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 Changes in the characteristics of daily precipitation in response to global warming 

may have serious impacts on human life and property.  An analysis of precipitation in 

climate models is performed to evaluate how well the models simulate the present 

climate and how precipitation may change in the future.  Models participating in phase 3 

and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5) have 

substantial biases in their simulation of heavy precipitation intensity over parts of North 

America during the 20th century.  Despite these biases, the large-scale atmospheric 

circulation accompanying heavy precipitation is either simulated realistically or the 

strength of the circulation is overestimated.  The biases are not related to the large-scale 

flow in a simple way, pointing toward the importance of other model deficiencies, such 

as coarse horizontal resolution and convective parameterizations, for the accurate 
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simulation of intense precipitation.  Although the models may not sufficiently simulate 

the intensity of precipitation, their realistic portrayal of the large-scale circulation 

suggests that projections of future precipitation may be reliable.  In the CMIP5 ensemble, 

the distribution of daily precipitation is projected to undergo substantial changes in 

response to future atmospheric warming.  The regional distribution of these changes was 

investigated, revealing that dry days and days with heavy-extreme precipitation are 

projected to increase at the expense of light-moderate precipitation over much of the 

middle and low latitudes.  Such projections have serious implications for future impacts 

from flood and drought events.  In other places, changes in the daily precipitation 

distribution are characterized by a shift toward either wetter or drier conditions in the 

future, with heavy-extreme precipitation projected to increase in all but the driest 

subtropical subsidence regions.  Further analysis shows that increases in heavy 

precipitation in midlatitudes are largely explained by thermodynamics, including 

increases in atmospheric water vapor.  However, in low latitudes and northern high 

latitudes, changes in vertical velocity accompanying heavy precipitation are also 

important.  The strength of the large-scale atmospheric circulation is projected to change 

in accordance with vertical velocity in many places, though the circulation patterns, and 

therefore physical mechanisms that generate heavy precipitation, may remain the same. 
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km or less from the grid cell, in either the historical or RCP8.5 period. ........................ 159 

Figure 38. As in Fig. 37, but for the nearest closed maximum of ζ850 z-score (ζ850*).  

Prior to finding the maximum, Southern Hemisphere ζ850* values were multiplied by -1.  



 

xxii 
 

Missing values result from a combination of topography at 850 mb and the failure to 

detect a maximum in a box with east-west radius of 1000 km or less from the grid cell.
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Figure 39. The local Q-vector convergence (QVC, 10-19 m kg-1 s-1) associated with heavy 

precipitation events in the Northern Hemisphere extratropics (30°-90°N) for the (a)-(c) 

historical period and (d)-(f) RCP8.5-historical difference (see section 4.4.b for details).  

In (g)-(i), the RCP8.5-historical difference in local pressure velocity at 500 mb averaged 

over heavy events (𝛥𝜔500ℎ, 10-2 Pa s-1, same quantity as Figs. 32j-i) is shown for 

comparison.  The analysis was performed using (left) all days annually, (middle) DJF 

days, and (right) JJA days.  QVC was not plotted where the 850, 700, or 500 mb level is 

below ground or near the poles because of the domain boundary.  Missing locations in 

QVC were also removed in 𝛥𝜔500ℎ for easier comparison.  The color bar for 𝛥𝜔500ℎ 

was reversed from Figs. 32j-i so that consistent changes between 𝜔500ℎ and QVC 

appear as the same color (i.e., increasing QVC and decreasing 𝜔500ℎ or vice versa). . 162 

Figure 40. The local low-level wind (LWND, m s-1) averaged over days with heavy 

precipitation (≥99 th percentile, using all seasons) at each grid cell for the (a) historical 

period, (b) RCP8.5 period, and (c) RCP8.5-historical difference.  The vectors 

(normalized) in the top panels indicate wind direction and the color fills indicate wind 

speed (m s-1).  The vectors are plotted at every third grid cell in the longitude and latitude 

dimensions.  Only differences in wind speed (m s-1) are shown in (c). .......................... 164 
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1. Introduction 
 

 

1.1 Motivation and summary 

Changes in the frequency distribution of precipitation in response to atmospheric 

warming have been detected in observations and projected in climate model simulations 

of future climate with increased greenhouse gases.  Such changes, including an increased 

occurrence of extreme precipitation events and increased frequency of prolonged dry 

periods, may have serious consequences for human life, property, agriculture, water 

resources, and ecosystems (Easterling et al. 2000; Rappaport 2000; IPCC 2012).  It is 

important that scientists better quantify the regional distribution of these projected 

changes as society prepares for climate change.  Understanding the physical mechanisms 

that generate changes in characteristics of precipitation in observations and climate 

models will also help improve our fundamental understanding of the climate system and 

may lead to better predictions.  In order to reliably use climate models to predict and 

understand future changes in precipitation, it is important that they realistically simulate 

the statistics of high-frequency precipitation as well as the physical mechanisms that 

generate heavy precipitation.  Evaluating climate model simulations against high-quality 

observations over the 20th century is therefore critical.  In this thesis, climate models 

participating in phase 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and 

CMIP5) are used to better understand regional projections of daily precipitation statistics, 

the underlying physical mechanisms for heavy precipitation, and how well the models 

simulate these characteristics during the late 20th century.    
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1.2 Previous evaluations of simulated precipitation statistics 

 Several previous studies have evaluated climate model simulations of daily and 

higher frequency precipitation.  Despite differences among the studies regarding the 

models and observations used, geographical domain analyzed, and quantitative methods, 

many of the same model biases were found over various regions: too many wet days, 

overestimation of the frequency and intensity of light precipitation events, and 

underestimation of the frequency and intensity of heavy events (e.g., Zwiers and Kharin 

1998; Iorio et al. 2004; May 2004; Emori et al. 2005; Kimoto et al. 2005; Kharin et al. 

2007; Perkins et al. 2007; Sun et al. 2007; Wehner et al. 2010; Sillmann et al. 2013a).  

Such biases in simulated precipitation were found not only with coarse resolution climate 

models but also high resolution regional models (Frei et al. 2003; Gutowski et al. 2003; 

Semmler and Jacob 2004; Boroneant et al. 2006; Lenderink and Meijgaard 2008; Boberg 

et al. 2009).  In one study, high resolution regional models were shown to overestimate 

heavy and extreme precipitation over much of the contiguous United States (Wehner 

2013).  In the studies referenced above, model biases existed whether observations were 

treated as station point values or gridded at a resolution comparable to the climate models 

studied.   

Several studies have shown that when climate models are run at higher spatial 

resolution, the simulation of high frequency heavy precipitation statistics improves (Iorio 

et al. 2004; Kimoto et al. 2005; Kharin et al. 2007; Wehner et al. 2010; Dulière et al. 

2011).  One reason higher resolution climate models simulate heavy precipitation better 

may be that the models rely less on convective parameterizations when run at higher 

resolutions (Iorio et al. 2004; Wehner et al. 2010; Li et al. 2011).  Previous studies imply 
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that convective parameterizations in climate models partly result in the underestimation 

of intense precipitation and too frequent simulation of light events (Gutowski et al. 2003; 

Iorio et al. 2004; May 2004; Emori et al. 2005; Kharin et al. 2007; Wilcox and Donner 

2007; Wehner et al. 2010; Li et al. 2012).  Some studies have demonstrated that 

convective precipitation can be made more realistic by changing the characteristics of 

convective parameterization schemes or by embedding cloud resolving models into 

climate models (Iorio et al. 2004; Emori et al. 2005; Wilcox and Donner 2007; Li et al. 

2012).  Other reasons for improved simulation of intense precipitation with increased 

horizontal resolution may include improved dynamics and vertical motion, better 

simulation of tropical cyclones, more realistic representation of topography, and better 

ability to resolve mesoscale processes and land surface-atmosphere interactions (Colle 

and Mass 2000; Gutowski et al. 2003; Iorio et al. 2004; Semmler and Jacob 2004; 

Wehner et al. 2010; Dulière et al. 2011; Li et al. 2011). 

Since climate models are used to predict future changes in extreme precipitation 

in response to global warming, it is important to know how well climate models simulate 

observed changes in heavy precipitation which are associated with warming over the late 

20th century.  Unfortunately, previous studies have shown that climate model simulations 

of observed changes in heavy precipitation are rather poor.  For example, Kiktev et al. 

(2003) showed that HadAM3, the atmospheric component of the third climate 

configuration of the Met Office Unified Model (HadCM3), has little skill in reproducing 

observed trends in precipitation indices over the late 20th century, such as the annual 

maximum five-day precipitation event.  Other studies have shown that climate models 

underestimate observed positive trends in heavy precipitation over a variety of domains, 
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such as Northern Hemisphere land areas (Min et al. 2011), South America (Marengo et 

al. 2010), Germany (Tomassini and Jacob 2009), Australia (Alexander and Arblaster 

2009), and the contiguous United States (Wuebbles et al. 2013).  Observed amplifications 

in tropical extreme precipitation with increased sea surface temperatures are 

underestimated by atmosphere-only and coupled simulations participating in CMIP3 

(Allan and Soden 2008; Gastineau and Soden 2011).  Lenderink and Meijgaard (2008) 

showed that a high-resolution regional climate model underestimates the increase in 

intense hourly precipitation observed with higher daily temperatures over Europe during 

the 20th century.  Finally, a severe underestimation in the increase of heavy precipitation 

with warming was found at the global scale in CMIP3 models using reanalysis and 

Global Precipitation Climatology Product observations (Liu et al. 2009; Shiu et al. 2012).  

Shiu et al. (2012) hypothesize that underestimations in the heavy precipitation response 

to warming mainly arise from the inability of models to resolve convection.  These 

previous studies suggest that future increases in the frequency and intensity of heavy and 

extreme precipitation events in response to global warming may be larger than current 

climate model simulations indicate.  Improving resolution and the simulation of 

convection in models may be necessary for more reliable projections. 

Changes in the physical mechanisms that generate extreme precipitation, such as 

features of the large-scale circulation, are likely to play a role in quantitative changes in 

extreme precipitation in the future (Zwiers and Kharin 1998; Yin 2005; Meehl et al. 

2005; Emori and Brown 2005; Lionello and Giorgi 2007; Raible et al. 2007; Archambault 

et al. 2008; Gutowski et al. 2008a,b; Gastineau and Soden 2009; and others).  

Furthermore, it is possible that unrealistic climate model simulations of the large-scale 
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atmospheric dynamics and thermodynamics associated with extreme precipitation events 

lead to biases in the amount of precipitation simulated.  For these reasons, it is of great 

importance to evaluate the ability of climate models to reproduce the large-scale physical 

mechanisms that are observed with extreme precipitation events.  While it has been 

shown that climate models simulate fairly realistic atmospheric circulation patterns 

associated with extreme precipitation events over the Maritime Alps (Boroneant et al. 

2006) and central United States (Gutowski et al. 2008b; Kawazoe and Gutowski 2013), 

few studies have evaluated the large-scale physical processes linked to extreme 

precipitation in climate models.  Additional research on evaluating such physical 

mechanisms in a comprehensive way is therefore warranted, and chapter 2 of this 

dissertation aims to address this topic.    

 
 
1.3 Observed and simulated changes in precipitation statistics 

Using observations of the recent past, many studies show that changes in heavy to 

extreme precipitation events have occurred during the 20th century.  Groisman et al. 

(2005) studied station precipitation data and found that increases in heavy precipitation 

frequency and intensity were prevalent over many global land regions during mainly the 

second half of the 20th
 century.  Alexander et al. (2006) show that the frequency and 

intensity of heavy precipitation days (days with precipitation above the 90th percentile) 

increased between 1951 and 2003 over Eurasia and North America.  More increases than 

decreases in annual maximum 1 and 5 day precipitation amounts were found over North 

America and Eurasia in Min et al. (2011), consistent with Alexander et al. (2006).  

Analyses focused on the United States show robust increases in the intensity and 
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frequency of extreme precipitation in the central part of the country over the 20th century 

(Groisman et al. 2004; Groisman et al. 2012; Villarini et al. 2013a).  Perhaps to 

summarize, Westra et al. (2013) find that nearly two-thirds of stations globally show 

increases in the annual maximum daily precipitation amount over the 20th century.            

 Using an ensemble of state-of-the-art coupled atmosphere-ocean climate model 

simulations, studies overwhelmingly show that increases in the frequency and intensity of 

heavy precipitation may continue over most global regions in response to future 

anthropogenic warming (e.g., Meehl et al. 2005; Tebaldi et al. 2006; Kharin et al. 2007; 

Sun et al. 2007; Orlowsky and Seneviratne 2012; Seneviratne et al. 2012; Kharin et al. 

2013; Scoccimarro et al. 2013; Sillmann et al. 2013b; Villarini et al. 2013b).  Projected 

increases in heavy to extreme precipitation are also found, for example, in high resolution 

regional simulations over North America (Wehner 2013) and in an ensemble of 

atmosphere-mixed layer ocean models (Barnett et al. 2006).  Areas with robust projected 

decreases in heavy precipitation are confined to subtropical subsidence regions in the 

Pacific and Atlantic oceans (e.g., Kharin et al. 2007; Sun et al. 2007; Kharin et al. 2013) 

and small low-latitude land regions seasonally (e.g., Barnett et al. 2006).  The qualitative 

consistency between observed and simulated changes in intense precipitation as well as 

attribution analyses suggest that the affects of anthropogenic warming on extreme 

precipitation are already occurring (Min et al. 2011; Pall et al. 2011; Seneviratne et al. 

2012; IPCC 2013).  However, natural climate variability, sparse observations over some 

regions, and uncertainties in climate model simulations makes the detection and 

attribution of observed trends in heavy precipitation an ongoing challenge (Zhang et al. 

2001; Kendon et al. 2008; Min et al. 2011; Seneviratne et al. 2012). 



7 
 

 

 Understanding the physical mechanisms for changes in heavy precipitation, as 

well as the entire distribution of high frequency precipitation, is critical for improving 

scientific understanding of the climate system and projections.  An emerging scientific 

consensus is that changes in heavy to extreme precipitation are disproportionately larger 

than changes in mean or total precipitation, in both observations and simulations, and that 

extreme precipitation increases even in places where mean or total precipitation does not 

change or decreases (Easterling et al. 2000; Allen and Ingram 2002; Groisman et al. 

2004; Groisman et al. 2005; Kharin and Zwiers 2005; Barnett et al. 2006; Kharin et al. 

2007; Sun et al. 2007; Liu et al. 2009; Kharin et al. 2013; Scoccimarro et al. 2013; 

Sillmann et al. 2013b).  This discrepancy suggests that there are different underlying 

physical mechanisms by which total and extreme precipitation respond to atmospheric 

warming.   

Climate model simulations show that changes in mean precipitation are 

constrained by the tropospheric energy balance between latent heat released from 

precipitation and infrared cooling (Allen and Ingram 2002; Held and Soden 2006; Allan 

and Soden 2007; Vecchi and Soden 2007; Lambert and Webb 2008; Previdi and Leipert 

2008; Giorgi et al. 2011; O’Gorman et al. 2012; Allan et al. 2013).  In climate models, 

the global sensitivity of mean precipitation is about 1-3.5 % K-1 (e.g, Allen and Ingram 

2002; Held and Soden 2006; Sun et al. 2007; Kharin et al. 2013), which is smaller than 

that found in some observational analyses (e.g., Wentz et al. 2007; Liu et al. 2009; Shiu 

et al. 2012).  Differences between the observed and simulated sensitivity of mean 

precipitation may be related to the relatively short record of precipitation observations 

and type of radiative forcing (e.g., greenhouse gases versus aerosols) resulting in 
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atmospheric warming (Previdi and Liepert 2008; Liepert and Previdi 2009). Contrary to 

total precipitation, changes in extreme precipitation intensity are thought to be broadly 

constrained by changes in atmospheric moisture because these events occur on short time 

scales and result from large-scale moisture convergence (Allen and Ingram 2002; 

Trenberth et al. 2003; Held and Soden 2006; Pall et al. 2007).  Following the Clausius-

Clapeyron (hereafter C-C) relationship and assuming constant relative humidity, 

atmospheric moisture increases at approximately 7 % K-1 with warming for temperatures 

typical of the lower troposphere (e.g., Held and Soden 2006).  This suggests that extreme 

precipitation may increase by about 7 % K-1 if changes in the large-scale atmospheric 

circulation are small.  However, as discussed later in this introduction, regional 

thermodynamic and dynamical mechanisms may be more complex. 

An important consequence of the differing rates by which total and extreme 

precipitation respond to warming is that the distribution of high frequency precipitation 

must change.  In particular, heavy events may become more frequent while light or 

moderate events become less frequent (Giorgi et al. 2011).  Using a metric that 

characterizes dry spell length and precipitation intensity together, Giorgi et al. (2011) find 

projected increases in the intensity of the hydrologic cycle over many global land regions 

in climate model simulations, suggesting a shift in the precipitation distribution toward 

more dry periods and/or increased heavy precipitation in the future.  In Sillmann et al. 

(2013b), increases in consecutive dry days coincident with increases in heavy 

precipitation indices are also found over broad middle and low-latitude land regions in 

CMIP5 projections.  Additional studies using coupled climate model simulations show 

decreasing light/moderate and increasing heavy daily precipitation in response to global 
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warming, both globally and regionally (Pall et al. 2007; Sun et al. 2007; Gastineau and 

Soden 2009; Scoccimarro et al. 2013).  Studies using monthly precipitation find a similar 

response of precipitation to warming over tropical land (Lintner et al. 2012) and between 

60°S-60°N (Lau et al. 2013) in simulations, whereby dry and heavy precipitation periods 

increase in frequency while light or moderate periods decrease.  The simulated changes in 

the distribution of precipitation have also been detected in observations to a limited 

extent.  Using satellite data, Lau and Wu (2011) find increased very light, decreased 

light-moderate, and increased heavy daily precipitation in response to warmer SSTs in 

the tropical oceans.  Giorgi et al. (2011) find increases in hydrologic intensity over the 

late 20th century over various land regions using gridded and station observations.  

Lintner et al. (2012) extended their analysis to monthly gauge and satellite observations 

and found a similar increasing-decreasing-increasing response of dry-light-heavy months, 

respectively, to warming over the tropics.  However, smaller-scale regional analyses over 

the United States show that daily precipitation of all intensities has increased over the 

20th century in many regions (Karl and Knight 1998), suggesting that there is regional 

variability in changes in the precipitation distribution.  Further exploration of this 

regional variability, both in observations and models, is necessary to better understand 

the response of the high frequency precipitation distribution to global warming. 

The local and regional projected changes in the distribution of precipitation have 

not been comprehensively explored in previous studies due to limitations in the analysis 

methods, including aggregation of locations over large domains or averaging of 

precipitation over wide ranges of intensity.  Recently, Loikith et al. (2013) applied k-

means cluster analysis to investigate the local and regional variability of the detailed 
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characteristics of the daily temperature distribution over North America.  Motivated by 

this work, the same methodology is applied to projected changes in the local daily 

precipitation distribution in CMIP5 simulations in chapter 3 of this dissertation.  Such an 

analysis allows for a comprehensive exploration of the local and regional variability in 

projected changes in the high frequency distribution of precipitation.    

 
 
1.4 Physical mechanisms for changes in heavy precipitation               

Much attention has been given to understanding the underlying physical 

mechanisms for changes in heavy precipitation in response to global warming.  As 

mentioned earlier, increases in heavy precipitation intensity may broadly be explained by 

increases in atmospheric water vapor, which follow the C-C rate of 7 % K-1.  However, 

recent studies show that the thermodynamical mechanisms are more complex, and that 

dynamical mechanisms are important when considering small spatial scales.   

O’Gorman and Schneider (2009a,b) (hereafter OS09a,b) developed a 

comprehensive scaling to explain simulated increases in extreme precipitation that is 

based on the condensation of water vapor during extreme events assuming a saturated 

atmosphere.  Their scaling takes into account the vertical profile of tropospheric 

temperature and upward vertical velocity when extreme precipitation occurs.  

Thermodynamically, the OS09a,b scaling is more complex than C-C scaling because it 

accounts for changes in atmospheric stability with warming.  Additionally, because it 

includes vertical velocity, the OS09a,b scaling also accounts for dynamical changes that 

occur during extreme precipitation events.  The predicted thermodynamic sensitivity of 

globally-averaged extreme precipitation to warming emerging from the OS09a,b scaling 
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(~5-6 % K-1 in coupled climate models) is smaller than the C-C rate of 7 % K-1, mostly 

because of a decrease in the moist adiabatic lapse rate with warming.  The OS09a,b full 

scaling (including both thermodynamical and dynamical components) sufficiently 

predicts the actual extreme precipitation response to warming, both globally- and zonally-

averaged, in aquaplanet and coupled climate model simulations (Kharin et al. 2007; Sun 

et al. 2007; Sugiyama et al. 2010; Kharin et al. 2013).  A slight variation of the OS09a,b 

scaling, introduced by Sugiyama et al. (2010), incorporates precipitable water, vertical 

velocity at 500 mb, and the vertical profile of atmospheric moisture not assuming 

saturation.  Their variation is shown to perform similarly to the OS09a,b scaling over the 

tropical oceans, but is perhaps a better match for actual precipitation sensitivities to 

warming at the highest percentiles in some climate model simulations.  In the work of 

OS09a,b, Sugiyama et al. (2010), and others (e.g., Emori and Brown 2005), changes in 

vertical velocity are shown to be a critical component of the extreme precipitation 

response to warming, especially in low-latitude regions.  Thus, changes in aspects of the 

atmospheric circulation during extreme events are important when considering the 

regional sensitivity of extreme precipitation.   

The atmospheric circulation accompanying extreme precipitation events may 

change in response to a number of physical mechanisms as a result of climate change.  A 

poleward shift in extratropical storm tracks, as a result of changes in the horizontal and 

vertical structure of atmospheric temperature, is perhaps the most robust signature of 

global warming on the atmospheric circulation found in both observations and climate 

model simulations (McCabe et al. 2001; Yin 2005; Bengtsson et al. 2006; Wang et al. 

2006; Salathé 2006; Raible et al. 2007; O’Gorman 2010; Bender et al. 2012; Chang et al. 
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2012).  It is plausible that changes in storm tracks may have some direct effect on the 

intensity of extreme precipitation at middle and high latitudes (e.g., Raible et al. 2007; 

Pfahl and Wernli 2012).  Changes in the atmospheric circulation accompanying extreme 

precipitation events in the extratropics may also be influenced by changes in modes of 

climate variability that are either directly or indirectly (i.e., through teleconnentions) 

related to the local circulation patterns, such as the Madden-Julian oscillation (MJO) 

(Jones and Carvalho 2011; Jones and Carvalho 2012), El Niño-Southern Oscillation 

(ENSO) (Haylock et al. 2006; Schubert et al. 2008; Zhang et al. 2010), North Atlantic 

oscillation (NAO) (Yiou and Nogaj 2004; Raible et al. 2007; Zhang et al. 2010), Pacific-

North American regime (Archambault et al. 2008), or Pacific Decadal oscillation (PDO) 

(Zhang et al. 2010).   

In the tropics, regional changes in the atmospheric circulation accompanying 

extreme precipitation may be influenced by changes in mean tropical conditions, 

including changes in the Hadley or Walker circulations and the regional pattern of 

oceanic warming (Held and Soden 2006; Vecchi et al. 2006; Lu et al. 2007; Vecchi and 

Soden 2007; Gastineau et al. 2008; Chou et al. 2009; Seager et al. 2010; Huang et al. 

2013).  Dynamical feedbacks associated with changes in gross moist stability, an 

effective measure of tropical static stability (Chou et al. 2013), have also been shown to 

influence tropical precipitation and circulation, and may therefore affect extreme events 

(e.g., Chou and Neelin 2004; Chou et al. 2009).  More intense precipitation rates in the 

tropics can also feed back on the vertical velocity and low-level convergence 

accompanying extreme events through enhanced latent heat release (Trenberth 1999; 

Allen and Ingram 2002; Trenberth et al. 2003; Pall et al. 2007).  Finally, changes in the 
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frequency, intensity, and tracks of tropical cyclones may affect the regional changes in 

extreme precipitation in the tropics and at higher latitudes (e.g., Kunkel et al. 2012), 

though deficiencies in simulating tropical cyclones in climate models make this 

mechanism difficult to study (e.g., Manganello et al. 2012; Camargo 2013).   

Previous studies have explored the connection between changes in atmospheric 

circulation and extreme precipitation to some extent.  In Raible et al. (2007), a 

comparison between the climate of the Maunder Minimum and present day in the NCAR 

CCSM2 model shows that a southward shift in Northern Hemisphere storm tracks in a 

colder climate is also associated with a southward shift in extreme precipitation.  

Gastineau and Soden (2009) look at changes in metrics of the atmospheric circulation, 

such as 500 mb upward velocity and 850 mb vorticity and wind speed, as a function of 

precipitation intensity between future and present simulations in the CMIP3 ensemble.  

They find a slight intensification in 850 mb wind and vorticity associated with heavy 

precipitation (>95th percentile) in the extratropics (30°-90°), consistent with a poleward 

shift and intensification of storm tracks in a warmer climate.  They also find a weakening 

of the circulation strength associated with heavy precipitation in the tropics (30°S-30°N), 

which is supported by satellite observations and atmosphere-only GCMs in a later study 

by the authors (Gastineau and Soden 2011).  The latter finding is in contrast to Sugiyama 

et al. (2010), who show that changes in the vertical velocity associated with extreme 

tropical precipitation vary considerably among climate models, with some models 

showing large increases at very high percentiles.  The discrepancies in these findings may 

reflect differences in the subset of models used and methodology.  Finally, changes in the 

atmospheric circulation accompanying extreme precipitation appear to be marginal in the 
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mid-latitudes, as shown with a regional analysis of the central United States in Gutowski 

et al. (2008b) and aggregate analysis for 30°-60°N in Sugiyama et al. (2010).      

