
STOCHASTIC DILEMMAS:
FOUNDATIONS AND APPLICATIONS

BY SERGIU GOSCHIN

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Michael L. Littman and Haym Hirsh

and approved by

New Brunswick, New Jersey

May, 2014

ABSTRACT OF THE DISSERTATION

STOCHASTIC DILEMMAS:

FOUNDATIONS AND APPLICATIONS

by SERGIU GOSCHIN

Dissertation Director: Michael L. Littman and Haym Hirsh

One of the significant challenges when solving optimization problems is ad-

dressing possible inaccurate or inconsistent function evaluations. Surprisingly

and interestingly, this problem is far from trivial even in one of the most ba-

sic possible settings: evaluating which of two options is better when the val-

ues of the two options are random variables (a stochastic dilemma). Problems

in this space have often been studied in the statistics, operations research and

computer-science communities under the name of ”multi-armed bandits”. While

most of the previous work has focused on dealing with noise in an online set-

ting, in this dissertation, I will focus on offline optimization where the goal

is to return a reasonable solution with high probability using a finite number

of samples. I will discuss a set of problem settings of increasing complexity

that allow one to derive formal algorithmic bounds. I will point to and dis-

cuss interesting connections between stochastic optimization and noisy data

ii

annotation, a problem where the goal is to identify the label of an object from

a series of noisy evaluations.

As a first contribution, I will introduce and formally analyze a set of novel

algorithms that improve the state of the art and provide new insights for solv-

ing the stochastic optimization and noisy data-annotation problems. I will then

formally prove a novel result: That a widely used derivative-free optimization

algorithm (the cross-entropy method) is optimizing for quantiles instead of

expectation in stochastic optimization settings. I will back up the theoretical

claims on the optimization side with experimental results in a set of non-trivial

planning and reinforcement-learning domains. Finally, I will discuss the ap-

plication of the above algorithms for solving noisy data-annotation problems

in a setting involving real crowdsourcing experiments.

iii

Preface

Parts of chapters 2 and 3, are joint work with Chris Mesterharm and Haym

Hirsh. Parts of chapters 4 and 5 have appeared in Goschin et al. [2012] and

are joint work with Ari Weinstein, Michael Littman and Erick Chastain. The

key theoretical result from chapter 6 has appeared in Goschin et al. [2011] and

is joint work with Michael Littman and David Ackley. The connection to the

Cross-Entropy method and the empirical results from chapter 6 have appeared

in Goschin et al. [2013] and are joint work with Ari Weinstein and Michael

Littman.

iv

Acknowledgements

This dissertation would not have been possible without the support of a lot of

people through the years and it is thus mostly a consequence of their tremen-

dous help.

I would first like to thank my advisers, Michael Littman and Haym Hirsh,

for their careful guidance, patience and for continuously challenging me to

become a better researcher. I could not have asked for better mentors.

I am deeply grateful to Michael for teaching me how to do research and

how to communicate results effectively. His ability to always find the right

balance between guiding and allowing me to follow my own path never ceases

to amaze me. I owe a lot to Michael for showing me the beauty of formally

solving algorithmic problems, a process which had a significant and positive

impact on both my professional and personal life.

I am equally grateful to Haym for teaching me the importance of creativity

in research and the value of connecting seemingly disparate research areas. His

pragmatic perspective combined with a patience and a belief in my abilities

that I did not deserve and for which I am indebted, allowed me to grow in

ways I did not foresee when I started graduate school. I owe Haym a lot for

showing me how to become an applied researcher.

I would also like to thank my committee members, Swastik Kopparty and

Shie Mannor for their very valuable suggestions that significantly improved

this dissertation.

v

Among my co-authors, I would like to especially thank Tom Walsh, Chris

Mesterharm and Ari Weinstein. At various stages during graduate school, Tom

and Chris acted as excellent mentors and I am very grateful for the time we

spent doing research together. I would also like to thank them for reviewing

parts of this dissertation. Ari had an important impact on my research and I

benefited in lots of ways from our frequent brainstorming sessions and from

the time we spent writing papers together.

I would also like to thank Alex Borgida for his advice and direction in my

first year in graduate school and Michael Saks for showing me the beauty of

combinatorics.

I want to thank the members of the RL3 laboratory, Michael Wunder, John

Asmuth, Monica Babeş-Vroman, Erick Chastain, Chris Mansley, Carlos Diuk

for the many things I learned from them and for hanging out and debating

various topics in the lab, all of which made graduate life significantly more

exciting.

Last, but far from least, I would like to thank my amazing wife Simona

and my great parents, Paula and Ion-Marian. I would not have been able to go

through graduate school and complete this dissertation without Simona’s love,

patience and unconditional support. It is hard to put into words my gratitude

for my parents’ love and dedication to my education and well-being.

vi

Dedication

Pentru Simona şi părinţii mei, Ion-Marian şi Paula.

vii

Table of Contents

Abstract . ii

Preface . iv

Acknowledgements . v

Dedication . vii

List of Tables . xiii

List of Figures . xiv

1. Introduction . 1

1.1. Contributions . 5

1.1.1. A Common Theme . 7

1.1.2. Thesis Statement . 8

2. Stochastic Dilemmas . 9

2.1. Introduction . 9

2.2. Model . 11

2.3. Known Parameters . 12

2.3.1. Majority Vote . 12

2.3.2. Beat-By-K . 15

2.3.3. Lower Bounds . 17

2.3.4. Beat-By-K vs (Early) Majority Vote 19

viii

2.4. Unknown Parameters . 26

2.4.1. Hoeffding Rejection . 27

2.4.2. Lazy Hoeffding Rejection 32

2.4.3. Confidence Sequences . 35

2.4.4. Lower Bounds . 39

2.5. Summary and Discussion . 40

2.5.1. Known Parameters . 40

2.5.2. Unknown Parameters . 41

3. Label Identification . 44

3.1. Introduction . 44

3.2. Model . 45

3.2.1. Parameter ε . 46

3.2.2. Distribution P . 47

3.2.3. Discussion . 48

3.3. Related Work . 50

3.4. Algorithms . 51

3.4.1. Naive Majority Vote . 52

3.4.2. Stopped Hoeffding Rejection 53

3.4.3. Naive Beat-By-K . 56

3.4.4. Averaged Beat-By-K . 58

3.5. Experimental Results . 61

3.5.1. Synthetic Domains . 65

3.5.2. Recognizing Digits . 67

3.5.3. Galaxy Zoo . 69

ix

4. Infinite Bandits . 75

4.1. Introduction . 75

4.2. Related Work . 76

4.3. Models . 78

4.3.1. 2-Armed Bandit . 78

4.3.2. PAC Bandit . 79

4.3.3. Infinite PAC Bandit . 79

4.4. On Reductions . 81

4.4.1. From Stochastic Dilemmas to 2-Armed Bandits 81

4.4.2. From Stochastic Dilemmas to PAC Bandits 82

4.4.3. From Stochastic Dilemmas to Infinite PAC Bandits 83

4.4.4. From PAC Bandits to Infinite PAC Bandits 86

4.5. Lower Bounds . 87

4.6. A Novel Algorithm - Greedy Rejection 89

4.6.1. Applications of Greedy Rejection 102

4.7. Greedy Hoeffding Rejection . 104

4.8. Summary and Discussion . 107

5. Planning in Reward-Rich Domains via Infinite Bandits 111

5.1. Introduction . 111

5.2. Model . 112

5.2.1. Distribution P . 113

5.2.2. Parameter r0 . 114

5.2.3. Parameter ε . 115

5.3. Illustration - Infinite Mario . 116

5.4. Algorithms . 118

x

5.4.1. Iterative Uniform Rejection (IUR) 119

5.4.2. Iterative Hoeffding Rejection (IHR) 121

5.4.3. Greedy Hoeffding Rejection (GHR) 123

5.5. Experimental Results . 126

5.6. Summary . 129

6. The Cross-Entropy Method Optimizes for Quantiles 130

6.1. Introduction . 130

6.2. Related Work . 133

6.3. Algorithms . 134

6.3.1. The Cross-Entropy Method 135

6.3.2. The m-Cross-Entropy Method (mCE) 137

6.3.3. Proportional Cross-Entropy 138

6.4. Illustration - Tetris . 139

6.5. Model . 142

6.6. Theoretical Results . 143

6.6.1. Proportional Cross-Entropy 144

6.6.2. The Cross-Entropy Method 146

6.7. Experiments . 151

6.7.1. Die4 . 151

6.7.2. Inventory Control . 153

6.7.3. Tetris . 155

6.7.4. Blackjack . 156

6.8. Summary . 159

7. Conclusions and Future Work . 161

xi

8. Appendices . 165

Appendix A. Technical Tools . 166

A.1. Hoeffding Inequality . 166

A.2. Random Walks . 166

A.3. Asymptotics With Multiple Complexity Parameters 169

Appendix B. Proofs Chapter 5 . 171

B.1. Proof of Theorem 5.4.1 . 171

B.2. Proof of Theorem 5.4.2 . 172

B.3. Proof of Theorem 5.4.3 . 173

B.4. Proof of Theorem 5.4.4 . 174

B.5. Proof of Theorem 5.4.5 . 176

References . 180

xii

List of Tables

2.1. Summary of the results for a SD(p, δ) for p unknown 42

3.1. The performance of the algorithms on the training and test datasets

when the target failure probability is δ ≤ 3.4%. 74

4.1. Summary of the expected sample complexity bounds for solving

various PAC Bandit models. Color code: tight bounds (green

background), gap between upper and lower bounds (red back-

ground), new result from this thesis (blue font), previous result

(black font). References: [1] is Even-Dar et al. [2002] and [2] is

Mannor et al. [2004] . 108

xiii

List of Figures

3.1. Results of comparing (a) BBK and (E)MAJ (top left), (b) BBK and

(L)HR, CSQ (top right) for a Stochastic Dilemma oracle with pa-

rameter p = 0.4 and similarly (c) (bottom left), (d) (bottom right)

for a uniform oracle. 65

3.2. Example of noisy images submitted for labeling on Amazon Me-

chanical Turk. 67

3.3. Empirical P oracle for the digits dataset (digit 7 is allocated to

label 0 and digit 1 to label 1). 68

3.4. Results of comparing the algorithms on the digits dataset. . . . 69

3.5. Several examples of the classification of galaxies as being smooth

and round or not. The percentages represent average 70

3.6. Empirical P oracle for the galaxy dataset for the (a) Smooth vs

Non-Smooth question (left) and (b) Odd vs Non-Odd question

(right). 71

3.7. Empirical comparison of the algorithms on the galaxy smooth

and galaxy odd datasets. 72

3.8. Empirical comparison of the algorithms when we set as a stop-

ping rule a maximum budget of size 50 (top-left and top-right)

and 100 (bottom-left and bottom-right) 73

xiv

5.1. A screenshot of Infinite Mario and plots of the distribution of the

sample complexity for an algorithm that pulls each arm once

(x-axis log-scale). The distributions are plotted for 2 of the 50

Infinite Mario levels corresponding to the first (easy) and third

(hard) quartiles. See the section 5.4 for more details. 116

5.2. Plot of distribution of the sample complexity (pulls needed) of

the algorithms over a set of 1000 repetitions. The distributions

are plotted for 3 different Pitfall! levels (shown along with a

representation of a successful policy in the lower half of the fig-

ure). All experiments used δ = 0.1, ε = 0.1 and r0 = 0.4 for the

screens on the left and right and r0 = 0.3 for the screen in the

middle. 127

6.1. A simple experiment for two policies in Tetris. 140

6.2. Die4, Inventory Control and Tetris experiments 152

6.3. Blackjack experiments. Subfigures top (left, right): (a), (b), mid-

dle (left, right): (c), (d), down (left, right): (e), (f) 157

xv

1

Chapter 1

Introduction

At the highest level, solving an optimization problem requires finding the ar-

gument that minimizes or maximizes a scoring (or reward) function. The goal

of designing an optimization algorithm is thus to find the optimal input when

given query access to the range of the function, while using as few function

evaluations as possible.

Among the difficulties encountered when solving real optimization prob-

lems, we mention that: (1) the evaluation for a chosen input can be inconsistent

and (2) arbitrarily delayed in the future, (3) the actual optimal value might not

be known a priori, (4) the input space can be highly dimensional or (5) the out-

put of the function to be optimized can be multimodal. Moreover, an optimiza-

tion algorithm might be constrained to have: (6) only partial control over what

input it can choose to evaluate next, (7) only partial visibility of the state where

it transitions after one evaluation, (8) a limited budget for function evaluations

and (9) limited computational resources.

Most real problems have most, if not all, of these characteristics, and de-

signing efficient algorithms for solving them is far from trivial. Most of the

challenges described above are to a large extent still topics of active research in

computer science, operations research or statistics.

Zoom In: Inconsistent Evaluations.

The main focus of this dissertation will be the topic of inconsistent function

2

evaluations. An evaluation is inconsistent or variable or noisy if two evalua-

tions of the function for the same input can yield two different outcomes.

Noisy evaluations are the rule rather than the exception in real optimiza-

tion problems. Administering a drug to a population of patients can yield very

different outcomes, ranging from helpful to harmful. Similarly, investing in

a particular company on the stock market can yield significant gains, catas-

trophic losses or some intermediate results. As another example, positioning

various advertisements on a search page usually leads to different click rates

depending on their quality and how well they match the search queries. These

optimization problems (finding the best drug for a disease, the best compa-

nies on the stock market, or the best ad for a search query) are difficult mainly

because the algorithms need to take decisions in an uncertain environment.

Several models have been proposed for processes that generate noisy eval-

uations. In the worst case, we can imagine an adversary that adapts to our

history of inputs [Auer et al., 2003]. As an example, if the goal is to win a

game against a competitive player, the optimization strategy should take into

account the fact that an adaptive adversary is likely to change its strategy and

respond to a fixed input with different actions at different times. Another type

of process that generates varying function values is a distribution that drifts in

time. As an example, if the optimization problem for a major news website is

to keep its main page updated with the most interesting topics, then it has to

continuously track the current major events, which sometimes change every

few minutes.

Zoom In: Stochastic Optimization.

In this dissertation, I focus on a simpler noise model: for a fixed input, the

values are independent and identically distributed (iid) samples from some

3

distribution. Natural examples of such problems include situations in which

the function evaluations correspond to noisy measurement of some physical

quantity. Consider, for example, designing a router to minimize delays when

sending packages to a particular destination reachable through several differ-

ent paths. Every time a package is sent on a path, the delay can vary and

modeling it as a sample from some fixed distribution is a reasonable model (at

least for short time intervals).

But, if the evaluations are samples from a distribution, an important ques-

tion is: What are we optimizing for? The answer is clear in a deterministic

setting (that is, when the evaluations for a fixed input are always the same),

but less obvious in the noisy case. Are we targeting the “best” noise distri-

bution, the “best” expected value, the best “quantile” value or something else?

These objectives are generally not aligned and, more importantly, ordering dis-

tributions does not (usually) lead to a total order.

For most of the dissertation I focus on optimizing for expectation (the stan-

dard choice in stochastic optimization) and, in Chapter 6, I will discuss op-

timizing for quantiles (an objective known as Value at Risk in mathematical

finance). To make the problem formal, for some sets X, Y and a set of distri-

butions Dx∈X[Y], let F be an evaluation or scoring function F : X → Dx∈X[Y]

accessible via samples f (x) ∼ Dx[Y] . The goal is to find:

• x∗ = argmaxx∈X EDx [F(x)] or / and

• xθ = argmaxx∈X qx(θ), for a fixed θ ∈ (0, 1) (with qx(θ) being the quantile

functions)

while minimizing the number of samples.

To address the core issues of optimizing in noisy settings, I simplify all the

4

other design choices of an optimization problem except the one concerning

variable function evaluations. In particular, I will mostly focus on one of the

models that has been heavily studied in the past few decades in statistics and

computer science: multi-armed bandits [Robbins, 1952]. In this model, the range

of the function to be optimized is finite and ”small” (X = {1, 2, . . . , n}with the

inputs labeled arms). In this context, it is acceptable for the number of evalua-

tions (which we will also call sample complexity) of an algorithm to be linear

in the size of the input space X. This assumption simplifies the challenges of

designing optimization algorithms, with the only difficulty that remains to be

addressed being variable function evaluations. While the simplification is sig-

nificant, the algorithmic insights are very helpful in more complex settings, as

I will also demonstrate in this dissertation.

Most of the research in multi-armed bandits in the case of stochastic re-

wards focuses on online optimization [Auer et al., 2002], where the goal is to

minimize the expected difference between the reward of a strategy and the re-

ward of the best policy in retrospect (with this type of performance measure

usually known as minimizing the expected cumulative regret).

We will instead focus on offline optimization where the goal is to return,

with high probability and with finite sample complexity, the item with the

highest expected value. This type of model has been formalized by Even-Dar

et al. [2002] under the name of PAC-Bandits. It is motivated by applications

like stochastic planning, where the standard optimization goal is to return in

finite time a reasonable action recommendation to be executed in an intrinsi-

cally uncertain environment.

I will simplify the multi-armed bandit model in Chapter 2 and assume that

5

we only have to deal with one arm that has one of two possible expected val-

ues. The goal is to find which of these two values the arm has and I will call

this problem a Stochastic Dilemma (which is also known in the literature as the

problem of learning a biased coin). I will show in Chapter 4 that a Stochastic

Dilemma is equivalent to solving a multi-armed bandit problem with n = 2

arms. While the problem might seem (deceptively) simple, we don’t yet know

of an optimal algorithm for it. Moreover, a Stochastic Dilemma is a rich source

of algorithmic and analysis ideas that can be used in more complex stochastic

optimization problems.

1.1 Contributions

In this section, we preview the key contributions from this dissertation. In each

chapter, I informally introduce a problem, motivate it and formally describe

the model for it. I then focus on the theoretical aspects and discuss upper and

lower bounds and, in the applied chapters, I present the experimental results.

Chapter 2. The key contribution of Chapter 2 is a new type of adaptive

algorithm (Beat-By-K)—based on the analysis of the classical ruin problem

from random walks—for solving stochastic dilemmas. I show that Beat-By-K

is provably better than non-adaptive strategies and that Beat-By-K is a constant

multiplicative factor better than the tightest lower bound for non-adaptive al-

gorithms. I show that Beat-By-K improves a simple adaptive version of such

strategies. I also describe several related algorithmic tools introduced in statis-

tics and computer science to solve a more difficult version of the problem.

Chapter 3. In the third chapter, I extend the algorithms from Chapter 2 to

solve a more general stochastic dilemma and empirically investigate whether

6

they are viable annotation strategies in a crowdsourced data annotation set-

ting involving experiments with Amazon Mechanical Turk (AMT) and Galaxy

Zoo [Willett et al., 2013]. I demonstrate empirically that Beat-By-K dominates

several other baseline methods for data annotation.

Chapter 4. The key contribution of the fourth chapter is a proof of how a

variation of Beat-By-K is asymptotically optimal in an extension of the Prob-

ably Approximately Correct (PAC) Bandit framework [Even-Dar et al., 2002]

involving an infinite number of arms. The result is interesting because it pro-

vides an alternative to algorithms inspired by Median Elimination (the only

known asymptotically optimal algorithm in the PAC Bandit setting). We also

discuss the relations between several multi-armed bandit models and various

reduction techniques.

Chapter 5. The contribution of Chapter 5 is to generalize the infinite bandit

model from Chapter 4 and extend the algorithms introduced in the preceding

chapters with the goal of applying them to solve realistic stochastic planning

problems. I describe experimental results in the computer games Infinite Mario

and Pitfall.

Chapter 6. In Chapter 6, I prove novel theoretical results about the Cross-

Entropy Method (CE), a global optimization algorithm known to have excel-

lent empirical properties in solving a variety of difficulty real-world optimiza-

tion problems. In particular, I prove that CE optimizes for quantiles in a stochas-

tic optimization context and demonstrate that the theoretical result is consis-

tent with empirical results in several benchmark problems. I also provide a

simple modification to CE that maximizes for the expected value.

Chapter 7. I conclude the thesis in Chapter 7 with a summary of the contri-

butions and a discussion of future work.

7

1.1.1 A Common Theme

Beyond the exact definitions of the models, the phenomenon of iid noise in

function evaluations is a central concern in all the problems presented in the

dissertation. It is thus not surprising that algorithmic techniques like Hoeffd-

ing Races [Maron and Moore, 1997] appear over and over again in various

forms in stochastic optimization.

By focusing on some of the simplest possible models in the first chapters,

the hope was to uncover other key algorithmic ideas that would positively

impact the practice of stochastic optimization. From this perspective the Beat-

By-K algorithm (Chapter 2), the Greedy Rejection algorithm (Chapter 4) and

the (previously unknown) properties of the Cross-Entropy Method (Chapter 6)

are the key contributions in this dissertation.

From a modeling perspective, there is a common template to the problems

we discuss. At a high level, we are given sampling access to a distribution P

over “items” and a threshold value θ as a parameter. The goal is to decide for

each item sampled from P whether it has an expected value above or below

the threshold. It is this type of binary decision in a noisy setting that motivates

the title of the dissertation: Stochastic Dilemmas.

Concretely:

• In Chapter 2, P is a uniform distribution over two values, θ = 0.5. and

the goal is to classify an object drawn from P as having an expected value

larger or smaller than θ.

• In Chapter 3, P is an arbitrary distribution over [0, 1], θ = 0.5 and the

goal is the same as in the second chapter.

8

• In Chapter 4, algorithms are given sampling access to P (which is a cat-

egorical distribution over two values), θ = 0.5 and the goal is to find an

object with expected value larger than θ.

• In Chapter 5, we generalize P to be again an arbitrary distribution over

[0, 1], θ is an arbitrary value in [0, 1] and the goal remains unchanged as

compared to the fourth chapter.

• In Chapter 6, for a fixed iteration of the Cross-Entropy method, P is a

distribution maintained by the algorithm over the input space as a way

to balance exploration and exploitation, and θ is defined implicitly as the

value that separates the “elite” sample from the rest of the current set of

sampled inputs.

DistributionP plays the role of a natural oracle providing items to an agent.

We interpret P as playing an analogous role to that of the target distribu-

tion over data items in the Probably Approximately Correct learning frame-

work [Kearns and Vazirani, 1994], with the key difference that we focus on

optimization as opposed to learning problems in this dissertation. We discuss

the motivation and the role of P in detail in Sections 3.2.2 and 5.2.1.

1.1.2 Thesis Statement

Noise in function evaluations makes even the simplest optimization prob-

lems difficult. Developing correct and efficient techniques for solving stochas-

tic dilemmas has a significant impact on improving the solving of more com-

plex stochastic optimization problems. I will introduce novel algorithms for

solving such stochastic dilemmas and prove how the analysis and algorith-

mic ideas can be re-used to solve more general problems.

9

Chapter 2

Stochastic Dilemmas

2.1 Introduction

We address the following problem: given an unfair coin, determine with high

probability whether the coin is biased towards heads or tails using as few flips

of the coin as possible (and we call this problem a stochastic dilemma). The an-

swer can be incorrect with a certain probability as there is always a chance that

the flips are not representative of the true bias. The problem is a key com-

ponent for the proofs in learning theory for Probably Approximately Correct

learning [Kearns and Vazirani, 1994; Anthony and Bartlett, 2009].

The standard algorithm, commonly referred to as Majority Vote, flips the

coin a fixed number of times and decides the direction of the bias based on the

majority label of the samples. Even though this algorithm is simple, it is often

used in practice. For example, it is the baseline method used for categorical

data annotation [Sheng et al., 2008].

Most of the previous theoretical work focused on obtaining lower bounds

on the number of flips necessary for solving the problem [Simon, 1993; Canetti

et al., 1995; Ben-David and Lindenbaum; Baxter, 2000; Anthony and Bartlett,

2009]. While the bounds are tight asymptotically, a lot of effort has been put

into improving the constant factors.

10

Almost all known results assume that the number of samples is fixed a pri-

ori as a function of the model parameters (that is the bias of the coin and the

desired failure probability), and lower bounds are proven using information-

theoretic arguments. The only exception we are aware of is a result by Mannor

et al. [2004] who extended the lower bound for adaptive strategies (that is al-

gorithms that make decisions based on the history of samples). One (implicit)

open question is whether such adaptive strategies, while more general, offer

an advantage with respect to non-adaptive algorithms like Majority Vote. This

question is resolved in the affirmative in this chapter.

Contributions. The main contribution from this chapter is to propose a

new type of adaptive algorithm (that we call Beat-By-K) based on the classical

ruin problem from random walks. We show that Beat-By-K is provably better

than non-adaptive strategies and that Beat-By-K is a constant multiplicative

factor better than the tightest lower bound for non-adaptive algorithms. We

also show that the performance of Beat-By-K exceeds that of a simple adaptive

version of such strategies.

We also examine a set of algorithms for solving a stochastic dilemma in a

setting where the bias of the coin is unknown. This version of the problem is

intrinsically harder and we will need different types of strategies that are able

to adapt to the unknown parameter. We will unify similar algorithmic ideas

introduced in various contexts: model selection in machine learning [Maron

and Moore, 1997], confidence sequences in statistics [Robbins, 1970] and multi-

armed bandits [Even-Dar et al., 2002].

Both types of algorithms are used as building blocks for designing strate-

gies for more complex problems in the rest of the dissertation. From this per-

spective, even if the model we work with in this chapter is simple, it captures

11

some of the fundamental characteristics of realistic noisy optimization, learn-

ing and data annotation problems.

2.2 Model

In this section, we will formally define the simplest version of a stochastic

dilemma. Let us also assume that for a fixed p ∈ [0, 0.5) we are given a set

of distributions

D = {D0 = Bernoulli(p),D1 = Bernoulli(1− p)} (2.1)

Let us also assume that we are given access to samples from an unknown dis-

tribution that was chosen according to a uniform distribution over D (D ∈ D).

Finally, let us assume we are given an accepted failure probability parameter

δ ∈ (0, 0.5).

The stochastic dilemma problem is to estimate with failure probability at

most δ the expected value of the distributionD, Ex∼D[x], while minimizing the

(expected) number of samples m(p, δ) from D. In addition, since the expected

value of D can only have two values, we constrain solutions to this problem to

be one of these two values.

We note that since the empirical average of a Bernoulli distribution is a

sufficient statistic for the parameter of the distribution, the problem above is

equivalent to deciding based on random samples whether D = Bernoulli(p)

or D = Bernoulli(1 − p), hence the label of stochastic dilemmas. For ease of

notation, we will label this problem SD(p, δ).

12

2.3 Known Parameters

In this chapter, we study two versions of the problem. In the first part (this

section), the value of the parameter p is assumed known. As we will see, this

assumption leads to an easier problem than when p is unknown and impacts

the type of performance one can get in practice in a variety of cases. Assuming

p is known is of course unrealistic in most practical settings. The assumption

is reasonable because in practice it is often possible to estimate p from previ-

ous samples, and then use an approximation of it afterwards. Thus, designing

algorithms that take advantage of such knowledge is of both practical and the-

oretical interest.

2.3.1 Majority Vote

We will use two variants of a baseline method that we call Majority Vote for

solving a stochastic dilemma.

Given a budget m(p, δ) (m odd, to be determined as a function of the pa-

rameters), Majority Vote obtains m samples xi ∼ D, i ∈ [m]. It then returns

D = D0 if the empirical average x̂ = ∑m
i=1 xi
m < 0.5 and D = D1 otherwise.

Early Majority Vote is an optimized version of Majority Vote that seeks la-

bels1 incrementally and stops once either label appears at least m+1
2 times, since

after that point additional labels will not change the outcome of the majority

vote.

1 We will use the terms “labels” and “samples” interchangeably in the dissertation.

13

Algorithm 1: Majority Vote (p, δ):

1. Take m = d 2
(1−2p)2 log 2

δe samples xi ∼ D, i ∈ [m] and let x̂ = ∑m
i=1 xi
n .

2. If x̂ < 0.5 return D0 otherwise return D1.

Approaches similar to Majority Vote approaches have been repeatedly stud-

ied in the literature. Majority Vote is one of the the baseline techniques used in

categorical data annotation [Sheng et al., 2008]. The reader is referred for ex-

ample to Yang and Carbonell [2009] for a detailed analysis of a general version

of majority vote and its upper bounds. Nevertheless, for completeness, we will

give a proof for an upper bound on the sample complexity for the version of

the algorithm described above.

Before proving the main theorem from this section, we will first state a fact

about the relation between Majority Vote and Early Majority Vote:

Fact 2.3.1. For any SD(p, δ) problem, and a fixed parameter m, Majority Vote(m) has

the same failure probability as Early Majority Vote(m).

Proof. Consider an arbitrary sequence of samples of length m. And consider

that Early Majority Vote takes m samples, but ignores all samples after a ma-

jority of 0 or 1 labels is formed (this change only affects the sample complexity

of the algorithm, not its decision about the identity of D).

The decisions of Majority Vote and Early Majority Vote with respect to the

identity of D, conditioned on that sequence actually happening, are of course

identical. Then, the failure probabilities of the two strategies for such a se-

quence are also the same. Since this fact applies to any sequence, it means that

the failure probability over all possible sequences is identical for both strate-

gies.

14

Theorem 2.3.2. If the (Early) Majority Vote algorithm takes m = d 2
(1−2p)2 log 2

δe =

O(1
(1−2p)2 log 1

δ) samples, it will correctly solve a SD(p, δ) problem.

Proof. We will show that choosing m as in the theorem statement is a sufficient

condition for solving the problem. Let q be the unknown parameter of D. If

we apply the Hoeffding’s inequality A.1.1 with α = 0.5− p, we get:

P(x̂ 6∈ (q− 0.5 + p, q + 0.5− p)) ≤ 2e
(1−2p)2

2 m (2.2)

If we constrain the error probability to be 2e
(1−2p)2

2 m ≤ δ, and we solve for

m, we get the relation from the theorem statement. To clarify the meaning of

this inequality, let’s assume q = p (the case q = 1− p is similar). Then the

inequality 2.2 states that the probability that x̂ ≥ 0.5 (which would lead to a

wrong decision given the definition of the algorithm) is at most δ (as desired).

Several observations are in order at this point:

• The bound in Theorem 2.3.2 is sufficient but not necessary. This fact is a

consequence of the implicit looseness of applying Hoeffding’s inequality.

As it will be shown in Section 2.3.3, there is a gap between the lower

bound and the upper bound for Majority Vote.

• It is worth noting that if δ ≤ p, then m = 1 is a sufficient condition for

solving the problem, since the probability that x̂ = x1 is on the “wrong”

side of 0.5 is at most p. So, the bound in the theorem statement is infor-

mative only when δ < p.

15

2.3.2 Beat-By-K

In this section, we will introduce a new algorithm, Beat-By-K (BBK), that can

be analyzed using random walk techniques. The key difference between Beat-

By-K and Majority Vote is that the number of samples BBK takes is a random

variable and not a deterministic quantity. BBK is thus part of a larger class of

strategies, and we will actually show in the following section that BBK strictly

dominates strategies like Majority Vote that stop after a predefined number of

samples.

To define the algorithm, let ∆t = #1-samples− #0-samples be the difference

between the number of 1-samples and the number of 0-samples from distribu-

tion D after t > 0 labels have been obtained. The Beat-By-K strategy takes one

parameter k(p, δ) (to be determined) and repeatedly seeks labels for a given

instance until the first time t when either ∆t = −k (in which case the algorithm

returns D0), or ∆t = k (when it returns D1 as an answer).
Algorithm 2: Beat-By-K (p, δ):

• Given a parameter k = d log 1−δ
δ

log 1−p
p
e, for every t = 1, 2, . . .:

1. Sample xt ∼ D, update ∆t = #1-samples− #0-samples.

2. Stop if either ∆t = k (and recommend D1) or ∆t = −k (and

recommend D0) or continue otherwise.

The formal properties of Beat-By-K are stated in the following theorem:

Theorem 2.3.3. The Beat-By-K algorithm with parameter k(p, δ) = d log 1−δ
δ

log 1−p
p
e =

O(1
1−2p log 1

δ) will return the correct answer to a SD(p, δ) problem with probability

at least 1− δ and it will take m(p, δ) ≤ 1
(1−2p)2 log 1−δ

δ + 1
1−2p = O(1

(1−2p)2 log 1
δ)

samples in expectation.

16

Proof. We can interpret the process of obtaining labels as a random walk on

the number line with two absorbing barriers (at −k and at k). The problem

of deciding the identity of D is thus equivalent to a random walk, but with

two possible (and hidden to the algorithm) probability distributions—one for

a Bernoulli(p) distribution and the other for the Bernoulli(1 − p) instance—

which bias it in opposite ways. Formally, ∆t is either a positively biased ran-

dom walk (with bias 1− 2p) or a negatively biased random walk (with bias

2p− 1). For more details about this interpretation the reader is referred to the

transformations before corollary A.2.2 in Appendix A.2.

The accuracy of the Beat-By-K strategy can be described as:

f (k) = P(k-strategy is accurate) (2.3)

= P(∆τ = −k|D = Bernoulli(p))P(D = Bernoulli(p))+ (2.4)

P(∆τ = k|D = Bernoulli(1− p))P(D = Bernoulli(1− p))

= 0.5P(∆τ
1 = −k|Bernoulli(p)) + 0.5P(∆τ

1 = k|Bernoulli(1− p)) (2.5)

= P(∆τ
1 = k|Bernoulli(1− p)) (2.6)

=
βk

βk + 1
(2.7)

with β = 1−p
p and where Equality 2.6 is obtained by using the fact that the

random walks are symmetric and thus have identical probabilities of reaching

the barrier in the direction in which they are biased. Now, replacing k0 = k1 =

k in Theorem A.2.2(i), we get that P(∆τ
1 = k|Bernoulli(1− p)) = βk

βk+1 .

In the worst case, we would need to round k to k′ = log 1−δ
δ

log 1−p
p

+ 1 to make sure

the failure probability is as desired (since we can only pick discrete values for

k). Now, if we replace this upper bound of k with the value from the theorem

statement then f (k′) ≥ 1− δ, which proves that the algorithm is correct with

probability at least 1− δ.

17

Let τ(k′) represent the number of labels obtained for an instance using the

Beat-By-K strategy. Using Theorem A.2.2(ii) and again the property that the

two random walks are symmetric we get:

τ(k) ≤ τ(k′) =
k′(βk′ − 1)

(1− 2p)(βk′ + 1)
(2.8)

≤ k′

1− 2p
(2.9)

≤
log 1−δ

δ

log 1−p
p (1− 2p)

+
1

1− 2p
(2.10)

≤ 1
(1− 2p)2 log

1− δ

δ
+

1
1− 2p

(2.11)

where for the last inequality we used the fact that 1/ log 1−p
p ≤

1
1−2p . It is thus

clear that τ(k) = O(1
(1−2p)2 log 1

1−2p).

2.3.3 Lower Bounds

The main goal in this section is to investigate the lower bounds on the sample

complexity for solving stochastic dilemmas when the parameter p is known.

We will prove that the two algorithms introduced in the previous sections are

asymptotically optimal. The more interesting result is that when we analyze

the two classes of strategies (that contain non-adaptive strategies like Majority

Vote and adaptive strategies like Beat-By-K), we can prove a constant gap be-

tween the lower bound for Majority Vote and the upper bound for Beat-By-K,

which formally shows that the latter is the dominant strategy (and this result

is the key contribution in this chapter). The proofs also point to a connection

with the literature on Probably Approximately Correct Multi Armed Bandits

[Even-Dar et al., 2002] that will be explored in depth in Chapter 4.

The first theorem states a lower bound on the sample complexity for algo-

rithms that always take a fixed number of samples. We call these algorithms

18

non-adaptive. The proof of theorem 2.3.4 is obtained by replacing the variables

from Anthony and Bartlett [2009] in Lemma 5.1 like so: ε = 1− 2p and δ = δ.

The argument of identifying the type of the coin remains the same.

Theorem 2.3.4 (Anthony and Bartlett [2009]). Any non-adaptive algorithm that

correctly solves a SD(p, δ) must take at least m(p, δ) samples from distribution D

where:

m(p, δ) = 2b1− (1− 2p)2

2(1− 2p)2 log
1

8δ(1− 2δ)
c = Ω(

1
(1− 2p)2 log

1
δ
) (2.12)

As mentioned above, one issue with the lower bound is that it only applies

to algorithms like Majority Vote but not to algorithms like Early Majority Vote

or Beat-By-K, that have potentially different sample complexities for different

runs. So, we need a more general lower bound, but this time on expected sample

complexity (which contains such strategies as well):

Theorem 2.3.5. Any algorithm that correctly solves a SD(p, δ) must take at least

m(p, δ) samples from D on expectation, where:

m(p, δ) =
C

(1− 2p)2 log
1
δ
= Ω(

1
(1− 2p)2 log

1
δ
), for some constant C > 0

(2.13)

Proof. The proof is based on a reduction to a PAC-Bandit lower bound from

Mannor et al. [2004]. Let us assume there exists an algorithm A(p, δ) that solves

a stochastic dilemma with parameters p and δ in o(1
(1−2p)2 log 1

δ). Consider

a 2-armed bandit problem (label the arms a1 and a2) with known difference

between the expected rewards of the best and the worst arms equal to 2(1−

2p). Using the notation from Section 7 from Mannor et al. [2004], let q∗ = 1− p

and choose ε = 1−2p
2 .

We can solve the 2-armed bandit problem in the following way: (1) Apply

algorithm A for arm a1 and then, (2) If A returns the distribution with a smaller

19

expected value, return arm a2 as being the optimal arm. Otherwise return a1.

This strategy will have expected sample complexity m = o(1
(1−2p)2 log 1

δ) since

all it does is execute A(p, δ).

It is known from Theorem 13 of Mannor et al. [2004] that m = Ω(1
(1−2p)2 log 1

δ).

We remark that the result holds for the special case of 2 arms, which is what

we need for the reduction.

But, we know from Theorem A.3.1 (applied to functions m(p, δ) and g(p, δ) =

1
(1−2p)2 log 1

δ for the complexity parameters 1
δ and 1

1−2p) that the two sets func-

tions o(g) and Ω(g) are disjoint and we thus get the desired contradiction.

