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ABSTRACT OF THE DISSERTATION 

 

Reliability Analysis for Systems Subject to Degradation and Shocks 

By Sara Ghorbani  

Dissertation Directors:  

Elsayed A. Elsayed 

Hoang Pham 

 

Engineering systems usually deteriorate due to some underlying degradation processes 

and possibly random shocks. Accurate modeling of the effect of these processes on the 

system leads to better system reliability estimation. This dissertation investigates the 

impact of degradation processes and random shocks on systems and studies the optimal 

maintenance policies for such systems.  

We develop new reliability models which offer more realistic system reliability 

estimation. Model 1 considers the effect of system’s age on shock damage magnitudes. 

This is due to the fact that systems become more vulnerable to shock damage magnitudes 

as it ages. Model 2 extends Model 1 by considering the correlation between degradation 

processes and accumulated shock damages. Both models assume that the shock damage 

magnitudes are s-independent and time-variant. For each model, the system reliability 

expression is developed and the associated parameter estimation method is presented. 

Numerical analyses and Monte Carlo simulation are conducted on different parameters of 

reliability expression to validate the analytical reliability expressions. 
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Furthermore, we develop a generalized threshold-type condition-based maintenance 

(CBM) policy for a system subject to multiple competing risks including degradation 

process and sudden failure where the maintenance is considered to be imperfect. The 

objective of this study is to obtain the optimal preventive maintenance threshold 

maximizing system’s average availability. The model can also accommodate the 

correlation among multiple failure modes. The special case of such a system subject to 

two independent competing risks, degradation and sudden failure is studied where the 

degradation process is described according to Model 2. Finally, numerical optimization 

analyses and sensitivity analyses on optimum policy are conducted and presented 

accordingly.  
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Chapter 1 : Introduction 

1.1. The Importance of Degradation Models and its Applications 

Nowadays users expect products and services to be more reliable with longer lifetimes 

and higher quality. Beside these expectations, introduction of new complex technologies 

with their tight economic requirements as well as maintenance costs make reliability 

analysis of assets and estimation of their useful remaining lifetime an important issue in 

the engineering field.  

 

Traditionally, reliability analysis is performed using field data or accelerated failure time 

data. However, with the increase in more reliable products, it is usually costly and 

difficult to obtain failure time data in a reasonable time horizon. In such cases reliability 

analysis using degradation modeling becomes a viable and important alternative. The 

failure mechanism of many systems can be explained via one or multiple underlying 

degradation processes which can be affected by randomly changing covariates such as 

operating conditions. Gorjian et al. (2009) generally define degradation of a system as the 

reduction in the performance or the reliability of the system over time. Lehman (2006) 

defines the degradation in the engineering field as the irreversible accumulation of 

damage in the system over its life span, which finally leads to its failure. The degradation 

process in an item usually is traced by measuring one index or multiple ones. The 

degradation measures can be visibly observed or not. For example, the crack growth in 

civil infrastructures can be visually recorded, while the reduction in a voltage output of 

an electronic device cannot be observed and could be recorded by monitoring sensors. 
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Examples of physical degradation measures in engineering fields generally include 

fatigue, corrosion, fractures in materials like concrete (Lehmann, 2006) and vibration 

frequencies in bearings (Gebraeel et al., 2005). Degradation models have been widely 

applied to the reliability assessment for steel coatings (Heutink et al., 2004, Nicolai et al., 

2007), high-speed railway tracks (Meier-Hirmer et al., 2005), circuits (Elsayed, 1996), 

bridges and civil infrastructures (van Noortwijk and Frangopol, (2004), Pandey et al., 

(2005)), berm breakwaters (van Noortwijk and van Gelder, 1996) and automobile brake 

pads (Crowder and Lawless, 2007). 

1.2. Types of Degradation Models 

From the reliability analysis perspective, there are three classic degradation models in the 

literature of degradation and reliability analysis named degradation-threshold (DT) 

models, degradation-shock (DS) models, and degradation-threshold-shock (DTS) models. 

DT models assume that the system failure is due to degradation process only. In DS 

models, the system failure is due to occurrence of traumatic events only, while DTS 

models consider that the system is subject to degradation processes and random shocks. 

The last two models will be discussed in detail in the next section. The classical DT 

models consider that the system failure happens when the degradation measure exceeds a 

certain critical threshold level. The time when the system reaches this level is referred to 

as first-passage time (Lehmann, 2010). Figure 1-1 shows an example of the critical 

threshold, C, and degradation path traced by crack length growth. Time *t is the system’s 

first-passage time.  
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Figure 1-1: The system degradation process 

 

From modeling perspective, the degradation models are, in general, classified into two 

classes named normal degradation models and accelerated degradation models/testing 

(ADT). The normal degradation models make an inference about the reliability metrics 

from degradation data collected at normal operating conditions. However, accelerated 

degradation models assess the reliability using degradation data obtained at accelerated 

stresses or environmental conditions (Gorjian et al., 2009). The normal degradation 

models are also classified into two groups: models without stress factors and models with 

stress factors. The normal degradation models without stress factors make inference 

about reliability and degradation measures at a constant stress. General degradation paths, 

continuous-time stochastic processes such as gamma process, Weiner process, and 

Markov models fall into this category. On the other hand, the normal degradation models 

with stress factors model the situations when the system is subject to sporadic stresses. 

Shock models and stress-inference models are such models. Figure 1-2 from Gorjian et 

al. (2009) addresses the general degradation models.  
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Figure 1-2: The Classification of degradation models 

 

Among normal degradation models without stress factors, stochastic Markov models 

such as gamma process, Weiner process, and Markov chains have been widely applied to 

engineering problems. For example, Markov chain models have been employed to model 

degradation in nuclear pipes (Veeramany and Pandey, 2011). Gamma processes have 

been successfully applied to crack growth in materials (Noortwijk and Frangopol, 2004), 

corrosion of steel coatings (Nicolai et al., 2007), civil infrastructures such as bridges 

(Pandey et al., 2005), and water dam storages (Moron, 1956). Moreover, Weiner 

processes have successfully modeled degradation process in rotating element bearings 

(Gebraeel et al., 2005), bridge beams (Wang, 2010), LED lamps (Tseng and Tang, 2003), 

self-regulating heat cables (Whitmore, 1997), and etc. The degradation models classified 

in Figure 1-2 will be discussed in detail in chapter 2, literature review. 
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1.3. Degradation and Random Shock Models 

Most of the systems are usually subject to degradation or aging due to internal processes 

and some sporadic shock or stresses. According to Gorjian et al. (2009), the continuous-

time degradation models are not appropriate models for systems subject to shocks. On the 

other hand, shock models existed in literature such as the ones in Gut and Husler (2005), 

Lam and Zhang (2004), Lam (2009), and Nakagawa (2007), usually assume that the 

system is absolutely reliable in absence of random shocks. Therefore, many researchers 

have focused on studying degradation and shock models, Li and Pham (2005), van 

Noortwijk et al. (2007), Sanchez-Silva et al. (2011), Jiang et al. (2011). 

 

The degradation and random shock models are divided into two classes of models based 

on whether the shocks and degradation processes are dependent. Usually, there are two 

kinds of dependency between random shocks and degradations: 

1) Degradation makes the system more vulnerable to random shocks. That is, the 

probability that a shock is fatal to the system increases by degradation. Huynh et 

al. (2011) study a system subject to degradation and non-homogeneous Poisson 

process shocks where the degradation increases fatal shock occurrence rates. 

Therefore, the system fails sooner. 

2) The shocks accelerate the degradation process. The random shocks can generally 

have two types of impact on degradation process. They can accelerate the 

degradation by a sudden jump, or they increase the rate of degradation in the 

system. Cha and Finkelstein (2009) and Wang and Pham (2011) study a system 

subject to degradation and random shocks where a shock results in system failure 
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with probability ( )p t and it adds a sudden jump to degradation by probability 

( ) 1 ( )q t p t  .  

1.4. Maintenance Models 

The objective of system maintenance is to ensure the system availability (Elsayed, 2012). 

There has been an increasing interest in developing optimal maintenance policies for 

degrading systems over last few decades. According to Duffuaa et al. (2001), 

maintenance strategies can be, in general, categorized into two major groups of corrective 

maintenance (CM) and preventive maintenance (PM). CM is referred to activities 

restoring the system’s state to its required level of functioning after failure (Blanchard et 

al. 1995), while PM is performed prior to the system failure in order to improve the 

system’s state (Usher et al., 1998). The maintenance techniques in existing literature are 

classified into time-based maintenance (TBM) or condition-based maintenance (CBM). 

time-based maintenance analysis is based on system’s age, while condition-based 

maintenance suggests maintenance actions based on the system’s state which can be 

determined through inspection or continuous condition monitoring. The advantage of 

condition-based maintenance over time-based maintenance is providing better system’s 

health management, lower maintenance cost over system’s life span, and avoidance from 

catastrophic failure (Ahmad and Kamaruddin, 2012). Hence, this dissertation focuses on 

investigating optimal CBM policies for degrading systems due to degradation and shocks. 
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1.5. Overview of The Dissertation 

Chapter 1 presents the motivation, basic concepts in the dissertation. Chapter 2 reviews 

the previous studies on degradation and shock models and their associated characteristics 

in detail and presents the organization and direction for the research. Chapter 3 develops 

a reliability model for a system subject to degradation and random shocks with time-

dependent damage magnitudes to capture the effect of system’s age and shock damage 

magnitudes. Chapter 4 extends the model in chapter 3 by incorporating some correlation 

between accumulated shock damage and degradation process. The associated dependency 

is described in a way that the random shocks affect the system by adding sudden damage 

increments and accelerating the underlying degradation process as well. Chapter 5 

addresses a generalized optimal threshold-type CBM policy for the system described in 

Chapter 4 where it is subject to multiple competing risks and imperfect maintenance. The 

proposed optimal maintenance policy aims to maximize the system average achieved 

availability. Finally, chapter 6 discusses the conclusions and future research ideas. 
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Chapter 2 : Literature Review 

 

In the previous chapter, the basic concepts and motivations for degradation and shock 

models were discussed and the objective of the dissertation was briefly given. As it was 

discussed in chapter one, degradation models can be divided into two major categories 

namely normal degradation models and accelerated degradation models. This chapter 

presents a comprehensive literature survey on each category of degradation models 

developed over the last two decades and thoroughly reviews all the recent studies on 

degradation and shock models. Finally, the direction and organization of research in this 

dissertation is discussed. 

 

2.1. Normal Degradation Models 

Many systems, subsystems, and components exhibit a degradation process. This might be 

attributed to aging, use, environmental conditions, and applied stresses. The degradation 

analysis is an alternative approach when degradation data can be obtained in lieu of 

failure time (Lehmann, 2009). The degradation models appropriately evaluate and predict 

the system’s health state in order to provide a better insight on the system behavior (Jiang 

and Jardine, 2008). In literature and applied engineering, the degradation paths are 

usually considered to be a stochastic process rather than a deterministic one. The 

degradation models can be classified in regards with various factors. For example, the 

degradation models can be categorized into two basic groups named discrete and 

continuous models (Jiang and Jardine, 2008). A general degradation path can be defined 

as a linear function or nonlinear function in time (Li et al., 2011). Based on Gorjian et al. 

(2009), degradation models can also be categorized into two big groups of normal and 
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accelerated degradation models. Normal degradation models are usually used to estimate 

the degradation obtained at normal operating conditions. However, accelerated 

degradation models make inference about degradation and reliability metrics at normal 

conditions from data obtained under accelerated conditions. Normal degradation models 

can further be divided into two groups: degradation models without stress factors and 

degradation models with stress factor. 

Degradation models without stress factor are the ones where the degradation indicator is 

defined at a fixed stress level. Good examples of these models are general degradation 

path models and linear/ nonlinear regression models. However, other degradation models 

such as cumulative damage or shock models are considered as degradation models with 

stress factors since the degradation indicator is a function of defined sporadic stresses 

(Gorjian et al., 2009). These models are explained below. 

 

2.1.1. Normal Degradation Models without Stress Factors 

There are several methods which can be used to model the degradation data of a 

component when the stress is not present. Some of these models are general degradation 

path models, Markov models, and continuous-time stochastic processes. 

2.1.1.1. General Degradation Path 

The general degradation path model is a regression model with random or fixed 

coefficients fitted to the degradation observations. Both linear and nonlinear models are 

used to model degradation, while most of the degradation paths are nonlinear and not 

intrinsically linear (Gorjian et al., 2009). A simple instance of such a model can be 

( )D t bt  where b is a random or fixed variable. The simplicity of these models is an 



10 

 

 

 

advantage; however, they might not be a good representative for the actual degradation 

path. In practice, the degradation function of most of systems cannot be described well 

with these models (van Noortwijk, 2009). A traditional method to model the degradation 

path is linear regression model in which the degradation path can be represented as

0 1( )i id t t     where id (t) represent the degradation measure from unit i at time t. i

is the fixed-effect parameter, and 1 2, ..., n    are assumed to be independent of time, 

mutually independent, and identically distributed with normal distribution with mean 

zero and constant variance. A major problem with linear regression model is the 

difficulty to estimate the matrix of correlation especially when the data is unbalanced. An 

extension to this model is to consider the variance of degradation as a function of mean 

deterioration, or use nonlinear regression to fit the degradation model (Yuan and Pandey, 

2009). In general, a general degradation path model can be represented as: 

2( ) ( , , ) ~ (0, )i j j i ij ijd t f t and N       

Where jt  is the time of thj degradation measurement, f is a non-decreasing function 

addressing the actual degradation path, and ijd  is the degradation measure for unit i at the

thj  degradation measurement. Also,  is a vector of fixed-effect parameters, and i  is 

the vector of random parameters for thi unit. ij  is the error term with constant variance 

and independent of i (Gorjian et al., 2009). Lu and Meeker (1993) employ a general 

degradation path to find the distribution of time to failure for the system. The degradation 

path is described as ( ; , )ij i j ijx f t     where ijx  is the degradation measure from unit j at 

pre-specified time it ,  represents common parameters for all units, and j  represents 
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multivariate normal distributed parameter for each unit j. 
ij  represents the error term for 

unit i  at thj  measurement time. The errors can be correlated or stress dependent. The 

authors develop a two-stage algorithm to estimate the parameters of the degradation path. 

The algorithm firstly fits the degradation model to the path obtained for each unit and 

calculates the new parameter estimates using the estimations computed before. Bae and 

Kvam (2004) model the degradation path of highly reliable light display components 

such as plasma display panels and vacuum fluorescent as a nonlinear random-coefficient 

model to capture the burn-in characteristics of the component. Bae et al. (2007) 

investigate the reliability characteristics of a single component for two cases of general 

additive and multiplicative degradation models. The general additive degradation model 

is defined as ( , , ) ( , )D t X t X    where ( , )t  is the deterministic mean degradation 

at time t, and X represents the additive random noise around the mean degradation. is 

also considered to be a fixed effect parameter. In the multiplicative form of degradation 

model, the random variable is multiplicative to the mean degradation with mathematical 

form of ( , , ) . ( , )D t X X t    where X is a random variable. Yuan and Pandey (2009) 

develop an advanced nonlinear mixed effect (NLME) degradation model for degradation 

data obtained from nuclear piping systems. This model provides improved degradation 

prediction by reducing the variance associated with the degradation of each unit. 

Haghighi and Nikulin (2010) employ parametric and non-parametric methods to estimate 

the survival function and its parameters for a system with multiple conditionally 

independent failure modes where the degradation path is in form of linear multiplicative 

function, ( )
t

D t
A

 , with A as the random deterioration rate.  
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2.1.1.2. Markov Models 

A Markov chain model is a stochastic process which is defined as a set of discrete state 

space and discrete time space. Markov chains with continuous-time space are referred to 

Markov processes (Li et al., 1996). Consider that u t    and ( )X t  is a stochastic 

process representing the state of a system at step t . ( )X t  is considered to be a Markov 

process if ( )X   given ( )X t  does not depend on ( )X u . In other words, the conditional 

distribution of a future state is independent of the past states of the process (Montoro-

Carzola and Perez-Ocon, 2006). Thus, the sojourn time of each state is exponentially 

distributed and the transition probability to each state is independent of the process 

history. In degradation models, ( )X n , addresses the state of an observable degradation 

measure, such as the length of a crack, at the end of thn time interval ( )X t  is usually 

modeled as a Markov chain, and the wear of the system at thn time interval  is defined as 

( 1) ( )X n X n   (Singpurwalla, 1995). Welte et al. (2006) model the degradation process 

of hydro power plant by a Markov chain with four finite states where the sojourn time of 

the process is modeled by gamma distribution. Markov processes have been extended to 

more general models such as semi-Markov processes and hidden Markov processes (See 

Blischke and Murthy (2000), Kim and Makis (2009), van Noortwijk, (2009), and Peng 

and Dong (2011)). A semi-Markov process is the integration of renewal theory and 

Markov chains. In such a model, the sojourn time distributions depend on the next state 

that the process visits (Pijnenburg, 1991). Kharoufeh (2003) and Kharoufeh and Cox 

(2005) estimate the residual life distribution for a single-unit system subject to Markovian 

environment-based degradation with finite states. They consider that the environment 

follows a time-homogeneous Markov chain with finite states with different degradation 
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rate for each state of environment. Kharoufeh et al. (2010) extend this model by 

considering that the environment-based degradation is described by a semi-Markov 

process. Veeramany and Pandey (2011) compare homogenous Markov model and semi-

Markov model to estimate the reliability of pipes in nuclear power plants. Chryssaphinou 

et al. (2011) derive the reliability indices for a system consisting of m components where 

the deterioration of each component is described by a time-discrete semi-Markov chain. 

The process is time-discrete because the sojourn time of each state follows a discrete 

distribution.  According to Gorjian et al. (2009), these models are efficient and 

appropriate to model the incomplete set of data; however, they assume that the 

degradation process is a single monotonic path. This assumption is not a valid for all the 

engineering problems. For example, fatigue cracks sometimes may heal (Lehmann, 

2009). 

