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We show that the category HI of homotopy invariant Nisnevich sheaves with transfers

and the category CycMod are each equipped with a strong filtrations and a strong

cofiltration. To do so, we first define pre-coradicals and coradicals on well-powered

abelian categories, and show that every isomorphism class of coradical is associated

to a canonical torsion theory. We then summarize the theory of motivic cohomology

needed to define HI, its symmetric monoidal structure ⊗H and its partial internal hom

HomHI. Along the way, we recall the construction of the slice filtration on DMeff,−,

and extend the filtration structure on DMeff,− to DM.

We then define and construct the torsion filtration on HI by constructing a sequence

of coradicals. We explain how the torsion filtration is related to the slice filtration on

DMeff,−. We extend the torsion filtration to the category HI∗ of homotopic modules.

Appealing to the categorical equivalence between HI∗ and CycMod, we obtain the

torsion filtration onCycMod. Finally, we generalize the conditions under which torsion

filtrations exist for the heart of a tensor triangulated category.
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Chapter 1

Introduction

The goal of this thesis is to show that the abelian categories HI of homotopy invariant

Nisnevich sheaves with transfers and CycMod of Rost’s cycle modules admit two

filtrations. Here, a (weak) filtration of a category roughly means a nested sequence of

subcategories together with reflection or coreflection functors from the category to each

of its subcategories. The filtrations are induced by the slice filtration on the tensor

triangulated category DMeff,− of Voevodsky’s derived category of motive. One of the

key ingredients in constructing the three filtrations is a sequence of adjoint functors

from HI to itself, coming from the triangulated tensor structure of DMeff,−. The other

key ingredient is torsion theory.

We first revisit the basic definition and results of classical torsion theory for well-

powered abelian categories, as developed in [BJV] or [Dic66] (Chapter 2). However,

instead of focusing on the relationship between torsion theories and radicals, we intro-

duce the theory from the perspective of coradicals, which are radicals in the opposite

category.

We then summarize the theory in motivic cohomology needed to understand the

tensor triangulated structure on DMeff,− (Chapters 3 and 4). These are taken from

early lectures in [MVW]. The main results that we highlight in these two chapters are

the Cancellation Theorem of Voevodsky and the existence of an object Z(1) of DMeff,−

which gives rise to a pair of adjoint endofunctors on DMeff,−.

These results provide the necessary scaffold to introduce the slice filtration on

DMeff,−. The term “slice filtration” is the name of a filtration structure on the sta-

ble homotopy category of motives that Voevodsky defined in [Voe02b]. The analogous

structure for DMeff,− is constructed by Huber and Kahn in [HK06]. We summarize



2

the main properties of the slice filtration on DMeff,− in Chapter 5, and develop an

extension of the slice filtration to the category DM, which is the triangulated category

obtained from DMeff,− by inverting the Tate motive (see Section 5.3).

In Chapter 6, we develop several filtrations on HI. We first note that DMeff,−

is equipped with a t-structure in the sense of [BBD], and that HI is categorically

equivalent to the heart. An obvious question to ask is whether the filtration structure

on DMeff,− induces a similar structure on HI. In fact, the slice filtration on DMeff,−

does induce two filtrations on HI. In addition, the reflection functors from one of the

filtrations define a sequence of coradicals. Applying the results of Chapter 2, we obtain

a third filtration, which has the additional property that the filtration on HI induces

a functorial filtration of each object of HI. We coin the term “torsion filtration” to

describe the filtrations that come from a sequence of coradicals.

We then extend the torsion filtrations on HI to the abelian category HI∗ of homo-

topy modules (Chapter 7). The key is to construct a Z-indexed sequence of coradicals

on HI∗. Once we have accomplished this, applying the results of Chapter 2, we obtain

filtrations of HI∗. Using the fact that HI∗ is categorically equivalent to CycMod, we

conclude that these filtrations exist on CycMod.

In the last chapter, we summarize the results of the previous chapters by axioma-

tizing the conditions on a triangulated category with a t-structure such that the heart

is equipped with a sequence of coradicals whose associated torsion theories form two

filtrations on the category. The essential ingredient is for a tensor triangulated category

with a t-structure to be equipped with a Tate object — an object S in the heart such

that the functor given by tensoring with S admits a right adjoint — such that the Can-

cellation Theorem holds for S. We call such a triangulated category torsion monoidal,

and we show that the heart of any torsion monoidal category is equipped with three

filtrations, two of which are induced by a sequence of coradicals.

For the remainder of the thesis, we assume that k is a perfect field.
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Chapter 2

Coradicals and Torsion Theory

In this chapter, we develop the basics of torsion theory in a categorical setting. The

concepts and results here closely follow those of [BJV] and [Dic66], except we develop

the theory from the dual perspective of coradicals. The ideas are not new; neither is the

methodology. We have included proofs of all results in this chapter for the convenience

of the reader.

2.1 Coradicals

For the remainder of the chapter, let A be a cocomplete well-powered abelian category.

That is, A is closed under small direct sums, and for every object A in A , the collection

of subobjects of A forms a set.

Definition 2.1.1. For a given subcategory C of an abelian category A , and an object

A in A , we say AC is a largest C -subobject of A if AC is a subobject of A belonging

to C such that for all subobjects B in C , the monomorphism B ↪−→ A factors through

AC . That is, for every diagram

..

.. ..B

..AC ..A

. i.
f
.

j

where B is in C , there exists a map B
f−→ AC such that jf = i.

We say a subcategory C of A is reflective (resp., coreflective) if the inclusion of

C into A admits a left (resp., right) adjoint φ, which we call the reflection (resp.,

coreflection).
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If every A in A has a largest C subobject, the choice of AC for each A determines

a right adjoint to the inclusion of C in A , making C a coreflective subcategory of A .

The assumption that A is cocomplete and well-powered will be crucial for the

following result.

Proposition 2.1.2. For a cocomplete well-powered abelian category A and any full

subcategory C of A , closed under sums and quotients in A , any A in A has a largest

C -subobject.

Proof. Let A be an object of A , and let {Ci} be the set of subobjects of A in C . Write

AC for the image of ⊕iCi in A. Since C is closed under sums and quotients, AC is the

desired maximal subobject of A in C .

We now define some key notions in torsion theory.

Definition 2.1.3. 1. A quotient functor is an endofunctor φ : A −→ A together

with a natural epimorphism η : id −→ φ. That is, for every f : A −→ B, the

following diagram commutes.

..

..A ..B

..φ(A) ..φ(B)

.

f

.ηA . ηB.

φ(f)

We will often drop the reference to η.

2. We say that φ is idempotent if the natural epimorphism is the identity on the

essential image of φ. That is, ηφ(A) : φ(A) −→ φ2(A) is a natural isomorphism.

3. A quotient functor φ is a pre-coradical if for all A in A , φ applied to the kernel

of the epimorphism A −→ φ(A) is 0.

4. Finally, a pre-coradical φ is a coradical if φ is right exact.

Remark 2.1.4. Notice that quotient functors always take epimorphisms to epimor-

phisms. However, pre-coradicals are not always right exact. If 0 −→ A′ −→ A −→

A′′ −→ 0 is an exact sequence, and φ is a pre-coradical, exactness can fail at φ(A).
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Definition 2.1.5. Let φ : A −→ A be an endofunctor of an abelian category C . We

say that φ is a pre-radical if there exists a natural monomorphism φ −→ id (in which

case, we say that φ is a subobject functor) such that φ(A/φ(A)) = 0 for all A. If φ is

also left-exact, then φ is a radical.

Example 2.1.6. Let Ab be the category of abelian groups, and let G an abelian group,

written additively. We write Gtor for the torsion subgroup of G, and we write φ(G) for

G/Gtor. The quotient functor φ is a pre-coradical, but is not a coradical. To see this,

consider the following short exact sequence

0 −→ Z 2−→ Z −→ Z/2 −→ 0

in the category of Ab. Applying φ, we have

0 −→ Z 2−→ Z −→ 0 −→ 0

which is not exact in the middle. On the other hand, it is easy to see that the functor

G 7→ Gtor is a radical.

More generally, let R be a commutative ring, and S be a multiplicatively closed set.

For an R module M , let SM be the submodule M of elements annihilated by S. We

write φ(M) for M/SM . Then φ defines a pre-coradical on the category of R-modules.

As in the case for abelian groups, the functor φ is not a coradical.

Torsion theory is usually developed for radicals, which are coradicals in the opposite

category of A . However, throughout this chapter, we mostly consider statements for

(pre-)coradicals. We leave the dual statements to the reader to formulate or look up in

[Dic66] or [BJV, Section 1.2].

Proposition 2.1.7. Any right exact quotient functor φ of an abelian category A is

idempotent. In particular, any coradical is idempotent ( cf. [BJV, I2.2]).

Proof. Fix A in A , and let η denote the natural epimorphism associated to the quotient

functor φ. Let K be the kernel of ηA : A −→ φ(A), and consider the sequence

0 −→ K −→ A −→ φ(A) −→ 0.
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Applying φ, which is right exact, we have

φ(K) −→ φ(A) −→ φ2(A) −→ 0.

Thus, φ2(A) is the cokernel of φ(K) −→ φ(A). Moreover, we have the following

commutative diagram:

..

..K ..A

..φ(K) ..φ(A)

.ηK . ηA

and, since K −→ φ(K) is an epimorphism,

φ2(A) = cok (φ(K) −→ φ(A))

= cok (K −→ φ(K) −→ φ(A))

= cok (K −→ A −→ φ(A)).

But K −→ A −→ φ(A) is the 0 map. Therefore, φ2(A) = φ(A) as desired.

In addition to being dual notions, there is a one-to-one correspondence between

idempotent pre-radicals and idempotent pre-coradicals:

Proposition 2.1.8. Let φ be an idempotent pre-coradical of an abelian category A ,

and η be its corresponding natural epimorphism. Write κ(A) for ker (A
ηA−→ φ(A)).

Then κ is a pre-radical.

Dually, if ψ is an idempotent pre-radical with natural injection ϵ. Writing γ(A) =

cok ϵA, we have that γ is a pre-coradical.

Proof. It suffices to prove this statement for the idempotent pre-coradicals, as the

statement for pre-radical is the dual assertion. We proceed as follows:

The fact that κ is functorial follows from the naturality of η. Moreover, it is clear

that κ is a subobject functor. To see that κ is also a pre-radical, we need to show that

κ(A/κ(A)) = 0 for all A in A . Fix such an A, and notice that A/κ(A) = φ(A). Then

we have the associated short exact sequence:

0 −→ κ(φ(A)) −→ φ(A) −→ φ2(A) −→ 0.
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But φ(A) −→ φ2(A) is the identity. It follows that κ(φ(A)) = κ(A/κ(A)) = 0.

Next, consider the following short exact sequence associated to κ(A):

0 −→ κ(κ(A)) −→ κ(A)
ηκ(A)−→ φ(κ(A)) −→ 0.

Since φ is a pre-coradical, we have we have that

φ(κ(A)) = φ(ker (A −→ φ(A))) = 0.

It follows that κ2(A) = κ(A), and κ is idempotent. The proposition follows.

Proposition 2.1.9. Let φ be a pre-coradical of an abelian category A . Suppose B is a

quotient of φ(A), and let K be the kernel of the composition A −→ φ(A) −→ B. Then

φ(K) is isomorphic to the kernel of the epimorphism φ(A) −→ B ( cf. [BJV, I2.3]).

Proof. Let η denote the natural epimorphism associated to the quotient functor φ, and

let f denote the epimorphism given by the composition A −→ φ(A) −→ B.

Consider the exact sequence 0 −→ K −→ A −→ B −→ 0. We claim that φ(K) −→

φ(A) −→ B −→ 0 is exact and fits into the following commutative diagram:

..

..0 ..K ..A ..B ..0

. ..φ(K) ..φ(A) ..B ..0.

.

g

.ηK .

f

. ηA.

φ(g)

Notice that ηK : K −→ φ(K) is epi. Therefore, the cokernel of φ(g) is the cokernel of

K −→ A −→ φ(A). But the epimorphism A −→ B factors through φ(A). It follows

that cok φ(g) = B. The rest of the claim now follows.

Let L be the kernel of ηA. We claim that L is also the kernel of the ηK . Since f

factors through A −→ φ(A), there exists a map from L to K, which we call h. Applying

the Snake Lemma to the following commutative diagram:

..

..0 ..L ..A ..φ(A) ..0

..0 ..K ..A ..B ..0

.h



8

we have that L is a subobject of K. Let L′ be the kernel of K −→ φ(K). We claim

that L is isomorphic to L′. Notice that we have the following commutative diagram:

..

..0 ..L′ ..K ..φ(K) ..0

..0 ..L ..A ..φ(A) ..0.

.

i′

.j .

ηK

.g . φ(g).

i

.h .

ηA

(2.1.10)

Since ηA ◦ g ◦ i′ = φ(g) ◦ ηK ◦ i′ = 0, there exists a map j from L′ to L (dotted arrow

in (2.1.10)) such that ij = gi′. Applying the Snake Lemma to (2.1.10), we see that j is

injective.

By the naturality of η, we also have the following commutative square:

..

..L ..K

..φ(L) ..φ(K).

.

h

.ηL . ηK

Since φ is a pre-coradical, φ(L) = 0. Therefore, ηK ◦ h = 0. Thus, there exists a map

j′ : L −→ L′ such that j ◦ j′ = idL and j′ ◦ j = idL′ . It follows that L ∼= L′. Applying

the Snake Lemma to (2.1.10), we see that φ(K) −→ φ(A) is injective, as desired.

2.2 Torsion theories and coradicals

Definition 2.2.1. A torsion theory for an abelian category A is a pair (T ,F ) of full

subcategories, called the torsion subcategory and the torsion-free subcategory respec-

tively, where the objects of T are the objects T such that HomA (T, F ) = 0 for every

F in F and the objects of F are the objects F such that HomA (T, F ) = 0 for every

object T in T .

Certainly 0 ∈ T ∩ F . Therefore, neither subcategory is empty. We also have the

following characterization of the torsion and torsionfree subcategories.

Proposition 2.2.2. Suppose T and F are two full subcategories of a cocomplete well-

powered abelian category A . Then T is the torsion subcategory of a torsion theory of

A if and only if T is closed under extensions, direct sums and quotients.

Dually, F is a torsionfree subcategory of a torsion theory of A if and only if F is

closed under extensions, direct products, and subobjects. ( cf. [BJV, I2.6])
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Proof. It suffices to verify the statement for torsion subcategories. Suppose T is a

torsion subcategory with F ′ its corresponding torsionfree subcategory.

Closed under quotients: suppose T is an object of T . For any epimorphism T −→ T ′,

we have

0 −→ HomA (T ′, F ) −→ HomA (T, F )

for any F in F ′. However, HomA (T, F ) = 0. Therefore, HomA (T ′, F ) = 0 for all F ,

and Y is in T .

Closed under sums: suppose {Ti}i∈I is a collection of objects of T . We have

HomA (⊕i∈ITi, F ) =
∏
i∈I

HomA (Ti, F ) = 0

for all F in F ′. It follows that ⊕i∈ITi is an object of T .

Closed under extensions: Suppose

0 −→ T ′ −→ A −→ T ′′ −→ 0

is an exact sequence in A with T ′, T ′′ ∈ T . Then for any F in F ,

0 −→ HomA (T ′′, F ) −→ HomA (A,F ) −→ HomA (T ′, F ).

Since HomA (T ′′, F ) = HomA (T ′, F ) = 0, it follows that HomA (A,F ) = 0 for all F .

Therefore, A is in T .

Conversely, suppose T is closed under extensions, direct sums and quotients. Let

F ′ be the full subcategory of F such that HomA (T, F ) = 0 for all T in T , and let T ′

be the full subcategory of A whose objects are all T ′ such that HomA (T ′, F ) = 0 for

all F in F . We claim that T ′ = T .

Clearly, T is a full subcategory of T ′. Let T be an object of T ′. By Proposition

2.1.2, there exists a maximal T -subobject of T , which we represent by TT . We show

that T/TT is an object of F ′, and therefore it must be 0.

Suppose not. Then there exists some T ′ in T with a nonzero map f : T ′ −→ T/TT .

Since f(T ′) is an object in T , replacing T ′ by its image in T/TT , we may assume

without loss of generality that f is monic.
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Pull back T −→ T/TT by f , and we have:

..

..0 ..TT ..P ..T ′ ..0

..0 ..TT ..T ..T/TT ..0

.

p

.i . f

As i is a pullback of a monomorphism, i is itself monic. As T −→ T/TT is epimorphic,

so is p. Furthermore, ker p = TT . Since TT and T ′ are both in T , it follows that P

must be in T as well. However, T ′ is nontrivial, contradicting the maximality of TT .

Thus, T/TT ∈ F , and T ∈ T .

Proposition 2.2.3. Let (T ,F ) be a pair of full subcategories of a cocomplete well-

powered abelian category A . Then (T ,F ) is a torsion theory if and only if the following

conditions hold:

1. the only common object of T and F is 0.

2. for every A in A , there exists a subobject AT of A in T such that A/AT is an

object of F .

( cf. [BJV, I2.7])

Proof. ⇒: Suppose A is T ∩ F . Then HomA (A,A) = 0, so the identity is the zero

map, and A = 0. Now, for A in A , let AT be its maximal T subobject. By the same

reasoning as in the previous proposition, A/AT is an object of F .

⇐: suppose T ,F satisfy the condition of the proposition, and there is some A in

A such that for all F in F , HomA (A,F ) = 0. Let AT denote the T -subobject in

Condition (2) associated to A. Since A/AT ∈ F , A −→ A/AT is the zero map. Hence,

A = AT , and A is in T . Similarly, if F ∈ F , then the inclusion FT −→ F is the zero

map, and hence F/FT = F which is in F .

Proposition 2.2.4. Let (T ,F ) be a torsion theory for a cocomplete well-powered

abelian category A . Sending A in A to its largest T -subobject AT defines an idempo-

tent pre-radical.

Dually, sending A to A/AT defines an idempotent pre-coradical ( cf. [BJV, I2.8]).
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Proof. In this case, it is easier to prove the statement for idempotent pre-radicals. Let

κ denote the association defined by A 7→ AA for A in A .

To see that κ is a functor, let f : A −→ B be any morphism. The image of κ(A) in B

under f is in T . By the maximality of κ(B), there exists a map g : f(κ(A)) −→ κ(B),

and define the map κ(f) to be the composition of gf |κ(A).

It is clear from the construction that κ is a subobject functor. Since κ(A) ∈ T ,

it is clear that the largest suboboject of κ(A) is itself: hence φ2(A)) = φ(A). By the

maximality of κ(A), A/κ(A) ∈ F , and

κ(A/κ(A)) = 0.

The dual statement follows from Proposition 2.1.8.

Remark 2.2.5. Since a coradical φ is left adjoint to the inclusion of its associated tor-

sionfree subcategory F in A and its associated idempotent pre-radical κ is right adjoint

to the inclusion of the torsion subcategory T in A , T is a coreflective subcategory,

and F is a reflective subcategory of A .

Theorem 2.2.6. Let A be a cocomplete well-powered abelian category. There is a

one-to-one correspondence between isomorphism classes of idempotent pre-coradicals of

A and torsion theories for A . If φ is a pre-coradical, and η is its associated natural

epimorphism, then the torsion theories are defined by

T = {T | φ(T ) = 0}

F = {F | ηF : F −→ φ(F ) is an isomorphism}.

( cf. [BJV, I2.9]).

Proof. Obtaining an idempotent pre-coradical from a torsion theory is established by

Proposition 2.2.4. Therefore, it suffices to show that (T ,F ) as given in the statement

of the theorem defines a torsion theory on A , and that the associations define quasi-

inverses of one another.

To do this, we appeal to Proposition 2.2.3. It is clear that the only object common

to both T and F is 0. So we need only to show that for every A in A , there exists T

in T such that A/T ∈ F .
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Fix A in A . Since φ is idempotent, φ(A) is in F . Since φ is a pre-coradical, the

kernel of A −→ φ(A) is in T .

As we have mentioned in the paragraph preceding Proposition 2.1.7, there is a result

corresponding to Theorem 2.2.6 for radicals: the isomorphism classes of idempotent

pre-radical κ are in one-to-one correspondence with torsion theories on A . For a given

pre-radical κ with natural inclusion ϵ, the associated torsion theory is defined by

T = {T |ϵF : κ(T ) −→ T is an isomorphism}

F = {F |κ(F ) = 0}.

In fact, we have the following.

Corollary 2.2.7. Let φ be an idempotent pre-coradical, and let κ be the idempotent

pre-radical associated to φ (see Proposition 2.1.8). Then the torsion theory defined by

φ in Theorem 2.2.6 is the same as the one for κ as defined above.

Moreover, φ is left adjoint to the inclusion F −→ A and κ is right adjoint to the

inclusion T −→ A .

Proof. The only thing left to verify is that φ defines a left adjoint to the inclusion of

F into A and κ defines a right adjoint to the inclusion of T into A . We verify the

statement only for φ and leave the latter to the reader.

For φ, let A be an object of A , and let F be an object of F . Consider the short

exact sequence

0 −→ κ(A) −→ A −→ φ(A) −→ 0.

Applying HomA (−, F ), we have the exact sequence

0 −→ HomA (φ(A), F ) −→ HomA (A,F ) −→ HomA (κ(A), F )

Since κ(A) ∈ T (Theorem 2.2.6) and φ(A) ∈ F , HomA (κ(A), F ) = 0, and

HomA (φ(A), F ) = HomF (φ(A), F ) ∼= HomA (A,F )

as desired.
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It should be evident from Theorem 2.2.6 that isomorphism classes of coradicals are

not in one-to-one correspondence with torsion theories, although they do give rise to

unique torsion theories. We now characterize the properties of the torsion theories that

arise from coradicals.

Definition 2.2.8. Let (T ,F ) be a torsion theory on A . We say that (T ,F ) is heredi-

tary if T is closed with respect to subobjects. That is, if A ↪−→ B is an monomorphism

in A such that B ∈ T , then A ∈ T .

Dually, we say that (T ,F ) is cohereditary if F is closed under quotients.

Theorem 2.2.9. Let A be a cocomplete well-powered abelian category. There is a one-

to-one correspondence between isomorphism classes of coradicals of A and cohereditary

torsion theories on A ( cf. [BJV, I2.12]).

Proof. From coradicals to cohereditary torsion theories: Let φ be a coradical with

natural epimorphisms η, and (T ,F ) the associated torsion theory, given by Theorem

2.2.6.

We need only to show that F defined by {A|η : A −→ φ(A) is an isomorphism} is

closed under quotients. Let f : F −→ A be an epimorphism with F in F , and write K

for the kernel of f . It follows from Proposition 2.2.2 that F is closed under subobjects.

Hence, K ∈ F . Furthermore, by the right exactness of φ, we have

..

..0 ..K ..F ..A ..0

. ..φ(K) ..φ(F ) ..φ(A) ..0,

.

i

.

f

.

φ(i)=i

.

φ(f)

whence A = φ(A) as desired. It follows that A ∈ F .

From cohereditary torsion theory to coradicals: Let (T ,F ) be a cohereditary torsion

theory on A , and let φ be its associated idempotent pre-coradical given by Theorem

2.2.6. We need to show that φ is right exact.

We begin by demonstrating that, for an epimorphism f : A −→ B in A , φ(B) is

isomorphic to the push-out P of f and the natural epimorphism ηA : A −→ φ(A), as
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in the following diagram:

..

..A ..B

..φ(A) ..P.

Since φ is left adjoint to inclusion, we have that

HomA (φ(B), F ) = HomF (φ(B), F ) = HomA (B,F )

for all F in F . In particular, for all F in F , and epimorphisms B −↠ F , there exists

a unique map φ(B) −→ F making the following diagram commutative

..

..B . ..F

. ..φ(B).

.
ηB

Now, since P is the push-out, and φ(B) fits into the following commutative diagram

..

..A ..B

..φ(A) ..φ(B)

.ηA . ηB (2.2.10)

there exists an unique map P −→ φ(B). Furthermore, the map φ(A) −→ P is an

epimorphism since it is the push-out of the epimorphism A −→ B. Since φ(A) ∈ F ,

which is closed under quotients, it follows that P ∈ F . The map B −→ P is also an

epimorphism because it is the push-out of the epimorphism A −→ φ(A). It follows by

the previous point that there exists an unique map φ(B) −→ P .

Since both maps are unique, it follows that each map is an isomorphism and is the

inverse of the other. Furthermore, Diagram (2.2.10) is a push-out diagram.

To complete the proof that φ is right exact, we need only to show that for an exact

sequence

0 −→ A′ f−→ A
g−→ A′′ −→ 0
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in A , φ(A′′) is the cokernel of φ(A′) −→ φ(A). Consider the commutative diagram

..