2.3.4 Beat-By-K vs (Early) Majority Vote

While the two lower bounds are asymptotically tight, there is a natural ques-

tion as to whether we can get any benefit by relaxing the class of strategies

from non-adaptive to adaptive algorithms, that is algorithms that take decisions

based on the history of samples. A trivial positive answer to this question is

that Early Majority Vote (which is, by definition, an adaptive strategy) has an

expected sample complexity that is upper bounded by the performance of Ma-

jority Vote. The answer is not completely satisfactory because, as we will show,

the expected ratio between the sample complexity of Early Majority Vote and

Majority Vote actually converges to 1 as p↗ 0.5 (p approaches 0.5 from below)

and δ↘ 0 (δ approaches 0 from above). It is thus the case that for hard Stochas-

tic Dilemma problems the benefit of Early Majority Vote is insignificant. We

consider a Stochastic Dilemma problem hard when p is “close” to 0.5 and δ is

“close” to 0 due to the lower bound on sample complexity from theorem 2.3.5.

However, there exists, a class of strategies that provably gain a constant

20

multiplicative factor with respect to the lower bound on non-adaptive algo-

rithms. We will prove in this chapter that the upper bound on the sample

complexity of Beat-By-K is a constant factor smaller than the lower bound for

Majority Vote.

We begin this section by proving that, for large enough p and small enough

δ, the ratio between a lower bound on the sample complexity of Majority Vote

and an upper bound on the sample complexity of Beat-By-K is larger than 1.

Theorem 2.3.6. For any p ≥ 0.49 and δ ≤ 0.01, the expected sample complexity of

Beat-By-K for solving a SD(p, δ) problem is smaller than the lower bound on sample

complexity for Majority Vote.

Proof. We know from Theorem 2.3.4 that a lower bound on the sample com-

plexity of Majority Vote is m0 = 2b1−(1−2p)2

2(1−2p)2 log 1
8δ(1−2δ)

c and is valid for δ ≤

0.25. The value m0 is discrete and thus a valid lower bound on m0 is

m0 ≥ 2(1−(1−2p)2

2(1−2p)2 log 1
8δ(1−2δ)

− 1). Since δ ≤ 0.01, it follows that log 1
8δ(1−2δ)

>

2 and then:

m0 > m′ =
1− 2(1− 2p)2

(1− 2p)2 log
1

8δ(1− 2δ)
with m′ ∈ R. (2.14)

We know from the proof of Theorem 2.3.3 that the accuracy of BBK is f (k) =
βk

βk+1 with β = 1−p
p and the expected sample complexity is τ(k) = k(βk−1)

(1−2p)(βk+1) .

The key idea of Beat-By-K is to compute the smallest k such that f (k) ≥ 1−

δ (since such a k corresponds to the smallest expected sample complexity as

well).

We pick k0 = d ln 1−δ
δ

ln 1−p
p
e = dlogβ

1−δ
δ e. We can only pick k0 to be discrete, so

in the worst case we would need to round k0 to the closest highest integer (so

that we can still guarantee the minimal failure probability). To satisfy the worst

case scenario, we will pick k′ = logβ
1−δ

δ + 1 with k′ ∈ R. Since f is increasing,

21

f (k0) = 1− δ < f (k′), so Beat-By-K with k′ as a parameter correctly solves the

SD(p, δ) problem. Moreover, the expected sample complexity corresponding

to k′ is τ(k′) =
logβ

β(1−δ)
δ

1−2p
β(1−δ)−δ
β(1−δ)+δ

> τ(k0).

Since β > 1, 1
β(1−δ)+δ

< 1. Since p > 0.49, β < 51
49 . So, we get that:

τ(k0) < τ(k′) < τ′ =
log(51

49
1−δ

δ)

log 1−p
p (1− 2p)

(
51
49

(1− δ)− δ) (2.15)

Now, let R(p, δ) = m′
τ′ :

R(p, δ) =
(1− 2(1− 2p)2) ln 1−p

p

1− 2p

ln 1
8δ(1−2δ)

(51
49(1− δ)− δ) ln(51

49
1−δ

δ)
= R1(p)R2(δ)

(2.16)

We want to show that R(p, δ) > 1 for ”most” p and δ values.

Next, R1(p) =
(1−2(1−2p)2) ln 1−p

p
1−2p is a strictly increasing function for p ∈

[0, 0.5). Let’s take R1(p = 0.49) > 1.99. Then for any p ≥ 0.49, R1(p) > 1.99.

Next, R2(δ) =
ln 1

8δ(1−2δ)

(51
49 (1−δ)−δ) ln(51

49
1−δ

δ)
is a strictly decreasing function for δ ∈

(0, 0.2). Take R2(δ = 0.01) > 0.53. Then, for any δ ≤ 0.01, R2(δ) > 0.53.

So, for any combination of p ≥ 0.4 and δ ≤ 0.01, R(p, δ) = m′
τ′ > 1.05 > 1.

But, from Equations 2.14 and 2.15 we get that R(p, δ) < m0
τ(k0)

and thus we have

shown that m0 > τ(k0) for any p ≥ 0.49 and δ ≤ 0.01.

Our goal was to find some constants p0 and δ0 such that Beat-By-K dom-

inates Majority Vote for any p ≥ p0 and δ ≤ δ0. We did not try to find the

best values of p0 and δ0. It is possible to prove a stronger result: For any con-

stant factor α < 2, there exists a large class of domains such that the sample

complexity of Majority Vote is at least α times larger than the expected sample

complexity of Beat-By-K.

22

Theorem 2.3.7. For any α < 2, there exists p0 < 0.5 and δ0 > 0 such that for

any SD(p, δ) with p > p0 and δ < δ0, the ratio between the lower bound on sample

complexity for Majority Vote and the upper bound on expected sample complexity of

Beat-By-K is at least α.

Proof sketch. The proof uses the same quantity for m′ < m0. But, instead of

using the upper bound τ′ > τ(k′) > τ(k0) we will work directly with τ(k′).

We then define R(p, δ) = m′
τ(k′) . We then compute limp↗0.5,δ↘0 R(p, δ) = 2 > α

which implies the result.

In the rest of the section, we will show how we can use the proof of Theo-

rem 2.3.6 to prove that Beat-By-K is also better than Early Majority Vote. Since

Early Majority Vote is an adaptive strategy, we cannot directly use the lower

bound from Theorem 2.3.4.

It is worth noting that because of the magnitude of the constants in the

proof of Theorem 2.3.7 (that we used to prove that R(p, δ) > 1), we cannot

directly assume that the expected sample complexity of Early Majority Vote is

at most 2 times better than the lower bound on Majority Vote. Since R(p, δ) <

2, the ratio between the lower bound for Early Majority Vote and the upper

bound of Beat-By-K would be smaller than 1 which is not enough to show that

Beat-By-K dominates Early Majority Vote.

The high level strategy of the proof is to show that, for large enough p and

small enough δ, Early Majority Vote(m) (for some fixed parameter m that de-

pends on p and δ2) gains much less than a factor of 2 in terms of its expected

sample complexity as compared to Majority Vote(m). We will actually prove

that in the limit the ratio between the performance of Early Majority Vote and

2 Sometimes we will explicitly state the dependency on p and δ and sometimes we will just
use m as a parameter to increase readability

23

Majority Vote converges to 1. We thus obtain a stronger result: There is no con-

stant factor α such that the ratio between the performance of Majority Vote and

Early Majority Vote is larger than α for all hard Stochastic Dilemma problems.

Theorem 2.3.8. For any α > 1, there exists p0 < 0.5 and δ0 > 0 such that for all

SD(p, δ) with p > p0 and δ < δ0, the ratio between the sample complexity of Majority

Vote(m(p, δ)) and the expected sample complexity of Early Majority Vote(m(p, δ)) is

at most α.

Proof. Let mE be a random variable denoting the sample complexity of Early

Majority Vote with parameter m (odd) for solving a SD(p, δ) problem. The

parameter m corresponds to the parameter of a Majority Vote strategy with an

identical failure probability (see Fact 2.3.1). Let γ ∈ (0.5, 1) be a constant that

we will fix later in the proof. Thus:

E[mE] =
m

∑
t=m+1

2

tP(mE = t) (2.17)

=
γm

∑
t=m+1

2

tP(mE = t) +
m

∑
t=γm+1

tP(m = t) (2.18)

≥ m + 1
2

P(mE ≤ γm) + (γm + 1)P(mE > γm) (2.19)

= γm + 1− P(mE ≤ γm)(γm + 1− m + 1
2

) (2.20)

where the last equality holds because P(mE ≤ γm) + P(mE > γm) = 1.

We will now upper bound P(mE ≤ γm) = ∑γm
t=m+1

2
P(mE = t). The event

”mE = t” is equivalent to the event ”Early Majority Vote stops at step t”, which

in turn is included in the event ” m+1
2 samples out of the current total number

of samples t are 0 or 1”. Assume that the distribution D = Bernoulli(1− p)

(the other case is treated similarly) and let x̂t be the average of the samples at

24

step t. Then:

P(mE = t) ≤ P(
m + 1

2
out of t samples are 0 or 1) (2.21)

≤ 2P(
m + 1

2
out of t samples are 1) (2.22)

≤ 2P(x̂t =
m + 1

2t
) (2.23)

≤ 2P(x̂t ≥ 1− p + (
m + 1

2t
− 1 + p)) (2.24)

≤ 2e−2(m+1
2t −1+p)2t (2.25)

The second inequality follows from the union bound and captures the idea that

the probability of sampling m+1
2 1’s is higher than seeing m+1

2 0’s (since D =

Bernoulli(1− p) with p < 0.5). The last inequality follows by an application of

the Hoeffding inequality (Theorem A.1.1(i)). Then:

P(mE ≤ γm) ≤ 2
γm

∑
t=m+1

2

1

e
(m+1−2t(1−p))2

2t

≤
2(γm− m+1

2)

e
(m+1−2γm(1−p))2

2γm

≤ m(2γ− 1)

em (2(1−p)γ−1)2
2γ

(2.26)

Now, we can replace the bound on P(mE ≤ γm) in Equation 2.20 and dividing

both sides by m we get: E[mE]
m ≥ γ + 1

m −
(2γ−1)(γm+1−m+1

2)

e
m (2(1−p)γ−1)2

2γ

or alternatively:

m
E[mE]

≤ 1

γ + 1
m −

(2γ−1)(γm+1−m+1
2)

e
m (2(1−p)γ−1)2

2γ

(2.27)

Since from Theorem 2.3.4, m = m(p, δ) = Ω(1
(1−2p)2 log 1

δ), we get that

limp↗0.5,δ↘0 m(p, δ) = limm→∞ m = ∞ and thus:

lim
p↗0.5,δ↘0

m(p, δ)

E[mE]
≤ lim

p↗0.5,δ↘0

1

γ + 1
m −

(2γ−1)(γm+1−m+1
2)

e
m (2(1−p)γ−1)2

2γ

(2.28)

= lim
m→∞

1

γ + 1
m −

(2γ−1)(γm+1−m+1
2)

e
m (γ−1)2

2γ

(as 1− p→ 0.5) (2.29)

=
1
γ

(2.30)

25

We note that it is indeed necessary for γ to be strictly smaller than 1 for the

limit to have the value 1
γ .

Setting α = 1
γ > 1 (which can be chosen to be arbitrarily close to 1), we get

the desired result based on the limit proven above.

We can now state the result regarding the comparison between Beat-By-K

and Early Majority Vote:

Theorem 2.3.9. For any α < 2, there exists p0 < 0.5 and δ0 > 0 such that for any

SD(p, δ) with p > p0 and δ < δ0, the ratio between the lower bound on the sample

complexity of Early Majority Vote and the upper bound on expected sample complexity

of Beat-By-K is at least α.

The proof is a combination of the Theorems 2.3.7 and 2.3.8.

Proof. Denote by mLB(p, δ) the lower bound on the sample complexity of Ma-

jority Vote for a SD(p, δ) problem. Similarly, let mBBK(p, δ) and mEMAJ(p, δ)

be the expected sample complexity of the optimal Beat-By-K (and respectively

the optimal Early Majority Vote) algorithm for a SD(p, δ) problem. Let m be

the parameter of the Early Majority Vote strategy.

From Theorem 2.3.8, we know that ∀α1 > 1, ∃p1 and δ1 such that m ≤

α1mEMAJ(p, δ) for all p ≥ p1, δ ≤ δ1.

From Theorem 2.3.7, we know that ∀α2 < 2, ∃p2 and δ2 such that

mLB(p, δ) ≥ α2mBBK(p, δ) for all p ≥ p2, δ ≤ δ2.

We now claim that mLB(p, δ) ≤ m, that is the lower bound on the optimal

parameter for the Majority Vote algorithm for a fixed SD(p, δ) problem is a

lower bound for the parameter m of any parameter of an Early Majority Vote

algorithm that correctly solves the same Stochastic Dilemma. We can prove

this assertion by contradiction: Assume that ∃m0 < mLB a parameter for Early

26

Majority Vote that solves the Stochastic Dilemma. Based on Fact 2.3.1, Major-

ity Vote(m0) has failure probability identical to Early Majority Vote(m0), which

is ≤ δ (since Early Majority Vote(m0) correctly solves SD(p, δ)). But, the sam-

ple complexity of Majority Vote(m0) is m0 < mLB while correctly solving the

SD(p, δ) problem, which contradicts the assumption that mLB is a lower bound

for Majority Vote.

Putting all the facts together, we get that for all p ≥ max(p1, p2) and δ ≤

min(δ1, δ2):

α2mBBK(p, δ) ≤ mLB(p, δ) ≤ m ≤ α1mEMAJ(p, δ) (2.31)

Now, for any α < 2, let α2 = α+2
2 < 2 and α1 = α+2

2α > 1 and using

relation 2.31, we get that mEMAJ(p,δ)
mBBK(p,δ) ≥

α2
α1

= α.

2.4 Unknown Parameters

When the parameter p is unknown, the stochastic dilemma problem naturally

becomes more difficult. Due to our initial assumption that p < 0.5, the problem

is still solvable in finite time for any failure probability δ (as we will see in the

rest of this section).

It is important to note that we are departing from the standard way this

type of setting is studied. In similar problems (see the PAC Bandit model

[Even-Dar et al., 2002]), there is usually an extra accuracy parameter ε ∈ (0, 1)

that establishes a limit with respect to which the difference between the two

distributions is relevant (in other words, if the difference 1− 2p < ε, any an-

swer to the Stochastic Dilemma problem is acceptable). We will also study this

extension (in a more general setting) in the following chapter (see Section 3.2.1

27

for a detailed discussion on the role of ε), but we chose to ignore ε (or alter-

natively set ε = 0) for the Stochastic Dilemma problem. The reason is that we

wanted to design algorithms that scale with the natural complexity parame-

ters of the problem (which are p and δ) and study their theoretical properties.

As will become apparent in the following chapters, simplifying the problem

in this manner helps emphasize a type of algorithmic strategy that will prove

very useful (both theoretically and empirically) in a variety of more complex

settings.

2.4.1 Hoeffding Rejection

The Hoeffding Rejection (HR) algorithm is inspired by the Hoeffding Races

[Maron and Moore, 1997] algorithm introduced in the context of model selec-

tion. Hoeffding Races has received increasing attention in the past few years

in the machine-learning community in the context of optimal stopping [Mnih

et al., 2008a] or policy search in reinforcement learning [Heidrich-Meisner and

Igel, 2009]. A very similar algorithm was introduced by Even-Dar et al. [2002]

under the name Successive Elimination in the context of finite PAC Bandits.

The idea of the algorithm is the build increasingly tight confidence intervals

based on the Hoeffding inequality (hence the algorithm’s name). The high

level goal is to define the intervals in such a way that the true expected value of

D is contained in the current interval after every sample. Then, the algorithm

stops as soon as 0.5 falls outside the confidence interval (which is guaranteed

to happen in finite time) and recommends the option that is on the same “side”

of 0.5 as the last empirical average.

One difference with the Hoeffding Races algorithm introduced by Maron

and Moore [1997] is that we do not know the number of steps (“models” in

28

their setup) a priori. The reason is that the number of steps until “stopping”

(defined as the moment when the confidence interval doesn’t contain 0.5 any-

more) depends on p (as we will soon see), which is unknown. Moreover, since

the algorithm can “fail” at any step, it is an adaptive strategy as opposed to

a non-adaptive one. These factors lead to a more involved technical analysis,

although the algorithmic idea is similar.

The difference as compared to the Successive Elimination [Even-Dar et al.,

2002] strategy is the incremental nature of Hoeffding Rejection. Successive

Elimination samples all arms in a round-robin manner at the beginning and

increasingly decreases the set of arms it considers to be potentially optimal

until only the optimal arms remains ”active”. In contrast, Hoeffding Rejec-

tion (and its extensions in Chapter 4) focus on taking decisions for one arm

at a time, which leads to a different analysis (although the key idea remains

unchanged). While the difference is not essential in the Stochastic Dilemma

setting, this algorithmic idea will become important in future chapters.
Algorithm 3: Hoeffding Rejection (δ):

• For every t = 1, 2, . . .:

1. Sample xt ∼ D, update x̂t = ∑t
i=1 xi

t and set αt =√
2 log t+log 1

δ+log 4
2t .

2. Build a two-sided confidence interval (x̂t − αt, x̂t + αt).

3. Stop if either x̂t + αt < 0.5 or x̂t − αt > 0.5 and recommend

the distribution consistent with the value of x̂ or continue oth-

erwise.

We are now ready to formally state the properties of Hoeffding Rejection:

Theorem 2.4.1. For a stochastic dilemma with an unknown parameter p, Hoeffding

29

Rejection will return the correct answer with probability≥ 1− δ and with an expected

sample complexity m(p, δ) = O(1
(1−2p)2 (log 1

δ + log 1
1−2p)).

Before proving the theorem, one important observation to be made is that

there is an extra dependency on p in the log term as compared to the setting

when the parameter p is known. As we conjecture in Section 2.4.4, we think an

extra dependency of a similar type is necessary (although HR has a suboptimal

dependency on p), which would prove that the problem is intrinsically more

difficult when p is unknown.

We will prove the theorem in a sequence of three lemmas. The first lemma

deals with the correctness of the algorithm:

Lemma 2.4.2. Hoeffding Rejection is correct with probability at least 1− δ.

Proof. Let q be the parameter for the unknown distributionD. Then, for a fixed

time step, the error probability based on the Hoeffding Inequality A.1.1 is:

P(x̂t 6∈ (q− αt, q + αt)) ≤ 2e−2α2
t t (2.32)

≤ δ

2t2 (by substituting the value of αt) (2.33)

Since the confidence interval monotonically shrinks after every time step, and

since p 6= 0.5, there exists a finite time t f after which 0.5 will drop outside the

interval. The algorithm can be incorrect if at any step before and including t f ,

x̂ drops outside the confidence interval. Thus, a (loose) upper bound on the

probability that the algorithm is incorrect is the probability that the empirical

average will not be in the correct confidence interval over the infinite horizon.

So P(error) ≤ ∑∞
t=1

δ
2t2 < δ as desired.

We will use this trick of using an infinite series to bound the total error

probability of an algorithm throughout the dissertation.

30

The second lemma describes the sample complexity of HR in the scenario

in which the algorithm never makes an error:

Lemma 2.4.3. Conditioned on x̂t ∈ (q− αt, q+ αt), ∀t ≥ 1, Hoeffding Rejection will

stop in at most m(p, δ) = 8
(1−2p)2 (2 log 1

1−2p + log 8
δ) steps for any δ ≤ 1

4 .

Proof. Let’s assume wlog that q = p (the other case is identical). We know

that as soon as αt <
1−2p

2 , the confidence interval will not contain 0.5 anymore

(since we assumed that x̂t ∈ (p− αt, p + αt), ∀t ≥ 1) and will stop.

Now, with some simple manipulation of αt’s formula, we get that αt ≤√
log t

δ
t . The inequality holds for any δ ≤ 1

4 . If δ > 1
4 , we will solve the problem

for δ = δ0 = 1
4 and the sample complexity will be guaranteed to be an upper

bound for any larger failure probability δ > δ0. Let’s choose a time t f = x log x
δ ,

for some x to be defined. Then:

α2
t f
≤

log x log x
δ

δ

x log x
δ

≤ 1
x
+

log log x
δ

x log x
δ

<
2
x

(2.34)

where the last inequality holds for any x
δ > 1 (which trivially holds given the

choice of x below).

Let’s pick x = 8
(1−2p)2 and thus:

αt f <
1− 2p

2
, ∀t ≥ t f =

8
(1− 2p)2 (2 log

1
1− 2p

+ log
8
δ
) (2.35)

and the algorithm will stop as required after m samples.

In the third lemma, we will show that the bound above is tight asymptot-

ically even when HR “fails” and thus cover the general case for sample com-

plexity. One difference with the proof from Theorem 2.4.3 is we need to con-

sider that the sample complexity of HR is a random variable and must show

that its expected value is bounded.

31

Lemma 2.4.4. The expected number of samples HR takes is at most m(p, δ) =

O(1
(1−2p)2 log 1

δ(1−2p)).

Proof. Same as before, let’s assume wlog that q = p (the other case is identical).

In the proof of Lemma 2.4.3 for the formula of t f let’s now take x = 32
(1−2p)2

which leads to αt <
1−2p

4 for t ≥ t f =
C

(1−2p)2 log 1
(1−2p)δ (where we replace the

constants by a fixed constant C to make the proof more readable).

If m(p, δ) is the expected number of samples of HR then:

m(p, δ) =
∞

∑
t=1

tP(m = t) (2.36)

=

t f

∑
t=1

tP(m = t) + ∑
t>t f

tP(m = t) (2.37)

≤ C
(1− 2p)2 log

1
(1− 2p)δ

P(t ≤ t f) + ∑
t>t f

tP(m = t) (2.38)

For any t > t f , P(m = t) is the probability that the algorithm stops at step

t. If the algorithm stops at step t it means the confidence interval around x̂t−1

contains 0.5 (otherwise the algorithm would have stopped at step t− 1). So,

P(m = t) ≤ P(HR doesn’t stop at t− 1) (2.39)

But, αt−1 < 1−2p
4 , since t− 1 ≥ t f , which means that x̂t−1 6∈ (p− 1−2p

4 , p +

1−2p
4). The event “the confidence interval around x̂t−1 contains 0.5” is con-

tained in the event that “x̂t−1 6∈ (p− 1−2p
4 , p + 1−2p

4)” and thus

P(HR doesn’t stop at t− 1) ≤ P(x̂t−1 6∈ (p− 1− 2p
4

, p +
1− 2p

4
)) (2.40)

Putting Equations 2.39 and 2.40 together and applying the Hoeffding in-

equality A.1.1 in the right side of Equation 2.40 we get:

P(m = t) ≤ 2e−
(1−2p)2t

8 , ∀t > t f (2.41)

32

Now, from Equations 2.38 and 2.41:

m(p, δ) ≤ C
(1− 2p)2 log

1
(1− 2p)δ

P(t ≤ t f) +
1
2 ∑

t>t f

t

e
(1−2p)2

8 t
(2.42)

and since the infinite series on the right side of the inequality converges to a

constant and P(t ≤ t f) ≤ 1, by absorbing the constants into C we get as desired

that:

m(p, δ) ≤ C
(1− 2p)2 log

1
(1− 2p)δ

(2.43)

The proof of Theorem 2.4.1 is simply the combination of Lemmas 2.4.2

and 2.4.4.

2.4.2 Lazy Hoeffding Rejection

Lazy Hoeffding Rejection is a variant of Hoeffding Rejection that is more ef-

ficient in terms of its expected sample complexity. By exponentially decreas-

ing the number of “decisions” it takes, Lazy Hoeffding Rejection improves the

asymptotic dependency of the sample complexity on the parameter p while

maintaining the desired failure probability guarantee. As we will show in

Section 2.4.4, Lazy Hoeffding Rejection is in fact asymptotically optimal. The

same idea for improving Successive Elimination (the algorithm corresponding

to Hoeffding Rejection from the PAC Bandit setting) is mentioned by Even-Dar

et al. [2002] (Remark 1 in Section 3.1).

The key idea of the algorithm is to apply a doubling trick to the number of

steps between checking whether the dynamic confidence interval built using

the Hoeffding inequality still contains 0.5. This process allows us to apply the

union bound for the failure probability on an exponentially smaller number

33

of steps as compared to the Hoeffding Rejection algorithm. In other words,

instead of checking at every step that the confidence interval contains 0.5, we

will only do so at steps that are a power of 2. This scheme gives us the op-

portunity to define tighter confidence intervals αt as compared to Hoeffding

Rejection and we will prove that this construction will decrease the expected

sample complexity for solving the Stochastic Dilemma problem.
Algorithm 4: Lazy Hoeffding Rejection (δ):

• Take one initial sample from D and then, for every t = 1, 2, . . .

1. Take 2t−1 samples from D, let T = 2t be the total number of

samples taken so far and update x̂T = ∑T
i=1 xi
T .

2. Set αT =

√
2 log log T+log 1

δ+log 9
2T .

3. Build a two-sided confidence interval (x̂T − αT, x̂T + αT).

4. Stop if either x̂T + αT < 0.5 or x̂T − αT > 0.5 and recommend

the distribution consistent with the value of x̂T or continue oth-

erwise.

Note how, as compared to Hoeffding Rejection, the algorithm only makes

decisions about whether to continue or stop at Steps 1, 2, 4, 8,

The theorem stating the properties of Lazy Hoeffding Rejection is:

Theorem 2.4.5. For a Stochastic Dilemma with an unknown parameter p, Lazy Ho-

effding Rejection will return the correct answer with probability ≥ 1− δ and with an

expected sample complexity m(p, δ) = O(1
(1−2p)2 (log 1

δ + log log 1
1−2p)).

The proof follows closely the proof the Theorem 2.4.1, so we will sketch the

steps that are similar and focus on the differences.

Proof. Correctness. In a similar manner to Lemma 2.4.2, we can compute the

34

failure probability for the decision step T as:

P(x̂T 6∈ (q− αT, q + αT)) ≤ 2e−2α2
TT (2.44)

≤ 2δ

9 log2 T
(by substituting the value of αT) (2.45)

≤ δ

2t2 (since T = 2t) (2.46)

and thus the total failure probability is bounded: P(error) ≤ ∑∞
t=1

δ
2t2 < δ.

Sample Complexity. In the first part, we will assume as in the proof of Lemma 2.4.3

that x̂T ∈ (q− αT, q + αT), ∀T = 1, 2, 4, . . . and wlog that q = p. We can get that

αT ≤
√

log log T
δ

T . Choose a time Tf = x log log x
δ . Then:

αTf ≤
log log(x log log x

δ)
δ

x log log x
δ

=
log(log x

δ +
log log log x

δ
δ)

x log log x
δ

≤
log log x

δ + log log log log x
δ

δ

x log log x
δ

(2.47)

where the last inequality follows from log(a+ b) ≤ log a+ log b for any a, b ≥ 2

and the corresponding terms are indeed≥ 2 for any non-trivial SD(p, δ). Then,

as in Lemma 2.4.3, αTf ≤
2
x and if we choose x = 32

(1−2p)2 , we get that αTf <

1−2p
4 , ∀T ≥ Tf =

C
(1−2p)2 (log log 1

1−2p + log 1
δ) for some positive constant C. We

remark that we actually have to choose Tf to be the closest higher number that

is a power of 2 (so that we can have a decision at that time), which increases the

sample complexity by a factor of at most 2 (which is absorbed in the constant

C in the bound above).

The rest of the proof (corresponding to Lemma 2.4.4) is very similar to what

was presented earlier with the only difference being that we need to do the

summations in the expected value of m only for the steps that are powers of

2.

35

2.4.3 Confidence Sequences

The algorithm we will present in this section (we are labeling it Confidence Se-

quences) was introduced in the statistics literature [Darling and Robbins, 1967b],

[Darling and Robbins, 1967a] in the context of studying consequences of the

law of iterated logarithm3. While the algorithm we will introduce is subopti-

mal in its dependency on the failure probability, it provides a complementary

algorithmic perspective to Lazy Hoeffding Rejection. Moreover, it proved to

be very competitive empirically in a variety of experiments so we believe it is

worth discussing it in detail.

The algorithm’s behavior has two epochs. In the initial epoch, Confidence

Sequences takes a number of samples from D that is only a function of the

failure probability δ. During this epoch, no decisions are made with respect to

stopping. In the second epoch, similar to Hoeffding Rejection and Lazy Ho-

effding Rejection, a confidence interval is built around the empirical average

and a decision to stop is taken as soon as 0.5 drops outside the confidence in-

terval. The key component of the second epoch is its use of a tighter interval

as compared to the algorithms we have previously seen in this section.

An intuitive (but inaccurate) perspective is that Confidence Sequences com-

presses all the steps from Lazy Hoeffding Rejection when Lazy Hoeffding Re-

jection doesn’t take a decision in an initial phase, with the advantage of having

a tighter confidence interval for decisions at every step after this initial epoch

ends and with the disadvantage of having a potentially very long initial epoch.

The analysis and the key ideas of Confidence Sequences were introduced

byDarling and Robbins [1967b]. The main goal of this section is to translate

3 Which states asymptotic guarantees with respect to the magnitude of fluctuations of a
random walk.

36

their result into a solution for a Stochastic Dilemma. The proof is mostly techni-

cal, with the key idea from Darling and Robbins [1967b] remaining unchanged.

We note that while the original proof has a different starting point, one of the

key ideas is to use a trick similar to the doubling trick of Lazy Hoeffding Re-

jection (see Equation 9 from page 1189 in Darling and Robbins [1967b]).

Let’s define the constants: C1 = e
log 2

2 , C2 =
14 log 2

40 , C3 = 2.12, C4 = 1.236.
Algorithm 5: Confidence Sequences (δ):

• Epoch 1 Take k = C1e
C2
δ samples from D.

• Epoch 2 For t = k, k + 1, k + 2, . . . :

1. Sample xt ∼ D, update x̂t =
∑t

i=1 xt
t and set αt = C3

√
log log t+C4

t .

2. Build a two-sided confidence interval (x̂t − αt, x̂t + αt).

3. Stop if either x̂t + αt < 0.5 or x̂t − αt > 0.5 and recommend

the distribution consistent with the value of x̂ or continue oth-

erwise.

The actual exponential dependency on 1
δ from the first epoch is mild (due

to the constants) as long as δ is not very small (k = 16 for δ = 0.1 for example)

but it quickly becomes impractically large for small δ’s (k > 1010 for δ = 0.01).

The second epoch is essentially identical to the Hoeffding Rejection algo-

rithm, except for the log log t dependency in the confidence interval formula.

We will begin the analysis by formally stating the original result from Dar-

ling and Robbins [1967a] (part 2(e) ”Bounds on Pm”), which is an example

of the general proof from Darling and Robbins [1967b] (in particular it is an

application of part 3 ”Other choices”). We note that in their papers log2 n =

log log n.

37

Theorem 2.4.6 (Darling and Robbins [1967a]). Let X be a random variable with

mean 0 and moment generating function φ(s) ≤ e
s2
2 (for s > 0) and let αt =

2.12
√

log log t+1.236
t be a function defined on natural numbers t > 1. If xi, i ≥ 1

are iid random variables with the same distribution as X and x̂t =
∑t

i=1 xi
t then Pk =

P(|x̂t| ≥ αt for some t ≥ k) ≤ 14
40

1
log k
log 2−

1
2
.

The theorem sets an upper bound on the probability (Pk) that the empirical

average of a random variable (with certain properties) will ever be outside the

confidence interval (αt) after an initial number of steps k (Pk dropping logarith-

mically with k).

We note that the only difference with their formulation is a doubling of the

probability Pk (which is obtained by a simple union bound) due to our goal of

having a two-sided confidence interval around x̂t.

Let’s now state the main theorem of this section that characterizes the per-

formance of Confidence Sequences:

Theorem 2.4.7. For a SD(p, δ), Confidence Sequences will return the correct answer

with probability ≥ 1− δ and with an expected sample complexity m(p, δ) = O(e
1
δ +

1
(1−2p)2 log log 1

1−2p).

Proof. Let’s assume as in the other proofs in this section that the parameter of

D is q = p.

Correctness. The goal in the first part of the proof is to connect the Stochas-

tic Dilemma problem to Theorem 2.4.6. If X is Bernoulli(p), let Y = X−p
1−p be

an affine transformation of X. Then, E[Y] = 0 and the moment generating

function of Y is φ(s) = E[esY] = pes + (1− p)e−
sp

1−p . It follows that φ(0) = 1

and it can be shown that g(s) = φ(s)

e
s2
2

≤ 1 by showing that g(s) is a decreasing

function when p < 0.5 (as we constrain p in the definition of the Stochastic

38

Dilemma problem). To show this last fact we can compute the first derivative

of g(s) and show that it is negative on {s > 0}.

The above facts show that Y fulfills the constraints of Theorem 2.4.6 and we

can thus apply the result that P(|ŷt| ≥ αt for some t ≥ k = C1e
C2
δ) ≤ δ (where

we replace k with the value from the algorithm description and do the algebra

to get δ on the right side of the inequality).

By replacing yi = xi−p
1−p in the expression of ŷt, we get P(|x̂t − p| ≥ (1−

p)αt for some t ≥ k = C1e
C2
δ) ≤ δ. And since by increasing the size of the

sequence of confidence intervals, we decrease the probability that the empirical

average will exit them at some point, and (1− p)αt < αt, we get that P(|x̂t −

p| ≥ αt for some t ≥ k = C1e
C2
δ) ≤ P(|x̂t − p| ≥ (1− p)αt for some t ≥ k =

C1e
C2
δ) ≤ δ.

Because with probability at least δ the empirical average will be inside the

confidence interval around the true expected value of D and since αt is strictly

decreasing, we get that, in finite time, the algorithm will stop and recommend

the correct answer with probability at least 1− δ.

Sample Complexity. The second part of the proof is similar to the proofs of

Hoeffding Rejection and Lazy Hoeffding Rejection. The first step is to compute

the smallest time t f such that αt f <
1−2p

4 for t > t f under the assumption that

the empirical average always stays inside the confidence interval. In a very

similar manner to the proof of Lazy Hoeffding Rejection, we get a bound of

t f = O(e
C2
δ + 1

(1−2p)2 log log 1
1−2p). The second and final step applies the same

arguments as in lemma 2.4.4 to bound the expected sample complexity to the

same asymptotic quantity (t f) when failure is allowed.

39

2.4.4 Lower Bounds

The Stochastic Dilemma problem with p unknown is clearly at least as hard as

when the parameter p is known. It is thus obvious that the lower bound result

from theorem 2.3.5 holds for this version of the problem as well:

Corollary 2.4.8. Any algorithm that correctly solves a SD(p, δ) with unknown pa-

rameter p must take at least m(p, δ) = Ω(1
(1−2p)2 log 1

δ) samples from D on expecta-

tion.

We think that the lower bound above is actually loose and a tighter depen-

dency on p is possible. To be exact, we conjecture that the right dependency on

p scales with Ω(1
(1−2p)2 log log 1

1−2p) (and coincides with the asymptotic depen-

dency on p in the upper bounds of Lazy Hoeffding Rejection and Confidence

Sequences).

The intuition behind the conjecture is based on the law of iterated log-

arithm, which establishes the tightest possible dynamic confidence interval

(which scales with Θ(
√

t log log t) with t being the number of samples) for

the magnitude of fluctuations of an unbiased random walk. While we oper-

ate with Bernoulli(p) distributions with p 6= 0.5 (which correspond to biased

random walks), we can transform these variables into unbiased random walks

(using linear transformations as in the correctness proof of theorem 2.4.7) and

the same type of lower bound should apply. Robbins [1970] for example dis-

cusses that the confidence interval described above is as tight as possible (up

to constants) while still allowing a positive probability for the random walk

to stay inside the dynamic confidence interval at each step over the infinite

horizon (see Example 3, equation 14 at page 1400).

40

2.5 Summary and Discussion

2.5.1 Known Parameters

The three algorithms we proposed in Section 2.3 (Majority Vote, Early Majority

Vote and Beat-By-K) are asymptotically optimal with an upper bound on the

sample complexity for solving a SD(p, δ) problem identical to the lower bound

Ω(1
(1−2p)2 log 1

δ).

One difference between (Early) Majority Vote and Beat-By-K is that while

the upper bound for Beat-By-K is relatively tight up to constants, the upper

bound for Majority Vote is loose, mainly due to the sufficient but not neces-

sary conditions imposed by applying the Hoeffding inequality. This makes a

formal comparison between the two classes of strategies relatively difficult (as

the length of Section 2.3.4 demonstrates).

While Beat-By-K is shown to dominate both Majority Vote and Early Ma-

jority Vote, the proofs hold only for relatively large values of 1
1−2p and 1

δ . One

reason is that we prove the dominance of Beat-By-K by comparing it directly

with a loose lower bound on the performance of Majority Vote. Tightening this

lower bound is a topic of active research. The number of papers proving in-

creasingly tight lower bounds by increasing the constants (see the references in

the introduction of this chapter) suggest that the problem is relatively difficult.

Numerical simulations suggest that the gap between Beat-By-K and Ma-

jority Vote is more significant than what we were able to prove and moreover

holds uniformly over any p and δ values. It is for this reason that Beat-By-K can

actually be a relevant practical alternative to Majority Vote-type approaches in

various problems where reducing label noise is a challenge (like categorical

data annotation or stochastic optimization). We will empirically compare the

41

two types of strategies in realistic problems in Chapter 3).

Finally, we would like to note that while the Beat-By-K algorithm is de-

fined to take only a fixed parameter k ∈ N∗, it is possible (and desirable in

practice) to combine two successive k values in a randomized way to obtain a

better granularity with respect to achievable failure probabilities. In more de-

tail, since the k parameter is a natural number, for any desired failure probabil-

ity that is higher than the failure probability achievable by k, we need to round

the parameter for the Beat-By-K strategy to k + 1 with the effect of increasing

sample complexity. But it is actually possible to obtain a lower expected sam-

ple complexity by a convex combination of k and k+ 1 with a coin flip deciding

(before the first sample is taken) which of the two should be used for solving a

particular Stochastic Dilemma.