2.1.1.3. Continuous-Time Stochastic Processes 

Continuous-time models or continuous-time Markov processes are helpful to model the 

continuous stochastic degradation processes. Gamma processes, compound Poisson 

processes, and Weiner processes, which are also called Brownian motion with drift or 

Gaussian processes (van Noortwijk, 2009), are such models. These models can be 

considered as special types of levy processes. Abdel-Hameed (2010) discusses levy 

processes and their extensions in detail. The literature survey shows that these models 

especially gamma process and Weiner process have been widely applied to many 

engineering problems. 
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2.1.1.3.1. Gamma Processes 

A thorough review of literature shows that Abdel-Hameed (1975) is the first to suggest 

that the gamma process is a suitable model to describe the random deterioration path. 

Gamma process is useful when the gradual damage is monotonically increasing over the 

time such as fatigue, corrosion, and crack. Gamma process is a stochastic process with 

independent non-negative increments where each increment is distributed with gamma 

distribution with the same scale parameter. The non-negativity assumption for increments 

is valid for many degradation processes in practice. A gamma process is mathematically 

defined as follows: 

Let{ ( ) 0, }X t t be a gamma process representing the accumulated degradation by time t. 

Let ( 1) ( )x X t X t   ; therefore, the probability density function for x is given by 

1( ; , )
( )

xGamma x x e


 
 



 
  

Where 0  is the shape parameter and 0  is the scale parameter. In general, the 

classic gamma process has the following properties (Lawless and Crowder, 2004): 

1) With probability one, (0) 0X   

2) ( )X t has independent increments 

3) ( ) ( ) ~ (( ) , ) 0X u X Gamma u for all u         

If the expected deterioration is linear in time, the gamma process is called stationary (van 

Noortwijk, 2009). The gamma process can be viewed as a compound Poisson process 

where the rate parameter tends to infinity and the gamma-distributed increments are so 

close to zero (Singpurwalla, 1995). The gamma process fits well to the degradation data 

of fatigue crack growth, corrosion of steel coatings, civil infrastructures such as bridges, 
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and water dam storages (See Moron (1956), Grall et al. (2002), van Noortwijk and 

Frangopol (2004), Nicolai et al. (2007), van Noortwijk et al. (2007), Wang (2009), 

Baussaron et al., (2010)). Lawless and Crowder (2004) develop a random effect gamma 

process with covariates to capture the heterogeneity of the degradation path. They 

consider that the scale parameter of the gamma process is defined as z where z is a 

random variable and represents the scale parameter of the gamma distribution. Pandey 

et al., (2005) compare gamma process with a random deterioration rate model on 

modeling the degradation path of civil structures. They point out that the gamma process 

has more versatility to capture the variations of degradation path compared to the random 

deterioration rate model. The conventional methods to estimate the parameters of a 

gamma process are maximum likelihood, method of moments, and method of Bayesian 

statistics (van Noortwijk, 2009). Guo and Tan (2009) update the parameter estimates of a 

gamma process using the Bayesian approach. Wang (2009) develops a nonparametric 

method namely pseudo-likelihood to estimate the unknown parameters of a non-

stationary gamma process. The extensions to gamma process are multivariate gamma 

process, extended gamma process/weighted gamma processes, and non-stationary gamma 

processes. Buijs et al. (2005) use a bivariate gamma distribution to evaluate the reliability 

of a flood defense which was subject to two causes of deterioration, namely the crest 

level and vegetation quality. The bivariate gamma process has also been used to model 

the degradation path of light emitting diodes (LED) and components with two different 

fatigue crack positions (See Zhou et al. (2010) and Pan and Balakrishnan (2011)). 

Dykstra and Laud (1981) define the extended gamma process as
0

( ) ( ) ( )

t

Z t u s dY s  where
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( )u t is a non-decreasing, real-valued, and right continuous function in time and ( )Y t is a 

gamma process with shape parameter of ( )v t . Non-stationary gamma process is 

considered to be another extension to the classic gamma process. Non-stationary gamma 

process is similar to classic gamma process in definition, but it assumes that increments 

follow a gamma distribution with the shape parameter described as a general function in 

time (Gorjian et al., 2009). That is,  

( ) ( ) ~ (( ( ) ( )), ) 0X u X v Gamma u v for all u v       

Wang et al. (2000) study the residual life distribution of water pumps at a soft drink 

manufacturing plant where the degradation level of the system is modeled by a non-

stationary gamma process. Non-stationary gamma process has been applied to describe 

the degradation path of coating of steel and concrete creep (Cinlar (1977), Nicolai et al. 

(2004)). Cinlar (1977) also addresses how a non-stationary gamma process can be 

transformed into a stationary one. 

2.1.1.3.2. Weiner Processes 

Weiner process is also called Gaussian process or Brownian motion with drift. Brownian 

motion first was introduced by Robert Brown, botanist, in 1827. It was used to describe 

the effect of water molecules striking the pollens and distributing them. Ross (1996) 

defines Brownian motion or standard Weiner process, ( )W t , as it follows: 

1) (0) 0W   

2) { ( ), 0}W t t   is a stationary continuous stochastic process with independent real-

value increments. That is, ( ) ( ), ( ) ( )i jW t W t W t W t   are independent normally-
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distributed random variables for any non-overlapping time intervals of

( , ), ( , ).i jt t t t  

3) Each increment follows a normal distribution with mean zero and variance t.  

Weiner process is a non-monotonic process because the increments are not imposed to be 

nonnegative. Kahle (1994) use Brownian motion with drift to define the accumulated 

damage level of a system which is mathematically given by: 

0( ) ( ) ( )X t X t W t     

Where ( )t  is the trend or drift parameter and   is the standard deviation or diffusion 

parameter. ( )W t  stands for the standard Brownian motion, and ( )X t  represents the  

accumulated damage  level up to time t. Usually, it is assumed that the trend is a linear 

function in time; that is, 1( )t t  where 1 is the average degradation rate. Basically, at 

each time t, ( )X t is considered to be distributed as 2( , )N t t  . The Weiner process has 

additive effect on degradation path. It is also known that the time that a Weiner process 

reaches to a fixed level follows an inverse Gaussian distribution, ( , )IG   , with the 

following mathematical presentation (Tang and Su, (2008)): 

3 2

2
2

2

2

( )
( ) exp{ }, 0

2 2

t
f t t t

t

a a
and

  

 

 
 

 
  

 

 

Where and are the parameters of the distribution and a is the fixed level or the critical 

failure threshold. Weiner process can also be thought as a compound Poisson process 

with normal distributed increments and rate parameter of infinity. Kahle and Lehmann 

(2010) discuss Weiner process degradation models and their associated parameter 
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estimation problems. Weiner process has been used to describe the degradation path for 

many engineering systems. Some of these systems are rotating element bearings, bridge 

beams, LED lamps, self-regulating heat cables, and fatigue cracks dynamics (See 

Gebraeel et al. (2005), Wang (2010), Tseng and Tang (2003), Whitmore (1997), and Ray 

and Tangirala (1996)). Wang and Coit (2004) study the reliability of a system subject to 

multiple Weiner-based degradation processes for the cases where the degradation 

processes can be independent or dependent. Barker and Newby (2009) develop an 

optimal inspection policy for a multi-component system where the degradation path of 

each component is independently modeled by Weiner process.  Nicolai et al. (2007) 

compare the goodness-of-fit of three different stochastic models namely Brownian 

motion with nonlinear drift, a non-stationary gamma process with non-linear shape 

parameter, and a two stage hit-and-grow (TSHG) physical process in modeling the 

degradation level of organic coatings of steel structure. Note that the last method has 

been developed using the physical properties of the material. The results indicate that the 

non-stationary gamma process, Brownian motion, and some versions of TSHG describe 

the degradation path well. Wang (2010) models the degradation level of bridge beams by 

a Weiner process with random drift and diffusion parameters. He also uses the maximum 

likelihood estimates (MLE) to estimate the associated parameters. Si et al. (2012) assess 

the residual life distribution of inertial platforms which are key components in the 

weapon systems and space equipment. The author describes the degradation level of the 

system by a Weiner process where the drift parameter is updated using a recursive filter 

algorithm. Elsayed and Liao (2004) propose a new Brownian motion-based process 

namely Geometric Brownian motion. Unlike Brownian motion process, this process has 
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nonnegative increments. Therefore, it can be used to describe the monotonically 

increasing degradation path of many engineering systems. In such a model, the 

degradation level at time t, ( )Z t , is expressed as  

1 ( )
( )

W tbtZ t e e  

Where  and b are the initial degradation and the drift parameter, respectively. ( )W t is 

the standard Brownian motion, and 2

1 is the diffusion parameter representing the impact 

of other factors such as the internal reactions, and variation of unknown or known 

stresses. 

2.1.1.4. Other Models 

In previous years, researchers have suggested many other approaches for modeling 

degradation paths. For instance, Gebraeel et al. (2005) suggest a Bayesian updating 

method which utilizes the real-time continuous signal information from a single 

monitored component in order to update the stochastic parameters of degradation models 

with multiplicative random errors. The authors develop two exponential degradation 

models, one with i.i.d. random error terms and the other one with error terms following a 

modified Brownian motion with independent and identically distributed increments. Later 

on, they derive the associated system residual life distribution for each model. Bordes et 

al. (2010a) define the degradation path as ( ) ( ) ( )D t Y t B t  where ( )D t  describe the 

degradation level at time t, and it is defined as a combination of a gamma process, ( )Y t , 

and a Brownian motion, ( )B t .   is a positive constant. It is also assumed that the gamma 

process and Brownian motion are independent. The authors, in addition, discuss the 

parameter estimation for this model. Later on, Bordes et al. (2010b) study the parameter 
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estimation problem for the similar model with covariates. Gebraeel and Lawley (2008) 

propose a neural network-based degradation model for rolling contact thrust bearings 

where the model utilizes the condition-based sensory signals to update the failure times 

of partially degraded components and computes the residual life distributions of these 

components. The proposed neural network module predicts the initial failure times. Then, 

using Bayesian approach, the prior distribution is updated by using the subsequent real 

failure times. Li et al. (2011) estimate the reliability function for a system consisting of 

multiple components with dependent degradation paths. The dependency among 

degradation paths is modeled by describing each component’s degradation path as the 

convex combination of an independent degradation mean and common random 

degradation factors. Zhou et al. (2011) propose a Baysian framework updating 

degradation distribution using the sensor information collected over a short period of 

time. This non-parametric model also can provide some inference on the predicted 

degradation rate. The degradation level at time t  is defined as ( ) ( ) ( ) ( )D t t X t t    . 

( )t is the mean degradation, and ( )X t  is the stochastic variable presenting the deviation 

from mean. Using the real-time degradation data, the posterior distribution of ( )X t  is 

obtained and the estimation of the residual life is updated. 

2.1.2. Normal Degradation Models with Stress Factor 

Normal degradation models with stress factor describe the models where the system 

degradation level is a function of defined stresses (Gorjian et al., 2009). Stress-strength 

inference (SSI) models and cumulative damage/shock models are the important types of 

such models. We will discuss these models in detail in this section as it follows. 
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2.1.2.1. Stress-Strength Inference Models 

In SSI models, the strength is assumed to degrade over the time. The strength 

deterioration can be due to fatigue, corrosion, or aging. The underlying system in these 

models is assumed to be exposed to disperse applied loads or stresses. The system is 

considered failed if the realized applied load, ( )L t , is greater than the inherent strength of 

the system, ( )S t . A common assumption in these models is that the load and strength 

process are independent. Both load and strength can be considered deterministic or 

random variable (Xue and Yang, 1997). Previous research shows that the strength 

degradation has been commonly modeled by deterministic linear degradation model, 

random-coefficient degradation model, and random-increment models (See Lu and 

Meeker (1993), Nelson (1981), Nelson (1990)). Xue and Yang (1997) present the lower 

and upper bounds for the reliability of a system when both strength and load are normally 

distributed. Wu et al. (2011) estimate the reliability of a system where the strength 

reduction in the system is modeled by a gamma process and the load process follows a 

Poisson process. 

2.1.2.2. Cumulative Damage/Shock Models 

Shock models are usually used to study the failure and degradation mechanisms of the 

systems which are subject to sporadic shocks with random damage magnitudes. These 

models are also called random shock models if the shock process is defined by a random 

process. The classic shock model assumes that the system is perfectly reliable in absence 

of shocks. That is, no aging or degradation process is responsible for deterioration of 

system performance. The general set up in shock models is given by {( , ), 0}n nX T n   

where n is the number of shocks, and ,n nX T represent the magnitude of damage due to thn
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shock and the time interval between the  n-1 st shock and thn shock, respectively (Gut and 

Husler, 2010). Some of common assumptions in many shock models studied in previous 

literature are as it follows.  It is usually assumed that the shock arrival process follows a 

Poisson process and no shock arrives to the system at time zero. It is also assumed that 

the shock damage magnitudes are s-independent and identically distributed by a common 

distribution. In practice, shocks can cause sudden failure in the system. These shocks are 

called fatal shocks or traumatic events in literature, and the subsequent failure due to 

those events is referred to hard failure. Cha and Finkelstein (2009) simply model this 

concept by considering that each shock can be fatal or traumatic to the system with 

probability ( )p t and nonfatal with probability ( ) 1 ( )q t p t  . In general, three classic 

random shock models have been studied in the literature as it is listed below: 

1) Cumulative damage/shock model 

2)  shock model 

3) Extreme shock model 

In addition, mixed shock models, run shock models, and independent damage models are 

other extensions of classic shock models in the past years. 

2.1.2.2.1. Cumulative Shock Model 

In a cumulative shock model, the system fails when the cumulative damage due to shocks 

reaches to a critical threshold of failure. The particular time that this event happens is 

referred to the system’s first passage time. Consider that 
( )

( )

1

N t

N t i

i

S X


  and 
( )

( )

1

N t

N t i

i

Z T


 . 

Let x denote the critical threshold of failure and { ( ), 0}N t t   represent the number of 



23 

 

 

 

shocks arrived by time t. It is usually assumed that ( )N t  follows a Poisson distribution. 

Therefore, the system first passage time, ( )t , in a cumulative shock model is defined as 

( )( ) min { }t N tt S x    

Gut and Husler (2005) develop a generalized cumulative shock model where only a final 

recent portion of damage summands are of interest. In such a model, the time to failure, 

( )t , is expressed as 

,

1

( ) min{ : }, 0
n

n

n

k n j

j n k

v t n S X t t
  

   
 

Where nk
 is the number of recent shocks considered to damage the system after 

occurrence of n  shocks. Frostig and Kenzin (2009) investigate the average limiting 

availability of a deteriorating system subject to random shocks. The shocks are arriving to 

the system according to Poisson process, and the shock deterioration is modeled by 

cumulative shock models. Two models are developed. Model I assumes phase-type 

distribution for the distribution of shock damage magnitudes, and it is not affected by 

random environmental conditions. Model II includes the effects of random environments, 

which is modeled by a continuous time Markov chain, on the shock arrival process and 

shock damage magnitudes. Van der Weide et al. (2010) also study the reliability and an 

optimal maintenance policy for a system degrading based on cumulative shock model. 

2.1.2.2.2.  Shock Model 

Let T be the system lifetime and iT  denotes the time that shock i  arrives to the system. A 

 shock model assumes that the system failure happens if the time interval between two 

consecutive shocks is less than a predetermined threshold,  . In other words, 
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1{ } {min { } }i i iT t T T     1,..., ( )i N t   

Lam and Zhang (2004) and Lam (2009) investigate an optimal maintenance policy for a 

system subject to random shocks where the system failure mechanism is modeled by a 

 shock model. The shocks are also assumed to arrive according to a Poisson process. 

Tang and Lam (2006) develop a maintenance model for a system degrading according to 

 shock model where the shocks are arriving according to Weibull or gamma 

distribution. Li and Kong (2007) present the analytical reliability function and its 

properties for two cases of   shock models where the shocks are arriving according to 

homogeneous and non-homogeneous Poisson process. Also, Ma and Li (2010) study the 

lifetime properties of censored   shock models. Eryilmaz (2012) studies the survival 

function and mean time failure for a system subject to random shocks degrading based on 

an extended  shock model. This model extends the classic   shock model by 

considering that the system fails when k consecutive shock inter-arrival times are less 

than the threshold . They also introduce a model with two competing failure modes 

described by a run shock model and the former model. Under the new model, the system 

failure happens when either k consecutive shock inter-arrival times are less than a 

threshold or m shock magnitudes are recorded above a pre-defined threshold. 

2.1.2.2.3. Extreme Shock Model 

Let y be a prefixed threshold for the shock magnitude and iX  denote the magnitude of 

thi  shock. Extreme shock model means that the system fails as soon as the magnitude of a 

single shock exceeds a certain threshold, which can be mathematically shown as: 

{ } {min { } }i iT t X y  
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Gut and Husler (2005) develop a generalized extreme shock model where they consider a 

critical window for nonfatal shock damage. They assume that the critical threshold for 

shock magnitudes decreases each time a fairly medium shock appears. Cirillo and Husler 

(2009) study generalized extreme shock model introduced by Gut and Husler (2005). 

They develop a triangular urn process to indirectly analyze the effect of shocks on the 

system’s load threshold. The urn process considers that the state of the system and shocks 

are equivalent to the color of balls and balls, respectively. For example, red denotes 

highly risky state and white denotes the safe state. Each time a ball is sampled from the 

urn, the system enters to a new state depending on the ball color. Cirillo and Husler 

(2011) employ Bayesian approach to build a new approach for the same analysis done in 

Cirillo and Husler (2009). Cha and Lee (2010) propose a generalized extreme shock 

model where the shocks can be fatal to the system and nonfatal shocks are categorized 

into two types. Type I shocks does not damage the system significantly, while type II 

shocks add a time-dependent damage increment to the system. 

