
DESIGN AND IMPLEMENTATION OF CLICK
ADMIN — A WEB-BASED NETWORK RESEARCH

PLATFORM

BY ABDUL HASSAN

A thesis submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Janne Lindqvist

and approved by

New Brunswick, New Jersey

May, 2014



c© 2014

Abdul Hassan

ALL RIGHTS RESERVED



ABSTRACT OF THE THESIS

Design and Implementation of Click Admin — A

Web-based Network Research Platform

by Abdul Hassan

Thesis Director: Janne Lindqvist

This thesis describes the design and implementation of Click Admin, a web-based net-

work research platform. Click Admin was designed to be a robust tool for network

administrators to be able to research how people would prefer to use their network

when presented with different scenarios, e.g., different queueing types, different queue-

ing priorities, individual bandwidth allocation, offered incentives for cooperative users,

etc. The main goals of Click Admin are to allow network administrators to (1) gather

data on how their users would prefer to use the network in any given scenario, (2)

configure the flow of traffic to simulate the given scenario, and (3) monitor and analyze

how users actually use the network in the given scenario.

At it’s core, Click Admin is merely an interface to Click Modular Router, which is

a flexible, yet fast modular router toolkit allowing network administrators to reroute

traffic in any number of ways. The research capabilities of Click Admin come in the form

of a survey system that network administrators can use to design unique experiments

and present different scenarios to users, asking them to specify how they would prefer to

use the network in each scenario. After determining how each user would prefer to use

the network, the Click Modular Router is then dynamically configured to simulate the
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given scenario. During each simulation, basic network analysis tools are used to capture

the flow of traffic, for the purpose of monitoring and analyzing how users actually use

the network in each scenario. With these tools, network administrators can gain insight

not only into how users use the network, but how they would prefer to use the network

in any number of different real-world scenarios, and can possibly even predict future

trends in network usage and improve network performance.
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Chapter 1

Introduction

With the assortment of network analysis tools available on the market today [1], network

administrators have access to an abundance of data which all together details how traffic

flows over the network. This data can be used for many different purposes, for exam-

ple, detecting problems within the network, monitoring individual bandwidth, spotting

patterns and trends, reporting usage statistics, etc. This data can ultimately provide

valuable knowledge and insight into how people use the Internet as a whole.

As a network administrator, having access to this information is essential in order

to improve certain aspects of the network, predict future load, and detect problems

before they arise. However, it’s important to note that this information only provides

knowledge on how people currently use the network. More so, it only describes usage

in typical network scenarios, e.g., fair queueing, fair bandwidth allocation, quality of

service, etc. What if people were subjected to atypical network scenarios? How would

usage patterns change then? Currently, no tool exists that can provide this sort of

knowledge and insight into how people would prefer to use the network in a possibly

not so typical scenario.

1.1 Motivation

The motivation behind Click Admin came from Dr. Janne Lindqvist, who wanted to

simply gather data on how people would use the network when offered different kinds

of incentives. For example, would people be willing to cooperate and share bandwidth

with each other if it meant optimal usage and bandwidth for everyone involved? Would
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people be willing to sacrifice access to the network during certain parts of the day if it

meant better access during other parts of the day? How would traffic be prioritized if

it were up to the users themselves. These are the types of questions that we wish to be

able to answer with Click Admin.

1.2 Thesis Overview

We begin in chapter 2 with a short discussion on background and related work. This

includes further explanation on why Click Admin was built, as well as a description

of some of the tools essential to Click Admin. Chapter 3 describes how Click Admin

was initially designed — in a format similar to a design document [2]. We explain

the initial goals and requirements of Click Admin, as well as the different decisions

made for the purpose of meeting those goals. We try to explain, as best we can, the

rationale behind some of those decisions. Chapter 4 describes how we implemented a

prototype of Click Admin. We explain the different constraints placed upon us while

actually building the prototype, and the different modifications made to the design to

compensate. We describe the different tools used, why those tools were chosen, and

how they integrate with each other. Chapter 5 discusses the final result. We explain

how to setup and configure Click Admin, and we go through a sample experiment to

illustrate its real-world usage. Finally, chapter 6 concludes this thesis by discussing

possible future enhancements and other related work.
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Chapter 2

Background and Related Work

2.1 Home Watcher

Research shows that when constraints are placed upon a network (whether home, mo-

bile, or otherwise), usage of the network is impacted. For instance, studies show that

placing a cap on bandwidth causes users to be more critical of the applications they

use, and to regulate any usage by others when multiple users are involved [3,4]. Chetty

et al. [4] studied what would happen in a household if each person had more control

over how resources were allocated.

They created a tool called Home Watcher to both display and limit each persons band-

width usage in real-time [4, p. 3]. They deployed Home Watcher in multiple homes [4,

p. 4] and found that usage patterns changed when users were made more aware of how

they and others used the network. Having this information, users were able to optimize

their use of the network [4, p. 6]. It allowed them to learn more about, e.g., what appli-

cations were the most data intensive, what times of the day the network was more/less

congested, how much they affected everyone else on the network, etc.

In addition to this, they found that having control over others resources caused con-

fusion, especially in households where there was a defined social order [4, p. 7]. Users

found it difficult to decide when it was appropriate to limit someone else’s resources —

how were they to prioritize usage of the network. While some used the tool playfully

(e.g., roommates playing jokes on each other), others were more worried about creating

tension within the household (e.g., children were hesitant to limit their parents). Ul-

timately, the study showed that visualizing resource usage in a home lead to a better
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understanding, as well as a difference in usage patterns.

