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ABSTRACT OF THE DISSERTATION

ESSAYS ON INTRA-MARKET EFFICIENCY AND FINANCIAL CONTAGION

By LOUIS RICHARD PICCOTTI

Dissertation Director:

Yangru Wu

The first essay of this dissertation shows that financial contagion risk is an important
source of the risk premium. Intermediaries’ contribution to aggregate financial contagion
is estimated in a new state space framework and a tradable financial contagion portfolio
is formed. More contagious intermediaries earn excess returns over less contagious ones
that cannot be explained by commonly used factor models. The relative performance
of contagious intermediaries is also priced in the cross section of stock returns. Stocks
that comove more strongly with contagious intermediaries earn monotonically greater
returns. These results are robust to factor model specification, test assets, and time
period considered.

The second essay shows that exchange traded funds (ETFs) persistently trade at a
premium to net asset value (NAV) and that market segmentation can explain this puz-
zling regularity. Tracking error standard deviation is used as the measure of market
segmentation. ETFs with larger tracking error standard deviations trade at higher pre-
miums, consistent with the notion that investors are willing to pay a premium to receive
liquidity and diversification benefits from holding ETFs rather than the underlying se-
curities directly. These results are robust to investor sentiment effects. Further tests
validate that tracking error standard deviation has the desirable properties of a market
segmentation measure.

The third essay shows that previous studies substantially understate the magnitudes
of arbitrage profits in the closed-end fund market. The assumption that closed-end fund
returns depend only on current premiums is relieved in favor of returns being dependent
on an optimally chosen history of premiums. Incorporating the information content of
a fund’s premium innovation history substantially improves expected return estimates.
In doing so, arbitrage profits are increased from an annualized 14.9 percent return with
a Sharpe ratio of 1.519 to an 18.2 percent return with a Sharpe ratio of 1.918. These
results are robust to a wide range of tests. They deepen the closed-end fund discount
puzzle and pose a challenge to the market efficiency in these products.
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1 Introduction

Market efficiency and the effect that financial contagion has on asset prices has be-

come of central importance to financial economists in recent years. This dissertation is

comprised of three essays which look at intra-market efficiency in the financial indus-

try, the closed-end fund (CEF) market, and the exchange traded fund (ETF) market.

Here, intra-market efficiency refers to the relative pricing of securities in a specific mar-

ket. Intra-market efficiency is violated when profitable arbitrage opportunities, riskless

or through pairs trading, predictably persist.

The first essay of this dissertation examines how financial contagion risk affects the

pricing kernel. Financial intermediaries serve a special role in the economy through

investing on households’ behalf and by issuing credit which both can affect the aggre-

gate consumption possibility set. As financial intermediaries experience negative shocks,

household wealth decreases and credit may be constrained. In the aggregate, consump-

tion will be diminished. Conversely, as financial intermediaries experience positive shocks,

household wealth increases and credit availability may be liberated and, in the aggregate,

consumption increases. Financial intermediaries’ propensity to experience positive and

negative shocks contemporaneously will shock aggregate consumption possibilities in the

same direction. Asset pricing theory proposes that risk-averse investors with concave

utility will require a greater return on securities whose returns experience greater co-

variation with contagious intermediaries since these securities have high payoffs in good

times and low payoffs in bad times.

Financial contagion is defined in this dissertation to be covariation in bank stock

returns in excess of what is predicted by overall market movements. As an innovation to

the contagion methodology literature, this paper scales excess bank return covariances

by the return variance of the financial sector to give estimates of the contribution of each

financial intermediary to total financial contagion as well as to provide an estimate of the

fraction of the financial sector’s return variance that is caused by financial contagion.

The financial contagion risk factor portfolio (HCMLC) is the arbitrage portfolio
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formed by buying the decile of most contagious intermediaries and selling the decile

of least contagious intermediaries. This arbitrage portfolio is found to yield an annu-

alized mean return of 6.0 percent which cannot be explained by the commonly used

market, small-minus-big, the high-minus-low, momentum, and liquidity factors. Esti-

mated annualized HCMLC risk premiums are 5.4 percent in the firm-level cross-section

of CRSP stocks when the CAPM is augmented with the financial contagion factor and

3.9 percent when the FFCPS model is augmented with the HCMLC factor. Significant

HCMLC risk premiums are also obtained in the cross-section of test portfolios sorted on

size, book-to-market (B/M), momentum, and industry.

The second essay introduces a new ETF premium puzzle. In a frictionless market,

ETF share prices will equal NAV. If this were not the case, then a riskless arbitrage

opportunity would exist. To the contrary, this paper finds that ETFs persistently trade

at a premium. In 89 percent of sample months, mean ETF share prices are greater than

NAV. Further, mean premium half-lives range from 0.574 days for ETFs that invest in

domestic equities to 8.891 days for ETFs that invest in domestic fixed income. ETFs

provide a means for investors to gain access to a cash flow stream indirectly that may

be inaccessible completely or only accessible at a high cost otherwise. If markets are

segmented and ETFs provide liquidity benefits to investors, then rational investors should

be willing to pay a premium to NAV as long as the cost of the premium is less than

the liquidity and diversification benefits received. Tracking error standard deviation

(TESD), the standard deviation of the difference between NAV returns and returns on

the basket of securities that it aims to replicate, is used in this paper as the measure of

market segmentation. In more segmented markets, ETF managers are expected to have

less precise tracking ability.

TESD is found to be positively related to premiums after controlling for fund charac-

teristics, transaction costs, and tax overhang liabilities. Accessibility to foreign securities

and fixed income securities through ETFs are revealed to be the most valuable to in-

vestors. Alternative hypotheses about premium dynamics include the contingent tax

liability hypothesis and the investor sentiment hypothesis. This paper finds no evidence
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of a similar tax-related pattern in the ETF market. The investor sentiment and noise

trading hypotheses state that irrational noise traders create a form of idiosyncratic risk

that deters rational risk-averse arbitrageurs from trading. this paper finds that investor

sentiment affects premium levels in the ETF market. ETF premiums are found to be a

contrarian predictor of NAV returns, market returns, and returns on the small-minus-big

portfolio at the three-month holding period horizon. After controlling for traditional

measures of investor sentiment, TESD continues to have explanatory power for ETF

premiums. Further tests confirm that TESD is a robust measure for market segmenta-

tion. Other studies can also benefit from using TESD as a market segmentation measure

where market segmentation or barriers to entry are difficult to measure.

The third essay of this dissertation shows that the mean-reversion in the CEF market

can be optimally exploited to obtain larger arbitrage profits than have been previously

documented in the literature. Two new conditioning models of expected returns that

exploit the information content of premiums in different ways. The first, a basic mean-

reversion (BMR) model, predicts future returns conditioned on current premium alone.

The second model forecasts future returns in an Augmented Dickey-Fuller (denoted as

RADF) type regression, further conditioning on lagged innovations in premiums. In-

cluding lagged premium innovations takes advantage of the information contained in the

path of historic premiums. The trading strategy results further greatly deepen the puzzle

by showing that previous studies substantially understate the level of inefficiency in the

CEF market. The long-short quintile portfolio strategy, using the BMR model, yields

annualized mean returns of 17.3 percent with a Sharpe ratio of 1.862. When the RADF

model is used, the annualized mean long-short strategy return is 18.2 percent with a

Sharpe ratio of 1.918. Since the RADF model yields substantially larger arbitrage profits

than the BMR model, the traditional view that expected CEF returns are independent

of the path taken by premiums is rejected.

Trading strategy returns cannot be explained by the market, size, value, momentum,

or liquidity factors. The results continue to be robust when only considering subsamples

of domestic funds, foreign funds, equities funds, and fixed-income funds. Returns are
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not driven by systematically buying foreign funds and selling domestic funds to capture

a market segmentation premium or by systematically buying equities funds and selling

fixed-income funds to capture the equity premium puzzle. Additionally, time period

consistency of returns is tested by partitioning the out-of-sample period into two halves.

Contrary to what is expected in efficient markets with rational learning, there is no

statistically significant difference between mean returns in the first half of the out-of-

sample period and mean returns in the second half of the out-of-sample period.
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2 Financial Contagion and the Stochastic Discount Fac-

tor

Financial intermediaries serve a special role in the economy through investing on

households’ behalf and by issuing credit which both can affect the aggregate consump-

tion possibility set. As financial intermediaries experience negative shocks, household

wealth decreases (Allen, Bali, and Tang (2012)) and credit may be constrained (Duchin,

Ozbas, and Sensoy (2012) and Ivashina and Scharfstein (2010)). In the aggregate, con-

sumption will be diminished. Conversely, as financial intermediaries experience positive

shocks, household wealth increases and credit availability may be liberated and, in the

aggregate, consumption increases. Financial intermediaries’ propensity to experience

positive and negative shocks contemporaneously will shock aggregate consumption pos-

sibilities in the same direction. Asset pricing theory proposes that risk-averse investors

with concave utility will require a greater return on securities whose returns experience

greater covariation with contagious intermediaries since these securities have high payoffs

in good times and low payoffs in bad times.

Alternatively, since intermediaries serve as agents of households to invest on their

behalf, it could be that intermediaries’ marginal utility of wealth and stochastic discount

factor (SDF) prices securities as proposed in the Cochrane (2011) presidential address.

In the case of an intermediary SDF, increased financial contagion leads to increased inter-

bank funding illiquidity, such as observed in Schnabl (2012). A severe enough decrease in

funding liquidity can result in market freezes (Acharya, Gale, and Yorulmazer (2011)) or

fire sales (Jotikasthira, Lundblad, and Ramadorai (2012) and Shleifer and Vishny (1992)).

In each of these cases, for an intermediary with concave utility, asset payoffs will covary

negatively with the intermediary’s marginal utility of wealth. It follows that with an

intermediary SDF, intermediaries will also require a greater expected return for holding

securities that experience greater covariation with more contagious intermediaries.

This paper contributes to the new and growing area of financial intermediary asset

pricing by showing that financial contagion risk enters the SDF. Financial contagion is
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defined in this paper as in Bekaert, et al. (2005) to be excess covariation in bank stock

returns in excess of what is predicted by overall market movements. Excess bank return

covariances are scaled by the return variance of the financial sector to give estimates

of the contribution of each financial intermediary to total financial contagion as well as

to provide an estimate of the fraction of the financial sector’s return variance that is

caused by financial contagion. High contagion intermediaries are found to outperform

low contagion intermediaries, by an annualized mean return of 6.0 percent. Formal factor

regressions show that the mean annualized abnormal return of the high contagion minus

low contagion intermediary portfolio is 3.9 percent and persists after accounting for the

three Fama and French (1993) factors, the Pástor and Stambaugh (2003) liquidity factor,

and the Carhart (1997) momentum factor (hereafter, referred to as the FFCPS model).

Additionally, a monotonic relationship cannot be rejected between intermediary portfolio

contagion and intermediary portfolio mean return. Trend tests indicate that an increase

in mean return of 80 basis points is required for investors to hold an adjacent intermediary

decile with higher contagion risk.

The financial contagion risk factor portfolio (HCMLC) is formed by buying the decile

of intermediary stocks that contribute the most to financial contagion and selling the

decile of intermediary stocks that contribute the least to financial contagion. A monotonic

relation between financial contagion beta and mean returns cannot be rejected. Investors

require an increase in expected return of 40 basis points to hold an adjacent common

stock decile with a higher financial contagion beta.

Asset pricing tests are used to test if financial contagion risk is priced in the cross

section of stock returns. The price of the HCMLC factor is tested out of sample in the

cross-section of firm level stock returns and test portfolios using the two-pass regression

procedure of Fama and MacBeth (1973). Estimated annualized HCMLC risk premiums

from Fama-MacBeth regressions are 5.4 percent in the cross-section of CRSP stocks when

the CAPM is augmented with the financial contagion factor and 3.9 percent when the

FFCPS model is augmented with the HCMLC factor. Significant HCMLC risk premiums

are also obtained from Fama-MacBeth regressions using test portfolios sorted on size,
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book-to-market (B/M), momentum, and industry. Estimated Financial contagion risk

premiums using these test portfolios generally range from 5 percent to 15 percent. Risk

premium results are robust at the firm level and portfolio level to beta estimation window

as well as time period considered in the Fama-MacBeth regressions. Pricing error tests

further show that the HCMLC factor is at least as successful at pricing portfolios out of

sample as the other factor models are and performs better than the CAPM and FF3F

models at pricing the 49 industry portfolios, the 10 B/M portfolios, and the 25 size-B/M

plus 10 momentum portfolios. This out of sample pricing performance indicates that

financial contagion risk is an important source of the risk premium. As a second test for

risk-premiums, ex-post cross-sectional tests are used. Significant improvement in model

fit is achieved by including the HCMLC factor. Whereas the FFCPS model obtains an

adjusted R2 of 0.665 in modeling sample mean returns of the ten size portfolios, including

the HCMLC factor increases the adjusted R2 to 0.889.

The two papers that are most similar to this one are Adrian, Etula, and Muir (2012)

and He and Krishnamurthy (2013). He and Krishnamurthy (2013) provides a theoretical

basis for a financial intermediary SDF. Adrian, et al. (2012) empirically tests for an

intermediary SDF. They find that a single-factor model, using broker-dealer leverage as

the only factor, prices portfolios sorted on size, B/M, and momentum better than the

Carhart four-factor model. The results in this paper provide evidence of an alternative

and important avenue through which financial intermediary risk enters the SDF. While

Adrian, et al. focus on intermediary leverage as a proxy for intermediary SDF, this paper

focuses on how financial contagion risk enters the SDF. The intermediary-based factor in

this paper has the advantage that it can be observed at any frequency while intermediary

leverage observations are restricted to the quarterly frequency. This paper further adds

to this literature by allowing financial intermediary returns to directly enter the SDF. In-

termediary leverage and intermediary contagion need not be mutually exclusive, however.

In the models of Allen and Gale (2000) and Leitner (2005), financial contagion results

when interbank defaults occur in the presence of sufficiently high interbank leverage. On

the other hand, financial contagion need not be correlated with intermediary leverage
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levels. Kyle and Xiong (2001) and Kodres and Pritsker (2002) develop models in which

contagion can arise from a “flight to quality” by investors. Benmelech and Bergmann

(2007) use the airline industry as a laboratory to show that contagion can alternatively

arise from collateral values decreasing and increasing the cost of external finance for all

participants in the industry. This paper adds to this literature financial contagion by

showing that asset prices are importantly affected by contagion risks.

The remainder of this paper is organized as follows. Section 1 discusses the methodol-

ogy used to estimate financial contagion. Section 2 discusses the data. Section 3 presents

financial contagion estimates. Section 4 and section 5 present the main asset pricing

results. Section 6 presents robustness tests. Section 7 contains concluding remarks.

2.1 Financial Contagion Methodology

Throughout this paper, the terms “bank”, “financial intermediary”, and “financial

institution” are used interchangeably to mean the same thing. Financial contagion is

defined to be the covariance term in the variance of the financial intermediary portfolio

returns in excess of what is predicted by market movements. Identifying financial conta-

gion is a three step procedure. In the first step, the component of observed bank returns

that is generated by common market risk exposure is removed. Let there be N stocks

that make up the bank portfolio and assume that stock returns are generated by the

following k-factor model

ri,t = αi,t + f ′tβi,t + ei,t, i ∈ {1, 2, . . . . , N}, t ∈ {1, 2, . . . , Ti} (2.1)

βi,t = βi,t−1 + ηi,t (2.2)

where ri,t is the observed stock return at time t for bank i, f t = (f1, f2, . . . , fk)
′
t is a vector

of observed factors at time t, βi,t = (βi,1, βi,2, . . . , βi,k)
′
t is the time varying vector of k

factor loadings, and αi,t is a time-varying intercept term. ei,t is the bank-specific shock,

which is orthogonal to the factors and is distributed ei,t ∼ N
(
0, σ2

i,t

)
. The covariance

matrix of residuals across financial institutions may not be diagonal. Non-diagonal ele-
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ments that are not equal to zero represent contagious bank covariances. Equation (2.1),

as it is written, allows the model parameter values to change over time. The transition

equation of betas is given in eqn. (2.2). ηi,t is a vector of coefficient innovations with ei,t

and ηi,t being uncorrelated. Σi,η is a (k × k) diagonal matrix containing the coefficient

innovation variances. Using a diagonal matrix for Σi,η imposes that factor loadings fol-

low a random walk. If Σi,η = 0, then factor loadings are constant. The Kalman filter is

used to recursively estimate the time varying regression coefficients. A detailed explana-

tion of the Kalman filtering methodology can be found in Appendix A and Appendix B.

Daily data is used to estimate eqns. (2.1) and (2.2) to capture within-month variation

in factor loadings which Patton and Ramadorai (2013) show is important for modeling

high-frequency risk exposure. Bank-specific shocks are the residual terms from eqn. (2.1)

êi,t = ri,t − E (ri,t|Ft−1) = ri,t − α̂i,t|t−1 − f ′tβ̂i,t|t−1 (2.3)

where E (·) is the mathematical expectations operator and Ft−1 is the information set

available at time t− 1.

In the second step, the estimated residuals from eqn. (2.3) are regressed, without an

intercept term, on returns of the value-weighted bank portfolio

êi,t = zi,tr
(i)
I,t + ui,t (2.4)

zi,t = zi,t−1 + ωi,t (2.5)

where r(i)I,t is the return on the bank portfolio at time t. Bank i’s return contribution

to the total bank portfolio return must be excluded to prevent bank i’s idiosyncratic

shock variance from being identified erroneously as financial contagion. zi,t is the scalar

regression coefficient at time t for bank i. The zi,t coefficients are restricted to vary with

time following a random walk and innovation ωi,t ∼ N (0,Σi,ω). If Σi,ω = 0, then zi,t is

constant across time. zi,t is allowed to be time varying to capture time varying financial

contagion risk. ui,t is a random error term orthogonal to ωi,t distributed as ui,t ∼ N
(
σ2
ui

)
.
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From eqn. (2.4) it is not possible to distinguish between causality leading from the

bank portfolio to the bank-specific shock of bank i, from causality leading from bank i’s

idiosyncratic shock to the portfolio. Unbiased covariation is sufficient for this study and

knowing direction of causality is not needed. The Kalman filtering methodology is used to

estimate eqn. (2.4) equation-by-equation for all banks included in the sample. Resulting

time-varying coefficients in eqn. (2.4) are filtered estimates of zi,t, ẑi,t|t, conditional on

time t information. Since êi,t is dependent on the coefficient estimates from eqn. (2.1),

which are estimated with error, êi,t will contain measurement error. This measurement

error will inflate the standard errors of ẑi,t|t, but ẑi,t|t will continue to be an unbiased

estimator of zi,t. Unbiasedness is the only property required for this methodology.

The third step aggregates coefficient estimates from eqn. (2.4) across banks at each

date. Since eqn. (2.4) is a linear model, the projection theorem shows that the estimator

of ẑi,t|t is

ẑi,t|t =
E
(
êi,tr

(i)
I,t|Ft

)
E
((

r
(i)
I,t

)2
|Ft
)

E
((

r
(i)
I,t

)2
|Ft
)

= σ2

r
(i)
I,t

is the variance of bank portfolio returns at time t. Since r(i)I,t =∑
j 6=iwj,trj,t =

∑
j 6=iwj,t

(
αj,t + f ′tβj,t + ej,t

)
and the properties, E (êi,tfl,t) = 0 for all i

and l ∈ [1, k], and E (êi,tαj,t) = 0 ∀i, j, it follows that

ẑi,t|t =

∑
j 6=iwj,tE (êi,tej,t)

σ2

r
(i)
I ,t

(2.6)

wj is the value weighting of bank j in the bank portfolio. αj,t, βj,t, and ej,t are the true

intercept, true factor loadings, and true firm-specific shock for stock j at time t. Since

plimêi,t = ei,t and E (ei,t) = 0 ∀i, t, E (êi,tej,t) is an estimate of the covariance between

ei,t and ej,t, ĈV (ei,t, ej,t). Note that the i’th bank’s contribution to the portfolio’s return

is held out in eqn. (2.4) causing r(i)I,t to vary for a given time t depending on which bank

is the dependent variable. If, for all i, the ẑi,t|t estimates had common denominators, the

fraction of portfolio variance due to contagion could be estimated by taking the weighted
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summation
∑

iwi,tẑi,t|t. However, since r(i)I,t is different for each i, each σ2

r
(i)
I ,t

will also

be different. Therefore, ẑi,t|t must be post-multiplied by the variance ratio σ2

r
(i)
I ,t

(
σ2
rI ,t

)−1
prior to the summation. σ2

rI ,t
is the bank portfolio return variance, including all banks.

Since σ2

r
(i)
I ,t

and σ2
rI ,t

are unobservable and must be estimated, the following parsimonious

90-day rolling historical variance estimators are used

σ̂2

r
(i)
I ,t

=
1

89

t−1∑
k=t−90

(
r
(i)
I,k − µ̂r(i)I ,t

)2
(2.7a)

µ̂
r
(i)
I ,t

=
1

90

t−1∑
k=t−90

r
(i)
I,k (2.7b)

σ̂2
rI ,t

=
1

89

t−1∑
t−90

(rI,k − µ̂rI ,t)
2 (2.7c)

µ̂rI ,t =
1

90

t−1∑
k=t−90

rI,k (2.7d)

where rI,t is the return on the complete bank portfolio (all bank stock returns included),

µ̂
r
(i)
I ,t

is the mean return estimator for the hold out bank portfolio for the trailing 90

days, and µ̂rI ,t is the mean return estimator for the complete bank portfolio for the

trailing 90 days. A variance estimator using trailing observations is used rather than a

centered variance estimator so that variances can be estimated with an investor’s current

information set. Admittedly, eqns. (2.7a)-(2.7d) are simple variance estimators. Since the

ratio of variances is used, which is approximately equal to one, using a more sophisticated

variance estimator will increase complexity while only adding marginal additional value.
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Summing the product wi,tẑi,t|tσ̂2

r
(i)
I ,t

(
σ̂2
rI ,t

)−1 over all i at each time t yields

FCt =
∑
i

wi,tẑi,t|tσ̂
2

r
(i)
I ,t

(
σ̂2
rI ,t

)−1
FCt =

∑
i

FC
(i)
t =

2
∑

i,j:i<j wi,twj,tĈV (ei,t, ej,t)

σ̂2
rI ,t

FCt =
C

A+B + C
(2.8)

A =
k∑
l=1

V̂ (fl,t)

(∑
i

(wi,tβi,l,t)
2 + 2

∑
i,j:i<j

wi,twj,tβi,l,tβj,l,t

)

B =
∑
i

w2
i,tV̂ (ei,t)

C = 2
∑
i,j:i<j

wi,twj,tĈV (ei,t, ej,t)

Eqn. (2.8) shows that at each time t FCt is an estimator of the fraction of bank port-

folio return variance that is due to the covariances in bank-specific shocks, or financial

contagion. Since FCt is a ratio, it will be bounded between -1 and +1. The first term

in the denominator of eqn. (2.8), A, is the contribution of common fundamental risks

to the variance of the bank portfolio’s return variance. If the entire variation of bank

returns can be explained by the factor model, then FCt = 0. The second term of the

denominator, B, is the contribution that banks’ idiosyncratic risks contribute to the over-

all bank portfolio’s return variance. The third term in the denominator, C, is the effect

that financial contagion has on the bank portfolio’s return variance. FCt will only be

non-zero if C is non-zero.

In the empirical results that follow, eqn. (2.1) is estimated with the Kalman filter

within the market model framework presented below

ri,t = αi,t + βi,trm,t + ei,t (2.9)

where rm,t is the daily return on the market portfolio. Since other factors have little

additional explanatory power at the daily frequency, using the market return as the only
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factor keeps the model parsimonious without a loss of generality. The residuals from the

market model are then used as the dependent variable in eqn. (2.4) and eqn. (2.4) is

estimated with the Kalman filter.

2.2 Data and Summary Statistics

Daily bank stock prices from January 1, 1960 to December 31, 2012 are obtained from

the CRSP daily stock file. All domestic banks (SIC codes from 6000 to 6199 and share

code 10 or 11) and broker/dealers (SIC codes from 6200 to 6299 and share code 10 or 11)

are initially included in the sample when their stock price first falls within a share price

of $5 and $1,000. To avoid survivorship bias, once a financial stock enters the sample it

remains in the sample, regardless of share price. Financial stocks are dropped from the

sample, if and when they are dropped from CRSP. There are 2,388 banks in the sample

with a total of 5,953,497 daily bank stock observations.

For asset pricing tests, all common stocks (CRSP share code 10 or 11) within the

CRSP universe are collected at a monthly frequency from January 1968 to December 2011

from the CRSP monthly stock file. A stock enters the sample once it has a share price

greater than $5 and less than $1,000. Once a stock enters the sample it remains in the

sample, regardless of share price. It is removed from the sample if and when it is removed

from CRSP to avoid survivorship bias. Daily financial stock returns are aggregated to

monthly returns by converting daily returns into log returns, summing each month’s log

returns, and then converting the monthly aggregated log returns back into arithmetic

returns by taking the exponential function of the aggregated log returns. Factor data

is obtained for the same period at a monthly frequency from two sources. Fama and

French’s three factors, as well as the momentum factor, are obtained from Kenneth

French’s website and the tradable liquidity factor is obtained from L̆ubos̆ Pástor’s website.

Asset pricing tests are constrained to the January 1968 to December 2011 period since

that is the range of dates for which the tradable Pástor and Stambaugh liquidity factor

portfolio is available.
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Figure 2.1 plots the time series of the number of financial stocks that are contempo-

raneously included in the sample. Sample size increases from 10 financial institutions in

1960 to approximately 1,000 in 1999. Thereafter, the sample size decreases to approx-

imately 500 banks in 2012. Summary statistics for the sample of financial institutions

and for estimated financial contagion are presented in panel A of Table 2.1. Mean bank

market value of equity (MVE) is $1.42 billion with a standard deviation of $8.91 billion.

Median bank size is $0.08 billion, providing evidence that the distribution of bank size is

heavily skewed to the right. Banks’ contributions to financial contagion, FC(i)
t , are also

heavily skewed to the right. Whereas the maximum contribution to financial contagion

is 3.9 basis points, the first and third quartiles are 0.0 and 0.8 basis points, respectively.

The sample mean fraction of observed bank portfolio return variance caused by financial

contagion, FCt, is 17.9 percent and it has a sample standard deviation of 3.5 percent.

FCt obtains a maximum of 27.5 percent and a minimum of 8.9 percent. Panel B presents

summary statistics of the stock and factor return sample. Mean stock price is $24.81,

mean MVE is $1.22 billion, and mean monthly trading volume is 6.7 million shares. Mean

annualized returns on the MRKT, SMB, HML, MOM, LIQ and HCMLC portfolios are

6.0 percent, 1.2 percent, 4.8 percent, 9.6 percent, 6.0 percent, and 7.2 percent.

Figure 2.2 plots the level of the value-weighted bank index in the top panel, bank index

return variance in the middle panel, and aggregate bank firm-specific shock covariances

in the bottom panel. January 1, 1960 is used as the base year for index level and the

base index level is set equal to one. Estimated bank-specific shock covariances display a

countercyclical nature. Covariances are high in periods of market stress and close to zero

in times of relative market tranquility. During the 2007-’09 financial crises, covariances

between bank stocks unexplainable by market risk increased dramatically.

2.3 Financial Contagion Estimates

Figure 2.3 plots FCt estimates obtained from eqn. (2.8), the fraction of bank index

return variance that is caused by financial contagion on a given day. Graphically, FCt
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scales the covariances in the bottom panel of Figure 2.2 by the variances in the middle

panel of Figure 2.2. Financial contagion is generally in the range of 11 percent to 16

percent from 1960 to 1985. From 1985 to 2001 the level of financial contagion increases

from 12.5 percent to 27 percent. During the 2007-2009 financial crises, FCt experienced

dramatic changes in levels.