2.1.2.2.4. Other Shock Models 

Mallor and Omey (2001) introduce the run shock model where the system fails if k 

shocks with magnitudes over a critical threshold occur to the system. The extreme shock 

model is a special case of run shock model if 1k  . Kahle and Wendt (2004) just 

mention that the damage process can also be considered as nT

n nX U e


 where nX  and nT  

are the damage magnitude and arrival time of thn  shock, respectively. nU  is assumed to 

be a continuous random variable but independent of nT . Wang and Zhang (2005) analyze 

the reliability of a repairable system with two-types of independent failures due to 

random shocks. They combine extreme shock model and  shock Model to model the 
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system failure mechanisms. In other words, the system failure happens when either the 

shock damage magnitude is greater than a threshold or the time lag between any 

consecutive shocks is greater than a δ. Gut and Husler (2005) introduce the mixed shock 

model and develop a generalized mixed shock model. The mixed shock model is a 

competing risk model with two dependent modes of failure due to cumulative damage of 

shocks and the time lag between consecutive shocks. In such a model, the system fails 

whenever either the cumulative damage due to shocks reaches to a threshold or a single 

relatively large shock arrives to the system. The generalized mixed shock model 

introduced in Gut and Husler (2005) is completely similar to the former model except 

that a generalized extreme shock model is used to model the second failure mode. The 

generalized extreme shock model of interest only considers some portion of recent shock 

damage magnitudes in cumulative shock model, and it assumes that the system load 

threshold is weakened after appearance of a fairly medium shock. Nakagawa (2007) 

discusses other variations in shock model in detail including independent shock model, 

imperfect shock model, damage annealing, and so on. Finkelstein and Marais (2010) use 

Laplace transform to analyze the lifetime distribution of a repairable system subject to 

random shocks for different cases of failure modes. The shocks are assumed to arrive to 

the system according to homogeneous Poisson process, and each shock can lead to 

system failure. Case I assumes that the probability of a fatal shock event is dependent on 

system’s state of health which is modeled by a random time-dependent function. Case II 

considers that the next shock is fatal if the corresponding inter-arrival time is less than a 

threshold. At last, Case III categorizes the shocks into two types of harmful and harmless 

shocks. Under case III, the system fails when the time lag between two consecutive 
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harmful shocks is less than a threshold. Van der Weide et al. (2011) analyze the 

reliability and maintenance cost for a single-component from nuclear reactors which is 

subject to random shocks arriving to the system according to non-homogeneous Poisson 

process. The cumulative damage to the system is modeled as an increasing sequence of 

random variables in order to represent the nonlinear nature of damage increments. Ye et 

al. (2011) propose two models to study the system reliability for of both repairable and 

non-repairable items subject to both degradation process and shocks. The shocks can be 

destructive, and they are assumed to follow non-homogeneous Poisson process. In this 

model, the destruction power of a shock depends on the cumulative potential hazard of 

the system, a surrogate for the system’s health state. Model I assumes just one mode of 

failure due to shock for an item. However Model II presents analysis for several 

traumatic failure modes from several sources of shocks. The models have been 

successfully applied to laser devices.  

2.2. Degradation Models with Random Shocks 

Many systems, in practice, are subject to sporadic shocks while they are aging due to 

some internal processes or the underlying environmental conditions. Stochastic 

continuous time models are not suitable to model the degrading systems subject to 

sporadic shocks (van Noortwijk et al. (2007) and Gorjian et al. (2009)). Hence, 

researchers, in recent years, have focused on developing various models taking both 

sources of damage into the consideration such as DS and DTS models. The random 

shocks and degradation processes can be dependent or independent. If the system is 

subject to both degradation and catastrophic/traumatic events or fatal shocks, the system 
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can fail due to two competing modes of failure, soft and hard failure. Hard failure occurs 

when a fatal shock hit the system, while soft failure happens when the cumulative 

damage to the system, due to degradation and nonfatal shocks, exceeds the critical 

threshold of failure (Jiang et al, 2011). Kou and Wang (2003) study the first passage time 

distribution and the joint distribution of the first passage time and the process overshoot 

for doubly stochastic diffusion process. The system under study is subject to shocks and 

degradation where the degradation is modeled using a Brownian motion process and the 

shock damage magnitudes are distributed as double exponential distribution. Li and Pham 

(2005) study the analytical reliability expression and a condition-based maintenance 

framework for a system subject to three competing failure causes namely two 

independent degradation processes and random shocks. The shock damage to the system 

is modeled according to cumulative shock model. The system failure occurs when the 

cumulative damage level due to all sources of damage exceeds the critical threshold of 

failure. The degradation paths in this work are described as it follows. The first 

degradation path is described as 1( ) ( )Y t A Bg t 
 where A is the initial degradation in the 

unit and B is the mean rate of degradation. Function g is considered to be an increasing 

function in time. The second degradation path is described as a logistic function which 

models the s-shaped behavior of degradation based on component usage. van Noortwijk 

et al. (2007) combine the deterioration process and load fluctuation in order to evaluate 

the resistance, reliability, of sea defenses. The deterioration process is modeled as gamma 

process with independent increments, and the load excess is modeled by a Poisson 

process. The system failure happens when the resistance of the system, which has 

decreased due to deterioration, falls below the load threshold. Finkelstein (2007) studies 
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the properties of mortality rate of different degradation models for the human body which 

is degrading due to aging and exposure to random imperfect external harmful events such 

as external stresses. Cha and Finkelstein (2009) combine an extreme shock model with 

linear deterministic degradation path. Such a model can be considered as the extension of 

the model in Brown-Proschan (1983) in a way that the random shocks will be fatal to the 

system with probability ( )p t , or they will result in acceleration of deterioration rate by 

probability ( ) 1 ( )q t p t  . Jiang et al. (2011) investigate the reliability expression for 

two dependent failure modes, soft and hard failure, where the load threshold, the system’s 

strength threshold, depends on the number of shocks. The degradation process is modeled 

as a linear function where the degradation rate is normally distributed with stationary 

parameters. The model considers that the system’s strength threshold drops to a lower 

level when k shocks occur to the system. Zhu et al. (2010) study an optimal condition-

based maintenance policy which maximizes the system availability for an underlying 

system which is subject to two independent competing risks namely degradation and 

sudden failure due to random shocks. The model describes degradation process as a linear 

function in time with random coefficient. The degradation is not affected by shocks, and 

the correlation between degradation and sudden failure is ignored. Lehmann (2009) 

reviews all classes of degradation and shock models and their correspondent reliability 

expression. He particularly studies two classes of DTS model, namely general model and 

model with external covariates. Both models assume that the shocks occur according to 

non-homogeneous Poisson process. The general model is the classic DTS model, while 

DTS model with covariates studies the effect of environment conditions on the 

cumulative damage to the system as well. Sanchez-Silva et al. (2011) assess the 



30 

 

 

 

reliability and residual lifetime distribution for bridge structures which are exposed to 

earthquakes, corrosion, and fatigue. The earthquakes are considered as random shocks, 

and corrosion is referred to degradation process. The study is conducted for two scenarios 

of deterministic and random degradation path. The damage due to shocks is modeled by 

cumulative shock model. The system fails when the total cumulative damage level of the 

system exceeds the critical threshold of failure. The authors also study the reliability 

metrics for the former model when the shock inter-arrival times are considered to be 

stochastic and deterministic. Huynh et al. (2011) studies a dependent competing risks 

model to assess the reliability distribution of a single unit system subject to aging and 

fatal shocks. The aging is modeled using a gamma process, and a non-homogenous 

Poisson process describes the random shocks arrivals to the system. The system failure 

modes are: 1) deterioration due to aging and 2) fatal shocks. To model the impact of 

system’s state on shock process the authors assume the rate parameter of Poisson process 

is changing based on the level of system’s degradation according to a simple step 

function. Wang and Pham (2011) derive the system reliability expression for a single 

component subject to degradation and random shocks. The shocks can be deadly to the 

system. They study the effect of random shocks on the degradation path considering two 

approaches: 1) by increasing the system failure rate after each shock 2) by a sudden 

random change in the degradation path after the shock happens. They derive the 

reliability function associated with each approach when shock arrivals are fixed or follow 

a Poisson process. Li and Pham (2005) study the reliability model for a single-component 

subject to s-independent multiple competing risks which are random shocks and two 

degradation processes where the degradation processes are described as discrete states 
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Markov chain and shocks can be fatal to the system. Nonfatal shocks accelerate the 

degradation processes, while the fatal shocks results in system’s immediate failure. The 

impact of shocks on the system is explained through cumulative damage model. Wang 

and Pham (2011) also derive the system reliability of a single component with imperfect 

repair where the component failure mechanism is defined by two dependent competing 

modes namely degradation process and fatal shocks. They also suggest an optimal age-

dependent maintenance policy for such a system. In their work, the system’s cumulative 

level is defined by a linear deterministic degradation path and damage increments due to 

random shocks. The shocks can be destructive, and the probability of such an event is 

time-variant. Liu et al. (2008) investigate the reliability distribution for multi-component 

systems, parallel and series, where the system is subject s-independent competing risks 

namely internal degradation and random shocks of each component. The shocks are 

assumed to be completely nonfatal to the system. The degradation process and shock 

damage magnitudes for each component are also considered to be independent. Li et al. 

(2010) study the reliability distribution of an individual component subject to multiple 

degradation processes and random shocks for two scenarios when 1) the degradation 

processes are independent 2) they are correlated. The shocks damage the system 

according to cumulative shock model. In addition, the dependency among shocks and 

degradation processes is neglected. Wang and Pham (2012) extend Li and Pham (2005)’s 

model in the way that they employ copula method to assess the reliability of a single-

component system subject to the s-dependent competing risks namely random shocks and 

multiple degradation processes. The random shocks also can fatal to the system. Let 

( )X t  indicate the system degradation level by time t  and 
( )

1

( )
N t

i

i

S t w


  denote the 
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cumulative damage level due to shocks by time t . In this work, the authors borrow the 

main idea of accelerate life testing to model the impact of shocks on degradation 

processes by function ( )( )S tX te  where   is a constant parameter. Jiang et al. (2012) 

study the reliability expression and an optimal maintenance strategy for three systems 

subject to two correlated competing risks, soft and hard failures as it was defined in Jiang 

et al. (2011). The model in this work, for the first time, introduces the impact of shocks 

on the critical threshold of hard failure. A thorough survey on past research shows that 

the critical failure threshold is usually considered a fixed value which is independent of 

any other system’s factors. The authors assume that the critical threshold of failure for 

hard failure is shifted to a lower value as soon as k  shocks arrive to the system. The 

analytical reliability expressions of three distinct models are studied. These models are 

listed here. The first model assumes that the value of hard failure threshold drops to a 

lower value when the first shock with a magnitude over a certain value arrives to the 

system. The second model considers that the shift in the hard failure threshold happens if 

the inter-arrival time between two consecutive shocks is less than . At last, the third 

model assumes a shift in the hard failure threshold right after m consecutive shocks with 

magnitudes over a certain value arrive to the system. 

2.3. Accelerated Degradation Models 

The main purpose of accelerated degradation models is to make inference about 

reliability of systems at normal condition using the degradation data collected from 

situations with accelerated environmental conditions such as increased stresses (Gorjian 
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et al., 2009). Liao and Elsayed (2005) state that the accelerated degradation testing 

(ADT) consists of a statistical model and acceleration function representing the 

relationship between the degradation indicator and elevated levels of stress. One 

important category of models among accelerated degradation models is degradation 

models with covariates which express the relationship between the covariates and the 

system reliability. Usually, the degradation mechanism of a component is dependent on 

some explanatory variables such as environmental conditions and stresses. For example, 

the wear rate of a tire depends on the type of road, weight of the load, and weather 

conditions such as temperature and humidity (Bagdonavicius et al., 2010). The 

accelerated degradation models, in general, can be classified into physic-based models 

and empirical statistical models (Gorjian et al., 2009).The physics-based models use the 

related physics theory to describe the effect of elevated temperature or stresses on the 

degradation indicators. For example, Meeker et al. (1998) use linear and nonlinear 

degradation path to explain how the rate of chemical reactions is affected by elevated 

temperature. Escobar and Meeker (2006) also review many accelerated test models in 

more details. Pinheiro and Bates (2000) introduce the linear and nonlinear mixed-effect 

model with fixed time-dependent parameters and random parameters dependent on 

various covariates for the degradation data. Bagdonavicius and Nikulin (2001) investigate 

degradation modeling and reliability analysis of systems in presence of dynamic 

environment. They also study the lifetime distribution of a system subject to degradation 

process and traumatic events where the traumatic events are dependent on level of 

degradation and both degradation and shock processes are affected by random dynamic 

environment conditions. Zhao and Elsayed (2004) assess the reliability distribution of a 
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system subject to competing risks namely catastrophic events and degradation processes 

under accelerated conditions where the degradation process is described as a Brownian 

motion and the arrival time of a catastrophic event is modeled by Weibull distribution. 

The model can be successfully applied to LEDs when the degradation indicator is the 

voltage. Liao and Elsayed (2005) propose a 3-step optimal robust methodology in order 

to design systems optimally and more robustly. They successfully apply the methodology 

to hydraulically activated disc brakes. At first step, they find the baseline ADT model. 

Secondly, A set of optimal ADT plans are screened to determine the optimal estimators 

for some critical parameters such as test termination time, assignment of test units to 

stress levels, and so on. At last, the reliability of each test unit is estimated using the ADT 

model under nominal operating conditions, and the robustness of reliability estimations 

are checked in presence of uncertainty in operating conditions. Kharoufeh (2003), 

Kharoufeh and Cox (2005), and Park and Padgett (2006) proposed a generalized discrete 

cumulative damage model for material strength where the stress on the subject is 

incremented by small amounts until the component breaks down. Due to flexibility of the 

model, any form of accumulated damage such as additive and multiplicative can be 

accommodated. The accumulated damage at increment n+1 is expressed as

1 ( )n n n nX X D h X    where nX  represents the accumulated damage up to thn  stress 

level and nD  denotes the damage to the system at thn stress increment. Basically, the 

model involves an initial damage and damages due to different levels of stress. The 

authors study the degradation models and their parameter estimations for the cases where 

the initial degradation follows Brownian motion, geometric Brownian motion, and 

gamma process. They use a general function to describe the effect of degradation on the 
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system strength. Kharoufeh et al. (2010) estimate the system reliability metrics such as 

system residual life distribution for an aircraft engine turbine blade where the degradation 

of which is dependent on the random environment conditions such as temperature and 

engine load. Bagdonavicius et al. (2010) discuss reliability analysis as well as parameter 

estimation for degradation models with covariates. Sudret (2008) describes the 

degradation indicator for reinforced concrete structures with a function with general form 

in time and random environmental conditions. They show that the mean and variance of 

the degradation level does not depend on the correlation structure among input random 

variables. Lim and Yum (2011) designed an accelerated life testing plan which describes 

the system’s degradation level as a Wiener process with stress-dependent drift. The test 

plan is designed for three distinct functions with stress-dependent drift parameter, namely 

exponential, Arrhenius, and power functions. It is assumed that the variance of Weiner 

process at each stress level is constant and independent of stress level value.  

2.4. Condition-Based Maintenance Models 

Jardine et al. (2006) review the recent research on system fault diagnostics, and its 

associated data processing for systems using condition-based maintenance. Ahmad and 

Kamaruddin (2012) also present a comprehensive review on condition-based 

maintenance and time-based maintenance techniques in industrial applications. Most 

previous studies focus on the condition-based maintenance for a system degrading due to 

a single failure mode, usually degradation process, where the maintenance action is 

perfect, meaning that the maintenance actions restore the system to the state of being as-

good-as-new. Also, the models assume that the system’s state is detected by inspection 
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not by continuous monitoring. Some of such studies are as follow. Grall et al. (2002) 

suggest a condition-based maintenance model including a multi-level control-limit rule 

for a single-unit system degrading due to a continuous stochastic degradation path. They 

investigate the optimal replacement threshold and optimal inspection interval which 

minimize the long run system operation cost per unit of time. Castanier et al. (2005) 

extend this model to the case of two-unit system. Wang et al. (2009) investigate an 

optimal condition-based maintenance policy for a multi-unit electricity generating system 

which maximizes the total profit. The system’s state is addressed by a discrete Markov 

chain, and units are assumed to be s-independent. The proposed maintenance policy sets 

some replacement thresholds for the system taking into account the existence of 

redundant units.  

In real world, most systems are subject to multiple competing failure modes. Some recent 

studies focus on developing maintenance policies for such systems. Deloux et al. (2009) 

propose a condition-based maintenance policy combined with statistical process control 

(SPC) for a system subject to two competing failure risks, degradation process and 

stresses. The degradation process is modeled by a continuous stochastic process, and 

stresses affect the system according to the extreme shock model. Inspections take place to 

determine the system’s state, and SPC is utilized to detect the failure due to intensive 

stress. The maintenance actions involve only replacements and no minimal repairs. The 

objective of this study is to investigate the optimal periodic inspection interval as well as 

optimal replacement threshold for the degradation process which minimize the system 

long run cost per unit of time. Zhu et al. (2010) study an optimal inspection interval for a 

repairable unit subject to two competing failure risks namely degradation process and 
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sudden failure to maximize the system availability. The system is assumed to be restored 

to the state of being as-good-as-new after the maintenance. Neves et al. (2011) study the 

input parameters estimation for the problem discussed by Zhu et al. (2010) except they 

assume that they describe the system’s state by a discrete Markov chain. Wang and Pham 

(2011) propose a multi-objective optimal imperfect maintenance policy based on periodic 

inspection for a system subject to dependent competing risks namely degradation and 

random shocks. Wang (2012) investigate an optimal multi-threshold condition-based 

maintenance for a system with two dependent failure modes, degradation process and 

shocks to minimize the system operating and maintenance cost. The study does not focus 

on obtaining the optimal maintenance policy which maximizes the system availability. 

Liao et al. (2006) develop an optimal condition-based maintenance strategy for a system 

subject to aging by gamma process with consideration of imperfect repair and stochastic 

maintenance threshold. The optimization analysis is performed in respective to system 

availability and short-run availability. The short-run availability indicates when the 

system should be replaced. The model is only limited to the systems degrading due to one 

failure mode. 

2.5. Direction of Research 

A thorough review of previous literature on degradation and random shocks reveals that 

many previous studies have concentrated on the systems subject to competing failure 

modes due to degradation and random shocks where the shocks can lead to sudden 

system failure or accelerate the degradation process by adding some damage increments. 

However, a few studies have been focused on the areas such as the impact of the system’s 
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age or state on the shock damage magnitude. Also, few studies have addressed the 

optimal maintenance decision making for such systems. In the scope of this dissertation, 

we focus on addressing those issues in the field of degradation and shock modeling. The 

objectives we are seeking to achieve in this dissertation can be more specifically 

determined as it follows: 

1) To develop the system reliability model for a system subject to degradation and 

random shocks with time-dependent damage magnitudes to capture the effect of 

system’s age and shock damage magnitudes.  

2) To extend the model developed in 1 by considering some dependency structure 

between accumulated damage due to shocks and degradation process. 

3) To develop a generalized optimal imperfect threshold-type CBM policy for the 

systems subject to multiple competing risks including degradation and sudden 

failure where the maintenance is imperfect. 