2.2 Click Modular Router

Click Modular Router [5, 6] is a very powerful modular router toolkit, and is the very

foundation of Click Admin. It’s an open source (MIT license) platform for building

flexible, configurable routers. Routers are setup with flat text configuration files, which

define a directed graph of elements from input(s) to output(s), as seen in Figure 2.1.

Click also comes bundled with Clicky [7], which is a GUI used to view configuration

files as block diagrams, as seen in Figure 2.2. Every packet going through the router

is passed (not copied) from one element to the next and processed by each element in

the graph. Click can be compiled as a user-level program or as a kernel module for

Linux, allowing direct interaction with device drivers. Running in the Linux kernel of

conventional PC hardware, an unoptimized Click IP router can achieve a maximum

loss-free forwarding rate of 357,000 64-byte packets per second, which is only about 5%

slower than Linux alone (due to overhead) [5, p. 93].

Click comes with a plethora of elements directly out of the box, and each element

is responsible for a specific task. For instance, the Counter element [8] passes pack-

ets unchanged from its input to its output, maintaining statistics information about

packet count and packet rate. Other useful elements include the IPClassifier element [9]

which allows for packets to be classified in a similar way to tcpdump (e.g., filtered by

source/destination address), and the BandwidthShaper element [10] which allows for

passage of said packets to be limited to a maximum bandwidth.

While Click comes packaged with enough elements to build very complex routers [11],

the true power and flexibility comes from the extensibility of Click and the ability to

create your own elements. Elements are written in C++ using an API provided by

Click. Each element has input and output ports which hook together to create a chain,

and can even take arguments to make them more dynamic.
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Figure 2.1: Example of a valid Click configuration file, which defines a directed graph
of elements. The graph begins with FromDevice, which intercepts packets from a given
network device (eth0 in this case). Packets are then passed on to the Print element,
which simply prints packet contents. Lastly, packets are passed on to Discard, which
simply drops all packets.

2.3 Tcpdump

Tcpdump [12–14] is a very powerful command line packet analyzer. It’s open source

(BSD license) and known to be the premier network analysis tool, used by network

administrators and security professionals alike, as well as anyone with a desire to better

understand TCP/IP in practice [15]. Tcpdump works by intercepting packets trans-

mitted to or received by the computer it’s running on, and thus works best when used

on a system acting as a router or gateway, capturing all packets flowing over the net-

work [12].

Tcpdump comes with a long list of options [16]. Below is a short list of options to

highlight it’s power.

-i interface Listen on interface.

-w file Write the raw packets to file rather than parsing and printing them out.

-r file Read packets from file (which was created with the -w option).
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Figure 2.2: Example of a valid Click configuration diagram visualized in Clicky.

-e Capture link-level header.

-n Don’t convert addresses to names.

-X Print the contents (in addition to the header) of each packet in both hex and ASCII

format.

-v, -vv, -vvv When parsing and printing, produce more and more verbose output –

each additional v captures more fields.

Although there are many more options [13], using only this short list, an administrator

can troubleshoot issues within the network, view communications transferred over the
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Figure 2.3: Data from pcap file displayed in Wireshark.

network (as long as it’s unencrypted, e.g., HTTP), store packets to a file for later

analysis, and much more. Tcpdump captures and stores packets in pcap format – which

is a fairly natural representation of each packet [17]. However, it doesn’t do much more

than this, which places the burden of analysis directly on the user. Analyzing pcap files

directly can be a daunting and tedious experience, that is, without the use of third party

tools such as Wireshark [18], which can read pcap files and assist in the analysis.
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Chapter 3

Design of Click Admin

The design of Click Admin took a top-down approach [19] — all goals and requirements

were gathered first before any tools were chosen or any code was written. This chapter

highlights the architecture and design, listing the compiled goals and requirements of

Click Admin, while foregoing any implementation specific details.

3.1 Problem Statement

People use the Internet everyday [20] under a set of basic assumptions. A large majority

of users are oblivious to what actually happens ”behind the curtains” [21, 22]. They

are unaware of how packets are scheduled and prioritized. They don’t know that the

level of acceptable packet loss is dependent on the application being used – if they know

about packet loss at all. They don’t know what bandwidth is and why their connection

may seem ”slow” during certain parts of the day [23].

Usage of the network is often a greedy endeavor, because people fail to realize that their

usage ties up resources which may affect other people on the same network. But what

if people were more knowledgeable, and were made more aware of how the network was

configured? How would usage patterns change then? More so, what if they themselves

had more control in how things were configured? How would they choose to set things

up? Lastly, what if people had the opportunity to cooperate with each other? Would

they be willing to do so if it meant optimal usage for everyone involved?

There are plenty of tools available that network administrators can use to monitor how

people currently use the network [1], but there is no tool available that can provide
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insight into how people would prefer to use the network if they had more knowledge and

control in how things were configured, or if they knew how others used the same network.

We want to build such a tool, allowing network administrators to gain knowledge and

insight into how people would choose to use the network when presented with any

number of different real-world scenarios.

3.2 Statement of Goals

The main goal of this project is to design and implement a research platform that will

allow network administrators to:

1. Gather data on how their users would prefer to use the network in any given

scenario.

