0.488 -0.038 0.00170 358 0.485 

    
1-tail 

   
1-tail 

S&P 
t-

score SE DF p-value t-score SE DF p-value 

  All stocks  -0.005 0.00078 358 0.498 0.046 0.000938 357 0.482 

  Port A  -0.012 0.00172 358 0.495 -0.042 0.001735 358 0.483 

  Port B  0.106 0.00116 358 0.458 0.118 0.001178 357 0.453 

  Port C  0.143 0.00232 358 0.443 0.039 0.001164 358 0.485 

  Port D  0.110 0.00124 357 0.456 0.058 0.001269 358 0.477 

         

 

Note: 1-tail p-value = P(T > t-score) or P( T ≤ - t-
score)  

    

In order to interpret the results, take the example of t-score = 0.249 for the NASDAQ (all 

stocks) when short sale is allowed. The probability P(T ≤ 0.249) = 0.598. For a one-tail 

test, then P(T > 0.249) = 1 – 0.598 = 0.402.  The p-value that P(T < -0.249) = 0.402. 

Since it is a 2-tail test, then one is interested in the probability that P( -0.249 >T> 0.249)   

= 0.402 + 0.402 = 0.804.  Since this probability is greater than the significance level 

(0.05), one cannot reject the null hypothesis. 

 

The p-value is Table 7.5 is showing only the 1-tail P-value.  One can easily 

approximate the two-tail test by multiplying the 1-tail P-value by two. Since the lowest P-
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value in the table is 0.402 which far exceeds the significance level of 0.05, one cannot 

reject the null hypothesis that the mean excess return from the MTP Raw is the same as the 

MTP Filter. This gives concrete proof that the performances between the two MTPs are 

identical. 

 

I now repeat the same test on the mean excess return between MVP Raw and 

MVPFilter that was analyzed in Chapter 6.  The means and standard deviation of the excess 

benchmark returns are given in Table 7.6.  

 

 

 

Table 7.6 

   

Benchmark Excess Return of 
MVPs 

   2006 to 2013 
       

  
No Short Sale 

  
Short Sale Allow 

 

 
Raw Filtered Raw Filtered 

NASDAQ Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev 

 All 
stocks  0.00073 0.02945 0.00164 0.03824 -0.00188 0.05526 -0.00127 0.05126 

 Port A  0.00060 0.03209 0.00153 0.03995 -0.00002 0.04125 0.00011 0.05266 

 Port B  -0.00106 0.02653 
-

0.00136 0.03811 -0.00305 0.03387 -0.00558 0.05003 

 Port C  0.00106 0.02686 0.00205 0.03706 0.00011 0.03947 0.00029 0.05877 
 Port D  0.00219 0.02401 0.00204 0.03221 0.00030 0.03875 0.00020 0.05294 

         S&P Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev 

 All 
stocks  -0.00061 0.02478 

-
0.00038 0.02799 0.00030 0.04861 0.00073 0.04260 

 Port A  -0.00041 0.02405 
-

0.00043 0.03180 -0.00085 0.03632 -0.00067 0.04777 

 Port B  -0.00026 0.02536 0.00005 0.02934 0.00095 0.03421 0.00132 0.04160 

 Port C  -0.00090 0.02639 
-

0.00021 0.02953 -0.00106 0.03508 -0.00038 0.04490 

 Port D  0.00032 0.02666 0.00021 0.02980 0.00031 0.03921 0.00030 0.04983 
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 Table 7.7 

   

Testing Mean 
Excess Return of 
MVPs 

   

  
No Short Sale 

  
Short Sale Allow 

 

    
1-tail 

   
1-tail 

NASDAQ t-score SE DF p-value t-score SE DF p-value 

 All 
stocks  -0.253 0.00360 336 0.400 -0.108 0.00562 356 0.457 

 Port A  -0.244 0.00382 342 0.404 -0.026 0.00499 339 0.490 

 Port B  0.086 0.00346 319 0.466 0.563 0.00450 315 0.287 

 Port C  -0.288 0.00341 326 0.387 -0.035 0.00528 313 0.486 

 Port D  0.050 0.00299 331 0.480 0.021 0.00489 328 0.492 

    
1-tail 

   
1-tail 

S&P t-score SE DF p-value t-score SE DF p-value 

 All 
stocks  -0.083 0.00279 336 0.467 -0.090 0.004817 352 0.464 

 Port A  0.006 0.00297 342 0.498 -0.038 0.004473 334 0.485 

 Port B  -0.107 0.00289 319 0.457 -0.093 0.004014 345 0.463 

 Port C  -0.234 0.00295 326 0.408 -0.160 0.004247 338 0.437 

 Port D  0.038 0.00298 331 0.485 0.003 0.004726 339 0.499 

         

 
Note: 1-tail p-value = P(T > t-score) or P( T ≤ - t-score)  

   

The highest t-score in Table 7.7 is 0.563 for Portfolio B, under Short Sale Allow 

scenario. The 1-tail P-value is 0.287 which far exceeds the 0.05 significance level. The P-

values in the table clearly shows that one cannot reject the null hypothesis. Therefore, the 

MVP’s excess return over the benchmark index is insignificantly different between the 

performance generated by the raw covariance and the performance generated by the 

filtered covariance. 
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Chapter 8 

 

Portfolio Performance for Riskier Portfolios 

 

 In the last two chapters, the performance of the minimum variance portfolios 

(MVP) and the minimum tracking portfolios (MTP) were compared to the benchmark 

index and the naïve portfolio. The naïve portfolio largely outperforms the benchmark 

index, the MVPs and the MTPs.  Moreover, there is no significant difference between the 

performance, as measured by the excess return over the benchmark, of the raw MVP and 

the filtered MVP. The same conclusion holds for the performance of the MTPs. 

 

 Some may argue that the reason both MVP and MTP are poor performers is 

because the expected returns are not used in the portfolio optimization.  After all, these 

are “minimal” risk portfolios and as such should expect lower realized returns to reflect 

for the lower ex ante risk. That may explain why they cannot outperform the naïve 

portfolio. Therefore in this chapter the objective function is modified such that expected 

return of the optimal portfolio is set to be equal to or greater than the expected return of 

the benchmark. The optimal weights    
       

   are computed via  

           
    

 
        

 
    

subject to 

                             
 
       (40) 

 



-104- 
 

  
 

                              
    

       

Expected return is normally estimated from historical returns and in general not reliable 

forecast of future return or it may be subject to certain bias or estimation error.   In light 

of this, the constraint in (40) takes the difference between the portfolio expected return 

and the benchmark into consideration rather than setting a fixed level for the expected 

return. 

 

 One disadvantage for using the mean return as an estimate for expected return is 

that both older data and newer data are assigned equal weight. My empirical return series 

uses 120 daily prices, roughly 6 months of trading data.  Using the mean return implies 

that the return for the last six months is as relevant as the most current return. In order to 

incorporate the fact that more recent data carries more weight than older data, I adopted a 

declining weight approach assigned to observations as they go further back in time (see 

Litterman and Winkelmann (1998). The weight is given as: 

      
      

    
   

         

and the weighted average return is computed as: 

           
 
          (41) 

The value for the parameter λ is set to 0.75 and T = 119 for all stocks and for the 

benchmark returns. Larger weight is given to the latest return data than older returns. For 

λ = 1, (41) is simply the mean return. 
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 In this study only the unconstraint short sale case is examined.
1
  The CAGR and 

Sharpe ratio results are first reported followed by the results for the Benchmark Excess 

Ratios (BER) and the mean difference tests are reported here. The first goal is to find 

whether incorporating excess return over the benchmark in the optimization process 

would improve the performance of the optimal portfolios. The second goal is to analyze 

whether the optimal portfolio from filtered covariance can produce far superior results 

than the optimal portfolio from the raw covariance. Table 8.1 shows the average CAGR 

and average Sharpe ratio across all 5 random portfolios and the full sample portfolio. 