..0 ..A′ ..A ..A′′ ..0

. ..φ(A′) ..φ(A) ..φ(A′′) ..0

. . . ..cok φ(f) ..0,

.

f

.

ηA′

.

g

.

ηA

.

ηA′′

.
φ(f)

.
φ(g)

.

h

.

p

where the top row is exact. Since the composition φ(A′) −→ φ(A) −→ φ(A′′) is 0, there

exists an unique map cok φ(f)
p−→ φ(A′′) (shown as the dotted arrow in the diagram

above), such that ph = φ(g).

However, we also have that h◦ηA ◦f = h◦φ(f)◦ηA′ = 0. It follows that there exists

a map A′′ −→ cok φ(f) (represented by the dotted arrow in the following diagram) such

that the following diagram is commutative:

..

..Y ..Z

..φ(Y ) ..cok φ(f).

.

g

.ηY

But φ(A′′), as a push-out, admits an unique map φ(A′′)
p′−→ cok φ(f). Once again,

since the maps defined between φ(A′′) and cok φ(f) are unique with respect to φ(g)

and h, it follows that p and p′ are isomorphisms and define inverses of one another.

This concludes the theorem.

Remark 2.2.11. Notice that if φ is a coradical, then F is a Serre subcategory of A .

In particular, F is an abelian category. In the case when A has “enough F -covers”,

then the torsion subcategory T is precisely the localization of A by F in the sense of

[Swan], and the associated idempotent radical κ is an exact radical.
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Chapter 3

Homotopy Invariant Sheaves with Transfers

In this chapter, we define the notion of homotopy invariant Nisnevich sheaves with

transfers. In order to do so, we need to introduce the category of correspondences and

presheaves with transfers.

For the remainder of the thesis, let k be a perfect field, and let Smk denote the

category of smooth separated finite type k-schemes. The material in this chapter is

taken from Lecture 2 and 6 of [MVW].

3.1 Sheaves with Transfers

Definition 3.1.1. Let X,Y be smooth separated k-schemes. An elementary corre-

spondence from X to Y is an irreducible closed subset W of X × Y such that the

projection to X from the associated integral subscheme W is finite and surjective onto

a component of X.

Let Cork(X,Y ) (or simply Cor(X,Y ) in the case when the base field k is under-

stood) denote the free abelian group generated by the elementary correspondences from

X to Y . Elements of Cor(X,Y ) are called finite correspondences from X to Y .

Example 3.1.2. In the case when X is an integral scheme over k, the graph of any

morphism φ : X −→ Y defines an elementary correspondence from X to Y .

In the case where X = Y = SpecL, where L/k is a Galois extension, the elementary

correspondences are precisely the graphs of the automorphisms in the Galois group

G
def
= Gal(L, k). In this case, Cork(X,Y ) = Z[G].

Let Cork be the collection of objects and morphisms where the objects of Cork are

smooth separated finite type k-schemes and whose morphisms from X to Y in Cork
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are given by Cor(X,Y ). We claim that Cork forms a category. The main missing piece

here is a description of the composition of morphisms. We can define the composition

of a finite correspondence V in Cor(X,Y ) with a finite correspondence W in Cor(Y, Z)

via the following construction taken from the discussion preceding [MVW, 1.5] and

[MVW, 1.7]. Reduce to the case where X and Y are connected, and suppose that

V and W are irreducible closed subsets of X × Y and Y × Z respectively. Let Ṽ

and W̃ be the underlying integral schemes associated to V and W . Then Ṽ ×X and

X × W̃ define cycles in X × Y × Z intersecting properly in the sense of [Ful84, 2.4].

Let T be the image of Ṽ ×Y W̃ in X × Y × Z. Each irreducible component Ti of T

is finite and surjective over X by [MVW, 1.7]. Furthermore, the image of Ti along

p : X × Y ×Z −→ X ×Z is an irreducible closed subscheme of X ×Z by [MVW, 1.4].

Let [T ] be the cycle corresponding to T in X×Y ×Z. The push-forward p∗([T ]) defines

a finite correspondence from X to Z, which we define to be the composition V ◦W .

Definition 3.1.3. A presheaf with transfers is a contravariant functor from Cork

to abelian groups (or R-modules for some commutative ring R). A map between

presheaves F and G is a natural transformation from F to G. Let PSTk (or sim-

ply PST in the case when there is no ambiguity about the basefield k) denote the

category of presheaves with transfers. Notice that PST has a natural structure of an

abelian category.

Remark 3.1.4. The term “with transfers” comes from the existence of transfer maps.

For F in PST, and a finite surjective morphism φ : W −→ X of smooth schemes,

there exists a map φ∗ : F (W ) −→ F (X) induced by the graph of φ, regarded as an

elementary correspondence from W to X. We call φ∗ the transfer map. Notice that φ∗

is in the “opposite direction” as the induced maps between sections.

Definition 3.1.5. ([SGA4, II.1.3]) A Grothendieck pre-topology on a category C is a

collection U of covering families indexed by the objects of C . Here, for each X in C ,

a covering family of X is a collection of sets of morphisms {Uα −→ X}α called covers

of X. Together, the covering families satisfy the following axioms:

1. for every map Y −→ X in C and every cover {Uα −→ X} of X, the pullback
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Y × Uα −→ Y exists for every α, and {Uα ×X Y −→ Y } is a cover of Y .

2. If {Uα −→ X} is a cover of X and for each α, {Vαβ −→ Uα} is a cover of Uα,

then {Vαβ −→ X} obtained via composition is a cover of X.

3. If X ′ −→ X is an isomorphism, then {X ′ −→ X} is a cover of X.

Remark 3.1.6. The notion of Grothendieck pre-topology generalizes the notion of a

topology on a space X. Specifically, regarding a topology of X as a category TX where

the objects are open subsets of X and the morphisms are inclusion maps, then the

collections {Vi ⊂ V } of all covers of V , as V ranges over all open subsets of X satisfy

the axioms of Definition 3.1.5 and define a Grothendieck pre-topology on TX .

Definition 3.1.7. For let S
def
= {φα : Uα −→ X} be a collection of morphisms between

schemes. We say that S is jointly surjective if
∪

φα∈S φα(Uα) = X.

Remark 3.1.8. For each X, consider the collection UX of jointly surjective sets of

open immersions {Uα −→ X}. Then UX as X ranges over all finite type k-schemes

form a Grothendieck pre-topology U on the category Schk of finite type k-schemes

called the large Zariski site on k-schemes.

We are interested in two other important Grothendieck pre-topologies on Smk. They

are the étale site and the Nisnevich site, which we define below. Recall that a morphism

φ : X −→ Y is étale if φ is a flat and unramified. (See [Milne, §1.3].)

Definition 3.1.9. The large étale site on Smk, is the Grothendieck pre-topology given

by a jointly surjective sets of étale morphisms {Uα −→ X}.

The large Nisnevich site on Smk is the Grothendieck pre-topology such that every

cover of X is an étale cover {Uα −→ X} such that for every x in X, there exists some

φα : Uα −→ X and y in Uα such that φα(y) = x and the induced map k(x) −→ k(y) is

an isomorphism.

Let Smk,ét and Smk,Nis denote respectively the étale and Nisnevich site of smooth

schemes over k.
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Since open immersions are étale, a jointly surjective collection of open immersions is

both an étale cover and a Nisnevich cover. In this sense, the Zariski topology is coarser

than the Nisnevich topology, which, in turn, is coarser than the étale topology on Smk.

Definition 3.1.10. An étale sheaf with transfers (resp. Nisnevich sheaf with transfers)

F is a presheaf with transfers that is also an étale (resp. Nisnevich) sheaf. That is, F

satisfies the following coherence conditions:

1. for each étale (resp. Nisnevich) cover {Uα −→ X}, the following sequence is

exact:

0 −→ F (X) −→
∏
α

F (Uα) −→
∏
α,β

F (Uα ×X Uβ)

where the map
∏

α F (Uα) −→
∏

α,β F (Uα×X Uβ) is given by the first and second

projections from Uα ×X Uβ to Uα and Uβ respectively for each α, β.

2. for each U, V , F (U ⊔ V ) = F (U)⊕ F (V ).

We write ShétCor (resp. ShNisCor) for the subcategory of étale (resp. Nisnevich)

sheaves with transfers.

Since the category of sheaves on any locale is well-powered (see [Bo, 2.3.7]), the

category of étale sheaves with transfers is also well-powered. So is the category of

Nisnevich sheaves with transfers.

It is clear from the definition and the discussion following Definition 3.1.9 that an

étale sheaf is also a Nisnevich sheaf, and an Nisnevich sheaf is a Zariski sheaf.

Our focus will be on Nisnevich sheaves with transfers, and here are some prominent

examples.

Example 3.1.11. The constant sheaf Z, the structure sheaf O, and the sheaf of global

units O∗ are examples of étale and Nisnevich sheaves with transfers as defined in Defini-

tion 3.1.10. To see that Z,O, and O∗ are étale and Nisnevich sheaves with transfers, we

need to define the map φ∗ : Z(Y ) −→ Z(X) (resp., O(Y ) −→ O(X), O∗(Y ) −→ O∗(X))

for every finite correspondence in Cor(X,Y ).

Assume that X and Y are integral schemes in Smk, and W is an elementary corre-

spondence from X to Y . Then, W is given by an integral scheme finite over X, which
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we also represent by W . Let F and L be the function fields of X and W respectively.

Then, L is an n-dimensional F -vector space, for some positive integer n. The induced

map Z(X) −→ Z(Y ) is given by

Z = Z(Y )
n−→ Z(X) = Z.

For the others, let tr : L −→ F and N : L −→ F denote the trace and norm maps

respectively. Since X is normal and W is finite over X, tr and N restrict to homo-

morphisms O(W ) −→ O(X) and O∗(W ) −→ O∗(X) respectively. Hence, the map

O(Y ) −→ O(X) is given by the composition

O(Y ) −→ O(W )
tr−→ O(X),

and the map O∗(Y ) −→ O∗(X) is given by

O∗(Y ) −→ O∗(W )
N−→ O∗(X).

Example 3.1.12. A large class of Nisnevich sheaves with transfers are the representable

sheaves. For each X in Smk, write Ztr(X) for the sheaf which associates to each U the

abelian group Cor(U,X). To see that Ztr(X) is a Nisnevich sheaf, it suffices to show

that it is an étale sheaf. In particular, for each X in Smk, Ztr(X) satisfies the coherence

conditions given in Definition 3.1.10. The statement that Ztr(X) is an étale sheaf is

proven in [MVW, 6.2].

Let aét (resp. aNis) denote the étale (resp. Nisnevich) sheafification of a (general)

presheaf on Smk. (See [Tamme, 3.1.1].) Furthermore, for a presheaf with transfers F ,

let Fét (resp. FNis) denote the étale (resp. Nisnevich) sheafification of F .

Proposition 3.1.13. 1. For F a presheaf with transfers, Fét has a unique structure

of presheaf with transfers, and the canonical map F −→ (étF ) is a morphism of

presheaves with transfers.

The functor aét restricted to PST defines a left adjoint to the inclusion of ShétCor

into PST.

Likewise, for F in PST, FNis is a Nisnevich sheaf with transfers, and aNis re-

stricted to PST defines a left adjoint to the inclusion of ShNisCor into PST.
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2. Both ShétCor and ShNisCor are abelian subcategories of PST with enough injec-

tives.

Proof. For the statements about étale sheaves with transfers, see [MVW, 6.17, 6.18 and

6.19]. The arguments in the proofs of the statements about étale sheaves can easily be

extended to proofs for the Nisnevich sheaves.

3.2 Homotopy invariant sheaves with transfers

We now introduce the notion of homotopy invariant sheaves (defined below), which will

play a central role in the subsequent chapters.

Definition 3.2.1. A presheaf F is homotopy invariant if the map

F (X) −→ F (X × A1)

induced by the projection X × A1 −→ X is an isomorphism. We write HIpre for the

category of homotopy invariant presheaves with transfers.

Similarly, we define homotopy invariant sheaves, and write HIét (resp. HINis) for

the full subcategory of homotopy invariant étale sheaves (resp. Nisnevich sheaves) with

transfers. We will simply write HI when the underlying pre-topology is understood.

Since ShétCor and ShNisCor are both well-powered, so are HIét and HINis.

Remark 3.2.2. If F is a homotopy invariant presheaf with transfers, then Fét and FNis

are homotopy invariant sheaves under the étale and Nisnevich topologies respectively.

Together with Proposition 3.1.13, we have the following commutative diagram detailing

the subcategories of presheaves on Smk and their reflection functors:

..

..HIét ..ShétCor ..Shét

..HINis ..ShNisCor ..ShNis

..HIpre ..PST ..PSh

.

aét

.

aét

.

aét

.

aNis

.

aNis

.

aNis
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where PSh denotes the presheaves on Smk. In the diagram above, the horizontal arrows

represent forgetful functors, and the reflection functors in the first two columns are the

restrictions of the reflection functors in the right-most column.

Of the three sheaves mentioned in Example 3.1.11, Z and O∗ are homotopy invariant

sheaves, and O is not. In fact, we can define a large class of homotopy invariant

presheaves with transfers with the following construction:

Construction 3.2.3. Let F be a presheaf with transfers. Let ∆n denote

Spec k[x0, . . . , xn]/
(
1−

∑
i

xi
)
.

Notice that for each i in {0, ..., n}, there exists a map ∂n,i : ∆
n−1 −→ ∆n induced by

k[x0, . . . , xn]/
(∑

i

xi − 1
)
−→ k[x0, . . . , xn−1]/

(∑
i

xi − 1
)

given by

xj 7→


xj if j < i

0 if j = i

xj−1 otherwise.

In particular, ∆• is a cosimplicial scheme, and F (− × ∆•) is a simplicial presheaf

with transfers. Let C∗F be the associated cochain complex. That is (C∗F (X))−n def
=

CnF (X) = F (X ×∆n), and the chain map is given by

∂∗n
def
=

n∑
i=0

(−1)i∂∗n,i.

Clearly, if F is a homotopy invariant presheaf, then the complex C∗F is exact

except at degree 0. In particular, the inclusion of F as a cochain complex concentrated

in degree 0 into C∗F is a quasi-isomorphism of cochain complexes of presheaves. In

general, for F in PST, write HnC∗F for the contravariant functor U 7→ HnC∗F (U).

Then HnC∗F is homotopy invariant for all n ([MVW, 2.19]).

If F is a sheaf with transfers, then CnF is also a sheaf with transfers for all positive

n. Therefore, C∗F is a cochain complex of sheaves with transfers. In particular, for all

X in Smk, C∗Ztr(X) is a cochain complex of sheaves.
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Definition 3.2.4. We write hétX (resp., hNis
X ) for the etale (resp., Nisnevich) sheaf

associated to H0C∗Ztr(X). In the case where the pre-topology is understood, we will

omit the superscript, and simply write hX for the associated sheaf.

Remark 3.2.5. Recall that two morphisms f, g : X −→ Y in Cor are A1-homotopic

if there exists some h in Cor(X × A1, Y ) such that h|X×0 = f and h|X×1 = g. We say

that f : X −→ Y is an A1-homotopy equivalence if there exists a g : Y −→ X so that

fg is homotopic to the identity on Y , and gf is homotopic to the identity on X.

If X and Y are homotopy equivalent, it is not true in general that Ztr(X) is iso-

morphic to Ztr(Y ). For example, Z is obviously not isomorphic to Ztr(A1). However,

C∗Ztr(X) is quasi-isomorphic to C∗Ztr(Y ) (see [MVW, 2.26]). Therefore, hX and hY

are isomorphic sheaves with transfers.

Remark 3.2.6. We note that all results of this chapter hold for PST(R), which are

presheaves with transfers with values in R-modules, where R is some commutative

unital ring. In particular, Rtr(X) is an étale/Nisnevich sheaf, for every X in Smk.

We conclude this chapter with an endofunctor on the category HI that will play an

important role in the construction of filtrations on HI.

Definition 3.2.7. Let F be a homotopy invariant presheaf with transfers. Write

F−1(X) for the cokernel of F (X × A1) −→ F (X × (A1 − 0)). If F is a Nisnevich

sheaf with transfers, then F−1 is again a Nisnevich sheaf with transfers by [MVW,

23.5]. We call F−1 the the contraction of F . We will write F−n+1 for (F−n)−1.

If F is homotopy invariant, then F−1 is also a homotopy invariant. Furthermore,

F (X × (A1 − 0)) splits into F (X) ⊕ F−1(X). Thus, if F is a sheaf, then F−1 is also a

sheaf. In fact, F 7→ F−1 defines an endofunctor on the category of homotopy invariant

sheaves with transfers.

Proposition 3.2.8 ([Dég08] 3.4.3). The functor F 7→ F−1 is exact.
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Chapter 4

The Derived Category of Motives

In this chapter, we define the derived category of motives DMeff,−, and show that it is

equipped with an additive symmetric monoidal structure with a partial internal hom

(defined in Definition 4.2.1) that will be used to construct the slice filtration in Section

5 (see Remark 4.2.11).

To do this, we first define the bounded above derived category D−ShCor of Nis-

nevich sheaves, and define DMeff,− to be the localization of D−ShCor by a class of

morphisms in D−ShCor called A1-weak equivalences. We then show that DMeff,− is in

fact equivalent as a category to the subcategory of D−ShCor with homotopy invariant

cohomology.

We also show that D−PST is equipped with tensor and internal hom operations on

which induce a symmetric monoidal structure on DMeff,−. For the remainder of the

chapter, unless stated otherwise, all sheaves are Nisnevich sheaves. We will drop the

“Nis”, and simply write ShCor for the category of Nisnevich sheaves with transfers.

This chapter is taken from Lectures 8, 9 and 14 of [MVW].

4.1 Derived Category of Motives

First consider the category PST. By Yoneda, for X in Smk and F in PST,

HomPST(Ztr(X), F ) = F (X).

It follows that Ztr(X) is projective for every X in Smk. Since direct sums of pro-

jectives are projective, ⊕iZtr(Xi) is also projective for any arbitrary collection {Zi}.

Furthermore, for F in PST, there exists a surjection⊕
X

⊕
x∈F (X)

Ztr(X)
x−→ F. (4.1.1)
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Hence, the category PST has enough projectives. Thus, we may define the bounded

above derived category D−PST of the abelian category PST as the homotopy category

of cochain complexes of projective objects in PST that are bounded above (see [Wei94,

10.4.8]). To construct the bounded above category of Nisnevich sheaves with transfers,

we first need the following notion of a thick subcategory:

Definition 4.1.2. A full additive subcategory W of a derived category D is thick if it

satisfies the following conditions:

1. if A −→ B −→ C −→ A[1] is a distinguished triangle, then any two of A,B,C is

in W , then so is the third.

2. if A⊕B is an object of W , then A and B are both objects of W .

If W is a thick subcategory of a derived category D, then we can define a quotient

triangulated category D/W . Let S be the set of maps whose cone is in W . Then S

is a saturated multiplicative system in the sense that S contains the identity, is closed

under composition, and if fg ∈ S , then f and g are both in S . Define D/W to be

the localization D[S −1] (see [Verd96]).

Let WNis be the system of morphisms between cochain complexes in D−PST induc-

ing quasi-isomorphisms on the associated complex of Nisnevich sheaves. Since WNis are

the morphisms whose cone is in a thick subcategory, WNis is saturated multiplicative

system. We will write D−ShCor, or more simply D−ST, for the bounded above de-

rived category of Nisnevich sheaves with transfers, which is equivalent to the category

obtained from D−PST by localizing with respect to WNis. We now define DMeff,−, the

derived category of effective motives.

Definition 4.1.3. Let WA be the thick subcategory of D−ST generated by the cones

of Ztr(X×A1) −→ Ztr(X) for every X in Smk, and closed under direct sums that exist

in D−ST. Write SA for the maps whose cone is in WA. We say that a map f in D−ST

is an A1-weak equivalence if f ∈ SA.

We write DMeff,− for the localization D−ST[S −1
A ]. The category that we have just

defined is the derived category of effective motives, whose objects are called motives.
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While we have defined DMeff,− as a localization of D− by the A1-weak equivalences,

we can identify DMeff,− with a subcategory of D−ST.

Definition 4.1.4. Let F ∗ be a cochain regarded as an object of D−ST. We say that

F ∗ is A1-local if HomD−ST(−, F ∗) sends A1-weak equivalences to isomorphisms. We

write L for the full subcategory of A1-local objects in D−ST.

Proposition 4.1.5 gives a good characterization of the category L .

Proposition 4.1.5 ([MVW] Prop. 14.8, Cor. 14.9). For F ∗ in D−ST, F ∗ ∈ L if and

only if aNis(H
nF ∗) is homotopy invariant for every integer n. In particular, we can

identify L with the full subcategory of complexes in D−ST with homotopy invariant

cohomology presheaves.

Definition 4.1.6. For F ∗ a bounded above cochain complex of sheaves with transfers,

let CF ∗ denote the direct sum total complex of the double complex C∗F
∗. Here, the

(p, q) spot of the double complex C∗F
∗ is C−pF

q. Therefore, CF ∗ again is an object of

D−ST.

Since F ∗ is bounded above, by shifting sufficiently, we may assume that Fn = 0

for n > 0. Therefore, indexing the double complex cohomologically, C∗F
∗ is a third

quadrant double complex. Filtering the double complex CpF
q by the second index q,

we obtain a third quadrant spectral sequence converging to the cohomology of CF ∗:

Ep,q
1 = Hp(C∗F

q) ⇒ Hp+q(CF ∗).

Since the cohomology presheaves Hp(C∗F
q) are homotopy invariant for all p and q (see

[MVW, 2.19]), the terms in the first page of the spectral sequence are all homotopy in-

variant. It follows that CF ∗ is in L . The following proposition relates the construction

defined above and the category L .

Proposition 4.1.7. The functor C∗ : D−ST −→ L is a left adjoint to the inclusion

of L ↪−→ D−ST.

Proof. There is a canonical map from F ∗ −→ CF ∗, given by the inclusion of Fi =

C0Fi ↪−→
⊕

p+q=iC−pF
q. This map is a A1-weak equivalence (see [MVW, 14.4]).
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Therefore, for any L∗ in L and F ∗ in D−ST,

HomD−ST(F
∗, L∗) ∼= HomD−ST(CF

∗, L∗) = HomL (CF ∗, L∗).

There is a canonical functor π : D−ST −→ DMeff,−, given by sending an object of

D−ST to its corresponding object in DMeff,−. Its restriction to L defines a functor

from L to DMeff,−.

Furthermore, we can define a map fromDMeff,− to L . Notice that if F ∗ and F ′∗ are

A1-weak equivalent, then transitivity implies that CF ∗ is A1-weak equivalent to CF ∗.

It follows that the functor that sends F ∗ to CF ∗ lifts to a functor from DMeff,− −→ L .

Let C∗ denote the induced functor on DMeff,−.

Theorem 4.1.8. The functor π : L −→ DMeff,− is an equivalence of categories, with

quasi-inverse C∗.

Proof. The fact that π is an equivalence is established in [MVW, 14.11]. Furthermore,

given M in DMeff,−, then M is represented by some bounded above complex F ∗. In

turn, F ∗ is isomorphic (in DMeff,−) to CF ∗, which is in the essential image of π, and

define C∗M = CF ∗.

For the second statement, it suffices at this point to show that C∗π is naturally

isomorphic to the identity on L . This follows from the fact that if F ∗ is A1-local, then

CF ∗ is isomorphic to F ∗ (see [MVW, 14.9]).

Example 4.1.9. An important class of examples is provided by the geometric objects.

Let X be a smooth scheme. Then we may regard Ztr(X) as a cochain complex of Nis-

nevich sheaf with transfers concentrated in degree 0 (see Example 3.1.12); it represents

an object in D−ST, and thus also an object in DMeff,−. We call the full triangulated

subcategory of DMeff,− generated by Ztr(X), as X ranges over all smooth schemes, the

effective geometric motives, which we represent by DMeff,−
gm . We write M(X) for the

class of Ztr(X) in DMeff,−.

On the other hand, C∗Ztr(X) represents an object in L , and we can similarly define

the geometric objects of L as those belonging to the thick subcategory generated by the



28

cochain complexes C∗Ztr(X), for X in Smk. By Theorem 4.1.8, DMeff,−
gm corresponds

to the geometric objects of L .

4.2 Triangulated Monoidal Structure on DMeff,−

Recall from [Kelly82, 1.13] and [MVW, 8A.1] the notion of a symmetric closed monoidal

structure generalized to the setting of a triangulated category:

Definition 4.2.1. Let (D,⊗,1) be a triangulated category. We say that D is a tensor

triangulated category if there exists a pair of natural isomorphisms

....(M [1])⊗N ..(M ⊗N)[1] ..M ⊗ (N [1]).lM,N .
rM,N

such that (D,⊗) satisfies the axioms of a symmetric monoidal category, and the fol-

lowing two conditions hold

1. For any distinguished triangle M ′ −→ M −→ M ′′ δ−→ M ′[1], and any N in D,

the following triangles are distinguished

..