2.6. Organization of the Dissertation 

This dissertation is organized as it follows.  

Chapter 1 presents the motivation of this dissertation as well as the basic concepts for 

degradation and shocks model. At last, an overview on this dissertation is given. 

In chapter 2, a comprehensive review on degradation models, random shocks models, and 

associated reliability metrics is presented and the direction of this dissertation and areas 

for further research are addressed. 

Chapter 3 develops a new reliability model for a system subject to degradation and 

random shocks where the shock damage magnitudes are time-dependent. Gamma process 
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and cumulative shock model are employed to describe the impact of degradation process 

and random shocks on the system in this research. No other dependency structure is 

assumed between degradation and random shocks. This chapter extends the existing 

literature by incorporating time-variant shock damage magnitudes in order to address the 

impact of system’s age on shock damage magnitudes. 

Chapter 4 studies the system considered in chapter 3 where there exist some degree of 

correlation between the degradation process and accumulated shock damage magnitudes. 

The system reliability distribution for such a system is formulated, and a method to 

estimate model parameters is presented. To study the system reliability behavior, a 

numerical analysis is conducted on all the parameters involved in the mathematical 

expression of the system reliability distribution. 

Chapter 5 develops a generalized optimal threshold-type CBM policy for the system 

described in chapter 4 when it is subject to multiple competing failure modes including 

the degradation process and sudden failure. The degradation process is described similar 

to the one in Chapter 4, and the maintenance is considered to be imperfect. The model 

can incorporate both scenarios when the competing risks are either independent or 

dependent. The objective of this study is to maximize the system average achieved 

reliability. The optimization problem for such a system is formulated, and numerical 

results are presented for the scenario when the system is subject only to two competing 

risks, namely degradation process and sudden failure.  

At last, chapter 6 discusses the conclusions and the future research in the field of 

degradation and random shock models. 
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Chapter 3 : Modeling Degradation and Random Shocks with 

Time-Dependent Damage Magnitudes 

3.1. Introduction 

Traditional reliability analysis requires information on system failure time data. In many 

systems, collecting failure time data can be time-consuming and expensive due to being 

highly reliable. However, there are many situations where the potential failure of the 

system can be monitored by observing the system’s degradation in time. In engineering, 

the degradation data can be generally obtained by measuring a physical indicator 

(Lehman, 2010) directly or indirectly. An example for a degradation indicator can be 

crack propagation in a bridge or wear (which is measured by contaminants in the 

lubrication), and bearings vibration level measured by sensors. In such systems, the 

system failure time is defined as the time when the degradation level exceeds a critical 

threshold level. Degradation of systems occurs due to many internal or external failure 

processes, but most of systems usually deteriorate due to aging and exposure to random 

shocks and environments. Each shock can result in a sudden system failure or accelerate 

the degradation process. A bridge made of reinforced concrete is subject to both 

degradation process and random shocks. The degradation process of the bridge may be 

due to crack grow thin the concrete or corrosion in the concrete steel rebars, and the 

earthquakes, tornados, or heavy snow may be considered as random shocks to the bridge. 

All these processes accumulate some amount of damage in the bridge, which lead to the 

reduction in bridge’s strength that will eventually result in its failure. In general, the 

system failure occurs when the cumulative damage due to degradation process and 

random shocks exceeds a predetermined critical failure threshold.  
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There are many studies that address modeling degradation data obtained from systems 

subject to aging degradation. Some of recent models describe general degradation path, 

semi-Markov chains, and continuous-time stochastic processes(See Lu and Meeker 

(1993), Bae et al. (2007), Kharoufeh (2003), Kharoufeh et al. (2010),van Noortwijk et al. 

(2007), and Gorjian et al. (2009)).Among these models, continuous-time stochastic 

processes such as gamma process and Weiner process have been widelyapplied in 

modeling of continuous degradation data over the time. Some of recent research work 

addressing these processes include Pandey et al. (2005), Nicolai et al. (2007), Baussaron 

et al., (2010), Elsayed and Liao (2004) and Wang (2010). Gamma process and Weiner 

process do not appropriately model the degradation data obtained from systems subject to 

random shocks (Gorjian et al., 2009).The models that address random shocks are 

classified into three groups of models, namely cumulative damage model,  shock 

model, and extreme shock model. There exists other variation of shock model like run 

shock model and mixed shock model described by Gut and Husler (2005). According to 

Gut and Husler (2005), in cumulative damage model, the system failure happens when 

the cumulative damage due to random shocks exceeds the critical failure threshold. The 

 shock model considers that the system fails if the time interval between two 

consecutive shocks is less than a threshold, . Finally, the extreme shock model 

considers that the system fails as soon as a shock with a damage magnitude over a certain 

threshold occurs to the system. There have been many extensions to these models (See 

Gut and Husler (2005), Wang and Zhang (2005), Nakagawa (2007), Lam (2009), and 

Van der Weide et al. (2011)). 
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Usually, systems are subject to both degradation and random shocks. Finkelstein (2007) 

analyzes the lifetime function for human body where the body is considered as a system 

subject to aging and imperfect external shocks such as external stresses. The shocks are 

modeled by cumulative damage model, and the damages due to shocks are independently 

distributed with a common distribution. Jiang et al. (2011) study the reliability expression 

for a system subject to two dependent failure competing risks, namely traumatic shocks 

and accumulated damage, where the shock load threshold changes. The damage to the 

system is accumulated due to degradation process and non-fatal random shocks. Also, the 

system may immediately fail if a traumatic shock occurs. They assess the system 

reliability for this problem where the random shocks are modeled by run shock model 

and extreme shock model. Li and Pham (2005) assess the reliability for a system subject 

to two independent degradation process and random shocks. The first degradation path is 

described as 1( ) ( )Y t A Bg t 
 where A is the initial degradation and B is the mean 

degradation rate. Function g is considered to be an increasing function in time. The 

second degradation process is modeled by a logistic degradation path which matches the 

S-shaped degradation based on component usage. Cha and Finkelstein (2009) analyze the 

lifetime distribution of a system subject to linear degradation and random shocks which 

are modeled by the extreme shock model. The random shocks can be fatal to the system 

with probability ( )p t , or they may lead to acceleration in the degradation process by 

probability1 ( )q t . Lehmann (2009) reviews all classes of degradation and shock models 

and their corresponding reliability expressions. The author investigates the reliability 

function for two classes of degradation and shock models, the one without covariates and 

the other with external covariates. Both models describe a system subject to degradation 
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and shocks where the shocks are arriving according to a non-homogenous Poisson 

process. However, in the second model, the degradation process and shock arrival are 

considered to be dependent on some external factors, such as load or environmental 

conditions. Wang and Pham (2011) address the reliability function for a single 

component where the component failure mechanism is defined by two dependent 

competing failure modes, damage accumulation and fatal shocks. The damage 

accumulation is considered to be due to a linear degradation path with stationary 

parameters and random shocks. Huynh et al. (2011) develop the reliability expression for 

a single unit system subject to two dependent competing risks, damage accumulated in 

the system due to degradation and traumatic shocks where the shock arrival rates are 

dependent on the degradation process. The degradation is modeled by a gamma process, 

and the shock arrivals follow non-homogenous Poisson process. They assume that shocks 

are either fatal to the system or they don’t damage the system at all. 

Our research differs from all recent related works as follows. In previous studies of 

systems subject to degradation and random shocks, the impact of system’s age on shock 

damage magnitudes has been ignored and instead it was assumed that shock damage 

magnitudes are independent of the system’s state or age and distributed according to a 

common distribution. However, as the system ages, the system gets more vulnerable to 

shocks (Huynh et al., 2011).That is, as the system degrades in time, we can assume that 

the average damage of shocks tends to increase in time. An example of such a problem is 

the bridge made of reinforced concrete. The length of crack growth or bridge strength at 

any point of time can represent the degradation level of the bridge. The tornados and 

earthquakes can be considered as the random shock happening to the bridge. The strength 
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of reinforced concrete will be reduced in the long term horizon, after almost 20 years of 

life (Nowak and Collins, 2000). Due to this fact, the intensity of damage due to a 4-

Richter earthquake can be more destructive when the bridge is 25 years old compared 

with when the bridge is newly built. Our contribution in this study is to develop a new 

reliability model which extends the existing studies by incorporating the impact of 

system’s age on shock damage magnitudes. Therefore, it is considered that shock damage 

magnitudes are time-dependent but s-independent. In other words, the damage magnitude 

of each shock depends on its arrival time. No dependency between degradation process 

and random shocks are also assumed.   

Figures 3-1 and 3-2 highlight the difference between the model which is presented in this 

chapter and the existing models when the shock damage magnitudes follow a normal 

distribution. Figure 3-1 indicates the common assumption on shock damage magnitudes 

in previous studies, while Figure 3-2 shows that shock damage magnitudes intensity 

increases in time. 

A brief overview of the current chapter is given as follows. First, we formulate the 

reliability expression for a one-component system subject to degradation and random 

shocks where the shock damage magnitudes are mutually independent but time-variant. 

The degradation process is described by a gamma process, and the shock damages are 

modeled by cumulative shock model. Furthermore, the parameter estimation procedure 

for the accumulated damage path is developed. A Monte Carlo simulation is developed as 

well to validate the mathematical results. Finally, a numerical analysis is conducted on 

system reliability distribution to study the behavior of system reliability function. 
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The remainder of the chapter is organized as follows: Section 3.2 addresses problem 

description and mathematical notations used in this chapter. Section 3.3 presents the 

reliability estimation for the system for different scenarios, and section 3.4 develops the 

parameter estimation method for accumulated damage path. Section 3.5 describes the 

numerical analysis conducted on system reliability function and the Monte Carlo 

simulation results. Finally, section 3.6 presents the conclusion. 

 

 

Figure 3-1: The damage magnitudes are distributed with a common distribution and 

independent of total damage in system 
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Figure 3-2: The damage magnitudes are time-variant with different but independent 

distributions 

3.2. System Description 

The system under study is a single component subject to degradation and random shocks 

with a stochastic critical failure threshold. In some cases such as the degradation and 

vibrating-damage data, the model with stochastic critical failure threshold models the 

system reliability more precisely compared to a model with the predetermined threshold 

(Chen and Chen, 2012). In this work, the system reliability for the critical threshold of 

failure is considered to be exponentially distributed with a parameter . In general, the 

assumptions in our model are similar to the ones in Cha and Finkelstein (2009) and Wang 

and Pham (2011). The details on shocks and degradation models are described as follows. 

3.2.1. Shock Model 

The random shocks impact the system according to a homogeneous Poisson process 

(HPP) with rate parameter  . ( )N t  denotes the number of shocks affecting the system by 
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time t. The damages due to random shocks are modeled by a cumulative shock model. 

Gut and Husler (2005), Cha and Finkelstein (2009), and Wang and Pham (2011) assume 

that shock damage magnitudes are mutually independent and commonly distributed with 

no dependency on the state of system. The shock model in this chapter differs from the 

ones of Gut and Husler (2005), Cha and Finkelstein (2009), and Wang and Pham (2011) 

in the way that the shock damage magnitudes are considered to be s-independent but 

time-variant. That is, the damage magnitude of each shock depends on the time when the 

shock arrives. Therefore, the level of accumulated damage of the system due to shocks by 

time t, ( )Z t , is defined as  

( )

1

( ) ( )
N t

i

i

Z t w t



         (1) 

3.2.2. Degradation Process 

The deterioration due to aging and wear in most engineering systems is a monotonic path 

which can be appropriately described by a gamma process. Therefore, in this work, the 

system degradation process, ( )X t , is described by a gamma process with independent 

increments where ( )X t indicates the system degradation level at time t which is distributed 

as a gamma process with shape parameter , scale parameter  , and independent 

increments. Thus, the density function for X is given by 

1( ; , )
( )

xGamma x x e


 
 



 


       (2) 

Hence,{ ( ) 0, }X t t is a continuous gamma process with parameters 0  and 0  with 

the following properties (van Noortwijk et al., 2007):  
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4) (0) 0X   with probability one. 

5) ( )X t has independent increments 

6) ( ) ( ) ~ (( ) , ) 0X t X Gamma t for all t         

Hence, the total damage accumulated to the system by time t is given by 

( ) ( ) ( )D t X t Z t 

         (3) 

Where ( )D t denotes the accumulated damage of the system by time t and ( )X t and ( )Z t are 

the total level of damage of the system due to degradation and random shocks, 

respectively. Other assumptions used in this problem are as they follow: 

 ( )N t is independent of damage magnitudes.  

 The degradation process and random shock are independent. 

 The damage magnitudes of shocks are mutually independent. 

3.2.3. Notation 

( )R t  : The system reliability at time t 

( )D t : The level of accumulated damage to the system by time t 

( )Z t : The level of accumulated damage to the system due to shocks by time t 

it : The arrival time of the i
th

 shock to the system 

( )iw t : The damage magnitude due to i
th

 shock, dependent on the time when shock i  

arrives to the system  

( )X t : The level of degradation of the system by time t 
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 : Shape parameter of the gamma distribution 

 : Scale parameter of the gamma distribution 

( )N t : Number of shocks arriving to the system by time t  

 : The shock arrival rate parameter 

S: The critical failure threshold of the system 

 : The rate parameter for critical failure threshold distribution 

1( ),..., ( ) 1( ,.., )
nw t w t nY y y : The joint probability distribution for damage magnitudes

1( ),..., ( )nw t w t
 

wM  : Moment generation function for shock damage magnitudes 

( )Tf t : The probability distribution function for the system time to failure 

 : The rate parameter of exponentially distributed shock damage magnitude 

 : The set of parameters for the shock damage magnitude probability distribution 

3.3. Reliability Estimation 

3.3.1. System reliability estimation in presence of both degradation process and 

shocks: In this case, the system is subject to both degradation and random shocks. The 

system fails when the accumulated damage to the system exceeds the critical threshold. 

Thus, the corresponding system reliability estimation can be given as: 
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( )

1

( )

0

( ) Pr{ ( ) }

Pr{ ( ) ( ) }

exp{ ln( ) [ ( ) 1] }

s

N t

i

i

t

W x

R t D t S

X t w t S

t M dx


  
 



 

  

   






     (4) 

Where
( )w tM is the moment generation function for the time-dependent shock damage 

magnitudes. 

Proof. To derive the reliability expression, we can integrate out the variables in the 

reliability expression. These results were inducted from theorem 1 of Cha and Finkelstein 

(2009). Therefore, we can start obtaining the reliability expression in the following way: 

1

( ) { ( )}

1 2 1 ( )

1

Pr( ( ) ( ) | ( ) , ( ) , ( ), ( ), , ( ), ,..., )

n

i

i

N t x w t
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i

X t w t S N t n X t x w t w t w t t t e
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           (5) 

We obtain the distribution of 1 2, , , nt t t  as follows. Let 
0

( ) [ ( )]

t

m t E N t dx   .The 

assumptions used in this problem guarantee that 1( )m t exists (Finkelstein and Cha, 2009). 

We define * 1( ) ( ( )), 0N t N m t t   and * ( ), 1i iT m t i  . It is known from Cinlar (1975) 

that *{ ( ), 0}N t t  is a stationary Poisson process with intensity equal to 1, and *, 1iT i    

is the occurrence time of shocks in the new time scale. Let ( )s m t . Thus, 
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The joint distribution of * * *

1 2( , , , )nT T T given *( )N s n  is corresponding to the joint 

distribution of 
(1) (2) ( )( , , , )nV V V where 

(1) (2) ( )nV V V   are the order statistics of i.i.d 

random variables 1 2, , , nV V V  which are uniformly distributed on the interval

[0, ] [0, ( )]s m t . Therefore, the last conditional expectation will be: 
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Where 1 1

( )

V V
U

s m t
  is a random variable uniformly distributed on the unit interval,

[0,1]. Thus, 
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The last equation is obtained using a variable change of 1( ( ) )x m m t u . Therefore, it is 

concluded that 
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3.3.2. System Reliability estimation in absence of shocks: One special case of the 

problem under study is that the system is only subject to degradation and no shocks occur 

to the system. This is equivalent to 0  . In this case, the system failure happens when 

the damage accumulation due to degradation process exceeds critical threshold value. 

Thus, the system reliability is expressed as:  
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Comparison between Equation (4) and Equation (6) shows that they are equivalent when

0  .  

3.3.3. System Reliability estimation in absence of degradation: Another special case of 

the problem under study is when the system is not subject to degradation but experiences 

shocks. Therefore, the accumulated damage to the system is only due to shocks. We 

claim that the system reliability estimation for this scenario is: 
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To obtain system reliability expression each conditional probability is integrated out in 

respective to the corresponding variables. This approach is valid since we assume that all 

the variables are mutually independent. Thus, we obtain: 
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Using the framework presented to prove Equation (5), we eventually know that  
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The comparison between Equation (7) and Equation (4) reveals that the expressions are 

corresponding if the degradation term in (4) is ignored. 

3.4. Parameter Estimation 

In the current section, we review a maximum likelihood method (MLE) to estimate the 

parameters of the system reliability model. To use MLE, we need to find the probability 
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distribution function for the system lifetime. It is known that the probability distribution 

of time to failure, ( )f t , is  calculated as 
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           (8) 

Suppose that n  items are put to test and 1 2{ , ,..., }nT T T  represent the failure times. 

Therefore, the likelihood function is written as 
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  is the parameters set for the shock damage magnitude probability distribution. For 

example, 

2 2

If ( ) ~ exp( ) then ={ } 

If ( ) ~ ( , ) then ={ , }

w t
t

w t N t




   
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

 

In general, differentiating the likelihood function in (9) in respective to each parameter 

and solving the new system yields the parameter estimation. Also, we can use the 

following procedure to estimate the model parameters if the system the degradation 

indicator is monitored continuously by sensors and it is attached to a self-contained 

acceleration shock recorder. According to Kearns (1994), this recorder can measure any 

change in operating conditions or any other shock events, and it stores the time, peak 

acceleration, and pulse width of shocks. Using the data from shock recorder instrument, 

the shock arrival times can be obtained and their associated damage to the system can be 

discerned from the damage due to the degradation process. Therefore, we can fit 

appropriate distributions to shock arrival times and shock damage magnitudes. Using the 
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degradation data, we can estimate   and   of the gamma process based on MLE or 

methods of moments presented by van Noortwijk (2007). 

