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ABSTRACT OF THE DISSERTATION

The Exponential Formula for the Wasserstein Metric

by Katy Craig

Dissertation Director: Eric Carlen

Many evolutionary partial di↵erential equations may be rewritten as the gradient flow

of an energy functional, a perspective which provides useful estimates on the behavior

of solutions. The notion of gradient flow requires both the specification of an energy

functional and a metric with respect to which the gradient is taken. In recent years,

there has been significant interest in gradient flow on the space of probability measures

endowed with the Wasserstein metric. The notion of gradient in this setting in purely

formal and rigorous analysis of the gradient flow typically considers a time discretization

of the problem known as the discrete gradient flow. In this dissertation, we adapt

Crandall and Liggett’s Banach space method to give a new proof of the exponential

formula, quantifying the rate at which solutions to the discrete gradient flow converge to

solutions of the gradient flow. In the process, we use a new class of metrics—transport

metrics—that have stronger convexity properties than the Wasserstein metric to prove

an Euler-Lagrange equation characterizing the discrete gradient flow. We then apply

these results to give simple proofs of properties of the gradient flow, including the

contracting semigroup property and the energy dissipation inequality.
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Chapter 1

Introduction: Gradient Flow on Hilbert Spaces

The theory of gradient flow provides a variational perspective for studying a wide variety

of partial di↵erential equations, contributing estimates relevant to existence, regularity,

uniqueness, and stability of solutions. In general, a partial di↵erential equation is a

gradient flow of an energy functional E : X ! (�1,+1] on a metric space (X, d)

if the equation may be rewritten as

d

dt
u(t) = �r

d

E(u(t)) , u(0) = u 2 X , (1.1)

for a generalized notion of gradient r
d

.

A classical example of gradient flow is the heat equation, which is the gradient flow

on L2(⌦) of the Dirichlet energy

E(u) :=

8
>><

>>:

1
2

R
⌦ |ru(x)|2dx if u 2 H1

0 (⌦)

+1 otherwise.

(1.2)

Though E is not continuous with respect to the L2(⌦) norm, even when restricted to

G := H1
0 (⌦) \H2(⌦), its directional derivatives are well defined for all u 2 G by

lim
h!0

E(u+ hv)� E(u)

h
=

Z
ru ·rv = �

Z
�uv 8v 2 C1

c

(⌦) . (1.3)

Using this, we define r
L

2E(u) to be the vector field satisfying

(r
L

2E(u), v)
L

2(⌦) = lim
h!0

E(u+ hv)� E(u)

h
= (��u, v)

L

2(⌦) 8v 2 L2(⌦) . (1.4)

Therefore, the gradient flow of the Dirichlet energy is the heat equation,

d

dt
u(t) = �r

L

2E(u(t)) = �u(t) .

By linearity of the gradient and convexity of | · |2, the Dirichlet energy is convex on

L2(⌦). One of the benefits of the gradient flow perspective is that, simply by writing
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a PDE as the gradient flow of a convex energy functional, one automatically obtains

a variety of a priori estimates. (See section 1.1). A second benefit is that a time

discretization of the gradient flow problem provides a simple variational scheme for

approximating solutions.

In the case of the heat equation, this time discretization is given by replacing the

time derivative with a backward finite di↵erence of time step ⌧ . Specifically, we define

the discrete gradient flow sequence

u
n

� u
n�1

⌧
= �u

n

, u0 = u 2 L2(Rd) , u
n

|
@⌦ = 0 . (1.5)

This implicit definition of u
n

can be made explicit by recognizing that, in analogy with

Dirichlet’s principle for the Poisson equation, u
n

is characterized as the minimizer over

H1
0 (⌦) of

�(v) :=
1

2⌧

Z

⌦
|v(x)� u

n�1(x)|2dx+
1

2

Z

⌦
|rv(x)|2dx . (1.6)

At first, the need for this second variational characterization of u
n

may seem like a

drawback of this discretization method. After all, one could replace (1.5) with the

explicit scheme

u
n

� u
n�1

⌧
= �u

n�1 , u0 = u 2 L2(Rd) , u
n

|
@⌦ = 0 ,

so that we have the explicit formula u
n

:= u
n�1 + ⌧�u

n�1. However, the variational

characterization of u
n

(1.6) causes a gain in regularity along the discrete gradient flow

sequence—given u0 2 L2(⌦), u
n

2 H1
0 (⌦) for all n > 0—whereas the explicit scheme

corresponds to a decrease in regularity. Since solutions of the gradient flow (in this

case, solutions of the heat equation) likewise exhibit a gain in regularity for t > 0, the

implicit method is the best choice of time discretization. Furthermore, one may show

that, as the time step goes to zero, the discrete gradient flow sequence converges to the

gradient flow. Specifically, if we define ⌧ := t

n

,

lim
⌧!1u

n

= u(t) . (1.7)

Equation (1.7) is known as the exponential formula. If we rewrite (1.5) as

u
n

:= (id� ⌧�)�1u
n�1 = (id� ⌧�)�nu0 ,
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(1.7) is an infinite dimensional generalization of the limit definition of the exponential

lim
n!1(id� t

n
�)�nu0 = u(t) .

The importance of the variational characterization of the discrete gradient flow (1.6)

becomes even clearer when one seeks to extend the notion gradient flow to other metrics

(X, d) and energy functionals E. In general, the minimization problem which defines

the discrete gradient flow is of the form

u
n

:= argmin
v2X

⇢
1

2⌧
d(v, u

n�1)
2 + E(v)

�
. (1.8)

Such a minimization problem may be posed for any metric and functional, but in

order for it to have a unique solution one needs the sum of the square distance and

the energy functional to be su�ciently convex. This balance between convexity of the

square distance and convexity of the energy functional is a recurring theme in the theory

of gradient flow. Once one can show that (1.8) is well-posed, it is also useful to have a

characterization of the minimizer u
n

in terms of an Euler Lagrange equation. For the

heat equation example above, this simply corresponds to (1.5), but in a general metric

space that lacks a vector space structure, one will seek to choose the right generalized

notion of gradient r
d

so that a version of (1.5) holds.

In this thesis, we consider gradient flow in the Wasserstein metric, a metric on the

space of probability measures that shares many properties with the L2(⌦) norm. (One

may even define a formal notion of inner product—see section 2.7.) We prove an Euler-

Lagrange equation characterizing the discrete gradient flow, in analogy with (1.5) and

(1.6), and use this, along with other new results, to give a new proof of the exponential

formula in the Wasserstein metric.

Before turning to the Wasserstein metric, we first provide an overview of the classical

theory of gradient flow on a Hilbert space. We will generalize these concepts to the

Wasserstein case in chapter 2.



4

1.1 Hilbert Space Gradient Flow

The classical theory of gradient flow on a Hilbert space can be seen both as a nonlinear,

infinite dimensional generalization of the theory of ordinary di↵erential equations and

as a particular case of the theory of monotone operators [3,4,22]. We will begin with the

first perspective, in order to introduce a priori estimates associated with the gradient

flow, and then switch to the second perspective, in order to adapt to the low regularity

of energy functionals E often required by applications in PDE.

Table 1.1: Examples of PDEs that are gradient flows on a Hilbert space.
Suppose m > 0 and F : Rd ! [0,+1) is continuously di↵erentiable, convex, and
normalized so F (0) = 0.

PDE Energy Functional Metric

Allen-Cahn d

dt

u = �u� F 0(u) E(u) = 1
2

R ⇥|ru|2 + F (u)
⇤

L2

Cahn-Hilliard d

dt

u = �(�u� F 0(u)) E(u) = 1
2

R ⇥|ru|2 + F (u)
⇤

H�1

Porous Media d

dt

u = �um E(u) = 1
m+1

R
um+1 H�1

Given a functional E : H ! R [ {+1} on a Hilbert space H, we define the Hilbert

space gradient in analogy with the definition of r
L

2 from the previous section.

DEFINITION 1.1.1 (Hilbert space gradient). rHE(u) 2 H is the Hilbert space

gradient of E at u if

(rHE(u), v) = lim
h!0

E(u+ hv)� E(u)

h
8v 2 H . (1.9)

REMARK 1.1.2 (L2 gradient and functional derivative). For a wide class of integral

functionals E(u) =
R
F (x, u(x),ru(x))dx on L2(⌦), if u is su�ciently regular, the

functional derivative �E

�u

2 L2(⌦) exists and satisfies

lim
h!0

E(u+ hv)� E(u)

h
=

Z
�E

�u
v 8v 2 C1

c

(⌦) . (1.10)

In this case, we may identify r
L

2E(u) with �E

�u

.

With this definition of Hilbert space gradient, we may now define the Hilbert space

gradient flow.

Lillian Crow
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DEFINITION 1.1.3 (Hilbert space gradient flow). The gradient flow of E with re-

spect to H is

d

dt
u(t) = �rHE(u(t)) , u(0) = u . (1.11)

Part of the utility of gradient flow in partial di↵erential equations is that the gradient

flow structure provides several a priori estimates. We now give a formal argument for

why these estimates hold for solutions of (1.11). For the purposes of these formal

computations, we suppose there is a subspace G ✓ H such that for all u 2 G, rHE(u)

exists. We also suppose that u(t) 2 C1([0,+1),G), so that we may consider (1.11) in

a strong sense.

In addition to these regularity assumptions, which allow us to defer questions of

di↵erentiability to the following section, we also assume that E is �-convex:

DEFINITION 1.1.4 (�-convex). Given � 2 R, functional E : H ! R [ {+1} is

�-convex in case for all u, v 2 H ,↵ 2 [0, 1].

E(↵v + (1� ↵)u)  ↵E(v) + (1� ↵)E(u)� ↵(1� ↵)
�

2
|u� v|2 . (1.12)

REMARK 1.1.5. Since |↵v + (1� ↵)u|2 = ↵|v|2 + (1� ↵)|u|2 + ↵(1� ↵)|u� v|2 , E

is �-convex if and only if E � �| · |2/2 is convex. In particular, E is convex in the usual

sense if E is �-convex for � � 0.

Rearranging (1.12) gives

E(v)� E(u) � 1

↵
(E(↵v + (1� ↵)u)� E(u)) + (1� ↵)

�

2
|u� v|2 . (1.13)

Therefore, sending ↵ ! 0, we obtain the following inequality for the gradient of a

�-convex function:

E(v)� E(u) � (rHE(u), v � u) +
�

2
|u� v|2 . (1.14)

Furthermore, by interchanging the roles of u and v in (1.14) and adding the two in-

equalities together, we obtain the monotonicity property of the gradient,

(rE(v)�rE(u), v � u) � �

2
|v � u|2 . (1.15)
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With these definitions and basic properties, we may now prove five key estimates

for the gradient flow. The first three estimates quantify the rate at which a Lyapunov

functional F : H ! R [ {+1} decays along the gradient flow. In each case, we assume

that F (u(t)) is continuously di↵erentiable in time and

d

dt
F (u(t)) =

✓
rHF (u(t)),

d

dt
u(t)

◆
= � (rHF (u(t)),rHE(u(t))) .

The fourth and fifth estimates quantify the regularity and stability of the flow. To

simplify notation, we write r for rH.

1. Energy Dissipation Identity: E(u(t0))� E(u(t1)) =
R
t1

t0
|rE(u(s))|2 ds

Take F (u) = E(u) to obtain

d

dt
E(u(t)) = � |rE(u(t))|2 , (1.16)

and then integrate in time.

2. Evolution Variational Inequality:

d

dt

1

2
|u(t)� w|2  E(w)� E(u(t))� �

2
|u(t)� w|2

Take F (u) = 1
2 |u� w|2 to obtain

d

dt

1

2
|u(t)� w|2 = � (u(t)� w,rE(u(t))) (1.14) E(w)� E(u(t))� �

2
|u(t)� w|2

In particular, if E attains its minimum at ū, the evolution variational inequality

provides an upper bound for the distance between the solution of the gradient

flow and the minimizer:

|u(t)� ū|2  e��t|u(0)� ū|2

3. Exponential Decay of Gradient: |rE(u(t)|  e��t|rE(u(0))|
For this estimate, we impose the additional assumption that for all u 2 G, there
exists D2E(u) : G ! H satisfying

(D2E(u)v, w) = lim
h!0

(rE(u+ hv)�rE(u), w)

h
8v 2 G .
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By inequality (1.15),

(D2E(u)v, v) = lim
h!0

(rE(u+ hv)�rE(u), hv)

h2
� lim

h!0

�

2

|hv|2
h2

=
�

2
|v|2 .

Therefore, taking F (u) = 1
2 |rE(u)|2,

d

dt

1

2
|rE(u(t))|2 = �(D2E(u(t))rE(u(t)),rE(u(t)))  ��

2
|rE(u(t))|2 . (1.17)

Integrating gives the result.

4. Instantaneous Regularization for � � 0: For all t > 0, E(u(t))  1
2t |u(0) �

w|2 + E(w).

For all t > 0 and w 2 G, |rE(u(t))|2  1
t

2 |u(0)� w|2 + |rE(w)|2.
Suppose � � 0. Combining the di↵erential forms of the first three estimates, we

obtain

d

dt
t[E(u(t))� E(w)] =(1. EDI) E(u(t))� E(w)� t|rE(u(t))|2

d

dt

1

2
|u(t)� w|2 (2. EVI) E(w)� E(u(t))

d

dt

t2

2
|rE(u(t))|2 (3. EDG) t|rE(u(t))|2

Adding these three inequalities and integrating from 0 to t, we obtain for all t > 0,

t[E(u(t))� E(w)] +
1

2
|u(t)� w|2 + t2

2
|rE(u(t))|2  1

2
|u(0)� w|2 (1.18)

Furthermore, if rE(w) is well defined, by (1.14) and Cauchy’s inequality, we have

E(u(t))� E(w) � �1

2


t|rE(w)|2 + 1

t
|u(t)� w|2

�
.

Therefore, (1.18) implies the above instantaneous regularization estimates.

5. Contraction Inequality: |u(t)� v(t)|  e��t|u(0)� v(0)|
Given solutions to the gradient flow u(t) and v(t),

d

dt

1

2
|u(t)� v(t)|2 = �(u(t)� v(t),rE(u(t))�rE(v(t))) (1.15) �

2
|u(t)� v(t)|2 .

Integrating gives the result.
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1.2 Di↵erentiability

While the Hilbert space gradient from Definition 1.1.1 is extremely useful as a heuristic

tool, it does not correspond precisely to the notion of gradient from Euclidean space.

In particular, the Hilbert space gradient is well-defined even if E is only Gâteaux

di↵erentiable, allowing the possibility of functionals—like the Dirichlet energy (1.2)—

which are not continuous but do have a gradient.

In order to have a notion of gradient that includes functionals with low regularity,

like the Dirichlet energy, and also preserves essential properties when passing from finite

dimensional to infinite dimensional Hilbert spaces, it is most common to work with a

generalization of the gradient known as the subdi↵erential. Recall that a functional

E is proper if D(E) = {u 2 H : E(u) < +1} 6= ; and is lower semicontinuous if its

sub-level sets are closed.

DEFINITION 1.2.1 (subdi↵erential). Given E : H ! R [ {+1} proper and lower

semicontinuous, ⇠ belongs to the subdi↵erential of E at u 2 D(E) in case

E(v)� E(u) � (⇠, v � u) + o(|v � u|) as v ! u .

We write ⇠ 2 @E(u). LetD(@E) := {u 2 H : @E(u) 6= ;} and |@E(u)| := min
⇠2@E(u) |⇠|.

REMARK 1.2.2 (subdi↵erential and gradient). IfrHE(u) exists, @E(u) = {rHE(u)}.

LEMMA 1.2.3 (subdi↵erential of a convex function). If E : H ! R[{+1} is proper,

lower semicontinuous, and �-convex, ⇠ 2 @E(u) if and only if

E(v)� E(u) � (⇠, v � u) +
�

2
|u� v|2 8v 2 H . (1.19)

Proof. If (1.19) holds then ⇠ 2 @E(u) by definition of the subdi↵erential. For the other

direction, note that as ↵ ! 0 in the right hand side of (1.13), the definition of the

subdi↵erential ensures that the right hand side is bounded below by

(⇠, v � u) +
�

2
|u� v|2 .
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Figure 1.1: When E is convex, the elements of the subdi↵erential correspond to the sup-
porting hyperplanes of E. If E is di↵erentiable at a point, there is a unique supporting
hyperplane through that point which corresponds to the gradient.

As a consequence of Lemma 1.2.3, we have the following corollary.

COROLLARY 1.2.4. Given E : H ! R [ {+1} proper, lower semicontinuous, and

�-convex for � � 0, 0 2 @E(u) if and only if u is a minimizer of E.

REMARK 1.2.5 (subdi↵erential of a convex function as monotone operator). Lemma

1.2.3 is the subdi↵erential analogue of inequality (1.14) for the Hilbert space gradient

of a �-convex function. As before, if we interchange the roles of u and v in (1.19) and

add the inequalities together, we obtain

(⇠ � ⇠̃, u� v) � �|u� v|2 , 8⇠ 2 @E(u), ⇠̃ 2 @E(v). (1.20)

Any (possibly multivalued) mapping A : H ! H that satisfies

(f1 � f2, u1 � u2) � 0 , 8f1 2 Au1, f2 2 Au2

is called a monotone operator, and (1.20) shows that when E is �-convex, @E � �id

is a monotone operator. Consequently, choosing the subdi↵erential as our notion of

generalized gradient allows us to apply the rich theory of monotone operators to our

study of Hilbert space gradient flow [3,4, 22].

We now define the gradient flow of E : H ! R[{+1} in terms of the subdi↵erential.

DEFINITION 1.2.6 (Hilbert space gradient flow, subdi↵erential). u is a solution of

the gradient flow of E with respect to H if u is di↵erentiable a.e. and

� d

dt
u(t) 2 @E(u(t)) a.e. t � 0, u(0) = u0 . (1.21)
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With this definition of gradient flow, we have the following classical theorem.

THEOREM 1.2.7 (Hilbert Space Gradient Flow [3,22]). Suppose E : H ! R[{+1}
is proper, lower semicontinuous, and �-convex. Given initial conditions u0 2 D(E),

there exists u : [0,1) ! H, continuous for t � 0 and locally Lipschitz continuous for

t > 0, which is the unique solution of

� d

dt
u(t) 2 @E(u(t)) a.e. t � 0 , u(0) = u0 .

Furthermore, the following inequalities hold:

1. Energy Dissipation Inequality: For t1, t0 � 0,
R
t1

t0
|@E(u(s))|2 ds  E(u(t0))� E(u(t1)).

2. Evolution Variational Inequality: For a.e. t > 0,

d

dt

1
2 |u(t)� w|2  E(w)� E(u(t))� �

2 |u(t)� w|2.