2.5.2 Unknown Parameters

All of the algorithms we discussed in Section 2.4 have a similar structure: they

maintain a dynamic confidence interval around the empirical average. As the

number of steps increases, the confidence interval decreases at each step at

a rate that makes sure that the true average will be contained in the interval

with high probability. The algorithms stop as soon as 0.5 drops outside the

confidence interval which is interpreted as a ”proof” that the true bias lies on

the same side compared to 0.5 as the empirical average.

What differs between the algorithms is how tight these confidence intervals

are and when are the algorithms checking for the stopping conditions. As we

already saw these choices impact the theoretical performance and, as we will

describe in the future chapters, they impact the empirical performance of the

algorithms.

42

Expected Sample Complexity Theorem
Hoeffding
Rejection

O(1
(1−2p)2 (log 1

δ + log 1
1−2p)) 2.4.1

Lazy Hoeffding
Rejection

O(1
(1−2p)2 (log 1

δ + log log 1
1−2p)) 2.4.5

Confidence
Sequences

O(e
1
δ + 1

(1−2p)2 log 1
δ) 2.4.7

Lower Bound Ω(1
(1−2p)2 log 1

δ) 2.4.8

Table 2.1: Summary of the results for a SD(p, δ) for p unknown

In table 2.1 we summarize the upper and lower bounds discussed so far for

the version of the Stochastic Dilemma problem where p is unknown. The im-

portant thing to remark is that Lazy Hoeffding Rejection asymptotically dom-

inates the other two algorithms in the following sense: (1) there exists a class

of SD(p, δ) problems for which Lazy Hoeffding Rejection and Hoeffding Re-

jection dominate Confidence Sequences and also (2) there exist another class of

domains for which Lazy Hoeffding Rejection and Confidence Sequences dom-

inate Hoeffding Rejection.

As an example of a class of the first type let’s consider the case where 1
δ =

Θ(1
1−2p). Then the upper bounds for Lazy Hoeffding Rejection and Hoeffding

Rejection are O(1
(1−2p)2 log 1

1−2p), whereas a lower bound on the performance

of Confidence Sequences is Ω(e
1

1−2p) which proves that Confidence Sequences

has worse theoretical guarantees as compared to Lazy Hoeffding Rejection.

The lower bound for the performance of Confidence Sequences follows from

its definition of Epoch 1 in Section 2.4.3.

As for the example of a class of the second type let’s consider the case where

1
δ = Θ(log 1

1−2p). Then the upper bound for Lazy Hoeffding Rejection and

Confidence Sequences is O(1
(1−2p)2 log log 1

1−2p) whereas a lower bound on the

performance of Hoeffding Rejection is Ω(1
(1−2p)2 log 1

1−2p) which proves that

43

Lazy Hoeffding Rejection is better than Hoeffding Rejection. The lower bound

on the performance of Hoeffding Rejection follows from lemma 2.4.3 which

forces the expected sample complexity to be at least (1− δ) 8
(1−2p)2 (2 log 1

1−2p +

log 8
δ) = Ω(1

(1−2p)2 log 1
1−2p).

On the practical side, a key observation is that it is usually the case that the

empirical failure probability is much smaller than the parameter of the SD(p, δ)

problem. Part of the reason is that the parameters of Hoeffding Rejection and

Lazy Hoeffding Rejection are conservatively set as a function of concentration

bounds, which are loose.

In the case of Confidence Sequences the main looseness comes because of

the potentially very long initial epoch which appears to be the consequence

of a loose analysis. In numerical simulations, Confidence Sequences tends to

lead to much smaller failure probabilities than what the theory results predict

for much shorter initial epochs.

44

Chapter 3

Label Identification

3.1 Introduction

The introduction of crowdsourcing platforms such as Amazon Mechanical Turk

(mturk.com) has made it possible to harness cheap, albeit sometimes unreli-

able, human labor in a range of data annotation tasks. The most common ap-

proach for improving the quality of annotations, consensus labeling or majority

voting, seeks multiple annotations, each from a different worker, and use their

majority vote to assign a final output Smyth et al. [1994]; Sheng et al. [2008].

However, each annotation costs money, and this chapter targets the question

of whether we can be smarter in allocating annotation tasks to workers so as

to boost annotation accuracy in a cost-sensitive fashion.

We focus on what is known in the literature as categorical data annotation

or label identification that concerns tasks in which the data annotation is itself

the task of interest — for example, tasks that assess whether Web pages contain

objectionable content. Unlike other work that models individual worker ability

(Carpenter [2008] for example), we consider the common case when the vast

majority of workers perform a single task and are never seen again. In such

cases there is little need to model individual workers since the model will never

have to be used in the future. We therefore model the entire crowdsourcing

resource as one single, noisy oracle that assigns one of a fixed set of labels to

45

items in a dataset, but where each time the label may be corrupted by some

random noise process.

For the purpose of this work we assume that each item is assigned a binary

label, 0 or 1. In contrast to the static approach of consensus labeling, which

always seeks m labels for an item, we present dynamic approaches based on

the algorithms from chapter 2 that iteratively asks for labels for an item until

some stopping criterion is met.

Finally, we note that our main interest in this chapter is to illustrate how

the algorithmic ideas used to solve a Stochastic Dilemma can be used to solve

realistic problems. So, in some sense, we are reducing the label identification

problem to the Stochastic Dilemma problem without explicitly searching for

optimal strategies in this new setting. We are thus changing the focus from the

type of theoretical analysis from chapter 2 to one that is focused on applying

the algorithms to solve actual problems.

3.2 Model

We first formally introduce the model and then discuss the meaning of the

parameters and the connections to stochastic dilemmas.

We define an object or as a Bernoulli(r) distribution (for some fixed parame-

ter r ∈ [0, 1]). The label of the object is defined to be 0 if r < 0.5 and 1 otherwise.

Let’s assume we are given the set D = {Bernoulli(r), ∀r ∈ [0, 1]} (the set of all

possible Bernoulli distributions) and access to an arbitrary distribution P over

D (in other words, P is an arbitrary distribution with support [0, 1]).

The objects to be labeled are sampled according to P . Every time a label

for a fixed object is requested, the environment will return a sample from its

46

associated Bernoulli distribution. One way to interpret this process is that the

“true” label of an object is transmitted via a noisy channel.

We now define the problem we study in this chapter.

Label Identification (LI(P , ε, δ)). Given sampling access to the object gen-

erator P , an accuracy parameter ε ∈ (0, 0.5), and a desired failure probability

δ ∈ (0, 0.5), we are interested in developing algorithms that find the label of a

sampled object or with failure probability at most δ if r ≤ 0.5− ε
2 or r ≥ 0.5+ ε

2 ,

while minimizing the expected number of sample m(P , ε, δ) from Bernoulli(r).

It is important to note that both the failure probability and the sample com-

plexity are random variables that depend on the overall distribution P . In

other words we allow ourselves the flexibility of having variable failure prob-

ability as long as the overall failure with respect to both sampling or from P

and sampling from Bernoulli(r) is at most δ.

In what follows we discuss the parameters, the motivation for the problem

and the connection to stochastic dilemmas.

3.2.1 Parameter ε

There are several reasons for introducing the new parameter ε. If we return to

the simple Stochastic Dilemma problem for a moment and ignore ε, the lower

bound from theorem 2.3.5 still applies and thus one needs at least Ω(1
(1−2r)2 log 1

δ)

samples to separate the two possible answers with high probability. In partic-

ular, when r is arbitrarily close to 0.5 the number of samples needed to solve

the problem becomes arbitrarily large (without this fact being known a pri-

ori). Naturally, this situation is usually undesirable in practice. And this is one

reason to have an approximation parameter like ε which establishes what is

the threshold for which the difference between the two labels 0 and 1 is still

47

relevant.

Another way to interpret ε is as a proxy for the maximum number of sam-

ples one is willing to take to differentiate between the two labels. Of course,

one could just stop the sampling process after some maximum budget of sam-

ples is spent for a fixed object. Given the type of strategies we design though,

it will become clear that we can deterministically control for the budget by set-

ting ε with the extra advantage of having clear guarantees with respect to what

is the impact of a particular fixed budget.

There are other, more technical reasons, for having a parameter like ε that

we will return to in section 3.4.2.

3.2.2 Distribution P

The role of the distribution P is to simulate realistic processes that generate

labels for objects like images or text. In particular, it is motivated by what

is commonly observed when using crowdsourcing resources such as Amazon

Mechanical Turk to label data.

Given the large number of workers available on such crowdsourcing plat-

forms, each label for a fixed object can be interpreted as being generated iid

from some joint distribution over worker abilities (e.g. various expertize for

example) and object characteristics (e.g. various intrinsic difficulties in label-

ing). A fixed worker distribution and a fixed object will thus lead to an overall

fixed probability p with which an object will be labeled 0 or 1.

And, since we target settings with heterogeneous, large populations of work-

ers and sets of possible objects, we can interpret the process of obtaining an

object as sampling from some arbitrary distribution P over r values.

Another way to interpret P is as a generalization of a hierarchical Bayesian

48

model (as the ones introduced by Carpenter [2008] in the context of categorical

data annotation), where the probability distribution that generates the label in

a Bayesian model is a particular instantiation of the arbitrary distribution P .

3.2.3 Discussion

A connection to Stochastic Dilemma. The problem described above is closely

related to the Stochastic Dilemma problem. A Stochastic Dilemma can be seen

as a special case of Label Identification. To see this, we can consider P to be

uniform over a support containing two values p and 1 − p, take ε = 0 and

add the additional constraint that p 6= 0.5. Conversely, the Label Identification

problems can be seen as generalization of Stochastic Dilemmas, where the goal

of deciding the position of a parameter p with respect to 0.5 remains, while the

process of generating p is more complex.

Noise process. One assumption in the way we defined the problem is that

the label is determined strictly by the position of r with respect to 0.5. This

corresponds to a type of noisy channel that only corrupts the true label with

probability < 0.5 (and we ignore the case of r = 0.5 here). In such a setting,

it is thus theoretically possible to always recuperate the true label of an object.

However, in reality, it is not always possible to find the true label. Due to

features of the object or to an adversarial labeling process, it is possible for the

true label to be completely flipped. Unfortunately, lacking other information,

this type of error is not recoverable irrespective of the number of labels taken

for an object. We have thus chosen to define the truth strictly as a function of

r (a parameter that we can estimate within arbitrary accuracy given enough

samples).

Failure probability. In the definition of the problem, we require a failure

49

probability δ that is allowed to vary as a function of the sampled object o. This

might seem strange as it means that for some objects, the failure probability can

be close to 0.5 which seems to defeat the purpose of labeling an object (since a

random decision can be taken in such scenarios with the same outcome). We

could have added an extra constraint where δ is fixed for any sampled object

(and in fact some algorithms do have that property - see section 3.4.2). How-

ever, we allow ourselves the aforementioned flexibility because the main use-

case of the algorithms introduced in this section is to label datasets of N objects

(for some possibly large N) where the goal is to have only a small percentage

of the dataset (δN) labeled incorrectly. In such scenarios (with large values for

N), due to the concentration of measure phenomenon, both the actual failure

probability and the sample complexity will concentrate around their expected

values.

We also note that the failure probability is computed only with respect to

objects in the ranges (0, 1−ε
2) and (1+ε

2 , 1). This avoids making the problem

trivial in situations in which, for example, the distribution P for example has

a probability mass of more than 1− δ in the range where any answer is accept-

able (in (1−ε
2 , 1+ε

2)).

Related problems Finally, we note that while our formulation of the Label

Identification problem is relatively general, there are two extensions of prac-

tical interest that we do not cover in this chapter: (1) class-dependent failure

probabilities as opposed to a single, general one and (2) more than two possible

labels. We chose a simpler setting to simplify the presentation and we believe

the results in this chapter can be extended to cover these extensions.

50

3.3 Related Work

Classical work in noisy data annotation has focused on estimating error rates

of labelers. Dawid and Skene [1979] considered the problem where data labels

are obtained from members of a set of noisy human labelers, and learned how

to give a weight to each labeler so that their weighted vote more accurately as-

signed labels to future data. Much of the follow-up work in this area considers

such cases where there is value in modeling worker abilities so as to be smart

about how to select workers and how to combine their labels to assign labels

to items more effectively [Smyth et al., 1994].

With the advent of crowdsourcing platforms in the past few years, renewed

interest in the problem led to several papers using probabilistic models to char-

acterize naturally occurring pools of experts [Carpenter, 2008; Whitehill et al.,

2009; Raykar et al., 2010; Yan et al., 2010; Dai et al., 2011; Wauthier and Jordan,

2011]. It is well known that besides the flexibility of having a high number

of workers available for various tasks, an important problem when interact-

ing with crowds is the variability in expertize and the existence of spammers

[Ipeirotis et al., 2010]. In this context, Snow et al. [2008] describes an interesting

phenomenon: that using multiple noisy labelers is equivalent to using experts

for annotation tasks.

One possible application of solutions for label identification is determined

by its use in building classifiers that are robust to noise. As observed by Don-

mez and Carbonell [2008], the standard way a labeling oracle is modeled in

classical machine learning (as a single source of possibly noisy labels) is of-

ten unrealistic. In reality, instead of being exposed to a single oracle, multiple

oracles of different expertise and with different availabilities are usually inter-

acting with the learner.

51

Most of the work on crowdsourced labeling for machine learning applica-

tions focuses on active learning. As it is described and motivated by Yan et al.

[2010] and Kamar et al. [2012], a key assumption are that labelers provide a

sufficient number of examples so that information about their abilities can be

inferred from their history. A second key premise, assumed by most recent

papers (see Donmez et al. [2009] for example) is that workers can be selected

explicitly for a particular job from the pool of available labelers.

In contrast to the work described above, we address another common sit-

uation where neither of the two assumptions hold. As in Sheng et al. [2008];

Smyth et al. [1994] we assume that the set of workers is so large that most labels

are obtained by a worker seen only a few times and moreover we are not able to

explicitly select particular labelers. This setting is motivated by resources such

as Amazon Mechanical Turk, where in many cases each worker appears and

labels just one item. In such cases there is no point in learning about labelers,

since most workers will never be seen again.

3.4 Algorithms

In this section we introduce a set of algorithms, analyze their theoretical prop-

erties and describe their performance in two regimes of the Label Identification

problem:

1. Interesting Regime: ε < |1− 2r| (only one label is “correct”).

2. Trivial Regime: ε ≥ |1− 2r| (both labels are “correct”).

The Interesting Regime corresponds to the range of r values for which we

must find the correct label for an object with probability ≥ 1 − δ, whereas

52

in the Trivial Regime any answer is acceptable with any probability. One key

difficulty is that we do not know which regime a particular object belongs to.

3.4.1 Naive Majority Vote

The first algorithm is based on the same idea and techniques as the Majority

Vote algorithm from section 2.3.1. It assumes that r = 1−ε
2 and computes the

number of samples m(ε, δ) = 2
ε2 log 2

δ under this assumption. We state the

theorem for completeness and only sketch the proof as it is straightforward:

Theorem 3.4.1. If the Naive Majority Vote algorithm takes m = d 2
ε2 log 2

δe =

O(1
ε2 log 1

δ) samples, it will correctly solve a LI(P , ε, δ) problem with failure probabil-

ity at most δ and accuracy at least ε.

Proof. In the Interesting Regime, the proof is identical to the proof for Majority

Vote and m is a sufficient quantity for the desired failure probability. In the

Trivial Regime, the failure probability is 0 (since any answer is correct) and the

sample complexity remains the same. We note that the failure probability is

the same for any object or sampled from P .

The performance of the algorithm is thus identical in both regimes. The

algorithm is asymptotically optimal in the Trivial Regime, but it is unnecessarily

conservative in the Interesting Regime (since it doesn’t take advantage of the fact

that |1− 2r| > ε to stop earlier).

The reason we present it is that it can be used as a stopping rule for other

algorithms because it has two nice characteristics: (1) it guarantees the desired

accuracy ε and the desired maximum failure probability δ in the Interesting

Regime and (2) it sets a maximum bound on the number of samples that will

prove to be useful.

53

3.4.2 Stopped Hoeffding Rejection

In this section we apply the Hoeffding Rejection strategy to solve the LI(P , ε, δ)

problem. Interestingly, the algorithm works almost out of the box. We only

need to carefully treat the case in which |1 − 2r| is small. We also note that

the analysis and comments in the rest of the section apply equally well to the

other algorithms introduced in section 2.4—we chose Hoeffding Rejection as

an illustrative example.

Using Hoeffding Rejection to solve LI(P , ε, δ) is straightforward: for any

sampled object or, apply Hoeffding Rejection to solve a Stochastic Dilemma

problem with unknown parameter p = min(r, 1 − r) and δ and decide 0 if

r < 0.5 and 1 otherwise. As in the case of Naive Majority Vote, the failure

probability is identical for each sampled object.

To illustrate the importance of the parameter ε and the need for a stopping

rule like the one introduced in the previous section, we first describe the behav-

ior of Hoeffding Rejection in a setting where we eliminate ε (or, alternatively

set ε = 0).

Let’s first consider an extreme example where P = Dirac(0.5). In such

a setting, any sampled r will be 0.5 and the expected sample complexity of

Hoeffding Rejection is ∞ (from theorem 2.4.1). While this example is somewhat

artificial, it emphasizes the key problem of vanilla Hoeffding Rejection: the

inability to control the sample complexity when |1− 2r| ≈ 0.

Let’s now consider a more natural case and prove the following corollary

to 2.4.1 for P = Uniform(0, 1):

Corollary 3.4.2. The expected sample complexity of Hoeffding Rejection for solving

LI(Uniform(0, 1), 0, δ) is ∞.

54

Proof. If we denote by m the expected sample complexity when the probabil-

ity is taken over both sampling an object from P and the samples Hoeffding

Rejection takes until stopping we get:

m(Uniform(0, 1), 0, δ) = Er∼Uniform(0,1),xi∼Bernoulli(r)[t] (3.1)

=
∫ 1

0
Exi∼Bernoulli(r)(t|r) f (r)dr (total expectation) (3.2)

≥
∫ 1

2

0
mHR(r, δ)dr (3.3)

since f (r) = 1 for the uniform distribution and Exi∼Bernoulli(r)(t|r) = mHR(r, δ)

(the expected sample complexity of Hoeffding Rejection for a SD(r, δ)).

But we know from theorem 2.4.8 that mHR(r, δ) ≥ C
(1−2r)2 for some positive

constant C. Thus m(Uniform(0, 1), 0, δ) ≥
∫ 1

2
0

C
(1−2r)2 dr = ∞.

The result above shows that even for a seemingly benign distribution over

noise values the expected sample complexity of Hoeffding Rejection is un-

bounded. The same will hold for any P with significant probability mass

around 0.5.

One solution to this issue is to combine the Hoeffding Rejection strategy

with Naive Majority Vote and we call the new strategy Stopped Hoeffding

Rejection. The resulting algorithm will run Hoeffding Rejection with the fail-

ure probability parameter δ
2 and Naive Majority Vote with parameters ε and δ

2

and will stop when one of the two algorithms decides to stop. Both strategies

will use the same set of samples, and the overall failure probability will be δ by

union bound.

In what follows we study the sample complexity of Stopped Hoeffding Re-

jection for some example P distributions:

Theorem 3.4.3. Stopped Hoeffding Rejection will solve an LI(P , ε, δ) problem in:

55

(i) m = O(1
ε2 log 1

δ) expected number of samples if P = Dirac(0.5).

(ii) m = O(1
(1−2r)2 log 1

|1−2r|δ) expected number of samples if P = Uniform{r, 1−

r} for some fixed r such that ε < |1− 2r|.

(iii) m = O(1
ε log 1

εδ) expected number of samples if P = Uniform(0, 1).

Before we prove the theorem, let’s make several observations. First, an

upper bound on sample complexity is always O(1
ε2 log 1

δ) which is tight (as

point (i) of the theorem above shows). The second part of the theorem empha-

sizes that Stopped Hoeffding Rejection has the same upper bound on sample

complexity as Hoeffding Rejection when the Label Identification problem is

essentially a Stochastic Dilemma problem and we are in the Interesting Regime.

This is a key component of how Stopped Hoeffding Rejection dominates Naive

Majority Vote, since its sample complexity scales better with the problem pa-

rameters in the Interesting Regime, whereas Naive Majority Vote is very conser-

vative. Finally, the third part of the theorem shows how we gain a factor of 1
ε as

compared to the worst case by using the properties of the uniform distribution.

Proof. Let’s first fix a sampled object or and assume that r ≤ 0.5 (the case of

r ≥ 0.5 is treated in the same manner). We know that Naive Majority Vote

stops in at most m = O(1
ε2 log 1

δ) samples and Hoeffding Rejection in m =

O(1
(1−2r)2 log 1

δ(1−2r)) (theorem 2.4.1) expected number of samples.

Then Stopped Hoeffding Rejection will stop in m(r, ε, δ) =

O(min(1
ε2 log 1

δ , 1
(1−2r)2 log 1

δ(1−2r))) expected number of samples. If we now

56

compute the expected number of samples with respect to the entire distribu-

tion P (where we assume P is absolutely continuous—the discrete case is sim-

ilar):

m(P , ε, δ) =
∫ 1

0
m(r, ε, δ) f (r)dr (3.4)

=
∫ 1−ε

2

0
m(r, ε, δ) f (r)dr +

∫ 1

1+ε
2

m(r, ε, δ) f (r)dr +
∫ 1+ε

2

1−ε
2

m(r, ε, δ) f (r)dr

(3.5)

Parts (i) and (ii) of the theorem follow directly from the upper bound of m(r, ε, δ)

and the expression of m(P , ε, δ).

For part (iii) we know that f (r) = 1 and the first two terms are identical

(due to the symmetry of the uniform distribution). We upper bound m(r, ε, δ)

in the first term with C1
(1−2r)2 log 1

δ(1−2r) and in the second term with C2
ε2 log 1

δ (for

some positive constants C1, C2).

m(P , ε, δ) ≤ 2
∫ 1−ε

2

0

C1

(1− 2r)2 log
1

δ(1− 2r)
dr +

∫ 1+ε
2

1−ε
2

C2

ε2 log
1
δ

dr (3.6)

= 2C1

log 1
δ(1−2r) − 1

2(1− 2r)

∣∣∣∣ 1−ε
2

0
+

C2

ε
log

1
δ

(3.7)

≤ 2C1

ε
log

1
δε

+
C2

ε
log

1
δ

(3.8)

We thus get that m(P , ε, δ) = O(1
ε log 1

εδ).

It is easy to get a general formula for the sample complexity of Stopped

Hoeffding Rejection (using the proof above), but, lacking more details about

P , such a bound is not very informative.

3.4.3 Naive Beat-By-K

Similar to the extension of Majority Vote to Naive Majority Vote, we can extend

Beat-By-K to an algorithm we label Naive Beat-By-K. The first step is to assume

57

that r = 1−ε
2 and derive the parameter k(ε, δ) = O(1

ε log 1
δ) (see theorem 2.3.3).

The second step is to use the stopping rule of Naive Majority Vote (similarly

to Stopped Hoeffding Rejection) to ensure the algorithm does not invest a lot

of samples when the sampled object is in the Trivial Regime. However, adding a

stopping criterion is, interesting, not strictly necessary in this case. The reason

is that compared to Hoeffding Rejection, a Beat-By-K strategy will always stop

in finite time since even for r = 0.5 (corresponding to an unbiased random

walk), because a random walk is guaranteed to hit one of the two absorbing

barriers in finite time.

Before discussing the main theorem let’s introduce another result:

Lemma 3.4.4. For a fixed object or with ε < 1− 2r (and we assume r < 0.5) the

expected sample complexity of Naive Beat-By-K with parameter k(1−ε
2 , δ) is m =

O(1
ε(1−2r) log 1

δ) and its failure probability is at most δ′(r, k) = 1
(1−r

r)k+1
< δ.

The lemma has an interesting interpretation: it shows that without any

prior knowledge of the value of r and without explicitly trying to find it, Naive

Beat-By-K improves on the Naive Majority Vote strategy and replaces one 1
ε

term with a 1
|1−2r| term (which can be significantly smaller). The algorithm is

still worse than Stopped Hoeffding Rejection in this scenario—which is to be

expected given that Stopped Hoeffding Rejection adapts dynamically to each

r value. However, we introduce this provably suboptimal algorithm since it

allows us to introduces the key ideas for the algorithm in the next section.

Proof. The proof follows the lines of theorem 2.3.3. Thus we know that m ≤
k(1−ε

2 ,δ)
1−2r and since k(1−ε

2 , δ) = O(1
ε log 1

δ) which is what we wanted. Regard-

ing the failure probability, we simply apply the formula δ′ = 1− f (k(1−ε
2 , δ))

58

where f (k) is derived as in the proof of theorem 2.3.3 and get the desired rela-

tion.

The following theorem states the properties of Naive Beat-By-K:

Theorem 3.4.5. Naive Beat-By-K will correctly solve an LI(P , ε, δ) problem in:

(i) m = O(1
ε2 log 1

δ) expected number of samples if P = Dirac(0.5).

(ii) m = O(1
ε|1−2r| log 1

δ) expected number of samples if P = Uniform{r, 1− r}

for some fixed r such that ε < |1− 2r|.

(iii) m = O(1
ε (log 1

ε)(log 1
δ)) expected number of samples if P = Uniform(0, 1).

The proof is very similar to the one for theorem 3.4.3 (except for slightly

different algebraic manipulations for part (iii)) and we omit it.

3.4.4 Averaged Beat-By-K

All the algorithms introduced so far in this chapter actually offer a stronger

guarantee than we requested in the definition of the Label Identification prob-

lem: that for any sampled object, the failure probability is smaller than δ. More-

over, they are not taking direct advantage of possible knowledge of the distri-

bution P . Of course, as a function of P , the expected sample complexities of

a fixed algorithm vary, but the algorithms themselves are agnostic to various

distributions.

The above observations lead to two questions: (1) can we do better if the

failure probability is allowed to vary as a function of the sampled object? and

(2) if we know the distribution P , can we take advantage of such knowledge?

We note that the answer to the second question is not immediate: even if we

59

know P it is not obvious how to use that knowledge to label a particular sam-

pled object or.

The goal of this section is to present an algorithm that takes advantage of

both opportunities. The key idea is to observe that when setting up the k value

for Naive Beat-By-K, the actual failure probability for various r values can be

significantly smaller than δ. The value of k that is set up in lemma 3.4.4 ensures

that in the worst case, when all the probability mass of P is on { 1−ε
2 .1+ε

2 }, the

algorithm correctly solves the LI(P , ε, δ) problem. But, if P has a more spread

out distribution we can actually pick a smaller k value in such a way that the

failure probability averages to δ with the advantage of decreasing the sample

complexity.

Formally, we can define a constrained optimization problem over the space

of k values (that define the possible Beat-By-K strategies):

Find k that minimizes mNaive Beat-By-K(k)(P , ε, δ) such that

P(failure) =

∫ 1−ε
2

0 δ(r, k) fP (r)dr +
∫ 1

1+ε
2

δ(r, k) fP (r)dr∫ 1−ε
2

0 fP (r)dr +
∫ 1

1+ε
2

fP (r)dr
≤ δ (3.9)

We first discuss the various terms and then the optimization objective. For a

fixed but arbitrary k, Naive Beat-By-K is the combination of Beat-By-K with the

Naive Majority Vote stopping strategy (similar to the previous section, except

k is not determined by ε).

mNaive Beat-By-K(k)(P , ε, δ) is the expected sample complexity of such a strat-

egy when the expectation is taken with respect to sampling an object or from

P and with respect the samples from Bernoulli(r).

δ(r, k) is the failure to correctly label an object or when using the algorithm

with parameter k (δ(r, k) = 1
(1−r

r)k+1
for r < 0.5 according to lemma 3.4.4).

60

fP (r) is the density of r according to distribution P—where we assume, as

before, that P is absolutely continuous, with the discrete case being handled

similarly.

We only integrate the failure probability over the range (0, 1−ε
2) ∪ (1+ε

2 , 1)

since the goal of getting the correct label with high probability applies only

to objects in this range (see also the discussion about δ in section 3.2.3). The

normalization factor makes sure that the failure probability is conditioned cor-

rectly.

It is not difficult to prove that the failure probability is a monotonically

decreasing function of k and the expected sample complexity is an increasing

function of k. The intuition is that for a fixed bias, the time it takes a random

walk to reach one of two symmetric absorbing barriers increases with the in-

crease of the absolute values of the barriers.

It is thus enough to find the minimal k value such that the constraint on

the failure probability is fulfilled (since it also lead to the minimal achievable

sample complexity for this class of strategies).

There are two main difficulties with performing the optimization mentioned

above. The first difficulty is that we need to know P (or some approximation

of it) to be able to perform the search for k. While assuming knowledge of P

is not realistic, it is possible to approximate it with the empirical distribution

over biases determined by labeling objects from a portion of the dataset of ob-

jects we want labeled. Then, the empirical distribution can replace the true

distribution for deriving a reasonable k value.

The second challenge is technical and determined by the difficulty to ana-

lytically solve the inequality 3.9 for any non-trivial distribution P . We address

61

this issue by searching for the best k value numerically (by simulating the sam-

pling of objects from distribution P) as described in the experimental results

(section 3.5).

As a final observation, we note that in the same manner that Beat-By-K was

modified for Averaged Beat-By-K, the (Early) Majority Vote algorithm can also

be modified for an Average (Early) Majority Vote strategy that solves the Label

Identification problem. We show empirically that the domination of Beat-By-K

over (Early) Majority Vote from the Stochastic Dilemma setting holds true for

this harder problem as well.

3.5 Experimental Results

The goal of this section is to investigate empirically the performance of the

algorithms in two synthetic and two real domains. The key result is that Aver-

aged Beat-By-K uniformly dominates competing strategies for all domains and

settings of the parameters we attempted. A second interesting result is that nu-

merically optimized versions of the Stopped Confidence Sequences algorithm

perform very well in practice.

Stopping rules. In most of the experiments, the algorithms used as a stop-

ping rule the Naive Majority Vote algorithm with parameters ε = 0.1 and

δ = 0.1. This is essentially equivalent to establishing a maximum budget for

labeling a fixed object for any algorithm to 600 samples. As we described in

section 3.2.1, establishing a maximum budget is necessary for strategies like

Stopped Hoeffding Rejection to be guaranteed to stop.

A common decision in practical situations is to set a maximum budget a

62

priori (with values usually between 10 and 100) and then stop a labeling strat-

egy as soon as the number of samples reaches the budget. We verified that

the empirical dominance of Naive Beat-By-K holds for this class of stopping

strategies as well.

Algorithms. One key observation regarding strategies in the family of

Stopped Hoeffding Rejection (which includes Stopped Lazy Hoeffding Rejec-

tion and Stopped Confidence Sequences which are defined in a similar manner

to Stopped Hoeffding Rejection) is that they tend to be very conservative em-

pirically in the following sense: whatever parameter δ they receive as an input,

the empirical failure probability will often be much smaller than δ. The prob-

lem is that this benefit comes at the cost of a significant increase in sample

complexity. This is not surprising given that the decisions of these algorithms

are conservative, but it is an unwanted consequence in the sense that we dont

have the desired fine tuned control over the failure probability parameter.

While (if we ignore setting a stopping strategy) strategies like Stopped Ho-

effding Rejection do not have any parameters, they are unusable in a lot of

practical problems due to their large sample complexity. To address this issue,

we decided to numerically optimize (for a fixed problem) for the numerical

constant in the confidence interval definitions of these strategies (for which the

theory only sets a rough upper bound). This is roughly analogous to optimiz-

ing for the parameters k and m for the Averaged Beat-By-K or Averaged (Early)

Majority Vote strategies in the sense that the optimization is only relevant for

a fixed distribution P (corresponding to a fixed problem). Being able to per-

form this optimization requires access to distribution P (in the same way as

for Averaged Beat-By-K).

Concretely, for Stopped Hoeffding Rejection (and similarly for Stopped

63

Lazy Hoeffding Rejection and Stopped Confidence Sequences), we change the

definition of αt to αt = C
√

log t
δ

t where the constant C is to be determined by

an exhaustive line search in some range of real numbers. The failure proba-

bility monotonically decreases as C increases. The reason is that larger C val-

ues correspond to looser confidence intervals, which in turn delays a stopping

decision with the benefit of increasing accuracy but with the drawback of in-

creasing sample complexity. Optimizing for C allowed us to have a fine-tuned

control over the trade-off between the failure probability and the sample com-

plexity for labeling a fixed object.

We note that Stopped Confidence Sequences actually has another param-

eter, besides C, for which we could try to optimize numerically: the size of

the initial epoch. Since we set the parameter δ to 0.1, 16 samples is sufficient

(according to Theorem 2.4.7) for the size of the first epoch. While we tried

other values (and report setting the size of the first epoch to just 5 samples),

the right tradeoff is unclear and a deeper theoretical understanding is needed

to get better insights. Given the excellent empirical performance of the numer-

ically optimized version of Stopped Confidence Sequences, we think this is an

interesting problem to study further.

Notation. To improve the readability of the plots, we use the following

acronyms for the algorithms in the rest of the section: BBK (Averaged BBK),

(E)MAJ (Averaged (Early) Majority Vote), (L)HR (Optimized Stopped (Lazy)

Hoeffding Rejection), CSQ16 and CSQ5 (Optimized Stopped Confidence Se-

quences with initial epoch set to 16 samples and respectively to 5 samples),

Standard (L)HR (the standard version of Stopped (Lazy) Hoeffding Rejection)

and Standard CSQ (the standard version of Stopped Confidence Sequences).

For readability purposes, we plot the comparison between the performance

64

of BBK with(E)MAJ separately from the comparison of BBK with (L)HR and

CSQ.

Experimental protocol. All the algorithms have at most one free parameter

for which we optimize. For every fixed problem, algorithm and parameter, we

sampled from the distribution P (which is problem specific) 30k objects and

used the algorithm to label each one. We computed for each such experiment

the average failure probability and the average sample complexity.

In all situations both the average failure probability and sample complex-

ity are monotonic functions (decreasing, respectively increasing) with respect

to the parameter we are optimizing for. This characteristic of the algorithms

allows us to plot the dependence of the failure probability as a function of the

sample complexity as the parameter increases (or decreases) for a fixed algo-

rithm. All the plots in this section have this form. Each plot allows one to

infer for a fixed failure probability what is the algorithm with the minimum

(expected) sample complexity or alternatively, for a fixed (expected) sample

complexity, what is the algorithm that achieves the minimum failure probabil-

ity.

Another way to interpret a curve for an algorithm in a plot is as a Pareto

frontier for the solution of the algorithm to the 2-variable minimization prob-

lem with parameters δ and SC (sample complexity).

Finally, the distribution P corresponding to a real problems is actually an

empirical distribution with a subset of the desired objects to be labeled sam-

pled from the true distribution. To verify that we dont overfit this particular

dataset, we kept a separate dataset and verified that the best choices of pa-

rameters (for a particular δ) lead to a similar performance on another dataset

sampled from the same underlying distribution. We refer the reader to the

65

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 10 20 30 40 50 60 70

−
5

−
4

−
3

−
2

−
1

Stochastic Dilemma, BBK vs (E)MAJ

Average Sample Complexity

lo
g(

A
ve

ra
ge

 F
ai

lu
re

 P
ro

ba
bi

lit
y)

●

●

●
●

●
●

●
●

●
●

●
●

●
● ● ●

●
● ●

●
●

●
● ●

● ●
● ●

●
●

●

●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

● ●
●

●
●

● ●

● ●
●

●
● ●

● ●

● ●

● ● ●
●

BBK
EMAJ
MAJ

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 10 20 30 40 50 60 70

−
5

−
4

−
3

−
2

−
1

Stochastic Dilemma, BBK vs (L)HR, CSQ

Average Sample Complexity

lo
g(

A
ve

ra
ge

 F
ai

lu
re

 P
ro

ba
bi

lit
y)

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●●

● ●

●

●
●

● ●

BBK
CSQ
CSQ
HR
LHR

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15 20 25 30 35

−
6

−
5

−
4

−
3

−
2

Uniform Oracle, BBK vs (E)MAJ

Average Sample Complexity

lo
g(

A
ve

ra
ge

 F
ai

lu
re

 P
ro

ba
bi

lit
y)

●

●

●

●

●
●

●
●

●
●

● ●

●

● ●

●
● ● ● ●

●
●

● ●
●

●

● ●
●

●

●

●

●

●

●

●
●

●
●

●
●

● ●
●

● ●
●

●
●

BBK
EMAJ
MAJ

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15 20 25 30 35

−
6

−
5

−
4

−
3

−
2

Uniform Oracle, BBK vs (L)HR, CSQ

Average Sample Complexity

lo
g(

A
ve

ra
ge

 F
ai

lu
re

 P
ro

ba
bi

lit
y)

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●●●

● ●

●

●

●
●

● ●

BBK
CSQ
CSQ
HR
LHR

.

Figure 3.1: Results of comparing (a) BBK and (E)MAJ (top left), (b) BBK and
(L)HR, CSQ (top right) for a Stochastic Dilemma oracle with parameter p = 0.4
and similarly (c) (bottom left), (d) (bottom right) for a uniform oracle.

results described in table 3.1 for more details.

3.5.1 Synthetic Domains

Stochastic Dilemma Oracle. In the first synthetic experiment every object is

sampled from a Uniform distribution over {p, 1− p} where p = 0.4 (which is

a relatively high value, but small enough to be of practical relevance).

This Label Identification problem is essentially a stochastic dilemma and

66

the averaged versions of BBK and (E)MAJ are equivalent to their simpler ver-

sions introduced in the previous chapter. Even though they have an extra stop-

ping rule as compared to their standard versions, we verified that this stopping

rule does not get triggered for the range of the parameters we tested for BBK

and (E)MAJ (due to the relatively small value of ε). The results of the com-

parison are plotted in figure 3.1(a). The experiment thus acts as a numerical

simulation that verifies the theoretical results from chapter 2 and suggests that

the dominance of Beat-By-K takes place for the entire range of δ and p values

and not just for the ranges proven in theorems from section 2.3.4.