 Table 8.1 

   

Minimum Risk + Excess Return with Short Sale 

Allow 

  

Average 

CAGR% 

  
Average Sharpe 

 

 

NASDAQ EQW Raw Filter NASDAQ EQW Raw Filter 

Full 

Period 9.88  15.81  6.55  4.68  0.107  0.152  0.086  0.065 

Period 1 (9.30) (6.71) (6.08) (4.47) (0.053) (0.017) (0.024) 0.006 

Period 2 27.21  37.51  3.99  (7.51) 0.238  0.298  0.057  (0.047) 

Period 3 11.85  16.82  21.83  26.17  0.136  0.181  0.257  0.275 

         

 

S&P 500 EQW Raw Filter S&P 500 EQW Raw Filter 

Full 

Period 4.04  9.13  2.09  2.38  0.059  0.097  0.042  0.047 

Period 1 (13.10) (9.38) (0.89) (0.88) (0.125) (0.059) 0.011  0.017 

Period 2 16.00  26.74  (8.14) (10.18) 0.150  0.198  (0.059) (0.060) 

Period 3 9.31  10.17  15.39  18.29  0.121  0.120  0.233  0.266 

 

 

 

 

                                                           
1
 Under no short sale restrictions, some results are degenerate when excess return constraint is added. 
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 Table 6.3 

    
MVP with Short Sale Allow 

  

  

Average 

CAGR% 

  
Average Sharpe 

 

 

NASDAQ EQW Raw Filter NASDAQ EQW Raw Filter 

Full 

Period 9.88  15.81  7.92  6.47  0.107  0.152  0.101  0.082 

Period 1 (9.30) (6.71) (5.87) (3.33) (0.053) (0.017) (0.021) 0.015 

Period 2 27.21  37.51  7.22  (4.32) 0.238  0.298  0.087  (0.019) 

Period 3 11.85  16.82  22.51  27.20  0.136  0.181  0.265  0.288 

         

 

S&P 500 EQW Raw Filter S&P 500 EQW Raw Filter 

Full 

Period 4.04  9.13  4.32  4.77  0.059  0.097  0.066  0.069  

Period 1 (13.10) (9.38) (0.03) (0.21) (0.125) (0.059) 0.018  0.021  

Period 2 16.00  26.74  (3.39) (4.32) 0.150  0.198  (0.017) (0.099) 

Period 3 9.31  10.17  16.43  18.92  0.121  0.120  0.249  0.278  

 

  Table 6.3 is included here as a way to compare whether adding an excess 

return constraint would improve performance. In fact, the opposite is true. The CAGR 

values in Table 8.1 are lower than the CAGR values in Table 6.3 for both Raw and Filter 

portfolios and for all sample periods. In every case, the MVP performs better than the 

constrained Minimal Risk portfolios. The latter even underperform the benchmarks as 

displayed in Figures 8.1 and 8.2. Again, the naïve strategy has the best performance. 
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 Figure 8.1  NASDAQ Riskier Portfolio – Short Sale Allow 

 

 

 

 Figure 8.2   S&P Riskier Portfolio – Short Sale Allow 
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Table 8.2 shows the Benchmark Excess Ratio when excess return constraint is 

added to the optimization. 

 Table 8.2   Benchmark Excess Ratio with Excess Return Constraint 

 
Benchmark Excess Ratio 

2006 to 2013 
   

  
Short Sale Allow 

NASDAQ Raw Filter Naïve 

 All stocks  -4.74% -4.59% 19.38% 

 Port A  -2.52% -1.93% 6.51% 

 Port B  -10.23% -12.07% 15.05% 

 Port C  0.62% 0.67% 10.78% 

 Port D  -0.11% -0.39% 22.31% 

    S&P 
    All stocks  -1.21% 1.60% 19.88% 

 Port A  -3.01% -2.37% 12.77% 

 Port B  1.75% 3.15% 13.51% 

 Port C  -7.43% -5.71% 13.86% 

 Port D  -1.70% -2.52% 17.76% 

 

One can see that both Raw and Filter portfolios underperform the benchmarks as well as 

the naïve strategy.  In contrast, the Raw and Filter MVPs perform better than the Raw  

and Filter portfolios here. The mean and standard deviation of excess returns are shown 

in Table 8.3 and the t-scores in Table 8.4 
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Table 8.3   Benchmark Excess Return with Excess Return Constraint 

  
Benchmark Excess Return 

2006 to 2013 
    

  
Short Sale Allow 

 

 
Raw 

 
Filtered 

 NASDAQ Mean Std Dev Mean Std Dev 

 All stocks  -0.00264 0.05578 -0.00240 0.05219 

 Port A  -0.00107 0.04228 -0.00106 0.05523 

 Port B  -0.00352 0.03440 -0.00618 0.05117 

 Port C  0.00024 0.03814 0.00039 0.05735 

 Port D  -0.00004 0.03919 -0.00021 0.05400 

     S&P Mean Std Dev Mean Std Dev 

 All stocks  -0.00060 0.04955 0.00071 0.04413 

 Port A  -0.00110 0.03639 -0.00114 0.04806 

 Port B  0.00061 0.03476 0.00134 0.04263 

 Port C  -0.00274 0.03682 -0.00270 0.04739 

 Port D  -0.00068 0.04010 -0.00130 0.05167 

 

Table 8.4   Testing Mean Excess Return with Excess Return Constraint. 

  
Testing Mean Excess Return 

  
Short Sale Allow 

 

    
      1-tail 

NASDAQ t-score SE df p-value 

 All stocks  -0.043 0.00569 356 0.483 

 Port A  -0.001 0.00518 335 0.500 

 Port B  0.579 0.00460 313 0.282 

 Port C  -0.029 0.00513 311 0.488 

 Port D  0.034 0.00497 327 0.486 

    
     1-tail 

S&P t-score SE df p-value 

 All stocks  -0.264 0.00495 336 0.396 

 Port A  0.010 0.00449 342 0.496 
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 Port B  -0.179 0.00410 319 0.429 

 Port C  -0.007 0.00447 326 0.497 

 Port D  0.127 0.00487 331 0.450 

     

 

Note: 1-tail p-value = P(T > t-score) or P( T ≤ -t-
score)  

 

From Table 8.4, the lowest 1-tail p-value is 0.282 which far exceeds the 0.05 significance 

level. Therefore, one can safely conclude that the Filtered covariance has no advantage 

over the Raw covariance in terms of forming better efficient portfolio. 

  

 In this section, the objective function in equation (40) is replaced with the 

objective function of minimizing the tracking error 

                        
                

 
                    

  
   

 
     (42) 

subject to 

                       
 
         

          
    

 

The short sale constraint is removed from the optimization problem. The excess return 

constraint is imposed here. As in the previous section, the goal is to find if this will lead 

to better performance. Table 8.5 summarizes the CAGR results. 
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Table 8.5  

   

Minimum Tracking Error + Excess Return with Short Sale 
Allow 

  

Average 
CAGR% 

  

Average 
Sharpe 

 

 
NASDAQ EQW Raw Filter NASDAQ EQW Raw Filter 

Full 
Period 9.88  15.81  12.25  12.26  0.107  0.152  0.128  0.128  

Period 1 (9.30) (6.71) (7.24) (7.53) (0.053) (0.017) (0.040) (0.041) 

Period 2 27.21  37.51  30.18  30.36  0.238  0.298  0.264  0.265  

Period 3 11.85  16.82  13.93  14.10  0.136  0.181  0.155  0.156  

         

 
S&P 500 EQW Raw Filter S&P 500 EQW Raw Filter 

Full 
Period 4.04  9.13  3.82  3.68  0.059  0.097  0.058  0.056  

Period 1 (13.10) (9.38) (11.36) (11.80) (0.125) (0.059) (0.080) (0.085) 

Period 2 16.00  26.74  14.01  13.83  0.150  0.198  0.134  0.132  

Period 3 9.31  10.17  8.90  9.08  0.121  0.120  0.114  0.116  

 

 

 The immediate result from Table 8.5 is that both Raw and Filter portfolios 

perform far better in the NASDAQ sample than in the S&P sample. But the results are 

not enough to outperform the naïve strategy. However, the results here are better than 

those contain in Table 8.1.  