3. Exponential Decay of Subdi↵erential: If u(0) 2 D(@E), |@E(u(t)|  e��t|@E(u(0))|.

4. Instantaneous Regularization for � � 0: For t > 0, E(u(t))  1
t

|u(0)�w|2+E(w).

For t > 0 and w 2 D(@E), |@E(u(t))|2  1
t

2 |u(0)� w|2 + |@E(w)|2.

5. Contraction Inequality: For two solutions u(t) and v(t),

|u(t)� v(t)|  e��t|u(0)� v(0)|.

REMARK 1.2.8. In the above theorem, the property that u(t) is locally Lipschitz

continuous guarantees that d

dt

u(t) exists almost everywhere and

u(t) =

Z
t

0
u0(s)ds+ u(0) .

More generally, this result holds for any reflexive Banach space B and any u : [0, T ] ! B
absolutely continuous [16].

REMARK 1.2.9 (equivalence of evolution variational inequality and gradient flow).

In fact, u(t) is a solution of the gradient flow if and only if the evolution variational

inequality holds for a.e. t > 0. The fact that solutions of the gradient flow satisfy the

evolution variational inequality follows by the same argument as in the previous section
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(1.1) by simply replacing the gradient with the subdi↵erential. The other direction

follows by expanding

d

dt

1

2
|u(t)� w|2 =

✓
w � u(t),� d

dt
u(t)

◆

and noting that the evolution variational inequality reduces to the definition of � d

dt

u(t)

belonging to the subdi↵erential of E at u(t).

We close this section by applying the above theorem to the L2(⌦) gradient flow of the

Dirichlet energy described in the first section. As required by the above theorem, E is

proper, lower semicontinuous, and convex. In addition to being Gâteaux di↵erentiable

on H1
0 (⌦) \H2(⌦) with r

L

2E(u) = ��u, one may also show that for all u 2 D(E) =

H1
0 (⌦),

⇠ 2 @E(u) () u 2 H2(⌦) and ⇠ = ��u .

Consequently, by Theorem 1.2.7, for all u0 2 D(E) = L2(⌦), there exists u : [0,1) !
L2(⌦), continuous for t � 0 and locally Lipschitz continuous for t > 0, such that

d

dt
u(t) = �u(t) a.e. t � 0 , u(0) = u0 .

Furthermore, we have the following five estimates, with | · | = || · ||
L

2(⌦)

1. For t1 > 0,
R
t1

t0
|�u(s)|2 ds  1

2 |ru(t0))|2 � 1
2 |ru(t1)|2.

2. For a.e. t > 0, d

dt

1
2 |u(t)� w|2  1

2 |rw|2 � 1
2 |ru(t))|2 � �

2 |u(t)� w|2.

3. If u(0) 2 H2(⌦), |�u(t)|  |�u(0)|.

4. For t > 0, u(t) 2 H1
0 (⌦) and

1
2 |ru(t)|2  1

t

|u(0)�w|2+ 1
2 |rw|2 for all w 2 H1

0 (⌦).

For t > 0, u(t) 2 H2(⌦) and |�u(t)|2  1
t

2 |u(0) � w|2 + |�w|2 for all w 2
H1

0 (⌦) \H2(⌦).

5. For solutions u(t) and v(t), |u(t)� v(t)|  |u(0)� v(0)|.

1.3 Discrete Gradient Flow

As described at the beginning of the chapter, the gradient flow perspective also pro-

vides a method for approximating solutions to partial di↵erential equations. In the
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case of gradient flow on Euclidean space, this approximation corresponds the implicit

Euler method. To define the discrete gradient flow on a general Hilbert space, we first

introduce the notion of proximal map.

Let �� := max{0,��} denote the negative part of �.

DEFINITION 1.3.1 (proximal map). Given E : H ! R [ {+1} proper, lower

semicontinuous, and �-convex, for any 0 < ⌧ < 1
�

� we define the proximal map J
⌧

:

H ! D(E) by

J
⌧

u := argmin
v2H

⇢
1

2⌧
|v � u|2 + E(v)

�
.

The sum of 1
2⌧ |v � u|2 and E(v) is 1

⌧

+ � convex, and we require 0 < ⌧ < 1
�

� to ensure

1
⌧

+ � > 0.

The fact that the proximal map is well-defined and single-valued for all u 2 H is a

specific case of the following classical result, which relies on several essential properties

Hilbert spaces (or, more generally, reflexive Banach spaces) [5].

THEOREM 1.3.2 (Minimizers of Strictly Convex Functions). Given � : H ! R [
{+1} proper, lower semicontinuous, and �-convex for � > 0, � uniquely attains its

minimum.

Proof. If � : H ! R [ {+1} is proper, lower semicontinuous, and convex, then there

exists v 2 H and c 2 R so that �(u) � (u, v) + c 8u 2 H. (This is a consequence

of Hahn-Banach.) If, in addition, � is �-convex for � > 0, then � � �

2 | · |2 is convex,

so �(u) � (u, v) + c + �

2 |u|2
|u|!+1�����! +1. Therefore, for any u 2 D(�), C := {v 2

H : �(v)  �(u)} is closed, convex, and bounded. By compactness of the unit ball

and the fact that convex sets are weakly closed if they are strongly closed, C is weakly

compact. The second fact also guarantees that lower semicontinuous, convex functions

are weakly lower semicontinuous. Therefore, � is a weakly lower semicontinuous on

a weakly compact set C, hence it achieves its minimum on C, which is its global

minimum.

COROLLARY 1.3.3. Given E : H ! R [ {+1} proper, lower semicontinuous, and

�-convex, for any 0 < ⌧ < 1
�

� , the proximal map is well-defined and single-valued for



13

all u 2 H.

Proof. Apply Theorem 1.3.2 to

�(v) :=
1

2⌧
|u� v|2 + E(v) . (1.22)

Given E : H ! R [ {+1} proper, lower semicontinuous, and �-convex, for any 0 <

⌧ < 1
�

� proximal map is characterized by the following Euler-Lagrange equation.

PROPOSITION 1.3.4 (Euler-Lagrange equation for the proximal map). Under the

assumptions of Corollary 1.3.3, for all u 2 H

v = J
⌧

u () 1

⌧
(u� v) 2 @E(v) .

Proof. Define � as in (1.22). Since � is convex, Lemma 1.2.4 implies that v minimizes

� if and only if 0 2 @E(v) = 1
⌧

(v � u) + @E(v).

PROPOSITION 1.3.5 (contraction of the proximal map). Under the assumptions of

Corollary 1.3.3, for all u, v 2 H

|J
⌧

u� J
⌧

v|  (1 + ⌧�)�1|u� v| .

Figure 1.2: By Definition 1.3.1, the proximal map J
⌧

sends a point u 2 H to the point
w that makes E(w) as small as possible, up to a 1

2⌧ |u�w|2 penalty. When E is convex,
the proximal map is a contraction.



14

Proof. By Remark 1.2.5, for all ⇠1 2 @E(u1), ⇠2@E(u2),

(⇠1 � ⇠2, u1 � u2) � �|u1 � u2|2

=) ([u1 + ⌧⇠1]� [u2 + ⌧⇠2], u1 � u2) � (1 + ⌧�)|u1 � u2|2

=) |[u1 + ⌧⇠1]� [u2 + ⌧⇠2]| � (1 + ⌧�)|u1 � u2| .

If we define v1 = u1 + ⌧⇠1, v2 = u2 + ⌧⇠2,

1

⌧
(u� v1) = ⇠1 2 @E(u1) ,

1

⌧
(v � v2) = ⇠2 2 @E(u2) .

By Proposition 1.3.4, this implies u1 = J
⌧

v1, u2 = J
⌧

v2, which gives the result.

We now use the proximal map to define the discrete gradient flow sequence.

DEFINITION 1.3.6 (Discrete Gradient Flow). Suppose E : H ! R [ {+1} is

proper, lower semicontinuous, and �-convex. Given initial conditions u 2 H, the discrete

gradient flow with time step 0 < ⌧ < 1
�

� is defined by

u
n

:= J
⌧

u
n�1 = Jn

⌧

u , u0 = u .

We write Jn

⌧

u for the nth element of the sequence to emphacize the dependence on ⌧ .

As described at the beginning of the chapter, the convergence of the discrete gradient

flow to the continuous time gradient flow is known as the exponential formula.

THEOREM 1.3.7 (Exponential Formula, [22]). Suppose E : H ! R [ {+1} is

proper, lower semicontinuous, and �-convex. Given initial conditions u 2 D(E),

lim
n!1 Jn

t/n

u = u(t) for all t � 0 ,

where u(t) is the solution to the gradient flow of E with initial conditions u(0) = u.

Theorem 1.3.7 is the infinite dimensional, nonlinear generalization of the limit defi-

nition of the matrix exponential. To see this, suppose that rHE exists, so by Remark

1.2.2 and Proposition 1.3.4,

u� J
⌧

u

⌧
= rHE(J

⌧

u) =) J
⌧

u = (id+ ⌧rHE)�1u . (1.23)
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In this case, Theorem 1.3.7 may be rewritten as

lim
n!1 Jn

t/n

u = lim
n!1(id+

t

n
rHE)�1u = u(t) .

In particular, if H is finite dimensional and E(u) := (Au, u) for A 2 L(H) positive

definite, E satisfies the conditions of Theorem 1.3.7 and its gradient rHE(u) = Au is

well-defined. Thus,

e�Atu := lim
n!1(id+

t

n
A)�1u

is the solution of the system of ordinary di↵erential equations given by

d

dt
u(t) = �Au(t) , u(0) = u .
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Chapter 2

Gradient Flow in the Wasserstein Metric:

Background and New Results

Through suitable generalizations of the notion of the gradient, the theory of gradient

flows has been extended to Banach spaces [11, 12], nonpositively curved metric spaces

[17], and general metric spaces [1, 10], and in recent years, there has been significant

interest in gradient flow with respect to theWasserstein metric. The Wasserstein metric

measures the distance between two probability measures according to the amount of

e↵ort it would take to rearrange one probability measure to look like the other, where

e↵ort is measured according to the square distance mass is moved. (We refer the reader

to sections 2.2 and 2.3 for a precise definition of the Wasserstein metric, along with

background about its geometric structure. For a comprehensive introduction to the

broader field of optimal transportation, we refer the reader to the excellent books by

Ambrosio, Gigli, and Savaré [1] and Villani [26, 27].)

The utility of Wasserstein gradient flow in the study of partial di↵erential equations

was first demonstrated by Otto in his work on the porous media equation [20, 21].

Though the porous media equation may also be studied as a gradient flow in H�1, Otto

showed that by considering its gradient flow in the Wasserstein metric, one obtains sharp

polynomial rates of convergence of solutions to Barenblatt profiles. The heat equation

provides a second example of how the Wasserstein gradient flow perspective can provide

sharper estimates. As described at the beginning of chapter 1, the heat equation is the

gradient flow of the Dirichlet energy

E(u) :=

8
>><

>>:

1
2

R
⌦ |ru(x)|2dx if u 2 H1

0 (⌦)

+1 otherwise,

(2.1)
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with respect to L2(⌦). The heat equation is also the gradient flow of the (negative)

entropy

E(µ) :=

8
>><

>>:

R
Rd ⇢(x) log ⇢(x)dx if µ = ⇢(x)dx and

R |x|2dµ < 1

+1 otherwise.

(2.2)

with respect to the Wasserstein metric. In the Hilbertian perspective, there is no ↵ > 0

which satisfies

|r
L

2E(u)|2 = ||�u||2
L

2(⌦) � ↵||ru||2
L

2(⌦) = ↵|E(u)| .

On the other hand, the analogous inequality in the Wasserstein metric does hold—it is

the logarithmic Sobolev inequality,

|r
W2E(µ)|2 = 1

4

Z
|rp

⇢|2dx � ⇡

4

Z
⇢ log ⇢dx =

⇡

4
E(µ) . (2.3)

Inequalities of the form |rE(µ)|2 � ↵E(µ) are useful for studying asymptotics of a

gradient flow. In particular, combining (2.3) with the Wasserstein energy dissipation

inequality (see Corollary 3.5.7),

E(µ(t0))� E(µ(t1)) �
Z

t1

t0

|r
W2E(µ(s))|2ds ,

shows by Gronwall’s inequality

E(µ(t1))  E(µ(t0))� ⇡

4

Z
t1

t0

E(µ(s))ds =) E(µ(t1))  E(µ(t0))e
�⇡(t1�t0)/4

A more recent reason for interest in gradient flow in the Wasserstein metric is the

low regularity of solutions it allows one to consider. When one views a partial di↵er-

ential equation as a gradient flow in the Wasserstein metric, solutions are given by the

time evolution of probability measures. First, this allows one to study the long time

behavior of solutions which leave all Lp spaces in finite time—in particular, solutions

which approach a Dirac mass. Second, this allows one to consider particle approxi-

mations of a solution as the time evolution of a sum of Dirac masses, placing particle

approximations and the solutions they approximate within the same Wasserstein gra-

dient flow framework [9]. In the case of the aggregation equation, these two techniques

have led to new results on blowup and confinement behavior of solutions [7, 8].
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In this thesis, we further develop the theory of Wasserstein gradient flow and use

our results to give a new proof of the exponential formula, inspired by Crandall and

Liggett’s Banach space result. We then apply our proof of the exponential formula to

obtain simple proofs of many of the a priori estimates for the Wasserstein gradient flow.

Table 2.1: Examples of PDEs that are gradient flows in the Wasserstein metric [13,26]
Suppose m > 1 � 1

d

, V : Rd ! [0,+1) is continuously di↵erentiable and convex, and
K : Rd ! [0,+1) is continuously di↵erentiable, radial, and convex. We consider the
partial di↵erential equations in a weak sense, in the duality with C1

c

(Rd ⇥ [0, T ]).

PDE Energy Functional, µ = ⇢(x)dx

Porous Media d

dt

µ = �µm E(µ) = 1
m�1

R
⇢(x)mdx

Fokker Planck d

dt

µ = �µ+r · (µrV ) E(µ) =
R
⇢(x) log ⇢(x) + V (x)⇢(x)dx

Aggregation d

dt

u = r · (µrK ⇤ µ) E(µ) = 1
2

R R
⇢(x)K(x� y)⇢(y)dxdy

DLSS d

dt

u = �r · (µr�
p
µp
µ

) E(µ) = 1
4

R |r⇢(x)|2
⇢(x) dx

2.1 Summary of Results

The exponential formula in the Wasserstein metric was first proved by Ambrosio, Gigli,

and Savaré in their book on gradient flow [1]. Through a careful analysis of a�ne

interpolations of functions of the discrete gradient flow, they obtained the sharp rate of

convergence of the discrete gradient flow to the gradient flow and used this to develop

many properties of the gradient flow. They also raised the question of whether it might

be possible to obtain the same results using a method similar to Crandall and Liggett,

bringing together the Banach space and Wasserstein theories.

At first glance, an adaptation of Crandall and Liggett’s method to the Wasserstein

metric seems unlikely. For E convex, the generalization of rE in the Banach space

case is an accretive operator, which, by definition, is an operator for which the proximal

map satisfies

||J
⌧

u� J
⌧

v||  ||u� v|| . (2.4)
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While such an inequality does hold in metric spaces of nonpositive curvature [17], the

Wasserstein metric is nonnegatively curved [1, Theorem 7.3.2], and it is unknown if

such a contraction holds in this case. Still, there exist “almost” contraction inequalities

for the Wasserstein metric, such as [1, Lemma 4.2.4], developed by Ambrosio, Gigli,

and Savaré, or [6, Theorem 1.3], developed by Carlen and the author. Using this second

contraction inequality, Carlen and the author showed that many of the remarkable fea-

tures of solutions to the porous media and fast di↵usion equations, such as convergence

to Barenblatt profiles, are also present in the discrete gradient flow [6].

In this thesis, we use a new almost contraction inequality to adapt Crandall and

Liggett’s proof of the exponential formula to the Wasserstein metric. A fundamental

di↵erence between our method and Crandall and Liggett’s is that our almost contraction

inequality involves the square distance, rather than the distance itself. This prevents us

from applying the triangle inequality, as they did, to control the distance between dif-

ferent elements of the the discrete gradient flow. Furthermore, unlike in the Hilbertian

case where

x 7! 1

2
||x� y||2

is 1-convex along geodesics, the square Wasserstein metric

µ 7! 1

2
W 2

2 (µ,!)

is not [1, Example 9.1.5]. In fact, it satisfies the opposite inequality [1, Theorem 7.3.2].

The lack of convexity of the square Wasserstein distance is a recurring di�culty when

extending results from Hilbert and Banach spaces to the Wasserstein metric. Ambro-

sio, Gigli, and Savaré circumvented this by introducing a di↵erent class of curves—

generalized geodesics—along which the square distance is 1-convex [1]. We further

develop this idea, introducing a class of transport metrics W2,!, with respect to which

the generalized geodesics are truly geodesics. The transport metrics satisfy the key

property that

µ 7! 1

2
W 2

2,!(µ,!)
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is convex along the geodesics induced by W2,!. This turns out to be the essential fact

needed to control the discrete gradient flow and adapt Crandall and Liggett’s method

to the Wasserstein case.

In sections 2.2 through 2.5, we recall general facts about the Wasserstein metric and

functionals defined on this metric space. We will often impose the following assumptions

on our functionals.

ASSUMPTION 2.1.1 (optional domain assumption). E(µ) < +1 only if µ is abso-

lutely continuous with respect to Lebesgue measure.

This assumption ensures that for all µ 2 D(E) and ⌫ 2 P(Rd) there exists an optimal

transport map t⌫
µ

from µ to ⌫ (see section 2.2). This is purely for notational convenience.

In section A.2 we describe how to remove this assumption.

ASSUMPTION 2.1.2 (convexity assumption). E is proper, coercive, lower semicon-

tinuous, and �-convex along generalized geodesics for � 2 R.

This assumption is essential. In particular, the fact that E is �-convex along generalized

geodesics ensures that E is �-convex in the transport metric W2,!.

In section 2.6, we define the transport metric W2,! and the corresponding subdif-

ferential @2,! and study their properties. In section 2.7, we define gradient flow in the

Wasserstein metric and describe the formal inner product structure of the Wasserstein

metric, from which perspective Wasserstein gradient flow is analogous to the Hilbert

space gradient flow discussed in chapter 1. In section 2.8, we recall basic facts about

the Wasserstein discrete gradient flow and the proximal map J
⌧

, and the associated

minimization problem. In section 2.9, we reframe the minimization problem in terms

of the transport metrics, allowing us to prove an Euler-Lagrange equation for mini-

mizer J
⌧

. In section 2.10, we recall Ambrosio, Gigli, and Savaré’s discrete variational

inequality [1, Theorem 4.1.2] and prove a stronger version using transport metrics.