Standard CSQ (SC = 587, empirical δ = 0), HR (SC = 558, empirical δ = 0)

and LHR (SC = 471, empirical δ = 0), as described at the beginning of this

section, tend to be conservative in terms of the number of samples they take

(roughly an order of magnitude higher than for their optimized versions for

δ = 0.1). Moreover, the stopping rule gets triggered for a large percentage

of the sampled objects (86%, 73%, 29% for CSQ, HR and LHR respectively).

We observe that Standard LHR dominates the standard versions of HR and

CSQ (which also confirms the discussion regarding the theoretical properties

of these algorithms from section 2.5.2).

Finally, the performance of the optimized versions of CSQ and (L)HR is

plotted in figure 3.1(b). Consistent with the results for the other domains,

CSQ16 performs very well for small failure probabilities second only to BBK.

Uniform Oracle. In the second synthetic experiment we set distribution P

to be Uniform(0, 1). The results are qualitatively similar with the ones reported

above. One intuitive difference (confirmed by the plots in figure 3.1(c,d)) is

that the problem is slightly easier since the average object sampled from P is

further away from 0.5 as compared to the setting of p = 0.4 from above.

67

Figure 3.2: Example of noisy images submitted for labeling on Amazon Me-
chanical Turk.

3.5.2 Recognizing Digits

For the first non-synthetic experiment we used Amazon Mechanical Turk as a

labeling oracle with the goal of comparing the algorithms in a setting involving

a real crowdsourcing platform. We modified 2000 images of digits 1 and 7 from

the MNIST dataset [Lecun et al., 1998] by adding random pixel noise to each

image.

Every pixel in each image was flipped w.p. 31%. We chose this probability

after initial experiments with various noise levels with a goal of finding a set-

ting that lead to a difficult, but not impossible, annotation problem. We give

several examples of modified images in Figure 3.2. We loaded the images as

hits on Amazon Mechanical Turk and requested 11 labels for each. Every hit

contained 5 images in a sequence and the workers were asked to make their

best guess with respect to what was the sequence of 5 digits, while knowing

that they can only be 1 and 7. We chose to group the images together to de-

crease the overall cost of the experiment. In total we uploaded 4400 hits on

68

Empirical oracle for the digits dataset

r

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

Figure 3.3: Empirical P oracle for the digits dataset (digit 7 is allocated to label
0 and digit 1 to label 1).

Amazon Mechanical Turk.

In an initial experiment we constrained each worker to only solve 1 hit, thus

limiting the number of images labeled by a single person to 5 (with the goal of

capturing as much of the diversity of workers on Amazon Mechanical Turk

as possible). The problem with this approach is that it lead to the experiment

being stuck for a long time (we gave up after 3 days during which only a small

percentage of the hits were completed). We relaxed the constraint above to

a maximum of 20 hits per worker and the outcome was that the entire set of

4400 hits was completed in 8 hours for a total cost of $66. A total of 417 workers

labeled the dataset with most of the workers completing either 1 hit or 20 hits.

Given the noisy labels we obtained from the workers, we built an empir-

ical distribution P (with the associated histogram plotted in figure 3.3 where

a 0 label corresponds to digit 7 and a 1 label to digit 1). Concretely, for every

fixed image, we considered the average vote as being the ”true” parameter for

69

●

●

●

●

●

●

●

●

●

●

●

● ●

●

0 5 10 15 20 25

−
8

−
6

−
4

−
2

Digits, BBK vs (E)MAJ

Average Sample Complexity

lo
g(

A
ve

ra
ge

 F
ai

lu
re

 P
ro

ba
bi

lit
y)

●

●

●

●

●

●
●

●

● ●
●

●
●

●
●

● ●

●
●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

● ●
●

● ●

●

BBK
EMAJ
MAJ

●

●

●

●

●

●

●

●

●

●

●

● ●

●

0 5 10 15 20 25

−
8

−
6

−
4

−
2

Digits, BBK vs (L)HR, CSQ

Average Sample Complexity

lo
g(

A
ve

ra
ge

 F
ai

lu
re

 P
ro

ba
bi

lit
y)

●

●

●

●

●

●

●

●

●

●●

●
●

●

● ●

●

●

●

●

●●●

● ●

●

●

●

●
● ●

● ●

●
● ●

BBK
CSQ
CSQ
HR
LHR

Figure 3.4: Results of comparing the algorithms on the digits dataset.

the Bernoulli distribution associated to the object with P being the distribution

over these parameters. Even though 11 votes per image leads to only a rough

approximation of the true noisy oracle, we thought it was reasonable to use P

as an oracle when testing the algorithms. It is interesting to note that distribu-

tion P is asymmetric because people performed better at recognizing digit 7

than digit 1. Also, more images of digit 1 were incorrectly classified as 7, thus

increasing the probability mass on objects with r < 0.5.

We present the results of the comparison between algorithms in figure 3.4.

They are similar with the results for a uniform oracle and demonstrate BBK’s

strong performance in a real Label Identification problem.

3.5.3 Galaxy Zoo

The second non-synthetic experiment is concerned with labeling images of

galaxies. We used the dataset Galaxy Zoo 2 [Willett et al., 2013] which was

generated as part of a large scale crowdsourcing experiment concerned with

obtaining labels for over 300000 galaxies from volunteers. The experiment was

70

Figure 3.5: Several examples of the classification of galaxies as being smooth
and round or not. The percentages represent average

designed so that for each image, several people would answer a set of ques-

tions (organized as decision tree) about basic characteristics of the galaxy in

the image.

As a first example, the first question in the survey was whether a galaxy

was smooth and rounded (label 1) or not (label 0) (task 1 from table 2 in Wil-

lett et al. [2013], which we transformed into a binary choice question). An

average of 44 volunteers answered the question for each image in the dataset,

with a volunteer being constrained to label a particular image at most once.

In figure 3.5, we give several examples of images and state the percentage of

agreement about the correct answer to the question, with some images being

easier to label (images on the left), while others are intrinsically more difficult

(images on the right). As a second example, we chose task 6 from Willett et al.

71

Empirical oracle for the galaxy smooth dataset

r

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0

Empirical oracle for the galaxy odd dataset

r

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

0
40

0
60

0
80

0

Figure 3.6: Empirical P oracle for the galaxy dataset for the (a) Smooth vs Non-
Smooth question (left) and (b) Odd vs Non-Odd question (right).

[2013] which asked whether the images contains something odd (label 1) or not

(label 0).

We sampled 10000 images from the entire dataset (and formed a training

dataset) and associated with each the average vote on the correct label for the

two questions described above, thus generating two different Label Identifica-

tion problems. We plot the empirical P distributions for these two problems

in figure 3.6 (both distributions are skewed towards 0-labeled objects). The re-

sults of comparing the algorithms are plotted in figure 3.7 and are essentially

identical to the results for the other domains in this section.

Since we are optimizing each algorithm on the initial dataset of 10000 im-

ages, there is a possibility that we overfit the training dataset and the compari-

son of the algorithms is not representative of their true performance. To check

whether it is indeed the case that Naive Beat-By-K dominates the other strate-

gies, we sampled a different dataset of 10000 galaxies (the testing dataset) from

the entire Galaxy Zoo dataset.

We chose a target failure probability of 3.4% (the results are consistent for

72

●

●

●

●

●

●

●

●

●

●

●

●
●

●

0 5 10 15 20 25 30 35

−
6

−
5

−
4

−
3

−
2

Galaxy Smooth, BBK vs (E)MAJ

Average Sample Complexity

lo
g(

A
ve

ra
ge

 F
ai

lu
re

 P
ro

ba
bi

lit
y)

●

●

●

●

●

●

● ●

●
●

●

●
●

● ●
●

●

● ●
●

● ● ● ●
●

● ● ● ●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
● ●

● ● ●

●

BBK
EMAJ
MAJ

●

●

●

●

●

●

●

●

●

●

●

●
●

●

0 5 10 15 20 25 30 35

−
6

−
5

−
4

−
3

−
2

Galaxy Smooth, BBK vs (L)HR, CSQ

Average Sample Complexity

lo
g(

A
ve

ra
ge

 F
ai

lu
re

 P
ro

ba
bi

lit
y)

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●●

●
●

●

●

●
●

● ●

BBK
CSQ
CSQ
HR
LHR

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15 20 25

−
6

−
5

−
4

−
3

−
2

Galaxy Odd, BBK vs (E)MAJ

Average Sample Complexity

lo
g(

A
ve

ra
ge

 F
ai

lu
re

 P
ro

ba
bi

lit
y)

●

●

●

●

●

●

●
●

●
● ●

●

● ●

● ●
●

●
● ●

●
● ●

●

●

●

●

●

●

●

●
●

●
● ●

● ● ●

●

BBK
EMAJ
MAJ

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15 20 25

−
6

−
5

−
4

−
3

−
2

Galaxy Odd, BBK vs (L)HR, CSQ

Average Sample Complexity

lo
g(

A
ve

ra
ge

 F
ai

lu
re

 P
ro

ba
bi

lit
y)

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●●

● ●

●

●

●

●

●

● ●

● ●

BBK
CSQ
CSQ
HR
LHR

Figure 3.7: Empirical comparison of the algorithms on the galaxy smooth and
galaxy odd datasets.

other choices) and picked for each algorithm the best parameter such that the

empirical failure probability was at most 3.4% on the training dataset and the

expected sample complexity was minimized under that constrained. We then

executed each algorithm (with the parameters chosen as above) on the test

dataset. We present the results in table 3.1.

The main observation is that BBK dominates the other algorithms on the

test dataset both in the sense of having the minimal expected sample com-

plexity and in the sense of having the minimal failure probability. The results

confirm that we did not overfit and we can actually optimize the parameters

73

●

●

●

●

●

●

●

● ●

●
●

●
●

●

0 5 10 15 20 25

−
3.

5
−

3.
0

−
2.

5
−

2.
0

−
1.

5

Galaxy Smooth, BBK vs (E)MAJ, budget = 50

Average Sample Complexity

lo
g(

A
ve

ra
ge

 F
ai

lu
re

 P
ro

ba
bi

lit
y)

●

●

●

●

●
●

●

●

●

●
●

●

● ●

● ●

●

● ●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

BBK
EMAJ
MAJ

●

●

●

●

●

●

●

● ●

●
●

●
●

●

0 5 10 15 20 25

−
3.

5
−

3.
0

−
2.

5
−

2.
0

−
1.

5

Galaxy Smooth, BBK vs (L)HR, CSQ. budget = 50

Average Sample Complexity

lo
g(

A
ve

ra
ge

 F
ai

lu
re

 P
ro

ba
bi

lit
y)

●

●

●

●

●
●

●

●
● ●

●

●

●●

●

●

●

● ●

●

●

● ●

●

●

●

●●●

●
●

●

●

●
●

●

●

●
●

● ●

●

●
● ●

● ●

●

BBK
CSQ
CSQ
HR
LHR

●

●

●

●

●

●

●

●

●

●

●
●

●

●

0 5 10 15 20 25 30

−
4.

5
−

4.
0

−
3.

5
−

3.
0

−
2.

5
−

2.
0

−
1.

5

Galaxy Smooth, BBK vs (E)MAJ, budget = 100

Average Sample Complexity

lo
g(

A
ve

ra
ge

 F
ai

lu
re

 P
ro

ba
bi

lit
y)

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ● ●

●
● ● ●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ● ●

BBK
EMAJ
MAJ

●

●

●

●

●

●

●

●

●

●

●
●

●

●

0 5 10 15 20 25 30

−
4.

5
−

4.
0

−
3.

5
−

3.
0

−
2.

5
−

2.
0

−
1.

5

Galaxy Smooth, BBK vs (L)HR, CSQ, budget = 100

Average Sample Complexity

lo
g(

A
ve

ra
ge

 F
ai

lu
re

 P
ro

ba
bi

lit
y)

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●●

● ●

●

●

●

●

●
●

●
●

● ● ●
●

BBK
CSQ
CSQ
HR
LHR

Figure 3.8: Empirical comparison of the algorithms when we set as a stopping
rule a maximum budget of size 50 (top-left and top-right) and 100 (bottom-left
and bottom-right)

of the algorithms based on some sampled set from P and then apply them for

another dataset sampled from P .

As a final experiment, we compared the performance of the algorithms in

a setting where a maximum budget is set a priori to some fixed and relatively

small value. We present the results for a budget of size 50 and respectively 100

in figure 3.8. The difference as compared to the previous experiments is that

as the failure probability decreases, the algorithms converge to similar perfor-

mances. In fact, the same effect would occur with a stopping rule based on

74

Algorithm Train SC Train δ Test SC Test δ
BBK 13.9 2.4% 14.1 2.3%

CSQ16 18.4 3.1% 18.5 3.2%
LHR 23.7 2.3% 24.1 2.4%

EMAJ 23.8 3.1% 23.9 3.3%
CSQ5 25.1 3.4% 25.2 3.3%

HR 31.6 2.9% 32.5 3%
MAJ 37 3% 37 3%

Std HR 187 0% 188 0%
Std LHR 162 0% 166 0%
Std CSQ 209 0% 214 0%

Table 3.1: The performance of the algorithms on the training and test datasets
when the target failure probability is δ ≤ 3.4%.

a parameter ε except for lower values of the failure probability). This phe-

nomenon is not surprising as a limited budget constrains the set of achievable

failure probabilities and sample complexities, with all the algorithms essen-

tially converging to the performance of Majority Vote (with parameter m =

the budget size) as their sample complexities increase. The interesting result is

that for intermediate values of δ, BBK dominates the other strategies, as in the

previous experiments.

75

Chapter 4

Infinite Bandits

4.1 Introduction

Consider the following trivial problem. A huge jar of marbles contains some

fraction ρ of black (success) marbles and the rest white (failure) marbles. We

want to find a black marble as quickly as possible. If the black marbles are

sufficiently plentiful in the jar, the problem is simple: Repeatedly draw mar-

bles from the jar until a black one is found. The expected sample complexity

is Θ(1/ρ). This kind of generate-and-test approach is simple, but can be ex-

tremely effective when solutions are common—for example, finding an unsat-

isfying assignment for a randomly generated CNF formula is well solved with

this approach.

The corresponding noisy problem is distinctly more challenging. Imagine

the marbles in our jar will be used to roll through some sort of obstacle course

and (due to weight or balance or size) some marbles are more successful at

completing the course than others. If we (quickly) want to find a marble that

navigates the obstacle course successfully, how do we best allocate our test

runs on the course? When do we run another evaluation of an existing marble

and when do we grab a new one out of the jar? How do we minimize the

(expected) total number of runs while still assuring (with high probability) that

we end up with a good enough marble?

76

We formalize this problem as an infinite-armed bandit and provide lower

and upper bounds on the number of arm pulls needed to find an arm with

optimal payoff with high probability.

The focus of this chapter will be on algorithmic ideas and analysis tools that

solve a simpler version of the general bandit problem. We will generalize the

model in chapter 5 with the goal of applying the algorithms to solve non-trivial

optimization problems.

4.2 Related Work

The framework used in our work is closely related to several models from the

multi-armed bandit literature. While the case of a finite number of arms is well

understood [Auer et al., 2002], in the past few years, papers discussing bandits

with infinitely many arms have appeared [Kleinberg et al., 2008; Bubeck et al.,

2008]. Our work extends the PAC-Bandit setting [Even-Dar et al., 2002] to an

infinite number of arms [Wang et al., 2008]. It is worth noting here that a typical

assumption in the literature on continuous-armed bandits (one class of infinite-

armed bandits) is that the structure in the arm space induces structure in the

space of expected rewards of the arms. The mean-reward function is usually

assumed to be Lipschitz and algorithms are created that take advantage of this

smoothness assumption. In some cases, including our example problems from

chapter 5, this assumption does not hold and algorithms that depend on it can

fail.

Regarding our chosen performance measure, we depart from the often used

cumulative regret setting and choose a setting that only requires an agent to

have a good answer after some finite experimentation. This setting is related

77

to some recent work [Bubeck et al., 2009; Audibert et al., 2010], but we chose the

PAC-Bandit performance measure instead of the simple regret setting defined

in the aforementioned papers. Besides existing Stochastic Dilemma (chapter 2)

and PAC-algorithms, we also draw algorithmic inspiration from the empirical

success of the Biased Robin algorithm from the Budgeted Learning framework

[Madani et al., 2003], about which our analysis may offer some insight. Appli-

cationwise, we target policy search and planning under uncertainty.

We chose to remove the parameter ε from the definition of the models for

similar reasons as in the Stochastic Dilemma chapter: to allow us to focus on

designing algorithmic strategies that are able to adapt to unknown p values.

Most of the focus in the previous papers on PAC Bandits (with the exception of

the Successive Elimination algorithm from Even-Dar et al. [2002]) was on the

worst case scenario—where for an approximation parameter ε ∈ (0, 1), algo-

rithms were designed to be optimal when the difference between the optimal

and the suboptimal arms is exactly ε or less.

While this is of course interesting theoretically, the main challenge in practi-

cal settings is developing reasonable ways of handling non-worst case scenar-

ios, where the difference between arms is significantly larger than ε. We note

that the optimal algorithm in the finite PAC Bandit setting (Median Elimina-

tion from Even-Dar et al. [2002]) is non-adaptive in the sense that it will always

take the same number of samples irrespective of the actual difference between

the arms, which renders it too conservative for most practical applications.

While we will take a similar approach to Median Elimination in terms de-

signing a new algorithm (Greedy Rejection) that focuses on being optimal the

worst case scenario for an infinite armed bandit setting (section 4.6), we will

78

also discuss how to use the algorithm in the case where p is unknown (sec-

tion 4.7) and we will show how the key insight leads to strong results empiri-

cally in the following chapter (5).

4.3 Models

We will discuss three bandit models in this section, in increasing order of diffi-

culty in terms of the number of arms: finite bandits with 2 arms, finite bandits

with n > 2 arms (for some parameter n) and infinite-armed bandits. Similarly

to chapter 2, we chose to simplify the models as compared to the general ban-

dit setting in the sense of only having two types of Bernoulli arms (suboptimal

and optimal) with expectations symmetrically positioned with respect to 0.5.

As in the stochastic dilemma setting, this is an assumption regularly used to

prove lower bounds for bandit algorithms. As we will see, this constraint also

leads to a type of theoretical analysis that easily extends to more general mod-

els. The threshold 0.5 between suboptimal and optimal arms is chosen because

it leads to the hardest possible setting for Bernoulli reward distributions—i.e.

it leads to the largest number of samples needed to estimate the parameter of

the reward distribution accurately.

4.3.1 2-Armed Bandit

We will use a similar notation as in section 2.2. Thus, we are given a set of

distributions D = {D0 = Bernoulli(p),D1 = Bernoulli(1− p)}, p ∈ (0, 0.5).

And let’s assume that we have two arms a1 and a2 available with associated

reward distributions Da1 6= Da2 ∈ D and we are given sampling access to

the two distributions. We are also given an acceptable failure probability δ ∈

79

(0, 0.5) as a parameter.

The 2-Armed Bandit problem is to find which of the two arms has an associ-

ated reward distributionD1 (which corresponds to the higher expected reward

and hence is the “optimal” arm) and return it with failure probability at most

δ while minimizing the expected number of samples m(p, δ) from the distribu-

tions Da1 and Da2 .

When referring to this model, for ease of notation, we will call it 2PAC(p, δ).

4.3.2 PAC Bandit

The PAC Bandit model is an extension of the 2-Armed Bandit problem from

2 to n arms. In this new setting, only one out of the n distributions is D1 and

the rest are all D0. The goal remains the same as in the 2PAC(p, δ) model: to

find the optimal arm with failure probability at most δ while minimizing the

expected total number of samples from all distributions Dai (for i ∈ [n]).

We note that the model is essentially a constrained version of the general

PAC Bandit model introduced in Even-Dar et al. [2002]. That being said, most

lower and upper bounds in their setting are proved in the model we are using

here. The intuition is that this model captures the worst case scenarios of the

PAC Bandit problem. We will label this model nPAC(n, p, δ).

4.3.3 Infinite PAC Bandit

Finally, the nPAC(n, p, δ) model can be extended to an infinite number of arms.

A natural extension is to assume that an infinity of arms are available with a

certain proportion of them being optimal and with the rest being suboptimal.

80

Let’s note the percentage of optimal arms (i.e. arms with a corresponding re-

ward distribution D1) with ρ ∈ (0, 0.5].

In the model, we assume that an algorithm is given sampling access to a

categorical distribution P over D with probability ρ on D1 and 1− ρ on D0. At

every step an algorithm has three choices:

1. it can request a new arm from P in which case it receives a new arm ai

(represented through a unique id that is available for future samples from

the arm’s distribution) and a sample from the distribution Dai associated

to the arm ai.

2. it can request a new sample from the distribution associated to a previ-

ously seen arm.

3. it can stop and recommend one of the sampled arms as being the optimal

one.

The goal of the algorithm is to find an optimal arm with failure probability at

most 1− δ while minimizing the expected total number of samples. We will

label this model IPAC(ρ, p, δ).

We note that an nPAC(n, p, δ) model can be viewed as an IPAC(ρ, p, δ)

model by having P be a uniform distribution over the n arms and ρ = 1
n .

This points to a difference between the two models: in the finite model, we

implicitly know the number of arms n, while in the infinite model, ρ may be

unknown. Most of the algorithmic strategies we will discuss are not assuming

knowledge of ρ and are thus more general. We will come back to this discus-

sion in the following section.

81

4.4 On Reductions

In this section we will discuss several reductions between stochastic dilemmas,

finite and infinite bandit models. While these reductions are not always opti-

mal, they provide valuable insights about the relations between the problems

and the common algorithmic and analysis ideas.

4.4.1 From Stochastic Dilemmas to 2-Armed Bandits

We will first show that 2PAC(p, δ) and SD(p, δ) can be reduced to each other

and the reductions are optimal, thus proving that the two problems are es-

sentially equivalent. The proof is straightforward in the direction SD(p, δ) →

2PAC(p, δ) but slightly more involved in the opposite direction. We note that

the proofs apply in both cases of known or unknown p (but for a fixed state of

knowledge in each theorem statement).

Theorem 4.4.1 (SD(p, δ)→ 2PAC(p, δ)). Given an algorithm A that solves a SD(p, δ)

problem with expected sample complexity m(p, δ), we can use it to solve a 2PAC(p, δ)

problem with sample complexity m(p, δ).

Proof. We will pick arbitrarily one of the two arms (say a1) from the 2PAC(p, δ)

setting and use A to decide whether E[x]x∼Da1
< 0.5 or > 0.5. In the first case

arm a2 is recommended as optimal while in the second case a1 is recommended

as optimal. The sample complexity remains m while the correctness of this

2PAC(p, δ) strategy is implied by the correctness of A.

Theorem 4.4.2 (2PAC(p, δ)→ SD(p, δ)). Given an algorithm A that solves a 2PAC(p, δ)

problem with expected sample complexity m(p, δ), we can use it to solve a SD(p, δ)

problem with sample complexity m(p, δ).

82

Proof. We first note that the SD(p, δ) problem forces one to take all the samples

from a fixed unknown distribution D that is uniformly sampled from the set

of distributions D so we can’t directly use an arbitrary 2PAC(p, δ) algorithm

(since the algorithm might sample two arms according to some strategy, while

we only have one arm available).

But we can use D to simulate the other possible distribution from D. Let’s

consider two arms: a corresponding to D and a ’virtual’ arm a′ corresponding

to a distributionD′ that is obtained by flipping the results of samples from dis-

tributionD (the two sets of samples are treated separately and are iid). We give

as an input to algorithm A the two arms and let it decide which is the optimal

one in m samples with failure probability ≤ δ. If a is returned as optimal, the

answer to the SD(p, δ) problem is Bernoulli(1− p), while in the opposite case

the answer will be Bernoulli(p).

Finally, the reductions are optimal since for both problems the theorems

hold for the special case where A is an optimal algorithm for one of the two

settings.

4.4.2 From Stochastic Dilemmas to PAC Bandits

We will now focus on how to use stochastic dilemmas to solve the finite PAC

Bandit problem. The following reduction is straightforward, but it is not opti-

mal (as described in detail in Even-Dar et al. [2002], better algorithms exist for

the nPAC(n, p, δ) problem). As in the stochastic dilemma case, the proof holds

for a fixed state of knowledge of p (p is either known or unknown for both

problems).

Theorem 4.4.3 (SD(p, δ) → nPAC(n, p, δ)). Given an algorithm A that solves a

83

SD(p, δ) problem with (expected) sample complexity m(p, δ), we can use it to solve a

nPAC(n, p, δ) problem with (expected) sample complexity m′ = nm(p, δ
n).

Proof. Let’s apply A with parameter δ
n for each arm ai. If only one arm is la-

beled Bernoulli(1− p) by A, it will be recommended as optimal. If more than

one arm or no arm is labeled Bernoulli(1− p), any arm is chosen arbitrarily as

optimal. The probability that at least one arm is “labeled” incorrectly by A is

at most ∑n
i=1

δ
n = δ via an application of union bound for individual failures.

Thus the algorithm will return the correct answer w.p. at least 1− δ. The sam-

ple complexity is simply the sum of the sample complexities for applying A

to the n arms (and we can use linearity of expectation in the case that m is the

expected value of a random variable).

4.4.3 From Stochastic Dilemmas to Infinite PAC Bandits

Finally, we will now cover the reduction of the IPAC(ρ, p, δ) problem to SD(p, δ).

The key difference with the reduction from the previous section is that in gen-

eral we don’t know the value of ρ (whereas the corresponding complexity pa-

rameter n from nPAC(n, p, δ) is implicitly known to the algorithm). This im-

plies that one needs to use SD(p, δ) solutions in a different manner.

The high level strategy we will outline is to transform the IPAC(ρ, p, δ)

problem into an iterative stochastic dilemma. As the name suggests, arms will

be sampled and ”labeled” iteratively and as soon as an ”optimal” arm is found

the algorithm will stop. While this reduction is not optimal (see sections 4.6

and 4.7), it leads to practical algorithms with good empirical performance (see

the experiments in chapter 5).

To be concrete, we start with index i = 1 and:

84

1. Sample an arm ai from P .

2. Use A to decide whether ai is optimal w.p. δ
2i2 .

3. If ai is declared optimal, stop, else i = i + 1 and return to step 1.

Now, if N is a random variable that denotes the number of arms an algo-

rithm samples from the distribution P over the set D until stopping, we will

prove that:

Theorem 4.4.4. Given an algorithm A that solves a SD(p, δ) problem with expected

sample complexity m(p, δ), we can use it to solve a IPAC(ρ, p, δ) problem with ex-

pected sample complexity m′ ≤ E[Nm(p, δ
2N2)] with E[N] ≤ 2

ρ .

where the expectations are taken both with respect to sampling arms from

P and sampling from the reward distributionsDai associated with the sampled

arms.

Proof. Using the same trick as in lemma 2.4.2, the probability the algorithm

makes a wrong decision over the infinite horizon is bounded by P(error) ≤

∑∞
i=1

δ
2i2 ≤ δ as desired.

The expected sample complexity is m′ = E[∑N
i=1 m(p, δ

2i2] ≤ E[Nm(p, δ
2N2]

(where we assume that m is increasing when the failure probability is decreas-

ing which is true for all the strategies we discussed in chapter 2).

Let Sai be the event of accepting the i’th sampled arm (i ≥ 1), conditioned

on rejecting the first i− 1 arms. Note that P(Sai) = P(accept arm ai|ai is ’good’

)P(ai is ’good’) + P(accept arm ai|ai is ’bad’)P(ai is ’bad’) ≥ P(accept arm

ai|ai is ’good’)P(ai is ’good’) ≥ (1− δ
2i2)ρ ≥

ρ
2 , ∀i > 1. Thus E[N] ≤ 2

ρ (by the

properties of the geometric distribution, where Sai stands for “success”).

85

The theorem above implies a corollary for the performance of various iter-

ative version of the stochastic dilemma algorithms introduced in chapter 2.

Corollary 4.4.5. Given an IPAC(ρ, p, δ) problem:

(i) Iterative Majority Vote and Iterative Beat-By-K use m′ = O(1
ρ(1−2p)2 log 1

ρδ)

(ii) Iterative Hoeffding Rejection uses m′ = O(1
ρ(1−2p)2 (log 1

ρδ + log 1
1−2p))

(iii) Iterative Lazy Hoeffding Rejection uses m′ = O(1
ρ(1−2p)2 (log 1

ρδ + log log 1
1−2p))

samples on expectation to solve it.

Proof. We will only prove the result for Iterative Majority Vote as the proof

is almost identical for the other algorithms. Using theorem 4.4.4 for m′ and

given that for Majority Vote m = C
(1−2p)2 log 1

δ for some constant C > 0 (from

theorem 2.3.2) we get that:

m′ ≤ E[
CN

(1− 2p)2 log
2N2

δ
] (4.1)

=
C

(1− 2p)2 log
2
δ
(E[N] + 2E[N log N]) (linearity of expectation) (4.2)

We can show that:

E[N log N] ≤
√

E[N2]E[log2 N] (4.3)

≤
√

4E[N]2E[log2 N] (4.4)

≤
√

4E[N]2 log2 E[N] (4.5)

= 2E[N] log E[N] (4.6)

where 4.3 is an application of Cauchy-Schwarz, 4.4 is determined by the prop-

erties of the geometric distribution with success probability Sai . For 4.5 we use

the fact that the function log2 x is concave for x ≥ 3 and we apply Jensen’s

inequality to log2 to get the inequality.

86

And, since we know from theorem 4.4.4 that E[N] ≤ 2
ρ , we get that m′ ≤

C
ρ(1−2p)2 log 2

δ (
2
ρ +

4
ρ log 2

ρ) = O(1
ρ(1−2p)2 log 1

ρδ).

4.4.4 From PAC Bandits to Infinite PAC Bandits

The reduction we will discuss deals with the simplest version of the IPAC(ρ, p, δ)

problem—when both p and ρ are known (reductions for other versions of the

problem follow along similar lines). The high level strategy is to compute how

many arms one needs to sample to get an optimal arm with high probabil-

ity and then apply a PAC-Bandit algorithm to select the optimal arm from the

sampled ones. The following algorithm implements this strategy.

1. Sample n′ = 1
ρ log(2

δ) arms.

2. Execute a correct nPAC(n, p, δ) algorithm A on the nPAC(n′, p, δ
2) prob-

lem.

3. Return the output of A.

Instead of applying the standard PAC Bandit algorithms we apply an al-

gorithm that takes advantage of the knowledge of p—the version of Median

Elimination from Section 7.1 of Mannor et al. [2004] (which we label as Me-

dian Elimination with Known Bias (MEKB)).

Theorem 4.4.6. If the reduction algorithm is executed with MEKB as a nPAC(n, p, δ)

algorithm, it solve the IPAC(ρ, p, δ) problem with expected sample complexity m′ =

O(1
ρ(1−2p)2 log 1

δ).

Proof. We will first prove that the reduction algorithm is correct. Let a1, a2, ..., an′ ∼

P i.i.d. Define event A = {∀i ∈ {1...n}, ai suboptimal} (in words, A stands for

87

the event that the expected value of all the sampled arms is smaller than 0.5).

Then, Pai∼P ,i∈{1...n}(A) = (1− ρ)n. If we choose n = 1
ρ log(2

δ), then P(A) ≤ δ
2 .

When MEKB is executed with for the problem nPAC(n, p, δ
2), the reduction

strategy will fail with probability at most δ
2 . Thus, by the union bound on P(A)

and the failure probability of MEKB, the algorithm will fail with probability at

most δ and will otherwise return an arm with the desired properties.

The sample complexity follows by using the result that MEKB takes m =

O(1
(1−2p)2 (n′ + log 1

δ)) samples on expectation.

While the reduction leads to a suboptimal algorithm (since the lower bound

from 4.5 is a logarithmic factor smaller and is met by another algorithm we will

discuss in section 4.6), it is instructive in terms of techniques of reusing algo-

rithms from a finite to an infinite bandit problem (the other type of reduction is

to apply a doubling trick). For a more detailed discussion about the connection

between the two models, we refer the reader to the discussion section (4.8).

4.5 Lower Bounds

The goal of this section is to prove a lower bound for the IPAC(ρ, p, δ) prob-

lem. We will only prove a lower bound for the easiest version of the problem:

when both p and ρ are known. The bound is thus a valid lower bound (al-

though potentially loose) for the more difficult problems when at least one of

the complexity parameters p or ρ are unknown.

One interesting fact is that in section 4.6 we will present an algorithm that

has an identical asymptotic upper bound, even though the algorithm doesn’t

assume knowledge of ρ. This shows that the bound is asymptotically tight for

the harder setting of p known and ρ unknown.

88

Theorem 4.5.1. Any algorithm A that correctly solves a IPAC(ρ, p, δ) problem has

an expected sample complexity of at least m = Ω(1
(1−2p)2 (

1
ρ + log 1

δ)).

Proof. The proof is by contradiction. We will assume there exists a correct al-

gorithm A that solves any IPAC(ρ, p, δ) problem with expected sample com-

plexity o(1
(1−2p)2 (

1
ρ + log 1

δ)). The goal is to show that A would imply a cor-

rect algorithm for the PAC-Bandit problem with expected sample complexity

o(1
ε2 (n + log 1

δ)), which would contradict the known lower bound in the PAC-

Bandit setting.

Let’s define a PAC-Bandit problem as follows: assume we are given n = 1
ρ

arms, n− 1 of which have expected reward of p and one of which has expected

reward of 1 − p. To be precise, it is worth mentioning that we allow the al-

gorithms in the PAC-Bandit setting to resample arms and ignore any previous

pulls taken for those arms (this actually makes the PAC-Bandit problem harder,

so the lower bound still has to hold).

When we use A for the PAC-Bandit problem, each time the algorithm sam-

ples a new arm from the environment, it selects an arm uniformly at ran-

dom, with replacement, from the n arms. Applying A, it will get the opti-

mal arm with probability at least 1− δ with an expected number of samples

m = o(1
(1−2p)2 (

1
ρ + log 1

δ)) = o(1
ε2 (n + log 1

δ)).

From theorem 13 in Mannor et al. [2004], we know that m = Ω(1
ε2 (n +

log 1
δ)). But from theorem A.3.1 (applied to functions m(p, ρ, δ) and g(p, ρ, δ) =

1
(1−2p)2 (

1
ρ + log 1

δ) for complexity parameters 1
δ , 1

ρ , 1
1−2p), we know that the two

sets of functions (o(g) and Ω(g)) are disjoint and thus m can’t belong to both

which means we obtained the desired contradiction.

89

4.6 A Novel Algorithm - Greedy Rejection

In this section we will introduce a new algorithm that has a better performance

than the algorithmic reductions to Stochastic Dilemmas from section 4.4. We

will formally study the algorithm in an infinite-armed bandit setting with a

known p value and prove that it is asymptotically optimal in this version of

the problem.

The high-level idea of the algorithm is to take advantage of the fact that one

doesn’t need to accurately label both suboptimal and optimal arms but only

needs to find the one with a higher expected value. The algorithm is similar to

the Beat-By-K strategy introduce in section 2.3.2 but it uses asymmetric barriers

and a different manner of sampling arms which will lead to a different type of

analysis.

Similarly to Beat-By-K, let ∆t = #1-samples− #0-samples. The algorithm

has a parameter k(i) that depends on the index of the currently sampled arm

ai. It starts by sampling with replacement an arm from a uniform distribution

over D, and then it keeps sampling the arm until either 1. ∆t = k(i) in which

case the arm is labeled as ”optimal” and the algorithm stops, or 2. ∆t = −1 in

which case it labels the arm ”suboptimal”, it ”throws” it away and samples a

new one again according to a uniform distribution over D. The idea of having

parameter k(i) varying with index i follows from the need to control the failure

probability over the entire execution of the algorithm (since we don’t know a

priori how many arms we need to sample to find an optimal one).

90

Algorithm 1: GreedyRejection(p, δ):

• Given a set of parameters depending the index i of the sampled arms

k(i) = dlog 1−p
p
(2i2(1−2p)

pδ + 1)− 1e

• For every i = 1, 2, . . .:

1. Sample a new arm ai from P .

2. For every t = 1, 2, . . .:

(a) Sample xt ∼ D, update ∆t = #1-samples− #0-samples. .

(b) If ∆t = k(i) stop and recommend ai as ”optimal”.

(c) If ∆t = −1 declare ai ”suboptimal”, set i = i + 1, go to step

1.

(d) Otherwise set t = t + 1, go to step 2a.

Parts of the analysis are similar to Beat-By-K, but because arms are repeat-

edly sampled, as opposed to just one arm being ”labeled”, the proof becomes

significantly more involved.

Theorem 4.6.1. If the Greedy Rejection algorithm with the set of parameters k(i) =

log 1−p
p
(2i2(1−2p)

pδ + 1) − 1 (where i is the index of the arm that is currently being

sampled, i ∈N∗) is executed for an infinite bandit model IPAC(p, δ, ρ) (with ρ ≤ 0.5

and p ≥ 0.1), it will return the optimal solution with probability ≥ 1− δ and it will

take m = O(1
(1−2p)2 (

1
ρ + log 1

δ)) samples on expectation.

The key components of the proof are:

1. prove that all suboptimal arms are rejected with high probability (lemma

4.6.2).

91

2. prove that the expected time to reject a suboptimal arm is ”small” as com-

pared to the time to accept an optimal arm (lemma 4.6.4).

3. prove that even though ”most” of the optimal arms are rejected as well

(due to the aggressiveness of the rejection procedure), there remains a

high probability of sampling and accepting an optimal arm (lemma 4.6.3).

4. combine the above facts with a careful handling of the upper bounds on

the expected sample complexities for each scenario (i.e. rejected subopti-

mal arm, rejected optimal arm, accepted optimal arm) to prove the main

result (lemma 4.6.7).