..M ′ ⊗N ..M ⊗N ..M ′′ ⊗N ..(M ′ ⊗N)[1]

..N ⊗M ′ ..N ⊗M ..N ⊗M ′′ ..(N ⊗M ′)[1]

.

l(δ⊗D)

.

r(D⊗δ)

2. For any M and N in D, the following anti-commutes, i.e., rl = −lr:

..

..M [1]⊗N [1] . ..(M [1]⊗N)[1]

. ..−1

..(M ⊗D[1])[1] . ..(M ⊗D)[2].

.

r

.l . l.

r

We say that (D,⊗) is an additive symmetric monoidal category if

(⊕
Mi

)
⊗N =

⊕
i

(Mi ⊗N)

for all N in D and all families {Mi} of objects of D such that the direct sum ⊕iMi

exists in D.
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Recall that for a symmetric monoidal category (C ,⊗,1), an internal hom in C is a

bifunctor

Hom : C op × C −→ C ,

such that for all C in C , the endofunctor Hom(C,−) is right adjoint to the functor

−⊗C; in this case, we say that C is a closed monoidal category. Not every symmetric

monoidal category admits an internal hom, although it is possible for −⊗ C to admit

right adjoints for some objects C of C . We introduce the following definition to describe

this notion:

Definition 4.2.2. For a symmetric monoidal category (C ,⊗,1), we say that C has a

partial internal hom if there exists a full subcategory C rep of C containing 1, and a

bifunctor Hom(−,−) : (C rep)op × C −→ C such that for all F in C rep, F ⊗ − is left

adjoint to Hom(F,−).

We call C rep the semi-representable objects of C , and Hom the partial internal hom

in C . We call the pair (Hom,C rep) the partial internal hom structure on C .

Following [MVW], we show that DMeff,− is equipped with an additive symmetric

monoidal structure and a partial internal hom structure. Let us first define the tensor

and internal hom operators on PST. By Yoneda Lemma, HomPST(Ztr(X),Ztr(Y )) ∼=

Cor(X,Y ) for all X and Y in Smk, i.e., we can identify a morphism between repre-

sentable presheaves as a finite correspondence. The tensor structure will be determined

by the following requirements.

1. Ztr(X)⊗tr Ztr(Y )
def
= Ztr(X × Y ),

2. for each map φ in HomPST(Ztr(X),Ztr(Y )), let W be its associated finite cor-

respondence in Cor(X,Y ). Then φ ⊗ Ztr(Z) : Ztr(X) ⊗tr Ztr(Z) −→ Ztr(Y ) ⊗tr

Ztr(Z) corresponds to the finite correspondence W × Z.

It is clear that we can extend the bifunctor ⊗tr to arbitrary direct sums of representable

presheaves.

Next, for arbitrary presheaves with transfers F,G, let P ∗ −→ F and Q∗ −→ G be

resolutions by direct sums of representable functors of F and G respectively. We write
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F ⊗L G for the total complex of the double complex P ∗ ⊗tr Q∗. By the Comparison

Theorem [Wei94, 2.26], any two projective resolutions are chain homotopy equivalent.

Therefore, it is easy to see that up to chain homotopy equivalence, this is independent

of the choice of P ∗ and Q∗.

In particular, H0(F ⊗L G) is well-defined. Define the tensor operation on PST to

be

F ⊗G
def
= H0(F ⊗L G),

and define the internal hom presheaf by

Hom(F,G) : X 7→ HomPST(F ⊗ Ztr(X), G).

These operations define a closed monoidal structure on PST. That is, for all F in

PST, the functor F ⊗L − is adjoint to Hom(−, F ) (see [MVW, 8.3]).

Remark 4.2.3. Notice that the ⊗ structure defined is not the usual tensor product on

presheaves of abelian groups. In particular, Ztr(X)(Z)⊗Z Ztr(Y )(Z) ̸= Ztr(X ×Y )(Z),

where ⊗Z denotes the usual tensor product of abelian groups.

We now extend ⊗ to D−PST. To do so, let F ∗ represent a bounded above cochain

complex of presheaves with transfers. By [Wei94, 10.5.6], F ∗ is quasi-isomorphic to a

projective complex P ∗. In fact, we may assume that P ∗ is a complex such that P i is a

direct sum of representable presheaves.

Define F ∗⊗LG∗ to be the direct sum total complex associated with P ∗⊗Q∗, where

P ∗ and Q∗ are projective resolutions of F ∗ and G∗ respectively. Notice that F ∗ ⊗L G∗

is defined up to unique quasi-isomorphism. In particular, ⊗L is defined up to quasi-

isomorphism as a bifunctor onD−PST. Indeed, let F ∗ and F ′∗ be two quasi-isomorphic

bounded above complexes in PST. Then for any bounded above cochain G∗ in PST,

F ∗ ⊗L G∗ ∼= F ′∗ ⊗L G∗. (see [MVW, 8.7]) To show that D−PST is equipped with a

tensor triangulated structure, we make the following observation.

Let Cor⊕ denote the closure under direct sum of representable presheaves in PST.

This is an additive category equipped with an additive symmetric monoidal structure.

By [MVW, 8A.4], we see that the homotopy categoryK−(Cor⊕) is a tensor triangulated
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categegory. By arguments similar to those in [Wei94, 10.4.8], D−PST is equivalent as

a category to K−(Cor⊕). It follows that D−PST is also a tensor triangulated category.

Next, we show that the tensor structure is preserved under Nisnevich sheafification.

Definition 4.2.4. Let F,G be Nisnevich sheaves with transfers. Define F ⊗tr
Nis G to

be the Nisnevich sheafification of the presheaf F ⊗tr G. That is,

F ⊗tr
Nis G

def
= aNis(F ⊗tr G)

where aNis is the Nisnevich sheafification. We can extend ⊗tr
Nis to cochain complexes of

Nisnevich sheaves. Let F ∗ and G∗ be bounded above cochain complexes of Nisnevich

sheaves with transfers. Define F ∗ ⊗L
Nis G

∗ to be the Nisnevich sheafification of the

complex F ∗ ⊗L G∗:

F ∗ ⊗L
Nis G

∗ def
= aNis(F

∗ ⊗L G∗).

This is well-defined up to quasi-isomorphism.

Remark 4.2.5. Fix F and G sheaves with transfers, and let P ∗ and Q∗ be resolutions

by sums of representables of F ∗ and G∗ respectively. Since aNis is exact, aNis(F⊗LG) =

aNis(Tot(P
∗ ⊗tr Q∗)) = Tot(P ∗ ⊗tr

Nis Q
∗).

We claim that (D−ST,⊗L
Nis) is an additive symmetric monoidal triangulated cate-

gory. The proof depends on the following lemma.

Lemma 4.2.6 ([MVW] Prop. 8A.7). Let D be a tensor triangulated category, and let

W be a collection of maps in D that is closed under − ⊗N for every N in D, i.e., if

M −→M ′ is in W then so is M ⊗N −→M ′ ⊗N . Then the localization W −1 is also

a tensor triangulated category.

To proceed, we note that if F ∗ is quasi-isomorphic to F ′∗, then for every bounded

above complexG∗ of sheaves with transfers, F ∗⊗L
NisG

∗ is quasi-isomorphic to F ′∗⊗L
NisG

∗

(see [MVW, 8.16]). Therefore, ⊗L
Nis is a well-defined bifunctor on D−ST. Finally,

observe that D−ST is equivalent to the category obtained from D−PST by formally

inverting morphisms of the form F ∗ −→ F ′∗ such that aNis(F
∗) −→ aNis(F

′∗) is an

quasi-isomorphism. We obtain a tensor triangulated structure on D−ST by Lemma

4.2.6.
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In fact, the same argument shows that DMeff,− is equipped with a tensor triangu-

lated structure. Recall that DMeff,− is equivalent to the category obtained from D−ST

by formally inverting the A1-weak equivalences. If φ : F ∗ −→ F ′∗ is an A1-weak equiva-

lence, then by [MVW, 9.5] for all G∗ in D−ST, φ⊗L
NisG

∗ : F ∗⊗L
NisG

∗ −→ F ′∗⊗L
NisG

∗ is

an A1-weak equivalence. Hence, ⊗L
Nis induces a triangulated tensor product onDMeff,−.

We represent the tensor product on DMeff,− by ⊗L.

There also exists a tensor operation on L , which is different from the one defined

on its parent category D−ST. For F ∗, G∗ in L , we define F ∗ ⊗L G∗ to be the direct

sum total complex

Tot⊕C(F ∗ ⊗L
Nis G

∗).

The tensor product ⊗L is a triangulated tensor product by [MVW, 14.11], and the

categorical equivalence π : L −→ DMeff,− in Theorem 4.1.8 is an equivalence of tensor

triangulated categories.

Let us now define the partial internal hom structure on DMeff,−. We will do this

by defining a partial internal hom structure on L . This, in turn, is obtained from the

partial internal hom structure on D−ST.

Definition 4.2.7. Fix a bounded above complex of Nisnevich sheaves B∗ and an in-

jective Cartan-Eilenberg resolution B∗ −→ I∗, which exists by [MVW, 6.19]. For X in

Smk, define RHom(Ztr(X), B∗) to be the complex of sheaves given by

RHom(Ztr(X), B∗)(U) = Hom∗
D−ST(Ztr(X × U), I∗).

Notice that the cochain complex Hom∗
D−ST(Ztr(X × U), I∗) is defined up to unique

quasi-isomorphism. Furthermore, by [Voe00, 3.2.9], HkRHom(Ztr(X), B∗) = 0 for

all k > dimX + l, where l is the smallest index such that H0B∗ has non-vanishing

cohomology. Hence RHom(Ztr(X), B∗) is an object of D−ST. We can extend RHom

in the first factor to the thick subcategory D−STrep of D−ST generated by the sheaves

Ztr(X) regarded as cochain complexes concentrated in degree 0.

The lemma below follows from the construction of RHom.
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Lemma 4.2.8. For all X in Smk, and all F ∗, G∗ in D−ST, we have the following

adjunction

HomD−ST(F
∗ ⊗L

Nis Ztr(X), G∗) ∼= HomD−ST(F
∗,RHom(Ztr(X), G∗)).

We now define the partial internal hom structure for L . By [MVW, 14.12], if a

bounded above cochain complex F ∗ in D−ST is A1-local, then for all X in Smk, the

cochain complex RHom(Ztr(X), F ∗) is also A1-local.

Definition 4.2.9. Fix X in Smk, and let F ∗ be a bounded above A1-local complex.

We define RHomL (C∗Ztr(X), F ∗) to be the chain complex of sheaves given by

RHomL (C∗Ztr(X), F ∗)(U)
def
= Hom∗

D−ST(C∗Ztr(X × U), F ∗).

As in Definition 4.2.7, we may extend the definition of RHomL in the first factor to all

objects in the thick subcategory of L generated by the cochain complexes CZtr(X).

Recall from Proposition 4.1.7 that the functor F ∗ 7→ CF ∗ is left adjoint to the

inclusion of L . Hence, by the definition of RHomL above, we have the following

equality of endofunctors of L :

RHomL (CZtr(X),−) = RHom(Ztr(X),−).

To see that RHomL defines a partial internal hom in L , we need to verify that for all

X in Smk, RHomL (C∗Ztr(X),−) is right adjoint to − ⊗L C∗Ztr(X). Let F ∗ and G∗

be bounded above A1-local complexes. We have the following chain of isomorphisms:

HomL (F ∗ ⊗L C∗Ztr(X), G∗)
(1)
= HomD−ST(C(F

∗ ⊗L
Nis C∗Ztr(X)), G∗)

(2)∼= HomD−ST(F
∗ ⊗L

Nis Ztr(X), G∗)

(3)∼= HomD−ST(F
∗,RHom(Ztr(X), G∗)

(4)∼= HomL (F ∗,RHomL (C∗Ztr(X), G∗)),

where F ∗ and G∗ are bounded above A1-local complexes, and X is an arbitrary smooth

scheme. The equality in (1) follows from the definition of ⊗L ; (2) and (4) follow from
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the adjunction introduced in Proposition 4.1.7; and (3) follows from the adjunction

established in Lemma 4.2.8.

Via the categorical equivalence between L and DMeff,−, there exists a partial

internal hom structure on DMeff,−. We write ⊗L and RHomDMeff,− for the tensor and

partial internal hom operators respectively. Here, the semi-representable objects are

the geometric motives DMeff,−
gm defined in Example 4.1.9. We have just established the

proposition below:

Proposition 4.2.10 ([MVW] 14.12). Let ⊗L and RHomDMeff,− be given as above.

Then for all M in DMeff,−
gm , −⊗L M is left adjoint to RHomDMeff,−(M,−).

Remark 4.2.11. Notice that RHom and RHomL do not define a closed monoidal

structure on their respective categories, as they are only defined on the geometric

objects.

4.3 The motivic complex Z(n)

We now introduce an important set of objects in DMeff,−. Let Ztr(Gm) denote the

cokernel of

Z = Ztr(Spec k) −→ Ztr(A1 − 0)

given by k[x, x−1] −→ k, induced by x 7→ 1. Since k −→ k[x, x−1] defines a splitting

Ztr(A1 − 0) ∼= Ztr(Gm)⊕ Z, Ztr(Gm) is also a Nisnevich sheaf with transfers.

More generally, let X be a smooth scheme, and let x be a k-point of X represented

by Spec k −→ X. We define the pointed presheaf Ztr(X,x) as the cokernel of x : Z −→

Ztr(X), which defines a splitting of the structure map Ztr(X) −→ Z. By the same

reason as above, Ztr(X,x) is also a Nisnevich sheaf.

If {Ztr(Xi, xi) : i = 1, . . . , n} is a collection of pointed schemes, we define their wedge

sum
∧n

i Ztr(Xi, xi) to be

cok

(⊕
i

Ztr(X1 × · · · × X̂i × · · · ×Xn)
id×···×xi×···×id−−−−−−−−−−→ Ztr(X1 × · · · ×Xn)

)
.

By induction,
∧

i Ztr(Xi, xi) is a direct summand of Ztr(X1 × · · · × Xn) (see [MVW,

2.13]), and defines a Nisnevich sheaf.
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In particular, for each nonnegative integer n, we can define
∧n

i=0 Ztr(A1−0, 1), which

we view as an object of DMeff,−. In fact, these are geometric motives, i.e., objects in

the subcategory DMeff,−
gm . We write this object as Z(n), which we call the n-th motivic

complex. It is easy to see that Z(n)⊗L Z(m) ∼= Z(n+m).

Remark 4.3.1. The careful reader may notice that in [MVW], the motivic complex

Z(n) is defined to be C∗
∧n

i Ztr(A1 − 0, 1), and not
∧n

i Ztr(A1 − 0, 1) (see [MVW, 3.1]).

However, notice that in DMeff,−, the two definitions of Z(n) are identified. This is a

straightforward consequence of the fact that, for a sheaf with transfers F the cohomo-

logical inclusion F −→ C∗F is an A1-weak equivalence (see [MVW, 9.15]).

Remark 4.3.2. Nisnevich motivic cohomology with integer coefficients is defined as

Hp,q(X) = HomDMeff,−(Ztr(X),Z(q)[p]).

Notice that Z(1) ∼= O∗[−1] ([MVW, 4.1]). Therefore H1,1(X) = O∗(X), and H2,1 =

Pic(X). Furthermore, Hn,n(SpecF ) = KM
n (F ) ([MVW, 5.1]).

More generally, we have

Hn,i(X) ∼= CH i(X, 2i− n)

where CH i(X, k) denote the k-th higher Chow group of X ([MVW, 19.1]).

4.4 Cancellation Theorem

We conclude this chapter with an important result, taken from [Voe02, Corollary 4.10].

To simplify notation, for M in DMeff,−, we write M(1) for M ⊗L Z(1), and M−1 for

RHomDMeff,−(Z(1),M), and write M(n) and M−n for the n-th iterations of applying

−⊗L Z(1) and RHomDMeff,−(Z(1),−) respectively to M .

As Z(n) ⊗L Z(1) = Z(n + 1), the functor given by M 7→ M(n) is equal to the

functor − ⊗L Z(n). Since right adjoints of the same functor are naturally isomorphic,

M 7→ M−n is naturally isomorphic to RHomDMeff,−(Z(n),−). Furthermore, Z(1) is

an object of DMeff,−
gm . Thus, − ⊗L Z(1) is left adjoint to RHomDMeff,−(Z(1),−) by

Proposition 4.2.10. More generally, Z(n) is an object of DMeff,−
gm for all positive integer

n. It follows that −⊗L Z(n) is left adjoint to RHomDMeff,−(Z(n),−).
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Theorem 4.4.1 (Cancellation). For any M and N in DMeff,−,

HomDMeff,−(M(1), N(1)) ∼= HomDMeff,−(M,N).

In other words, tensoring with Z(1) is fully and faithful.

This statement can likewise be interpreted for the category L . For F ∗ and G∗

bounded above A1-local complexes, by abuse of notation, write F ∗(1) for F⊗L
NisC∗Z(1).

By Theorems 4.4.1 and 4.1.8,

HomD−ST(F
∗ ⊗L

Nis C∗Z(1), G∗ ⊗L
Nis C∗Z(1)) ∼= HomD−ST(F

∗, G∗).

This is the version of the statement that we will use in subsequent chapters. One

important corollary of Theorem 4.4.1 is the following:

Corollary 4.4.2. For each M in DMeff,− and each nonnegative integer n, the counit

map

M(n)−n −→M.

is an isomorphism, natural in M .

Proof. By Theorem 4.1.8, it suffices to verify the statement for A1-local complexes.

Let F ∗ be the bounded above A1-local complex corresponding to M . Notice that

by the Cancellation Theorem, reinterpreted for A1-local complexes,

RHom(C∗Z(1), C∗Z(1)⊗L
Nis F

∗)(U) = RHom(Ztr(U), F ∗) = F ∗(U)

for all U in Smk. It follows that RHom(C∗Z(1), C∗Z(1) ⊗L
Nis F

∗) −→ F ∗ is an isomor-

phism. The corollary now follows by induction on n.



37

Chapter 5

Slice Filtration on DMeff,− and DM

In this chapter, we construct a sequence of subcategories on DMeff,− using the tensor

and the partial internal hom structure on DMeff,− defined in the previous chapter (see

Section 4.2). In order to be more precise, we introduce the following notion.

Definition 5.0.1. Let A be a category. A descending weak filtration of A is a (Z-

indexed) sequence of subcategories

A ⊇ · · · ⊇ Ai ⊇ Ai+1 ⊇ · · ·

together with coreflection functors φi : A −→ Ai for each i such that φi restricts to

the identity on Ai. One can similarly define ascending weak filtrations using reflec-

tions A −→ φnA . We will represent a weak filtration as (A∗, φ∗), where Ai are the

subcategories and φi are the reflection/coreflections.

We say that a weak filtration (A∗, φ∗) is degenerate if all subcategories An are equal.

If A has a zero object, then we say that (A∗, φ∗) is trivial if each An consists of only

the zero object.

Remark 5.0.2. An N-indexed descending weak filtration is just a Z-indexed descending

weak filtration such that Aj = A for all j ≤ 0. Likewise, an N-indexed ascending weak

filtration is an ascending weak filtration for which Aj = A0 for all negative j.

We show that there are two N-indexed weak filtrations — one ascending, one de-

scending — on DMeff,− defined below in (5.1.1) and (5.1.2). The construction is based

on the work of Voevodsky, Huber, and Kahn [HK06]. We then recall the definition

of the derived category of motives DM in Definition 5.3.1, and extend the two weak

filtrations on DMeff,− to Z-indexed weak filtrations on DM, defined below in (5.3.3)
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and (5.3.8). Aside from Lemmas 5.2.1 and 5.2.5 and Propositions 5.2.9 and 5.2.11, the

content from the first two sections is taken from [HK06, §1]. The extensions of the

filtrations to DM are new.

5.1 Slice filtration on DMeff,−

To simplify notation, following Chapter 4, we write M(n) for M ⊗L Z(n), and M−n for

RHomDMeff,−(Z(n),M). Furthermore, let Ln denote the functor − ⊗L Z(n), and Rn

denote the functor RHomDMeff,−(Z(n),−). By convention, define L0 and R0 to be the

identity functor. As we have noted in the paragraph preceding Theorem 4.4.1, (Ln, Rn)

form an adjoint pair of triangulated functors for each natural numbers n.

We first describe the descending weak filtration on DMeff,−. Fix a natural number

n, let DMeff,−
≥n be the full subcategory of objects of the form M(n) for some M in

DMeff,−, and let DMeff,−
<n be the full subcategory of objects M such that M−n = 0.

SinceM(n+1) =M(1)(n) andM−n = 0 impliesM−(n+1) = 0, we have the following

towers of subcategories:

DMeff,− = DMeff,−
≥0 ⊇ DMeff,−

≥1 ⊇ DMeff,−
≥2 ⊇ · · · ⊇ 0 (5.1.1)

0 = DMeff,−
<0 ⊆ DMeff,−

<1 ⊆ DMeff,−
<2 ⊆ · · · ⊆ DMeff,− (5.1.2)

For each n, LnRn : DMeff,− −→ DMeff,−
≥n is right adjoint to the inclusion ofDMeff,−

≥n

into DMeff,− (see [HK06, 1.1]). Moreover, by Corollary 4.4.2, RnLn ∼= id. Since an

object M in DMeff,−
≥n is of the form M ′(n) for some M ′ in DMeff,−, and

LnRnM = LnRnM ′(n) ∼= LnM ′ =M,

the functor LnRn is naturally isomorphic to the identity on DMeff,−
≥n .

Definition 5.1.3. Following [HK06], let ν≥n denote the triangulated functor LnRn.

Thus, ν≥nM =M−n(n).

Furthermore, for each M in DMeff,−, there exists some M ′ in DMeff,− such that

there is a distinguished triangle:

ν≥nM −→M −→M ′ −→ ν≥nM [1]. (5.1.4)
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By [HK06, 1.4(i, ii)], M ′ is uniquely defined up to unique isomorphism, and there is a

cohomological functor ν<n given by M 7→M ′, which is the left adjoint to the inclusion

of DMeff,−
<n in DMeff,−. If M is in DMeff,−

<n , then ν≥nM = M−n(n) = 0. Since (5.1.4)

is distinguished, M ∼= ν<nM . To show that this isomorphism is natural in M , we will

prove the stronger result that (5.1.4) is natural in M .

Fix a map f :M −→M ′ in DMeff,−. By the naturality of the counit ϵ : ν≥n −→ id,

we have the following commutative square:

..

..ν≥nM ..M

..ν≥nM ′ ..M ′.

.

ϵM

.ν≥nf . f.

ϵM′

Completing the rows of the square into distinguished triangles, we have the following

commutative diagram

..

..ν≥nM ..M ..ν<nM ..ν≥nM [1]

..ν≥nM ′ ..M ′ ..ν<nM ′ ..ν≥nM ′[1]

.

ϵM

.ν≥nf .f .

ϵM′

Since ν<n is left adjoint to the inclusion of DMeff,−
<n into DMeff,−,

HomDMeff,−(M,ν<nM ′) ∼= HomDMeff,−(ν<nM,ν<nM ′).

Hence, the induced map from ν<nM −→ ν<nM ′ (the dotted arrow in the diagram

above) is ν<nf . We summarize the main results of the above discussion in the following

proposition:

Proposition 5.1.5. The tower of subcategories in (5.1.1) defines a descending weak

filtration of DMeff,−, where the coreflection functors

ν≥n : DMeff,− −→ DMeff,−
≥n

are defined by M 7→M−n(n).

Furthermore, the tower in (5.1.2) defines an ascending weak filtration of DMeff,−,

with reflection functors

ν<n : DMeff,− −→ DMeff,−
<n ,

defined by sending M to M ′ in the triangle given in (5.1.4).
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We call the pair of weak filtrations associated with the towers in (5.1.1) and (5.1.2)

the slice filtration on DMeff,−.

Notice that, by replacing M by ν≥nM in (5.1.4), we get distinguished triangles for

all positive integers m and n, all of which are natural in M :

ν≥nν≥mM −→ ν≥mM −→ ν<nν≥mM −→ ν≥nν≥mM [1]. (5.1.6)

5.2 Fundamental invariants of the slice filtration

In this section, following [HK06, 1.4 (iv, v)], we define the slice and fundamental invari-

ant functors associated to the slice filtration on DMeff,−. Before we do so, we will show

that the functors ν≥n and ν<n satisfy a number of properties described in Proposition

5.2.11. Lemmas 5.2.1 and 5.2.5 and Propositions 5.2.9 and 5.2.11 are new.

We first digress to discuss two results from category theory. For the following, let

L and R be a pair of adjoint endofunctors on C , and suppose that the unit η : id −→

RL is a natural isomorphism. Write Ln and Rn for the n-th iteration of L and R

respectively. Since L and R are adjoint functors, so are Ln and Rn. Write ϵn for the

counit LnRn −→ id and ηn for the unit id −→ RnLn. In this case, ηn is also a natural

isomorphism for each positive integer n.