In section 3.1, we begin our proof of the exponential formula by proving a new

asymmetric almost contraction inequality. In section 3.2, we apply our Euler-Lagrange

equation to obtain an expression relating proximal maps with di↵erent time steps. In

sections 3.3 and 3.4, we combine these results to bound the distance between gradient
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flow sequences with di↵erent time steps via an asymmetric induction in the style of

Rasmussen [23]. Finally, in section 3.5, we prove the exponential formula and quantify

the convergence of the discrete gradient flow to the gradient flow.

We close section 3.5 by applying our estimates to give simple proofs of properties

of the continuous gradient flow, including the contracting semigroup property and the

energy dissipation inequality. Finally, in section 3.6, we extend our results, which

only applied to gradient flows with initial conditions µ 2 D(|@E|), to include initial

conditions µ 2 D(E). (See Definition 2.5.1 of the metric slope |@E|.)
In the appendix, we describe two extensions. In section, A.1, we adapt our proof of

the exponential formula to include discrete gradient flows with varying time steps. In

section A.2, we describe how to remove the optional domain assumption 2.1.1, which

we imposed for notational convenience.

2.2 Wasserstein Metric

Let P(Rd) denote the set of probability measures on Rd. Given µ, ⌫ 2 P(Rd), a measur-

able function t : Rd ! Rd transports µ onto ⌫ if ⌫(B) = µ(t�1(B)) for all measureable

sets B ✓ Rd. We call ⌫ the push-forward of µ under t and write ⌫ = t#µ.

Figure 2.1: t : Rd ! Rd transports µ onto ⌫ if ⌫(B) = µ(t�1(B)) for all measurable B.

Consider a measure µ 2 P(Rd ⇥ Rd). (We distinguish probability measures on

Rd ⇥ Rd or Rd ⇥ Rd ⇥ Rd, from probability measures on Rd by writing them in bold

font.) Let ⇡1 be the projection onto the first component of Rd ⇥ Rd, and let ⇡2 be

the projection onto the second component. The first and second marginals of µ are

⇡1#µ 2 P(Rd) and ⇡2#µ 2 P(Rd).
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Given µ, ⌫ 2 P (Rd), the set of transport plans from µ to ⌫ is

�(µ, ⌫) := {µ 2 P(Rd ⇥ Rd) : ⇡1#µ = µ ,⇡2#µ = ⌫} .

The Wasserstein distance between µ and ⌫ is

W2(µ, ⌫) :=

✓
inf

⇢Z

Rd⇥Rd
|x� y|2dµ(x, y) : µ 2 �(µ, ⌫)

�◆1/2

. (2.5)

When W2(µ, ⌫) < +1, there exist plans which attain the infimum. We denote this set

of optimal transport plans by �0(µ, ⌫).

When µ is absolutely continuous with respect to Lebesgue measure, there is a unique

optimal transport plan from µ to ⌫ of the form (id ⇥ t)#µ, where id(x) = x is the

identity transformation and t is unique µ-a.e. [18]. In particular, there is a map t

satisfying t#µ = ⌫ and

W2(µ, ⌫) =

✓Z

Rd
|id� t|2dµ

◆1/2

.

We denote this unique optimal transport map by t⌫
µ

. Furthermore, a Borel measurable

map t that transports µ to ⌫ is optimal if and only if it is cyclically monotone µ-a.e. [18],

i.e. if there exists N ✓ Rd with µ(N) = 0 such that for every finite sequence of distinct

points {x1, . . . , xm} ✓ Rd \N ,

t(x1) · (x2 � x1) + t(x2) · (x3 � x2) + · · ·+ t(x
m

) · (x1 � x
m

)  0 .

If, in addition, ⌫ is absolutely continuous with respect to Lebesgue measure, then

t⌫
µ

� tµ
⌫

= id almost everywhere with respect to µ.

One technical di�culty when working with the Wasserstein distance on P(Rd) is

that there exist measures that are infinite distances apart. Throughout this paper, we

denote by !0 some fixed reference measure and define

P2,!0(Rd) = {µ 2 P(Rd) : W2(µ,!0) < +1} .

By the triangle inequality, (P2,!0(Rd),W2) is a metric space. When !0 = �0, the Dirac

mass at the origin, P2,!0(Rd) = P2(Rd), the subset of P(Rd) with finite second moment.
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2.3 Geodesics and Generalized Geodesics

DEFINITION 2.3.1 (constant speed geodesic). Given a metric space (X, d), a con-

stant speed geodesic u : [0, 1] ! X is a curve satisfying

d(u
↵

, u
�

) = |� � ↵|d(u0, u1) , for all ↵,� 2 [0, 1] .

We will often refer to constant speed geodesics simply as geodesics.

By [1][Theorem 7.2.2], all geodesics in P2,!0(Rd) are curves of the form

µ
↵

=
�
(1� ↵)⇡1 + ↵⇡2

�
#µ , µ 2 �0(µ0, µ1) .

If µ0 is absolutely continuous with respect to Lebesgue measure, the geodesic from µ0

to µ1 is unique and of the form

µ
↵

=
�
(1� ↵)id+ ↵tµ1

µ0

�
#µ0 .

We now recall Amrbosio, Gigli, and Savaré’s notion of generalized geodesics [1,

Definition 9.2.2]. Given a finite product Rd ⇥ Rd ⇥ · · · ⇥ Rd, let ⇡i the be projection

onto the ith component and ⇡i,j be the projection onto the ith and jth components.

DEFINITION 2.3.2 (generalized geodesic). Given µ0, µ1,! 2 P2,!0(Rd), a general-

ized geodesic from µ0 to µ1 with base ! is a curve µ
↵

: [0, 1] ! P(Rd) of the form

µ
↵

:=
�
(1� ↵)⇡2 + ↵⇡3

�
#µ,

where µ 2 P(Rd ⇥ Rd ⇥ Rd) satisfies

⇡1,2#µ 2 �0(!, µ0) and ⇡
1,3#µ 2 �0(!, µ1) . (2.6)

We refer to any µ 2 P(Rd ⇥ Rd ⇥ Rd) that satisfies (2.6) as a plan that induces a

generalized geodesic from µ0 to µ1 with base !.

REMARK 2.3.3. Such a µ always exists [1, Lemma 5.3.2]. If the base ! equals either

µ0 or µ1, then µ
↵

is a geodesic joining µ0 and µ1.
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REMARK 2.3.4. If ! is absolutely continuous with respect to Lebesgue measure, the

generalized geodesic from µ0 to µ1 with base ! is unique and of the form

µ
↵

= ((1� ↵)tµ0
!

+ ↵tµ1
!

)#!.

Since ((1 � ↵)tµ0
!

+ ↵tµ1
!

) is a convex combination of optimal transport maps, it is

cyclically monotone, hence it is the optimal transport map from ! to µ
↵

.

2.4 Convexity

Given a metric space (X, d), we consider functionals E : X ! R [ {+1} that satisfy

the following conditions.

• proper: D(E) := {u 2 X : E(u) < +1} 6= ;

• coercive: There exists ⌧0 > 0, u0 2 X such that

inf

⇢
1

2⌧0
d2(u0, v) + E(v) : v 2 X

�
> �1 .

• lower semicontinuous: For all u
n

, u 2 X such that u
n

! u,

lim inf
n!1 E(u

n

) � E(u) .

• �-convex along a curve u
↵

: Given � 2 R and a curve u
↵

2 X,

E(u
↵

)  (1� ↵)E(u0) + ↵E(u1)� ↵(1� ↵)
�

2
d(u0, u1)

2 , 8↵ 2 [0, 1] . (2.7)

• �-convex along geodesics: Given � 2 R, for all u0, u1 2 X, there exists a geodesic

u
↵

from u0 and u1 along which (2.7) holds. We will often simply say that E is

�-convex, or in the case � = 0, convex.

Fix !0 2 P(Rd) and suppose (X, d) = (P2,!0(Rd),W2). In this setting, convexity is

often referred to as displacement convexity [19]. This setting also allows us to define

the stronger notion of convexity along generalized geodesics [1, Definition 9.2.2].
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DEFINITION 2.4.1 (�-convex along generalized geodesics). Given � 2 R, a func-

tional E : P2,!0(Rd) ! R [ {+1} is �-convex along a generalized geodesic µ
↵

if

E(µ
↵

)  (1� ↵)E(µ0) + ↵E(µ1)� ↵(1� ↵)
�

2

Z
|x2 � x3|2dµ , (2.8)

where µ is the plan that induces the generalized geodesic. E is convex along generalized

geodesics if, for all µ0, µ1,! 2 P2,!0(Rd), there exists a generalized geodesic µ
↵

from µ0

to µ1 with base ! along which E is convex.

REMARK 2.4.2. This definition is slightly di↵erent from E being �-convex along all

of the curves µ
↵

according to equation (2.7), since

W 2
2 (µ0, µ1) 

Z
|x2 � x3|2dµ(x) . (2.9)

When � > 0, equation (2.8) is stronger, and when � < 0, it is weaker.

REMARK 2.4.3. When ! = µ0 or µ1, µ
↵

is simply the geodesic from µ0 to µ1

and equality holds in (2.9). Therefore, �-convexity along generalized geodesics implies

�-convexity along geodesics.

2.5 Di↵erentiability

DEFINITION 2.5.1 (metric slope). Given a metric space (X, d) and a functional

E : X ! R [ {+1}, the metric slope of E at u 2 D(E) is given by

|@E|(u) := lim sup
v!u

(E(u)� E(v))+

d(u, v)
.

The above notion of di↵erentiability merely relies on the metric space structure. If

(X, d) = (P2,!0(Rd),W2), we may also consider a stronger notion of di↵erentiability

known as the subdi↵erential [1, Definition 10.1.1]. For ease of notation, we assume E

satisfies domain assumption 2.1.1, so that, for any µ 2 D(E), ⌫ 2 P2,!0(Rd), there

exists a unique optimal transport map t⌫
µ

from µ to ⌫. We explain how to extend these

results to the general case in section A.2.

DEFINITION 2.5.2 (Wasserstein subdi↵erential). Consider E : P2,!0(Rd) ! R [
{+1} proper, lower semicontinuous, and satisfying domain assumption 2.1.1. Given
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µ 2 D(|@E|), ⇠ 2 L2(µ) belongs to the Wasserstein subdi↵erential of E at µ, written

⇠ 2 @E(µ), in case

E(⌫)� E(µ) �
Z

Rd
h⇠, t⌫

µ

� ididµ+ o(W2(µ, ⌫)) as ⌫
W2��! µ .

REMARK 2.5.3 (Wasserstein subdi↵erential and metric slope). Given E satisfying

domain assumption 2.1.1 and convexity assumption 2.1.2, µ 2 D(|@E|) if and only if

@E(µ) is nonempty [1, Lemma 10.1.5]. In this case,

|@E|(µ) = min{||⇠||
L

2(µ) : ⇠ 2 @E(µ)} .

Finally, we recall the definition of the strong subdi↵erential from [1, 10.1.1]. This

quantifies the rate of change of E when approaching µ via any transport map, not

necessarily an optimal one.

DEFINITION 2.5.4 (strong subdi↵erential). Consider E : P2,!0(Rd) ! R [ {+1}
proper, lower semicontinuous, and satisfying domain assumption 2.1.1. ⇠ 2 @E(µ)

is a strong subdi↵erential in case for all measurable maps t : Rd ! Rd such that

||t� id||
L

2(µ) < +1,

E(t#µ)� E(µ) �
Z

Rd
h⇠, t� ididµ+ o(||t� id||

L

2(µ)) as t
L

2�! id .

2.6 Transport Metrics

A recurring di�culty in extending results from a Hilbert space (H, || · ||) to the Wasser-

stein metric (P2,!0 ,W2) is that while

x 7! 1

2
||x� y||2

is 1-convex along geodesics,

µ 7! 1

2
W 2

2 (µ,!)

is not [1, Example 9.1.5].

Ambrosio, Gigli, and Savaré circumvent this di�culty by introducing the notion of

generalized geodesics and showing that

µ 7! 1

2
W 2

2 (µ,!)
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is 1-convex along generalized geodesics with base ! [1, Lemma 9.2.1]. In this section,

we introduce a class of metrics whose geodesics correspond exactly to the generalized

geodesics with a given base. Furthermore, these metrics satisfy the property that the

square distance is convex with respect to its own constant speed geodesics. This con-

vexity turns out to be extremely useful for some of the key estimates in our adaptation

of Crandall and Liggett’s proof of the exponential formula.

For simplicity of notation, we make the following assumption on the measure !:

ASSUMPTION 2.6.1 (! doesn’t charge small sets).

! 2 P(Rd) is absolutely continuous with respect to Lebesgue measure.

This ensures the existence of an optimal transport maps tµ
!

from ! to any µ 2 P2,!(Rd)

[18]. We use these optimal transport maps to define the (2,!)-transport distance. See

section A.2 for how to extend this definition for ! are not absolutely continuous with

respect to Lebesgue measure.

DEFINITION 2.6.2 ((2,!)-transport metric). The (2,!)-transport metric is

W2,! : P2,!(Rd)⇥ P2,!(Rd) ! R ,

W2,!(µ, ⌫) :=

✓Z
|tµ
!

� t⌫
!

|2d!
◆1/2

.

REMARK 2.6.3. If µ = ! or ⌫ = !, this reduces to the Wasserstein metric. In

general, W2,!(µ, ⌫) � W2(µ, ⌫).

In the following proposition, we prove a few key properties of transport metrics. In

particular, we show that the geodesics of the W2,! metric are exactly the generalized

geodesics with base !, and that the function µ 7! W2,!(⌫, µ)2 is convex for any ⌫ 2
P2,!(Rd).

PROPOSITION 2.6.4 (properties of the (2,!)-transport metric).

(i) W2,! is a metric on P2,!(Rd).
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(ii) The constant speed geodesics with respect to the W2,! metric are exactly the gen-

eralized geodesics with base !. Furthermore, these generalized geodesics µ
↵

satisfy

W 2
2,!(⌫, µ↵

) = (1� ↵)W 2
2,!(⌫, µ0) + ↵W 2

2,!(⌫, µ1)� ↵(1� ↵)W 2
2,!(µ0, µ1)

(2.10)

for all ⌫ 2 P
!

(Rd).

(iii) Generalized geodesics with base ! are the unique constant speed geodesics in the

W2,! metric. Consequently, a functional E is �-convex along generalized geodesics

with base ! if and only if it is �-convex in the W2,! metric. In particular, the

function µ 7! W 2
2,!(⌫, µ) is 2-convex in the W2,! metric for any ⌫ 2 P2,!(Rd).

Proof.

(i) W2,! is symmetric and nonnegative by definition. It is non-degenerate since

0 = W2,!(µ, ⌫) � W2(µ, ⌫) =) µ = ⌫ .

W2,! satisfies the triangle inequality since L2(!) satisfies the triangle inequality:

W2,!(µ, ⌫) = ||tµ
!

� t⌫
!

||
L

2(!)  ||tµ
!

� t⇢
!

||
L

2(!) + ||t⇢
!

� t⌫
!

||
L

2(!)

= W2,!(µ, ⇢) +W2,!(⇢, ⌫)

(ii) Let µ
↵

:= ((1�↵)tµ0
!

+↵tµ1
!

)#! be the generalized geodesic with base ! from µ0

to µ1 at time ↵ 2 [0, 1]. By Remark 2.3.4, tµ↵
!

= (1�↵)tµ0
!

+↵tµ1
!

. Consequently,

W2,!(µ
µ!⌫

↵

, µµ!⌫

�

) =

✓Z
|((1� ↵)tµ

!

+ ↵t⌫
!

)� ((1� �)tµ
!

+ �t⌫
!

)|2d!
◆1/2

=

✓Z
|((� � ↵)tµ

!

+ (↵� �)t⌫
!

|2d!
◆1/2

= |� � ↵|W2,!(µ, ⌫)

This shows that µ
↵

is a constant speed geodesic. The second result follows from
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the corresponding identity of the L2(!) norm.

W 2
2,!(⌫, µ↵

) = ||(1� ↵)tµ0
!

+ ↵tµ1
!

� t⌫
!

||2
L

2(!)

= (1� ↵)||tµ0
!

� t⌫
!

||2
L

2(!) + ↵||tµ1
!

� t⌫
!

||2
L

2(!)

� ↵(1� ↵)||tµ0
!

� tµ1
!

||2
L

2(!)

= (1� ↵)W 2
2,!(µ0, ⌫) + ↵W 2

2,!(µ1, ⌫)� ↵(1� ↵)W 2
2,!(µ0, µ1)

(iii) Suppose µ̃
↵

is a constant speed geodesic in the W2,! metric from µ0 to µ1. Let

µ
↵

:= ((1� ↵)tµ0
!

+ ↵tµ1
!

)#! be the generalized geodesic with base ! from µ0 to

µ1. Setting ⌫ = µ̃
↵

in equation (2.10) gives

W 2
2,!(µ̃↵

, µ
↵

) = (1� ↵)W 2
2,!(µ̃↵

, µ0) + ↵W 2
2,!(µ̃↵

, µ1)� ↵(1� ↵)W 2
2,!(µ0, µ1) .

Using the fact that µ̃
↵

is a constant speed geodesic shows

W 2
2,!(µ̃↵

, µ
↵

) = (1� ↵)↵2W 2
2,!(µ1, µ0) + ↵(1� ↵)2W 2

2,!(µ0, µ1)

� ↵(1� ↵)W 2
2,!(µ0, µ1)

= (↵+ (1� ↵)� 1)(1� ↵)↵W 2
2,!(µ0, µ1)

= 0 .

Therefore µ̃
↵

= µ
↵

and generalized geodesics are the unique constant speed

geodesics in the W2,! metric.

We may define the subdi↵erential with respect to W2,! in analogy with the Wasser-

stein subdi↵erential, Definition 2.5.2.

DEFINITION 2.6.5 (W2,! subdi↵erential). Given E : P2,!(Rd) ! R[{+1} proper

and lower semicontinuous in W2,!, ⇠ 2 L2(!) belongs to the W2,! subdi↵erential

@2,!E(µ) in case

E(⌫)� E(µ) �
Z
h⇠, t⌫

!

� tµ
!

id! + o(W2,!(µ, ⌫)) as ⌫ ! µ .
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REMARK 2.6.6 (lower semicontinuity in W2 vs. W2,!). By Remark 2.6.3, if µ
n

converges to µ in W2,!, then the sequence converges in W2. Therefore, if E is lower

semicontinuous in W2, i.e. lim inf
n!1E(µ

n

) � E(µ) for all sequences which converge

in W2, the inequality continues to hold for the possibly smaller set of sequences which

converge in W2,!, hence E is lower semicontinuous in W2,!.