To get an intuition for the asymptotic dependency of k on the parameters

p and δ in the setting the algorithm is intended for (”large” p, p ≥ 0.1), we

can compute k as follows: k(i) ≤ 1
log 1−p

p
log 4(1−2p)i2

pδ ≤ 1
1−2p log 40(1−2p)i2

δ =

O(1
1−2p log (1−2p)i

δ).

We chose to constrain p ≥ 0.1 in the theorem statement, to have a cleaner

analysis. If p ≤ 0.1 we can obtain an asymptotic upper bound for the sample

complexity that only depends on δ and ρ (which would not change the asymp-

totic upper bound in the theorem statement) since the ”hard” IPAC(ρ, p, δ)

problems are those for which p is close to 0.5 (due to the dependency of the

sample complexity on 1
(1−2p)2).

We also note that we dropped the approximation of ki to the nearest integer

in the statement of the theorem to have a clearer analysis. The proof holds for

discrete values of ki with the intuition that for p close enough to 0.5 and small

enough δ (for which k becomes ”large”), the real value and the integer approxi-

mation become close with their difference having no impact on the asymptotic

bound.

92

Before we continue, let’s label several events and random variables that

will prove useful for the various proofs related to the performance of Greedy

Rejection:

• Si = “Greedy Rejection declares arm ai optimal”.

• Sopt
i = “ai is optimal AND Si”.

• Ssubopt
i = “ai is suboptimal AND Si”.

• Ri = “Greedy Rejection declares arm ai suboptimal and rejects it”.

• Ropt
i = “ai is optimal AND Ri”.

• Rsubopt
i = “ai is suboptimal AND Ri“.

• N is a random variable that denotes the number of arms Greedy Rejection

samples until one is labeled “optimal” or, alternatively, the number of

sampled arms until Greedy Rejection stops.

• τ(i) is a random variable (r.v.) for the number of samples before an arm

with index i is declared optimal or suboptimal.

• τopt(i) is a r.v. for the number of samples conditioned on ai being optimal

(τ(i)|ai is optimal).

• τsubopt(i) - same as above except for a suboptimal arm.

We will prove the main theorem in a sequence of lemmas. The first deals

with the probability that the algorithm will fail to return the correct answer:

Lemma 4.6.2. Greedy Rejection is correct with probability at least 1− δ.

93

Proof. The only way for Greedy Rejection to fail is if it recommends a subop-

timal arm as being the optimal arm. The only way this event can happen is if

a negatively biased random walk corresponding to the i-th sampled arm (ob-

tained via the standard transformation from section A) corresponding to the

distribution Bernoulli(p) hits the barrier at k(i). Such an event would lead

Greedy Rejection to recommend the arm as being “optimal”. So we need to

bound the total probability of such recommendations.

Let’s denote byN the distribution over steps of a negatively biased random

walk. Then, applying theorem A.2.2 with k0 = 1, k1 = k(i), β = 1−p
p and

denoting τ(i) the time until stopping of the i-th arm, we obtain PN (Sτ(i) =

k(i)) = β−1
βk(i)+1−1

and by replacing k(i) with the value from the statement, we

get that PN (Sτ(i) = k(i)) ≤ δ
2i2 .

Let’s assume the worst case scenario where the algorithm will only sam-

ple suboptimal arms over the infinite horizon. Then the probability of recom-

mending one of them as being optimal is P(error) ≤ ∑i≥1 PN (Sτ(i) = k(i)) =

∑i≥1
δ

2i2 ≤ δ.

The next result determines the probability that an optimal arm will be cor-

rectly labeled ”optimal” by the algorithm.

Lemma 4.6.3. If the i-th sampled arm has a Bernoulli(1− p) distribution, the prob-

ability that Greedy Rejection will stop and recommend it as optimal is P(Sopt
i) ≥

1− 2p.

The lemma has a strong connection with the well known Ballot Theorem

from random walk theory [Addario-Berry and Reed, 2008], which states that

the probability of a positively biased random walk to stay positive over the

infinite horizon is positive and proportional to the bias of the random walk.

94

This connection is made more explicit in the following section in the proof

of 4.7.3.

Proof. We again apply theorem A.2.2(i) for the positively biased random walk

corresponding to the arm ai and get that P(Sopt
i) = P(Sτ = k(i)) = βk(i)(β−1)

βk(i)+1−1
=

1−2p
p

βk(i)

βk(i)+1−1
≥ 1−2p

p
βk(i)

βk(i)+1 = 1−2p
1−p ≥ 1− 2p.

The following lemma computes the expected number of samples for a sub-

optimal arm.

Lemma 4.6.4. If Greedy Rejection is executed for the i-th sampled arm and the arm ai

has an associated distribution Bernoulli(p), then E[τsubopt(i)] ≤ 1
1−2p .

We note that the bound is a factor of O(1
1−2p) smaller as compared to the

Beat-By-K expected sample complexity bound for a fixed suboptimal arm. The

advantage is canceled when the sample complexity over the entire execution

of the algorithm is considered (since, as we will see, an optimal arm can be

rejected with significant probability), but it points to a significant difference

between the two strategies.

Proof. We will deal with a negatively biased random walk corresponding to

a Bernoulli(p) distribution, which can be treated symmetrically to a positively

biased random walk but by reversing the barriers. Thus if we use theorem A.2.2(ii)

with k0 = k(i) = k, k1 = 1 the time to hit a barrier at −1 or k is:

E[τsubopt(i)] =
β(βk − 1)− k(β− 1)
(1− 2p)(βk+1 − 1)

(4.7)

=
βk+1 − 1 + 1− β− k(β− 1)

(1− 2p)(βk+1 − 1)
(4.8)

=
1

1− 2p
− (k + 1)(β− 1)

(1− 2p)(βk+1 − 1)
(4.9)

and it follows that E[τsubopt(i)] ≤ 1
1−2p .

95

The next lemma computes the expected number of samples for an optimal

arm.

Lemma 4.6.5. If Greedy Rejection is executed for the i-th sampled arm then if the arm

ai has an associated distribution Bernoulli(p), then E[τopt(i)] ≤ 2k(i) + 2k(i)
E(i) +

1
(1−2p)E(i) , where E(i) = 2i2(1−2p)

pδ .

Proof. We will use theorem A.2.2 with k0 = 1, k1 = k(i), 1−p
p = β, and from the

expression of E(i) we get that k = k(i) = logβ (E + 1)− 1. Then, by using part

(ii) from theorem A.2.2 for the expected time to hit a barrier at −1 or k, we get:

E[τopt(i)] =
kβk(β− 1)− (βk − 1)
(1− 2p)(βk+1 − 1)

(4.10)

=
k E+1

β (β− 1)− (E+1
β − 1)

(1− 2p)E
(4.11)

=
k

1− 2p
(1− 1

β
) +

k
(1− 2p)E

(1− 1
β
) +

1
(1− 2p)E

− E + 1
(1− 2p)Eβ

(4.12)

≤ k
1− p

+
k

(1− p)E
+

1
(1− 2p)E

(since
E + 1

(1− 2p)Eβ
> 0) (4.13)

≤ 2k +
2k
E

+
1

(1− 2p)E
(since p < 0.5) (4.14)

We note that in these expressions, k and E are functions of i and we removed

the dependency for clarity of exposition.

We will now state a result about the expected number of arms that Greedy

Rejection samples before it stops.

Lemma 4.6.6. The expected number of arms Greedy Rejection samples before stopping

is E[N] ≤ 1
ρ(1−2p) .

Proof. Using the notation at the beginning of the section, P(Sai) = P(Sopt
ai ∨

Ssubopt
ai) = P(Sopt

ai) + P(Ssubopt
ai) (since the two events are mutually exclusive).

96

Then P(Sai) ≥ P(Sopt
ai). But since P(ai optimal) is ρ (since Greedy Rejec-

tion samples the two arms according to the distribution corresponding to the

IPAC(p, δ, ρ) model), P(Sopt
ai) = P(ai declared optimal |ai optimal)P(ai optimal) =

ρP(ai declared optimal |ai optimal) ≥ ρ(1− 2p) (based on lemma 4.6.3)

Since N is a random variable that denotes the number of arms sampled un-

til one is labeled “optimal”, we can interpret N as the number of times we need

to wait for a success in samples from a geometric distribution with success

probability P(Sai) (since the first time an arm is labeled “optimal” by Greedy

Rejection, the algorithm stops). Then E[N] = 1
P(Sai)

≤ 1
ρ(1−2p) .

We are now ready to prove the final result concerning the expected sam-

ple complexity of the Greedy Rejection algorithm. We note that the proof is

relatively long and convoluted. The algebraic manipulations could be sim-

plified significantly by removing the 1 − 2p term in the expression for k =

log 1−p
p
(2i2(1−2p)

pδ + 1)− 1 at the cost of adding an extra O(log 1
1−p) in the sam-

ple complexity bound which would mean loosing the asymptotic tightness of

the algorithm. The practical cost would probably be small in most situations,

but from a theoretical perspective there is an obvious justification in looking

for the tightest analysis possible.

Lemma 4.6.7. The expected sample complexity of Greedy Rejection is m(p, δ) =

O(1
(1−2p)2 (

1
ρ + log 1

δ)).

Proof. Part 1. In the first part of the proof we will derive an upper bound

for the expected number of samples m. In what follows the expectations are

taken with respect to both sampling arms from the distribution over the set of

distributions D corresponding to the IPAC(p, δ, ρ) model (that contains only

Bernoulli(p) and Bernoulli(1− p)) and to sampling a fixed arm with the goal

97

of deciding whether it is optimal or not.

m = E[
N

∑
i=1

τ(i)] (4.15)

=
∞

∑
n=1

E[
N

∑
i=1

τ(i)|N = n]P(N = n) (4.16)

by applying the law of total expectation (since the set of events {N = n|n ≥ 1}

forms a partitioning of the sample space). We note that we can’t apply Wald’s

identity (which would simplify the algebra) to split equation 4.15 (into a term

that depends only on N and another term that depends only on τ(i)) as the

random variables τ(i) are not identically distributed. Then:

m =
∞

∑
n=1

E[
n

∑
i=1

τ(i)|N = n]P(N = n) (due to conditioning) (4.17)

=
∞

∑
n=1

(
n

∑
i=1

E[τ(i)|N = n])P(N = n) (linearity of expectation) (4.18)

We note that τ(i), ∀i ≤ n is not independent of N = n as the latter event

constrains what arms are accepted or not at the indices i ≤ n. So we will split

the sum in two parts:

m =
∞

∑
n=1

(
n−1

∑
i=1

E[τ(i)|N = n ∧ i < n])P(N = n) +
∞

∑
n=1

E[τ(n)|N = n]P(N = n)

(4.19)

Now, the only two pieces of information in the event N = n ∧ i < n that τ(i)

is dependent upon are 1. the index of the arm i and 2. the fact that since the

stopping time of the algorithm is at an index higher than the current index

i < n, it has to be the case that the arm at index i was rejected. In other words,

E[τ(i)|N = n ∧ i < n] = E[τ(i)|ai declared suboptimal], ∀i < n (4.20)

≤ E[τ(i)]
P(ai declared suboptimal)

(4.21)

where the inequality is due to the law of total expectation.

98

Similarly, τ(n) is dependent on the 1. index of the arm n and 2. the fact that

arm an had to be accepted since the stopping time N = n. So, as above:

E[τ(n)|N = n] = E[τ(n)|an declared optimal] (4.22)

≤ E[τ(n)]
P(an declared optimal)

(4.23)

We can replace the two expressions in 4.19 and get:

m ≤
∞

∑
n=1

n−1

∑
i=1

E[τ(i)]P(N = n)
P(ai declared suboptimal)

+
∞

∑
n=1

E[τ(n)]P(N = n)
P(an declared optimal)

(4.24)

Part 2. In the second part of the proof, we will upper bound the first term

in the summation 4.59 T1 = ∑∞
n=1 ∑n−1

i=1
E[τ(i)]P(N=n)

P(ai declared suboptimal) .

First, since the events “ai optimal” and “ai suboptimal” partition the space

of samples, we can apply the law of total expectation to E[τ(i)] and get:

E[τ(i)] = P(ai is optimal)E[τopt(i)] + P(ai is suboptimal)E[τsubopt(i)] (4.25)

= ρ(2k(i) +
2k(i)
E(i)

+
1

(1− 2p)E(i)
) + (1− ρ)

1
1− 2p

(4.26)

where the second inequality is determined by applying lemmas 4.6.5 and 4.6.4.

We now bound P(ai declared suboptimal) ≥ P(Rsubopt
i)P(ai is suboptimal) ≥

(1− p)(1− ρ) where the last inequality holds because P(Rsubopt
i) ≥ 1− p since

the probability of a suboptimal arm being rejected is at least the probability

that it is rejected in the first trial which is 1− p. And since 1− p ≥ 0.5 and

1− ρ ≥ 0.5 we get that P(ai declared suboptimal) ≥ 1
4 .

So the formula for T1 now becomes:

T1 ≤
∞

∑
n=1

n−1

∑
i=1

8ρk(i)P(N = n) +
∞

∑
n=1

n−1

∑
i=1

8ρk(i)P(N = n)
E(i)

+ (4.27)

∞

∑
n=1

n−1

∑
i=1

4ρP(N = n)
(1− 2p)E(i)

+
∞

∑
n=1

n−1

∑
i=1

4(1− ρ)P(N = n)
1− 2p

(4.28)

99

Let’s consider the four terms in the summation in turn and upper bound

them separately.

Part 2.1 Let’s first upper bound the fourth term in the summation:

T1.4 =
∞

∑
n=1

n−1

∑
i=1

4(1− ρ)P(N = n)
1− 2p

(4.29)

=
4(1− ρ)

1− 2p

∞

∑
n=1

(n− 1)P(N = n) (4.30)

≤ 4(1− ρ)

1− 2p
E[N] (4.31)

≤ 4(1− ρ)

ρ(1− 2p)2 (from lemma 4.6.6) (4.32)

Part 2.2 The third term is (by replacing the formula for E(i):

T1.3 =
∞

∑
n=1

n−1

∑
i=1

4ρP(N = n)
(1− 2p)E(i)

(4.33)

=
2pδρ

(1− 2p)2

∞

∑
n=1

n−1

∑
i=1

P(N = n)
i2 (4.34)

≤ 4pδρ

(1− 2p)2 (4.35)

since ∑n−1
i=1

1
i2 < 2 and ∑∞

n=1 P(N = n) = 1.

Part 2.3 By replacing the formulas for k(i) and E(i), the second term be-

comes:

T1.2 =
∞

∑
n=1

n−1

∑
i=1

8ρk(i)P(N = n)
E(i)

(4.36)

=
1

log β

4pδρ

1− 2p

∞

∑
n=1

n−1

∑
i=1

P(N = n) log (2i2(1−2p)
pδ + 1)

i2 (4.37)

≤ 4pδρ

(1− 2p)2

∞

∑
n=1

n−1

∑
i=1

P(N = n) log (4i2(1−2p)
pδ)

i2 (4.38)

≤ 4pδρ

(1− 2p)2 log
4(1− 2p)

pδ

∞

∑
n=1

n−1

∑
i=1

P(N = n)
i2 +

8pδρ

(1− 2p)2

∞

∑
n=1

n−1

∑
i=1

P(N = n) log i
i2

(4.39)

≤ 8pδρ

(1− 2p)2 log
40
δ
+

24pδρ

(1− 2p)2 (4.40)

100

where 4.38 follows from 1
log β ≤

1
1−2p , and 4.40 from (1). p ≥ 0.1, (2). ∑∞

n=1 P(N =

n) = 1, (3). the fact that ∑n−1
i=1

1
i2 < 2 and (4). ∑n−1

i=1
log i

i2 < 3. To prove the

last relation, one can observe that ∑n
i=1

log i
i2 ≤ ∑∞

i=1
log i

i2 ≤ ∑∞
i=1

1
i1.5 ≤ 3, since

i2
log i = i2−o(1) ≥ i1.5.

Part 2.4 Finally, the first term can be bounded as:

T1.1 =
∞

∑
n=1

n−1

∑
i=1

8ρk(i)P(N = n) (4.41)

≤ 8ρ

1− 2p

∞

∑
n=1

n−1

∑
i=1

P(N = n) log
4i2(1− 2p)

pδ
(4.42)

≤ 8ρE[N]

1− 2p
log

4
pδ

+
16ρ

1− 2p

∞

∑
n=1

n−1

∑
i=1

P(N = n) log i +
8ρE[N]

1− 2p
log (1− 2p)

(4.43)

But ∑∞
n=1 ∑n−1

i=1 P(N = n) log i ≤ ∑∞
n=1 ∑n−1

i=1 P(N = n) log n ≤ ∑∞
n=1 n log nP(N =

n) = E[N log N].

Now, similarly to the proof of theorem 4.4.5, we can show that E[N log N] ≤

2E[N] log E[N].

We can then replace the formula for E[N log N] in 4.43 and using the result

that E[N] ≤ 1
ρ(1−2p) from lemma 4.6.6 we get:

T1.1 ≤
8

(1− 2p)2 log
40
δ
+

16
(1− 2p)2 log

1
ρ(1− 2p)

+
16

(1− 2p)2 log(1− 2p)

(4.44)

=
8

(1− 2p)2 log
40
δ
+

16
(1− 2p)2 log

1
ρ

(4.45)

Now we can finally put together the results from 4.32, 4.35, 4.40 and 4.45

into the inequality for T1 from 4.28 to get the desired relation that

T1 = O(1
(1−2p)2 (

1
ρ + log 1

ρ + log 1
δ)) = O(1

(1−2p)2 (
1
ρ + log 1

δ)).

Part 3. In the third part of the proof we will upper bound the second term

from 4.59, T2 = ∑∞
n=1

E[τ(n)]P(N=n)
P(an declared optimal) . The algebraic manipulations are

101

similar to Part 2, with the difference being the way P(an declared optimal) is

handled.

We will first give a lower bound on P(an declared optimal):

P(an declared opt.) ≥ P(an declared opt.|an is opt.)P(an is opt.) (4.46)

= P(Sopt
i)ρ (4.47)

≥ (1− 2p)ρ (based on lemma 4.6.3) (4.48)

The second fact we will use is P(N = n) ≤ P(an declared opt.). The reason is

that the event {N = n} is more specific than the event {an declared opt.} since

{N = n} is a conjunction of events that contains the rejection events of the first

n− 1 arms in addition the event {an declared opt.}.

Now, similarly to Part2:

E[τ(n)] = ρ(2k(n) +
2k(n)
E(n)

+
1

(1− 2p)E(n)
) + (1− ρ)

1
1− 2p

(4.49)

so the formula for T2 becomes:

T2 =
∞

∑
n=1

2ρk(n)P(N = n)
P(an declared opt.)

+
∞

∑
n=1

2ρk(n)P(N = n)
P(an declared opt.)E(n)

+ (4.50)

∞

∑
n=1

ρP(N = n)
(1− 2p)E(n)P(an declared opt.)

+
∞

∑
n=1

(1− ρ)P(N = n)
(1− 2p)P(an declared opt.)

(4.51)

First we upper bound the fourth term and use the lower bound on

P(an declared opt.): T2.4 ≤ 1−ρ
(1−2p)2 ∑∞

n=1 P(N = n) = 1−ρ
ρ(1−2p)2 .

For the third term, we use the fact that P(an declared opt.) ≥ P(N = n) and

get: T2.3 ≤ ∑∞
n=1

ρ
(1−2p)E(n) ≤

pδρ
2(1−2p)2 ∑∞

n=1
1

n2 ≤
pδρ

2(1−2p)2 (since ∑∞
n=1

1
n2 < 2).

For the second term, we use again P(an declared opt.) ≥ P(N = n) and,

102

with a similar derivation and arguments as in Part 2.3, we get:

T2.2 =
pδρ

2(1− 2p)2 log
4(1− 2p

pδ

∞

∑
n=1

1
n2 +

pδρ

(1− 2p)2

∞

∑
n=1

log n
n2 (4.52)

≤ pδρ

(1− 2p)2 log
40
δ
+

3pδρ

(1− 2p)2 (4.53)

For the first term, using similar manipulations to Part 2.4 we get:

T2.1 =
2ρ

1− 2p
log

4(1− 2p)
pδ

∞

∑
n=1

P(N = n)
P(an declared opt.)

(4.54)

+
4ρ

1− 2p

∞

∑
n=1

P(N = n)
P(an declared opt.)

log n (4.55)

≤ 2
(1− 2p)2 log

4(1− 2p)
pδ

+
4

(1− 2p)2

∞

∑
n=1

log nP(N = n) (4.56)

where we used P(an declared opt.) ≥ ρ(1− 2p) and ∑∞
n=1 P(N = n) = 1. The

term ∑∞
n=1 log nP(N = n) = E[log N] ≤ log E[N] (using same argument as in

Part 2.4) and so:

T2.1 ≤
4

(1− 2p)2 log
4(1− 2p)

pδ
+

4
(1− 2p)2 log

1
ρ(1− 2p)

(4.57)

≤ 4
(1− 2p)2 (log

40
δ
+ log

1
ρ
) (4.58)

Putting the results of all subterms together we get that T2 = O(1
(1−2p)2 (

1
ρ +

log 1
ρ + log 1

δ)) = O(1
(1−2p)2 (

1
ρ + log 1

δ)) which is the same asymptotic bound as

for T1 and since from 4.59 m ≤ T1 + T2 = O(1
(1−2p)2 (

1
ρ + log 1

δ)) as intended.

4.6.1 Applications of Greedy Rejection

In this section we will state two interesting consequences of the sample com-

plexity analysis of Greedy Rejection.

The first corollary proves that Greedy Rejection applied to a PAC Bandit

model is asymptotically optimal. This is a relatively surprising result as the

103

only known algorithm (a variant of Median Elimination [Even-Dar et al., 2002])

with this property (from Mannor et al. [2004]) uses the (implicit) knowledge of

n, an information that Greedy Rejection doesn’t need.

Corollary 4.6.8. If Greedy Rejection is applied with a uniform distribution over the n

arms of a PAC Bandit(n, p, δ), it will return the optimal arm with probability ≥ 1− δ

and with an expected sample complexity m = O(1
(1−2p)2 (n + log 1

δ)).

The proof is a simple application of theorem 4.6.1 with the observation that

ρ = 1
n since only one arm is optimal in the worst case of a PAC Bandit(n, p, δ)

model. The asymptotic optimality follows due to the lower bound from Man-

nor et al. [2004] (theorem 13). The algorithm is numerically better than the

alternative which is not surprising given the huge constant in the sample com-

plexity bounds of the Median Elimination strategies.

The second corollary proves that Greedy Rejection applied to a 2-armed

bandit problem with parameters p and δ is also asymptotically optimal.

Corollary 4.6.9. If Greedy Rejection is applied with a uniform distribution over the 2

arms of a 2-armed bandit(p, δ) problem it will return the optimal arm with probability

≥ 1− δ and with expected sample complexity m = O(1
(1−2p)2 log 1

δ).

The result is a direct application of 4.6.8. It is an interesting consequence

since, using the reductions from 4.4.1, it shows that Greedy Rejection can be

used to solve a stochastic dilemma as well. An interesting open problem is

explaining why, according to numerical experiments, Greedy Rejection out-

performs Beat-By-K in a Stochastic Dilemma. The analysis of Greedy Rejection

is too loose with respect to the constants to directly show that it indeed domi-

nates Beat-By-K (and given the complexity of the proof, it is probably difficult

to improve the constants significantly).

104

4.7 Greedy Hoeffding Rejection

The Greedy Rejection strategy from the previous section assumes the param-

eter p is known. As in the stochastic dilemma chapter, the natural question is

what can be achieved when the parameter is unknown. The idea of this section

is to combine the fast rejection idea with the algorithms from section 2.4 which

leads to an alternative strategy to the reductions discussed in section 4.4. The

new algorithm (Greedy Hoeffding Rejection) is the first step towards a version

of Greedy Rejection that can be used to solve realistic optimization problems.

As we will see in this chapter and the following one, this algorithm has both

good theoretical properties and good empirical performance.

For simplicity of analysis, we will only present the combination of Greedy

Rejection and Hoeffding Rejection (the analysis is very similar if instead of

Hoeffding Rejection we would use Lazy Hoeffding Rejection or Confidence

Sequences). We will use the same notation as in section 4.6. The algorithm will

continue sampling an arm until either 1. ∆t = −1 in which case it labels the

arm ”suboptimal” and samples a new one or 2. Hoeffding Rejection declares

the arm ”optimal” (since the lower bound of the confidence interval around

the empirical average grows to be larger than 0.5) and the algorithm stops.

The analysis of the algorithm is similar to the analysis of Greedy Rejection,

except we need more general results regarding the expected time to reject a

suboptimal arm and the probability to accept an optimal arm.

Theorem 4.7.1. If the Greedy Hoeffding Rejection algorithm is executed for an in-

finite bandit model IPAC(p, δ, ρ) (with ρ ≤ 0.5 and p ≥ 0.1), it will return the

optimal solution with probability ≥ 1 − δ and it will take m = O(1
(1−2p)2 (

1
ρ +

1
1−2p log 1

ρδ(1−2p))) samples on expectation.

105

We will prove the theorem and in the discussion section (4.8) we will com-

pare the properties of the algorithm with the other strategies that solve this

problem. The correctness proof is identical to the proof of Greedy Rejection so

we will skip it.

The first lemma we will prove sets an identical upper bound on the ex-

pected number of samples as lemma 4.6.4. The proof is different though, as we

will not to be able compute the desired quantity directly.

Lemma 4.7.2. If Greedy Hoeffding Rejection is executed for the i-th sampled arm and

the arm ai has an associated distribution Bernoulli(p), then E[τsubopt(i)] ≤ 1
1−2p .

Proof. First let’s assume that instead of executing Hoeffding Rejection for a

suboptimal arm, we will only stop if and when the random walk hits the bar-

rier at −1. But this is equivalent to executing a biased random walk with a

negative bias 1 − 2p until it hits a unique absorbing barrier at −1. Using a

similar result to theorem A.2.2(ii), we can compute the expected time of such a

random walk which is exactly 1
1−2p .

But having an extra stopping condition determined by the use of Hoeffding

Rejection can only decrease the expected sample complexity, hence the result.

The second lemma deals with the probability that an optimal arm is even-

tually accepted. The result is similar to lemma 4.6.3, except now we have to

apply a more general result.

Lemma 4.7.3. If the i-th sampled arm has a Bernoulli(1− p) distribution, the prob-

ability that Greedy Hoeffding Rejection will stop and recommend it as optimal is

P(Sopt
i) ≥ 1− 2p.

106

Proof. As in lemma 4.7.2, let’s first assume that instead of executing Hoeffding

Rejection for an optimal arm, we will only stop if and when the random walk

hits the barrier at −1. This is equivalent to studying the probability that a

positively biased random walk will ever hit −1. But the Ballot theorem for

random walks (Theorem 3 from Addario-Berry and Reed [2008]) states that

this last probability is 2p.

Since the random walk must stay positive for a finite amount of time with

probability 1 (since Hoeffding Rejection has finite expected sample complex-

ity), it has to be the case that the probability that the algorithm stops without

recommending the arm is optimal is at most the probability that it will stop by

hitting −1 on the infinite horizon (which is at most 2p). So, the complement of

that event (which is that Hoeffding Rejection stops and recommends to arm as

optimal) is at least 1− 2p.

We will now state and prove the lemma for the expected sample complexity

of Greedy Hoeffding Rejection. Since the proof is very similar to the proof

of 4.6.7 we will only sketch it.

Lemma 4.7.4. The expected sample complexity of Greedy Hoeffding Rejection is m =

O(1
(1−2p)2 (

1
ρ +

1
1−2p log 1

ρδ(1−2p))).

Proof sketch. As in the proof of 4.6.7, we get an upper bound for m:

m ≤
∞

∑
n=1

n−1

∑
i=1

E[τ(i)]P(N = n)
P(ai declared suboptimal)

+
∞

∑
n=1

E[τ(n)]P(N = n)
P(an declared optimal)

(4.59)

with:

E[τ(i)] = P(ai is optimal)E[τopt(i)] + P(ai is suboptimal)E[τsubopt(i)] (4.60)

≤ ρ
1

(1− 2p)2 log
i2

δ(1− 2p)
+ (1− ρ)

1
1− 2p

(4.61)

107

where for the last inequality we upper bound E[τopt(i)] based on applying

lemma 2.4.4 adapted for the level of error acceptable for the arm at index i and

we upper bound E[τsubopt(i)] by using lemma 4.7.2.

Replacing E[τopt(i)] (and similarly E[τopt(n)]) in the upper bound for m,

the proof continues using similar techniques and tools as for 4.6.7 and the final

result follows. We remark that the manipulations are actually easier as the

upper bound for the expected time to accept an optimal arm has a simpler

formula as compared to the proof for Greedy Rejection.

4.8 Summary and Discussion

The high level goal of this chapter was to extend the published results from

the finite PAC Bandit model to a setting where we have an infinite amount of

arms. The key novel challenges as compared to the finite PAC bandit problem

were:

1. Design algorithmic strategies that are able to cope with the inability to

sample ”all” the arms.

2. Address the (potential) lack of knowledge of the concentration of optimal

arms.

The first challenge can not be solved by a simple reduction to the finite ver-

sion of the problem. The reason is that all of the algorithms introduced in the

finite PAC Bandit setting (Naive, Successive Elimination, Median Elimination

[Even-Dar et al., 2002] or their variants from Mannor et al. [2004]) are assum-

ing all arms can be sampled at any time—or, equivalently, that the optimal

arm is always part of an ”active” set of arms that the algorithm can access.

This fact is no longer true in the infinite version of the problem. The challenge

108

Model p known Reference

2PAC(p, δ)
O(1

(1−2p)2 log 1
δ)

Ω(1
(1−2p)2 log 1

δ)

[1], 2.3.2,
2.3.3
[2]

nPAC(n, p, δ)
O(1

(1−2p)2 (n + log 1
δ))

Ω(1
(1−2p)2 (n + log 1

δ))

[2], 4.6.8
[2]

IPAC(ρ, p, δ)
O(1

(1−2p)2 (
1
ρ + log 1

δ))

Ω(1
(1−2p)2 (

1
ρ + log 1

δ))

4.6.1
4.5.1

p unknown

2PAC(p, δ)
O(1

(1−2p)2 (log 1
δ + log log 1

1−2p))

Ω(1
(1−2p)2 log 1

δ)

[1], 2.4.5
[2]

nPAC(n, p, δ)
O(n

(1−2p)2 (log n
δ + log log 1

1−2p)))

Ω(1
(1−2p)2 (n + log 1

δ))

[1], 4.4.5(iii)
[2]

IPAC(ρ, p, δ)

O(1
ρ(1−2p)2 (log 1

ρδ + log log 1
1−2p))

O(1
(1−2p)2 (

1
ρ +

1
1−2p log 1

ρδ +
1

1−2p log log 1
1−2p))

Ω(1
(1−2p)2 (

1
ρ + log 1

δ))

4.4.5(iii)
4.7.1
4.5.1

Table 4.1: Summary of the expected sample complexity bounds for solving
various PAC Bandit models. Color code: tight bounds (green background),

gap between upper and lower bounds (red background), new result from this
thesis (blue font), previous result (black font). References: [1] is Even-Dar et al.
[2002] and [2] is Mannor et al. [2004]

is addressed by designing incremental strategies that sample arms from the

distribution over the space of arms and label them as optimal or suboptimal.

This new approach requires a different type of analysis, although of a similar

type (with the exception of the proof for the Greedy Rejection algorithm, which

is of a different nature).

The second challenge makes the problem intrinsically harder as compared

to the finite setting where the number of arms is considered implicitly known.

It is thus remarkable it is actually possible to get very similar results for p

known in the infinite setting as in the finite setting (see table 4.1). We remark

109

though that the strategy with this property (Greedy Rejection) is very differ-

ent from the algorithm from the finite setting, which is a variant of Median

Elimination (see Even-Dar et al. [2002]). The Median Elimination algorithm,

while asymptotically optimal in the known p setting, is impractical due to its

huge constant in the sample complexity bound. It is not clear whether Median

Elimination can be modified for the infinite setting in a manner that would

avoid adding complexity parameters to its bound (a doubling trick for exam-

ple would add a logarithmic factor, which would render it suboptimal).

An interesting property of Greedy Rejection is that it suggests an algorith-

mic idea (fast rejection of seemingly suboptimal arms) that can be used in the

harder, adaptive setting (where the parameter p is unknown) and which, as

we will see in the next chapter, has excellent empirical properties. A second

interesting property is that Greedy Rejection doesn’t make use of (possible)

knowledge about ρ. This implies that Greedy Rejection is asymptotically opti-

mal in the p known, ρ unknown setting (given that we have a matching lower

bound from theorem 4.5.1 for the easier problem of p known, ρ known).

As it is obvious from the summary of the results in table 4.1, while the PAC

Bandit problems are essentially completely solved asymptotically in the setting

where p is known, for the harder problem (with p unknown) there are still gaps

between the upper and lower bounds. We think the key difficulty lies in prov-

ing a tight lower bound in the simplest possible setting - the 2 Armed Bandit

problem. Since we’ve shown in section 4.4.1 that the SD(p, δ) and 2PAC(p, δ)

problems are essentially identical, we also conjecture as in section 2.4.4 that

the correct dependency on p in the lower bound for 2PAC(p, δ) has an extra

log log 1
1−2p multiplicative factor.

110

We also observe that because we don’t have an ε parameter as in the stan-

dard finite PAC Bandit problem definition, it is relatively difficult to translate

the lower bounds from Mannor et al. [2004] to our unknown p problems. For

this reason, we chose to list in table 4.1 (for the case of unknown p) the lower

bounds from the easier p known case. We leave the tightening of these bounds

as open problems.

One of the most interesting applications from this chapter is the Greedy

Hoeffding Rejection algorithm (see the last rows in table 4.1). The algorithm is

suboptimal in general—it is dominated by the Iterative Lazy Hoeffding Rejec-

tion strategy (4.4.5) when for example 1
ρ = Θ(

√
1

1−2p) or more generally when

1
ρ = o(1

1−2p). But there is an interesting class of domains for which it is ac-

tually almost tight with the (possibly loose in the general case) lower bound:

when 1
ρ = Ω(1

(1−2p)2) or more generally when 1
ρ = ω(1

1−2p log 1
1−2p). The in-

terpretation is that when the concentration of optimal rewards is significantly

smaller than the difference between the bias of the optimal and suboptimal

arms, the Greedy Hoeffding Rejection algorithm will be guaranteed to per-

form very well. We will see in the following chapter how an extension of this

algorithm has indeed excellent empirical performance.

111

Chapter 5

Planning in Reward-Rich Domains via Infinite
Bandits

5.1 Introduction

In this chapter we extend the infinite bandit model from chapter 4 with the goal

of solving stochastic planning problems. We view planning as an optimization

problem, with every possible plan being an ‘arm’ in a finite or infinite bandit

model. We target a class of problems where standard local search approaches

fail: in particular, relations between arms are either not predictive of relations

between their associated reward values or such relations can be ignored with-

out sacrificing much in terms of the number of evaluations needed to get an

approximately optimal solution.

Our claim is that some apparently hard planning problems can be solved

via a sampling and testing approach that cannot be solved by algorithms that

depend on the existence of local structure for search. We documented this phe-

nomenon in the video games Infinite Mario and Pitfall! where policies can be

very similar but have vastly different outcomes (one different action in a long

sequence can lead the agent to failure as opposed to successfully completing a

level).

The model we discuss in this chapter is a variation of the PAC-Bandit model

[Even-Dar et al., 2002] to an infinite number of arms. The connection to the

112

PAC-Bandit model was discussed at length in chapter 4. We extend the model

from 4 by: (1) allowing a more general threshold between optimal and sub-

optimal arms (r0 instead of 0.5), (2) adding an approximation parameter ε, (3)

having a more general support for the expected reward of the arms and a more

general distribution over this support. By allowing the agent to aspire to any

reward level, our definition of the performance measure is akin to the earlier

work of Wang et al. [2008], but we target offline rather than online stochastic

optimization.

5.2 Model

We define an arm a as a Bernoulli(ra) probability distribution, for some ra ∈

[0, 1]. When an arm is pulled, it returns a reward value sampled from Bernoulli(ra).

An arm ai is preferred to another aj if it has a higher expected reward value,

rai > raj . Arms are sampled from a distribution P over an arm space S ⊆ [0, 1],

possibly infinitely large (countable or uncountable). The distribution P defines

an infinite-armed bandit problem.

We seek algorithms that take a reward level r0 as input and attempt to min-

imize the number of pulls needed to identify an arm with expected value of

r0 or more. This sample complexity has a dependence on P and r0, as it may be

likely or unlikely to encounter an arm with high enough reward. Specifically,

define ρ = Pa∼P (ra ≥ r0) as the probability of sampling a “good enough” arm.

We assume the domain is “reward rich”—specifically, that ρ is bounded away

from zero.

Formally, we define an (ε, δ, r0)-correct algorithm ALG for an an infinite

bandit problem (that we will label IB(ε, δ, r0,P)) to be an algorithm that after

113

a number of samples T(ε, δ, r0,P) (that is finite with probability 1) returns an

arm a with expected value ra ≥ r0 − ε with probability at least 1− δ.

5.2.1 Distribution P

Technically, distribution P plays a similar role as in the Label Identification

problem: it acts as a generator for objects that in this case are bandit arms.

Contrary to Label Identification though, we associate other interpretations to

P .

The first perspective is to view P as the (unknown) distribution over (ex-

pected) function values induced by doing random search over some input

space.

In more details, let’s assume we are given query access to a function f :

X → Y. Every time f is evaluated at a point x ∈ X it returns f (x). The

standard approach for maximizing f is to make some parametric assumptions

about f (e.g. f is linear, convex, etc.) and design algorithms that take advan-

tage of these assumptions. In some case though, f lacks structure (e.g. there is

no correlation between the similarity of inputs and their values), or we don’t

have enough information or we are simply not willing to make any assump-

tions about f . In such scenarios, random search is used as a first attempt to

optimize the function, sometimes performing remarkably well (as we will also

demonstrate in section 5.3).