Figure 2.4 plots financial contagion, annotated with key corporate and policy events

that occurred during the crisis period. The events included are: the failure of Bear

Stearns, the emergency SEC naked short selling ban on a number of financial institu-

tions, Lehman Brothers filing for chapter 11 bankruptcy protection, the bailout of Amer-

ican International Group (AIG), the passing of the Emergency Stabilization Act of 2008

into law by congress, the announcement of the troubled asset relief program (TARP),

the announcement of the term asset-backed loan facility (TALF), the announcement of

U.S. government subsidization of Bank of America, and the “Six Months of TARP” re-

port. These events were chosen since they correspond most closely with sharp changes

in financial contagion1.

Bear Stearns failing on March 14, 2008 was the first sign that financial institutions

were in trouble. However, FCt increased only slightly on the news. Contagion rose less

than 100 basis points on the news. A much larger revision to financial contagion occurred

on July 15, 2008 when the SEC made an emergency order to ban naked short selling on

a number of financial institutions that were perceived to pose a systemic risk. Financial

contagion increased from 19.2 percent to 23.4 percent. This is the time that contagion was

at its greatest during the crisis period. Lehman Brothers filed for chapter 11 bankruptcy

protection on September 15, 2008. AIG received an $85 billion credit facility from the

Federal Reserve the following day, on September 16, 2008. On October 3, 2008 the

Emergency Stabilization Act of 2008 was passed by congress. This bill, which contained

the troubled asset relief program (TARP), authorized the U.S. Treasury to spend up to

$700 billion to unfreeze credit markets. TARP was formally announced to the public on

1A more detailed timeline of the financial crisis can be seen on the St. Louis Federal Reserve’s
website.
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October 14, 2008. Market perceptions of financial contagion were dramatically impacted

by these events. From September 16, 2008 to mid November 2008, financial contagion

dropped from 21 percent to 9 percent. At this point, financial contagion expectations

were at one of their lowest over the fifty-two year sample period.

Since the Lehman Brothers and AIG events are only separated by one day it is

difficult to empirically identify which event was the primary source of the large reduction

in contagion risk that followed. An argument in favor of the Lehman Brothers event could

be that banks reduced their leverage, as is found in Adrian and Song (2014) (Figure 5,

page 383), fearing that there would be no backstop by the government. Conversely, an

argument in favor of the AIG event could be that traders viewed the government as

having set up a backstop for systemically important institutions and as a result traders

priced a lower contagion risk into the market.

Financial contagion sharply increased in the second half of November 2008, however,

rising from the low of 9 percent to 13 percent. The term asset-backed securities loan

facility (TALF) was announced on November 25, 2008 to support the issuance of asset-

backed securities (ABS). Contagion fell mildly following this, until it increased sharply

again in response to the January 16, 2009 announcement that the government would

provide a package of guarantees, liquidity, and capital to Bank of America. From January

16, 2009 to February 2009, financial contagion increased from 13 percent to 19 percent.

Market expectations of financial contagion risks were revised higher in response of the

government’s intervention. The last sharp increase in contagion perceptions occurred in

response to the “Six Months of TARP” report on April 7, 2009. Intermediary contagion

subsequently increased from 18 percent to 20 percent.

2.4 Financial Contagion Risk and Returns

2.4.1 Financial Contagion Risk and Bank Returns

Each month financial stocks are sorted into equally-weighted portfolios based on their

previous month’s average contribution to aggregate financial contagion, (Tm)−1
∑Tm

t=1 FC
(i)
t .
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Tm denotes the number of trading days in the month. Portfolio returns are observed the

following month and then portfolios are re-sorted. Bank returns are trimmed at the 2.5

percent and the 97.5 percent levels prior to portfolio formation to mitigate the influence

of extreme returns. Results are unchanged when bank returns are only trimmed at the 99

percent level. Equally-weighted contagion-sorted financial portfolios are used rather than

value-weighted contagion-sorted financial portfolios in this paper since value-weighting

the financial portfolios would lead to highly skewed portfolio holdings.

Table 2.2 presents return statistics for contagion sorted bank portfolios. Panel A

presents mean returns, their Sharpe ratios, and mean market value of equity of stocks

in each portfolio. Decile, quintile, and tercile sorting methods are presented for robust-

ness. Mean annualized returns for the decile, quintile, and tercile of financial stocks

most susceptible to financial contagion are 11.9 percent, 12.2 percent, and 11.2 percent,

respectively. Mean annualized returns for the least contagious portfolios are 5.9 percent,

5.3 percent, and 5.5 percent, respectively. The differences between the high contagion

portfolios and low contagion financial stock portfolios are 6.0 percent, 6.9 percent, and

5.7 percent for decile sorts, quintile sorts, and tercile sorts, respectively. Returns are sig-

nificantly different from zero at the one percent level or better for each sorting method.

This relative outperformance of the high contagion portfolio is indicative that investors

holding more contagious banks require higher expected returns.

Figure 2.5 plots the log wealth process of a trading strategy, rebalanced monthly, that

buys the highest contagion decile and sells the lowest contagion decile, denoted as the

HCMLC portfolio. Log wealth processes of the excess market (MRKT), small-minus-big

(SMB), high B/M minus low B/M (HML), momentum (MOM), and tradable liquidity

(LIQ) portfolios are also plotted. $1.00, initially invested in the HCMLC bank portfolio

in January, 1968, grows to $8.48 dollars by December, 2011. Over the same period,

$1.00 in the MRKT, SMB, HML, MOM, and LIQ portfolios grows to $5.35, $2.00, $5.96,

$23.79, and $9.28, respectively.

Annualized Sharpe ratios for the long-short contagion portfolios are 0.430, 0.588, and

0.589 for decile, quintile and tercile sorts, respectively. These Sharpe ratios are roughly in
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line with the market Sharpe ratio of 0.560 (not reported) over the same period. The least

contagious quintile of financial stocks has a negative Sharpe ratio because the annualized

mean risk-free rate during the sample period was 5.319 percent. Mean MVE of financial

stocks included in each portfolio are presented in the final column. Financial institutions

in the most contagious portfolios are larger than those in the least contagious ones.

Mean MVE in the most contagious portfolios are $8.303, $4.490, and $2.788 billion for

decile sorts, quintile sorts, and tercile sorts, respectively. Mean market caps in the least

contagious portfolios are $0.273, $0.155, and $0.106 billion for decile sorts, quintile sorts,

and tercile sorts, respectively.

Panel B of Table 2.2 presents regression results from regressing financial contagion

sorted bank portfolio excess returns on the Carhart (1997) 4-factor model, augmented

with the Pástor and Stambaugh (2003) tradable liquidity factor (hereafter, referred to as

the FFCPS model). Long-short contagion portfolio return alphas for decile, quintile, and

tercile sorts are 3.9 percent, 4.5 percent, and 3.2 percent, respectively. Alphas from each

of the sorting methods are significant at the five percent level or better. These significant

alphas appear to be driven by the underperformance of the least contagious portfolios.

Whereas abnormal returns are insignificantly different from zero for the most contagious

portfolios, abnormal returns for the least contagious portfolios are -3.0 percent, -3.5

percent, and -3.4 percent for decile, quintile, and tercile sorts, respectively. Negative

alphas for the least contagious portfolios are each significant at the five percent level or

better. Long-short contagion portfolio returns obtain a heavily positive loading on the

market factor, a negative loading on the SMB factor, and a positive loading on the HML

factor. There is not a significant factor loading on the MOM or LIQ factors.

Table 2.3 presents bank portfolio returns for each decile sorted on financial contagion

risk and tests for monotonicity of trend in portfolio returns. If financial contagion risk

enters the SDF, then a monotonic trend should be observed between contagion risk

decile and decile mean return. Panel A contains mean contagion portfolio returns in

the first two rows and portfolio return alphas obtained from regressing returns on the

FFCPS model in the final two rows. Mean portfolio returns generally trend higher from
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the least contagious portfolio to the most contagious portfolio. The least contagious

intermediary portfolio has an expected return of 5.9 percent and the portfolio of most

contagious intermediaries has an expected return of 11.9 percent. The difference between

the two returns is significant at the one percent level. Portfolio return alphas display an

upward trend as well. Annualized alphas for the least contagious bank portfolio and most

contagious bank portfolio are -3.0 percent and 1.0 percent, respectively. The difference

between the two alphas is statistically significant. The significant negative alphas of the

three least contagious deciles shows that these banks are persistently overpriced since

they serve as a hedge against contagion risk.

Panel B formally tests for monotonicity of trend in portfolio mean returns and alphas.

Due to random sampling error, a purely monotonic trend is unlikely to be observed in

practice. Two tests for monotonicity, one parametric and one non-parametric, are used

to test if the null that there is no monotonic relationship between intermediary portfolio

contagion risk and portfolio mean return can be rejected. The parametric test regresses

mean portfolio returns and alphas, separately, on a constant and trend variable ranging

from one to ten. This regression test has the convenient property of providing evidence

as to how much additional expected return investors require to hold an adjacently more

contagious portfolio of financial intermediaries. Kendall’s tau measure of rank correlation

is the non-parametric test2. Kendall’s tau is a measure of similarity in decile ranking and

mean return ranking. If the two rankings are sufficiently similar, then the null hypothesis

of no monotonic relationship between portfolio financial contagion risk and portfolio mean

returns is rejected. Monotonicity tests, using the regression test, are presented in columns

one and two, for mean returns and alphas, respectively. Tests using Kendall’s tau are

presented in columns three and four for mean returns and alphas, respectively. Both

tests reject the null hypothesis of no monotonic relationship at the one percent level

for both portfolio mean returns and alphas. The trend coefficient in the regression test

indicates that investors require an increase in expected return of 80 basis points to hold

2The interested reader is referred to Kendall (1938) for details on the test computation.
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an adjacently more contagious portfolio of financial institutions.

2.4.2 Financial Contagion Risk and Stock Returns

Stocks’ exposure to financial contagion risk is estimated with the following univariate

and multivariate regressions

rei,t = βi,0 + βi,MRKT rMRKT,t + βi,HCMLCrHCMLC,t + εi,t (2.10)

rei,t = βi,0 + βi,MRKT rMRKT,t + βi,SMBrSMB,t + βi,HMLrHML,t (2.11)

+ βi,MOMrMOM,t + βi,LIQrLIQ,t + βi,HCMLCrHCMLC,t + εi,t

rei,t is the excess return on stock i, rMRKT,t is the excess return on the market portfolio

(MRKT), rSMB,t is the return on the small-minus-big portfolio (SMB), rHML,t is the

return on the high B/M-minus-low B/M portfolio (HML), rMOM,t is the return on the

winners-minus-losers momentum portfolio (MOM), rLIQ,t is the return on the portfolio of

stocks with highest liquidity beta minus the portfolio of stocks with lowest liquidity beta

(LIQ), and rHCMLC,t is the return on the decile of most contagious bank stocks minus

the return on the decile of least contagious bank stocks, denoted the HCMLC portfolio.

Asset pricing results are unchanged if the HCMLC portfolio is formed using quintile or

tercile sorts. Eqns. (2.10) and (2.11) are estimated in a rolling regression framework,

using 60-months of return observations. Stocks are sorted into value-weighted deciles

based on their time t HCMLC beta and then portfolio returns are observed in time t+ 1.

Table 2.4 presents the correlation matrix of factor portfolio returns. Correlations

between returns on the HCMLC portfolio, returns on the VIX (VIX), and changes in

aggregate corporate default risk (DEF, defined as the log change in the log difference

between yields on Baa and Aaa rated bonds) are included to test if the HCMLC port-

folio simply captures changing aggreagate volatility risk or changing aggregate default

risk. HCMLC returns are most correlated with the MRKT portfolio at 0.49 and least

correlated with the SMB portfolio at -0.15. The correlations between HCMLC and DEF

and between HCMLC and VIX are 0.111 and -0.344, respectively. These low correla-
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tion magnitudes indicate that financial contagion risk is a separate risk from aggregate

volatility risk and aggregate default risk. HCMLC’s correlations with the other factors

are negative and close to zero.

Table 2.5 presents returns from HCMLC beta sorted stock portfolio returns. Stock

portfolio returns sorted on financial contagion beta from the univariate regression in eqn.

(2.10) and their t-statistics are presented in the first two rows of Panel A. The lowest decile

has an annualized mean return of 3.3 percent and the highest decile earns a mean return

of 7.1 percent. The difference is not statistically significant. Generally, there is a positive

relationship between contagion beta and expected return. Panel B presents the results

from regressing portfolio mean returns on a constant and trend variable extending from

one to ten to test the null hypothesis of no monotonic trend in portfolio mean returns.

Results of this test are presented in column one. The null is rejected in favor of portfolios

with greater financial contagion beta requiring a higher expected return. The regression

trend coefficient indicates that investors require an additional 40 basis points in expected

return to hold an adjacent portfolio with greater financial contagion beta. Kendall’s

tau in column three of Panel B agrees with the regression trend test. The monotonicity

tests provide evidence that the difference in mean returns between the highest and lowest

contagion beta deciles results from sampling error in the extreme portfolios.

Mean portfolio returns and t-statistics for portfolios sorted on financial contagion be-

tas obtained from the multivariate regression in eqn. (2.11) are presented in the final two

rows of Panel A. Similar to the univariate case, there is generally a positive relationship

between contagion beta and expected returns. The lowest decile has a mean return of

5.3 percent and the highest decile has a mean return of 6.9 percent. Both the regres-

sion trend test and Kendall’s tau reject the null hypothesis of no monotonic relationship

between mean portfolio return and financial contagion beta at the five percent level or

better. Again, the regression trend test indicates that investors require an additional 40

basis points in expected return to hold an adjacent stock portfolio with greater financial

contagion beta. Sampling error in the two extreme portfolios causes the difference to be

insignificant, similarly to the univariate case.
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Figure 2.6 plots the wealth processes of investing in portfolios sorted on betas obtained

from eqn. (2.11). Stocks are sorted into value-weighted terciles to reduce the effect

of sampling error in the extreme deciles mentioned above. Portfolios are formed by

buying the tercile with greatest factor beta and selling the tercile with lowest factor beta

and rebalanced monthly. Five years of observations are lost in acquiring the first beta

estimates. The active strategy of investing in the HCMLC beta sorted long-short portfolio

outperforms each of the other long-short portfolios sorted on the other factor betas. $1.00

invested in January 1973 in the HCMLC beta sorted long-short portfolio becomes $3.99

in October, 2011 with a Sharpe ratio of 0.43 (not reported). $1.00 invested in the MRKT,

SMB, HML, MOM, and LIQ beta sorted long-short portfolios become $0.48, $2.33, $2.52,

$1.25, and $0.61, respectively. Sharpe ratios (not reported) of the MRKT, SMB, HML,

MOM, and LIQ beta sorted long-short portfolios are -0.13, 0.24, 0.26, 0.11, and -0.06,

respectively.

2.5 Financial Contagion Risk and the SDF

Financial contagion risk is proposed to enter a linear SDF, mt, given by

0 = E
(
mt+1r

e
i,t+1

)
(2.12)

mt = 1− b1rMRKT,t − b2rSMB,t − b3rHML,t

− b4rMOM,t − b5rLIQ,t − b6rHCMLC,t

(2.13)

E (rei ) = b1cov (rei , rMRKT ) + b2cov (rei , rSMB)

+ b3cov (rei , rHML) + b4cov (rei , rMOM)

+ b5cov (rei , rLIQ) + b6cov (rei , rHCMLC)

(2.14)

E (rei ) = λMRKTβi,MRKT + λSMBβi,SMB

+ λHMLβi,HML + λMOMβi,MOM

+ λLIQβi,LIQ + λHCMLCβi,HCMLC

(2.15)

rei denotes stock or portfolio i’s excess return, βi,j = CV (rei , rj,t) /V (rj,t), and λj is
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the price of risk associated with the j’th factor. Eqn. (2.12) is the no-arbitrage condition

stating that risk-adjusted stock returns have a price of zero and eqn. (2.13) specifies

the linear form of the SDF. The beta pricing models in eqns. (2.14) and (2.15) are

immediately implied. Eqn. (2.15) is estimated with the Fama-MacBeth (1973) two-

stage regressions at the firm level without sorting the stocks into portfolios. 60-month

rolling regressions are used in the first stage and the intercept term is excluded in the

second stage regression. An intercept term is excluded in the second stage to avoid

the restriction of a common underpricing or overpricing in the cross-section of returns

that would result. Fama-MacBeth regressions are run with the HCMLC portfolio as the

only factor, augmenting the CAPM with HCMLC, augmenting the FF3F model with

HCMLC, and augmenting the FFCPS model with HCMLC.

Table 2.6 presents risk premium results from the firm-level Fama-MacBeth regres-

sions. The coefficient representing the HCMLC risk premium is stable across factor

specifications. When HCMLC augments the CAPM, a risk premium of 5.4 percent is

obtained. This premium is in line with the 6.0 percent sample mean return observed on

the HCMLC portfolio. When the FF3F model is augmented with the HCMLC factor, a

financial contagion risk premium of 4.0 percent is obtained. The estimated risk premium

is 3.9 percent when the FFCPS model is augmented and it is 9.6 percent when HCMLC

is the only factor. In all factor specifications, financial contagion risk premiums are sta-

tistically significant at the one percent level and of roughly the same magnitude as the

market risk premium.

Table 2.7 presents results of Fama-MacBeth regressions for a number of test portfo-

lios. The test portfolios include the 49 industry portfolios, the 10 size sorted portfolios,

the 10 B/M sorted portfolios, the 10 momentum sorted portfolios, and the combination of

the 25 size-B/M sorted portfolios and 10 momentum portfolios. Industry and momentum

portfolios are included, in addition to the traditional size and B/M sorted ones, to satisfy

“prescription 1” of Lewellen, Nagel, and Shanken (2010) for improving asset pricing tests

since they do not correlate as highly with the SMB and HML returns. Results for both

equally-weighted test portfolios and value-weighted test portfolios are presented. Finan-
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cial contagion risk is significantly priced in all of the cross-sections of test portfolios. Also

of note is the large financial contagion risk premium that the momentum portfolios price

in. The annualized financial contagion risk premium for the ten momentum portfolios

is 23.4 percent when the momentum portfolios are formed from equally-weighted stocks.

Generally, however, the financial contagion risk premiums implied by the test portfolios

are in the range of 5-15 percent. Statistically significant financial contagion risk premi-

ums for the industry portfolios, size portfolios, B/M portfolios, and 25 size-B/M plus

10 momentum portfolios are 4.7 percent, 15.6 percent, 14.9 percent, and 5.8 percent,

respectively.

Table 2.8 formally tests if the out of sample Fama-MacBeth pricing errors are jointly

equal to zero for each of the factor model specifications. The Chi-square test is used to

test if all pricing errors are significantly different from zero

α̂ = T−1
T∑
t=1

α̂t, cov (α̂) = T−2
T∑
t=1

(α̂t − α̂) (α̂t − α̂)′, α̂′cov (α̂) α̂ ∼ χ2
N−k (2.16)

where α̂t is the vector of residuals in eqn. (2.15) estimated from the second-stage

Fama-MacBeth regressions at each date, N is the number of portfolios, and k is the

number of factors in the model. Pricing error results from the CAPM, FF3F, and FFCPS

models are presented in columns two to four. Pricing error results when the HCMLC

factor is the only factor are presented in the final column. The null hypothesis that

pricing errors are jointly all equal to zero is generally rejected for all factor models and

test portfolios. The HCMLC factor alone, however, prices assets at least as well as the

other models in all cases and better than the CAPM and FF3F models for the 49 industry

portfolios, the 10 B/M portfolios, and the 25 size-B/M plus 10 momentum portfolios.

That the HCMLC factor alone prices assets so successfully out of sample shows that

financial contagion risk is an important source of the risk premium.

In addition to the out of sample Fama-MacBeth cross-sectional regressions, the price

of contagion risk is also estimated in ex-post full sample two-pass cross-sectional re-

gressions. Risk premium parameters in eqn. (2.15) are estimated using regular ordinary
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least squares (OLS) and two alternative specifications of feasible generalized least squares

(FGLS). GLS estimators are included to accommodate the empirical regularity that the

residuals from estimating models of the eqn. (2.15) are correlated. The two FGLS speci-

fications differ in the assumed structure of the error variance matrix, Ωj for j ∈ {1, 2}. In

the first specification, denoted GLS1, errors are allowed to be heteroskedastic. Possible

heteroskedasticity in the error variance is modeled as

re = B̂Λ + v (2.17a)

v̂2 =
(
re − B̂Λ̂OLS

)
◦
(
re − B̂Λ̂OLS

)
(2.17b)

ln
(
v̂2
)

= c0 + B̂C + u (2.17c)

̂̂v2 = exp
(
ĉ0 + B̂Ĉ

)
(2.17d)

Ω̂1 = diag
(̂̂v2) (2.17e)

Hats above variables denote that they have been estimated and ◦ denotes the Hadamard

element-by-element multiplication operator. Eqn. (2.17a) is the standard cross-sectional

OLS equation corresponding to eqn. (2.15). re denotes mean portfolio excess return. c0

and C are a coefficient and a vector of coefficients to be estimated with eqn. (2.17c). B̂

is the matrix of estimated betas where row i of B̂ is the transposed vector of beta coeffi-

cients estimated for portfolio i from eqn. (2.11). Λ is the vector of factor risk premium

coefficients to be estimated in eqn. (2.15). Since Ω1 is a diagonal matrix, GLS1 is also

the weighted least squares (WLS) estimator of risk-premiums. The second specification

for the FGLS error variance matrix allows for correlated residuals across portfolios in

eqn. (2.11)

ε̂i = rei − Fβ̂i (2.18a)

Ω̂
(i,j)

2 =
ε̂′iε̂j

(T − k)
(2.18b)

Eqn. (2.18a) is eqn. (2.11) in matrix form and Ω̂
(i,j)

2 denotes the (i, j) element of the



26

Ω̂2 matrix.

Table 2.9 presents the cross-sectional risk premium results. Standard errors for the

OLS regression are White (1980) heteroskedasticity consistent standard errors adjusted

by the Shanken (1992) correction to account for portfolio betas being estimated in the first

step. FGLS standard errors are also adjusted by the Shanken (1992) correction. Shanken

correction factors are presented in the final column of the table. In the cross section,

financial contagion risk is priced in all sets of test portfolios. Conservative estimates

of the financial contagion risk premium estimated from the 49 industry portfolios, 10

size portfolios, 10 B/M portfolios, 10 momentum portfolios, and 25 size-B/M plus 10

momentum portfolios are 5.6 percent, 12.8 percent, 10.1 percent, 46.0 percent, and 10.2

percent, respectively. These risk premium results are generally close to the observed

sample mean HCMLC portfolio return. Momentum portfolios, however, continue to

price a large HCMLC risk premium. Adjusted R2 statistics from estimating eqn. (2.15)

with all factors are presented in the second to last column and adjusted R2 statistics

from estimating eqn. (2.15) without the HCMLC factor are presented in the third to

last column. Model fit, measured by adjusted R2, is improved by including the HCMLC

factor in the 10 size portfolios, 10 momentum portfolios, and the 25 size-B/M plus 10

momentum portfolios. The largest increase in fit occurs for the 10 size portfolios where

GLS1 adjusted R2 increases from 0.665 to 0.889. OLS adjusted R2 increases from 0.794 to

0.898. Note that since OLS, GLS1, and GLS2 each have different assumed error variance

matrix, adjusted R2 levels are not directly comparable across estimators. The change in

adjusted R2 for a given estimator is the statistic of interest.

Table 2.10 presents chi-square statistics testing if the ex-post pricing errors from the

cross sectional regressions are jointly equal to zero. The test statistic with the Shanken

(1992) correction is

cov (α̂) =
1

T

(
IN − β̂

(
β̂
′
β̂
)−1

β̂

)
Σ

(
IN − β̂

(
β̂
′
β̂
)−1

β̂

)′
×
(

1 + λ̂
′
Σf λ̂

)
(2.19a)

α̂′cov (α̂) α̂ ∼ χ2
N−k (2.19b)
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where α̂ is the vector of estimated residuals from estimating eqn. (2.15), β̂ is the matrix

of estimated factor loadings obtained from eqn. (2.11) and used in estimating eqn.

(2.15), Σ is the variance-covariance matrix of estimated residuals from eqn. (2.11),

Σf is the variance-covariance matrix of factor returns, and λ̂ is the vector of prices of

risk obtained from estimating eqn. (2.15) with OLS. Ex-post, HCMLC prices the test

portfolios approximately as well as MRKT does. Ex-post, however, the FF3F model and

the FFCPS models perform substantially better than the HCMLC model. This is to be

as expected given the full sample of data and the additional dimensions with which the

additional factors can match the data. Out of sample pricing errors, however, where the

HCMLC model performs at least as well as the multifactor models is arguably the more

important test of pricing ability.

2.6 Robustness

This section tests for beta estimation window robustness and subsample consistency

of the price of financial contagion risk. Table 2.11 presents second-stage risk-premium

results from Fama-MacBeth regressions using the firm level common stock sample and

using first-stage beta estimation windows ranging from 48 months to 120 months. With

all estimation windows, the HCMLC portfolio obtains a significant risk premium at the

one percent significance level. HCMLC risk premiums range from a low of 3.7 percent

when the beta estimation window is 48 months to a high of 4.8 percent when the beta

estimation window is 120 months.

Table 2.12 presents risk premium results for value-weighted test portfolios when the

beta estimation window is varied in first-stage Fama-MacBeth regressions. Only risk-

premium results for the HCMLC portfolio are presented to conserve space. Financial

contagion risk premium results are robust across beta estimation windows for the 49

industry, 10 B/M, and 10 momentum portfolios. HCMLC risk-premiums are significantly

different from zero for the 10 size portfolios when a 60-month beta estimation window is

used and risk-premiums are only significant with 48-month or 84-month beta estimation
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windows for the 25 size-B/M plus 10 momentum portfolios. Of those significant HCMLC

risk premiums estimated, the risk premium generally falls within 5.5 percent and 15.0

percent, in line with results presented earlier.

Subsample consistency of the financial contagion risk premium is tested in Table 2.13

using the firm level common stock sample. Risk premium results from firm level second-

stage Fama-MacBeth regressions during non-overlapping five year periods between 1975

and 2010 are presented. The five-year period prior to a five-year window beginning is

used to compute the initial betas for the Fama-MacBeth regressions. For example, the

cross-sectional test in January 1975 uses betas estimated from January 1970 to December

1974, the cross-sectional regression in February 1975 uses betas estimated from February

1970 to January 1975, and so on until the last cross-sectional regression in the 1975-1979

window would use betas estimated from January 1975 to November 1979. Estimated

financial contagion risk premiums are robust to subsample window with risk premiums

being significantly priced in the cross-section of stocks during the 1975-’79, 1985-’89,

1990-’94, and 1995-’99 periods. Estimated HCMLC risk premiums in these periods are

3.4 percent, 6.4 percent, 5.5 percent, and 8.3 percent, respectively. Regression slope

and Kendall’s tau estimates are presented in the final two columns. The null hypothesis

of no monotonic relationship between decile HCMLC beta and decile mean return is

rejected in the 1980-’84, 1995-’99, and 2000-’05 periods. During these periods, the average

additional expected return that investors require to hold an adjacent stock decile with

greater HCMLC beta is 83 basis points. Although not statistically significant in every

subsample, in each 5-year subsample, investors require additional expected return to hold

an adjacent portfolio with higher HCMLC beta except for the 2005-’10 period. In the

2005-’10 period, there is an insignificant negative relationship between HCMLC beta and

portfolio return due to the financial crisis.

Figure 2.7 plots the smoothed time series of financial contagion premiums estimated

from firm-level Fama-MacBeth regressions. Shaded regions in the top panel are NBER

recession dates and shaded regions in the bottom panel are U.S. banking crises dates

from Reinhart and Rogoff (2011). The smoothed time series is obtained from running
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the following smoother twice

̂̂
λHCMLC =

h∑
m=−h

[
h+ 1− |m|

(h+ 1)2

]
λ̂HCMLC (2.20)

where h = 23 (5 percent of the sample size). In the top panel of Figure 2.7, the HCMLC

risk premium generally increases slightly during recessionary times. In the bottom panel,

the HCMLC risk premium increases substantially during U.S. banking crises. The large

peak in financial contagion that occurs outside of U.S. recessionary and banking crisis

periods coincides with the Asian financial crisis. Figure 2.7 shows that investors demand a

higher risk premium on stocks more susceptible to financial contagion risk during banking

crises and to a lesser extent recessionary periods that are not primarily banking related.