2. Configure the flow of traffic to simulate the given scenario.

3. Monitor and analyze how users actually use the network in the given scenario.

3.3 Overview of Proposed Solution

To gather data on how people would prefer to use the network in a given scenario,

we will create a web-based survey system (website). Each survey will belong to an

experiment, and each experiment will consist of multiple (related) survey questions.

Each experiment will illustrate a scenario, and each survey will ask users a question

related to how they would most likely react in that scenario. The network administrator

will be responsible for asking the question as well as providing all possible options to

the question. Users will need to register to the website and create an account in order

to participate in the experiment and answer each survey question.

To configure the flow of traffic and simulate a given scenario, we will incorporate a

configurable router into the system. Some simulations may depend on a users response

to the survey questions mentioned above (e.g., minimum acceptable bandwidth), and

so router configurations will be dynamic in nature. In order to create these dynamic
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configurations, we will incorporate the use of a template engine [24]. The network

administrator will be responsible for creating these templates. Each configuration will

belong to an experiment, alongside other (related) configurations and surveys.

To monitor how users actually use the network, we will incorporate a network moni-

toring tool into the system. Users will need to periodically notify the system of their

host machine’s [25] network address(es) so that network administrators can later match

packets to the users who sent/received them to monitor each users individual network

usage.

3.4 Assumptions

While the proposed solution will attempt to cover as many cases as possible, we will

operate under the following assumptions:

A1: All users belong to the same local network, and all network traffic is routed

through the system, which acts as a gateway router [26]. (Actual router setup is

beyond the scope of this thesis, but many guides exist online [27].)

A2: Each user will have a unique (and static) IP/MAC address and will only access

the network using the machine(s) they have registered in the system.

A3: Network administrators will be honest when creating an experiment. Packets

should be routed exactly as advertised.

3.5 System Requirements

The following requirements are both functional and non-functional [28–30], describing

system functionality and behavior, while also suggesting system architecture.

R-1: In order to keep track of each user and their responses, user registration is required

in order to use the system. To register, users must enter a valid email address

and password. When registering, users should read over and agree with the terms

of service [31]. They should also read over and consent to the privacy policy [32].
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R-2: In order to keep track of each machine in the network, host registration is required

to use the system. To register, users must enter the IP and MAC address of the

machine they plan to use during an experiment — it’s assumed they will use

this machine and only this machine. This information is used when rendering

configuration files and determining network usage for each host, and thus each

user.

R-3: To keep information up to date, users should be able to update their account and

host information. This includes changing their IP address, MAC address, email

address, and password.

R-4: Administrators should be able to add, review, edit, and delete any content on the

site. However, they should not be able to add, edit, or delete any user information,

aside from activating a users account, inactivating a users account, adding roles

to a user (e.g., make a user an administrator), or removing roles from a user.

This is to ensure that all registered users are authentic and have went through

the registration process in its entirety.

R-5: Host information should always be current. If this information becomes more

than two weeks old, users will not be able to use the system until this information

is explicitly refreshed.

R-6: When creating an experiment, administrators must provide a title. They can

optionally add a description to explain the experiment in much more detail, letting

users know what they can expect during the experiment.

R-7: When creating a configuration, administrators must provide a duration for how

long the configuration will run in the router. Durations range from 1 to 24

hours, in 1 hour increments, allowing configurations to run for 1 hour, 2 hours, 3

hours, etc. They can also provide an optional template. Templates will be given

access to data related to the experiment and the users involved, such as each

users IP/MAC address and their response to each survey, to make configurations

dynamic. Templates should render to a valid Click router file. If no template is



12

provided, a default template should be used which simply passes packets along

untouched. When adding multiple configurations, an order must be specified in

such a way that each configuration runs once and only once, one after the other.

R-8: Surveys can be added to an experiment if necessary. When creating a survey,

administrators must provide the question as well as all possible options to the

question. For example, a question could be ”How important is email to you?”,

and options for such a question could be (1) very important, and (2) not very

important. The only requirement is that at least two options be provided for each

survey. An optional description can also be added to the survey to explain the

survey in more detail, and to explain the possible consequences of a response. For

instance, the consequence of choosing not very important to the previous question

could lead to email packets being made a lower priority and more susceptible to

packet loss during the simulation.

R-9: Experiments can be scheduled to run at a specified time. Administrators can only

schedule and run experiments containing at least one configuration. They must be

scheduled to start at a future time and can’t start within 24 hours of scheduling

the experiment — allowing users adequate time to familiarize themselves with

the experiment and answer any and all survey questions. Experiments must start

at the top of the hour, and they must not conflict with any other scheduled

experiments.

R-10: Administrators should be able to fully edit any experiment that is not yet sched-

uled, or is scheduled but has not yet started. This includes the experiment itself,

any and all of its configurations, surveys, and options. Once an experiment has

started, it can not be edited or deleted, for archiving purposes.

R-11: Users should review the details of an experiment and answer any and all survey

questions before it starts. A reminder to do so should be sent out prior to the

start of the next experiment, reminding users to familiarize themselves with the

experiment and answer any and all survey questions.
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R-12: Users should be able to view all scheduled experiments, past, present, and future.

They should be able to view statistics and a breakdown of user responses for any

and all surveys. However, users should have no knowledge of an experiment that

is not yet scheduled.