Lemma 5.2.1. For each positive integer n, the natural isomorphism (Ln+1Rnη)−1 :

Ln+1Rn+1L −→ L(LnRn) fits into the following commutative diagram of natural trans-

formations:

..

..Ln+1Rn+1L ..L

..L(LnRn) ..L.

.

ϵn+1L

.

Lϵn

(5.2.2)

Dually, the natural isomorphism ηLnRn+1 : LnRnR −→ R(Ln+1Rn+1) fits into the

following commutative diagram of natural transformations:

..

..LnRnR ..R

..R(Ln+1Rn+1) ..R.

.

ϵnR

.η .

Rϵn+1

(5.2.3)
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Proof. We first show that (5.2.2) is commutative. To do so, we proceed by induction

on n. For the case n = 0, by the counit-unit adjunction, the following composition is

the identity transformation:

L
Lη−→ LRL

ϵL−→ L.

Therefore, ϵL = L(η−1), and the following diagram commutes:

..

..LRL ..L

..L ..L.

.

ϵL

.L(η−1)

Now assume that for some integer n, the following diagram is commutative:

..

..LnRnL ..L

..L(Ln−1Rn−1) ..L.

.

ϵnL

.LnRn−1η−1.

Lϵn−1

(5.2.4)

Write ϵ′ for the natural transformation LnϵRn : LnRn −→ Ln−1Rn−1. Applying the

naturality of ϵ′ to the natural isomorphism η−1 : RL −→ id, we have the following

commutative diagram

..

..LnRnRL ..Ln−1Rn−1RL

..LnRn ..Ln−1Rn−1.

.

ϵ′RL

.LnRnη−1 . Ln−1Rn−1η−1.

ϵ′

Now apply L to the above, we have

..

..Ln+1Rn+1L ..LnRnL

..Ln+1Rn ..LnRn−1,

.

Lϵ′RL

.Ln+1Rnη−1 . LnRn−1η−1.

Lϵ′

which fits together with (5.2.4) to give the following commutative diagram:

..

..Ln+1Rn+1L ..LnRnL ..L

..Ln+1Rn ..LnRn−1 ..L.

.

Lϵ′RL

.Ln+1Rn(η−1) . LnRn−1(η−1).

ϵn

.

Lϵ′

.

Lϵn−1

Notice that ϵn ◦ Lϵ′R = ηn+1 and ϵn−1 ◦ η′ = ϵn. Therefore, in the diagram above,

the composition of the two maps in the top row is precisely ϵn+1L and the composition
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of in the bottom row is precisely Lϵn. By induction, the commutativity of (5.2.2) is

established. The commutativity of (5.2.3) follows by similar arguments.

Lemma 5.2.5. For all positive integers n and m, there exists a natural isomorphism

τ : LnRnLmRm −→ LmRmLnRn such that the following is a commutative diagram of

natural transformations:

..

..LnRnLmRm ..LnRn

..LmRmLnRn ..LnRn

.

LnRnϵm

.τ .

ϵmLnRn

(5.2.6)

Proof. We first consider the casem ≤ n. By the counit-unit adjunction, the composition

Rm ηmRm

−−−−→ RmLmRm Rmϵm−−−−→ Rm

is the identity transformation. Applying LnRn−m to the above, we obtain the following

commutative square:

..

..LnRn−mRmLmRm ..LnRn−mRm

..LnRn−mRm ..LnRn.

.

LnRnϵm

.(LnRn−mηmRm)−1

Similarly, by the unit-counit adjunction, the compositions

Lm Lmηm−−−−→ LmRmLm ϵmLm

−−−−→ Lm

is also the identity transformation. Applying the above to Ln−mRn, we obtain the

following commutative square:

..

..LmLn−mRn ..LnRn

..LmRmLmLn−mRn ..LmLn−mRn

.(LmηnLn−mRn) .

ϵmLnRn

Combining these squares, and setting

τ
def
= (LmηnLn−mRn) ◦ (LnRn−mηmRm)−1,

we obtain the commuting square (5.2.6) for n ≥ m.
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For the case n < m, iterating on the results of Lemma 5.2.1, we have the following

commutative diagrams:

..

..RnLmRm ..Rn

..Lm−nRm ..Rn

.

Rnϵm

.(ηnLm−nRm−n)−1.

ϵm−nRn

(5.2.7)

and

..

..Lm+nRm+nLn ..Ln

..LnLm−nRm−n ..Ln.

.

ϵmLn

.LmRm−nηn.

Lnϵm−n

(5.2.8)

Applying (5.2.8) to Rn and Ln to (5.2.7), the resulting diagrams fit together to give

..

..LnRnLmRm ..LnRn

..LnLm−nRm−nRn ..LnRn

..LmRmLnRn ..LnRn.

.

LnRnϵm

.

(LnηnLm−nRm−n)−1

.

LmRm−nηnRn

.

ϵmLnRn

By setting

τ
def
= (LnηnLm−nRm−n)−1 ◦ LmRm−nηnRn,

we see that (5.2.6) is commutative, and the lemma is established.

Applying Lemma 5.2.5 to the pair of adjoint functors M 7→ M(n) and M 7→ M−n

on DMeff,−, we obtain the following proposition:

Proposition 5.2.9. There is a natural isomorphism ν≥nν≥m τ−→ ν≥mν≥n fitting into

the following commutative diagram of natural transformations:

..

..ν≥nν≥m ..ν≥n

..ν≥mν≥n ..ν≥n,

.

ν≥nϵm

.τ .

ϵmν≥n

(5.2.10)

where ϵm : ν≥m −→ id is the unit. Furthermore, ν≥nϵm and ϵmν≥n are natural isomor-

phisms.

Proposition 5.2.11. For all nonnegative integers m,n, such that m ≤ n, and for all

M in DMeff,−, there exists the following natural isomorphisms:
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1. ν≥mν<n ∼= ν<nν≥m.

2. ν≥nν<m = ν<mν≥n = 0.

3. ν<mν<n ∼= ν<nν<m ∼= ν<m.

4. (ν≥nM)(k) = ν≥n+kM(k) for all positive integers k.

Proof. For part (1), apply the commutative diagram of functors (5.2.10) in Proposition

5.2.9 to an object M of DMeff,−, and extend the rows to triangles. We obtain the

following commutative diagram:

..

..ν≥nν≥mM ..ν≥mM ..ν<nν≥mM ..ν≥nν≥mM [1]

..ν≥mν≥nM ..ν≥mM ..ν≥mν<nM ..ν≥mν≥nM [1].

.∼= .

+1

. ∼=.

+1

By the Five Lemma ([Wei94, 10.2.2]), we have that

ν≥mν<nM ∼= ν<nν≥mM.

Since the rows are functorial in M and the isomorphism ν≥nν≥mM −→ ν≥mν≥nM is

natural, for a given map f :M −→M ′, the induced maps ν<nν≥m(f) and ν≥mν<n(f)

fit into the following commutative square:

..

..ν<nν≥mM ..ν<nν≥mM ′

..ν≥mν<nM ..ν≥mν<nM ′

.

ν<nν≥m(f)

.∼= . ∼=.

ν≥mν<n(f)

Therefore, ν≥mν<n is naturally isomorphic to ν<nν≥m.

Since (ν<m)−n = 0, it is clear that ν≥nν<m = 0. On the other hand, by Proposition

5.2.9, ν≥mν≥n = ν≥n. From the following functorial distinguished triangle

ν≥mν≥n −→ ν≥n −→ ν<mν≥n −→ ν≥mν≥n[1]

it follows that ν<nν≥m = 0, which proves (2).

For (3), apply the slice triangle (5.1.4) to ν<nM to obtain:

ν≥mν<nM −→ ν<nM −→ ν<mν<nM −→ ν≥mν<nM [1].
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Applying ν<n to the slice triangle of M gives:

ν<nν≥mM −→ ν<nM −→ ν<nν<mM −→ ν<nν≥mM [1],

and by part (2), there exists a natural isomorphism ν≥mν<nM −→ ν<nν≥m which fits

into the following commutative diagram:

..

..ν≥mν<nM ..ν<nM ..ν<mν<nM ..ν≥mν<nM [1]

..ν<nν≥mM ..ν<nM ..ν<nν<mM ..ν<nν≥mM [1].

.∼= .

+1

. ∼=.

+1

The fact that ν<nν<mM ∼= ν<mν<nM follows from the Five Lemma. Naturality in M

now follows from part (1).

For part (4), the case k = 1 is established in [HK06, 1.4(v)]. The general case follows

by induction on k.

Settingm = n−1 in (5.1.6), we obtain the following functorial distinguished triangle:

ν≥n −→ ν≥n−1 −→ ν<nν≥n−1 −→ ν≥n[1]. (5.2.12)

Definition 5.2.13. For M in DMeff,− and positive integer n, we say ν<n+1ν≥nM is

the n-th slice of M , written as νnM . Since ν<n and ν≥n are triangulated functors, so

is νn. We define the 0-th slice functor to be ν<0.

By Proposition 5.2.11(1), νn ∼= ν≥nν<n−1. In particular, the image of νn is in

DMeff,−
≥n . That is, for each M in DMeff,−, there exists some M ′ such that νnM ∼=

M ′(n). Setting M ′′ def= M ′[−2n], we obtain the following proposition:

Proposition 5.2.14 ([HK06], 1.4(v)). For each n and M , νnM =M ′′(n)[2n] for some

unique M ′′ in DMeff,−. The object M ′′ is defined up to unique isomorphism.

Definition 5.2.15. Following loc. cit., we callM ′′ in Proposition 5.2.14 the n-th funda-

mental invariant ofM , which we write as cnM . For each positive n, cn is an endofunctor

on DMeff,−.
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Example 5.2.16. It is clear that Z(n) is its own n-th slice. Furthermore, since

M(Pn) = ⊕n
i=0Z(n)[2n] (see [MVW, 15.5]), it is easy to verify that

ν<kM(Pn) =


M(Pk) if k ≤ n

M(Pn) otherwise

and

ν≥kM(Pk) =


M(Pn−k)(k)[2k] if k ≤ n

0 otherwise.

Therefore, νkM(Pn) = Z(k)[2k], and the k-th fundamental invariant of M(Pn) is

ckM(Pn) = Z, for k = 0, 1, . . . , n.

5.3 Slice filtration on DM

In this section, we will extend the slice filtration on DMeff,− to Z-indexed filtrations

on DM. Recall from [MVW, 14.2] the following definition of the category DM.

Definition 5.3.1. Let DM be the category obtained from DMeff,− by inverting the

operation M 7→ M(1). That is, the objects of DM are pairs (M,n), where M is an

object of DMeff,−, and n is any integer, such that (M(1), n) ∼= (M,n + 1); the set of

morphism between (M,n) and (M ′, n′) is

lim−→
k

HomDMeff,−(M(k + n),M ′(k + n′)).

as k ranges over all integer values for which k + n and k + n′ are positive. We write

HomDM((M,n), (M ′, n′)) for the hom set of (M,n) and (M ′, n′).

By induction, we have that (M,n) ∼= (M ⊗L Z(n), 0), for any positive integer n and

all M in DMeff,−. In particular, if (M,n) ∼= (M ′, n′) for n ≥ n′, then M ∼=M ′(n−n′).

Furthermore, by the Cancellation Theorem (Theorem 4.4.1),

HomDMeff,−(M,M ′) = HomDMeff,−(M(n),M ′(n))

for all positive integers. Therefore, the colimit in the definition of HomDM is a finite

limit. That is, it suffices to take k > |n|+ |n′|, say.
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By the Cancellation Theorem 4.4.1, the localization functor Σ∞ : DMeff,− −→ DM,

given by sending M in DMeff,− to (M, 0) is fully faithful. Therefore, we can identify

DMeff,− as a full subcategory of DM.

We will now give a description of the subcategories in the slice filtration on DM.

Each subcategory in the slice filtration will be full, and we describe only the objects in

these subcategories.

Definition 5.3.2. For each integer k, let the objects of DM≥k consist of objects (M,n)

for which n ≥ k. As defined, DM≥n+1 ⊆ DM≥n and therefore, we have the following

tower of subcategories:

DM ⊇ · · ·DM≥−1 ⊇ DM≥0 ⊇ DM≥1 ⊇ · · · . (5.3.3)

Notice that for n ≥ 0, (M,n) ∼= (M(n), 0). Therefore, if M ∼= M ′(n) for some

M ′ in DMeff,−, (M, 0) ∼= (M ′, n) in DM. Conversely, if (M, 0) is in DM≥n, then

(M, 0) ∼= (M ′, n) for some M ′ in DMeff,−. Hence, M ∼= M ′(n) in DMeff,−. It follows

that the image of DMeff,−
≥n under Σ∞ coincides with DM≥n, when n ≥ 0. In Definition

5.3.4, we define a way to associate every object (M,n) in DM with an object ν≥0(M,n)

in DM≥0, and in Proposition 5.3.6, we show that ν≥0 is right adjoint to Σ∞. Therefore,

we can realize DMeff,− as a coreflective subcategory of DM.

To show that this tower of subcategories constitutes a weak filtration of DM, we

must construct an extension of the functors ν≥k of Definition 5.1.3. By convention, for

all M in DMeff,−, define ν≥nM to be M for all n ≤ 0.

Definition 5.3.4. For any integer k and a given object (M,n) in DM, we set

ν≥k(M,n)
def
= (ν≥k−nM,n).

This definition preserves isomorphisms. Indeed, if (M,n) ∼= (M ′, n′) for some integer

n′ less than n, say, then M(n− n′) = M ′, and ν≥k−n′
M ′ ∼= ν≥k−nM(n− n′) by (4) of

Proposition 5.2.11. Hence, (ν≥k−n′
M ′, n′) ∼= (ν≥k−nM,n).

We want to show that the ν≥k are triangulated functors from DM to DM≥k that

make (DM≥k, ν
≥k) into a weak filtration. We will verify this claim in the Proposition

5.3.6. Let us first prove the following lemma:
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Lemma 5.3.5. If (M1, n) −→ (M2, n) −→ (M3, n3) −→ (M1, n)[1] is a distinguished

triangle in DM, then there exists some M such that (M,n) ∼= (M3, n3).

Proof. Let φ denote the map from (M1, n) to (M2, n). Then φ is identified with some

map φ′ :M1 −→M2 in DMeff,−. Complete φ′ to a triangle:

M1 −→M2 −→M −→M1[1].

Then, we have

..

..(M1, n) ..(M2, n) ..(M3, n3) ..(M1, n)[1]

..(M1, n) ..(M2, n) ..(M,n) ..(M1, n)[+1].

.

φ

.

φ

The claim now follows from the Five Lemma.

Proposition 5.3.6. Let k be an arbitrary integer.

1. (M,n) 7→ ν≥k(M,n) defines a triangulated functor.

2. ν≥k is a right adjoint to the inclusion of DM≥k into DM.

3. the restriction of ν≥k to DM≥k is naturally isomorphic to the identity.

Proof. If k ≤ n, then ν≥k(M,n) = (M,n), and by definition (M,n) is an object of

DM≥k. On the other hand, if k > n, then as defined, ν≥k(M,n) = (ν≥k−nM,n). By

[HK06, 1.1], ν≥k−nM is in DMeff,−
≥k−n. Hence, M ∼=M ′(k− n). Therefore, ν≥k(M,n) ∼=

(M ′(k − n), n) ∼= (M ′, k). This shows that ν≥k(M,n) is always an object of DM≥k.

Consider a map f : (M,n) −→ (M ′, n′). Since we have already shown that ν≥k

preserves isomorphisms, by replacing either (M,n) or (M ′, n′) by an isomorphic object,

we may assume that n = n′, and f comes from a map g : M −→ M ′ in DMeff,−.

Define ν≥k(f) to be the map given by ν≥k−ng in DMeff,−. This definition preserves

the identity map, isomorphisms, and composition. It follows that ν≥k is a functor on

DM whose image lies in DM≥k.

Given a triangle,

(M ′, n′) −→ (M,n) −→ (M ′′, n′′) −→ (M ′, n′)[1]
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we may assume without loss of generality that n = n′ = n′′, and that this distinguished

triangle comes from the distinguished triangle in DMeff,−:

M ′ −→M −→M ′′ −→M ′[1]

Since ν≥k−n is a triangulated functor on DMeff,− (see Definition 5.1.3), it follows that

ν≥k−nM ′ −→ ν≥k−nM −→ ν≥k−nM ′′ −→ ν≥k−nM ′[1]

is a distinguished triangle in DMeff,−. Thus, we have the following distinguished tri-

angle in DM:

ν≥k(M ′, n) −→ ν≥k(M,n) −→ ν≥k(M ′′, n) −→ ν≥k(M ′, n)[1].

Therefore, ν≥k is a triangulated functor, which proves part (1) of the proposition.

For part (2), let (M,n) be an object of DM, and (M ′, n′) be an object of DM≥k.

By replacing (M ′, n′) with an isomorphic object, we may assume that n′ = k. In the

case n > k, notice that ν≥k(M,n) = (M,n), and the adjunction relation is trivially

satisfied. Otherwise, for some suitably large integer l, we have the following equality:

HomDM((M ′, k), (M,n)) = HomDMeff,−(M ′(l + k),M(l + n)).

Since M ′(l+ k) ∈ DMeff,−
≥k+l and ν

≥k+l is right adjoint to the inclusion of DMeff,−
≥l+k into

DMeff,−,

HomDMeff,−(M ′(l + k),M(l + n)) ∼= HomDMeff,−(M ′(l + k), ν≥k+lM(l + n)).

Notice that by Proposition 5.2.11(4), ν≥k+lM(n+ l) ∼= (ν≥k−nM)(n+ l). Therefore,

HomDM((M ′, k), (M,n)) ∼= HomDMeff,−(M ′(l + k), (ν≥k−nM)(l + n))

∼= HomDMeff,−((M ′, k), ν≥k(M,n)).

Since the isomorphism is functorial in both (M,n) and (M ′, k), it follows that ν≥k is

right adjoint to the inclusion of DM≥k into DM.

For part (3), if (M,n) is an object of DM≥k, then (M,n) ∼= (M ′, k) for some

M ′. Furthermore, as defined, ν≥k(M ′, k) = (M ′, k). As this isomorphism is natural in

(M,n), we have just established part (3).
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Next, we construct the ascending weak filtration on DM.

Definition 5.3.7. Let DM<k to be the full subcategory of objects (M,n) in DM for

which ν≥k(M,n) = 0. Since ν≥k(M,n) = (ν≥k−nM,n) = 0 implies that ν≥k+1(M,n) =

(ν≥k+1−nM,n) = 0, DM<k+1 is a subcategory of DM<k, and we obtain the following

tower of subcategories:

0 ⊆ · · · ⊆ DM<0 ⊆ DM<1 ⊆ DM<2 ⊆ · · · ⊆ DM. (5.3.8)

As expected, the tower also defines a filtration of DM, and to show this, we will

define the reflection functors ν<k : DM −→ DM<k. These reflection functors will

come from extending the endofunctor ν<k of DMeff,− to endofunctors on DM. By

convention, for a nonpositive integer k, let us define the endofunctor ν<k on DMeff,−

to be 0. For (M,n) in DM, we have the following triangle

ν≥k(M,n) −→ (M,n) −→ (M ′, n′) −→ ν≥k(M,n)[1]. (5.3.9)

Lemma 5.3.10. For each integer k, the object (M ′, n′) in (5.3.9) is defined up to

unique isomorphism. In particular, (M ′, n′) is uniquely isomorphic to (ν<k−nM,n).

Proof. By definition, ν≥k(M,n) = (ν≥k−nM,n). By Lemma 5.3.5 we may assume

n′ = n, and ν≥k−nM −→ M −→ M ′ −→ ν≥k−nM [1] is a distinguished triangle in

DMeff,−. Since M ′ is uniquely defined up to unique isomorphism (see [HK06, 1.3(i)]),

M ′ ∼= ν<k−nM , and (M ′, n′) ∼= (ν<k−nM,n) as claimed.

Recall the convention that for k < 0, ν<k = 0 as an endofunctor on DMeff,−. We

now define the extension of ν<k as endofunctors on DM. As we will see in Proposition

5.3.12, the functors ν<k are the reflection from DM to k<∗DM.

Definition 5.3.11. For any integer k and a given object (M,n) in DM, we set

ν<k(M,n)
def
= (ν<k−nM,n).

Copying the proof of [HK06, 1.3], (M,n) 7→ ν<k(M,n) defines a triangulated functor

on DM.
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The arguments of [HK06, 1.3] can be adapted for ν<k to show the following propo-

sition.

Proposition 5.3.12. For each integer k,

1. ν<k is a triangulated functor

2. the image of ν<k is DM<k and ν<k defines a left adjoint to the inclusion of

DM<k into DM.

3. the restriction of ν<k to DM<k is naturally isomorphic to the identity.

4. If k > 0, the restriction of ν<k to DMeff,− is the functor ν<k of Proposition 5.1.5.

It follows that the towers of subcategories given in (5.3.3) and (5.3.8) respectively

define a descending and an ascending filtration on DM.

5.4 Extending the fundamental invariants

We can also extend the definition of the fundamental invariants ck to negative integers

k. Notice that for each (M,n) in DM, and each integer k, we have the slice triangle:

ν≥k+1(M,n) −→ ν≥k(M,n) −→ ν<k+1ν≥k(M,n) −→ ν≥k+1(M,n)[1].

Definition 5.4.1. Let us define νk to be ν<k+1ν≥k. We call this functor the k-th slice

on DM. Since both ν<k+1 and ν≥k are triangulated functors, so is νk.

By arguments similar to those in the proof of Proposition 5.2.14, we have that

νk(M,n) ∼= (M ′′[2k], k) for some M ′′ in DMeff,−, which is unique up to unique isomor-

phism. We define the k-th fundamental invariant of (M,n) to be

ck(M,n)
def
= M ′′.

For each integer k, ck is a functor from DM to DMeff,−.

Notice that for k ≥ 0, if (M,n) is in DMeff,−, the definition of νk recovers the k-th

slice functor in Definition 5.2.13 by Proposition 5.3.12. Similarly, ck is an extension of

the k-th fundamental invariant on DMeff,−.
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We conclude this section by discussing the relationship between the tensor structure

on DMeff,− and DM and their respective slice filtrations. First, let us define a tensor

product on DM. By abuse of notation, we will also represent this tensor product by

⊗L.

Definition 5.4.2. Following [MVW, 8A], for objects (M,n), (M ′, n′) in DM, we define

(M,n) ⊗L (M ′, n′) to be (M ⊗L M ′, n + n′). As shown in [MVW, 15.8], the cyclic

permutation of Z(1)⊗3 is the identity in DMeff,−. By [MVW, 8A.12] the triangulated

category DM together with ⊗L defines (DM,⊗L) is an additive symmetric monoidal

triangulated category.

Let us first consider the following result, which relate the slice filtration to the tensor

product on DMeff,−.

Proposition 5.4.3 ([HK06] 1.6). For nonnegative integers n, n′, there exists a unique

natural isomorphism η : ν≥n ⊗L ν≥n′ −→ ν≥n+n′
(− ⊗L −) compatible with the tensor

structure on DMeff,−. That is, we have the following commutative square for each M

and M ′ in DMeff,−:

..

..ν≥n(M)⊗L ν≥n′
(M ′) ..ν≥n+n′

(M ⊗L M ′)

..M ⊗L M ′ ..M ⊗L M ′.

.

η

We can extend this result to DM. The following is a straightforward consequence

of Proposition 5.4.3.

Corollary 5.4.4. For all integers n, n′, there exists a unique natural transformation of

bifunctors on ν≥n ⊗L ν≥n′ −→ ν≥n+n′
(−⊗L −) compatible with the tensor structure of

DM.

A corollary of Proposition 5.4.3 applies to the tensor structure on the slices (and

similarly, on the fundamental invariants) of the slice filtration.

Corollary 5.4.5. For all integers nonnegative n, n′, there exists unique natural trans-

formations of bifunctors νn⊗L νn
′ −→ νn+n′

(−⊗L−) and cn⊗L cn′ −→ cn+n′(−⊗L−)

compatible with the tensor structure on DMeff,−.
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The natural transformations can be extended to natural transformations on the slice

structure on DM: we have natural transformations νn ⊗L νn
′ −→ νn+n′

(−⊗L −) and

cn ⊗L cn′ −→ cn+n′(−⊗L −) compatible with the tensor structure on DM.

