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ABSTRACT OF THE DISSERTATION
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by Qingyuan Deng

Dissertation Director: Professor Ricardo Bianchini

Main memory is responsible for a significant fraction of the energy consumed by servers.

Prior work has focused on exploiting memory low-power states to conserve energy. How-

ever, these states require entire ranks of DRAM to be idle, which is difficult to achieve

even in lightly loaded servers. In this work, we propose three techniques for exploiting

active low-power modes to conserve full-system energy, while remaining within user-

prescribed performance bounds. The first technique, called MemScale, creates active

memory system low-power modes by applying dynamic voltage and frequency scaling

to the memory controller and dynamic frequency scaling to the memory channels and

DRAM devices. The second technique, called CoScale, coordinates the CPU and main

memory active low-power modes to avoid instability and increase energy savings. The

third technique, called MultiScale, tackles servers with multiple memory controllers,

by coordinating the active low-power modes across the controllers. Our extensive re-

sults demonstrate that the three techniques reduce full-system energy consumption

significantly, compared to prior approaches, while consistently remaining within the

user-prescribed performance bounds. We conclude that the potential benefits of those

three mechanisms and policies more than compensate for their small hardware cost.
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Chapter 1

Introduction

Over the last 10 years, it has become clear that the massive energy consumption

of datacenters represents a serious burden on their operators and on the environment

[23]. Concern over energy waste has led to numerous academic (e.g., [67, 72, 77]) and

industrial efforts to improve the efficiency of datacenter infrastructure. Although the

datacenters’ power delivery and cooling systems respond for a non-trivial fraction of

this energy, the largest fraction by far (roughly 90% at an aggressive Power Utilization

Efficiency of 1.07) is due to the servers themselves [28, 71].

Within the server, the processor has dominated energy consumption. However, as

processors have become more energy-efficient and more effective at managing their own

power consumption, they are more energy proportional. In contrast, in most servers

main memory consumes the second largest fraction of the total energy consumption,

and it is less energy proportional [8, 51, 57, 86], as multi-core servers are requiring

increasing main memory bandwidth and capacity. Making matters worse, memory

energy management is challenging in the context of servers with modern (DDR*1)

DRAM technologies. Today, main memory accounts for a range between 10% to 40%

of server energy [8, 86]—only lower than the processors’ contribution. In reality, the

fraction attributable to memory accesses may be even higher, since these estimates do

not consider the memory controller’s energy consumption.

The early works on memory energy conservation focused on creating memory idle-

ness through scheduling, batching, layout transformations, and architecture modifica-

tion so that idle low-power states could be exploited [21, 24, 37, 48, 56, 70, 60]. Those

studies generally assumed the rich, chip-level power management permitted in older

1DDR* refers to the family of Double Data Rate memory devices.
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technologies, such as RDRAM [17]. Another category of works have considered reduc-

ing the number of DRAM chips that are accessed at a time (rank subsetting) [3, 90]

and even changing the microarchitecture of the DRAM chips themselves to improve

energy efficiency [16, 84]. A common theme of these works is to reduce the number

of chips or bits actually touched as a result of a memory access, thereby reducing the

dynamic memory energy consumption. More recent works have studied alternative

memory technologies to replace traditional DRAM modules, such as Mobile DRAM

and PCM [34, 59].

We argue that none of these approaches is ideal. Rank subsetting requires changes

to the architecture of the memory DIMMs (Dual In-Line Memory Modules), which

are expensive and increase latency. Changing DRAM chip microarchitecture may have

negative implications on capacity and yield. Using mobile memory technology sacrifices

performance and reliability, while new memory technologies are not yet widely avail-

able. Idle low-power states rely on server idleness. Although in many scenarios servers

are underutilized, they are rarely completely idle [8]. Creating enough idleness is dif-

ficult in modern DDR* memories, since power management is available only at coarse

granularity (entire ranks spanning multiple chips). Thus, deep idle low-power states

can rarely be used without excessively degrading performance. For this reason, today,

even the most aggressive memory controllers use only shallow, fast-exit power-down

states to conserve energy while idle.

Compared to idle low-power states, active low-power modes are more appropriate

for today’s server workload while not requiring full idleness. They can save energy

during low system utilization with much smaller performance cost. For example, Google

reports that the server idle periods in its search workload are no longer than a few

milliseconds [8]. Such short idle periods preclude the use of deep idle low-power states

and limit energy savings [62]. On the other hand, in high CPU utilization scenarios, such

as HPC workloads, peak memory bandwidth is not always needed. Active low-power

modes may still be applied to conserve energy if they do not excessively increase memory

latency. Traditionally, the CPU has exposed active low-power modes via Dynamic

Voltage and Frequency Scaling (DVFS). Under those modes, instructions still execute
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but at a lower rate. Researchers have considered active low-power modes for disks

[14, 33] and network interfaces [31, 69]. In this dissertation, we propose active low-

power modes for the main memory subsystem as well.

1.1 In This Dissertation

In this dissertation, we propose to create active low-power modes for the main memory

subsystem, as well as three techniques for transitioning between those modes. The

techniques seek to conserve full-system energy, while remaining within user-prescribed

performance bounds.

1.1.1 MemScale

The first technique, called MemScale, creates a set of active low-power modes, hardware

mechanisms, and software policies to conserve energy while respecting the applications’

performance requirements. Specifically, MemScale creates and leverages active low-

power modes for the main memory subsystem (formed by the memory devices and the

memory controller). Our approach is based on the key observation that server work-

loads, though often highly sensitive to memory access latency, only rarely demand peak

memory bandwidth. To exploit this observation, we propose to apply DVFS to the

memory controller and Dynamic Frequency Scaling (DFS) to the memory channels and

DRAM devices. By dynamically varying voltages and frequencies, our policies trade

available memory bandwidth to conserve energy when memory activity is low. Although

lowering voltage and frequency causes increases in channel transfer time, controller la-

tency, and queueing time at the controller, other components of the memory access

latency are essentially not affected. As a result, these overheads have only a minor

impact on average latency. Also importantly, MemScale requires only limited hardware

changes—none involving the DIMMs or DRAM chips—since most of the required mech-

anisms are already present in current memory systems. In fact, many servers already

allow one of a small number of memory channel frequencies to be statically selected at

boot time. Our results demonstrate that MemScale can conserve significant full-system
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energy within user-defined maximum acceptable performance degradation.

1.1.2 CoScale

The second technique, called CoScale, further coordinates main memory active low-

power modes with CPU active low-power modes to avoid instability and increase en-

ergy savings. We find that simply supporting separate processor and memory active

low-power modes is insufficient, as independent control policies often conflict, leading

to oscillations, unstable behavior, or sub-optimal power/performance trade-offs. To

accomplish this coordinated control, we rely on execution profiling of core and memory

access performance, using existing and new performance counters. Through counter

readings and analytic models of core and memory performance and power consump-

tion, we assess opportunities for per-core voltage and frequency scaling in a chip mul-

tiprocessor, voltage and frequency scaling of the on-chip memory controller (MC), and

frequency scaling of memory channels and DRAM devices. The fundamental innova-

tion of CoScale is the way it efficiently searches the space of per-core and memory

frequency settings (we set voltages according to the selected frequencies) in software.

Essentially, our epoch-based policy estimates, via our performance counters and online

models, the energy and performance cost/benefit of altering each component’s (or set

of components’) DVFS state by one step, and iterates to greedily select a new frequency

combination for cores and memory. Our results demonstrate that CoScale conserves

significantly more full-system energy than policies that control only the CPU power

modes or only the memory power modes. CoScale also behaves better than policies

that independently control both resources.

1.1.3 MultiScale

The third technique, called MultiScale, tackles servers with multiple MCs, by coor-

dinating the active low-power modes across the controllers. Recent hardware trends

suggest that traffic skew across MCs will grow. For example, as servers increasingly

rely on multi-socket configurations, inter-socket MC bandwidth requirements will vary

significantly [86]. In addition, the advent of heterogeneous processors incorporating
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sophisticated superscalar out-of-order cores with simpler in-order cores (e.g., ARM’s

big.LITTLE architecture [30]), and graphics processing units (e.g., AMD’s Fusion and

Intel’s Sandybridge architectures [79]), will fundamentally increase traffic skew across

MCs. Therefore, it is critical to explore techniques for managing active low-power

modes in the presence of multiple MCs. MultiScale monitors per-application traffic

across MCs and estimates their varying bandwidth and latency requirements. It then

uses a heuristic algorithm to quickly select and apply an optimized per-MC frequency

combination. Our results show that MultiScale is particularly effective in scenarios

where traffic is skewed across MCs and when the allowable performance degradation is

low.

1.2 Contributions

In summary, our contributions in this dissertation are:

• We propose MemScale, a technique that creates active low-power modes for the

main memory system by applying DFS / DVFS to memory channels, DIMMs,

and memory controllers;

• We evaluate MemScale for a large set of multiprogrammed workloads. Our evalu-

ation compares MemScale to the state-of-the-art in memory energy management;

• We propose CoScale, a coordinated approach for CPU and memory DVFS. CoScale

embodies an efficient algorithm for searching the space of per-core and memory

frequency settings;

• We also evaluate CoScale for a large set of multiprogrammed workloads. We

compare it to DVFS policies that only control a single resource, and policies that

independently control both resources;

• We propose MultiScale, an approach to coordinate active low-power modes among

multiple memory controllers;

• We evaluate MultiScale for a large set of multiprogrammed workloads with a wide

range of memory traffic patterns;
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• Among MemScale, CoScale, and MultiScale, we propose multiple new hardware

performance counters to enable better workload profiling and modeling.

1.3 Dissertation Structure

The remainder of this dissertation is organized as follows. Chapter 2 provides an

overview of existing server power management techniques, the main memory system,

and the impact of active low-power modes on energy and performance. In Chapter 3,

we detail the design and evaluation of MemScale. In Chapter 4, we present the details

and evaluation of CoScale. Chapter 5 discusses the design and evaluation of MultiScale.

In Chapter 6, we discuss the related work. Chapter 7 concludes the dissertation and

discusses the future work.
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Chapter 2

Background

In this chapter, we provide a brief overview of server power states, modern memory

subsystems, and the impact of DFS / DVFS on memory systems’ performance and

power consumption.

2.1 Server Power Management

Modern servers already support many idle and active low-power states both at the

component and server levels. The Advanced Configuration and Power Interface (ACPI)

specification [2] defines the open standards for server power management. It provides

platform-independent interfaces in the hardware and firmware to enable the Operating

System (OS) to control the transitions among states.

Global power states. As shown in Figure 2.1, according to ACPI, there are four

global states: G0 to G3. G0 (also known as S0) is the working state. In G0, the server

is running and the processor is powered on—it can be either in active low-power modes

or any of the standby C states (discussed later in this section); other server components

are fully running as well in this state.

G1 state is the sleeping state. It can be further divided into four states: S1 to S4. In

S1 all the processor caches are flushed, and the processor stops executing instructions.

Both the processor and main memory are still powered on. S2 and S3 are called

“standby” states. They are similar in that, in these states, the processor is powered

off while all the contexts and dirty cache bits are saved in the memory system, which

is still powered on. S4 is the “hibernate” state, where both the processor and memory

are powered off. In this state, the processor contexts and memory contents are stored

on the disk. Although the disk is powered off, the data is retained because of the disk’s
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Figure 2.1: ACPI global and processor low-power states.

non-volatile nature. All the data will be restored to the main memory and processor

upon the system’s return to G0 (S0).

G2 (also noted as S5) is the soft power-off state. In this state, the server is totally

powered off except the bare minimum power provided to the motherboard interface by

the power supply unit (PSU), so that the server can wake up over the LAN or from

other devices. No previous contents are retained in this state so a full system reboot is

required.

The last one is the G3 state, the mechanical power-off state. In this state the server is

completely shut down—no outside power sources are connected, only the motherboard’s

own battery may still be attached.

Processor idle/active power states. While G states are the server-level power

states, there are component-level power states too. In the G0 (S0) state, the processor

has several idle power states (named C states), and active performance states (P states

and T states). C0 is the processor’s working state. In this state, the processor usually
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has multiple P states which expose different performance. There are many implemen-

tations of P states. Examples include Intel’s SpeedStep [40] and AMD’s Cool’n’Quiet

[5]. The P states usually leverage processor DVFS or DFS, on one or multiple processor

cores and the cache system. According to the ACPI standard, P0 consumes the max-

imum power and provides the best performance; P1’s performance is less than P0 but

consumes less power; so on and so forth. Transitions among different P states usually

take several tens of microseconds [40], depending on the voltage transition gap—voltage

can only be scaled up/down gradually.

The ACPI specification also defines T states for the processor, known as the throt-

tling states. T states apply clock gating on the processor and were originally used for

thermal management. The higher the temperature, the higher the T states, the larger

fraction of time the processor’s clock is gated. T states have been deprecated in the

modern processors.

C1 is the processor’s halt state, in which it stops executing instructions. There is also

an enhanced C1 state, named C1E, in which the processor’s frequencies and voltages

are also scaled down to their lowest levels. Therefore, in the C1E state, the processor’s

power consumption is further reduced. In the C1/C1E state, the processor’s cache

content is still retained. The processor can return to the C0 state from the C1/C1E

state essentially instantaneously (may need some time to ramp up the frequency and

voltage from the C1E state).

In the C2 and C3 states, the processor’s clocks are shut off; in the C2 state the

cache content is retained while in the C3 state, each core flushes their private cache

content into the shared L3 cache. Because the clocks are shut off, and the private cache

content is flushed, it takes much longer time to return to C0 from C2 and C3.

Some processors have even deeper C states. For example, Intel implements the C6

and C7 states in server processors [40]. In the C6 state, the processor execution cores

enter the C3 state, save their architectural contexts before removing the core voltage.

While in the C7 state, if all execution cores enter the C6 state, the shared L3 cache

will be flushed, and the voltage of the L3 cache will also be removed. The deeper the C

states, the lower the processor power consumption, and the longer it will take to restore
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the processor back to the C0 state.

Device low-power states. ACPI defines low-power states for devices as well—D

states: D0 to D3. Similar to G0, D0 is the full operating state which provides the best

performance and consumes the highest power. D1 and D2 are intermediate low-power

states. D3 is the power off state.

Power and performance implications of ACPI states. Obviously, in active

low-power states, servers consume more power than in idle low-power states. The G0

state has the highest power consumption while the G2/G3 state essentially does not

consume any power. The power consumption of the G1 state is in between. Among

all the sleeping states, the S4 state consumes the least power—almost the same power

as G2, except that it can restore to G0 much faster (depending on how much memory

content needs to be restored). It usually takes tens of seconds to load the processor

contexts and memory content back from the disk. A full system reboot can take a

couple of minutes to transition the state from G2/G3 back to G0. The restoring time

from S3 is usually around a couple of seconds—an order of magnitude faster than the

restoring time of S4. A server in the S3 state usually consumes less than 10 watts [61].

However, all the above idle low-power states do not quite match today’s server work-

loads, which rarely expose idle periods longer than several milliseconds [8]. The active

low-power states are more appropriate. Modern servers can transition between differ-

ent P states within tens of microseconds. At different P states the processor is running

at different frequencies. The impact of P states on the server’s overall performance

depends on the characteristics of the workload. Compute-intensive workloads are more

sensitive to the processors’ frequencies than memory- or I/O-intensive workloads. Fi-

nally, in different P states, the processors’ power consumption scales more than linearly

with frequency, because of voltage scaling. However, P states only affect the power

consumption of the CPU, while the power consumption from other components in the

server is not impacted directly.
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Figure 2.2: Organization of a modern memory subsystem. Memory accesses
are performed by the CPU’s MC. The MC requests data from the memory bus, which
is divided into multiple channels. These channels each interface with DIMMs – each
containing multiple DRAM chips. DRAM chips contain multiple banks, which consists
of multiple DRAM arrays. Arrays are ensembles of DRAM cells, the basic capacitive
units of storage. The parameters that our control mechanisms impact are highlighted.
The parameters VMC and fMC control the MC voltage and frequency respectively.
fBus and fDIMM are the memory bus frequency and DIMM frequency, respectively;
the DIMMs’ PLL allows interfacing of these components at different frequencies (i.e.,
fBus = fDIMM ).

2.2 Memory System Technology

Next, we discuss memory organization, timing, and power consumption. Although

there have been numerous memory architectures, DRAM technologies and variations,

we restrict ourselves to today’s pervasive JEDEC-style DDR* SDRAM (Synchronous

DRAM) memory subsystems [44]. A more detailed and complete treatment of memory

subsystems can be found in [43].

DRAM organization. Figure 2.2 illustrates the multiple levels of organization

of the memory subsystem. To service memory accesses, the MC sends commands to

the DIMMs on behalf of the CPU’s last-level cache across a memory bus. As shown,

recent processors have integrated the MC into the same package as the CPU. To enable

greater parallelism, the width of the memory bus is split into multiple channels. These

channels act independently and can access disjoint regions of the physical address space

in parallel.

Multiple DIMMs may be connected to the same channel. Each DIMM comprises a

printed circuit board with register devices (for buffering address and control signals),
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a Phase Lock Loop device (for maintaining frequency and phase synchronization), and

multiple DRAM chips (for data storage). The DRAM chips are the ultimate destination

of the MC commands. The subset of DRAM chips that participate in each access is

called a rank. The number of chips in a rank depends on how many bits each chip

produces/consumes at a time. For example, the size of the rank is 8 DRAM chips (or 9

chips for DIMMs with ECC) when each chip is x8 (pronounced “by 8”), since memory

channels are 64 bits wide (or 72 bits wide with ECC). Each DIMM can have up to 16

chips (or 18 chips with ECC), organized into 1-4 ranks.

Each DRAM chip contains multiple banks (typically 8 banks nowadays), each of

which contains multiple two-dimensional memory arrays. The basic unit of storage

in an array is a simple capacitor representing a bit—the DRAM cell. Thus, in a x8

DRAM chip, each bank has 8 arrays, each of which produces/consumes one bit at a

time. However, each time an array is accessed, an entire multi-KB row is transferred

to a row buffer. This operation is called an “activation” or a “row opening”. Then,

any column of the row can be read/written over the channel in one burst. Because the

activation is destructive, the corresponding row eventually needs to be “pre-charged”,

that is, written back to the array. Under a closed-page management scheme, the MC

pre-charges a row after every column access, unless there is another pending access

for the same row. Prior studies suggest that closed-page management typically works

better than open-page management for multi-core systems [82]. The DIMM-level Phase-

Lock Loop (PLL) and chip-level Delay-Lock Loop (DLL) devices are responsible for

synchronizing signal frequency and phase across components.