2.7 Conclusion

Financial intermediaries serve as agents investing on households’ behalf making them

uniquely able to affect households’ consumption opportunity sets. As the propensity for

intermediaries to experience shocks simultaneously either endogenously or exogenously

increases, households’ payoffs experience greater covariation with their consumption pos-

sibilities. Modern portfolio theory proposes that assets that experience greater covaria-

tion in returns with aggregate consumption require a higher expected return. Therefore,

investors will require a greater expected return on assets that covary more strongly with

contagious intermediaries.

This paper contributes to the growing financial intermediary asset pricing literature

by estimating intermediaries’ contributions to aggregate financial contagion in a new

state space framework and showing that financial contagion risk is priced in the cross

section of stock returns. The financial contagion risk factor (HCMLC) is defined as

the portfolio that buys the decile of financial intermediaries that contribute the most

to financial contagion and sells the decile of intermediaries that contribute the least to

financial contagion. Intermediaries in the high contagion decile outperform those in the

low contagion decile by a risk-adjusted 3.9 percent. A monotonic relationship cannot
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be rejected between expected returns and financial contagion risk. Investors require

an additional 80 basis points in expected return to hold an adjacent decile of financial

institutions that experiences greater contagion risk and investors require an additional

40 basis points in expected return to hold an adjacent stock decile with greater financial

contagion beta.

Intermediary contagion risk is priced in the out of sample cross-section of firm level

common stock returns. Intermediary contagion risk is also priced in the ex-post cross-

section of test portfolio returns that are sorted on size, B/M, momentum, and industry.

The estimated risk premium of the HCMLC is generally within 5 percent to 15 percent,

which is in line with the sample mean of 6 percent that the HCMLC portfolio obtains.

Out of sample, the HCMLC factor prices portfolios at least as well as the CAPM, FF3F,

and FFCPS models with superior pricing performance relative to the CAPM and FF3F

models for the 49 industry portfolios, 10 B/M portfolios, and the 25 size-B/M plus 10

momentum portfolios. Risk premium results are robust to beta estimation window in

Fama-MacBeth regressions and time period tested.

Ex-post, including the HCMLC factor in the FFCPS model also substantially im-

proves model fit. Ex-post adjusted R2 for modeling mean returns for the 10 size portfolios

increases from 0.665 with the FFCPS to 0.889 once the HCMLC factor is included. Ad-

justed R2 increases are also observed in the 10 momentum portfolios and the 25 size-B/M

plus 10 momentum portfolios. The results in this paper indicate that financial contagion

risk has important implications for asset prices and is an important source of the risk

premium.
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3 An ETF Premium Puzzle and a Market Segmenta-

tion Explanation

Over the past decade funds invested in exchange traded funds (ETFs) have grown

significantly from $100 billion in 2000 to $1 trillion in 2010. Exchange traded funds

(ETFs) are investment vehicles that are hybrids between traditional open-end mutual

funds and closed-end funds. ETFs invest in a basket of securities and issue shares, repre-

senting claims to the underlying net asset value (NAV) of the fund, that trade on stock

exchanges as common stocks do. Unlike open-end funds, shareholders generally cannot

redeem shares at NAV directly and dissimilar to closed-end funds, the amount of shares

outstanding can vary over time due to the creation/redemption arbitrage mechanism that

is unique to ETFs.

In a frictionless market, ETF share prices will equal NAV. If this were not the case,

then a riskless arbitrage opportunity would exist. To the contrary, this paper finds that

ETFs persistently trade at a premium. In 89 percent of sample months, mean ETF share

prices are greater than NAV. The fraction of ETFs trading at a premium is persistently

greater than the one percent critical value that would exist if premiums and discounts

were equally likely. Further, mean premium half-lives range from 0.574 days for ETFs

that invest in domestic equities to 8.891 days for ETFs that invest in domestic fixed

income. The full sample mean premium is a statistically significant 11.6 basis points,

with the sample mean premium of ETFs ranging from 2.6 basis points for ETFs that

invest in U.S. equities to 68.4 basis points for ETFs investing in foreign fixed income.

This is a puzzling result in the presence of capitalized management fees, expenses, and

replication transaction costs. ETFs track passive indices in which case fees cannot be

linked to managerial skill as in Berk and Stanton (2007). It follows that investors should

demand a discount to NAV as is commonly observed in the closed-end fund market.

ETFs provide a means for investors to gain access to a cash flow stream indirectly that

may be inaccessible completely or only accessible at a high cost otherwise. If markets

are segmented and ETFs provide liquidity benefits to investors, then rational investors
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should be willing to pay a premium to NAV as long as the cost of the premium is less

than the liquidity and diversification benefits received. This is the main hypothesis tested

in this paper. Tracking error standard deviation (TESD), the standard deviation of the

difference between NAV returns and returns on the basket of securities that it aims to

replicate, is used in this paper as the measure of market segmentation. In more segmented

markets, ETF managers are expected to have less precise tracking ability.

TESD is found to be positively related to premiums after controlling for fund char-

acteristics, transaction costs, and tax overhang liabilities. A 100 basis point increase in

TESD increases premiums by 13.5 basis points in the full sample of ETFs. Accessibility

to foreign securities and fixed income securities through ETFs are revealed to be the most

valuable to investors. Whereas a 100 basis point increase in TESDs for foreign and fixed

income ETFs increase premiums by 16.6 basis points and 48.9 basis points, respectively,

100 basis point increases in TESDs for domestic and equities ETFs increase premiums

by 7.0 basis points and 11.8 basis points, respectively. Increased market segmentation

also slows the speed of premium correction. A 100 basis point increase in the tracking

error standard deviation leads to a premium correction speed that is 2.6 days slower.

Alternative hypotheses about premium dynamics include the contingent tax liability

hypothesis and the investor sentiment hypothesis. Malkiel (1977) and Day, et al. (2011)

find that closed-end fund discounts widen as the level of contingent tax liabilities increase

and that discounts shrink as the level of contingent tax liabilities decreases. This paper

finds no evidence of a similar tax-related pattern in the ETF market. The investor

sentiment and noise trading hypotheses, stating that irrational noise traders create a

form of idiosyncratic risk that deters rational risk-averse arbitrageurs from trading, was

introduced by De Long, et al. (1990) with initial empirical support being provided by

Lee, et al. (1991) in the closed-end fund market. Bodurtha, et al. (1995), Gemmill

and Thomas (2002), and Neal and Wheatley (1998) further provide empirical evidence

that closed-end fund discounts are affected by investor sentiment. Recent work showing

that investor sentiment is a contrarian predictor of returns includes Baker and Wurgler

(2006), Baker, et al. (2012), Ben-Rephael, et al. (2012), Frazzini and Lamond (2008),
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and Lemmon and Portniaguina (2006). Similarly, this paper finds that investor sentiment

affects premium levels in the ETF market. ETF premiums are found to be a contrarian

predictor of NAV returns, market returns, and returns on the small-minus-big portfolio

at the three-month holding period horizon. After controlling for traditional measures of

investor sentiment, TESD continues to have explanatory power for ETF premiums.

Since tracking error standard deviation is used as the measure of market segmenta-

tion in this paper, tests are run to validate that its properties are consistent with those

desirable for a market segmentation measure. Trading costs that increase market seg-

mentation such as illiquidity and variance also increase TESD. Further, ETFs investing

in securities that trade in foreign markets have larger tracking error standard deviations

than ETFs that invest in domestic securities. The results in this paper confirm that

TESD is a robust measure for market segmentation and other studies can also benefit

from using TESD as a market segmentation measure where market segmentation or

barriers to entry are difficult to measure.

Cherkes, et al. (2009) and Ramadorai (2012) are the papers that are most similar

to this one. Cherkes, et al. develop a model in which closed-end fund discounts are

rationally governed by the tradeoff between liquidity benefits that the closed-end fund

provides and capitalized management fees that reduce fund value. Empirically, they show

that investors are willing to pay a liquidity premium in the closed-end fund market which

is consistent with their model. Ramadorai find that investors are also willing to pay a

premium to NAV for liquidity benefits in the secondary market for hedge funds. Similar

papers showing that investors are willing to pay a premium to NAV for liquidity benefits

regarding international diversification benefits include Bonser-Neal, et al. (1990) and

Nishiotis (2004). They, respectively, find that closed-end fund premiums significantly

decrease following a decrease in country investment restrictions and that investors are

willing to pay a larger premium to NAV if a country has greater indirect investment

barriers. More recently Elton, et al. (2013) show that investors view leverage as another

market segmenting variable. They find that investors are willing to pay a higher premium

for closed-end bond funds that use greater leverage.
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The remainder of the paper is organized as follows. Section 1 presents details on

how ETFs are structured and on the creation/redemption arbitrage mechanism. Section

2 discusses the data sample used. ETF premium and tracking error methodologies are

presented in section 3. Section 4 contains the empirical results. Section 5 contains

concluding remarks.

3.1 ETF Structure

ETFs invest in a basket of securities and issue shares representing claims to the

underlying net asset value (NAV) of the fund that trade on stock exchanges as common

stocks do. For an ETF to be created, a ‘sponsor’ (ETF manager) files with the SEC.

Once approved, the sponsor forms agreements with a number of ‘authorized participants’

(APs) that have the exclusive rights to create and redeem ETF shares. These APs are

institutional investors and market makers. All other investors are generally only able to

purchase and sell ETF shares in the stock market with other investors. To gain an ETF

share, an AP must deposit the underlying securities that the ETF aims to replicate with

the fund and in return receives a ‘creation unit’ in kind. This creation unit is a large

block of ETF shares, ranging in size from 20,000 to 600,000 shares. To redeem a creation

unit, an AP accumulates enough ETF shares to form a creation unit and returns this to

the ETF fund manager in exchange for the underlying assets in kind. Unlike open-end

mutual funds, ETFs cannot be redeemed directly by market participants other than APs

and dissimilar to closed-end funds, the number of shares outstanding can vary over time.

In addition to investing in the index that an ETF aims to replicate, ETFs also engage

in securities lending. Interest income from securities lending can be used to offset NAV

decay that arises from management expenses and trading costs.

Creation/redemption possibilities create an approximately risk-free arbitrage oppor-

tunity for APs. If an ETF share price is greater than its NAV, then an AP can buy

the monetary value of a creation unit of underlying portfolio securities, form a creation

unit, and sell that creation unit in the stock market. The arbitrage profit would be the
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amount that the ETF share price is in excess of its NAV. If an ETF share price is lower

than its NAV, then an AP can buy enough ETF shares in the stock market to form a

creation unit, swap this for an equal monetary value of the underlying securities, and

sell these securities on the open market. In this case, the arbitrage profit would be the

amount that NAV is in excess of the ETF share price. In some instances, an ‘optimized’

portfolio of securities may also be used to create/redeem creation units. This optimized

portfolio allows cash to substitute in place of more illiquid underlying securities.

3.2 Data and ETF Characteristics

ETF data is hand collected for the March 1996 to December 2011 period from the

iShares website and from the CRSP daily stock file database. iShares’ earliest ETFs

were conceived on March 12, 1996. ETF net asset values (NAV), underlying index levels,

management fees, inception dates, creation unit sizes, and creation/redemption costs are

hand collected from the iShares website1,2. All ETFs included in the sample are standard

unlevered ones.

Daily ETF closing market prices, closing bid prices, closing ask prices, daily vol-

umes, number of shares outstanding, and dividend distribution amounts are obtained

from CRSP. Short rate data, market portfolio (MRKT) return data, and small-minus-big

portfolio (SMB) return data are collected at the daily frequency from Kenneth French’s

website. Since NAVs recorded by iShares are already adjusted for splits, CRSP prices

are adjusted for splits by dividing price by the CRSP cumulative factor to adjust prices

(CFACPR). Dividends are added back into NAV on ex-div dates for tracking error calcu-

lations when target index returns are total returns. Observations recorded on weekends

or holidays in the iShares data or CRSP data are removed from the sample. If the num-

ber of missing price, index, or NAV data as a proportion of an ETF’s total observations

exceeds five percent, then the ETF is dropped from the sample.

1NAV data is downloaded from http://tools.ishares.com/tec2/download_data.do. Manage-
ment fees and inception dates are downloaded from http://us.ishares.com/product_info/fund/
index.htm.

2iShares ETFs have made up roughly 50 percent of all ETF assets since 2005 (Petajisto (2011))
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In rare instances, there are NAV data errors in the iShares data that result in ETF

price and NAV differing by more than 20 percent. After manual inspection to verify

that a premium in excess of twenty percent is in fact an error, the erroneous observation

and the following observation are removed. All premiums in excess of twenty percent

are, however, not erroneous. For example, the Malaysia ETF consistently experienced

differences between price and NAV in excess of 20 percent in the first two weeks of May

1999. In total there are 370,974 daily ETF observations and 224 ETFs in the final sample.

Figure 3.1 presents the time series of the number of ETFs contemporaneously included

in the sample. The number of ETFs increases monotonically from 17 in 1996 to 224 in

2011. Total assets under management (AUM) of ETFs contemporaneously present in

the sample is plotted in Figure 3.2. AUM has increased dramatically since iShares’ first

ETF inception in 1996, increasing from $0.05 billion in March 1996 to $399 billion in

December 2011.

ETF fund characteristics are presented in Table 3.1. Fund classifications are obtained

from Yahoo Finance. For the full sample, mean ETF market-cap is $1.445 billion and

mean daily trading volume is in excess of one million shares per day. Mean ETF expense

ratio is 40 basis points, mean creation unit size is 91,825 shares, and mean per share

creation/redemption percentage cost is 6.4 basis points. ETF characteristics vary widely

across ETF types. The largest mean market-cap is in excess of $2 billion for ETFs

investing in U.S. fixed income. The smallest ETFs are ETFs that invest in foreign fixed

income with a mean market-cap below $0.5 billion. Expense ratios are largest for ETFs

investing in foreign equities at 52.3 basis points. Mean creation unit size is largest for

ETFs investing in foreign equities at 154,359 shares. Creation/redemption per share costs

are less than 6 basis points for all ETF types except for foreign equities for which it is

13.6 basis points.
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3.3 ETF Premiums and Tracking Errors

3.3.1 Premium Synchroneity Adjustment

ETF premiums are defined as

PREM i,t = ln (Pi,t/NAV i,t)× 100 (3.1)

where Pi,t is an ETF’s nominal market price at the close of day t and NAV i,t is its

recorded nominal NAV for day t. Recorded NAVs for ETFs investing in foreign securities

are not synchronous with their respective ETF market prices on the U.S. stock mar-

ket. Underlying index values are recorded using closing prices from the index’s domestic

market and foreign exchange rates used are those recorded at 4 p.m. London time (11

a.m. Eastern time). Since additional information is impounded into market prices over

the remainder of U.S. trade, absolute premiums appear larger than they actually would

be if there was synchronous trade. To account for the continuing information flow, the

efficient NAV pricing model of Goetzmann, et al. (2001) is used with the Engle and

Sarkar (2006) specification to estimate synchronous NAVs for ETFs investing in foreign

equities and foreign fixed income. The premium adjustment model is

ln (Pi,t)− ln (NAV i,t) = αi4ln (NAV i,t) + φirMRKT,t + ui,t (3.2a)

N̂AV
∗
i,t = exp [ln (Pi,t)− ûi,t] (3.2b)

where rMRKT,t is the daily return on the U.S. market portfolio and 4 is the differ-

ence operator. αi and φi are coefficients to be estimated and the estimated true syn-

chronous NAV, N̂AV
∗
i,t, is given by eqn. (3.2b). The estimated true premium, ln (Pi,t)−

ln
(
NAV ∗i,t

)
, is the regression residual, ûi,t×100. Motivated by the findings of Bodurtha,

et al. (1995) that prices of closed-end funds invested in foreign securities significantly

commove with U.S. market returns, the market portfolio return is used as an explana-

tory variable for premiums. If there is no measurement error in recorded premiums, then

αi = φi = 0 and ln (Pi,t)− ln (NAV i,t) = ûi,t. In the presence of information continuing
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to be impounded into domestically traded ETF prices, NAV returns and/or domestic

market returns will have explanatory power for premiums and the variance of adjusted

premiums will be significantly smaller than the variance of recorded premiums.

Results from estimating eqns. (3.2a)-(3.2b) are presented in Table 3.2. Panel A shows

that both NAV returns and U.S. market returns have significant explanatory power for

premiums. The mean values for α and φ are -0.104 and 0.004, respectively. These val-

ues indicate that recorded premiums are smaller when NAV returns are larger and that

premiums are larger when U.S. market returns are larger. The twenty-fifth (seventy-

fifth) percentiles of estimated α and φ across foreign ETFs are -0.145 (-0.050), and 0.003

(0.006), respectively. Panel B presents the ratios of recorded premium sample variance

to estimated synchronous premium sample variance for each of the adjusted ETFs. Pre-

mium variance equality is tested for by using the F-test. Generally, variance ratios are

significantly greater than one at the one percent significance level. Variance ratios range

from a low of 0.961 (insignificantly different from one) to a high of 3.414. Table 3.2

provides evidence that there is substantial measurement error in recorded premiums. To

see this, the premium variance ratio can be written as

V Ri =
V [PREMi + ηi]

V [PREMi]
= 1 +

V [η]

V [PREMi]
(3.3)

where PREMi is the true synchronous premium, ηi is a mean zero measurement error

present in recorded nonsynchronous premiums that is independent of PREMi, and V [·]

is the variance operator. As is evidenced in Table 3.2 Panel B, it is not uncommon for the

variance of the measurement error to be in excess of the variance of the true premium.

Estimated synchronous premiums for ETFs investing in foreign securities, obtained from

eqns. (3.2a,b), are used in the remainder of the paper to avoid the results simply being

an artifact of nonsynchronous prices.
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3.3.2 ETF Premiums

ETF premium statistics are presented in Panel A of Table 3.3. The sample mean

premium across all ETFs is a statistically significant 11.6 basis points. The mean premium

is lowest for U.S. equities at 2.6 basis points and highest for foreign fixed income at 68.4

basis points. Mean premiums for U.S. fixed income and foreign equities are 37.1 basis

points and 15.9 basis points. All ETF types display large premium sample standard

deviations. The sample standard deviation of premiums for all ETFs is 81.8 basis points.

The normal range that premiums take is presented in the twenty-fifth and seventy-fifth

percentiles. Generally, ETFs investing in U.S. equities have premiums between -8.5 basis

points and 11.1 basis points. The twenty-fifth (seventy-fifth) percentiles for premiums

of ETFs investing in U.S. fixed income is 2.9 (50.8) basis points. The values are -28.5

(57.8), 19.9 (108.3), and -8.8 (34.5) basis points for ETFs that invest in foreign equities,

foreign fixed income, and miscellaneous, respectively.

Figure 3.3 presents a time series plot of within-month mean ETF premiums. Premi-

ums are the greatest prior to the decimalization of the stock market in 2001. Prior to

2001, the mean premium across the iShares space was 44.1 basis points (not reported).

Following 2001, mean premiums decreased and remained at more stable levels. Premium

magnitudes can also be seen to be larger in times of market stress; consistent with the

liquidity benefits that ETFs offer being greater at these times. Figure 3.4 plots the frac-

tion of ETFs with a positive within-month mean premium. One percent significance level

critical values for the null hypothesis that ETFs are equally likely to trade at a premium

as at a discount are plotted as a dashed line. The fraction of ETFs trading at a premium

is persistently greater than the one percent significance level rejecting the null hypothesis

that premiums are as likely to occur as discounts.

That ETFs persistently trade at a premium to NAV, is a puzzling result. Similarly to

closed-end funds, ETF managers extract management fees and trading costs from NAV.

ETF shareholders also receive distributions in the form of dividends which represent a

tax liability. In the presence of these capitalized costs, investors should only be willing to
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pay a discount to NAV for ETF shares similarly to as is commonly found in the closed-

end fund market. I propose that liquidity benefits dominate capitalized holding costs in

the ETF market and that this is the reason that ETFs persistently trade at a premium

to NAV.

3.3.3 NAV Tracking Errors

If an underlying portfolio is perfectly accessible, then the ETF manager will be able

to perfectly track the underlying index that it aims to replicate. In the presence of

imperfect replicating ability, NAV returns will vary from returns on the portfolio that

the ETF aims to replicate. This is called “tracking error” and is defined in this paper as

in Tang and Xu (2013) as

TEi,t =
(
rNAVi,t − rINDEXi,t

)
× 100 (3.4)

where rNAVi,t is the daily arithmetic NAV return and rINDEXi,t is the daily arithmetic return

on the underlying portfolio that the ETF aims to replicate. Table 3.3 Panel B presents

tracking error statistics. The sample mean tracking error for the full ETF sample is zero.

Only ETFs investing in U.S. fixed income have a mean tracking error that is significantly

different from zero with a mean of -0.1 basis points. Market segmentation is measured by

the standard deviation of tracking errors in this paper. ETFs investing in securities with

greater trading frictions will have greater tracking error standard deviations. Following

from the equity premium puzzle, however, the tracking error standard deviation for

equities ETFs will naturally be larger than the tracking error standard deviation for fixed

income ETFS. This is a minor challenge that can be controlled for in the cross-section

with dummy variables for ETF type.

ETFs on foreign equities are the most difficult to replicate with a sample tracking

error standard deviation of 0.333 percent. ETFs on U.S. fixed income have the small-

est standard deviation of tracking errors at 0.070 percent. The tracking error sample

standard deviation of ETFs investing in U.S. equities is 0.177 percent. Twenty-fifth and
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seventy-fifth percentiles of tracking errors indicate that the distribution of tracking errors

is fairly symmetric with the majority of tracking errors falling within the range of -2 basis

points and 2 basis points. In rare instances, tracking error magnitudes were as large as 33

percent. This particularly large tracking error occurred for the Malaysia ETF on April

1, 1999.

Figure 3.5 presents a time series plot of within-month mean tracking errors. Generally,

mean tracking errors are approximately zero. The period from 1997 and into 1999 is the

exception. During the 1997-1999 period the majority of ETFs in the sample are ones

invested in Asian countries. As a result of the Asian crisis and fallout, tracking errors

were substantially larger than during the rest of the sample period.

3.4 ETF Premiums and Market Segmentation

3.4.1 ETF Premium Determinants

Market segmentation limits the accessibility of certain assets. Gaining exposure indi-

rectly to these securities may be required for mean-variance maximizing investors, how-

ever. Rational investors will be willing to pay a premium to NAV for ETFs holding

securities in segmented markets as long as the cost of the premium paid is smaller than

the diversification and liquidity benefits received. Extant empirical support for this in-

tuition is provided by Bonser-Neal, et al. (1990) and Nishiotis (2004), both of which

find that closed-end funds that invest in nations with greater investment barriers tend

to trade at greater premiums. Differential trading costs are a second form of market seg-

mentation that reduces realized returns in one market relative to the other. Considering

two securities identical in every way except for trading costs, mean-variance maximizing

investors will be willing to pay a premium to NAV if the paid premium and illiquidity

costs of holding an ETF are less than the trading cost of holding the underlying portfolio

that an ETF aims to replicate as in the model of Acharya and Pedersen (2005).

The following panel regression model is used to test how market segmentation affects
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ETF premium levels

PREM i,t = β0 + β1TESDi,t−1 + β2BASi,t−1 + β3PI i,t−1 + β4FEESi,t−1 (3.5)

+ β5DIV i,t−1 + β6RF i,t−1 + β7V ARi,t−1 + β8V OLi,t−1

+ β9SIZEi,t−1 + β10AGEi,t−1 + β11PREM i,t−1 + εi,t

where PREM is ETF premium, TESD is the within-month standard deviation of daily

tracking errors, BAS is the percentage bid-ask spread, PI is the Amihud (2002) price

impact illiquidity measure, FEES is ETF expense ratio (in percentage points), DIV

is ETF daily dividend yield (in percentage points), RF is the one-day accrual rate for

the one-month treasury bill rate (in percentage points), V AR is squared ETF market

price daily return, SIZE is ETF market-cap (in billions of dollars), and AGE is ETF

age (in years). Bars above variables denote within-month means. Lagged values of all

exogenous variables are used in order to align with an investor’s information set when

making the decision of how to allocate their funds. Lagged premium level, PREM i,t−1,

is also included in eqn. (3.5) to control for autocorrelation in premium levels. Since

premium levels estimated from eqns. (3.2a,b) may still contain measurement error, eqn.

(3.5) is subject to an errors in variables problem. This will increase the standard errors

on the explanatory variables, but coefficient estimates will continue to be unbiased. As

a result, statistical significance tests are conservative levels of statistical significance.

TESD is expected to increase premiums since liquidity benefits of holding an ETF are

greater if there are greater barriers to investment in the underlying securities. BAS and

PI are expected to be negatively related to premiums since these trading costs reduce

the relative expected return of holding an ETF to holding the underlying securities.

This illiquidity discount is modeled in Acharya and Pedersen (2005) where they show

that investors are less willing to hold more illiquid securities. Cherkes, et al. (2009),

Ramadorai (2012), and Nashikkar, et al. (2011) provide extant empirical evidence in the

closed-end fund market, in the Hedgebay secondary market for hedge funds, and in the

credit market, respectively, that the more illiquidity of two securities linked by arbitrage
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trades at a discount to the other.

DIV in the prior month is expected to be positively related to premiums in the

current month. New investors will have a smaller contingent tax liability than investors

in the previous month and will not demand as large of a discount to NAV. Malkiel (1977)

and Day, et al. (2011) find evidence of this tax liability effect in the closed-end fund

market. RF and ETF premiums are expected to be negatively related. The short rate

affects funding liquidity in that it makes arbitrage trading more costly. More restricted

access to capital for arbitrageurs in ETFs may lead to decreased ETF liquidity as in the

models of Shleifer and Vishny (1997) and Brunnermeier and Pedersen (2009). As funding

illiquidity rises for arbitrageurs ETF illiquidity will also increase providing a disincentive

for investors to hold ETFs relative to holding the underlying securities directly.

V AR is expected to be negatively related to premiums following from mean-variance

optimizing investors being less willing to hold securities with greater variance. AGE is

expected to be negatively related to premium level following from the results of Christof-

fersen, Errunza, Jacobs, and Langlois (2012) showing that international market inte-

gration has increased over time. Increased market integration diminishes the marginal

benefit of holding ETFs rather than the underlying securities directly. The relationship

between V OL and premiums is ambiguous ex-ante. There is a large body of literature

showing that volume and return variance are positively related (See Karpoff (1987) for

a survey of the early literature). If this relationship holds in the ETF market as well,

then V OL will increase V AR and premium level will be negatively related to V OL fol-

lowing from mean-variance optimization. Greater trading volume, however, also means

that there is greater liquidity in the market. If this increased liquidity effect dominates

the increased variance effect, then a negative relationship between V OL and premium

level should be observed. SIZE also has an ex-ante ambiguous expectations. If SIZE

increases as the result of greater money flows into the fund then ETF size and premium

will be positively related. In contrast to this, if there are diseconomies of scale in fund

size then ETFs may be forced to overweight more liquid holdings, as Pollet and Wilson

(2008) show occurs in traditional open-end mutual funds. This over weighting of liquid
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holdings will reduce the diversification benefits of the ETF providing a disincentive to

hold ETF shares. In this case, a negative relationship would be found between SIZE

and premium.

Table 3.4 presents the main results of the paper obtained from estimating eqn. (3.5).

Column one does not include fixed-effects and only includes a constant term, TESD,

BAS, PI, and LPREM , PREM i,t−1, as explanatory variables. TESD enters signifi-

cantly with the correct positive sign. A one percentage point increase in TESD, leads

to an increase in premiums of 8.9 basis points in the following month. This is not only

a statistically significant result, but also an economically significant one. BAS and PI

enter insignificantly, indicating that ETFs do not offer significant trading cost benefits

relative to the underlying securities.