Table 7.2  

    

MTP Performance with Short Sale 
Allow 

 

  
Average CAGR% 

  

Average 
Sharpe 
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NASDAQ EQW Raw Filter NASDAQ EQW Raw Filter 

Full Period 9.88  15.81  12.23  12.29  0.107  0.152  0.128  0.128  

Period 1 (9.30) (6.71) (7.27) (7.39) (0.053) (0.033) (0.041) (0.040) 

Period 2 27.21  37.51  30.29  30.46  0.238  0.298  0.265  0.266  

Period 3 11.85  16.82  13.81  13.96  0.136  0.181  0.154  0.155  

         

 
S&P 500 EQW Raw Filter S&P 500 EQW Raw Filter 

Full Period 4.04  8.71  3.89  3.76  0.059  0.097  0.058  0.057  

Period 1 (13.10) (8.69) (11.71) (12.31) (0.125) (0.059) (0.084) (0.090) 

Period 2 16.00  25.33  14.38  14.38  0.150  0.198  0.137  0.136  

Period 3 9.31  9.60  9.09  9.29  0.121  0.120  0.115  0.117  

 

 

Comparing results in Table 8.5 to the results in Table 7.2 (MTP without excess return 

constraint in Chapter 7) both Raw and Filter portfolios show almost identical results for 

the CAGR and Sharpe ratios. This means the excess return over the benchmark is 

somehow non-binding when the problem is to minimize the tracking error of a 

benchmark. Therefore, the conclusions reached for the MTP in Chapter 7 are applicable 

here as well. One does not expect the Filter portfolio’s performance to be any different 

from the raw portfolio’s performance. 
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Chapter 9 

 

Three-Fund Separation 

 

 It becomes quite clear that selecting a single point in the efficient frontier with 

and without constraints may not even beat the naïve portfolio.  It also appears that 

estimation error in the covariance matrix may be a second-order effect, impacting mostly 

on the minimum variance portfolio.  The question is whether there is an alternative way 

to enhance the out-of-sample performances of MV portfolios.  In this chapter, I explore 

the notion of three-fund separation as presented by Kan and Zhou (2007). 

 

 In portfolio theory, the two-fund separation states that a mean-variance 

optimizing investor should invest only in the riskless asset and the tangency portfolio.  

According to Kan and Zhou (2007),  

“If the true parameters are known, as assumed in theory, then two-fund  

 Separation holds and there is no point in analyzing a three-fund  

 portfolio. However, when the parameters are unknown, the tangency portfolio  

 is obtained with estimation error. Intuitively, additional portfolios could be  

 useful if they provide diversification of estimation risk. Indeed, we show that  

 the  optimal portfolio weights can be solved analytically in a three-fund universe  

 that consists of the riskless asset, the sample tangency portfolio, and the  

 sample global minimum-variance portfolio. Therefore, a three-fund portfolio  

 rule can dominate all the previous two-fund rules.” 

 

 



-115- 
 

  
 

The authors consider estimation error in both sample mean and sample covariance and 

derived analytical solutions for the optimal weights for the two-fund and three-fund 

separation.  Denoting    as the vector of excess returns,                , the sample 

mean of the excess return as    and the sample covariance matrix as  .  Under normality 

assumption, it is well-known that    and    are independent of each other and they have 

the following exact distribution 

   

         
 
          (43) 

              )/T       (44) 

 

where          ) denotes a Wishart distribution with T-1 degrees of freedom and 

covariance matrix ∑.   Since the expectation of                        (see 

Muirhead (1982)) then the optimal portfolio weight     as given by the solution 

 

      
 

 
               (45) 

 

is actually a biased estimator of the true portfolio weight    since 

 

         
 

     
         (46) 
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when T > N+2. This implies that           , so investors, whose decision in (45) based 

on the sample estimates, tend to take bigger positions in the risky assets than those who 

know the true parameters. 

 

 In the three-fund separation, Kan and Zhou (2007) chose a linear combination of 

the global MVP and a sample tangency portfolio.  The reasons are twofold.  First, the 

weights of the global MVP depend only on    but not   .  Second, every sample frontier 

portfolio is a linear combination of two distinct sample frontier portfolios. It is named 

three-fund because the returns are measured as excess return over the risk-free rate. 

Therefore, the solution in (45) is really a two-fund separation. Adding the MVP as the 

third portfolio becomes a three-fund separation. 

 

Suffice it to say, the analytical results of the weights for the three-fund solution is 

given as:
1
 

 

           
 

 
                 )     (47) 

 

where c and d are chosen optimally and they are derived as: 

 

         
  

      
        (48) 

         
 
  

      
        (49) 

                                                           
1
 The optimal solution is derived by maximizing             )] with respect to c and d.  
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where k is a constant and            The squared slope of the asymptote to the ex 

ante minimum-variance frontier is given as: 

 

              
 
                 (50) 

 

and the expected excess return of the ex ante global MVP is given as:   

  

        
          

             (51) 

 

Thus, the vector of optimal weights for (47) are expressed as 

 

       
 

 
                       

           (52) 

 

Intuitively, the weight c** applies to the tangency portfolio (or mean-variance portfolio) 

while d** applies to MVP.  Using sample means and covariance to estimate      will 

result in the following distributional property: 

 

   
          

   
                  

       (53) 

 

where              
   is a F distribution with N-1 and T-N+1 degrees of freedom, and 

a noncentrality parameter of    . Since     is a heavily biased estimator when T is small, 

the unbiased estimator is thus given by: 
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      (54)  

 

As long as    
   , it is not necessary to include a second term in (54) for adjusting the 

estimator as suggested by the authors. 

  

While Kan and Zhou (2007) derived these elegant optimal solutions, they only 

test this on simulated data and, not surprisingly, found that their three-fund separation 

portfolio improved expected out-of-sample performance over the two-fund portfolio and 

other portfolios based on Bayesian-Stein estimators. Unfortunately, they did not include 

performance test on real market data. Therefore, the remaining portion of this chapter is 

dedicated to provide a partial test of their analytical results. 

 

 Although equation (52) calls for solving the optimal weights of the portfolio, one 

can also interpret the equation as  a weighted average between two ex ante portfolios  

with the weights being defined by c** and d**.  Although my studies did not measure 

returns as excess return over the risk-free asset and, hence, is strictly not a three-fund 

separation, it would be interesting to implement the results in (52) as a “Modified 2-Fund  

separation” (M2F).  That is, the risk-free asset is not considered here, but is implicitly 

replaced by a cash position with        The next step is to identify the tangency 

portfolio. One possibility is to simply use the benchmark index such as NASDAQ 100  

for the NSADAQ sample and the S&P 500 Index for the S&P sample.   
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Another possibility is to use the equally weighted portfolio in place of the 

tangency portfolio. Although the naïve portfolio may not be on the efficient frontier, its 

performance so far has beaten these other efficient portfolios.  In fact, a similar hybrid 

model that combines the naïve portfolio and the MVP was suggested and studied by 

DeMiguel et. al (2009).  The results of their hybrid portfolio were promising, and the 

weight is given as: 

 

                                 
 

 
                 (55) 

where a and b are solved similarly to c** and d**. 

 

 Note that both c** and d** in (48) and (49) are positive numbers implying only 

positive weights in constructing the M2F.  The M2F lies between the MVP and the 

tangency portfolio. On closer examination of (52), one can see the extra variable    in  

          
         It is possible that the estimate     can be 0, positive or negative.  When 

      then 100% of the fund is invested in the tangency portfolio.  When        then 

one should be shorting the MVP by -d** and c** will be recomputed as (1 + d**).  