DRAM timing. For the MC to access memory, it needs to issue a number of

commands to the DRAM chips. These commands must be properly ordered and obey

a number of timing restrictions. For example, a row activation first requires a pre-

charge of the data in the row buffer, if the row is currently open. If the row is closed,

the activation can proceed without any delay. An example timing restriction is the

amount of time between two consecutive column accesses to an open row.

In DRAM lingo, a pre-charge, an activation, and a column access are said to take

TRP , TRCD, and TCL times, respectively. The latest DDR3 devices perform each of these
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operations in around 10 memory cycles at 800MHz. At this frequency, transferring a

64-byte cache line over the channel takes 4 cycles (TBURST ), since data is transferred

on both edges of the clock in DDR technology.

MC and DRAM power. Because a significant fraction of a server’s power budget

is dedicated to the memory subsystem [8, 51, 57, 86], it is important to understand

where power is consumed in this subsystem. We categorize the power breakdown into

three major categories: DRAM, register/PLL, and MC power. The DRAM power can

be further divided into background, activation/pre-charge, read/write, and termination

powers. The background power is independent of activity and is due to the peripheral

circuitry, transistor leakage, and refresh operations. The activation/pre-charge power

is due to these operations on the memory arrays. The read/write power is due to these

column accesses to row buffers. The termination power is due to terminating signals of

other ranks on the same channel. The three latter classes of DRAM power are often

referred to as “dynamic DRAM power”, but they also include a level of background

power.

Figure 2.3 quantifies the average power breakdown for three categories of workloads:

memory-intensive (MEM), compute-intensive (ILP), and balanced (MID). The results

are normalized to the average power of the MEM workloads. (We explain the details

of our workloads and simulation methodology in Chapter 3.)
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We make four main observations from this figure: (1) background power is a sig-

nificant contributor to power consumption, especially for the ILP and MID workloads

(upcoming feature size reductions will make the background power an even larger frac-

tion of the total); (2) activation/pre-charge and read/write powers are significant only

for MEM workloads; (3) despite the fact that register/PLL power is often disregarded

by researchers, this category of power consumption also contributes significantly to the

total; and (4) despite the fact that the MC has not been included in previous studies of

memory subsystem energy, it contributes a significant amount to overall consumption.

2.3 Impact of Memory Voltage and Frequency Scaling

Figure 2.3 suggests that any mechanism that can lower the background, register/PLL,

and MC powers without increasing other power consumptions or degrading performance

excessively could be used to conserve significant energy. As it turns out, modern servers

already embody one such mechanism. Specifically, in these servers, the voltage and fre-

quency of MCs and the frequency of memory buses, DIMMs, and DRAM chips are

configurable (in tandem, since incompatible frequencies would require additional syn-

chronization devices). Unfortunately, these parameters must currently be set statically

at boot time, typically through the BIOS.

To exploit this mechanism for energy conservation, one has to understand the effect

of lowering frequency on both power and performance. Lowering frequency affects

performance by making data bursts longer and the MC slower, both by linear amounts.

(The wall-clock performance of other operations is unaffected, despite the fact that

their numbers of cycles increase linearly with decreases in frequency.) Because of these

delays, queues at the MC may become longer, increasing memory access times further.

Nevertheless, note that these latency increases in certain stages of the memory access

process do not translate into linear increases in overall memory access time. In fact,

our detailed simulations show only minor increases in average memory access time.

Where possible, the greatest energy savings comes from reducing the supply voltage

of a circuit. Modern memory controllers are integrated into the same package as the
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processor using CMOS technology [40]. Accordingly, reducing both the voltage VMC

and frequency fMC of the memory controller is possible in modern procesors. Mem-

ory controller voltage/frequency scaling provides similar dynamic power reduction as

processor DVFS (P ∝ V 2f). Currently, the largest implementation challenge in provid-

ing independent DVFS for the memory controller lies in providing independent voltage

control (e.g., from the L3 cache in the Haswell architecture [40]).

It is important to highlight that changing fDIMM , the operating frequency of a

DIMM, does not alter the operation of the internal DRAM array. Rather, the reduction

in DIMM power with respect to frequency comes from the interface circuitry that

connects the internal DRAM array with the bus, and accounts for a substantial fraction

of power in high-performance DIMMs. By changing the operating frequency, the power

consumption of phase-locked loops (PLLs), delay-locket loops (DLLs) and registers is

reduced. Each DRAM chip has a DLL and multiple registers and latches. Since the

majority of the critical-path latency in a memory access is due to the DRAM array,

significant power savings are achieved while incurring only a small overhead on the

overall DRAM access latency.

In summary, lowering frequency affects the main memory power consumption in

many ways. First, it lowers background and register/PLL powers linearly. Second,

it lowers MC power approximately by a cubic factor due to voltage and frequency

scaling in the same time, similar to CPU cores. Third, lowering frequency increases

read/write and termination energy almost linearly (power is not affected but accesses

take longer). Finally, if lowering frequency causes a degradation in application perfor-

mance, the energy consumed by the server’s non-memory-subsystem components will

increase accordingly.

2.4 Conclusion

In this chapter, we provided an overview of the existing server power states, the main

memory system, and the impact of active low-power modes on memory’s energy and
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performance. To summarize, modern servers already expose many idle and active low-

power states. The idle low-power states do not match today’s server workloads very

well due to their lack of enough idleness. The P states provide an option of active

low-power states, but they only affect the energy consumption of the processor. On the

other hand, the active low-power modes of the memory subsystem have more potential

for saving memory system energy, while not hurting performance significantly. This is

because the memory system frequencies have more impact on the memory bandwidth

than latency.
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Chapter 3

MemScale

3.1 Introduction

In this chapter, we propose MemScale, a set of low-power modes, hardware mechanisms,

and software policies to conserve energy while respecting the applications’ performance

requirements. Specifically, MemScale creates and leverages active low-power modes for

the main memory subsystem (formed by the memory devices and the memory con-

troller). Our approach is based on the key observation that server workloads, though

often highly sensitive to memory access latency, only rarely demand peak memory

bandwidth. To exploit this observation, we propose to apply DVFS to the memory

controller and DFS to the memory channels and DRAM devices. By dynamically vary-

ing voltages and frequencies, these mechanisms trade available memory bandwidth to

conserve energy when memory activity is low. Although lowering voltage and frequency

causes increases in channel transfer time, controller latency, and queueing time at the

controller, other components of the memory access latency are essentially not affected.

As a result, these overheads have only a minor impact on average latency. Also impor-

tantly, MemScale requires only limited hardware changes—none involving the DIMMs

or DRAM chips—since most of the required mechanisms are already present in current

memory systems. In fact, many servers already allow one of a small number of memory

channel frequencies to be statically selected at boot time.

To leverage the new memory DVFS/DFS modes, we further propose a management

policy for the operating system to select a mode using online profiling and memory

power/performance models that we have devised. The models incorporate the current

need for memory bandwidth, the potential energy savings, and the performance degra-

dation that applications would be willing to withstand. We assume that the degradation
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limit is defined by users on a per-application basis.

MemScale’s low-power modes and performance-aware energy management policy

have several advantages. Because the modes are active, there is no need to create or rely

on memory idleness. Not relying on idleness improves memory energy-proportionality

[9]. In fact, even when the memory is idle, scaling can lower power consumption further.

Because MemScale does not require changes to DIMMs or DRAM chips and largely ex-

ploits existing hardware mechanisms, it can be implemented in practice at low cost.

Because MemScale’s energy-management policy is driven by the operating system (at

the end of each time quantum), the memory controller can remain simple and efficient.

Finally, MemScale can be combined easily with rank subsetting, since each addresses

complementary aspects of energy management (memory controller energy and back-

ground energy vs. dynamic energy, respectively).

We evaluate MemScale using detailed simulations of a large set of workloads. Our

base results demonstrate that we can reduce memory energy consumption between

17% and 71%, for a maximum acceptable performance degradation of 10%. In terms of

system-wide energy savings, our approach produces energy savings ranging from 6% to

31%. For comparison, a system that uses aggressive transitions to fast-exit powerdown

for energy management conserves only between 0.3% and 7.4% system energy. In con-

trast, Decoupled DIMMs [91], the closest prior work, conserves between -0.8% and 11%

system energy. MemScale can save almost a factor of 3x more system energy on average

than Decoupled DIMMs, without exceeding the allowed performance degradation.

We also perform an extensive sensitivity analysis to assess the impact of key as-

pects of our memory system design and management policy: the number of memory

channels, the contribution of the memory subsystem to overall power consumption, the

power proportionality of the memory controller and DIMMs, the maximum acceptable

performance degradation, and the length of MemScale epochs and profiling phases.

This analysis demonstrates that the fraction of memory power and the power pro-

portionality have the largest impact on our results. MemScale’s energy savings grow

with a decrease in power proportionality or an increase in the memory subsystem’s

contribution to overall power, while still maintaining performance within the allowed
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degradation bound.

Based on our experience and results, we conclude that the potential benefits of

MemScale are significant and more than compensate for its small hardware and software

costs.

Summary of contributions. We propose dynamic memory frequency scaling, or

“MemScale”, a new approach to enable memory active low-power modes. We further

examine varying memory controller voltage and frequency in response to memory de-

mand, an opportunity that has been overlooked by previous energy management studies.

This chapter describes the few additional hardware mechanisms that are required by

dynamic scaling, as well as an operating system policy that leverages the mechanisms.

Finally, we present extensive results demonstrating that we can conserve significant

energy while limiting performance degradation based on a user-selected performance

target.

The remainder of the chapter is organized as follows. Section 3.2 introduces the

MemScale hardware mechanisms and energy management policy. Section 3.3 describes

our methodology and results. Finally, Section 3.4 draws our conclusions.

3.2 MemScale Design

In this section, we describe the MemScale design and the OS-level control algorithm

to use it. First, we describe our proposed mechanisms to allow dynamic control of the

memory subsystem leveraging underlying hardware capabilities. Next, we provide an

overview of the control policy used to maximize the energy-efficiency of the system,

while adhering to a performance goal. We then detail performance and energy models

used by our control policy. Finally, we address the MemScale implementation costs.

3.2.1 Hardware and Software Mechanisms

Our system utilizes two key mechanisms: (1) our dynamic frequency scaling method,

MemScale; and (2) performance counter-based monitoring to drive our control algo-

rithm.
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MemScale. The key enhancement we add to modern memory systems is the abil-

ity to adjust MC, bus, and DIMM frequencies during operation. Furthermore, we

propose to adjust the supply voltage of the MC (independently of core/cache voltage)

in proportion to frequency.

Though commercially-available DIMMs support multiple frequencies already, today,

switching frequency typically requires system reboot. The JEDEC standard provides

mechanisms for changing frequency [44]; the operating frequency of a DIMM may be

reset while in the precharge powerdown or self-refresh state. Accordingly, we propose a

mechanism wherein the system briefly suspends memory operation and can reconfigure

itself to run at a new power-performance setting. For DIMMs, we leverage precharge

powerdown for frequency re-calibration because the latency overhead is significantly less

than self-refresh. The majority of re-calibration latency is due to DLL synchronization

time, tDLLK [64], which consumes approximately 500 memory cycles. Although our

system adjusts the frequency of the MC, bus and DIMM together, from now on we

shall simply refer to adjusting the bus frequency. The DIMM clocks lock to the bus

frequency (or a multiple thereof), while the MC frequency is fixed at double the bus

frequency.

Performance counter monitoring. Our management policies require input from

a set of performance counters implemented in the on-chip MC. Specifically, we require

counters that track the amount of work pending at each memory bank and channel (i.e.,

queue depths). Counters similar to those we require already exist in most modern ar-

chitectures, and are often already accessible through the CPU’s performance-monitoring

interface. Under our scheme, the operating system reads the counters, like any other

performance register, during each control epoch. We use the following counters:

• Instruction counts – For each core, we need a counter for the Total Instructions

Committed (TIC), and Total LLC (Last-Level Cache) Misses (TLM). These coun-

ters increment each time any instruction is retired and any instruction causes an

LLC miss, respectively. Our control algorithm uses these counters to determine

the fraction of CPI attributable to memory operations.
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• Transactions-outstanding accumulators – To estimate the impact of queue-

ing delays, our performance model requires counters that track the number of

requests outstanding at banks and channels. The Bank Transactions Outstand-

ing (BTO) and Channel Transactions Outstanding (CTO) accumulators are incre-

mented by the number of already-outstanding requests to the same bank when

a new request arrives for a bank/channel. We also require a Bank Transaction

Counter (BTC) and Channel Transactions Counter (CTC) that increment by one

for each arriving request. The ratio of BTO/BTC (or CTO/CTC) gives the

average number of requests an arriving request sees ahead of it queued for the

same bank/channel. Note that only a single set of counters is needed regardless

of the number of banks/channels, as only the average (rather than per-bank or

per-channel) counts are used in our performance model.

• Row buffer performance – To estimate the average DRAM device access la-

tency, our model requires a Row Buffer Hit Counter (RBHC), which tracks accesses

that hit on an open row; an Open Row Buffer Miss Counter (OBMC), which counts

the number of accesses that miss an open row and require the row to be closed; a

Closed Row Buffer Miss Counter (CBMC), which counts accesses that occur when

the corresponding bank is closed (since we use a closed-page access policy, this

case is the most common for our multiprogrammed workloads; a row buffer hit

occurs only when the next access to a row is already scheduled while the previous

access is performed); and an Exit PowerDown Counter (EPDC), which counts the

number of exits from powerdown state. As noted above, only a single set of these

counters is needed, since average counts are enough to compute accurate DRAM

access latencies.

• Power modeling – To instantiate our memory power model [65], we need a

Precharge Time Counter (PTC) to count the percentage of time that all banks of

a rank are precharged; a Precharge Time With CKE Low (PTCKEL) to count the

percentage of time that all banks are precharged (PTC) when the clock enable

signal is low; an Active Time With CKE Low (ATCKEL) to count the percentage
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of time that some bank is active (1 - PTC) when the clock enable signal is low;

and a Page Open/Close Counter (POCC) to count the number of page open/close

command pairs. The other information required by the power model can be

derived from the other counters. Again, only a single set of these counters is

needed to model power accurately [65].

Of these counters, only BTO, CTO, PTC, PTCKEL, and ATCKEL are not currently

available (or not easily derived from other counters) in the latest Intel processors [40].

In fact, although some of these counters track events in off-chip structures, the counters

themselves are already implemented in the MC hardware. Finally, note that counters

EPDC, PTCKEL, and ATCKEL are only needed when we combine MemScale with a

policy that transitions devices to powerdown. We consider such a combined policy in

Section 3.3.

3.2.2 Energy Management Policy

Given these mechanisms, we now describe the energy management policy that controls

frequency changes.

Performance slack. Our control algorithm is based upon the notion of program

slack : the difference between a baseline execution and a target latency penalty that a

system operator is willing to incur on a program to save energy (similar to [18, 56]).

Without energy management, a given program would execute at a certain base rate. By

reducing the memory subsystem performance, the overall rate of progress is reduced. To

constrain the impact of this performance loss, we allow no more than a fixed maximum

performance degradation. Our control algorithm uses this allowance to save energy.

The target is defined such that each executing program incurs no more than a pre-

selected maximum slowdown relative to its execution without energy management (i.e.,

at maximum frequency). Given this target, the slack is then the difference in time of

the program’s execution (TActual) from the target (TTarget).

Slack = TTarget − TActual

= TMaxFreq · (1 + γ)− TActual

(3.1)
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The quantity γ defines the target maximal execution time increase.

Operation. Our control algorithm is based upon fixed sized-epochs. We typically

associate an epoch with an OS-level time quantum. During each epoch, we profile the

system and select a memory subsystem frequency that (1) minimizes overall system

energy, while (2) maintaining performance within the target given the accumulated

slack from prior epochs. Each epoch proceeds in four stages:

1. Profile applications online – At the beginning of each epoch, the system is

profiled by collecting statistics using the performance counters described above.

By default, we profile for 300 µs, which we have found to be sufficient to predict

the memory subsystem resource requirements for the remainder of the epoch. Our

default epoch length is 5 ms.

2. Control algorithm invocation – After the profiling phase (i.e., collecting per-

formance counters), the operating system uses the profiling information to calcu-

late a new memory frequency based on the models described in the next subsec-

tion.

3. Bus frequency re-locking – We transition the memory subsystem to its new

operating frequency. To accomplish this adjustment, memory accesses are tem-

porarily halted and PLLs and DLLs are resynchronized. Since the resynchroniza-

tion overhead (< 1 µs) is so small compared to our epoch size (> 1 ms), the

penalty is negligible.

4. Slack update – The epoch executes to completion at the new memory speed.

At the end of the epoch, we again query the performance counters and estimate

what performance would have been achieved had the memory subsystem operated

at maximum frequency, and compare this to the achieved performance. The

difference between these is used to update the accumulated slack and carried

forward to calculate the target performance in the next epoch.
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Note that our policy queries the performance counters both at the end of each

epoch and at the end of each profiling phase. Although we could rely solely on end-of-

epoch accounting, we opt to profile for two main reasons. First, an epoch is relatively

long compared to the length of some applications’ execution phases; a short profiling

phase often provides a more current picture of the applications’ behaviors. Second,

because it may not be possible to monitor all the needed counters at the same time, the

profiling phase can be used to measure just the power-related counters (while only the

performance-related counters would be measured the rest of the time). In this chapter,

we assume that all counters are monitored at the same time.

Frequency selection. We select a memory frequency to achieve two objectives.

First, we wish to select a frequency that maximizes full-system energy savings. The

energy-minimal frequency is not necessarily the lowest frequency—as the system con-

tinues to consume energy when the memory subsystem is slowed, lowering frequency

can result in a net energy loss if the program slowdown is too high. Our models ex-

plicitly account for the system-vs.-memory energy balance. Second, we seek to observe

the bound on allowable CPI degradation for each running program. Because multiple

programs execute within a single system, the selected frequency must satisfy the needs

of the program with the greatest memory performance requirements.

MemScale example. We illustrate the operation of MemScale in Figure 3.1.

Each epoch begins with a profiling phase, shown in gray. Using the profiling output, the

system estimates the performance at the highest memory frequency (“Max Frequency”),

and then sets a target performance (“Target”) via Equation 3.1 above. Based on the

target, a memory speed is selected and the system transitions to the new speed. In

Epoch 1, the example shows that the actual execution (“Actual”) is faster than the

target. Hence, the additional slack is carried forward into Epoch 2, slightly widening

the gap between Max Frequency and Target, allowing the memory speed to be lowered.