Column two includes TESD, a dummy variable for fixed income ETFs, FI, and a

dummy variable for foreign ETFs, FOR. These two asset classes are known to be difficult

to invest in and both obtain significantly positive coefficients indicating that investors

are willing to pay a premium for indirect access to these securities. The magnitude of

the coefficient on the fixed income dummy variable, 12.3 basis points, is larger than the

coefficient on the foreign dummy variable, 3.0 basis points, indicating that investors value

the liquidity benefits that bond ETFs offer more than the liquidity benefits offered by

foreign ETFs. Column three presents results from estimating the full model. TESD

continues to enter significantly positively with a coefficient of 9.5 basis points and SIZE

obtains a significant positive coefficient as well. RF and AGE obtain significant negative

coefficients.

Time fixed effects are included in column four to control for the decimalization of

tick values in 2001, as well as for time-varying market conditions. Now, a one percentage

point increase in TESD leads to an increase in premiums of 13.5 basis points in the

following month. The short rate enters significantly with the appropriate negative sign.

The correlation coefficient between the risk-free rate and bid-ask spreads during the

sample period is 0.14 (not reported). An increase in funding liquidity increases ETF

illiquidity reducing the liquidity benefits that ETFs offer. Consistent with mean-variance
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optimizing behavior, an increase in V AR leads to a decrease in premiums the following

month. AGE enters significantly with a negative sign. The significant 0.652 coefficient

on LPREM indicates positive autocorrelation in premium levels. ETF fixed-effects, as

well as time fixed-effects, are included in the fifth column. Including ETF fixed-effects

controls for heterogeneous fund characteristics. TESD, RF , V OL, and SIZE enter

significantly with coefficients that are relatively unchanged from column three.

3.4.2 Premium Persistence and Market Segmentation

In addition to affecting the level of ETF premiums, market segmentation is also ex-

pected to affect the speed of error correction of premiums by increasing idiosyncratic

risk. Previous papers by Baker and Savaşoglu (2002), Doukas, et al. (2010), Gagnon

and Karolyi (2010), Kapadia and Pu (2010), and McLean (2010) have shown that id-

iosyncratic risk is an important limit to arbitrage. Premium error correction speed is

estimated within the Engle and Granger (1987) framework. As a first step, the cointe-

grating relationship between ETF share price and NAV is estimated with the following

regression

Pi,t = ci,0 + ci,1NAVi,t + εi,t (3.6)

The error correction model corresponding to eqn. (3.6) is given by

4Pi,t = ai,1 + ai,2ε̂i,t−1 +
k∑
j=1

ai,11 (j)4Pi,t−j +
k∑
j=1

ai,12 (j)4NAVi,t−j + ei,t (3.7)

ai,2 measures the speed at which ETF i’s premiums correct to zero and will be negative

if premiums mean revert. A lag length of five is used in eqn. (3.7) for k to control for

possible day of the week patterns in premiums.

Error correction coefficients obtained from estimating eqn. (3.7) are presented in Ta-

ble 3.5. The mean error correction speed for the full sample of ETFs is -0.437 and is

statistically significant. This coefficient implies that premiums have a half-life of 1.207

(= ln (0.5) /ln (1− 0.437)) days. The full ETF sample twenty-fifth and seventy-fifth per-
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centiles of estimated error correction indicate that premiums generally have half-lives

between 0.523 days and 8.101 days. ETFs investing in U.S. equities have the quickest

premium correction speeds and U.S. fixed income ETFs have the slowest premium cor-

rection speeds. Mean premium half-lives for U.S. equities and U.S. fixed income are 0.574

days and 8.891 days. Foreign equities and foreign fixed income ETFs have mean premium

half-lives of 3.471 days and 4.116 days. The distributions of premium correction speeds

for all ETF types are left skewed as evidenced by median statistics that are greater than

mean statistics.

The following regressions are used to test how market segmentation affects the speed

at which premiums correct

âi,2 = β0 + β1TESDi + β2BASi + β3PI i + β4DIV i + β5RF i (3.8)

+ β6V ARi + β7V OLi + β8SIZEi + β9AGEi + β10FEESi

+ β11CUNITi + β12CUCOSTi + vi

âi,2 is the premium correction coefficient, estimated from eqn. (3.7), CUNIT is the

creation unit size and CUCOST is the per creation unit share percentage cost of creat-

ing/redeeming a creation unit. Eqn. (3.8) is a cross-sectional regression where TESD is

the sample standard deviation of tracking errors for ETF i and bars above variables now

denote ETF i sample means. Since eqn. (3.8) has estimated error correction coefficients

as the dependent variable, there is an errors in variables problem. Measurement error

increases the standard errors of the estimated coefficients on explanatory variables, but

coefficient estimates remain unbiased.

TESD is expected to be negatively related to the speed of error correction (positively

related to âi,2 since it increases arbitrage risk. An increase in TESD also results in

persistent liquidity benefits that increases the duration for which investors are willing

to hold ETFs at a premium. BAS, PI, CUNIT , and CUCOST are expected to be

positively related to premium persistence since they widen the region of unprofitable

arbitrage.
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DIV , RF , V AR, and V OL have ambiguous ex-ante expectations for coefficient sign.

DIV will increase premium persistence to the extent that differential treatment of divi-

dends between the ETF and target index creates uncertainty about the true NAV. Con-

versely, DIV may be negatively related to premium persistence if there is sufficient

volatility in the contingent tax liability that dividends represent for investors that hold

ETFs. RF is expected to increase premium persistence if funding illiquidity reinforces

asset illiquidity which would increase arbitrage risk. On the other hand, higher risk-free

rates will result in less demand to borrow securities from ETFs. Less securities lending

by ETFs can reduce NAV uncertainty since NAV will more closely track its target index

in the absence of the lending interest income.

V AR will be positively related to premium persistence to the extent that increased

variance increases the difficulty of performing an arbitrage strategy before prices change

dramatically. V AR, however, may also be negatively related to premium persistence if

increased price variance results in greater price variability centered on no arbitrage prices.

In this case increased price variance will lead to an increased number of oscillations from

positive to negative premiums. V OL will increase premium persistence if it is primarily

sentiment driven creating greater idiosyncratic arbitrage risk. On the other hand, V OL

will decrease premium persistence if it is primarily arbitrage driven. SIZE is expected

to be positively related to premium persistence since trading larger volumes of money to

arbitrage pricing errors increases transaction costs. AGE is expected to be negatively

related to premium persistence if arbitrageurs become more skilled over time.

Columns one and two of Table 3.6 present cross-sectional regression results from

estimating eqn. (3.8). In column one, TESD significantly increases the amount of

time that premiums persist for. A one percentage point increase in TESD is associated

with a premium half-life that is 1.402 (= ln (0.5) /ln (1− 0.390)) days longer. Column

two includes all variables in the regression. TESD continues to enter significantly with

a relatively unchanged coefficient. V OL enters with a negative coefficient providing

evidence that volume in ETFs tends to be stabilizing rather than destabilizing. Creation

unit size, CUNIT , is positively related to premium persistence showing that it is more
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costly to perform arbitrage strategies with larger creation unit sizes.

Columns three to six present regression estimates obtained from using subsamples of

only domestic ETFs, foreign ETFs, equities ETFs, and fixed income ETFs, respectively.

TESD has no significant effect on premium correction speed for domestic ETFs and

significantly slows premium correction speed for foreign ETFs, equities ETFs, and fixed

income ETFs. A one percentage point increase in TESD increases the half-life of pre-

miums of each respective ETF type by 2.443 days, 1.167 days, and 0.301 days. CUNIT

is also negatively related to premium correction speed for equities ETFs and fixed in-

come ETFs, but has no significant effect on premium correction speed in the broader

subsamples of domestic ETFs and foreign ETFs.

3.4.3 Subsample Robustness

Table 3.7 partitions the ETF sample into a subsample of ETFs that invest domestically

and a subsample of ETFs that invest in foreign securities. This is done to test if a

subsample of the ETFs is driving the positive relationship between TESD and premium.

In the domestic sample, TESD is only significant when only time fixed effects are included

obtaining a coefficient of 0.070. PI and V AR enter significantly with a negative sign

indicating that investors of domestic ETFs are not willing to pay as high of a premium

for less liquid ETFs or for ETFs that have a higher variance. Coefficient estimates for

RF and AGE are unstable. RF and AGE obtain negative coefficients when ETF fixed

effect are excluded, but obtain positive coefficients when ETF fixed effects are included.

In the foreign sample TESD enters significantly when time fixed effects are included

and when ETF fixed effects are additionally included obtaining coefficients of 0.166 and

0.193, respectively. Furthermore the magnitude of the TESD coefficient is larger in the

foreign sample than in the domestic sample. This result shows that investors are willing

to pay a larger premium for foreign ETFs since they derive greater liquidity and diversi-

fication benefits from them. RF only enters significantly and with a negative sign when

time fixed effects are included and AGE continues to have an unstable coefficient. ETF

premiums in both the domestic sample and the foreign sample experience autocorrelation
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in premiums as evidenced by the large positive coefficients on lagged premium level.

ETFs are also partitioned into a sample of ETFs that invest in fixed income securities

and a sample of ETFs that invest in equities securities. Regression results for these

two subsamples are presented in Table 3.8. Evidence that ETFs with higher levels of

market segmentation trade at higher premiums is found in both the fixed income sample

and the equities sample. The coefficient on TESD is much larger in the fixed income

sample implying that liquidity benefits are more valuable to investors wishing to access

fixed income securities. When only time fixed-effects are included, the coefficient on

TESD is 0.489 in the fixed income sample and the coefficient on TESD is 0.118 in

the equities sample. In the fixed income sample the coefficient on FEES is significant,

but the wrong sign. FEES enter insignificantly in the equities sample. Both fixed

income and equities ETFs have autocorrelated premiums indicated by the large and

significant coefficients on lagged premium. Tables 3.7 and 3.8 together show that market

segmentation’s explanatory power for ETF premiums is not being driven by a single ETF

type.

3.4.4 Investor Sentiment Robustness

The main competing hypothesis to the market segmentation hypothesis in explaining

premiums is the noise trader hypothesis. Early evidence that investor sentiment plays a

significant role in premium fluctuations is provided by Bodurtha, et al. (1995), Gemmill

and Thomas (2002), and Lee, et al. (1991) in the closed-end fund market. This subsection

tests if TESD continues to have explanatory power for ETF premiums in the presence

of investor sentiment effects.

If ETF premiums are affected by sentiment, then as sentiment becomes more op-

timistic premiums will increase and as sentiment becomes more pessimistic premiums

will decrease. U.S. market (MRKT) returns are used as the first measure of investor

sentiment, similarly to as in Bodurtha, et al. (1995) and Gemmill and Thomas (2002).

Returns on the small-minus-big (SMB) portfolio are used as the second measure of in-

vestor sentiment, similarly to as in Lee, et al. (1991), Swaminathan (1996), and Neal
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and Wheatley (1998). ETF Fund flows (FLOW ) is used as the third measure of investor

sentiment similarly to the flow measures used in Baker, et al. (2012), Ben-Rephael, et

al. (2012), Frazzini and Lamont (2008), and Froot and Ramadorai (2008). In this paper,

FLOW is defined as

FLOWi,t =

(
AUMi,t − AUMi,t−1

[
1 +RET

(NAV )
i,t

])
AUMi,t−1

(3.9)

where RET (NAV )
i,t is the daily NAV net return. The investor sentiment variables are

included in the following regression

PREM i,t = β0 + β1TESDi,t−1 + β2SENT
(k)

t−1 + β3FEESi,t−1 + φ′xi,t−1 + εi,t (3.10)

where k ∈ {MRKT, SMB,FLOW}. x is a vector of control variables and φ is the

vector of their respective coefficients. Control variables in eqn. (3.10) are the same as

those used in eqn. (3.5).

Table 3.9 presents results from estimating eqn. (3.10). The first two columns use

within-month mean daily market returns as the sentiment variable, the middle two

columns use within-month mean daily returns on the small-minus-big portfolio as the

sentiment variable, and the final two columns use within-month mean ETF fund flow as

the sentiment variable. TESD continues to obtain a significant positive coefficient in all

model specifications. In all model specifications, a 100 basis point increase in TESD is

associated with approximately a 13.5 basis point increase in premium level the following

month. Lagged market returns and lagged fund flows do not enter significantly in either

of the model specifications. The coefficient on lagged SMB returns is significant when

only time fixed effects are included and when ETF fixed effects are additionally included.

Recent work showing that investor sentiment is a contrarian indicator for future re-

turns in equities includes Baker and Wurgler (2006), Baker, et al. (2012), Ben-Rephael,

et al. (2012), Frazzini and Lamont (2008), Froot and Ramadorai (2008), and Lemmon

and Portniaguina (2006). Table 3.10 presents regression results testing if premium level
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has forecasting ability for future NAV, MRKT, and SMB returns in the ETF market.

The regression model used is the model used in Agarwal, et al. (2009) and Ramadorai

(2012)

RET
(k)
i,t+h = β0 + β1PREM i,t + β2SIZEi,t + β3FLOW i,t + β4V ARi,t (3.11)

+ β5AGEi,t + β6FEESi,t + β7RET
(k)
i,t + εi,t

where k ∈ {NAV,MRKT, SMB} and h ∈ {1, 3, 6, 12}. RET (k)
i,t+h is the h-month holding

period return. Only coefficient estimates for PREM are presented to conserve space. At

the three-month holding period horizon, higher premiums today are associated with lower

holding period returns for NAV, MRKT, and SMB. When a holding period of six months

is considered, higher premiums today are associated with lower holding period MRKT

returns. ETF premiums and holding period returns do not have a significant relationship

for NAV, MRKT, and SMB returns when holding periods of one month and twelve

months are considered. The negative relationship between three-month holding period

returns and current premium level is consistent with the investor sentiment hypothesis.

Tables 3.9 and 3.10 show that while there is evidence of investor sentiment effects in the

ETF market, after controlling for those effects market segmentation continues to have

explanatory power for ETF premiums.

3.4.5 Tracking Error Standard Deviation and Market Segmentation

Since results from the previous sections depend on TESD being a good measure of

market segmentation, this section runs tests to validate that TESD has the desirable

properties of a segmentation measure. Financial market segmentation can occur for a

number of reasons resulting in a set of assets being less accessible than another set of

assets, including differing trading costs and barriers to entry. ETFs that aim to replicate

less accessible securities are expected to have worse tracking ability. The following regres-

sion is used to test how market state contemporaneously affects tracking error standard
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deviation

TESDi,t = β0 + β1ZEROSi,t + β2FEESi,t + β3INDV ARi,t + β4DIV i,t (3.12)

+ β5RF i,t + β6SIZEi,t + β7AGEi,t + β8TESDi,t−1 + εi,t

ZEROS is the illiquidity variable of Lesmond, et al. (1999) and is defined in this paper

as the number of within-month trading days that the underlying index had a daily return

of zero. INDV AR is the daily squared return of the underlying index. The remaining

variables in eqn. (3.12) are defined as before.

ZEROS, RF , INDV AR, and SIZE are expected to be positively related to TESD.

ZEROS, INDV AR, and SIZE result in higher trading costs leading to the replication

process becoming noisier. RF will increase the variability of tracking errors either through

greater funding illiquidity reinforcing asset illiquidity or by time varying securities lending

activities by the ETF fund manager adding additional noise to the replication error.

DIV is expected to be positively related to tracking error standard deviation due to the

differential treatment of dividends; a similar relationship as to what is found in Callaghan

and Barry (2003) in the American depository receipt (ADR) market. AGE is expected

to be negatively related to TESD since fund managers are expected to optimize the

tracking process over time. Lagged TESD is included to control for ARCH effects in the

standard deviation of tracking errors.

Column one of Table 3.11 tests the relative tracking error standard deviation of for-

eign (FOR) and fixed income (FI) ETFs as well as how illiquidity affects tracking error

standard deviation. ZEROS enters significantly with a positive sign indicating that

when the underlying index is more illiquid, TESD is higher. The negative coefficient

on FI is consistent with the equity premium puzzle. Columns two to four estimate the

full model in eqn. (3.12). Column two contains no fixed-effects, column three includes

time fixed-effects, and column four additionally includes ETF fixed effects. In column

two, increased ZEROS, FEES, INDV AR, DIV , RF , and SIZE are significantly as-

sociated with greater tracking error variability. The positive coefficient on SIZE shows
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that there are diseconomies of scale in tracking ability. AGE obtains a negative co-

efficient, consistent with more precise tracking ability occurring with more experience.

When time fixed-effects are included in column three, all explanatory variables continue

to enter significantly and with coefficients that are little changed from column two. Once

ETF fixed-effects are additionally included in column four, only ZEROS, INDV AR

and DIV continue to enter significantly. Their coefficients are similar to their values

obtained in columns two and three. TESD also displays ARCH effects as can be seen

from the lagged TESD, LTESD, variable.

Table 3.12 partitions the ETF sample into subsamples of ETFs investing in domestic

securities, foreign securities, equities, and fixed income and tests for the determinants

of TESD. The panel regression model that is estimated is eqn. (3.12) with time fixed-

effects. In all subsamples FEES, SIZE, AGE, and LTESD enter significantly. FEES,

SIZE, and LTESD enter with positive coefficients and AGE enters with a negative

coefficient. Following from the results of Christoffersen, et al. (2012) showing that

markets are becoming increasingly more integrated over time, the coefficient on AGE

should be a larger negative magnitude in the foreign sample than in the domestic sample

due to this added reduction in market segmentation. This is what is found. Whereas

the coefficient on AGE is -0.002 in the domestic subsample, it is -0.008 in the foreign

subsample. ZEROS enters significantly positively in the domestic, foreign, and equities

samples. INDV AR enters significantly with a positive sign in the foreign, equities, and

fixed income samples. The LTESD coefficients show that, TESD displays stronger

ARCH effects in the foreign sample than in the domestic sample and stronger ARCH

effects in the equities sample than in the fixed income sample. Overall, Table 3.11 and

Table 3.12 show that TESD is a robust measure for market segmentation.

3.5 Conclusion

ETFs persistently trade at a premium to NAV. During the sample period, within-

month mean ETF premiums were positive in 89 percent of the months. Further, the
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fraction of ETFs trading at a within-month mean premium is persistently in excess of

the one percent significance level critical value that would exist under the null hypothesis

that ETFs are equally likely to trade at a premium as at discount. This is a puzzling

result since in the presence of capitalized fees and contingent tax liabilities investors

should demand a discount.

This paper shows that market segmentation can explain the puzzling empirical finding

that exchange traded funds persistently trade at a premium to NAV. Market segmentation

is measured by the standard deviation of tracking errors, the difference between daily

ETF NAV returns and daily returns on the index which it aims to replicate. Tracking

error standard deviation is positively related to premium level and negatively related to

the speed of premium correction. Investors are willing to pay a premium to NAV to obtain

the liquidity and diversification benefits that ETFs provide by gaining indirect access to

more inaccessible underlying securities. The positive relationship between tracking error

standard deviation and premium level is robustly found in ETFs investing in equities

and ETFs investing in fixed income as well as in ETFs investing in the U.S. and in ETFs

investing in foreign securities. The positive relationship between tracking error standard

deviation and premium level is further robust to controlling for investor sentiment effects

in the ETF market.

Further tests validate that tracking error standard deviation is a robust measure for

market segmentation. These tests confirm that it has the desirable properties of a market

segmentation measure. The standard deviation of tracking errors can also be used as a

market segmentation measure in other studies where market segmentation or barriers to

entry are difficult to measure.
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4 Exploiting Closed-end Fund Discounts:

The Market May Be Much More Inefficient Than

You Thought?

Closed-end funds (CEFs) are investment companies that issue a fixed number of

shares and invest the proceeds based on the objective of the fund. Shares of these funds

are traded on a stock exchange similarly to common stock and unlike open-end funds

cannot be redeemed by the shareholders at their net asset values (NAVs). In efficient and

frictionless markets, the share price at which a fund trades must equal its NAV. In reality,

however, share prices and NAVs differ. Further, the percentage difference between share

prices and NAVs, referred to as the premium, exhibits substantial time-variation. This

has puzzled financial economists for over thirty years and a large body of research exists

which tries to explain this behavior.

This paper adds to the findings of previous researchers and deepens the CEF discount

puzzle by optimally exploiting the information content of historical premiums. First, the

mean-reverting behavior of CEFs is examined. Early explanations for why premiums

should mean-revert are provided by the noise trader model of De Long, et al. (1990) and

the investor sentiment hypothesis of Lee, et al. (1991). Alternatively, premiums should

also display rational mean-reversion as a result of time-varying contingent liabilities as

evidenced in the findings of Malkiel (1977) and Day, et al. (2011). Mean reversion in

CEF premiums is supported in the data. The bias-adjusted speed for mean correction

to equilibrium premium levels is 8.6 percent per month, implying an average half-life of

7.7 months. In the presence of mean-reverting premiums, the traditional strategy is to

buy the CEFs currently trading at the lowest premiums and to sell the CEFs currently

trading at the largest premiums. This naïve model implicitly assumes that the mean-

reversion speeds of premiums are constant across funds. This is a very strict restriction

that ignores the heterogeneity in mean-reversion speeds and the information contained

in the premium history.
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This paper uses two new conditioning models of expected returns that exploit the

information content of premiums in different ways. The first, a basic mean-reversion

(BMR) model, predicts future returns conditioned on current premium alone. This cap-

tures the predictive ability of future returns that premiums have been shown to have

by Swaminathan (1996), Neal and Wheatley (1998), and Froot and Ramadorai (2008).

Thompson (1978) and Pontiff (1995) use similar methods for predicting CEF returns,

however, implicitly restricting mean-reversion speeds to be the same across CEFs. The

BMR model of expected CEF returns in this paper is unrestricted, taking advantage of

differential mean-reversion speeds of fund premiums. The second method predicts fu-

ture returns in an Augmented Dickey-Fuller (denoted as RADF) type regression, further

conditioning on lagged innovations in premiums. Including lagged premium innovations

takes advantage of the information contained in premium predictability documented by

Day, et al. (2011). If CEF returns are independent of their respective path of premium

innovations, then portfolio returns using the BMR model and the RADF model will be

similar. Alternatively, portfolio returns using the RADF model will be larger than those

using the BMR model if CEF returns are dependent on the path of their premiums.

Naïve benchmark long-short quintile portfolio returns, buying the quintile of CEFs

trading at the lowest premiums and selling the quintile of CEFs trading at the highest

premiums, yield an annualized mean return of 14.9 percent with a Sharpe ratio of 1.519,

which is greater than the 0.170 Sharpe ratio of market returns. There still remains

no theory in the extant CEF literature that is able to explain these arbitrage profits.

The results further greatly deepen the puzzle by showing that the naïve strategy and

previous studies substantially understate the level of inefficiency in the CEF market.

The long-short quintile portfolio strategy, using the BMR model, yields annualized mean

returns of 17.3 percent with a Sharpe ratio of 1.862. When the RADF model is used, the

annualized mean long-short strategy return is 18.2 percent with a Sharpe ratio of 1.918.

Since the RADF model yields substantially larger arbitrage profits than the BMR model,

the traditional view that expected CEF returns are independent of the path taken by

premiums is rejected.
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Trading strategy returns are regressed on commonly used risk factors to test if the

CEF portfolio returns are an artifact of taking on systematic risks. Returns cannot be

explained by the three Fama and French (1993) risk factors, the Carhart (1997) momen-

tum factor and the Pástor and Stambaugh (2003) tradable liquidity factor. The results

continue to be robust when only considering subsamples of domestic funds, foreign funds,

equities funds, and fixed-income funds. Returns are not driven by systematically buying

foreign funds and selling domestic funds to capture a market segmentation premium or

by systematically buying equities funds and selling fixed-income funds to capture the

equity premium puzzle. Additionally, time period consistency of returns is tested by

partitioning the out-of-sample period into two halves. Contrary to what is expected in

efficient markets with rational learning, there is no statistically significant difference be-

tween mean returns in the first half of the out-of-sample period and mean returns in the

second half of the out-of-sample period.

Thompson (1978) is the first to examine if premiums on CEFs are mean-reverting and

if premiums have predictive power for future returns of the fund’s shares and finds that

portfolios of funds trading at discounts outperform the market portfolio. Pontiff (1995)

extends this analysis and shows that funds with premiums accrue negative abnormal

returns and funds with discounts accrue positive abnormal returns. Lee, et al. (1991)

argue that shifting investor sentiment of small investors may explain the puzzle. Small

investors create noise in the CEF prices as in the model of De Long, et al. (1990), which

creates an arbitrage risk limiting arbitrage effectiveness. Along a different vein, Brickley

and Schallheim (1985), Brauer (1988), and Bradley, et al. (2010) show that the open-

ending of CEFs benefits shareholders as discounts decline and prices converge to their

NAVs. Since relatively few funds are open-ended, Barclay, et al. (1993) test for agency-

conflicts with large block holders and find that CEFs with larger block holdings trade at

larger discounts. Alternative explanations of the dynamics of CEF premiums are related

to managerial ability and market segmentation. Funds with better managerial ability will

have better NAV returns. Chay and Trzcinka (1999), Coles, et al. (2000), Johnson, et al.

(2006), and Berk and Stanton (2007) provide evidence that CEFs with better NAV returns
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tend to trade at smaller discounts than those with worse NAV returns. The market

segmentation hypothesis argues that investors will choose to trade the more accessible

CEFs to gain exposure to the underlying securities, rather than investing directly in

the less accessible underlying securities. Bonser-Neal, et al. (1990), Bodurtha, et al.

(1995), Gemmill and Thomas (2002), Nishiotis (2004), Cherkes, et al. (2009), Froot and

Ramadorai (2008), and Elton, et al. (2013) provide empirical support for the market

segmentation hypothesis. This paper adds to the large body of extant literature by

optimally exploiting the information content of premiums in new ways to literature. In

doing so, I show that inefficiency in the CEF market is much worse than previously

thought.

The remainder of this paper is organized as follows. Section 1 presents the empirical

methodology used to extract the information content of CEF discounts. Section 2 dis-

cusses the data. Section 3 presents empirical results quantifying the magnitude of the

CEF discount puzzle. Robustness tests are conducted in Section 4. Concluding remarks

are contained in Section 5.

4.1 Empirical Methodology

This section describes the empirical models of expected CEF returns that are em-

ployed in the analysis. CEF returns and premiums are respectively calculated as follows:

ri,t =
Pi,t +Di,t

Pi,t−1
− 1 (4.1)

premi,t = pi,t − navi,t (4.2)
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where

Pi,t −market price of the i′th CEF at time t

pi,t − logarithm of market price, ln (Pi,t)

Di,t − cash dividend disbursement

navi,t − logarithm of net asset value (NAV)

premi,t − difference between log market price and log net asset

value, which is the price premium in relative terms

In this framework, discounts are negative premiums. If the closed end-fund market is

weak-form efficient, then the state density of future price is only dependent on the current

price. Premiums will not contain information regarding future CEF prices. Contrary to

this, if CEF premiums have explanatory power for future CEF prices, then the CEF

market is no longer weak-form efficient.

Two new predictive regression models that restrict the information content of pre-

miums in different ways are used in this paper to forecast one-step ahead CEF returns.

Evidence against weak-form efficiency showing that premiums contain explanatory power

for future returns is provided by Pontiff (1995), Swaminathan (1996), Neal and Wheatley

(1998), and Froot and Ramadorai (2008). Ex-ante evidence that premiums should mean

revert is provided by Lee, et al. (1991), who show that investor sentiment affects CEF

premiums. Since investor sentiment is mean-reverting by definition, premiums will also

display mean-reverting behavior which may be used to forecast future premiums and

returns. CEFs with poor investor sentiment will trade at smaller premiums than those

with better investor sentiment. As sentiment mean-reverts, CEF premiums will mean

revert as well. This mean-reverting behavior can be captured by regressing CEF returns



60

on the first lag of premiums

ri,t = αi + βipremi,t−1 + εi, t (4.3a)

Et [ri,t+1] = α̂i + β̂ipremi,t (4.3b)

where Et [·] is the mathematical expectation operator, conditional on the time t infor-

mation set, and α̂i and β̂i are regression parameters estimated using data from the first

observation in the sample up to time t. Eqns. (4.3a,b) differ importantly from the

methodology that Thompson (1978) and Pontiff (1995) use to forecast expected CEF

returns based on lagged premiums. Both authors only consider the sign of the premium.