There will be a leverage effect in this case. If the MVP originally consisted of only long 

positions in stocks, then all these positions are reversed to short positions.  If short  

selling restriction is enforced, then the absolute value of d** is used throughout the test 

plus employing a long only MVP.  The latter case is of great interest here because it is 

harder to perform short selling, and increasing leverage can present unnecessary margin 

calls during adverse market conditions. 
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 Using the NASDAQ sample of 87 stocks as a starting point, I first compute    for 

the local MVP using equation (51).  Next, I compute   using equation (50), the unbiased 

estimate    
  in (54) and d** according to (49) using the unbiased estimate.  The d** is 

then applied to the realized returns of the MVP while c** = (1 – d**) is applied to the 

realized returns of the tangency portfolio, which is either the benchmark index or the 

naïve portfolio. Two cases are considered here. First, the long-short case when d** can 

be negative and c** is levered up. Second, the long only case when |d**| > 0 is only 

allowed.  The average CAGR% for the entire sample period 2006 to 2013 are presented 

in Table 9.1 

Table 9.1   Performance of M2F (NASDAQ benchmark) 

  
Average CAGR% 

 

 

NASDAQ Naive MVP(raw) MVP(filter) 

2006 to 2013 9.88 16.19 13.15  15.43  

Long-Short   

  

  

MVP(raw) + NASDAQ 9.74 

  

  

MVP(filter) + NASDAQ 10.04 

  

  

MVP(raw) + Naïve   16.13 

 

  

MVP(filter) + Naïve   16.33     

     Long Only         

MVP(raw) + NASDAQ 10.41 

  

  

MVP(filter) + NASDAQ 10.35 

  

  

MVP(raw) + Naïve   15.39 

 

  

MVP(filter) + Naïve   16.08     

 

 In the Long-Short case, the M2F strategy underperforms both NASDAQ 100 

Index and the naïve portfolio using the MVP Raw.  On the other hand, using the MVP Filter 

as the anchor portfolio, the M2F strategy actually beats both NASDAQ 100 and the naïve 

portfolio by around 15 basis points a year. Figure 9.1 and 9.2 illustrate the full sample 

period performances for the Long-Short case.  As for the “Long Only” case, the M2F 
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strategies outperform the NASDAQ 100 Index by 47 basis points per year using MVP 

Filter and 53 basis points per year using MVP Raw.  But the combined strategies 

underperform the standalone results of each MVP. 

Figure 9.1 

 

Figure 9.2 

 

 
 

 

50 

70 

90 

110 

130 

150 

170 

190 

210 

1
 

1
1

 

2
1

 

3
1

 

4
1

 

5
1

 

6
1

 

7
1

 

8
1

 

9
1

 

1
0

1
 

1
1

1
 

1
2

1
 

1
3

1
 

1
4

1
 

1
5

1
 

1
6

1
 

1
7

1
 

1
8

1
 

M2F with Index, Long-Short 
2006 - 2013 

MVP(raw)+Index 

MVP(filter)+Index 

NASDAQ 

50 

100 

150 

200 

250 

300 

1
 

1
1

 

2
1

 

3
1

 

4
1

 

5
1

 

6
1

 

7
1

 

8
1

 

9
1

 

1
0

1
 

1
1

1
 

1
2

1
 

1
3

1
 

1
4

1
 

1
5

1
 

1
6

1
 

1
7

1
 

1
8

1
 

M2F with Naïve, Long-Short 
2006 - 2013 

MVP(raw)+Naïve 

MVP(filter)+Naïve 

Naïve 



-122- 
 

  
 

Using the naïve portfolio as the tangency portfolio, the M2F strategies actually 

underperform the naïve portfolio in both “Long-Short” and “Long Only” cases.  

However, the M2F strategies in this case are better than the standalone MVP 

performances. 

 

 The final stage of this chapter is to repeat the same test for the S&P sample. As 

before, both “Long-Short” and “Long Only” cases are examined. Table 9.2 presents the 

results. 

 

 Table 9.2   Performance of M2F (S&P benchmark) 

  
Average CAGR% 

 

 

S&P EQW MVP(raw) MVP(filter) 

2006 to 2013 4.04 9.30 3.40  3.85  

 Long-Short   

  

  

MVP(raw) + S&P 3.91 

  

  

MVP(filter) + S&P 3.76 

  

  

MVP(raw) + Naïve   9.25 

 

  

 MVP(filter) + Naïve   8.96     

      Long Only         

MVP(raw) + S&P 3.90 

  

  

MVP(filter) + S&P 3.97 

  

  

MVP(raw) + Naïve   8.25 

 

  

MVP(filter) + Naïve   8.82     

 

 

For the S&P sample, there is no improvement for the M2F strategies over the S&P 500 

Index.  The main reason is that both MVP Raw and MVP Filter are underperforming the 

benchmark index. However, by combining the MVP with the naïve portfolio, the M2F 

strategies produce better results than the standalone result of each MVP. Unfortunately, 
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none of them were able to beat the standalone Naïve portfolio’s performance. The closest 

M2F strategy is the MVP Raw and Naïve combination, under Long-Short scenario, where 

it underperformed by 5 basis points per year.  

 

 Basically, my findings are supporting DeMiguel et.(2009) results that complex 

models, such as Neutron that employs RMT and eigenvalue modification, cannot beat the 

naïve (or 1/N) strategy.  They look at fourteen models. These include sample based 

mean-variance models, Bayesian-Stein models, Moment restriction models such as  

MVP, Portfolio constraint models, three-fund separation and the hybrid model of MVP 

and Equal Weight strategy. Their studies did not include models using RMT predictions. 

Therefore, my results here supplement to their conclusion:  

 

“We find that out-of-sample Sharpe ratio of the sample-based  

mean-variance strategy is much lower than that of the 1/N strategy,  

indicating that the errors in estimating means and covariances erode 

all the gains from optimal, relative to naïve, diversification…  

In summary, we find that of the various optimizing models in the  

literature, there is no single model that consistently delivers a Sharpe  

ratio or a certainty equivalent (CEQ) return that is higher than that of  

the 1/N portfolio, which also has a very low turnover.”
2
 

  

 

The Battle of Equals 

 Finally, one question still remains. Why does naïve strategy on random portfolios 

can easily outperform the benchmark indexes such as the NASDAQ 100 and the S&P 

500. These benchmarks are value weighted index. Table 9.3 shows these results. 

                                                           
2
 Page 1947 DeMiguel et. al (2009) 
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 Table 9.3   

  
Performance of Naïve Portfolios 

 

  
  2006 to 2013 

  

 

Ending Value CAGR 

 

Ending 

Value CAGR 

NASDAQ 100 Index 197.915 9.88% S&P 500 Index 132.267 4.04% 

Port A 244.114 12.92% Port A 196.664 9.79% 

Port B 295.712 15.71% Port B 176.597 8.23% 

Port C 277.260 14.77% Port C 172.258 7.87% 

Port D 382.815 19.46% Port D 205.953 10.46% 

Full Sample 305.723 16.19% Full Sample 190.213 9.30% 

       

The starting value for each portfolio was 100 and the ending value is the cumulative 

compounded return at the end of the testing period. As mentioned previously, CAGR is 

the compounded annual growth rate. Notice that each of the portfolios A to D was 

randomly selected at the outset. Surprisingly, they all beat their respective benchmark 

index. Portfolio D in both cases has the best performance. This is purely by chance and 

not by design. One may argue that the market capitalization or size may attribute to 

differential performance. This is captured in Tables 9.4 and 9.5 below: 

 

Table 9.4    Market Cap at three different dates for NASDAQ sample 

NASDAQ 100 1/3/2006 3/9/2009 8/30/2013 

 

Market Cap 2,105,697  1,253,810  3,571,964  

# 

stocks 

Port A 859,488  439,893  964,593  20 

Port B 533,836  346,729  1,202,394  20 

Port C 424,421  255,731  580,844  20 

Port D 244,713  167,104  666,478  27 

Full Sample 2,062,458  1,209,457  3,414,309  87 
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    % of Index   

 Port A 40.8% 35.1% 27.0% 

 Port B 25.4% 27.7% 33.7% 

 Port C 20.2% 20.4% 16.3% 

 Port D 11.6% 13.3% 18.7% 

 Full Sample 97.9% 96.5% 95.6% 

     Average Market Cap 

 Port A      42,974       21,995       48,230  

 Port B 26,692  17,336  60,120  

 Port C 21,221  12,787  29,042  

 Port D 9,063  6,189  24,684  

 Full Sample 23,706  13,902  39,245  

  

Notice that Portfolio D has the lowest average market cap at the beginning of the sample 

period. It remains the lowest market cap at the bottom of the crisis. 