Proof. The existence of natural transformations νn ⊗L νn
′ −→ νn+n′

(− ⊗L −) and

cn ⊗L cn′ −→ cn+n′(−⊗L −) on DMeff,− is proven in [HK06, 1.6].

To show that the natural transformations are also defined on DM, fix integers n, n′,

and let (M,m) and (M ′,m′) be two objects in DM. Since (M ′,m′) ∼= (M(k)′,m′ − k),

we may assume without loss of generality that m = m′ < min(n, n′, n + n′). In this

case, notice that

νn(M,m) = (νn−mM,m) and νn
′
(M ′,m) = (νn

′−mM ′,m),

and

cn(M,m) = νn−m(M)[−n] and cn′(M,m) = νn
′−m(M)[−n′]

Define

νn(M,m)⊗L νn
′
(M ′,m) −→ νn+n′

((M,m)⊗L (M ′,m))

to be

(νn−m(M)⊗L νn
′−m, 2m) −→ (νn+n′−2m(M ⊗L M ′), 2m)

and

cn(M,m)⊗L cn′(M ′,m) −→ cn+n′((M,m)⊗L (M ′,m))

to be

cn−mM [−n]⊗L cn′−mM
′[−n′] −→ cn+n′−2mM [−(n+ n′)].

Both maps are independent of the choice of m. Naturality in (M,m) and (M ′,m)

follows from the naturality in M and M ′.

Remark 5.4.6. Notice that the fundamental invariants ck of the slice filtration on DM

always take value in DMeff,−. More specifically, the fundamental invariants always take

value in the full subcategory of birational motives defined in [KaSu]. This is established

for the fundamental invariants for DMeff,− in [HK06, Section 2], and can be extended

directly to DM.
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Chapter 6

Filtrations on HI

The purpose of this chapter is to construct three filtrations of HI. The main result

of this chapter is that there is a sequence of coradicals (see Definition 2.1.3) on the

category HI which induces a descending strong filtration and an ascending cofiltration

(see Definition 6.2.5 below) of HI by the associated subcategories (see Theorem 6.2.10).

The key ingredient in the constructions of the filtrations is the tensor monoidal structure

on HI and the partial internal hom. These structures are induced by the tensor and

partial internal hom operators on DMeff,− introduced in Section 4.2. All uncredited

results in this section are new.

6.1 Tensor and partial internal hom structure on HI

To simplify the definition and the proofs in this chapter and the next, we invoke Theo-

rem 4.1.8 and identify the category DMeff,− with the full triangulated subcategory L

of A1-local complexes from Definition 4.1.4. We identify objects M in DMeff,− with

bounded above complexes F ∗ of Nisnevich sheaves with transfers such that HnF ∗ is a

homotopy invariant presheaf with transfers for every n. In particular, regarding a sheaf

with transfers as a cochain complex concentrated in degree 0, we consider HI as an

additive subcategory of DMeff,−.

Recall the following notions from [BBD, 1.3]:

Definition 6.1.1. A t-category is a triangulated category D together with a pair of full

subcategories (D≥0,D≤0), called the positive objects and negative object ofD respective,

which satisfies the following properties:

1. For all X in D≤0, and Y in D≥1, HomD(X,Y ) = 0.
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2. D≤0 ⊂ D≤1 and D≥1 ⊂ D≥0

3. For all X in D, there exists a distinguished triangle

A −→ X −→ B −→ A[1]

such that A is in D≤0 and B is in D≥1.

Here we write D≥n and D≤n for D≥0[n] and D≤0[n] respectively. We call the pair

(D≥0,D≤0) a t-structure on D.

The heart of a t-category is the full subcategory C
def
= D≥0 ∩D≤0.

If D is a t-category, then the inclusion of D≤n in D admits a right adjoint τ≤n :

D −→ D≤n, and the inclusion of D≥n in D admits left adjoint τ≥n : D −→ D≥n.

Furthermore, for all X in D, there exists a unique map d in HomD(τ≥1X, τ≤0X[1])

such that

τ≤0X −→ X −→ τ≥1X
d−→ τ≤0X[1]

is distinguished (see [BBD, 1.3.3]). For integers m and n such that m < n, τ≤mτ≤n =

τ≤nτ≤m = τ≤m, and τ≥mτ≥n = τ≥nτ≥m = τ≥n. Furthermore, τ≤mτ≥n = τ≥nτ≤m = 0,

and τ≤nτ≥m = τ≥mτ≤n (see [BBD, 1.3.5]). When n = m = 0, the composition τ≤0τ≥0

defines an additive functor H0 : D −→ C .

Recall from [BBD, 1.2.5] that an abelian subcategory C of D is admissible if for all

C and D in C and i < 0, HomD(C,D[i]) = 0, and all exact sequences in C come from

distinguished triangles in D.

Theorem 6.1.2 ([BBD] 1.3.6). Let D be a t-category, and let (D≥0,D≤0) be its as-

sociated t structure. Then the heart C is an admissible abelian category, stable under

taking extensions.

Example 6.1.3 ([BBD] 1.3.2). Let A be an abelian category, and DA be its derived

category. There is a natural t-structure on DA . The pair (DA ≥0,DA ≤0) is a pair of

full subcategories whose objects are those with trivial cohomology in the negative and

positive degrees respectively. In this case, the functors τ≥n and τ≤n are given by good

truncations.
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The heart of this t-structure is precisely A , where an object of A is regarded as a

complex concentrated in degree 0. (See the example following the statement of 1.3.6 in

[BBD].)

Example 6.1.4 ([BBD] 1.3.16). If D′ is a full triangulated subcategory of a t-category

D, then D′ is also a t-category with the t-structure given by (D′≥0,D′≤0), where

D′≥0 def
= D≥0 ∩D and D′≤0 def

= D≤0 ∩D′.

Definition 6.1.5. Let φ : D −→ D′ be a triangulated functor between t-categories.

We say that φ is right t-exact if φ(D≤0) ⊆ D′≤0, and left t-exact if φ(D≥0) ⊆ D′≥0.

We say that φ is t-exact if it is both right and left t-exact.

The concept of (left or right) t-exactness is a generalization of exactness in abelian

category. We have the following result regarding t-exact functors and the induced

functor on the hearts.

Proposition 6.1.6 ([BBD] 1.3.17). Let D and D′ be t-categories with hearts A and A ′

respectively. Furthermore, let F : D −→ D′ be a left (resp., right) t-exact triangulated

functor. Then H0F is a left (resp., right) exact functor from A to A ′.

If a t-category D is equipped with an additive symmetric monoidal structure that is

right t-exact in both factors, then so is its heart C . The symmetric monoidal structure

on the heart is defined as follows. Suppose − ⊗ − is the tensor operator on D. For

C,C ′ in C , we define C ⊗C C ′ by H0(C ⊗C ′). Since ⊗ is right t-exact in both factors,

for all M and N in D≤0,

H0(M ⊗N) = H0(H0(M)⊗H0(N))

([Dég10, 5.10]) and ⊗C is well-defined. It is now straightforward to verify that (C ,⊗C )

satisfies all the axioms of a symmetric monoidal category.

In addition, if D has a partial internal hom structure (Hom,Drep) as defined in

Definition 4.2.2, then C is also equipped with a partial internal hom. For C,C ′ in C ,

let us set

HomC (C,C
′)

def
= H0(Hom(C,C ′)).
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Proposition 6.1.7. Let C be an object in Drep ∩ C such that Hom(C,−) is right

t-exact. Then HomC (C,−) is right adjoint to C ⊗C − as endofunctors on C .

Proof. Notice that for M in D≤0 and M ′ in D≥0,

HomD(H0(M),M ′) ∼= HomD(M,M ′) (6.1.8)

and

HomD(M,H0(M ′)) ∼= HomD(M,M ′). (6.1.9)

Fix any C1, C2 in C . Since ⊗ is right t-exact in both factors, C1 ⊗ C is in D≤0, and

using the isomorphism in (6.1.8), we obtain the following isomorphism:

HomC (C1 ⊗C C,C2) = HomC (H
0(C1 ⊗ C), C2) ∼= HomD(C1 ⊗ C,C3).

Since C is in Drep, the functor − ⊗ C is left adjoint to Hom(C,−). By assumption,

Hom(C,−) is right t-exact, and since C2 is in the heart, Hom(C,C2) is an object in

D≥0. Therefore, using the isomorphism in (6.1.9), we obtain the following chain of

isomorphisms:

HomC (C1 ⊗C C,C2) ∼= HomD(C1 ⊗ C,C2)

∼= HomD(C1,Hom(C,C2))

∼= HomD(C1,H
0(Hom(C,C2)))

= HomC (C1,HomC (C,C2)).

Since each of the above isomorphism is natural in C1 and C2, the proposition now

follows.

Proposition 6.1.7 shows that the functor HomC defines a partial internal hom on

the category C where the collection of semi-representable objects of HomC contains at

least those objects C in C ∩Drep such that Hom(C,−) is left t-exact.

The above discussion applies to the category DMeff,− since there exists a t-structure

on DMeff,−, with the abelian category HI as its heart (see Theorem 4.1.8).

Definition 6.1.10. We write τ≤0DMeff,− for the negative objects of DMeff,−, and

τ≥0DMeff,− for the positive objects of DMeff,−. We will also let τ≤0, τ≥0 and H0

denote the functors from DMeff,− to τ≤0DMeff,−, τ≥0DMeff,− and HI, respectively.



58

The triangulated monoidal structure on DMeff,− induces a symmetric monoidal

bifunctor on HI, which we write as ⊗H . This bifunctor is uniquely characterized by

hX ⊗H hY = hX×Y ,

where hX = H0(M(X)) for X in Smk (see [Dég10, 1.8]).

Moreover, there is a partial internal hom, defined by

HomHI(F,G) = H0(RHomDMeff,−(F,G))

for all G inHI, and F inHI∩DMeff,−
gm for which RHomDMeff,−(F,−) is left t-exact. Our

first goal is to show that O∗ is semi-representablewith respect to HomHI by showing

that RHomDMeff,−(O∗,−) is right t-exact. This is established by the following lemma.

Recall from Definition 3.2.7 that for F in HI, F−1 is the contraction of F , which is the

homotopy invariant sheaf with transfers defined by

X 7→ cok(F (X × A1) −→ F (X × (A1 − 0))).

Moreover, F 7→ F−1 defines an endofunctor on HI.

Lemma 6.1.11. There exists a natural isomorphism of homotopy invariant sheaves

with transfers

HiRHomDMeff,−(Z(n)[n],M) ∼= (HiM)−n.

In particular, RHomDMeff,−(O∗,−) is left t-exact.

Proof. Fix an object M in DMeff,−, regarded as a cochain complex of sheaves with

transfers with homotopy invariant cohomology presheaves. By [Dég08, 3.4.4], there

exists a natural morphism between homotopy invariant presheaves with transfers:

i : (H iM)−n −→ H iRHomDMeff,−(Z(n)[n],M)

such that for all fields E over k, the following is an isomorphism:

(H iM)−n(SpecE) ∼= H iRHomDMeff,−(Z(n)[n],M)(SpecE).

By [MVW, 11.2], i induces a natural isomorphism of the associated homotopy invariant

Nisnevich sheaves with transfers:

(HiM)−n
∼=−→ HiRHomDMeff,−(Z(n)[n],M).
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This proves the first claim in the Lemma.

To see that RHomDMeff,−(O∗,−) is left t-exact, suppose M is a positive object, i.e.,

HiM = 0 for all i < 0. Since O∗ ∼= Z(1)[1], applying the above for n = 1, we see that

for all i < 0,

HiRHomDMeff,−(O∗,M) ∼= HiRHomDMeff,−(Z(1)[1],M) ∼= (HiM)−1 = 0.

Thus, RHomDMeff,−(O∗,M) is also a positive object in DMeff,−, and the lemma is now

established.

Definition 6.1.12. To emphasize the relationship with corresponding operations in

DMeff,−, let us set

F (1)HI def
= F ⊗H O∗ and FHI

−1
def
= HomHI(O∗, F ).

We write F (n)HI for (F (n− 1)HI)(1)HI and FHI
−n for (FHI

−n+1)
HI
−1.

By Lemma 6.1.11 and preceding comments, F 7→ F (1)HI is left adjoint to F 7→ FHI
−1,

and therefore F 7→ F (n)HI is left adjoint to F 7→ FHI
−n for all n > 0.

Remark 6.1.13. To simplify notation, we will drop the “HI”, and simply write F (n)

and F−n for F (n)HI and FHI
−n. Doing so introduces a number of potential sources of

ambiguity. The first is that F (n) is already used to represent F ⊗L Z(n), where Z(n)

is the motivic complex in DMeff,− introduced in Section 4.3. In particular, Z(n) may

refer to the motivic complexes as well as the objects Z ⊗H (O∗)⊗n. To resolve this

ambiguity, we adopt the following convention: For the remainder of the thesis, unless

otherwise specified, for an object F in HI, F (n) will denote F (n)HI def
= F ⊗H (O∗)⊗n.

All mentions of Z(n) will refer to the motivic complex in DMeff,−.

The second source of potential ambiguity comes from the fact that F−1 is already

used to represent the contraction of the sheaf F in HI. Recall from Definition 3.2.7

that F−1 is the sheaf that sends X in Smk to cok p∗, where

p∗ : F (X) −→ F (X × (A1 − 0))

is the map induced by the projection X×(A1−0) −→ X. In fact, there is no ambiguity

here, since the contraction of F is isomorphic to the sheaf HomHI(O∗, F ). Indeed, by
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[Dég08, 3.4.5], the contraction of F is isomorphic to RHomDMeff,−(Z(1)[1], F ). Recall

from [MVW, 4.1] that Z(1)[1] ∼= O∗ in DMeff,−. Hence, we have that

HomHI(O∗, F ) ∼= H0RHomDMeff,−(Z(1)[1], F ) ∼= H0F−1 = F−1.

Finally, we make some observations that will be useful in subsequent sections.

Proposition 6.1.14. For all negative objects M ,

H0(M ⊗L Z(n)[n]) = H0(M)(n).

Proof. By construction, the tensor operation ⊗L is right t-exact in both factors. There-

fore, for negative objects M and N of DMeff,−, we have that

H0M ⊗H H0N = H0(H0(M)⊗L H0(N)) = H0(M ⊗L N).

Since Z(n)[n] = Z(n−1)[n−1]⊗LZ(1)[1], and Z(1)[1] ∼= O∗, by induction on n, Z(n)[n]

is also a negative object and H0(Z(n)[n]) ∼= (O∗)⊗n. Moreover, for a negative object

M in DMeff,−, we obtain the following:

H0(M ⊗L Z(n)[n]) ∼= H0(M) ⊗H (O∗)⊗n = H0(M)(n).

Proposition 6.1.15. Let F be a homotopy invariant sheaf with transfers. The unit

map F −→ F (n)−n is an isomorphism.

Proof. For F in HI, by the Cancellation Theorem 4.4.1, we have that

RHomDMeff,−(Z(n)[n], F (n)[n]) ∼= RHomDMeff,−(Z, F ) ∼= F.

Now apply H0 to this chain of isomorphisms. Using Lemma 6.1.11 and the fact that

H0(F ) = F , we obtain the desired isomorphism.

Proposition 6.1.16. If F = G(n) for some G in HI, then ϵnF : F−n(n) −→ F is an

isomorphism.

Proof. Suppose F = G(n) for some G in HI. Writing L for the functor F 7→ F (n), by

counit-unit adjunction, the composition

G(n)
LηG−−→ (G(n)−n)(n)

ϵGL−−→ G(n)
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is the identity, where ηG and ϵG are the unit and the counit maps respectively. By

Proposition 6.1.15, ηG is an isomorphism, and so is LηG. It follows that ϵGL is an

isomorphism as well. Since ϵGL is the counit map for LG = G(n) = F , the proposition

follows.

6.2 Torsion filtration on HI

We now define the first filtration on HI. Let HI(0) = HI and let HI(n) denote the full

subcategory of objects F where F ∼= F ′(n) for some F ′ in HI. It is clear that if m ≥ n,

then HI(m) ⊆ HI(n). In particular, we have a tower of subcategories

HI = HI(0) ⊃ HI(1) ⊃ HI(2) ⊂ · · · .

To see that this filtration is not trivial (i.e., HI(n) ̸= HI(m) for all natural numbers

n ̸= m), notice that for the constant sheaf Z, it is clear that Z−1 = 0. Then Z is

an object in HI but not in HI(1). Indeed, if Z ∈ HI(1) then Z ∼= F ′(1), but then

Z−1 = F ′ by Proposition 6.1.15, forcing Z = 0. Similarly, since O∗
−1 = Z, O∗ ∈ HI(1)

but O∗ /∈ HI(2). In general, O∗(n− 1) is an object of HI(n) but not HI(n+ 1).

Remark 6.2.1. The subcategories HI(n) are additive, but not abelian, except for the

case n = 0. To see this, consider the map

n : O∗ −→ O∗

given by sending u ∈ O∗(X) to un for each X in Smk. The kernel of this map is

the sheaf of n-th roots of unity µn. But (µn)−1 = 0. If µn were in HI(n), then by

Proposition 6.1.16, we would have µn ∼= (µn)−1(1) = 0, which is a contradiction. It

follows that HI(1) is not closed under kernels. Similar arguments show that HI(n) is

not closed under kernel for any positive integer n.

Recall from Definition 5.0.1 that a descending weak filtration (A∗, φ∗) is a tower

of subcategories Ai together with coreflection functors φi : A −→ Ai such that φi

restricted to Ai is naturally isomorphic to the identity. To show that the full subcat-

egories HI(n) define a descending weak filtration, we need to show that there exist

coreflection functors σn : HI −→ HI(n).
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Definition 6.2.2. Let σn denote the functor F 7→ (F−n)(n). Since F 7→ F (n) is right

exact, and F−n is exact (Proposition 3.2.8), σn is right exact. However, σn is not always

left exact (see Example 6.2.4 below).

Proposition 6.2.3. The functor σn is right adjoint to the inclusion of HI(n). In

particular, (HI(∗), σ∗) defines a (nontrivial) descending weak filtration of HI.

Proof. Let f : F −→ G be a map in HI, with F in HI(n), and let ϵn denote the counit

σn −→ id. By naturality of ϵn, we have the following commutative diagram:

..

..F−n(n) ..G−n(n)

..F ..G.

.

ϵnf

.ϵnF

. ϵnG

.

f

Since F ∈ HI(n), by Proposition 6.1.16 the counit map ϵnF is an isomorphism.

Define the map χ : HomHI(F,G) −→ HomHI(n)(F,G−n(n)) by f 7→ ϵnf ◦ (ϵnF )
−1.

Since ϵnG ◦ χ(f) = f , χ is injective. Moreover, given a map g : F −→ G−n(n), set

f ′ = ϵnG ◦ g. Then χ(f ′) = g. Hence χ is an isomorphism as desired. From the way

χ is defined, it is clear that χ is functorial in both F and G, and therefore σn is right

adjoint to the inclusion of HI(n) into HI.

To show that (HI(∗), σ∗) define a weak descending filtration, the only criterion left

to check is that σn restricted to HI(n) is naturally isomorphic to the identity. By

Proposition 6.1.16, the counit map ϵn : σnF −→ F is an isomorphism for all F in

HI(n), and the proposition follows.

Example 6.2.4. While (HI(∗), σ∗) forms a weak filtration of HI, for a given sheaf F

in HI, the objects σnF are not in general subobjects of F , because the counit map

σnF −→ F is not always injective. Here is an example.

Let O∗n be the sheaf of n-th power of global units associated to the presheaf where

sections of a smooth finite type k-scheme X is the abelian subgroup of O∗ given by

O∗n(X) = {x : x = yn for some y in O∗(X)}.

It is clear that O∗n ∈ HI. Furthermore, there exists the following exact sequence

0 −→ µn −→ O∗ −→ O∗n −→ 0
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where µn is the constant sheaf of n-th roots of unity. In particular, (µn)−1 = 0. By

Proposition 3.2.8, the functor F 7→ F−1 is exact. Therefore, the map O∗
−1 −→ (O∗n)−1

is an isomorphism, and

(O∗n)−1(1) ∼= O∗
−1(1) = O∗,

and the counit (O∗n)−1(1) −→ O∗n is given precisely by x 7→ xn, which has a nontrivial

kernel.

We can understand the problem in another way, which is that the categories HI(∗)

are too small and do not include all the kernels of counits (F−n)(n) −→ F . This can be

fixed by enlarging the filtration at each level, and to do so, we turn to torsion theory.

Motivated by Example 6.2.4, we introduce the following more stringent criteria on

weak filtrations.

Definition 6.2.5. Let A be an abelian category. We say that a Z-indexed descending

weak filtration (A∗, φ∗) is a strong filtration if for each A in A and n in Z, φnA −→ A

is a monomorphism of A. An ascending weak filtration (A∗, φ∗) is a strong cofiltration

if A −→ φnA is a quotient of A for each n and each A in A .

Similarly, we can define ascending strong filtration and descending strong cofiltration

on A .

Example 6.2.6. Here is an example of a strong ascending filtration and a strong

descending filtration on the category QC of quasi-coherent sheaves on Pn. Let ik

denote the closed immersion of Pk into Pn as a subscheme identified by the vanishing

of the last n − k homogeneous coordinates, and let jk denote the open immersion of

Uk
def
= Pn − Pk into Pn.

Let QCk be the full subcategory of quasi-coherent sheaves on Pn supported in Uk

and let QCk denote the full subcategory of sheaves on Pn supported in Pk. Since

U0 ⊇ U1 ⊇ U2 ⊇ · · · ⊇ Un

and

P0 ⊆ P1 ⊆ P2 ⊆ · · · ⊆ Pn
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we have the following towers of subcategories:

QC0 ⊇ QC1 ⊇ QC2 ⊇ · · · ⊇ QCn

and

QC0 ⊆ QC1 ⊆ QC2 ⊆ · · · ⊆ QCn.

We will show that the towers of subcategories define a strong filtration and strong

cofiltration on QC. For each positive integer k less than n and each F in QC, we have

the following exact sequence of quasi-coherent sheaves on Pn:

0 −→ (jk)!(F |U ) −→ F −→ (ik)∗(F |Z) −→ 0 (6.2.7)

where (jk)!(F |U ) is the sheaf associated with the presheaf given by

V 7→


F (V ) if V ⊆ Uk

0 otherwise.

In this case (jk)!(F ) is in QCk and (ik)∗(F ) is in QCk (see [Hart77, Ex. 1.19]). In

fact, F 7→ (jk)!(F |Uk
) and F 7→ (ik)∗(F |Pk) define functors from QC to QCk and QCk

respectively. In this case (jk)! is right adjoint to inclusion, and (ik)∗ is left adjoint to

inclusion.

In general, let Z1 ⊆ Z2 ⊆ · · ·Zn be a sequence of subschemes of some scheme X,

and let Uk = X − Zk. Let QC(X) be the abelian category of quasi-coherent sheaves

on X. Then there exists a strong descending filtration

QC0(X) ⊇ QC1(X) ⊇ QC2(X) ⊇ · · · ⊇ QCn(X) (6.2.8)

where QCk(X) is the full subcategory of quasi-coherent sheaves supported on Uk, and

a strong ascending cofiltration on QC(X)

QC0(X) ⊆ QC1(X) ⊆ QC2(X) ⊆ · · · ⊆ QCn(X) (6.2.9)

where QCk(X) is the full subcategory of quasi-coherent sheaves on X supported on Zk.

As above, the coreflection functors φk from QC to QCk are given by F 7→ (jk)!(F |Uk)

where jk is the open immersion jk : Uk −→ X; the reflection functors φk from QC
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to QCk are given by F 7→ (ik)∗(F |Zk
), where ik : Zk −→ X is the evident closed

immersion. Since, for each k, we have an exact sequence of quasi-coherent sheaves as in

(6.2.7), φk(F ) is a subobject of F and φk(F ) is a quotient of F for each F in QC(X).

The claim that (6.2.8) defines a strong filtration and (6.2.9) defines a strong cofiltration

now follows.

We will now state the main theorem. Recall from Theorem 2.2.9 that if φ is a

coradical, the associated torsion theory is a pair of full subcategories (T ,F ) where

the torsion subcategory T consists of the objects T such that φ(T ) = 0, and the

torsionfree subcategory F consists of the objects F such that the map F −→ φ(F ) is

an isomorphism.

Theorem 6.2.10. There exists a sequence of coradicals φ<n, n = 0, 1, 2 · · · on HI such

that the associated torsionfree subcategories HI≥∗ form a descending strong filtration of

HI and the associated torsion subcategories HI<∗ form a strong cofiltration.