R-13: During times when no experiment is running, the system should continue to func-

tion as a basic gateway router so that traffic can continue to flow.

R-14: All traffic flowing through the system should be logged, regardless of whether

or not an experiment is running, to continuously monitor each users use of the

network.

R-15: Administrators should be able to set and change the terms of service and privacy

policy to account for any possible future changes made to the code and how the

data is collected and used.

R-16: Reliability should be the highest priority, being that the system is meant to be a

gateway router. Any downtime or interruptions, especially during an experiment,

is disastrous.

R-17: Extensibility should be a high priority, being that the system is intended to be a

research platform.

R-18: The code base should remain lean, to allow for easy and quick navigation when

trying to extend the code. With this in mind, features should be kept to a

minimum.

R-19: Feature settings should be as configurable as possible. For instance, the adminis-

trator should be able to easily change the max duration a configuration can run

from 24 hours to 48 hours, if necessary.

R-20: Security does not need to be a major concern, aside from basic and common sense

security measures. System administrators can implement more security features

as needed, depending on their own needs.

R-21: Aside from the speed in which Click routes packets — which is more or less
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dependent on hardware — speed should not be a major concern. The website is

intended to be fairly simple, and most of the heavy lifting occurs outside of any

web context. Any resource intensive processes should still be performed in the

background.

R-22: The install and setup process should be quick, easy, and automated.

3.6 Architecture

According to the IEEE, software architecture refers to the “fundamental concepts or

properties of a system in its environment embodied in its elements, relationships, and in

the principles of its design and evolution” [33]. It defines that which is fundamental to

the system as a whole, determining its form, function, value, cost, and risk. Although

many applications exist, most of which can be considered different and unique, the

system requirements for these applications often share some commonalities, such as

data storage, reliability, security, etc. Software architectures provide basic blueprints

to apply to these problems, and depending on the nature of the problem, there is likely

an existing blueprint that one can apply. In our case, the following blueprints make the

most sense and should be followed as closely as possible.

Request/Response

Being web-based, the system will naturally adhere to the request/response architec-

ture [34], where clients make requests and the system processes those requests, per-

forming any necessary actions and returning any necessary data. This means that the

system will need to be accessible to clients and documented to help clients easily nav-

igate through the system. A more typical service architecture [35], however, is rather

unnecessary as there’s no need for the application to be agnostic.
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Shared Nothing

The system should be based on a shared-nothing architecture [36]. This means that

the application should be written in such a way that each instance (node) would be

independent and self-sufficient, to the point where a node can be added or removed

without worry. Structuring it this way would allow us to load-balance [37] between the

nodes, making the system more efficient and reliable.

Figure 3.1: A cluster of application servers being load-balanced by a web-server.

Multi-Tiered

Because reliability is such a major concern, the system should be based on a multi-

tiered [38,39] architecture. This means that different components should be physically

separated and reside on different machines, which means more resources available for
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each component. At the very least, the router should reside on its own machine, with

possible backups in place for redundancy, so that errors in other components will not

affect the network. Adhering to the shared-nothing architecture will also allow instances

of the application to be separate and reside on different machines. As a side effect,

performance should also increase, although that is not a major concern.

MVC

Because extensibility and code simplicity is a major concern, the application should

be based on an MVC (Model - View - Controller) [40, 41] architecture. This means

dividing the application into three interconnected parts, where each part deals with its

own (major) concerns. This makes navigating and editing the codebase much easier.

The model represents knowledge. It holds the business logic of the application and is

responsible for interacting with the database, storing and querying data. The model

should closely resemble a real-world object (e.g., in our case, a survey). The view is

a visual representation of the model, and is responsible for building the user interface,

taking data from the model and arranging it to fit the proper format (e.g., in our case,

HTML). The controller is the link between the model and the view. It is responsible

for processing incoming requests from clients, validating and formatting user input,

and calling the necessary functions on the model, passing any data to the correct view

which gets sent back to the client.

3.6.1 Components

The system will consist of several major components (layers), each separate and respon-

sible for their own set of concerns. Being a web-based system, the following components

are necessary at the very least.
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Figure 3.2: Flow of an MVC application.

Configurable Router

A configurable router will take on arguably the biggest responsibility in the system. It

will be responsible for routing packets over the network. All simulations presented in

the experiments will be performed by the router. As mentioned, it’s assumed the router

will function as a gateway router [26], so it’s important that the router chosen be both

efficient and reliable.

Network Monitor

A network monitor, also known as a packet analyzer [42], will take on another big re-

sponsibility. It will be responsible for monitoring and recording packets routing through

the system, and will run at all times to keep track of how people use the network. Be-

cause the system is meant to operate as a gateway router, all traffic over the network

should route through the system and be logged.
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Application Server

An application server [43] can be seen as a framework providing a structured approach to

the application. This is where our application code will reside and run to process client

requests, serving as the core of our web-based survey system. The application server

will interact with most other components directly. It will interact with the database

server to store and query data. It will interact with the configurable router to update

its configuration. It will push emails to the mail server to deliver them, and push tasks

to the job scheduler to run certain tasks at specified times. Because extensibility is a

high priority, the framework chose should be simple and easy to use.

Database Server

A database server [44] will make up our back-end and will be responsible for storing all

of our application related data (experiments, users, etc.). It will take requests from the

application server to store, update, and query data quickly and efficiently.