A limitation of earlier studies is that metrics characterizing the atmospheric 

circulation during extreme precipitation events are computed for broad geographical 

regions (i.e., the aggregation or mean of data points over 30°S-30°N or other zonal 

bands).  This prevents an analysis of circulation changes that are specific to locations 

with possibly different behavior from the zonal mean, such as the equatorial east Pacific 

(e.g., Vecchi and Soden 2007; Huang et al. 2013).  Some studies have looked at the 

spatial patterns of changes in extreme circulation metrics independently from 

precipitation (e.g., Raible et al. 2007; Gastineau and Soden 2009).  However, extreme 

precipitation is not always associated with extreme circulation features (Pfahl and Wernli 

2012), and a direct link cannot be made between changes in extreme circulation and 

precipitation in those studies.  An in-depth analysis of the changes in atmospheric 

circulation directly associated with extreme precipitation events at the grid cell level is 

therefore warranted.  In chapter 4 of this dissertation, such an analysis is provided. 
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2. Evaluation of CMIP3 and CMIP5 simulations 
 
 

2.1 Introduction 

In this chapter, the precipitation output from the CMIP3 and CMIP5 ensembles is 

compared with high quality observations over North America.  Daily precipitation 

statistics and the large-scale circulation features accompanying extreme precipitation 

events are evaluated.  This chapter focuses on CMIP3, as the CMIP5 ensemble was not 

yet available at the time when analysis began.  In section 2.2, the observations, CMIP3 

climate models, and general methodology are described.  Precipitation statistics in 

CMIP3 are evaluated and discussed in section 2.3, while the evaluation of large-scale 

physical mechanisms accompanying extreme precipitation in CMIP3 simulations is 

shown and discussed in section 2.4.  In section 2.5, a parallel evaluation using the CMIP5 

ensemble is presented, where similarities and differences between CMIP3 and CMIP5 are 

highlighted and discussed.  The chapter concludes with a brief statement in section 2.6.   

Much of the material presented in this chapter has been published in the Journal of 

Climate, titled “A Comparison of CMIP3 Simulations of Precipitation over North 

America with Observations: Daily Statistics and Circulation Features Accompanying 

Extreme Events,” by Anthony M. DeAngelis, Anthony J. Broccoli, and Steven G. 

Decker.  The American Meteorological Society holds copyright to that work.   

 
 
2.2 Data and Methodology 

 
 
2.2.a Precipitation Observations 
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 Gridded observations of daily precipitation covering all global land areas and the 

time period 1979 to present have been developed by the Climate Prediction Center 

(CPC).  The gridded precipitation product is produced from rain gauge observations over 

global land areas.  The stations used in the gridded product include a combination of 

special collections from the CPC as well as stations from the Global Telecommunications 

System (GTS) (Chen et al. 2008a).  A quality control procedure utilizing satellite data 

and numerical model output was applied to the station data before gridding (Chen et al. 

2008b), which was an improvement to the quality control used for the CPC United States 

precipitation product described in Higgins et al. (2000).  After applying the quality 

control procedure, the station data were placed on a 0.5°x0.5° longitude-latitude grid 

using optimal interpolation.  A comparison of optimal interpolation with other gridding 

methods for this precipitation product is provided in Chen et al. (2008c) and reveals no 

significant differences between methods.  In this dissertation, the 0.5°x0.5° grid of the 

observations was converted to a 2.5°x2.5° grid via area averaging to be more comparable 

with the typical resolution of the climate models analyzed (see section 2.2.c) before 

computing precipitation statistics, a procedure which has been shown to improve 

agreement between observed and simulated metrics involving extreme precipitation 

(Chen and Knutson 2008).  Precipitation analyses shown in this chapter focus on North 

America because of the high density and large number of stations that went into the CPC 

gridded product over this region during the late 20th century (Chen et al. 2008a,c).  

Precipitation data is missing for some days over parts of North America; however, 

because the percentage of missing days at any grid cell is no more than 0.5% over the 

analysis period (1979-99), the missing data should not impact the results.    
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2.2.b North American Regional Reanalysis 

 The National Centers for Environmental Prediction North American Regional 

Reanalysis (NARR) (Mesinger et al. 2006) was used as observed data for variables other 

than precipitation for the evaluation of large-scale atmospheric patterns associated with 

extreme precipitation.  For analysis, the NARR was regridded from its initial spatial 

resolution of 32 km x 32 km on a Lambert Conformal Conic projection to a 2.5°x2.5° 

resolution to match the grid on which the precipitation observations and climate models 

were analyzed.  A linear average of all values whose grid cell centers on the original 

NARR grid fell within the boundaries of the new 2.5°x2.5° grid determined the values on 

the coarser grid.  Furthermore, three-hourly NARR data were converted to daily averages 

over the daily period 12Z to 12Z to match the CPC precipitation observations.   

 
 
2.2.c CMIP3 output 

The climate model simulations evaluated in sections 2.3 and 2.4 of this chapter 

were 20th century runs from the CMIP3 collection.  These simulations were forced with 

realistic temporal variations of anthropogenic and natural forcings as deemed appropriate 

by the individual modeling groups (Meehl et al. 2007).  The output from the CMIP3 

models is available at the World Climate Research Programme’s CMIP3 multimodel 

dataset archive hosted by the Program for Climate Model Diagnosis and Intercomparison 

[http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php].  There were 17 models with sufficient 

daily precipitation output for the evaluation of precipitation statistics, and those models 

are listed in Table 1 (note that expansions of all CMIP3 model acronyms are available 

http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php�
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online at http://www-pcmdi.llnl.gov/ipcc/model_documentation/ 

ipcc_model_documentation.php).  Of those 17 models, only 12 had archived 

meteorological variables other than precipitation for use in evaluating physical 

mechanisms associated with heavy precipitation events; such models are also identified 

in Table 1.  Due to the limited availability of multiple ensemble members, only one 20th 

century ensemble member run was analyzed from each model.   

The output from each climate model was regridded to the 2.5°x2.5° grid on which 

the precipitation observations and NARR output were analyzed.  The regridding 

procedure consisted of either linear interpolation if the original climate model grid area 

(in square degrees) was larger than that of the target grid or area averaging otherwise.  

The specific models that were regridded using area averaging are shown in Table 1, along 

with the original horizontal resolution of all models.  Because the original spatial 

resolution of some models is much coarser than 2.5°x2.5°, the sensitivity of the results to 

the resolution of the analysis grid was evaluated by performing a parallel analysis of 

precipitation statistics using a 5.0°x5.0° analysis grid.  While in some cases there was 

better agreement between the models and observations on the 5.0°x5.0° grid, the 

improvement was quite small and most of the same model biases remained.  All analyses 

shown in this paper are therefore presented on the 2.5°x2.5° common grid. 

 
 
2.2.d General analysis methods 

The time period with the greatest overlap among the CPC observations, NARR, 

and CMIP3 models is 1 January 1979- 31 December 1999.  Due to inconsistencies in the 

calendar setup among the CMIP3 models, 29 February was removed from all datasets, 

http://www-pcmdi.llnl.gov/ipcc/model_documentation/ipcc_model_documentation.php�
http://www-pcmdi.llnl.gov/ipcc/model_documentation/ipcc_model_documentation.php�
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resulting in a time domain of exactly 7665 days for the CPC and NARR observations and 

all CMIP3 models.  The 1979-99 time period of analysis was considered too short for 

long term trends in precipitation statistics to be reliable, thus only summary statistics over 

this period were analyzed.  This decision was based on a separate analysis using the CPC 

United States precipitation dataset (described in Higgins et al. 2000) over the period 

1961-98, which showed that long term trends in daily precipitation statistics are spatially 

noisy and unlikely to be statistically significant or meaningful over time periods as short 

as the one used in this dissertation (not shown).       

 While many studies involving extreme precipitation utilize metrics based on 

Generalized Extreme Value or other statistical distributions (e.g., Zwiers and Kharin 

1998; Wilby and Wigley 2002; May 2004; Semmler and Jacob 2004; Kharin and Zwiers 

2005; Kharin et al. 2007; Wehner et al. 2010; Wehner 2013), rather simple statistical 

methods were used in this chapter and throughout this dissertation.  The choice of simple 

statistical methods was made to eliminate the potential uncertainties resulting when 

making the necessary assumptions involved in more sophisticated statistical procedures 

(Kharin and Zwiers 2005; Wehner et al. 2010; Wehner 2013).  Finally, the intent of this 

chapter is to evaluate the collective performance of the CMIP models and to see the range 

of model variability where appropriate, rather than to evaluate the individual performance 

of certain models.  Therefore, the figures focus on the model average and the envelope of 

variability among the models, so the results from individual models are generally not 

displayed (with one exception).  A detailed analysis of why certain models perform better 

than others requires a controlled experiment in which only certain model components are 

allowed to vary, which is not possible in the present analysis.  Furthermore, it is very 
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difficult to identify one single climate model that outperforms all others at everything 

(Perkins et al. 2007); therefore, a ranking of the CMIP models may not be very insightful.   

 
 
2.3 Precipitation statistics  

 The first metric which was evaluated in the CMIP3 models was the mean daily 

precipitation for the analysis period 1979-99 (Fig. 1).  This analysis reveals that although 

the models generally capture the spatial patterns of mean precipitation fairly well, they 

tend to underestimate precipitation in wet areas and overestimate precipitation in dry 

areas.  For example, the model average is drier than observations by as much as 5 mm 

day-1 along the Pacific Coast near 55°N during winter, where the climatological 

precipitation exceeds 10 mm day-1 (Figs. 1d,e).  To the east of this area and extending a 

greater distance along the coast, the climatological winter precipitation is substantially 

lighter and the model average has wet biases of about 1-4 mm day-1 (Fig. 1e).  Another 

example of substantial model dry biases over a relatively moist region is in southern 

Mexico and along the United States Gulf Coast, where the models are drier than 

observations by about 1-5 mm day-1 depending on location and season (Figs. 1b,e,h).  

The model biases in mean precipitation are consistent with those found in Iorio et al. 

(2004) over the contiguous United States using the National Center for Atmospheric 

Research (NCAR) Community Climate Model version 3 (CCM3) atmospheric general 

circulation model.  Differences between the model average and observations are 

expressed as a percentage on the right column of Fig. 1 to assess how model biases scale 

with mean precipitation and for a more sensitive determination of the sign of model 

biases where the biases are small in magnitude.  It appears that the model dry biases in 
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the south and along parts of the Pacific Coast are somewhat proportional to the CPC 

mean precipitation, as the percent biases mostly fall between -30% and -70% in these 

areas (Figs. 1c,f,i).  Note that much of the large area of model wet biases across the 

northern and interior parts of the domain when expressed as a percentage is greatly 

exaggerated by the calculation method and very light climatological precipitation over 

this area.  Over much of the northeastern part of the domain, where amount and 

percentage biases are both small, the models simulate mean precipitation quite well.  

 A similar analysis was performed for the mean precipitation that falls from just 

the wettest 1% of days (i.e., the mean precipitation coming from the daily 99th percentile 

and above).  This quantity (hereafter referred to as P99M) was chosen instead of the 99th 

percentile itself because it is likely to be less spatially noisy and represents the average 

intensity of heavy to extreme precipitation.  The results of this analysis are displayed in 

Fig. 2.  The average performance of the CMIP3 models is noticeably poorer for P99M 

than it is for the mean precipitation.  One particular area where model biases in P99M are 

disproportionately larger than those in mean precipitation is the southeastern United 

States and southern Mexico, where P99M is underestimated by more than 15 mm day-1 

over much of the area (Figs. 2b,e,h).  When expressed as a percentage, model dry biases 

over this area are larger for P99M than for mean precipitation, especially during summer 

and in southern Mexico (Figs. 1c,f,i, 2c,f,i).  The model dry biases in P99M in the 

southeast United States also extend to higher latitudes during the summer season (Figs. 

2e,f,h,i), more so than they do with mean precipitation (Figs. 1e,f,h,i).  In general, model 

biases in P99M appear to be more negative over much of the domain when compared to 

mean precipitation biases.  As was the case with mean precipitation, the model average 
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appears to do well generally east of 100°W and north of 40°N.  Overall, the results shown 

in Fig. 2 are consistent with previous studies that used individual climate models and 

studied the contiguous United States (Iorio et al. 2004; Wehner et al. 2010).  

 To examine the intermodel variability of the biases in P99M, six regions within 

the North America study domain were chosen that approximately exhibit homogeneous 

characteristics of climatological precipitation as well as homogeneous CMIP3 model 

biases in mean and P99M precipitation (Fig. 3; note that all region names are explained in 

the caption).  The P99M model biases were then averaged over each of these regions for 

each model and displayed on a box-and-whisker plot for all seasons (Fig. 4).  The 

negative biases in P99M in the PCOAST and SEAST regions appear quite robust among 

the models, as more than 75% of the models show negative biases during all seasons over 

these regions (Figs. 4a,d).  Indeed, all models analyzed show negative biases during fall 

in the PCOAST region and during both summer and fall in the SEAST region, suggesting 

that there is a systematic problem that results in too little heavy precipitation in these 

regions and seasons, a topic which will be discussed in section 2.4.  Substantial and 

robust negative biases of about the same magnitude as those over the PCOAST region are 

also present over the SMEX region in winter and spring (Fig. 4f).  The largest variability 

among the individual CMIP3 models occurs over SMEX in summer and fall, where a 

majority of the models have negative biases but the individual model biases range from -

40 mm day-1 to more than 10 mm day-1 (Fig. 4f).  There are also robust negative model 

biases in the SWEST region during summer, at a time when the North American 

monsoon brings heavy and convective rain over parts of this region (Fig. 4e).  All CMIP3 

models show a positive bias over the WINT region in winter (Fig. 4b), though this bias is 
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small in magnitude because of the light P99M precipitation over this region (Fig. 2d).  

The good performance of the CMIP3 models over the NEAST region is quite apparent 

during winter, where model biases straddle zero and have a small range of variability 

(Fig. 4c).    

The regions defined in Fig. 3 were also used to analyze model biases over the 

entire daily precipitation distribution during the period 1979-99.  For each grid point, 

daily precipitation percentiles in increments of 0.1 were computed from all days.  The 

values of each percentile were averaged across the grid points in each of the six regions.  

This procedure was employed on the CPC data and the output from each of the CMIP3 

models.  The regional average values for each percentile from the CPC data were then 

paired with those from each of the CMIP3 models to form a set of quantitle-quantile (Q-

Q) plots, a graphical approach for comparing distributions from two samples (Wilks 

2006, 113–114).  The Q-Q plots shown in Fig. 5 are constructed by comparing the 

minimum, median, and maximum CMIP3 model value for each percentile to the 

corresponding CPC value to depict the envelope of model performance for that region. 

Despite the details of the precipitation distributions being somewhat different over 

each region, Fig. 5 shows that there are aspects of the model biases that are robust for all 

regions.  The models tend to overestimate the intensity of light precipitation events, as 

seen by the model median rising above the 1:1 line at the low end of the precipitation 

distribution in every region.  At the high end of the distribution, the opposite problem 

occurs, in which the models tend to underestimate the intensity of daily events to a degree 

which varies depending on the region.  The intensity at which the model median 

transitions from overestimating to underestimating daily precipitation varies from as light 
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as 2-3 mm day-1 over the SEAST region (Fig. 5d), to as heavy as 20 or more mm day-1 

for regions like NEAST and SWEST (Figs. 5c,e), depending on the severity of model 

biases in P99M precipitation (Figs. 2, 4).  Numerous studies have found that climate 

models of varying spatial resolution and complexity have similar qualitative biases in 

daily precipitation distributions over Northern Hemisphere land regions (Sun et al. 2007), 

the United States (Gutowski et al. 2003; Iorio et al. 2004), Europe (Boberg et al. 2009), 

Australia (Perkins et al. 2007), and Japan (Kimoto et al. 2005).  The result of climate 

models overestimating light precipitation and underestimating heavy precipitation is that 

they simulate relatively realistic mean precipitation, as shown in Fig. 1 and in earlier 

studies (e.g., Frei et al. 2003; Iorio et al. 2004; May 2004; Kimoto et al. 2005; Boroneant 

et al. 2006; Dulière et al. 2011).  Potential reasons for the underestimation of heavy 

precipitation found in climate models are discussed in section 2.4.       

 To investigate the ability of the CMIP3 models to accurately simulate the 

seasonality of heavy precipitation events, the seasonal cycle of heavy precipitation was 

objectively quantified in CPC observations and CMIP3 models using harmonic analysis.  

More specifically, the P99M precipitation was computed separately for each calendar 

month over the period 1979-99 at each grid cell, resulting in a time series with 12 

elements.  Then, a one-period sinusoidal function (also known as the first harmonic) was 

fit to this 12 element time series using least-squares regression as described in Wilks 

(2006, 371–381).  The resulting harmonic fit can be described with a phase representing 

the time of year of maximum P99M, and the percentage of total variance of monthly 

P99M that is explained by the harmonic fit, which is proportional to the relative strength 
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of the seasonal cycle of P99M.  The phase is shown with vectors and percent variance 

with color fills in Fig. 6. 

 Figure 6 shows that on average, the CMIP3 models reasonably reproduce the 

observed seasonal patterns of heavy to extreme precipitation over most of North 

America, especially when considering the additional smoothing inherent in computing a 

multimodel average.  In particular, the strong fall-to-winter maximum along the Pacific 

Coast, summer maximum in the northern-interior, and mid-to-late summer maximum in 

southern Mexico are simulated reasonably accurately by the models.  The apparent 

disagreement between the CMIP3 model average and CPC observations in parts of 

northern Canada may be influenced by the sparseness of observations over this area 

(Chen et al. 2008c).  More substantial disagreements between the CMIP3 simulated and 

observed seasonal cycle of P99M exist over the west coast of Mexico and the 

southeastern United States, where the models show a stronger and more widespread cool 

season maximum than is observed.  Such biases may be the result of the models 

underpredicting P99M precipitation more severely during summer than winter in these 

regions (Figs. 2, 4).  The models also simulate a pronounced winter maximum in P99M 

further inland along the Pacific Coast than is observed, which appears to be related to the 

overestimation of heavy winter precipitation in this region as a result of the coarse terrain 

representation in the models (Fig. 2).  Ruiz-Barradas and Nigam (2006) used a harmonic 

analysis similar to the one presented here to evaluate the performance of a subset of 

CMIP3 models in simulating the seasonal cycle of mean precipitation over North 

America.  While certain models in their analysis showed difficulty in simulating the 

correct timing and amplitude of the observed seasonal cycle over various places, the 
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models collectively captured the presence of a notable winter maximum along the Pacific 

Coast and summer maximum in central North America and southern Mexico, consistent 

with the results shown here.            

 
 
2.4 Physical mechanisms associated with extreme precipitation 

The large-scale physical mechanisms associated with extreme precipitation events 

were analyzed by developing composites of various atmospheric quantities during the 

most extreme precipitation events at each grid cell.  To compute a composite for a grid 

cell, the dates of the heaviest 21 precipitation events were identified and an atmospheric 

quantity of interest was averaged over those 21 dates for the entire North America 

domain, resulting in a map showing the composite spatial structure of that quantity 

associated with an average extreme event at that grid cell.  The number of events was 

chosen subjectively so that the smallest event would have a probability of occurring 

approximately once per year, as 21 years of data were used (1979-99).  The 21st wettest 

event also represents approximately the 99th percentile (the basis of heavy precipitation 

statistics studied in this chapter) when drawn from a sample consisting of just winter 

(December-January-February, DJF) or summer (June-July-August, JJA) days.  For 

observations, the CPC product was used to identify the 21 most extreme precipitation 

events at each grid cell while the NARR was used for the atmospheric quantities that 

were composited.      

In some cases, the atmospheric quantities were first converted to a standardized 

anomaly at each grid cell before computing the composites, to eliminate the influence 

that model biases in the mean and variability of the atmospheric quantities would have on 
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the results.  The standardized anomaly (or z-score) is defined as the anomaly divided by 

the standard deviation.  The climatological mean and standard deviation were computed 

for a 21-day window centered on the original date (the date corresponding to each of the 

21 extreme events) over all years from the period 1980-98.  Defining the mean and 

standard deviation in this way allowed for the z-scores to represent anomalies that were 

with respect to a smoothly varying and seasonally dependent climatology (Hart and 

Grumm 2001).   

As mentioned previously, only 12 CMIP3 models had available output of the 

variables needed for the composite analysis and therefore only these 12 models were 

analyzed (see Table 1).  An analysis of biases in precipitation statistics using just these 12 

models (not shown) led to the same conclusions as those presented in section 2.3 using all 

17 models.  Therefore, a direct comparison can be made between the precipitation 

analysis in section 2.3 and composite analysis shown here.  When comparing composites 

between NARR and the model average, it should be noted that the model average is 

actually the composite of 252 extreme events (21 events from 12 different models) while 

the NARR is the composite of only 21 events.  As a consequence of averaging across a 

larger number of events, the circulation features in the model average will be smoother 

than in NARR, and this must be taken into consideration when evaluating the realism of 

the simulated composites.  Additionally, the composited quantities are shown over the 

entire North America domain for all analyzed grid cells in this section.  The reader should 

note that only patterns of composited quantities that are relatively close to the analyzed 

grid cells (within ~1000 km) are likely to be associated with the extreme events at those 
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grid cells, and that patterns of composited quantities may be influenced by noise or 

climatology in distant areas.   

To characterize the basic large-scale dynamical structure of the atmosphere, 

composites of pressure at mean sea level (hereafter PMSL) and geopotential height 

standardized anomalies at 500 mb (hereafter Z500*) were made for various North 

American grid cells (Figs. 7, 8, 10-12).   The geopotential height was not available as a 

direct quantity from any of the CMIP3 models, therefore it was calculated by first 

computing surface pressure (a quantity that was also unavailable from the archived 

CMIP3 output) using the hydrostatic equation, then by using the hypsometric equation.  

Although the NARR outputs geopotential height directly, NARR geopotential height was 

computed in the same way as for the CMIP3 models for the sake of consistency.  

Differences between geopotential height directly output from NARR and that calculated 

with the same method as for the CMIP3 models were very small (not shown), suggesting 

that the method of calculation was satisfactory.  The atmospheric levels which were 

available from the CMIP3 models and used in all computations involving multiple 

vertical levels were 1000, 925, 850, 700, 600, 500, 400, 300, and 200 mb, where levels 

below the surface were omitted. 

 The composites displayed in this section focus on grid cells where the CMIP3 

models either showed substantial biases in P99M precipitation or where P99M 

precipitation was simulated quite well.  A comparison of simulated and observed 

composites at these grid cells provides insight as to the physical problems with models 

that might be responsible for biases in heavy precipitation amounts.  The first selection of 

grid cells includes locations where P99M precipitation is severely underestimated by the 
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models in both winter and summer: the Pacific Coast near 55°N, the southeast United 

States, and southern Mexico (Figs. 7-8).  In comparing the winter composites of PMSL 

and Z500* between the NARR and model average, the models reasonably simulate the 

gross atmospheric circulation features associated with extreme events at these grid cells, 

especially when taking into account the additional smoothing in the model average (Fig. 

7).  However, the model average composites for the Pacific Coast and southern Mexico 

show stronger circulation features and larger gradients in PMSL and Z500* than is 

observed (Figs. 7b,f).  Composites for a majority of the individual CMIP3 models at 

these grid cells look very similar to the model average composite, with only few models 

having stronger or weaker circulation features than the model mean (not shown).  Thus, 

the model average composite for these cases does not appear to be influenced by 

individual outlier models and is a representative measure of how the bulk of the CMIP3 

models perform.  This is generally the case for all other grid cells shown in this paper 

where the model average appears to have biases in circulation features.  Composites from 

different grid cells than the ones shown here within the Pacific Coast, southeast United 

States, and southern Mexico regions have the same characteristics as those shown in Fig. 

7 (not shown).  In the summer, the observed atmospheric circulation features associated 

with extreme precipitation at the same grid cells shown in Fig. 7 are much weaker (Figs. 

8a,c,e).  Furthermore, there is a minimum in Z500* located over or close to the grid cells 

at low latitudes, suggesting that atmospheric instability and moist convection are 

important mechanisms for extreme summer precipitation.  As in the winter composites, 

the CMIP3 models reasonably capture the broad atmospheric patterns observed during 
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extreme summer events, with perhaps a slight overestimation of the strength of the 

circulation features (Figs. 8b,d,f).  

 Along the Pacific Coast, the CMIP3 models underestimate heavy winter 

precipitation yet the atmospheric circulation features associated with extreme 

precipitation events are slightly stronger than observed (Figs. 7a,b), suggesting that other 

physical deficiencies are present in the models.  One likely deficiency is the 

oversimplified representation of topography by the coarse resolution models over this 

mountainous region, which leads to unrealistically light precipitation on the upwind side 

of mountains.  Other studies have shown that climate models of varying spatial resolution 

and complexity underestimate extreme precipitation in places where it is orographically 

forced (Iorio et al. 2004; Semmler and Jacob 2004; Wehner et al. 2010), but that higher 

resolution simulations are more realistic (Colle and Mass 2000; Iorio et al. 2004; Wehner 

et al. 2010).  Composites of vertically integrated water vapor flux (hereafter VIWVF) and 

the convergence of VIWVF (hereafter C(VIWVF)), two quantities which are highly 

relevant to the generation of extreme precipitation (e.g., Trenberth et al. 2003), were also 

produced for this grid cell (Figs. 9a,b).  These composites support that deficiencies in 

CMIP3 orography are related to heavy precipitation underestimation at this location.  In 

particular, the models underestimate C(VIWVF) over the center of strong convergence 

associated with extreme events while the magnitudes and orientation of VIWVF vectors 

are realistic to somewhat weaker than observed (Figs. 9a,b).  Additional composite 

analyses reveal that an underestimation in vertically integrated water vapor itself 

(hereafter VIWV) and gradients in VIWV near the Pacific Coast are the primary cause 

for underestimations of VIWVF and C(VIWVF) (not shown).  Such underestimations of 
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gradients in VIWV are likely a direct result of the oversimplified topography in the 

CMIP3 models.   