Theorem 6.2.10 will be verified by Propositions 6.2.17 and 6.2.22 below. We first

define the strong cofiltration, and show that the reflection functors are coradicals.

Definition 6.2.11. If n is a natural number, letHI<n be the full subcategory of objects

F in HI such that F−n = 0. By Proposition 3.2.8, F 7→ F−n is exact. Therefore, HI<n

is an abelian subcategory closed under extensions.

By convention, define F−0 to be F . Since F−n−1 = (F−n)−1, we obtain the following

ascending tower of subcategories

0 = HI<0 ⊂ HI<1 ⊂ HI<2 ⊂ · · · ⊂ HI

Since O∗
−1 = Z and Z−1 = 0, O∗ is in HI<2 but not in HI<1. By Proposition 6.1.15

and by induction, O∗(n) is in HI<n+1 but not in HI<n.

We now describe the reflection functors φ<n : HI −→ HI<n.

Definition 6.2.12. Let n be a positive integer, and let φ<n(F ) denote the cokernel of

the counit ϵnF : F−n(n) −→ F . Since ϵnF is natural in F , φ<n is a functor.
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We will show that φ<n is the desired reflection functor from HI to HI<n. This is

established in Proposition 6.2.15. We proceed by first considering the following lemmas:

Lemma 6.2.13. The image of HI under φ<n is contained in HI<n.

Proof. Let F be an object of HI. We need to verify that φ<n(F )−n = 0. By definition,

we have an exact sequence

F−n(n) −→ F −→ φ<n(F ) −→ 0.

Since the functor F 7→ F−n is exact (see Proposition 3.2.8 and Remark 6.1.13), we then

have the following exact sequence

F−n(n)−n −→ F−n −→ φ<n(F )−n −→ 0.

By Proposition 6.1.15, (F−n(n))−n −→ F−n is an isomorphism. Hence, φ<n(F )−n = 0

as desired.

Lemma 6.2.14. The functor φ<n, restricted to HI<n is naturally isomorphic to the

identity. Consequently, the functor φ<n is idempotent (see Definition 2.1.3 (2)), and

the image of HI under φ<n is HI<n.

Proof. For each F in HI<n, we have the following exact sequence:

F−n(n) −→ F −→ φ<n(F ) −→ 0

Since F ∈ HI<n, F−n = 0, and therefore the counit map is 0. It follows that the natural

map F −→ φ<n(F ) is a natural isomorphism as desired. The first statement follows

from the fact that φ<n(F ) is in HI<n, which is established in Lemma 6.2.13.

Proposition 6.2.15. For each n, the functor φ<n is left adjoint to the inclusion of

HI<n into HI.

Proof. Let F be a homotopy invariant sheaf with transfers, and let G be an object in

HI<n. For all f : F −→ G we have the following commutative diagram:

..

..F ..φ<n(F )

..G ..φ<n(G)

.

πF

.f . φ<n(f).

πG
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where πF and πG are surjections. By Lemma 6.2.14, the map G
πG−→ φ<n(G) is an

isomorphism. Define

χ : HomHI(F,G) −→ HomHI<n(φ<n(F ), G)

by f 7→ π−1
G ◦ φ<n(f). Since χ(f) ◦ πF = f , χ is injective. For g : φ<n(F ) −→ G, set

f ′ = π ◦ g. Since χ(f ′) = g, χ is a bijection, as desired.

From the way χ is defined, it is clear that χ is functorial in both F and G. The

proposition now follows.

This shows that φ<n is an idempotent quotient functor for each natural number n.

In fact, we have the following result:

Proposition 6.2.16. For each natural number n, φ<n is a coradical.

Proof. By Lemma 6.2.14, φ<n is idempotent. By Proposition 6.2.15, φ<n is a left

adjoint, and since HI<n is an abelian category (see Definition 6.2.11), φ<n is therefore

right exact. All that remains to show is that for each F in HI,

φ<n(ker (F −→ φ<n(F ))) = 0.

Fix a positive integer n, and let K denote the kernel of the surjection F −→ φ<n(F ).

Since φ<n(F ) is in HI<n, by definition φ<n(F )−n = 0. Therefore, we have the following

commutative diagram with exact rows:

..

.. ..σnK ..σnF ..0 ..0

..0 ..K ..F ..φ<n(F ) ..0.

.ϵF .ϵF

By the Snake Lemma, and using the fact that cok ϵF = φ<n(F ), we have the exact

sequence

0 −→ φ<n(K) −→ φ<n(F )
q−→ φ<n(F ) −→ 0.

And the map q is the identity. It follows that φ<n(K) = 0 as desired.

Since φ<n is a coradical, by Theorem 2.2.6, there exists a torsion theory (Tn,Fn)

associated with each φ<n. We now give another description of the torsionfree subcate-

gories.
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Proposition 6.2.17. For each positive integer n, the full subcategory HI<n and the

torsionfree subcategory Fn are the same. Hence, the torsionfree subcategories form an

ascending strong cofiltration of HI.

Proof. Recall from Lemma 6.2.13 that φ<n(F )−n = 0 for all F in HI. Hence, if F is in

Fn, F−n = φ<n(F )−n = 0.

Conversely, if F−n = 0, then φ<n(F ) = F by Lemma 6.2.14, and by definition

F is an object of HI<n. Hence, the torsionfree subcategory Fn is precisely the full

subcategory HI<n of the sheaves F in HI for which F−n = 0. This proves the first

claim in the proposition. Since HI<n form an ascending strong cofiltration, the second

claim now follows.

We still have to show that the torsion subcategories Tn form a strong descending

filtration. Let us first introduce a more appropriate notation for the torsion subcategory.

Definition 6.2.18. Let HI≥n denote the torsion subcategory Tn, and φ
≥n denote the

kernel of the natural surjection id −→ φ<n. By Proposition 2.1.8 and Corollary 2.2.7,

φ≥n is an idempotent pre-radical, and is right adjoint to the inclusion of HI≥n in HI.

We will now show that (HI≥∗, φ≥∗) defines a descending strong filtration on HI.

Lemma 6.2.19. The essential image of φ≥n is HI≥n, and the restriction of φ≥n to

HI≥n is the identity.

Proof. Recall from the definition of φ≥n that for each F in HI, there exists a short

exact sequence:

0 −→ φ≥nF −→ F −→ φ<nF −→ 0.

Furthermore, recall from Theorem 2.2.6 that the for all F in HI≥n, φ<nF = 0. The

lemma now follows.

Lemma 6.2.20. For natural numbers n and m such that m > n, φ<mφ<n = φ<n and

there exist a natural isomorphism φ<nφ<m ∼= φ<n.
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Proof. Suppose F is in HI. Since HI<n is a full subcategory of HI<m, and φ<m is the

identity on HI<m (Lemma 6.2.14), we have φ<mφ<n = φ<n. It remains for us to show

that φ<nφ<m ∼= φ<n.

We have the following commutative diagram:

..

..σnσm(F ) ..σn(F ) ..σnφ<m(F ) ..0

..σm(F ) ..F ..φ<m(F ) ..0,

.ϵσm(F ) .ϵF . ϵφ<m(F ) (6.2.21)

where the vertical arrows are the counits. Furthermore, by the same arguments as in

the Snake Lemma, we have the “snake tail” exact sequence:

cok ϵσm(F ) −→ φ<n(F ) −→ φ<nφ<m(F ) −→ 0.

However, since σmF ∈ HI(m), by Proposition 6.1.15 ϵσm(F ) is an isomorphism. There-

fore, the natural map φ<n(F )
∼=−→ φ<nφ<m(F ) is an isomorphism.

Proposition 6.2.22. The collection (HI≥∗, φ≥∗) form a descending strong filtration of

HI, i.e., we have the following descending tower of subcategories

HI = HI≥0 ⊇ HI≥1 ⊇ · · · ⊇ HI≥n ⊇ HI≥n+1 ⊇ · · ·

and coreflection functors φ≥n : HI −→ HI≥n such that φ≥n restricted to HI≥n is the

identity, and φ≥n(F ) is a subobject of F for all n.

Proof. The only claim left to show is that HI≥m ⊆ HI≥n for n ≤ m.

Let F be an object in HI≥m. Then φ<m(F ) = 0, and by Lemma 6.2.20

0 = φ<nφ<m(F ) = φ<n(F ).

Thus, F is in HI≥n.

We introduce the following notion to describe the strong filtration and cofiltration

on HI and its relationship to the coradicals φ<∗.

Definition 6.2.23. We call the strong filtration and cofiltration defined by the torsion

theories (HI≥n,HI<n) for n = 0, 1, 2, . . . the torsion filtration of HI.
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In general, if A is an abelian category, we say that A has a torsion filtration if

there exists a sequence of idempotent pre-(co)radicals φ<∗ such that the induced torsion

theories (A ≥n,A <n) (for n in Z) fit together to form a descending strong filtration

A ⊇ · · · ⊇ A ≥0 ⊇ A ≥1 ⊇ · · · ⊇ A ≥n ⊇ · · ·

and an ascending strong cofiltration

0 ⊆ · · · ⊆ A <0 ⊆ A <1 ⊆ · · · ⊆ A <n ⊆ · · · .

We conclude this section by presenting some additional properties of the torsion

subcategories and the functor φ≥n. Recall from Proposition 6.2.3 that σnF = F−n(n).

Proposition 6.2.24. For all natural numbers m and n such that m > n,

1. HI≥n is the full subcategory of objects F for which the counit map σn(F ) −→ F

is onto.

2. HI(n) is a proper full subcategory of HI≥n.

3. there exists a natural isomorphism between φ<nφ≥m and φ≥mφ<n. Furthermore,

φ≥nφ<m = φ<mφ≥n = 0

4. there exists natural isomorphisms: φ≥nφ≥m ∼= φ≥mφ≥n ∼= φ≥m.

Proof. (1) : For all F in HI and n ≥ 0, we have the following exact sequence

σn(F ) −→ F −→ φ<n(F ) −→ 0.

Therefore, φ<n(F ) = 0 if and only if σn(F ) −→ F is a surjection.

(2) : Let F be an object in HI(n). Then F ∼= F ′(n) for some F ′ in HI. By Proposition

6.1.16, the counit map σn(F ) −→ F is an isomorphism. By part (1), F ∈ HI≥n.

(3) : Let F be a homotopy invariant sheaf with transfers. Since φ≥m(F ) ∈ HI≥n,

φ<nφ≥m(F ) = 0 by definition. Furthermore, φ≥mφ<n(F ) = 0 since it is the kernel of

φ<mφ<n(F ) −→ φ<n(F ) which is an isomorphism by Lemma 6.2.19.
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To show that φ<nφ≥m is naturally isomorphic to φ≥mφ<n, let us first consider the

following diagram:

..

.. ..σmφ≥n(F ) ..σm(F ) ..σmφ<n(F ) ..0

..0 ..φ≥n(F ) ..F ..φ<n(F ) ..0

(6.2.25)

where vertical maps are the counits. Notice that the top row is exact on the right

because σm is right exact. Since m > n, by Lemma 6.2.13, φ<n(F ) is in HI<n, which

is a subcategory of HI<m by Proposition 6.2.17. Since G is in HI<m if and only if

G−m = 0, it follows that (φ<n(F ))−m = 0. Hence, σmφ<n(F ) = 0.

Applying the Snake Lemma to (6.2.25), we obtain the following exact sequence:

0 −→ φ<mφ≥n(F ) −→ φ<m(F ) −→ φ<mφ<n(F ) −→ 0. (6.2.26)

Now φ<nφ<m(F ) ∼= φ<n(F ), and the composition φ<m(F ) −→ φ<nφ<m(F ) −→

φ<n(F ) is precisely the natural surjection associated to φ<n(F ). It follows that

φ<mφ≥n(F ) ∼= φ≥nφ<m(F ).

Since (6.2.25) is natural in F , the isomorphism is natural in F as well.

(4) : By Proposition 6.2.22, HI≥m ⊆ HI≥n. Since φ≥n restricted to HI≥n is the

identity by Lemma 6.2.19, φ≥nφ≥m = φ≥m.

To show that φ≥mφ≥n ∼= φ≥m, notice that for a given F in HI and positive integer

n, there exists a commutative diagram

..

..0 ..φ≥n(F ) ..F ..φ<n(F ) ..0

..0 ..φ<mφ≥n(F ) ..φ<m(F ) ..φ<mφ<n(F ) ..0,

.η
φ≥n(F ) .ηF. ∼= (6.2.27)

where η is the natural surjection id −→ φ<m, and the bottom row is precisely the short

exact sequence (6.2.26). By Lemma 6.2.20, the map φ<n(F ) −→ φ<nφ<m(F ) is an

isomorphism. Therefore, by the Snake Lemma, we have φ≥mφ≥n(F ) ∼= φ≥m(F ). Since

(6.2.27) is natural in F , it follows that the isomorphism φ≥mφ≥n −→ φ≥m is natural

as well.



72

6.3 Slice Filtration on DMeff,− and Torsion Filtration on HI

In this section, we want to relate the filtrations on HI that we have developed with the

slice filtration on DMeff,−. Recall that the slice filtration structure on DMeff,− is asso-

ciated with the weak filtration (DMeff,−
≥∗ , ν≥∗) and the weak cofiltration (DMeff,−

<∗ , ν<∗)

(see Section 5). The main result that we will verify is Proposition 6.3.1. Recall from

Definition 6.1.10 that τ≤0DMeff,− is the full subcategory of negative objects inDMeff,−,

i.e., the objects M in DMeff,− such that HnM = 0 for all n > 0.

Proposition 6.3.1. For each positive integer n, the following diagram of functors

commute, with surjective vertical arrows:

..

..DMeff,−
≥n ..τ≤0DMeff,− ..DMeff,−

<n

..HI(n) ..HI ..HI<n.

.
H0 .

ν≥n

.

ν<n

.
H0.

H0.

σn

.

φ<n

The rest of the section will be devoted to the proof of Proposition 6.3.1. First,

observe that for every positive integer n and every M in τ≤0DMeff,−, there exists a

slice triangle:

ν≥nM −→M −→ ν<nM −→ ν≥nM [1]

Applying the cohomological functor H0, we obtain the following long exact sequence

· · · δ−1−→ H0ν≥n(M) −→ H0M −→ H0ν<n(M)
δ0−→ H1ν≥n(M) −→ · · · (6.3.2)

where HiM
def
= H0M [i].

Since RHomDMeff,−(Z(n)[n],−) is t-exact as shown in Lemma 6.1.11, the cochain

complex RHomDMeff,−(Z(n)[n],M) is also in τ≤0DMeff,−. By Proposition 6.1.14,

H0ν≥nM = H0(RHomDMeff,−(Z(n)[n],M)⊗L Z(n)[n])

∼= H0(RHomDMeff,−(Z(n)[n],M))(n)

= H0(M)−n(n)

= σnH0M.
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This shows that the left square of Proposition 6.3.1 commutes, that HI(n) is equal to

the image of τ≤0DMeff,−
≥n under H0, and the coreflection functors from τ≤0DMeff,− to

HI(n) is compatible with H0.

To prove the commutativity of the right square, notice that, for M in τ≤0DMeff,−,

H0ν≥nM = (H0M)−n(n). Hence, we get the following exact sequence from (6.3.2)

((H0M)−n)(n) −→ H0M −→ H0ν<n(M)
δ0−→ H1ν≥n(M).

where the map ((H0M)−n(n) −→ H0M is the counit. If we show that H1ν≥n(M) = 0,

then it is clear that H0ν<n(M) ∼= φ<n(H0M). This shows that the right square of

Proposition 6.3.1 commutes, completing the proof of Proposition 6.3.1. The vanishing

of H1ν≥n is established by the following lemma:

Lemma 6.3.3. For all positive integers n and all M in τ≤0DMeff,−, H1ν≥n(M) = 0.

Proof. Since ν≥nM = Z(n)[n]⊗LRHomDMeff,−(Z(n)[n],M), we have already shown in

the preceding discussion that ν≥nM is a negative object. Therefore, H1ν≥nM = 0, as

desired.

6.4 Fundamental Invariants of the Torsion Filtration

As in the case of DMeff,−, we can also define the structure invariants associated to

the filtration and cofiltration. In this case, for every natural number n, there exists a

functorial exact sequence

σn −→ σn−1 −→ φ<nσn−1 −→ 0.

Definition 6.4.1. We define n-th slice functor on HI to be the functor sn
def
= φ<n+1σn.

Recall from Definition 5.2.13 that the n-th slice functor of (DMeff,−
≥∗ , ν≥∗) is the

triangulated endofunctor ν∗ that fits into the following exact triangle

ν<n+1 −→ ν<n −→ νn −→ ν<n+1[1].

A consequence of Proposition 6.3.1 is that the slice functors sn on HI agree with the

slice functors νn on DMeff,− in the following sense:
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Corollary 6.4.2. For all natural numbers n, the slice functors satisfy

H0νn = sn.

Proof. Applying H0 to the functorial triangle from (5.2.12), we obtain the following

functorial exact sequence in HI:

H0ν≥n+1 −→ H0ν≥n −→ H0νn −→ H1ν≥n+1.

By Proposition 6.1.14, H0ν≥n = σn and H0ν≥n+1 = σn+1, and by Lemma 6.3.3,

H1ν≥n+1 = 0. It follows that H0νn = sn as desired.

Let us first consider the following proposition:

Proposition 6.4.3. For natural numbers m and n, σnφ<m is naturally isomorphic to

φ<mσn, and are both 0 if m ≤ n.

Proof. Let F be an object in HI, and write L for the functor F 7→ F (1) and R for the

functor F 7→ F−1. Since σ
n = LnRn, by Lemma 5.2.5, we have the commutative square

..

..σmσn(F ) ..σn(F )

..σnσm(F ) ..σn(F ),

.

f

.∼= .

g

(6.4.4)

where f is the counit of σmσn(F ) −→ σn(F ) and g is obtained by applying σn to the

counit σm(F ) −→ F . The cokernel of f is precisely φ<mσn(F ). Since σn is right exact,

and the following sequence is exact

σm(F ) −→ F −→ φ<m(F ) −→ 0,

the following sequence is also exact.

σnσm(F ) −→ σn(F ) −→ σnφ<m(F ) −→ 0.

It follows that the cokernel of g is σnφ<m(F ). By the Five Lemma 6.4.3, φ<mσn(F ) ∼=

σnφ<m(F ). Since the square in Lemma 6.2.13 is functorial, it follows that the isomor-

phism identified above is natural in F .

Finally, suppose m ≤ n. Then by Proposition 6.2.15 φ<m(F )−n = 0. It follows that

σnφ<m(F ) = 0, and φ<mσn(F ) = 0 as well.



75

Remark 6.4.5. In case the indexing becomes difficult to keep track, one might wish

to consider a “bread” analogy. Imagine that a half-infinite loaf of bread is laid out on a

line marked from 0 to ∞ (representing an F in HI), and one is allowed to take cuts at

the marked points and subsequently pick up all the bread lying greater than n or less

than n. For the functors φ≥n and σn, the higher the n, the less bread one would take.

For the functors φ<n, the greater the n, the less bread one would leave.

If one finds the analogy useful, one might wish to interpret Lemma 6.2.20, and

Propositions 6.2.24 (3) and (4) with this culinary picture in mind.

As we did for the filtration (HI(∗), σ∗) in Definition 6.4.1, we can define the structure

invariants for (HI≥∗, φ≥∗).

Definition 6.4.6. For each F in HI and natural number n, write φn for the functor

φ<n+1φ≥n, which we define to be the n-th fundamental invariant of F associated to

φ≥∗ or simply the n-th fundamental invariant.

As it turns out, the n-th fundamental invariant is not the same as the n-th slice

functor on HI. To see this, consider the example introduced in Example 6.2.4. For

O∗n, from the discussion in loc. cit., we have that

sk(O∗n) = sk(O∗) =


O∗ if k = 1

0 otherwise.

However, a simple calculation reveals that

φk(O∗n) =


O∗n if k = 1

0 otherwise.

Nonetheless, the n-th slice functor is related to the n-th fundamental invariant via the

following proposition:

Proposition 6.4.7. Let m and n be natural numbers such that m > n. There exists

a natural surjection from φ<mσn to φ<mφ≥n. In particular, for each F in HI, there

exists a natural surjection πm : smF −→ φmF .
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Proof. Let F be an object of HI. We have the following short exact sequence:

0 −→ φ≥nφ<m(F ) −→ φ<m(F ) −→ φ<nφ<m(F ) −→ 0.

By Lemma 6.2.20, φ<mφ<n(F ) = φ<n(F ), and therefore φ≥nφ<m(F ) is the kernel of

the surjection φ<m(F ) −→ φ<n(F ). But the sequence

σnφ<m(F ) −→ φ<m(F ) −→ φ<n(F ) −→ 0

is exact. Therefore, the induced map from σnφ<m(F ) to φ≥nφ<m(F ) is a surjection as

well. Furthermore, since the commutative diagram

..

.. ..σnφ<m(F ) ..φ<m(F ) ..φ<n(F ) ..0

..0 ..φ≥nφ<m(F ) ..φ<m(F ) ..φ<n(F ) ..0

is functorial in F , the surjection is natural. This establishes the first claim of the

proposition, since φ≥nφ<m is naturally isomorphic to φ<mφ≥n (Proposition 6.2.24 (3))

and σnφ<m is naturally isomorphic to φ<mσn (Proposition 6.4.3). The second claim

follows by setting n = m− 1.

6.5 Weakly Filtered Monoidal Structure on HI

We end this chapter by discussing the tensor properties of the torsion filtration. Let us

first consider the following notion:

Definition 6.5.1. Let (C ,⊗,1) be a monoidal category. We say that C is a weakly

filtered monoidal category if there exists a weak filtration (C∗, φ∗) such that for all

integers m and n and C in Cm and C ′ in Cn, C ⊗ C ′ is in Cn+m.

Example 6.5.2. Here are two examples of weakly filtered monoidal categories that

we have encountered in this thesis. Recall from Definition 5.3.2 that DM≥k is the full

subcategory of the objects (M,n) in DM such that n ≥ k. For (M,n) in DM≥k and

(M ′, n′) in DM≥l, (M,n)⊗L (M ′, n′) is equal to (M ⊗M ′, n+ n′), which is an object

in DM≥k+l. Therefore, the triangulated tensor product on DM is weakly filtered by

(DM≥∗, ν
≥∗).
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Similarly, (HI(∗), σ∗) defines a graded symmetric monoidal category on HI under

⊗H . To see this, recall from the first paragraph in Section 6.2 that F is in HI(n) if F ∼=

F ′(n). Furthermore, since F (n) = F ⊗H (O∗)⊗n, F (n) ⊗H G(m) = (F ⊗H G)(n+m).

Therefore, HI(n) ⊗H HI(m) ⊆ HI(n+m).

We now will show that (HI≥∗, φ≥∗) defines a weakly filtered monoidal category on

HI. We begin by proving the following proposition:

Proposition 6.5.3. For F in HI≥n and G in HI≥m, F ⊗HG is an object of HI≥n+m.

Proof. Since HI≥n+m is the torsion subcategory associated to the coradical φ<n+m, to

show that F ⊗HG is in HI≥n+m, it suffices to show that φ<n+m(F ⊗HG) = 0. Since G

is in HI≥n, by Proposition 6.2.24(1), the counit ϵ : LmRm(G) −→ G is surjective. Since

⊗L is right t-exact in both factors, the functor F ⊗H − is right exact by Proposition

6.1.6, and the following map is surjective:

F ⊗H LmRm(G)
ϵF ⊗HG−−−−−→ F ⊗H LmRm(G). (6.5.4)

Similarly, we see that the following map is also surjective:

F ⊗H LmRm(G)
LnRn(F )⊗HϵG−−−−−−−−−−→ F ⊗H G. (6.5.5)

Composing (6.5.4) and (6.5.5), we obtain a surjection

f : LnRn(F ) ⊗H LmRm(G) −→ F ⊗H G.

On the other hand, since LnRn(F ) ⊗H LmRm(G) = Ln+m(Rn(F ) ⊗H Rm(G)), the

object LnRn(F ) ⊗H LmRm(G) is in HI(n+m), and by Proposition 6.2.24,

φ<n+m(LnRn(F ) ⊗H LmRm(G)) = 0.

Since φ<n+m is a coradical, which is right exact, the map

φ<n+m(f) : φ<n+m(LnRn(F ) ⊗H LmRm(G)) −→ φ<n+m(F ⊗H G)

is onto. Therefore, φ<n+m(F ⊗H G) = 0 and F ⊗H G is an object in HI≥n+m, as

desired.
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The following is a direct consequence of Proposition 6.5.3.