Web Server

A web server [45] will be responsible for accepting incoming requests from clients and

forwarding them to the application server. As mentioned, the application server will

process these requests and return a response for the web server to return back to the

client.

Mail Server

A mail server [46] is necessary to deliver email notifications. It will be egress only, as

there is no need for the system to receive emails.
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Job Scheduler

A job scheduler [47] is necessary to control background execution of different tasks,

such as updating the router at the start of a new experiment, or sending reminder

email notifications to users and administrators.

3.7 Persistent Data Storage

As mentioned, the system will need to store several sets of data. All together, we need

to keep track of experiment related data (experiment titles, survey questions, etc.),

user related data (email addresses, ip addresses, etc.), and packet data (traffic over

the network captured by the network monitor). All data submitted to the application

should be stored in a database, as previously mentioned, while all data captured by

the network monitor should be stored in binary files. There is no need to store packet

data in the database, as it’s up to the administrator to decide if and how this data is

actually used, as well as what tools are used to analyze it.

3.7.1 Database Structure

At the very least, the database structure should resemble Listing 3.1.

Listing 3.1: Designed using SQLite 3.7.17

CREATE TABLE users (

id INTEGER NOT NULL ,

email VARCHAR (255) NOT NULL ,

password CHAR (60) NOT NULL ,

-- Host information is required , but nullable , since it ’s not

required at sign up

ip_address VARCHAR (39), -- IPv4 or IPv6

mac_address VARCHAR (17),

-- Keep track of the last time host information was updated ,

since it should be updated every two weeks
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last_updated_at DATETIME ,

PRIMARY KEY (id),

UNIQUE (email)

);

CREATE TABLE experiments (

id INTEGER NOT NULL ,

title VARCHAR (140) NOT NULL ,

description TEXT ,

-- Null until schedule is set

start_time DATETIME ,

PRIMARY KEY (id),

UNIQUE (title)

);

CREATE TABLE configurations (

id INTEGER NOT NULL ,

experiment_id INTEGER NOT NULL ,

-- Self -referencing table

previous_configuration_id INTEGER ,

-- Written in template language

template TEXT ,

-- In hours

duration INTEGER NOT NULL ,

PRIMARY KEY (id),

FOREIGN KEY(previous_configuration_id) REFERENCES

configurations (id),

FOREIGN KEY(experiment_id) REFERENCES experiments (id) ON

DELETE cascade

);

CREATE TABLE surveys (

id INTEGER NOT NULL ,

experiment_id INTEGER NOT NULL ,
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question VARCHAR (140) NOT NULL ,

description TEXT ,

PRIMARY KEY (id),

FOREIGN KEY(experiment_id) REFERENCES experiments (id) ON

DELETE cascade

);

CREATE TABLE options (

id INTEGER NOT NULL ,

survey_id INTEGER NOT NULL ,

response VARCHAR (140) NOT NULL ,

PRIMARY KEY (id),

UNIQUE (survey_id , response),

FOREIGN KEY(survey_id) REFERENCES surveys (id) ON DELETE

cascade

);

-- Stores each users chosen response to a survey question

CREATE TABLE user_choices (

user_id INTEGER NOT NULL ,

survey_id INTEGER NOT NULL ,

option_id INTEGER NOT NULL ,

PRIMARY KEY (user_id , survey_id , option_id),

UNIQUE (user_id , survey_id),

FOREIGN KEY(user_id) REFERENCES users (id) ON DELETE cascade ,

FOREIGN KEY(survey_id) REFERENCES surveys (id) ON DELETE

cascade ,

FOREIGN KEY(option_id) REFERENCES options (id) ON DELETE

cascade

);

-- Stores miscellaneous data , such as the terms of service and

privacy policy

CREATE TABLE pages (



22

id INTEGER NOT NULL ,

name VARCHAR (80) NOT NULL ,

title VARCHAR (255) NOT NULL ,

content TEXT ,

PRIMARY KEY (id),

UNIQUE (name)

);

Figure 3.3: Relationship diagram of the minimal database.

3.7.2 File Format

As mentioned, packet data should be stored in binary files. Many open source network

monitoring tools are implemented using the PCAP API (libpcap) [17], which defines the

structure used to store packet data. Details of the PCAP API are beyond the scope of

this thesis, but Table 3.1 shows a visual representation of the PCAP file format.
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Global
Header

Packet 1
Header

Packet 1
Data

Packet 2
Header

Packet 2
Data ...

Packet N
Header

Packet N
Data

Table 3.1: Format of PCAP file [48]. Packet headers are added by libpcap (or winpcap),
packet data is what is actually captured (raw data). The global header is added once
by libpcap (or winpcap).

3.8 Data Structures

Within the application, data should be stored in very basic structures (lists, sets, dictio-

naries, etc.). Aside from what’s provided by the application framework, there is almost

no need for any complex data structures, as the design doesn’t call for such. The only

need for something complex stems from the requirement that multiple configurations

within an experiment run and progress in a specified order set by the administrator.

Configuration sets should be represented in the application as a linked list [49] to keep

track of the order and progression of configurations from one to the next. A linked list

is simply a chain of similar objects, where each object contains its own set of data, as

well as a reference to the next object in the chain, as seen in Figure 3.4.

Figure 3.4: A singly linked list containing five nodes. Each node has its own set of
data, as well as a reference to the next node in the chain.