However, at the end of Epoch 2, performance falls short of the target, and the negative

slack must be made up in Epoch 3 (or later epochs, if necessary) by raising memory

frequency. By adjusting slack from epoch to epoch, MemScale tries to ensure that the

desired performance target (given by γ) is met over time.
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Time

Core 1

Core 2

Memory Speed

Epoch 2 Epoch 3 Epoch 4 Epoch 5Epoch 1

Actual

Max Frequency
Target

Ttr

Ttr Ttr
Ttr

Slack Negative Slack Slack

Slack Negative Slack Slack

Profiling

Figure 3.1: Memscale operation: In this example, we illustrate the operation of
MemScale for two cores. The best-case execution time is calculated at each epoch
(“Max Frequency”). The target time is a fixed percent slower than this best case.
Slack is the time difference between the target and current execution; it is accumulated
across epochs. Note that since the frequency transition time, Ttr, is so small compared
to the epoch, the performance penalty is insignificant.

3.2.3 Performance and Energy Models

Now, we describe the performance and energy models that the control algorithm uses

to make smart decisions about frequency.

Performance model. Our control algorithm relies on a performance model to

predict the relationship between CPU cycles per instruction (CPI) of an application

and the memory frequency. The purpose of our model is to determine the runtime

and power/energy implications of changing memory performance. Given this model,

the OS can set the frequency to both maximize energy-efficiency and stay within the

predefined limit for CPI loss.

We model an in-order processor with one outstanding LLC miss per core. We do

so for three reasons: (1) these processors translate any increases in memory access

time due to frequency scaling directly to execution time; (2) we expect server cores to

become simpler as the number of cores per CPU increases; and (3) the modeling of

these processors is simpler than their more sophisticated counterparts, making it easier

to demonstrate our ideas. We approximate the effect of greater memory traffic (e.g.,

resulting from prefetching or out-of-order execution) by varying the number of memory

channels and cores in Section 3.3.2.
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For our processors, the runtime of a program can be defined as:

ttotal =tCPU + tMem

=ICPU · E[TPICPU] + IMem · E[TPIMem]

(3.2)

Here, ICPU represents the number of instructions and Imem is the number of instruc-

tions that cause an LLC miss to main memory. TPICPU represents the average time

that instructions spend on the CPU, whereas TPIMem represents the average time that

a LLC-missing instruction spends in main memory.

Since runtime is not known a priori, our system models the rate of progress of an

application in terms of CPI. The average CPI of a program is defined as:

E[CPI] = (E[TPICPU] + α · E[TPIMem]) · FCPU (3.3)

Where α is the fraction of instructions that miss the LLC and FCPU is the operating

frequency of the processor. The value of α can easily be calculated as the ratio of TLM

and TIC.

While the expected time per CPU operation is insensitive to changes in memory

speed (for simplicity, we assume it is fixed), the CPI of LLC-missing instructions varies

with memory subsystem frequency. To model the time per cache miss, we decompose

the expected time as:

E[TPIMem] = E[TBank] + E[TBus]

E[TBank] = E[SBank] + E[WBank]

E[TBus] = E[SBus] + E[WBus]

(3.4)

Here, E[SBank] is the average time, excluding queueing delays, to access a particular

bank (including precharge, row access and column read, etc). E[Sbus] is the average

data transfer (burst) time across the bus. Finally, the average waiting time to service

previous request (i.e., queueing delays due to contention for the bank and bus) are

represented by E[WBank] and E[WBus].
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SBank can be further broken down as:

E[SBank] = E[TMC] + E[TDevice] (3.5)

TMC varies as a function of MC frequency. In our MC design, each request requires

five MC clock cycles to process (in the absence of queueing delays). TDevice is a function

of DRAM device parameters and applications’ row buffer hit/miss rates and does not

vary significantly with frequency, as we do not alter the operation or timing of the

DRAM chips’ internal DRAM arrays. During the profiling phase, we estimate E[TDevice]

for the epoch using row buffer performance counters via:

Row hit time = Thit = TCL · RHBC

Closed-bank miss time = Tcb = [TRCD + TCL] · CBMC

Open-bank miss time = Tob = [TRP + TRCD + TCL] · OBMC

Powerdown exit time = Tpd = TXP · EPDC

E[TDevice] =
Thit + Tcb + Tob + Tpd

RHBC + CBMC + OBMC

(3.6)

TCL, TRP, TRCD, and TXP are characteristics of a particular memory device and are

obtained from datasheets. To simplify the above equations, we have subsumed some

aspects of DRAM access timing that have smaller impacts.

Whereas modeling SBank and SBus is straight-forward given manufacturer data

sheets, modeling the wait times due to contention E[WBank] and E[WBus] is more chal-

lenging. Ideally, we would like to model the memory system as a queuing network

to determine these quantities. Figure 3.2 shows the queuing model corresponding to

our system. Queueing delays arise due to contention for a bank and the memory bus.

(Delayed requests wait at the MC; there are typically no queues in the DRAM devices

themselves). The in-order CPUs act as users in a closed queuing network (each issuing

a single memory access at a time). Memory requests are serviced by the various banks,

each represented by a queue. The bus is modeled as a server with no queue depth;

when a request completes service at a bank, it must wait at the bank (blocking further
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Core N
...

Bank 1

Bank 2

Bank 3

Bank 4

Bus -
Channel 1

Blocked by Request
at Bus - Channel 1 

Figure 3.2: Memory subsystem queuing model: Banks and channels are rep-
resented as servers. The cores issue requests to bank servers, which proceed to the
channel server upon completion. Because of DRAM operation, requests are held at the
bank server until a request frees from the channel server (the channel server has a queue
depth of 0). In our example, the request that finishes at bank 1 cannot proceed to the
bus until the request already there leaves. This example shows only a single channel.

requests) until it is accepted by the bus. This blocking behavior models the activate-

access-precharge command sequence used to access a DRAM bank—the bank remains

blocked until the sequence is complete.

Unfortunately, this queueing network is particularly difficult to analyze. Specifically,

because the system exhibits transfer blocking behavior [4, 7] (disallowing progress at

the bank due to contention at the bus), product form solutions of networks of this size

are infeasible. Most approaches to this problem rely on approximations that have errors

as high as 25% [4, 7]. Instead of using a typical queuing model, we now describe how a

simple counter-based model can yield accurate predictions. We find that the accuracy

afforded by the counters justify their implementation cost.

Our approach is to define counters that track the number of preceding requests

that each arriving request finds waiting ahead of it for a bank/bus. We then take the

expectation of this count over all arrivals to obtain an expression for the expected wait

time for each request. We implement the necessary counters directly in hardware as

described in Section 3.2.1.

We first illustrate our derivation for bus time. For a single request k, the bus time can
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be expressed as E[SBus] ·
∑k

l=1 BusServiceLeft(l, k). The function BusServiceLeft(l, k)

is defined as the fraction (between 0 and 1) of service time remaining for request l at

the arrival time of request k (it is 0 for requests that are complete and 1 for requests

that are queued but not yet in service). The summation adds together the remaining

service for all jobs arriving before k, thereby yielding the total number of requests in

queue at the time request k arrives, including request k. To obtain average bus time,

we average over all requests:

E[Tbus] =

∑n
k=1

∑k
l=1 BusServiceLeft(l, k)

n
· E[SBus]

= ξBus · E[SBus]

(3.7)

The variable ξ represents the average work in the queue, including residual work

from prior requests, when a new request arrives. In our hardware design, ξBus is ap-

proximated by the performance counters CTO/CTC, which track the average number of

requests waiting for a bus channel. Our estimate of ξBus is an approximation because we

use the values of CTO and CTC measured at one frequency (the frequency in use during

profiling) and assume the value holds at all other frequencies. In reality, the degree of

bank and channel queueing can vary across frequencies. However, we have found that,

in practice, this approximation works well, because deep bank/bus queues are rare for

our workloads and small estimation errors are corrected through the slack mechanism.

Nevertheless, our approach can easily be modified to tackle deep queues, by profiling

at one more frequency and interpolating the queue size results for the others.

Using a similar construction, we can derive an expression for the expected bank

time:

E[Tbank] =

∑n
i=1

∑i
j=1 BankServiceLeft(j, i)

n
· [E[SBank] + E[TBus]]

= ξBank · [E[SBank] + E[TBus]]

(3.8)

where ξBank is approximated by BTO/BTC. Note that E[TBus] appears as a term

within E[TBank], as a request arriving at a bank remains blocked till all preceding

requests are able to drain over the bus. It is precisely this construction that captures the
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transfer blocking behavior and allows us to sidestep the difficulties of queuing analysis.

Noting that, under this construction, E[TPIMem] = E[Tbank] (bus time has been

folded into the expression for the bank time), we condense our analysis to the equation:

E[TPIMem] = ξbank · (SBank + ξbus · Sbus) (3.9)

Full-system energy model. Simply meeting the CPI loss target for a given work-

load does not necessarily maximize energy-efficiency. In other words, though additional

performance degradation may be allowed, it may save more energy to run faster. To

determine the best operating point, we construct a model to predict full-system energy

usage. For memory frequency fmem, we define the system energy ratio (SER) as:

SER(fmem) =
TfMem

· PfMem

TBase · PBase
(3.10)

TfMem
is the performance estimate for an epoch at frequency fMem. PfMem

=

PMem(fMem) +PNonMem, where PMem(f) is calculated according to the model for mem-

ory power in [65], and PNonMem accounts for all non-memory system components and is

assumed to be fixed. TBase and PBase are corresponding values at a nominal frequency.

At the end of the profiling phase of each epoch, we calculate SER for all memory

frequencies that can meet the performance constraint given by Slack, and select the

frequency that minimizes SER. As we consider only ten frequencies, it is reasonable to

exhaustively search the possibilities and choose the best. In fact, given that this search

is only performed once per epoch (5 ms by default), its overhead is negligible.

3.2.4 Hardware and Software Costs

We now consider the implementation cost of MemScale. The core features in our system

are already available in commodity hardware. Although real servers do not exploit this

capability, existing DIMMs already support multiple frequencies and can switch among

them by transitioning to powerdown or self-refresh states [44]. Moreover, integrated
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CMOS MCs can leverage existing voltage and frequency scaling technology. One nec-

essary change is for the MC to have separate voltage and frequency control from other

processor components. In recent Intel architectures, this would require separating last-

level cache and MC voltage control [39, 40]. Though processors with multiple frequency

domains are common, there have historically been few voltage domains; however, recent

research has shown this is likely to change soon [32].

Whereas modifying the operating voltage of DIMMs and DRAM circuitry may be

possible, devices with this capability have not yet been marketed commercially. There

are substantial challenges in operating a DRAM array at multiple voltages, as many

circuits in the DRAM access path require precisely tuned timing and transistor sizing

that is specific to the operating voltage. Since we observe significant energy savings

from frequency scaling alone, we restrict our first study to a single voltage level in

DIMMs. Nevertheless, we will consider more aggressive approaches in our future work.

Our design also may require enhancements to hardware performance counters in

some processors. Most processors already expose a set of counters to observe processing,

caching and memory-related performance behaviors (e.g., row buffer hits/misses, row

pre-charges). In fact, Intel’s Nehalem architecture already exposes a number of MC

counters for queues [52]. However, the existing counters may not conform precisely

to the specifications required for our models. As discussed above, the time overhead

of our OS-level policy is negligible, since it is only incurred at the multi-millisecond

granularity.

3.3 Evaluation

3.3.1 Methodology

Simulator and workloads. Since the few hardware mechanisms we propose are not

yet available, our evaluation is based on simulations. To reduce simulation times, our

simulations are done in two steps. In the first step, we use M5 [12] to collect memory

access (LLC misses and writebacks) traces from a variety of workloads running on a

16-core server.
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Name RPKI WPKI Applications (x4 each)
ILP1 0.37 0.06 vortex gcc sixtrack mesa
ILP2 0.16 0.01 perlbmk crafty gzip eon
ILP3 0.27 0.01 sixtrack mesa perlbmk crafty
ILP4 0.24 0.06 vortex mesa perlbmk crafty
MID1 1.72 0.01 ammp gap wupwise vpr
MID2 2.61 0.09 astar parser twolf facerec
MID3 2.41 0.16 apsi bzip2 ammp gap
MID4 2.11 0.07 wupwise vpr astar parser
MEM1 17.03 3.03 swim applu art lucas
MEM2 8.62 0.25 fma3d mgrid galgel equake
MEM3 15.6 3.71 swim applu galgel equake
MEM4 8.96 0.33 art lucas mgrid fma3d

Table 3.1: MemScale workload descriptions.

Table 3.1 lists the main characteristics of our 12 workloads. The workloads are

formed by combining applications from the SPEC 2000 and SPEC 2006 suites. As

in [91], we classify the workloads into three categories: memory-intensive workloads

(MEM), computation-intensive workloads (ILP), and balanced workloads (MID). We

use the same workload mixes as the prior study [91] with two exceptions: two workloads

they classify as balanced behave like memory-intensive workloads in our environment.

For this reason, we replaced those two workloads with our MID3 and MID4 workloads.

The rightmost column of Table 3.1 lists the composition of each workload.

We analyze the best 100M-instruction simulation point for each application (selected

using Simpoints 3.0 [73]). The workload terminates when the slowest application has

executed 100M instructions. We report the LLC misses per kilo instruction (RPKI)

and LLC writebacks per kilo instruction (WPKI) observed during trace generation in

Table 3.1.

In the second step, we replay the traces using our own detailed memory system sim-

ulator. This simulator models all aspects of the OS, memory controller, and memory

devices that are relevant to our study, including behavior profiling, memory channel

and bank contention, memory device power and timing, and row buffer management.

The memory controller exploits bank interleaving and uses closed-page row buffer man-

agement, where a bank is kept open after an access only if another access for the same

bank is already pending. Closed-page management is known to lead to lower energy

consumption and better performance for multi-core CPUs [82]. Memory read requests

(cache misses) are served on an FCFS basis. Reads are given priority over writebacks
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Feature Value
CPU cores 16 in-order, single thread, 4GHz

6 IntALU, 2 IntMul, 4FpALU, 2FpMulDiv
L1 I/D cache (per core) 64KB, 2-way, 1 CPU cycle hit

L2 cache (shared) 16MB, 4-way, 10 CPU cycle hit, 1 miss/core
Cache block size 64 bytes

Memory configuration 4 DDR3 channels, 8 2GB DIMMs with ECC

Time

tRCD, tRP, tCL 15ns, 15ns, 15ns
tFAW 20 cycles
tRTP 5 cycles
tRAS 28 cycles
tRRD 4 cycles

Exit fast pd (tXP) 6ns
Exit slow pd (tXPDLL) 24ns

Refresh period 64ms

Current

Row buffer read, write 250 mA, 250 mA
Activation-precharge 120 mA

Active standby 67 mA
Active powerdown 45 mA
Precharge standby 70 mA

Precharge powerdown 45 mA
Refresh 240 mA

VDD 1.575 V

Table 3.2: MemScale simulation parameters.

until the writeback queue is half-full. More sophisticated memory scheduling is not nec-

essary for these single-issue multiprogrammed workloads, as opportunities to increase

bank hit rate via scheduling are rare, and such improvements are orthogonal to our

study.

Regarding energy management, the simulator implements our mechanisms and pol-

icy in great detail. For comparison, we also simulate scenarios in which the memory

controller immediately transitions a rank to fast-exit powerdown or slow-exit power-

down upon closing all banks of the rank. We also simulate a scenario in which a fixed

frequency for the entire memory subsystem (memory controller, channels, DIMMs, and

DRAM devices) is selected statically. As a final baseline for comparison, our simulator

implements the Decoupled DIMMs approach to conserving memory system energy [91].

Parameter settings. Table 3.2 lists our main parameter settings. Recall that

one of the reasons we study in-order cores is to expose any performance degradations

resulting from frequency scaling directly to running time. We compensate for their

lower bus utilization by simulating a large number of cores. Our baseline memory

subsystem has 4 DDR3 channels, each of which is populated with two registered, dual-

ranked DIMMs with 18 DRAM chips each. Each DIMM also has a PLL device. Each
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DRAM chip has 8 banks. We study the impact of the most important aspect of the

memory subsystem configuration (the number of memory channels) in Section 3.3.2.

This study also allows us to approximate the effect of the greater memory traffic.

The timing and power parameters of the DRAM chips, register, PLL, and memory

controller are also shown in Table 3.2 [65]. These data are for devices running at 800

MHz. We also consider frequencies of 733, 667, 600, 533, 467, 400, 333, 267, and 200

MHz.

The timing parameters at frequencies other than 800 MHz were computed in the ob-

vious way, according to the aspects of performance that are affected by scaling (Chapter

2). The current parameters at other frequencies were scaled according to Micron’s power

calculator [65]. The transitions between frequencies are assumed to take 512 memory

cycles plus 28 ns. This assumes that frequency can only be changed after going into

fast-exit pre-charge powerdown state and locking the DLLs, as specified in [44]. The

power consumptions of some components also vary with the utilization. Specifically,

the powers of registers and memory controller scale with their respective utilization

linearly from idle to peak power; the PLL power does not scale with utilization. The

register power ranges from 0.25W to 0.5W as a function of utilization, whereas the

memory controller power ranges from 7.5W to 15W [29, 39]. This maximum memory

controller power was taken from [5]. We study the impact of the power proportionality

of the register and the memory controller in Section 3.3.2. We assume that the voltage

of the memory controller varies over the same range as the cores (0.65V-1.2V), as its

frequency changes. Some year-2010 Xeons have an even wider range (e.g., core voltages

in the 7500 series range from 0.675V to 1.35V). In current Xeons, the uncore voltage

range is narrower than that of the cores. However, the uncore domain currently in-

cludes SRAM, which is typically more difficult to voltage-scale than logic. The power

of the memory controller scales with both voltage and frequency. The PLL and register

powers scale linearly with channel frequency.

We do not model power consumption in the non-memory system components in

detail. Rather, we assume that the average power consumption of the DIMMs accounts

for 40% of the total system power, and compute a fixed average power estimate (the
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remaining 60%) for all other components. This ratio has been identified as the current

contribution of DIMMs to entire server power consumption [9, 10, 83]. We study the

impact of this ratio in Section 3.3.2.