Table 9.5    Market Cap at three different dates for S&P sample 

S&P 500 1/3/2006 3/9/2009 8/30/2013 
 

Market Cap 11,719,294  6,106,809  14,966,532  

# 

stocks 

Port A 649,416  337,639  800,741  20 

Port B 797,432  611,965  877,589  20 

Port C 409,394  235,128  559,741  20 

Port D 524,169  253,022  532,881  20 

Full Sample 2,380,411  1,437,755  2,770,952  80 

    % of Index   
 Port A 5.5% 5.5% 5.4% 
 Port B 6.8% 10.0% 5.9% 
 Port C 3.5% 3.9% 3.7% 
 Port D 4.5% 4.1% 3.6% 
 Full Sample 20.3% 23.5% 18.5% 
     Average Market Cap 
 Port A 32,471  16,882  40,037  
 Port B 39,872  30,598  43,879  
 Port C 20,470  11,756  27,987  
 Port D 26,208  12,651  26,644  
 Full Sample 29,755  17,972  34,637  
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For the S&P sample, portfolios C and D have the lowest average market cap. These 

stocks are not the typical small cap stocks. Next, I plot the CAGR to the Average Market 

Cap for each of the 8 random portfolios at the start of the testing period. This is illustrated 

in Figure 9.3 

Figure 9.3 

 

  

  

The regression results are shown below: 

 CAGR =   a   +    b*Avg. Market Cap   R
2
 = 0.295 

            0.178       -0.002 

         (t=4.839)   (t = -1.585) 

 

 

The slope coefficient is significant at the 90% t-distribution. Therefore, randomly 

selected portfolios with smaller market cap tend to outperform the portfolios with larger 

y = -0.002x + 0.1788 
R² = 0.2952 
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market cap. As the average market cap approaches zero, the implied average CAGR 

tends toward 17.8%. 
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Chapter 10 

 

Resolving the Puzzle 

 

 The evidence so far indicates two obvious facts. First, the naïve portfolio clearly 

outperforms the portfolios generated by the more sophisticated portfolio optimization. 

This is especially true during periods after the market crash of 2008.  Second, the high 

hopes for better performance using “filtered” covariance matrix is completely shattered. 

It turns out that one cannot differentiate between the excess return over the benchmark 

using either raw or filtered covariance.  This includes looking at various optimal 

portfolios including the MVP, the MTP and the minimal risk portfolio with excess return 

constraint.  In several cases, some of these portfolios actually underperform the 

benchmark index.  

 

 In Chapter 3, the characteristics of the variance and correlation structures after the 

filtering process were analyzed in some details.  The finding is that the Neutron filtering 

application, in general, produces higher correlation values across the board. In other 

words, the filtered correlation structure is skewed towards higher value than the raw 

correlation structure.  On the other hand, the filtered variance actually declined, on 

average, across stocks. But the decline in variance is not monotonic in nature.  Around 

half of the sample shows decline in variance while the other half shows some increase in 

variance as compared to pre-filtering variance.  
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 These observations question the usefulness of the Neutron application.  If one is 

only interested in looking at better or enhanced correlation among securities or among 

variables, then the application appears to provide such a feature – higher correlation 

structure. Perhaps this may be applicable to pair trading or long-short strategy based on 

changing correlation structure among securities. If one is interested in getting better risk 

measures because historical correlations and variances are deemed too low for some 

reasons, then the Neutron application can be a useful tool. 

 

 However, if one is interested in portfolio selection and portfolio performance, 

then Neutron is not the right tool. So far, there is no evidence to show any advantage of 

using filtered covariance over the raw sample covariance.  There appears to be no new 

signal or superior information contained in the filtered covariance. The “efficient” 

portfolios do not automatically translate to better realized performance. The naïve 

strategy of putting equal weight on each stock (which is always inefficient) proves to be 

far better than the optimal portfolios based on risk-return tradeoff.  Moreover, the naïve 

strategy beats both S&P 500 and NASDAQ 100 benchmarks. 

 

 At this juncture, the focus is to examine the behavior of the final eigenvalues after 

the filtering process.  Recall that the key notion of filtering noise is the method used to 

modify the eigenvalue distribution within the “noisy” band as predicted by RMT. As 

mentioned before, some may replace the original eigenvalues by the average eigenvalue 

within the random band. Others simply flatten them out.  It is important to ensure that the 
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trace of the N x N matrix remains intact after the replacement. The trace of an N x N 

correlation matrix is simply the sum of the diagonal values which is simply N. Although 

Neutron application is proprietary, one can infer the method used in the application by 

performing a reverse engineering process. I propose to extract the eigenvalues from the 

filtered correlation matrix and overlay them with the eigenvalues from the raw correlation 

matrix. In particular, the frequency distribution between the two sets of eigenvalue is of 

most interest. 

 

 Consistent with the work done in Chapter 3, the correlation matrix for the three 

dates are analyzed. Each date represents each of the three sub-periods that were examined 

before. The dates are:  2/13/2007, 3/9/2009 and 1/13/2012 whereby the second date 

contains the crisis period and exhibits the highest volatility.  The algorithm used to 

extract the eigenvalues is the QR (Orthogonal Upper Triangular decomposition) method 

(see Press et. al 1988).  Figure 10.1 shows the frequency distribution of the eigenvalues 

within the “random” band for the NASDAQ sample as of 2/13/2007. The larger 

eigenvalues are not included in the chart.  The raw eigenvalues are overlay with the 

filtered eigenvalues.  
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Figure 10.1  Frequency Distribution of Eigenvalue for NASDAQ sample, 2/13/2007 

 

The first observation is that the filtered eigenvalues are most heavily concentrated at 

0.15. The second observation is that the filtered eigenvalue converges quickly to zero 

after 1.5 whereas the raw eigenvalues are still positive after that range. Figures 10.2 and 

10.3 contain the charts for the other two dates. 
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Figure 10.2 

 

 

 

Figure 10.3 

 

 

The results for all three dates are consistent.  There is a high concentration of very low 

eigenvalues around 0.15 and the filtered eigenvalue converges to zero quicker than the 
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raw eigenvalue. It appears that Neutron “bunches” the smallest eigenvalues at the lower 

end of the spectrum and narrows the randomness within a tighter band as compared to the 

raw eigenvalues.  Figures 10.4, 10.5 and 10.6 for the S&P sample confirm the same 

pattern. 