Random search samples inputs uniformly from X, evaluates them, and

stops as soon as a stopping criterion is fulfilled (e.g. a desired performance

threshold is reached or some maximum budget of queries is spent or the max-

imum value in Y is obtained). Sampling uniformly (or from another distri-

bution for that matter) from X is equivalent to sampling from an unknown

114

distribution over Y determined by the input function values f (x). Distribution

P can be seen as playing the role of this unknown distribution.

From another perspective, P is akin to distributions maintained by some

optimization algorithms as components in their search process. Algorithms

like the Cross Entropy Method or Genetic Algorithms for example (see chap-

ter 6 for more details) proceed in epochs by updating a distribution over the

input space at the end of each iteration with the goal of increasingly focus-

ing the distribution on inputs that are close to optimal. During an epoch, the

distribution is fixed and a set of samples is taken from it and then evaluated

with the high level goal of finding the best inputs among the samples. When

the evaluations are noisy, a fixed epoch is thus very similar to solving an in-

finite bandit problem of the type introduced in this chapter (with distribution

P representing, as in the first perspective from above, the distribution over

(expected) function values induced by the current distribution over the input

space).

5.2.2 Parameter r0

Whenever the input space X of a function f to be optimized is infinite (count-

able or uncountable), unless one makes some type of assumption about f , there

will exist problems that are unsolvable. Consider for example a “needle in the

haystack” scenario where f is maximum at a unique input x∗ ∈ X, but there

is no structure in f to discover x∗ other than by random sampling. In this case

the probability of finding x∗ is 0 if X is infinite, thus rendering the optimization

problem unsolvable.

The role of parameter r0 is to define a particular optimization problem: it

acts as a threshold between optimal and suboptimal values. Knowledge of

115

reasonable r0 values is problem dependent and its range of values defines a

family of related optimization problems (increasing r0 from the minimal to the

maximal reward naturally increases the difficulty of the problem).

To have a well defined optimization problem, our key assumption (“reward

richness”) is that ρ = Pa∼P (ra ≥ r0) > 0—i.e. we assume that the probability

mass on optimal values is bounded away from 0 (thus preventing the “needle

in the haystack” scenario described above). The assumption is relatively mild

(as it applies to a wide variety of optimization problems, including some with

no structure in the input space for example) and, as we will see in this chapter,

it can be exploited to solve non-trivial optimization problems.

5.2.3 Parameter ε

The role of the parameter ε is similar to the role played in the Label Identifi-

cation problem: to establish an approximate stochastic optimization problem

where an algorithm is allowed to avoid spending an inordinate amount of sam-

ples for separating two arms that are very close (see section 3.2.1 for a similar

perspective).

To ground the concept in the context of multi-armed bandits, let’s assume

that we are given 3 arms with rewards 0, 0.5 and 0.5 + ∆ for some ∆ ∈ (0, 0.5).

Separating the last two arms requires Ω(1
∆2) samples which becomes imprac-

tical for very small ∆ values, whereas separating the arms with expected re-

wards ≥ 0.5 from the 0 reward arm can be done in a few samples with high

probability. In a lot of practical settings, for small ∆ values, the last two arms

can be considered essentially equivalent, so there is no point in spending ef-

fort deciding which one is better. The parameter ε thus encodes what is the

minimal relevant difference between arms.

116

1e+00 1e+02 1e+04 1e+06

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Infinite Mario (easy), r0 = 1, ε = 0.1

Pulls

P
ro

ba
bi

lit
y

of
 c

om
pl

et
in

g

●

●●

●

Det
IGR
IHR
IUR

1e+00 1e+02 1e+04 1e+06

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Infinite Mario (hard), r0 = 1, ε = 0.1

Pulls

P
ro

ba
bi

lit
y

of
 c

om
pl

et
in

g

●

●

●

●

Det
IGR
IHR
IUR

Figure 5.1: A screenshot of Infinite Mario and plots of the distribution of the
sample complexity for an algorithm that pulls each arm once (x-axis log-scale).
The distributions are plotted for 2 of the 50 Infinite Mario levels corresponding
to the first (easy) and third (hard) quartiles. See the section 5.4 for more details.

5.3 Illustration - Infinite Mario

Our first experiment used a version of Infinite Mario (a clone of the Super Mario

video game, see the left panel of Figure 5.1) that was modified for the Rein-

forcement Learning Competition [Whiteson et al., 2010]. It was also used for

other competitions [Togelius et al., 2010] and it is considered to be an interest-

ing benchmark for planning and learning. The game is deterministic and gives

us an opportunity to present a natural problem that illustrates the “reward

richness” phenomenon motivating our work.

We treated starting screens in Infinite Mario as bandits, where each arm en-

codes an action sequence 50-steps long. In the experiments, the agent’s goal

was to reach a threshold on the right side of the initial screen. The action set

of the agent was restricted by removing the backward action (unnecessary for

solving any level), resulting in 8 total actions and an arm space of size 850.

Action sequences were tested in the actual game, assigning rewards of −1 if

the agent was destroyed, 0 if it did not reach the goal in 50 steps, and a value

of 100− t, otherwise (where t was the number of steps taken before reaching

117

the goal). Since the domain is deterministic, the agent simply sampled uni-

formly at random new arms until one was found with reward greater than 0.

Sampling uniformly from the space of arms induces an unknown distribution

P over the space of possible rewards, which is the distribution over arms de-

scribed in section 5.2.1.

The average number of pulls needed to find a strategy for completing the

first screen over a set of 50 levels ranged from 1 to 1000, with a median of 7.7

pulls and a mean of 55.7 (due to a few very difficult levels). Thus, testing just

a handful of randomly generated action sequences was sufficient to find a suc-

cessful trajectory in this game. The performance of the method is conveyed by

the black (leftmost) lines in the plots in Figure 5.1 (the algorithms correspond-

ing to the other curves are described in the next sections). The results show

that nearly all screens were solved in well under 100 samples.

As an extension to this experiment, we “chained” trajectories together to

completely solve each of the 50 levels (as opposed to just treating the starting

screens). Using a cap of 3000 pulls for each screen in a level, this simple method

was able to complete 40 out of the 50 levels. We recorded several videos of the

performance of this simple strategy:

• Success video (resulting from stitching together solutions to consecutive

screens), 0:53: http://www.youtube.com/watch?v=tH5DRNrRS8I

• Partial success video, 0:49:

http://www.youtube.com/watch?v=Wh8HGKIp7PQ

• First screens for 50 levels, 9:51:

http://www.youtube.com/watch?v=tcJSQcVzRkc

http://www.youtube.com/watch?v=tH5DRNrRS8I
http://www.youtube.com/watch?v=tH5DRNrRS8I
http://www.youtube.com/watch?v=Wh8HGKIp7PQ
http://www.youtube.com/watch?v=tcJSQcVzRkc

118

Regarding the implementation, we took the Infinite Mario code from RL-

Competition source code: http://code.google.com/p/rl-competition/ and RL-

Glue code from RL-Glue source:

http://glue.rl-community.org/wiki/Main Page.

5.4 Algorithms

When the sampled arms are not deterministic, the problem of allocating pulls

is more complex. The agent is faced with a choice between getting better accu-

racy estimates of previously sampled arms versus sampling new arms to find

one with a higher value. In the following, we state and prove a lower bound

on the expected sample complexity of a correct algorithm.

Theorem 5.4.1. Any (ε, δ, r0)-correct algorithm for an IB(ε, δ, r0,P) problem has an

expected sample complexity of at least T(ε, δ, r0,P) = Ω(1
ε2 (

1
ρ + log 1

δ)).

Most of the proofs from this chapter use very similar analysis ideas as the

proofs from chapter 4 and thus we will leave them for Appendix B. The proof

of theorem 5.4.1 can be found in B.1.

For the (general) case, when the concentration of rewards ρ is unknown,

this section introduces three types of algorithms: one that is an incremen-

tal version of a naı̈ve strategy [Even-Dar et al., 2002], one inspired by the

Hoeffding Races framework [Maron and Moore, 1997; Heidrich-Meisner and

Igel, 2009], and another that uses ideas from ballot-style theorems for random

walks [Addario-Berry and Reed, 2008] to quickly reject unpromising arms.

These strategies are extensions of the algorithms we introduced in chapter 4

and we will discuss this connection in detail. The extensions are analogous to

the modifications we made to the Stochastic Dilemma algorithms (chapter 2)

http://code.google.com/p/rl-competition/
http://code.google.com/p/rl-competition/
http://glue.rl-community.org/wiki/Main_Page

119

to solve the more general Label Identification problem (chapter 3).

All the algorithms we introduce have the structure of the Generic Algo-

rithm (Algorithm 1): They sample an arm, make a bounded number of pulls

for the arm, check if the arm should be accepted (and in this case, stop and re-

turn the arm) or rejected (sample a new arm from P and repeat). The decision

rule for acceptance / rejection and when it can be applied is what differentiates

the algorithms.
Algorithm 1: GenericAlgorithm (ε, δ, r0, RejectionFunction):

• Let i = 1, found = FALSE.

• While found == FALSE:

1. Sample a new arm ai ∼ P .

2. decision = RejectionFunction(ai, i, ε, δ, r0).

3. If decision == ACCEPT, found = TRUE, afound = ai.

4. If decision == REJECT, i = i + 1, continue.

• Return afound.

5.4.1 Iterative Uniform Rejection (IUR)

Iterative Uniform Rejection (Algorithm 2) is an incremental version of the

naı̈ve strategy by Even-Dar et al. [2002]. The algorithm pulls an arm a fixed

number of times to decide with high confidence if the arm has an expected

reward less than or greater than r0 − ε. It samples arms in this manner until

one with an estimated mean reward of at least r0 − ε is found.

120

Algorithm 2: IterativeUniformRejection (ε, δ, r0):

• Return GenericAlgorithm(ε, δ, r0, UniformRejection)

• Function UniformRejection(a, i, ε, δ, r0)

1. Let n0 = 4
ε2 ln 2i2

δ .

2. Pull the arm ai n0 times to get rewards rk ∼ Bernoulli(rai), k ∈

[n0].

3. Let r̂ai =
1

n0
∑n0

k=1 rk.

4. If r̂ai < r0 − ε
2 return REJECT.

5. Return ACCEPT.

The algorithm extends the Iterative Majority Vote algorithm from section 4.4.3

(see theorem 4.4.5) to handle arbitrary thresholds (r0− ε
2 instead of 0.5) and for

situations when the parameter p of a particular arm is unknown. We note that

the extension is similar to the way the Majority Vote algorithm (section 2.3.1) is

extended by Naive Majority Vote (section 3.4.1). In the following theorem we

state the formal guarantees for IUR:

Theorem 5.4.2. Iterative Uniform Rejection is an (ε, δ, r0)-correct algorithm for

any IB(ε, δ, r0,P) problem and its expected sample complexity is upper bounded by

O(1
ρε2 log 1

ρδ).

The IUR algorithm is simple, correct, and achieves a bound close to the

lower bound for the problem. We leave the proof of the theorem for Ap-

pendix B.2.

121

5.4.2 Iterative Hoeffding Rejection (IHR)

One problem with IUR is that it is very conservative in the sense of taking a

large number of samples for each arm (with the dominant term being 1
ε2). The

algorithm does not take advantage of the fact that it may be possible to tell

that an arm is highly unlikely to be better than r0 − ε long before all n0 pulls

are performed. As a result, the algorithm wastes pulls deciding precisely how

good or bad the arm is, when it just needs to know whether it is good or bad.

Iterative Hoeffding Rejection (Algorithm 3) exploits the situation in which ∆i,

the difference between the expected reward of arm ai and r0, might be larger

than ε, so an unpromising arm could be rejected before reaching the decision

threshold from IUR—an insight from the Hoeffding Races framework [Maron

and Moore, 1997]. The main idea of the IHR algorithm is to maintain confi-

dence intervals built using the Hoeffding bound around the empirical average

for the sampled arm and to reject the arm as soon as the upper bound of the

confidence interval drops below a certain threshold. If this threshold is not

reached after a particular number of pulls, the arm is accepted.

As the name suggests, the algorithm is a variant of the strategy with the

same name from section 4.4.3 extended to handle arbitrary thresholds and with

a predefined maximum number of samples (n0) that can be taken for a fixed

arm (which is analogous to the strategy Stopped Hoeffding Rejection from sec-

tion 3.4.2).

122

Algorithm 3: IterativeHoeffdingRejection (ε, δ, r0):

• Return GenericAlgorithm(ε, δ, r0, HoeffdingRejection)

• Function HoeffdingRejection((a, i, ε, δ, r0)

1. Let j = 1, δ0 = δ
2i2 , n0 = 4

ε2 ln 1
εδ0

.

2. For j = 1, 2, ..., n0

(a) rj ∼ Bernoulli(rai), r̂ai,j =
1
j ∑

j
k=1 rk

(b) If r̂ai,j < r0 −
√

2 log(2j2/δ0)
j return REJECT.

(c) j = j + 1

3. Return ACCEPT.

We also note that in a similar manner that IHR extends the Hoeffding Re-

jection algorithm from the Stochastic Dilemma setting, we can define iterative

versions for Lazy Hoeffding Rejection and Confidence Sequences. These al-

gorithms (Iterative Lazy Hoeffding Rejection and Iterative Confidence Se-

quences) are extended in an identical manner as the algorithm described in

this section so we will only focus on the intuition and analysis of IHR.

Theorem 5.4.3. Iterative Hoeffding Rejection is an (ε, δ, r0)-correct algorithm

for any IB(ε, δ, r0,P) problem and its expected sample complexity is upper bounded

by O(1
ρε2 log 1

ερδ).

The proof of the theorem can be found in Appendix B.3. The analysis of

the algorithm is tight in the worst case (consider the domain used to prove the

lower bound in Theorem 5.4.1). Nevertheless, as we will show in the experi-

ments section, the algorithm has a much better practical behavior than IUR.

The reason can be understood by emphasizing the differences between the

arms in the upper bound for IHR. Define ∆a = ra − r0 to be a random variable

123

that encodes the difference between r0 and the expectation of an arm sampled

from P , and define ∆− such that 1
∆2
−

= E[1
max(ε2,∆2

a)
|∆a < 0]. (∆− is lower

bounded by ε and it encodes the relevant difference for rejecting an arm if the

arm has an expected value smaller than r0.) It can then be shown (see the proof

in Appendix B.4) that:

Theorem 5.4.4. The expected sample complexity of Iterative Hoeffding Rejection

is upper bounded by O((1
ε2 +

1
ρ∆2
−
) log 1

ερδ) with probability at least 1− δ.

For situations where ∆− is larger than ε, the number of pulls needed to clas-

sify a ‘bad’ arm is actually much smaller (ignoring log factors, the difference

is between O(1
∆2
−
) and O(1

ε2) pulls per arm). This difference is the reason why

the algorithm has the potential to be much more useful then IUR in practice.

The algorithm can be improved by accepting an arm faster if the lower

bound of the confidence interval for the empirical average of a particular arm

becomes larger than r0. Another immediate extension is to use Bernstein bounds

[Mnih et al., 2008b] instead of Hoeffding bounds to take advantage of the case

where the distributions associated with each arm have low variance. We leave

these straightforward improvements for future work.

5.4.3 Greedy Hoeffding Rejection (GHR)

Both IUR and IHR carefully decide whether an arm is good or bad before de-

ciding to reject. As a consequence, with high probability, the first time they en-

counter a ‘good’ arm, they accept it. This strategy is reasonable in general, but

it has one disadvantage: when the proportion of good arms is relatively low,

these algorithms will spend a long time sampling and discarding bad arms.

In some cases, a better strategy could be to reject faster—without being sure

124

with high probability whether an arm is good or bad. This approach is per-

missible in our framework since failure to accept a good arm is only penalized

in terms of sample complexity and does not compromise correctness. Related

examples of empirically successful algorithms that quickly reject are Biased

Robin [Madani et al., 2003] in the Budgeted Bandit setting and evolutionary

algorithms in noisy settings [Fitzpatrick and Grefenstette, 1988].

We next describe an algorithm that implements such a strategy by con-

straining the empirical average of each sampled arm to stay above a certain

threshold for it not to be rejected. The algorithm is a variant of the Greedy

Hoeffding Rejection strategy introduced in section 4.7 modified to handle arbi-

trary thresholds between optimal and suboptimal arms (beyond 0.5) and with

a maximum budget of samples for accepting or rejecting a particular arm.
Algorithm 4: GreedyHoeffdingRejection (ε, δ, r0):

• Return GenericAlgorithm(ε, δ, r0, GreedyRejection)

• Function GreedyRejection (a, i, ε, δ, r0)

1. The function is identical to HoeffdingRejection with the excep-

tion of Line 2b which is replaced by: “If r̂ai,j < r0 − ε
2 return

REJECT”.

Algorithm 4 is essentially a mix of two stopping rules: (1) Reject an arm as

soon as the empirical average drops below r0 − ε, and (2) Accept an arm after

n0 samples.

Similarly to the observation we had about IHR, we can define “greedy”

versions of the Lazy Hoeffding Rejection and Confidence Sequences strategies

(Greedy Lazy Hoeffding Rejection and Greedy Confidence Sequences) that

125

quickly reject seemingly suboptimal arms but apply other strategies than Ho-

effding Rejection for the definition of the dynamic confidence intervals around

the empirical average. As in the previous section, we focus on Hoeffding Re-

jection but the analysis and results apply to these other strategies as well.

Theorem 5.4.5. Greedy Hoeffding Rejection is an (ε, δ, r0)-correct algorithm for

any IB(ε, δ, r0,P) problem and its expected sample complexity is upper bounded by

O(1
ρε3 log 1

ερδ), if r0 > ε (if r0 ≤ ε, an algorithm can simply return the very first arm,

which is guaranteed to be ‘good’ because its reward r satisfies r ≥ 0 ≥ r0 − ε.)

The key idea of the proof is to interpret the evolution of the empirical av-

erage for a good arm as a random walk and then apply a ballot-style theo-

rem [Addario-Berry and Reed, 2008] to bound the probability that the average

will always be higher than a fixed threshold. Doing so allows us to lower

bound the probability of accepting a good arm, which is the key to upper

bounding the expected sample complexity.

The proof can be found in Appendix B.5. The structure of the proof is simi-

lar to that of theorem 4.7.1 with the key difference being that we use a more

general result about the properties of random walks (with steps being real

numbers as opposed to just 1 or −1). While the difference is technical, it leads

to a more involved analysis.

While the worst-case bound we prove is a factor of O(1
ε) worse than that

of the other algorithms, it can be tightened in a similar manner to the proof of

theorem 4.7.1.

126

5.5 Experimental Results

Originally developed for the Atari 2600, Pitfall! is a game where the objective

is to guide the protagonist through the jungle collecting treasure while avoid-

ing items that harm him. In our experiments, interaction with the game was

done via an emulator [JStella, 2008], which was modified to allow for software

control. In the experiment, the agent’s goal was defined simply as arriving at

the right side of the screen on the top tier (some levels can be finished on the

lower tier). The evaluation used the same 8 actions from the Infinite Mario ex-

periment. Stochasticity was added by randomly changing the joystick input to

a centered joystick with no button press 5% of the time.

In this game, constructing a policy as a mapping from states to actions is

difficult because it is unclear exactly what representation to use. The Atari

2600 has 128 bytes of RAM, which means the actual size of the state space can

be 8128, much too large to effectively plan in directly. Treating the game as a

collection of objects greatly simplifies the problem and has been used in Pit-

fall! for learning the dynamics of the first screen and navigating it successfully

[Diuk et al., 2008], but requires prior domain knowledge to define what kind

of interactions can occur between objects.

Because the issue of state in Pitfall! is problematic, one approach to plan-

ning in this domain is to not factor in state at all but to execute action sequences

(which are policies) blindly (conditioned only on time, as opposed to state).

The search space for sequences of 500 actions is 8500 possible plans. How-

ever, on average far fewer than 84 of the possible sequences actually need to

be sampled uniformly at random before a successful one is found. This result

is surprising, as the more difficult screens do not tolerate errors of more than

a couple of pixels of placement. The success indicates that, like Infinite Mario,

127

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pitfall − Vine Screen

SC

F
(S

C
)

IHR
GHR
ILHR
GLHR
ICSQ
GCSQ

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pitfall − Crocs Screen

SC

F
(S

C
)

IHR
GHR
ILHR
GLHR
ICSQ
GCSQ

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pitfall − Pits Screen

SC

F
(S

C
)

IHR
GHR
ILHR
GLHR
ICSQ
GCSQ

Figure 5.2: Plot of distribution of the sample complexity (pulls needed) of the
algorithms over a set of 1000 repetitions. The distributions are plotted for 3
different Pitfall! levels (shown along with a representation of a successful pol-
icy in the lower half of the figure). All experiments used δ = 0.1, ε = 0.1 and
r0 = 0.4 for the screens on the left and right and r0 = 0.3 for the screen in the
middle.

Pitfall! is reward rich.

Figure 5.2 illustrates the results of running six algorithms on three Pitfall!

levels (labeled Vine, Crocs and Pits). Three of the algorithms were introduced

in section 5.4.2: Iterative Hoeffding Rejection (IHR), Iterative Lazy Hoeffding

Rejection (ILHR), Iterative Confidence Sequences (corresponding to the thick

lines in Figure 5.2) and the other three were introduced in section 5.4.3: Greedy

Hoeffding Rejection (GHR), Greedy Lazy Hoeffding Rejection (GLHR), Greedy

Confidence Sequences (GCSQ) (from section 5.4.3 (thin lines in Figure 5.2).

We plot the empirical cumulative distribution functions for the sample com-

plexities of the algorithms resulting after 1000 repetitions of running each al-

gorithm for a particular Pitfall screen.

128

For all three problems, the fast-rejection strategies (the algorithms that re-

ject as soon as the empirical average drops below a threshold, i.e. GHR, GLHR,

GCSQ) dominate by a large margin the corresponding iterative strategies (the

algorithms that classify each arm with high probability, irrespective of whether

it is “good” or “bad”, i.e. IHR, ILHR, ICSQ). The same pattern can also be seen

in Figure 5.1, where the algorithms were used on a deterministic domain with-

out modification. Note that the deterministic strategy used for Infinite Mario is

not successful in Pitfall! because of the noise we introduced. The deterministic

algorithm assumes an arm is good if it is successful on the first pull, which can

be very misleading. In Crocs, for example, the deterministic strategy results

in over 90% of the runs erroneously returning a bad arm. Another interesting

observation is that the strategies that quickly reject arms have a significantly

smaller variance as compared to the iterative strategies (an order of magnitude

in our experiments).

As it was the case in the case of the experiments from chapter 3, the al-

gorithms that extend Confidence Sequences (GCSQ and ICSQ) dominate the

other strategies. We note that for GCSQ we set the size of the initial stage

(Epoch 1 in Algorithm 5) to always be 16 (corresponding to a δ = 0.1) for

every sampled arm). The reason, was that Confidence Sequences quickly be-

comes impractical if we continue to decrease the failure probability with every

sampled arm (due to its theoretical—and probably very loose—exponential

dependency on 1
δ from theorem 2.4.7).

The empirical failure probabilities are significantly smaller than the param-

eter δ we used in the experiments. Even if δ = 0.1, the empirical accuracy

for finding an an optimal arm was above 0.99. Even when setting the same

value for δ for every arm i for IHR, GHR, ILHR and GLHR, empirically we get

129

significantly smaller failure probabilities.

Of all the advantages of the infinite-armed bandit algorithms discussed

here, the most significant may be the weak assumptions that are made: the only

requirement is the probability of sampling a good enough arm be nonzero. It is

thus an important topic of future research to compare the strategies described

in this chapter with local search strategies and planning algorithms that are

designed to take advantage of relations between arms or policies [Kleinberg

et al., 2008; Bubeck et al., 2008; Bubeck and Munos, 2010].

5.6 Summary

We introduced an infinite-armed bandit framework that is tailored to optimiza-

tion problems to which local search cannot be applied. It is closely related to

the finite PAC multi-armed bandit model. We presented an almost-tight lower

bound and three algorithms that solve the problem and provided analyses

proving that these algorithms achieve polynomial sample complexity bounds.

We showed how a decision maker can balance between allocating pulls to get

high-accuracy estimates and sampling new arms to find ones with higher ex-

pected rewards.

The framework models applications where good solutions are plentiful—

where a good arm can be found by random sampling. It was shown that some

non-trivial planning problems (such as two encountered in established video

games) can be solved handily by exploiting this insight, even in the face of

stochastic outcomes.

130

Chapter 6

The Cross-Entropy Method Optimizes for Quantiles

6.1 Introduction

For real-life optimization problems in which function evaluations require phys-

ical measurement or complex simulations, the same inputs can be assigned

different scores [Fitzpatrick and Grefenstette, 1988]. Optimizing in the face of

such noisy functions adds several additional difficulties beyond the challenge

of ordinary optimization. One well known fact is that these inconsistent eval-

uations can mislead an algorithm, causing it to spend too much or too little of

its resources on an individual relative to its “worth”. One common response

is to repeat and average the evaluations, which provides more accurate esti-

mations at the expense of additional evaluations [Heidrich-Meisner and Igel,

2009]. Note, however, that while this multiple-sample approach shrinks the

variance of the noise distributions, it cannot reduce them to a single point—

the problem of noisy optimization remains.

A second difficulty in noisy optimization is that the very notion of which

individual is the best can have multiple interpretations. Given that an input

can have more than one value, which one should “count” in the optimization

process? The maximum? The mode? Depending on the form of the noise

distribution, these options might not even make sense. A natural choice is the

mean, or expected value. However, the median might be more appropriate for

131

some applications, say if the noise distribution has extreme outliers.

Existing analyses [Miller and Goldberg, 1995] and evaluations [Hansen et al.,

2009] of global optimization algorithms optimizing noisy fitness functions fo-

cus on problems in which “reasonable” objective functions align. That is, the

individual with the highest mean also has the highest median, 25th percentile,

etc. In the case of the evaluation, this decision was made explicitly so that re-

sults remain comparable even if participants choose to optimize different ob-

jectives.

Consider, however, applications such as finance where the “right” decision

depends critically on one’s risk attitude. An optimization procedure applied to

such a problem without concern to what objective it is attempting to optimize

is of limited utility to the user. The user would want to choose an algorithm

that optimizes a desired quantity, or, even better, would like to tell the algo-

rithm what to optimize. Note that this notion of risk is relevant even in more

traditional optimization problems such as jet-engine design where cost–safety

tradeoffs play an important role.

In this chapter, we undertake an analysis and empirical study of exactly

the issue of what objective function the cross-entropy (CE) method strives to

optimize. The type of analysis we undertake holds for other global optimiza-

tion techniques (e.g. genetic algorithms [Goschin et al., 2011]). but we chose to

study the behavior of CE as its theoretical properties are relatively well under-

stood.

Originally designed as a technique for the simulation of rare events in net-

works Rubinstein [1996], CE was later adapted to the task of optimization by

casting optimal events as the rare events of interest Rubinstein [1999]. As an

optimization strategy, CE has been successfully applied in a variety of tasks,

132

such as doing policy search in reinforcement learning (RL) Mannor et al. [2003]

or performing supervised classification Mannor et al. [2005]. Although its the-

oretical properties are understood only in limited settings Margolin [2005];

Costa et al. [2007], CE’s empirical success in a wide range of applications has

put it among the state of the art methods for global optimization.

Contributions. Most prior work applies CE directly with no modifications

when optimizing a stochastic evaluation function. Usually, the underlying

assumption is that the noise is “well behaved” (input-independent Gaussian

noise for example) and that CE performs well on average. The main focus of

this chapter will be to show that this assumption of well behaved noise is com-

monly violated, and leads to solutions with poor expected value (sometimes

worse than chance). Formally, it will be shown that this failure is due to the

fact that CE optimizes for quantiles instead of expectation. Therefore, in do-

mains where the ordering determined by the expectations is different than the

one determined by the targeted quantile, performance is poor. We will propose

a simple, alternative algorithm that accomplishes the correct task. Our formal

proof will be based on a model used to establish similar properties for selection

rules in simple genetic algorithms Vose [1998a].

Empirically, we show that noise distributions with the above property oc-

cur naturally in a variety of commonly studied stochastic optimization prob-

lems. In particular, we will use domains from operations research (Inventory

Control), policy search in RL (Tetris) and games (Blackjack) to demonstrate this

claim. We show that even in small Markov Decision Processes, the noise distri-

butions over the returns of policies can have a wide variety of shapes, supports,

and variances.

133

6.2 Related Work

As mentioned, CE has had significant empirical success in a number of set-

tings, among them buffer allocation Alon et al. [2005], scheduling, and vehicle

routing. More references and applications are described in the standard CE

tutorial Boer et al. [2005] or in the detailed monographs on the topic Rubin-

stein and Kroese [2004]; Chang et al. [2007]. The first paper to apply the CE

method in the context of RL for policy search was Mannor et al. [2005]. The

idea of using CE to search in a parameterized policy space was subsequently

used to obtain results that were orders of magnitude better than previous ap-

proaches in a challenging RL domain—Tetris Szita and Lörincz [2006]; Szita

and Szepesvári [2010a], which we will also address here. More recent papers

compare CE with standard RL techniques Kalyanakrishnan and Stone [2009]

and establish interesting connections with other policy-search algorithms like

CMA-ES and PI2, generalizing several design choices made in standard CE

Stulp and Sigaud [2012]. An interesting application of CE in the context of

sample-based motion planning for robotics Kobilarov [2011] uses a mixture of

Gaussians instead of the standard, unimodal distributions usually used for CE.

The same idea also appears in the work of Bardenet and Kégl [2010].

On the theoretical side, several initial proofs Rubinstein and Kroese [2004];

Margolin [2005] established convergence properties of modified versions of CE

under certain assumptions. In a more recent paper, Costa et al. [2007] prove

the asymptotic convergence of the standard version of CE for discrete opti-

mization. An underlying assumption of the results above is that there is no

noise in the function to be optimized. Previous empirical evidence Rubinstein

and Kroese [2004] suggests that standard CE behaves well in noisy settings at

least for certain domains. To the best of our knowledge, the only theoretical

134

result that discusses the convergence of a modified CE algorithm in a noisy

setting Chang et al. [2007], proposes sufficient, but impractical modifications

to CE to address arbitrary noise, in addition to adding extra parameters to the

algorithm. (See Section 6.3.2 for more details.)

6.3 Algorithms

In the previous chapters, we started by formally describing a model and an

(optimization) problem and then described algorithms that solved it. The com-

plementary approach (which we undertake in this chapter) is to fix an algo-

rithm (or better said an algorithmic template) and choose a model (or several)

to understand its properties. The reason for this type of approach is to help

us understand algorithms or heuristics that have proven successful in practice,

but for which the theoretical understanding is mostly lacking. In the context

of stochastic optimization, CE is such an algorithm and its practical success

in solving a variety of optimization problems is a good motivation to better

understand its properties and limitations.

The key idea of CE is to maintain a distribution over a space of inputs and

update that distribution iteratively so that its support focuses only on the op-

timal solutions. In the following subsections, we will discuss the standard CE

algorithm, a natural modification to CE for noisy settings (that fails to address

the main issues correctly) and a modified algorithm that we call Proportional

CE.

135

6.3.1 The Cross-Entropy Method

For a fixed iteration t, a distributionDt over an input space X (usually a subset

of Rn or {0, 1}n), and query access to a (possibly noisy) function F : X → R

to be optimized, CE proceeds in three phases that are executed iteratively. In

the first phase, it samples a set of N inputs xi ∼ Dt, i ∈ [1, N] and evalu-

ates them. In the second phase, it ranks the inputs according to their values

F(xi) and selects a size ρN top (or “elite”) subset (for some ρ ∈ (0%, 100%)) or,

equivalently, the inputs with higher evaluations than the 1− ρ sample quan-

tile. Finally, in the third step, it uses the elite subset to set the new parameters

for Dt+1, most commonly by determining the maximum likelihood estimators

for the elite set. CE is executed either for a fixed number of iterations or until

the distribution is concentrated on a small subregion of the input space. In the

RL setting, solutions are encodings of policies, and F executes the policy in the

domain, yielding the return of that trajectory.

The algorithm is parameterized by the choice of N, ρ, the parameters of

the initial distribution D0 over the input space and the family of distributions

Dt (which includes the initial distribution). The distributions Dt, t ≥ 0 are

usually part of the natural exponential family and the standard choice is the

normal distribution (for continuous inputs) or the Bernoulli (or multinomial)

distribution (for discrete inputs). To instantiate the algorithm for a particular

distribution, one needs to specify the update rule for the third stage. In general

the rule is determined by solving a stochastic program (for the general version

the reader is referred to algorithm 2.1 in Boer et al. [2005]). We will give an

example of update rules for the case of Dt being multi-variate Bernoulli distri-

butions over {0, 1}n (for the normal distribution see Stulp and Sigaud [2012]

for example). In this case, Dt are thus parameterized by a vector of elements

136

pt
i ∈ [0, 1], t ≥ 0, i ∈ {1, ..., n} (where pt

i is the parameter for the ith Bernoulli

distribution at generation t).

In the first stage of generation t, CE samples N Bernoulli vectors xj and

evaluates them. In the second stage CE computes the “elite” or the 1− ρ sample

quantile Fρ
t based on the evaluations and in the third stage it updates pi’s using

the formula: pt+1
i =

∑N
j=1 I[F(xj)≥Fρ

t] I[xj,i=1]

∑N
j=1 I[F(xj)≥Fρ

t]
, where I is the identity function and

xj,i is the ith component of the jth vector. So each component pt+1
i is set to

reflect the ratio of 1 values of the bits at position i among the elite sample.

A number of techniques have been used to address various practical ob-

servations regarding the behavior of the algorithm. One of the most common

problems is that the distribution sometimes prematurely converges to a single

point. This is because in practice, the variance of the “elite” population is much

smaller than the population at large, leading to a decrease in the variance of

Dt. One solution is to artificially maintain the variance of the population high,

which was one of the key ideas leading to the empirical success of CE in Tetris

Szita and Lörincz [2006]. Another common technique is to smooth the updates

of the parameters of the distribution over generations.

As already mentioned, the structure of the algorithm is based on ideas from

rare event simulation Rubinstein [1996] and the key insight is that the distri-

bution maintained by the algorithm is continuously updated to minimize the

Kullback-Leibler distance to the ideal distribution that is focused on the correct

solution. (Full details can be found in Boer et al. [2005].)

It is important to note that the algorithm is often applied “as is” in settings

where the evaluation of the function F is corrupted by an arbitrary noise pro-

cess. The key point of the chapter is that the algorithm optimizes a quantile

137

measure that, in certain situations of practical interest, is different from opti-

mizing for the expected value of the function. In these cases, in addition to the

natural difficulties in optimizing in high dimensional spaces, the algorithm is

further hindered by the fact that it is explicitly attempting to find solutions of

lower expected quality.

6.3.2 The m-Cross-Entropy Method (mCE)

An intuitive way to mitigate the impact that the optimization for quantiles

has on the expectation of the solution is to take the mean of m samples for

each queried input (for example this was applied by Mannor et al. [2003] to

address the noise in evaluations). Then, the standard version of CE can be

applied considering the value of an individual F̂(x) = ∑m
i=1 Fi(x)

m (where Fi(x)

are i.i.d samples from F(x)). By the central limit theorem, as m increases, the

noise distribution for each evaluated input will become concentrated around

its mean, thus eliminating (in the limit) the problem of inconsistent orderings

for the mean and any quantile values.

One obvious problem with mCE is the need to choose a reasonable value

for m when not enough information is available about the noise distributions.

If m is too small, the undesired phenomenon can still occur. If, on the other

hand, m is too large, for a fixed number of function evaluations per generation

(thus counting the repeated evaluations of the same point), two problems can

occur. On one hand, it is possible that not enough inputs are evaluated for

mCE to succeed in finding the optimal (or a reasonable) solution. On the other

hand, improvements in the expected value from resampling come at the cost

of increased variance in the quality of the final population, as issues of early

convergence are exacerbated when the set of sampled points shrinks. As has

138

been observed in early work on evolutionary methods ?, the tradeoff between

m, N, and the total number of generations is a complex one with no universally

“right” answer. We will discuss an example in Section 6.7.4 to illustrate these

tradeoffs in the context of mCE.

A different (but related to mCE) approach to modifying CE for optimiz-

ing in stochastic environments was proposed by Chang et al. [2007] under the

name of “Model Reference Adaptive Search 2” (MRAS2). In addition to other

modifications, the algorithm requires the designer to specify a rule mk for the

number of times each input is evaluated at each generation k. For the algo-

rithm to converge (under certain assumptions), mk is required to increase with

k and the authors suggest mk = Ω(ck) (for some c > 1) or mk = Ω(k) as possi-

ble rules for several classes of noise. (See Section 4.2.3 in Chang et al. [2007].)

While the above rules are sufficient for convergence in certain scenarios, they

lead to impractical algorithms for all but the simplest domains, in addition to

adding the need to specify the correct mk sequence.

6.3.3 Proportional Cross-Entropy

We will now propose a variant of the standard CE method that seeks the input

that optimizes the expected value of the evaluation function. In addition to

seeking high expected value solutions, the method has the additional benefit

of not requiring the parameter ρ. The main modification is a change to the

second phase of the CE algorithm: Instead of selecting a subset of the samples

from Dt, the algorithm weights each input according to its value (normalizing

with respect to the difference between the minimum and the maximum value

to address negative evaluations). Then, in the third stage, it sets the parameters

of distribution Dt+1 according to these weighted inputs.

139

Concretely, for the same case of the multivariate Bernoulli distributions and

using the same notation as for CE, the weights for the sampled inputs are wj =

F(xj)−m
M−m , where m = minN

j=1{F(xj)}, M = maxN
j=1{F(xj)} (the case of M = m

can be handled by setting all weights to be equal). Then, in the final stage,

the new parameters for the distributions are set according to the equations:

pt+1
i =

∑N
j=1 wj I[xj,i=1]

∑N
j=1 wj

.