In the southeast United States and Mexico, the underestimation of heavy 

precipitation despite realistic or overly strong circulation features during extreme events 

is possibly related to problems in simulating convective precipitation.  This is supported 

by the dominance of convective precipitation in these regions, especially during summer 

(Changnon 2001; Dai 2001; Christian et al. 2003; Riemann-Campe et al. 2009), and the 

probable link between convective parameterizations and the underestimation of heavy 

precipitation in climate models (Gutowski et al. 2003; Iorio et al. 2004; May 2004; Emori 

et al. 2005; Kharin et al. 2007; Wilcox and Donner 2007; Wehner et al. 2010; Li et al. 

2012).  The northward migration of dry P99M model biases in summer (see Fig. 2) is also 

consistent with this explanation, as convective precipitation spreads north in summer 

(Changnon 2001; Dai 2001; Christian et al. 2003; Riemann-Campe et al. 2009), and 

simulated atmospheric circulation features during extreme summer events in the 

midwestern United States are also realistic (not shown).  Because tropical cyclones are 

also an important mechanism for extreme precipitation at low latitudes near the Atlantic 

Ocean (Rappaport 2000; Lau et al. 2008; Kunkel et al. 2010; Kunkel et al. 2012), the 

underestimation of heavy precipitation in these regions is possibly also related to the 

inability of the coarse resolution CMIP3 models to accurately simulate tropical cyclones 

(Bengtsson et al. 1995; McClean et al. 2011; Manganello et al. 2012; Camargo 2013).    

 In some places, such as the western intermountain regions from Canada through 

Mexico, the CMIP3 models overestimate the intensity of P99M precipitation during 

winter (see Figs. 2 and 4).  Winter composites of PMSL and Z500* for a selected grid 
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cell in the western United States show that the atmospheric circulation pattern associated 

with extreme winter events is simulated quite realistically by the CMIP3 models (Figs. 

10a,b).  This implies that the overestimation of heavy precipitation at this grid cell is 

mainly the result of the CMIP3 models oversimplifying the complex topography of 

western North America.  That is, in places where observed precipitation is small because 

of subsidence on the lee side of mountains, the models simulate too much precipitation 

because the true terrain pattern is not accurately represented (Colle and Mass 2000).  

Composites of VIWVF and C(VIWVF) at this location indicate that the models 

overestimate C(VIWVF) during extreme winter events and that this overestimation is 

predominantly the result of underestimations in the divergence of low-level (10 m to 500 

mb average) winds (not shown).  It is possible that such deficiencies in the simulated 

wind divergence at this location are partly influenced by the unrealistic representation of 

topography.   

In north-central Mexico, the observed atmospheric circulation during extreme 

winter events is characterized by a rather complex pattern in which surface winds 

originate from the Gulf of Mexico and anomalous mid tropospheric winds come from the 

Pacific Ocean (Fig. 10c).  Although the CMIP3 models realistically simulate the main 

features of this pattern, they slightly overestimate the gradients in PMSL and Z500* (Fig. 

10d).  Model average composites of VIWVF and C(VIWVF) show substantial biases 

when compared to NARR for this location (Figs. 9c,d).  The overestimations of VIWVF 

vectors stem from overestimations in low-level wind and VIWV itself, while 

overestimations in C(VWIVF) result from overestimations in the convergence of low-

level wind (not shown).  It is possible that the oversimplified representation of the 
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complex topography of Mexico in the models partly influences overestimations in the 

low-level wind convergence discussed above.  However, given that circulation biases are 

also apparent with composites of PMSL and Z500*, it is likely that some fundamental 

large scale deficiency in the atmospheric dynamics is present in CMIP3 models during 

extreme precipitation events over this region. 

 Composites of PMSL and Z500* are also shown for locations where heavy to 

extreme precipitation is quantitatively realistic in the CMIP3 models to see if the 

atmospheric circulation during extreme events is simulated accurately in those places 

(Figs. 11-12).  Two such locations are Newfoundland and northern Canada.  The 

atmospheric circulation during extreme events over Newfoundland is qualitatively similar 

in winter and summer, although gradients of PMSL and Z500* are much weaker in 

summer (Figs. 11a, 12a).  In both seasons, the CMIP3 model average overestimates the 

strength of the low PMSL associated with the circulation and places the low closer to the 

grid cell (Figs. 11b, 12b).  In winter, the couplet of positive/negative Z500* is also 

shifted northeast in the models (Fig. 11b).  Given that the models generate quite realistic 

P99M precipitation amounts over this region, it is possible that such errors in the 

circulation are compensated by other model deficiencies.  Such deficiencies may stem 

from the inability of the models to resolve or accurately simulate some of the processes 

that generate extreme precipitation in the northeastern part of North America.  These 

processes can include moist convection and tropical cyclones in the warm season (Dai 

2001; Christian et al. 2003; Riemann-Campe et al. 2009; Kunkel et al. 2010; Kunkel et al. 

2012; Manganello et al. 2012), mesoscale precipitation bands associated with 

extratropical cyclones (Novak et al. 2004), and other features of the synoptic atmospheric 
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structure that were not explored here (Milrad et al. 2010).   The atmospheric circulation 

patterns during extreme events in northern Canada are interesting in that they appear to 

result in low-level moisture flow that originates from the Pacific Ocean in winter and 

Gulf of Mexico in summer (Figs. 11c, 12c).  The model average captures this observed 

seasonal shift in moisture flow rather well, despite having a somewhat different 

arrangement of low and high PMSL centers in winter and somewhat stronger gradients of 

PMSL in summer (Figs. 11d, 12d).  As was the case with Newfoundland, it is possible 

that small errors in the simulated circulation over northern Canada are compensated by 

other physical deficiencies in the models (discussed above) resulting in realistic P99M 

precipitation.   

 Composite patterns of low-level wind and standardized anomalies of vertically 

integrated water vapor (hereafter VIWV*) were computed for extreme winter and 

summer precipitation events at every grid cell on the North America domain.  The values 

of low-level wind and VIWV* at the center grid cell for each of the composites was then 

displayed on a map of North America (Fig. 13).  This analysis represents a summary of 

the atmospheric circulation and moisture anomalies associated with extreme events at 

every grid cell on the domain and is intended to provide a measure of CMIP3 model 

performance for grid cells that were not explicitly analyzed in Figs. 7-12.  It should be 

noted that because only the local low-level wind associated with extreme events at each 

grid cell is displayed in Fig. 13, the wind vectors do not always indicate an oceanic 

moisture source.  For instance, the moisture source for extreme winter precipitation 

events in the Midwestern United States includes both the Gulf of Mexico and western 

Caribbean, as seen in composites of VIWVF and C(VIWVF) for a Midwest grid cell 
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(Figs. 9e,f), despite local low-level winds being from the southwest (Figs. 13a,b).  

Nonetheless, the observed patterns of local wind and VIWV* during extreme events are 

not surprising: winds usually blow the from the south and/or a source of moisture when 

near the coast, there are positive VIWV* values across the domain, and there are much 

weaker local winds and VIWV* values during summer as a result of weaker and less 

organized circulation patterns (Figs. 13a,c).  Many of the conclusions that were reached 

about the ability of CMIP3 models to simulate the observed circulation during extreme 

events from the analysis of individual grid cells can be seen in Fig. 13.  That is, despite 

being able to reproduce the gross features, the models tend to overestimate the strength of 

the circulation associated with extreme events over some places.  Figure 13 reveals that 

such overestimations in the circulation are largest along the entire Pacific Coast and 

much of northern and eastern Canada, where VIWV* values are also too high in the 

models.  Over much of northeastern North America, the simulated direction of local wind 

during extreme events also has small errors (Figs. 13b,d), as was suggested by 

composites of PMSL and Z500* over Newfoundland (Figs. 11-12).  Over many of these 

regions where the models have biases in simulated circulation, P99M precipitation is 

realistic or even underestimated, strengthening the point that errors in the simulated 

circulation during extreme events may be compensated by other physical deficiencies in 

the models.    

 In addition to the simple physical quantities shown in Figs. 7-13, other physical 

quantities were computed that further summarize the complexity of atmospheric 

circulation and thermodynamical patterns associated with extreme precipitation events.  

One such quantity is Q-vector convergence (hereafter QVC), a metric based on quasi-
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geostrophic theory that quantifies the portion of upward vertical motion explained by 

synoptic and meso-α-scale forcing (i.e., warm air advection, positive vorticity advection, 

and large-scale frontogenesis) (Hoskins et al. 1978).  Quantitatively, the Q-vector can be 

computed with gradients in geopotential height and temperature at a given atmospheric 

level (Holton 2004, 168–174).  Composites of QVC averaged over the lower troposphere 

(850, 700, and 600 mb) were analyzed for extreme winter and summer precipitation 

across the North America domain.  The analysis revealed that the CMIP3 models 

accurately capture the features of QVC associated with extreme events but overestimate 

the magnitudes of QVC in regions where the large scale circulation is also overestimated, 

particularly the northeastern part of the domain (not shown).  Such results are consistent 

with those presented in Figs. 7-13.  The lifted index, a quantity that approximately 

characterizes the atmospheric static stability and thus potential for convective 

precipitation, was also composited during extreme events.  This analysis showed that 

while the magnitudes of lifted index were sometimes underestimated by the models, 

patterns of standardized anomalies of lifted index were quite realistic over most of the 

domain (not shown).  This implies that the anomalous thermodynamical structure of the 

atmosphere during extreme events, partly driven by the large scale circulation, is 

simulated well by the CMIP3 models.    

 
 
2.5 A comparison of CMIP3 with CMIP5 

 In this section, an analysis that was performed for the CMIP5 ensemble analogous 

to that shown in sections 2.3-2.4 will be highlighted.  Daily output from CMIP5 was 

obtained from the Earth System Grid Federation archive [http://pcmdi9.llnl.gov/esgf-

http://pcmdi9.llnl.gov/esgf-web-fe/�
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web-fe/].  There were 17 models with archived variables necessary for the evaluation of 

both precipitation statistics and the physical mechanisms associated with extreme 

precipitation events (Table 2).  The models listed in Table 2 are those with available 

output by 1 July 2012.  Models that became available after that date are excluded, though 

various sensitivity tests involving different CMIP5 model subsets suggest that including 

those additional models would not substantially alter the conclusions (not shown).  The 

historical scenario from CMIP5 was used for the evaluation.  The historical scenario, 

which is analogous to the 20th century scenario in CMIP3, is forced with observed 

changes in atmospheric composition (due to natural and anthropogenic sources), solar 

forcing, and land use (Taylor et al. 2009; Taylor et al. 2012).  The first available 

ensemble member run from each CMIP5 model was analyzed.  The time period 1 January 

1979- 31 December 1999 was evaluated in CMIP5 and all CMIP5 output was regridded 

from its original horizontal resolution to a common 2.5°x2.5° resolution, following the 

same procedure as for CMIP3 (see section 2.2.c).  Leap days (29 February) were 

removed from all CMIP5 output.  In the figures showing CMIP3 in this section (Figs. 14-

17), only the 12 CMIP3 models with necessary output for the evaluation of both 

precipitation statistics and physical mechanisms are used (see Table 1). 

The spatial pattern of annual heavy precipitation (P99M) over North America is 

compared between the CPC observations and the CMIP3 and CMIP5 multimodel 

averages in Fig. 14.  CMIP3 and CMIP5 exhibit the same general biases in annual P99M 

across much of the domain, including underestimations in the southeastern United States, 

southern Mexico, and along the Pacific Coast, and overestimations across the 

intermountain regions of the west extending into central Mexico (Fig. 14).  The 
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underestimation in P99M in the southeast United States in CMIP5 is somewhat smaller 

than in CMIP3, both in spatial extent and magnitude.  Improvements in CMIP5 over 

CMIP3 are also seen in the southeastern United States when considering winter (DJF) 

and summer (JJA) P99M (not shown).  The spatial extent of the overestimation in annual 

heavy precipitation in the western intermountain regions in CMIP5 is somewhat larger 

than in CMIP3 (Fig. 14).  The differences between CMIP3 and CMIP5 in Fig. 14 are not 

sensitive to the subset of CMIP3 and CMIP5 models used in computing P99M biases 

(i.e., when including more models from each ensemble that have available precipitation 

output, or when just using models from the same modeling groups from each ensemble) 

(not shown).  In a recent evaluation, Sillmann et al. (2013a) found similar biases in 

CMIP5 precipitation over North America when compared to HadEX2 observations for 

precipitation indices such as total rainfall from days exceeding the 95th percentile and the 

maximum five-day precipitation amount.  They also found that the intensity of heavy 

precipitation in CMIP5 is somewhat higher and therefore more realistic than CMIP3 over 

regions such as central and eastern North America, consistent with the results shown 

here.  Biases in climatological mean precipitation are very similar between the CMIP3 

and CMIP5 ensembles (not shown). 

 It is interesting to assess the degree to which horizontal resolution influences the 

performance of CMIP3 and CMIP5 models in simulating heavy precipitation over North 

America, as CMIP5 models generally have higher resolution than CMIP3 models (Tables 

1-2).  As discussed in section 1, higher resolution models tend to simulate the statistics of 

high frequency precipitation more realistically (e.g., Iorio et al. 2004; Wehner et al. 2010; 

Dulière et al. 2011; Li et al. 2011).  To objectively evaluate the performance of the 
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individual models, the root-mean-square (RMS) of the difference in P99M between each 

model and the CPC observations (both datasets on the 2.5°x2.5° grid) was computed over 

all grid cells over North America.  In Fig. 15, the RMS error value versus corresponding 

native horizontal resolution (expressed as total number of grid cells globally) for each 

model is plotted, along with statistics of the linear relationship, to provide a general 

assessment of the influence of resolution on model biases.  Despite the rather wide scatter 

in performance among the individual models, there is a general tendency for the higher 

resolution models to have smaller RMS error, especially for annual and summer (JJA) 

P99M, with R2 values of about 0.3 (Figs. 15a,c).  The wide scatter in model performance 

is expected as the CMIP ensembles include a diverse group of models with many 

physical differences in addition to horizontal resolution, including convective 

parameterizations.   When using winter (DJF) data, the relationship between RMS error 

and horizontal resolution is noticeably weaker, with R2 values dropping below 0.1 (Fig. 

15b).  The more pronounced improvement in model performance with increased 

resolution during summer, a time when convective precipitation is prevalent over North 

America, may reflect the reduced dependence of the higher resolution simulations on 

convective parameterizations (Li et al. 2011, Li et al. 2012).   

 The composite analysis shown in section 2.4 and in Figs. 7-13 was repeated for 

CMIP5, focusing on annual heavy precipitation (i.e., including all seasons).  In producing 

the composite maps for NARR, CMIP3, and CMIP5 in this section, atmospheric 

quantities were averaged over the days when precipitation equals or exceeds the 99th 

percentile at a grid cell.   This allows for a direct comparison with biases in annual P99M 

in Fig. 14.  Fewer atmospheric levels were available from the CMIP5 archive (1000, 850, 
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700, 500, 250 mb) for the computation of variables such as Z500 and low-level wind.  

For a consistent comparison among datasets, Z500 and low-level wind in NARR and 

CMIP3 were computed using the available CMIP5 levels. 

Composites of PMSL and Z500* were produced for selected grid cells where the 

biases in P99M between CMIP3 and CMIP5 have different magnitudes and/or spatial 

extent, such as the southeastern United States, southwestern United States, and central 

Mexico (see Fig. 14).  Overall, the atmospheric circulation patterns during heavy annual 

precipitation days are very similar between the CMIP3 and CMIP5 multimodel means at 

these locations (Fig. 16).  Over the southeastern United States, where both CMIP3 and 

CMIP5 underestimate intense precipitation (more so in CMIP3), the atmospheric 

circulation patterns in both CMIP3 and CMIP5 agree reasonably well with observations 

(Figs. 16a-c).  Over the southwestern United States where CMIP5 overestimates P99M 

slightly more than CMIP3 (Fig 14), the minima in Z500* associated with extreme events 

in both CMIP3 and CMIP5 are slightly weaker than observed while the PMSL pattern is 

simulated well (Figs. 16d-f).  Finally, both CMIP3 and CMIP5 show circulation features 

characterized by stronger gradients in PMSL and stronger Z500* minima than observed 

over a grid cell in Mexico where CMIP5 overestimates heavy precipitation slightly more 

than CMIP3 (Figs. 16g-i).   

To perform a more comprehensive comparison of the simulated atmospheric 

circulation associated with heavy precipitation between NARR, CMIP3 and CMIP5 at all 

grid cells, the local low-level (10-m to 500-mb mean) wind averaged over days when the 

daily precipitation equals or exceeds the annual 99th percentile is plotted in Fig. 17.  Fig. 

17 is analogous to Fig. 13, except it only shows low-level wind and is computed from all 
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seasons.  Both CMIP3 and CMIP5 models overestimate the strength of the local low-

level winds inland of the Pacific Coast and have somewhat more southerly local winds 

during heavy precipitation in northeastern Canada when compared to NARR (Fig. 17).  

The generally realistic simulation of the atmospheric circulation by the CMIP3 and 

CMIP5 models in much of the eastern United States is in agreement with a more 

comprehensive evaluation of the physical mechanisms associated with extreme 

precipitation over the Midwest United States in CMIP5 models by Kawazoe and 

Gutowksi (2013).  Overall, CMIP3 and CMIP5 are very similar in their simulation of the 

local low-level wind associated with heavy precipitation, consistent with the composite 

analysis of individual grid cells in Fig. 16 which showed minor differences in the large-

scale circulation between CMIP3 and CMIP5.   

The differences between the observed and simulated atmospheric circulation 

features in Figs. 16-17 suggest that there is no simple relationship between biases in 

atmospheric circulation and heavy precipitation in CMIP3 or CMIP5, as can also be 

concluded from the CMIP3 analysis in sections 2.3 and 2.4.  Furthermore, improvements 

in CMIP5 over CMIP3 in simulating heavy precipitation, particularly over the 

southeastern United States, do not appear to be strongly related the simulation of the 

large-scale atmospheric circulation patterns during extreme events.  Horizontal resolution 

and other physical processes in the models, including the parameterization of convective 

precipitation, may be more important for such improvements (e.g., Fig. 15; Iorio et al. 

2004; Wilcox and Donner 2007; Wehner et al. 2010).   

 
 
2.6 Concluding remarks 
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The models participating in CMIP3 and CMIP5 show robust biases in their 

simulation of daily precipitation statistics over North America, most notably 

underestimations in the intensity of heavy precipitation over certain regions, including the 

southeastern United States, southern Mexico, and Pacific Coast.  Despite biases in 

precipitation intensity, the gross features of the large-scale atmospheric circulation 

associated with heavy to extreme precipitation events are realistic over most places.  The 

ability of the models to realistically simulate the large-scale mechanisms accompanying 

heavy precipitation provides confidence in their use to understand projected changes in 

precipitation in a future climate, at least from a qualitative perspective.  Given their 

biases in precipitation intensity and based on conclusions from previous studies, 

however, climate models may underestimate future increases in heavy precipitation.  In 

the subsequent two chapters, CMIP5 models are used to examine projected changes in the 

daily precipitation distribution and to better understand the physical mechanisms for 

changes in regional heavy precipitation.        
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3. Projected changes in the daily precipitation distribution in CMIP5 

 

3.1 Introduction 

In this chapter, CMIP5 models are used to examine projected changes in the 

frequency distribution of daily precipitation in response to future global warming.  The 

study domain is expanded to the entire globe for this analysis.  A focus is on the regional 

variability of projected changes, which has not been comprehensively explored in 

previous studies.  To explore the regional variability, cluster analysis is applied to 

difference histograms of daily precipitation at all grid cells.  The CMIP5 output and 

methodology are described in section 3.2.  The main results of the analysis are presented 

and discussed in section 3.3.  In section 3.4, the potential physical mechanisms for 

regional changes in the precipitation distribution are explored with additional analyses 

and a literature review.  Finally, in section 3.5, a discussion of the broader impacts and 

limitations of the analysis is provided. 

 
 
3.2 Data and methodology           

 
 
3.2.a CMIP5 output 

 The same CMIP5 models and runs that were used to evaluate the climate of the 

late 20th century (section 2.5, Table 2) were used in all analyses of future climate in this 

dissertation (chapters 3 and 4).  The RCP8.5 scenario, a high emissions scenario in which 

the radiative forcing reaches approximately 8.5 W m-2 by the end of the 21st century 

(Moss et al. 2010; Taylor et al. 2012), is used to represent future climate.  The RCP8.5 
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scenario is compared with the historical scenario described in section 2.5.  The time 

period 1 January 1979- 31 December 1999 is used from the historical scenario and 1 

January 2079- 31 December 2099 from the RCP8.5 scenario.  Using longer time periods 

(1960-99 and 2060-99) does not change the main findings emerging from the comparison 

of historical and future climate (not shown).  The same methodology applied to the 

historical output, including the regridding to a 2.5°x2.5° longitude-latitude grid and the 

removal of leap days, was also applied to the RCP8.5 output.            

 
 
3.2.b Cluster analysis 

To analyze regional changes in the annual distribution of daily precipitation 

between the historical and RCP8.5 scenarios of the CMIP5 models, k-means cluster 

analysis is applied to difference histograms of daily precipitation.  More specifically, a 

histogram of daily precipitation at each grid cell and for each model is computed for both 

the historical and RCP8.5 simulations using days from all seasons.  The historical 

histogram is then subtracted from the RCP8.5 histogram to obtain the difference 

histogram at all grid cells for each model.  In constructing the histograms, different 

normalizations applied to the raw daily precipitation before counting over bins were 

explored.  In the simplest case, precipitation is binned based on raw amount, where the 

first bin is 0 to 0.5 mm day-1 representing zero or trace precipitation (hereafter 

zero/trace), the second is 0.5 to 2.5 mm day-1 (hereafter very light) and subsequent bins 

have a 2.5 mm day-1 width, with the heaviest bin being 122.5-125 mm day-1.  When 

binning precipitation based on raw amount, drier grid cells may not have counts in 

heavier bins, potentially creating a bias in the assignment of clusters to those grid cells.  
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For this reason, it is useful to normalize the daily precipitation by some measure of the 

local mean precipitation intensity before generating histograms.  The historical P99M 

(defined in section 2.3) was shown to be a sufficient measure of the local precipitation 

intensity and is used for the normalization in this chapter.  When normalizing by P99M, 

the first bin representing zero/trace is 0 to 0.01, the second bin is 0.01 to 0.1, and 

remaining bins have a width of 0.1 up to 2, with the largest bin being greater than or 

equal to 2 (i.e., larger than twice the local historical P99M).  While the normalization has 

the advantage of removing the influence of climatological precipitation when assigning 

clusters, it masks information about the actual intensity of precipitation which may be 

related to the physical mechanisms responsible for precipitation changes (Lau et al. 

2013).  Therefore, cluster analysis is applied to histograms generated from both 

normalized and non-normalized precipitation in this chapter and the results are shown for 

both.   

There is large spatial variability in the raw count differences (RCP8.5 – historical) 

for certain precipitation bins, partially as a result of climatological mean precipitation, 

and the clustering algorithm is very sensitive to this (not shown).  Furthermore, due to the 

positively skewed character of daily precipitation distributions, the lighter bins always 

have larger count differences than the heavier bins, giving more weight to the lighter bins 

when assigning clusters.  To assign clusters based on the shape of precipitation change 

histograms regardless of the magnitude of count changes and to represent light and heavy 

events with more equality, the log (base 10) is applied to the count differences before 

performing the cluster analysis.   Note that for negative count differences, the log is 

applied to the absolute value of the count difference and the negative sign reapplied after.  
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Taking the log has the effect of both reducing the spatial variability in the range of count 

differences (allowing grid cells with similarly shaped histograms to appear more similar 

to the cluster algorithm) and giving more weight to heavier precipitation bins.   

K-means clustering is applied to the difference histograms at the individual grid 

cells for either 1) the model average histograms, where the histograms at every grid cell 

were first averaged over the 17 available models and the log of count differences was 

applied after averaging, or 2) the aggregate of histograms at all grid cells and every 

individual model, where the model average (case 1) is treated as a separate “model.”  In 

the latter, the cluster analysis takes into account histogram data at each grid cell for every 

model simultaneously and assigns one of k clusters to each grid cell of every model.  

Applying cluster analysis to the aggregate of grid cells from all models allows for an 

assessment of the intermodel variability in precipitation change behavior.  In all cases, 

the clustering algorithm works by assigning each n-bin histogram at every grid cell to one 

of k centroid histograms (also referred to as clusters), where the centroid histogram is the 

linear mean of the histograms over the grid cells assigned to that cluster.  Each grid cell is 

assigned to the centroid histogram with the smallest n-dimensional distance from the grid 

cell histogram, where distance is defined as the sum (over all n bins) of the squared 

differences between the grid cell and centroid histogram bin counts.  This distance may 

also be referred to as the squared Euclidean distance, with units of squared 

log10(𝑐𝑜𝑢𝑛𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠) in this analysis.    