Secondly, these authors implicitly assume that αi = α and βi = −1 such that CEFs trad-

ing at the smallest premiums are expected to have the highest returns and CEFs trading

at the largest premiums are expected to have the lowest returns. By using returns as

the dependent variable and by not restricting αi and βi, eqns. (4.3a,b) should result in

better forecasts of returns based on the sample of data.

Note, however, that eqns. (4.3a,b) continue to neglect the information content that

the history of premiums may have. Starks, et al. (2006) show that there is tax-loss selling

patterns in municipal bond CEFs. Day, et al. (2011) further provide evidence that CEF

premiums display predictable patterns in response to dividend disbursements by funds.

Premiums tend to be smallest immediately before a distribution since this is the time that

investors’ contingent tax liability is greatest. Following disbursement, premiums increase

as a result of the diminished tax liability. To account for the information content of

possible patterns in premiums and premium innovations, an Augmented Dickey-Fuller

(RADF) model of CEF returns is estimated as follows:

ri,t = αi + βipremi,t−1 +
kt∑
j=1

γi,j4premi,t−j + εi,t (4.4a)

Et [ri,t+1] = α̂i + β̂ipremi,t +
kt∑
j=1

γ̂i,j4premi,t−j+1 (4.4b)
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where 4 denotes the difference operator. The lag length kt is optimally chosen following

the procedure suggested by Campbell and Perron (1991), starting at kt = 3 and reducing

the number of lags until the longest lag is statistically significant at the one percent level.

Now, expected t + 1 returns are not only dependent on premiums at time t, but also

dependent on the history of premium innovations from time t− kt to time t.

The return differential between a trading strategy using eqns. (4.4a,b) and (4.3a,b)

can also be interpreted as a test of the validity of the traditional assumption that for

CEFs only the lagged premium contains explanatory power for returns. If portfolio

returns using eqns. (4.3a,b) are similar to portfolio returns using eqns. (4.4a,b), then

the traditional assumption holds up. If portfolio returns using eqns. (4.4a,b) are larger

than those from using eqns. (4.3a,b), then the traditional assumption can be rejected

in favor of the alternative hypothesis that CEF returns are not independent of premium

path. Those are the hypotheses that I test. Eqns. (4.3a,b) and (4.4a,b) are referred to as

the basic mean-reversion (BMR) model and the RADF model for the remainder of the

paper.

4.2 Data

Monthly data are compiled from four different data sources. Data on CEF share

prices, total returns, trading volumes, and shares outstanding is obtained from the CRSP

monthly stock file database. There are 693 CEFs in the CRSP universe. CEFs incorpo-

rated outside of the United States are excluded from the sample. End-of-month fund net

asset values are obtained from Bloomberg. Not all CEF observations in CRSP have an

accompanying NAV observation available in Bloomberg. The final sample consists of the

intersection of the two databases which leaves 377 CEFs that trade in the U.S. covering

the August 1984 to December 2011 period. Missing values for CEF returns are imputed

with the sample mean of that CEF’s return time series1. Data on the three Fama and

French (1993) factors, as well as the Carhart (1997) momentum factor, are obtained from

1Results are unchanged when missing values are imputed with zero
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Kenneth French’s website. Data on the Pástor and Stambaugh (2003) tradable liquidity

factor is obtained from L̆ubos̆ Pástor’s website.

CEF fund type classifications are obtained from Morningstar. Table 4.1 presents the

cross-section of fund categories and types. Panel A shows that 61.7 percent of the CEFs

are categorized as domestic funds, 21.1 percent are categorized as foreign funds, and the

remaining 17.2 percent have a miscellaneous categorization. Of those CEFs that invest

domestically, 15.5 percent invest in domestic equities and 84.5 percent invest in domestic

fixed income securities. Of those CEFs that invest internationally, 79.1 percent invest in

foreign equities and 20.9 percent invest in foreign fixed income securities. The last two

columns present a snapshot of the cross section of sample CEFs in the latest sample year,

2011. In 2011, the mean market value of equity (MVE) was $370 million for domestic

CEFs, $336 million for foreign CEFs, and $140 million for miscellaneous CEFs. There

were 192 domestic CEFs, 29 of which invested in equities and 163 of which invested in

fixed income securities. 39 funds invested in foreign equities and 11 funds invested in

foreign fixed income securities. The remaining 17 funds in the sample in 2011 invested

in the miscellaneous category.

Figure 4.1 plots the time series of the number of CEFs contemporaneously included

in the sample in the top panel and the time series of total assets under management of

the sample funds in the bottom panel. Total sample assets under management for CEFs

contemporaneously in the sample increases from $0.07 billion in 1984 to a high of $109

billion in 2007.

Figure 4.2 plots the distribution of CEF premium observations for the sample. CEFs

generally trade at a discount. The distribution appears to be bi-modal with a sample

mean premium of -4 percent and sample standard deviation of 22 percent. Fund type

appears to be random in the cluster of premiums centered at -76 percent. There is not

a specific fund type that tends to trade at such a deep discount. CEFs that trade at a

premium to NAV tend to be fixed-income funds, funds that invest in natural resources,

and funds that invest internationally. That these fund types predominantly trade at

premiums is consistent with the model of Cherkes, et al. (2009) where investors trade in
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the more easily accessible CEFs rather than trade in the less accessible underlying assets

directly.

4.3 Empirical Results

4.3.1 CEF Trading Strategy Implementation

When implementing the BMR and RADF models based on eqns. (4.3a,b) and

(4.4a,b), approximately the first one-third of the sample period is used as the base esti-

mation period and the remaining two-thirds of the sample is used as the out-of-sample

test period. The first out-of-sample predicted CEF return is February 1998. CEFs are

required to have existed for at least 120 months prior to entering the sample and being

used in the estimations of eqns. (4.3a,b) and (4.4a,b). Expected returns are estimated in

a cumulative rolling regression method. Since time t+ 1 expected returns are estimated

based only on information available at time t, expected returns are immune to look-ahead

bias. After time t + 1 expected returns are estimated, CEFs are sorted into five equally

weighted portfolios of CEFs based on expected returns. A long-short portfolio is formed

by buying the portfolio with the highest expected return and shorting the portfolio with

the lowest expected return. Three different trading strategy returns are estimated; one

for each of the two expected return models, and as a benchmark case, the traditional

naïve strategy of buying the portfolio of CEFs that trade at the lowest premiums and

selling the portfolio of CEFs that trade at the highest premiums is estimated.

4.3.2 Mean-Reversion in CEF Premiums

Augmented Dickey-Fuller regressions are used to test for mean reversion and to es-

timate the speed of mean reversion for each CEF individually. Histograms of estimated

mean reversion coefficients and tau-statistics to test for mean reversion in CEF premiums

and are presented in the top and bottom panels of Figure 4.3, respectively. The mean of

the estimated mean reversion parameter β is -0.138. It is well-known that this parameter

estimate is downward biased. To give an estimate of the bias, I simulate time series under
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the null hypothesis of a random walk with 100 observations, and estimate the β. With

10,000 replications, the average β is estimated to be -0.052, which is the estimated bias of

the mean reversion speed under the null2. This gives the average bias-adjusted parameter

for the sample of CEFs to be -0.086 (−0.138 + 0.052). This implies an average half-life of

7.7 (= ln(0.5)/ln(1 − 0.086)) months for mean reversion in CEF premiums, a very fast

speed. From the top panel of Figure 4.3, a wide dispersion of mean-reversion coefficients

can be observed, indicating that the naïve strategy ignores important heterogeneity in

mean-reversion speeds. Under the null hypothesis of no mean reversion, the 5 percent

critical value for the sample size of 100 is -2.89 (see Fuller, 1976, p.369). From the bottom

panel of Figure 4.3, the null hypothesis can be rejected at the 5 percent significance level

in favor of mean reversion in fund premium for a substantial number of CEFs3.

Figure 4.4 plots histograms of mean monthly returns across CEFs. Mean returns for

the full sample are plotted in Panel A. Panels B and C plot mean monthly returns for

CEFs that primarily invest in equities and fixed-income securities, respectively. Uncondi-

tionally, the annualized mean return for equities CEFs is 10.4 percent and the annualized

mean return for fixed-income CEFs is 7.6 percent.

4.3.3 CEF Trading Strategy Returns

Table 4.2 presents portfolio performance for the benchmark naïve trading strategy

that buys the quintile portfolio of CEFs trading at the lowest premium and sells the

quintile portfolio of CEFs trading at the highest premium with monthly rebalancing.

Results using the full sample are presented in Panel A. The full sample annualized mean

return of the naïve strategy is 14.9 percent and is statistically significant at the one

percent level. The Sharpe ratio of the arbitrage portfolio is 1.519, which is larger than

the market Sharpe ratio of 0.170 over the same period. Trading strategy returns are

2Balvers, et al. (2000) suggest estimating the bias under the alternative of mean reversion. I choose
not to pursue such a strategy because that will require running a separate set of simulations for each of
the CEFs in the sample. The difference is not expected to be large.

3I acknowledge that ADF-type tests have very low power to reject the null hypothesis of a random
walk in favor of the alternative of mean reversion in small samples.
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generated symmetrically by both the long and short portfolios. This return from the

naïve strategy is similar to the strategy returns in Pontiff (1995). Both the long and the

short legs of the arbitrage portfolio contribute roughly symmetrically. While the mean

return on the portfolio of CEFs trading at the lowest premium outperforms the market

by a statistically significant 9.3 percent, the mean return on the portfolio of CEFs trading

at the highest premium underperforms the market and is not significantly different from

zero.

The PTO, MVE, STO, and DVOL columns give statistics on portfolio turnover, port-

folio mean CEF market value of equity, portfolio mean CEF share turnover, and portfolio

mean CEF dollar trading volume. Portfolio positions turnover relatively infrequently with

the long-short portfolio turning over at an annualized rate of 2.335 times. Mean CEF

market-cap traded is $382.468 million, annualized mean share turnover is 63.8 percent,

and annualized mean CEF dollar volume traded is $223.706 million. While CEF share

turnover and dollar trading volume appear small, they coincide with the fourth and fifth

deciles of NYSE stocks over the same sample period (not reported). In practice, there

would have been sufficient liquidity for this trading strategy to have been a tradable one.

The last column of Table 4.2 contains mean Dickey-Fuller mean-reversion parameter es-

timates (MRP), estimated in a cumulative rolling manner, for CEFs in each portfolio.

Whereas the mean mean-reversion parameter for the full sample of CEFs is -0.117, it is

-0.108 for the Q5-Q1 long-short portfolio. Given the estimated bias of 0.052 under the

null hypothesis of a random walk reported in section 4.3.2, these mean-reversion param-

eters correspond to a premium half-life of 10.32 months for the full sample of CEFs and

a mean-reversion speed of 12.03 months for CEFs in the Q5-Q1 long-short portfolio. The

slower mean-reversion speeds of CEFs in the Q5-Q1 portfolio provide evidence that ne-

glecting heterogeneity in mean-reversion parameters may result in suboptimal portfolio

allocation.

Naïve strategy returns using domestic and foreign subsamples of CEFs are presented

in Panels B and C, respectively. The mean return for the long-short strategy is 12.1

percent in the domestic CEF universe. Both the long and short portfolios continue to
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contribute roughly symmetrically to strategy returns. Trading returns are slightly larger

in the foreign CEF subsample with the annualized long-short mean return being 15.4

percent. While the mean return in the foreign subsample is higher, its Sharpe ratio is

only 0.857 whereas the Sharpe ratio obtained in the domestic subsample is 1.506. Mean

MRPs for the Q5-Q1 portfolios in the domestic and foreign subsamples are similar to

those in the full sample case. Portfolio turnovers, mean CEF share turnovers, and mean

CEF dollar trading volume are greater in the foreign subsample than in the domestic

subsample.

Table 4.3 presents mean returns from the long-short strategies discussed in Section

4.3.1 using the full sample of CEFs and the BMR and RADF models to forecast ex-

pected CEF returns. The annualized mean return from the BMR long-short strategy is

17.3 percent. This is 2.4 percentage points greater than the benchmark strategy, indicat-

ing that important information about CEF return dynamics is lost by not allowing the

coefficients in eqns. (4.3a,b) to be freely estimated. The Sharpe ratio for the BMR strat-

egy is 1.862. Similar to the benchmark strategy, the long and short positions contribute

roughly symmetrically to the mean return. Possible short sale restrictions cannot explain

the magnitude of inefficiency as evidenced by the Q5-MRKT portfolio. The mean return

from this strategy is 9.8 percent per annum and the Sharpe ratio is 0.795. In contrast to

the naïve strategy, the mean Dickey-Fuller mean-reversion speed of CEFs in the Q5-Q1

portfolio is -0.154 (a half-life of 4.14 months), a much quicker mean reversion speed.

Taking into account the heterogeneity in CEF mean-reversion speeds substantially im-

proves trading strategy returns over the naïve model, which does not take into account

mean-reversion speed heterogeneity.

Portfolio mean returns from the trading strategy that uses the RADF model of ex-

pected returns are presented in Panel B. If the premium history beyond the first lagged

premium contains no explanatory power for returns, then mean returns in Panel B should

match those in Panel A. The annualized mean return from the long-short strategy is 18.2

percent. The larger RADF returns indicates that inefficiency in the CEF market is more

severe than previously documented and that the histories of premiums have explanatory
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power for returns. Expected CEF prices are not independent of the path that its premi-

ums have taken. The Sharpe ratio of the Q5-Q1 RADF strategy is 1.918. Similarly to

the naïve model and the BMR model, the long and short portfolios contribute symmet-

rically to strategy returns. The long portfolio minus market portfolio strategy yields an

annualized mean return of 10.7 percent providing further evidence that short sale restric-

tions are not the source of predictable trading strategy returns. The mean Dickey-Fuller

mean-reversion speed of CEFs in the Q5-Q1 portfolio is -0.132 (a half-life of 4.9 months)

providing evidence that the RADF model also optimally takes into account heterogeneous

MRPs. Since the Q5-Q1 portfolio returns are larger using the RADF model than when

using the BMR model, and since the traded CEF mean-reversion speeds are similar, the

large increase in trading strategy returns is the result of incorporating the information

content of the historic path of premiums.

Figures 4.5 plots the monthly returns from the long-short naïve benchmark strategy

in the top panel and the trading returns using the RADF model of expected CEF returns

in the bottom panel. The realized strategy returns appear to be randomly distributed

over time. Large return outliers are not present in the return time series. Therefore,

there is no evidence that a peso problem could explain the consistent arbitrage returns.

It is interesting to note that during the 2001 recession following the tech-bubble crash

and during the recent 2007-2009 financial crisis, both the benchmark strategy and the

RADF strategy would have provided a good hedge against generally falling markets. In

an efficient market, an investor should not be able to obtain such predictable returns.

Table 4.4 presents realized mean returns by ex-ante expected return-sorted CEF quin-

tile in Panel A and tests for a monotonic relationship between mean trading returns and

mean ex-ante expected return estimated from the RADF model in Panel B. Only mean

quintile returns for quintiles one and two are not significantly different from zero. The

first row in Panel A shows that the mean number of CEFs per quintile is approximately

25. Quintiles are well diversified and trading returns are not being driven by a small

subset of CEFs. Two tests for monotonicity in returns are conducted: one parametric

and one non-parametric. The parametric test is a regression of mean quintile return on
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a constant and a trend variable ascending from one to five. The non-parametric test is

Kendall’s rank correlation test4. Kendall’s tau is bound between -1 and 1. If the rank-

ings of two variables, in this case trading mean returns and forecasted returns, agree in

ascending ranking completely, then Kendall’s tau will equal 1. If they have a completely

reversed ranking relationship, then Kendall’s tau will equal -1. Both tests of mono-

tonic trend indicate that portfolio returns are significantly monotonically higher for CEF

quintiles with higher forecasted returns. The trend test indicates that an investor earns

an annualized 4.3 percentage points more in expected return by moving to an adjacent

quintile with greater forecasted return.

Since parameters are required to be estimated in the BMR and RADF models, their

forecasting ability should be increasing in the time-series length of closed-end funds be-

cause a higher precision in parameter estimation can be obtained with more observations.

Table 4.5 presents mean returns for the naïve, BMR, and RADF trading strategies con-

ditioned on the minimum number of observations a CEF is required to have prior to

entering the sample. The RADF model outperforms both the BMR and naïve models

when the minimum number of CEF observations is greater than or equal to 120 months.

Similarly, the BMR model outperforms the naïve model when the minimum number of

observations required for a CEF to enter the sample is greater than or equal to 120

months. When the required number of observations for a CEF to enter the sample is 36

months or 60 months the naïve model outperforms both the BMR model and the RADF

model. Even with these short in-sample periods the RADF model obtains mean returns

that are approximately equal to those of the naïve model, however. That the forecasting

performance of the BMR and RADF models improves relative to the naïve strategy as the

minimum in-sample period lengthens indicates that the models are asymptotic in nature.

In small samples, there exists a trade-off between proper model specification and estima-

tion precision. How well the parametric model performs relative to the non-parametric

one in an actual sample is an empirical question.

4See Kendall (1938) for test details.
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4.3.4 Risk-Adjusted Returns

This subsection tests if the trading returns reported in the previous section could be

the result of taking on greater systematic risks. In the absence of arbitrage opportunities,

risk-discounted portfolio returns will have a price of zero

E
[
mt+1r

e
p,t+1

]
= 0 (4.5)

where rep,t+1 is the portfolio excess return andmt+1 is the pricing kernel. mt+1 is restricted

to be linear in k factors

mt+1 = 1−
k∑
i=1

bifi,t+1 (4.6)

where bi = CV
[
fi,t+1, r

e
p,t+1

]
/V [fi,t+1], CV [·] is the covariance operator, and V [·] is the

variance operator. Eqn. (4.6) implies a beta pricing model for expected excess returns.

The pricing kernel in eqn. (4.6) is taken in this paper to be the factor model of Fama and

French (1993) augmented with the Carhart (1997) winners-minus-losers (WML) factor

and the Pástor and Stambaugh (2003) tradable liquidity (LIQ) factor (hereafter referred

to as the FFCPS model)

mt+1 = 1− b1reMRKT,t+1 − b2rSMB,t+1 − b3rHML,t+1 (4.7)

− b4rWML,t+1 − b5rLIQ,t+1

reMRKT is the monthly excess return of the market portfolio over the risk-free rate, rSMB is

the monthly return on the small-minus-big (SMB) portfolio, rHML is the monthly return

on the high-minus-low (HML) book-to-market portfolio, rWML is the monthly return on

the WML portfolio, and rLIQ is the monthly return on the LIQ portfolio. Table 4.6
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presents results from regressing naïve trading strategy returns on the FFCPS factors:

rep,t = αp + βp,1r
e
MRKT,t + βp,2rSMB,t + βp,3rHML,t (4.8)

+ βp,4rWML,t + βp,5rLIQ,t + εp,t

Panels A, B and C of Table 4.6 display results for the full sample of CEFs, the domestic

sample, and the foreign sample, respectively. The alphas (i.e., the risk-adjusted returns)

for the long-short strategy are 14.8 percent, 11.9 percent, and 16.0 percent per annum

for the full sample, the domestic sample, and the foreign sample, respectively, each of

which is statistically significant at the one percent level. The alphas are approximately

equal to the mean returns, indicating that the FFCPS factors collectively have close to

zero explanatory power for the naïve trading strategy returns. In all three panels, Q1

and Q5 returns load positively on the MRKT factor, SMB factor, and LIQ factor. Q1

and Q5 returns load negatively on the WML factor in all three panels. Q1 returns load

positively on the HML factor in the full sample and in the domestic sample. A significant

factor loading on the HML factor is only obtained for Q5 returns in the full sample and it

is negative. The positive factor loadings for the Q1 and Q5 portfolios indicates that the

naïve strategy tends to trade CEFs holding smaller securities, recent losers, and securities

with greater liquidity risk. Once the arbitrage portfolio is formed, none of the factors

obtain consistently significant loadings across samples.

Abnormal return results from long-short strategies using the optimal RADF model are

presented in Panel A of Table 4.7. In Panel A, the annualized arbitrage portfolio alpha (or

abnormal return) is 17.4 percent, which is highly significant and is approximately equal to

the unadjusted mean return reported in Table 4.3 Panel B. Furthermore, while the mean

return for the short quintile portfolio (Q1) reported in Table 4.3 Panel B is insignificantly

different from zero, the risk-adjusted return for this portfolio is -7.4 percent, which is

significant at the one percent level. These results further provide evidence against the

view that only the first lagged premium contains explanatory power for CEF returns.

Portfolio alphas using the sample of domestic CEFs are presented in Panel B and alphas
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using the sample of foreign CEFs are presented in Panel C. The annualized alpha for the

long-short strategy in the domestic sample is 16.1 percent and the annualized alpha for

the arbitrage portfolio in the foreign sample of CEFs is 18.8 percent. Similarly to the

benchmark strategy, in all three panels Q1 and Q5 returns load positively on the MRKT

factor and load negatively on the WML factor. In the full sample and in the domestic

sample, Q1 and Q5 returns load positively on the LIQ factor. Once the arbitrage portfolio

is formed, none of the factors obtain consistently significant loadings across samples. In

summary, the large arbitrage trading strategy returns cannot be explained by commonly

used risk factors.

4.4 Robustness of the Findings

4.4.1 Equity Premium Puzzle Robustness

Since fixed-income securities are in general less risky with lower expected returns

than equities securities, the long-short portfolio returns may be an artifact of the equity

premium puzzle by systematically buying equities CEFs and selling fixed-income CEFs.

Table 4.8 presents portfolio alphas, obtained from regressing portfolio returns on the

FFCPS factors, when CEFs are partitioned into a subsample of equities funds and a

subsample of fixed-income funds. Only returns from the strategy using the optimal

RADF model are presented to conserve space. The annualized abnormal long-short

portfolio return for the equities subsample is 15.4 percent in Panel A. Q1, Q5, and Long-

short portfolio returns have significantly positive MRKT betas. MRKT betas for the Q1

and Q5 portfolios are 1.010 and 1.128, respectively. Panel B presents portfolio abnormal

returns in the fixed-income subsample. The annualized alpha for the long-short strategy

is 17.2 percent. Consistent with fixed-income securities being less variable than equities,

Q1 and Q5 returns have MRKT betas of 0.171 and 0.091 (insignificantly different from

zero) which are less than those obtained for equities CEFs. While portfolio alphas are

slightly larger in the fixed-income funds case, the trading returns cannot be attributed

to biased holdings in equities or fixed-income CEFs.
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4.4.2 Sup-period Robustness

That the CEF discount continues to be exploitable is puzzling since it was first doc-

umented more than thirty years ago. Table 4.9 formally tests the sub-period consistency

of returns by partitioning the sample into two subsamples of equal observations. Trading

return results are those obtained from using the RADF model. Given that investors were

more fully aware of the potential returns that could be obtained by trading in CEFs in the

second half of the sample, mean returns should be lower in the second half of the sample

if the CEF market is efficient with rational learning. Contrary to this, however, there is

no statistically significant difference between subsample mean returns. The annualized

mean return for the long-short strategy in the first half of the sample is 18.8 percent

and in the second half of the sample the respective annualized mean long-short return

is 17.5 percent. Q5 mean returns are statistically significant from zero in both halves

of the sample and in both halves of the sample Q1 returns are insignificantly different

from zero. The difference in returns between the first half of the sample and the second

half is insignificantly different from zero in all cases. The Q5-MRKT returns are also

statistically greater than zero and do not display a tendency to diminish over time. This

evidence that such large arbitrage returns remain unexploited substantially deepens the

CEF discount puzzle.

4.4.3 Holding Period Robustness

Table 4.10 presents cumulative abnormal portfolio returns, for holding periods of

three, six, nine, twelve, eighteen, and twenty-four months. I test how long-lived the

information content of premiums and premium innovations is. To conserve space, only

FFCPS alphas are presented for trading strategy returns that use the RADF model.

Even after twenty-four months there is evidence of return continuation in the arbitrage

portfolio. Whereas the long-short mean return for a one-month holding period is 1.5

percent, the mean cumulative return for the twenty-four-month holding period is 10.2

percent. There is evidence of return reversal at the nine-month horizon. Mean cumulative
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monthly returns decrease from 2.0 percent for a six-month holding period to 1.2 percent

(insignificantly different from zero) for a nine-month holding period. However, that

returns remain significant with a holding period of twenty-four months (10.2 percent

with a t-statistic of 5.338) indicates a high level of inefficiency.

4.4.4 Closed-End Fund Robustness

As a further test of efficiency in the CEF market, this paper tests for momentum

effects. Given how long lasting the information content of premiums is, there may be

momentum effects in the CEF market. Momentum appears in a wide range of asset

classes. Jegadeesh and Titman (1993) document momentum effects for equities. Mo-

mentum spillovers from the equities market to corporate bonds are found by Gebhardt,

et al. (2005). Similarly, Okunev and White (2003) and Menkhoff, et al. (2012) report

momentum effects for currencies. Asness, et al. (2013) provide comprehensive evidence

of momentum effects for a wide range of asset classes, including providing evidence for

commodities. Since CEF premiums mean-revert, it is not immediately obvious if mo-

mentum effects will be present. If market prices and NAVs have similar variability, then

momentum may exist. Alternatively, if market prices are much more variable than NAVs,

then the effects of mean-reversion in fund premiums can dominate and momentum effects

are not likely.

Table 4.11 presents CEF returns from a momentum strategy that buys the quintile

portfolio of CEFs with the highest previous period return and sells the quintile portfolio

of CEFs with the lowest previous period return. Panel A presents returns from a simple

random walk with drift strategy, as a benchmark case. Expected returns in this random

walk case are modeled as

E [ri,t+1] = (t− ti,1 + 1)−1
t∑

j=ti,1

ri,j (4.9)

where ti,1 is the first observation of the sample for the i’th CEF. Eqn. (4.9) models CEF

expected return as the cumulative rolling mean return. CEFs are sorted into portfolios



74

based on expected return and the long-short strategy is formed by buying the quintile

portfolio with the highest expected return and selling the quintile portfolio with the lowest

expected return. Annualized mean returns for portfolio sorts are roughly the same as

market returns, as would be expected. Mean returns produced by the long-short strategy

are insignificantly different from zero.

Mean momentum strategy returns are presented in Panel B, where CEFs are sorted

into quintile portfolios based on their mean returns over the past h ∈ {3, 6, 9, 12} months

and held for the same number of months. The annualized mean return for the long-short

momentum portfolio is never significantly higher than zero for all holding periods. Re-

turns in the portfolios of winners and losers tend to cancel each other out as is evidenced

by the portfolio returns that buys the past winners and sells the market portfolio. Evi-

dence provided in Table 4.11 suggests that momentum effects do not seem to exist in the

CEF market. This is to be expected if premiums mean revert due to risky arbitrage.

4.5 Conclusion

This paper provides new evidence on the magnitude of inefficiency in the closed-end

fund market that greatly deepens the discount puzzle. My results relieve the traditional

imposed assumption that only lagged premium has explanatory power for future CEF

returns in favor of modeling CEF returns as being dependent on the optimally chosen

history of premiums. A long-short trading strategy is formed that buys the quintile of

CEFs with the highest expected returns and sells the quintile of CEFs with the lowest

expected returns. Expected returns are estimated using two new methods that exploit

different aspects of the information content of premiums. The first conditions returns on

lagged discounts alone (BMR model) to capture simple mean reversion and the second

is an ADF style model of returns which conditions CEF returns on lagged innovations

in premiums (RADF model) to capture the information content of possible patterns in

premium dynamics.

Annualized arbitrage trading strategy returns are 17.3 percent for the BMR model
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and 18.2 percent for the RADF model, which are larger than the 14.9 percent naÃŕve

CEF trading strategy return. Since portfolio returns using the RADF model are larger

than those using the BMR model, the traditional view of modeling expected CEF returns

dependent only on current premium is rejected in favor of modeling expected returns as

being dependent on premium path. Sharpe ratios for the strategies using the BMR and

RADF models are 1.862 and 1.918, respectively, which are much larger than the Sharpe

ratio of 0.170 for market returns and larger than the Sharpe ratio of 1.519 for the naïve

strategy returns.