The idea of modifying the definition of what an “elite” set represents is not

new. In CMA-ES, the mechanism for deciding the relative importance of the

top ρN samples can be chosen by the algorithm designer Hansen and Oster-

meier [2001], but it is still the case that the samples outside the “elite” set have

no influence in shaping the distribution for the next iteration. In PI2 Stulp and

Sigaud [2012], an exponential decay scheme weights all inputs according to

their evaluation. Thus, the algorithm we propose can be viewed as being an

instantiation of a general template for designing CE-like algorithms. Our con-

tribution is to link the “elite” set selection mechanism (phase two of the CE

algorithm) to the optimization objective of the algorithm. To simplify compar-

ison and analysis, we keep all the other design choices unchanged and focus

only on comparing the standard algorithm with Proportional CE.

6.4 Illustration - Tetris

To illustrate the main point of the chapter, we will describe a simple optimiza-

tion example. We ran an experiment with a constrained version of the video

game Tetris using a setup similar to Szita and Szepesvári [2010a]. We used a

10× 8 board, the feature set from Bertsekas and Ioffe [1996], and allowed only

the “S”, “Z,” and “I” tetrominoes to appear with probabilities of 45%, 45% and

140

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30
35

(b) Various quantiles values

Quantile

S
co

re

Policy2
Policy 1

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) Convergence of CE and Proportional CE

Generation

W
ei

gh
t P

ol
ic

y
2

CE rho=10%
Proportional CE

0 10 20 30 40

0.
00

0.
05

0.
10

0.
15

(d) Score probabilities for two Tetris policies

Score

F
re

qu
en

cy
Policy 2
Policy 1

●

●

●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(e) Dependency of CE weights on 1−rho

1−rho

W
ei

gh
t

●

●

●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

Policy 2
Policy 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(f) mCE for various m

1−rho

W
ei

gh
t P

ol
ic

y
2

mCE, m=1
mCE, m=2
mCE, m=5
mCE, m=10

Figure 6.1: A simple experiment for two policies in Tetris.

141

10%. The score bonuses for clearing 1, 2, 3, and 4 lines were 1, 2, 3 and 10, re-

spectively. The optimization problem is to pick among two policies the one

that has the best average score. Policy 1 is less “risky” and it is represented in

Fig. 6.1(a) (left). It receives a pair of S tetrominoes that it positions as shown in

the diagram. Policy 2 positions the two S tetraminoes as in Fig. 6.1(a) (right).

Both policies continue by executing the same fixed strategy (that was obtained

offline by running a CE algorithm as in section 6.7.3) when exposed to ran-

dom tetrominoes arriving according to the distribution specified above. We

executed each policy for 50k steps and plotted the distribution over scores in

Fig. 6.1(d). The ordering by the means is different from the ordering deter-

mined by the 90% quantile and in fact the same holds true for a wide range

of quantiles (as can be observed in Fig. 6.1(b), where we plot the empirical

quantile functions for the scores of Policy 1 & 2).

We ran CE and Proportional CE with a Bernoulli distribution with just one

component that captures the binary choice between Policy 1 and 2. Every ex-

periment was executed 100 iterations and was repeated 20 times with N = 200.

The result in Fig. 6.1(c) shows the two algorithms converging to different so-

lutions, with CE(ρ = 10%) converging to Policy 2 (which has a higher 90%

quantile) and Proportional CE converging to Policy 1 (which has a higher ex-

pectation). To verify the phenomenon for a wide range of ρ values, we ran CE

with ρ ∈ (1%, 99%) and plotted the results in Fig. 6.1(e). The solution for CE(ρ)

is consistent with the ordering of the quantiles from Fig. 6.1(b) with a transition

stage for ρ ≈ 40% (i.e. for the 60%th quantile), where the quantiles values for

the two policies are similar.

To illustrate the behavior of mCE, we repeated the experiment for various

values of m. For a fixed m, we varied ρ ∈ (1%, 99%), keeping the number

142

of evaluations per generation fixed and plotted the results in Fig. 6.1(f). For

increasing values of m, although the range of ρ values for which the suboptimal

policy is chosen shrinks, the phenomenon does not disappear.

6.5 Model

We analyze the properties of the algorithms in the classical infinite population

model Vose [1998b] extended to treat noisy functions. As the name suggests,

the model assumes that an infinity of function evaluations are available at each

iteration (we note that the algorithms are fixed and don’t take advantage of

such knowledge).

This model provides a useful abstraction that allows for analysis without

the complication of finite sampling effects. And, while obviously unrealizable,

it is a reasonable model for studying qualitative properties of some global op-

timization algorithms and is consistent with results for situations where the

number of evaluations is large.

Of course, this simplification is a double-edged sword. While it reduces

complications in proofs, it also hides possibly relevant details. Hence, Sec-

tion 6.7 provides supporting evidence from computational simulations.

The model is very similar to a finite multi-armed bandit model in the sense

of being defined for a finite set I = {1, 2, . . . , n} and a noisy function F : I →

[0, 1] to be maximized. Whenever F(i), i ∈ I is evaluated it will return a sample

from a distribution Pi (that depends on i) over [0, 1].

For simplicity of analysis, we will assume that Pi have continuous and

strictly decreasing complementary cumulative distribution (ccdf) functions Gi

and common support [0, 1]. We also denote by gi the densities corresponding

143

to distributions Pi. Since the ccdf’s Gi are continuous and strictly decreasing,

the quantiles qi(ρ) are uniquely defined for any probability ρ ∈ [0%, 100%]:

qi(ρ) = G−1
i (1 − ρ) (an example meeting these constraints is if gi are beta

density functions with different parameters).

The standard goal for optimization in the above model is to find an x∗ =

arg maxi EF(i)∼Pi
[F(i)]. An alternative goal is to optimize for quantiles: for a

fixed ρ, find xρ = arg maxi qi(ρ). It is possible that the two optimization objec-

tives are aligned (x∗ = xρ, ∀ρ) as in the case of an additive noise distribution

like Beta(α, α) that is input-independent for example. But, for general Pi and ρ,

the objectives are different.

6.6 Theoretical Results

We will study the optimization objectives of CE and Proportional CE assum-

ing they are allowed an infinite number of evaluations at every iteration. Infor-

mally, the idea of having an infinite number of evaluations is to allow the entire

distribution over F(x) values for a particular value x to be “present” in the set

of samples for a fixed generation. This assumption naturally removes the need

for a parameter N. But we still need to study the convergence properties for

a particular family of distributions Dt and for a particular setting of the ini-

tial parameters D0. The reason is that in general, without fixing D0, there will

always be a setting for which the algorithms are guaranteed not to converge:

Fact 6.6.1. In the setting above, there exists an initial distribution D0 that forces both

CE and Proportional CE to never find x∗.

Proof. Assume x∗ is unique in maximizing E[F]. Let’s consider a binary en-

coding of the input space in log(n) bits and consider Dt to be multivariate

144

Bernoulli distributions over vectors of size log(n). Let’s assume wlog that

bit 0 of x∗ is set to 1. Let’s now choose the initial distribution D0 to have a

Bernoulli(p = 0) distribution on the first bit of the representation. Then x∗ will

never be sampled from Dt, ∀t ≥ 0.

Since the results are distribution-dependent, we will prove the convergence

properties for a natural choice of a distribution and initial parameters and con-

jecture that the results can be extended to other distributions as well. Both

algorithms will use a multinomial distributionMt over the input space with

all parameters w0
i = 1

n , i ∈ I initially (hence the subscript 0). Using a multi-

nomial distribution is reasonable in this context since it encodes the degree of

“belief” the algorithm has in a particular i being the optimal argument of the

function.

In this context, a fixed infinite population is thus described by a real-valued

weight vector w representing the proportions of the inputs, with ∑i∈I wt
i = 1

and wt
i ≥ 0 for t ≥ 0, where t is the index of the iteration.

Given that wt
i ∈ [0, 1] represents the proportion of the population at time t

occupied by the input i, f t = ∑i∈i wt
i gi is the density of the mixture distribu-

tion that characterizes the entire population at time t. We call this combined

distribution over possible function values the population distribution.

6.6.1 Proportional Cross-Entropy

We note that since in the model described above, the range of the function

to be optimized (F) is [0, 1], the weight of every sampled input is exactly its

evaluation (the minimum value is 0 and the maximum value is 1).

Ignoring the normalization factor for a moment, in the infinite population

145

model, inputs i occupy wt
i fraction of the population at time t and those inputs

have their evaluations drawn from the density gi(x). Because we are imagining

an infinite population (and since the support of gi is [0, 1]), each of these eval-

uations actually appears and the fraction of the time function value x ∈ [0, 1]

appears due to input i is wt
i gi(x). The total weight of this input in the resulting

population is therefore wt+1
i =

∫
X wt

i xgi(x)dx/Z.

As a result, if we define

vi = Ex∼gi [x] =
∫
[0,1]

xgi(x)dx (6.1)

the expected value of the distribution over function values for input i, then the

evolution of the weights (i.e. parameters of the multinomial distributionMt)

while executing Proportional CE is given by:

wt+1
i =

wt
i vi

∑j∈1...n wt
jvj

, ∀i ∈ 1 . . . n and ∀t ≥ 0. (6.2)

For simplicity and without loss of generality, we assume that v1 < v2 < · · · <

vn. That is, inputs are sorted in increasing expected function value order and

all expected values are unique. (If vi is not unique, we can consider the mixture

of the distributions that have the same vi as a single individual that has as its

value distribution the weighted mixture.)

We will prove the Proportional CE indeed optimizes for expectation. The

theorem states that the weight of the individual with the largest expected value

will asymptotically converge to 1.

Theorem 6.6.2. When running Proportional CE (M0(w0
i = 1

n)), the algorithm will

asymptotically converge to x∗. Concretely

lim
t→∞

wt
i = 0, ∀i ∈ 1 . . . n− 1, and lim

t→∞
wt

n = 1. (6.3)

146

Proof. Using induction, we show wt
i = w0

i /(∑j w0
j (vj/vi)

t). For the base case,

note that w0
i = w0

i /(∑j w0
j) because w0 is normalized.

For the inductive step,

wt+1
i = wt

i vi/(∑
j

wt
jvj) (6.4)

= wt
i / ∑

j
wt

j(vj/vi) (6.5)

=
w0

i /(∑j w0
j (vj/vi)

t)

∑j[w0
j /(∑k w0

k(vk/vj)t)](vj/vi)
(6.6)

=
w0

i (vi)
t/(∑j w0

j (vj)
t)

∑j[w0
j (vj)t/(∑k w0

k(vk)t)](vj/vi)
(6.7)

= w0
i (vi)

t/ ∑
j

w0
j (vj)

t(vj/vi) (6.8)

= w0
i / ∑

j
w0

j (vj/vi)
t+1. (6.9)

For individual n and any i < n, vn > vi. Thus, using the result above,

lim
t→∞

wt
n = lim

t→∞
w0

n/(∑
j

w0
j (vj/vn)

t) (6.10)

= lim
t→∞

w0
n/w0

n = 1. (6.11)

Since ∑j wt
j = 1, for i < n, limt→∞ wt

i = 0.

6.6.2 The Cross-Entropy Method

Before stating the theorem that characterizes The Cross-Entropy Method, we

discuss the new notation: define xi ∈ X such that Prx∼gi(x)(x ≥ xi) = ρ =

Gi(xi). Thus, xi is the value of the quantile function qi(1− ρ) of distribution gi

and it is unique by our assumptions noted in the model description (i.e. that Gi

147

are continuous and strictly decreasing). It is the value xi at which ρ fraction of

the noisy function values are above xi and 1− ρ fraction of the noisy function

values are below xi. Once again, we assume without loss of generality that

x1 < x2 < · · · < xn—all of these thresholds are unique and sorted.

We will now prove that The Cross-Entropy Method optimizes for quan-

tiles1:

Theorem 6.6.3. When running CE(ρ,M0(px
0 = 1

n)) to optimize a function F, the

algorithm will asymptotically converge to x1−ρ (i.e. to a multinomial with w∞
x1−ρ = 1).

Concretely:

lim
t→∞

wt
i = 0, ∀i ∈ 1 . . . n− 1 and lim

t→∞
wt

n = 1. (6.12)

Proof. Part 1 - Derive formulas for the evolution of the parameters ofMt as

t increases.

The first idea of the proof is to use the fact that the third stage of the CE

algorithm is maximum likelihood estimation for the multinomial distribution

based on the top ρ percent (or equivalently, the 1− ρ quantile) of the evalu-

ated, infinite population. For a motivation of the maximum likelihood claim,

the reader is referred to Boer et al. [2005] (Remark 2.5 in particular). This per-

spective automatically provides closed form solutions for the updates of the

parameters forMt (as opposed to solving a potentially complicated stochastic

program as it is the case in general). In particular:

wt+1
i = wt

i
Gi(xt

c)

ρ
(6.13)

where xt
c is the threshold value in [0, 1] that separates the elite from the rest

1 We note that given the usual values of ρ (ρ < 0.5), CE is thus risk-seeking which can be
dangerous in practice.

148

of the population. In words, each component’s new weight wt+1
i is propor-

tional to the relative tail probability mass (which also takes into consideration

the previous weight wt
i) with respect to the other components among the elite

sample.

We label the threshold xt
c ∈ X the population common point. It is the value at

iteration t for which

∑
i∈1...n

wt
i Gi(xt

c) = ρ. (6.14)

Thus, xt
c for the population distribution is analogous to xi for individual i’s noise

distribution. This xt
c threshold plays the important role of deciding the change

in weights for the individuals in the next iteration. When evaluations are made

for the wt
i fraction of individuals belonging to individual i, Gi(xt

c) fraction of

them will survive because their values will surpass xt
c.

The rest of the argument consists of three major steps:

1. (Part 2) ∀t > 0, xt
c < xt+1

c : The population common point is increasing.

2. (Part 3) ∃t′ > 0 s.t. xt′
c > xn−1: After a finite number of iterations, the

population common point exceeds the second largest threshold (and will

not go below it again due to Step 1).

3. (Part 4) xt
c > xn−1 =⇒ limt′→∞ wt′

n = 1: If the population common point

is above the second largest threshold, then the population will converge

to the individual with the largest threshold.

Putting these three facts together completes the proof. We prove each in turn.

Part 2 - The population common point always increases.

At iteration t, let W = {i s.t. xi > xt
c} be the “winners” (any input i with the

threshold above the population common point at time t) and L = {i s.t. xi ≤

149

xt
c} be the “losers” (any input i with the threshold at or below the population

common point at time t). (We suppress the dependence of W and L on t to

simplify notation).

Define δi = Gi(xt
c) − ρ if i ∈ W and δi = ρ − Gi(xt

c) if i ∈ L. It captures

the amount that input i’s Gi value deviates from ρ at the current population

common point. Note that δi ≥ 0 for all i and that δi > 0 for at least one i ∈ W

(otherwise, all inputs are tied in their order statistics). Also, note that wt+1
i >

wt
i for i ∈ W and wt+1

i ≤ wt
i for i ∈ L. These facts follow from Equation 6.13

and the definition of W and L.

We proceed by contradiction. Assume the population common point re-

mains the same or decreases, xt+1
c ≤ xt

c. This assumption implies Gi(xt+1
c) ≥

Gi(xt
c) (by the fact that Gis are strictly decreasing). Now:

ρ = ∑
i∈1...n

wt+1
i Gi(xt+1

c) (6.15)

≥ ∑
i∈1...n

wt+1
i Gi(xt

c) (6.16)

= ∑
i∈W

wt+1
i Gi(xt

c) + ∑
i∈L

wt+1
i Gi(xt

c) (6.17)

= ∑
i∈W

wt+1
i (ρ + δi) + ∑

i∈L
wt+1

i (ρ− δi) (6.18)

= ρ + ∑
i∈W

wt+1
i δi −∑

i∈L
wt+1

i δi (6.19)

> ρ + ∑
i∈W

wt
i δi −∑

i∈L
wt

i δi (6.20)

= ∑
i∈W

wt
i(ρ + δi) + ∑

i∈L
wt

i(ρ− δi) (6.21)

= ρ (6.22)

which is a contradiction (ρ > ρ). Thus, the population common point must

increase.

Part 3 - The population common point eventually exceeds the second

largest threshold.

150

Let ∆ = Gn(xn−1) − ρ. Note that ∆ > 0 because Gn(xn) = ρ (by defini-

tion of xn) and Gn(xn−1) > Gn(xn) (because the xis are sorted and the Gis are

strictly decreasing). This quantity represents how likely it is for an evaluation

for input n to fall between xn−1 and xn.

Now, as long as xt
c ≤ xn−1, Gn(xt

c) ≥ Gn(xn−1) (because the Gis are strictly

decreasing). By Equation 6.13,

wt+1
n = wt

nGn(xt
c)/ρ (6.23)

≥ wt
nGn(xn−1)/ρ (6.24)

= wt
n(∆ + ρ)/ρ (6.25)

= wt
n(1 + ∆/ρ) (6.26)

Thus, wt′
n grows without bound as long as xt′

c ≤ xn−1. Therefore, there

must be some time point t′ when xt′
c > xn−1 (and, due to Step 1, it will never

go below xn−1 again).

Part 4 - Once the population common point exceeds the second largest

threshold, convergence to input n is guaranteed.

Let t̂ be the first time the population common point goes over the second

largest threshold (and this threshold is well defined as the time is discrete and

the support of the noise distributions is continuous) and define a to be the

probability that the evaluation of the input with the second largest threshold

is larger than ρ and smaller than the resulting population common point: a =

ρ− Gn−1(xt̂
c). For all i < n,

wt+1
i = wt

i Gi(xt̂
c)/ρ (6.27)

≤ wt
i Gn−1(xt̂

c)/ρ (6.28)

= wt
i(ρ− a)/ρ (6.29)

= wt
i(1− a/ρ). (6.30)

151

As a result of the fact that wt
i is multiplied by a number bounded away from 1,

as t increases, wt
i goes to 0, as desired.

6.7 Experiments

The goal of this section is to present empirical results in support of the claim

that CE fails to optimize for expectation in naturally occurring noisy environ-

ments. The domains presented below have diverse characteristics and are used

as optimization benchmarks by various communities. For every domain, we

will describe its modeling as a Markov Decision Process, the policy space we

searched in, and the parameters we used. For CE, we focused our search for

good ρ parameters in ranges that make sense given the algorithm’s motivation

and the way it is used in practice (ρ ≤ 50%).

6.7.1 Die4

Die4 is a simple game we created to study optimization under risk. The game

is played with a regular die. At each point in time the player can decide to roll

the die or to stop and accumulate the sum of all die values until the current

time. If, however, the die comes up 4 at any roll, the game ends and the player

gets 0 points. Depending on the attitude towards risk, policies can stop earlier

and have a good chance of gaining a non-0 reward or stop later with a high

risk of gaining nothing.

Model. The states are the possible sum values for a die (natural numbers

>= 2), the actions are roll and stop (both can be terminal), the rewards are 0

for failure and the value of the state for success. The transitions for the roll

action are dictated by the roll of the die according to the definition of the game

152

0 20 40 60 80

0
10

20
30

40
50

(a) Reward profile Die4

Threshold

R
ew

ar
d

Mean
90% quantile
95% quantile
99% quantile

0 20 40 60 80

1
2

3
4

5
6

7

(b) Convergence profile Die4

Generation

R
ew

ar
d

Proportional CE
CE rho=10%
CE rho=5%
CE rho=1%

0 20 40 60 80 100

−
65

0
−

60
0

−
55

0
−

50
0

−
45

0

(c) Reward profile Inventory Control

Threshold

R
ew

ar
d

Mean
90% quantile
95% quantile
99% quantile

0 20 40 60 80

−
52

0
−

51
0

−
50

0
−

49
0

−
48

0

(d) Convergence profile Inventory Control

Generation

R
ew

ar
d

Proportional CE
CE rho=10%
CE rho=5%
CE rho=1%

0 100 200 300 400

0
2

4
6

8
10

12

(e) Tetris − Varying N for CE and Proportional CE

Generation

S
co

re

Proportional CE, N=10000
Proportional CE, N=1000
Proportional CE, N=500
Proportional CE, N=100
CE, N=10000, rho=10%
CE, N=1000, rho=10%
CE, N=500, rho=10%
CE, N=100, rho=10%

0 100 200 300 400

0
2

4
6

8
10

12

(f) Tetris − Varying rho for CE

Generation

S
co

re

CE, N=1000, rho=1%
CE, N=1000, rho=10%
CE, N=1000, rho=20%
Proportional CE, N=1000

Figure 6.2: Die4, Inventory Control and Tetris experiments

153

while the transition for stop is to the same state (and the game stops). We

follow Goschin et al. [2011] and define the policy space to be parameterized by

a threshold x encoding a simple rule: “stop as soon as the sum of die values

is at least x or roll otherwise”. The (expected) optimal value is ≈ 7.2 and it

is obtained by setting x∗ = 17. In Fig. 6.2(a), we plot the curve for the mean

scores for all the policies with thresholds in {2, ..., 80}. We also plot the curves

corresponding to the 90, 95, 99%th quantiles.

Setup. We relax x ∈ R+ (even though the sums are discrete) so as to be able

to apply CE easily. Both algorithms start with a normal distribution N(µ =

50, σ2 = 100) over the set of thresholds, N = 1000 and are executed for 80

iterations. Each experiment is repeated 50 times and the average scores are

reported.

Results. The results in Fig. 6.2(b) show Proportional CE converging to the

optimal expected value. The distribution over the thresholds after 80 iterations

is concentrated around the optimal threshold. On the other hand, CE with ρ =

10%, 5% or 1% converged to sub-optimal values and actually finds solutions

that are optimal according to the corresponding quantiles. The results are con-

sistent with what the theory predicts for such a scenario where the input that

yields a maximum expected value is different from inputs that determine op-

timal quantile values.

6.7.2 Inventory Control

Inventory Control is a standard benchmark problem from operations research.

It was also used as an experimental domain in the first paper that utilized CE

for policy search in RL Mannor et al. [2003]. We will describe the simplest

version of the problem, which models a shop owner having to make decisions

154

about ordering one product.

Model. The state space consists of possible stock values at the beginning

of each day: st ∈ R (with t > 0 denoting the day), and negative stock possi-

ble due to under-ordering. For each state, the action space at ∈ [0, smax − st]

is the amount of stock the owner can order at the beginning of day t (with

smax being the maximum stock). The transition function is determined by i.i.d.

requests from clients dt ∼ P from a fixed, but unknown probability distribu-

tion with the next state being determined by st+1 = st + at − dt. The costs

for “holding”(h) too much stock, “backlogging” (b) due to insufficient order-

ing and the price for one unit of stock c are fixed and known. We will use the

same reward function as Mannor et al. [2003] rt(st, at, dt) = −h max{0, st} −

b max{0,−st} − cat.

We will also use the same policy space as Mannor et al. [2003]: each policy

is determined by a threshold x that sets the stock order as a function of the

current stock, meaning at every time t, at = max{x − st, 0}. Searching in this

policy space is thus equivalent to finding the best threshold x.

Setup. For the experiments, we instantiated an inventory control problem

with the following characteristics: h = 5, b = 6, c = 10, smax = 100 and with

P being a mixture of two normal distributions with equal weights (N(µ =

5, σ2 = 5) and N(µ = 50, σ2 = 20)) in an attempt to model a mix of small

and large requests. Similarly to Die4, both algorithms start with a Normal

distribution N(µ = 50, σ2 = 100) over the set of thresholds, N = 1000 and are

executed for 80 iterations. Each experiment is repeated 50 times. In Fig. 6.2(c),

we plotted the curves for the means and the same set of quantiles as for Die4.

The optimal expected value is around−477 and it is obtained by setting x = 53

while the maximum 99% quantile corresponds to an expected value of −514

155

and is obtained by setting x = 10.

Results In Fig. 6.2(d), we plot the algorithms’ convergence curves. It can

be observed that Proportional CE converges to a value close to the expected

optimal value while CE(ρ = 1%) for example converges, as expected, to the

value corresponding to the optimal 99% quantile. As in the case of Die4, the

solutions distributions over inputs that the algorithms converge to are centered

around the input values that are predicted by the theoretical results.

6.7.3 Tetris

The video game Tetris is well known for being a difficult benchmark for pol-

icy search in RL and one where CE performed very well in the past Szita

and Lörincz [2006]. In our experiments we followed closely the setup from

Szita and Szepesvári [2010a] that defines a simpler version of Tetris (Stochastic

SZTetris) that only allows the S and Z tetraminoes with the goal of maintain-

ing the difficulty of the game and make it more efficient to simulate. We used

the code base from Szita and Szepesvári [2010b] and extended it to parameter-

ize the domain. We chose the feature representation defined in Bertsekas and

Ioffe [1996]. We refer the reader to Szita and Szepesvári [2010a] for an excellent

presentation of the challenges of SZTetris.

In an attempt to do simulations more efficiently (so that we could run pa-

rameter search in reasonable time), we decreased the height of the SZTetris

board to from 20 to 5 (the problem is far from trivial even in this modified

setup). Moreover we decided to give a bonus of 10 points for clearing two

lines (as compared to the default value of 2) with the goal of “infusing risk” in

the game. We ran a parameter search for a reasonable value of N (convergence

results can be seen in Fig. 6.2(e) where ρ is fixed to 10%) and for a good ρ value

156

for CE (Fig. 6.2(f) with fixed N = 1000). Every experiment is repeated 15 times

and the results are averaged. The first observation is that while Proportional

CE converges slower than CE, it will converge to better solutions than the max-

imum performance of CE throughout its execution. The second observation is

that after its performance plateaus, CE is degrading no matter how we set the

initial parameters. We made significant efforts to find a setting of the algorithm

where the divergence phenomenon doesn’t happen (including setting various

smoothing parameters, initial variance etc.) but we were unable to eliminate it.

To verify that this was not a direct cause of our setup, we ran the original code

base with the original algorithm and SZTetris parameters and found the same

phenomenon occurring around generation 2000 (for reasonable tractability rea-

sons, Szita and Szepesvári [2010a] only ran the algorithm up to generation 50).

While the experiments above offer a less clear-cut perspective with respect

to the main goal of the chapter, we believe they are interesting enough to re-

port. Even in the region where CE converges, its performance is worse than

what Proportional CE can achieve. We note that this seems to be a direct cause

of the increased bonus for clearing two lines. In experiments with the original

scores for clearing lines, the average best performances of the two algorithms

are essentially the same (even though CE still degrades). This suggests that the

phenomenon of optimizing for different objectives affects this “risky” version

of Tetris.

6.7.4 Blackjack

In this section, we discuss two variants of blackjack and describe how differ-

ences in mechanics can lead to changes in policies when optimizing for quan-

tiles or expectation. The first variant of the game reduces the game to its most

157

0 500 1000 1500 2000

−
0.

40
−

0.
30

−
0.

20
−

0.
10

Convergence profile Blackjack, no Double−Down

Generation

R
ew

ar
d

Proportional CE
CE rho=1%
CE rho=10%
CE rho=20%
CE rho=50%

0 500 1000 1500 2000

−
0.

8
−

0.
6

−
0.

4
−

0.
2

Convergence profile Blackjack, with Double−Down

Generation

R
ew

ar
d

Proportional CE
CE rho=1%
CE rho=10%
CE rho=20%
CE rho=50%

-1 0 1
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fr
eq

ue
nc

y

Proportional

-1 0 1

0.01

-1 0 1
Reward

0.1

-1 0 1

0.2

-1 0 1

0.5

-2 -1 0 1 2
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
eq

ue
nc

y

Proportional

-2 -1 0 1 2

0.01

-2 -1 0 1 2
Reward

0.1

-2 -1 0 1 2

0.2

-2 -1 0 1 2

0.5

0 500 1000 1500 2000

−
0.

8
−

0.
6

−
0.

4
−

0.
2

mCE Convergence profile Blackjack, with Double−Down, rho = 10%

Generation

R
ew

ar
d

mCE, rho = 10%, m = 10
mCE, rho = 10%, m = 20
mCE, rho = 10%, m = 30
CE, rho = 10%
Proportional CE

0 500 1000 1500 2000

−
0.

7
−

0.
6

−
0.

5
−

0.
4

−
0.

3
−

0.
2

−
0.

1

mCE Convergence profile Blackjack, with Double−Down, rho = 1%

Generation

R
ew

ar
d

mCE, rho = 1%, m = 10
mCE, rho = 1%, m = 20
mCE, rho = 1%, m = 30
CE, rho = 1%
Proportional CE

Figure 6.3: Blackjack experiments. Subfigures top (left, right): (a), (b), middle
(left, right): (c), (d), down (left, right): (e), (f)

158

important dynamics, as described in Sutton and Barto [1998]. We also adopt

the policy representation of Sutton and Barto [1998]. The state is represented

by the dealer’s showing card, the sum of the player’s hand, and whether or

not the player holds a usable ace. On hand values less than 12, the player auto-

matically hits, because there is no chance of busting. Therefore, the game can

be represented with n = 200 states with 2 actions (the distribution over which

is binomial).

The experiment is run for 2,000 generations, with N = 10000. Each experi-

ment is repeated 10 times. Fig. 6.3(a) shows the average reward per generation

over each of the 10 executions of CE with various selection methods. As can

be seen, policy improvement occurs most rapidly with ρ = 50%, but levels

off quite rapidly. It is then surpassed by CS Proportional, which produces the

highest quality policies for the rest of the experiment. The distribution of re-

wards according to strategy is depicted in Fig. 6.3(c), with error bars displaying

the standard deviation of the average of the 10 final populations in each exper-

iment. While Proportional CE produces the best policy, the difference between

Proportional CE and CE is minimal.

In the second variant tested, the option to double is introduced. This action

causes the player to double the wager (after which payoffs can be only −2, 0,

or 2), hit, and then stick. All other details are identical to the first setting, and

the dealer is not able to apply this action. The performance of the various CE

variants is rendered in Fig. 6.3(b). While in the original variant, CE improved

all policies over time, only the proportional strategy resulted in consistent im-

provement over time when doubling was allowed. Both CE with ρ = 20%, 50%

initially improved, but later degraded, with ρ = 50% being essentially equal to

159

chance performance by the end of the experiment, and all other policies pro-

duced by non-proportional selection being worse than chance. As can be seen

in the distributions over rewards in Fig. 6.3(d), Proportional CE exercises the

double action less than 10% of the time, and has a PDF markedly different from

the other strategies. In particular, CE with ρ = 10%, 20% both performed the

worst, and doubled the most (almost 95% of the time), and lost almost 1/3 of

all bets where doubling was used, resulting in very poor performance.

mCE. We also ran experiments to verify the behavior of mCE in the context

of the second variant of Blackjack. As rendered in Fig. 6.3(e) and (f) (for two

values of ρ), even with as high as m = 30 samples per individual, the quality of

the mCE algorithm doesn’t match Proportional CE. The performance improves

(as compared to CE) as more samples per input are added (up to a point due

to the finite size of the population), but it is not clear how to set m and N such

that mCE performs at least as good as Proportional CE.

6.8 Summary

The goal of the chapter was to discuss the impact of naturally occurring eval-

uation noise on the performance of a well known optimization algorithm: the

cross-entropy method. We proved that sometimes CE optimizes for a different

criterion than the maximum expected value of a function, namely a quantile

metric. We proposed an algorithm that has the same structure but optimizes

for the correct objective. We also described a variety of naturally occurring

optimization problems which determine CE to behave sub-optimally in a way

consistent with the theoretical results.

While the new algorithm we introduced, Proportional Cross-Entropy, is

160

more robust with respect to the optimization criterion, we only proved that it

optimizes correctly in a simple, discrete, stochastic optimization setting. More-

over, we have only showed that this is true for a particular family of distribu-

tions. Significant more work is needed to extend the theoretical result to other

families of distributions and more complex stochastic optimization models.

The key theoretical result is thus a negative one: that when the noise distri-

butions are such that different objectives (like optimizing for expectation and

for certain quantiles) don’t align, CE will not optimize for expectation. We note

that this is part of the reason we have extended the noise model we used in

the previous chapters to more general noise distributions since for a Bernoulli

noise distribution, ordering by expectation is always consistent with the order-

ing determined by any quantile.

161

Chapter 7

Conclusions and Future Work

As a general direction of research, I believe the Stochastic Dilemma problem is

an essential component in most general stochastic optimization settings. I thus

think it is important to both (1) develop algorithmic strategies that are as close

as possible to optimal in the Stochastic Dilemma model and (2) apply them to

more complex optimization settings to verify whether they provide any benefit

in more complex scenarios.

The theoretical and empirical results from this dissertation support the the-

sis statement: Noise in function evaluations makes even the simplest opti-

mization problems difficult. Developing correct and efficient techniques for

solving stochastic dilemmas has a significant impact on improving the solv-

ing of more complex stochastic optimization problems. I introduced novel

algorithms for solving such stochastic dilemmas and proved how the analy-

sis and algorithmic ideas can be re-used to solve more general problems.

In Chapter 2 I introduced the key algorithmic tools used throughout the

dissertation and analyzed their performance in the simple Stochastic Dilemma

model. The main contribution from this chapter is the definition and the anal-

ysis of the Beat-By-K algorithm and the proof about its dominance over non-

adaptive strategies like Majority Vote. The second contribution is to gather

under the same umbrella similar algorithmic ideas for solving a Stochastic

Dilemma problem when the parameter p is unknown. The simple model from

162

Chapter 2 is generalized in Chapter 3 with the goal of solving realistic, categor-

ical data annotation problems. The empirical results include experiments with

crowdsourcing platforms like Amazon Mechanical Turk or Galaxy Zoo.

An interesting open problem from Chapter 2 that is left for future work is

to decrease the constant factor gap between the lower and the upper bounds

for adaptive strategies for solving a Stochastic Dilemma when the parameter p

is known. Another open problem (described in detail in Section 2.4.4) is clos-

ing the logarithmic gap between the lower and upper bounds in the setting

for which p is unknown. Moreover, as discussed in Section 3.5, the existent

algorithms for the unknown p case tend to be very conservative in practice.

Concretely, the empirical failure probability for algorithms like Hoeffding Re-

jection tends to be significantly smaller than the parameter δ. This fact shows

that there is room for improvement regarding the definition of the dynamic

confidence intervals for the algorithms from Section 2.5.2.

Among the assumptions behind applying Beat-By-K for solving data an-

notation problems is that we only need to solve binary labeling problems. In

practice though, it is often the case that the number of labels is larger than two.

Extending Beat-By-K and the other strategies for such settings is left for future

work.

While the experiments from Chapter 3 concern only data annotation prob-

lems, it is natural to apply algorithms like Majority Vote, Beat-By-K or Hoeffd-

ing Rejection to other types of applications for which reducing label noise is

relevant. Based on some promising initial results, it appears that Beat-By-K

can also act as an alternative baseline algorithm to Majority Vote in supervised

machine learning, when the data is noisy.

163

In Chapter 4 I connected the Stochastic Dilemma problem with the PAC-

Bandits model [Even-Dar et al., 2002] and proved how the Greedy Rejection

algorithm (which can be viewed as a version of Beat-By-K), is asymptotically

optimal in an infinite bandit setting. The result is interesting as it offers an al-

ternative perspective to solving PAC-Bandit problems. The algorithmic ideas

from Chapters 2 and 4 are extended and applied to non-trivial stochastic op-

timization problems in Chapter 5 for designing planning algorithms for com-

puter games.

Similarly to the data annotation setting, Hoeffding Rejection-like bandit al-

gorithms (IHR, GHR, ILHR, GLHR from chapter 5) tend to be conservative in

terms of the number of samples required to reach a certain accuracy for finding

an (approximately) optimal solution. For applications in which samples are ex-

pensive, decreasing the sample complexity of these strategies, while still giving

formal guarantees of their performance, is of significant practical interest and

is left for future work.

A generalized version of the Hoeffding inequality is the set of Bernstein

inequalities [Mnih et al., 2008b], which are concentration of measure results

that take into consideration the variance of the sampling distribution. Since in

the first four chapters of the thesis, I focused on classes of problems involv-

ing the “worst case” scenario for Bernoulli(p) distributions (that is when the

parameter p is “close” to 0.5 and the variance is maximized), the two types of

bounds lead to identical results. But other classes of problems, for which the

parameter p is close to 0 or 1, Bernstein bounds lead to much tighter results

as compared to Hoeffding bounds. Such classes of problems are natural for

example in ads optimization, where the click-through rate for various ads is in

the vast majority of cases very close to 0 (as relatively few people actually click

164

on advertisements on web pages). It is thus of interest to extend the theoretical

results from Chapters 2 and 4 to use these more general bounds.

Another current direction of research is to establish connections with the

results from the online multi-armed bandits literature [Auer et al., 2002], which

is the setting that is mostly studied in machine learning.

Finally, in Chapter 6, we discuss the properties of the Cross-Entropy Method

when applied to solving stochastic optimization problems. I formally show, in

an infinite population, multi-armed bandit model, that CE optimizes for quan-

tiles and propose a similar alternative algorithm that optimizes for expectation.

The theoretical results are supported by empirical experiments in several non-

trivial benchmark domains from operations research and computer science.

One interesting open question remaining from Chapter 6 is to extend the

theoretical results from an infinite to a finite population model. It seems intu-

itive that for a large enough number of samples, CE (and similar algorithms)

will have similar properties as in the infinite population setting. Moreover,

studying quantile or risk-based optimization in a multi-armed bandit setting

is an interesting problem in itself.

165

Chapter 8

Appendices

166

Appendix A

Technical Tools

A.1 Hoeffding Inequality

We will first discuss the Hoeffding inequality for Bernoulli random variables.

The theorems are given without proof (the proofs are standard and can be

found in the referenced articles or in a variety of other sources).