 
 
3.2.c V-fold cross validation 
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 When applying cluster analysis, one must choose an appropriate number of 

clusters that effectively summarizes the data put under analysis.  One objective method to 

evaluate an appropriate number of clusters is based on V-fold cross validation (Hill and 

Lewicki 2006, 123–126).  In this process, the original dataset that is to undergo cluster 

analysis (in this case, precipitation change histograms at individual grid cells) is split into 

V equal sized samples, where the splitting is applied along the grid cell dimension.  

Leaving out one of the V subsamples, cluster analysis is applied to the remaining V-1 

subsamples using a fixed number of clusters.  The centroids obtained by the application 

of cluster analysis to the V-1 subsamples are then used to predict the appropriate cluster 

for the grid cells in the left-out sample (i.e., by assigning the centroid histogram with the 

smallest distance from the grid cell histogram to that grid cell).  The procedure is 

performed V times, each time leaving out one of the V subsamples.  The distance between 

the left-out grid cell histograms and the corresponding predicted centroid histograms is 

then averaged over all grid cells in each left-out subsample and then over the V 

subsamples, giving a metric of the error for the assignment of centroid histograms for a 

particular number of clusters.  The process is then repeated using different numbers of 

clusters, ultimately resulting in a relationship between error in predictability and number 

of clusters.  The point at which reductions in predictability error with increased cluster 

number become insignificant determines an appropriate number of clusters for the 

dataset.  For example, if significant reductions in error are seen when increasing the 

number of clusters to 2 and 3, but error begins leveling off at 4 or more clusters, an 

appropriate number of clusters might be 3 or 4.  There remains some subjectivity in 

determining the point of diminishing returns with increased number of clusters.  
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 Fig. 18 shows the results of applying the V-fold cross validation procedure to 

histograms of count differences in raw precipitation as well as precipitation normalized 

by historical P99M.  V=5 is used for the analysis, but the results are nearly identical for 

different values of V ranging from 3 to 15 (not shown).  The average error when applying 

the analysis to the aggregate of grid cells over all models is larger than when applied to 

the model average grid cells alone (Fig. 18).  This is expected due to the inherently larger 

variability between grid cell histograms when considering many different models.  When 

the analysis is applied to raw precipitation, average error is slightly larger than when 

applied to normalized precipitation, suggesting that the normalization reduces some of 

the inter-grid cell variability resulting from climatological precipitation, improving the 

predictions.  In all cases, there is a fairly large drop in average error when going from one 

to two clusters, with progressively smaller reductions in error when continuing to add 

clusters, especially in the case of the multimodel average (circles in Fig. 18).  Based on 

the results of the V-fold cross validation and inspection of the results of cluster analysis 

when using a varying number of clusters ranging from two to eight, four clusters was 

chosen to adequately represent the spatial variability in difference histograms in the 

CMIP5 output.  The physical insight gained from using more than four clusters does not 

appear to be substantial.  Furthermore, using fewer clusters makes the geographical 

pattern of cluster assignments easier to visualize and interpret.  Nonetheless, a drawback 

of using few clusters is that more individual grid cells will not neatly fit into one of the 

clusters, a topic which will be further investigated in section 3.3.b.   

 

3.3 Results                      
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3.3.a Spatial patterns of mean and heavy precipitation  

 As an introduction and for future reference throughout this dissertation, the 

climatological patterns and projected changes in mean and heavy precipitation in CMIP5 

are shown in Figs. 19-20.  Increases in mean precipitation between the historical and 

RCP8.5 simulations are largest in magnitude in the tropics, where climatological 

precipitation in the historical simulation is also largest (Fig. 19).  In some places, such as 

the equatorial Pacific, increases in precipitation appear to be influenced by subtle 

redistributions in the spatial precipitation pattern.  Such redistributions may be related to 

changes in tropical mean circulation, such as the Walker circulation (Vecchi and Soden 

2007; Chou et al. 2009), a topic which is further discussed in section 3.4.  Precipitation 

also increases in most middle to high-latitude regions, especially during the local winter 

season.  Decreases in mean precipitation, both in amount and percentage, occur over dry 

subtropical oceanic regions, such as the eastern North and South Pacific, tropical North 

Atlantic, eastern South Atlantic, and eastern Indian Ocean.  Precipitation also decreases, 

with seasonal variability, over some land regions, including Central America and 

northern Africa during DJF and the Caribbean, eastern South America, the Mediterranean 

region, southern Africa, and Australia during JJA.  The seasonal decreases in mean 

precipitation over land occur over dry regions and are more apparent when viewing the 

changes as a percentage (Figs. 19g-i).  Changes in mean precipitation in CMIP5 models 

are broadly consistent with earlier CMIP3 studies showing wet places becoming wetter 

and dry places becoming dryer in a future warmer climate (e.g., Held and Soden 2006; 

Vecchi and Soden 2007; Seager et al. 2010).    
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 The picture is quite different when looking at projected changes in mean 

precipitation from the heaviest 1% of daily events (P99M, Fig. 20).  Projected increases 

in P99M are dominant across the global domain, which is especially apparent when the 

changes are expressed as a percentage (Figs. 20g-i).  The largest relative increases are 

once again in the tropics and high latitudes.  In some places and seasons, such as Central 

America and the Pacific Coast of North America during boreal summer (JJA) and the 

western North Pacific during boreal winter (DJF), climatological mean precipitation 

decreases while heavy precipitation increases (Figs. 19h,i, 20h,i).  Areas of substantial 

projected decreases in heavy precipitation are apparent, especially in subtropical oceanic 

regions; however, these decreases are notably smaller in spatial extent than the 

corresponding decreases in climatological mean precipitation over the same areas.  The 

regions and seasons characterized by rather large percentage decreases in heavy 

precipitation, including some land regions in South America and Africa, are mostly those 

in which P99M is very light in the historical simulation.  One interesting exception is 

over northern Australia and the adjacent Indian Ocean where P99M decreases during 

austral winter (JJA) and historical P99M is substantial (Fig. 20c,f,i).  The results in Figs. 

19-20 are in agreement with previous observational and climate model studies showing 

disproportionate increases in heavy precipitation relative to mean precipitation (e.g., 

Easterling et al. 2000; Allen and Ingram 2002; Groisman et al. 2005; Kharin and Zwiers 

2005; Kharin et al. 2007; Sun et al. 2007; Liu et al. 2009; Kharin et al. 2013; Scoccimarro 

et al. 2013; Sillman et al. 2013b).  These projected changes imply a shift in the daily 

precipitation distribution characterized by an increase in both dry and heavy precipitation 

frequency at the expense of light-moderate precipitation over many places.  
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3.3.b Analysis of daily precipitation distributions 

 Fig. 21 shows the results of applying k-means cluster analysis to the multimodel 

average histograms using raw annual precipitation bins (see section 3.2.b for details).  

There are two distinct types of centroid histograms that emerge from the analysis: 1) the 

lightest precipitation bin(s) show decreasing counts while all larger events increase 

(clusters 1 and 2, hereafter referred to as down-up), and 2) zero/trace and heavy 

precipitation increases at the expense of light-moderate precipitation (clusters 3 and 4, 

hereafter referred to as up-down-up).  The former occurs in high-latitude regions as well 

as parts of the tropics, while the latter primarily occurs in midlatitude and subtropical 

regions (Fig. 21c).  When using four clusters, each of these main histogram types is 

further split into two subtypes.  For the down-up type, the main distinction between 

clusters 1 and 2 is that the very light (second) bin also has decreasing counts in cluster 2 

(Figs. 21a,b).  Cluster 2 mainly occurs in the oceanic tropical regions and over the lower 

latitude and climatologically wetter parts of the broad high-latitude regions assigned the 

down-up type.  Clusters 3 and 4 are different in that the transition from decreasing to 

increasing counts occurs at a heavier intensity in cluster 4 (Fig. 21d,e).  The increases in 

the heavy tail in cluster 4 are also reduced compared to cluster 3, implying that many 

individual grid cells assigned this cluster have little change or count decreases in the 

heavy bins.  Cluster 4 is generally more prevalent at lower latitudes within the broad up-

down-up region, with no clear relationship to the climatological precipitation (Figs. 19a, 

21c).  
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In Fig. 22, precipitation is first normalized by the local historical P99M before 

generating histograms and applying cluster analysis (as described in section 3.2.b).  

Though the results are similar to those using non-normalized precipitation, there are 

differences worth noting.  One is that cluster # 1 is less prevalent over Antarctica and the 

northern high latitudes when precipitation is normalized.  This may be the result of the 

zero/trace bin not being capped with a fixed threshold such as 0.5 mm day-1 but rather 

1/100th of the local P99M.  At the highest latitude locations, the normalized threshold 

may be less than 0.5 mm day-1, resulting in more precipitation and larger count 

differences in the second bin than would otherwise occur, hence the assignment of cluster 

2.  A more notable difference is that cluster 4 is dominated by decreases in heavy 

precipitation and better centered over drier regions with projected decreases in mean and 

heavy precipitation when precipitation is first normalized by P99M (Figs. 19a,g, 20a,g, 

21c, 22c).  Thus, the normalization has the effect of better separating grid cells with a 

distinct difference in the response of the heavy tail of the distribution.  For this reason, 

precipitation normalized by P99M is used for the rest of the analyses in this chapter. 

When comparing patterns of mean precipitation change with the cluster 

assignments in Figs. 21-22, it is apparent that the areas assigned the down-up clusters are 

those in which mean precipitation is projected to increase in the future (Figs. 19d,g, 21c, 

22c).  Likewise, areas assigned the up-down-up clusters are those in which changes in 

mean precipitation are small or negative.  This relationship is partly expected, since most 

regions projected to have little change or decreases in mean precipitation also have 

projected increases in heavy precipitation (Figs. 19, 20), implying an up-down-up shift in 

the daily precipitation distribution as discussed in section 1.3.  It is noteworthy though 
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that over areas with a projected increase in mean precipitation, the precipitation increases 

because zero/trace or very light precipitation days are replaced with more substantial 

precipitation days.  In these areas, increases in mean precipitation are not dominated by 

increases in the heavy tail of the precipitation distribution that are partly compensated by 

decreases in light-moderate events and more frequent dry days.  Rather, mean 

precipitation is increasing because of more frequent and more intense precipitation events 

of all intensities.  The same can be said for regions of substantial mean precipitation 

decreases, in which precipitation of all intensities is less frequent in the future (seen 

later).  In summary, changes in mean precipitation, especially when expressed as a 

percentage, are a very good indicator of regional changes in the daily precipitation 

distribution despite regional differences in climatological precipitation.   

In both Figs. 21 and 22, metrics of grid cell variability within cluster groupings 

are shown on the histograms.  The inter-quartile range (IQR) of count differences across 

histograms assigned to the same cluster generally do not deviate from the shape of the 

centroid histogram, demonstrating that the sign of the mean count difference at a 

particular bin is representative of at least 75% of the assigned grid cells.  In some cases, 

the IQR of count differences spans zero, most notably for the transition bins in the up-

down-up clusters.  Indeed, the wide spread of count differences in the second bin of 

cluster 4 implies that a decrease in precipitation at the heavy tail (esp. when normalized 

by P99M) is often associated with an increase in not only zero/trace days, but also days 

with very light precipitation (Figs. 21e, 22e).  Additionally, the zero-spanning IQR in the 

heavy bins in cluster 4 shows that many grid cells assigned this cluster do indeed have 

count increases in heavy precipitation.  The 5th to 95th percentile spread of count 
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differences is also shown in Figs. 21-22 and like the IQR, it broadly follows the shape of 

the mean histograms, but with a larger spread.  However, the full range of count 

differences is very large in all cases, suggesting that some individual locations show very 

different behavior from any the four clusters.  

The spatial pattern of differences between local and assigned centroid histograms 

is further investigated to get a better idea of where the local precipitation response is very 

different from the four clusters of Figs. 21-22.  In Fig. 23, the distance between the 

histogram at each grid cell and its assigned centroid histogram from Fig. 22 (i.e., using 

precipitation normalized by P99M) is shown.  Recall that distance is defined as the sum, 

over all bins, of the squared differences between centroid and local histogram bin counts 

and has units of squared log10(𝑐𝑜𝑢𝑛𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠).  Over much of the geographical 

areas assigned to a particular cluster, the distances are relatively small compared to the 

full range of distances across the map (Figs. 23a,c,e,g).  Areas with large distances tend 

to be isolated or confined to small regions and generally occur in the lower latitudes.  The 

graphs in Fig. 23 (right column) show the variability in count differences among grid 

cells with a distance of less than 10 from their assigned cluster, where a distance of 10 is 

arbitrarily chosen to represent the threshold of close agreement with the centroid 

histogram.  Though the full range of count differences is still large, the 5th to 95th 

percentile spread is very closely confined to the centroid histogram shape when 

considering just these locations, more so than when considering all locations assigned the 

cluster (compare Figs. 22a,b,d,e with Figs. 23b,d,f,h).  This implies that the general 

behavior in the precipitation distribution at locations with small distance, which 

constitute a majority of the domain and coherent geographical regions, can be predicted 
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to a large extent by the mean centroid histograms.  Similar conclusions can be drawn 

when the analysis of Fig. 23 is repeated using raw precipitation, but with the 5th to 95th 

percentile spread more frequently hitting zero in heavier bins, most likely due to the lack 

of counts in heavy bins at dry locations (not shown).  

To further explore the behavior of precipitation change at grid cells with large 

differences from their assigned cluster, grid cells with a distance of 10 or more from their 

respective cluster in Fig. 22 (shown in Fig. 23) are subjected to a new k-means cluster 

analysis (Fig. 24).  A notable feature that emerges in the new cluster assignments is a 

mean histogram type characterized by a down-up-down-up shape, which occurs in 

scattered tropical regions (Figs. 23a,c).  While the spread among individual grid cell 

histograms assigned this cluster is large, an inspection of individual grid cells and those 

with distances less than 5 from this cluster indicates that the initial down-up-down 

behavior is robust, particularly in the oceanic regions of the West Pacific, North Atlantic, 

and Indian Ocean (not shown).  Thus, this behavior is not an artifact of averaging over 

many grid cells and indeed occurs at individual locations.  When using six or more 

clusters in the original analysis of all grid cells for raw or normalized precipitation, the 

same down-up-down-up cluster emerges in the same regions, consistent with Fig. 24 (not 

shown).  Cluster 2 of Fig. 24 is a hybrid of the down-up and up-down-up types and 

occurs at the boundaries of these types in the original analysis (Figs. 22c, 24c).  Cluster 3 

represents a slight deviation from the original up-down-up cluster of Fig. 22 reflecting 

variability in the transition bins.  Cluster 4 shows a larger magnitude and more robust 

decrease in the heavy tail of the distribution than was found when using all grid cells, 

occurring near subtropical oceanic areas with projected decreases in both mean and 
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P99M precipitation (Figs. 19g, 20g, 24c).  Indeed, when considering all locations with 

decreases in both mean and heavy precipitation, the up-down response of the daily 

precipitation distribution is quite robust (Fig. 25).  Thus, an up-down change of the daily 

precipitation distribution is another distinct type of precipitation response in the CMIP5 

ensemble, which primarily occurs in subtropical subsidence regions.     

The remaining scatter in precipitation behavior at individual grid cells 

(represented by the stars in Figs. 21-25) highlights the inherently noisy nature of 

precipitation and potentially complicated local mechanisms at play when considering 

precipitation change.  Inadequate sampling when constructing precipitation histograms 

may also contribute to the scatter in the precipitation distribution at some locations.  To 

test this, the analysis of Fig. 22 was repeated using 40-year periods (1960-99 and 2060-

99) instead of 21-year periods.  While the results were generally the same, the grid cell 

scatter in precipitation response was somewhat reduced for the up-down-up cluster # 3 

when using the longer time periods (not shown). 

Up until this point the analysis has focused on k-means cluster analysis applied to 

difference histograms that were first averaged over the individual 17 CMIP5 models.  

Now, the intermodel variability is explored by combining the histograms from every grid 

cell and every model into one sample and then applying cluster analysis, as described in 

section 3.2.b.  The results of this analysis when using normalized precipitation are shown 

in Figs. 26-27.  The pattern of cluster assignments for the multimodel average component 

of the aggregate and shapes of the four emerging histograms are qualitatively similar to 

those when applying cluster analysis to the multimodel average (Figs. 22, 26, 27).  This is 

an indication that the precipitation distribution response of the multimodel mean is 
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representative of that of the individual models, as the results are not substantially altered 

by the inclusion of individual models.  Furthermore, the pattern of cluster assignments for 

each of the individual models in Fig. 26 is broadly consistent with that for the multimodel 

average in Fig. 22.  That is, the down-up response generally occurs in the tropics and 

high latitudes, while the up-down-up response occurs elsewhere.  There is, however, a 

fair degree of intermodel variability in the geographical placement and spatial extent of 

certain clusters (e.g., cluster 3 dominates in the MPI-ESM-LR, MPI-ESM-MR, and MRI-

CGCM3 models, while cluster 4 dominates in the GFDL-ESM2G and GFDL-ESM2M 

models).  These differences in cluster assignments between individual models are likely 

related to different patterns and magnitudes of the mean precipitation response.   

Though the spatial pattern of changes in the daily precipitation distribution is 

variable among individual models (Fig. 26), it is possible that the models agree better 

when considering large-scale regional averages (e.g., Chou et al. 2009).  To test this, 

regions are defined based on the cluster assignments determined from the analysis in Fig. 

22 (i.e., using normalized precipitation) and the mean difference histogram over each 

region is computed for each individual model (Fig. 28).  The full model range of 

regional-mean count differences closely follows the centroid histogram shapes of Fig. 22, 

with the exception of transition and zero/tace bins in some cases (Figs. 22, 28).  This 

suggests that although the individual models have variable spatial patterns of 

precipitation response, when averaged over large regions, the response of the daily 

precipitation distribution is fairly robust.  About half of the models show a small increase 

in the heavy tail of the daily precipitation distribution when averaged over region 4 in 

Fig. 28.  However, when averaged over the smaller regions better centered over the 
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subtropical subsidence regions (Fig. 29c, region 4), almost all models show decreases in 

the heavy bins (Fig. 29e).  Similar results are obtained when averaging over the regions 

in Fig. 25a (not shown).  The down-up-down-up response that emerges in the cluster 

analysis of the multimodel mean over small regions (Figs. 24a,c) is not at all robust 

across the individual models when averaged over these regions (Fig. 29a), suggesting that 

this response occurs at only scattered locations in some individual models.       

 

3.3.c Summary of main histogram types 

 From the analysis of k-means clustering applied to difference histograms of daily 

precipitation, four distinct responses of the precipitation distribution emerge, which are 

summarized in Table 3.  These responses appear not only when averaging precipitation 

histograms over many grid cells but also occur at individual locations with fairly high 

robustness (e.g., Fig. 23).  When averaged over the broad regions that make up each of 

the main histogram types in Table 3, the precipitation response is fairly consistent across 

the 17 individual models used in the analysis (Figs. 28-29).  A notable exception is for 

the down-up-down-up response, which may not be physically robust.    

In previous studies that focus on large regions, the main response of the 

precipitation distribution to warming is shown to have an up-down-up shape.  The 

analyses in this chapter show that other responses of the daily precipitation distribution to 

warming are also important regionally, including shifts toward generally wetter (down-

up) and drier (up-down) conditions in the future.   

 

3.4 Physical mechanisms associated with precipitation change  



59 
 

 

 In this section, the physical mechanisms that may be responsible for the projected 

changes in the precipitation distribution are explored.  One interesting finding from the 

cluster analyses in this chapter is that the down-up response of the precipitation 

distribution, representing a shift toward generally wetter conditions, occurs in both high 

latitudes and the tropics, two regions with very different climates and physical processes 

relevant to precipitation.  In the tropics, a mechanism that may be responsible for the 

precipitation response is the pattern of oceanic warming, which in turn may be related to 

a change in the mean tropical circulation (Vecchi and Soden 2007; Chou et al. 2009; 

Huang et al. 2013).  In Fig. 30, changes in mean surface (2-m) temperature between the 

historical and RCP8.5 scenarios in CMIP5 are plotted, noting that changes in surface air 

temperature over the tropical oceans are strongly tied to changes in sea surface 

temperatures (SSTs).  In the central and eastern equatorial Pacific, eastern equatorial 

Atlantic, and western Indian Ocean near the horn of Africa, increases in surface air 

temperature are relatively larger than surrounding areas (Fig. 30a).  These are the same 

tropical regions showing the down-up precipitation response from the cluster analysis 

(Figs. 21-22).  In CMIP5 models, preferential SST warming near the equator is associated 

with increased upward vertical velocity, causing patterns of annual mean precipitation 

change to correlate better with the pattern of SST warming than the climatological 

precipitation (Huang et al. 2013).  Such a mechanism, known as “warmer get wetter,” 

appears to be responsible for much of the regional down-up precipitation response in the 

tropics emerging from the cluster analysis shown here.  A possible exception is the 

western equatorial Pacific, where direct increases in atmospheric moisture upon the 

already convergent circulation, described by some as the “wetter get wetter” mechanism, 
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may be more important for the precipitation increase (Held and Soden 2006; Chou and 

Neelin 2004; Chou et al. 2009; Seager et al. 2010).  Precipitation also increases over east 

Africa, where the physical mechanisms are less obvious.  A shift toward wetter 

conditions in east Africa was also shown to be a robust CMIP5 response using monthly 

precipitation in Lintner et al. (2012).   

 Another proposed mechanism for regional changes, especially decreases, in 

tropical precipitation is the “upped-ante” mechanism (Neelin et al. 2003; Chou and 

Neelin 2004).  Tropospheric warming increases the moisture threshold necessary for 

convection to occur (Neelin et al. 2003).  Due to regional differences in the increase in 

atmospheric water vapor with warming, gradients in low-level moisture arise and dry 

advection occurs over convective margins, preventing those areas from reaching the new 

moisture threshold (Neelin et al. 2003; Chou and Neelin 2004; Lintner and Neelin 2007).  

This was shown to be a robust mechanism for regional decreases in precipitation in 

individual CMIP3 models near convective margins (Chou et al. 2009).  In the analysis 

shown here, there do not appear to be areas of notable precipitation decrease near 

convective margins in the ensemble and climatological mean (Fig. 19).  This may be 

because regional changes in tropical precipitation, as well as the placement of 

climatological convergence zones, are highly variable among individual models and the 

signal cancels out in the model mean (Chou et al. 2009).  When looking at Fig. 26 more 

closely, there are adjacent areas of the down-up and up-down cluster assignments in the 

western Pacific in some models, suggesting that precipitation decreases near convergence 

zones.  However, a more in-depth analysis of individual models would be necessarily to 

better understand how the upped-ante mechanism relates to changes in the precipitation 
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distribution at the regional level in these models.  Lintner et al. (2012) propose that the 

upped-ante mechanism may be responsible for decreases in light-moderate monthly 

precipitation frequencies when considering the aggregate tropical land precipitation 

distribution.  From this perspective, the upped-ante mechanism may be emerging from 

the cluster analyses in this chapter as the regional-mean decreases in light-moderate 

precipitation in the up-down-up cluster (e.g., Figs. 22c,d).  

Changes in the atmospheric circulation represent another potentially significant 

mechanism leading to the spatial pattern of precipitation changes, especially in the 

extratropics.  The transition from little change to projected decreases in mean sea level 

pressure (PMSL) in high latitudes, especially near 55°S, is geographically consistent with 

the transition from the up-down-up to down-up precipitation responses (Figs. 21, 22, 

30b).  Thus a poleward shift in storm tracks (e.g., Yin 2005; O’Gorman 2010; Chang et 

al. 2012) appears to be important for the high-latitude down-up precipitation response.  In 

the northern high latitudes, it is also tempting to make a connection between the 

relatively large warming and down-up precipitation response (Figs. 21c, 22c, 30a).  This 

is because warmer temperatures in the presently cold and relatively dry region would 

likely lead to more frequent and larger precipitation events due to increased atmospheric 

moisture (Held and Soden 2006; Seager et al. 2010).  However, the relationship between 

surface warming and the increased precipitation response in southern high latitudes is 

considerably weaker, as is the apparent correlation between warming and precipitation 

changes over other land regions.   

To further explore how changes in atmospheric circulation may be related to 

changes in the precipitation distribution, percentage changes in the root-mean-square 
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(RMS) of high-pass filtered relative vorticity of the 850 mb wind (hereafter RMS(ζ850)) 

is shown as a metric of changes in storm activity (Fig. 30c).  The high-pass data were 

created by subtracting low-pass filtered data with a cutoff period of 10 days, using a 

Lanczos filter, from the daily time series.  RMS(ζ850) is therefore a measure of the 

activity of storms with a time scale of less than 10 days.  Though high-latitude changes in 

RMS(ζ850) are considerably weaker than changes in mean PMSL, mostly because of 

large intermodel variability (not shown), a connection between a poleward shift in storms 

and the high-latitude precipitation response can still be detected, especially in the 

Southern Hemisphere.  Furthermore, the RMS(ζ850) metric more clearly shows 

decreases in storm activity in parts of the mid-latitudes and subtropics, the same areas 

that have the up-down-up or up-down precipitation response.  The reduction in storm 

activity over these areas is likely from a combination of a poleward shift in the 

descending branch of the Hadley circulation and poleward migration of extratropical 

storm tracks (e.g., Lu et al. 2007; Seager et al. 2010).  Decreases in storm activity over 

these regions may be tied to the decreased frequency of the middle part of the 

precipitation distribution representing moderate precipitation events (Lau et al. 2013).  In 

the tropics, there are modest increases in RMS(ζ850) over some of the areas 

characterized by the “warmer get wetter” response (Figs. 22c, 30c), possibly reflecting 

changes in circulation induced by differential SST warming and subsequent feedbacks 

between convection and the low-level circulation (Trenberth 2003; Chou et al. 2009; 

Huang et al. 2013).   