For the static-frequency baseline, we select the frequency (467 MHz) that achieves

the highest energy savings on average, without violating the performance target for

any workload. Similarly, our implementation of Decoupled DIMMs assumes that the

memory channels run at 800 MHz, whereas the DRAM devices operate at the static

frequency (400 MHz) that achieves the highest energy savings on average, without

violating the performance target for any workload. In addition, we optimistically neglect

any power overhead for the synchronization buffer required by Decoupled DIMMs.

3.3.2 Results

In this subsection, we present the quantitative evaluation of our performance-aware

energy management policy.

Energy and Performance

We start by studying the impact of our policy on the energy and performance of our

workloads, assuming a maximum allowable performance degradation of 10%.

Figure 3.3 shows the memory and system energy savings we achieve for each work-

load, compared to a baseline system that keeps the memory subsystem at its highest

voltage and frequency. The memory energy savings range from 17% to 71%, whereas the

system energy savings range from 6% to 31%. As one would expect, the ILP workloads

achieve the highest gains (system energy savings of at least 30%). These workloads can

keep the voltage and frequency of the memory system at their lowest possible value all

the time. The savings achieved by the MID workloads are lower but still significant

(system energy savings of at least 15%). The MEM workloads achieve the smallest en-

ergy savings (system energy savings of at least 6%), since their greater memory channel

traffic reduces the opportunities for significant voltage and frequency scaling.

Figure 3.4 shows that these energy savings can be achieved without violating the

maximum allowable performance degradation for any application in the workloads. The
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Figure 3.3: Energy savings. Memory and full-system energies are significantly re-
duced, particularly for the ILP workloads.

figure shows the average and maximum percent CPI losses across the applications in

each of our workloads, again compared to the vanilla baseline. The results demonstrate

that our policy indeed limits the maximum CPI increase to the acceptable range; no

application is ever slowed down more than 9.2%. The results also demonstrate that,

when we average the performance degradations of all the applications in each workload,

this average is never higher than 7.2%. Again, as one would expect, the degradations

are smallest for the ILP workloads, followed by the MID workloads, and then the MEM

workloads.

One might think that the policy could produce even higher energy savings, if it

could keep voltage and frequency low longer and approximate the maximum allowable

degradation more closely. This would increase the memory energy savings. However,

remember that increasing running time also involves consuming more system energy.

Thus, our policy degrades performance only up to the point that this translates into

overall system energy savings.

These energy and performance results are very positive. The ILP workloads can

achieve up to 31% system energy savings for only a maximum performance degradation

of 3.2%. The MID results also exhibit substantial benefits. Even the challenging MEM

workloads achieve up to 9% system energy savings within the allowable performance

degradation. Overall, we observe that MemScale produces average system energy sav-

ings of 18.3% for an average performance degradation of only 4.2%.
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Figure 3.4: CPI overhead. Both average and worst-case CPI overheads fall well
within the target degradation bound.

Dynamic Behavior

To understand the results above more deeply, let us consider an example workload

and the dynamic behavior of our policy. Figure 3.5 plots (a) the memory subsystem

frequency selected by our policy for workload MID3, (b) the CPI of each application in

the workload (averaged over the 4 instances of the application), and (c) the resulting

scaled channel utilization, as a function of execution time.

The figure shows a few interesting frequency transitions. After the start of the

workload, our policy quickly reduces the frequency to the minimum value and keeps it

there until it detects the massive phase change of application apsi. As Figure 3.5(b)

illustrates, the phase change occurred during the 46 ms quantum. Because our policy

is OS-driven, the system only detected the phase change and increased the frequency

at the next quantum boundary (around 51 ms). Despite this short reaction delay, our

policy still keeps the performance degradation for apsi (8.2%) well under the allowable

limit. As Figure 3.5(c) depicts, the two frequencies selected by our policy for the two

phases of the workload keep the scaled channel utilization around 25%.

Figure 3.6 shows another interesting dynamic behavior, this time for workload

MEM4 on an 8-core system. Note that our policy alternates between two frequen-

cies throughout most of the execution. (Recall that frequency transitions are fast and

we only initiate transitions on quantum boundaries.) The reason for this behavior is
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Figure 3.5: Timeline of MID3 workload in MemScale MemScale adjusts memory
system frequency rapidly in response to the phase change in apsi.
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Figure 3.6: Timeline of MEM4 workload in MemScale. MemScale approximates
a “virtual frequency” by oscillating between two neighboring frequencies.
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that the space of usable frequencies is not continuous; the ideal frequency is really be-

tween the two usable frequencies. In essence, our policy defines a “virtual frequency”

by alternating between the two frequencies.

Comparison with Other Policies

In this subsection, we compare our MemScale policy (“MemScale”) to six alterna-

tives. The first alternative (“Fast-PD”) represents today’s aggressive memory con-

trollers, which immediately transition a rank to fast-exit precharge powerdown state

whenever the last open bank of the rank is closed. The second alternative (“Slow-PD”)

is even more aggressive in that it transitions the rank to slow-exit precharge powerdown

state. The third alternative (“Decoupled”) is the decoupled DIMM approach to energy

conservation, which combines low-frequency memory devices with high-frequency chan-

nels. The fourth alternative (“Static”) represents the scenario in which the frequency

for the memory controller, channels, DIMMs, and DRAM devices is selected statically

before the workloads are started. The fifth and sixth alternatives are actually variations

of our policy. The fifth (“MemScale (MemEnergy)”) considers only the memory energy

(rather than the overall system energy) in making decisions. The sixth (“MemScale +

Fast-PD”) is our full policy combined with fast-exit powerdown.

Figure 3.7 shows the average energy savings achieved by all alternatives, across the

MID workloads. For these same workloads, Figure 3.8 breaks down the average system

power of each alternative between its DRAM, PLL/register, memory controller, and

rest-of-the-system (everything but the memory subsystem) components. Figure 3.9

shows the average and maximum performance degradations for all the alternatives,

again across the same workloads. All results are computed with respect to the baseline,

which keeps the memory subsystem at its highest frequency at all times.

These results demonstrate that Fast-PD achieves small energy savings at small per-

formance degradations. The energy savings come from reductions in the power con-

sumption of the DRAM chips. For the MEM and ILP workloads, Fast-PD achieved

system energy savings between 0.3% (MEM2) and 7.4% (ILP3). Being more aggres-

sive with Slow-PD actually hurts performance so much that the workloads consume
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Figure 3.7: Energy savings. MemScale provides greater full-system and memory
system energy savings than alternatives.

0

0.2

0.4

0.6

0.8

1

En
e
rg
y

(N
o

rm
al

iz
ed

Ct
o

CB
as

e)

DRAM PLL/Reg. MC RestCofCsystem
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Figure 3.9: CPI overhead. MemScale’s CPI increases are under 10%. MemScale
(MemEnergy) slightly exceeds the bound.
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more system energy than the baseline system. In fact, the performance of one of the

applications actually degrades by 15%. Both of these results match expectations.

In contrast, Decoupled does better than Fast-PD or Slow-PD. It achieves higher

energy savings at moderate performance degradations for the MID workloads. The

energy savings come from reductions in the power consumed by the DRAM devices.

Decoupled also does well for the ILP workloads, achieving a maximum energy savings

of 11%. However, it actually increases the energy consumption for one of the MEM

workloads (MEM3) by 0.8%. This result is due to a significant performance degradation

for this workload.

Static conserves more memory and system energy than Decoupled (for roughly the

same performance degradations), despite the fact that the frequency of the DRAM

devices is lower under Decoupled than Static (400 vs 467 MHz). This arises because

Static decreases the energy consumption of the memory controller and the PLL/register

devices. Decoupled does not address these sources of energy consumption. DRAM

device energy is indeed lower under Decoupled, as one would expect. Static also does

well for the ILP and MEM workloads, achieving average system energy savings of 19.1%

and 7.8%, respectively, always within the allowed performance degradation.

MemScale easily outperforms Decoupled. We achieve almost 3x higher energy sav-

ings, while keeping degradation within the allowed range. The reason for this result

is that MemScale can dynamically adjust frequencies and achieve energy gains in the

memory controller and PLL/register as well.

MemScale is also superior to Static in both memory and system energy savings,

but leads to slightly (2%) higher performance degradations. Specifically, MemScale’s

average system energy savings is 30.2% for the ILP workloads and 16.9% for the MID

workloads, whereas Static achieves only 19.1% and 14.5% savings, respectively. (Their

savings for the MEM workloads are comparable.) Our greater energy savings come

from MemScale’s ability to dynamically adjust frequency to the exact conditions of

each workload. Under the unrealistic assumption that the user would (1) manually

select the best frequency for each workload, and (2) somehow instruct the server to

reboot to the new frequency before running the workload, Static and MemScale would
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differ little for the workloads that do not exhibit dynamic phase changes. For those that

do, MemScale would still surpass Static through dynamically adjusting the frequency,

as seen in the MID3 workload, for example.

As we suggested before, when our policy is set to consider memory energy and not

system energy (MemScale (MemEnergy)), the system conserves more memory energy

but at the cost of system energy and performance. Moreover, note that MemScale

(MemEnergy) exceeds the performance target by just 0.8% for two applications, each

in a different workload. The reason is that MemScale sometimes mispredicts the queue

lengths of the highest memory frequency. These mispredictions affect MemScale’s com-

putation of the performance slack.

Interestingly, note that adding Fast-PD to MemScale does not meaningfully improve

its results; the average system energy savings stay roughly the same (lower DRAM

chip power but higher rest-of-the-system power), whereas the performance degradations

worsen slightly.

Sensitivity Analysis

In this subsection, we investigate the effect of our main simulation and policy para-

meters: the maximum allowable performance degradation, the configuration of the

channels and DIMMs, the fraction of the memory power with respect to the whole

server power, the power proportionality of the memory controller and DIMMs’ regis-

ters, the length of the OS quantum, and the length of the profiling period. We again

perform these studies using the MID workloads.

Maximum performance degradation. This parameter is important in that

higher allowable degradations could enable greater energy savings. To understand the

impact of this parameter, Figure 3.10 illustrates the energy savings (bars on the left)

and maximum achieved degradations (bars on the right), for maximum allowable degra-

dations of 1%, 5%, 10%, and 15%. Recall that our default maximum allowable degrada-

tion is 10%. All other parameters remain at their defaults. It is interesting to observe

that 1% and 5% degradations indeed produce lower energy savings. However, allowing

15% degradation does not improve our savings: beyond a certain point, lengthening the
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Figure 3.10: Impact of CPI bound. Increasing the bound beyond 10% does not yield
further energy savings.

execution to conserve more memory energy actually increases overall energy. At that

point, our policy stops lowering frequency.

Amount of memory traffic. As far as MemScale is concerned, the number of

channels is the most important aspect of the memory subsystem configuration. The

number of channels directly affects how heavily utilized each channel is and, thus, our

opportunities to lower frequency without excessively degrading performance. In fact,

decreasing the number of channels approximates the effect of greater memory traffic that

could result from prefetching or out-of-order execution. Figure 3.11 depicts the energy

savings (left) and maximum achieved performance degradation (right) for 2, 3, and 4

channels. Recall that our default results assumed 4 channels. The figure shows that

increases in the number of channels indeed increase the benefits of MemScale by non-

trivial amounts, without affecting our ability to limit performance losses. Interestingly,

the figure also shows that doubling the channel traffic (from 4 to 2 channels) still leads

to system energy savings of roughly 14%.

Another approach for studying the effect of greater memory traffic is to increase the

number of cores, while keeping the LLC size the same. Thus, we performed experiments

with 32 cores and 4 memory channels. For the MID workloads, the larger number of

cores causes 2x-4x increases in traffic. These increases translate into system energy

savings ranging from 7.6% to 10.4%, without any violations of the performance bound.

Fraction of memory system power with respect to server power. Because
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energy savings.

MemScale seeks to reduce whole-system energy consumption by reducing the memory

subsystem energy, the contribution of the memory subsystem to the overall power con-

sumption of the server becomes a crucial parameter. Intuitively, the larger this fraction,

the larger our percentage energy savings. Furthermore, recall that the non-memory-

subsystem power consumption affects our energy management policy. Intuitively, the

lower the non-memory-subsystem contribution, the lower the frequencies that our policy

can select. Figure 3.12 quantifies the impact of 30%, 40%, and 50% fractions of mem-

ory power on the system energy savings. Recall that our baseline assumes a fraction of

40%.

The figure shows that the fraction of memory power has a significant effect on the

system energy savings. Increasing the fraction from 30% to 50% (or, equivalently,

reducing the rest-of-the-system contribution from 70% to 50%) more than doubles the

savings (11% vs 24%). The maximum CPI degradation increases by a few percent as

well, but stays within the allowed range.

Power proportionality of the memory controller and DIMMs’ registers.
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Figure 3.13: Impact of power proportionality of MC and registers. Decreasing
proportionality increases energy savings.

Since the memory controller and DIMM register designs are vendor- and model-dependent,

we studied a wide range of power proportionality possibilities for these components.

Specifically, we varied their idle power consumption from 0% (perfect proportionality)

to 100% (no proportionality) of their peak power consumption. Recall that our default

assumption is 50% idle power for these components. For this analysis (and our other

results), we assume that their power consumption changes linearly with utilization be-

tween idle and peak loads. Figure 3.13 depicts the results.

The figure shows that the power proportionality of these components has a signif-

icant impact on the system energy savings. Interestingly, decreasing proportionality

actually increases our savings significantly to 23%. As the memory subsystem’s idle

power increases (decreasing proportionality), the scope of MemScale to reduce register

and memory controller power grows. Importantly, MemScale achieves these benefits

without violating the allowed performance degradation.

Length of the OS quantum (epoch) and profiling period. We studied the

effect of (1) the epoch length by considering quanta of 1, 5, and 10ms; and (2) the

length of the profiling period by considering periods of 0.1, 0.3, and 0.5ms. The first

study sought to assess our ability to stay within the performance requirement, even

when our decisions could not be changed for long periods of time. Similarly, the goal

of the second study was to assess the need for long profiling periods before making

decisions. Overall, these studies revealed that MemScale is essentially insensitive to

reasonable values of these parameters.
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3.4 Conclusion

In this chapter, we proposed the MemScale approach to managing memory energy under

performance constraints. MemScale creates and leverages active low-power modes that

result from dynamically scaling the frequency of memory channels and DRAM devices,

and dynamically scaling the voltage and frequency of the memory controller. We also

proposed a small set of mechanisms and an operating system policy to determine the

best power mode at each point in time. Our evaluation demonstrated that MemScale

conserves significant memory and system energy, while staying within pre-set perfor-

mance limits. Our results also showed that MemScale is superior to four competing

energy management techniques. We conclude that MemScale’s potential benefits far

outweigh its small hardware costs.
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Chapter 4

CoScale

4.1 Introduction

In Chapter 3, we proposed MemScale, a set of active low-power modes, hardware mech-

anisms, and software policies to conserve system energy. MemScale achieves this by

targeting at the power consumption of the main memory subsystem including the MC.

Obviously, one can potentially accrue even greater energy savings by targeting the pro-

cessors as well. There is a rich array of processor power management techniques already,

e.g. [36, 45, 80]. Moreover, future servers are likely to provide separate power man-

agement capabilities for individual system components, with distinct control policies

and actuation mechanisms. Our ability to maximize energy efficiency will hinge on the

coordinated use of these various capabilities [62].

Prior work on the coordination of CPU power and thermal management across

servers, blades, and racks has demonstrated the difficulty of coordinated management

and the potential pitfalls of independent control [76]. Existing studies seeking to co-

ordinate CPU DVFS and memory low-power modes have focused on idle low-power

memory states [15, 25, 55]. While effective, these works ignore the possibility of using

DVFS for the memory subsystem, which has been shown to provide greater energy sav-

ings in MemScale. As such, the coordination of active low-power modes for processors

and memory in tandem remains an open problem.

In this chapter, we propose CoScale, the first method for effectively coordinating

CPU and memory subsystem DVFS under performance constraints. As we show, simply

supporting separate processor and memory energy management techniques is insuffi-

cient, as independent control policies often conflict, leading to oscillations, unstable

behavior, or sub-optimal power/performance trade-offs.
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To see an example of such behavior, consider a scenario in which a chip multi-

processor’s cores are stalled waiting for memory a significant fraction of the time. In

this situation, the CPU power manager might predict that lowering voltage/frequency

will improve energy efficiency while still keeping performance within a pre-selected per-

formance degradation bound and effect the change. The lower core frequency would

reduce traffic to the memory subsystem, which in turn could cause its (independent)

power manager to lower the memory frequency. After this latter frequency change,

the performance of the server as a whole may dip below the CPU power manager’s

projections, potentially violating the target performance bound. So, at its next oppor-

tunity, the CPU manager might start increasing the core frequency, inducing a similar

response from the memory subsystem manager. Such oscillations waste energy. These

unintended behaviors suggest that it is essential to coordinate power-performance man-

agement techniques across system components to ensure that the system is balanced to

yield maximal energy savings.

To accomplish this coordinated control, we rely on execution profiling of core and

memory access performance, using existing and new performance counters. Through

counter readings and analytic models of core and memory performance and power

consumption, we assess opportunities for per-core voltage and frequency scaling in a

chip multiprocessor, voltage and frequency scaling of the on-chip memory controller,

and frequency scaling of memory channels and DRAM devices.

The fundamental innovation of CoScale is the way it efficiently searches the space

of per-core and memory frequency settings (we set voltages according to the selected

frequencies) in software. Essentially, our epoch-based policy estimates, via our perfor-

mance counters and online models, the energy and performance cost/benefit of altering

each component’s (or set of components’) DVFS state by one step, and iterates to greed-

ily select a new frequency combination for cores and memory. The selected combination

trades off core and memory scaling to minimize full-system energy while respecting a

user-defined performance degradation bound. CoScale is implemented in the operating

system (OS), so an epoch typically corresponds to an OS time quantum.
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For comparison, we demonstrate the limitations of fully uncoordinated and semi-

coordinated control (i.e., independent controllers that share a common estimate of

target and achieved performance) of processor and memory DVFS. These strategies

either violate the performance bound or oscillate wildly before settling into local min-

ima. Uncoordinated policy can not bound the performance well since independent

DVFS controllers both try to consume the same performance slack without knowing

the existence of each other; Semicoordinated policy causes interference between two

DVFS controllers and leads to wild oscillation, and at the end frequencies configuration

usually converges onto some local minimals causing poor energy efficiency.