 

Figure 10.4 
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Figure 10.5 

 

 

Figure 10.6 
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and the procedure continues until it reaches 100%. The purpose is to find out how much 

information the smaller eigenvalue contributes to the total information.  The NASDAQ 

results for the two dates are presented in Table 10.1 and 10.2 and in Figures 10.7 and 

10.8 

 

Table 10.1 Cumulative eigenvalues from lowest to highest as of 2/13/2007 

(NASDAQ) 

 

2/13/2007 

 
NASDAQ 

   

  
RAW 

  
FILTER 

 

Lowest Avg Sum 

% of 

Total Avg Sum 

% of 

Total 

10 0.0376 0.38 0.43% 0.0154 0.15 0.18% 

20 0.0695 1.39 1.60% 0.0283 0.57 0.65% 

30 0.1166 3.50 4.02% 0.0469 1.41 1.62% 

40 0.1757 7.03 8.08% 0.0714 2.86 3.28% 

50 0.2553 12.77 14.67% 0.1056 5.28 6.07% 

60 0.3509 21.05 24.20% 0.1499 8.99 10.34% 

70 0.4704 32.93 37.85% 0.2110 14.77 16.98% 

80 0.6271 50.17 57.66% 0.2930 23.44 26.94% 

85 0.7369 62.64 72.00% 0.3553 30.20 34.71% 

87 1.0000 87.00 100.00% 1.0000 87.00 100.00% 

 

 

Table 10.2 Cumulative eigenvalues from lowest to highest as of 3/9/2007 (NASDAQ) 

 

 

3/9/2009 

 
NASDAQ 

   

  
RAW 

  
FILTER 

 

Lowest Avg Sum 

% of 

Total Avg Sum 

% of 

Total 

10 0.0152 0.15 0.17% 0.0105 0.11 0.12% 

20 0.0296 0.59 0.68% 0.0143 0.29 0.33% 

30 0.0453 1.36 1.56% 0.0201 0.60 0.69% 

40 0.0679 2.72 3.12% 0.0285 1.14 1.31% 

50 0.0985 4.93 5.66% 0.0403 2.02 2.32% 

60 0.1393 8.36 9.61% 0.0571 3.43 3.94% 
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70 0.1957 13.70 15.75% 0.0816 5.71 6.57% 

80 0.2797 22.38 25.72% 0.1198 9.58 11.02% 

85 0.3502 29.77 34.21% 0.1557 13.23 15.21% 

87 1.0000 87.00 100.00% 1.0000 87.00 100.00% 

 

 

Figure 10.7 
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Figure 10.8 

 

 

 

There are several interesting facts arising from these results. First, the average 

filtered eigenvalue is consistently lower than the average raw eigenvalue.  On average, 

the raw eigenvalue is around 2.3 times greater than the filtered eigenvalue.  Second, the 

cumulative sum of the filtered eigenvalues is also smaller than the cumulative sum of the 

raw eigenvalues.  As of 2/13/2007, the raw cumulative sum at the 85
th

 eigenvalue is 

62.64 (or 72% of the total) as compared to 30.20 (or 34.71% of the total) for the filtered 

case. That implies that the filtering process reduces the eigenvalues throughout the entire 

spectrum except for the largest two eigenvalues. In fact, only 34.7% of the total filtered 

eigenvalue is explained by the lowest 85 eigenvalues whereas the largest two explain 

65.3%. As for the raw case, the largest two eigenvalues account for only 28%. 
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 During the crisis period, the 85 lower eigenvalues explain only 34.21% for the 

raw case and 15.21% for the filtered case. The largest two eigenvalues explain 65.79% 

(raw case) and 84.79% (filter case).  This means that systemic risk is mainly captured by 

two eigenvalues.  The results for the S&P sample are contained in Tables 10.3 and 10.4 

and in Figures 10.9 and 10.10. 

 

Table 10.3 Cumulative eigenvalues from lowest to highest as of 2/13/2007 (S&P) 

 

2/13/2007 

 
S&P 

   

  
RAW 

  
FILTER 

 

Lowest Avg Sum 

% of 

Total Avg Sum 

% of 

Total 

10 0.0542 0.38 0.47% 0.0232 0.23 0.29% 

20 0.0970 1.94 2.43% 0.0400 0.80 1.00% 

30 0.1534 4.60 5.75% 0.0643 1.93 2.41% 

40 0.2213 8.85 11.07% 0.0953 3.81 4.77% 

50 0.3076 15.38 19.23% 0.1368 6.84 8.55% 

60 0.4205 25.23 31.54% 0.1958 11.75 14.69% 

70 0.5696 39.87 49.84% 0.2772 19.40 24.26% 

75 0.6656 49.92 62.40% 0.3308 24.81 31.01% 

80 1.0000 80.00 100.00% 1.0000 80.00 100.00% 

 

Table 10.4 Cumulative eigenvalues from lowest to highest as of 3/9/2009 (S&P) 

 

3/9/2009 

 
S&P 

   

  
RAW 

  
FILTER 

 

Lowest Avg Sum 

% of 

Total Avg Sum 

% of 

Total 

10 0.0175 0.18 0.22% 0.0138 0.14 0.17% 

20 0.0321 0.64 0.80% 0.0195 0.39 0.49% 

30 0.0533 1.60 2.00% 0.0261 0.78 0.98% 

40 0.0795 3.18 3.98% 0.0354 1.42 1.77% 

50 0.1151 5.76 7.19% 0.0491 2.46 3.07% 

60 0.1670 10.02 12.53% 0.0704 4.22 5.28% 

70 0.2408 16.86 21.07% 0.1014 7.10 8.87% 

75 0.2974 22.31 27.88% 0.1264 9.48 11.85% 

80 1.0000 80.00 100.00% 1.0000 80.00 100.00% 
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Figure 10.9 

 

Figure 10.10 

 

 

The results for the S&P sample are very similar to the results for the NASDAQ 
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First, it is reducing the eigenvalues within the RMT band by half.  Second, it limits the 

RMT band to a narrower range. Finally, it shifts most of the values to the larger 

eigenvalues. This implies that the filtered correlation matrix is determined highly by a 

market wide factor and a secondary factor. This could explain why the filtered correlation 

structure is skewed towards higher values and the filtered variance for most (not all) 

stocks reduced at the same time.   

 

 This analysis may provide an answer as to why the filtered correlation matrix is 

unable to beat the raw correlation, especially in the unconstrained short selling case.  It 

can also explain why there are fewer stocks in the optimal portfolios using filtered 

correlation when there is short sale restriction. Consider two stocks called Stock1 and 

Stock2. Combining the two stocks in the portfolio, one can write the variance of the 

portfolio as: 

                                     
      

   
    

   
                   (56) 

where   is the correlation coefficient between the returns of Stock1 and Stock2 and the 

two weights must add up to 100% as: 

                         (57) 

  

and the standard deviation of the portfolio as: 
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Equation (56) simply states that the portfolio variance consists of two components – the 

variance component and the correlated component. If both weights        are positive in 

(56), then portfolio risk increases monotonically with positive correlation. On the other 

hand, if      then        in order to satisfy the constraint in (57). Then the second 

term in (56) is negative. Increasing the positive correlation value may result in a 

reduction of portfolio risk. 

 

Table 10.5 Portfolio Risk for various combinations 

   

------------------               -------------- 

  

   = 0.5 1.5 1.8 

        

Long 

Only Long/Short Long/Short 

0.5 0.5 0.2 0.387 0.742 0.909 

  

 

0.5 0.433 0.661 0.781 

  

 

0.8 0.474 0.570 0.628 

  

 

0.9 0.487 0.536 0.567 

0.8 0.5 0.2 0.512 1.176 1.415 

  

 

0.5 0.568 1.097 1.287 

  

 

0.8 0.618 1.011 1.145 

  

 

0.9 0.634 0.981 1.094 

0.5 0.8 0.2 0.512 0.776 0.995 

  

 

0.5 0.568 0.650 0.802 

  

 

0.8 0.618 0.492 0.546 

  

 

0.9 0.634 0.427 0.428 

0.8 0.8 0.2 0.620 1.187 1.454 

  

 

0.5 0.693 1.058 1.250 

  

 

0.8 0.759 0.912 1.004 

    0.9 0.780 0.858 0.908 

 

Table 10.5 shows the portfolio risk (standard deviation) for different combinations of 

         . For the long only portfolio, it is easy to see that when either        

increased, the portfolio risk also increased. However, if the filtered correlation structure 
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increased with a corresponding reduction in the variance then an overall reduction in the 

portfolio risk is easily attainable. For                             the 

portfolio risk is 0.62.  Suppose post filtering one observes the following       

                         , then the portfolio risk is reduced to 0.568. If both stock 

risk are reduced further, say              ,        then the portfolio risk is further 

reduced to 0.433. This explains why the long only optimal portfolio using filtered 

correlation can have lower risk for the same level of expected return despite the fact that 

the correlation structure has gone up substantially.  