Over all locations but the driest subtropical subsidence regions, annual heavy 

precipitation is projected to increase in a warmer climate (e.g., Figs. 20, 25).  In parts of 



63 
 

 

the subtropics and midlatitudes, increases in the heavy tail of the precipitation 

distribution occur despite decreases in overall storm activity (Fig. 30c).  In some of these 

places, thermodynamic mechanisms for increases in heavy precipitation, such as 

enhanced atmospheric moisture, may overcompensate weakening of the atmospheric 

circulation during the most intense precipitation events (e.g., Allen and Ingram 2002; 

O’Gorman and Schneider 2009a,b).  In other places, such as the midlatitudes, decreases 

in RMS(ζ850) may result primarily from less frequent or less intense storms that produce 

light-moderate precipitation and the circulation accompanying heavy precipitation may 

not weaken, resulting in increased heavy precipitation due primarily to thermodynamic 

mechanisms (e.g., Sugiyama et al. 2010; Lau et al. 2013).  Areas characterized by a 

robust decrease in the heaviest precipitation events (e.g., Figs. 20, 25) are those in which 

percentage decreases in RMS(ζ850) are largest (Fig. 30c).  This implies that circulation 

changes, possibly including enhanced subsidence over the already dry subtropical 

oceanic regions or a shift in the subsidence regions (e.g., Chou et al. 2009; Seager et al. 

2010), wins over increased atmospheric moisture in determining the sign of changes in 

the heaviest events.  A more in-depth exploration of the regional mechanisms for changes 

in the heavy tail of the precipitation distribution in CMIP5 models will be provided in 

chapter 4 of this dissertation.  

Finally, the down-up-down-up precipitation response that occurs in small areas 

(Figs. 24a,c) is another topic of interest.  When performing the cluster analysis for 

individual seasons, the down-up-down-up cluster emerges in December-February (DJF), 

March-May (MAM), and September-November (SON) though the signal is less robust 

(not shown).  This shows that while the response is not an artifact of combining 
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potentially different seasonal precipitation characteristics together, the down-up-down-up 

response may not be significant or may emerge as a result of insufficient sampling.  A 

more in-depth intermodel and regional analysis is necessary to shed more light on the 

potentially complex physical mechanisms responsible for precipitation change over these 

locations.            

 

3.5 Discussion of broader impacts and limitations of the analysis 

The analysis presented in this chapter demonstrates the usefulness of applying an 

objective methodology, k-means cluster analysis, to summarize and better understand 

projected changes in precipitation in climate model simulations.  K-means clustering 

allows for the detection of regions with similar and coherent changes in the complex 

daily precipitation distribution, paving the way for further analysis within those regions.  

Such an approach may be more effective than using arbitrarily defined regions with little 

physical basis to understand the response of climate variables to global warming, which 

is common in previous studies.  In addition to being an effective method to summarize 

daily temperature distributions (Loikith et al. 2013), the analyses in this chapter show that 

cluster analysis yields useful results even when applied to a spatially and temporally 

noisy variable like precipitation.   

However, there are limitations in the application of cluster analysis to daily 

precipitation that are worth mentioning.  The most notable is the large grid cell variability 

of precipitation histograms within cluster groupings, which exists even when considering 

places with small histogram distances from the assigned cluster histogram (e.g., Fig. 23).  

Thus, to some extent, the results of the cluster analysis applied to the precipitation 
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distribution may only faithfully represent the precipitation response averaged over broad 

regions.  This is especially true when considering a model ensemble in which individual 

models have large variability in the regional patterns of precipitation change.  A more in-

depth analysis of individual models than presented here is required to better understand 

these intermodel differences.  However, application of the analysis using 8 clusters to the 

individual CMIP5 models revealed histogram shapes that generally fell into one of the 4 

types of Table 3 (not shown), demonstrating the robustness of those precipitation 

responses among the models.   

Finally, the cluster analysis presented in this chapter focuses on annual 

precipitation, both for brevity and to increase the sample size from which precipitation 

histograms are generated.  A brief look at individual seasons did not reveal the 

emergence of histogram shapes distinct from those shown throughout this chapter, but 

did reveal unique spatial patterns of the cluster assignments in different seasons (not 

shown).  A further exploration of individual seasons may therefore provide a more 

complete physical understanding of regional precipitation changes in CMIP5 models 

(e.g., O’Gorman 2010; Huang et al. 2013).   
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4. Physical mechanisms for projected changes in heavy precipitation 
 

 
 
4.1 Introduction 

 In this chapter, projected future changes in heavy to extreme daily precipitation 

are further explored in CMIP5 simulations.  The thermodynamical and dynamical 

physical mechanisms responsible for changes in local heavy precipitation across the 

globe are qualitatively and quantitatively examined (see section 1.4 for a comprehensive 

discussion of potential mechanisms).  In addition to investigating how local changes in 

vertical velocity influence changes in heavy precipitation, changes in the large-scale 

horizontal atmospheric circulation accompanying heavy precipitation are investigated 

with composite analysis.  In section 4.2, the CMIP5 output and methodology are 

described.  Projected changes in heavy precipitation and the thermodynamical and 

dynamical mechanisms for such changes are presented in section 4.3.  In section 4.4, 

changes in the horizontal circulation features associated with heavy precipitation are 

explored with a comprehensive composite analysis, and potential mechanisms for 

changes in tropical circulation are discussed.  A brief summary and discussion of 

limitations is given in section 4.5.    

 

4.2 Data and Methodology 

 

4.2.a CMIP5 output and general analysis methods 

 The same CMIP5 models that were used to study changes in the daily 

precipitation distribution in chapter 3 (Table 2) are used for the analysis of heavy 
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precipitation in this chapter.  Additionally, the same CMIP5 experiments (RCP8.5 and 

historical), 21-year time periods (1979-99 and 2079-99), and 2.5°x2.5° common grid that 

are described in sections 2.5 and 3.2.a are used in this chapter. 

 Throughout this dissertation, the local 99th percentile of daily precipitation 

(computed from all days, including zeros) has been used as a threshold for heavy 

precipitation.  The same methodology is applied in this chapter.  The days when 

precipitation equals or exceeds this value are used to compute the mean intensity of 

heavy precipitation (P99M), the modified O’Gorman and Schneider 2009b (hereafter 

OS09b) thermodynamic scaling (described in section 4.2.b), and composites of 

atmospheric quantities during heavy events at each grid cell (described in section 4.2.c).  

The heavy precipitation metrics are computed using days from all seasons (~76 days per 

grid cell per 21-year simulation), from boreal winter (December-February, DJF, ~19 

days), and from boreal summer (June-August, JJA, ~19 days).  The analysis focuses these 

seasons for brevity and to highlight the winter and summer seasons of each hemisphere, 

when changes in atmospheric circulation vary most from the annual mean.  In some 

models, the 99th percentile of daily precipitation is zero at some of the driest locations 

and seasons (e.g., northern Africa during DJF).  If the 99th percentile is zero in at least 

one model in either the historical or RCP8.5 time period at a grid cell, that grid cell is 

excluded from all analyses.  Additionally, the 99th percentile and above may contain days 

with very light precipitation at very dry locations.  Thus the heavy precipitation metrics 

and composites presented in this chapter may only represent a “rainy day” at these places 

rather than heavy or extreme hydrological precipitation.  However, in the context of all 

days in the record at a very dry location, having any precipitation may be considered a 
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rare occurrence and is likely associated with anomalous circulation patterns and 

thermodynamic conditions.  Throughout the rest of this chapter, precipitation equaling or 

exceeding the 99th percentile is referred to as “heavy precipitation.”  

The analyses in this chapter focus on the multimodel mean to highlight common 

regional features of heavy precipitation change across the models, since spatial patterns 

of precipitation change can be very variable for individual models (e.g., Chou et al. 

2009).  Using the multimodel mean has the advantage of condensing the analysis to one 

“simulation,” making the presentation manageable, and increasing the sample size of 

heavy precipitation days used to compute the metrics.  While an exploration of 

differences between models may provide further insight into the mechanisms for changes 

in heavy precipitation, a detailed effort to understand why individual models have 

different responses is not attempted in this chapter. 

 

4.2.b Thermodynamic scaling for heavy precipitation 

 In this chapter, a thermodynamic variation of the scaling for extreme precipitation 

presented by OS09b is computed for each grid cell on the global domain.  The 

thermodynamic version, described in OS09b, simply eliminates vertical velocity from the 

computation (see Eq. 1).  Retaining vertical velocity in the scaling but not allowing it to 

change between present and future climates in CMIP3 did not yield different results from 

eliminating it entirely in OS09b.  Although including vertical velocity is important to 

explain the full sensitivity of extreme precipitation, the simplified scaling is used here 

only to quantify the thermodynamic component of the expected heavy precipitation 

response.  Local differences in the actual heavy precipitation response from this scaling 
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will highlight areas where changes in the atmospheric circulation should be substantial, 

which are analyzed separately and in more detail with composite analysis (described in 

section 4.2.c).  The mathematical expression for the thermodynamic OS09b scaling is  

𝑃ℎ~�
𝑑𝑝
𝑔
�𝑑𝑞𝑠
𝑑𝑝

�
𝜃∗,𝑇ℎ

𝑝𝑠

250
,                  (1) 

where 𝑃ℎ is the thermodynamic prediction of heavy precipitation intensity for a particular 

time period (historical or RCP8.5) and grid cell, noting that the units do not match that of 

precipitation since pressure velocity was removed from the expression.  The pressure 

integral is from the surface, 𝑝𝑠, to 250 mb.  Inside the integral, 𝑝 is pressure, 𝑞𝑠 is 

saturation specific humidity, and 𝑔 is the gravity constant assumed 9.8 m s-1 in all 

calculations.  The derivative 𝑑𝑞𝑠
𝑑𝑝

 is computed at each level assuming constant saturation 

equivalent potential temperature, 𝜃∗, which in turn is determined from the temperature 

averaged over heavy precipitation days at that grid cell and level, 𝑇ℎ.  The standard 

atmospheric levels available from CMIP5 that were used in the computation of Eq. (1) 

were 1000, 850, 700, 500, and 250 mb.  Since surface pressure was generally unavailable 

from the CMIP5 archive, it was computed with the hydrostatic equation.  

There are a few differences between the calculation of Eq. (1) in this chapter and 

that done by OS09b.  For one, the 99th percentile is used as a threshold for heavy 

precipitation here, whereas OS09b use a more extreme threshold.  The lower percentile is 

chosen here to increase the sample size of heavy precipitation events, as the scaling is 

computed at every grid cell.  In OS09b, the scaling is computed for latitudinal bands 

where grid cells are first aggregated over longitude, increasing the sample from which 

extreme events are chosen.  Due to the aggregation, the extreme percentiles in OS09b are 
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more representative of the wettest locations over a particular latitude band than the zonal 

mean.  Thus, the method applied here has the advantage of showing detailed spatial 

variability in the scaling, but also has the limitations of using a relatively low 

precipitation threshold, as were described in section 4.2.a.  Another difference between 

the methodology employed here and that of OS09b is that the pressure integral is 

computed up to a fixed level of 250 mb rather than computing a tropopause level as the 

upper limit.  It is unclear what impact this simplification has on the results, but based on 

the limited number of atmospheric levels available from the CMIP5 archive and general 

agreements between the results shown here and that of OS09b, the simplification appears 

to be justified.  

The final thermodynamic scaling can then be expressed as     

𝑆ℎ = 100 ×
�
𝑃ℎ,𝑅𝐶𝑃8.5 − 𝑃ℎ,ℎ𝑖𝑠𝑡

𝑃ℎ,ℎ𝑖𝑠𝑡
�
∆𝑇𝑔

� ,                  (2) 

where 𝑆ℎ is the scaling in units of % K-1, 𝑃ℎ,ℎ𝑖𝑠𝑡 and 𝑃ℎ,𝑅𝐶𝑃8.5 are the thermodynamic 

predictions computed from Eq. (1) for the historical and RCP8.5 time periods, 

respectively, and ∆𝑇𝑔 is the RCP8.5 minus historical difference in globally-averaged 

area-weighted climatological-mean 2-m air temperature.  Normalizing the scaling by ∆𝑇𝑔 

is consistent with the methodology of OS09b and Sugiyama et al. (2010) and is mainly 

intended to adjust for intermodel variability in climate sensitivity.  Accounting for local 

variations in the change in temperature during extreme events (Fig. 31) is unnecessary in 

the normalization, as they are already accounted for in the computation of 𝑃ℎ.  The 

scaling 𝑆ℎ is compared with the actual response of heavy precipitation 𝑅ℎ, defined as 
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𝑅ℎ = 100 ×
�𝑃99𝑀𝑅𝐶𝑃8.5 − 𝑃99𝑀ℎ𝑖𝑠𝑡

𝑃99𝑀ℎ𝑖𝑠𝑡
�
∆𝑇𝑔

� ,                  (3) 

where 𝑃99𝑀ℎ𝑖𝑠𝑡 and 𝑃99𝑀𝑅𝐶𝑃8.5 are the historical and RCP8.5 values of P99M, 

respectively. 

 

4.2.c Composite analysis 

The composite analysis that was used in the evaluation of CMIP3 and CMIP5 

over the late 20th century, described in sections 2.4 and 2.5, is very similar to that used in 

this chapter.  Atmospheric quantities are averaged over days when daily precipitation 

equals or exceeds the 99th percentile at a particular location (as described in section 

4.2.a).  Many of the quantities that were analyzed in sections 2.4 and 2.5 are also 

analyzed here, including pressure at mean sea level (PMSL), geopotential height at 500 

mb (Z500), and low-level (10-m to 500-mb average) wind.  Additionally, relative 

vorticity of the wind at 850 mb (hereafter ζ850) is analyzed.  Z500 is computed with the 

hypsometric equation using the standard CMIP5 pressure levels (1000, 850, 700, 500 

mb), following the methodology of sections 2.4 and 2.5.  LWND is also computed from 

these same levels.  Composites of Q-vector convergence (QVC, described in section 2.4), 

are also shown in this chapter.  QVC is used to assess whether changes in vertical 

velocity accompanying heavy precipitation are also associated with changes in the 

synoptic and meso-α-scale forcing for ascent (including warm air advection, positive 

vorticity advection, and large-scale frontogenesis).  Since QVC is important in the lower 

troposphere, it is averaged over 850, 700, and 500 mb before being composited over 

heavy precipitation days.  As a simple metric to quantify actual vertical motion, the 
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pressure velocity at 500 mb (ω500) is computed.  The computation is performed 

assuming continuity, in which the wind divergence is vertically integrated from the 

surface to 500 mb using the standard CMIP5 atmospheric levels.  For the calculation of 

all quantities involving multiple vertical levels, levels below the surface, determined from 

the surface pressure, are omitted from the calculation.      

 The z-scores for some of the quantities described above are also analyzed, which 

are computed in the same way as described in section 2.4.  For most quantities, the z-

scores for the RCP8.5 simulation are computed using the mean and standard deviation of 

the historical period, so that changes in z-scores from the historical to future periods 

include changes in both the mean and variability of the quantities.  However, mean Z500 

is expected to increase in a warmer climate as a result of warmer troposphere 

temperatures (not shown).  When considering the large-scale patterns of Z500 during 

heavy precipitation events, it is desirable for changes in the z-score to better reflect 

changes in the circulation rather than the mean thermodynamic conditions.  Therefore, 

the RCP8.5 z-score of Z500 is computed using the RCP8.5 (2080-98) mean and historical 

(1980-98) standard deviation, removing increases in Z500 caused by mean tropospheric 

warming.  In the remainder of this chapter, the z-score of a particular quantity is 

identified with an asterisk (e.g., Z500* = z-score of Z500), and the terms “anomaly” and 

“z-score” are used interchangeably.     

 

4.3 Projected changes in heavy precipitation  

  The historical patterns of P99M along with their change between the historical 

and RCP8.5 simulations are shown in Fig. 20 and were briefly discussed in section 3.3.a.  
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To review and summarize, heavy precipitation increases almost everywhere on the globe, 

with the exception of dry subtropical oceanic regions annually and some low-latitude 

land regions during certain seasons.  Land regions with projected decreases in P99M 

include northern Africa in DJF and eastern South America, southern Africa, southern 

Europe, and northern Australia in JJA (Fig. 20h,i).  In the broad sense, patterns of change 

in P99M follow the historical climatology of P99M, including decreased P99M in dry 

regions and the largest absolute increases in the tropics.  These patterns are consistent 

with a general intensification of the hydrological cycle due to increased atmospheric 

moisture assuming small changes in the large-scale circulation (e.g., Held and Soden 

2006; Seager et al. 2010).  However, there are several regions where the relationship is 

not so simple.  For instance, there are increases in P99M in the relatively dry high 

latitudes and equatorial east Pacific, and decreases in some wet regions and seasons, 

including the Bay of Bengal in DJF and the Indian Ocean adjacent to Australia in JJA.  A 

better understanding of the mechanisms for such regional changes in P99M is attempted 

in this chapter.   

 Fig. 32 shows the metrics of heavy precipitation sensitivity (𝑅ℎ, 𝑆ℎ, and their 

difference) that were introduced in section 4.2.b.  In all cases, the CMIP5 multimodel 

average is shown.  In computing the model average values for 𝑆ℎ and 𝑅ℎ, the individual 

components of Eqs. (2) and (3) (i.e., 𝑃ℎ, P99M, and ∆𝑇𝑔) were first averaged over the 

models.  An alternative approach is to calculate 𝑆ℎ and 𝑅ℎ for each model first and then 

compute the multimodel mean or median (as in OS09b); however, this method yields 

qualitatively similar but noisier spatial patterns (not shown).  Predicted relative changes 

in heavy precipitation by the thermodynamic scaling 𝑆ℎ are much smoother than the 
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actual precipitation response 𝑅ℎ and are positive everywhere due to increasing  𝑇ℎ (and 

therefore moisture) everywhere on the globe (Figs. 31, 32a-f).  In Fig. 32,  𝑅ℎ and 𝑆ℎ are 

plotted using a color scale that is centered at 7% K-1 to see how either quantity compares 

with the approximate scaling of low-level atmospheric moisture predicted by the 

Clausius-Clapeyron (hereafter C-C) relationship for global mean conditions.  Compared 

with C-C scaling, 𝑆ℎ is smaller across much of the globe (Figs. 32d-f) because increases 

in �𝑑𝑞𝑠
𝑑𝑝
�
𝜃∗,𝑇ℎ

 with warming are smaller than increases in 𝑞𝑠 itself due to a decrease in the 

moist adiabatic lapse rate (O’Gorman and Schneider 2009a).  This makes 𝑆ℎ a better 

predictor of 𝑅ℎ at midlatitudes than C-C scaling, where the actual precipitation response 

is slightly less than 7% K-1 (Figs. 32a-f).  At high latitudes, the inclusion of local 

temperatures during heavy events in the computation of 𝑆ℎ causes the predictions to be 

higher than C-C scaling (Figs. 32d-f), as warming at high latitudes is larger than the 

global mean (Fig. 31).  This also makes 𝑆ℎ a better predictor of 𝑅ℎ than C-C scaling at 

high latitudes. 

Despite the marginal improvements that the local thermodynamic OS09b scaling 

has over global-mean C-C scaling, the difference between 𝑅ℎ and 𝑆ℎ is large over many 

areas, especially in the low latitudes (Figs. 32g-i).  As seen with the difference in ω500 

averaged over heavy precipitation days (∆𝜔500ℎ, Figs. 32j-l), the differences between 

𝑅ℎ and 𝑆ℎ are mainly a result of changes in vertical velocity, as was concluded in OS09b 

and Sugiyama et al. (2010).  That is, upward velocity increases (∆𝜔500ℎ < 0) in areas 

where heavy precipitation increases faster than the thermodynamic prediction (𝑅ℎ > 𝑆ℎ), 

and vice versa.  ∆𝜔500ℎ not only explains low-latitude patterns of 𝑅ℎ − 𝑆ℎ but is also 

negative (implying increased ascent) where 𝑆ℎ underpredicts 𝑅ℎ in northern high 
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latitudes.  Accounting for changes in vertical velocity is thus important for explaining the 

heavy precipitation response to warming not only in the zonal mean sense (as shown in 

OS09b), but also locally.  Based on a comparison of 𝑅ℎ − 𝑆ℎ and ∆𝜔500ℎ in Fig. 32, it 

appears as though the full OS09b scaling (which is not explicitly computed here) would 

predict local patterns of 𝑅ℎ reasonably well in CMIP5 models.   

Though the thermodynamic scaling 𝑆ℎ is not enough to explain the local heavy 

precipitation response at many locations, it performs better at the global spatial scale 

where local changes in circulation partially cancel.  To quantify this, the global median 

grid cell value of 𝑆ℎ and 𝑅ℎ is computed for each model and the intermodel variability of 

the global median is shown with box-and-whisker diagrams in Fig. 33.  The global 

median is used rather than the mean because it is less sensitive to outlier values of 

precipitation sensitivity at certain locations (not shown).  From the ensemble perspective, 

the range of global median heavy precipitation sensitivities predicted by 𝑆ℎ is in good 

agreement with the range of actual sensitivities 𝑅ℎ, especially for the middle 50% of 

simulations, though the full range of model variability is larger for 𝑅ℎ (Fig. 33).  Note 

that because statistics shown on the box-and-whiskers (e.g., the maxima) do not 

necessarily correspond to the same model, there may be larger differences for individual 

models that are masked.   

Fig. 33 also shows the global sensitivity for specific percentiles of daily 

precipitation, computed for each day in the record above the 50th percentile (i.e., the 

maximum precipitation value, second maximum, etc.).  To compute this, the sensitivity at 

each grid cell is computed in the same way as 𝑅ℎ is computed (Eq. 3), but for specific 

percentile values rather than the mean over the 99th-100th percentile.  The global median 
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grid cell sensitivity value for each percentile and model is then computed and the 

intermodel variability of the sensitivities is shown on the graphs in Fig. 33.  The global 

sensitivity of precipitation increases as the percentile becomes more extreme in all cases 

(annual, DJF, and JJA) (Fig. 33).  Indeed, the annual global precipitation sensitivity is 

better centered at 7% K-1 in the model ensemble than in the range of 𝑆ℎ for the most 

extreme daily events (Fig. 33a).  This suggests that increases in lower tropospheric water 

vapor, governed by the C-C relation, are a sufficient predictor of the global response of 

the most extreme daily precipitation, at least for the ensemble median.  The rather large 

intermodel spread in the sensitivity of very extreme precipitation of 4-10% K-1 (Fig. 33a), 

is consistent with that found in Kharin et al. (2013) using different methods. 

  

4.4 Composite analysis 

 

4.4.a Composite patterns for selected locations 

  In this section, the changes in atmospheric circulation accompanying heavy 

precipitation events are explored in more detail.  To begin, composite spatial patterns of 

relevant atmospheric quantities during heavy events are shown at selected locations (see 

sections 2.4 and 4.2.c for methodology).  This section focuses on locations near and 

surrounding North America, where the evaluation of CMIP3 and CMIP5 in sections 2.4 

and 2.5 shows that the atmospheric circulation features accompanying heavy 

precipitation events are realistic when compared to reanalysis.  The composites in this 

section also focus on winter (DJF) because the circulation features tend to have better 

spatial definition during this season (see section 2.4).  The motive behind showing 
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composites for individual grid cells is to 1) provide a taste of how the circulation features 

change at locations where the thermodynamic scaling 𝑆ℎ is a sufficient or poor predictor 

of the actual sensitivity of heavy precipitation, and 2) show examples of quantities that 

are relevant for describing the circulation at different latitudes, which will be used later in 

this chapter to summarize the circulation features at all grid cells globally.   

A region where increases in heavy winter precipitation are reasonably constrained 

by thermodynamics and in which changes in vertical velocity during heavy events are 

small is the northeastern United States (Figs. 32h,k).  In Fig. 34, composites are shown 

for a grid cell near New York City (NYC).  Heavy winter precipitation events (≥ 99th 

percentile) at this location are, on average, associated with an area of low PMSL 

immediately southwest of the location, allowing the surface flow to direct moisture from 

the nearby Atlantic Ocean.  The atmospheric circulation is also characterized by a large-

scale anomaly pattern of Z500, with a minimum to the southwest and maximum to the 

northeast (Fig. 34a), and positive ζ850 closely centered over the surface low (Fig. 34d).  

QVC is also positive over the NYC grid cell (Fig. 34g), showing that large-scale 

dynamics are important for forcing ascent at this location.  The center of maximum of 

QVC is over and northeast of the surface low, possibly reflecting low-level warm air 

advection from southeast winds acting on the strong winter land-sea temperature contrast.  

When comparing the composite patterns between the historical and RCP8.5 time periods, 

they are remarkably similar for all quantities plotted.  Indeed, the RCP8.5-historical 

differences in Z500*, ζ850, and QVC (Figs. 34c,f,i) are close to zero despite the 

relatively large magnitudes of these quantities in either the historical or RCP8.5 

composites.  The differences in PMSL show a somewhat larger change, with the surface 
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high over the Atlantic being marginally stronger and surface low to the west also slightly 

stronger in the future period.  This implies that the PMSL gradient is slightly greater in 

the future simulation, though this is hardly detectable when looking at the composites for 

the individual time periods.   