REMARK 2.6.7 (additivity of W2,! subdi↵erential). If ⇠1 2 @2,!E1(µ) and ⇠2 2
@2,!E2(µ),

E1(⌫) + E2(⌫)� E1(µ)� E2(µ) �
Z
h⇠1 + ⇠2, t

⌫

!

� tµ
!

id! + o(W2,!(µ, ⌫)) ,

so ⇠1 + ⇠2 2 @2,!(E1 + E2)(µ).

The next proposition provides a characterization of the W2,! subdi↵erential for func-

tionals that are convex in W2,!, in analogy with [1, Equation (10.1.7)].

PROPOSITION 2.6.8 (W2,! subdi↵erential for convex function). Given E �-convex

with respect to W2,! and satisfying the conditions of Definition 2.6.5, ⇠ 2 @2,!E(µ) if

and only if

E(⌫)� E(µ) �
Z
h⇠, t⌫

!

� tµ
!

id! +
�

2
W 2

2,!(µ, ⌫) 8⌫ . (2.11)

Proof. If (2.11) holds, then ⇠ 2 @2,!E(µ) by Definition 2.6.5. For the converse, assume

⇠ 2 @2,!E(µ). Define µ
↵

= ((1� ↵)tµ
!

+ ↵t⌫
!

)#! to be the generalized geodesic from µ

to ⌫ with base !. Since E is � convex in the W2,! metric,

E(µ
↵

)� E(µ)

↵
 E(⌫)� E(µ)� �

2
(1� ↵)W 2

!

(µ, ⌫) . (2.12)

By Proposition 2.6.4, W2,!(µ, µ↵

) = ↵W2,!(µ, ⌫), and by Remark 2.3.4, tµ↵
!

= (1 �
↵)tµ

!

+ ↵t⌫
!

. Combining these with the definition of ⇠ 2 @2,!E(µ) gives

lim inf
↵!0

E(µ
↵

)� E(µ)

↵
� lim inf

↵!0

1

↵

Z
h⇠, tµ↵

!

� tµ
!

id!

= lim inf
↵!0

1

↵

Z
h⇠, (1� ↵)tµ

!

+ ↵t⌫
!

� tµ
!

id!

=

Z
h⇠, t⌫

!

� tµ
!

id!
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Sending ↵! 0 in equation (2.12) shows

E(⌫)� E(µ) �
Z
h⇠, t⌫

!

� tµ
!

id! +
�

2
W 2

!

(µ, ⌫) .

COROLLARY 2.6.9. Given E satisfying the conditions of Definition 2.6.5 with � �
0, µ is a minimizer for E if and only if 0 2 @2,!E(µ).

PROPOSITION 2.6.10 (W2,! subdi↵erential of W 2
2 (!, ·)). The W2,! subdi↵erential

of W 2
2 (!, ·) evaluated at µ contains the element 2(tµ

!

� id).

Proof.

W 2
2 (!, ⌫)�W 2

2 (!, µ) =

Z
|t⌫
!

� id|2d! �
Z

|tµ
!

� id|2d!

=

Z
|t⌫
!

� tµ
!

|2 + 2ht⌫
!

, tµ
!

i � 2ht⌫
!

, idi+ 2htµ
!

, idi � 2|tµ
!

|2d!

= W 2
2,!(µ, ⌫) +

Z
2ht⌫

!

, tµ
!

� idi+ 2htµ
!

, id� tµ
!

id!

= W 2
2,!(µ, ⌫) +

Z
2ht⌫

!

� tµ
!

, tµ
!

� idid!

By Proposition 2.6.8, this implies that 2(tµ
!

� id) 2 @2,!W 2
!

(!, µ).

Finally, if E has a strong subdi↵erential (Definition 2.5.4), E is subdi↵erentiable

with respect to W2,!.

LEMMA 2.6.11 (strong subdi↵erential vs. W2,! subdi↵erential). Given E satisfying

the conditions of Definition 2.5.4, if ⇠ 2 @E(µ) is a strong subdi↵erential, then ⇠ � tµ
!

2
@2,!E(µ).

Proof. If E has a strong subdi↵erential ⇠ at µ, ⇠ 2 L2(µ), hence ⇠ � tµ
!

2 L2(!).

Furthermore,

E(⌫)� E(µ) �
Z

Rd
h⇠, t⌫

!

� t!
µ

� ididµ+ o(||t⌫
!

� t!
µ

� id||
L

2(µ))

=

Z

Rd
h⇠ � tµ

!

, t⌫
!

� tµ
!

id! + o(W2,!(µ, ⌫)) 8⌫ .

Therefore, ⇠ � tµ
!

2 @2,!E(µ).
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2.7 Gradient Flow

With the notion of di↵erentiability defined in section 2.5, we may now define gradient

flow in the Wasserstein metric. We begin with some heuristic motivation, in analogy

with our treatment of Hilbert space gradient flow in section 1.1.

Following Ambrosio, Gigli, and Savaré [1, Chapters 1 and 8], we consider the fol-

lowing class of curves in P2,!0(Rd).

DEFINITION 2.7.1 (absolutely continuous curve). Given an open interval I ✓ R,

µ(t) : I ! P2,!0(Rd) is absolutely continuous if there exists m 2 L1(I) so that

W2(µ(t), µ(s)) 
Z

t

s

m(r)dr 8s, t 2 I s  t .

Likewise, µ(t) : Rd ! P2,µ0(Rd) is locally absolutely continuous if it is absolutely con-

tinuous on all bounded intervals.

By [1][Theorem 8.3.1], if µ(t) is absolutely continuous, there exists a Borel vector

field v(x, t) such that the continuity equation

@µ

@t
+r · (µv) = 0 ,

holds in the duality with C1
c

(Rd⇥I) and if we define |µ0|(t) = lim
s!t

W2(µ(t), µ(s))/|t�
s|,

v(x, t) 2 {r :  2 C1
c

(Rd)}L2(µ(t))
,

Z
|v(x, t)|2dµ(t) = |µ0|(t) , for a.e. t 2 I .

(2.13)

Motivated by this result, we now formally define the Wasserstein inner product and

gradient. We identify the tangent space at a measure µ with the space of absolutely

continuous curves µ : [0, 1] ! P2,!0(t) such that µ(0) = µ, and we suppose that the

corresponding velocity fields v(x, t) are given by r for  2 C1
c

(Rd), rather than

just the limit of such functions with respect to L2(µ(t)). With this, we define the

Wasserstein inner product at µ by

✓
@µ

@t
,
@µ̃

@t

◆

µ

:=

Z
r (x) ·r ̃(x)dµ . (2.14)
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This formal inner product induces the Wasserstein distance between two measures as

the minimum energy of all connecting curves [2],

W 2
2 (µ0, µ1) = inf

µ(t)

(Z 1

0

����
@µ

@t

����
2

µ(t)

dt : µ(0) = µ0, µ(1) = µ1,
@µ

@t
+r · (µv) = 0

)
.

Suppose µ(t) is a geodesic from µ0 to µ1 (Definition 2.3.1). Then µ(t) is absolutely

continuous, so by (2.13) its velocity field satisfies
R |v(x, t)|2dµ(t) = W2(µ1, µ0). Thus,

R 1
0 k@µ/@tk2

µ(t) dt =
R 1
0

R |v(x, t)|2dµ(t)dt = W2(µ0, µ1). Therefore, constant speed

geodesics are length minimizing geodesics.

In analogy with the Hilbert space gradient from Definition 1.1.1, we formally define

the gradient r
W2E(µ) with respect to the Wasserstein metric by

✓
r

W2E(µ),
@µ

@t

◆

µ

= lim
t!0

E(µ(t))� E(µ)

t
. (2.15)

In particular, when E is an integral functional of the form

E(µ) =

8
>><

>>:

R
Rd F (x, ⇢(x),r⇢(x))dx for µ = ⇢ dx, ⇢(x) 2 C1(Rd)

+1 otherwise,

(2.16)

for F su�ciently regular, the Wasserstein gradient of E may be expressed in terms of

the functional derivative �E

�µ

as

r
W2E(µ) = �r ·

✓
µr�E

�µ

◆
.

This pseudo-Riemannian structure of the Wasserstein metric was discovered by Otto.

Along with Jordan and Kinderlehrer, he demonstrated its great utility as a heuristic

tool for studying partial di↵erential equations [14, 20, 21]. Note that for an integral

functional of the form (2.16), the Wasserstein subdi↵erential is given by

@E(µ) =

⇢
r�E

�µ

�
.

Thus, while we identify the Wasserstein gradient of E with members of the tangent

space @µ

@t

, we identify the Wasserstein subdi↵erential with the corresponding velocity

field v(x, t) [1][Lemma 10.4.1].

With intuition from this formal perspective, we now turn to the rigorous definition

of gradient flow. Given the equivalence of the evolution variational inequality and the
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Hilbertian gradient flow (see Remark 1.2.9), we follow Ambrosio, Gilgi, and Savaré

and define the Wasserstein gradient flow via the analogous the evolution variational

inequality [1, Equation (4.0.3)].

DEFINITION 2.7.2 (gradient flow). Suppose E satisfies convexity assumption 2.1.2,

so E is �-convex for � 2 R. A locally absolutely continuous curve µ : (0,+1) !
P2,!0(Rd) is the gradient flow of a functional E with initial data µ 2 D(E) if µ(t)

t!0��! µ

and

1

2

d

dt
W 2

2 (µ(t),!) +
�

2
W 2

2 (µ(t),!)  E(!)� E(µ(t)), 8! 2 D(E), a.e. t > 0 . (2.17)

We will sometimes refer to µ(t) as the continuous gradient flow, to distinguish it from

the discrete gradient flow we define in the following section.

As in the Hilbertian case, the above definition of Wasserstein gradient flow in terms

of an evolution variational inequality is equivalent to a di↵erential definition [1, Lemma

10.4.1, Theorem 11.1.4]. In particular, µ(t) is a gradient flow of E according to Defini-

tion 2.7.2 if and only if µ(t)
t!0��! µ and its velocity field satisfies

v(x, t) 2 �@E(µ(t)) a.e. t > 0 .

If in addition E is an integral functional of the form (2.16), this is also equivalent to

d

dt
µ(t) = �r

W

E(µ(t)) ,

in the duality with C1
c

(Rd ⇥ (0,+1)).

2.8 Discrete Gradient Flow

Given a functional E, a time step ⌧ > 0, and µ, ⌫ 2 P2,!0(Rd) the quadratic perturbation

of E is

�(⌧, µ; ⌫) :=
1

2⌧
W 2

2 (µ, ⌫) + E(⌫) . (2.18)

The proximal set J
⌧

: P2,!0(Rd) ! 2P2,!0 (R
d) corresponding to E is

J
⌧

(µ) := argmin
⌫2P2,!0 (Rd)

⇢
1

2⌧
W 2

2 (µ, ⌫) + E(⌫)

�
. (2.19)
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We define J0(µ) := µ.

For the remainder of this section, we consider functionals that satisfy the convexity

assumption 2.1.2 for some � 2 R. In order to jointly consider the cases � � 0 and

� < 0, we define the negative part of �,

�� =

8
>><

>>:

�� if � < 0

0 if � � 0 .

In the case � � 0, we interpret 1
�

� = +1.

Suppose µ 2 D(E) and 0 < ⌧ < 1
�

� . (When � < 0, the size restriction 0 < ⌧ < 1
�

�

ensures that 0 < 1 + �⌧ < 1.) Then there exists a unique element in J
⌧

(µ) and the

proximal map J
⌧

: D(E) ! D(E) : µ 7! µ
⌧

is continuous [1, Theorem 4.1.2].

In [1, Theorem 3.1.6], Ambrosio, Gigli, and Savaré unite the notions of subdif-

ferential and proximal map through the following chain of inequalities. Recall that

|@E| : P2,!0 ! R [ {+1} is the metric slope—see Definition 2.5.1.

Theorem AGS1. Given E satisfying convexity assumption 2.1.2 and µ 2 D(|@E|)
and 0 < ⌧ < 1

�

� ,

⌧2|@E|2(µ
⌧

)  W 2
2 (µ, µ⌧

)  2⌧

1 + �⌧
(E(µ)� E(µ

⌧

)� 1

2⌧
W 2

2 (µ, µ⌧

))

 ⌧2

(1 + �⌧)2
|@E|2(µ) . (2.20)

The discrete gradient flow sequence with time step ⌧ is constructed via repeated

applications of the proximal map,

µ
n

= J
⌧

(µ
n�1) , µ0 2 D(E) .

We write Jn

⌧

to indicate n repeated applications of the proximal map, so that µ
n

= Jn

⌧

µ0.

2.9 Euler-Lagrange Equation

THEOREM 2.9.1 (Euler-Lagrange equation). Assume that E satisfies assumptions

2.1.1 and 2.1.2 and ! 2 D(E). Then for 0 < ⌧ < 1
�

� , ⌫ is the unique minimizer of the

quadratic perturbation �(⌧,!; ·), if and only if

1

⌧
(t!

⌫

� id) 2 @E(⌫) is a strong subdi↵erential. (2.21)
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Hence, !
⌧

is characterized by the fact that 1
⌧

(t!
!⌧

� id) 2 @E(!
⌧

).

We assume ! 2 D(E) and E satisfies domain assumption 2.1.1 to ease notation. See

section A.2 for how the assumption on ! can be relaxed to ! 2 D(E) and the domain

assumption can be removed.

Proof of Theorem 2.9.1. The fact that

⌫ minimizes �(⌧,!; ⌫) =) 1

⌧
(t!

⌫

� id) 2 @E(⌫) is a strong subdi↵erential

is proved in [1, Lemma 10.1.2] using a type of argument introduced by Otto [20, 21].

To see the other direction, note that if

1

⌧
(t!

⌫

� id) 2 @E(⌫) is a strong subdi↵erential

then by Lemma 2.6.11,
1

⌧
(id� t⌫

!

) 2 @2,!E(⌫) .

Combining Remark 2.6.7 and Proposition 2.6.10 shows

1

2⌧
2(t⌫

!

� id) +
1

⌧
(id� t⌫

!

) = 0 2 @2,!�(⌧,!; ⌫) .

SinceW 2
2 (!, ·) = W 2

2,!(!, ·) is 2-convex in theW2,! metric and E is �-convex in theW2,!

metric, �(⌧,!; ·) is
�
1
⌧

+ �
�
-convex in the W2,! metric, with

�
1
⌧

+ �
�
> 0. Therefore,

by Corollary 2.6.9, when 0 < ⌧ < 1
�

� , 0 2 @2,!�(⌧,!; ⌫), and ⌫ minimizes �(⌧,!; ·)

2.10 Discrete Variational Inequality

The notion of a discrete variational inequality was introduced in [1] to provide quan-

titative control over the discrete gradient flow for functionals that are convex along

generalized geodesics. This inequality follows from the fact that if E is �-convex along

generalized geodesics, then for all µ 2 D(E), 0 < ⌧ < 1
�

� , ⌫ 7! �(⌧, µ; ⌫) is (1/⌧ + �)-

convex along generalized geodesics with base µ. In particular, this inequality is an

“above the tangent line” or Talagrand inequality for the convex function �.
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THEOREM AGS2. Given E satisfying convexity assumption 2.1.2, for all 0 < ⌧ <

1
�

� , µ 2 D(E), and ⌫ 2 D(E),

1

2h
[W 2

2 (µh

, ⌫)�W 2
2 (µ, ⌫)] +

�

2
W 2

2 (µh

, ⌫)  E(⌫)� E(µ
h

)� 1

2h
W 2

2 (µ, µh

) (2.22)

For our purposes, we require not only control of the Wasserstein metric along the

discrete gradient flow, but also control over transport metrics along discrete gradient

flow. Luckily, the convexity of E along generalized geodesics implies something slightly

stronger than Theorem AGS2. In particular, we may obtain an “above the tangent

line” inequality for � with respect to the W2,µ transport metric.

In the next theorem, we assume the base point µ << Ld so that the transport

metric W2,µ is well defined by Definition 2.6.2. As before, this assumption is only for

ease of notation, and we describe how to remove it in section A.2.

THEOREM 2.10.1 (discrete variational inequality). Suppose E satisfies convexity

assumption 2.1.2. Then for all µ 2 D(E) and ⌫ 2 D(E),

1

2⌧
[W 2

2,µ(µ⌧

, ⌫)�W 2
2 (µ, ⌫)] +

�

2
W 2

2,µ(µ⌧

, ⌫)  E(⌫)� E(µ
⌧

)� 1

2⌧
W 2

2 (µ, µ⌧

)

or, equivalently,

(1 + �⌧)W 2
2,µ(µ⌧

, ⌫)�W 2
2 (µ, ⌫)  2⌧


E(⌫)� E(µ

⌧

)� 1

2⌧
W 2

2 (µ, µ⌧

)

�

Proof. The following proof is nearly identical to [1, Theorem 4.1.2 (ii)], except for

the use of the transport metric W2,µ. By the convexity of E and 1
2⌧W

2
2 (·, µ) along

generalized geodesics with base µ, the functional ⌫ 7! �(⌧, µ; ⌫) is convex in the W2,µ

transport metric. Thus, for any generalized geodesic µ
↵

from µ
⌧

to ⌫ with base µ, since

µ
⌧

is the minimizer of �(⌧, µ; ·),

�(⌧, µ;µ
⌧

)  �(⌧, µ;µ
↵

)  (1�↵)�(⌧, µ;µ
⌧

)+↵�(⌧, µ; ⌫)� 1 + �⌧

2⌧
↵(1�↵)W 2

2,µ(µ⌧

, ⌫) .

Rearranging and dividing by ↵,

0  �(⌧, µ; ⌫)� �(⌧, µ;µ
⌧

)� 1 + �⌧

2⌧
(1� ↵)W 2

2,µ(µ⌧

, ⌫) .

Sending ↵! 0 and expanding � according to its definition gives the result.
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Chapter 3

Exponential Formula for the Wasserstein Metric

Given E satisfying convexity assumption 2.1.2, we aim to show that, as the time step

goes to zero, the discrete gradient flow converges to the continuous gradient flow

lim
n!1 Jn

t/n

µ = µ(t) . (3.1)

The key di�culty in showing (3.1) lies in proving that the limit exists. We accomplish

this via a Crandall and Liggett type method, using recursive inequalities to prove the

sequence is Cauchy and then invoking the completeness of W2 [1, Prop 7.1.5].

First we consider initial data µ 2 D(|@E|). In section 3.6, we extend our results to

µ 2 D(E).

3.1 Almost Contraction Inequality

In this subsection, we use the discrete variational inequality Theorem AGS2 to prove an

almost contraction inequality for the discrete gradient flow. (Theorem AGS2 is su�cient

for this purpose—we use the stronger discrete variational inequality of Theorem 2.10.1

in a later section.)