3.5. Numerical Analysis 

In this section, we conduct a numerical analysis for different parameters of the system 

reliability function in order to study the behavior of the system reliability function. 

Furthermore, a Monte Carlo simulation is developed to validate the mathematical results 

of the system reliability. Later on, a comparison between our model and the existing 

studies is presented. To conduct the analysis the following parameters are assumed. First, 

it is assumed that the shocks arrive according to Poisson process with rate parameter

0.6  , and the degradation process is defined as a gamma process with parameters

1  and 3  . Second, the critical threshold is assumed to be exponentially distributed 

with parameter 0.01  . In all the following numerical analyses, it is assumed that the 

shock damage magnitude follows an exponential distribution except where the 

relationship of damage and time is of interest. It is important to mention that all the plots 

and computations in this section have been obtained using MAPLE 14. The results of the 

numerical analysis are presented as it follows. 

3.5.1. Numerical analysis on the relationship of damage and time 

In this section, the system reliability function is compared for two scenarios when 1) the 

mean of damage magnitude distributions is linearly time-dependent and 2) mean of 

damage magnitude distributions is a quadratic function in time. Figures 3-3 to 3-6 show 

the system reliability function in both scenarios with different distributions for damage 
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magnitudes namely, exponential, gamma, uniform, and normal distribution. Table 3.1 

also shows the associated system reliability values over time. The results in Figures 3-3 

to 3-6 and Table 3.1 show that the system reliability is always higher in scenario 1 

regardless of the type of distribution function for shock damage magnitude. This is 

because the system is expected to accumulate less damage due to random shocks if the 

mean of the damage magnitude distribution is linearly time-dependent. Table 3.1 implies 

that the gap between the reliability function of two scenarios is increasing over time. In 

other words, the reliability dramatically decreases over time as the order of time-

dependency in damage mean increases. Initially the reliability values are close because 

the gap between order one and order two of time-dependency is not large. However, as 

the time goes by, the system reliability function associated with the second order of time-

dependency falls below the other one due to such a large gap. For example, at 10t  , the 

system reliability for the second order is approximately 60% less than the one of the first 

order scenario.  
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Figure 3-3: System reliability evaluation for 
1

( ) ~ exp( )w t
t

 versus
2

1
( ) ~ exp( )w t

t
 

 

Figure 3-4: System reliability evaluation for ( ) ~ ( ,0.01)w t N t versus 2( ) ~ ( ,0.01)w t N t  
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Figure 3-5: System reliability evaluation for ( ) ~ ( ,2)w t Gamma t versus
2( ) ~ ( ,2)w t Gamma t  

 

Figure 3-6: System reliability evaluation for ( ) ~ (0.5 , )w t U t t versus 2 2( ) ~ (0.5 , )w t U t t  
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Table 3.1: System reliability for different type of damage magnitude distribution and 

relationship to time 

Damage 

Magnitude 

Distribution 

Relation 

to Time 

Time 

0 10 20 30 

exponential Linear 1 0.730032 0.323919 0.094611 

  Quadratic 1 0.266898 0.004411 2.48E-05 

Normal Linear 1 0.723616 0.304116 0.078172 

  Quadratic 1 0.211758 0.001143 2.81E-06 

gamma Linear 1 0.560609 0.126621 0.014212 

  Quadratic 1 0.113372 0.000529 1.44E-06 

uniform Linear 1 0.77681 0.397841 0.138571 

  Quadratic 1 0.289151 0.002595 6.97E-06 

 

3.5.2. Numerical analysis on other parameters 

Table 3.2 shows the results of numerical analysis of , , , ,     for system reliability 

function. The impact of each parameter on system reliability function is plotted in Figures 

3-7 to 3-11. Figure 3-3 plots system reliability for different critical threshold parameters. 

Figure 3-7 and the associated values in Table 3.2 imply that the system reliability 

increases as  decreases. This is because, on average, it is expected that the mean of 

exponentially distributed critical threshold increases as decreases. This means that the 

system lifetime is expected to be longer. Table 3.2 shows that the reliability improved 

from 0.005 to 0.73 when changes from 0.5 to 0.01.  However, such an impact is not 

observed when gets 1000 times smaller. This is because the fact that increasing the 

critical threshold of failure when it is already relatively large enough slightly impacts the 

system reliability. Figure 3-8 shows the system reliability plots for various rates of 

exponentially distributed damage magnitude. It can be noted from Figure 3-8 and results 

in Table 3.2 that the system reliability improves as the damage magnitude increases. This 
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happens because the mean damage magnitude decreases in  . Therefore, it is expected 

that the shock damage magnitudes influence the system less, which leads to longer 

lifetime for the system. This is equivalent to higher system reliability. Figure 3-9 

addresses the system reliability plots for a variety of values of shock arrival rate. It can be 

noted from Figure 3-9 and Table 3.2 that the system reliability decreases as increases. 

With larger , the system is expected to experience more shocks for a certain time 

interval. Thus, on average, the system will accumulate more damage due to random 

shocks, and this corresponds to decrease in system reliability. Figures 3-10 and 3-11 

illustrate the system reliability for different values of shape and scale parameters of 

gamma process. Basically, these plots show how the system reliability is affected by 

different parameters of degradation process. Figure 3-10 shows that the system reliability 

deteriorates in . Increase in corresponds to more degradation in the system. Therefore, 

the system reliability reduces in . According to Figure 3-11 and Table 3.2, the system 

reliability improves with  .As  increases, the degradation reduces. That is the reason 

why the system reliability is improved when  increases. Table 3.2 shows that an increase 

in   improves the system reliability since the degradation accumulated in the system, on 

average, decreases. The results imply that the system reliability improves slightly for 

over 6. 

According to lifetime values in Table 3.2, among all parameters, the system reliability is 

more sensitive to the shock arrival rate parameter, , and is less sensitive to .  
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Table 3.2: Numerical analysis on system reliability for different parameters of the 

mathematical model 

  /Time 0 10 20 30 40 50 

0.000001 1 0.999967 0.999873 0.99972 0.999507 0.999234 

0.001 1 0.967409 0.882418 0.759787 0.618225 0.475892 

0.01 1 0.730032 0.323919 0.094611 0.019356 0.002913 

  /Time 0 10 20 30 40 50 

1 1 0.730032 0.323919 0.094611 0.019356 0.002913 

4 1 0.89848 0.699831 0.475744 0.284032 0.149799 

8 1 0.931957 0.807266 0.651077 0.489763 0.344187 

20 1 0.952916 0.881475 0.791759 0.690763 0.58552 

  /Time 0 10 20 30 40 50 

0 1 0.96727 0.935611 0.904988 0.875367 0.846716 

0.5 1 0.765085 0.386556 0.137846 0.036534 0.007498 

1 1 0.605161 0.159709 0.020996 0.001525 6.64E-05 

5 1 0.092718 0.000136 6.08E-09 1.40E-14 2.51E-21 

  /Time 0 10 20 30 40 50 

2 1 0.706138 0.303062 0.085622 0.016943 0.002467 

5 1 0.639046 0.248209 0.063462 0.011365 0.001497 

10 1 0.541091 0.177948 0.038524 0.005841 0.000652 

20 1 0.387923 0.091463 0.014196 0.001543 0.000123 

  /Time 0 10 20 30 40 50 

1.5 1 0.706216 0.303129 0.08565 0.016951 0.002468 

6.4 1 0.743043 0.335567 0.099761 0.020773 0.003182 

10.6 1 0.747651 0.339743 0.101628 0.021293 0.003282 

30 1 0.750971 0.342767 0.102988 0.021674 0.003356 
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Figure 3-7: System reliability for various values of critical failure threshold parameter,  

 

 

Figure 3-8: System reliability for various values of shock damage rate,   
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Figure 3-9: System reliability for various values of shock arrival rate,  

 

 

Figure 3-10: System reliability for various values of  
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Figure 3-11: System reliability for various values of   

Let the shock damage magnitude follows 2

0( (t) , 0.01)N t     
 
where 0 1  . 

0




 

shows the degree to which the system’s age affects the shock damage magnitudes. Thus, 

a sensitivity analysis of system reliability is performed on this ratio. The result of this 

analysis is shown in Figures 3-12.  It can be indicated from Figure 3-12 that the ratio of 

0




 impacts both ( )R t  and ( )Tf t significantly. When 

0




 increases (   increases from 

0.1 to 10 at a fixed 0 1  ), ( )R t  decreases and ( )Tf t shifts to the right which is 

corresponding to the smaller mean time-to-failure for the system. The results show that a 

small ratio of 
0




 assures better reliability measures for the system. 
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Figure 3-12: Sensitivity analysis of ( )R t  and ( )Tf t  on 
0




 for Model I ( 0 1  ) 

 

3.5.3. Comparison with Previous Studies 

In this section, we aim to compare the system reliability results of the current model with 

the ones of a reference reliability model as it is described below: 

Reference Reliability Model: In this model, the total degradation level in the system is 

modeled by a degradation process following a gamma process and random shock model 

borrowed from Cha and Finkelstein (2009), Wang and Pham (2011), and Jiang et al. 

(2012). These studies assume that the shock damage magnitudes are s-independent and 

follow a common probability distribution. Therefore, the level of accumulated 

degradation in the system is defined as 
( )

1

( ) ( )
N t

i

i

D t X t w


  . Therefore, the system 

reliability in the reference model is stated as: 

( )

1

( ) Pr( ( ) ( ) ) exp{[ ln( ) ( ( ) 1)] }
N t

i W

i

R t X t w t S M t


  
 

      


   (10) 



68 

 

 

 

It should be noted that the difference between our model and the reference model is in the 

concept of time-dependent shock magnitude. To compare the reliability distribution from 

each model we consider the following case study as it follows: 

1and 0.6, 0.1         , and the shock damage magnitudes are exponentially 

distributed. Table 3.3 addresses the corresponding system reliability values, and the 

system reliability plots associated with each model is illustrated in Figure 3-8. Also, 

Figure 3-9 illustrates the model comparisons for various model parameters. 

Table 3.3: System reliability values for different models 

Time 4 10 20 30 

Our Model 0.466541968 0.061162641 0.000666 0.0000036 

Reference 

Reliability 

Model 

0.549128646 0.223452516 0.049931 0.0111572 

 

 

Figure 3-13: The system reliability comparison between our model and the reference 

model 

 

( )R t  
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Figure 3-14: The system reliability comparison between our model and the reference 

model 

The results from Figure 3-13 and Table 3.3 reveal that the system reliability according to 

our model lies below the one of the reference model over the time. This result is 

consistent with the real situation because the system becomes more vulnerable to the 

shock damages over the time. Therefore, it is expected that the shock damage magnitudes 

statistically increase in time. Also, the analysis shows that the system reliability values 

are close at the beginning since the item is relatively new yet.  

 

3.5.4. Monte Carlo Simulation 

A Monte Carlo simulation is developed using MATLAB R2010b to validate the 

mathematical results. The simulation procedure is described as follows: 

For any time t, 10,000 damage paths are generated and the system reliability is estimated 

as 
10,000

N
r  where N denotes the number of items survived and r addresses the system 
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reliability. Using the described procedure, the system reliability, at any time t, is 

calculated several times. This calculation helps to find the simulation standard deviation 

for system reliability at time t. Table 3.4 addresses the parameters for two exemplary 

systems used to compare Monte Carlo simulation and the mathematical results. Table 3.5 

shows the system reliability values calculated from both methods over time. In Table 3.5, 

SD represents the standard deviation of system reliability values obtained from the 

simulation procedure and Error addresses the difference of reliability values computed by 

both methods. Based on Table 3.5, the absolute difference of values obtained from 

simulation and mathematical expression is within one standard deviation. Therefore, the 

difference between two results can be considered statistically insignificant. In other 

words, the simulation results validate the results from mathematical expressions.  

 

Table 3.4: Case Studies 

Case         Distribution of ( )w t  

Case 1 0.1 1 3 0.4 1
exp( )

0.1t
 

Case 2 0.005 1 3 0.4 1
exp( )

2t
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Table 3.5: Monte Carlo simulation versus formulation 

Case 1 

Time 0 10 20 30 40 50 60 

Formulation 1 0.597207 0.255909 0.082983 0.021222 0.004423 0.000771 

Simulation 1 0.59527 0.25535 0.08341 0.02163 0.00423 0.00088 

SD 0 0.004659 0.006167 0.003014 0.002048 0.000577 0.000225 

Error 0 0.001937 0.000559 0.000427 0.000408 0.000193 0.000109 

Error/ SD 0 0.415787 0.09061 0.141806 0.199047 0.334615 0.482265 

Case 2 

Time 0 10 20 30 40 50 60 

Formulation 1 0.815262 0.476902 0.211107 0.073702 0.02097 0.004993 

Simulation 1 0.8172 0.48 0.2105 0.0741 0.0215 0.005 

Error 0 0.001938 0.003098 0.000607 0.000398 0.00053 7.27E-06 

SD 0 0.0055 0.003 0.0027 0.0021 0.0022 0.0006 

Error/ SD 0 0.352342 1.032516 0.225 0.189396 0.240882 0.01211 

 

3.6. Conclusions 

This chapter contributes to the knowledge of degradation and shock models by 

developing a new reliability model for a system subject to degradation and shocks by 

incorporating the effect of system’s age and shock damage magnitudes, which has been 

ignored in the previous studies. In this chapter, a system subject to both degradation and 

random shocks is studied where the degradation process is modeled by gamma process 

with independent increments and the effect of random shocks on the system is modeled 

by cumulative shock model with time-dependent shock damage magnitudes. The concept 

of time-variant shock damage magnitude addresses the effect of system’s age and shock 

damage magnitudes. The mathematical expression for the system reliability is 

formulated, and a parameter estimation procedure for accumulated damage path is 
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developed. A numerical analysis is conducted on all parameters of system reliability 

model in order to study the behavior of system reliability expression. Finally, a Monte 

Carlo simulation is developed for some examples in order to validate the mathematical 

results. The comparison between the results derived from Monte Carlo simulation and the 

mathematical expression validates the mathematical formula. 

The model developed in this chapter for the underlying system does not consider the 

possible correlation among degradation process and accumulated shock damage. Hence, 

in future research, we will include such a dependency structure in the reliability modeling 

of a system subject to degradation and shocks. 
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Chapter 4 : Dependent Degradation and Random Shocks with 

Time-Dependent Shock Damage  

4.1. Introduction 

Many engineering systems are subject to an underlying degradation process and random 

sporadic shocks. Some examples of such systems are bridges, bearings, circuits, and 

others. The degradation process is usually due to system aging and/or underlying 

dynamic environmental conditions In general, the random shocks either cause system’s 

sudden failure or accelerate the degradation process. Based on Pandey et al. (2005) and 

Barker and Newby (2009), including both degradation and shock processes in the system 

reliability analysis provides more satisfactory results in terms of system maintenance. 

Because of the crucial impacts of reliability and degradation analysis on the system 

maintenance, many engineers have focused on degradation and shock models during 

recent decades.  

In general, the shocks can impact the system in three ways: 1) lead to system’s sudden 

failure, 2) add some damage increment to the system, and 3) accelerate the underlying 

degradation process (aging). A thorough literature review shows that cases 1-2 have been 

studied by many researchers (Kou and Wang (2003), Van Noortvijk et al. (2007), Liu et 

al. (2008), Deloux et al. (2009), Jiang et al. (2011) and (2012), Ye et al. (2011), Sanchez-

Silva et al. (2011), Wang et al. (2011)). In these studies, the authors study the system 

reliability given that the shocks and underlying degradation process are s-independent. 
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The correlation between degradation process and shocks can be described in two ways: 1) 

The shocks accelerate the degradation process 2) The shock magnitudes are affected by 

the state of the system degradation process. A thorough literature survey indicates that 

few previous studies have focused on the dependency between degradation and 

accumulated shock damage. For example, Huynh et al. (2011) recently develop a 

condition-based maintenance policy for a system subject to degradation and random fatal 

shocks where the rate parameter of fatal events arrival is dependent on the system’s 

degradation level. For the first time, they consider the dependency between degradation 

and shock processes by introducing degradation-based shock arrival parameter. In their 

work, the rate parameter of shock process, ( )t , is formulated as 

1 { ( ) } 2 { ( ) }( ( )) ( )1 ( )1X t M X t MX t t t      

where 1( )t and 2 ( )t are, respectively, the rate parameter of shock arrival before and after 

when the degradation process, ( )X t , exceeds a threshold M. Wang and Pham (2012) 

assess the reliability distribution for a system subject to multiple degradation processes 

and random shocks where the degradation processes and shocks are s-dependent. The 

shocks add sudden damage increments to the system and accelerate the degradation 

process as well. A time-scaled function 
( )

1 ( ) 1 2

1

( ( ), ,..., ) ( )
N t

N t i

i

g N t w w N t w 


    is 

introduced to model the impact of shock process on degradation process. 1  and 2  are 

fixed weighting parameters. The idea of such a function is borrowed from accelerated life 

testing model. Therefore, the system’s degradation level at time t , is expressed as 

1 ( )( ( ), ,..., )
( )N tg N t w w

X te .  
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For the first time, we studied the effect of system’s age and shock damage magnitudes in 

chapter 3. In reality, there exists some dependency between degradation and accumulated 

shock damage. Therefore, in the current chapter, we develop a reliability model for a 

system subject to the degradation process and random shocks where the shock damage 

magnitudes are time-dependent, and the cumulative shock damage accelerates the 

underlying degradation process. This study extends the model presented in chapter 3 by 

considering correlation between degradation process and accumulated shock damage, and 

it presents more realistic results for the system reliability metrics. A time-scaled function 

inspired by Wang and Pham (2012) is employed to model the correlation between 

degradation process and accumulated shock damage. Also, the shock damage magnitudes 

are considered to be time-dependent. The reliability expression for such a system is 

formulated and presented later. Also, a numerical analysis to study the effect of the 

system’s parameters on  system reliability is conducted. Finally, a Monte Carlo 

simulation is developed in order to validate the results obtained from analytical 

expression.. The remainder of this chapter is organized as follows:  

 Section 4.2 defines the system under investigation and its associated assumptions. 