 

 As for the long-short portfolio, an increase in correlation with no change in the 

individual risk will lead to a reduction in portfolio risk. Take the example of    

                              the portfolio risk is 1.187.  Post filtering, one 

observes                  and portfolio risk is 0.912. The reduction in portfolio 

risk comes from the increased correlation and the negative weight of Stock2 in the  

second term of equation (56).  The negative effect from the correlated component may 

even overcome the variance component in some cases. Suppose the initial case was 

                                 with portfolio risk at 0.742. The new 

situation becomes                                      and the portfolio 

is reduced to 0.650. The reverse happens if                            

           where the portfolio risk increased to 1.097. 
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 The simple examples illustrate that although correlation structure increased and 

variance on average has decreased post filtering, the net effect on portfolio risk is not 

obvious. The overall risk can either increase or decrease depending on the sign and size 

of the weights, and the increase or decrease in variance relative to correlation.  Therefore, 

it is plausible to have an optimal portfolio, using the filtered correlation matrix, to behave 

like the optimal portfolio that is based on raw correlation matrix. This can possibly 

explain the similar performance results of unconstrained optimal portfolios. 
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Chapter 11 

 

Summary 

 

 The main purpose of this dissertation is to evaluate the effectiveness of Neutron 

QuantumApp in filtering the estimation noise for large covariance matrix.  The 

characteristic of the correlation and variance structure are examined prior to and post 

filtering. Three observations are established from the analysis. First, the results clearly 

show that Neutron’s filtering process is yielding higher correlation coefficients in almost 

all cases.  Second, there is generally a decline in variance for slightly more than half of 

the sample securities. The remaining securities show increased volatility after the 

filtration process although the magnitude is smaller than the magnitude of declining 

volatility. The average variance of all stocks in the samples declines.  Third, the 

Neutron’s filtering process reduces both the eigenvalues and the band width as predicted 

by RMT. This means the largest eigenvalue (reflecting the market factor) absorbs almost 

all the differences, thus making every stock in the sample to be highly correlated with the 

market factor. Not surprisingly, the overall correlation structure has increased 

dramatically and the larger percentage of stocks show lowered volatility. 

 

In terms of portfolio risk, specifically pertaining to the MVP, the minimal risk 

from MV optimization using raw sample data is lower than the minimal risk from using 

the filtered data under short sale restriction. The efficient frontier generated from the raw 

sample dominates the efficient frontier from the filtered sample only at the MVP position. 
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When risk-return trade-off departs from the minimal position, the filtered efficient 

frontier quickly dominates the raw optimal frontier. 

 

However, when the short sale restriction is removed the reverse is true; the 

filtered portfolio risk is lower than the raw portfolio risk. This phenomenon shows up 

consistently throughout the study. In fact, the filtered efficient frontier dominates the raw 

efficient frontier at every risk-return point. The results hold well during the depth of the 

financial crisis of 2008. 

 

The predictive power of risk is showing the same behavior as above under short 

sale restriction. The MVP Raw is a better predictor of actual risk than the MVP Filter. As 

soon as the short sale constraint is removed, the opposite is true. Moreover, there is 

actually improvement in risk prediction when the optimal weights from MVP Filter are 

applied to the raw data. 

 

Since stocks are more correlated after the filtration process, there is less number 

of stocks required to generate an optimal portfolio with non-negative weight constraint. 

There are around 2.6 times more stocks in the MVP Raw than in the MVP Filter.  There is 

definitely an extra degree of efficiency in using the filtered covariance matrix for 

optimizing risk and return. 
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 In the study of minimal tracking risk portfolio (MTP), the raw covariance 

produces slightly better result in the minimum tracking error than the filtered covariance, 

but the latter produces more dominant efficient frontiers than the former. This is true for 

both constrained and unconstrained optimization. The number of securities with positive 

weights is very similar for both constrained and unconstrained results. 

 

In terms of return performance, there is no apparent advantage using the filtered 

covariance over the raw sample covariance. Optimal portfolios such as MVP, MTP and 

riskier return portfolio have been tested. Although the filtered portfolios may have a 

slight edge over the raw portfolios at certain times, the differences are insignificant when 

measuring their return against the benchmarks such as NASDAQ 100 index and S&P 500 

index. The naive portfolio or equally weighted portfolio has the best overall performance 

throughout the study. In fact, the hybrid model, based on the three fund separation 

between a tangency portfolio and the MVP, has better results than the standalone MVPs, 

but is still unable to outperform the naïve strategy.  

 

The findings here add further support to other existing studies, that many “fancy” 

strategies and estimation noise reduction techniques cannot beat the simple naïve 

portfolio. The latter, surprisingly, performed extremely well during the recovery period of 

the financial crisis. Furthermore, the naïve portfolio has the least turnover cost of any 

portfolio in existence.  
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As for Neutron QuantumApp, there is not much value in using it for portfolio 

selection.  Sample covariance matrix appears to do a decent job when Q=N/T is fixed at 

some value less than 0.75.  Perhaps, Neutron may produce better risk measures for risk 

management purposes. Alternatively, it may find some use in trading strategies that rely 

heavily on better correlation estimates. 

 

It is no wonder that Markowitz’s elegant optimization will still remain an enigma 

for some time. The serious attempt by physicists to use Random Matrix Theory in finance 

is commendable but proved to be futile at this moment. 
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Appendix A 

 

An Explanation of Random Matrix Theory 

 

Markowitz’s theory of optimal portfolio aims at generating efficient portfolios 

such that the overall risk is minimized for a given reward, or, conversely, reward is 

maximized for a given risk. Using variance as a risk measure and expected return as a 

measure for reward, the return on a portfolio is a linear combination of the returns on the 

assets forming the portfolio with weights given by the proportion of wealth invested in 

the assets. The portfolio variance can be expressed as a quadratic form of these weights 

with the volatilities and correlations as coefficients. The volatility and correlation 

estimates are extracted from historical data and they have to be reliable for any practical 

use. 

 

 Consider N assets, the correlation matrix contains N(N-1)/2 entries, which 

must be determined from N time series of length T.  Suppose there are 500 securities, 

then there are 124,750 unique entries in the correlation matrix.  In this example if one 

takes 5 years of daily returns for each security (assuming 250 trading days a year), then 

one has 625,000 of total observations. Dividing 625,000 by 124,750 one has around 5 

data points.  One has to increase T in order to increase the data points (30 years of daily 

data will yield 30 data points). Therefore, if T is not very large as compared to N, one 

would expect that the determination of the covariance matrix structure to be dominated 
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by estimation noise.  If this is the case, then the smallest eigenvalues of this matrix are 

the most sensitive to this noise. Any application that uses such correlation matrix can 

produce inefficient results.   

 

Laloux et al. (1999) argue that in the MV optimization, the eigenvectors 

corresponding to the smallest eigenvalues determine the least risky portfolios. 

According to them: 

“Indeed, in the case of the S&P 500, 94% of the total number of eigenvalues 

falls in the region where the theoretical formula applies.  Hence less than 6% 

of the eigenvectors, which are responsible for 26% of the total volatility, appear 

to carry some information.” 

 

Independently, Plerou et al. (1999) also find that empirical covariance matrices deduced 

from financial return series to contain a high degree of noise.  

 

 In this Appendix, a brief introduction to eigenvalues, eigenvectors and Principal 

Component Analysis (PCA) is in order.
1
  Then a more detail discussion of RMT follows.  

Consider a square matrix M. An eigenvector of M is defined as a non-zero vector v such 

that when the matrix is multiplied by v, the result is the vector v scaled by λ 

               (A.1) 

                                                           
1
 Refer to Kohn (1987) for detail explanations of eigenvalues and eigenvectors. 
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where λ is called the eigenvalue (or characteristic root) of M corresponding to v.  In short, 

the scalar value is a way to “stretch” out the information contained in M.  Rewriting (A.1) 

as 

             

where I is the N x N identity matrix.  Therefore, a non-zero solution v exists if and only if  

                     (A.2) 

In other words, the eigenvalues of M are precisely the real numbers λ that satisfy (A.2). 