Our approach is similar to previous work of Carlen and the author [6], though instead

of symmetrizing the contraction inequality, we leave the inequality in an asymmetric

form that is more compatible with the asymmetric induction in sections 3.3 and 3.4.

The asymmetry is useful a second time when we consider gradient flow with initial

conditions ⌫ 2 D(E)—see section 3.6.

For the �  0 case, we follow the proof of [1, Lemma 4.2.4]. For the � > 0 case, we

use a new approach. In this case, we rely on the fact that � > 0 implies E is bounded

below [1, Lemma 2.4.8].
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THEOREM 3.1.1 (almost contraction inequality). Suppose E satisfies convexity as-

sumption 2.1.2, µ 2 D(|@E|), and ⌫ 2 D(E). If � > 0, then for all ⌧ > 0,

(1 + �⌧)2W 2
2 (µ⌧

, ⌫
⌧

)  W 2
2 (µ, ⌫) + ⌧2|@E|2(µ) + 2�⌧2 [E(⌫)� inf E] (3.2)

If �  0, then for all 0 < ⌧ < � 1
�

,

(1 + �⌧)2W 2
2 (µ⌧

, ⌫
⌧

)  W 2
2 (µ, ⌫) + ⌧2|@E|2(µ) . (3.3)

When � > 0, (1+ �⌧)2 may be large, and we must compensate with extra terms on

the right hand side of (3.2) that are not needed when �  0.

Proof. By Theorem AGS2, recalled for the reader’s convenience in section 2.10,

(1 + �⌧)W 2
2 (µ⌧

, ⌫
⌧

)�W 2
2 (µ, ⌫⌧ )  2⌧

✓
E(⌫

⌧

)� E(µ
⌧

)� 1

2⌧
W 2

2 (µ, µ⌧

)

◆
, (3.4)

(1 + �⌧)W 2
2 (⌫⌧ , µ)�W 2

2 (⌫, µ)  2⌧

✓
E(µ)� E(⌫

⌧

)� 1

2⌧
W 2

2 (⌫, ⌫⌧ )

◆
. (3.5)

Consider the case � > 0. Dropping the � 1
2⌧W

2
2 (⌫, ⌫⌧ ) term from (3.5), dividing by

(1 + �⌧), and adding to (3.4) gives

(1 + �⌧)W 2
2 (µ⌧

, ⌫
⌧

)� 1

1 + �⌧
W 2

2 (µ, ⌫)

 2⌧

✓
E(⌫

⌧

)� 1

1 + �⌧
E(⌫

⌧

) +
1

1 + �⌧
E(µ)� E(µ

⌧

)� 1

2⌧
W 2

2 (µ, µ⌧

)

◆

(1 + �⌧)2W 2
2 (µ⌧

, ⌫
⌧

)�W 2
2 (µ, ⌫)

 2⌧

✓
(1 + �⌧)E(⌫

⌧

)� E(⌫
⌧

) + E(µ)� (1 + �⌧)


E(µ

⌧

) +
1

2⌧
W 2

2 (µ, µ⌧

)

�◆

Since � > 0, E is bounded below [1, Lemma 2.4.8]. Applying Theorem AGS1 and the

fact that E(µ
⌧

)  E(µ), we have

(1 + �⌧)2W 2
2 (µ⌧

, ⌫
⌧

)�W 2
2 (µ, ⌫)  2�⌧2E(⌫

⌧

) +
⌧2

1 + �⌧
|@E|2(µ)� 2�⌧2 inf E

 ⌧2|@E|2(µ) + 2�⌧2 [E(⌫)� inf E] ,

which gives the result.
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Now consider the case �  0. Adding (3.4) and (3.5) and then applying Theorem

AGS1 gives

(1 + �⌧)W 2
2 (µ⌧

, ⌫
⌧

)�W 2
2 (⌫, µ) + �⌧W 2

2 (⌫⌧ , µ)

 2⌧


E(µ)� E(µ

⌧

)� 1

2⌧
W 2

2 (µ, µ⌧

)

�
�W 2

2 (⌫, ⌫⌧ )

 ⌧2

1 + �⌧
|@E|2(µ)�W 2

2 (⌫, ⌫⌧ ) . (3.6)

Since for a, b > 0 and 0 < ✏ < 1, the convex function

�(✏) :=
a2

✏
+

b2

1� ✏

has the minimum value (a+ b)2, attained at ✏ = a/(a+ b), we have

(a+ b)2  a2

✏
+

b2

1� ✏
.

Consequently, with ✏ := ��⌧ , we obtain

W 2
2 (⌫⌧ , µ)  (W2(⌫⌧ , ⌫) +W2(⌫, µ))

2  � 1

�⌧
W 2

2 (⌫⌧ , ⌫) +
1

1 + �⌧
W 2

2 (⌫, µ) . (3.7)

Multiplying by ��⌧ , summing with (3.6), multiplying the total by (1 + �⌧), and using

the fact that ��⌧ < 1, we obtain

(1 + �⌧)2W 2
2 (µ⌧

, ⌫
⌧

)  W 2
2 (µ, ⌫) + ⌧2|@E|2(µ) ,

which gives the result.

3.2 Relation Between Proximal Maps with Di↵erent Time Steps

We now apply the Euler-Lagrange equation, Theorem 2.9.1, to prove a theorem relating

the proximal map with a large time step ⌧ to the proximal map with a small time step

h. Assumption 2.1.1 is purely for notational convenience. See Theorem A.2.7 for the

general case.

THEOREM 3.2.1. Suppose E satisfies assumptions 2.1.1 and 2.1.2. Then if µ 2
D(E) and 0 < h  ⌧ < 1

�

� ,

J
⌧

µ = J
h

✓
⌧ � h

⌧
tµ⌧
µ

+
h

⌧
id

◆
#µ

�
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Figure 3.1: The Hilbertian analogue of Theorem 3.2.1 can be stated as follows: if v
is the point on the geodesic from u to J

⌧

u at time ⌧�h

⌧

(i.e. v = ⌧�h

⌧

J
⌧

u + h

⌧

u) then
J
⌧

u = J
h

v.

We may restate the above theorem in terms of the nth step of the discrete gradient

flow as follows.

COROLLARY 3.2.2. Under the assumptions of the previous theorem, if µ 2 D(E),

n � 1,

Jn

⌧

µ = J
⌧

(Jn�1
⌧

µ) = J
h

✓
⌧ � h

⌧
tJ

n
⌧ µ

J

n�1
⌧ µ

+
h

⌧
id

◆
#Jn�1

⌧

µ

�
.

Proof of Theorem 3.2.1. By Theorem 2.9.1,

⇠ :=
1

⌧
(tµ

µ⌧
� id) 2 @E(µ

⌧

)

is a strong subdi↵erential. Next, since h/⌧ < 1,

(id+ h⇠) =

✓
id+

h

⌧
(tµ

µ⌧
� id)

◆
=

✓
⌧ � h

⌧
id+

h

⌧
tµ
µ⌧

◆
. (3.8)

is cyclically monotone. Consequently, if we define ⌫ := (id + h⇠)#µ
⌧

, the transport

map is the optimal transport map, t⌫
µ⌧

= id+ h⇠. Rearranging shows

1

h
(t⌫

µ⌧
� id) = ⇠ 2 @E(µ

⌧

) ,

so by a second application of Theorem 2.9.1, µ
⌧

= ⌫
h

.

We now rewrite ⌫ as it appears in the theorem. By equation (3.8), (id + h⇠) =
�
⌧�h

⌧

id+ h

⌧

tµ
µ⌧

�
=
�
⌧�h

⌧

tµ⌧
µ

+ h

⌧

id
��tµ

µ⌧ . Thus, ⌫ = (id+h⇠)#µ
⌧

=
�
⌧�h

⌧

tµ⌧
µ

+ h

⌧

id
�
#µ.
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After proving Theorem 3.2.1, we discovered another proof of the same result in

[15, 17]. It is non-variational and quite di↵erent from the proof given above, and we

hope our proof is of independent interest.

3.3 Asymmetric Recursive Inequality

The following inequality bounds the Wasserstein distance between discrete gradient

flow sequences with di↵erent time steps in terms of a convex combination of earlier

elements of the sequences, plus a small error term.

Figure 3.2: The recursive inequality in Theorem 3.3.1 is asymmetric: the (n,m)th term
is controlled in terms of the (n� 1,m� 1)th term and the (n,m� 1)th term.

A fundamental di↵erence between Crandall and Liggett’s recursive inequality and

Theorem 3.3.1 is that the former involves the distance while the latter involves the

square distance. (This is a consequence of the fact that our contraction inequality

Theorem 3.1.1 involves the square distance plus error terms.) Therefore, where Crandall

and Liggett are able to use the triangle inequality, we have to use the convexity of the

square transport metrics. The bulk of the proof is devoted to passing from the transport

metrics back to the Wasserstein metric.

THEOREM 3.3.1 (asymmetric recursive inequality). Suppose E satisfies convexity

assumption 2.1.2 and µ 2 D(|@E|). If 0 < h  ⌧ < 1
�

� ,

(1� ��h)2W 2
2 (J

n

⌧

µ, Jm

h

µ)  h

⌧
(1� ��⌧)�1W 2

2 (J
n�1
⌧

µ, Jm�1
h

µ)

+
⌧ � h

⌧
W 2

2 (J
n

⌧

µ, Jm�1
h

µ) + 2h2(1� ��h)�2m|@E|2(µ) .
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To consider � � 0 and � < 0 jointly in the following theorem, we replace � by ���:
any function that is � convex is also ��� convex.

Proof. To simplify notation, we abbreviate Jn

⌧

µ by Jn and Jm

h

µ by Jm. First, note

that

(1� ��h)2W 2
2 (J

n, Jm)

= (1� ��h)2W 2
2 (Jh(µ

J

n�1!J

n

⌧�h
⌧

), Jm) by Theorem 3.2.1

 W 2
2 (µ

J

n�1!J

n

⌧�h
⌧

, Jm�1) + h2|@E|2(Jm�1) by Theorem 3.1.1

 W 2
2,Jn�1(µJ

n�1!J

n

⌧�h
⌧

, Jm�1) + h2|@E|2(Jm�1)

By Proposition 2.6.4, the W2,Jn�1 metric is convex along generalized geodesics with

base Jn�1. In particular, it is convex along the geodesic µJ

n�1!J

n

⌧�h
⌧

, which gives

(1� ��h)2W 2
2 (J

n, Jm)  h

⌧
W 2

2,Jn�1(Jn�1, Jm�1) +
⌧ � h

⌧
W 2

2,Jn�1(Jn, Jm�1)

+ h2|@E|2(Jm�1) . (3.9)

The first term on the right hand side coincides with the standard Wasserstein met-

ric. To control the second term, we use the stronger version of the discrete varia-

tional inequality Theorem 2.10.1. Specifically, replacing (µ, ⌫) in Theorem 2.10.1 with

(Jm�1, Jn) and (Jn�1, Jm�1) gives

(1� ��h)W 2
2,Jm�1(Jm, Jn)�W 2

2 (J
m�1, Jn)

 2h


E(Jn)� E(Jm)� 1

2h
W 2

2 (J
m�1, Jm)

�

(1� ��⌧)W 2
2,Jn�1(Jn, Jm�1)�W 2

2 (J
n�1, Jm�1)

 2⌧


E(Jm�1)� E(Jn)� 1

2⌧
W 2

2 (J
n�1, Jn)

�

Multiplying the first inequality by ⌧ , the second inequality by h, adding them together,
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and then applying Theorem AGS1 gives

⌧(1� ��h)W 2
2,Jm�1(Jm, Jn) + h(1� ��⌧)W 2

2,Jn�1(Jn, Jm�1)

 ⌧W 2
2 (J

m�1, Jn) + hW 2
2 (J

n�1, Jm�1)

+ 2⌧h


E(Jm�1)� E(Jm)� 1

2h
W 2

2 (J
m�1, Jm)

�
� hW 2

2 (J
n�1, Jn)

 ⌧W 2
2 (J

m�1, Jn) + hW 2
2 (J

n�1, Jm�1) +
⌧h2

1� ��h
|@E|2(Jm�1)� hW 2

2 (J
n�1, Jn) .

(3.10)

As in equation (3.7) we have,

��⌧W 2
2,Jn�1(Jm�1, Jn)  W 2

2 (J
n, Jn�1) +

��⌧
1� ��⌧

W 2
2 (J

n�1, Jm�1) .

Multiplying this by h and adding it to (3.10) gives

⌧(1� ��h)W 2
2,Jm�1(Jm, Jn) + hW 2

2,Jn�1(Jn, Jm�1)

 ⌧W 2
2 (J

m�1, Jn) +
h

1� ��⌧
W 2

2 (J
n�1, Jm�1) +

⌧h2

1� ��h
|@E|2(Jm�1) .

Rearranging and dividing by h gives the upper bound

W 2
2,Jn�1(Jm�1, Jn)  ⌧

h

⇣
W 2

2 (J
m�1, Jn)� (1� ��h)W 2

2,Jm�1(Jm, Jn)
⌘

+
1

1� ��⌧
W 2

2 (J
n�1, Jm�1) +

⌧h

1� ��h
|@E|2(Jm�1) . (3.11)

We now combine this with equation (3.9) to prove the theorem. Substituting (3.11)

into (3.9) and using �(1� ��h)  �(1� ��h)2 gives

(1� ��h)2W 2
2 (J

n, Jm)

 h

⌧
W 2

2 (J
n�1, Jm�1) + h2|@E|2(Jm�1)

+
⌧ � h

⌧

h⌧
h

�
W 2

2 (J
m�1, Jn)� (1� ��h)2W 2

2 (J
m, Jn)

�

+
1

1� ��⌧
W 2

2 (J
m�1, Jn�1) +

⌧h

1� ��h
|@E|2(Jm�1)

�
.

Simplifying and rearranging,

⌧

h
(1� ��h)2W 2

2 (J
n, Jm)


✓
h

⌧
+

⌧ � h

⌧(1� ��⌧)

◆
W 2

2 (J
n�1, Jm�1) +

⌧ � h

h
W 2

2 (J
n, Jm�1) + h2|@E|2(Jm�1)

+
⌧h

1� ��h
|@E|2(Jm�1) .
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Therefore,

(1� ��h)2W 2
2 (J

n, Jm)

 h

⌧

1� ��h
1� ��⌧

W 2
2 (J

n�1, Jm�1) +
⌧ � h

⌧
W 2

2 (J
n, Jm�1) +


h3

⌧
+

h2

1� ��h

�
|@E|2(Jm�1)

 h

⌧

1

1� ��⌧
W 2

2 (J
n�1, Jm�1) +

⌧ � h

⌧
W 2

2 (J
n, Jm�1) +

2h2

1� ��h
|@E|2(Jm�1) ,

since 0 < h  ⌧  1
�

� .

Finally, applying Theorem AGS1 and the fact that (1���h)�1  (1���h)�2 gives

the result:

(1� ��h)2W 2
2 (J

n, Jm)

 h

⌧

1

1� ��⌧
W 2

2 (J
n�1, Jm�1) +

⌧ � h

⌧
W 2

2 (J
n, Jm�1) + 2h2(1� ��h)�2m|@E|2(µ) .

3.4 Inductive Bound

The following inductive bound follows the simplification of Crandall and Liggett’s

method introduced by Rasmussen [23, 28]. A key di↵erence is that, in the Banach

space case, one works with the distance, rather than the square distance. While this

complicated matters in the previous theorem, in simplifies the induction in the following

theorem.

We begin by bounding the distance between the 0th and nth terms of the discrete

gradient flow.

LEMMA 3.4.1. Given E as in Assumption 2.1.2 and µ 2 D(|@E|), for all 0 < ⌧ < 1
�

�

W2(J
n

⌧

µ, µ)  n⌧

(1� ⌧��)n
|@E(µ)|

Proof. This is follows from the triangle inequality, Theorem AGS1, and the inequalities

1
1+⌧�

 1
1�⌧�

� and 1  1
1�⌧�

� .

W2(J
n

⌧

µ, µ) 
nX

i=1

W2(J
i

⌧

µ, J i�1
⌧

µ) 
nX

i=1

⌧

1 + ⌧�
|@E(J i�1

⌧

µ)|


nX

i=1

⌧

(1 + ⌧�)i
|@E(µ)|  n⌧

(1� ⌧��)n
|@E(µ)| .
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THEOREM 3.4.2 (a Rasmussen type inductive bound). Suppose E satisfies convexity

assumption 2.1.2. Then if µ 2 D(|@E|) and 0 < h  ⌧ < 1
�

� ,

W 2
2 (J

n

⌧

µ, Jm

h

µ)  ⇥(n⌧ �mh)2 + ⌧hm+ 2⌧2n
⇤
(1� ��⌧)�2n(1� ��h)�2m|@E|2(µ) .

(3.12)

Proof. We proceed by induction. The base case, when either n = 0 or m = 0, follows

from the linear growth estimate Lemma 3.4.1. We assume the inequality holds for

(n� 1,m) and (n,m) and show that this implies it holds for (n,m+ 1).

First, we apply the Asymmetric Recursive Inequality, Theorem 3.3.1,

(1� ��h)2W 2
2 (J

n

⌧

µ, Jm+1
h

µ)

 h

⌧
(1� ��⌧)�1W 2

2 (J
n�1
⌧

µ, Jm

h

µ)

+
⌧ � h

⌧
W 2

2 (J
n

⌧

µ, Jm

h

µ) + 2h2(1� ��h)�2(m+1)|@E|2(µ) .

Next, we divide by (1� ��h)2 and apply the inductive hypothesis.

W 2
2 (J

n

⌧

µ, Jm+1
h

µ)


⇢
h

⌧

⇥
((n� 1)⌧ �mh)2 + ⌧hm+ 2⌧2(n� 1)

⇤
(1� ��⌧)�2(n�1)�1

+
⌧ � h

⌧

⇥
(n⌧ �mh)2 + ⌧hm+ 2⌧2n

⇤
(1� ��⌧)�2n

�
(1� ��h)�2(m+1)|@E(µ)|2

+ 2h2(1� ��h)�2(m+1)�2|@E|2(µ) .

To control the first term, note that (1���⌧)�2(n�1)�1 = (1���⌧)�2n+1 < (1���⌧)�2n

and

⇥
((n� 1)⌧ �mh)2 + ⌧hm+ 2⌧2(n� 1)

⇤

=
⇥
(n⌧ �mh)2 � 2(n⌧ �mh)⌧ + ⌧2 + ⌧hm+ 2⌧2(n� 1)

⇤
.

To control the third term, note that since 0 < h  ⌧  1
�

� ,

(1� ��h)�2  (1� ��⌧)�2  (1� ��⌧)�2n .

Using these estimates, we may group together the three terms and obtain the following
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bound.