The intermodel robustness and statistical significance of the RCP8.5-historical 

composite differences are evaluated by comparing the sign of change in each model with 

the model mean and performing a two-tailed t-test with α=0.5 for the change, at every 

grid cell on the composite map.  If at least 12 of the 17 models agree with the model 

mean sign of change and at least 6 of those models also show a statistically significant 

change at a grid cell, the grid cell is highlighted with a dot for PMSL or cross for the 

color-filled quantities in Figs. 34-36.  As can be seen in Fig. 34, these criteria are only 

met at stray grid cells away from the location experiencing heavy precipitation in the 

NYC case, unrelated to the local circulation.  Decreases in PMSL to the west of the grid 

cell and increases to the east do not meet the robustness and significance criteria (Fig. 

34c).  The decrease in PMSL over northern Canada is partly influenced by decreases in 

climatological mean PMSL over the high latitudes in DJF (not shown).  In summary, the 

strength and spatial patterns of the atmospheric circulation during extreme winter 

precipitation events near NYC are very similar between the historical and future CMIP5 

simulations.  This is not surprising since changes in heavy precipitation follow 

thermodynamic constraints and changes in vertical velocity are small (Figs. 32h,k).    

In Fig. 35, the composite patterns for a grid cell where winter heavy precipitation 

and upward vertical velocity decrease in the future simulation is shown, located along the 

west coast of Mexico (Figs. 32b,k).  Unlike the NYC case, the magnitude of ζ850 is 
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considerably smaller during heavy events (not shown), thus its z-score ζ850* is a better 

metric to characterize the anomalous circulation (Fig. 35d, note that ζ850* is not 

computed where the 850 mb level is below ground).  Further, QVC is a poor metric to 

characterize the circulation at this location because it is maximized north of the grid cell 

due to topographical influences, and thus does not represent local synoptic forcing (not 

shown).  The composite PMSL pattern associated with heavy precipitation at this location 

is not characterized by a closed low, but rather a trough of low PMSL extending from the 

south (Fig. 35a).  PMSL*, on the other hand, has a closed minimum over the trough of 

low PMSL (Fig. 35g), making it a suitable metric to summarize closed features of the 

circulation pattern at this location.  In the future simulation, all circulation features are 

weaker, most notably for the trough of PMSL and magnitude of negative PMSL*, in 

which the differences for both meet the robustness and significance criteria over a broad 

region centered over the grid cell (Figs. 35c,i).  Changes in ζ850* appear to be small and 

less widespread partly because of missing values over and near the grid cell (Fig. 35f).  

Though the overall strength of the circulation is weaker in the future simulation, the 

circulation patterns (i.e., the PMSL pattern and positions of the minima or maxima of 

Z500*, ζ850*, and PMSL*) remain unchanged, as seen by the high spatial correlations 

between the historical and RCP8.5 composites (Figs. 35c,f,i).  The overall weakening of 

the circulation is not surprising given the decrease in heavy precipitation and upward 

velocity over this location (Figs. 32b,k).   

In the previous two cases, the climatological winter heavy precipitation (P99M) in 

the historical periods is relatively large (Fig. 20b).  In Fig. 36, changes in the atmospheric 

circulation over a dry region with projected decreases in winter P99M, the low-latitude 



80 
 

 

North Atlantic (Fig. 20b,h), are shown.  The same quantities are plotted as for the Mexico 

case.  ζ850 and QVC are poor metrics to characterize the circulation at this location also, 

due to very low magnitudes and weak spatial definition (not shown).  The pattern of 

PMSL during extreme winter events at this location has even less definition than for the 

Mexico case (Figs. 35a, 36a), perhaps because of the smaller climatological P99M.  

Nonetheless, there is a closed area of negative PMSL* over and west of the grid cell in 

the historical period (Fig. 36g) as well as notable areas of negative and positive Z500* 

and ζ850*, respectively (Figs. 36a,d).  All anomalies have smaller magnitudes in the 

RCP8.5 simulation, as seen in the individual period composites and difference plots, with 

the robustness and significance criteria being met for ζ850* and PMSL* near the grid cell 

(Figs. 36f,i).  There is even a small increase in PMSL near the grid cell, which is not 

detectable from the PMSL pattern in the composites for the individual periods (Figs. 36a-

c).  However, this increase only meets the robustness and significance criteria in few 

locations (Fig. 36c).  Like in the Mexico case, the magnitudes of the anomalies associated 

with the circulation weaken even though the overall positions of these anomalies appear 

to remain constant in the future.  This implies that the average physical mechanisms that 

are associated with heavy precipitation, such as anomalously high ζ850 northwest of the 

grid cell, are the same in the future but are weaker.  The weakening circulation features 

associated with heavy precipitation at this location coincide with a rather large decrease 

in upward vertical velocity between the historical and future simulations during heavy 

winter precipitation events (Fig. 32k).                    

 

4.4.b Summary of composite patterns for all locations 
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 In the previous section, decreases in the upward velocity associated with heavy 

precipitation appear to be associated with decreases in the strength of lower atmospheric 

circulation anomalies, while changes in the circulation pattern are small.  Does this 

relationship hold at other locations, and does the horizontal circulation strengthen in areas 

with projected increases in upward velocity?  To address these questions, the composite 

analysis is expanded to all grid cells.  Rather than showing plots like Figs. 34-36 for 

many more locations, the circulation features associated with heavy precipitation are 

summarized using various metrics (described next), which are displayed on a global map.   

Since PMSL* effectively characterizes the pattern and strength of surface 

circulation anomalies associated with heavy precipitation at most places, it is useful to 

summarize its pattern and strength with a simple metric.  After computing the multimodel 

mean PMSL* composite for a grid cell (analogous to Figs. 35g,h), the PMSL* pattern for 

each time period (historical and RCP8.5) is summarized by determining the position and 

magnitude of the nearest closed minimum of PMSL* to the grid cell (for example, the 

area just northwest of the grid cell in Fig. 35g).  The PMSL* minimum is found using a 

simple algorithm that searches in an expanding box centered on the grid cell experiencing 

heavy precipitation.  The searching is stopped and no minimum is found if 1) the distance 

from the center grid cell to the east (or west) edge of the search box exceeds 1000 km 

(hereafter search radius), 2) the north or south edge of the box exceeds the polar 

boundaries, or 3) any missing values are encountered in the box.  Since minima in 

PMSL* are usually detected close to the grid cell experiencing heavy precipitation (Figs. 

35-36), minima more than 1000 km away may not be relevant for the local precipitation, 

and such minima are excluded from the analysis.  As seen later, this only happens in the 
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deep tropics.  The above procedure is performed for every grid cell on the domain.  Once 

the nearest minimum PMSL* is found for a grid cell, the magnitude of the minimum is 

displayed with color fill (Fig. 37 left column) and the position of the minimum relative to 

the grid cell with an arrow (indicating direction) and color fill (indicating distance) (Fig. 

37 right column), both plotted at the grid cell experiencing heavy precipitation.  In other 

words, the values at each grid cell in Fig. 37a do not represent local values of PMSL*, 

but rather the magnitude of the nearest closed minimum of PMSL* associated with heavy 

precipitation events at the grid cell.  The vectors in the right panels of Fig. 37 point in the 

direction of the nearest minimum and the distance of the minimum from the grid cell 

experiencing heavy precipitation is color filled.  The analysis focuses on annual heavy 

precipitation for brevity, though the results are qualitatively similar when focusing on just 

DJF or JJA, but with some regional differences (not shown).  More days are also 

available from the annual sample of heavy events, allowing for the emergence of 

smoother patterns (not shown).      

The magnitudes of PMSL* minima associated with heavy precipitation in the 

subtropical regions are largest out of anywhere on the domain, while they are 

considerably smaller for heavy precipitation events near the storm tracks of both 

hemispheres (Fig. 37a).  This is the result of both larger climatological mean and lower 

variability of PMSL in the subtropical latitudes (not shown).  Near the storm tracks 

(North Atlantic and Pacific and Southern Ocean), PMSL minima associated with heavy 

precipitation are not much lower than the climatological PMSL relative to the local 

variability, especially in the Northern Hemisphere (NH).  This means that heavy 

precipitation is generally not also associated with extreme anomalies of PMSL, as the 



83 
 

 

PMSL minima are only within 1-1.5 standard deviations of the mean PMSL.  This is 

consistent with the recent work of Pfahl and Wernli (2012), who found that cyclones 

producing extreme precipitation are often not stronger than the average cyclone over NH 

storm tracks in observations.  In terms of position, the nearest PMSL* minimum is often 

equatorward and west of locations experiencing heavy precipitation across much of the 

subtropics to high latitudes (Fig. 37b).  During heavy precipitation events in the 

midlatitude oceans, PMSL* minima are rather distant, sometimes more than 800 km 

away, when heavy precipitation occurs.  In the tropics, PMSL* minima are either 

detected right at the grid cell or within one grid cell in either direction (usually west), 

though the strength of the minima are weak (Figs. 37a,b).   

The position and strength of PMSL* minima associated with local heavy 

precipitation in the RCP8.5 period and their difference from the historical period are also 

shown in Fig. 37.  PMSL* minima associated with heavy precipitation in the low 

latitudes generally weaken in the future climate (Fig. 37e).  The weakening is consistent 

with decreases in upward vertical velocity during heavy events over some places, such as 

Australia and the nearby Indian Ocean and subtropical dry regions in the Pacific and 

Atlantic (Fig. 32j).  Thus, the responses shown for individual locations in Figs. 35-36 

apply to other locations with similar climatology as well, such as the subtropical South 

Pacific.  However, PMSL* minima also weaken over Indonesia and the northern Indian 

Ocean, where upward velocity strengthens (Figs. 32j, 37e).  Additionally, PMSL* 

minima marginally strengthen over the South Atlantic in places where upward vertical 

velocity weakens (Figs. 32j, 37e). The very low magnitudes and sporadic positions of 

detected PMSL* minima during heavy precipitation at these locations (Fig. 37a,b) makes 
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one question whether PMSL* is an adequate quantity to summarize the atmospheric 

circulation.  In the high latitudes, the general strengthening in PMSL* minima (Fig. 37e) 

may be associated with a poleward shift and/or strengthening of the storm tracks (e.g., 

O’Gorman 2010; Chang et al. 2012).  In both northern and southern high latitudes, there 

are small increases in upward vertical velocity during heavy precipitation events in the 

future over some of the same places with this strengthening (Fig. 32j).  However, the 

relationship between 𝛥𝜔500ℎ and changes in PMSL* minima magnitude appears 

stronger in the NH than Southern Hemisphere (SH) (Figs. 32j, 37e).  Changes in pressure 

velocity at 700 mb (𝛥𝜔700ℎ), which are perhaps more relevant for the middle to high 

latitudes, were also assessed and generally have the same qualitative characteristics as 

changes in 𝜔500ℎ (not shown).  However, changes in 𝜔700ℎ are generally smaller in 

magnitude than those in 𝜔500ℎ and in some places are more positive (𝛥𝜔700ℎ > 0), 

such as the North Atlantic where  𝑅ℎ − 𝑆ℎ < 0 (not shown).   

Changes in the position of the detected PMSL* minima associated with heavy 

precipitation are small across much of the domain, as seen from the similar position 

vectors for the individual time periods (Figs. 37d,b) and the small difference in distance 

(Fig. 37f).  Note that differences in distance as large as 300 km often only indicate a shift 

of one grid cell in the position of the detected PMSL* minimum, which may be partly 

attributed to noise rather than a robust change in the center of minimum.  Also, changes 

in distance (Fig. 37f) do not form coherent regions, further suggesting that they are not 

physically meaningful.  To summarize, anomalies of PMSL associated with heavy 

precipitation events change in strength in many places, but the spatial patterns of the 

anomalies do not substantially change, consistent with the analysis of individual locations 
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(Figs. 34-36).  However, changes in PMSL* minima strength and changes in 𝜔500ℎ are 

not always consistent (e.g., in the Indian Ocean, Indonesia, South Atlantic, and SH high 

latitudes), suggesting that other circulation characteristics may be relevant for changes in 

vertical velocity during heavy precipitation events.              

The same analysis as above was performed for the nearest maximum in ζ850*, 

again using a search radius of 1000 km.  Prior to detecting the nearest maximum, ζ850* 

values in the SH were multiplied by -1, such that positive ζ850* represents anomalous 

cyclonic vorticity everywhere on the globe.  The analysis is shown in Fig. 38.  Unlike 

with PMSL*, nearest maxima in ζ850* associated with heavy precipitation are detected 

across much of the tropics, allowing for a more in-depth analysis there, though they are 

small in magnitude near the equator (Fig. 38a).  The ζ850* maxima are relatively strong 

across much of the domain outside of the deep tropics.  Like with PMSL*, largest 

anomalies of ζ850, relative to local variability, occur in association with heavy 

precipitation in the subtropical oceanic regions, while they are somewhat smaller for 

locations near the storm tracks of either hemisphere.  Maxima in ζ850* occur much 

closer to the grid cell experiencing heavy precipitation than in the case of PMSL*, with 

the maxima detected right over the grid cell in coherent parts of the tropics and high 

latitudes (Fig. 38b).  In places where the maxima are located away from the grid cell, the 

position is almost ubiquitously to the west, though in some cases also with an 

equatorward displacement, especially in southern mid-high latitudes.  

Projected changes in the magnitude of ζ850* maxima associated with heavy 

precipitation are in many places consistent with changes in PMSL* minima.  For 

instance, ζ850* maxima weaken in strength in parts of the subtropics where 𝛥𝜔500ℎ > 0 
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(decreased upward velocity) and heavy precipitation decreases (Figs. 32a,j, 38e).  There 

are also increases in ζ850* maxima strength in the northern high latitudes where PMSL* 

minima strengthen, though changes in ζ850* maxima are somewhat smaller (Figs. 37e, 

38e).  Changes in ζ850* maxima strength in the southern high-latitudes near Antarctica 

cannot be adequately assessed because ζ850* maxima are not detected due to the nearby 

topography.  One notable difference between changes in ζ850* maxima and PMSL* 

minima strength is in the western equatorial Pacific and Indonesia, where there is a 

strengthening of ζ850* maxima associated with heavy precipitation and 𝛥𝜔500ℎ < 0 

(enhanced upward velocity) (Figs. 32j, 38e).  Recall that changes in PMSL* minima in 

these areas were inconsistent with 𝛥𝜔500ℎ, suggesting that ζ850* more effectively 

characterizes the circulation in this region.  Changes in ζ850* maxima strength are also 

more consistent with those in 𝜔500ℎ in the South Atlantic than was the case with 

PMSL* minima (Figs. 32j, 38e).  There is a potent strengthening of ζ850* maxima 

associated with heavy precipitation in the central and eastern Equatorial Pacific, where 

PMSL* minima were not detected, consistent with increases in upward velocity there 

(Figs. 32j, 38e).  As was the case with PMSL*, however, changes in ζ850* maxima 

during heavy events over and near the northern Indian Ocean are less consistent with 

changes in 𝜔500ℎ.  The mechanisms for changes in 𝜔500ℎ in these regions may 

therefore be more complicated than can be summarized with the characteristics of low-

level circulation anomalies such as PMSL* or ζ850*.  Changes in the position of ζ850* 

maxima relative to places experiencing heavy precipitation are small and sporadic (Fig. 

38f), particularly in areas where changes in ζ850* maxima magnitude are largest.  This 
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once again supports the conclusion that changes in the strength of circulation features 

associated with heavy precipitation are more substantial than changes in the pattern.         

To further explore projected changes in vertical velocity and how it relates to the 

large-scale circulation in the extratropics, composites of QVC for each grid cell are 

summarized.  One goal of this analysis is to see whether increases in the strength of high-

latitude circulation features during heavy precipitation events, such as PMSL* minima or 

ζ850* maxima (Figs. 37e, 38e), are also associated with greater large-scale synoptic 

forcing for accent, and thus larger QVC.  Since QVC is associated with upward vertical 

motion locally (Fig. 34g), the composites of QVC for each grid cell are summarized by 

linearly averaging QVC over a 3x3 grid cell box centered on the grid cell experiencing 

heavy precipitation.  The resulting average is then plotted at the grid cell experiencing 

heavy precipitation on a global map.  The 3x3 box averaging is used to reduce noise and 

also account for nearby circulation features that may be relevant to the overall 

precipitating system.  QVC is not evaluated unless the 850 mb level is above the surface.  

This allows one to focus on lower elevation areas, where positive QVC is a reflection of 

the horizontal circulation features rather than influences from topography.  The tropics 

(30°S-30°N) are omitted from this analysis because QVC is generally less relevant for 

heavy precipitation there, due to weaker and less baroclinic circulation features.  

The QVC results are plotted in Fig. 39 for the NH using a polar stereographic 

projection.  Unlike in the nearest minima/maxima plots of Figs. 37-38, color fills are 

representative of local values of QVC during heavy events at each grid cell.  QVC 

associated with heavy precipitation is largest near the storm tracks (North Pacific and 

North Atlantic) and smaller in the lower latitudes (Figs. 39a-c).  This is not surprising, 
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since storm track regions are typically associated with stronger horizontal gradients in 

geopotential height and temperature, which tend to make QVC larger.  Changes in QVC 

from the historical to future periods are most substantial and geographically coherent in 

the North Pacific, where QVC decreases in the future, especially during DJF (Fig. 39d-f).  

These decreases are somewhat surprising, since they occur over an area where upward 

vertical velocity marginally increases (i.e., 𝛥𝜔500ℎ < 0) in the future (Fig. 39g-i).  Thus, 

changes in the forcing for ascent associated with synoptic-scale circulation patterns, such 

as temperature and vorticity advection and large-scale frontogenesis, may not to be 

important for enhanced upward motion during heavy precipitation events in this area.  

Indeed, decreases in QVC suggest that changes in the synoptic forcing may counteract 

increases in upward motion, perhaps due to weaker horizontal temperature gradients in 

the lower troposphere in the RCP8.5 simulation (Chang et al. 2012).  Furthermore, QVC 

also decreases over some of the same locations with projected strengthening in PMSL* 

minima and ζ850* maxima, such as between Alaska and Russia near 180°W (Figs. 37e, 

38e, 39d).  This implies that intensification of the low-level circulation anomalies (i.e., 

PMSL* and ζ850*) do not strengthen the large-scale synoptic forcing quantified with 

QVC.  That is, enhanced upward motion may simply be arising from increased low-level 

convergence associated with the stronger circulation, rather than stronger gradients of the 

temperature, geopotential height, or vorticity fields which can also force rising motion.  

In the SH, changes in QVC averaged over heavy events are somewhat more consistent 

with changes in 𝜔500ℎ, especially when considering events from all seasons, but both 

are small in magnitude and the pattern of change is noisier (not shown).   
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 Another aspect of the atmospheric circulation worth investigating is the low-level 

wind flow during heavy precipitation events, which is related to moisture transport and 

local horizontal gradients in pressure in the lower atmosphere.  At each grid cell, the local 

average low-level wind (defined in section 4.2.c) during days with heavy precipitation 

(including all seasons) is computed.  The results are displayed in Fig. 40, where vectors 

indicate wind direction and color fills show wind speed in the top panels (note that Fig. 

40a is the same as Fig. 17c, but for the entire global domain).  The winds associated with 

heavy precipitation have a substantial poleward component across much of the domain 

outside of the tropics, consistent with the transport of warmer and moister air from lower 

latitudes to support heavy precipitation (Fig. 40a).  Indeed, winds in the highest latitudes 

are almost entirely directed from lower latitudes, while they have a more westerly 

component in the midlatitudes.  The winds are strongest in the midlatitudes of either 

hemisphere, particularly over oceans, suggesting that large horizontal pressure gradients 

often arise in these regions in association with heavy precipitation.  The relatively smooth 

ocean surface allows for stronger winds over the ocean than over land areas at the same 

latitudes.  The above features are in contrast to climatological mean winds, which are 

almost entirely westerly and weaker in the midlatitudes (not shown).  Winds associated 

with heavy precipitation in the tropics typically have an easterly component and are small 

in magnitude, with the exception of the Indian Ocean where the local circulation patterns 

favor westerly winds over many places.   

 Projected changes in the wind speeds associated with heavy precipitation are 

shown in Fig. 40c.  The most substantial changes are in the mid-high latitudes of the SH, 

where wind speeds increase as much as 2 m s-1 in the future between 40°S and 60°S (Fig. 



90 
 

 

40c).  These increases appear to be the result of a poleward expansion of the band of 

strongest winds in the historical period (Figs. 40a,b), perhaps associated with a poleward 

shift and/or strengthening of the storm track.  It is interesting that changes in vertical 

velocity over this region are small (Fig. 32j), despite strengthening of the low-level flow.  

This shows that the low-level circulation associated with heavy precipitation may still 

change over places where increases in heavy precipitation are reasonably predicted with 

thermodynamic constraints (e.g., 𝑆ℎ) and vertical velocity changes are small.  Likewise, it 

shows that changes in the low-level horizontal flow may not influence the vertical 

velocity, perhaps because of other compensating changes in the horizontal circulation 

characteristics which are not analyzed here.  In lower latitudes, winds associated with 

heavy precipitation generally weaken, in some places where upward vertical velocity also 

weakens, but also in places where it strengthens, such as the eastern Equatorial Pacific 

(Figs. 32j, 40c).  The general weakening of tropical low-level winds during heavy events 

may be a reflection of the weakening mean tropical overturning circulation in response to 

global warming (Held and Soden 2006; Vecchi et al. 2006; Vecchi and Soden 2007; 

Chou et al. 2013).  Changes in wind speeds associated with heavy precipitation in the NH 

midlatitudes are smaller and form less coherent patterns than in the SH (Fig. 40c).  Over 

all locations, the wind direction remains relatively constant in the future despite changes 

in wind magnitude (Figs. 40a,b).  When repeating the analysis for DJF and JJA, the 

strengthening of winds in the SH midlatitudes remains, demonstrating that it is a robust 

multi-season response, though the strengthening is weaker in JJA (not shown).    

 

4.4.c Discussion of potential mechanisms for low-latitude circulation changes 
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  While a poleward shift in extratropical storm activity appears to influence the 

projected changes in atmospheric circulation associated with heavy precipitation events 

in the mid-high latitudes, the mechanisms governing changes in low-latitude circulation 

features are more complex and regionally dependent.  In the low latitudes, changes in 

vertical velocity accompanying heavy precipitation are large and 𝑆ℎ is a poor predictor of 

the actual precipitation response (Fig. 32).  Enhanced upward vertical velocity is 

generally associated with strengthening anomalies of ζ850 (Fig. 38e), while decreases in 

upward velocity are associated with weakening anomalies of PMSL and ζ850 (Figs. 37e, 

38e).  In either case, the anomalies change strength, while their spatial patterns remain 

relatively unchanged.  A number of recent studies have explored the physical 

mechanisms responsible for changes in tropical mean precipitation and circulation.  It is 

possible that many of these same mechanisms are important for the changes in 

atmospheric circulation accompanying heavy precipitation as well.   

Increases in heavy precipitation and its associated increased upward velocity in 

the equatorial Pacific occur over a region of enhanced oceanic warming relative to 

surrounding areas (Figs. 31-32).  The pattern of oceanic warming is associated with 

increased upward vertical velocity near the equator, enhanced oceanic upward heat flux, 

positive cloud-radiative feedbacks, and a shift in convective margins toward areas with 

the enhanced warming, in the climatological mean (Chou et al. 2009; Huang et al. 2013).  

Considering that the entire daily precipitation distribution shifts toward wetter conditions 

in this part of the tropics in climate models (see section 3.3.b), it is plausible that the local 

oceanic warming is also responsible for increases in heavy precipitation intensity and 

circulation strength.  Fig. 31 shows that the enhanced equatorial Pacific warming in 
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surface temperature is not only present in the climatological mean, but also to a lesser 

extent when averaged over just heavy precipitation days (≥99 th percentile).  This further 

supports the hypothesis that the local oceanic warming has a direct influence on the 

dynamics associated with heavy precipitation.  Since latent heat release during tropical 

heavy precipitation is significant, it is also possible that enhanced heavy precipitation 

produces a positive feedback on the buoyancy associated with convective updrafts, 

further strengthening the upward velocity and associated low-level circulation (e.g., 

Trenberth et al. 2003; Pall et al. 2007).  Thus, the mechanisms responsible for the 

stronger circulation associated with heavy precipitation in the equatorial Pacific may be 

from a combination of the oceanic warming and positive latent heat feedbacks.    

 In other parts of the tropics, increases in both heavy precipitation and upward 

velocity occur over areas with already large P99M in the historical simulation (i.e., the 

equatorial Atlantic, equatorial Indian Ocean, and Indonesia, Figs. 20, 32).  Enhancement 

of precipitation over wet regions has generally been attributed to increases in the 

climatological moisture convergence as a result of increased water vapor in a warmer 

atmosphere (Chou and Neelin 2004; Held and Soden 2006; Chou et al. 2009; Seager et al. 