CoScale circumvents these problems by assessing processor and memory perfor-

mance in tandem. In fact, CoScale provides energy savings close to an offline scheme

that considers an exponential space of possible frequency combinations. We also quan-

tify the benefits of CoScale versus CPU-only and memory-only DVFS policies.

Our results show that CoScale provides up to 24% full-system energy savings (16%

on average) over a baseline scheme without DVFS, while staying within a 10% allow-

able performance degradation. Furthermore, we study CoScale’s sensitivity to several

parameters, including its effectiveness across performance bounds of 1%, 5%, 15%, and

20%. Our results demonstrate that CoScale meets the performance constraint while

still saving energy in all cases.

The remainder of the chapter is structured as follows. Section 4.2 describes CoScale

in detail. Section 4.3 describes our evaluation methodology and results. Finally, Section

4.4 concludes the chapter.

4.2 CoScale Design

In this section, we describe CoScale’s approach for maximizing full-system energy sav-

ings under a performance loss bound. First, we describe our policy at a high level.

Next, we describe its algorithm for selecting frequencies and compare it with simpler

algorithms. We then present the details behind CoScale, including the performance
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counters and performance/power models that it requires. Finally, we address imple-

mentation costs.

CoScale leverages three key mechanisms: core and memory subsystem DVFS, and

a performance management scheme that keeps track of how much energy conservation

has slowed down applications.

Core DVFS. We assume that each core can be voltage and frequency scaled inde-

pendently of the other cores, as in [46, 89]. We also assume the shared L2 cache sits

in a separate voltage domain that does not scale. A core DVFS transition takes a few

10’s of microseconds.

Memory DVFS. Our memory DVFS method is based on MemScale, which dynam-

ically adjusts MC, bus, and DIMM frequencies. Although it adjusts these frequencies

together, we shall simply refer to adjusting the bus frequency. The DIMM clocks lock

to the bus frequency (or a multiple thereof), while the MC frequency is fixed at double

the bus frequency. Furthermore, MemScale adjusts the voltage of the MC (indepen-

dently of core/cache voltage) and PLL/register in the DIMMs, based on the memory

subsystem frequency.

Memory mode transition time is dominated by frequency re-calibration of the mem-

ory channels and DIMMs. The DIMM operating frequency may be reset while in the

precharge powerdown or self-refresh state. We use precharge powerdown because its

overhead is significantly lower than that of self-refresh. Most of the re-calibration la-

tency is due to the DLL synchronization time, tDLLK [64]—approximately 500 memory

cycles.

Performance management. Similar to the approach initially proposed in [56]

and later explored in [22, 70], our policy is based on the notion of program slack : the

difference between a baseline execution and a target latency penalty that a system op-

erator is willing to incur on a program to save energy. The basic idea is that energy

management often necessitates running the target program with reduced core or mem-

ory subsystem performance. To constrain the impact of this performance loss, CoScale

dictates that each executing program incurs no more than a pre-selected maximum

slowdown γ, relative to its execution without energy management (TMaxFreq). Thus,
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Slack = TMaxFreq(1 + γ)− TActual.

Overall operation. CoScale uses fixed-size epochs, typically matching an OS time

quantum. Each epoch consists of a system profiling phase followed by the selection of

core and memory subsystem frequencies that (1) minimize full system energy, while (2)

maintaining performance within the target given by the accumulated slack from prior

epochs.

In the system profiling phase, performance counters are read to construct application

performance and energy estimates. By default, we profile for 300 µs, which we find to

be sufficient to predict the resource requirements for the remainder of the epoch. Our

default epoch length is 5 ms.

Based on the profiling phase, the OS selects and transitions to new core and/or

memory bus frequencies using the algorithm described below. During a core transition,

that core does not execute instructions; other cores can operate normally. To adjust

the memory bus frequency, all memory accesses are temporarily halted, and PLLs and

DLLs are resynchronized. Since the core and memory subsystem transition overheads

are small (tens of microseconds) compared to our epoch size (milliseconds), the penalty

is negligible.

The epoch executes to completion with the new voltages and frequencies. At the

end of the epoch, CoScale again estimates the accumulated slack, by querying the

performance counters and estimating what performance would have been achieved had

the cores and the memory subsystem operated at maximum frequency. These estimates

are then compared to achieved performance, with the difference used to update the

accumulated slack and carried forward to calculate the target performance in the next

epoch.

CoScale example. Figure 4.1 depicts an example of CoScale’s behavior (bottom),

compared to a policy that does not fully coordinate the processor and memory frequency

selections (top). We refer to the latter policy as semi-coordinated, as it maintains a sin-

gle performance slack (a mild form of coordination) that is shared by separate CPU and

memory power state managers. As the figure illustrates, under semi-coordinated con-

trol, the CPU manager and the memory manager independently decide to scale down
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Figure 4.1: CoScale operation: Semi-coordinated oscillates, whereas CoScale scales
frequencies more accurately.

when they observe performance slack (performance above target). Unfortunately, be-

cause they are unaware of the cumulative effect of their decisions, they over-correct

by scaling frequency too far down. For the same reason, in the following epoch, they

over-react again by scaling frequency too far up. Such over-reactions continue in an

oscillating manner. With CoScale, by modeling the joint effect of CPU and mem-

ory scaling, the appropriate frequency combination can be chosen to meet the precise

performance target. Our control policy avoids both over-correction and oscillation.

4.2.1 CoScale’s Frequency Selection Algorithm

When choosing a frequency for each core and a frequency for the memory bus, we have

two goals. First, we wish to select a frequency combination that maximizes full-system

energy savings. The energy-minimal combination is not necessarily that with the lowest

frequencies; lowering frequency can increase energy consumption if the slowdown is too

high. Our models explicitly account for the system-vs.-component energy balance.

Fortunately, the cores and memory subsystem consume a large fraction of total system

power, allowing CoScale to aggressively consume the performance slack. Second, we

seek to observe the bound on allowable cycles per instruction (CPI) degradation for
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each running program.

Dynamically selecting the optimal frequency settings is challenging, since there are

M ×CN possibilities, where M is the number of memory frequencies, C is the number

of possible core frequencies, and N is the number of cores. M and C are typically

on the order of 10, whereas N is in the range of 8-16 now but is growing fast. Thus,

CoScale uses the greedy heuristic policy described in Figure 4.2.

Our gradient-descent heuristic iteratively estimates, via our online models, the

marginal benefit (measured as ∆power/∆performance) of altering either the frequency

of the memory subsystem or that of various groups of cores by one step (we discuss

core grouping in detail below). Initially, the algorithm estimates performance assuming

all cores and memory are set to their highest possible frequencies (line 1 in the figure).

It then iteratively considers frequency reductions, as long as some frequency can still

be lowered without violating the performance slack (loop starting in line 2). When

presented with a choice between next scaling down memory or a group of cores, the

heuristic greedily selects the choice that will produce the highest marginal benefit (lines

3-12). If only memory or only cores can be scaled down, the available option is taken

(line 13-19). Still in the main loop, the algorithm computes and records the full-system

energy ratio (SER, Section 4.2.3) for the considered frequency configuration. When

no more frequency reductions can be tried without violating the slack, the algorithm

selects the configuration yielding the smallest SER (i.e., the best full-system energy

savings) (line 21) and directs the hardware to transition frequencies (line 22).

Changing the frequency of the memory subsystem impacts the performance of all

cores. Thus, when we compute the ∆performance of lowering memory frequency,

we choose the highest performance loss of any core. Similarly, when computing the

∆performance of lowering the frequencies of a group of cores, we consider the worst

performance loss in the group. The ∆power in these cases is the power reduction that

can be achieved by lowering the frequency of each core in the group.

An important aspect of the CoScale heuristic is that it considers lowering the fre-

quency of cores in groups of 1, 2, 3, ..., N cores (lines 1-6 in Figure 4.3). The group
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1. Estimate performance with each core and the memory subsystem at their highest frequencies

2. While any component can be scaled down further without slack violation

3. If both memory and at least one core can still scale down by 1 step

4. If the memory frequency has changed since we last computed marginal_memory

5. Compute marginal utility of lowering memory frequency as marginal_memory

6. If any core frequency has changed since we last computed marginal_cores

7. Compute marginal utility of lowering the frequency of core groups (per algorithm in Figure 4.3)

8. Select the core group (group_best) with the largest utility (marginal_cores)

9. If marginal_memory is greater than marginal_cores

10. Scale down memory by 1 step

11. Else

12. Scale down cores in group_best by 1 step each

13. Else if only memory can scale down

14. Scale down memory by 1 step

15. Else if only core groups can scale down

16. If any core frequency has changed since we last computed marginal_cores

17. Compute marginal utility of lowering the frequency of core groups (per algorithm in Figure 4.3)

18. Select the core group (group_best) with largest marginal utility (marginal_cores)

19. Scale down cores in group_best by 1 step each

20. Compute and record the SER for the current combination of core and memory frequencies

21. Select the core and memory frequency combination with the smallest SER

22. Transition hardware to the new frequency combination

Figure 4.2: CoScale’s greedy gradient-descent frequency selection algorithm.

1. Scan the previous list of cores, removing any that may not scale down further or whose frequency

has changed

2. Re-insert cores with changed frequency, maintaining an ascending sort order by delta performance

3. For group i from 1 to number of cores on the list

4. Let delta power of the i-th group be equal to the sum of delta power from first to the i-th core

5. Let delta performance be equal to delta performance of the i-th core

6. Let marginal utility of i-th group be equal to delta power over delta performance just calculated

7. Set the group with the largest marginal utility as the best group (group_best) and its utility as

marginal_cores

Figure 4.3: Sub-algorithm to consider core frequency changes by group.

formation algorithm maintains a list of cores that are eligible to scale down in fre-

quency (i.e., they can be scaled down without slack violation), sorted in ascending

order of ∆performance. To avoid a potentially expensive sort operation on each invo-

cation, the algorithm updates the existing sorted list by removing and then re-inserting

only those cores whose frequency has changed (lines 1-2). N possible core groups are

considered, forming groups greedily by first selecting the core that incurs the smallest

delta performance from scaling (i.e., just the head of the list), then considering this

core and the second core, then the third, and so on. This greedy group formation

avoids combinatorial state space explosion, but, as we will show, it performs similarly

to an offline method that considers all combinations. Considering transitions by group

is needed to prevent CoScale from always lowering memory frequency first, because the
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memory subsystem at first tends to provide greater benefit than scaling any one core

in isolation. Failing to consider group transitions may cause the heuristic to get stuck

in local minima.

Our algorithm is run at the end of the profiling phase of each epoch (5ms by default).

Because of core grouping, the complexity of our heuristic is O(M + C ×N2), which is

exponentially better than that of the brute-force approach. Given our default simula-

tion settings for M (10), C (10), and N (16), searching once per epoch has negligible

overhead. Specifically, in all our experiments, searching takes less than 5 microseconds

on a 2.4GHz Xeon machine. Our projections for larger core counts suggest that the

algorithm could take 83 and 360 microseconds for 64 and 128 cores, respectively, in the

worst case (4 microseconds in the best case). If one finds it necessary to hide these

higher overheads, one can either increase the epoch length or dedicate a spare core to

the algorithm.

4.2.2 Comparison with Other Policies

The key aspect of CoScale is the efficient way in which it searches the space of possible

CPU and memory frequency settings. For comparison, we study five alternatives. The

first is “MemScale”, represents the scenario in which the system uses only memory

subsystem DVFS. The second alternative, called “CPUOnly”, represents the scenario

with CPU DVFS only. To be optimistic about this alternative, we assume that it

considers all possible combinations of core frequencies and selects the best. In both

MemScale and CPUOnly, the performance-aware energy management policy assumes

that the behavior of the components that are not being managed will stay the same in

the next epoch as in the profiling phase.

The third alternative, called “Uncoordinated”, applies both MemScale and CPU

DVFS, but in a completely independent fashion. In determining the performance slack

available to it, the CPU power manager assumes that the memory subsystem will remain

at the same frequency as in the previous epoch, and that it has accumulated no CPI

degradation; the memory power manager makes the same assumptions about the cores.

Hence, each manager believes that it alone influences the slack in each epoch, which is
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not the case. The fourth alternative, called “Semi-coordinated”, increases the level of

coordination slightly by allowing the CPU and memory power managers to share the

same overall slack, i.e. each manager is aware of the past CPI degradation produced by

the other. However, each manager still tries to consume the entire slack independently

in each epoch (i.e., the two managers account for one another’s past actions, but do

not coordinate their estimate of future performance).

Finally, the fifth alternative, called “Offline”, relies on a perfect offline performance

trace for every epoch, and then selects the best frequency for each epoch by considering

all possible core and memory frequency settings. As the number of possible settings

is exponential, Offline is impractical and is studied simply as an upper bound on how

well CoScale can do. However, Offline is not necessarily optimal, since it uses the same

epoch-by-epoch greedy decision-making as CoScale (i.e., a hypothetical oracle might

choose to accumulate slack in order to spend it in later epochs).

Figure 4.4 visualizes the difference between CoScale and other policies in terms

of their search behaviors. For clarity, the figure considers only two cores (X and Y

axes) and the memory (Z axis), forming a 3-D frequency space. The origin point is the

highest frequency of each dimension; more distant points represent lower per-component

frequencies. CPUOnly and MemScale search subsets of these three dimensions, so we

do not illustrate them.

We can see from the figure that the Offline policy (top illustration) examines the

entire space, thus always finding the best configuration. Under the Uncoordinated

policy (second row), the CPU power manager tries to consume as much of the slack

as possible with cores 0 and 1, while the memory power manager gets to consume the

same slack. This repeats every epoch. Semi-coordinated (third row) behaves similarly

in the first epoch. However, in the second epoch, to correct for the overshoot in the

first epoch, each manager is restricted to a smaller search space. This restriction leads

to over-correction in the third epoch, resulting in a much larger search space. The

resulting oscillation may continue across many epochs. Finally, CoScale (bottom row)

starts from the origin and greedily considers steps of memory frequency or (groups

of) core frequency, selecting the move with the maximal marginal energy/performance
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Figure 4.4: Search differences: CoScale searches the parameter space efficiently. Uncoordi-
nated violates the performance bound and Semi-coordinated gets stuck in local minima.
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benefit. From the figure, we can see that in step 1, CoScale scaled core 0 down by one

frequency level; then it scaled the memory frequency down in step 2; and finally scaled

core 1 down by two frequency levels in step 3. The search then terminates, because the

performance model predicts that any further moves will violate the performance bound

of at least one application. CoScale’s greedy walk is shorter and produces better results

than the other practical approaches.

Although CoScale provides no formal guarantees precluding oscillating behavior,

this behavior is unlikely and occurs only when the profiling phases are consistently poor

predictions of the rest of the epochs, or the performance models are inaccurate. On

the other hand, the Semi-coordinated and Uncoordinated policies exhibit poor behavior

due to their design limitations.

4.2.3 Implementation

We now describe the performance counters and performance/power models used by

CoScale.

Performance counters. CoScale extends the performance modeling framework of

MemScale with additional performance counters that allow it to estimate core power

(in addition to memory power) and assess the degree to which a workload is instruction

throughput vs. memory bound.

• Instruction counts – For each core, CoScale requires counters for Total Instruc-

tions Committed (TIC), Total L1 Miss Stalls (TMS), Total L2 Accesses (TLA), To-

tal L2 Misses (TLM), and Total L2 Miss Stalls (TLS). CoScale uses these counters

to estimate the fraction of CPI attributable to the core and memory, respectively.

These counters allow the model to handle many core types (in-order, out-of-order,

with or without prefetching), whereas MemScale’s model (which required only TIC

and TMS) supports only in-order cores without prefetching.

• Memory subsystem performance – CoScale reuses the same seven memory

performance counters introduced by MemScale, which track memory queuing

statistics and row buffer performance. We refer readers to Chapter 3 for details.
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• Power modeling – To estimate core power, CoScale needs the L1 and L2 coun-

ters mentioned above and per-core sets of four Core Activity Counters (CAC)

that track committed ALU instructions, FPU instructions, branch instructions,

and load/store instructions. We reuse the memory power model from MemScale,

which requires two counters per channel to track active vs. idle cycles and the

number of page open/close events (details in Chapter 3).

In total, CoScale requires eight additional counters per core beyond the requirements

of MemScale (which requires two per core and nine per memory channel, all but five of

which already exist in current Intel processors).

Performance model. Our model builds upon that proposed in Chapter 3, with

two key enhancements: (1) we extend it to account for varying CPU frequencies, and

(2) we generalize it to apply to cores with memory-level-parallelism (e.g., out-of-order

cores or cores with prefetchers).

The performance model predicts the relationship between CPI, core frequency, and

memory frequency, allowing it to determine the runtime and power/energy implications

of changing core and memory performance. Given this model, the OS can set the

frequencies to both maximize energy-efficiency and stay within the predefined limit for

CPI loss.

CoScale models the rate of progress of an application in terms of CPI. The average

CPI of a program is defined as:

E[CPI] = (E[TPICPU] + α · E[TPIL2] + β · E[TPIMem]) · FCPU (4.1)

where E[TPICPU] represents the average time that instructions spend on the CPU

(including L1 cache hits), α is the fraction of instructions that access the L2 cache and

stall the pipeline, E[TPIL2] is the average time that an L1-missing instruction spends

accessing the L2 cache while the pipeline is stalled, β is the fraction of instructions

that miss the L2 cache and stall the pipeline, E[TPIMem] is the average time that an

L2-missing instruction spends in memory while the pipeline is stalled, and FCPU is the

operating frequency of the core. The value of α can be calculated as the ratio of TMS



60

and TIC, whereas β is the ratio of TLS and TIC.

The expected CPU time of each instruction (E[TPICPU]) depends on core frequency,

but is insensitive to memory frequency. Since we keep the frequency (and supply volt-

age) of the L2 cache fixed, the expected time per L2 access that stalls the pipeline

(E[TPIL2]) does not change with either core or memory frequency (we neglect the sec-

ondary effect of small variations in L1 snoop time). The expected time per L2 miss

that stalls the pipeline (E[TPIMem]) varies with memory frequency. We decompose the

latter time as in Chapter 3 E[TPIMem] = ξbank · (SBank + ξbus · SBus), where ξbus rep-

resents the average number of requests waiting for the bus; ξbank are requests waiting

for the bank; SBank is the average time, excluding queueing delays, to access a bank

(including precharge, row access and column read, etc); and SBus is the average data

transfer (burst) time.

The above counters and model assume single-threaded applications, each running on

a different core. To tackle multi-threaded applications, CoScale would require additional

counters and a more sophisticated performance model (one that captures inter-thread

interactions). To deal with context switching, CoScale can maintain the performance

slack independently for each software thread.