W 2
2 (J

n

⌧

µ, Jm+1
h

µ)


⇢
h

⌧

⇥
(n⌧ �mh)2 � 2(n⌧ �mh)⌧ + ⌧2 + ⌧hm+ 2⌧2(n� 1)

⇤

+
⌧ � h

⌧

⇥
(n⌧ �mh)2 + ⌧hm+ 2⌧2n

⇤
+ 2h2

�
(1� ��⌧)�2n(1� ��h)�2(m+1)|@E|2(µ) .

We now consider the convex combination (plus an additional 2h2 term) within the

brackets.

h

⌧

⇥
(n⌧ �mh)2 � 2(n⌧ �mh)⌧ + ⌧2 + ⌧hm+ 2⌧2(n� 1)

⇤

+
⌧ � h

⌧

⇥
(n⌧ �mh)2 + ⌧hm+ 2⌧2n

⇤
+ 2h2

=
h

⌧

⇥
(n⌧ �mh)2 + ⌧hm+ 2⌧2n

⇤

+
⌧ � h

⌧

⇥
(n⌧ �mh)2 + ⌧hm+ 2⌧2n

⇤
+

h

⌧

⇥�2(n⌧ �mh)⌧ � ⌧2
⇤
+ 2h2

=
⇥
(n⌧ �mh)2 + ⌧hm+ 2⌧2n

⇤� 2(n⌧ �mh)h� ⌧h+ 2h2

= (n⌧ �mh)2 � 2(n⌧ �mh)h+ ⌧hm� ⌧h+ 2⌧2n+ 2h2

= (n⌧ � (m+ 1)h)2 + h2 + ⌧h(m+ 1)� ⌧h+ 2⌧2n

 (n⌧ � (m+ 1)h)2 + ⌧h(m+ 1) + 2⌧2n .

Therefore,

W 2
2 (J

n

⌧

µ, Jm+1
h

µ)

 ⇥(n⌧ � (m+ 1)h)2 + ⌧h(m+ 1) + 2⌧2n
⇤
(1� ��⌧)�2n(1� ��h)�2(m+1)|@E|2(µ) .

3.5 Exponential Formula for the Wasserstein Metric

We now combine our previous results to prove the exponential formula for the Wasser-

stein metric.

THEOREM 3.5.1 (exponential formula). Suppose E satisfies convexity assumption

2.1.2. For µ 2 D(|@E|), t � 0, the discrete gradient flow sequence Jn

t/n

µ converges as
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n ! 1. Denote the limit by µ(t). The convergence is uniform in t on compact subsets

of [0,+1), and when n � 2��t, the distance between Jn

t/n

and µ(t) is bounded by

W2(J
n

t/n

µ, µ(t)) 
p
3

tp
n
e3�

�
t|@E|(µ) . (3.13)

REMARK 3.5.2 (range of S(t)). Given µ 2 D(|@E|), we may use the fact that |@E|
is lower semicontinuous [1, Corollary 2.4.10] and Theorem AGS1 to conclude

|@E|(µ(t))  lim inf
n!1 |@E|(Jn

t/n

µ)  lim inf
n!1 (1� ��t/n)�n|@E|(µ) = e�

�
t|@E|(µ) .

Therefore, µ(t) 2 D(|@E|).

We have shown W2(Jn

t/n

µ, µ(t))  O(n�1/2), which agrees with the rate Crandall

and Liggett obtained in a Banach space [11]. By a di↵erent method, Ambrosio, Gigli,

and Savaré showed W2(Jn

t/n

µ, µ(t))  O(n�1) [1, Theorem 4.0.4], which agrees with the

optimal rate in a Hilbert space [24]. Our rate improves upon the rate obtained by

Clément and Desch [10], d(Jn

t/n

µ, µ(t))  O(n�1/4), though they considered the more

general case of gradient flow on a metric space (X, d). Still, they also required that �

be ( 1
⌧

+ �) convex.

Though we do not obtain the optimal rate of convergence, we demonstrate that

Crandall and Liggett’s approach extends to the Wasserstein metric, providing a simple

and robust route to the exponential formula and properties of continuous gradient flow.

This brings together the Banach space theory with the Wasserstein theory, and it is

hoped that this method will help extend the abstract theory of Wasserstein gradient

flow to a broader class of functionals.

REMARK 3.5.3 (varying time steps). For any partition of the interval [0, t] into n

time steps ⌧1, . . . , ⌧n, the corresponding discrete gradient flow with varying time steps

⇧n

i=1J⌧iµ converges to µ(t) as the maximum step size goes to zero. See section A.1.

Our estimates lead to a simple proof of the fact that µ(t) is a �-contracting semi-

group, as originally shown in [1, Proposition 4.3.1].

THEOREM 3.5.4 (S(t) is a �-contracting semigroup). Given E satisfying convexity

assumption 2.1.2, the function S(t) on [0,+1),

S(t) : D(|@E|) ! D(|@E|) : µ 7! µ(t)



49

is a �-contracting semigroup, i.e.

(i) lim
t!0 S(t)µ = S(0)µ = µ

(ii) S(t+ s) = S(t)S(s)µ for t, s � 0

(iii) W2(S(t)µ, S(t)⌫)  e��tW2(µ, ⌫)

Next, we apply the semigroup property (ii) to conclude that E(µ(t)) is nonincreas-

ing.

COROLLARY 3.5.5. For all µ 2 D(|@E|), E(µ(t)) is non-increasing for t 2 [0,+1).

Combining the previous results, we prove that S(t) is the continuous gradient flow,

in the sense of Definition 2.7.2.

THEOREM 3.5.6 (µ(t) is the continuous gradient flow). Given E satisfying convexity

assumption 2.1.2 and µ 2 D(|@E|), µ(t) is the continuous gradient flow for E with

initial conditions µ. Furthermore,

W2(µ(t), µ(s))  |t� s|e��
te�

�
s|@E|(µ) , (3.14)

so µ(t) is locally Lipschitz on [0,+1).

Finally, we use our method to give a simple proof of the energy dissipation inequality,

which shows the regularizing e↵ect of the gradient flow.

COROLLARY 3.5.7 (Energy Dissipation Inequality). Given E satisfying convexity

assumption 2.1.2 and µ 2 D(|@E|), for all t0, t1 � 0,

Z
t1

t0

|@E|2(µ(s))ds  E(µ(t0))� E(µ(t1)) .

We now turn to the proofs of these results.

Proof of Theorem 3.5.1. By Theorem 3.4.2, for fixed t � 0, if we define ⌧ := t

n

, h := t

m

,

with m � n > 2t��, so 0  h  ⌧ < 1
2�� ,

W 2
2 (J

n

t/n

µ, Jm

t/m

µ)  3
t2

n
(1� ��t/n)�2n(1� ��t/m)�2m|@E|2(µ)  3

t2

n
e8�

�
t|@E|2(µ) .

(3.15)
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In the second inequality, we use that (1 � ↵)�1  e2↵ for ↵ 2 [0, 1/2]. Thus, the

sequence Jn

t/n

µ is Cauchy, and lim
n!1 Jn

t/n

µ exists. The estimate (3.15) shows that the

convergence is uniform in t on compact subsets of [0,+1). If µ(t) denotes the limit,

then sending m ! 1 in the first inequality of (3.15) gives the error estimate

W 2
2 (J

n

t/n

µ, S(t)µ)  3
t2

n
e6�

�
t|@E|2(µ) . (3.16)

Proof of Theorem 3.5.4.

(i) follows from Lemma 3.4.1, since

W2(S(t)µ, µ) = lim
n!1W2(J

n

t/n

µ, µ)  lim
n!1

t

(1� ��t/n)n
|@E(µ)| = te�

�
t|@E(µ)| t!0��! 0 .

We now turn to the contraction property (iii). Our proof of the � > 0 case is new,

using the almost contraction inequality, Theorem 3.1.1. For completeness, we recall the

proof of [1, Proposition 4.3.1], which shows the �  0 case.

Iterating the contraction inequality from Theorem 3.1.1 for � > 0 and applying

Theorem AGS1,

W 2
2 (J

n

t/n

µ, Jn

t/n

⌫)  (1 + �(t/n))�2nW 2
2 (µ, ⌫)

+
nX

i=1

(t/n)2

(1 + �(t/n))2i

⇣
|@E|2(Jn�i

t/n

µ) + 2�
h
E(Jn�i

t/n

⌫)� inf E
i⌘

 (1 + �(t/n))�2nW 2
2 (µ, ⌫)

+ n(t/n)2
�|@E|2(µ) + 2� [E(⌫)� inf E]

�
. (3.17)

Likewise, for �  0, n > �t�, we have

W 2
2 (J

n

t/n

µ, Jn

t/n

⌫)  (1 + �(t/n))�2nW 2
2 (µ, ⌫) +

nX

i=1

(t/n)2

(1 + �(t/n))2i
|@E|2(Jn�i

t/n

µ)

 (1 + �(t/n))�2nW 2
2 (µ, ⌫) +

n(t/n)2

(1 + �(t/n))2n
|@E|2(µ) . (3.18)

Sending n ! 1 in both cases shows

W 2
2 (S(t)µ, S(t)⌫)  e�2�tW 2

2 (µ, ⌫) .
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We now prove the semigroup property (ii). First, we show that S(t)mµ = S(mt)µ

for fixed m 2 N. To consider � � 0 and � < 0 jointly, we replace � by ���  0, since

any function that is � convex is also ��� convex.

First, note that

W2(S(t)
mµ, (Jn

t/n

)mµ) = W2(S(t)
mµ, Jn

t/n

(Jn

t/n

)m�1µ)

 W2(S(t)
mµ, Jn

t/n

S(t)m�1µ) +W2(J
n

t/n

S(t)m�1µ, Jn

t/n

(Jn

t/n

)m�1µ)

(3.19)

Remark 3.5.2 ensures S(t)m�1µ 2 D(|@E|), so by Theorem 3.5.1, Jn

t/n

S(t)m�1µ
n!1���!

S(t)mµ. Consequently, we may choose n large enough so that the first term is arbitrarily

small for fixed m 2 N.

We bound the second term in (3.19) using (3.18). By Remark 3.5.2, |@E|2(S(t)m�1µ) 
e2(m�1)��

t|@E|2(µ). Therefore,

W 2
2 (J

n

t/n

S(t)m�1µ, Jn

t/n

(Jn

t/n

)m�1µ)

 (1� ��(t/n))�2nW 2
2 (S(t)

m�1µ, (Jn

t/n

)m�1µ) +
n(t/n)2e2(m�1)��

t

(1� ��(t/n))2n
|@E|2(µ) .

Thus, taking square roots of both sides and combining with (3.19) shows that for all

✏ > 0, these exists n large enough so that

W2(S(t)
mµ, (Jn

t/n

)mµ)  ✏+ e4�
�
tW2(S(t)

m�1µ, (Jn

t/n

)m�1µ) .

Iterating this shows that for n large enough

W2(S(t)
mµ, (Jn

t/n

)mµ)  ✏
m�1X

i=0

e4i�
�
t + e4m�

�
tW2(µ, µ)  ✏

⇣
me2(m�1)��

t

⌘
. (3.20)

We now apply this to show S(t)mµ = S(mt)µ. By the triangle inequality,

W2(S(t)
mµ, S(mt)µ)  W2(S(t)

mµ, (Jn

t/n

)mµ) +W2((J
n

t/n

)mµ, S(mt)µ) .

The first term can be made arbitrarily small by (3.20). Since W2((Jn

t/n

)mµ, S(mt)µ) =

W2((Jnm

tm/nm

)µ, S(mt)µ), by Theorem 3.5.1 we may choose n large so the second term

is arbitrarily small. Therefore, S(t)mµ = S(mt)µ.
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This shows shows that for any l, k, r, s 2 N,

S

✓
l

k
+

r

s

◆
µ = S

✓
ls+ rk

ks

◆
µ =


S

✓
1

ks

◆�
ls+rk

µ

=


S

✓
1

ks

◆�
ls


S

✓
1

ks

◆�
rk

µ = S

✓
l

k

◆
S
⇣r
s

⌘
µ .

Since S(t)µ is continuous in t 2 [0,+1), S(t+ s)µ = S(t)S(s)µ for all t, s � 0.

Proof of Corollary 3.5.5. For t � 0, the lower semicontinuity of E and definition of the

proximal map (2.19) imply

E(S(t)µ)  lim inf
n!1 E(Jn

t/n

µ)  lim inf
n!1 E(µ) = E(µ) .

The result then follows from the semigroup property, Theorem 3.5.4 (ii).

Proof of Theorem 3.5.6. First, we show that S(t)µ is locally Lipschitz continuous in t.

Given t, s � 0, define ⌧ := t

n

, h := s

m

for m and n large enough so that 0  h  ⌧ < 1
�

� .

By Theorem 3.4.2,

W 2
2 (J

n

t/n

µ, Jm

s/m

µ) 

(t� s)2 +

ts

n
+ 2

t2

n

�
(1� ��t/n)�2n(1� ��s/m)�2m|@E|2(µ) .

(3.21)

Sending n,m ! 1 and taking the square root of both sides gives

W2(S(t)µ, S(s)µ)  |t� s|e��
te�

�
s|@E|(µ) . (3.22)

We now turn to the proof that S(t)µ is the continuous gradient flow for E with

initial conditions µ in the sense of Definition 2.7.2. We already showed S(t)µ
t!0��! µ in

part (i) of Theorem 3.5.4, so it remains to show that S(t)µ satisfies (2.17).

Iterating Theorem AGS2 with ⌧ = t/n < 1
�

� shows that for all ! 2 D(E),

(1 + �t/n)nW 2
2 (J

n

t/n

µ,!)  W 2
2 (µ,!) + 2(t/n)

nX

i=1

[E(!)� E(J i

t/n

µ)](1 + �t/n)i�1

(3.23)

Consider the piecewise constant function

g
n

(s) := [E(J i

t/n

µ)� E(!)](1 + �t/n)i�1 for s 2 ((i� 1)t/n, it/n] , 1  i  n .
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We may rewrite the second term on the right hand side of (3.23) as �2
R
t

0 gn(s)ds. Since

E(J i

t/n

µ) � E(Jn

t/n

µ) and lim inf
n!1E(Jn

t/n

µ) � E(S(t)µ), g
n

(s) is bounded below.

Applying Fatou’s lemma,

lim inf
n!1

Z
t

0
g
n

(s)ds �
Z

t

0
lim inf
n!1 g

n

(s)ds . (3.24)

By Theorem 3.4.2, for m,n large enough so that s

m

 t

n

< 1
2�� ,

W 2
2 (J

i

t/n

µ, Jm

s/m

µ) 
 ✓

i
t

n
� s

◆2

+
t

n
s+ 2

✓
t

n

◆2

i

!
e4�

�
it/ne4�

�
s|@E|(µ)


 ✓

t

n

◆2

+
ts+ 2t2

n

!
e4�

�
te4�

�
s|@E|(µ) ,

where the second inequality follows from the fact that s 2 ((i� 1)t/n, it/n]. Since

Jm

s/m

µ
m!1����! S(s)µ, this shows that J i

t/n

µ
n!1���! S(s)µ. Combining with the lower

semicontinuity of E gives

lim inf
n!1 g

n

(s)ds = lim inf
n!1 [E(J i

t/n

µ)� E(!)] (1 + �t/n)i�1 � [E(S(s)µ)� E(!)]e�s .

(3.25)

Likewise, combining (3.24) and (3.25) shows that taking lim inf
n!1 of (3.23) gives

e�tW 2
2 (S(t)µ,!)  W 2

2 (µ,!) + 2

Z
t

0
[E(!)� E(S(s)µ)]e�sds . (3.26)

By part (ii) of Theorem 3.5.4, we have for all t, t0 � 0,

e�tW 2
2 (S(t+ t0)µ,!)  W 2

2 (S(t0)µ,!) + 2

Z
t

0
[E(!)� E(S(s+ t0)µ)]e

�sds (3.27)

= W 2
2 (S(t0)µ,!) + 2

Z
t+t0

t0

[E(!)� E(S(s)µ)]e�(s�t0)ds . (3.28)

Hence,

e�(t+t0)W 2
2 (S(t+ t0)µ,!)� e�t0W 2

2 (S(t0)µ,!)  2

Z
t+t0

t0

[E(!)� E(S(s)µ)]e�sds .

(3.29)

It remains to divide (3.29) by t and send t ! 0 to get (2.17). The left hand side

will converge for a.e. t0 since the function f(t) = 1
2W

2
2 (S(t)µ,!) is locally Lipschitz.
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In particular, for t, s 2 [0, T ],

|f(t)� f(s)| 
����
1

2
W 2

2 (S(t)µ,!)�
1

2
W 2

2 (S(s)µ,!)

����

 1

2
(W2(S(t)µ,!) +W2(S(s)µ,!)) |W2(S(t)µ,!)�W2(S(s)µ,!)|



max
t2[0,T ]

W2(S(t)µ,!)

�
W2(S(t)µ, S(s)µ)



max
t2[0,T ]

W2(S(t)µ, µ) +W2(µ,!)

�
W2(S(t)µ, S(s)µ)

 C
T,!

|t� s| ,

where the last inequality follows by the fact that S(t)µ is locally Lipschitz (3.22).

If we divide the right hand side of (3.29) by t and send t ! 0, it will also converge,

since

E(!)� E(S(t0))  E(!)� E(S(s))  E(!)� E(S(t0 + t))

for s 2 [t0, t+ t0] and lim inf
t!0�E(S(t0 + t)µ)  �E(S(t0)). Therefore,

d

dt
e�tW 2

2 (S(t)µ,!)  2e�t[E(!)� E(S(t)µ)] for Lebesgue a.e. t > 0, 8! 2 D(E) .

Rearranging shows this is equivalent to (2.17):

1

2

d

dt
W 2

2 (S(t)µ,!) +
�

2
W 2

2 (S(t)µ,!)  [E(!)� E(S(t)µ)] for a.e. t > 0, 8! 2 D(E) .

Proof of Corollary 3.5.7. By the semigroup property, Theorem 3.5.4 (ii), it is enough

to prove the result for t0 = 0, t1 = t. Theorem AGS1 provides the following bounds on

the discrete gradient flow:

⌧

2
(1 + �⌧)|@E|2(µ

⌧

) +
1

2⌧
W 2

2 (µ, µ⌧

)  E(µ)� E(µ
⌧

) ,

⌧

2
|@E|2(µ

⌧

)  1

2⌧
W 2

2 (µ, µ⌧

) .