In contrast to what would be expected in an efficient market with rational learning,

returns are not time period sensitive. There is no statistically significant difference be-

tween mean returns in the first half of the sample and the second half. A number of

robustness tests are conducted to test if the large CEF trading strategy returns result

from taking on other known market risks. Arbitrage trading returns cannot be explained

by commonly used risk factors. Results are robust to only considering subsamples of do-

mestic funds and foreign funds, indicating that the CEF strategy simply does not capture

a market segmentation premium. Results are also robust to only considering subsamples

of equities funds and fixed-income funds, providing evidence that CEF strategy returns

are not a result of selling fixed-income and buying equities to capture the equity premium

puzzle. This paper’s findings indicate that inefficiency in the CEF market is far worse

than previously thought and deserves further research attention.
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Appendix A The Kalman Filter Recursions

The general state-space model (SSM) consists of the following observation and tran-

sition equations

yi,t = Hi,tzi,t + Gi,txi,t + vi,t (A1)

zi,t = Bi,t−1zi,t−1 + Fi,t−1xi,t−1 + ωi,t (A2)

Eq. (A1) is the observation equation and eq. (A2) is the transition equation. zi,t is

an (N × 1) state vector, yi,t is a (K × 1) vector observed time series, Hi,t is a (K ×N)

measurement matrix, Gi,t is a (K ×M) input matrix for the observation equation, Bi,t is

an (N ×N) transition matrix, vi,t is a (K × 1) vector of noise, Fi,t is an (N ×M) input

matrix for the transition equation, xi,t is an (M × 1) vector of observable instruments,

and ωi,t is an (N × 1) vector of noise. Both vi,t and ωi,t are assumed to be normally

distributed random variables with vi,t ∼ N
(
0, σ2

vi

)
and ωi,t ∼ N (0,Σωi

). Σωi
is a diagonal

matrix. Additionally, the initial state is normally distributed zi,0 ∼ N (zi,0,Σ0). Although

normality is assumed, it is still possible to justify the Kalman filter recursions if this is

not the case1. In eqn. (2.1), yi,t = ri,t, zi,t =
(
αi,t,β

′
i,t

)′, Hi,t = (1, rm,t)
′, Bi = I2, and

Gi = Fi = 0. In eqn. (2.4), yi,t = êi,t, zi,t = zi,t, Hi,t = r
(i)
I,t, Bi = 1, and Gi = Fi = 0.

The following additional notation is used in the Kalman Filter recursions, where s < t,

zt|s = E (zt|y1, y2, . . . , ys)

Σz (t|s) = V (zt|y1, y2, . . . , ys)

yt|s = E (yt|y1, y2, . . . , ys)

Σy (t|s) = V (yt|y1, y2, . . . , ys)

Within the general SSM framework, eqns. (2.1) and (2.4) are estimated with the

Kalman filter recursions with B, F, and G time invariant. The recursions consist of an

1See Lütkepohl (2005), ch. 18.
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initialization step, prediction step, and correction step, which are given below.

Initialization :

zi,0|0 = zi,0

Σi,z = (0|0) = Σi,z (0)

Prediction Step (1 ≤ t ≤ T ) :

zi,t|t−1 = Bizi,t−1|t−1

Σi,z (t|t− 1) = BiΣi,z (t− 1|t− 1)B′i + Σωi

yi,t|t−1 = Hi,tzi,t|t−1

Σi,y (t|t− 1) = Hi,tΣi,z (t|t− 1)H′i,t + σ2
vi

Correction Step (1 ≤ t ≤ T ) :

Pi,t = Σi,z (t|t− 1)H′i,tΣi,y (t|t− 1)−1

zi,t|t = zi,t|t−1 + Pi,t

(
yi,t − yi,t|t−1

)
Σi,z (t|t) = Σi,z (t|t− 1)−Pi,tΣi,y (t|t− 1)P′i,t
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Appendix B The Likelihood Function

To begin the Kalman filter recursions, the initial parameter vector

θi =
(
σ2
vi
, ι′Σωi

, zi,0, vech (Σi,z (0))′
)′ is required. ι is the unit vector and vech is the

matrix operator that stacks only the elements on and below the main diagonal of a

square matrix. θi is estimated by maximizing the constrained log-likelihood function,

lnL (θi|yi) =− T

2
ln (2π)− 1

2

T∑
t=1

|Σi,y (t|t− 1)| (B1)

− 1

2

T∑
t=1

(
yi,t − yi,t|t−1

)2
/Σi,y (t|t− 1)

where |Σi,y (t|t− 1)| is the determinant of Σi,y (t|t− 1). The constraints are that σ2
vi
,

must be greater than or equal to zero and that the main diagonal elements of Σωi
and

Σi,z (0) must be greater than or equal to zero. Rather than adding constraints to the

optimization problem, the constraints are implicitly imposed by maximizing (B1) over

θ̃i =
(
λ1,λ

′
2, zi,0, vech (Σi,z (0))′

)′. λ1 is a scalar, λ2 is a (N × 1) vector, zi,0 is a (N × 1)

vector, and vech (Σi,z (0)) is a ([N · (N + 1)] /2× 1) vector. The optimum parameters

in θi are taken to be σ2
vi

=
√

(λ1)
2, Σωi

=
√
diag (λ2 ◦ λ2), zi,0, and Σi,z (0) with the

absolute value of the main diagonal of Σi,z (0) replacing its estimated main diagonal.

diag (·) is the operator that transforms a vector into a diagonal matrix with the i’th

element of the vector as the ii’th element of the matrix and ◦ denotes the Hadamard

product.

Eq. (B1) is maximized using the Newton-Raphson method. Starting values for

eqn. (2.1) are θ̃
st

i =

(
0.001, ι′2 (0.001× I2) , ϕ̂i, vech

(
Σ̂ϕi

)′)′
. ϕ̂i is the vector of

time-invariant parameter estimates from estimating eqn. (2.1) with OLS. Σ̂ϕi
is the

variance-covariance matrix of the ϕ̂i estimator. Starting values for eqn. (2.4) are

θ̃
st

i =
(
0.001, 0.001, ϕ̂i, σ̂

2
ϕ̂

)′
. ϕ̂i is the OLS estimate obtained from estimating eqn. (2.4).

σ̂2
ϕ̂ is the variance of the estimator ϕ̂i. Convergence in the objective function is as-

sumed to occur at iteration m when the change in likelihood function value satisfies

‖ lnL (θi|yi)(m) − lnL (θi|yi)(m−1) ‖≤ 1× 10−9, where ‖ · ‖ denotes the Euclidean norm.
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All parameters to be optimized are robust to the choice of starting values. The optimum

values of θi are used to run through the Kalman filter recursions for the i’th bank.
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Table 2.1
Summary Statistics

This table presents summary statistics for the daily sample of financial firms in panel A and the CRSP
sample of stocks in panel B. PRICE is stock price, RET, is monthly stock total return, MVE is market
value of equity (in billions), BIR is the bank index return, ẑt|t is the coefficient estimate in eqn. (2.4),
FC

(i)
t is the contribution of bank i to financial contagion multiplied by 100, and FCt is the financial

contagion estimate obtained from eqn. (2.8). The bank sample in Panel A covers the period January 1,
1960 to December 31, 2012. Monthly stock and factor summary statistics are presented in panel B. VOL
is monthly trading volume (in millions), MRKT is the excess market factor portfolio return, SMB is the
small minus big factor portfolio return, HML is the high minus low factor portfolio return, MOM is the
momentum factor portfolio return, LIQ is the tradable liquidity factor portfolio return, and HCMLC is
the financial contagion factor portfolio return. The stock and factor sample in Panel B covers the period
from January 1968 to December 2011.

Panel A: Bank Stock Summary Statistics
N MEAN SD MEDIAN Q25 Q75 MIN MAX

PRICE 5,783,608 20.453 19.521 16.375 9.725 26.000 0.010 710.750
RET 5,783,608 0.000 0.036 0.000 -0.010 0.010 -2.855 2.485
MVE 5,783,608 1.426 8.910 0.077 0.026 0.302 0.000 286.494
BIR 5,783,608 0.001 0.016 0.001 -0.006 0.007 -0.147 0.176
ẑt|t 5,783,608 0.097 0.390 0.085 0.026 0.164 -19.289 121.208
FC

(i)
t 5,783,608 0.032 0.139 0.001 0.000 0.008 -1.400 3.884

FCt 5,783,608 0.179 0.035 0.178 0.150 0.197 0.089 0.275
Panel B: Full Stock Sample and Factor Summary Statistics

N MEAN SD MEDIAN Q25 Q75 MIN MAX
PRICE 2,501,921 24.814 767.104 12.813 5.625 24.250 0.016 141,600.000
RET 2,501,921 0.012 0.177 0.000 -0.067 0.072 -0.981 24.000
MVE 2,501,921 1.217 8.481 0.079 0.021 0.370 0.000 602.433
VOL 2,264,164 6.670 62.983 0.403 0.081 2.280 0.000 20,124.269
MRKT 2,501,921 0.005 0.047 0.009 -0.023 0.036 -0.232 0.161
SMB 2,501,921 0.001 0.033 0.000 -0.017 0.021 -0.164 0.220
HML 2,501,921 0.004 0.031 0.004 -0.013 0.019 -0.126 0.138
MOM 2,501,921 0.008 0.045 0.008 -0.007 0.029 -0.347 0.184
LIQ 2,501,921 0.005 0.036 0.003 -0.016 0.025 -0.105 0.212
HCMLC 2,501,921 0.006 0.039 0.005 -0.020 0.032 -0.120 0.166
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Table 2.2
Bank Contagion Portfolio Returns

This table presents mean returns from contagion sorted bank portfolios in panel A. Each month, banks
are sorted into equal-weighted portfolios based on their contribution to the total financial contagion
estimate. In the following month returns on the portfolio are observed and banks are re-sorted. MEAN
denotes the time series mean of portfolio returns, T-STAT tests if MEAN is statistically different from
zero, and SHARPE presents the Sharpe ratio of the portfolio. D10 is the decile of most contagious
banks, D1 is the decile of least contagious banks, Q5 is the quintile of most contagious banks, Q1 is the
quintile of least contagious banks, T3 is the tercile of most contagious banks, and T1 is the tercile of
least contagious banks. MVE is mean bank market value of equity (in billions) in the portfolio. In panel
B, portfolio returns are regressed on the FFCPS 5 factors

rep,t = αp + βp,MRKT rMRKT,t + βp,SMBrSMB,t + βp,HMLrHML,t + βp,MOMrMOM,t + βp,LIQrLIQ,t + εp,t

ALPHA is the annualized regression intercept, MRKT denotes the excess market return, SMB is the
return on the small-minus-big portfolio, HML is the return on the high book value minus low book
value portfolio, MOM is the return on the winners minus losers portfolio, and LIQ is the return on high
liquidity exposure minus low liquidity exposure portfolio. Stock returns are trimmed at the 2.5% and
97.5% levels. t-statistics are presented in parentheses. ***, **, and * denote statistical significance at
the 1%, 5%, and 10% levels, respectively. The sample period covers from January 1968 to December
2011.

Panel A: Portfolio Returns
MEAN T-STAT SHARPE MVE

D10 0.119*** 4.472 0.372 8.303
D1 0.059*** 3.592 0.049 0.273
Q5 0.122*** 5.015 0.427 4.490
Q1 0.053*** 3.516 -0.002 0.155
T3 0.112*** 4.903 0.386 2.788
T1 0.055*** 3.717 0.019 0.106
D10-D1 0.060*** 2.852 0.430 .
Q5-Q1 0.069*** 3.900 0.588 .
T3-T1 0.057*** 3.905 0.589 .

Panel B: Portfolio Abnormal Returns
ALPHA MRKT SMB HML MOM LIQ

D10 0.010 0.932*** -0.094** 0.375*** -0.051* -0.042
(0.588) (30.224) (-2.161) (7.949) (-1.698) (-1.147)

D1 -0.030** 0.401*** 0.315*** 0.274*** -0.036* -0.028
(-2.469) (17.745) (9.919) (7.917) (-1.646) (-1.042)

Q5 0.009 0.847*** 0.075* 0.410*** -0.020 -0.033
(0.628) (30.687) (1.944) (9.709) (-0.747) (-0.996)

Q1 -0.035*** 0.382*** 0.324*** 0.269*** -0.024 -0.025
(-3.358) (19.252) (11.624) (8.865) (-1.228) (-1.077)

T3 -0.002 0.776*** 0.186*** 0.417*** -0.009 -0.027
(-0.136) (30.858) (5.279) (10.856) (-0.350) (-0.910)

T1 -0.034*** 0.382*** 0.311*** 0.281*** -0.019 -0.028
(-3.298) (19.739) (11.454) (9.521) (-1.028) (-1.204)

D10-D1 0.039** 0.531*** -0.409*** 0.101* -0.015 -0.014
(2.189) (15.708) (-8.614) (1.955) (-0.448) (-0.349)

Q5-Q1 0.045*** 0.466*** -0.248*** 0.141*** 0.004 -0.007
(2.944) (16.335) (-6.202) (3.238) (0.131) (-0.216)

T3-T1 0.032*** 0.394*** -0.125*** 0.136*** 0.011 0.000
(2.634) (17.212) (-3.871) (3.881) (0.483) (0.017)
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Table 2.4
Factor Correlations

This table presents the correlation matrix of monthly factor portfolio returns. HCMLC is the high
contagion-minus-low contagion bank portfolio return, MRKT denotes the excess market return, SMB is
the return on the small-minus-big portfolio, and HML is the return on the high book value-minus-low
book value portfolio, MOM is the return on the winners-minus-losers portfolio, LIQ is the return on
high liquidity exposure-minus-low liquidity exposure portfolio, DEF is the monthly log change in the
log difference between yields on Baa and Aaa rated bonds, and VIX is the monthly log return of the
Chicago Board Options Exchange Volatility Index. Monthly data is used. The sample period covers
January 1968 to December 2011 for correlations excluding the VIX. The sample period for correlations
including the VIX is January 1990 to December 2011.

MRKT SMB HML MOM LIQ DEF VIX HCMLC
MRKT 1.000
SMB 0.307 1.000
HML -0.321 -0.241 1.000
MOM -0.131 -0.026 -0.149 1.000
LIQ -0.052 -0.039 0.031 -0.023 1.000
DEF 0.022 -0.059 -0.003 -0.042 -0.002 1.000
VIX -0.652 -0.186 0.143 0.147 -0.043 0.090 1.000
HCMLC 0.494 -0.152 -0.042 -0.099 -0.029 0.111 -0.344 1.000
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Table 2.6
Financial Contagion Risk Premium

This table presents the results of second-stage Fama and MacBeth (1973) regressions. A 60-month win-
dow is used for the first-stage beta estimations. Fama-MacBeth second-stage regressions are estimated
without the intercept term

rei,t = βi,0 + βi,MRKT rMRKT,t + βi,SMBrSMB,t + βi,MOMrMOM,t

+ βi,LIQrLIQ,t + βi,HCMLCrHCMLC,t + εi,t

ret+1 = λMRKT β̂MRKT,t + λSMBβ̂SMB,t + λHMLβ̂HML,t

+ λMOM β̂MOM,t + λLIQβ̂LIQ,t + λHCMLC β̂HCMLC,t + ut

λk =
1

T

T∑
t=1

λ̂k,t

σ2
(
λk
)
= ĥ (0) + 2

b0.25Tc∑
j=1

wjh (j)

wj = 1− j(
bT 1

4 c+ 1
)

ĥ (j) =
1

T

T−j∑
t=1

(
λ̂k,t+j − λk

)(
λ̂k,t − λk

)
Annualized risk premium coefficients, λk, are presented. t-statistics from Newey and West (1987) au-

tocorrelation consistent standard errors,
√
σ2
(
λk
)
, are presented in parentheses. MRKT is the excess

market return factor, SMB is the small-minus-big return factor, HML is the high-minus-low return fac-
tor, MOM is the momentum return factor, LIQ is the liquidity return factor, and HCMLC is the high
contagion-minus-low contagion return factor. Returns are trimmed at the 2.5% and 97.5% levels. ***,
**, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively. The sample period
covers 1968 to December 2011.

HCMLC CAPM FF3F FFCPS
MRKT 0.057** 0.047** 0.047**

(2.007) (1.941) (1.943)
SMB 0.007 0.007

(0.456) (0.446)
HML 0.027** 0.027**

(2.487) (2.517)
MOM 0.011

(1.036)
LIQ -0.024**

(-1.591)
HCMLC 0.096*** 0.054*** 0.040*** 0.039***

(2.625) (3.971) (3.378) (3.348)
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Table 2.7
Pricing Test Portfolios

This table presents the results of second-stage Fama and MacBeth (1973) regressions. The estimation
procedure is the same as presented in Table 2.6. MRKT is the excess market return factor, SMB is
the small-minus-big return factor, HML is the high-minus-low return factor, MOM is the momentum
return factor, LIQ is the liquidity factor, and HCMLC is the high contagion-minus-low contagion return
factor. EQ WEIGHT indicates that the portfolio is equally-weighted and VA WEIGHT indicates that
the portfolio is value-weighted. Portfolio returns are trimmed at the 2.5% and 97.5% levels in the first-
stage factor regressions. t-statistics from Newey and West (1987) autocorrelation consistent standard
errors are presented in parentheses. ***, **, and * denote statistical significance at the 1%, 5%, and
10% levels, respectively. The sample period covers January 1968 to December 2011.

MRKT SMB HML MOM LIQ HCMLC
49 Industry:
EQ WEIGHT 0.069** 0.025 0.048** -0.012 -0.066** 0.100***

(1.992) (0.769) (1.969) (-0.406) (-1.942) (2.655)
VA WEIGHT 0.090*** 0.034* 0.027 -0.006 -0.017 0.047*

(3.022) (1.500) (1.490) (-0.240) (-0.596) (1.841)

10 Size:
EQ WEIGHT -0.036 -0.004 -0.036 -0.064 -0.066 0.135**

(-0.663) (-0.091) (-0.854) (-1.051) (-0.894) (2.009)
VA WEIGHT -0.030 0.036 -0.048 -0.003 -0.117 0.156**

(-0.504) (0.760) (-1.023) (-0.034) (-1.196) (1.732)

10 B/M:
EQ WEIGHT 0.111 0.102* 0.011 -0.105 0.108 0.005

(1.286) (1.772) (0.201) (-0.853) (0.876) (0.059)
VA WEIGHT 0.074 0.025 0.026 0.001 -0.043 0.149**

(1.859) (0.412) (0.699) (0.008) (-0.445) (2.035)

10 Momentum:
EQ WEIGHT 0.207*** 0.124* -0.007 -0.241** 0.201* 0.234**

(2.779) (1.875) (-0.092) (-3.000) (2.298) (2.201)
VA WEIGHT 0.089** 0.061 0.010 -0.105 0.054 0.076

(1.762) (1.821) (0.199) (-1.721) (1.035) (1.271)

25 Size-B/M+10 Momentum:
EQ WEIGHT 0.118*** 0.076*** 0.039* -0.006 0.049 0.058*

(2.920) (2.633) (1.678) (-0.121) (1.440) (2.053)
VA WEIGHT 0.111*** 0.057*** 0.044** 0.059* 0.052* 0.034

(2.949) (2.054) (1.862) (1.734) (1.520) (1.042)
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Table 2.8
Ex-ante Pricing Error Tests

This table presents Chi-square tests testing if all pricing errors are jointly equal to zero. Fama-MacBeth
(1973) regressions are used. A 60-month window is used for the first-stage beta estimations and second-
stage regressions are estimated without the intercept term

rei,t = βi,0 + βi,MRKT rMRKT,t + βi,SMBrSMB,t + βi,HMLrHML,t + βi,MOMrMOM,t

+ βi,LIQrLIQ,t + βi,HCMLCrHCMLC,t + εi,t

ret+1 = λMRKT β̂MRKT,t + λSMBβ̂SMB,t + λHMLβ̂HML,t + λMOM β̂MOM,t

+ λLIQβ̂LIQ,t + λHCMLC β̂HCMLC,t + αt

α̂ = T−1
T∑

t=1

α̂t

cov (α̂) = T−2
T∑

t=1

(α̂t − α̂) (α̂t − α̂)′

α̂′cov (α̂) α̂ ∼ χ2
N−k

χ2
N−k estimates are presented. MRKT is the excess market return factor, SMB is the small-minus-big

return factor, HML is the high-minus-low return factor, MOM is the momentum return factor, LIQ is the
liquidity return factor, and HCMLC is the high contagion-minus-low contagion return factor. Returns
are trimmed at the 2.5% and 97.5% levels. ***, **, and * denote statistical significance at the 1%, 5%,
10% levels, respectively. The sample period covers January 1968 to December 2011.

CAPM FF3F FFCPS HCMLC
49 Industry 72.871*** 76.421*** 70.001*** 70.803**
10 Size 11.900 5.666 10.796* 15.724*
10 B/M 37.488*** 31.617*** 20.624*** 26.655***
10 Momentum 35.751*** 18.024** 14.104** 29.615***
25 Size-B/M+10 Momentum 130.849*** 112.885*** 108.616*** 101.926***
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Table 2.10
Ex-post Pricing Error Tests

This table presents Chi-square tests testing if all pricing errors are jointly equal to zero. Two-pass cross
sectional regressions are used

rei,t = βi,0 + βi,MRKT rMRKT,t + βi,SMBrMRKT,t + βi,HMLrHML,t + βi,MOMrMOM,t

+ βi,LIQrLIQ,t + βi,HCMLCrHCMLC,t + εi,t

rei = λMRKT β̂i,MRKT + λSMBβ̂i,SMB + λHMLβ̂i,HML + λMOM β̂i,MOM

+ λLIQβ̂i,LIQ + λHCMLC β̂i,HCMLC + αi

α̂ = re − β̂λ̂

Σ(i,j) =
ε′iεj
T − k

Σ
(i,j)
f =

1

T

(
f i − f i

)′ (
f j − f j

)
cov (α̂) =

1

T

(
IN − β̂

(
β̂
′
β̂
)−1

β̂

)
Σ

(
IN − β̂

(
β̂
′
β̂
)−1

β̂

)′
×
(
1 + λ̂

′
Σf λ̂

)
α̂′cov (α̂) α̂ ∼ χ2

N−k

χ2
N−k estimates are presented. MRKT is the excess market return factor, SMB is the small-minus-big

return factor, HML is the high-minus-low return factor, MOM is the momentum return factor, LIQ is the
liquidity return factor, and HCMLC is the high contagion-minus-low contagion return factor. Returns
are trimmed at the 2.5% and 97.5% levels. ***, **, and * denote statistical significance at the 1%, 5%,
10% levels, respectively. The sample period covers January 1968 to December 2011.

CAPM FF3F FFCPS HCMLC
49 Industry 64.225* 67.360** 58.329* 70.201**
10 Size 12.422 4.436 2.683 13.641
10 B/M 26.436*** 13.387* 7.122 24.443***
10 Momentum 45.246*** 14.311** 9.448* 39.987***
25 Size-B/M+10 Momentum 111.898*** 92.320*** 60.723 114.150***
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Table 2.11
Beta Estimation Robustness

This table presents the results of second-stage Fama and MacBeth (1973) regressions for the firm-level
stock sample. The estimation procedure is the same as in Table 2.6, except monthly beta estimation
windows in the first-stage regression are varied. MRKT is the excess market return factor, SMB is the
small-minus-big return factor, HML is the high-minus-low return factor, MOM is the momentum return
factor, LIQ is the liquidity return factor, and HCMLC is the high contagion-minus-low contagion return
factor. Stock returns are trimmed at the 2.5% and 97.5% levels. t-statistics from Newey and West
(1987) autocorrelation consistent standard errors are presented in parentheses. ***, **, and * denote
statistical significance at the 1%, 5%, and 10% levels, respectively. The sample period covers January
1968 to December 2011.

MRKT SMB HML MOM LIQ HCMLC
48 mos 0.041* 0.004 0.027*** 0.015** -0.018 0.035***

(1.707) (0.286) (2.621) (1.368) (-1.134) (3.342)
60 mos 0.047** 0.007 0.027** 0.011 -0.024** 0.039***

(1.943) (0.446) (2.517) (1.036) (-1.591) (3.348)
72 mos 0.056** 0.010 0.027** 0.004 -0.024** 0.041***

(2.284) (0.648) (2.253) (0.287) (-1.619) (3.160)
84 mos 0.066*** 0.009 0.025** 0.002 -0.026** 0.048***

(2.864) (0.597) (1.845) (0.139) (-1.662) (3.683)
96 mos 0.062*** 0.007 0.028** 0.003 -0.024* 0.044***

(2.720) (0.409) (2.191) (0.188) (-1.53) (3.197)
108 mos 0.064*** 0.005 0.022* 0.006 -0.022* 0.047***

(2.700) (0.276) (1.666) (0.333) (-1.29) (3.171)
120 mos 0.068*** 0.005 0.022* 0.008 -0.015 0.048***

(2.722) (0.285) (1.538) (0.440) (-0.819) (3.027)
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Table 3.2
Premium Adjustment Statistics

This table presents statistics of the regression coefficient statistics that are used to adjust premiums
of ETFs investing in foreign equities and foreign fixed income to make them synchronous with market
prices. Premiums are adjusted by the following equations

ln (Pi,t)− ln (NAVi,t) = αi4ln (NAVi,t) + φirMRKT,t + ui,t

N̂AV
∗
i,t = exp [ln (Pi,t)− ûi,t]

where Pi,t is the nominal ETF market price, NAVi,t is the nominal net asset value, rMRKT,t is the daily
return on the U.S. market portfolio, and 4 denotes the difference operator. ûi,t × 100 is the estimated
synchronous premium. Panel A presents estimated regression coefficients. N denotes the number of
observations, MEAN is the mean, SD is the standard deviation, MED is the median, Q25 (Q75) is the
twenty-fifth percentile (seventy-fifth percentile), MIN (MAX) is the minimum (maximum) value. Panel
B presents the variance of recorded premiums divided by the variance of adjusted premiums (VR). The
F-test is used to test if the ratio of variances is significantly different from one. ***, **, and * denote
statistical significance at the 1%, 5%, and 10% levels, respectively. The sample period is March 1996 to
December 2011.