Because configuration data is stored in a database, the order of configurations must also

(primarily) be stored and represented in the database. With this in mind, it’s simpler

if, in the database, each configuration contain an explicit reference to the previous

configuration, as opposed to the next configuration. Doing it this way would make

finding the first configuration much easier, as it would be the only configuration with

no explicit reference to another.

Also, because the data is stored in a database, it’s very simple to find the next configu-

ration through a simple query. So while there is no explicit reference, in the database,
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to the next configuration, this information can be considered known. With this in

mind, it makes more sense for configuration sets to be represented in the application

as a doubly linked list, with references to both the previous and the next configuration

in the chain, as seen in Figure 3.5.

Figure 3.5: A doubly linked list containing five nodes. Each node has its own set of
data, as well as a reference to both the next and previous node in the chain.

3.9 Algorithmic Models

Because of the simplicity of our design, the application does not call for any complex

models or algorithms. The only need for something somewhat complex stems from the

requirement that each configuration within an experiment run once and only once, one

after the other. The need for this algorithm goes hand in hand with the need for a

linked list data structure. Since the administrator is the one to specify the order of

configurations, there needs to be a way to check and ensure the validity and unambiguity

of the chosen order. There must be no gaps, circular references, or any other ambiguity

in the chain of configurations.

The algorithm to check for this is pretty simple. First, identify the head of the chain.

Starting at the head, traverse the chain from one configuration to the next, keeping a

list of each configuration visited. For every configuration encountered, check the list of

configurations already visited. If it’s determined that a configuration is visited more

than once, it’s because there is a circular reference in our chain, which is an error.

If not, and the end of the chain is reached, the next thing is to make sure that all

configurations were visited. The length of visited configurations should be equal to the

number of total configurations in the set. If this is not the case, it’s because there is a

gap in our chain, which is an error.
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3.10 User Interface

In keeping with the minimalism and simplicity of the system, the user interface should

also be simple and easy to use for users and administrators alike. It should adhere to

the principles of user interface design [50] — structure, simplicity, visibility, feedback,

tolerance, and reuse. From a user’s perspective, the application should essentially be

nothing more than a collection of experiments and survey questions. The interface

should allow them to log on, review experiments, and answer questions, while hiding

most other functionality. For administrator’s, the interface should also allow them to

manage content, similar to a CMS (content management system) [51].

3.11 Testing

Testing ensures the quality of the final product, and there are many different levels of

software testing, including unit testing, integration testing, component testing, system

testing, and acceptance testing [52]. In any system, testing is encouraged and welcome.

In this case, at the very least, system testing is a must to check the system as a whole,

and to ensure that all requirements are met. Second to that, component testing should

be done to ensure that each component does what it should do, and that information

and commands are passed between components as expected.
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Chapter 4

Implementation of Click Admin

While building the prototype for Click Admin, we were presented with a few different

constraints, such as time, cost, resources, and even our own requirements, which forced

our hand and caused us to deviate slightly from the design. This chapter describes

the details of our implementation, highlighting any deviations in design. (Where not

explicitly mentioned, it can be assumed that the implementation follows the design

presented in chapter 3.)

4.1 Architecture

For the most part, the prototype was built to adhere to the architectures discussed in

chapter 3. Click Admin was designed to be multi-tiered [39], however, due to limited

resources, the prototype is single-tiered [53] — all components (including the router)

run on the same machine.

4.2 Subsystems and Libraries

Our choice of tools was based on both our constraint for time as well as our requirement

for extensibility. In order to build a system that others could freely add upon or make

changes to, we were forced to use open source software with flexible and permissive

licenses. To build the prototype as quickly as possible, we used tools that were easy to

learn and configure, and which integrated well with each other.



27

Linux/Ubuntu

Linux [54] is a free and open source operating system. Contrary to popular belief,

Linux is very user-friendly, with many utilities that make everyday tasks simple. It’s

very reliable, with many servers experiencing years worth of uptime [55]. It’s also

very secure, with most security threats being patched by one of the many contributors

worldwide as soon as they are discovered.

Ubuntu [56] is one of the many distributions [57] of Linux. Ubuntu adds to the user

experience, making it one of the easiest distributions to use. Ubuntu, specifically version

12.04 (Precise Pangolin), was chosen as our operating system because of its ease of use,

and the fact that most open source tools are made to work primarily on Linux.

Click

As mentioned in chapter 2, Click [5, 6, 58] is a powerful modular router toolkit, used

to build flexible and configurable routers. We use Click, specifically version 2.0.1 to

configure the network and simulate our experiments.

Tcpdump

As mentioned in chapter 2, Tcpdump [13, 14] is a powerful command line packet an-

alyzer, used to intercept packets sent over the network. We use Tcpdump to log and

monitor all traffic on the network.

Python

Python [59,60] is a general-purpose, high-level dynamic programming language allowing

for quick prototyping. It’s philosophy emphasizes readability and simplicity in code.

While the language is easy to use, it’s powerful nonetheless, with an extensive list of

useful libraries [61] which make programming even easier. Python, specifically version

2.7 (CPython), was chosen to power our website.
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Flask

Flask [62, 63] is a lightweight, yet powerful microframework for Python web develop-

ment. It’s considered a microframework because it’s simple, yet extensible, leading to

less dependencies and more freedom on how to write and organize code. As opposed

to more monolithic frameworks, such as Django, which is very tightly coupled and

makes certain decisions for you [64]. The power of Flask comes from it’s extensibility.