Combining these shows

⌧ |@E|2(µ
⌧

) +
�⌧2

2
|@E|2(µ

⌧

)  E(µ)� E(µ
⌧

) .
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Summing this inequality along the first n elements of the discrete gradient flow,

nX

i=1

⌧ |@E|2(J i

⌧

µ) +
�⌧2

2
|@E|2(J i

⌧

µ)  E(µ)� E(Jn

⌧

µ) . (3.30)

As in the proof of the previous theorem, if we define the piecewise function

g
n

(s) := |@E|2(J i

⌧

µ) +
�⌧

2
|@E|2(J i

⌧

µ) for s 2 ((i� 1)⌧, i⌧ ] , 1  i  n ,

the left hand side of (3.30) becomes
R
⌧n

0 g
n

(s)ds. Suppose ⌧ = t/n. Then taking

lim inf
n!1 of both side of (3.30) and applying Fatou’s lemma and the lower semicon-

tinuity of E shows

Z
t

0
lim inf
n!1 g

n

(s)ds  E(µ)� E(S(t)µ) .

Since ⌧ |@E|2(J i

⌧

µ)  2
1+�⌧

(E(µ)�E(J
⌧

µ)� 1
2⌧W

2
2 (µ, J⌧µ))

⌧!0���! 0 [1, Lemma 3.1.2], the

second term in g
n

(s) goes to zero pointwise. As in the proof of the previous theorem,

J i

t/n

µ
n!1���! S(s)µ. Thus, by the lower semicontinuity of |@E|,

Z
t

0
|@E|2(S(s)µ)ds  E(µ)� E(S(t)µ) .

3.6 Gradient Flow with Initial Conditions µ 2 D(E)

In this section, we describe how to extend our results to accommodate initial data

µ 2 D(E), rather than just µ 2 D(|@E|). In doing this, we repeatedly use two facts.

First, we may approximate any ⌫ 2 D(E) by elements in D(|@E|), since ⌫
⌧

2 D(|@E|)
by Theorem AGS1, and ⌫

⌧

⌧!0���! ⌫ by [1, Lemma 3.1.2]. Second, we may iterate the

contraction inequality from Theorem 3.1.1 as in (3.17) and (3.18) to show that, for all

⌫ 2 D(E), µ 2 D(|@E|),

W 2
2 (J

n

t/n

µ, Jn

t/n

⌫)  (1 + �(t/n))�2nW 2
2 (µ, ⌫) + n(t/n)2

�|@E|2(µ) + 2� [E(⌫)� inf E]
�

(3.31)

when � > 0 and

W 2
2 (J

n

t/n

µ, Jn

t/n

⌫)  (1� ��(t/n))�2nW 2
2 (µ, ⌫) +

n(t/n)2

(1� ��(t/n))2n
|@E|2(µ) (3.32)
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when �  0. (As usual, we will at times consider � � 0 and � < 0 jointly, by replacing

� by ���: any function that is � convex is also ��� convex.)

Combining these two facts with our previous results for continuous gradient flow

with initial data in D(|@E|) gives the following corollaries.

COROLLARY 3.6.1. For all ⌫ 2 D(E), the limit of the discrete gradient flow se-

quence Jn

t/n

⌫ exists. Denote this limit by ⌫(t). The convergence is uniform in t on

compact subsets of [0,+1).

COROLLARY 3.6.2. For ⌫, ⌫̃ 2 D(E), continuous gradient flow is a �-contracting

semigroup:

(i) lim
t!0 S(t)⌫ = S(0)⌫ = ⌫

(ii) S(t+ s)⌫ = S(t)S(s)⌫ for t, s � 0

(iii) W2(S(t)⌫, S(t)⌫̃)  e��tW2(⌫, ⌫̃)

COROLLARY 3.6.3. For all ⌫ 2 D(E), E(⌫(t)) is non-increasing for t 2 [0,+1).

COROLLARY 3.6.4. ⌫(t) is the continuous gradient flow for E with initial conditions

⌫, in the sense of Definition 2.7.2. For t 2 (0,+1), ⌫(t) belongs to D(E) and is locally

Lipschitz continuous.

COROLLARY 3.6.5. Given E satisfying convexity assumption 2.1.2 and µ 2 D(E)

Z
t1

t0

|@E|2(µ(s))ds  E(µ(t0))� E(µ(t1)) for all t0, t1 � 0 .

Furthermore, |@E|(S(t)µ) < +1 for all t > 0.

Proof of Corollary 3.6.1. By the triangle inequality, for all µ 2 D(|@E|),

W2(J
n

t/n

⌫, Jm

t/m

⌫)  W2(J
n

t/n

⌫, Jn

t/n

µ) +W2(J
n

t/n

µ, Jm

t/m

µ) +W2(J
m

t/m

µ, Jm

t/m

⌫) .

Fix ✏ > 0 and µ 2 D(|@E|) so that e�2�tW2(µ, ⌫) < ✏ for all t 2 [0, T ]. By (3.32), we

may choose n,m large enough, uniformly in t 2 [0, T ], so that both the first and third

terms are less than 2✏. By Theorem 3.5.1, we may choose n,m large enough, uniformly

in t 2 [0, T ], so that the second term is less than ✏.
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Thus, the sequence Jn

t/n

⌫ is Cauchy uniformly in t 2 [0, T ], so the limit exists and

convergence is uniform for t 2 [0, T ].

Proof of Corollary 3.6.2. First, we prove the continuous time contraction property (iii).

Sending n ! 1 in (3.31) and (3.32) shows that for any ⌫ 2 D(E), µ 2 D(|@E|),

W 2
2 (S(t)µ, S(t)⌫)  e��tW 2

2 (µ, ⌫)

By the triangle inequality, for any µ 2 D(|@E|),

W2(S(t)⌫, S(t)⌫̃)  W2(S(t)⌫, S(t)µ) +W2(S(t)µ, S(t)⌫̃)

 e��tW2(⌫, µ) + e��tW2(µ, ⌫̃)

Sending µ ! ⌫̃ gives the result.

Next, we prove (i). By the triangle inequality and (iii),

W2(S(t)⌫, ⌫)  W2(S(t)⌫, S(t)µ) +W2(S(t)µ, µ) +W2(µ, ⌫)

 e��tW2(⌫, µ) +W2(S(t)µ, µ) +W2(µ, ⌫)

Choosing µ arbitrarily close to ⌫ and sending t ! 0, the result follows from the corre-

sponding result for µ 2 D(|@E|), Theorem 3.5.4 (i).

Finally, we show (ii). By (iii) and the corresponding result for µ 2 D(|@E|),
Theorem 3.5.4 (ii),

W2(S(t+ s)⌫, S(t)S(s)⌫)  W2(S(t+ s)⌫, S(t+ s)µ) +W2(S(t+ s)µ, S(t)S(s)µ)

+W2(S(t)S(s)µ, S(t)S(s)⌫)

 2e��(t+s)W2(µ, ⌫) .

Sending µ ! ⌫ shows S(t+ s)⌫ = S(t)S(s)⌫.

Proof of Corollary 3.6.3. The same argument for Corollary 3.5.5 applies.

Proof of Corollary 3.6.4. To show that for t 2 (0,+1), S(t)⌫ belongs to D(E) and

is locally Lipschitz continuous, we follow the proof of [17, Lemma 2.8, Theorem 2.9],

which we recall for the reader’s convenience. Though developed for metric spaces of
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nonpositive curvature, it applies to our setting without modification. Without loss of

generality, we suppose �� > 0.

Iterating the discrete variational inequality, Theorem AGS2, and using that E(J i

⌧

⌫) 
E(J i�1

⌧

⌫),

W 2
2 (J

n

⌧

⌫,!)  1

(1� ��⌧)n
W 2

2 (⌫,!) + 2⌧ [E(!)� E(Jn

⌧

⌫)]
nX

i=1

1

(1� ��⌧)i
, (3.33)

for all ! 2 D(E). Since 0 < ⌧ < 1
�

� ,

nX

i=1

1

(1� ��⌧)i
 (1� ��⌧)�n � 1

��⌧
,

Since E is lower semicontinuous, setting ⌧ = s/n and sending n ! 1 in (3.33) gives

W 2
2 (S(s)⌫,!)  e�

�
sW 2

2 (⌫,!) + 2
e�

�
s � 1

��
[E(!)� E(S(s)⌫)] .

This shows S(s)⌫ 2 D(E) for s > 0. By the semigroup property, Corollary 3.6.2 (ii),

W 2
2 (S(t+ s)⌫,!)  e�

�
sW 2

2 (S(t)⌫,!) + 2
e�

�
s � 1

��
[E(!)� E(S(t+ s)⌫)] .

Taking ! = S(t)⌫ 2 D(E) and rearranging gives

W 2
2 (S(t+ s)⌫, S(t)⌫)

s2
 2

e�
�
s � 1

��s
E(S(t)⌫)� E(S(t+ s)⌫)

s
. (3.34)

By Corollary 3.6.3, E(S(t)⌫) is non-increasing. Since E(S(t)µ) is finite for t > 0, we

conclude that the limit as s ! 0 of

E(S(t)⌫)� E(S(t+ s)⌫)

s

exists for a.e. t > 0. Since lim
s!0

e

��s�1
�

�
s

= 1, for any such t, there exists an ✏ such

that for |s| < ✏, the right hand side of (3.34) is bounded. Therefore, for any t0 > 0, if

the limit of the right hand side exists at t 2 (0, t0], we may use properties (ii) and (iii)

of Corollary 3.6.2 to conclude,

W2(S(t0 + s)⌫, S(t)⌫) = W2(S(t0 � t)S(t+ s)⌫, S(t0 � t)S(t)⌫)

 e�
�(t0�t)W2(S(t+ s)⌫, S(t)⌫)

 e�
�(t0�t)C0s for |s| < ✏ .
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Therefore, S(t)⌫ is locally Lipschitz on (0,+1).

Finally, we show that S(t)⌫ is the continuous gradient flow for E with initial condi-

tions ⌫, in the sense of Definition 2.7.2. We already showed lim
t!0 S(t)⌫ = S(0)⌫ = ⌫

in Corollary 3.6.2 (i), so it remains to show that for all ! 2 D(E)

1

2

d

dt
W 2

2 (S(t)⌫,!) +
�

2
W 2

2 (S(t)⌫,!)  E(!)� E(S(t)⌫) for Lebesgue a.e. t > 0 .

(3.35)

Since S(t)⌫ is locally Lipschitz on (0,+1) and Jn

t/n

⌫ ! S(t)⌫ uniformly in t 2 [0, T ],

this follows by the same argument as in the proof of Theorem 3.5.6, with a small

modification in the proof that J i

t/n

⌫
n!1���! S(s)⌫. This follows by approximating ⌫ by

µ 2 D(|@E|), for which we have J i

t/n

µ
n!1���! S(s)µ.

Proof of Corollary 3.6.5. The same argument as for Corollary 3.5.7 applies to prove

the inequality. The inequality implies that |@E|2(S(s)µ) < +1 for almost every s � 0.

By the semigroup property, Theorem 3.6.2 (ii), and Remark 3.5.2, |@E|(S(t1)µ) 
e�

�(t1�t0)|@E|(S(t0)µ) for t0 < t1. Therefore, |@E|(µ
t

) < +1 for all t > 0.



60

Appendix

Generalizations

A.1 Varying Time Steps

This section contains generalizations of the previous theorems to the case where we

replace m time steps of size h with a sequence h of varying time steps. For simplicity

of notation, we write Jm :=
Q

m

k=1 Jhk
µ and Jn := Jn

⌧

µ.

First, we prove a generalization of the asymmetric recursive inequality, Theorem

3.3.1.

THEOREM A.1.1 (asymmetric recursive inequality). Suppose E satisfies assump-

tions 2.1.1 and 2.1.2 and µ 2 D(|@E|). If 0 < h
i

 ⌧ < 1
�

� ,

(1� ��h
m

)2W 2
2 (J

n, Jm)  h
m

⌧
(1� ��⌧)�1W 2

2 (J
m�1, Jn�1) +

⌧ � h
m

⌧
W 2

2 (J
m�1, Jn)

+ 2h2
m

mY

k=1

(1� ��h
k

)�2|@E|2(µ) ,

Proof. To simplify notation, we abbreviate Jn

⌧

µ by Jn and
Q

m

i=1 Jhiµ by Jm. First,

note that

(1� ��h
m

)2W 2
2 (J

n, Jm)

= (1� ��h
m

)2W 2
2 (Jhm(µ

J

n�1!J

n

⌧�hm
⌧

), Jm) by Theorem 3.2.1

 W 2
2 (µ

J

n�1!J

n

⌧�hm
⌧

, Jm�1) + h2
m

|@E|2(Jm�1) by Theorem 3.1.1

 W 2
2,Jn�1(µJ

n�1!J

n

⌧�hm
⌧

, Jm�1) + h2
m

|@E|2(Jm�1)

By Proposition 2.6.4, the W2,Jn�1 metric is convex along generalized geodesics with
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base Jn�1. In particular, it is convex along the geodesic µJ

n�1!J

n

⌧�hm
⌧

, which gives

(1� ��h
m

)2W 2
2 (J

n, Jm)  h
m

⌧
W 2

2,Jn�1(Jm�1, Jn�1) +
⌧ � h

m

⌧
W 2

2,Jn�1(Jm�1, Jn)

+ h2
m

|@E|2(Jm�1) . (A.1)

The first term on the right hand side coincides with the standard Wasserstein met-

ric. To control the second term, we use the stronger version of the discrete varia-

tional inequality Theorem 2.10.1. Specifically, replacing (µ, ⌫) in Theorem 2.10.1 with

(Jm�1, Jn) and (Jn�1, Jm�1) gives

(1� ��h
m

)W 2
2,Jm�1(Jm, Jn)�W 2

2 (J
m�1, Jn)

 2h
m


E(Jn)� E(Jm)� 1

2h
m

W 2
2 (J

m�1, Jm)

�

(1� ��⌧)W 2
2,Jn�1(Jn, Jm�1)�W 2

2 (J
n�1, Jm�1)

 2⌧


E(Jm�1)� E(Jn)� 1

2⌧
W 2

2 (J
n�1, Jn)

�

Multiplying the first inequality by ⌧ , the second inequality by h
m

, adding them together,

and then applying Theorem AGS1 gives

⌧(1� ��h
m

)W 2
2,Jm�1(Jm, Jn) + h

m

(1� ��⌧)W 2
2,Jn�1(Jn, Jm�1)

 ⌧W 2
2 (J

m�1, Jn) + h
m

W 2
2 (J

n�1, Jm�1)

+ 2⌧h
m


E(Jm�1)� E(Jm)� 1

2h
m

W 2
2 (J

m�1, Jm)

�
� h

m

W 2
2 (J

n�1, Jn)

 ⌧W 2
2 (J

m�1, Jn) + h
m

W 2
2 (J

n�1, Jm�1) +
⌧h2

m

1� ��h
m

|@E|2(Jm�1)� h
m

W 2
2 (J

n�1, Jn) .

(A.2)

As in equation (3.7) we have,

��⌧W 2
2,Jn�1(Jm�1, Jn)  W 2

2 (J
n, Jn�1) +

��⌧
1� ��⌧

W 2
2 (J

n�1, Jm�1) .

Multiplying this by h
m

and adding it to (A.2) gives

⌧(1� ��h
m

)W 2
2,Jm�1(Jm, Jn) + h

m

W 2
2,Jn�1(Jn, Jm�1)

 ⌧W 2
2 (J

m�1, Jn) +
h
m

1� ��⌧
W 2

2 (J
n�1, Jm�1) +

⌧h2
m

1� ��h
m

|@E|2(Jm�1) .
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Rearranging and dividing by h
m

gives the upper bound

W 2
2,Jn�1(Jm�1, Jn)  ⌧

h
m

⇣
W 2

2 (J
m�1, Jn)� (1� ��h

m

)W 2
2,Jm�1(Jm, Jn)

⌘

+
1

1� ��⌧
W 2

2 (J
n�1, Jm�1) +

⌧h
m

1� ��h
m

|@E|2(Jm�1) . (A.3)

We now combine this with equation (A.1) to prove the theorem. Substituting (A.3)

into (A.1) and using �(1� ��h
m

)  �(1� ��h
m

)2 gives

(1� ��h
m

)2W 2
2 (J

n, Jm)

 h
m

⌧
W 2

2 (J
m�1, Jn�1) + h2

m

|@E|2(Jm�1)

+
⌧ � h

m

⌧

⌧

h
m

⇥
W 2

2 (J
m�1, Jn)� (1� ��h

m

)2W 2
2 (J

m, Jn)
⇤

+
⌧ � h

m

⌧


1

1� ��⌧
W 2

2 (J
m�1, Jn�1) +

⌧h
m

1� ��h
m

|@E|2(Jm�1)

�
.

Simplifying and rearranging,

⌧

h
m

(1� ��h
m

)2W 2
2 (J

n, Jm)


✓
h
m

⌧
+

⌧ � h
m

⌧(1� ��⌧)

◆
W 2

2 (J
m�1, Jn�1) +

⌧ � h
m

h
m

W 2
2 (J

m�1, Jn) + h2
m

|@E|2(Jm�1)

+
⌧h

m

1� ��h
m

|@E|2(Jm�1) .

Therefore,

(1� ��h
m

)2W 2
2 (J

n, Jm)

 h
m

⌧

1� ��h
m

1� ��⌧
W 2

2 (J
m�1, Jn�1) +

⌧ � h
m

⌧
W 2

2 (J
m�1, Jn)

+


h3
m

⌧
+

h2
m

1� ��h
m

�
|@E|2(Jm�1)

 h
m

⌧

1

1� ��⌧
W 2

2 (J
m�1, Jn�1) +

⌧ � h
m

⌧
W 2

2 (J
m�1, Jn) +

2h2
m

1� ��h
m

|@E|2(Jm�1) ,

since 0  h
k

 ⌧  1
�

� for all k = 1, . . . ,m. Finally, applying Theorem AGS1 and then
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the fact that (1� ��h
m

)�1  (1� ��h
m

)�2 gives the result:

(1� ��h
m

)2W 2
2 (J

n, Jm)  h
m

⌧

1

1� ��⌧
W 2

2 (J
m�1, Jn�1) +

⌧ � h
m

⌧
W 2

2 (J
m�1, Jn)

+ 2h2
m

(1� ��h
m

)�1
m�1Y

k=1

(1� ��h
k

)�2|@E|2(µ)

 h
m

⌧

1

1� ��⌧
W 2

2 (J
m�1, Jn�1) +

⌧ � h
m

⌧
W 2

2 (J
m�1, Jn)

+ 2h2
m

mY

k=1

(1� ��h
k

)�2|@E|2(µ) .

Next, we prove a generalization of Lemma 3.4.1, bounding the distance between the

0th and mth terms of the discrete gradient flow sequence.

THEOREM A.1.2 (generalization of Lemma 3.4.1). Suppose E satisfies convexity

assumption 2.1.2 and µ 2 D(|@E|), for all 0 < h
i

< 1
�

�

W2 (J
m, µ)  |@E(µ)|

mX

i=1

h
i

mY

k=1

(1� ��h
k

)�1 .