Full-system energy model. Meeting the CPI loss target for a given workload

does not necessarily maximize energy-efficiency. In other words, though additional

performance degradation may be allowed, it may save more energy to run faster. To

determine the best operating point, we construct a model to predict full-system energy

usage as a function of the frequencies of the cores and memory subsystem.

For frequency f icore for core i and memory frequency fmem, we define the system

energy ratio (SER) as:

SER(f1
core, ..., f

n
core, fmem) =

Tf1
core,...,f

n
core,fMem

· Pf1
core,...,f

n
core,fMem

TBase · PBase
(4.2)

Here, TBase and PBase are time and average power at a nominal frequency (e.g., the

maximum frequencies). Tf1
core,...,f

n
core,Mem is the time estimate for an epoch at frequencies

f1
core, ..., f

n
core for the n cores and frequency fMem for the memory subsystem. This time
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estimate corresponds to the core with the highest CPI degradation compared to running

at maximum frequency.

Pf1
core,...,f

n
core,fMem

= PNonCoreL2OrMem + PL2+

PMem(fMem) +
n∑

i=1

P i
Core(f

i
core).

(4.3)

In this formula, PNonCoreL2OrMem accounts for all system components other than the

cores, the shared L2 cache, and the memory subsystem, and is assumed to be fixed. PL2

is the average power of the L2 cache and is computed from its leakage and number of

accesses during the epoch. PMem(f) is the average power of L2 misses and is calculated

according to the model for memory power in [65]. We find that this average power does

not vary significantly with core frequency (roughly 1-2% in our simulations); workload

and memory bus frequency have a stronger impact. Thus, our power model assumes

that core frequency does not affect memory power. P i
Core(f) is calculated based on the

cores’ activity factors using the same approach as prior work [11, 42]. We also find that

the power of the cores is essentially insensitive to the memory frequency.

4.2.4 Hardware and Software Costs

We now consider CoScale’s implementation cost. Core DVFS is widely available in com-

modity hardware, although each voltage domain may currently contain several cores.

Though CPUs with multiple frequency domains are common, there have historically

been few voltage domains; however, research has shown this is likely to change soon

[46, 89].

Our design also may require enhancements to performance counters in some proces-

sors. Most processors already expose a set of counters to observe processing, caching and

memory-related performance behaviors (e.g., row buffer hits/misses, row pre-charges).

In fact, Intel’s Nehalem architecture already exposes many MC counters for queues [52].

However, the existing counters may not conform precisely to the specifications required

for our models.
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When CoScale adjusts the frequency of a component, the component briefly sus-

pends operation. However, as our policy operates at the granularity of multiple mil-

liseconds, and transition latencies are in the tens of microseconds, the overheads are

negligible. As mentioned above, the execution time of the search algorithm is not a

major concern.

Existing DIMMs support multiple frequencies and can switch among them by transi-

tioning to powerdown or self-refresh states [44], although this capability is typically not

used by current servers. Integrated CMOS MCs can leverage existing DVFS technology.

One needed change is for the MC to have separate voltage and frequency control from

other processor components. In recent Intel architectures, this would require separating

last-level cache and MC voltage control [40]. Although changing the voltage of DIMMs

and DRAM peripheral circuitry is possible [50], there are no commercial devices with

this capability.

4.3 Evaluation

We now present our methodology and results.

4.3.1 Methodology

Workloads. Table 4.1 describes the workload mixes we use. The mixes are similar to

those we used to evaluate MemScale in Chapter 3 (Table 3.1). The workload classes

are: memory-intensive (MEM), compute-intensive (ILP), compute-memory balanced

(MID), and a new mixed class (MIX, in which each workload embodies one or two

applications from each other class). We have replaced some old applications in the

MEM category to include more memory-intensive applications from SPEC 2006 suites.

The rightmost column of Table 4.1 lists the application composition of each workload;

four copies of each application are executed to occupy all 16 cores. Note that the MPKI

and WPKI values for these workloads are different than those in Table 3.1, because our

simulation of CoScale also had to include a detailed LLC module (described later in

this section).
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Name MPKI WPKI Applications (x4 each)

ILP1 0.37 0.06 vortex gcc sixtrack mesa
ILP2 0.16 0.03 perlbmk crafty gzip eon
ILP3 0.27 0.07 sixtrack mesa perlbmk crafty
ILP4 0.25 0.04 vortex mesa perlbmk crafty
MID1 1.76 0.74 ammp gap wupwise vpr
MID2 2.61 0.89 astar parser twolf facerec
MID3 1.00 0.60 apsi bzip2 ammp gap
MID4 2.13 0.90 wupwise vpr astar parser
MEM1 18.2 7.92 swim applu galgel equake
MEM2 7.75 2.53 art milc mgrid fma3d
MEM3 7.93 2.55 fma3d mgrid galgel equake
MEM4 15.07 7.31 swim applu sphinx3 lucas
MIX1 2.93 2.56 applu hmmer gap gzip
MIX2 2.34 0.39 milc gobmk facerec perlbmk
MIX3 2.55 0.80 equake ammp sjeng crafty
MIX4 2.35 1.38 swim ammp twolf sixtrack

Table 4.1: CoScale workload descriptions.

Same as for MemScale, we run the best 100M-instruction simulation point for each

application (selected using Simpoints 3.0 [73]). A workload terminates when its slowest

application has run 100M instructions. In terms of the workloads’ running times, the

memory-intensive workloads tend to run more slowly than the CPU-intensive ones. On

average, the numbers of epochs are: 46 for MEM workloads, 32 for MIX, 15 for MID,

and 10 for ILP.

Simulation infrastructure. Compared to the evaluation of Chapter 3, we have

enhanced the simulation infrastructure for CoScale. Instead of collecting LLC misses

from M5 [12], we collect per-application private L1 misses. We feed these per-core

traces to a shared LLC module. The accesses that miss in the LLC reach our detailed

DRAM simulator. In addition, we feed CPU core activity data from M5 to McPAT

[54] to estimate CPU power dynamically. Overall, our infrastructure simulates in detail

the aspects of cores, caches, MC, and memory devices that are relevant to our study,

including memory device power and timing, and row buffer management.

The simulation parameters are almost the same as those we used to evaluate Mem-

Scale (Table 3.2), except we are using our own LLC module, which is 16MB, 16-way,

and has 30 CPU cycles as the hit latency. Like for MemScale, we compensate for the

lower memory traffic of these assumptions by simulating prefetching in Section 4.3.2.

In the same section, we investigate an optimistic out-of-order design.
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We assume per-core DVFS, with 10 equally-spaced frequencies in the range 2.2-

4.0 GHz. We assume a voltage range matching Intel’s Sandybridge, from 0.65 V to

1.2 V, with voltage and frequency scaling proportionally, which matches the behavior

we measured on an i7 CPU. We assume uncore components, such as the shared LLC,

are always clocked at the nominal frequency and voltage. The memory system DVFS

configurations are the same as MemScale. In summary the frequencies of the memory

bus and the DRAM chips range from 800 MHz to 200 MHz, with steps of 66 MHz.

Transitions between bus frequencies are assumed to take 512 memory cycles plus 28 ns.

The register and MC power scale linearly with utilization, whereas PLL power scales

only with frequency and voltage. As a function of utilization, the PLL/register power

ranges from 0.1 W to 0.5 W [29, 39]. The MC power ranges from 4.5 W to 15 W,

slightly different than the evaluation in Chapter 3, to better reflect lower idle power on

the newer technology node.

We do not model power for non-CPU, non-memory system components in detail;

rather, we assume these components contribute a fixed 10% of the total system power

in the absence of energy management (we show the impact of varying this percentage

in Section 4.3.2).

Under our baseline assumptions, at maximum frequencies, the CPU accounts for

roughly 60%, the memory subsystem 30%, and other components 10% of system power.

4.3.2 Results

Energy and Performance

We first evaluate CoScale with a maximum allowable performance degradation of 10%.

We consider lower performance bounds in Section 4.3.2.

Figure 4.5 shows the full-system, memory, and CPU energy savings CoScale achieves

for each workload, compared to a baseline without energy management (i.e., maximum

frequencies). The memory energy savings range from -0.5% to 57% and the CPU energy

savings range from 16% to 40%. As one would expect, the ILP workloads achieve the

highest memory and lowest CPU energy savings, but still save at least 21% system
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Figure 4.5: CoScale energy savings. CoScale conserves up to 24% of the full-system energy.
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Figure 4.6: CoScale performance. CoScale never violates the 10% performance bound.

energy.

The memory energy savings in the MID and MIX workloads are lower but still sig-

nificant, whereas the CPU energy savings are somewhat higher (system energy savings

of at least 13% for both workload classes). Note that CoScale is successful at picking

the right energy saving “knob” in the MIX workloads. Specifically, it more aggressively

conserves memory energy in MIX3, whereas it more aggressively conserves CPU energy

in MIX1, MIX2, and MIX4.

The MEM workloads achieve the smallest memory and largest CPU energy savings

(system energy savings of at least 12%), since their greater memory channel traffic

reduces the opportunities for memory subsystem DVFS.

Figure 4.6 shows the average and maximum percent performance losses relative to

the maximum-frequency baseline. The figure shows that CoScale never violates the

performance bound. Moreover, CoScale translates nearly all the performance slack into

energy savings, with an average performance loss of 9.6%, quite near the 10% target.
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Figure 4.7: Timeline of the milc application in MIX2. Milc exhibits three phases.
CoScale adjusts core and memory subsystem frequency precisely and rapidly in response to the
phase changes. The other techniques do not.

In summary, CoScale conserves between 13% and 24% full-system energy for a wide

range of workloads, always within the user-defined performance bounds.

Dynamic Behavior

To provide greater insight, we study an example of the dynamic behavior of CoScale

in detail. Figure 4.7 plots the memory subsystem and core frequency (for milc in

MIX2) selected by CoScale over time. For comparison, we also show the behavior of

the Uncoordinated and Semi-coordinated policies.

Figure 4.7(a) shows that, in epoch two, CoScale reduces the core and memory

frequencies to consume the available slack. In this phase, milc has low memory traffic

needs, but the other applications in the mix preclude lowering the memory frequency
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further. Near epoch 10, another application’s traffic spike results in a memory frequency

increase, allowing a reduction of core frequency for milc. Near epoch 14, milc undergoes

a phase change and becomes more memory-bound. As a result, CoScale increases the

memory frequency, while reducing the core frequency.

Figure 4.7(b) shows a similar timeline for Uncoordinated. On the whole, the fre-

quency transitions follow the same trend as in CoScale. However, both frequencies are

markedly lower. Because there is no coordination, both CPU and memory power man-

agers try to consume the same slack. These lower frequencies result in a longer running

time (23 vs 25 epochs), violating the performance bound.

Figure 4.7(c) plots the timeline for Semi-coordinated. Initially, it incurs frequency

oscillations until the traffic spike at epoch 10 causes memory frequency to become

pegged at 800MHz. At that point, the CPU frequency for milc is also lowered con-

siderably to consume all remaining slack. Unlike Uncoordinated, Semi-coordinated is

successful in meeting the performance bound as slack estimation is coordinated among

controllers. However, both the oscillations and the local minima selected after epoch

12 result in lower energy savings relative to CoScale. Altering the CPU and memory

power managers to make their decisions half an epoch out of phase reduces oscillation,

but the system gets stuck at local minima even sooner (around the 7th epoch). Making

decisions an entire epoch out of phase produces similar behavior.

Energy and Performance Comparison

Figure 4.8 contrasts average energy savings and Figure 4.9 contrasts average and worst-

case performance degradation across polices. These results demonstrate that MemScale

and CPUOnly are of limited use. Although they save considerable energy in the com-

ponent they manage (MemScale conserves 30% memory energy, whereas CPUOnly

conserves 26% CPU energy), gains are partially offset by higher energy consumption

in the other component (longer runtime leads to higher background/leakage energy for

the unmanaged component). These schemes save at most 10% full-system energy. Note

that the MemScale energy savings are slightly lower than the results in Chapter 3. The
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Figure 4.8: Energy savings. CoScale provides greater full-system energy savings than
the practical policies.

main reason is that in this chapter we use McPAT to estimate CPU power accurately,

whereas in Chapter 3 we assume a fixed rest-of-system (including CPU) power con-

sumption. This change also causes the memory power to represent a smaller fraction

of the full-system power.

Uncoordinated conserves substantial memory and CPU energy, achieving the high-

est full-system energy savings of any scheme. Unfortunately, it is incapable of keeping

the performance loss under the pre-defined 10% bound. In some cases, the perfor-

mance degradation reaches 19%, nearly twice the bound. On the other hand, Semi-

coordinated bounds performance well because the managers share the slack estimate.

However, because of frequent oscillations and settling at sub-optimal local minima,

Semi-coordinated consumes up to 8% more system energy (2.6% on average) than

CoScale. Reducing oscillations by having the power managers make decisions out of

phase does not improve results (0.3% lower savings with the same performance).

CoScale is more stable and effective than the other practical policies at conserving

both memory and CPU energy, while staying within the performance bound. CoScale

does almost as well as Offline. These results show that our heuristic for selecting

frequencies is almost as effective as considering an exponential number of possibilities

with prior knowledge of each workload’s behavior.
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Figure 4.9: Performance. Uncoordinated is incapable of limiting performance degra-
dation.

Sensitivity Analysis

To illustrate CoScale’s behavior across different system and policy settings, we report on

several sensitivity studies. In every case, we vary a single parameter at a time, leaving

the others at their default values. Given the large number of potential experiments, we

usually present results only for the MID workloads, which are sensitive to both memory

and core performance.

Acceptable performance loss. In Figure 4.10, we vary the maximum allowable

performance degradation, showing energy savings. Recall that our other experiments

use a bound of 10%. As one would expect, 1% and 5% bounds produce lower energy

savings, averaging 4% and 9%, respectively. Allowing 15% and 20% degradations saves

more energy. In all cases, CoScale meets the configured bound, and provides greater

percent energy savings than performance loss, even for tight performance bounds.

Rest-of-the-system power consumption. Figure 4.11 illustrates the effect of

doubling and halving our assumption for non-memory, non-core power. When this

power is doubled, CoScale still achieves 14% average full-system energy savings, whereas

the savings increase to 17% when it is halved. In all cases performance remains within

bounds (not shown).

Ratio of memory subsystem and CPU power. We also consider the effect of

varying the ratio of memory subsystem to CPU power. Recall that, under our baseline

power assumptions, CPU accounts for 60%, while memory accounts for 30% of total



70

0%

10%

20%

30%

En
er

gy
 S

av
in

gs
 (

%
)

1% Bound 5% Bound
10% Bound 15% Bound
20% Bound

Figure 4.10: Impact of performance
bound. Higher bound allows more sav-
ings without violations.

0%

5%

10%

15%

20%

En
er

gy
 S

av
in

gs
 (

%
)

5% Other 10% Other

15% Other 20% Other

Figure 4.11: Impact of rest-of-system
power. Savings still high for higher rest-
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power, MID. Savings increase as mem-
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Figure 4.13: Impact of CPU:mem
power, MEM. Savings decrease as mem-
ory power increases.

power at peak frequency (a CPU:Mem ration of 2:1). In Figure 4.12, we consider 1:1

and 1:2 ratios. CoScale achieves greater energy savings when the fraction of memory

power is higher for the MID workloads. Interestingly, this trend is reversed for our

MEM workloads (Figure 4.13), as most savings come from scaling the CPU.

CPU voltage range. We next consider the impact of a narrower CPU (and

MC) voltage range, which reduces CoScale’s ability to conserve core energy. Figure

4.14 shows results for a half-width range (0.95 1.2v) relative to our default assumption

(0.65 1.2v). When the marginal utility of lowering CPU frequency decreases, CoScale

scales the memory subsystem more aggressively and still achieves 11% full-system en-

ergy savings on average.

Number of available frequencies. By default, we assume 10 frequencies for both

the CPU and the memory subsystem. Figure 4.15 shows results for 4 and 7 frequencies

as well. As expected, the energy savings decrease as the granularity becomes coarser.
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Figure 4.16: Impact of prefetching. CoScale works well with and without prefetch-
ing.

However, CoScale adapts well, conserving only slightly less energy with fewer frequen-

cies. With 4 frequencies the maximum performance loss is slightly lower than 10%,

because the coarser granularity limits CoScale’s ability to consume the slack precisely.

Prefetching. Next, we consider the impact of the increase in memory traffic that

arises from prefetching. We implement a simple next-line prefetcher. This prefetcher

is effective for these workloads, always decreasing the LLC miss rate. However, the

prefetcher is not perfect; its accuracy ranges from 52% to 98% across our workloads.

On average, it improves performance by almost 20% on MEM workloads, 8% on MIX,

4% on MID, and 1% for ILP. At the same time, it increases the memory traffic more

than 33% on MEM, 20% on MID, 33% on MIX, and 13% on ILP. As one might expect,

the higher memory traffic and instruction throughput result in higher memory and CPU

power.

Figure 4.16 shows the full-system energy per instruction of three designs (Base+prefetching,

Base+CoScale, and Base+prefetching+CoScale) normalized to our baseline (Base). We
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can see that the energy consumptions of Base+prefetching and Base are almost the

same, except for the MEM workloads, since higher power and better performance

roughly balance from an energy-efficiency perspective. Again except for MEM, the

energy consumptions of Base+CoScale and Base+prefetching+CoScale are almost ex-

actly the same, since average memory frequency is lower but CPU frequency is higher.

For the MEM workloads, the performance improvement due to prefetching dominates

the average power increase, so the average energy of Base+prefetching is 7% lower than

Base. In addition, Base+prefetching+CoScale achieves 17% energy savings, compared

to 12% from Base+CoScale. These results show that CoScale works well both with and

without prefetching.

Out-of-Order. Although our trace-based methodology does not allow detailed

out-of-order (OoO) modeling, we can approximate the latency hiding and additional

memory pressure of OoO by emulating an instruction window during trace replay. We

make the simplifying assumption that all memory operations within any 128-instruction

window are independent, thereby modeling an upper bound on memory-level parallelism

(MLP). Note that we still model a single-issue pipeline, hence, our instruction window

creates MLP, but has no impact on instruction-level parallelism. Figure 4.17 compares

the average CPI of the in-order and OoO designs, with and without CoScale, normalized

to the in-order result. At one extreme, OoO drastically improves MEM, as memory

stalls can frequently overlap. At the other extreme, ILP gains no benefit, since the

infrequent L2 misses do not overlap frequently enough to impact performance. Note

that, in the OoO+CoScale cases, performance remains within 10% of the OoO case;

that is, CoScale is still maintaining the target degradation bound. Although we do

not show these results in the figure, similar to the in-order case, Semi-coordinated on

OoO meets the performance requirement, whereas Uncoordinated on OoO does not –

Uncoordinated on OoO degrades performance by up to 16%, on a 10% performance

loss bound.