2010).  Enhanced mean precipitation over these regions is characterized by a shift in the 

entire daily precipitation distribution (section 3.3.b), thus also enhancing heavy 

precipitation.  But what causes upward velocity to increase and the low-level circulation 

anomalies to strengthen during heavy precipitation events?  The same latent heat 

feedback discussed above for the east Equatorial Pacific likely plays a role in these 

tropical regions as well, especially since precipitation is heavier and associated with 

substantial latent heat release.  Changes in gross moist stability may also be playing a 
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role.  In an analysis of moisture and energy budgets in the tropics, increases in upward 

velocity accompanying increases in precipitation over parts of convergence zones were 

shown to be dominated by a convergence feedback arising from decreases in gross moist 

stability (Chou and Neelin 2004; Chou et al. 2009).  It is tempting to suggest that 

decreases in gross moist stability are also relevant for the increases in upward velocity 

accompanying heavy precipitation over convergence zones.  However, Chou et al. (2013) 

show that in the climatological and ensemble mean, gross moist stability increases almost 

ubiquitously in the tropics in CMIP5 models, using many of the same models used in this 

dissertation.  Thus, regional decreases in gross moist stability in individual models, which 

typically only occur over a fraction of the convergence zones (Chou et al. 2009), likely 

cancel in the ensemble mean.  Nonetheless it is possible that the factors controlling 

changes in gross moist stability, such as the vertical profile of vertical velocity (Chou et 

al. 2013), behave differently when considering heavy precipitation rather than 

climatological mean precipitation, such that regional decreases in gross moist stability are 

important for changes in heavy precipitation even in the ensemble mean.  Further analysis 

would be necessary to explore this interesting possibility. 

 One final region of interest is the subtropics, where changes in heavy precipitation 

are not well predicted with thermodynamic constraints and heavy precipitation decreases 

in some places.  The upward velocity and low-level circulation features associated with 

heavy precipitation weaken over these areas, perhaps most robustly out of any region 

studied in this chapter.  The areas with heavy precipitation decreases coincide with 

climatological subsidence regions and very low P99M in the historical record (Fig. 20).  

Over these regions, diabatical heating from large-scale subsidence is balanced by 
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outgoing longwave radiation in the long-term mean (Chou et al. 2009).  Future 

atmospheric warming and decreases in cloudiness may result in enhanced subsidence to 

maintain this radiative balance (Chou et al. 2009).  It is likely that the enhanced 

subsidence affects the frequency and intensity of heavy precipitation, which is supported 

by a shift toward drying in the entire daily precipitation distribution over these regions 

(section 3.3.b, Fig. 25).  Decreasing upward vertical motion during heavy events may 

therefore be a direct consequence of including more days with very light precipitation 

(i.e., with weaker ascent or even descent) in the sample of days with precipitation 

equaling or exceeding the 99th percentile in the future period.   Changes in the Hadley 

circulation may also be influencing the circulation characteristics during heavy 

precipitation.  A closer inspection of Fig. 20 reveals that areas of decreasing P99M are 

somewhat displaced poleward from the centers of low P99M in the historical period, 

especially in the South Pacific and South Atlantic subsidence regions.  This is consistent 

with a widening of the Hadley circulation in response to global warming (e.g., Lu et al. 

2007; Gastineau et al. 2008; Seager et al. 2010).   

There are also areas in the subtropics where heavy precipitation increases while 

the vertical velocity and low-level circulation associated with it weaken (Fig. 32).  One 

may recognize that these regions often coincide with areas of high climatological tropical 

cyclone occurrence, and might conclude that decreases in tropical cyclone frequency or 

intensity in the models contribute to the decreased composite circulation strength.  

However, recent analysis of tropical cyclones in CMIP5 models not only shows that the 

models underestimate tropical cyclone frequency and have unrealistic track 

climatologies, but that projected changes in tropical cyclone frequency are not robust in 
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any ocean basin (Camargo 2013; Villarini and Vecchi 2013).  Therefore, it is unlikely 

that changes in tropical cyclone frequency play a role in the projected decreased strength 

in atmospheric circulation in the analysis presented here.  Changes in tropical cyclone 

intensity are usually quantified with large-scale parameterizations rather than cyclone 

tracking in course resolution simulations such as in CMIP5 (Camargo 2013; Villarini and 

Vecchi 2013), so it is unclear how changes in tropical cyclone intensity may be related to 

the changes in the composite circulation strength shown here.  Projected decreases in 

upward velocity and low-level circulation strength in areas with increases in heavy 

precipitation may simply be a reflection of the climatological weakening of the tropical 

overturning circulation that has been comprehensively discussed in previous studies (e.g., 

Held and Soden 2006; Vecchi and Soden 2007).  In the long-term mean, decreased 

upward velocity despite increases in precipitation can be explained through energy 

balance arguments, in which increases in gross moist stability over converging regions 

results in a negative feedback on the upward velocity, reducing ascent (Chou and Neelin 

2004; Chou et al. 2009).  Since mean vertical velocity during heavy precipitation events 

is upward (i.e., positive convergence) over these areas (not shown) and gross moist 

stability likely increases (Chou et al. 2013), it is plausible that this same dynamical 

feedback operates during heavy precipitation events.  

 

4.5 Summary and discussion of limitations 

 The regional projected changes in heavy precipitation were comprehensively 

explored in this chapter.  A thermodynamic scaling proposed by O’Gorman and 

Schneider 2009a,b), which accounts for local increases in atmospheric moisture and 



96 
 

 

changes in the moist adiabatic lapse rate with warming, performs better than simple 

Clausius-Clapeyron scaling when predicting increases in local heavy precipitation in 

response to warming.  However, thermodynamic changes alone cannot explain projected 

changes in heavy precipitation in the low and high latitudes, where changes in the vertical 

velocity accompanying heavy precipitation are substantial, and heavy precipitation 

decreases in some places.  In the low latitudes, the large-scale low-level circulation 

anomalies change strength in accordance with vertical velocity.  The relationship between 

vertical velocity and the horizontal circulation is more complex in the mid to high 

latitudes; in the Southern Hemisphere, changes in the large-scale horizontal circulation 

are not always associated with those in vertical velocity; in the Northern Hemisphere, the 

large-scale synoptic forcing for ascent (quantified with Q-vector convergence) does not 

change in the same qualitative sense as vertical velocity.  One robust finding from this 

chapter is that the atmospheric circulation patterns accompanying heavy precipitation do 

not change despite changes in the strength of the circulation features over some places.  

This suggests that the physical mechanisms that produce local heavy precipitation, 

including surface cyclones, fronts, or shortwave troughs, may remain the same in a future 

climate but may strengthen or weaken.   

There are a few limitations in the analysis presented in this chapter that are worth 

noting.  For one, the physical mechanisms unique to individual extreme precipitation 

events may be averaged out when developing composites for a sample of heavy 

precipitation events as done here.  A better understanding of the variety of atmospheric 

phenomena that produce extreme precipitation at individual locations and how they may 

change in the future would require further analysis.  Another limitation of the analysis is 
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that CMIP5 models do not adequately simulate some of the mechanisms that are 

important for heavy precipitation, such as tropical cyclones and the MJO (Jones and 

Carvalho 2012; Camargo 2013; Hung et al. 2013).  Thus, the impacts of such 

mechanisms on heavy precipitation intensity and its associated circulation are not well 

represented.  Finally, the relatively coarse resolution of the climate model output 

analyzed here does not allow for the investigation of small-scale processes that may be 

important for changes in extreme precipitation locally, such as mesoscale precipitation 

bands or convective systems, and may also result in underestimations in projected 

increases in heavy precipitation (e.g., Allan and Soden 2008; Min et al. 2011; Wuebbles 

et al. 2013).  The analysis is therefore limited to large-scale heavy precipitation and its 

associated large-scale circulation features.  Based on the ability of climate models to 

realistically simulate the large-scale circulation associated with heavy precipitation (see 

chapter 2), however, we may have some confidence in projections at this spatial scale.   
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5. Discussion and Conclusions 
 

 

5.1 Summary of CMIP3 and CMIP5 evaluation 

 Various aspects of daily precipitation statistics from an ensemble of 17 CMIP3 

models were evaluated by comparing the model output with gridded observations from 

the CPC over North America.  Heavy and extreme precipitation intensities are too light in 

the models over the southeastern United States, southern Mexico, and along the Pacific 

coast, and are too heavy in intermountain regions of western North America including 

north-central Mexico.  These model biases are quite robust amongst most or all of the 

CMIP3 models studied.  When looking at the entire daily precipitation distribution in 

CMIP3, the models overestimate light precipitation intensities and underestimate heavy 

precipitation intensities to an extent that varies with geographic location.  On a positive 

note, the CMIP3 models generate fairly realistic heavy precipitation in northeastern North 

America and capture the seasonal cycle of heavy precipitation quite well over parts of the 

study domain.   These findings are consistent with previous studies that have evaluated 

global and regional climate models over a wide variety of geographical locations, using 

various observational data sources and different methods to quantify heavy and extreme 

precipitation.   

An analysis of the large-scale physical mechanisms associated with extreme 

precipitation events was conducted for a subset of the CMIP3 models that were used to 

study precipitation statistics.  The models realistically simulate the gross patterns of sea 

level pressure and geopotential height anomalies associated with extreme events across 

most of North America.  However, there is a tendency for the models to overestimate 
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gradients in sea level pressure and geopotential height anomalies during extreme events, 

which in turn results in overestimated low-level winds, column integrated moisture 

anomalies, and Q-vector convergence over parts of the domain.  This analysis showed 

that there is no simple relationship between model biases in circulation strength and 

biases in heavy precipitation, as the models produced realistic or too strong circulations 

in regions where heavy precipitation was underestimated, overestimated, or realistic.  

This suggests that other physical deficiencies in the models are important for model 

biases in heavy precipitation.  Such deficiencies may include problems simulating 

convective precipitation and tropical cyclones, unrealistically smooth topography as a 

result of the coarse model resolutions over mountainous regions, and problems simulating 

mesoscale processes.  Previous studies indicate that a combination of increasing the 

resolution at which climate models are run and adjusting various aspects of convective 

parameterizations may substantially improve the biases in simulated high frequency 

precipitation generated by such physical problems (Colle and Mass 2000; Iorio et al. 

2004; Emori et al. 2005; Kimoto et al. 2005; Kharin et al. 2007; Wilcox and Donner 

2007; Wehner et al. 2010; Dulière et al. 2011; Li et al. 2012).    

An ensemble of 17 CMIP5 models were also evaluated and compared with 

CMIP3.  Heavy precipitation biases in CMIP5 are generally similar to those in CMIP3.  

However, underestimations in heavy precipitation in the southeastern United States are 

smaller in CMIP5, and overestimations in the intermountain regions are somewhat larger.  

An analysis of the atmospheric circulation associated with heavy to extreme daily 

precipitation events in the CMIP5 ensemble also revealed no simple relationship between 

biases in atmospheric circulation and those in heavy precipitation.  Indeed, the large-scale 
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atmospheric dynamics accompanying heavy precipitation events are nearly identical in 

the CMIP3 and CMIP5 ensembles.  This suggests that other physical differences between 

the CMIP ensembles, including the typical horizontal resolutions and convective 

parameterizations, are important for the small improvements in CMIP5 over CMIP3. 

The results of the model evaluation presented in this dissertation are encouraging 

because they show that CMIP3 and CMIP5 models simulate the atmospheric circulation 

associated with extreme precipitation events rather well even though they incorrectly 

simulate the frequency and intensity of daily precipitation over many places.  This 

suggests that climate models may be useful for predicting and understanding future 

changes in the large scale physical mechanisms associated with extreme precipitation in 

response to global warming.  However, a better understanding of the physical 

deficiencies in climate models is necessary to be able to use these models to reliably 

predict quantitative changes in high frequency precipitation statistics in response to 

global warming.  Such an understanding requires additional studies that evaluate climate 

model components in a more detailed and controlled fashion than presented here. 

 
 
5.2 Summary of projected changes in the daily precipitation distribution 

 The CMIP5 models were used to study projected changes in the daily 

precipitation distribution in response to atmospheric warming.  Histograms of daily 

precipitation were produced at every grid cell for both the historical and RCP8.5 

simulations, and the historical histograms were subtracted from the RCP8.5 histograms.  

K-means cluster analysis was applied to the difference histograms at all grid cells to 

summarize the regional patterns of projected changes in the daily precipitation 
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distribution.  From the analysis, four distinct responses of the precipitation distribution 

were detected in the CMIP5 ensemble mean, characterized by down-up, up-down-up, up-

down, and down-up-down-up shapes (see Table 3 for further description and summary of 

where the responses occur).  Changes in the precipitation distribution that fall into one of 

the categories of Table 3 were detected at individual grid cells as well as in the regional 

mean with fairly high robustness, suggesting that individual locations may experience 

precipitation changes characterized by one of these categories in response to future 

warming.  However, due to the inherently noisy nature of daily precipitation, there is still 

a fair amount of scatter in the precipitation response at individual locations.  Thus, 

projected changes in the precipitation distribution shown in this dissertation are most 

robust only when considering large-scale regional averages.  The individual CMIP5 

models disagree on the exact spatial patterns of the daily precipitation distribution 

response.  However, when averaged over large regions with similar changes in the 

precipitation distribution determined from the ensemble mean, the individual models 

closely agree on the general shape of changes in the precipitation distribution. 

The most robust responses of the daily precipitation distribution, characterized by 

the down-up or up-down-up shapes of the difference histograms, appear to correspond 

broadly with projected changes in surface temperature and atmospheric circulation.  That 

is, tropical regions with the increased precipitation down-up behavior coincide with 

regions where mean oceanic warming exceeds surrounding areas.  Additionally, a 

poleward shift in storm activity appears to be related to increased precipitation of all 

intensities in the high latitudes and decreased light to moderate precipitation at lower 

latitudes.  Changes in the Hadley circulation may be linked to decreases in precipitation 
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of all intensities over dry subtropical subsidence regions (e.g., Lu et al. 2007; Gastineau 

et al. 2008; Chou et al. 2009; Seager et al. 2010).  Projected changes of the daily 

precipitation distribution over the tropical oceans may also reflect a redistribution of 

cloud/precipitation regimes in response to changes in sea surface temperatures and 

atmospheric circulation (Lau and Wu 2011).  

 In Loikith et al. (2013), cluster analysis was used to study the regional variability 

of the daily temperature distribution in the present climate.  Here, cluster analysis was not 

only applied to daily precipitation, a variable that is spatially noisier and has a more 

skewed distribution, but also to differences in the distribution between two climate 

scenarios.  This shows the general applicability of cluster analysis to objectively 

summarize spatial characteristics of the high-frequency distribution of atmospheric 

variables and their response to climate forcing.  As shown here, cluster analysis may be 

used to objectively classify individual locations into regions with physically meaningful 

similarities in the precipitation response to atmospheric warming.  Developing regions in 

this way is arguably better than arbitrarily defining them based on political boundaries or 

other criteria that have little physical basis.   

 

5.3 Summary of physical mechanisms for heavy precipitation changes 

 Projected regional changes in heavy precipitation and the circulation 

characteristics accompanying heavy events were comprehensively explored in the CMIP5 

ensemble.  In the future (RCP8.5) simulation, heavy precipitation is projected to increase 

almost everywhere globally, with the exception of dry subtropical oceanic regions.  

Seasonally, some of these areas of decrease are more widespread and include nearby land 
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regions.  A thermodynamic scaling introduced by O’Gorman and Schneider (2009b), 

which accounts for local increases in atmospheric moisture and changes in the moist 

adiabatic lapse rate with warming, reasonably predicts increases in midlatitude heavy 

precipitation in the model ensemble.  However, changes in heavy precipitation in the 

northern high latitudes and parts of the tropics are larger than predicted with the scaling, 

while they are smaller than the scaling (or negative) in other parts of the tropics.  In these 

regions, changes in upward vertical velocity are necessary to explain the local response of 

heavy precipitation, consistent with the findings in O’Gorman and Schneider (2009b) and 

Sugiyama et al. (2010).  When considering the global median sensitivity of heavy 

precipitation, however, local changes in vertical velocity are less relevant and the 

thermodynamic scaling is a sufficient predictor.  Annually, the global sensitivity of the 

most extreme daily precipitation events is centered at 7% K-1 in the model ensemble, 

suggesting that simple Clausius-Clapeyron water vapor scaling is a sufficient global 

predictor for these most extreme cases. 

 The horizontal atmospheric circulation features associated with heavy 

precipitation were explored to more closely see how changes in these features relate to 

changes in heavy precipitation and upward vertical velocity.  The analysis was based on 

composites of the atmospheric circulation during heavy precipitation events at individual 

grid cells.  In the tropics, low-level circulation features associated with heavy 

precipitation weaken where there are decreases in heavy precipitation and upward 

velocity.  In particular, the weakening is characterized by smaller standardized anomalies 

of sea level pressure, 850 mb vorticity, and 500 mb geopotential height in the future 

simulation.  When exploring composite patterns at individual locations, the sign of 
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changes for some of these quantities is robust among individual models and the changes 

are statistically significant over coherent areas.  In parts of the deep tropics, increases in 

heavy precipitation that exceed thermodynamic predictions coincide with strengthening 

anomalies of 850 mb vorticity and enhanced upward vertical motion.  Other metrics that 

were explored, such as anomalies in sea level pressure, seem to have little spatial 

definition in deep tropical regions.  In all cases where the low-level circulation changes 

strength, the spatial patterns of the composite circulation remain relatively unchanged in 

the future.  This suggests that the physical mechanisms relevant for local heavy 

precipitation may not change in the future, but may be characterized by stronger or 

weaker features.  However, a more in-depth investigation of the physical mechanisms 

associated with individual extreme precipitation events, rather than the composite of 

many events, may be necessary to confirm that this is true.  The broader mechanisms 

responsible for changes in the atmospheric circulation associated with heavy precipitation 

in the tropics may be complex and depend on the region and sign of change.  They 

include an equatorial enhancement in oceanic warming, increases in moisture over 

already convergent regions, feedbacks between latent heat release and upward velocity, 

changes in the strength and pattern of subsidence, and possible dynamical feedbacks 

associated with changes in gross moist stability. 

 The atmospheric circulation accompanying heavy precipitation also changes in 

high-latitude regions.  These changes, including strengthening low-level circulation 

anomalies in both hemispheres and stronger low-level winds in the southern hemisphere, 

appear to be related to a poleward shift and possibly intensification of climatological 

storm tracks (e.g., Yin 2005; O’Gorman 2010; Chang et al. 2012).  Like in the case of 
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low latitudes, changes in circulation strength occur while spatial patterns of the 

circulation remain unchanged.  Changes in circulation strength in high latitudes do not 

necessarily translate to changes in vertical velocity associated with heavy precipitation, 

however.  In the Southern Hemisphere, changes in vertical velocity are small and 

increases in heavy precipitation are reasonably predicted with the thermodynamic 

scaling, despite the rather potent strengthening of sea level pressure anomalies and low-

level wind accompanying heavy precipitation.  In the Northern Hemisphere, increases in 

upward vertical velocity occur in the same areas that low-level circulation anomalies 

strengthen, but decreases in Q-vector convergence also occur over some of these areas.  

This suggests that the strengthening circulation anomalies are not also accompanied by 

strengthening in gradients of pressure, temperature, and vorticity, which may also force 

ascent.  The results show that the relationship between low-level circulation and upward 

velocity in the extratropics is more complex than at lower latitudes, and that changes in 

low-level circulation may occur even if vertical velocity remains relatively constant.  A 

more comprehensive analysis of the large-scale circulation over these regions than 

presented here would be necessary to better understand these complex circulation 

changes.  In the midlatitudes, changes in the horizontal and vertical circulation during 

heavy precipitation were shown to be small in all analyses, consistent with earlier studies 

(Gutowski et al. 2008b; Sugiyama et al. 2010).  However, mechanisms that may be 

important for changes in midlatitude heavy precipitation, such as tropical cyclones and 

teleconnections associated with the MJO, may not be well represented in the CMIP5 

models used for this analysis (Jones and Carvalho 2012; Camargo 2013; Hung et al. 

2013).          
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5.4 Discussion of implications, limitations, and future directions 

An in-depth analysis of state-of-the-art coupled climate simulations shows that 

there may be substantial and profound regional changes in the frequency distribution of 

daily precipitation in response to future global warming.  Over most land regions, the 

frequency and intensity of heavy to extreme precipitation is projected to increase.  These 

increases may result in increased flooding and subsequently loss of life and property over 

many places.  At the same time, light to moderate precipitation events may become less 

frequent over places with projected increases in heavy precipitation and which have large 

population densities, such as middle and low-latitude land regions.  This may result in 

more frequent, longer, and/or more intense droughts in between extreme precipitation 

events, which would likely impact agriculture and water resources in a significant way.  It 

is clear that the effect of global warming on precipitation may have serious impacts on 

human life, property, and ecosystems around the world. 

The projected changes in daily precipitation statistics presented in this dissertation 

come with substantial uncertainty, mostly because of disagreements between individual 

models and substantial biases in the simulation of observed precipitation statistics over 

the recent past.  The models generally underestimate heavy precipitation over wet 

regions.  If such biases translate to projected changes in response to warming (i.e., 

underestimating increases in heavy precipitation over wet regions), future increases in 

heavy precipitation over areas already susceptible to extreme precipitation may be larger 

than climate models predict.  One limitation in this dissertation is that the analysis period 

was too short to evaluate late 20th century changes in heavy precipitation.  However, 
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several previous studies that have evaluated late 20th century changes (discussed and 

cited in section 1.2) suggest that the underestimation of future increases in extreme 

precipitation in climate models is likely.  Another aspect of model biases to be considered 

is overestimations in light precipitation, which occur nearly everywhere (Fig. 5).  If these 

overestimations translate to projected changes, it is possible that the models may 

overestimate the projected decreases in the frequency of light to moderate precipitation 

over some places.  Though light-moderate precipitation has decreased with warming over 

large tropical regions in observations, consistent with model projections of future climate 

(Lau and Wu 2011; Lintner et al. 2012), some studies show that light-moderate 

precipitation has increased over midlatitude regions where the models simulate decreases 

(Karl and Knight 1998).  The latter may be consistent with climate models over-

exaggerating the decreased frequency of light-moderate precipitation in response to 

warming as a result of too high frequencies of light precipitation in the present climate.  

Another possibility is that local processes relevant for changes in the precipitation 

distribution, such as changes in land use and irrigation, are not adequately represented in 

the models (e.g., DeAngelis et al. 2010).  There is a need for more comprehensive 

regional analyses of observed changes in the frequency distribution of precipitation to 

better assess the plausibility of the projected regional changes in the CMIP5 ensemble.  

This need is challenged by the lack of a reliable, spatially homogeneous, and temporally 

sufficient network of high frequency precipitation observations over global land and 

oceans.  

Large intermodel variability in the projected changes of precipitation represents 

another source of uncertainty for future projections.  Taking the ensemble mean allows 
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for the emergence of regional precipitation changes that are potentially more robust 

across the models, but does not necessarily lead to the most realistic projections; it is 

possible that certain individual models are more reliable than the ensemble mean.  

Determining which models are more reliable requires an in-depth understanding of the 

physical reasons for the large intermodel spread and an intensive comparison of 

simulations with observations.  As mentioned in section 5.1, there is a need for more 

comprehensive climate model evaluations focusing on the intercomparison of individual 

models and their physical components.  Additionally, a better understanding of the 

relationship between changes in precipitation and changes in other physical processes in 

climate models, such as radiation or circulation, is necessary and may prove useful.  

Assuming that these relationships hold in the real climate system, observations of 

variables related to the physical processes, which may be more reliable than precipitation 

observations, could possibly be used to constrain the intermodel spread in projections.   

The relatively realistic simulation of the large-scale thermodynamical and 

dynamical forcing for extreme precipitation in the CMIP models is reassuring.  It 

suggests that the physical mechanisms for changes in heavy precipitation are reliable and 

that the qualitative response of heavy precipitation is also reliable.  However, the 

methodology employed in this dissertation to explore changes in heavy precipitation has 

limitations; in order to comprehensively explore spatial variability at the grid cell scale, 

heavy precipitation was averaged over individual events as well as many models.  Taking 

the model ensemble mean masks unique regional precipitation changes and physical 

mechanisms that are important in the real climate system but do not emerge in the 

ensemble mean due to large intermodel variability.  For instance, regional decreases in 
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gross moist stability or advection of dry air near convective margins, the latter known as 

the “upped-ante” mechanism (Neelin et al. 2003), are important in individual simulations 

but typically occur in different places in different models (e.g., Chou et al. 2009).  

Averaging over many heavy precipitation events has the potential to smooth over a 

variety of potentially important physical mechanisms unique to individual events, 

possibly generating misleading results.  It is possible that the proportion of extreme 

precipitation events associated with certain phenomena, such as convection or 

extratropical cyclones, changes in the future, which may not be obvious in a composite 

analysis.  Since the average daily intensity of precipitation originating from certain types 

of events, such as convection, may be larger than from other types (Haerter and Berg 

2009), it is important to know if the proportion of such events changes.   

To address the shortcomings discussed above and to obtain a more thorough 

understanding of the complex dynamical mechanisms responsible for changes in heavy 

precipitation over certain locations, a more in-depth intermodel and individual event 

analysis over particular regions would be necessary.  Regions of interest include 1) the 

deep tropics, where the large-scale circulation features in a composite have weak spatial 

definition, 2) the midlatitudes, which may be susceptible to changes in the fraction of 

extreme events caused by convection, synoptic-scale cyclones, or other phenomena, and 

3) the storm track regions where complex features of the atmospheric circulation are 

important for producing upward vertical velocity.  In performing the above regional 

analyses, higher resolution regional models should also be used in conjunction with 

coarser resolution global models to better represent and evaluate the role of tropical 

cyclones and mesoscale processes.  Finally, the 21-year time periods used in this 
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dissertation were potentially too short to capture the rarest and most impactful 

precipitation events that affect individual locations.  To quantify truly extreme 

precipitation, the use of longer time periods or more elaborate statistical procedures 

would be necessary.        
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Tables 

 

 

Table 1. List of the CMIP3 models used for analysis in chapter 2 of the dissertation.  All 

17 models were used for the analysis of precipitation statistics.  Due to output 

availability, only the 12 models with asterisks next to the model name were included in 

the analysis of physical mechanisms associated with extreme precipitation events.  These 

same 12 models were used in the comparison with CMIP5 in section 2.5, for both 

precipitation statistics and the physical mechanisms accompanying heavy precipitation.  