Panel A: Regression Coefficient Estimates
N MEAN SD MED Q25 Q75 MIN MAX

ALPHA 83 -0.104*** 0.018 -0.091 -0.145 -0.050 -0.980 0.226
PHI 83 0.004*** 0.000 0.004 0.003 0.006 0.000 0.011

Panel B: Variance Ratios
TICKER N VR TICKER N VR TICKER N VR
AAXJ 850 2.214*** EIRL 414 1.096 EWS 3,983 1.341***
ACWI 948 2.120*** EIS 948 1.612*** EWT 2,899 1.698***
ACWV 48 2.886*** EMB 1,015 1.045 EWU 3,987 1.423***
ACWX 948 3.195*** EMFN 489 1.311*** EWW 3,982 1.071
AIA 1,037 2.916*** EMIF 638 1.867*** EWY 2,919 2.174***
AOR 789 1.011 EMMT 489 1.095 EWZ 2,886 1.065
AXDI 368 1.576*** ENZL 334 2.454*** EWZS 316 1.035
AXEN 368 1.052 EPHE 316 2.402*** EZA 2,240 2.132***
AXFN 489 1.204** EPOL 403 1.881*** EZU 2,874 1.864***
AXHE 368 1.196** EPP 2,563 2.924*** FCHI 886 2.632***
AXID 368 1.615*** EPU 637 1.026 FEFN 489 1.899***
AXIT 368 1.145 ERUS 286 1.722*** FXI 1,820 3.240***
AXMT 368 1.259*** ESR 565 1.807*** GTIP 154 1.026
AXSL 368 1.183** EUFN 489 1.699*** IDV 1,143 2.008***
AXTE 368 1.374*** EWA 3,981 1.699*** IEV 2,873 1.444***
AXUT 368 1.141 EWC 3,984 1.041*** IFSM 1,037 1.548***
BKF 1,037 2.088*** EWD 3,983 1.469*** IGOV 740 1.009
ECH 1,037 1.074 EWG 3,986 1.480*** ILF 2,562 1.016
ECNS 316 2.409*** EWH 3,977 1.900*** IOO 2,780 1.493***
EEM 2,196 2.632*** EWI 3,983 1.394*** ISHG 740 1.006
EEMS 92 2.215*** EWJ 3,977 2.113*** ITIP 154 1.068
EEMV 48 2.451*** EWK 3,978 1.216*** LEMB 48 0.961
EFA 2,607 2.878*** EWL 3,981 1.262*** MCHI 189 2.112***
EFAV 48 1.494 EWM 3,976 1.024 SCJ 1,013 2.048***
EFG 1,613 3.414*** EWN 3,981 1.425*** SCZ 1,020 1.736***
EFV 1,613 3.396*** EWO 3,980 1.186*** THD 948 2.385***
EIDO 416 1.767*** EWP 3,983 1.412*** TOK 1,018 1.000

EWQ 3,984 1.508*** TUR 948 2.068***
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Table 3.3
ETF Premium and Tracking Errors

This table presents ETF premium statistics in Panel A and tracking error statistics in Panel B. Premiums
and tracking errors for fund i at time t are defined as

PREMi,t =

{
ln (Pi,t/NAVi,t)× 100 for domestic ETFs

ûi,t × 100 for foreign ETFs

TEi,t =
(
rNAV
i,t − rINDEX

i,t

)
× 100

Pi,t denotes nominal ETF share price, NAVi,t denotes nominal ETF net asset value, ûi,t is the estimated
true premium obtained from eqns. (3.2a,b), rNAV

i,t is NAV return, and rINDEX
i,t is the return on the

underlying index that the ETF aims to replicate. N is the number of daily observations, MEAN is the
mean, SD is the standard deviation, MED is the median, Q25 (Q75) is the twenty-fifth (seventy-fifth)
percentile, MIN is the minimum value, and MAX is the maximum value. ***, **, and * denote statistical
significance at the 1%, 5%, and 10% levels, respectively. The sample period is March 1996 to December
2011.

Panel A: Premium Statistics
CLASS N MEAN SD MED Q25 Q75 MIN MAX
All 370,974 0.116*** 0.818 0.041 -0.097 0.279 -35.978 32.896

U.S. Equities 134,954 0.026*** 0.423 0.000 -0.085 0.111 -16.790 18.112
U.S. Fixed income 32,995 0.371*** 0.783 0.168 0.029 0.508 -11.621 12.011
Foreign equities 128,638 0.159*** 1.158 0.144 -0.285 0.578 -35.978 32.896
Foreign fixed income 2,857 0.684*** 0.948 0.600 0.199 1.083 -9.156 12.590
Miscellaneous 24,150 0.162*** 0.921 0.093 -0.088 0.345 -14.021 17.848

Panel B: Tracking Error Statistics
CLASS N MEAN SD MED Q25 Q75 MIN MAX
All 370,974 0.000 0.228 -0.001 -0.013 0.011 -21.056 33.165

U.S. Equities 134,954 0.000 0.177 -0.001 -0.009 0.007 -11.675 13.153
U.S. Fixed income 32,995 -0.001*** 0.070 0.000 -0.008 0.006 -4.091 3.744
Foreign equities 128,638 0.000 0.333 -0.002 -0.039 0.036 -21.056 33.165
Foreign fixed income 2,857 -0.001 0.140 -0.002 -0.018 0.012 -2.931 5.753
Miscellaneous 24,150 0.000 0.116 0.000 -0.017 0.016 -3.401 4.475
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Table 3.4
ETF Premium Determinants

This table presents regression results of the effect that market segmentation has on ETF premiums. The
panel regression model is

PREM i,t = β0 + β1TESDi,t−1 + β2BASi,t−1 + β3PIi,t−1 + β4FEESi,t−1 + φ
′xi,t−1 + εi,t

where PREM is the ETF premium, TESD is the within-month standard deviation of daily tracking
errors, BAS the percentage bid-ask spread of the ETF, PI is the Amihud (2002) illiquidity measure
for the ETF, and FEES is ETF expense ratio (in percentage points). x is a vector of control variables
including daily dividend yield (DIV , in percentage points), daily risk-free rate (RF , in percentage
points), daily ETF squared returns (V AR), daily ETF trading volume (V OL, in millions of shares),
daily market value of equity (SIZE, in billions of dollars), ETF age (AGE, in years), and lagged
within-month mean ETF premium (LPREM). Bars above variables denote within-month means. Time
fixed-effects are included in columns four and five. ETF fixed-effects are included in column five. t-
statistics from White (1980) heteroskedasticity-consistent standard errors are presented in parentheses.
***, **, and * denote statistical significance at the 1%, 5%, and 1% levels, respectively. The sample
period is March 1996 to December 2011.

(1) (2) (3) (4) (5)
INT 0.019** 0.008** 0.060***

(2.135) (2.564) (4.027)
TESD 0.089** 0.117* 0.095* 0.135** 0.135**

(2.046) (1.935) (1.804) (2.424) (2.181)
BAS 0.026 0.026 0.022 0.024

(1.255) (1.204) (1.065) (1.046)
PI -0.012 -0.016 -0.017 -0.012

(-0.753) (-1.095) (-1.185) (-0.936)
FEES -0.003 0.002 0.153

(-0.088) (0.052) (0.721)
DIV -0.075 0.138 -1.851

(-0.377) (0.653) (-0.489)
RF -1.428*** -12.524*** -0.004*

(-2.956) (-5.098) (-1.798)
VAR -0.001 -0.005*** 0.001

(-1.016) (-2.597) (1.144)
VOL 0.000 -0.001 -0.002**

(-1.326) (-1.562) (-2.379)
SIZE 0.001* 0.001* 0.020**

(1.684) (1.690) (2.479)
AGE -0.005*** -0.005***

(-3.846) (-4.210)
FOR 0.030***

(4.001)
FI 0.123***

(4.978)
LPREM 0.651*** 0.648*** 0.646*** 0.652*** 0.611***

(10.716) (10.547) (10.516) (11.57) (9.839)
TIME F.E. No No No Yes Yes
ETF F.E. No No No No Yes
N 17,721 17,721 17,721 17,721 17,721
R

2
0.440 0.441 0.441 0.488 0.496
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Table 3.5
ETF Premium Error Correction

This table presents Engle and Granger (1987) error correction speeds for ETF premiums. Speed of error
correction in premiums is estimated from the following regression

Pi,t = ci,0 + ci,1NAVi,t + εi,t

4Pi,t = ai,1 + ai,2ε̂i,t−1 +

k∑
j=1

ai,11 (j)4Pi,t−j +

k∑
j=1

ai,12 (j)4NAVi,t−j + ei,t

where Pi,t is the nominal ETF share price, NAVi,t is the nominal ETF net asset value, and PREMi,t is
ETF premium. k is equal to five. âi,2 statistics are reported. N is the number of ETFs, MEAN is the
mean, SD is the standard deviation, MED is the median, Q25 (Q75) is the twenty-fifth (seventy-fifth)
percentile, MIN is the minimum value, and MAX is the maximum value. ***, **, and * denote statistical
significance at the 1%, 5%, and 10% levels, respectively. The sample period is March 1996 to December
2011.

CLASS N MEAN SD MED Q25 Q75 MIN MAX
All 223 -0.437*** 0.499 -0.278 -0.734 -0.082 -2.458 0.397

U.S. Equities 60 -0.701*** 0.565 -1.023 -0.681 -0.278 -2.457 0.247
U.S. Fixed income 29 -0.075*** 0.107 -0.085 -0.062 -0.046 -0.411 0.247
Foreign equities 77 -0.181*** 0.259 -0.315 -0.164 -0.063 -0.867 0.397
Foreign fixed income 5 -0.155 0.237 -0.215 -0.081 0.028 -0.538 0.032
Miscellaneous 26 -0.487*** 0.380 -0.717 -0.430 -0.151 -1.442 0.029
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Table 3.6
Premium Error Correction Speed Determinants

This table presents results of tests of ETF premium error-correction (EC) speed determinants. The
estimated cross-sectional regression is

âi,2 = β0 + β1TESDi + β2BASi + β3PIi + φ
′xi + vi

where âi,2 is estimated using eqn. (3.7). TESD is the sample standard deviation of tracking errors,
BAS is the percentage bid-ask spread, PI is Amihud (2002) illiquidity. xi is a vector of control variables
including daily dividend yield (DIV , in percentage points), daily risk-free rate (RF , in percentage
points), squared ETF returns (V AR), daily trading volume (V OL, in millions of shares), market value
of equity (SIZE, in billions of dollars), ETF age (AGE, in years), expense ratio (FEES, in percentage
points), creation unit size (CUNIT , in shares), and per share fee of creating/redeeming a creation unit
(CUCOST ). Bars above variables denote sample means. Full sample results are presented in columns
one and two. Regression results using subsets of the ETF type indicated in the header are presented
in columns three to six. t-statistics from White (1980) heteroskedasticity-consistent standard errors are
presented in parentheses. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels,
respectively. The sample period is March 1996 to December 2011.

Full Sample Domestic Foreign Equities Fixed Income
(1) (2) (3) (4) (5) (6)

INT -0.499*** -0.639*** -0.053 0.111 -0.675*** -0.190
(-9.405) (-5.982) (-0.191) (0.523) (-4.319) (-1.164)

TESD 0.390** 0.442** 0.782 0.247* 0.448** 0.900*
(2.427) (2.193) (0.983) (1.673) (2.213) (1.845)

BAS 0.014 0.020 -0.016 -0.169** 0.054 0.140
(0.325) (0.427) (-0.055) (-2.291) (0.761) (0.728)

PI 0.010 -0.026 1.142 -0.115 -0.187 -1.855
(0.156) (-0.441) (0.367) (-1.168) (-1.263) (-0.424)

DIV 1.625 2.473 -6.875* 10.885** -10.777***
(0.316) (0.215) (-1.807) (2.500) (-2.628)

RF 7.745 -23.689 54.432* -87.006** -6.088
(0.234) (-0.476) (1.829) (-2.128) (-0.177)

VAR -0.026 -0.043 0.020 -0.009 0.029
(-1.105) (-1.192) (1.188) (-0.372) (0.137)

VOL -0.021*** -0.029* -0.025*** 0.008 -0.797***
(-3.134) (-1.752) (-4.196) (0.891) (-2.644)

SIZE -0.001 0.027 0.013* -0.023 0.088**
(-0.086) (0.484) (1.665) (-1.555) (2.151)

AGE -0.028 -0.039 -0.082 0.096 -0.015
(-0.484) (-0.405) (-1.629) (1.442) (-0.184)

FEES 0.413 -0.503 -0.256 0.190 -0.072
(1.416) (-0.740) (-0.716) (0.560) (-0.296)

CUNIT 0.109** -0.008 0.038 0.120** 0.305*
(2.255) (-0.037) (1.156) (2.446) (1.929)

CUCOST 0.000 0.000 0.000** 0.000 0.000*
(0.359) (1.011) (-2.291) (0.517) (-1.655)

Time F.E. No No No No No No
ETF F.E. No No No No No No
N 217 217 84 82 136 30
R

2
0.003 0.034 0.014 0.131 0.177 0.170
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Table 3.7
Domestic and Foreign ETF Premiums

This table presents subsample regression results when domestic and foreign ETF subsamples. The panel
regression model is

PREM i,t = β0 + β1TESDi,t−1 + β2BASi,t−1 + β3PIi,t−1 + β4FEESi,t−1 + φ
′xi,t−1 + εi,t

where PREM is ETF premium, TESD is the within-month standard deviation of daily NAV tracking
errors, BAS the percentage bid-ask spread of the ETF, PI is the Amihud (2002) illiquidity measure for
the ETF, and FEES is ETF expense ratio. x is a vector of control variables including daily dividend
yield (DIV , in percentage points), daily risk-free rate (RF , in percentage points), daily ETF squared
returns (V AR), daily ETF trading volume (V OL, in millions of shares), daily market value of equity
(SIZE, in billions of dollars), ETF age (AGE, in years), and lagged within-month mean ETF premium
(LPREM). Bars above variables denote within-month means. Time fixed-effects are included in columns
two, three, five, and six. ETF fixed-effects are included in columns three and six. t-statistics from White
(1980) heteroskedasticity consistent standard errors are presented in parentheses. ***, **, and * denote
statistical significance at the 1%, 5%, and 10% levels, respectively. The sample period is March 1996 to
December 2011.

Domestic Foreign
(1) (2) (3) (4) (5) (6)

INT 0.076*** 0.135**
(5.116) (2.228)

TESD 0.065 0.070* 0.045 0.096 0.166** 0.193**
(1.581) (1.709) (1.139) (1.260) (2.142) (2.100)

BAS 0.089** 0.097** 0.123** 0.023 0.019 0.024
(2.261) (2.195) (2.562) (0.585) (0.407) (0.478)

PI -0.502** -0.445** -0.416** -0.018 -0.015 -0.009
(-2.329) (-2.128) (-2.100) (-1.624) (-1.201) (-0.879)

FEES -0.090** -0.039 -0.128 -0.170
(-2.510) (-1.032) (-1.591) (-1.602)

DIV -0.341** -0.181 -0.100 -0.021 0.027 -0.092
(-2.074) (-0.965) (-0.536) (-0.076) (0.083) (-0.272)

RF -2.092*** -7.389*** 6.150* -0.719 -27.774*** -7.099
(-5.872) (-3.678) (1.840) (-0.399) (-2.906) (-0.675)

VAR -0.002** -0.007*** -0.007*** 0.000 -0.001 0.002
(-2.050) (-4.201) (-3.870) (-0.125) (-0.110) (0.216)

VOL 0.000 0.000 0.002*** -0.001 -0.001 -0.001
(-0.693) (-0.149) (3.042) (-0.589) (-1.572) (-0.798)

SIZE 0.002 0.003 -0.008** 0.000 0.001 0.000
(1.094) (1.434) (-2.551) (0.157) (0.882) (-0.086)

AGE -0.005*** -0.009*** 0.024*** -0.006** -0.004** 0.044***
(-2.842) (-4.809) (3.636) (-2.144) (-2.056) (2.878)

LPREM 0.716*** 0.696*** 0.580*** 0.631*** 0.644*** 0.625***
(22.168) (21.680) (16.366) (8.238) (8.868) (8.273)

TIME F.E. No Yes Yes No Yes Yes
ETF F.E. No No Yes No No Yes
N 8,019 8,019 8,019 6,276 6,276 6,276
R

2
0.578 0.595 0.621 0.412 0.474 0.477
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Table 3.8
Fixed Income and Equities ETF Premiums

This table presents regression results when fixed income and equities ETFs are partitioned into subsam-
ples. The panel regression model is

PREM i,t = β0 + β1TESDi,t−1 + β2BASi,t−1 + β3PIi,t−1 + β4FEESi,t−1 + φ
′xi,t−1 + εi,t

where PREM is ETF premium, TESD is the within-month standard deviation of daily NAV tracking
errors, BAS the percentage bid-ask spread of the ETF, PI is the Amihud (2002) illiquidity measure for
the ETF, and FEES is ETF expense ratio. x is a vector of control variables including daily dividend
yield (DIV , in percentage points), daily risk-free rate (RF , in percentage points), daily ETF squared
returns (V AR), daily ETF trading volume (V OL, in millions of shares), daily market value of equity
(SIZE, in billions of dollars), ETF age (AGE, in years), and lagged within-month mean ETF premium
(LPREM). Bars above variables denote within-month means. Time fixed-effects are included in columns
two, three, five, and six. ETF fixed-effects are included in columns three and six. t-statistics from White
(1980) heteroskedasticity consistent standard errors are presented in parentheses. ***, **, and * denote
statistical significance at the 1%, 5%, and 10% levels, respectively. The sample period is March 1996 to
December 2011.

Fixed Income Equities
(1) (2) (3) (4) (5) (6)

INT -0.003 0.000
(-0.075) (0.006)

TESD 0.743*** 0.489* 0.454 0.078 0.118** 0.126**
(2.806) (1.652) (1.567) (1.527) (2.192) (2.013)

BAS 0.210 0.130 0.142 0.029 0.025 0.027
(1.512) (0.961) (1.087) (0.862) (0.655) (0.633)

PI -0.659 1.175 0.600 -0.018 -0.017 -0.016
(-0.349) (0.654) (0.251) (-1.265) (-1.114) (-1.257)

FEES 0.341** 0.561*** 0.065 0.021
(1.979) (3.117) (1.237) (0.366)

DIV -1.968 -7.447 -7.753* -0.012 0.160 0.099
(-0.83) (-1.493) (-1.947) (-0.057) (0.703) (0.431)

RF 0.497 2.777 27.895*** -0.467 -14.187*** -2.494
(0.32) (0.680) (3.560) (-0.598) (-3.708) (-0.412)

VAR 0.032 0.006 -0.005 0.000 0.001 0.002
(0.801) (0.142) (-0.149) (-0.191) (0.540) (0.789)

VOL -0.008 -0.004 0.004 0.000 -0.001 0.000
(-1.030) (-0.451) (0.568) (-0.961) (-1.502) (0.749)

SIZE 0.006 0.004 -0.017** 0.001 0.001 -0.002
(1.313) (1.008) (-2.454) (0.927) (1.391) (-1.584)

AGE -0.010 -0.006 0.101*** -0.003* -0.002* 0.023**
(-1.576) (-0.759) (3.869) (-1.904) (-1.718) (2.111)

LPREM 0.661*** 0.636*** 0.525*** 0.627*** 0.635*** 0.617***
(17.010) (14.892) (11.255) (8.343) (9.097) (8.515)

TIME F.E. No Yes Yes No Yes Yes
ETF F.E. No No Yes No No Yes
N 1,715 1,715 1,715 12,585 12,585 12,585
R

2
0.578 0.606 0.633 0.413 0.468 0.469
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Table 3.9
Investor Sentiment Robustness

This table presents regression results from regressing ETF premiums on tracking error standard devia-
tion, an investor sentiment measure, and controls. The panel regression model is

PREM i,t = β0 + β1TESDi,t−1 + β2SENT
(k)

i,t−1 + β3FEESi,t−1 + φ
′xi,t−1 + εi,t

where k ∈ {MRKT,SMB,FLOW}, PREM is the ETF premium, TESD is the within-month standard
deviation of daily NAV tracking errors. x is a vector of control variables including the percentage bid-ask
spread of the ETF (BAS), the Amihud (2002) illiquidity measure for the ETF (PI), daily dividend yield
(DIV , in percentage points), daily risk-free rate (RF , in percentage points), daily ETF squared returns
(V AR), daily ETF trading volume (V OL, in millions of shares), daily market value of equity (SIZE, in
billions of dollars), ETF age (AGE, in years), and lagged within-month mean ETF premium (LPREM).
MRKT returns are used as the sentiment variable in columns one to two, SMB returns are used as the
sentiment variable in columns three to four, and FLOW is used as the sentiment variable in columns
five to six. Bars above variables denote within-month means. Time fixed-effects are included in columns
two, three, five, and six. ETF fixed-effects are included in columns there and six. t-statistics from White
(1980) heteroskedasticity-consistent standard errors are presented in parentheses. ***, **, and * denote
statistical significance at the 1%, 5%, and 10% levels, respectively. The sample period is March 1996 to
December 2011.

MRKT SMB FLOW
(2) (3) (4) (5) (6) (7)

TESD 0.135** 0.135** 0.135** 0.136** 0.135** 0.135**
(2.425) (2.182) (2.427) (2.194) (2.425) (2.182)

SENT 0.023 0.028 -0.348*** -0.306*** 0.004 0.007
(0.257) (0.329) (-3.244) (-3.041) (0.156) (0.243)

BAS 0.022 0.024 0.022 0.024 0.022 0.024
(1.063) (1.045) (1.067) (1.043) (1.065) (1.046)

PI -0.017 -0.012 -0.017 -0.012 -0.017 -0.012
(-1.191) (-0.940) (-1.184) (-0.947) (-1.185) (-0.936)

FEES 0.002 0.003 0.002
(0.050) (0.088) (0.052)

DIV 0.137 0.152 0.142 0.154 0.139 0.153
(0.649) (0.717) (0.668) (0.727) (0.654) (0.722)

RF -12.387*** -1.811 -13.299*** -3.285 -12.523*** -1.851
(-4.999) (-0.481) (-5.442) (-0.879) (-5.099) (-0.489)

VAR -0.005** -0.004* -0.005*** -0.004* -0.005*** -0.004*
(-2.575) (-1.774) (-2.613) (-1.815) (-2.596) (-1.798)

VOL -0.001 0.001 -0.001 0.001 -0.001 0.001
(-1.565) (1.139) (-1.572) (1.118) (-1.562) (1.142)

SIZE 0.001* -0.002** 0.001* -0.002** 0.001* -0.002**
(1.691) (-2.371) (1.689) (-2.394) (1.69) (-2.378)

AGE -0.005*** 0.020** -0.005*** 0.018** -0.005*** 0.020**
(-4.211) (2.391) (-4.222) (2.259) (-4.214) (2.480)

LPREM 0.652*** 0.611*** 0.652*** 0.611*** 0.652*** 0.611***
(11.571) (9.839) (11.574) (9.843) (11.566) (9.835)

TIME F.E. Yes Yes Yes Yes Yes Yes
ETF F.E. No Yes No Yes No Yes
N 17,721 17,721 17,721 17,721 17,721 17,721
R

2
0.488 0.496 0.488 0.496 0.488 0.496
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Table 3.10
ETF Premiums and Returns

This table presents premium coefficients from regression results with holding period returns as the
dependent variable. Remaining coefficient estimates are omitted to conserve space. The pooled regression
model is

RET
(k)
i,t+h = β0 + β1PREM i,t + β2SIZEi,t + β3FLOW i,t + β4V ARi,t + β5AGEi,t

+ β6FEESi,t + β7RET
(k)
i,t + εi,t

FLOWi,t =
(
AUMi,t −AUMi,t−1

[
1 +RET

(NAV )
i,t

])
/AUMi,t−1

where k ∈ {NAV,MRKT, SMB}, h ∈ {1, 3, 6, 12} denotes the holding period return, PREM is ETF
premium, SIZE is ETF market cap (in billions of dollars), V AR is daily ETF squared return, AGE
is ETF age (in years), and FEES is ETF expense ratio (in percentage points). Bars above variables
denote within-month means. t-statistics from White (1980) heteroskedasticity-consistent standard errors
are presented in parentheses. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels,
respectively. The sample period is March 1996 to December 2011.

Holding Period (h months)
1 3 6 12

NAV 0.021 -0.091** -0.085 0.032
(0.662) (-2.184) (-1.445) (0.442)

SMB 0.012 -0.044** -0.03 0.073
(0.84) (-2.317) (-1.259) (1.081)

MRKT -0.044 -0.156*** -0.064* -0.091
(-1.617) (-4.148) (-1.759) (-1.641)
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Table 3.11
Determinants of Tracking Error Standard Deviation

This table presents regression results from regressing tracking error variability on replication risk deter-
minants. The panel regression model is

TESDi,t = β0 + β1ZEROSi,t + β2FEESi,t + β3INDV ARi,t + φ
′xi,t + εi,t

TESD is the within-month standard deviation of tracking errors. Tracking errors are defined as the
difference between ETF NAV return and the return on the index that the ETF aims to replicate. ZEROS
is the number of within-month zero returns, FEES is the ETF expense ratio (in percentage points),
and INDV AR is the underlying index squared daily return. x is a vector of control variables including
daily ETF dividend yield (DIV , in percentage points), the daily risk-free rate (RF , in percentage
points), ETF market value of equity (SIZE, in billions of dollars), ETF age (AGE, in years), and
lagged TESD (LTESD). Bars above variables denote within-month means. Time fixed-effects are
included in columns three and four. ETF fixed-effects are included in column four. t-statistics from
White (1980) heteroskedasticity-consistent standard errors are presented in parentheses. ***, **, and *
denote statistical significance at the 1%, 5%, and 10% levels, respectively. The sample period is March
1996 to December 2011.

(1) (2) (3) (4)
INT 0.030*** -0.062***

(14.932) (-12.603)
ZEROS 0.034*** 0.029*** 0.027*** 0.049***

(8.384) (8.196) (7.497) (9.191)
FEES 0.246*** 0.233***

(17.076) (14.641)
INDVAR 0.006*** 0.004** 0.006***

(4.558) (2.245) (2.628)
DIV 1.300*** 1.436*** 1.423***

(7.996) (6.848) (6.925)
RF 1.433*** 6.100*** 6.582

(5.776) (2.656) (1.454)
SIZE 0.003*** 0.004*** 0.001

(8.466) (9.274) (0.831)
AGE -0.005*** -0.004*** -0.005

(-14.156) (-11.140) (-0.618)
FOR 0.061***

(15.158)
FI -0.047***

(-11.224)
LTESD 0.409*** 0.358*** 0.357*** 0.205***

(12.759) (12.086) (11.633) (7.527)
TIME F.E. No No Yes Yes
ETF F.E. No No No Yes
N 17,721 17,721 17,721 17,721
R

2
0.236 0.312 0.350 0.430
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Table 3.12
Determinants of Tracking Error Standard Deviation: Subsample Analysis

This table presents regression results from regressing tracking error variability on replication risk deter-
minants. The panel regression model is

TESDi,t = β0 + β1ZEROSt + β2FEESi,t + β3INDV ARi,t + φ
′xi,t + εi,t

TESD is the within-month standard deviation of tracking errors. Tracking errors are defined as the
difference between ETF NAV return and the return on the index that the ETF aims to replicate.
ZEROS is the number of within-month zero returns, FEES is the ETF expense ratio, and INDV AR
is the underlying index squared daily return. x is a vector of control variables including daily ETF
dividend yield (DIV , in percentage points), the daily risk-free rate (RF , in percentage points), ETF
market value of equity (SIZE, in billions of dollars), ETF age (AGE, in years), and lagged within-
month standard deviation of tracking errors (LTESD). Bars above variables denote within-month
standard deviations. Time fixed-effects are included in columns three and four. t-statistics from White
(1980) heteroskedasticity-consistent standard errors are presented in parentheses. ***, **, and * denote
statistical significance at the 1%, 5%, and 10% levels, respectively. The sample period is March 1996 to
December 2011.

Domestic Foreign Equities Fixed Income
(1) (2) (3) (4)

ZEROS 0.014*** 0.055*** 0.106*** 0.000
(5.644) (4.165) (7.918) (0.309)

FEES 0.125*** 0.358*** 0.258*** 0.055***
(7.372) (5.963) (11.550) (2.644)

INDVAR 0.000 0.019*** 0.005** 0.075***
(-0.580) (2.640) (2.018) (3.097)

DIV 1.930*** 1.559*** 1.452*** 0.057
(11.932) (5.033) (6.300) (0.127)

RF 4.862** -0.562 5.334* -2.444**
(2.538) (-0.105) (1.751) (-2.057)

SIZE 0.002*** 0.003*** 0.004*** 0.004**
(3.271) (6.429) (7.609) (2.286)

AGE -0.002*** -0.008*** -0.005*** -0.005**
(-3.530) (-8.415) (-10.225) (-2.233)

LTESD 0.164*** 0.395*** 0.352*** 0.176**
(5.467) (9.330) (10.824) (2.395)

TIME F.E. Yes Yes Yes
ETF F.E. No No No
N 8,019 6,276 12,585 1,715
R

2
0.232 0.426 0.359 0.372
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Table 4.1
Sample Fund Categories and Types

This table presents the sample closed-end fund categories on the left hand side of the table and a snapshot
of the closed-end fund market in the latest sample year on the right hand side. FREQ (%) indicates
the number (percentage) of monthly observations in the sample that fall within a specified category or
type. FUNDS lists the number of closed-end funds in each category and MVE is the mean market value
of equity (in millions of dollars). The full sample is August 1984 to December 2011.