Section 4.3 presents the reliability expression and an approximation algorithm for 

computation purposes in numerical analysis. Section 4.4 also addresses a parameter 

estimation procedure to estimate the reliability model parameters. Section 4.5 discusses 

the numerical analysis results of the model. A numerical analysis is performed to insure 

the behavior of system reliability model, and a Monte Carlo simulation is developed to 

verify the mathematical model. Finally, section 4.6 presents the conclusions. 
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4.2. Problem Description 

In this chapter, we study  a single-component system subject to both degradation process 

and random shocks. The shocks add spike damage increments to the system, and the 

accumulated shock damage accelerates the degradation process. Also, the shock damage 

magnitudes are time dependent. Such an assumption is incorporated in the model using 

time-variant shock damage magnitudes. It is also assumed that the damage magnitudes 

tend to increase as the system ages since the system becomes more vulnerable to shock 

damage as it ages. Total damage accumulated in the system is assumed to be the indicator 

for the state of system. The rest of characteristics for degradation and random shock 

processes are considered to be exactly similar to the ones described in chapter 3. A brief 

summary of the system characteristics is given as: 

A time-scaled function 
( )

1

( ; , ( ), ( )) exp{ ( )}
N t

i i

i

Q t N t w t w t 


  similar to the one introduced 

by Wang (2012) is employed to model the correlation between degradation process and 

accumulated shock damage. At any time t , (.)Q  describes the effect of all prior shock 

magnitudes on the system degradation level where it  is the arrival time of shock i  and 

it t  for 1,..., ( )i N t  . The idea of this function was firstly borrowed from accelerated 

life testing models. Therefore, the level of total accumulated damage to the system by 

time t, ( )D t , is described as 

( )

1

( ) ( )( )

1 1

( ) ( ( ; )) ( ) ( ) ( )

N t

i

i

N t N tw t

i i

i i

D t X tQ t w t X te w t


 

 


    

    (1)
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Where   is a constant between 0 and 1 and called shock correlation coefficient. This 

parameter represents to which degree the accumulated shock damage affects the 

degradation process. Function (.)Q  indicates the accumulated shock damage 

exponentially accelerates the system virtual age which is equivalent with higher 

degradation level in the system. That is, as the number of shocks and the intensity of their 

associated damage magnitudes increase, it is expected that the system degrades more 

rapidly. The second term in (1) addresses the accumulated shock damage magnitudes in 

the system. We use the same assumption of  the system presented in chapter 3 which are 

summarized below. 

 The system is a single-component subject to both degradation and random shocks.  

 Shocks are arriving to the system according to a homogenous Poisson process 

(HPP) with rate parameter .  

 The degradation process, ( )X t , is described by a stationary gamma process with 

parameters and  . The gamma process is described in detail in section 3.2.2. 

 Random shock process is modeled by a cumulative damage model where the 

shocks are s-independent with time-dependent damage magnitudes. 

 ( )N t , the number of shocks arriving to the system until time t, is considered to be 

independent of shock damage magnitude and degradation process. 

 The critical failure threshold, S , is considered to be stochastic and exponentially 

distributed with parameter . 

 

4.2.1. Notation 

 



78 

 

 

 

( )R t  : The system reliability at time t 

( )D t : The total accumulated damage to the system by time t 

( )X t : The degradation magnitude of the system by time t 

 : Shape parameter of gamma distribution 

 : Scale parameter of gamma distribution 

( )N t : Number of shocks arriving to the system by time t 

 : The shock arrival rate parameter 

S: The critical failure threshold of the system 

 : The rate parameter for the critical failure threshold distribution 

( )it : The arrival time of the i
th

 shock to the system 

( )iw t : The damage magnitude due to i
th

 shock, dependent on the time when the shock 

arrives to the system 

 : The shock correlation coefficient which is between 0 and 1 

( ; , ( ), ( ))iQ t N t w t : The time-scaled function dependent on shock process parameters 

which describes how shocks accelerate the degradation process 

( )Tf t : The probability density function for the system failure time distribution 

LN  : An approximated threshold for the number of shocks arriving to the system 

 : Normal cumulative distribution function 
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 : The mean value for the shock damage magnitude 

 : The standard deviation for the shock damage magnitude 

4.3. Reliability Estimation 

The system fails when the total accumulated damage to the system, ( ),D t exceeds the 

critical failure threshold. For special cases when either degradation process or shocks are 

present in the system, the system reliability expression is given by equations (6) and (7) 

of chapter 3, respectively. For the case where the system is subject to both degradation 

and random shocks, the system reliability estimation is expressed as 

( )

1

( )( )

1

( ) ( ( ) ) ( ( ) ( ) )

N t

i

i

N tw t

i

i

R t P D t S P X te w t S







    

     (2)

 

To derive the reliability function it is necessary to integrate the conditional probabilities 

with each random variable. We consider all the random variables given except S . 

Therefore,  

( )

1

( ) ( )

1 1

( )

1 2 ( ) 1 ( )

( )( ) ( )

1 2 ( ) 1 ( )

1

1

( ( ) | ( ) , ( ) , ( ), ( ), , ( ), ,..., )

( ( ) ( ) | ( ) , ( ) , ( ), ( ), , ( ), ,..., )

( ( ) )

N t

i

i

N t N t

i i

i i

w t

N t N t

N tw t w t

i N t N t

i

n

i

i

P D t S X te x N t n w t w t w t t t

P X te w t S X te x N t n w t w t w t t t

P x w t S

e



 





 








  

 
    

  







1

{ ( )}

(2.1)

n

i

i

x w t




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1 ( )

1
1

1

( )

1
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( )( )
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1

{ ( )}
1

( )0
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.
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i
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
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







 
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  












 
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




 
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










 


  




















  (2.2) 

Let
( )

( ) ( )n

w tG y be the n-fold convolution cumulative distribution function (CDF) for the 

distribution of time-dependent shock damage magnitude, ( ).w t  Thus, the CDF for

1

( )
n

n i

i

Z w t


 can be obtained from the following recursive formulas as follows: 

( ) 1( ) ( ( ) )w tG y P w t y    

( ) 2 1

(2)

1 2 ( ) ( )

0

( ) ( ( ) ( ) ) ( ) ( )
w t w t w tG y P w t w t y G y u g u du



       

( )

( )

1 2( ) ( ( ) ( ) ( ) )
w t

n

nG y P w t w t w t y    
                 (2.3) 

 

Please note that results in Equation (2.3) are valid because the shock damage magnitudes 

are considered to be s-independent random variables following uncommon distributions. 

Hence, 
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( )

1

( )( )

1 ( ) 1 ( )

1

( )

0

( | ,..., ) ( ( ) ( ) | ,..., )

( )
{ ( ) . . ( )}

!

N t

i

i

y

N tw t

N t i N t

i

t n
te y n

w t

n

R t t t P X te w t S t t

e t
e dG y

n






  

 





 


 


  

 




 
    (2.4) 

In general, it is too difficult to find convolution CDF for 
( )

( )

1

( )
N t

N t i

i

Z w t


  used in (2.3); 

however, we can use the Central Limit Theorem to approximate that distribution. 

According to Ross (1996), since ( )iw t s are i.i.d, we have: 

( ) 1 ( ) ( )1

( )
2 2

( )

1

( ( ) ... ( )) ( )( )

2 2
2 3 2 3

1 ( )

1
( ) ( )

2( )2 2 3 ( )

1

[ ] [ ] [ ]...E[ ]

(1 O( ))...(1 O( ))
2 ( ) 2 ( )

1
(1 ( ) ( ) O( ))

2

N t N t N t

N t

N t i

i

Z w t w t w tw t

N t

t N t
N tN t

i

i

E e E e E e e

t t
N t N t

t N t e

  

   

 
       

     

 






 

      


    

  

Using Taylor series approximation, When ( )N t  is a large number, the moment 

generation function for 
( )N tZ  converges to the one of normal distribution. Therefore, 

using the Central Limit Theorem, we can assume that ( )N tZ  approximately follows a 

normal distribution. In other words, 

 

( ) ( )

2

2

( )

0 1

( ) ~ ( ( ), ) where ( )

Therefore,

( ) ~ ( , ( ) )
N t N t

i i i i

N t i i

i i

w t N t t t

Z w t N t N t

   

 
 



 

 

Where 1 ( ),..., N tt t  is a sequence of random s-independent variables representing the shock 

arrival times. Thus, the system reliability expression is obtained as  
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( | , ( ) ) ( ) ( )
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n
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  
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 
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
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


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     (2.5)

 

Where denotes the standard normal CDF for 
( )N tZ . The random shocks follow a 

Poisson process. According to Finkelstein and Cha (2009), the joint distribution of 

1 2 ( )( , , , )N tt t t  given the fact that ( ) ,N t n is the same as the distribution of 

(1) (2) ( )( , , , )nU U U which are the order statistics of i.i.d. random variables 1 2( , , , )nU U U  

which are uniformly distributed on the interval of [0,1] . Note that it  represents the time 

when shock i arrives, so we can write 

(1)
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     (2.6)

 

Hence, the system reliability expression can be expressed as 

1

0 0

( )
( ) { ( ) . ( ) }

!

y
t n

te y

n

y ntu e t
R t e d du

nn




   

  

 


 


  


        (2.7) 

In order to approximate the system reliability from Equation (2.7), an approximation 

algorithm introduced by Liu et al. (2008) is employed. Liu et al. (2008) assume a 

threshold LN such that ( ( ) ) 1L LP t N N t t N     . Thus, the system reliability in 

(2.7) can be approximated as
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The closer (max{0, } ( ) )L LP t N N t t N      to 1, the more precise the approximation 

of ( )R t . This is because the highly probable situations of shock process have been 

included in the approximation results. To determine LN
max{0, }

( ( ) )
L

L

t N

n t N

P N t n






 

  is 

evaluated for different values of t  and minimum LN satisfying the closeness criterion is 

chosen.  

4.4. Parameter Estimation 

We can use either MLE or method of moments to estimate the parameters of the system 

reliability model. Using MLE approach, the probability density function of time to 

failure, ( )Tf t , can be stated as 
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           (3) 

Suppose that n  items are subject to test and 1 2{ , ,..., }nt t t  denote their corresponding 

failure times. Thus, the likelihood function is given as 
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Differentiating the likelihood function with respective to each parameter and solving the 

resulting equations after equating them to zeros yields the parameter estimation for the 

model. Also, if the system is monitored by a shock recorder device which is mentioned 

by Kearns (1994), the parameter estimation procedure presented in 3.4 can be utilized to 

estimate shock process parameters. Let 0 1 2{ 0, , ,..., }na a a a t   be an equally-spaced 

partition on time interval [0, ]t  and 0 1 2{ 0, , ,..., }nX X X X  be the corresponding damage 

to the system due to only degradation process. It should be noted that we can find the 

damage data due to only degradation process using the argument in 3.4. Thus, we can 

define 1i i it t t t       and 1 0,1,..,i i iX X X i n     . It is known that 

 ( )[ | ( )] Z tt
E X Z t e




    

( )

2
[ | ( )] Z tt

Var X Z t e




           

           (5) 

Then, we can estimate , ,   and   using Least Square method (LS).  

4.5. Numerical Results 

4.5.1. Numerical Analysis 

In this section, an example of a system under study is discussed. Numerical analysis of 

the effect of  various parameters on the system reliability model, , , , , ,      , is 

performed. Let the degradation path be defined by a gamma process with parameters 

1   and 3  , and the shocks follow a homogeneous Poisson process with rate 

0.6  . The shock damage magnitudes are normally distributed with mean t  with 

1   and standard deviation 0.2  . Furthermore, the critical failure threshold is 
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considered to be exponentially distributed with rate 0.01  , and the shock correlation 

coefficient, related to the effect of shocks on degradation is assumed to be equal to

0.3  . As it is mentioned in last section, we need to calculate LN  firstly to be able to 

approximate the system reliability expression. Table 4.1 shows values of 

( ( ) )L LP t N N t t N      for various LN  for 1  . Since this probability is 

increasing in and all reliability analysis in this section is based on 1  , we determine 

LN  when 1   in the manner described before.   

Figure 4-1 illustrates
max{0, }

( ( ) )
L

L

t N

n t N

P N t n






 

  for different values of LN  and t  when 1   

and Table 4.1 shows those values at 500t  . In addition, it shows that

max{0, }

( ( ) )
L

L

t N

n t N

P N t n






 

 is decreasing in time and increasing in LN . Table 4.1 also presents 

the probability of having at most LN  shocks up to 500t  . According to Table 4.1, the 

minimum value for [0,500]t at 80LN   is 0.999672. Therefore, 80LN  is selected as 

the threshold value for the approximations in the system reliability computation.  
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Figure 4-1: ( ( ) )L LP t N N t t N      in respective to LN over the time when 1   

 

Table 4.1: ( ( ) )L LP t N N t t N      in respective to LN at 500t   and 1    

LN  50 60 70 80 

( ( ) )L LP t N N t t N      0.976107 0.993174 0.998368 0.999672 

 

Table 4.2 shows the results of the numerical analysis for different parameters of system 

reliability model (Equation (2.8) in section 4.3). 

The results of numerical analysis of mean value for the shock damage magnitude which 

is illustrated in Table 4.2 imply that the system reliability is decreasing in the mean value 

for shocks’ damage magnitude. This is because the system is expected to accumulate 

more damage on average when each shock arrives to the system; therefore, the system 

lifetime tends to decrease on average. According to Table 4.2, the system reliability is 

decreasing with the increase in , ,    as well. However, it is increasing with the 

increase in the parameter  .  Recall that the degradation process is defined as a gamma 
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process, so the mean degradation value of the system for is defined as 



 per unit of 

time. Hence, an increase in   value increases the mean degradation accumulated in the 

system and decreases the system reliability. On the other hand, an increase  in   reduces 

the mean degradation and improves the system mean time to failure and the reliability 

metrics. An increase in corresponds to the case that more shocks are expected to arrive 

to the system. Thus, the system in average will be more damaged, and the system 

reliability decreases accordingly. 

As it is mentioned earlier,   is a fixed parameter which represents the impact of shock 

process, including damage magnitude and number of shocks, on the degradation process. 

Larger  is equivalent to more acceleration in the degradation process due to shock 

process, which means more degradation in the system and lower system reliability. Table 

4.2 also addresses the system reliability values for various values of  . It can be noted 

from results in Table 4.2 that the system reliability is strictly decreasing in  . The critical 

failure threshold is exponentially distributed with rate parameter , so the mean critical 

failure threshold is reciprocal to . Hence, an increase in   lowers the mean critical 

failure threshold, which reduces the system reliability. 

 

Table 4.2: Numerical analysis for system reliability  

 /Time 0 10 20 30 40 50 

0.5 1 0.998104 0.848616 0.294294 0.052124 0.007368 

1 1 0.984699 0.434579 0.070952 0.009103 0.001151 

4 1 0.52543 0.065589 0.008242 0.001062 0.000143 

 /Time 0 10 20 30 40 50 

0.2 1 0.998098 0.848608 0.291813 0.051919 0.00725 

0.5 1 0.9877 0.205146 0.002984 2.03E-05 1.18E-07 
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1 1 0.859792 0.002225 1.43E-07 4.5E-12 1.06E-16 

 /Time 0 10 20 30 40 50 

0.0001 1 0.998103 0.847282 0.292221 0.051727 0.007325 

0.001 1 0.981546 0.591613 0.122454 0.016507 0.00199 

0.01 1 0.846084 0.236366 0.028879 0.003125 0.000367 

 /Time 0 10 20 30 40 50 

0.2 1 0.998108 0.849137 0.292715 0.05195 0.007301 

0.5 1 0.963415 0.318412 0.044989 0.005565 0.000727 

1 1 0.742749 0.114886 0.014536 0.001809 0.000231 

 /Time 0 10 20 30 40 50 

1 1 0.998106 0.849216 0.293283 0.051866 0.00718 

3 1 0.995332 0.750021 0.203473 0.032239 0.004044 

5 1 0.992581 0.689786 0.169063 0.024622 0.003108 

 /Time 0 10 20 30 40 50 

3 1 0.998101 0.848643 0.294544 0.052402 0.007238 

4 1 0.998451 0.868894 0.316817 0.057769 0.008044 

5 1 0.998661 0.882846 0.336783 0.06385 0.009121 

 

4.5.2. Monte Carlo Simulation 

In order to validate the analytical expression derived for the system reliability, a Monte 

Carlo simulation is developed using MATLAB. The simulation procedure is briefly 

described as follows: 

At any time t, 10,000 damage paths up to time t are generated. For each path, a unique 

value of critical failure threshold is generated as well. Each damage path indicates the 

accumulated damages in an item due to degradation process and random shocks. 

Secondly, the number of damage paths with accumulated damage below critical failure 

threshold at time t  is recorded as N, and the system reliability, r, is estimated as

10000

N
r  . Finally, the system reliability is calculated several times for any time t. The 

purpose of calculating multiple values for system reliability at each time is to estimate the 
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standard deviation of the simulation procedure because the simulation procedure is a 

stochastic module and gives different results for each run. Figure 4-2 illustrates the 

simulation procedure in detail. 

 

At time t 

For n=1 to 10,000  

1) Generate ( )N t , number of shocks arriving to the system by time t, by generating a 

number from ( )Poisson t  

2) If ( ) 0N t  , Generate the arrival times of shocks, 
1 ( ),..., N tt t . Otherwise, let 0W   

and go to step 4. W is the total damage due to shocks. 

3) Generate the shock damage magnitudes from distribution 2( , )iN t  and calculate W 

accordingly.  

4) Generate ( )X t , the level of degradation up to time t, from distribution

( , )WGamma te   

5) Generate the critical failure threshold, S, such that ~ exp( )S   

6) Let ( ) ( )D t W X t   and
0 ( )

1 . .
n

if D t S
I

OW


 


 

End 

7) Let
10,000

1

n

n

N I


   and estimate 
10000

N
r   

 

Figure 4-2: The pseudo code for Monte Carlo simulation 

 

A numerical experiment is designed and used to compare the simulation and formulation 

results. The system characteristics in this experiment are shown in Table 4.3. The 

parameters are plugged into Monte Carlo simulation and the mathematical formula and 

the results are calculated accordingly. Table 4.4 tabulates the results obtained from both 

simulation procedure and mathematical expression. Moreover, it shows the error, 

absolute difference between values obtained from both methods, standard deviation of 

simulated reliability (SD), and the ratio of error over SD. As it can be seen in Table 4.4, 
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at any time t , the error is within one standard variation. Therefore, based on the results in 

Table 4.4, the results from both simulation procedure and mathematical expressions 

correspond, meaning that the Monte Carlo simulation validates the system reliability 

mathematical expression presented in section 4.3. It should be noted that all the 

calculations based on mathematical expressions have been made in MAPLE. 