Corollary 6.5.6. Let ⊗H be the tensor product on HI defined in Definition 6.1.10. The

strong filtration (HI≥∗, φ≥∗) makes (HI, ⊗H) into a weakly filtered monoidal category.
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Chapter 7

Filtration on CycMod

In this chapter, we will extend the torsion filtration on HI to the Rost-Déglise category

of homotopy modules HI∗ (see Definition 7.1.1 below). To further simplify notation, in

this chapter, let L : HI −→ HI denote the functor F 7→ F (1), and let R : HI −→ HI

denote the functor given by F 7→ F−1. We write ϵn : id −→ RnLn and ηn : LnRn −→ id

for the unit and counit maps; we abbreviate η1 as η, and ϵ1 as ϵ. The extension of these

filtrations to HI∗ is new.

7.1 Torsion filtration on HI∗

Recall from [Dég10, 1.17] the following definition:

Definition 7.1.1. A homotopy module is a Z-graded homotopy invariant sheaf with

transfers F∗ such that for every n, there exists a map sn : Fn(1) −→ Fn+1 such that the

corresponding adjunction map wn : Fn −→ (Fn+1)−1 is an isomorphism. We call sn and

wn the n-th suspension and the n-th delooping respectively. A morphism F∗ −→ G∗

between homotopy module is a sequence of morphisms Fn −→ Gn of homotopy invariant

sheaves with transfers that commute with sn and wn.

Let HI∗ denote the category of homotopy modules. Objects in HI∗ will be repre-

sented by (F∗, w∗) where F∗ is the Z-graded homotopy invariant sheaf with transfers,

and w∗ is the sequence of deloopings.

There is a fully faithful functor σ∞ : HI −→ HI∗ given by F 7→ (F∗, w∗) where

Fn =


F (k) if n > 0

F if n = 0

F−|n| otherwise,
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and the n-th delooping Fn −→ (Fn+1)−1 is the unit map for n ≥ 0 and the tautological

natural isomorphism for n < 0. Furthermore, σ∞ has a right adjoint ω∞ : HI∗ −→ HI

given by (F∗, w∗) 7→ F0 (see [Dég10, 1.18]). Since σ∞ is fully faithful and admits a

right adjoint, we can regard HI as a full coreflective subcategory of HI∗. The torsion

filtration on HI, defined in Definitions 6.2.18 and 6.2.11, gives rise to two N-indexed

weak filtrations of HI∗. The goal is to extend these filtrations to a Z-indexed strong

filtration and a Z-indexed cofiltration of HI∗. In particular, we show that there is a

sequence of coradicals φ<n
∗ on HI∗ such that for nonnegative n, the restriction of φ<n

∗ to

HI is φ<n. In this case, the associated torsion theories will extend the torsion filtrations

on HI to HI∗.

The following proposition will be crucial to extending the functors φ<n:

Proposition 7.1.2. For F in HI and all positive numbers k and n, there are natural

isomorphisms:

Lkφ<n(F ) ∼= φ<n+kLk(F ) (7.1.3)

and

Rkφ<n(F ) ∼= φ<n−kRk(F ). (7.1.4)

Proof. By Lemma 5.2.1, the following diagram, natural in F , is commutative:

..

..Ln+1Rn+1L(F ) ..L(F )

..L(LnRn)(F ) ..L(F ).

.

ϵn+1L

.

Lϵn

(7.1.5)

Here, ϵn denotes the counit LnRn −→ id, and the vertical map Ln+1Rn+1L(F ) −→

L(LnRn(F )), which is given by the map Ln+1Rnη−1, where η is the unit id −→ RL, is

an isomorphism by Proposition 6.1.15.

The cokernel of ϵn+1L is φ<n+1L(F ). Since L is right exact, the cokernel of Lϵn is

Lφ<n(F ). By the Five Lemma, it is clear that φ<n+1L(F ) ∼= Lφ<n(F ). Since (7.1.5)

is natural in F , the isomorphism φ<n+1L −→ Lφ<n is natural as well. By similar

arguments, one can show that Rφ<n is naturally isomorphic to φ<n−1R as well. This

proves the proposition for the case k = 1. The general case follows by induction.
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We will now define the coradicals on HI∗.

Definition 7.1.6. Let (F∗, w∗) be an object of HI∗, and write φ<n
∗ (F ) for the graded

homotopy invariant sheaf with transfers where

(φ<n
∗ (F ))k

def
=


φ<n+k(Fk) if n+ k > 0

0 otherwise.

For ease of notation, we will write φ<n
k (F ) for the k-th graded component of φ<n

∗ (F ).

Using the isomorphism Rφ<n(Fk) ∼= φ<n−1R(Fk) established in Proposition 7.1.2,

let

φ<n
k (w) : φ<n

k−1(F ) −→ Rφ<n
k (F )

denote the composition

φ<n+k−1(Fk−1)
φ<n+k−1(wk)−−−−−−−−−→ φ<n+k−1R(Fk)

∼=−→ Rφ<n+k(Fk), (7.1.7)

where wk : Fk−1 −→ R(Fk) is the k-th delooping of (F∗, w∗). Since wk is an isomorphism

for all k, so is φ<n
k (w). Defining φ<n

k (s) to be the adjoint of φ<n
k (w), we immediately

have that (φ<n
∗ (F ), φ<n

k (w)) is an object of HI∗.

Remark. In the discussion above, the map φ<n
k (s) : Lφ<n

k (F ) −→ φ<n
k+1(F ) is actually

given by the composition

Lφ<n+k(Fk)
∼=−→ φ<n+k+1L(Fk)

φ<n+k+1(sk)−−−−−−−−→ φ<n+k+1(Fk+1),

where sk : LFk −→ Fk+1 is k-th suspension map. This also follows from Proposition

7.1.2.

Lemma 7.1.8. For each integer n, φ<n
∗ is an endofunctor of HI∗.

Proof. Let f∗ : (F∗, w∗) −→ (G∗, w
′
∗) be a map between homotopy modules, and let

φ<n
∗ (f) be a map of graded homotopy invariant sheaves with transfers whose k-th

graded component is φ<n
k (f)

def
= φ<n+k(fk). If we can show that φ<n

∗ (f) is a map in

HI∗, then it will be clear that φ<n
∗ preserves identity maps and compositions.
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By naturality of ρ : Rφ<n+1 −→ φ<nR and λ : Lφ<n −→ φ<n+1L and also by the

above arguments, the following two squares are commutative

..

..Rφ<n+k(Fk) ..Rφ<n+k(Gk)

..φ<n+k−1(Fk−1) ..φ<n+k−1(Gk−1)

.

Rφ<n+k(fk)

.φ<n+k−1R(w)ρ . φ<n+k−1R(w′)ρ.

φ<n+k−1(fk−1)

..

..Lφ<n+k(Fk) ..Lφ<n+k(Gk)

..φ<n+k+1(Fk+1) ..φ<n+k+1(Gk+1).

.

Lφ<n+k(fk)

.φ<n+k+1L(s)ρ . φ<n+k+1L(s′)ρ.

φ<n+k+1(fk−1)

Here, φ<n
∗ (f) is a map from φ<n

∗ (F ) to φ<n
∗ (G) as homotopy modules. The fact

that φ<n
∗ respects composition follows from the functoriality of φ<∗.

We now verify the main result of this section:

Theorem 7.1.9. For each integer n, φ<n
∗ is a coradical of HI∗.

Proof. φ<n
∗ is a quotient functor : certainly F∗ −→ φ<n

∗ (F ) is surjective for each n

since it is a surjection at each degree. What we need to verify is that the degree-wise

surjection gives rise to a map of homotopy modules. In particular, we need to verify

that the following diagram is commutative

..

..L(Fk) ..Fk+1

..Lφ<n+k(Fk) ..φ<n+k−1(Fk+1).

.

s

.

s

To see this, notice that the above diagram is the outer square of the diagram:

..

..L(Fk) ..Fk+1

..φ<n+k+1L(Fk) ..φ<n+k+1Fk+1

..Lφ<n+k(Fk) ..φ<n+k+1Fk+1.

.

s

.

λ−1

.

s



83

Here, the top square commutes by the naturality of id −→ φ<n+k, and the bot-

tom square commutes by the definition of the suspension map s : Lφ<n+k(Fk) −→

φ<n+k+1(Fk+1).

The fact that φ<n
∗ respects delooping follows from the duality of the suspension and

delooping as established by the preceding lemma.

φ<n
∗ is a pre-coradical : The kernel of F∗ −→ φ<n

∗ (F ) is a homotopy module K∗ whose

k-th graded term is

ker(Fk −→ φ<n+k(Fk)).

But φ<n is a coradical; hence, φ<n
∗ (K∗) = φ<n+k(Kk) = 0. That is φ<n

∗ (K) = 0, as

desired.

φ<n
∗ is a right exact : since φ<n+k is right exact for each k, φ<n

k is right exact for each

associated graded term. It follows that φ<n
∗ is right exact.

Recall from Theorem 2.2.6 that if φ is a coradical, then the torsion subcategory of

φ is the full subcategory T consisting of the objects T such that φ(T ) = 0, and the

torsionfree subcategory of φ is the full subcategory F whose objects are the objects

F such that φ(F ) = 0. Furthermore, by Corollary 2.2.7, the inclusion of F into the

ambient category admits a right adjoint given by the kernel of the natural surjection

id −→ φ.

Definition 7.1.10. For each integer i, let HI≥n
∗ and HI<n

∗ denote the torsion and

torsionfree subcategory of φ<n
∗ respectively. Let φ≥n

∗ denote the kernel of the natural

surjection id −→ φ<n
∗ . By the preceding remarks, φ≥n

∗ is right adjoint to the inclusion

HI≥n
∗ in HI∗.

Here is a straightforward consequence of Theorem 2.2.6 and Theorem 7.1.9:

Corollary 7.1.11. An object (F∗, w∗) is in HI≥n
∗ if and only if φ≥n

∗ (F ) = (F∗, w∗).

We now verify the main result of this section.
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Corollary 7.1.12. There exists a Z-indexed torsion filtration on HI∗. That is, there

exists a Z-indexed sequence of coradicals φ<i
∗ such that the associated torsion subcate-

gories, which are given by Fi = HI<i
∗ form an ascending strong cofiltration of HI∗:

· · · ⊆ HI<−1
∗ ⊆ HI<0

∗ ⊆ HI<1
∗ ⊆ · · · ⊆ HI<i

∗ ⊆ HI<i+1
∗ ⊆ · · · ⊆ HI∗

and the associated torsionfree subcategories Ti = HI≥i
∗ form a descending strong filtra-

tion of HI∗:

· · · ⊆ HI≥i
∗ ⊆ HI≥i−1

∗ ⊆ · · · ⊆ HI≥1
∗ ⊆ HI≥0

∗ ⊆ HI≥−1
∗ ⊆ · · · · · · ⊆ HI∗.

Proof. Since (F∗, w∗) is in HI∗ if and only if φ<n
∗ (F ) = (F∗, w∗) and φ

<n
∗ is idempotent,

the restriction of φ<n
∗ to HI<n

∗ is therefore the identity. Similarly, the restriction of φ≥n
∗

to HI≥n
∗ is the identity.

What remains to be checked are that HI<n
∗ ⊂ HI<n+1

∗ and HI≥n+1
∗ ⊂ HI≥n

∗ for

each integer n. To proceed, notice that by Lemma 6.2.20, φ<n+1φ<n = φ<n. There-

fore, for (F∗, w∗) in HI<n
∗ , if φ<n

∗ (F ) = (F∗, w∗) then for every k, φ<n+k+1(Fk) =

φ<n+k+1φ<n+k(Fk) = φ<n+k(Fk) = Fk. It follows that φ<n+1
k (F ) = Fk for all k, and

(F∗, w∗) is in HI<n+1
∗ . Hence, HI<n+1

∗ ⊂ HI<n+1
∗ for every n. Using Proposition

6.2.24(4) and Corollary 7.1.12, we can show that HI≥n+1
∗ ⊂ HI≥n

∗ for every n by using

similar arguments.

Example 7.1.13. Suppose F is a homotopy invariant sheaf with transfers, and let

F∗ denote the image of F under σ∞ (see the paragraph after Definition 7.1.1). By

Proposition 7.1.2, there are natural isomorphisms in HI:

φ<n+k(F (k)) ∼= (φ<nF )(k) and φ<n(F−k) ∼= (φ<n+kF )−k.

If F is in HI<n, then φ<nF = F by Proposition 6.2.17, and therefore φ<n
∗ (F∗) ∼= F∗.

Similarly, if F is in HI≥n, then φ≥n
∗ (F∗) ∼= F∗. It follows that the image of HI≥n under

σ∞ is HI≥n
∗ and HI<n under σ∞ is HI<n

∗ for each positive integer n.

The following result show that σ∞ relates the coradicals φ<n on HI defined in

Definition 6.2.12 to the coradicals φ<n
∗ on HI∗. Recall the notation from the opening

paragraph of this chapter that L is the functor F 7→ F (1), andR is the functor F 7→ F−1.
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Proposition 7.1.14. For all integers n ≤ 0, φ<n
∗ σ∞ = 0. Moreover, for each positive

integer n, there exists a natural isomorphism σ∞φ<n
∼=−→ φ<n

∗ σ∞.

Proof. Let F be a homotopy invariant sheaf with transfers, and let F∗ = σ∞(F ).

According to the definition of σ∞ in the paragraph after Definition 7.1.1,

Fk =


LkF if k > 0

F if k = 0

R|k|F if k < 0.

First, suppose n ≤ 0. By Definition 7.1.6, φ<n
k (F ) = 0 for all k ≤ −n. We claim that

φ<n
k (F∗) = φ<n+k(Fk) = 0 for all k > −n. Notice that Fk = LkF is an object in HI≥k

by Proposition 6.2.24(2). Since HI≥k is the torsion subcategory of the coradical φ<k,

φ<k(LkF ) = 0. On the other hand, since n+k ≤ k, φ<n+k(LkF ) = φ<n+kφ<k(LkF ) =

0 by Lemma 6.2.20. This proves the first statement in the proposition.

Now suppose that n > 0. To define a natural isomorphism

σ∞(φ<nF )
∼=−→ φ<n

∗ (σ∞F ),

we need to define a sequence of natural isomorphisms τk : σ∞(φ<nF )k −→ φ<n
k (σ∞F )

in HI that is compatible with the delooping maps. That is, for each integer k, the

following diagram commutes in HI:

..

..σ∞(φ<kF )k ..Rσ∞(φ<kF )k+1

..φ<n
k (σ∞F ) ..Rφ<n

k+1(σ
∞F ).

.

wk

.τk . Rτk+1.

φ<n
∗ wk

Notice that the k-th graded component of σ∞(φ<n(F )) is given by

σ∞(φ<nF )k =


Lk(φ<nF ) if k > 0

φ<nF if k = 0

R|k|(φ<nF ) if k < 0,
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and by definition of φ<n
∗ ,

φ<n
k (F ) =



φ<n+k(LkF ) if k > 0

φ<nF if k = 0

φ<n+k(R|k|F ) if k < 0 and k > −n

0 otherwise.

Notice that for k < 0 and k+n ≤ 0, R|k|(φ<nF ) = 0 by Proposition 6.2.13. In this case,

σ∞(φ<nF )k = φ<n
∗ (σ∞F )k = 0, and by setting τk = 0, we obtain natural isomorphisms

for all k < 0 with k + n ≤ 0.

To complete the proof of the proposition, we need to show that for each k ≥ 0, there

exists a natural isomorphism τk : Lkφ<n
∼=−→ φ<n+kLk such that the following diagram

commutes:

..

..Lkφ<n ..RLk+1φ<n

..φ<n+kLk ..Rφ<n+k+1Lk+1.

.

wk

.τk . Rτk+1

.

w′
k

(7.1.15)

Here, wk is the natural isomorphism given by the unit id −→ RL and w′
k is the natural

isomorphism corresponding to the k-th deloopings of φ<n
∗ σ∞. We must also show that

for each k < 0 with n + k > 0, there exists a natural isomorphism τk : φ<n+kR|k| −→

R|k|φ<n such that the following diagram commutes:

..

..R|k|φ<n ..R|k|φ<n

..φ<n+kR|k| ..Rφ<n+k+1R|k+1|

.τk . Rτk+1

.

w′
k

(7.1.16)

where w′
k is the natural isomorphism corresponding to the k-th delooping of φ<n

∗ σ∞.

We proceed by first defining the natural isomorphisms τk. For k ≥ 0, let τk be

the natural isomorphism Lkφ<n −→ φ<n+kLk given by (7.1.3) of Proposition 7.1.2; for

k < 0 and k + n > 0, let τk be the natural isomorphism R|k|φ<n −→ φ<n+kR|k| given

by (7.1.4). To see that (7.1.15) is commutative for all k ≥ 0, notice that the inductive

step in the proof of Proposition 7.1.2 shows that Rτk+1 factors as the composition

RLk+1φ<k RLτk−−−→ RLφ<n+kLk Rτ ′−→ Rφ<n+k+1Lk+1,
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where τ ′ is the natural isomorphism given by (7.1.3) for the case k = 1. In particular,

the following diagram is commutative:

..

..RLk+1φ<n ..RLLkφ<n

..RLφ<n+kLk ..Rφ<n+k+1Lk+1.

.RLτk . Rτk+1

.

Rτ ′

(7.1.17)

By the naturality of the unit transformation, we also have the following commutative

square:

..

..Lkφ<n ..RLk+1φ<n

..φ<n+kLk ..RLφ<n+kLk.

.τk .

wk

. RLτk.

ηφ<n+kLk

(7.1.18)

Furthermore, notice that w′
k factors as

φ<n+kLk ηφ<n+kLk

−−−−−−−−−−→ RLφ<n+kLk Rτ ′−−→ Rφ<n+k+1Lk+1.

The commutative squares (7.1.17) and (7.1.18) fit together to give us the square in

(7.1.15). We have shown that (7.1.15) is commutative. By similar arguments, (7.1.16)

is also commutative. Therefore, the natural isomorphisms wk define a natural isomor-

phism σ∞φ<n ∼= φ<n
∗ σ∞, which proves the second statement of the proposition.

7.2 Torsion filtration on cycle modules

We conclude this chapter by showing that there is a torsion filtration structure on the

category of cycle modules (defined below). Recall from [Mil70] that for a field F , the

Milnor K-theory of F is the graded commutative ring given by

KM
∗ (F )

def
= T ∗(F ∗)/I

where T ∗(F ∗) denotes the tensor algebra of the multiplicative group F ∗, and I denotes

the ideal generated by a⊗ (1− a) for all a in F ∗. We define KM
n (F ) to be 0 for n < 0

and let KM
n (F ) be the n-th graded piece of KM

∗ (F ). We call KM
n (F ) the n-th Milnor

K-theory of F .
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Definition 7.2.1 ([Ro96] 1.1). Let X be a finite-type k-scheme, and let F(k) be the

category of function fields E of Smk, i.e., E is the function field of some k-scheme X

in Smk, and any morphism E −→ E′ in F(k) is a field homomorphism such that the

restriction to k is the identity. A cycle premodule M is a functor which assigns to every

field E in F(k) a Z-graded abelian groupM(E) = {Mi}i∈Z, together with the following

data:

D1. For each field extension φ : E′ −→ E, there is a degree 0 map φ∗ : M(E′) −→

M(E) called the restriction map associated to φ

D2. For each finite extension φ : E′ −→ E, there is a degree 0 map φ∗ : M(E) −→

M(E′) called the corestriction map associated to φ

D3. For each E in F(k), the group M(E) is equipped with the structure of a left

KM
∗ (E)-module, where KM

∗ (E) is the Milnor K-ring of E.

D4. For a given valuation v of E in F(k), there exists a map of degree -1 ∂v :M(E) −→

M(κ(v)) called the residue map, where κ(v) is the residue field of v.

The data given in D1 - D4 satisfy the following criteria. For a given valuation v

of E in F(k), fix p to be a prime of v. The KM
∗ (E)-module structure in D3 and the

residue map in D4 give rise to a degree preserving map spv :M(E) −→M(κ(v)) defined

by spv(ρ) = ∂v({p} · ρ), where {p} the element in KM
1 (E) represented by E. Following

[Ro96, 1.1], we call spv the specialization map.

R1a. For each field extension φ : E′ −→ E and field extension ψ : E −→ E′′, (ψ◦φ)∗ =

ψ∗ ◦ φ∗

R1b. For each finite extension φ : E′ −→ E and finite extension ψ : E −→ E′′,

(ψ ◦ φ)∗ = φ∗ ◦ ψ∗

R1c. For finite extension φ : E′ −→ E and any field extension ψ : E′ −→ E′′ with φ

finite, define R = E⊗E′E′′, and let p be any prime ideal of R. (As R is Artin, let

lp be the length of the local ring R(p)), and φp : E
′′ −→ R/p and ψp : E −→ R/p
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be natural maps.

ψ∗ ◦ φ∗ =
∑
p

lp · (φp)
∗ ◦ (ψp)∗.

R2. For any extension φ : E′ −→ E, x ∈ KM
∗ (E′), y ∈ KM

∗ (E), ρ ∈ M(E′), and

µ ∈M(E), then:

R2a. φ∗(x · ρ) = φ∗(x) · φ∗(ρ).

R2b. if φ is finite, φ∗(φ∗(x) · µ) = x · φ∗(µ).

R2c. if φ is finite, φ∗(y · φ∗(ρ)) = φ∗(y) · ρ.

R3. For any field extension φ : E′ −→ E, v a valuation on E and w and a valuation

on E′:

R3a. Suppose w is a nontrivial restriction of v with ramification index e. Let φ :

κ(w) −→ κ(v) be the induced map. Then:

∂v ◦ φ∗ = e · φ∗ ◦ ∂w.

R3b. Let φ be a finite extension, suppose w is an extension of v to E. Let φv :

κ(w) −→ κ(v) be the induced map on the residue fields. Then

∂v ◦ φ∗
∑
v

◦∂v.

R3c. Suppose v restricts to a trivial valuation on E′. Then

∂v ◦ φ∗ = 0

R3d. Suppose v restricts to a trivial valuation on E′. Let φ : F −→ κ(v) be the

induced map on the residue fields. Let p a prime of v. Then

spv ◦ φ∗ = φ∗

R3e. Let u be an element of E such that v(u) = 0. Given ρ in M(F ), one has

∂v({u} · ρ) = −{u} · ∂v(ρ).
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For X a k-scheme, let X(1) denote the collection of codimension 1 subschemes. Let

ξX be the generic point of an irreducible X with KX = OX , ξX . If X is normal, then

for x in X(1), the local ring Ox,X is a valuation ring of KX with residue field κ(x).

Write M(x) for M(κ(x)), and ∂x :M(ξX) −→M(x) for the restriction map.

Furthermore, for x, y ∈ X, let Z be the closed subscheme determined by x, and Z

be the normalization Z. Define

∂xy :M(x) −→M(y)

by

∂xy =


0 y /∈ Z(1)

∑
z|y φ

∗
κ(z),κ(x) ◦ ∂z otherwise.

Here, following [Ro96], z|y denotes the relation that z lies over y. In particular, if

y ∈ Z(1), the sum is taken over all z lying over y ∈ Z(1). In this case, φ∗
κ(z),κ(y) is the

corestriction map associated to the finite field extension κ(y) −→ κ(z).

Definition 7.2.2 ([Ro96] 2.1). A cycle module M on F(k) is a cycle premodule that

satisfies the following conditions:

(FD) Finite support of divisors. X be a normal scheme and ρ ∈ M(ξX). Then

∂x :M(ξX) −→M(X) is 0 for all but finitely many x ∈ X(1).

(C) Closedness. If X is an integral local scheme of dimension 2 with closed point

x0, then the map from M(ξX) to M(x0) given by

∑
x∈X(1)

∂x0
x ◦ ∂xξ

is 0.

Déglise showed in [Dég10] that a homotopy module (F∗, w∗) gives rise to a unique

cycle module F̂∗, and that this association defines an equivalence between the cate-

gory of homotopy modules and cycle modules (see [Dég10, 3.7]). Via this categorical

equivalence, we obtain the following corollary:
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Corollary 7.2.3. There exists a Z-indexed torsion filtration on CycMod. That is,

there exists a Z-indexed sequence of coradicals, which by abuse of notation, we also

represent by φ<i
∗ such that the associated torsion subcategories CycMod<i form an

ascending strong cofiltration of CycMod:

· · · ⊆ CycMod<−1 ⊆ CycMod<0 ⊆ · · · ⊆ CycMod<i ⊆ · · · ⊆ CycMod

and the associated torsionfree subcategories CycMod≥i form a descending strong fil-

tration of CycMod:

· · · ⊆ CycMod≥i ⊆ · · · ⊆ CycMod≥0 ⊆ CycMod≥−1 ⊆ · · · · · · ⊆ CycMod.