Proof.

W2 (J
m, µ) 

mX

i=1

W2
�
J i, J i�1

� 
mX

i=1

h
i

1 + h
i

�
|@E(J i�1)|


mX

i=1

h
i

|@E(µ)|
iY

k=1

(1� ��h
k

)�1  |@E(µ)|
mX

i=1

h
i

mY

k=1

(1� ��h
k

)�1 .

Finally, we prove the generalization of the inductive bound, Theorem 3.4.2.

THEOREM A.1.3 (a Rasmussen type inductive bound). Suppose E satisfies assump-

tions 2.1.1 and 2.1.2 and µ 2 D(|@E|). If 0 < h
k

 ⌧ < 1
�

� and S
m

:=
P

m

k=1 hk,

W 2
2 (J

n, Jm) 
h
(n⌧ � S

m

)2 + ⌧S
m

+ 2⌧2n
i
(1� ��⌧)�2n

(
mY

k=1

(1� ��h
k

)�2

)
|@E|2(µ) .

(A.4)

Proof. We proceed by induction. The base cases (n, 0) and (0,m) follow from the linear

growth estimate Lemma A.1.2. We assume the inequality holds for (n�1,m) and (n,m)

and show that this implies it holds for (n,m+ 1).
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First, we apply the Asymmetric Recursive Inequality, Theorem A.1.1,

(1� ��h
m+1)

2W 2
2 (J

n, Jm+1)

 h
m+1

⌧
(1� ��⌧)�1W 2

2 (J
n�1,Mm) +

⌧ � h
m+1

⌧
W 2

2 (J
n, Jm)

+ 2h2
m+1

m+1Y

k=1

(1� ��h
k

)�2|@E|2(µ) .

Next, we divide by (1� ��h
m+1)2 and apply the inductive hypothesis.

W 2
2 (J

nµ, Jm+1µ)


⇢
h
m+1

⌧

h
((n� 1)⌧ � S

m

)2 + ⌧S
m

+ 2⌧2(n� 1)
i
(1� ��⌧)�2(n�1)�1

+
⌧ � h

m+1

⌧

⇥
(n⌧ � S

m

)2 + ⌧S
m

+ 2⌧2n
⇤
(1� ��⌧)�2n + 2h2

m+1

�

· (1� ��h
m+1)

�2

"
m+1Y

k=1

(1� ��h
k

)�2

#
|@E|2(µ) .

To control the first term, note that we have (1 � ��⌧)�2(n�1)�1 = (1 � ��⌧)�2n+1 <

(1� ��⌧)�2n and

h
((n� 1)⌧ � S

m

)2 + ⌧S
m

+ 2⌧2(n� 1)
i

=
h
(n⌧ � S

m

)2 � 2 (n⌧ � S
m

) ⌧ + ⌧2 + ⌧S
m

+ 2⌧2(n� 1)
i
.

To control the third term, note that since 0 < h
m+1  ⌧  1

�

� ,

(1� ��h
m+1)

�2  (1� ��⌧)�2  (1� ��⌧)�2n .

Using these estimates, we may group together the three terms and obtain the following

bound.

W 2
2 (J

n, Jm+1) 
⇢
h
m+1

⌧
[(n⌧ � S

m

)2 � 2 (n⌧ � S
m

) ⌧ + ⌧2 + ⌧S
m

+ 2⌧2(n� 1)]

+
⌧ � h

m+1

⌧
[(n⌧ � S

m

)2 + ⌧S
m

+ 2⌧2n] + 2h2
m+1

�

· (1� ��⌧)�2n

(
m+1Y

k=1

(1� ��h
k

)�2

)
|@E|2(µ) .

We now consider the convex combination (plus the additional 2h2
m+1 term) within the
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first brackets.

h
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= (n⌧ � S
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)2 � 2(n⌧ � S
m

)h
m+1 + ⌧S

m

+ 2⌧2n� ⌧h
m+1 + 2h2

m+1

= (n⌧ � S
m+1)

2 � h2
m+1 + ⌧S

m

+ 2⌧2n� ⌧h
m+1 + 2h2

m+1

= (n⌧ � S
m+1)

2 + ⌧S
m

+ 2⌧2n+ h2
m+1 � ⌧h

m+1

 (n⌧ � S
m+1)

2 + ⌧S
m+1 + 2⌧2n .

In the last line, we again use that h
m+1  ⌧ . This shows

W 2
2 (J

nµ, Jm+1µ)

 ⇥(n⌧ � S
m+1)

2 + ⌧S
m+1 + 2⌧2n

⇤
(1� ��⌧)�2n

(
m+1Y

k=1

(1� ��h
k

)�2

)
|@E|2(µ) .

We combine these results in the following theorem to prove the convergence of the

discrete gradient flow with varying time steps to the continuous gradient flow.

THEOREM A.1.4 (exponential formula, varying time steps). Suppose E satisfies

assumptions 2.1.1 and 2.1.2. For µ 2 D(|@E|) and any partition of the interval

{0 = t0 < t1 < · · · < t
i

< t
i+1 < . . . t

m

= t}

corresponding to time steps

h
i

:= t
i

� t
i+1

the discrete gradient flow sequence sequence
Q

m

i=1 Jhiµ converges to the continuous gra-

dient flow S(t)µ as |h| := max1im

h
i

! 0. The convergence is uniform in t on
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compact subsets of [0,+1). When |h|  1
2�� , the error between the approximating

sequence
Q

m

i=1 Jhiµ and the continuous gradient flow S(t)µ is bounded by

W2

 
S(t)µ,

mY

i=1

J
hiµ

!
 2

⇥|h|2 + 3|h|t⇤1/2 e4��
t|@E|(µ)

Proof. The result holds trivially for t = 0.

Suppose 0 < h
k

 ⌧ < 1
2�� . By the triangle inequality, Theorem 3.4.2, Theorem

A.1.3, and the fact that (1� ↵)�1  e2↵ for ↵ 2 [0, 1/2],
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hiµ

!
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!
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Define ⌧ := |h| and let n be the greatest integer less than or equal to t

|h| =
t

⌧

. Then,

t

⌧
� 1 < n  t

⌧
=) t� ⌧ < n⌧  t =) �⌧ < n⌧ � t  0 .

Consequently,
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A.2 Allowing E(µ) < +1 when µ charges small sets

In this section, we discuss how to extend our results for functionals that do not satisfy

the domain assumption 2.1.1. We used this assumption to ensure that for all ! 2 D(E),

there exists an optimal transport map tµ
!

from ! to any µ 2 P2,!(Rd) [18]. This allowed

us to define the (2,!)-transport metric for any ! 2 D(E). The convexity of W2,! along

generalized geodesics with base ! and the triangle inequality with reference point !

W2,!(µ, ⌫)  W2(µ,!) +W2(!, ⌫) (A.5)

allowed us to prove the stronger discrete variational inequality (Theorem 2.10.1) and

the asymmetric recursive inequality (Theorem 3.3.1). In addition, the subdi↵erential

with respect to the transport metric allowed us to prove the Euler-Lagrange equation

for the proximal map (Theorem 2.9.1), with which we were able to relate proximal maps

with di↵erent time steps (Theorem 3.2.1).

If ! is not absolutely continuous with respect to Lebesgue measure, the optimal

transport maps used in Definition 2.6.2 of W2,! may no longer exist. However, inspired

by [1, Equation (7.3.2)], we are able to define a pseudo-metric and use it in the same

manner to prove the intermediate results that lead to the exponential formula.

Definition and convexity properties of pseudo-metrics W2,!

DEFINITION A.2.1 (pseudo-metric W2,!). Fix ! 2 P(Rd). Given µ, ⌫ 2 P2,!(Rd),

choose ! 2 P(Rd ⇥ Rd ⇥ Rd) satisfying

⇡1,2#! 2 �0(!, µ) and ⇡
1,3#! 2 �0(!, ⌫) .

(Recall from Definition 2.3.2 that we call ! a plan that induces a generalized geodesic

from µ to ⌫ with base !.) For this plan, we define the pseudo-metric W2,! to be

W2,!(µ, ⌫) :=

✓Z

Rd⇥Rd
|x2 � x3|2d!

◆1/2

REMARK A.2.2. If µ = ! or ⌫ = !, this reduces to the Wasserstein metric. In

general, W2,!(µ, ⌫) � W2(µ, ⌫). If ! is absolutely continuous with respect to Lebesgue

measure, ! is unique and can be written as ! = (id, tµ
!

, t⌫
!

)#!. Consequently, Defini-

tion A.2.1 extends Definition 2.6.2.
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REMARK A.2.3. By the triangle inequality for the L2(!) norm,

W2,!(µ, ⌫) = ||x2�x3||
L

2(!)  ||x2� id||
L

2(!)+ ||id�x3||
L

2(!) = W2(µ,!)+W2(!, ⌫) ,

so the analogue of the inequality (A.5) holds.

REMARK A.2.4. The pseudo-metric W2,! occurs naturally in Definition 2.4.1 of

convexity along generalized geodesics. Given � 2 R, a functional E : P2,!0(Rd) !
R [ {+1} is �-convex along a generalized geodesic µ

↵

in case

E(µ
↵

)  (1� ↵)E(µ0) + ↵E(µ1)� ↵(1� ↵)
�

2
W2,!(µ0, µ1) , (A.6)

where ! is the plan that induces the generalized geodesic µ
↵

.

We recall the following property of the pseudo-metric from [1, Lemma 9.2.1].

PROPOSITION A.2.5 (convexity of the pseudo-metric W2,!). If µ↵

is a generalized

geodesic from µ to ⌫ with base !, induced by the plan !, then

W2,!(!, µ↵

) = (1� ↵)W2(!, µ) + ↵W2(!, ⌫)� ↵(1� ↵)W2,!(µ, ⌫) .

Finally, we recall notation from [1, Section 7.2]:

⇡i!j

↵

:= (1� ↵)⇡i + ↵⇡j

⇡k,i!j

↵

:= (1� ↵)⇡k,i + ↵⇡k,j

Euler-Lagrange equation

In the following theorem, we generalize the result of Theorem 2.9.1 by removing the

requirement that E satisfy domain assumption 2.1.1.

Our proof uses the following consequence of [1, Lemmas 5.3.2]: given µ1, µ2, µ3, µ4 2
P2,!0(Rd) and �1,2 2 �(µ1, µ2), �2,3 2 �(µ2, µ3), and �3,4 2 �(µ3, µ4), there exists

µ 2 P(Rd ⇥ Rd ⇥ Rd ⇥ Rd) such that

⇡1,2#µ = �1,2,⇡2,3#µ = �2,3, and ⇡3,4#µ = �3,4 .

We will often permute the roles of the indices 1, 2, 3, and 4.
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THEOREM A.2.6 (Euler-Lagrange equation). Suppose E satisfies convexity assump-

tion 2.1.2. Then for ! 2 D(E), 0 < ⌧ < 1
�

� , µ is the unique minimizer of the quadratic

perturbation �(⌧,!; ·) if and only if for all � 2 �0(µ,!), if we define �
⌧

:= ⇢
⌧

#�,

⇢
⌧

(x1, x2) := (x1, (x2 � x1)/⌧), then the following holds for all ⌫ 2 D(E),� 2 �(�
⌧

, ⌫).

E(⌫)� E(µ) �
Z

hx2, x3 � x1id� + o
�||x1 � x3||

L

2(�)

�
. (A.7)

Proof. [1, Lemma 10.3.4] shows that if µ is the unique minimizer of �(⌧,!; ·), then for

all � 2 �0(µ,!), (A.7) holds.

We now prove the converse. Suppose that for all � 2 �0(µ,!), (A.7) holds. There

exists some generalized geodesic µ
↵

from µ to ⌫ with base ! along which E is �-convex.

Let ! be the plan that induces this generalized geodesic, with ⇡1,3#! 2 �0(µ,!) and

⇡2,3#! 2 �0(⌫,!), so µ
↵

= ⇡1!2
↵

#!.

Applying (A.7) with ⌫ = µ
↵

shows

E(µ
↵

)� E(µ) �
Z

hx2, x3 � x1id�
↵

+ o
�||x1 � x3||

L

2(�↵)

� 8�
↵

2 �(�
⌧

, µ
↵

) . (A.8)

Since (x1,
x3�x1

⌧

, (1� ↵)x1 + ↵x2)#! 2 �(�
⌧

, µ
↵

),

E(µ
↵

)� E(µ)

�
Z ⌧

x3 � x1
⌧

, ((1� ↵)x1 + ↵x2)� x1

�
d! + o

�||x1 � (1� ↵)x1 � ↵x2||
L

2(!)

�

= ↵

Z ⌧
x3 � x1

⌧
, x2 � x1

�
d! + o

�
↵||x1 � x2||

L

2(!)

�

= ↵

Z ⌧
x3 � x1

⌧
, x2 � x1

�
d! + o (↵) (A.9)

By definition of convexity along µ
↵

, E(⌫)�E(µ) � 1
↵

[E(µ
↵

)� E(µ)] + (1� ↵)�2 ||x1 �
x2||

L

2(!). Using (A.9), we may bound this from below:

E(⌫)� E(µ) �
Z ⌧

x3 � x1
⌧

, x2 � x1

�
d! + o (1) + (1� ↵)

�

2
||x1 � x2||

L

2(!)

Sending ↵! 0,

E(⌫)� E(µ) �
Z ⌧

x3 � x1
⌧

, x2 � x1

�
d! +

�

2
||x1 � x2||

L

2(!) . (A.10)
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A similar inequality holds for W 2
2 (·,!),

W 2
2 (⌫,!)�W 2

2 (µ,!) =

Z
|x2 � x3|2d! �

Z
|x1 � x3|2d!

=

Z
|x1 � x2|2 + 2hx2, x1i � 2hx2, x3i+ 2hx1, x3i � 2|x1|2d!

= ||x1 � x2||2
L

2(!) +

Z
2hx2, x1 � x3i+ 2hx1, x3 � x1id!

= ||x1 � x2||2
L

2(!) + 2

Z
hx2 � x1, x1 � x3id!

Combining with (A.10) and using that �+ 1
⌧

> 0,

�(⌧,!; ⌫)� �(⌧,!;µ) �
Z
hx3 � x1

⌧
+

x1 � x3
⌧

, x2 � x1id! = 0

Since ⌫ 2 D(E) was arbitrary, µ is the minimizer of �(⌧,!; ·).

Relation between proximal maps with di↵erent time steps

We now provide the generalization of Theorem 3.2.1.

THEOREM A.2.7. Suppose E satisfies convexity assumption 2.1.2. Then if µ 2
D(E) and 0 < h  ⌧ < 1

�

� ,

J
⌧

µ = J
h


µµ⌧!µ

h
⌧

�
,

where µµ⌧!µ

h
⌧

is any geodesic from µ
⌧

to µ at time h

⌧

.

Proof. Choose any geodesic µµ⌧!µ

↵

from µ
⌧

to µ, and define ! := µµ⌧!µ

h
⌧

. To prove the

desired result, we must show µ
⌧

= !
h

.

By [1, Lemma 7.2.1], there exists a unique plan �µ⌧!! 2 �0(µ⌧

,!) and there exists

� 2 �0(µ⌧

, µ) such that

�µ⌧!! = ⇡1,1!2
h
⌧

#� . (A.11)

Since µ
⌧

is the unique minimizer of the quadratic perturbation �(⌧, µ; ·), Theorem
A.2.6 implies that for all � 2 �0(µ⌧

, µ), if we define �
⌧

:= ⇢
⌧

#�, ⇢
⌧

(x1, x2) := (x1, (x2�
x1)/⌧), then the following holds for all ⌫ 2 D(E),� 2 �(�

⌧

, ⌫),

E(⌫)� E(µ
⌧

) �
Z
hx2, x3 � x1id� + o

�||x1 � x3||
L

2(�)

�
. (A.12)
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By a second application of Theorem A.2.6, to prove µ
⌧

= !
h

, it’s enough to show that

for all �̃ 2 �0(µ⌧

,!), if we define �̃
h

:= ⇢
h

#�, ⇢
h

(x1, x2) := (x1, (x2 � x1)/h), then the

following holds for all ⌫̃ 2 D(E), �̃ 2 �(�̃
h

, ⌫̃),

E(⌫̃)� E(µ
⌧

) �
Z
hx2, x3 � x1id�̃ + o

�||x1 � x3||
L

2(�̃)

�
. (A.13)

Since �µ⌧!! is the unique plan in �0(µ⌧

,!), it is enough to show that (A.13) holds for

�̃ = �µ⌧!!.

Since (A.12) holds for all � 2 �0(µ⌧

, µ), in particular, it holds for the � satisfying

(A.11). A brief computation shows

⇢
h

� ⇡1,1!2
h
⌧

(x1, x2) = ⇢
h

✓
x1,

⌧ � h

⌧
x1 +

h

⌧
x2

◆
=

✓
x1,

1

h


⌧ � h

⌧
x1 +

h

⌧
x2 � x1

�◆

=

✓
x1,

x2 � x1
⌧

◆
= ⇢

⌧

(x1, x2) .

Consequently, for these choices of �̃ and �,

�̃
h

= ⇢
h

#�µ⌧!⌫ = ⇢
h

� ⇡1,1!2
h
⌧

#� = ⇢
⌧

#� = �
⌧

.

Therefore, the fact that (A.12) holds for � implies that (A.13) holds for �̃, which proves

the result.
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[4] Haim Brézis. Opérateurs maximaux monotones et semi-groupes de contractions
dans les espaces de Hilbert. North-Holland Publishing Co., Amsterdam, 1973.
North-Holland Mathematics Studies, No. 5. Notas de Matemática (50).
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[28] Kōsaku Yosida. Functional analysis. Classics in Mathematics. Springer-Verlag,
Berlin, 1995. Reprint of the sixth (1980) edition.


	Abstract
	Acknowledgements
	Introduction: Gradient Flow on Hilbert Spaces
	Hilbert Space Gradient Flow
	Differentiability
	Discrete Gradient Flow

	Gradient Flow in the Wasserstein Metric:  Background and New Results
	Summary of Results
	Wasserstein Metric
	Geodesics and Generalized Geodesics
	Convexity
	Differentiability
	Transport Metrics
	Gradient Flow
	Discrete Gradient Flow
	Euler-Lagrange Equation
	Discrete Variational Inequality

	Exponential Formula for the Wasserstein Metric
	Almost Contraction Inequality
	Relation Between Proximal Maps with Different Time Steps
	Asymmetric Recursive Inequality
	Inductive Bound
	Exponential Formula for the Wasserstein Metric
	Gradient Flow with Initial Conditions D(E)

	Appendix: Generalizations
	Varying Time Steps
	Allowing E()< + when  charges small sets

	References