 

Table 4.3: The specification of designed system for comparison between simulation and 

formula 

Characteristics 

of System 

          Distribution 

of ( )w t  

Values 0.001 1 3 0.2 0.3 ( ,0.04)N t  

 

Table 4.4: The system reliability values obtained from Monte Carlo simulation and 

mathematical formulation 

Time 0 10 20 30 40 50 60 

Simulation 1 0.7861 0.1351 0.0157 0.0016 0 0 

Formulation 1 0.78581 0.13562 0.01621 0.00169 0.0002 0.00002 

SD 0 0.001883 0.002718 0.001519 0.000314 0.000125 4.22E-05 

Error 0 0.00029 0.00052 0.00051 9E-05 0.0002 0.00002 

Error/ SD 0 0.154015 0.191334 0.335725 0.28636 1.603567 0.474342 

 

Figure 4-3 indicates a sensitivity analysis of system reliability on shock effect coefficient,

 . Model I is the model in chapter 3 where 0  . Figure 4-3 also shows that the system 

reliability is decreasing as   slightly increases. Thus, the correlation between 

accumulated shock damage and degradation should be carefully estimated, and its 

ignorance leads to a large error in system reliability estimation. 
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Figure 4-3: Sensitivity analysis of ( )R t  on   

4.6. Conclusion 

This chapter provides an extension to the knowledge of the degradation and random 

shocks modeling by developing a reliability model which considers some dependency 

between degradation process and accumulated shock damage where the shock damage 

magnitudes are dependent on system’s age. The problem studied in this chapter differs 

from the one in chapter 3 only in taking the dependency structure between degradation 

process and accumulated shock damage into account. A time-scaled transformation 

function is employed to describe the effect of accumulated shock damage on the 

degradation process. The system reliability expression for such a problem is formulated, 

and a numerical analysis is conducted on the system reliability model parameters in order 

to study the behavior of system reliability function. The results show that the correlation 

between accumulated shock damage and the degradation process is highly important and 

should be estimated precisely, otherwise, it will lead to a large error in system reliability 
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estimation. Furthermore, an approximation method from Liu et al. (2008) is employed to 

approximate the system reliability values. At last, a Monte Carlo simulation is developed 

in order to validate the analytical results.  
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Chapter 5 : Optimal Condition-Based Imperfect Maintenance 

Policy for Systems Subject to Multiple Competing Risks 

5.1. Introduction 

With the increase in system’s complexity and rising customer expectations for product 

availability, the concept of system durability and its maintenance is further highlighted. 

The main objective of maintenance is to restore the system to a state at which it can fulfill 

its required functions. In general, maintenance actions depend on many factors such as 

the complexity of system, its degree of deterioration, maintenance costs, and others. 

Traditionally, maintenance policies are time-based. That is, the system is inspected for 

maintenance at some pre-determined periods of time based on the analysis of historical 

data. Nowadays, with the introduction of advanced and sophisticated measurement 

devices such as sensors, it is possible to monitor the system condition continuously. 

Therefore, many engineers direct their focus to the development of condition-based 

maintenance policy (CBM) for various engineering systems. Such policy is highly 

applicable in important systems like aircraft engines and braking system in elevators (Zhu 

et al., 2010).  

There has been extensive research work, in the literature, on developing CBM policies 

for systems subject to a single failure mode (Marseguerra et al. (2002), Grall et al. 

(2002), Nakagawa (2007), Wang et al. (2009), Wang et al. (2012)). However, most 

engineering systems are subject to multiple competing risks such as degradation 

processes and sudden or catastrophic events. From another point of view, CBM policies 
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can be divided into threshold-type or periodic-inspection-type policies. The former 

proposes an optimal preventive maintenance threshold, and the latter suggests an optimal 

periodic inspection. Zhu et al. (2010) study the optimal preventive maintenance period 

maximizing the average system availability when the system is subject to independent 

failure modes, degradation process and sudden failure events. They assume perfect 

maintenance after each failure. Tai and Chan (2010) develop an optimal CBM policy for 

a system subject to continuous degradation without assuming a certain form of 

degradation function. The proposed policy can handle both perfect and imperfect 

maintenance assumption and investigates the optimal preventive maintenance periods 

which maximize the system availability. Chen et al. (2011) study an optimal inspection 

period for a system subject to dependent degradation process and shocks in order to 

minimize the long-run maintenance cost. The proposed maintenance policy only 

considers perfect maintenance. Neves et al. (2011) also investigate an optimal periodic 

inspection policy with perfect repair for a system subject to degradation and sudden 

failure which minimizes the expected cost of maintenance where the input information 

can be imperfect. Wang and Pham (2011) investigate an optimal threshold-type CBM 

policy for a system subject to two dependent, linear, and deterministic degradation 

processes in order to minimize the expected maintenance cost. The policy considers 

imperfect maintenance which is handled by means of an improvement factor method. In 

the model, no maintenance is carried out as long as the levels of both of degradations are 

below their associated threshold, iL . If the degradation level of either of degradation 

processes exceeds the relevant threshold, N imperfect maintenance actions with a period 

of T is performed, and the system is totally replaced at the ( 1)N   maintenance action. 
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The objective of this model is to find optimum *N  and *

iL . Liao et al. (2006) study an 

optimal preventive maintenance threshold-type policy for a system subject to only 

degradation where the maintenance is imperfect and the mean time to repair is increasing 

with the number of maintenance actions.  

The literature review shows that most studies assume perfect maintenance for the system. 

However, in practice, the system is not restored to the state of  as-good-as-new after 

maintenance. Sometimes, a minimal repair or imperfect maintenance restores the state of 

system to a state somewhere between as-good-as-new and as-bad-as-old which can be 

enough for the system to function according to its requirements. Besides, such a policy 

offers lower maintenance cost per system’s life cycle without compromising the system 

functionality. Moreover, most studies in the literature set goals to minimize the 

maintenance cost. According to Liao et al. (2006), system availability is a better 

alternative criterion for an objective function since the cost is sensitive to uncertainty in 

estimations, while we can accurately estimate the system uptimes and downtimes. 

Therefore, it is preferable and more realistic to investigate an optimal CBM policy where 

the model simultaneously includes multiple failure modes for the system, imperfect 

maintenance and its change with number of maintenance, and system availability as the 

objective function. Such a problem has not been investigated. 

 

Therefore, we propose an optimal threshold-type CBM policy for a system subject to 

multiple dependent failure modes, which maximizes the system average availability. This 

policy considers imperfect maintenance for the system and assumes that the mean repair 

time is positively correlated with the number of maintenance actions. The following 
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research also generalizes the model proposed by Liao et al. (2006) by including multiple 

failure competing risks for the system. The remainder of this chapter is organized as 

follows:  

Section 5.2 describes the problem assumptions, notations, and the maintenance processes. 

Section 5.3 presents the mathematical formulation of the maintenance optimization. 

Section 5.4 studies an especial case of the generalized maintenance problem where the 

system is subject to only two competing risks, degradation process and sudden failure. 

Section 5.5 presents a numerical application and multiple sensitivity analyses for this 

problem. Finally, Section 5.6 presents the conclusions of this chapter. 

5.2. Maintenance Model Description and Assumptions 

In this chapter, we study a single-component system subject to n competing risks. The 

competing risks can be either dependent or independent. It is assumed that the system is 

subject to at least one degradation-type failure mode. The underlying system is 

continuously monitored, and the monitoring sensors are assumed to be error-free, i.e. the 

monitoring is perfect. Maintenance actions for the system include preventive and 

corrective actions. The replacement is referred as the corrective maintenance or perfect 

maintenance; however, the preventive maintenance is assumed to be imperfect i.e. the 

system state is not restored to the as-good-as-new state after this type of maintenance. We 

aim to investigate the optimal condition-based preventive maintenance threshold for the 

system considering a number of assumptions. 

 

Notation 
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iT : The thi  inter-maintenance time  

1A : The achieved average availability in a cycle 

2 ( )A i : The average short-run availability after thi  maintenance 

2minA  : The minimum requirement for average short-run availability 

totalT  : The lower bound on the system total operating time before replacement 

(j)

iM : The time required to perform thi  maintenance for the thj  failure mode 

(s)

iM : The time required to perform thi  maintenance if the system failed due to sudden 

failure  

(d)

iM : The time required to perform thi  maintenance if the degradation reaches to 

maintenance threshold  

PMS : The maintenance threshold for the system 

nS : The critical failure threshold of the system due to the thn  failure mode 

(j)

iXR  : The state of system immediately after thi  maintenance if the failure was due to 

thj  failure mode 

( ) ( )j

i
XR

f x : The probability distribution for the state of system immediately after thi  

maintenance for thj  failure mode 

( )D t : The level of degradation process in the system at time t 

jI : Indicator function j  if the system is maintained for thj  failure mode  

( )jf t  : The probability distribution for the system inter-maintenance time due to thj

failure mode 
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( )jT  : The system inter-maintenance time due to thj failure mode 

(1) (2) ( ) 1 2, ,...,
( , ,..., )n nT T T

F t t t  : The joint CDF for inter-maintenance times corresponding to n 

competing failure modes 

p : The probability that a sudden failure event arrives to the system 

 : The rate parameter at which shocks arrive to the system 

  : The cumulative distribution function for standard normal distribution 

5.2.1. Renewal Process 

We define a cycle as a period of time between two consecutive replacements. The 

maintenance is performed when either of the indicator level of some failure modes 

exceeds the preventive maintenance threshold, 
PMS or the system fails due to sudden 

failure. The system is set aside for maintenance immediately after either of scenarios 

occurs. To consider the effect of system’s age on the inter-maintenance times and repair 

times of each failure mode, it is assumed that the inter-maintenance times in expectation 

are negatively correlated with the number of maintenance actions. Besides, the mean 

maintenance times in expectation are considered to be increasing in the number of 

maintenance actions over the time to incorporate the system’s age impact. Figure 5-1 

shows an example of a cycle for the system subject to n degradation processes and 

sudden failure including preventive maintenance and replacement actions. 1T  indicates the 

first inter-maintenance time where the system is taken to maintenance because the level 

of first degradation process exceeds 
PM

S . However, the system is repaired due to sudden 

failure in the second maintenance because none of degradation processes have not 
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exceeded PMS . (1)

1XR  is the residual damage level in the system after the first maintenance 

which is performed since the indicator of first failure mode exceeds PMS . As it can be 

noted from Figure 5-1, the state of system after maintenance is stochastically increasing 

in the number of maintenance, and the inter-maintenance times are stochastically 

decreasing. Consequently, the system's availability after each maintenance is decreasing. 

Thus,  we continue to maintain the system until when the system's availability falls below 

a minimum required threshold. *T  represents such a time in Figure 5-1.  Therefore, the 

system is not worthy of maintaining any more, and the system is replaced. 

 

Figure 5-1: An instance of a cycle for the system including maintenance and replacement 

 

5.2.2. Inter-Maintenance Times 

The system is subject to n competing risks. As it was stated earlier, the failure modes can 

be either dependent or independent. We assume that the failure modes include sudden 

failure and several degradation processes. The maintenance is carried out either when the 
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system fails due to sudden failure or the level of some degradation processes reaches the 

maintenance threshold. Therefore, the system inter-maintenance time is in general 

defined as (1) (2) ( )min{ , ,..., }nT T T T . Therefore, we have: 

(1) ( 2) ( )

(1) (2) ( )

(1) (2) ( )

, ,...,

( ) (min{ , ,..., } )

( , ,..., )

1 ( , ,..., )n

n

n

T T T

P T t P T T T t

P T t T t T t

F t t t

  

   

 

       (1.1) 

Where (1) (2) ( ), ,...,
( , ,..., )nT T T

F t t t  is the joint CDF of inter-maintenance times due to each 

failure mode at time t. If the failure modes are considered to be s-independent, we can 

rewrite (1.1) as: 

(1) (2) ( )

1

( ) ( ) ( )... ( )

[1 ( )]

n

n

j

j

P T t P T t P T t P T t

F t


    

 
      (1.2) 

Where ( )jF t  is the CDF for inter-maintenance time due to failure mode j. Please note that 

Equation (1.2) is based on the assumption that all failure modes are independent. 

Therefore, in general, the mean inter-maintenance time is calculated as

 

(1) ( 2) ( ), ,...,

0

[ ] {1 ( , ,..., )}nT T T
E T F t t t dt



 
       (2) 

5.2.3. Imperfect Maintenance Impact on Inter-Maintenance Times 

In practice, the maintenance actions are performed imperfectly. Therefore, some residual 

damage remains in the system after performing the maintenance. We develop a 

maintenance model which considers residual damages. The mean inter-maintenance 

times will be decreasing over time. In general,  

( )
1

1

( ) ( )

1 1

10

[ ] [ [ | ]] [ | ] ( )1{I }
PM

j
i

i

S n
j j

i i i i iXR
j

E T E E T XR E T XR f x j dx



 



       (3) 
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Where ( )

1

( )j

i
XR

f x


 denotes the probability density function for the state of system 

immediately after ( 1)thi   maintenance for thj  failure mode, and [ ]iE T  is the thi  mean 

inter-maintenance time in the cycle. Equation (3) implies the impact of imperfect 

maintenance on the mean inter-maintenance times. In order to model the effect of 

residual damage in the system after maintenance, we use the relevant assumptions in Liao 

et al. (2006). That is, we assume that 
( )

i

jXR  falls randomly in the interval of[0, ]PMS . We 

can utilize several probability density functions including beta distribution and truncated 

distributions to describe the probability distribution for the level of residual damage after 

maintenance. In this work, we specifically utilize beta distribution as follows: 

( )

1 1( )1
( ) ( ) (1 )

( ) ( )

ij ij

j

i

ij ij

XR
PM ij ij PM PM

x x
f x

S S S

  

 

  
 

 
      (4) 

Where 0ij    and 0ij   are the parameters of beta distribution for thj  failure mode, 

respectively, and (.)  is the gamma function. We assume that the mean of residual 

damage after maintenance due to each type of failure is increasing in the number of 

maintenance actions. This assumption is expressed as follows: 

( )

( )
2

[ ] 1

[ ]
( )(1 )

j

j
iiji

PM ij ij

j
ij iji

PM ij ij ij ij

XR
E e

S

XR
Var

S



 

 


   


  



 
  

      (5) 

Where ( )j

iXR  denotes the residual damage in the system immediately after maintenance i  

for thj  failure mode and j  and 
2  are positive constants which are referred to 

rectification effort and rectification variance for thj  failure mode, respectively.  
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The repair time is stochastic and usually follows a probability distribution function. Also, 

in general, it is reasonable to assume that the average length of maintenance is positively 

correlated with the initial state of the system after maintenance. This is because the 

system ages and as a result of that the mean residual damage of the system right after 

maintenance is increasing with the number of maintenance actions.  Let iM  denotes the 

length of the thi  maintenance action and ( )j

iM  defines the conditional length of thi

maintenance action for failure mode j . In general, we assume that ( )j

iM is exponentially 

distributed with mean 
( )[ ] exp( )j

i j j PME M i S   where 
j  and 

j  are constants and 

independent of PMS . Please note that 0j   and 0j  . Therefore, the average 

maintenance time is described as 

( )

1

( ) [ | ] ( )
i

n
j

i i i

j

E M E M I j P I j


          (6) 

Where ( )iP I j
 
is the probability that the system is under maintenance due to the thj  

failure mode at  the thi  maintenance action.  

5.3. Maintenance Policy Formulation 

In this section, we develop the maintenance policy characteristics for a system subject to 

multiple competing risks and formulate an optimization model in order to obtain the 

optimal preventive maintenance threshold for such a system. 
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5.3.1. Maintenance Policy Metrics 

As it stated earlier, a system’s cycle is defined as a period between two consecutive 

replacements. We consider two measures of system availability firstly defined by Liao et 

al. (2006). These measures are as follows: 

1

2

(expected total inter-maintenance time)/cycle

(expected total inter-maintenance time + downtime+replacement time)/cycle

expected inter-maintenance time after i maintenance
( )

expected inter-mainte

th

A

A i




nance time + downtime after i maintenanceth

   

           (7) 

Where 1A  refers to the average system availability achieved in a cycle and 2 ( )A i  presents 

the average short-run availability after thi  maintenance. The maintenance policy in this 

section is described as follows:  

The system is considered unavailable when it undergoes repair  due to either of failure 

modes and it becomes readily available after repair.  However, some residual damage 

remains in the system after the maintenance. The mean of the residual damage increases 

as the number of maintenance actions increases. The maintenance continues in this 

manner until when the system 2 ( )A i  is lower than a pre-determined minimum requirement 

for average short-run availability. Then, the system is replaced.  

5.3.2. Problem Formulation 

As described earlier, the objective is to find the optimal maintenance threshold that 

maximizes the achieved availability for a continuously monitored system. Therefore, we 

formulate the problem as follows. 
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1

1 2

2 2min

2 2min

1

1

( )

. .

0 min{ , ,..., }  (8.1)

( ) [0, 1]  (8.2)

(N)   (8.3)

[ ]   (8.4)
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PM n

N

i total

i

Max A S

s t

S S S S

A i A i N

A A

E T T




 

  





 

The objective function, the achieved average system availability, is a function of 

preventive maintenance threshold. Constraints 8.2 and 8.3 address the fact that the system 

is repaired as long as it meets the minimum requirement for the average short-run 

availability. Constraint 8.4 states the lower bound for total operating times before a 

replacement. N is described as 1
2min

1

[ ]
inf {i : | }

[ ] [ ]

i

i Z
i i

E T
N A

E T E M







 


. That is, the 

average short-run availability no longer meets the minimum requirement at the N
th

 

maintenance; thus, the system is replaced.  

5.4. Case study 

In this section, we investigate the optimal threshold maintenance policy for a system 

subject to two independent competing risks namely shocks and degradation.  The shocks 

can be fatal to the system. The system degrades due to aging process and non-fatal shock 

damage accumulation. The system fails when either the level of the degradation level or 

the total damage to the system exceeds the degradation failure threshold or a sudden 

failure event or fatal shock arrives to the system. Figure 5-2 shows an example of a cycle 

for such a system. 1T  is the first inter-maintenance time due to the fact that the level of 

degradation indicator exceeds 
PM

S . However, the second inter-maintenance time is due to 
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sudden failure. In general,
1XR  shows the state of system after the first maintenance. The 

maintenance process continues until *T , system’s replacement time.  