Year 2011
CATEGORY FREQ % FUNDS MVE
DOMESTIC 40,316 61.7 192 370

EQUITY 15.5 29 731
FIXED INCOME 84.5 163 293

FOREIGN 13,776 21.1 50 336
EQUITY 79.1 39 295
FIXED INCOME 20.9 11 496

MISCELLANEOUS 11,199 17.2 17 140
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Table 4.2
Benchmark Returns

This table presents portfolio performance from the naïve trading strategy that buys the portfolio of
CEFs that are trading at the lowest premiums and sells the portfolio of CEFs that are trading at the
highest premiums. Portfolios are rebalanced monthly. Q5 denotes the quintile of CEFs with the lowest
premiums, Q1 denotes the quintile of CEFs with the highest premiums, and MRKT denotes market
returns. MEAN is average return, SHARPE is Sharpe ratio, PTO is portfolio turnover, STO is CEF
share turnover, and DVOL is dollar trading volume in millions, each of which is annualized. MVE is CEF
market-cap in millions of dollars. MRP is the mean Dickey-Fuller mean-reversion parameter for CEFs
in a portfolio. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.
The out-of-sample period is February 1998 to December 2011.

Panel A: Full Sample
PORTFOLIO MEAN SHARPE PTO MVE STO DVOL MRP
Q5 0.148*** 0.735 2.126 371.855 0.593 190.802 -0.119

(3.339)
Q1 -0.001 -0.180 2.543 393.081 0.682 256.609 -0.098

(-0.013)
Q5-Q1 0.149*** 1.519 2.335 382.468 0.638 223.706 -0.108

(5.667)
Q5-MRKT 0.093*** 0.854 . . . . .

(3.185)
MRKT 0.055 0.170 . . . . .

(1.199)
FULL SAMPLE . . . 284.831 0.596 162.238 -0.117

Panel B: Domestic Sample
PORTFOLIO MEAN SHARPE PTO MVE STO DVOL MRP
Q5 0.126*** 0.780 2.193 528.959 0.444 188.605 -0.120

(3.679)
Q1 0.005 -0.178 2.610 536.779 0.457 251.999 -0.103

(0.162)
Q5-Q1 0.121*** 1.506 2.402 532.869 0.450 220.302 -0.111

(5.619)
Q5-MRKT 0.071** 0.538 . . . . .

(2.008)
MRKT 0.055 0.170 . . . . .

(1.199)
FULL SAMPLE . . . 284.831 0.596 162.238 -0.124

Panel C: Foreign Sample
PORTFOLIO MEAN SHARPE PTO MVE STO DVOL MRP
Q5 0.175*** 0.625 3.047 308.809 0.739 249.731 -0.101

(2.744)
Q1 0.021 -0.017 2.807 201.906 1.098 288.522 -0.076

(0.254)
Q5-Q1 0.154*** 0.861 2.927 255.357 0.918 269.126 -0.088

(3.212)
Q5-MRKT 0.120*** 0.827 . . . . .

(3.087)
MRKT 0.055 0.170 . . . . .

(1.199)
FULL SAMPLE . . . 284.831 0.596 162.238 -0.086
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Table 4.3
Trading Strategy Returns: Full Sample Results

This table presents portfolio performance from trading strategies using the full sample of CEFs. CEFs are
sorted into portfolios of equally-weighted CEFs based on expected returns and portfolios are rebalanced
monthly. In Panel A, expected returns are obtained from eqns. (4.3a,b) and in Panel B expected returns
are obtained from eqns. (4.4a,b). Q5 (Q1) denotes the quintile of CEFs with the highest (lowest) expected
returns and MRKT denotes market returns. MEAN is average return, SHARPE is Sharpe ratio, PTO
is portfolio turnover, STO is CEF share turnover, and DVOL is dollar trading volume in millions, each
of which is annualized. MVE is CEF market-cap in millions dollars. MRP is the mean Dickey-Fuller
mean-reversion parameter for CEFs in a portfolio. t-statistics are presented in parentheses. ***, **, and
* denote statistical significance at the 1%, 5%, and 10% levels, respectively. The out-of-sample period
is February 1998 to December 2011.

Panel A: BMR Model
PORTFOLIO MEAN SHARPE PTO MVE STO DVOL MRP
Q5 0.153*** 0.785 2.675 311.850 0.626 196.309 -0.148

(3.543)
Q1 -0.020 -0.332 3.204 301.989 0.571 164.342 -0.159

(-0.541)
Q5-Q1 0.173*** 1.862 2.939 306.919 0.598 180.325 -0.154

(6.946)
Q5-MRKT 0.098*** 0.795 . . . . .

(2.967)
MRKT 0.055 0.170 . . . . .

(1.199)
FULL SAMPLE . . . 284.831 0.596 162.238 -0.133

Panel B: RADF Model
PORTFOLIO MEAN SHARPE PTO MVE STO DVOL MRP
Q5 0.163*** 0.829 5.686 322.454 0.654 217.767 -0.128

(3.695)
Q1 -0.019 -0.321 5.964 309.417 0.572 171.416 -0.137

(-0.503)
Q5-Q1 0.182*** 1.918 5.825 315.936 0.613 194.591 -0.132

(7.154)
Q5-MRKT 0.107*** 0.871 . . . . .

(3.250)
MRKT 0.055 0.170 . . . . .

(1.199)
FULL SAMPLE . . . 284.831 0.596 162.238 -0.117
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Table 4.4
Monotonicity in Returns

This table presents results from monotonicity tests of closed-end fund optimal trading strategy returns.
Q5 (Q1) denotes the quintile of CEFs with the highest (lowest) expected returns. Expected returns
are obtained from eqns. (4.4a,b), i.e., the RADF model. Panel A presents annualized realized portfolio
mean returns. Panel B reports the trend test result from the following regression:

rp = α+ βx+ ε

where x = (1, 2, 3, 4, 5)
′. TAU is the measure of rank correlation between realized portfolio mean returns

and quintile number using the Kendall (1938) methodology. t-statistics are presented in parentheses.
***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively. The out-of-
sample period is February 1998 to December 2011.

Panel A: Portfolio Returns
Q1 Q2 Q3 Q4 Q5

N 24.994 25.263 25.347 25.263 25.665
MEAN -0.019 0.042 0.086*** 0.109*** 0.163***
T-STAT (-0.503) (1.307) (2.764) (3.323) (3.695)

Panel B: Monotonicity Tests
α β TAU
-0.053*** 0.043*** 1.000***
(-4.821) (12.957) (<0.010)
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Table 4.5
Selection Bias Robustness

This table presents mean portfolio returns from trading strategies varying the minimum number of
observations that a CEF is required to have prior to entering the sample. The naïve trading strategy
buys the quintile portfolio of CEFs that are trading at the lowest premiums and sells the quintile portfolio
of CEFs that are trading at the highest premiums. The BMR and RADF strategies buy the quintile with
highest expected return and sell the quintile with lowest expected return where expected returns are
estimated using eqns. (4.3a,b) for the BMR model and eqns. (4.4a,b) for the RADF model. MINOBS
denotes the minimum number of observations that a CEF is required to have prior to entering the
sample. All out-of-sample periods end December 2011. The out-of-sample period begins January 1995
when MINOBS is 36 and 60, February 1998 when MINOBS is 120, February 2003 when MINOBS is
180, and February 2008 when MINOBS is 240. ***, **, and * denote statistical significance at the 1%,
5%, and 10% levels, respectively.

MINOBS Naïve BMR RADF
36 0.155*** 0.142*** 0.153***

(6.158) (5.578) (6.807)
60 0.159*** 0.139*** 0.153***

(5.940) (5.428) (6.468)
120 0.149*** 0.158*** 0.182***

(5.667) (6.946) (7.154)
180 0.137*** 0.144*** 0.171***

(4.508) (4.356) (5.269)
240 0.121* 0.158 0.201**

(1.793) (1.629) (2.399)
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Table 4.6
Abnormal Returns: Benchmark Strategy

This table presents results from regressing benchmark trading strategy returns on the three Fama and
French (1993) factors, the Carhart (1997) winners-minus-losers factor, and the Pástor and Stambaugh
(2003) tradable liquidity factor:

rep,t = αp + βp,1r
e
MRKT,t + βp,2rSMB,t + βp,3rHML,t + βp,4rWML,t + βp,5rLIQ,t + εp,t

The benchmark trading strategy buys the quintile portfolio of CEFs trading at the lowest premiums
(denoted by Q5) and sells the quintile portfolio of CEFs that are trading at the highest premiums
(denoted by Q1). Portfolios are rebalanced monthly. The alphas are annualized. Panel A uses the full
sample of CEFs; Panel B uses the subsample of domestic CEFs; and Panel C uses the subsample of
foreign CEFs. MRKT is the excess market return, SMB is the small-minus-big portfolio, HML is the
high-minus-low book-to-market portfolio, WML is the winners-minus-losers portfolio, and LIQ is the
tradable liquidity portfolio. t-statistics are presented in parentheses. ***, **, and * denote statistical
significance at the 1%, 5%, and 10% levels, respectively. The out-of-sample period is February 1998 to
December 2011.

Panel A: Full Sample
PORTFOLIO ALPHA MRKT SMB HML WML LIQ
Q5 0.086*** 0.644*** 0.147** -0.128** -0.125*** 0.194***

(3.335) (13.560) (2.422) (-2.075) (-3.397) (3.951)
Q1 -0.062** 0.507*** 0.144** 0.136* -0.117*** 0.151***

(-2.132) (9.398) (2.088) (1.936) (-2.792) (2.704)
Q5-Q1 0.148*** 0.137*** 0.003 -0.264*** -0.008 0.043

(6.095) (3.045) (0.051) (-4.525) (-0.236) (0.929)
Panel B: Domestic Sample

PORTFOLIO ALPHA MRKT SMB HML WML LIQ
Q5 0.071*** 0.409*** 0.118* 0.060 -0.120*** 0.149***

(2.772) (8.652) (1.955) (0.972) (-3.261) (3.045)
Q1 -0.048* 0.302*** 0.126** 0.112* -0.092** 0.127**

(-1.763) (6.039) (1.97) (1.723) (-2.379) (2.444)
Q5-Q1 0.119*** 0.107*** -0.008 -0.052 -0.027 0.023

(5.466) (2.669) (-0.152) (-1.003) (-0.878) (0.543)
Panel C: Foreign Sample

PORTFOLIO ALPHA MRKT SMB HML WML LIQ
Q5 0.102*** 0.980*** 0.203** -0.141 -0.098* 0.169**

(2.651) (13.716) (2.220) (-1.511) (-1.775) (2.281)
Q1 -0.057 1.016*** 0.261* -0.005 -0.331*** 0.260**

(-0.979) (9.357) (1.880) (-0.038) (-3.926) (2.307)
Q5-Q1 0.160*** -0.036 -0.058 -0.135 0.232*** -0.091

(3.328) (-0.407) (-0.513) (-1.168) (3.371) (-0.985)
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Table 4.7
Abnormal Returns: RADF Model

This table presents results from regressing RADF trading strategy returns on the FFCPS factors using
the full sample of CEFs in Panel A, the subset of domestic CEFs in Panel B, and the subset of foreign
CEFs in Panel C. The regression model is

rep,t = αp + βp,1r
e
MRKT,t + βp,2rSMB,t + βp,3rHML,t + βp,4rWML,t + βp,5rLIQ,t + εp,t

The alphas are annualized. CEFs are sorted into quintile portfolios of equally-weighted CEFs based on
expected returns obtained from eqns. (4.4a,b) and portfolios are rebalanced monthly. MRKT is the
excess market return, SMB is the small-minus-big portfolio, HML is the high-minus-low book-to-market
portfolio, WML is the winners-minus-losers portfolio, and LIQ is the tradable liquidity portfolio. t-
statistics are presented in parentheses. ***, **, and * denote statistical significance at the 1%, 5%, and
10% levels, respectively. The out-of-sample period is February 1998 to December 2011.

Panel A: Full Sample
PORTFOLIO ALPHA MRKT SMB HML WML LIQ
Q5 0.100*** 0.590*** 0.141** -0.079 -0.123*** 0.204***

(3.388) (10.840) (2.022) (-1.115) (-2.909) (3.619)
Q1 -0.074*** 0.431*** 0.140** 0.093 -0.161*** 0.147***

(-2.665) (8.389) (2.131) (1.395) (-4.047) (2.766)
Q5-Q1 0.174*** 0.159*** 0.001 -0.172*** 0.038 0.057

(7.198) (3.565) (0.014) (-2.965) (1.110) (1.230)
Panel B: Domestic Sample

PORTFOLIO ALPHA MRKT SMB HML WML LIQ
Q5 0.098*** 0.295*** 0.088 0.082 -0.113*** 0.152***

(3.600) (5.835) (1.360) (1.243) (-2.883) (2.913)
Q1 -0.063** 0.279*** 0.094 0.049 -0.120*** 0.133***

(-2.389) (5.709) (1.509) (0.775) (-3.168) (2.628)
Q5-Q1 0.161*** 0.015 -0.007 0.032 0.007 0.019

(7.826) (0.401) (-0.136) (0.651) (0.248) (0.485)
Panel C: Foreign Sample

PORTFOLIO ALPHA MRKT SMB HML WML LIQ
Q5 0.101** 1.071*** 0.198* -0.075 -0.113* 0.253***

(2.145) (12.239) (1.773) (-0.660) (-1.663) (2.788)
Q1 -0.087 0.987*** 0.142 0.129 -0.171** 0.141

(-1.572) (9.680) (1.093) (0.972) (-2.168) (1.330)
Q5-Q1 0.188*** 0.084 0.056 -0.204* 0.059 0.112

(4.206) (1.021) (0.528) (-1.897) (0.912) (1.310)
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Table 4.8
Abnormal Returns: Equities and Fixed Income Samples

This table presents results from regressing RADF trading strategy returns on the FFCPS three factors:

rep,t = αp + βp,1r
e
MRKT,t + βp,2rSMB,t + βp,3rHML,t + βp,4rWML,t + βp,5rLIQ,t + εp,t

The alphas are annualized. CEFs are sorted into quintile portfolios of equally-weighted CEFs based on
expected returns obtained from eqns. (4.4a,b) and portfolios are rebalanced monthly. MRKT is the
excess market return, SMB is the small-minus-big portfolio, HML is the high-minus-low book-to-market
portfolio, WML is the winners-minus-losers portfolio, and LIQ is the tradable liquidity portfolio. Panel A
presents results when the subsample of equity CEFs is used. Panel B reports results when the subsample
of fixed-income CEFs is used. t-statistics are presented in parentheses. ***, **, and * denote statistical
significance at the 1%, 5%, and 10% levels, respectively. The out-of-sample period is February 1998 to
December 2011.

Panel A: Equities CEF Sample
PORTFOLIO ALPHA MRKT SMB HML WML LIQ
Q5 0.108*** 1.128*** 0.198** 0.066 -0.108** 0.242***

(2.859) (16.106) (2.222) (0.724) (-1.993) (3.332)
Q1 -0.046 1.010*** 0.101 0.180* -0.119* 0.131

(-1.089) (12.834) (1.011) (1.766) (-1.957) (1.600)
Q5-Q1 0.154*** 0.118* 0.097 -0.114 0.011 0.112*

(4.486) (1.856) (1.194) (-1.383) (0.226) (1.687)
Panel B: Fixed Income CEF Sample

PORTFOLIO ALPHA MRKT SMB HML WML LIQ
Q5 0.113*** 0.091 0.123* 0.079 -0.113** 0.143**

(3.645) (1.595) (1.679) (1.066) (-2.562) (2.428)
Q1 -0.060* 0.171*** 0.141* 0.078 -0.132*** 0.131**

(-1.907) (2.947) (1.897) (1.049) (-2.958) (2.202)
Q5-Q1 0.172*** -0.079** -0.018 0.000 0.019 0.012

(8.591) (-2.139) (-0.371) (0.007) (0.667) (0.308)
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Table 4.9
Sample Period Robustness

This table presents portfolio returns from the RADF trading strategy using the first half of the sample
(denoted by H1) and the second half of the sample (denoted by H2). The difference between them is
denoted by DIF. CEFs are sorted into quintile portfolios of equally-weighted CEFs based on expected
returns obtained from eqns. (4.4a,b) and portfolios are rebalanced monthly. t-statistics are presented in
parentheses. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.
The out-of-sample period is February 1998 to December 2011.

PORTFOLIO H1 H2 DIF
Q5 0.163*** 0.163*** 0.000

(2.611) (2.599) (-0.001)
Q1 -0.025 -0.012 -0.013

(-0.479) (-0.230) (-0.175)
Q5-Q1 0.188*** 0.175*** 0.013

(5.559) (4.596) (0.255)
Q5-MRKT 0.101** 0.114** -0.012

(2.165) (2.420) (-0.182)
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Table 4.10
Portfolio Returns with Varying Holding Periods

This table presents the alphas from regressing portfolio strategy cumulative returns over the holding
period from t to t+ h on the FFCPS factors:

rep,t:t+h = αp + βp,1r
e
MRKT,t:t+h + βp,2rSMB,t:t+h + βp,3rHML,t:t+h

+ βp,4rWML,t:t+h + βp,5rLIQ,t:t+h + εp,t:t+h

The alphas for the various holding periods are not annualized. MRKT is the excess market return,
SMB is the small-minus-big portfolio, HML is the high-minus-low book-to-market portfolio, WML is the
winners-minus-losers portfolio, and LIQ is the tradable liquidity portfolio. CEFs are sorted into quintile
portfolios of equally-weighted CEFs based on expected returns obtained from eqns. (4.4a,b). t-statistics
are presented in parentheses. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels,
respectively. The out-of-sample period is February 1998 to December 2011.

Holding Period h (in months)
Portfolio 1 6 9 12 18 24
Q5 0.008*** 0.022*** 0.024*** 0.042*** 0.054*** 0.066***

(3.388) (3.703) (3.199) (4.908) (4.426) (4.333)
Q1 -0.006*** 0.002 0.012* -0.002 -0.014 -0.036**

(-2.665) (0.372) (1.719) (-0.279) (-1.251) (-2.420)
Q5-Q1 0.015*** 0.020*** 0.012 0.044*** 0.068*** 0.102***

(7.198) (3.172) (1.405) (4.438) (4.690) (5.338)
Q5-MRKT 0.008*** 0.022*** 0.024*** 0.042*** 0.054*** 0.066***

(3.388) (3.703) (3.199) (4.908) (4.426) (4.333)
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Table 4.11
CEF Momentum Strategy

This table presents portfolio performance from trading strategies using the full sample of CEFs. In
Panel A, CEFs are sorted into quintile portfolios of equally-weighted CEFs based on mean returns over
the entire past history (random walk strategy). In Panel B, CEFs are sorted into quintile portfolios of
equally-weighted CEFs based on cumulative returns over the previous h months (momentum strategy),
and portfolios are held for h months, where h = 3, 6, 9, and 12. MEAN is average return, SHARPE is
Sharpe ratio, PTO is portfolio turnover, STO is CEF share turnover, and DVOL is dollar trading volume
in millions, each of which is annualized. MVE is CEF market-cap in millions of dollars. t-statistics are
presented in parentheses. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels,
respectively. The out-of-sample period is February 1998 to December 2011.

Panel A: Portfolio Performance of Random Walk Strategy
PORTFOLIO MEAN SHARPE PTO MVE STO DVOL MRP
Q5 0.091 0.292 0.62 462.077 0.81 336.998 -0.096

-1.525
Q1 0.087*** 0.508 1.621 211.394 0.513 121.734 -0.125

-2.739
Q5-Q1 0.005 0.027 1.121 336.735 0.661 229.366 -0.111

-0.103
Q5-MRKT 0.036 0.316 . . . . .

-1.18
MRKT 0.055 0.17 . . . . .

-1.199
FULL SAMPLE . . . 284.831 0.596 162.238 -0.11

Panel B: Mean Return of Momentum Strategy
Holding Period h (in months)

PORTFOLIO 3 6 9 12
Q5 0.094*** 0.082*** 0.073*** 0.085***

-3.274 -4.094 -3.952 -4.807
Q1 0.059* 0.074*** 0.099*** 0.112***

-1.866 -2.898 -5.116 -8.018
Q5-Q1 0.035 0.008 -0.026 -0.027*

-1.227 -0.381 (-1.475) (-1.646)
Q5-MRKT 0.043** 0.034** 0.021* 0.033***

-1.993 -2.102 -1.647 -2.958



122

Figure 2.1 Bank Sample Size Time Series. This figure plots the time series of banks (CRSP SIC
codes 6000-6299 and share code 10 or 11) contemporaneously present in the sample.
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Figure 2.2 Bank Index Time Series. This figure plots the time series of the value-weighted bank
index in the top panel, the time series of bank index return variance given by eqn. (2.7b) in the middle
panel, and the time series of the covariance term of bank index return variance in the bottom panel.
The bank index is constructed as the market-value weighted return of the bank sample. The base level
for the bank index is set equal to one on January 1, 1960. Eqns. (2.7a,b) are used to obtain the return
variance and covariances are obtained from FCtσ̂

2
rI,t . FCt and σ̂2

rI,t are given by eqns. (2.8) and (2.7b),
respectively.
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Figure 2.3 Financial Contagion Time Series. This figure plots the time series of financial contagion,
FCt, obtained from eqn. (2.8). Shaded regions are NBER recession dates.
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Figure 2.4 Financial Contagion in the 2007-2008 Crisis. This figure plots financial contagion
around the time of the 2007-2008 financial crisis, annotated with key economic events. Events are labeled
with numbers in parentheses at the bottom of the plot. (1) March 14, 2008: Bear Stearns is bailed out
by the New York Federal Reserve and J.P. Morgan, (2) July 15, 2008: SEC emergency order to ban
naked short selling in a number of large financial institutions, (3) September 15, 2008: Lehman Brothers
files for chapter 11 bankruptcy protection; September 16, 2008: Federal Reserve extends an $85 billion
credit facility to American International Group (AIG), (4) October 03, 2008: The Emergency Economic
Stabilization Act of 2008, containing the Troubled Asset Relief Program (TARP) is passed by Congress
and signed by president Bush, (5) October 14, 2008: The U.S. Treasury announces the TARP program,
(6) November 25, 2008: The Term Asset-Backed Securities Loan Facility (TALF) is announced, (7)
January 16, 2009: The U.S. government announcement an agreement providing a package of guarantees,
liquidity and capital to Bank of America, (8) April 07, 2009: Monthly TARP report is released.
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Figure 2.5 Log Wealth Processes. This figure plots the log wealth process for the portfolio that
buys the decile of most contagious banks and sells the decile of least contagious banks, with monthly
re-balancing. Log wealth processes of the MRKT, SMB, HML, MOM, and LIQ factor portfolios are
also plotted. MRKT is the excess market return factor, SMB is the small-minus-big return factor, HML
is the high-minus-low return factor, MOM is the momentum return factor, LIQ is the liquidity return
factor, and HCMLC is the high contagion-minus-low contagion bank return factor.
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Figure 2.6 Beta-sorted Portfolio Wealth Processes. This figure plots the wealth processes of
portfolios that buy the tercile of stocks with greatest factor beta and sell the tercile of stocks with lowest
factor beta. Portfolios are rebalanced monthly. Factor betas are estimated from the following rolling
regression.

rei,t = βi,0 + βi,MRKT rMRKT,t + βi,SMBrSMB,t + βi,HMLrHML,t + βi,MOMrMOM,t

+ βi,LIQrLIQ,t + βi,HCMLCrHCMLC,t + εi,t

Rolling 60-month regressions are estimated. The previous 60 months of returns are used to estimate
betas, portfolios are rebalanced, and portfolio returns are observed in the following month. MRKT is
the excess market return factor, SMB is the small-minus-big return factor, HML is the high-minus-low
return factor, MOM is the momentum return factor, LIQ is the liquidity return factor, and HCMLC is
the high contagion-minus-low contagion bank portfolio.
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Figure 2.7 Time Series of Financial Contagion Risk Premium. This figure plots the smoothed
time series of the estimated financial contagion risk premium, λ̂HCMLC , obtained from firm-level Fama-
MacBeth regressions as in Table VI. The shaded regions in the top panel are NBER recession dates and
the shaded regions in the bottom panel are U.S. banking crises dates from Reinhart and Rogoff (2011).
The smoothing procedure used is given by

̂̂
λHCMLC =

h∑
m=−h

[
h+ 1− |m|
(h+ 1)

2

]
λ̂HCMLC

where h = 23 (5 percent of the sample size) and the smoothing procedure is run twice.
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Figure 3.1 ETF Sample Size. This figure presents the time series of the number of ETFs contempo-
raneously present in the sample.
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Figure 3.2 ETF Assets Under Management. This figure plots the time series of total assets under
management (in billions of dollars) for the ETF sample.
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Figure 3.3 Mean ETF Premium. This figure plots the time series of within-month mean premiums
across ETFs, PREMm. PREMm is defined as

PREMi,t =

{
ln (Pi,t/NAVi,t)× 100 for domestic ETFs

ûi,t × 100 for foreign ETFs

PREMm = N−1m

Nm∑
i=1

D−1i,m

Di,m∑
t=1

PREMi,t


where Pi,t is ETF i’s nominal share price, NAVi,t is its net asset value, ûi,t is the estimated true premium
obtained from eqns. (3.2a,b), Nm is the number of ETFs in the sample in month m, and Di,m is the
number of daily observations for ETF i in month m.
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Figure 3.4 Fraction of ETFs Trading at a Premium. This figure plots the time series of the
fraction of ETFs with a within-month sample mean premium that is positive (solid line). The dashed
line denotes the one-percent critical value for which premiums being equally likely to be positive as
negative can be rejected in an unbiased binomial test. Specifically the formula for the critical values
(CV), imposing the normal distribution approximation, is

CVm =
Nmp± 2.576

√
Nmp (1− p)

Nm

where Nm denotes the number of ETFs present in the sample in month m, and p is the fraction of ETFs
that are expected to be trading at a mean positive premium, if premiums are unbiasead. Therefore,
p = 0.5.
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Figure 3.5 Mean tracking errors. This figure plots the time series of within-month mean tracking
error across all ETFs, TEm. TEm is defined as

TEi,t =
(
rNAV
i,t − rINDEX

i,t

)
× 100

TEm = N−1m

Nm∑
i=1

D−1i,m

Di,m∑
t=1

TEi,t


where rNAV

i,t is ETF i’s daily return, rINDEX
i,t is the daily return on the index that the ETF aims to

replicate, Nm is the number of ETFs in the sample in month m, and Di,m is the number of daily
observations for ETF i in month m.
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Figure 4.1 Time Series of Closed-End Fund Sample Size. This figure plots the time series of
CEF sample size in the top panel and the time series of total market value of the CEF sample in the
bottom panel.
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Figure 4.2 Distribution of CEF Premiums. This figure plots the distribution of observations on
closed-end fund premiums over the full sample period.
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Figure 4.3 T-statistics for Mean Reversion in CEF Premiums and Mean Reversion Pa-
rameters. This figure plots histograms of the ADF t-statistics for mean-reversion in CEF premiums
and the estimated mean reversion coefficients βi obtained from estimating the following Augmented
Dickey-Fuller regressions:

4premi,t = αi + βipremi,t−1 +

ki∑
j=1

γi,j4premi,t−j + εi,t

where 4 is the difference operator. The optimal lag length, ki, is chosen using the Campbell and
Perron (1991) method. Under the null hypothesis, the mean value of the estimated βi is -0.052, which
is displayed as the dashed line in the top panel. The 5 percent critical value for the null hypothesis of
no mean reversion for a sample size of 100 is -2.89, which is displayed as the dashed line in the bottom
panel.
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Figure 4.4 CEF Mean Return Distribution. This figure presents the distribution of unconditional
monthly mean returns for the closed-end fund sample, in the top panel. MEAN OF MEANS is the mean
of unconditional monthly means for equity CEFs and fixed income CEFs, where indicated. The middle
panel presents the distribution of unconditional monthly mean returns for the equities closed-end fund
sample. The bottom panel presents the distribution of unconditional monthly mean returns for the fixed
income closed-end fund sample.
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Figure 4.5 Trading Strategy Monthly Returns. This figure plots monthly trading strategy returns
for the Q5-Q1 portfolio using the benchmark model (top panel) and the RADF model (bottom panel).
Portfolios are equally weighted and rebalanced monthly. The out of sample period is February 1998 to
December 2011.
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