Example 7.2.4. Milnor K-theory KM
∗ , defined in the paragraph preceding Definition

7.2.1, is an example of a cycle module (see [Ro96, 1.4, 2.5]). By [Dég10, 3.7], the

homotopy module corresponding to KM
∗ is σ∞(Z). As we have shown in Example

7.1.13, σ∞(Z) is an object of HI≥0
∗ ∩HI<1

∗ . Hence, KM
∗ ∈ CycMod≥0 ∩CycMod<1.
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Chapter 8

Torsion Filtrations on Torsion Monoidal Categories

In this chapter, we generalize the key results proven in the last three chapters by

axiomatizing the necessary components to define torsion filtrations on t-categories D

with a triangulated tensor structure. Let us begin by defining the following notion:

Definition 8.0.1. Let (D,⊗,1) be a tensor monoidal category with a t-structure, and

let C be its heart. We say that D is a torsion monoidal category if D is equipped with

1. (Partial Internal Hom) a partial internal hom structure (Hom,Drep) (see

Definition 4.2.1).

2. (Tate Object) an object S in both Drep and the heart of D called the Tate

object. In particular, Hom(S,−) is right adjoint to S ⊗−.

such that the following conditions hold:

1. 1 is an object of C ,

2. ⊗ is right t-exact in both factors,

3. (Cancellation) Hom(S, S ⊗M) =M ,

4. Hom(S,−) is t-exact.

If D is a torsion monoidal category, we will write H0 for the cohomological functor

from D to its heart. We also write L : D −→ D for the functor sending an object

M in D to M ⊗ S, and R for the functor sending M to Hom(S,M), where S is the

Tate object. By assumption, (L,R) is an adjoint pair. Let Ln and Rn denote the n-th

iterations of L and R respectively. Since L is left adjoint to R, Ln is left adjoint to



93

Rn. Furthermore, by the Cancellation axiom (Definition 8.0.1(3)), RnLn is naturally

isomorphic to the identity.

Since ⊗ is right t-exact, it induces a symmetric monoidal and a partial internal hom

structure on the heart C of D, which we represent by ⊗C and HomC . The tensor and

internal hom bifunctors are given by

C ⊗C C ′ def= H0(C ⊗ C ′) and HomC (C,C
′)

def
= H0(Hom(C,C ′)).

Since Hom(S,−) is assumed to be t-exact, Proposition 6.1.7 states that S is a semi-

representable object of C , i.e., HomC (S,−) is right adjoint to − ⊗C S. We let LH

and RH denote the endofunctor on C given by F 7→ F ⊗C S and F 7→ HomC (S, F )

respectively. By convention, let L0
H and R0

H be the identity functor on C , and let Ln
H

and Rn
H denote the n-th iteration of LH and RH respectively. Since LH is left adjoint

to RH , Ln
H is left adjoint to Rn

H for every integer n > 0.

Here are some additional results about the functors LH and RH that we will refer to

throughout the remainder of this chapter. The following proposition generalizes results

from Lemma 6.1.11, Proposition 6.1.14, and Proposition 6.1.15.

Proposition 8.0.2. For all integers n > 0,

1. Rn
H is an exact functor,

2. there exists a natural isomorphism between Rn and Rn
H as endofunctors on HI,

3. there exists a natural isomorphism between H0Ln and Ln
H as endofunctors of HI,

4. there exists a natural isomorphism from id to Rn
HL

n
H as endofunctors on HI.

Proof. Since R is t-exact, RH = H0R is exact as an endofunctor on C by Proposition

6.1.6. Since composition of exact functors is exact, Rn
H is exact. This proves part (1).

To verify (2), we proceed by induction on n. The case n = 1 follows by definition.

Now suppose H0Rn−1 is naturally isomorphic to Rn−1
H . Since R is t-exact, by [BBD,

1.3.17(ii)], there exists a natural isomorphism between H0R and H0RH0. Therefore,

we obtain the following chain of natural isomorphisms: Rn
H

∼= H0RH0Rn−1 ∼= H0Rn.
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Since R is t-exact, so is Rn. Furthermore, by definition of t-exactness, for all C in C ,

Rn(C) is an object of C . It follows that H0Rn = Rn.

For (3), since S is in C and ⊗ is right t-exact in both factors, H0L is naturally

isomorphic to H0LH0 as functors on C by [BBD, 1.3.7(ii)]. Using similar inductive

arguments as in (2), we obtain a natural isomorphism between H0Ln and Ln
H .

Since the unit id −→ RnLn is a natural isomorphism in D, H0 −→ H0RnLn is also

a natural isomorphism. Notice that H0 is the identity functor on C and by part (2)

and (3) H0RnLn is naturally isomorphic to Rn
HL

n
H . The composition

id −→ H0RnLn −→ Rn
HL

n
H

gives us the desired natural isomorphism, which proves part (4).

8.1 Slice filtration of torsion monoidal categories

We begin by constructing the slice filtration on D. This will generalize the results in

Section 5.1.

Definition 8.1.1. Let D<n be the full subcategory of D consisting of the objects

M in D for which RnM = 0. Let D≥n be the subcategory of objects M such that

M = Ln(M ′) for some M ′ in D. Let ν≥n be the functor LnRn.

Notice that the arguments in the proof of [HK06, 1.1] rely only on the Cancellation

axiom of DMeff,−, which is fulfilled by Definition 8.0.1(3) of D. Therefore, the proof of

loc. cit. generalizes to show that ν≥n is right adjoint to the inclusion of D≥n into D.

Let M be an object of D, and let ηn : ν≥nM −→M be the counit. Complete ηn to

a triangle:

ν≥nM −→M −→M ′ −→ ν≥nM ′[1].

Copying the proof of [HK06, 1.3], we see that M ′ is uniquely determined up to unique

isomorphism, and M 7→ M ′ defines a triangulated endofunctor ν<n that is left adjoint

to the inclusion of D<n in D. Finally, the discussion in the paragraphs preceding

Proposition 5.1.5 can be adapted to this more general setting to show that ν≥n restricted

to D≥n is naturally isomorphic to the identity, and ν<n restricted to D<n is also
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naturally isomorphic to the identity. We have just verified the following theorem, which

is a generalization of Proposition 5.1.5:

Theorem 8.1.2. If D is a torsion monoidal category, then there exists an N-indexed

ascending weak filtration (D<∗, ν<∗) given by

0 = D<0 ⊆ · · · ⊆ D<n ⊆ D<n+1 ⊆ · · ·

and a descending weak filtration (D≥∗, ν≥∗) given by

D = D≥0 ⊇ · · · ⊇ D≥n ⊇ D≥n+1 ⊇ · · ·

It is possible that the weak filtrations are degenerate. However, as the following

result shows, the filtration being degenerate is related to the invertibility of S. Recall

that S is invertible if there exists an object T in D such that T ⊗ S = 1.

Proposition 8.1.3. The following are equivalent:

1. the filtration (D<∗, ν<∗) is trivial, i.e., each D<n is zero.

2. the filtration (D≥∗, ν≥∗) is degenerate with D≥n = D for all n.

3. the Tate object is invertible in D.

Proof. We first show that (1) is equivalent to (2). To see that (1) implies (2), suppose

D<n = 0 for all n. We need to show that everyM in D is isomorphic to LnM ′ for some

M ′ in D. However, for every M in D, the following is a distinguished triangle:

ν≥nM −→M −→ ν<nM −→ ν≥nM [1]

where ν<nM is in D<n. But the assumption that D<n = 0 implies that ν<nM = 0.

Therefore, LnRnM ∼= M . It follows that M is in D≥n, and D≥n = D as desired.

Conversely, if D≥n = D then for every M in D, M ∼= LnM ′ for some M ′. Suppose M

is in D<n, then by definition 0 = RnM = RnLnM ′ ∼= M ′. Therefore, M = Ln0 = 0,

and D<n = 0.

Now we show that (2) is equivalent to (3). Indeed, if S is invertible with inverse

T , then M = S⊗n ⊗ T⊗n ⊗M = Ln(Tn ⊗M) which is an object of D≥n. Conversely,
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if D≥n = D, then, in particular, D≥1 = D. This implies that the unit object 1 is

an object of D≥1. In other words, 1 = T ⊗ S for some T , which shows that S is

invertible.

8.2 Torsion filtration on the heart

Let us now focus on the heart C of D. In this section, we will generalize the results

developed in Section 6.2 forHI. Recall from Proposition 8.0.2 and preceding paragraphs

that the endofunctors Ln
H = H0Ln and Rn

H = H0Rn are adjoint. For F in C , let φ<nF

denote the cokernel of the counit map Ln
HR

n
HF −→ F . Since the counit is natural in

F , F 7→ φ<nF defines an endofunctor of C . Let C<n be the full subcategory of all

objects C in C with φ<n(C) = C, and let C≥n be the full subcategory of all objects C

in C with φ<n(C) = 0. The arguments for Theorem 6.2.10 go through to give us the

following result.

Theorem 8.2.1. The functors φ<n, n = 1, 2 . . . , define a sequence of coradicals, whose

associated torsion theories (Tn,Fn) = (C≥n,C<n) fit together to define a strong as-

cending cofiltration of C :

0 = C<0 ⊆ · · · ⊆ C<n ⊆ C<n+1 ⊆ · · ·

and a strong descending filtration of C :

C = C≥0 ⊇ · · · ⊇ C≥n ⊇ C≥n+1 ⊇ · · · .

Following Definition 6.2.18, we define φ≥n to be the kernel of the natural surjection

id −→ φ<n. By Proposition 2.1.8 and Corollary 2.2.7, φ≥n is an idempotent pre-radical,

and is right adjoint to the inclusion of C≥n in C . Furthermore, an object F is in C≥n

if and only if φ≥nF = F .

As in the case for HI, we can define C (n) to be the full subcategory of objects F

such that F ∼= Ln
HF

′ for some F ′ in C . As defined, C (n) ⊆ C (m) if n < m. The

arguments of Proposition 6.2.3 go through to give us the following proposition:

Proposition 8.2.2. The tower of full subcategories

C = C (0) ⊇ · · · ⊇ C (n− 1) ⊇ C (n) ⊇ · · ·
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defines a weak filtration on C .

Drawing on the analogy with HI, the coreflection functor from C to C (n) is given

by F 7→ Ln
HR

n
HF . We also have the following relationship between C (n) and C≥n:

Corollary 8.2.3. For F in C (n), HomC (F,G) = 0 for all G in C<n. In particular,

C (n) is a full subcategory of C≥n.

Proof. If F is an object of C (n), then F = Ln
HF

′ for some F ′ in C . Since Rn
HG = 0 for

all G in C<n,

HomC (F,G) = HomC (L
n
HF

′, G) = HomC (F
′, Rn

HG) = 0

for all G in C<n. The first statement of the corollary is now proven. The second

statement follows from the definition of C≥n as the torsion subcategory of C<n.

The filtrations on C may also be trivial. Proposition 8.2.6 and Corollary 8.2.7 below

show that, as in the case for D, the degeneracy of the filtrations are related to the the

invertibility of S. Let us first consider the following lemma. Recall from Definition

8.1.1 that for a given n, D≥n is the full subcategory of D whose objects are the objects

M in D such that M ∼= LnM ′ for some M ′ in D, and D<n is the full subcategory of D

whose objects are the objects M in D such that RnM = 0.

Lemma 8.2.4. If D<n = 0 then C<n = 0.

Proof. Recall from Proposition 8.0.2(2) that Rn
H is naturally isomorphic to Rn on C .

Therefore, if Rn
HC = 0, then RnC = 0. Hence, C<n ⊂ D≥n.

If S is invertible in D, then by Proposition 8.1.3, D<n = 0 for all n, and by the

preceding lemma, C<n = 0 for all n. As we will see in Proposition 8.2.6, C<n = 0 for

all n implies C≥n = C for all n. This shows that if S is invertible in D, then the strong

filtration and cofiltration are degenerate. However, the converse does not necessarily

hold. Rather, the converse is related to a weaker condition.

Definition 8.2.5. We say that S is C -invertible if there exists some T in C such that

T ⊗C S = 1.
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Proposition 8.2.6. The following are equivalent:

1. C (∗) is degenerate with C (n) = C for all n,

2. C<∗ is trivial, for all n,

3. C≥∗ is degenerate with C≥n = C for all n,

4. S is C -invertible.

Proof. We first show that (1), (2), and (4) are equivalent. The proof that (1) and

(4) are equivalent is the same as the proof that (2) and (3) of Proposition 8.1.3 are

equivalent. To see that (2) implies (1), let F be an object in C , and let K be the kernel

of the counit Ln
HR

n
HF −→ F . We have the following exact sequence:

0 −→ K −→ Ln
HR

n
HF −→ F −→ φ<nF −→ 0.

By Proposition 8.0.2(1), Rn
H is exact. Applying Rn

H , we obtain the following exact

sequence:

0 −→ Rn
HK −→ Rn

HL
n
HR

n
HF −→ Rn

HF −→ Rn
Hφ

<nF −→ 0.

But since Rn
HL

n
H

∼= id, Rn
HL

n
HR

n
HF −→ Rn

HF is an isomorphism. Therefore, Rn
HK =

Rn
Hφ

<nF = 0. That is, K and φ<nF are in C<n. It follows that K = φ<nF = 0, and

therefore F = Ln
HR

n
HF . It follows that C (n) = C .

To show that (4) implies (2), suppose F is in C<n. Then by (4), F ∼= S⊗n ⊗C T⊗n

for some T in C . Therefore, Ln
HR

n
HF

∼= F . However, this means that φ<nF = 0. By

Theorem 2.2.6, φ<nF = F . Therefore, F = 0 and C<n = 0.

To show that (3) is equivalent to the rest, we first show that (2) implies (3). Suppose

C<n is trivial. Since for all F , φ<nF is an object of C<n, it follows that φ<nF = 0.

Therefore, φ≥nF = F . Thus, C≥n = C , as desired.

Finally, to show that (3) implies (2), suppose C≥n = C . By Proposition 2.2.3,

C≥n ∩ C<n = 0. Hence, C<n = 0, as desired.

The following corollary is a direct direct consequence of Lemma 8.2.4 and Proposi-

tion 8.2.6.

Corollary 8.2.7. If S is invertible in D, then S is C -invertible.
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8.3 Slice filtration on the localization of D by S

Next, for a torsion monoidal category D, we can form the localization D[S−1] of D by

S (see [MVW, 8A]). The objects of D[S−1] are pairs (M,n), where M is in D, and n is

some integer, and (M,n + 1) ∼= (LM,n) for all M and n. Morphisms between (M,n)

and (M ′, n′) are elements of the direct limit lim−→k
Hom(M(n + k),M ′(n′ + k)). The

relationship between D and D[S−1] is analogous to the relationship between DMeff,−

and DM. In particular, by the Cancellation axiom (Definition 8.0.1(3)) the localization

functor Σ∞ : D −→ D[S−1] which sends an object M in D to the object (M, 0) is fully

faithful. Therefore, we can identify D as a full subcategory of D[S−1].

There is also a tensor product on D[S−1], given by

(M,n)⊗ (M ′, n′) = (M ⊗M ′, n+ n′)

(see [MVW, 8A]). In the case that the cyclic permutation of (S, 0)⊗3 is the identity in

D[S−1], by [MVW, 8A.10, 8A.11] the tensor product is a triangulated symmetric tensor

on D[S−1]. In this case, D[S−1] is also a torsion monoidal category. However, since S

is invertible in D[S−1], defining the weak filtrations as we have done in Section 8.1 will

result in trivial weak filtrations, as we have shown in Proposition 8.1.3. Nonetheless,

we can still construct weak filtrations on D[S−1] as follows.

Definition 8.3.1. Let D[S−1]≥n be the full subcategory of D[S−1] with objects (M,k)

such that (M,k) ∼= (M ′, n) for some M ′ in D. Since (M,n + 1) ∼= (LM,n), we have

the following descending tower of full subcategories:

D[S−1] ⊇ · · · ⊇ D[S−1]≥0 ⊇ · · · ⊇ D[S−1]≥n ⊇ D[S−1]≥n+1 ⊇ · · · .

To show that the nested sequence of subcategories is a descending weak filtration,

we need to show that for each integer n, there exists a coreflection ν≥n : D[S−1] −→

D[S−1]≥n. Copying the definition of the functor ν≥n on DM as given in Definition

5.3.4, we define ν≥k by setting

ν≥k(M,n)
def
=


(ν≥k−nM,n) if k > n

(M,n) otherwise.
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Copying the proof of Proposition 5.3.6, we see that ν≥k is right adjoint to the inclusion of

D[S−1]≥k into D[S−1]. Furthermore, the restriction of ν≥k to D[S−1]≥k is the identity.

This shows that (D[S−1]≥∗, ν≥∗) is a descending weak filtration of D[S−1].

Remark 8.3.2. Since (M, 0) ∼= (M ′, n) if and only if M ∼= LnM ′, the image of D≥n

under Σ∞ is precisely D[S−1]≥n. In particular, we can identify D with the full sub-

category D[S−1]≥0, and the preceding discussion shows that ν≥0 is a right adjoint to

Σ∞.

Next, let D[S−1]<n be the full subcategory of objects (M,k) where ν≥n(M,k) = 0.

Since ν≥k(M,n) = 0 implies that ν≥k+1(M,n) = 0, we obtain the following ascending

tower of full subcategories of D[S−1]:

· · · ⊆ D[S−1]<0 ⊆ · · · ⊆ D[S−1]<n ⊆ D[S−1]<n+1 ⊆ · · ·D[S−1].

We want to show that this tower of full subcategories defines a weak filtration of D[S−1]

by showing that, for each n, there exists a reflection ν<n : D[S−1] −→ D[S−1]<n.

Copying the definition of the functor ν<k on DM as given in Definition 5.3.11, we

define ν<k by setting:

ν<k(M,n) =


(ν<n−kM,n) if n > k

0 otherwise.

The arguments for [HK06, 1.3(i)] go through in this general setting to show that for

each k, ν<k is a triangulated functor that is right adjoint to the inclusion of D[S−1]<k

into D[S−1]. Moreover, the restriction of ν<k to D[S−1]<k is naturally isomorphic to

the identity (cf. Proposition 5.3.12). We have just proved the following theorem, which

generalizes the results in Section 5.3.

Theorem 8.3.3. The category of D[S−1] is equipped with a descending weak filtration

given by (D[S−1]≥∗, φ≥∗) and an ascending weak filtration given by (D[S−1]<∗, φ<∗).

The following proposition, which is a consequence of Proposition 8.1.3, relate the

degeneracy of the weak filtrations that we defined above with the invertibility of the

Tate object S.
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Proposition 8.3.4. The following are equivalent:

1. the categories D[S−1]<n are trivial,

2. the categories D[S−1]≥n is degenerate with D[S−1]≥n = D[S−1] for all n,

3. S is invertible in D.

Proof. If S is invertible, then D[S−1] is equivalent to D. The fact (3) implies (1) and

(2) follows directly from Proposition 8.1.3.

To show that (1) implies (2), suppose D[S−1]<n = 0 for all n. For any object (M,k)

of D[S−1] and any integer n, we have the following distinguished triangle

ν≥n(M,k) −→ (M,k) −→ ν<n(M,k) −→ ν≥n(M,k)[1].

Notice that ν<n(M,k) is an object ofD[S−1]<n and ν≥n(M,k) is an object ofD[S−1]≥n.

By the assumption that D[S−1]<n = 0, we see that (M,k) ∼= ν≥n(M,k), and therefore

(M,k) is in D[S−1]≥n. Therefore, D[S−1]≥n = D[S−1] for all n.

To show that (2) implies (3), suppose D[S−1]≥n = D[S−1] for all n. In particular,

D[S−1]≥1 = D[S−1]. This implies that (1, 0) is an object of D[S−1]≥1. By definition of

D[S−1]≥1, (1, 0) ∼= (T, 1) for some T . Therefore, 1 ∼= LT = S ⊗ T , and S is invertible

in D.

8.4 Torsion Filtration on the Stable Localization of C by S

In this section, we generalize the results of Section 7.1. Copying the construction of

HI∗, we define the stable localization of C as follows:

Definition 8.4.1. Let CS denote the category whose objects are the Z-graded objects

C∗ in C together with a map sn : LHCn −→ Cn+1 for each integer n such that the

the corresponding adjunction map wn : Cn+1 −→ RHCn is an isomorphism. Following

Section 7.1, we call sn the n-th suspension map, and wn the n-th delooping map. We

will represent an object of CS by (C∗, w∗) or simply C∗ if the collection of delooping

maps are clear.
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By the Cancellation axiom, C 7→ LHC is fully faithful, and therefore, the arguments

in [Dég10, 1.8] go through for CS to show that there is a fully faithful functor σ∞ from

C to CS given by C 7→ (C∗, w∗), where the n-th graded component of C∗ is given by

Cn
def
=


Ln
HC if n > 0

C if n = 0

R
|n|
H C otherwise,

and the n-th delooping wn : Cn −→ RH(Cn+1) is the unit map for n ≥ 0 and the

identity for n < 0. As in the case for HI∗, σ
∞ has a right adjoint ω∞ : C −→ CS , given

by (C∗, w∗) 7→ C0. Thus, we can view C as a full coreflective subcategory of CS whose

objects are the (C∗, w∗) such that Cn = Ln
HC0 for all n > 0.

Definition 8.4.2. Copying the definition of φ<n in Definition 7.1.6, for an object

(C∗, w∗) of CS , we define φ<n(C∗) to be the object in CS where

(φ<n(C∗))k
def
=


φ<n+k(Ck) if n+ k > 0

0 otherwise.

For ease of notation, we will write φ<n
k (C∗) for the k-th graded component of φ<n(C∗).

As the arguments of Theorem 7.1.9 are entirely formal, replacing HI∗ by CS and

φ<k
∗ by φ<k, we obtain the following proposition which is needed in the construction of

the strong filtration and cofiltration on CS .

Proposition 8.4.3. For each integer n, φ<n is a coradical of the category CS.

We can now define the full subcategories in the strong filtration and cofiltration of

CS . Recall from Theorem 2.2.6 that if φ is a coradical, then the torsion subcategory

of φ is the full subcategory T consisting of the objects T such that φ(T ) = 0, and the

torsionfree subcategory of φ is the full subcategory F whose objects are the objects F

such that the natural map F −→ φ(F ) is an isomorphism.

Definition 8.4.4. Let C<n
S be the torsionfree subcategory of φ<n, i.e., C∗ is an object

of C<n
S if and only if φ<n(C∗) = C∗. Let C≥n

S be the torsion subcategory of φ<n. The

objects of C≥n
S are the C∗ in CS such that φ<n(C∗) = 0.
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Copying the proof for Corollary 7.1.12 we obtain the following theorem.

Theorem 8.4.5. The sequence of functors φ<n, n = . . . ,−1, 0, 1, . . . on CS is a Z-

indexed sequence of coradicals whose associated torsion theories

(Tn,Fn) = (C≥n
S ,C<n

S )

define an ascending strong cofiltration

· · · ⊆ C<0
S ⊆ · · · ⊆ C<n

S ⊆ C<n+1
S ⊆ · · ·

and a strong descending filtration

CS ⊇ · · · ⊇ C≥0
S ⊇ · · · ⊇ C≥n

S ⊇ C≥n+1
S ⊇ · · · .

on CS.

The following proposition shows that S is C -invertible if and only if each of the

weak filtrations above are degenerate:

Proposition 8.4.6. The following are equivalent:

1. C<∗
S is trivial, for all n,

2. C≥∗
S is degenerate with C≥n

S = C for all n,

3. S is C -invertible.

Proof. To see that (1) implies (2), suppose C<n
S = 0 for all integers n. Then φ<n(C∗) =

0 for all C∗ in CS , and therefore φ<n = 0 for all n. Since C∗ is in C≥n
S if and only if

φ<n(C∗) = 0 (see Definition 8.4.4), it follows that C≥n
S = CS for all n.

Now, assume C≥n
S = CS for all n. By Proposition 2.2.3, C<n

S ∩ C≥n
S = 0. Hence,

C<n
S = 0 for all n. This shows that (2) implies (1).

To show that (1) implies (3), suppose C<n
S = 0 for all n. As we have shown in

the proof of (1) implies (2), φ<n = 0 as an endofunctor on CS for all n, which further

implies that φ<n = 0 as an endofunctor on C for all n > 0. This implies that C<n = 0

for all n, and by Proposition 8.2.3, S is invertible in C .
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To see that (3) implies (1), suppose S is invertible in C . Then by Proposition

8.2.3, C<n = 0 for all n. Therefore, φ<n(C) = 0 for all C in C and n > 0. Hence,

φ<n(C∗) = 0 for all C∗ in CS and integer n. It follows that the torsionfree categories

are trivial, i.e., C<n
S = 0 for all integer n.
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[Dég08] F. Dèglise. Motifs Génériques. Rendiconti Sem. Mat. Univ. Padua, 119 (2008),
173 - 244.
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