Currently, Flask supports many different extensions, providing such functionality as

database integration, form validation, upload handling, authentication, authorization,

etc. Flask is based on Werkzeug and Jinja2, these being its only dependencies. We chose

to use Flask as our framework to make building our website quick and easy.

Flask-Admin

Flask-Admin [65, 66] is a Flask extension providing a framework for building flexible

administrative interfaces for Flask applications. We use Flask-Admin to build a CMS

[51], providing administrators with the ability to create and edit experiments, as well

as perform any other admin related tasks.

Flask-Mail

Flask-Mail [67,68] is a Flask extension providing the ability to send emails from within

a Flask application. We use Flask-Mail to send reminder emails to users, as well as

warning/error messages to administrators when necessary.

Flask-Security

Flask-Security [69,70] is a Flask extension providing security functionality, such as user

registration and login, to a Flask application. We use Flask-Security to ease the user

management aspect of our system, and to restrict access and functionality to users

based on their privileges.
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Flask-SQLAlchemy

Flask-SQLAlchemy [71,72] is a Flask extension that adds SQLAlchemy [73,74] support

to an application. SQLAlchemy is an ORM (object relational mapper) [75] for Python

with support for many different SQL databases, such as MySQL and PostgreSQL.

An ORM converts data found in the database to objects (and vice versa) for easy

data retrieval and manipulation. It’s an abstraction layer which allows the use of

objects directly, removing the need to write, by hand, most SQL queries. We use Flask-

SQLAlchemy to aid in the development of our models and data access layer.

Flask-WTF

Flask-WTF [76,77] is a Flask extension that adds WTForms [78,79] support to a Flask

application. WTForms is a form and validation library for Python, allowing developers

to (abstractly) build complex HTML forms and validate user input on submission. We

use Flask-WTF to build our HTML forms and validate user input.

Jinja2

Jinja2 [80, 81] is a powerful, full featured template engine [24] for Python. It’s one

of the most used template engines for Python, with full unicode support, template

inheritance, JIT compilation, and many other features. We use Jinja2 within our Flask

application to build our HTML and Click router templates.

PostgreSQL

PostgreSQL [82, 83] is a powerful and advanced ORDBMS (object-relational database

management system) [84]. It’s fully featured and debated as one of the best database

systems available, used by such prominent users as Reddit and Yahoo. PostgreSQL

offers more data types than most other database systems, such as the interval type,

which holds time intervals (e.g., 5 hours, 6 days). This comes in handy when storing
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configurations, as we no longer need to store the duration as an integer. SQLAlchemy

maps a PostgreSQL interval to a Python timedelta, which is an added benefit for

quick and easy datetime calculations. We use PostgreSQL to store all of our user and

experiment related data and archives.

Nginx

Nginx [85, 86] is a high-performance reverse proxy server which works for HTTP,

HTTPS, SMTP, POP3, etc. It’s also a high-performance web server, load balancer,

and cache server. It has a strong focus on high concurrency and is one of a handful of

servers which addresses the C10K problem [87]. Nginx currently serves nearly 12.18%

of active sites across all domains, powering such sites as Netflix, Pinterest, and even

Facebook. We use Nginx as a reverse proxy for our application server(s), allowing for

load balancing between them. We also use it as a static file server, serving all of our

CSS, JavaScript, and media files.

uWSGI

uWSGI [88, 89] is an ambiguously named high-performance application server, which

implements the similarly named WSGI/uWSGI protocol for Python and other pro-

gramming languages. (Any mention of the name uWSGI in this document will refer

to the application server and not the protocol.) Being an application server, uWSGI

usually runs behind a reverse proxy (e.g., Nginx) which load-balances between multiple

instances of uWSGI, but it is functional enough to work as a standalone server for

small-traffic websites. We use uWSGI to run and serve our Flask application.

Celery

Celery [90, 91] is a task queue allowing tasks to be performed asynchronously in the

background, on a separate server. Tasks can also be scheduled to run at a specific time

or in a specific interval, similar to a cron job [92]. We use Celery primarily as a job
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scheduler [47] to run and control our scheduled tasks, such as sending reminder emails

to users before the start of a new experiment.

Postfix

Postfix [93,94] is a simple SMTP server used as a mail transfer agent. It is very easy to

setup and administer, making it a great alternative to the more popular Sendmail [95].

We use Postfix to deliver messages sent from our application, and configure it to be

egress only.

Redis

Redis [96, 97] is a very fast and advanced in-memory NoSQL [98] database. It is a

key-value store (similar to a dictionary), supporting many different data types, such as

strings, lists, sets, hashes, etc. Redis is used by Celery as a backend broker to store

background tasks.

Bootstrap

Bootstrap [99,100] is a front-end framework for building responsive, interactive, mobile-

first websites. It contains different HTML, CSS, and JavaScript utilities to aid in the

quick development of beautiful and interactive websites. We use Bootstrap to build a

responsive interface, able to run on multiple devices.

jQuery

jQuery [101,102] is a fast, feature-rich, cross-platform JavaScript library used to simplify

many different JavaScript tasks, such as DOM traversal, event handling, and AJAX.