Figure 4.18 shows average energy per instruction normalized to In-order. As we do

not model any power overhead for OoO hardware structures (only the effects of higher

instruction throughput and memory traffic), OoO always breaks even (ILP and MIX)
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Figure 4.17: In-order vs OoO: performance. CoScale is within the performance
bound in both in-order and OoO.
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Figure 4.18: In-order vs OoO: energy. CoScale saves similar percent of energy in
in-order and OoO.

or improves (MEM and MID) energy efficiency over In-order. Across the workloads,

CoScale provides similar percent energy-efficiency gains for OoO as for In-order. The

MEM case is the most interesting, as OoO has the largest impact on this workload. OoO

increases memory bus utilization substantially (35% on average and up to 50%) and also

results in far more queueing in the memory system (43% on average). The increased

memory traffic balances with a reduced sensitivity to memory latency, and CoScale

selects roughly the same memory frequencies under In-order and OoO. Interestingly,

because of latency hiding, the MEM workload is more CPU-bound under OoO, and

CoScale selects a slightly higher CPU frequency (5% higher on average). Again, we

do not show results for Semi-coordinated and Uncoordinated on OoO in the figure,

but their results are similar to those on an in-order design. Semi-coordinated on OoO

causes frequency oscillation and leads to higher (up to 8%, and 4% on average) energy

consumption than CoScale. Uncoordinated on OoO saves a little more energy (1% on

average) than CoScale, but it violates the performance target significantly as mentioned

above.
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Summary. These sensitivity studies demonstrate that CoScale’s performance mod-

eling and control frameworks are robust—across the parameter space, CoScale always

meets the target performance bound, while energy savings vary in line with expecta-

tions. Although the results in this subsection focused mostly on the MID workloads,

we observed similar trends with the other workloads as well.

4.4 Conclusion

In this chapter, we proposed CoScale, a hardware-software approach for managing CPU

and memory subsystem energy (via DVFS) in a coordinated fashion, under performance

constraints. Our evaluation showed that CoScale conserves significant CPU, memory,

and full-system energy, while staying within the performance bounds; that it is superior

to four competing energy management techniques; and that it is robust over a wide

parameter space. We conclude that CoScale’s potential benefits far outweigh its small

hardware costs.
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Chapter 5

MultiScale

5.1 Introduction

Previous chapters have shown that the active low-power modes for main memory are

good at trading memory performance for energy savings. However, they only select

a single performance setting for the memory system and are thus ideal for systems

with a single MC. On the other hand, chip multiprocessors are increasingly integrating

multiple on-die MCs [1, 6, 87]. Furthermore, recent work has demonstrated the benefit

of deliberately skewing traffic across multiple MCs to preserve fair performance among

applications judged likely to interfere (i.e., by placing data such that memory-intensive

and non-memory intensive applications access disjoint MCs/channels) [68]. Such asym-

metric traffic patterns will call for correspondingly asymmetric DVFS control.

Recent hardware trends also suggest that traffic skew across MCs will grow. For

example, as servers increasingly rely on multi-socket configurations, inter-socket MC

bandwidth requirements will vary significantly [86]. In addition, the advent of het-

erogeneous processors incorporating sophisticated superscalar out-of-order cores with

simpler in-order cores (e.g., ARM’s big.LITTLE architecture [30]), and graphics pro-

cessing units (e.g., AMD’s Fusion and Intel’s Sandybridge architectures [79]), will fun-

damentally increase traffic skew across MCs. Therefore, it is critical to explore novel

multi-MC active low-power mode management techniques. The straight-forward ex-

tension of prior work—selecting the same frequency for all MCs based on their average

bandwidth requirement—will lead to sub-optimal savings under skewed traffic.

Thus, this chapter presents MultiScale, a set of software policies and hardware

mechanisms for coordinating DVFS across multiple MCs, channels, and devices. Un-

der OS control, MultiScale monitors per-application traffic across MCs and estimates
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their varying bandwidth and latency requirements. It then uses a heuristic algorithm

to quickly select and apply an optimized MC frequency combination. Same as Mem-

Scale and CoScale, MultiScale’s goal is to minimize the overall system energy, without

degrading performance beyond a user-specified limit. Unlike past work however, Multi-

Scale is able to do so effectively and consistently for multi-MC systems under a variety

of traffic skews.

We evaluate MultiScale using detailed simulation on a diverse set of workload mixes

constructed from the SPEC benchmark suite [81]. We quantify MultiScale’s benefits

across a range of traffic-skew patterns, showcasing its consistently higher energy effi-

ciency versus MemScale.

This work is the first to study techniques to apply memory system active low-

power modes to multiple MCs in a coordinated manner. First, we develop a set of

low-overhead, yet effective software policies and hardware mechanisms that monitor

per-application, per-MC bandwidth/latency requirements. Our readily-implementable

performance counters, allied with low-overhead OS support, can be used to realize Mul-

tiScale’s performance and energy models. Second, we quantify MultiScale’s ability to

exploit user-defined per-application performance degradation constraints across a range

of traffic skew patterns. Our results show that MultiScale’s ability to coordinate per-

MC DVFS based on the workloads’ dynamic memory bandwidth requirements allows it

to achieve up to 4.5 times greater energy savings than prior approaches. MultiScale is

effective even in situations when performance constraints are tight; for example, when

the allowable degradation is capped at just 1%, MultiScale can still achieve energy

savings over 9% whereas past work achieves savings of merely 2%.

The remainder of the chapter is structured as follows. We present background and

motivation in the next section. Section 5.3 describes MultiScale in detail. Section 5.4

describes our evaluation methodology and results. Finally, Section 5.5 concludes the

chapter.
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Figure 5.1: Because it independently manages each MC, MultiScale can select
a lower frequency for MC 0 and thus save more energy than MemScale while
remaining within the prescribed performance bounds.

5.2 Motivation

MemScale selects a single performance setting for the memory system based on aggre-

gate application requirements. As such, it is unable to exploit time-varying or asym-

metric traffic patterns across MCs in multiple-MC systems. Figure 5.1 illustrates a

scenario where two applications, A and B, run on a dual-MC system. Suppose the

memory allocation is skewed such that 80% of application A’s accesses are directed to

MC 1, whereas application B’s accesses are predominantly to MC 0. Further, suppose

that application A is under a tight performance constraint, and can tolerate only a 1%

degradation, whereas application B can tolerate up to 10% slowdown. Application A’s

tight performance constraint will require MC 1 at a high frequency. However, there

might be substantial opportunity to slow MC 2 without violating the performance con-

straint of either application. MemScale (Figure 5.1 left) selects only a single frequency

for both MCs, based on the tighter performance constraint of application A, limiting

energy savings. In contrast, MultiScale (Figure 5.1 right) independently assesses the

bandwidth requirements of each MC and selects an appropriate frequency/voltage to

maximize energy savings while respecting each applications’ degradation constraint.

While the OS maps virtual to physical addresses, the interleaving of physical ad-

dresses has the greatest impact on the traffic skew across MCs. Cache line and page

interleaving seek to distribute traffic evenly. While such interleaving balances traffic

across MCs, there are many strong arguments and hardware/software trends pointing
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toward addressing schemes that skew traffic across channels. For example, recent work

by Muralidhara and co-authors has demonstrated the benefit of deliberately skewing

traffic across multiple MCs to preserve fair performance among applications judged

likely to interfere [68]. Under this scheme, data from memory-intensive and non-

memory-intensive applications are mapped to disjoint MCs/channels. This isolates

non-memory-intensive workloads from interference effects of intense memory traffic,

while clever scheduling techniques manage access among the memory-intensive work-

loads. Similarly, Awasthi and co-authors propose mechanisms to place data in multi-MC

systems to improve performance [6]. Their approach, which balances the benefits of al-

locating application data to the MC closest to the corresponding core against queuing

delays, on-chip latencies, and row buffer hit rates, often results in traffic skew. Traffic

skew is also common in heterogeneous platforms with accelerators, such as graphics pro-

cessing units and sophisticated out-of-order cores coupled with simpler in-order cores,

which might impose differing bandwidth requirements across MCs.

MultiScale adapts better than MemScale to traffic skew across MCs. So, in char-

acterizing MultiScale, we have two primary goals: (1) We demonstrate its effectiveness

across a range of traffic patterns. To this end, we quantify MultiScale’s operation across

a spectrum of traffic skews. (2) We aim to showcase MultiScale’s effectiveness at real-

izing energy savings even under the tightest performance degradation constraints. To

this end, we study the benefits of MultiScale across a range of degradation constraints,

as small as 1% allowable slowdown.

5.3 MultiScale Design

MultiScale seeks to maximize energy savings while adhering to per-application user-

specified performance degradation constraints. We now detail the hardware mechanisms

and software policies that make this possible.



79

5.3.1 Hardware and Software

Hardware mechanisms. For each MC, MemScale adjusts its frequency and voltage

and the frequency of its associated memory channels and DIMMs; for expediency, we

shall refer to these operations collectively as “adjusting the MC frequency”. The DIMM

clocks lock to the bus frequency (or a multiple thereof), while the MC frequency is fixed

at double the bus frequency. While MultiScale can readily be applied to systems where

each MC controls multiple channels at different frequencies, assessing the hardware

overheads of such an approach is beyond the scope of this work. We therefore treat

each MC, together with all its memory channels, as the unit for frequency selection. A

frequency change requires the system to briefly suspend operation and reconfigure to

run at the new target. Our experiments model the associated recalibration delays.

Similar to MemScale and CoScale, MultiScale frequency scales the MCs, buses, and

DIMMs. Voltage scaling is restricted to the MCs, and is set according to the selected

frequencies.

Performance counter monitoring. Our management policies require input from

a set of performance counters implemented on each core and on-chip MC. Specifically,

we require counters tracking the amount of work pending at each MC’s memory banks

and channels. Counters similar to those we require already exist in most modern archi-

tectures, and are accessible through the CPU’s performance-monitoring interface. For

further details on the exact performance counters used, we refer the reader to Chapter

3 as MultiScale uses identical counters.

Energy management policy. Our goal is to minimize overall system energy con-

sumption without degrading performance beyond user-specified bounds. Therefore, as

in MemScale, MultiScale exploits the notion of performance slack: the difference be-

tween a baseline execution and a target slowdown that the each application may incur

to save energy. Our control algorithm exploits this allowable slack to reduce memory

system performance and save energy. The per-application performance target is de-

fined such that the application incurs no more than a pre-selected maximum slowdown

relative to its execution without energy management (i.e., at maximum frequency).
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Formally, the slack is the difference in time of the program’s execution (TActual) from

the target (TTarget).

Slack = TTarget − TActual

= TMaxFreq · (1 + γ)− TActual

(5.1)

where γ defines the target maximal execution time increase.

In exploiting this slack, MultiScale’s control algorithm divides execution into fixed-

sized epochs. We typically associate an epoch with an OS time quantum. MultiScale

splits each epoch into four distinct phases. First, applications are profiled by collecting

statistics from the performance counters. We find that profiling for 300 µs in an epoch

of 5 ms suffices. Second, the OS uses the profiling information to select new MC

frequencies (as detailed in the next subsection). Third, each MC, its channels, and

DRAM devices are transitioned to their new frequency. Finally, the epoch completes at

this new frequency configuration. At the end of the epoch, we again query the counters

and estimate the performance that would have been achieved had the memory system

operated at maximum frequency. The difference between this estimate and the achieved

performance is used to update the slack and is carried forward to calculate the target

performance in the next epoch.

5.3.2 Performance and Energy Models

Performance model. Our control algorithm utilizes a performance model extended

from MemScale to account for per-MC frequencies and the traffic directed by each

application to each MC. The performance model predicts the relationship between

CPU CPI of an application, and the per-MC frequency. There are three steps in

our modeling approach. First, we estimate the memory-boundedness of each running

application, and thus estimate the target access latency that satisfies the performance

target of each application. Second, we estimate each MC’s contribution to this average

latency (which requires the MCs to be aware of the hardware thread that issued each

access). Finally, based on the first two steps, we calculate per-MC frequencies. Next,
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we detail each step.

Step 1: Under our performance model, the runtime of a program is defined as: ttotal =

tCPU + tMem = ICPU ·E[TPICPU] + IMem ·E[LMem], where ICPU represents the number

of instructions, and Imem is the number of last-level cache (LLC) misses stalling the

pipeline. TPICPU represents the average time that instructions spend on the CPU (in-

cluding L1 cache hits, L1 cache misses, and L2 cache hits in a two-level cache hierarchy),

and LMem is the average memory latency of each application.

Since runtime is not known a priori, we model the rate of progress of an application

in terms of CPI. The average CPI of a program is defined as: E[CPI] = (E[TPICPU] +

α ·E[LMem]) ·FCPU, where α is the fraction of instructions that miss in the L2 cache and

stall the pipeline, and FCPU is the operating frequency of the core. The value of α can

easily be calculated as the ratio of instruction to LLC miss counts, accessible through

performance counters. Given a target CPI, we can compute E[LMem] assuming other

components in the above equation are constant. By substituting α into the equation and

dividing by the frequency, we can compute the target average per-application latency

needed to compute per-MC latency.

Step 2: Having calculated the target average memory access latency per application,

we now focus on the latency breakdown per MC. To understand this, consider a simple

scenario where there are two applications, A and B, and two MCs, MC 0 and MC 1.

Suppose that for A, PercA0% of total memory accesses go to channels under MC 0,

while PercA1% go to channels under MC 1. Further, assume that PercB0% of accesses

from B go to channels under MC 0, and PercB1% of accesses go to channels under

MC 1. We have: 
PercA0% + PercA1% = 100%

PercB0% + PercB1% = 100%

(5.2)

Assume that the average access latency to channels under MC 0 is L0, and to channels

under MC 1 is L1. Furthermore, denote the average memory access latency of A and
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B is E[LA] and E[LB], respectively. We then have:


E[LA] = PercA0 · L0 + PercA1 · L1

E[LB] = PercB0 · L0 + PercB1 · L1

(5.3)

We can now use these equalities to calculate per-MC memory access latencies. Using

the information from step (1) on each application’s E[LMem], we can cap each applica-

tion’s latencies so as to ensure the correct performance targets. Specifically, assuming

that LTarget A and LTarget B are the threshold latencies that guarantee the performance

targets of A and B, we have the following inequalities.


E[LA] ≤ LTarget A

E[LB] ≤ LTarget B

(5.4)

Solving this system provides L0 and L1 values which can then be used as input to our

next step.

Although this simple example assumes two applications and two MCs, this approach

can be generalized to any number of applications and MCs. In general, this entails

solving a linear programming (LP) problem where the number of MCs is likely smaller

than the number of running applications. (MultiScale only needs to deal with the

applications running during the next epoch.) Standard LP solvers can be used to

calculate these latencies efficiently. The overhead of this computation is negligible for

realistic numbers of MCs, since it only occurs once per epoch. For our setup (4 MCs

and 16 cores), the overhead is less than 50 µs on a Xeon 5520 machine.

Step 3: Having solved for L0 and L1 and the latencies of all other MCs (which we

collectively denote as LMem), we model the relationship between channel frequency

and memory access latency. We take the approach of MemScale: E[LMem] = ξbank ·

(SBank + ξbus · SBus), where ξbus represents the average number of requests waiting for

the bus and is approximated by the counters capturing the queuing impact of waiting

for bus transfers; ξbank represents the average number of requests waiting for the bank

and is approximated by the counters capturing per bank queuing; SBank is the average
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time, excluding queueing delays, to access a bank (including precharge, row access and

column read, etc); and SBus is the average data transfer (burst) time across the bus.

Since the values of SBank, ξbank, and ξbus can be obtained by profiling performance

counters, we can calculate SBus, which is a function of the frequency. Finally, we can

calculate the target frequency from SBus.

Full-system energy model. Simply meeting the CPI loss target for a given work-

load does not necessarily maximize energy efficiency. In other words, though additional

performance degradation may be allowed, it may save more energy to run faster. To

determine the best operating point, we construct a model to predict full-system energy

usage. For memory frequency fMC 1,fMC 2, ..., fMC N, we define the system energy ratio

(SER) as:

SER(fmem) =
TfMem

· (
∑

i PfMC i
+ PNonMem)

TBase · PBase
(5.5)

TfMem
is the performance estimate for an epoch at frequency fMC 1 through fMC N.

Memory power is calculated with the memory power model in [65], and PNonMem ac-

counts for all non-memory system components and is assumed to be fixed. TBase and

PBase are corresponding values at a nominal frequency. At the end of each epoch’s

profiling phase, we calculate SER for all memory frequencies that can meet the perfor-

mance constraint given by the slack, and select the frequency that minimizes the SER,

from the range calculated by the latency model as described earlier in this section.

5.4 Evaluation

In this section, we demonstrate the efficacy of MultiScale over a range of traffic skews

relative to MemScale.

5.4.1 Methodology

Simulator and workloads. Our evaluations are based on a two-step simulation

methodology similar to ones in Chapter 3 and Chapter 4. The only difference is that

we are modeling 4 MCs, where each MC can be set at a different frequency and voltage.

Each MC’s power ranges from 2W to 4W, depending on the voltage, frequency, and
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Name MPKI WPKI Applications (x4 each)
MIX1 2.93 2.56 applu hmmer gap gzip
MIX2 2.34 0.39 milc gobmk facerec perlbmk
MIX3 2.55 0.80 equake ammp sjeng crafty
MIX4 2.41 1.41 lucas vpr h264ref eon
MIX5 2.35 1.38 swim ammp twolf sixtrack
MIX6 2.91 1.57 libquantum twolf vpr sjeng
MIX7 3.12 1.48 mcf astar gzip sixtrack
MIX8 1.83 0.77 mgrid fma3d crafty eon

Table 5.1: MultiScale workload descriptions.

utilization. Based on these values, our memory system (including MCs) accounts for

44% of the total system power on average. We further assume the 16 cores are inter-

connected using as 4x4 mesh with the MCs on the corners. Every set of 4 cores has a

local MC, which is at the adjacent corner.