The approximate spatial resolutions were calculated by dividing 360° or 180° by the 

number of grid cells in the longitude or latitude dimensions, respectively.  Asterisks next 

to spatial resolution denote climate models whose grids were transformed to the common 

2.5°x2.5° resolution using area averaging.  All others were transformed using linear 

Modeling Group 
Country Model Name Run 

# 
Spatial 

Resolution 
(lon x lat) 

Canadian Centre for Climate 
Modelling & Analysis  

Canada CCCMA-CGCM3.1(T47)* 
CCCMA-CGCM3.1(T63)* 

1 
1 

3.75° x 3.75° 
2.81° x 2.81° 

Centre National de Recherches 
Météorologiques  

France CNRM-CM 3* 1 2.81° x 2.81° 

CSIRO Atmospheric Research Australia CSIRO-Mk3.0* 
CSIRO-Mk3.5* 

1 
1 

1.88° x 1.88° * 
1.88° x 1.88° * 

Geophysical Fluid Dynamics 
Laboratory 

USA GFDL-CM2.0* 
GFDL-CM2.1* 

1 
2 

2.50° x 2.00° * 
2.50° x 2.00° * 

Goddard Institute for Space Studies USA GISS-AOM* 
GISS-EH* 
GISS-ER* 

1 
5 
1 

4.00° x 3.00° 
5.00° x 3.91° 
5.00° x 3.91° 

Institute of Atmospheric Physics China IAP-FGOALS-g1.0 1 2.81° x 3.00° 
Institute for Numerical Mathematics Russia INM-CM3.0 1 5.00° x 4.00° 
Center for Climate System 
Research, National Institute for 
Environmental Studies, and Frontier 
Research Center for Global Change 

Japan MIROC3.2(medres) 1 2.81° x 2.81° 

Max Planck Institute for 
Meteorology 

Germany MPI-ECHAM5* 1 1.88° x 1.88° * 

Meteorological Research Institute Japan MRI-CGCM2.3.2* 1 2.81° x 2.81° 
National Center for Atmospheric 
Research 

USA NCAR-CCSM3 
NCAR-PCM 

1 
1 

1.41° x 1.41° * 
2.81° x 2.81° 
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interpolation.  The ensemble member number used for each model is indicated.  [Further 

documentation for individual models, including expansions of all acronyms, is available 

online at http://www-pcmdi.llnl.gov/ipcc/model_documentation/ 

ipcc_model_documentation.php.] 

 
  

http://www-pcmdi.llnl.gov/ipcc/model_documentation/ipcc_model_documentation.php�
http://www-pcmdi.llnl.gov/ipcc/model_documentation/ipcc_model_documentation.php�
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Table 2. As in Table 1 but for the CMIP5 models used for analysis in this dissertation 

(sections 2.5 and chapters 3-4).  All models listed have archived output of precipitation 

and other variables necessary for the study of physical mechanisms.  Ensemble member 

run # 1 was used for all models. 

  

Modeling Group Country Model Name Spatial 
Resolution 
(lon x lat) 

Beijing Climate Center, China 
Meteorological Administration 

China BCC-CSM1.1 2.81° x 2.81° 

Canadian Centre for Climate Modelling and 
Analysis 

Canada CanESM2 2.81° x 2.81° 

Centre National de Recherches 
Meteorologiques / Centre Europeen de 
Recherche et Formation Avancees en 
Calcul Scientifique 

France CNRM-CM5 1.41° x 1.41° * 

Commonwealth Scientific and Industrial 
Research Organization  in collaboration 
with Queensland Climate Change Centre of 
Excellence 

Australia CSIRO-Mk3.6.0 1.88° x 1.88° * 

LASG, Institute of Atmospheric Physics, 
Chinese Academy of Sciences 

China FGOALS-s2 2.81° x 1.67° * 

NOAA Geophysical Fluid Dynamics 
Laboratory 

USA GFDL-ESM2G 
GFDL-ESM2M 

2.50° x 2.00° * 
2.50° x 2.00° * 

Met Office Hadley Centre UK HadGEM2-CC 1.88° x 1.25° * 
Institute for Numerical Mathematics Russia INM-CM4 2.00° x 1.50° * 
Institut Pierre-Simon Laplace France IPSL-CM5A-LR 

IPSL-CM5A-MR 
3.75° x 1.88° 

2.50° x 1.26° * 
Japan Agency for Marine-Earth Science and 
Technology, Atmosphere and Ocean 
Research Institute (The University of 
Tokyo), and National Institute for 
Environmental Studies 

Japan MIROC-ESM 
MIROC-ESM-CHEM 

2.81° x 2.81° 
2.81° x 2.81° 

Atmosphere and Ocean Research Institute 
(The University of Tokyo), National 
Institute for Environmental Studies, and 
Japan Agency for Marine-Earth Science and 
Technology  

Japan MIROC5 1.41° x 1.41° * 

Max Planck Institute for Meteorology Germany MPI-ESM-LR 
MPI-ESM-MR 

1.88° x 1.88° * 
1.88° x 1.88° * 

Meteorological Research Institute Japan MRI-CGCM3 1.13° x 1.13° * 
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Table 3. Summary of the distinct regional responses of the daily precipitation distribution 

resulting from the cluster analyses in chapter 3 of the dissertation.  The robustness was 

subjectively determined from the spread of count differences among individual grid cells 

within the clusters corresponding to each type, the geographical coherence and extent of 

the type, the dominance in the emergence of the type from the cluster analyses, and the 

intermodel agreement of the precipitation response. 

  

Type Description Location Robustness 
down-up Decreasing zero/trace days (and 

also very light events in some 
cases), increasing larger events 
of all sizes 

High latitudes, parts of the 
tropical oceans near the 
equator, east Africa and 
adjacent Indian Ocean 

High 

up-down-up Increasing zero/trace days (and 
also very light events in some 
cases), decreasing light-
moderate events, increasing 
heavy events 

Midlatitudes, subtropics, 
and parts of the tropics  

Fairly high 

up-down Increasing zero/trace days (and 
also very light events in some 
cases), decreasing light, 
moderate, and heavy events 

Tropical and subtropical 
oceanic dry areas with 
projected decreases in mean 
and heavy precipitation 

Fairly high in 
small regions 

down-up-down-up Decreasing zero/trace days, 
increasing very light events, 
decreasing light-moderate 
events, increasing heavy events 

Scattered small oceanic 
areas within 10-30° latitudes 

Low 
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Figures 

 

   

   

   
 
Figure. 1. Daily mean precipitation over the period 1979-99 at each grid cell on the 2.5° 

grid for (a)-(c) all seasons, (d)-(f) winter, and (g)-(i) summer.  (left) Mean precipitation 

for the CPC observations, (middle) the difference between the CMIP3 model average and 

CPC in units of mm day-1, and (right) the percent difference between the CMIP3 model 

average and CPC. 
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Figure. 2. As in Fig. 1, but for the mean precipitation falling from the wettest 1% of days 

(P99M, as defined in section 2.3). 
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Figure. 3. Analysis regions used to study the model variability of P99M biases and daily 

precipitation distributions (Figs. 4 and 5, respectively).  The specific 2.5°x2.5° grid cells 

constituting each region are shown.  The regions are named according to geographic 

location: Pacific Coast (PCOAST), West Interior (WINT), Northeast (NEAST), 

Southeast (SEAST), Southwest (SWEST), and Southern Mexico/ Central America 

(SMEX).  Note that grid cells along the far northern, western, and eastern parts of the 

domain were omitted from the regions due to potential uncertainties in the CPC 

observations over these locations (Chen et al. 2008c).   
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Figure. 4. Box-and-whisker plots showing the variability of CMIP3 model biases in 

P99M averaged over the specified regions (Fig. 3).  The horizontal lines on the box-and-

whiskers indicate the minimum, 25th percentile, median, 75th percentile, and maximum 

biases of the individual models.  
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Figure. 5. Q-Q plots comparing the annual daily precipitation distribution between the 

CPC observations and CMIP3 models for each of the regions shown in Fig. 3 (see section 
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2.3 for details).  In all cases, the circles are showing the model median precipitation value 

corresponding to each CPC value.  The shading is showing the lowest to highest CMIP3 

model precipitation value for each corresponding CPC value.  Values are plotted only for 

percentiles for which the CPC precipitation is at least 0.5 mm day-1.  The abscissa and 

ordinate axes are on a logarithmic scale due to the nonlinearity of daily precipitation 

distributions.  The solid black line is a 1:1 line indicating where all data points would fall 

if there were perfect agreement between the models and observations.   
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Figure. 6. The seasonal cycle of heavy precipitation, as determined by the first harmonic 

of the P99M precipitation for each calendar month (see section 2.3 for details) for (a) the 

CPC Observations 

CMIP3 Model Average 

a 

b 
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CPC observations and (b) the CMIP3 model average.  The vectors point in the direction 

of the seasonal maximum of P99M objectively determined by the harmonic fit, following 

the legend shown in (a).  Color fills show the percentage of total variance of monthly 

P99M that the first harmonic explains.  
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Figure. 7. Composites of pressure at mean sea level (PMSL, hPa, contours) and 500 mb 

geopotential height standardized anomalies (Z500*, dimensionless, color fills) for the 21 

most extreme winter (DJF) precipitation events at selected grid cells (indicated by black 

rectangles) over which the models severely underestimate P99M precipitation.  Sea level 

pressure is contoured every 2 hPa.  (left) Composites based on NARR and (right) those 

averaged over all CMIP3 models. 
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Figure. 8. As in Fig. 7 but for extreme summer (JJA) precipitation events. 
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Figure. 9. Composites of vertically integrated water vapor flux (VIWVF, kg m-1 s-1, 

vectors) and the convergence of vertically integrated water vapor flux (C(VIWVF), mm 

day-1, color fills) for the 21 most extreme winter (DJF) precipitation events at selected 

grid cells (indicated by black rectangles).  The C(VIWVF) was smoothed with a five-

point box smoother before plotting.  (left) Composites based on NARR and (right) those 

averaged over all CMIP3 models. 
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Figure. 10. As in Fig. 7, but for selected grid cells over which models overestimate 

winter P99M precipitation. 
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Figure. 11. As in Fig. 7, but for selected grid cells over which models produce realistic 

winter P99M precipitation. 
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Figure. 12. As in Fig. 11, but for extreme summer (JJA) precipitation events. 
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Figure. 13. The average local low-level (10-m to 500-mb average) winds (m/s, vectors) 

and vertically integrated water vapor standardized anomalies (VIWV*, dimensionless, 

color fills) during the 21 most extreme winter (top) and summer (bottom) precipitation 

events at every grid cell on the domain.  (left) NARR and (right) CMIP3 model average.  

Missing grid cells in (d) are the result of missing specific humidity values for some days 

in the CSIRO-Mk3.0 model output.  
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Figure 14.  A comparison of annual P99M (1979-99) between (a) the CPC observations, 

(b) the CMIP3 multimodel average, and (c) the CMIP5 multimodel average.  In (b) and 

(c), the difference between the corresponding multimodel average and CPC observations 

is shown in mm day-1. 
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CMIP3    CMIP5     
CCCMA-CGCM3.1(T47) C1  BCC-CSM1.1 B MIROC5 M3 
CCCMA-CGCM3.1(T63) C2  CanESM2 C MPI-ESM-LR P1 
CNRM-CM 3 D  CNRM-CM5 D MPI-ESM-MR P2 
CSIRO-Mk3.0 S1  CSIRO-Mk3.6.0 S MRI-CGCM3 R 
CSIRO-Mk3.5 S2  FGOALS-s2 F Model Ensemble Mean  A  
GFDL-CM2.0 G1  GFDL-ESM2G G1   
GFDL-CM2.1 G2  GFDL-ESM2M G2   
GISS-AOM E1  HadGEM2-CC H   
GISS-EH E2  INM-CM4 I   
GISS-ER E3  IPSL-CM5A-LR L1   
MPI-ECHAM5 P  IPSL-CM5A-MR L2   
MRI-CGCM2.3.2 R  MIROC-ESM M1   
Model Ensemble Mean  A   MIROC-ESM-CHEM M2   

 
Figure 15.  Scatterplots of the root-mean-square (RMS) error in P99M over North 

America (mm day-1) versus horizontal resolution of CMIP models for (a) annual, (b) 

winter, and (c) summer (see section 2.5 for details).  The abscissa is plotted on a 

logarithmic (base 10) scale due to the wide range in spatial resolution between the 
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models.  Letters identify the individual models, as listed in the tables below the graphs, 

where red letters correspond to CMIP3 and blue letters correspond to CMIP5.  For the 

multimodel average, the RMS error was computed after first computing the multimodel 

average biases at every grid cell.  A least squares linear fit to the RMS error versus 

log10(𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) values for each model ensemble and for both ensembles together is 

plotted, along with the corresponding correlation coefficients (R2).   
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Figure 16.  Composites of pressure at mean sea level (PMSL, hPa, contours) and 500 mb 

geopotential height standardized anomalies (Z500*, dimensionless, color fills) for the 

heaviest 1% of daily annual precipitation events at selected grid cells (indicated by black 

rectangles, which vary from top to bottom).  Sea level pressure is contoured every 2 hPa.  

Composites are shown for (left) NARR, (middle) the CMIP3 model average, and (right) 

the CMIP5 model average.     
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Figure 17.  The local low-level (10-m to 500-mb mean) winds averaged over days when 

precipitation equals or exceeds the annual 99th percentile at every grid cell on the domain 

for (a) NARR, (b) the CMIP3 model average, and (c) the CMIP5 model average.  Vectors 

(normalized to 1) show wind direction while color fills indicate wind speed in m s-1. 
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Figure 18. The average error in predictions of cluster assignments for a sample of left-

out grid cells versus number of clusters, based on applying V-fold cross validation to 

precipitation change histograms using 5 subsamples (see section 3.2.c for details).  The 

analysis was applied to histograms of count differences (RCP8.5-historical) in bins of 

raw precipitation or precipitation normalized by historical P99M for either the CMIP5 

model average separately or the aggregate of all models (including the model average), 

following the legend.  In all cases, the log of the count differences in the histograms was 

taken before applying the V-fold cross validation analysis.  Values on the ordinate axis 

represent the sum of squared differences between the predicted centroid and grid cell 

histogram bin counts, averaged over all grid cells and subsamples left out in the cross 

validation process (in units of squared log10(𝑐𝑜𝑢𝑛𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠)).    
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Figure 19. Mean precipitation for the multimodel average of CMIP5 models analyzed in 

this dissertation (see Table 2).  The mean from the historical simulation over the period 

1979-99 (mm day-1) is shown in (a)-(c).  The absolute difference between the RCP8.5 

simulation period (2079-99) and historical period is shown in (d)-(f), while the 

percentage difference is shown in (h)-(i).  Percentage differences were computed after 

first computing the model-mean historical and RCP8.5 values.  The mean precipitation 

was computed over (left) annual, (middle) December-February (DJF), and (right) June-

August (JJA) days. 
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Figure 20. As in Fig. 19, but for the mean precipitation falling from the heaviest 1% of 

daily events (P99M, as defined in section 2.3). 
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Figure 21. The (c) cluster assignments and (a) ,(b), (d), (e) centroid histograms for the 

application of k-means cluster analysis to difference histograms (RCP8.5-historical) of 

annual daily precipitation for the multimodel average (see section 3.2.b for details).  The 

log of the count differences between the RCP8.5 and historical histograms was taken 

before applying cluster analysis.  The histogram bars show the mean count differences 
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over all grid cells assigned each cluster, the box-and-whiskers show the inter-quartile 

range (25th, 50th, 75th percentile, IQR, box) and 5th to 95th percentile spread (whiskers) of 

count differences among individual grid cells assigned each cluster, and the stars indicate 

the minimum and maximum count differences of all grid cells assigned each cluster.  

Note that some of these statistics are off the scale of the ordinate axis and not plotted.  

Precipitation bin edges are 0, 0.5, 2.5, 5.0, 7.5…125 mm day-1. 
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Figure 22. As in Fig. 21, but using precipitation normalized by the local historical P99M 

when generating histograms.  The bin edges are 0, 0.01, 0.1, 0.2, 0.3…2, infinity. 

  



141 
 

 

 

Figure 23. (left) The squared Euclidean distance (D, squared 

log10(𝑐𝑜𝑢𝑛𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠)) between the histogram at each individual grid cell and its 

corresponding assigned centroid histogram from Fig. 22 (i.e., using precipitation 
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normalized by historical P99M).  (right) The variability (IQR, 5th to 95th percentile, min, 

max) of count differences among grid cells with a distance of less than 10 from their 

assigned cluster.   
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Figure 24. The results of applying cluster analysis to grid cells with a distance of 10 or 

more from their assigned cluster in Fig. 22 (i.e., using precipitation normalized by 

historical P99M).  The quantities plotted are analogous to those in Fig. 22.   
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Figure 25. (a) Locations where annual mean precipitation (P) and heavy precipitation 

(P99M) are both projected to decrease in a warmer climate in the CMIP5 ensemble (gray 

shading). (b) The mean difference histogram (bars) and grid cell variability of count 

differences (box-and-whiskers, stars) computed over the regions shown in (a), using 

normalized precipitation.  Both plots are based on the CMIP5 multimodel mean. 
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Figure 26. The cluster assignments when applying cluster analysis to the aggregate of all 

grid cells from every individual model and the model average (as described in section 
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3.2.b).  Precipitation was binned after first normalizing by historical P99M before 

applying cluster analysis. 
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Figure 27.  The cluster histograms corresponding to the assignments shown in Fig. 26.  

The statistics on the histograms were calculated from all grid cells from every model 

(including the multimodel average) and are analogous to those in Fig. 22. 
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Figure 28. (c) Regions determined from the cluster assignments applied to the 

multimodel mean using precipitation normalized by historical P99M (identical to Fig. 

22c). (a), (b), (d), (e) The linear mean of count differences (for the same bins in Fig. 22) 

over each region for each model, where the intermodel IQR, min, and max are shown. 
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Figure 29. As in Fig. 28, but using the cluster assignments from the analysis in Fig. 24 to 

determine regions. 
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Figure 30. CMIP5 multimodel average difference (RCP8.5-historical) in (a) annual mean 

2-m air temperature (ΔT, K), (b) annual mean sea level pressure (ΔPMSL, hPa), and (c) 

annual root-mean-square (RMS) of high pass filtered relative vorticity of the 850 mb 

wind (ΔRMS(ζ850), %).  The zero contour is plotted as the thick black line in (b) and (c).  

Missing grid cells in (c) are due to topography at 850 mb.  
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Figure 31. The CMIP5 multimodel average change in mean surface (2-m) air 

temperature from the historical (1979-99) to RCP8.5 (2079-99) period (K). The mean 

temperature is computed over (left) all days (∆𝑇𝑎𝑙𝑙), and (right) days when precipitation 

equals or exceeds the local 99th percentile (∆𝑇ℎ).  The metrics are computed for (a)-(b) all 

seasons, (c)-(d) DJF only, or (e)-(f) JJA only.  The corresponding area-weighted global-

mean temperature change is given above each map.  
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Figure 32. (a)-(c) The sensitivity of heavy precipitation to warming (𝑅ℎ, % K-1, see 

section 4.2.b for details, zero contour shown as a thick black line), (d)-(f) the 

thermodynamic sensitivity predicted by 𝑆ℎ (% K-1, see section 4.2.b), (g)-(h) the 

difference between the actual and predicted sensitivity (𝑅ℎ − 𝑆ℎ), and (j)-(l) the RCP8.5-

historical difference in 500 mb pressure velocity averaged over heavy precipitation days 

(≥99th percentile) at each grid cell (∆𝜔500ℎ, Pa s-1).  Note that the color scale in (a)-(f) is 
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centered at 7% K-1 for comparison with Clausius-Clapeyron scaling. The metrics are 

computed for (left) annual, (middle) DJF, and (right) JJA days.  The CMIP5 multimodel 

mean is shown in all panels (see section 4.3 for details).  Missing values are those in 

which the 99th percentile of daily precipitation is zero in at least one model for either the 

historical or RCP8.5 period.   
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Figure 33. Global median sensitivity of precipitation at specific percentiles (% K-1) 

computed from (a) annual, (b) DJF, and (c) JJA days (curves and shading, see section 4.3 

for details).  At each percentile, the model median (black line), interquartile range (IQR, 

25th-75th percentile, dark shading) and full range (light shading) of the sensitivities are 

shown.  For comparison, the intermodel variability (min, 25th percentile, median, 75th 

percentile, max) of the global median grid cell value of 𝑆ℎ and 𝑅ℎ (red and blue box-and-

whiskers, respectively) are plotted to right of the respective plots, using the same y-axis.  

Note that 𝑆ℎ and 𝑅ℎ are computed using all percentiles ≥ 99th (as described in section 

4.2.b).  The black and green dashed lines indicate 0% K-1 and 7% K-1, respectively. 
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Figure 34.  Winter (DJF) composite patterns of various quantities during heavy 

precipitation events at a grid cell in the northeastern United States (black box), for the 

CMIP5 ensemble mean.  (left) Composite patterns for the historical period, (middle) 

RCP8.5 period, and (right) their difference.  Pressure at mean sea level (PMSL, hPa, line 

contours) is shown in every panel, with a contour interval of 2 hPa in the historical and 

RCP8.5 plots and 1 hPa in the difference plots (negative changes are dashed, positive are 

solid).  Color fills show (a)-(c) z-scores of geopotential height at 500 mb (Z500*), (d)-(f) 

wind voriticity at 850 mb (ζ850, 10-6 s-1), and (g)-(i) Q-vector convergence (QVC, 10-19 

m kg-1 s-1); see section 4.2.c for further description of the plotted quantities.  In the 

difference plots, grid cells where at least 12 of 17 individual models have the same sign 



156 
 

 

of change as the model mean and the change is statistically significant (see section 4.4.a) 

in at least 6 of those models, are identified with a dot for PMSL and cross for the 

respective color-filled quantities.  Below each of the difference plots, the spatial 

correlation between the historical and RCP8.5 composites (computed over the plot 

domain) of the respective quantities is given. 
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Figure 35.  As in Fig. 34, but for a grid cell along the west coast of Mexico and showing 

different quantities as color fills in the bottom two rows; (d)-(f) the z-score of 850 mb 

wind vorticity (ζ850*), and (g)-(i) the z-score of pressure at mean sea level (PMSL*).  

Note that the contour interval for PMSL is 1 hPa in the historical and RCP8.5 plots, and 

0.5 hPa in the difference plots.  Also note that grid cells are missing over and near land in 

the plot of ζ850* due to topography. 
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Figure 36.  As in Fig. 35, but for a low-latitude grid cell in the North Atlantic. 
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Figure 37. The nearest closed minimum in the z-score of PMSL (PMSL*) associated 

with the top 1% of annual precipitation events at each grid cell (see section 4.4.b for 

description).  The magnitude of the detected minimum (dimensionless) is shown in the 

left column.  The position of the minimum relative to the grid cell is shown in (b) and (d), 

where vectors (normalized) point in the direction of the minimum and color fills indicate 

the distance of the minimum (km) from the grid cell.  Vectors are plotted at every third 

grid cell for better visibility.  In (e)-(f), the RCP8.5-historical difference of the respective 

quantities is shown, where only changes in distance are shown in (f).  Missing grid cells 
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are those in which a minimum was not detected in a box with east-west radius of 1000 

km or less from the grid cell, in either the historical or RCP8.5 period. 
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Figure 38. As in Fig. 37, but for the nearest closed maximum of ζ850 z-score (ζ850*).  

Prior to finding the maximum, Southern Hemisphere ζ850* values were multiplied by -1.  

Missing values result from a combination of topography at 850 mb and the failure to 

detect a maximum in a box with east-west radius of 1000 km or less from the grid cell. 
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Figure 39. The local Q-vector convergence (QVC, 10-19 m kg-1 s-1) associated with heavy 

precipitation events in the Northern Hemisphere extratropics (30°-90°N) for the (a)-(c) 

historical period and (d)-(f) RCP8.5-historical difference (see section 4.4.b for details).  

In (g)-(i), the RCP8.5-historical difference in local pressure velocity at 500 mb averaged 

over heavy events (𝛥𝜔500ℎ, 10-2 Pa s-1, same quantity as Figs. 32j-i) is shown for 

comparison.  The analysis was performed using (left) all days annually, (middle) DJF 

days, and (right) JJA days.  QVC was not plotted where the 850, 700, or 500 mb level is 
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below ground or near the poles because of the domain boundary.  Missing locations in 

QVC were also removed in 𝛥𝜔500ℎ for easier comparison.  The color bar for 𝛥𝜔500ℎ 

was reversed from Figs. 32j-i so that consistent changes between 𝜔500ℎ and QVC 

appear as the same color (i.e., increasing QVC and decreasing 𝜔500ℎ or vice versa). 
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Figure 40. The local low-level wind (LWND, m s-1) averaged over days with heavy 

precipitation (≥99 th percentile, using all seasons) at each grid cell for the (a) historical 

period, (b) RCP8.5 period, and (c) RCP8.5-historical difference.  The vectors 

(normalized) in the top panels indicate wind direction and the color fills indicate wind 

speed (m s-1).  The vectors are plotted at every third grid cell in the longitude and latitude 

dimensions.  Only differences in wind speed (m s-1) are shown in (c).  
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