First we will introduce the notation. Let x be a Bernoulli(q) random vari-

able with q ∈ (0, 1) and let xi ∼ Bernoulli(q), i ∈ [m] be m i.i.d. samples from it

and let x̂ = ∑m
i=1 xi
m . The Hoeffding inequality states that for large m, x̂ will be-

come concentrated around p with an exponentially small tail (see for example

Kearns and Vazirani [1994], Appendix 9.3). Formally:

Theorem A.1.1. For a fixed parameter α ∈ (0, 1), the following results hold:

(i) P(x̂ > q + α) ≤ e−2α2m

(ii) P(x̂ < q− α) ≤ e−2α2m

(iii) P(x̂ ∈ (q− α, q + α)) ≥ 1− 2e−2α2m

A.2 Random Walks

The goal of this section is to introduce the key random walks technical tools

that we use throughout the thesis. We begin by stating a classical result from

167

random walk theory concerning ruin problems. We will use the notation from

Feller [1968] (chapter XIV) and assume a particle is starting at a positive po-

sition z on the integer line and at every step it has probability q of shifting its

position (with step size 1) to the left and p = 1− q of shifting its position to

the right. We define qz to be the probability of the particle to eventually be

absorbed at 0 and by pz the probability that the particle is absorbed at a > z

(with a also an integer). We also define Dz to be the expected duration of the

process until absorption. Then:

Theorem A.2.1 (chapter XIV, sections 2, 3 and 4, Feller [1968]). (i) qz + pz =

1 (in other words the process will stop with probability 1).

(ii) qz =
(

q
p)

a−(q
p)

z

(
q
p)

a−1
.

(iii) Dz =
z

q−p −
a

q−p
1−(q

p)
z

1−(q
p)

a .

We use the result in a slightly different form. Let X(0) ∼ Bernoulli(p) and

X(1) ∼ Bernoulli(1− p), p ∈ (0, 0.5). Let’s perform a change in variables and

note Y(0) = 2X(0) − 1 with E[Y(0)] = 2p− 1 and respectively Y(1) = 2X(1) − 1

with E[Y(1)] = 1− 2p.

If we denote a series T(0)
0 = 0 and T(0)

m = ∑m
i=1 Y(0)

i and symmetrically

define T(1)
m , then T(0)

m is a simple random walk on the integers with unit steps

and bias 2p− 1 (i.e. a negatively biased random walk) while T(1)
m is a positively

biased random walk with bias 1− 2p. Let’s consider two absorbing barriers on

opposite sides of the origin with absolute values: k0, k1 ∈ N∗ and let β = 1−p
p .

Then the following results hold:

Corollary A.2.2. If P is the distribution over steps for a positively biased random

walk with bias 1 − 2p and N is the distribution over steps for a negatively biased

random walk with bias 2p− 1 for p ∈ (0, 0.5), then:

168

(i)

PP (T
(1)
τ = k1) =

βk1(βk0 − 1)
βk0+k1 − 1

and PP (T
(1)
τ = k0) =

βk1 − 1
βk0+k1 − 1

(A.1)

(ii) If τ(1)(k0, k1) is the expected time until absorption for the positively biased ran-

dom walk (i.e. the expected value of m such that either T(1)
m = −k0 or T(1)

m = k1)

then τ(1)(k0, k1) is finite with probability 1 and:

τ(1)(k0, k1) =
EP(T

(1)
τ)

1− 2p
=

k1βk1(βk0 − 1)− k0(βk1 − 1)
(1− 2p)(βk0+k1 − 1)

(A.2)

(iii)

PN (T
(0)
τ = k1) =

βk0 − 1
βk0+k1 − 1

and PN (T
(0)
τ = k0) =

βk0(βk1 − 1)
βk0+k1 − 1

(A.3)

(iv) In the same manner as (ii):

τ(0)(k0, k1) =
k0βk0(βk1 − 1)− k1(βk0 − 1)

(1− 2p)(βk0+k1 − 1)
(A.4)

We note that this corollary is also well known in the literature, and we only

state it for completeness of presentation and to be able to refer to its parts easily

in the rest of the proofs. The proof of the corollary is a simple application of

theorem A.2.1 and we will only prove part (i) with the rest following similarly:

Proof. (Part (i)) Let’s shift the initial position of the random walk to k0. Then

the original problem of hitting the barriers at−k0 and k1 is equivalent to hitting

barriers at 0 or k0 + k1 starting at k0. Then we can apply theorem A.2.1(ii), with

z = k0, a = k0 + k1, q = p and p in A.2.1 being 1− p. And we get that qz =

PP (T
(1)
τ = k0) =

(
p

1−p)
k0+k1−(p

1−p)
k0

(
p

1−p)
k0+k1−1

=
(

1−p
p)k1−1

(
1−p

p)k0+k1−1
after simple manipulations, as

desired. And we can apply A.2.1(i) to get that PP (T
(1)
τ = k1) = 1− PP (T

(1)
τ =

k0).

169

A.3 Asymptotics With Multiple Complexity Parameters

The goal of this section is to define the notation for situations where we use

asymptotic notation with multiple variables. While the definitions for one vari-

able are widely defined and used and the extension for multiple variables is

natural, having the formal definitions in clear helps with the understanding

of the lower and upper bounds in the thesis that deal with several complexity

parameters.

First let’s define the usual asymptotic notation for the scenario of functions

of only one variable n (see for example Cormen et al. [2001]):

Definition 1. We define the sets of functions (with C, M constants in all definitions):

(i) O(g(n)) = { f (n) : ∃C, M > 0 such that f (n) ≤ Cg(n), ∀n ≥ M}.

(ii) Ω(g(n)) = { f (n) : ∃C, M > 0 such that Cg(n) ≤ f (n), ∀n ≥ M}.

(iii) o(g(n)) = { f (n) : ∀C > 0, ∃M > 0 such that f (n) < Cg(n), ∀n ≥ M}.

(iv) ω(g(n)) = { f (n) : ∀C > 0, ∃M > 0 such that Cg(n) < f (n), ∀n ≥ M}.

and we abuse notation and write in each case that f (n) = O(g(n)) when what is

meant is that f (n) ∈ O(g(n)).

Now let’s extend the definitions to the scenario where functions depend on

multiple variables n1, n2, . . . , nk for some k ≥ 1:

Definition 2. We define the sets of functions (with C, M constants in all definitions):

(i) O(g(n1, . . . , nk)) = { f (n1, . . . , nk) : ∃C, M > 0 such that f (n1, . . . , nk) ≤

Cg(n1, . . . , nk), ∀n1, . . . , nk such that ni ≥ M, ∀i ∈ [k]}.

170

(i) Ω(g(n1, . . . , nk)) = { f (n1, . . . , nk) : ∃C, M > 0 such that Cg(n1, . . . , nk) ≤

f (n1, . . . , nk), ∀n1, . . . , nk such that ni ≥ M, ∀i ∈ [k]}.

(i) o(g(n1, . . . , nk)) = { f (n1, . . . , nk) : ∀C > 0, ∃M > 0 such that f (n1, . . . , nk) <

Cg(n1, . . . , nk), ∀n1, . . . , nk such that ni ≥ M, ∀i ∈ [k]}.

(i) ω(g(n1, . . . , nk)) = { f (n1, . . . , nk) : ∀C > 0, ∃M > 0 such that Cg(n1, . . . , nk) <

f (n1, . . . , nk), ∀n1, . . . , nk such that ni ≥ M, ∀i ∈ [k]}.

The idea of the definition is that a function f (n1, . . . , nk) is part of a set

(O(g(n1, . . . , nk)) for example) if there is a threshold M such that if all param-

eters are larger than M, the desired relation holds.

We will use the following theorem several times in the thesis. The result

is straightforward, but we give it here for the multiple variable case for com-

pleteness of presentation.

Theorem A.3.1. For a set of complexity parameters n1, . . . , nk, for some k ≥ 1, and

two functions f , g : Nk → R≥0, f = o(g) =⇒ f 6= Ω(g).

Proof. Let’s assume f = Ω(g). Then ∃C1, M1 s.t. C1g ≤ f , ∀ni ≥ M1. Since f =

o(g), it is also the case that for an arbitrary C2, ∃MC2 such that f < C2g, ∀ni ≥

M.

Let’s pick C2 = C1
2 and let M′ = max{M1, M

C2=
C1
2
}. Then for an arbitrary

set of n′i, each with the property that n′i ≥ M′, from the two relations we get

that C1g(n′1, . . . , n′k) ≤ f (n′1, . . . , n′k) <
C1
2 g(n′1, . . . , n′k) and thus C1 < C1

2 which

is absurd. Hence we got a contradiction with the initial assumption that f =

Ω(g).

171

Appendix B

Proofs Chapter 5

B.1 Proof of Theorem 5.4.1

The proof is similar to the proof of theorem 4.5.1.

Proof. We will use contradiction and assume there exists an (ε, δ, r0)-correct

algorithm ALG that solves any IB(ε, δ, r0,P) problem with expected sample

complexity o(1
ε2 (

1
ρ + log 1

δ)). The goal is to show that ALG would imply a cor-

rect algorithm for the PAC-Bandit problem with expected sample complexity

o(1
ε2 (n + log 1

δ)), which would contradict the known lower bound in the PAC-

Bandit setting.

Let P be a categorical probability distribution with 2 values in its support:

0.5− ε (a suboptimal arm) and 0.5 + ε (an optimal arm) with probability mass

1 − x on the first value and x on the second. Let’s choose an arbitrary r0 ∈

(0.5, 0.5 + ε] (so that we follow the constraint that ρ is bounded away from

zero). Then ρ = x. Now, define a PAC-Bandit problem as follows: assume we

are given n arms, n− 1 of which have expected reward of 0.5− ε and one of

which has expected reward of 0.5+ ε. To be precise, it is worth mentioning that

we allow the algorithms in the PAC-Bandit setting to resample arms and ignore

any previous pulls taken for those arms (this actually makes the PAC-Bandit

problem harder, so the lower bound still has to hold).

Let x = ρ = 1
n . When we use ALG for the PAC-Bandit problem, each

172

time the algorithm samples a new arm from the environment, it selects an arm

uniformly at random, with replacement, from the n arms. Applying ALG, it

will get the good arm with probability at least 1− δ with an expected number

of samples o(1
ε2 (

1
ρ + log 1

δ)) = o(1
ε2 (n + log 1

δ)), which contradicts the lower

bound from Theorem 13 in Mannor et al. [2004]).

B.2 Proof of Theorem 5.4.2

Proof. Sample Complexity. We will first show that there is a constant lower

bound on the probability of the algorithm stopping, which will in turn help us

show the expected sample complexity is finite. Let Ai be the event of accepting

the i’th sampled arm (i ∈ 1, 2, ...), conditioned on rejecting the first i− 1 arms.

Let N be a random variable that stands for the number of arms sampled until

the algorithm returns an arm, and SC be a random variable that stands for the

sample complexity. Note that

P(Ai) = P(accept arm ai|ai is ’good’)P(ai is ’good’)+ (B.1)

P(accept arm ai|ai is ’bad’)P(ai is ’bad’) (B.2)

≥ P(accept arm ai|ai is ’good’)P(ai is ’good’) (B.3)

≥ (1− δ

2i2)ρ (B.4)

≥ ρ

2
, ∀i ∈ 1, 2, . . . (B.5)

(where the third inequality holds due to an application of the Hoeffding in-

equality). Thus E[N] ≤ 2
ρ (by the properties of the geometric distribution,

where Ai stands for “success”).

173

The expected sample complexity is

E[SC] = E[
N

∑
i=1

4
ε2 log

2i2

δ
] ≤ 4

ε2 E[N log
2N2

δ
] ≤ 8

ε2 (E[N log N] +
1
ρ

log
2
δ
)

(B.6)

(with the right hand side of the first equality determined by the Hoeffding

inequality). The expectation for sample complexity is taken with respect to

both sampling the arms from P and noise in the pulls themselves.

In a similar manner to the proof of 4.4.5 it can be shown that E[N log N] ≤

E[N] log E[N] ≤ 2
ρ log 2

ρ and the desired result follows.

Correctness. The algorithm will stop (with probability 1, since its expected

sample complexity is finite) and recommend either a ‘good’ arm (with reward

r ≥ r0 − ε) or a ‘bad’ one (reward r < r0 − ε). The failure probability is

P(failure) ≤ P(
⋃

i≥1{incorrect recommendation at step i}) ≤ ∑i≥1
δ

2i2 ≤ δ

(the second inequality follows via the Hoeffding inequality given the number

of samples n0(i) for each arm).

B.3 Proof of Theorem 5.4.3

Proof. Sample Complexity. We keep the same notation as in the proof of The-

orem 5.4.2. We use rai to represent the expected value associated with arm

ai, r̂ai,j the empirical average of ai’s rewards after its jth pull, and CI(j) =√
2 log(2j2/δ0)

j the confidence interval for the empirical average at step j. Let

174

nmax(i) = 4
ε2 log 1

εδ0
be the maximum number of pulls for arm ai. Now:

P(Ai) = ρ(1− P(reject arm ai|arm ai is good)) (B.7)

= ρ(1− P(∪nmax(i)
j=1 {r̂ai,j 6∈ [rai − CI(j), rai + CI(j)]})) (B.8)

≥ ρ(1−
nmax(i)

∑
j=1

δ0

2j2
) (B.9)

≥ ρ(1− δ0) (B.10)

≥ ρ

2
(B.11)

So, as in Theorem 5.4.2, E[N] ≤ 2
ρ . Since the sampling of each arm stops after at

most nmax(i) steps, E[SC] ≤ E[∑N
i=1

4
ε2 log 2i2

εδ] and then the sample complexity

bound follows similarly to the proof of Theorem 5.4.2.

Correctness. The algorithm stops with probability 1 in finite time, and

P(failure) ≤ ∑
i≥1

P({incorrect recommendation at step i}) (B.12)

= ∑
i≥1

P(
nmax(i)⋃

j=1

{r̂ai,j 6∈ [rai − CI(j), rai + CI(j)]}) (B.13)

≤ ∑
i≥1

∑
j≥1

δ

4i2 j2
(B.14)

≤ δ. (B.15)

B.4 Proof of Theorem 5.4.4

Proof. Since this is a high probability statement, we can assume for the rest

of the proof that we are in a situation where the algorithm commits no errors

(which happens w.p. at least 1− δ as it can be shown that, for the entire ex-

periment, the algorithm fails w.p. at most δ). Let’s define SC(a) to be the same

175

complexity of accepting or rejecting an arm a. Let’s fix (for now) the total num-

ber of sampled arms to N = n, and fix an arm a, with ∆a < 0 (that we label as

a ’bad’ arm).

Then, using the Hoeffding inequality, SC(a) = 4
max(ε2,∆2

a)
log 2i2

max(ε,∆a)δ
(where

i is the index of the arm among all n arms). Let’s assume P is continuous (the

discrete case is similar) and let’s define f (∆a) to be the pdf of ∆a. Then, since

ra ∼ P :

E[SC(a)|a ‘bad’] =
∫

∆a<0

4
max(ε2, ∆2

a)
log

2i2

max(ε, ∆a)δ
f (∆a)d∆a (B.16)

≤ log
2n2

εδ

∫
∆a<0

4
max(ε2, ∆2

a)
f (∆a)d∆a (B.17)

≤ 4
∆2
−

log
2n2

εδ
(B.18)

So:

E[SC from ‘bad’ arms|N = n] =
n

∑
k=1

E[SC from k ‘bad’ arms|N = n] (B.19)

P(k arms are bad) (B.20)

≤ 4
∆2
−

log
2n2

εδ

n

∑
k=1

kP(k arms are bad) (B.21)

=
4(1− ρ)n

∆2
−

log
2n2

εδ
(B.22)

Similarly, it can be shown that:

E[samples from all ‘good’ arms|N = n] ≤ 4ρn
ε2 log

2n2

εδ
(B.23)

176

Then, for any N:

EB = E[samples from all ‘bad’ arms] (B.24)

≤
∞

∑
n=1

4(1− ρ)n
∆2
−

log
2n2

εδ
P(N = n) (B.25)

≤ 4(1− ρ)

∆2
−

log
2
εδ

E[N] +
8(1− ρ)

∆2
−

E[N log(N)] (B.26)

≤ 16(1− ρ)

ρ∆2
−

log
4

ερδ
(B.27)

(where the last inequality follows from the bounds for E[N] and E[N log(N)]

from Theorem 5.4.2). So, EB = O(1
ρ∆2
−

log(1
ερδ)). Using a similar argument, one

can show that EG = E[samples from all ‘good’ arms] = O(1
ε2 log(1

ερδ)). Thus,

E[SC] = EB + EG = O((1
ε2 +

1
ρ∆2
−
) log 1

ερδ).

B.5 Proof of Theorem 5.4.5

Before we give the actual proof we will restate for completeness (and to unify

notation) Corollary 2.3 from Kallenberg [1999].

Theorem B.5.1. [Kallenberg [1999]] Let (Z1, Z2, ...) a finite or infinite, stationary

sequence of random variables with values in R+ = [0, ∞] and let Tj = ∑i≤j Zi and

β = E[Z1]. Then there exists a random variable σ, uniform over (0, 1) (and indepen-

dent of Zi) such that:

Pσ,Zi,i≥1[sup
j>0

Tj

j
≤ β

σ
] = 1.

Now we can prove theorem 5.4.5.

Proof. We use the notation from Theorem 5.4.2 and we will only discuss the

sample complexity (the correctness follows similarly to the other algorithms).

As mentioned, the main challenge, given the aggressiveness of the rejection

177

procedure, is to get a positive lower bound on the probability of accepting

a good arm. Let B be the event of accepting an arm if the expected reward

associated with that arm is r0 (the bound follows immediately for all arms with

r ≥ r0, since the probability of acceptance will be at least as large as for r0).

Define X = Bernoulli(r0).

Define Y = X−r0+ε/2
1−r0+ε/2 as an affine transformation of X. Then, let α =

E[Y] = ε/2
1−r0+ε/2 ≥

ε
2 (since r0 > ε). Since Y = 1 with probability r0 and

Y = −r0+ε/2
1−r0+ε/2 < 0 with probability 1− r0, we can interpret the series {Tj} (with

Tj = ∑
j
i=1 Yi, with Yi being i.i.d. samples of Y, and implicitly Xi being i.i.d.

samples of X) as a random walk.

We will now make two simplifying assumptions (and then describe at the

end of the proof how to remove them). We assume: (1) r0 − ε
2 ≥

1
2 and (2)

−r0+ε/2
1−r0+ε/2 ∈ Z− (the set of negative integers). Then, {Tj} is a positively biased

random walk on the integers with maximum step value 1. In this case, we

can apply a classic ballot-style result that says that P(Tj > 0, ∀j = 1, 2, ...) =

max(E[Y], 0) = α, for example, Theorem 3 from Addario-Berry and Reed

[2008], which is based on a result by Takacs [1967]. But:

α = P(Tj > 0, ∀j = 1, 2, ...) ≤ P(Tj ≥ 0, ∀j = 1, 2, ...) (B.28)

= P(
∑

j
i=1 Xi

j
≥ r0 −

ε

2
, ∀j = 1, 2, . . .) (B.29)

= P(X̂j ≥ r0 −
ε

2
, ∀j = 1, 2, ...) (B.30)

≤ P(X̂j ≥ r0 −
ε

2
, ∀j = 1, 2, ..., nmax(i)) (B.31)

(where X̂j is the empirical average after j samples and corresponds to r̂ai,j from

the description of the algorithm). Thus, P(B) ≥ α ≥ ε
2 .

So, as in Theorem 5.4.2, P(Ai) ≥ P(B)ρ ≥ ερ
2 . This fact implies E[N] ≤ 2

ερ

and the proof for the expected sample omplexity bound follows similarly to

178

that of Theorem 5.4.3 with an extra 2
ε factor in the bound that comes via the

upper bound on E[N].

To complete the proof, one needs to show that a ‘bad’ arm (with expected

value smaller than r0 − ε) will be rejected after at most nmax(i) samples. This

claim follows via the same application of the Hoeffding inequality as for the

other algorithms (the probability that a ‘bad’ arm is accepted after nmax(i) sam-

ples is smaller than δ0, which is enough to bound the probability of error for

the entire execution of the algorithm).

To remove Assumptions 1 and 2, we will apply ballot-style theorems for

random variables with real values. The result will then follow by applying

Corollary 2.3 from Kallenberg [1999].

The goal of the last part of the proof is to complete the proof for GHR for

the general case of random walks on the real numbers.

Let Z = 1− Y. But (Z1, Z2, ...) is a stationary sequence of variables with

E[Z1] = E[Z] = 1−E[Y] = 1− α. The support of Z is {0, 1
1−r0+

ε
2
} ⊂ R+.

Let Rj = ∑i≤j Zi. Then, the conditions for theorem B.5.1 hold and so there

exists a Uniform(0, 1) random variable σ such that P[supj>0
Rj
j ≤

1−α
σ] = 1.

Let’s note V = supj>0
Rj
j and W = 1−α

σ two transformed random variables

of Zi and σ respectively. We know that P[V ≤W] = 1 (a relation known under

the name of absolute stochastic dominance or statewise stochastic dominance).

It is known that this relation implies the usual notion of (first order) stochastic

dominance (which states that a random variable Y stochastically dominates a

random variable X if for all elements x in the support of X and Y, P(Y > x) ≥

P(X > x) or equivalently P(Y ≤ x) ≤ P(X ≤ x)).

So since W stochastically dominates V in an absolute sense, it also domi-

nates it in a first-order sense. We will pick 1 ∈ R+ and it follows that P(W ≤

179

1) ≤ P(V ≤ 1).

But P(W ≤ 1) = Pσ(
1−α

σ ≤ 1) = Pσ(σ ≥ 1− α) = 1− (1− α) = α (where

the third equality follows immediately from the properties of the uniform dis-

tribution).

We have thus shown that α ≤ P(V ≤ 1). Then α ≤ P(supj>0
Rj
j ≤ 1) =

P(
Rj
j ≤ 1, ∀j > 0) = P(∑i≤j(1− Yi) ≤ j, ∀j > 0) = P(Tj ≥ 0, ∀j > 0). But

we know that P(Tj ≥ 0, ∀j > 0) ≤ P(X̂j ≥ r0 − ε
2 , ∀j = 1, 2, ..., nmax(i)). Thus

the desired relation (P(B) ≥ α) holds even when Assumptions 1 and 2 are

removed, and we consider random walks with steps taking real values. The

rest of the proof remains unchanged.

180

References

L. Addario-Berry and B. A. Reed. Ballot theorems, old and new. In Horizons of

Combinatorics. Springer Berlin Heidelberg, 2008. 93, 106, 118, 125, 177

G. Alon, D. P. Kroese, T. Raviv, and R. Rubinstein. Application of the cross-

entropy method to the buffer allocation problem in a simulation-based envi-

ronment. Annals Operations Research, 134(1):137–151, 2005. 133

M. Anthony and P.L. Bartlett. Neural Network Learning: Theoretical Foundations.

Cambridge University Press, 2009. 9, 18

Jean-Yves Audibert, Sébastien Bubeck, and Rémi Munos. Best arm identifica-

tion in multi-armed bandits. In COLT. 2010. 77

Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the

multiarmed bandit problem. ML, 2002. 4, 76, 164

Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The

nonstochastic multiarmed bandit problem. SIAM Journal on Computing, 2003.

2

R. Bardenet and B. Kégl. Surrogating the surrogate: accelerating gaussian-

process-based global optimization with a mixture cross-entropy algorithm.

In International Conference on Machine learning. 2010. 133

Jonathan Baxter. A model of inductive bias learning. J. Artif. Intell. Res.(JAIR),

12:149–198, 2000. 9

181

Shai Ben-David and Michael Lindenbaum. Learning distributions by their den-

sity levels. In Computational Learning Theory: Second European Conference, Eu-

roCOLT’95, Barcelona, Spain, March 13-15, 1995. Proceedings, page 53. Springer.

9

Dimitri P. Bertsekas and Sergey Ioffe. Temporal differences-based policy iter-

ation and applications in neuro-dynamic programming. Technical report,

MIT, 1996. 139, 155

P. Boer, D.P. Kroese, S. Mannor, and R. Rubinstein. A tutorial on the cross-

entropy method. Annals of Operations Research, 134(1):19–67, 2005. 133, 135,

136, 147

Sébastien Bubeck and Rémi Munos. Open loop optimistic planning. In Pro-

ceedings of the 23rd Annual Conference on Learning Theory (COLT). 2010. 129

Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. Pure exploration in multi-

armed bandits problems. In ALT. 2009. 77

Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and Csaba Szepesvári. Online

optimization in x-armed bandits. In NIPS. 2008. 76, 129

Ran Canetti, Guy Even, and Oded Goldreich. Lower bounds for sampling algo-

rithms for estimating the average. Information Processing Letters, 53(1):17–25,

1995. 9

Bob Carpenter. Multilevel bayesian models of categorical data annotation.

available at http://lingpipe-blog.com/ lingpipe-white-papers. 2008. 44, 48,

50

182

H.S. Chang, M.C. Fu, J. Hu, and S.I. Marcus. Simulation-based Algorithms for

Markov Decision Processes. Springer-Verlag New York, Inc., 2007. 133, 134,

138

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, Clifford Stein, et al.

Introduction to algorithms, volume 2. MIT press Cambridge, 2001. 169

A. Costa, O.W. Jones, and D. Kroese. Convergence properties of the cross-

entropy method for discrete optimization. Operations Research Letters,

35(5):573–580, 2007. 132, 133

Peng Dai, Mausam, and Daniel S. Weld. Artificial intelligence for artificial

artificial intelligence. In AAAI. 2011. 50

DA Darling and Herbert Robbins. Inequalities for the sequence of sample

means. Proceedings of the National Academy of Sciences of the United States of

America, 57(6):1577, 1967a. 35, 36, 37

DA Darling and Herbert Robbins. Iterated logarithm inequalities. Proceedings

of the National Academy of Sciences of the United States of America, 57(5):1188,

1967b. 35, 36

A. P. Dawid and A. M. Skene. Maximum likelihood estimation of observer

error-rates using the em algorithm. Applied Statistics, 1979. 50

Carlos Diuk, Andre Cohen, and Michael L. Littman. An object-oriented repre-

sentation for efficient reinforcement learning. In ICML. 2008. 126

Pinar Donmez and Jaime G. Carbonell. Proactive learning: cost-sensitive active

learning with multiple imperfect oracles. In CIKM. 2008. 50

183

Pinar Donmez, Jaime G. Carbonell, and Jeff Schneider. Efficiently learning the

accuracy of labeling sources for selective sampling. In KDD. 2009. 51

Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Pac bounds for multi-

armed bandit and markov decision processes. In COLT. 2002. xiii, 4, 6, 10,

17, 26, 27, 28, 32, 76, 77, 79, 82, 103, 107, 108, 109, 111, 118, 119, 163

William Feller. An Introduction to Probability Theory and Its Applications, vol-

ume 1. Wiley, 1968. 167

J. Michael Fitzpatrick and John J. Grefenstette. Genetic algorithms in noisy

environments. Machine Learning, 1988. 124, 130

S. Goschin, M.L. Littman, and D.H. Ackley. The effects of selection on noisy

fitness optimization. In Genetic and Evolutionary Computation Conference

(GECCO). 2011. iv, 131, 153

Sergiu Goschin, Ari Weinstein, and Michael Littman. The cross-entropy

method optimizes for quantiles. In Proceedings of The 30th International Con-

ference on Machine Learning, pages 1193–1201. 2013. iv

Sergiu Goschin, Ari Weinstein, Michael L Littman, and Erick Chastain. Plan-

ning in reward-rich domains via pac bandits. JMLR, W&C Proceedings EWRL,

pages 25–42, 2012. iv

N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in

evolution strategies. Evolution Computation, 9(2):159–195, 2001. 139

Nikolaus Hansen, Steffen Finck, Raymond Ros, and Anne Auger. Real-

parameter black-box optimization benchmarking 2009: Noisy functions def-

initions. Technical Report 6869, INRIA, 2009. 131

184

Verena Heidrich-Meisner and Christian Igel. Hoeffding and bernstein races for

selecting policies in evolutionary direct policy search. In ICML. 2009. 27, 118,

130

Panagiotis G. Ipeirotis, Foster Provost, and Jing Wang. Quality management

on amazon mechanical turk. In HCOMP. 2010. 50

JStella. Jstella project, atari 2600. 2008. URL http://jstella.sourceforge.

net/. 126

Olav Kallenberg. Ballot theorems and sojourn laws for stationary processes.

The Annals of Probability, 1999. 176, 178

S. Kalyanakrishnan and P. Stone. An empirical analysis of value function-based

and policy search reinforcement learning. In International Conference on Au-

tonomous Agents and Multiagent Systems. 2009. 133

Ece Kamar, Severin Hacker, and Eric Horvitz. Combining human and machine

intelligence in large-scale crowdsourcing. In AAMAS. 2012. 51

Michael Kearns and Umesh Virkumar Vazirani. An introduction to computational

learning theory. The MIT Press, 1994. 8, 9, 166

Robert Kleinberg, Aleksandrs Slivkins, and Eli Upfal. Multi-armed bandits in

metric spaces. In ACM Aymposium on Theory of Computing. 2008. 76, 129

M. Kobilarov. Cross-entropy randomized motion planning. In Robotics: Science

and Systems. 2011. 133

Yann Lecun, Lon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based

learning applied to document recognition. In Proceedings of the IEEE, pages

2278–2324. 1998. 67

http://jstella.sourceforge.net/
http://jstella.sourceforge.net/

185

Omid Madani, Daniel J. Lizotte, and Russell Greiner. Budgeted learning, part 1:

The multi-armed bandit case. Technical report, University of Alberta, 2003.

77, 124

S. Mannor, D. Peleg, and R. Rubinstein. The cross entropy method for classifi-

cation. In International Conference on Machine learning. 2005. 132, 133

S. Mannor, R. Rubinstein, and Y. Gat. The cross entropy method for fast policy

search. In International Conference on Machine Learning. 2003. 132, 137, 153,

154

Shie Mannor, John N. Tsitsiklis, Kristin Bennett, and Nicol Cesa-Bianchi. The

sample complexity of exploration in the multi-armed bandit problem. JMLR,

2004. xiii, 10, 18, 19, 86, 88, 103, 107, 108, 110, 172

L. Margolin. On the convergence of the cross-entropy method. Annals of Oper-

ations Research, 134:201–214, 2005. 132, 133

Oded Maron and Andrew Moore. The racing algorithm: Model selection for

lazy learners. In Artificial Intelligence Review. 1997. 7, 10, 27, 118, 121

Brad L. Miller and David E. Goldberg. Genetic algorithms, tournament selec-

tion, and the effects of noise. Complex Systems, 9:193–212, 1995. 131

Volodymyr Mnih, Csaba Szepesvári, and Jean-Yves Audibert. Empirical bern-

stein stopping. In Proceedings of the 25th international conference on Machine

learning, pages 672–679. ACM, 2008a. 27

Volodymyr Mnih, Csaba Szepesvári, and Jean-Yves Audibert. Empirical bern-

stein stopping. In ICML. 2008b. 123, 163

186

Vikas C. Raykar, Shipeng Yu, Linda H. Zhao, Gerardo Hermosillo Valadez,

Charles Florin, Luca Bogoni, and Linda Moy. Learning from crowds. J. Mach.

Learn. Res., 11, 2010. 50

Herbert Robbins. Some aspects of the sequential design of experiments. Bul-

letin of the American Mathematical Society, 58(5):527–535, 1952. 4

Herbert Robbins. Statistical methods related to the law of the iterated loga-

rithm. The Annals of Mathematical Statistics, 41(5):1397–1409, 1970. 10, 39

R. Rubinstein. Optimization of computer simulation models with rare events.

European Journal of Operations Research, 99:89–112, 1996. 131, 136

R. Rubinstein. The cross-entropy method for combinatorial and continuous

optimization. Methodology And Computing In Applied Probability, 1:127–190,

1999. 131

R. Rubinstein and D.P. Kroese. The Cross-Entropy Method: A Unified Approach

to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning.

Springer, 2004. 133

Victor S. Sheng, Foster Provost, and Panagiotis G. Ipeirotis. Get another label?

improving data quality and data mining using multiple, noisy labelers. In

Proceedings of the 14th ACM SIGKDD KDD, KDD ’08. 2008. 9, 13, 44, 51

Hans Ulrich Simon. General bounds on the number of examples needed for

learning probabilistic concepts. In Proceedings of the sixth annual conference on

Computational learning theory, pages 402–411. ACM, 1993. 9

Padhraic Smyth, Usama M. Fayyad, Michael C. Burl, Pietro Perona, and Pierre

Baldi. Inferring ground truth from subjective labelling of venus images. In

NIPS. 1994. 44, 50, 51

187

Rion Snow, Brendan O’Connor, Daniel Jurafsky, and Andrew Y. Ng. Cheap and

fast—but is it good?: evaluating non-expert annotations for natural language

tasks. In EMNLP. 2008. 50

F. Stulp and O. Sigaud. Path integral policy improvement with covariance

matrix adaptation. In International Conference on Machine learning. 2012. 133,

135, 139

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduc-

tion. MIT Press, 1998. 158

I. Szita and A. Lörincz. Learning Tetris using the noisy cross-entropy method.

Neural Computation, 18(12):2936–2941, 2006. 133, 136, 155

I. Szita and C. Szepesvári. SZ-Tetris as a benchmark for studying key problems

of reinforcement learning. In ICML 2010 Workshop on Machine Learning and

Games. 2010a. 133, 139, 155, 156

I. Szita and C. Szepesvári. sztetris-rl Library. http://code.google.com/p/

sztetris-rl/, 2010b. 155

Lajos Takacs. Combinatorial methods in the theory of stochastic processes. Wiley

New York, 1967. 177

Julian Togelius, Sergey Karakovskiy, and Robin Baumgarten. The 2009 mario

AI competition. In IEEE CEC 2010. 2010. 116

M.D. Vose. The Simple Genetic Algorithm: Foundations and Theory. MIT Press,

Cambridge, MA, 1998a. 132

Michael D. Vose. The Simple Genetic Algorithm: Foundations and Theory. MIT

Press, Cambridge, MA, 1998b. ISBN 026222058X. 142

http://code.google.com/p/sztetris-rl/
http://code.google.com/p/sztetris-rl/

188

Yizao Wang, Jean-Yves Audibert, and Rémi Munos. Algorithms for infinitely

many-armed bandits. In NIPS. 2008. 76, 112

Fabian L. Wauthier and Michael I. Jordan. Bayesian bias mitigation for crowd-

sourcing. In NIPS. 2011. 50

Jacob Whitehill, Paul Ruvolo, Ting fan Wu, Jacob Bergsma, and Javier Movel-

lan. Whose vote should count more: Optimal integration of labels from la-

belers of unknown expertise. In NIPS. 2009. 50

Shimon Whiteson, Brian Tanner, and Adam White. The reinforcement learning

competitions. AI Magazine, 2010. 116

Kyle W Willett, Chris J Lintott, Steven P Bamford, Karen L Masters, Brooke D

Simmons, Kevin RV Casteels, Edward M Edmondson, Lucy F Fortson, Sug-

ata Kaviraj, William C Keel, et al. Galaxy zoo 2: detailed morphological

classifications for 304 122 galaxies from the sloan digital sky survey. Monthly

Notices of the Royal Astronomical Society, 435(4):2835–2860, 2013. 6, 69, 70

Yan Yan, Romer Rosales, Glenn Fung, Mark Schmidt, Gerardo Hermosillo,

Luca Bogoni, Linda Moy, and Jennifer Dy. Modeling annotator expertise:

Learning when everybody knows a bit of something. 2010. 50, 51

Liu Yang and Jaime Carbonell. Adaptive proactive learning with cost-

reliability tradeoff. Technical report, CMU, 2009. 13

	Titlepage
	Abstract
	Preface
	Acknowledgements
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Contributions
	A Common Theme
	Thesis Statement

	Stochastic Dilemmas
	Introduction
	Model
	Known Parameters
	Majority Vote
	Beat-By-K
	Lower Bounds
	Beat-By-K vs (Early) Majority Vote

	Unknown Parameters
	Hoeffding Rejection
	Lazy Hoeffding Rejection
	Confidence Sequences
	Lower Bounds

	Summary and Discussion
	Known Parameters
	Unknown Parameters

	Label Identification
	Introduction
	Model
	Parameter
	Distribution P
	Discussion

	Related Work
	Algorithms
	Naive Majority Vote
	Stopped Hoeffding Rejection
	Naive Beat-By-K
	Averaged Beat-By-K

	Experimental Results
	Synthetic Domains
	Recognizing Digits
	Galaxy Zoo

	Infinite Bandits
	Introduction
	Related Work
	Models
	2-Armed Bandit
	PAC Bandit
	Infinite PAC Bandit

	On Reductions
	From Stochastic Dilemmas to 2-Armed Bandits
	From Stochastic Dilemmas to PAC Bandits
	From Stochastic Dilemmas to Infinite PAC Bandits
	From PAC Bandits to Infinite PAC Bandits

	Lower Bounds
	A Novel Algorithm - Greedy Rejection
	Applications of Greedy Rejection

	Greedy Hoeffding Rejection
	Summary and Discussion

	Planning in Reward-Rich Domains via Infinite Bandits
	Introduction
	Model
	Distribution P
	Parameter r0
	Parameter

	Illustration - Infinite Mario
	Algorithms
	Iterative Uniform Rejection (IUR)
	Iterative Hoeffding Rejection (IHR)
	Greedy Hoeffding Rejection (GHR)

	Experimental Results
	Summary

	The Cross-Entropy Method Optimizes for Quantiles
	Introduction
	Related Work
	Algorithms
	The Cross-Entropy Method
	The m-Cross-Entropy Method (mCE)
	Proportional Cross-Entropy

	Illustration - Tetris
	Model
	Theoretical Results
	Proportional Cross-Entropy
	The Cross-Entropy Method

	Experiments
	Die4
	Inventory Control
	Tetris
	Blackjack

	Summary

	Conclusions and Future Work
	Appendices
	Appendix A. Technical Tools
	Hoeffding Inequality
	Random Walks
	Asymptotics With Multiple Complexity Parameters

	Appendix B. Proofs Chapter 5
	Proof of Theorem 5.4.1
	Proof of Theorem 5.4.2
	Proof of Theorem 5.4.3
	Proof of Theorem 5.4.4
	Proof of Theorem 5.4.5
	References