Table 5.1 lists the main characteristics of our 8 workloads. Those workloads are

different than those in Chapter 3 and Chapter 4. We are using all MIX workloads which

can better represent the traffic interference pattern studied in [68]. The workloads are

formed by combining applications from the SPEC 2000 and SPEC 2006 suites. We

analyze the best 100M-instruction simulation point for each application (selected using

Simpoints 3.0 [73]). The workload terminates when the slowest application has executed

100M instructions.

Experiments. We compare MultiScale to MemScale for different traffic distribu-

tions and performance degradation bounds. We distribute traffic by controlling how

many pages of each application are allocated to its local MC. In our experiments, we

vary this from 100% (the extreme form of channel partitioning proposed in [68]) to

80%, 60%, 40%, 25%, and 20%. Non-local MC pages are allocated randomly across

the remote MCs. Thus, the 25% case represents the scenario in which each MC is

responsible for (roughly) the same number of pages.

For each of these cases, we investigate 1%, 3%, 5%, 7%, and 10% allowable perfor-

mance slowdowns.



85

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

M
IX

1

M
IX

2

M
IX

3

M
IX

4

M
IX

5

M
IX

6

M
IX

7

M
IX

8

A
V

G

En
e

rg
y 

Sa
vi

n
gs

 (
%

)

full	system	energy
memory	system	energy

0%

2%

4%

6%

8%

10%

12%

14%

M
IX

1

M
IX

2

M
IX

3

M
IX

4

M
IX

5

M
IX

6

M
IX

7

M
IX

8

A
V

G

P
er

f.
 D

eg
ra

d
at

io
n

 (
%

)

multiprogram average
worst program in mix

Perf. degradation bound

(a) (b)

Figure 5.2: (a) MultiScale’s energy savings assuming that 80% of an applica-
tion’s pages are mapped to its local MC and a 10% performance loss bound;
(b) MultiScale’s actual performance loss in this scenario.

5.4.2 Results

Figure 5.2(a) shows MultiScale’s memory and full-system energy savings across the

workload mixes, assuming maximum allowable performance degradations of 10%, and

a distribution where 80% of an application’s pages are allocated to its local MC. The

figure indicates that MultiScale is successful in saving energy across all workload mixes

under skewed traffic. Although the exact savings vary across the workloads, on average,

MultiScale saves 13% of the baseline full-system energy.

MultiScale’s energy savings do not come at the cost of excessive performance degra-

dation. Figure 5.2(b) shows the average and worst-case performance degradation across

all applications in a workload. The results indicate that MultiScale saves energy without

exceeding the 10% performance loss constraint across all workload mixes.

Figure 5.3 depicts the MultiScale and MemScale energy savings across the entire

spectrum of performance loss bounds and page allocation schemes. The horizontal axis

plots the page allocation scheme, whereas the vertical axis captures the full-system

energy savings of each approach. For every allocation scheme and approach, there are

five bars, each illustrating the full-system energy savings for a different performance

loss bound.

From this figure, we make the following observations. First, MultiScale saves en-

ergy across every considered allocation and performance bound scenario. The exact
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Figure 5.3: MultiScale’s energy savings versus MemScale across a spectrum of
traffic skews and performance degradation bounds. MultiScale consistently provides
greater energy savings than MemScale.

energy savings depend upon the amount of traffic skew across MCs and the perfor-

mance bound. As expected, greater skew and performance bounds allow MultiScale to

save more energy. For example, with 100% local page allocation and 10% performance

bound, MultiScale saves over 14% of full-system energy. In contrast, with 40% of pages

allocated to the local MC and a 5% bound, the energy savings are 8%.

Second, MultiScale conserves at least as much energy as MemScale on every consid-

ered scenario. MultiScale’s advantage increases with greater traffic skew across MCs.

This is expected since MultiScale is better able to detect the traffic pressure on each MC

and adjust each MC to an appropriate frequency. Interestingly, Figure 5.3 also shows

that MultiScale outperforms MemScale substantially when the performance bounds are

low. For example, at a 1% performance bound and 100% local MC allocation, Multi-

Scale can still achieve energy savings of over 9%, whereas MemScale manages merely

2%. The reason is that MultiScale provides finer-grained control of the required mem-

ory system performance for a given slack; as such, it is easier for MultiScale to exploit

any available slack.

Finally, we consider the performance loss that MultiScale and MemScale incur across

the same spectrum of page allocations and loss bounds. Figure 5.4 depicts these data,

showing the performance loss of the most degraded application. The figure demon-

strates that MultiScale degrades the performance of the worst-hit application slightly

more than MemScale. These differences are most pronounced (but still lower than 2%)



87

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

10%
11%

100% 80% 60% 40% 25% 20%

W
o

rs
t 

p
e

rf
. d

e
gr

ad
at

io
n

10%-Bound
7%-Bound
5%-Bound
3%-Bound
1%-Bound

Mem Mul Mem Mul Mem Mul Mem Mul Mem Mul Mem Mul

(even allocation)Local page allocation ratio

Figure 5.4: MultiScale’s worst performance degradation versus MemScale
across a spectrum of traffic skews and performance degradation bounds. MultiScale
leads to slightly higher degradations than MemScale.

with lower traffic skew and higher performance bounds. In fact, MultiScale slightly

violates the bound in a few cases, but always by less than 0.23%. These slight viola-

tions occur because MultiScale pushes all applications to the edge of their performance

bounds, whereas MemScale pushes only the application that is most sensitive to mem-

ory performance to its bound. Thus, MultiScale is more prone to (slight) violations.

5.5 Conclusion

In this chapter, we proposed MultiScale, a set of hardware mechanisms and software

policies for using active low-power modes to manage multiple MCs in a coordinated

fashion and under performance constraints. MultiScale yields greater energy savings

than the best previous approach, MemScale, by gauging the traffic requirements of

each MC and setting it to the appropriate DVFS level. As our results demonstrate,

MultiScale is particularly effective in scenarios where traffic is skewed across MCs and

when the allowable performance degradation is low. As such, MultiScale is an ideal

energy management approach for multi-MC systems with scheduling and allocation

policies that promote traffic skew.
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Chapter 6

Related Work

We discuss various classes of related works to this dissertation in this chapter. We

first discuss a group of works related to memory power management. Next we briefly

overview a set of works on CPU power management. Finally we examine some inte-

grated approaches for energy savings and power management.

DRAM idle low-power states. DRAM’s idle low-power states have been exten-

sively studied. Normally, when a rank of DRAM chips is idle, all chips within that rank

can be transitioned into different idle low-power states. These states have different

exit latencies. For example, the fast-exit precharge powerdown state turns off some

peripheral circuitry, and has a short exit latency, but has limited power reduction. The

slow-exit precharge powerdown and self-refresh states can reduce more power, but with

longer exit latency, due to the DLL re-synchronization. There are many of works trying

to leverage such low-power states [21, 24, 37, 48, 56, 60, 70]. Most of these works aim at

creating longer idleness, in order to keep as many ranks of DRAM chips as possible in

low-power states for longer time. Unfortunately, the problem is that, in modern DDRx

technology, power management can only be done at a coarse granularity, i.e. a rank of

multiple DRAM devices. Thus, creating idleness involves ensuring that large amounts

of data are not touched for long enough to justify the transition to a deep low-power

state. This is a significant challenge in multi-core servers.

Lowering DRAM frequency and voltage. Researchers have proposed several

approaches to lower the memory system power consumption. David et al. also studied

memory DVFS [19], which is a concurrent work with this dissertation. Another related

work is Decoupled-DIMM [91], which we used as a baseline for comparison against

MemScale. Decoupled-DIMM is only able to reduce the DRAM power but not the
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DIMM, bus, and the memory controller power. In addition, it introduces a power

hungry synchronization buffer. Lee at al. [50] have studied how to apply Dynamic

Voltage Scaling to the DRAM chips, which we did not consider.

Rank subsetting and DRAM reorganization. In order to reduce DRAM’s

dynamic power (the portion depending on the number of reads and writes), researchers

have proposed various approaches trying to reduce the number of bits involved in each

memory access. Generally those methods fall into two categories: rank sub-setting

[3, 90], and DRAM reorganization [16, 84]. Zheng et al. [90] break each memory rank

into multiple narrow mini-ranks, thus fewer DRAM chips have to be activated for a

single memory access. To enable that, they use a bridge chip called mini-rank buffer to

relay data between the DRAM chips and the bus. The mini-rank buffer also provides

chip selection signals to keep the conventional DDRx protocol unchanged. Although the

number of chips involved in each memory request is reduced, the mini-rank buffer itself

is power-hungry because every bit of data written-in or read-out has to go through it;

in addition, it also introduces non-trivial latency overhead. Similarly, multicore DIMM

[3] groups DRAM chips into multiple virtual memory devices. Each group has its own

virtual data path. A demultiplex register is used to route command signal to the proper

chip groups. Different from Mini-rank, the demultiplex register does not buffer data

and thus consumes less power.

Instead of doing rank sub-setting, Udipi et al. [84] and Cooper-Balis et al. [16] mod-

ified the internal DRAM micro-architecture to address the data over-fetching problem.

In their works, they leverage either posted-RAS or posted-CAS to postpone the row

activation, until the column selection signal is available. As the result, the activation

only transfers the portion of bits required by the CAS command to the row buffer. Both

approaches require additional logic for finer grain bit line selection and additional regis-

ters for address buffering. Because their new DRAM mirco-architecture drives a much

smaller portion of the DRAM array than before for every access, the dynamic energy

involved in row activations and pre-charges is reduced. Udipi et al. [84] re-architect the

DRAM and the MC more extensively with the Single Sub-array Access (SSA) approach.

The main idea of SSA is to concentrate the data of the whole cache line into a single
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DRAM chip, as opposed to the conventional stripping of the cache line across multiple

chips. Doing this can increase the opportunity of putting more chips into DRAM’s idle

low-power states. In contrast to these works, we focused on reducing register/PLL, and

MC power consumptions, whereas they target dynamic power. MemScale is orthogonal

to and can easily be combined with these approaches.

Managing peak power and temperature. Instead of focusing on energy re-

duction, another category of works explore the opportunities of memory system power

shifting / capping [20, 22, 26, 35, 58]. Power capping is useful for server thermal man-

agement, bursty peak power control, and more accurate server consolidations under

a fixed power budget. Normally, memory power capping is done within the memory

controller by throttling the number of memory requests sent out during a constant

time interval. Memory access throttling is already built into commercial processors.

For example, IBM’s Power 6 processor throttles accesses to all channels equally, while

the Power 7 processor supports independent throttling for each channel within a single

memory controller [35]. David et al. [20] also proposed to prolong DRAM reads /

writes timings to different extents to reduce their average power consumption. Com-

bined with throttling of the memory accesses at various bandwidth percentages, they

can create different memory power limit states (MPL states). In their approach, the

OS dynamically selects the best MPL state based on a desired power budget over a

sliding time window. These previous power capping techniques aim to limit the power

of the memory subsystem, but may actually increase energy consumption due to per-

formance degradation under tight power budgets. Although we targeted at reducing

the energy consumption, one can apply the techniques proposed in this dissertation to

power capping scenarios too.

Alternative memory technologies. The use of novel memory technologies, such

as Phase Change Memory (PCM), has been proposed as an alternative to improving

the efficiency of DRAM-based memory subsystems [34, 49, 75, 78, 92]. Non-DRAM

systems may also provide a range of power-performance states [74]. However, whereas

these proposals require a fundamental shift in industrial trends, our techniques can

be applied immediately to current systems. More recent work has studied replacing
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traditional DRAM modules with Mobile DRAM [59]. This work explores replacing the

traditional DDRx DRAM modules with Low-power DDR (LPDDR) DRAM modules

in servers. The authors also proposed several hardware modifications trying to match

the performance of LPDDR to the traditional approaches. In our work, we focused

solely on conventional DDR3 DRAM and were able to accrue significant energy savings

within performance bounds.

Multiple-MC systems. Some modern multi-core processors are equipped with

multiple MCs. Each MC connects to multiple channels. For example, the IBM Power7

processor [86] has two MCs connected with eight channels. The Tile64 [87] processor

incorporates four MCs on a single chip shared among 64 cores. Awasthi et al. [6] suggest

that intelligent data placement on a multiple-MC system can improve performance.

Kim et al. [47] proposed a high-performance memory access scheduling algorithm for

multiple-MC systems. Abts et al. [1] studied the placement of multiple MCs on a

many-core processor, to reduce contention and latencies of on-chip memory traffic.

Orthogonal to these works, MultiScale is the first to study techniques to apply memory

system active low-power modes to multiple-MC systems in a coordinated manner.

CPU power management. A large body of work has addressed the power con-

sumption of CPUs. For example, studies have quantified the benefits of detecting

periods of server idleness and rapidly transitioning cores into idle low-power states

[61, 63]. However, such states do not work well under moderate or high utilization. In

contrast, processor active low-power modes provide better power-performance charac-

teristics across a wide range of utilizations. Here, DVFS provides substantial power

savings for small changes in voltage and frequency, in exchange for moderate perfor-

mance loss. Processor DVFS is a well-studied technique [32, 36, 38, 41, 66, 45, 80, 88]

that is effective for a variety of workloads. Recent work also considers the coordination

between processor DVFS and per-core power gating [85].

Processor power management techniques typically either rely on modeling or mea-

surements (and feedback) to determine the next active low-power mode to use. In-

variably, these techniques assume that the memory subsystem will behave the same,

regardless of the particular frequency chosen for the processor(s). In contrast, our work
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extended the DVFS techniques to the memory subsystem also.

Coordinated approaches. Researchers have only rarely considered coordinating

management across components [15, 13, 25, 56, 76]. Raghavendra et al. considered how

best to coordinate power managers that operate at different granularities, but focused

solely on the processor power [76]. Much as we find, they showed that uncoordinated

approaches can lead to destructive and unpredictable interactions among the managers’

actions.

A few works have considered coordinated processor and memory power management

for energy conservation [25, 55]. However, unlike these works, which assume only idle

low-power states for memory, we concentrate on the more effective active low-power

modes for memory (and processors). This difference is significant for two reasons:

(1) although the memory technology in these earlier studies (RDRAM) allowed per-

memory-chip power management, modern technologies only allow management at a

coarse grain (e.g., multi-chip memory ranks), complicating the use of idle low-power

states; and (2) active memory low-power modes interact differently with the cores than

idle memory low-power states. Moreover, these earlier works focused on single-core

CPUs, which are easier to manage than multi-core CPUs.

In a different vein, Chen et al. considered coordinated management of the processor

and the memory for capping power consumption (rather than conserving energy), again

assuming only idle low-power states [15]. Also assuming a power cap, Felter et al.

proposed coordinated power shifting between the CPU and the memory by using a

traffic throttling mechanism [26]. CoScale can be readily extended to cap power with

appropriate changes to its decision algorithm and epoch length.
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Chapter 7

Conclusion and Future Work

In this dissertation, we proposed active low-power modes for the main memory subsys-

tem, and three techniques for exploiting these modes to conserve full-system energy,

while remaining within user-prescribed performance bounds.

MemScale creates active memory system low-power modes by applying dynamic

voltage and frequency scaling to the memory controller and dynamic frequency scaling

to the memory channels and DRAM devices. It also includes a set of mechanisms and

an operating system policy to determine the best power mode at each point in time,

so that it can dynamically trade memory bandwidth for significant full-system energy

savings. Our evaluation demonstrated that MemScale conserves significant memory

and full-system energy, while staying within pre-set performance limits. The results

also showed that MemScale conserves more energy than prior techniques.

CoScale takes one step further targeting CPU power as well. It coordinates the

CPU and main memory active low-power modes to avoid instability and increase energy

savings. The fundamental innovation of CoScale is an efficient algorithm for searching

the space of per-core and memory frequency settings. The results demonstrated that

CoScale conserves significantly more full-system energy than policies that control only

the CPU power modes or only the memory power modes. CoScale also behaves better

than policies that independently control both resources.

MultiScale tackles servers with multiple memory controllers, by coordinating the

memory active low-power modes across the controllers. Hardware trends suggest that
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traffic skew across MCs will grow. Such asymmetric traffic patterns will call for corre-

spondingly asymmetric DVFS control. MultiScale applies a heuristic Linear Program-

ming based algorithm to quickly select and apply an optimized MC frequency com-

bination. We quantified MultiScale’s benefits across a range of traffic-skew patterns,

demonstrating its consistently higher energy efficiency versus MemScale.

Finally, we conclude that the techniques proposed in this dissertation can play an

important role in power and energy management of future server systems. Active low-

power modes for main memory can be used in similar ways as CPU DVFS, which

has had a significant impact on both industry and academia. Though the benefit of

voltage scaling will decrease over time, MemScale only uses voltage scaling for the MC.

Frequency scaling the other memory subsystem components has substantial background

energy benefits and can also be used to limit power consumption. Furthermore, future

systems will provide fine-grained low-power states for a larger number of subsystems

(e.g., caches, I/O bandwidth, network interfaces, disks), increasing the space of possible

state configurations exponentially. Coordinated management approaches, like CoScale

and MultiScale, provide an excellent foundation for constraining this exploding search

space intelligently and efficiently.

7.1 Future work

Looking forward, we propose several possible directions for future work.

Active low-power modes in peak power management. All three techniques

proposed in this dissertation target at reducing the full-system energy consumption

within a user-defined performance loss bound. However, another important use case

for power management techniques is peak power control. It is feasible to apply similar

coordination and control policies like CoScale and MultiScale to power capping scenar-

ios. Our active low-power modes for main memory enlarge the controllable power range,

while providing opportunities for finer grain power and performance management.

Optimization framework for CoScale and MultiScale. Although CoScale and

MultiScale are efficient at finding good low-power modes combinations across multiple
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cores and MCs, it is highly likely that the core and MC counts will keep increasing in

future systems. How to more efficiently search in the exponentially growing parameter

space is still an open question.

Extending the framework to other systems components. We can extend

the framework of CoScale and MultiScale to systems with more power management

mechanisms. For example, the disk and network interface both provide active low-power

states. A similar coordination approach can be applied to include those components.

Coordination policies including the GPU are also a possible scenario.

Renewable energy based memory system DVFS. Renewable energy is a

promising option to reduce datacenters’ environmental carbon footprint. Previous

works such as SolarCore [53] and Parasol [27] have leveraged both active and idle

low-power states of the CPU and server to make good use of the solar power. We be-

lieve that active low-power modes for main memory can contribute a significant “knob”,

providing more flexibility in the management of renewable energy.
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