 

Figure 5-2: An example of a cycle in a system subject to degradation and sudden failure 

 

5.4.1. Inter-Maintenance Times 

We assume that the random shocks arrive to the system according to a Homogeneous 

Poisson process with rate parameter , and each shock can cause a sudden failure to the 

system with probability p .  If the shock is not fatal, it adds some damage increment to the 

system. The system is maintained either when the total degradation level in system, ( )D t , 

exceeds the maintenance threshold, PMS , or the system fails due to fatal shocks. In this 

case, it is assumed that the degradation process and shock process remain the same as the 

ones in Chapter 4 except that the system experiences sudden failure and the critical 

failure threshold is assumed to be predetermined and fixed. Therefore, the level of 

degradation in the system or the total damage to the system is defined as follows: 
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( )

1

( )( )

1

( ) ( ) ( )

N t

i

i

N tw t

i

i

D t X te w t







          (9) 

Where ( )X t  denotes the aging process according to a gamma process with shape and 

scale parameters   and  , respectively. Also, the second term,
( )

1

( )
N t

i

i

w t


 , refers to 

accumulated damage due to non-fatal shocks. The system operates until when either the 

system is taken down for maintenance or a fatal shock arrives to the system. Therefore, 

the system inter-maintenance time is in general defined as min{ , }d sT T T . Therefore, we 

have the following expression: 

0

0

0

( ) (min{ , } )

( , )

( , | ( ) ) ( ( ) )

( | , ( ) ) ( | ( ) ) ( ( ) )

( | ( ) ) ( | ( ) ) ( ( ) )
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









  

  

    

      

     







   (10) 

Where dT  and sT  are the system’s inter-maintenance time due to degradation process and 

sudden failure (fatal shock arrival), respectively. It is assumed that shocks arrive to the 

system based on Homogeneous Poisson process with rate parameter , and they can be 

fatal to the system with probability p ; thus, we can conclude that

( | ( ) ) (1 )n

sP T t N t n p    . Also, based on Lehmann (2009), we know that  

1

( )

1

( | ( ) ) ( ( ) S | ( ) ) ( ( ) ( ) )

n

i

i

nw t

d PM i PM

i

P T t N t n P D t N t n P X te w t S







         (11) 
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According to Chapter 4, it is difficult to obtain the convolution CDF for
( )

1

( ) ( )
N t

i

i

Z t w t


 . 

However, using the Central Limit Theorem, we can approximately assume that the 

accumulated shock damage magnitudes follow a normal distribution. In other words, the 

density function of Z( )t can be estimated by a normal distribution with the mean and 

variance as follows: 

( )

( )

1

[ ( )] ( )
2

N t

Z t i

i

E w t t


 


          (12.1)   
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2 2

( )

1

[ ( )] ( )
2

N t

Z t i

i

t
Var w t t t


   



          (12.2) 

Therefore, the expression in (10) can be written as 

1

( )

1 1 1
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( ( ) ( ) | ( ) , ( ) ) ( ( ) )

( ( ) ) ( )

( ) ( )

n

i

i

d d PM

n n nw t

i PM i i

i i i

Z ty

PM

Z t

Z t

X PM

Z t

P T t N t n P T t N t n P D t S N t n

P X te w t S N t n w t z P w t z

y
P X te S y d

y
G S y d
















  









       


     


    


   

  





           (13) 

Where GX(.) is the gamma CDF function. Thus, by substituting Equation (13) in Equation 

(10), the system’s mean time-to-maintenance is calculated as 



108 

 

 

 

 

( )

0 ( )

( )

0 ( )

0

( )
( ) (1 ) { ( ( ) ) ( )}

!

[ (1 )]
{ ( ) ( )}

!

and

E[T] ( )

t n
Z tn y

PM

n Z t

t n
Z t

X PM

n Z t

y e t
P T t p P X te S y d

n

y e t p
G S y d

n

P T t dt






 



 



 

 

 

 




      

 
   

 

 

 



   (14) 

Since the maintenance is imperfect and the residual damage after maintenance action is 

stochastically increasing, the average inter-maintenance time decreases in number of 

maintenance actions. Therefore, 

1

(1) ( 2)
1

1 1

1 1

0

1 1

[ ] [ [ | ]] [ | ] ( )
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( ) ( 1) ( ) ( 2) ( )
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 
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 
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      (15) 

Where 1 1iI    refers to the event that the system is maintained at ( 1)thi   maintenance 

because the level of degradation exceeds PMS . Also, 1 2iI    states that the system is 

repaired due to sudden failure at ( 1)thi   maintenance. Taking into consideration all the 

above assumptions and Equation (15), the mean inter-maintenance time after ( 1)thi   

maintenance is expressed as: 
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1

1 1 1
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  (16.1) 

Also, 
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           (16.2) 

Where   is the standard normal cumulative distribution. 

5.4.2. Repair Times 

(2)

iM and (1)

iM  refer to the system’s thi maintenance time exactly after sudden failure or 

when the degradation level exceeds PMS , respectively. Therefore, the average 

maintenance time is described as 
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  (17.2) 

Where ( 1) ( )i di siP I P T T  
 
addresses the probability of an event that thi  maintenance is 

performed given that the total degradation level reaches to the maintenance threshold 

before a fatal shock arrives to the  system. As noted from equation (17.2), the probability 

of maintenance due to either of degradation or hard failure are dependent on several 
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factors including the number of maintenance actions, residual damage level after 

maintenance, and the maintenance threshold. That is, these probabilities change over the 

system life span.  

Now that the mathematical expressions for inter-maintenance and repair times have been 

presented, we use the optimization formulation presented in 5.3.2 as presented below: 

1

2 2min

2 2min

1

1

( )

. .

0 (18.1)

( ) [0, 1] (18.2)

(N) (18.3)

[ ] (18.4)
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i

Max A S

s t

S S

A i A i N

A A

E T T



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  


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5.4.3. Optimization Procedure 

In order to obtain the optimal maintenance threshold we utilize the following 

optimization algorithm which was firstly proposed by Liao et al. (2006). 

1) Set PMS  to a small value within[0, ]S .  

While PMS S  do 

2) Calculate all mean operating times, [ ]iE T , and mean downtimes, 1[ ]iE M  . 

3) Calculate the average short-run availability, 2 ( )A i  for all maintenance actions i .  

4) Find the minimum number of maintenance, N, such that it violates 2 2min( )A N A .  

5) Calculate the total operating times, 
1

1

[ ]
N

i

i

E T




 ; If 
1

1

[ ]
N

i total

i

E T T




 , do steps 6 and 7, 

otherwise go to step 8. 

6) Calculate the objective function, the system achieved average availability, 1( )PMA S . 

7) Record the associated value to PMS .  

8) Increase PMS by a small increment. 
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End 

9) Choose optimal
*

PM
S such that it maximizes 1( )PMA S . 

5.5. Numerical Analysis 

Consider that the degradation process follows a stationary gamma process with 

parameters 1   and 3  . The shocks are arriving to the system according to a Poisson 

process with rate parameter 0.1  . Each shock causes sudden failure with probability

0.2p  , and the shock effect coefficient is considered to be 0.1  . The shock damage 

magnitudes are assumed to be independent, time-dependent, and distributed according to

2(0.5 ,0.05 )N t . The system critical failure threshold due to degradation process is 15S  , 

and we require that the average short-run availability of the system after each 

maintenance not to be less than 2min 0.9A  . The replacement time is equal to 1  , and 

the repair time parameters when the system due to degradation are 0 0.02   and 

0 0.02  . Also, those parameters are set to 1 0.04   and 1 0.03   when the system fails 

due to hard failure. It is assumed that 1 20.5, 0.7,   and 2 0.005  . The minimum 

total operating time for this system is defined to be 35totalT  . We aim to investigate the 

optimal preventive maintenance threshold for this system which maximizes the system 

average achieved availability, 1A , and meets constraints 18.2-4.  

Figure 5-3 plots the system achieved average availability versus PMS . The increments in

PMS  is by 1 unit until it reaches to 15S  . Note that the achieved availability for 4PMS   

is not shown in Figure 5-3 because the total operating time in a cycle does not exceed 

35totalT   for those values of PMS . As it can be noted from Figure 5-3, the optimal 
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preventive maintenance threshold is 9, i.e. * 9PMS  , and the maximum achieved 

availability for the system is 0.9712. That is *

1 0.9712A  .  

 

Figure 5-3: The system achieved availability versus PMS
 

 

Table 5.1 shows the average short-run availability for up to maintenance number 6 versus
 

PMS  and the system total operating time. As it can be noted from Table 5.1, the total 

operating time is increasing in PMS .  

Table 5.1: The average short-run availability versus maintenance number and PMS  

Maintenance Action Number 

PMS  1 2 3 4 5 6 

Total 

Operating 

Time 

4 0.991928 0.991405 0.991138 0.990963 0.990773 0.990579 36.96 

5 0.993282 0.991807 0.990713 0.990237 0.989776 0.989348 41.005 
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6 0.994792 0.992605 0.990467 0.989628 0.988808 0.987985 44.2125 

7 0.995749 0.993429 0.991135 0.988745 0.987476 0.98661 47.8975 

8 0.996152 0.994234 0.990996 0.98855 0.986364 0.985016 50.595 

9 0.996476 0.99452 0.991504 0.987571 0.985848 0.983293 53.4675 

10 0.996715 0.994805 0.991629 0.987892 0.984231 0.981365 55.9475 

11 0.996805 0.99501 0.991671 0.987181 0.982625 0.979574 57.9175 

12 0.996923 0.995109 0.991642 0.986889 0.980952 0.976409 60.2975 

13 0.996948 0.995235 0.991433 0.985993 0.979477 0.973897 61.9575 

14 0.996889 0.99521 0.991362 0.98487 0.977647 0.970623 64.7025 

 

Table 5.2 addresses the effect of the rate parameter of shock arrivals,   on sensitivity the 

optimal maintenance policy . Note that Table 5.2 shows the results for when constraint 

(18.4) is relaxed. Otherwise, there is no feasible optimal maintenance policy for 0.5  . 

It can also be seen that the optimal maintenance threshold and optimal achieved average 

availability are decreasing in  . This is because the likelihood of hard failure increases 

as  increases. Such an event deteriorates the mean inter-maintenance time, average 

short-run availability, and system’s average achieved availability. Also, incrementing PMS

, at the same time, leads to reduction in the probability of maintenance action due to 

degradation reaching the preventive maintenance threshold and to increase in the 

probability of sudden failure. Therefore, the effect of PMS  on the overall system mean 

inter-maintenance time, [ ]E T , is considerably reduced.  

Table 5.2: Sensitivity analysis of optimal maintenance policy on  

  0 0.05 0.1 0.2 0.5 0.8 1 2 

*

PMS   11 10 9 6 4 1 1 1 

*

1A   0.9817 0.9761 0.9715 0.9640 0.9528 0.9518 0.9513 0.9497 

 

Figure 5-4 plots ( )di siP T T  versus PMS  in respective with maintenance numbers. Note 

that ( )di siP T T  refers to the probability that the system is repaired given that the 
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degradation level exceeds PMS . As noted from Figure 5-4, ( )di siP T T  decreases in PMS ; 

however, it increases in the maintenance actions  number. As PMS  increases, the 

probability that the degradation exceeds PMS  reduces, which means that the probability of 

sudden failure in the system increases.  

 

Figure 5-4: Probability of failure due to degradation versus PMS  for N maintenance 

actions 

 

Table 5.3 shows a sensitivity analysis of optimal maintenance policy on replacement time 

and repair parameters due to degradation process. The analyses for repair parameters due 

to sudden failure are symmetric. Thus, they are not shown here. The objective of this 

analysis is to investigate how the deviation from actual parameters affects the optimal 
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maintenance policy. Table 5.3 shows that *

PMS  is robust to the deviations in replacement 

time and 0 . However, *

1A  is overestimated if all parameters are 10% underestimated. 

Table 5.3: Sensitivity analysis of optimal maintenance policy on 0 0, ,    

 
0   0   Replacement Time 

( ) 

 -10% +10% -10% +10% -10% +10% 

*

PMS   10 9 9 9 9 9 

*

1A   0.9719 0.9702 0.9721 0.9703 0.9730 0.9695 

 

5.6. Conclusion 

This chapter contributes to the knowledge of degradation and shock modeling by 

developing a generalized optimal threshold-based CBM policy for a system subject to 

competing risks including degradation and sudden failure where imperfect maintenance 

and system availability as the objective function are simultaneously included. The model 

can accommodate the dependency or independency structure among competing risks. The 

maintenance is performed either when the system fails due to some kind of sudden failure 

or the level of one of degradation type of failure modes exceeds the maintenance 

threshold. To incorporate the effect of imperfect maintenance it is assumed that the state 

of system after maintenance does not restore it to as-good-as-new, and some residual 

damage remains in the system. Thus, the inter-maintenance times are decreasing in 

maintenance actions number. Also, it is assumed that the maintenance times are 

positively correlated with preventive maintenance threshold and number of maintenance 

actions. The corresponding mathematical problem is formulated. Sensitivity analyses on 

optimal preventive threshold are conducted, and the results are presented. The results 
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show that the optimal policy is sensitive to the rate of shock arrival to the system, and the 

optimal preventive maintenance threshold is in general robust to ten percent deviation in 

replacement time.  
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Chapter 6 : Conclusions and Future Work 

 

We have investigated three problems in reliability modeling of systems subject to 

degradation and random shocks, they are: (a) modeling of the system reliability 

considering the effect of system’s age and shock damage magnitudes, (b) modeling of the 

system reliability when the accumulated shock damages accelerate the underlying aging 

process, and (3) developing an optimal threshold-type CBM policy for systems subject to 

multiple competing risks with imperfect maintenance. In this chapter, we present the 

summary and conclusions of this dissertation and describe future research related to this 

dissertation.  

6.1. Summary and Conclusions 

6.1.1. Modeling Degradation and Random Shocks with Time-Dependent Damage  

In chapter 3, we study a system subject to both degradation and random shocks where the 

degradation process follows a gamma process with independent increments and the 

random shocks affect the system according to cumulative shock model. We assume that 

the shock damage magnitudes are time-dependent in order to model the effect of the 

system’s age and shock damage magnitudes. The mathematical formulation for system 

reliability and a parameter estimation procedure for accumulated damage path are 

developed. Numerical analysis and  Monte Carlo simulation of the system are conducted 

in order to validate the developed models. Results show that the  proposed model are 

effective in estimating system reliability and indeed, the use of gamma process to 
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describe the degradation of the system and the cumulative damage model to model the 

effect of the shocks is a realistic approach. 

6.1.2. Modeling Dependent Degradation and Random Shocks with Time-Dependent 

Damage Magnitudes 

In chapter 4, we extend the models presented in chapter 3 by incorporating a dependency 

between degradation and random shocks. We formulate the reliability expression for a 

system subject to degradation and random shocks where the shock damage magnitudes 

are time-dependent and accumulated shock damage accelerate the underlying degradation 

process (aging). In this model, a time-scaled transformation function similar to what was 

originally introduced by Wang (2011) is used to describe the effect of accumulated shock 

damage magnitudes on the degradation process. We formulate the system reliability 

expression for the problem. We also use an approximation approach based on Liu et al. 

(2008) to obtain system reliability expression. Similar to Chapter 3, we develop 

numerical analysis and simulation model to validate the analytical derivations of the 

system’s reliability. The results show that the developed model is effective and realistic.  

6.1.3. Optimal Condition-Based Imperfect Maintenance Policy for Systems Subject 

to Multiple Competing Risks  

Chapter 5 studies a generalized optimal threshold-based CBM policy for a system subject 

to multiple competing risks including degradation and sudden failure where maintenance 

is imperfect. This study extends the existing literature by developing an optimal CBM 

policy which simultaneously incorporates three important and practical concepts in 

maintenance namely: multiple competing risks, imperfect maintenance, and maximizing 

system availability instead of minimizing the long term system cost. The model also 
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generalizes the other models by accommodating the dependency or independency 

structure among competing risks. Maintenance is carried out either when failure happens 

or when the level of degradation indicator corresponding to one of failure modes reaches 

the preventive maintenance threshold. The imperfect maintenance is incorporated in the 

system by considering a residual damage in the system after maintenance. Therefore, the 

system inter-maintenance times are expected to be decreasing with the maintenance 

number. The maintenance is carried out until the average short-run availability 

immediately after maintenance is less  than the minimum required threshold; Next, a 

special case of such a problem is studied where the underlying system is subject to only 

two independent competing risks named degradation process and sudden failure. The 

results conclude that the optimal policy is robust to deviations in replacement time and it 

is decreasing with the rate of shock arrival to the system. 

6.2. Future Research 

Future research of this dissertation focuses on the following problems: 

Problem 1: This dissertation focuses on reliability estimation for systems subject to 

degradation and shock where the system is only composing of single component. This 

can be extended by studying the reliability modeling of multi-unit systems subject to 

degradation and shocks where the correlation among unit’s degradation is taken into 

consideration. This is applicable to different system’s configurations such as parallel, 

series-parallel and parallel-series configurations. 

Problem 2: we studied the effect of system’s age on shock damage magnitude. This can 

be extended by incorporating the effect of system’s state, i.e. total damage, on shock 



120 

 

 

 

damage magnitudes. The systems are more vulnerable to damage as time goes by. The 

system degradation is not only due to aging but also it can be due to cumulative damage 

from non-fatal shocks. Thus, it is reasonable to consider a correlation between the level 

of total degradation and the shock damage magnitudes. 

Problem 3: The proposed optimal threshold-type CBM can be extended by incorporating 

multi-objective optimization of long term maintenance cost and system’s average 

achieved availability when the system has multiple components with standby units. 

Budgeting and costs always play a key role in any engineering decision making 

framework. At higher cost, the system can be replaced more often in order to achieve 

higher system availability. Thus, it is valuable to evaluate the presented maintenance 

policy optimization problem when both availability and cost are taken into consideration. 

Our optimization problem can be studies for a case when standby components are 

available to operate whenever the system is under repair. Such a policy can improve the 

system's overall availability; however, this strategy costs more due to the maintenance 

costs of the standby components. Therefore, studying such a problem with the 

consideration of multi-objective framework can be a valuable future work. 
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