 As an illustration, consider a matrix M 

      
   
   
   

       

                  
   
   
   

    
   
   
   

        
     
     
     

  = 0 

which is  

                                          

and the roots (eigenvalues) of the polynomial are 2, 1, and 11. The three eigenvectors 

corresponding to the three eigenvalues are: 
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In order to illustrate the relationship between the eigenvalues and their 

eigenvectors, consider an n x n matrix U whose columns    are the eigenvectors of a 

symmetric n x n matrix M 

     

       
   
   

  

Premultiply both sides of the equation by M 

 

      
          
   
   

    
             
   
   

  

                     

       
   
   

  x  

    
    
    

     

 

where Λ is a diagonal matrix whose nonzero elements are the eigenvalues of M.  

Premultiply both sides of the equation by     yields 

                  

The matrix U is an orthogonal matrix which has the property that       .  Therefore, 

there are n eigenvalues corresponding to n eigenvectors. 
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A common application of decomposition of a matrix into eigenvalues and 

eigenvectors is the Principal Component Analysis (PCA).  A symmetric n x n real matrix 

M is said to be positive definite if      is positive for every non-zero column vector z of 

n real numbers. A positive semi-definite matrix (PSD) requires      to be always non-

negative. Thus, the eigen decomposition of a PSD matrix yields an orthogonal basis of 

eigenvectors, each of which has a non-negative eigenvalue.  

 

The sample covariance matrices are PSD and the orthogonal decomposition is the 

PCA.  For the covariance or correlation matrix (in which each variable is scaled to have a 

unit sample variance), the eigenvectors correspond to principal components and the 

eigenvalues to the variance explained by the principal components.  PCA of the 

correlation matrix provides an orthonormal eigen-basis for the space of the observed 

data. In this eigen-basis, the largest eigenvalues correspond to the principal-components 

that are associated with most of the covariability among a number of observed data.   

 

Similarly, one can extract the eigenvalues and eigenvectors from a sample 

covariance matrix and then analyze the spectrum of these values that are affected by 

noise.  Once a better understanding of the spectrum, one can proceed to find ways to 

mitigate this measurement noise and then “transform” the original covariance matrix into 

a “less noisy” covariance matrix.  In other words, how can one distinguish the “signal” 

(or true information) from the “noise” from the eigenvectors and eigenvalues of a 

correlation matrix?   
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In order to answer the question, one starts off with the simple concept of 

comparing an N x N empirical correlation matrix C to a purely random matrix as one 

could obtain from a finite time series of N uncorrelated assets. The presence of true 

information can then be inferred from the deviations from the random matrix. 

 

 The element in the empirical correlation matrix C is written as: 

    i   
 

 
    i         

 
                                   (A.3) 

 

for assets i and j, and time period t.
2
  The δx’s are time series of price changes, subtracted 

from their average values, and rescaled to have constant unit volatility.  In matrix 

notation, one can rewrite (A.3) as          
 

 
      

where M is a N X T rectangular 

matrix and 
T
 is matrix transposition. This is also known as the Wishart matrix (Baker et. 

al (1998)). Denote ρ(λ) as the density of eigenvalues of C . This is given as: 

               
 

 
 
      

  
       (A.4) 

where n(λ) is the number of eigenvalues of C less than λ.  

 

                                                           
2
 The analyses follow Laloux et al. (1999) 
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If M is a T x N random matrix, then the density function in (A.4) is exactly 

known in the limit                                     (Sengupta and 

Mitra (1999)) 

        
 

    
 
                  

 
                (A.5) 

where          
          

 

 
       )   with                            (A.6) 

and σ
2
 is the variance of the elements of M, equal to 1 with normalization.   Equations 

(A.5) and (A.6) are approximately valid at finite N and T when N and T are not small.  

According to (A.5) and (A.6), the eigenvalues of the Wishart matrix distribute only in the 

range:             .  In the limit Q =1 the normalized eigenvalue density of M is the 

Wigner semi-circle law
3
 which can be written as: 

 

               
 

    
        ,               (A.7) 

 

According to RMT predictions as in (A.5), for the lower spectrum from 0 to λmin, 

there are no eigenvalues. Near this edge, the density ρ(λ) has the highest value (except in 

the limit Q=1;        ) and then declines slowly until it reaches 0 at the upper edge 

    .  In essence,                are the theoretical minimum and maximum 

eigenvalues that determine the bounds of the theoretical eigenvalue distribution. If the 

eigenvalues of C are beyond these bounds it is said that they deviate from the random (or 

                                                           
3
 See Mehta (1967) 
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theoretical) boundary. Note that the results are valid only in the limit,    . For finite 

N, the edges at both ends are somewhat smoothed with a small probability of finding 

eigenvalues above      and below     . 

  

Consider two cases in order to illustrate the equation (A.5).  In the first case, 

T=3,000 and N=500 such that Q = 6. The eigenvalue associates with the random noise 

ranges between [0.35 and 1.983]. The density function is represented by the blue line 

with the circle marker in Figure A2.1.  In the second case, T=2,000 and N=500 such that 

Q=2. The eigenvalues associates with the random noise ranges between [0.085 and 

2.914]. This is represented by the red line in Figure A-1.  For a smaller Q value, the noisy 

eigenvalues cover a larger area.  The random spectrum is reduced for larger T. Noise is 

reduced as T increases relatively to N, the number of securities.  

Figure A-1 
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Recall that Laloux et al. (1999) argue that in the MV optimization, the least risky 

portfolios happen to correspond to the smallest eigenvalues; 94% of the spectrum of these 

correlation matrices can be fitted with random matrix.  In other words, the distribution of 

the smaller eigenvalues resembles the distribution generated by random noise as in Figure 

2.1.  Only the larger eigenvalues (a smaller set) are unaffected by the measurement noise 

(i.e., those   λ >  λmax).  

 

 At this juncture, I present the behavior of the distribution of eigenvalues from a 

sample correlation matrix with N=87 stocks from the NASDAQ 100 sample and T=119 

returns; Q=1.367. Three separate dates were chosen to represent three sub periods. These 

dates are: 2/13/2007, 3/9/2009 and 1/13/2012. The eigenvalues for the correlation matrix 

for these three dates were extracted, combined and sorted into frequency bins between 

      0.02 and       3.44, which is the RMT prediction interval of random noise.   

Figure A-2 
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 Figure A-2 shows the histogram of the sample eigenvalues from the combined 3 

dates.  Note that those eigenvalues greater than      are not displayed. The largest 

eigenvalue for the 3 dates has a value of 54.7 which is 15.9 times the value of     . 

Moreover, 97.7% of the total eigenvalues are within the RMT prediction band which is 

consistent to Laloux et al. (1999) finding. 

 

The experiment is repeated for 80 randomly selected stocks from the S&P 500 

sample with T=119; Q=1.487;       0.032 and       3.312. The histogram of 

eigenvalues for the same three dates is displayed in Figure A-3 

Figure A-3 
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 The largest eigenvalue in the S&P sample for the 3 dates is 54.3; 16.4 times 

greater than        Again, between 97.5% and 98.75% of the total eigenvalues fall into 

the RMT prediction band. The implication is clear. The information content contained in 

the sample correlation matrix is indistinguishable from random noise. Only the first and 

second largest eigenvalues appear to contain real correlation data. 

 

Shannon Entropy 

 Entropy is a measure of uncertainty associated with a random variable. Shannon 

entropy can be interpreted as the average number of bits required in order to specify the 

probability of being in a system state. In other words, it quantifies the expected value of 

the information contained in a message, measured in bit (see Shannon (1984)). 

Mathematically, the Shannon entropy of A is written as: 

                    
 
    

where   

H(A) is the information size of a set A 

     is the probability of i
th

 element. 

The higher the Shannon entropy, the more noisy or uncertainty the elements are. 

 