It’s the most popular JavaScript library in use today, accounting for a 93% market share

[103]. We use jQuery to help make our interface more interactive and dynamic.
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Supervisor

Supervisor [104, 105] is a supervision tool that allows processes to be monitored and

controlled. Processes can be configured to be run and controlled by Supervisor, after

which they can be restarted automatically if they fail to ensure they stay up and

running. Supervisor has plenty of other features as well, such as a web server allowing

remote control of processes. Other alternatives were considered, mainly Monit [106],

but Supervisor was chosen for its ease of use and simple configuration.

Ansible

Ansible [107,108] is a simple configuration management tool, used to automate the setup

and configuration of systems. It allows control over many machines simultaneously, so

complex systems can be deployed quickly and precisely. Ansible is used to automate

the setup and deployment of our system, allowing quick and easy installation/updates.

Other alternatives were considered, mainly Fabric [109], but Ansible was chosen for its

large set of features.

4.3 Persistent Data Storage

4.3.1 Database Structure

The database structure implemented, seen in Listing 4.1, is slightly different from the

structure in the design, seen in Listing 3.1. Some types were changed, mainly the

use of interval instead of integer to hold durations. Some fields were added, such as

users.active, mainly because some Flask extensions require them. Some fields were

moved, such as users.ip address, to make the application more flexible.

Listing 4.1: Designed using PostgreSQL 9.1.13

CREATE TABLE users (

-- Autopopulated field storing time of creation
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created_at timestamp without time zone NOT NULL ,

id integer NOT NULL ,

email character varying (255) NOT NULL ,

password character (60) NOT NULL ,

host_last_updated_at timestamp without time zone ,

-- Fields added by Flask -Security

active boolean NOT NULL ,

last_login_at timestamp without time zone ,

current_login_at timestamp without time zone ,

last_login_ip character varying (15),

current_login_ip character varying (15),

login_count smallint

);

-- Separate table allows users to have multiple IP addresses (i.e

., multiple host machines)

CREATE TABLE user_ip_addresses (

created_at timestamp without time zone NOT NULL ,

id integer NOT NULL ,

user_id integer NOT NULL ,

ip_address character varying (39) NOT NULL

);

-- Separate table allows users to have multiple MAC addresses (i.

e., multiple host machines)

CREATE TABLE user_mac_addresses (

created_at timestamp without time zone NOT NULL ,

id integer NOT NULL ,

user_id integer NOT NULL ,

mac_address character varying (17) NOT NULL

);

-- Read table containing roles users can have (e.g.,

administrator)
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CREATE TABLE roles (

created_at timestamp without time zone NOT NULL ,

id integer NOT NULL ,

name character varying (80) NOT NULL ,

description character varying (255) ,

permanent boolean NOT NULL

);

-- Join table allowing users to have multiple roles

CREATE TABLE users_roles (

created_at timestamp without time zone NOT NULL ,

user_id integer NOT NULL ,

role_id integer NOT NULL

);

CREATE TABLE experiments (

created_at timestamp without time zone NOT NULL ,

id integer NOT NULL ,

title character varying (140) NOT NULL ,

description text ,

-- Aggregate field holding total duration of configurations

duration interval NOT NULL ,

start_time timestamp without time zone ,

-- Calculated field , based on start_time and duration

end_time timestamp without time zone

);

CREATE TABLE configurations (

created_at timestamp without time zone NOT NULL ,

id integer NOT NULL ,

previous_configuration_id integer ,

experiment_id integer NOT NULL ,

text text ,

duration interval NOT NULL
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);

CREATE TABLE surveys (

created_at timestamp without time zone NOT NULL ,

id integer NOT NULL ,

experiment_id integer NOT NULL ,

question character varying (140) NOT NULL ,

description text

);

CREATE TABLE options (

created_at timestamp without time zone NOT NULL ,

id integer NOT NULL ,

survey_id integer NOT NULL ,

response character varying (140) NOT NULL

);

CREATE TABLE user_choices (

created_at timestamp without time zone NOT NULL ,

user_id integer NOT NULL ,

survey_id integer NOT NULL ,

option_id integer NOT NULL

);

CREATE TABLE pages (

created_at timestamp without time zone NOT NULL ,

id integer NOT NULL ,

name character varying (80) NOT NULL ,

title character varying (255) NOT NULL ,

content text ,

permanent boolean NOT NULL

);
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Figure 4.1: Relationship diagram of the implemented database.

4.4 Testing

Due to time constraints, the prototype was not tested at all levels. System testing was

done to ensure that all requirements were satisfied. However, admittedly not all edge

cases were tested. The following processes were tested manually.

Installing Click Admin

The installation process was tested on a virtual machine. Installation was done on a

barebone machine, to ensure Click Admin was installed successfully, along with all of
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it’s dependencies. As per the requirements, the installation process proved to be quick

and simple.

Creating an Experiment

The process of creating an experiment was tested manually. Multiple experiments were

created, testing different edge cases, to ensure valid experiments were permitted and

saved, and invalid experiments triggered the correct error messages. All requirements

were satisfied.

Running an Experiment

Tcpdump log files were periodically checked and cross-referenced with actual usage

to ensure packet data was being logged correctly. To ensure that experiments run as

expected, a test experiment was scheduled. A configuration was added to the test

experiment for the purpose of dropping all packets. As expected, all packets were

dropped by the router while the experiment ran.
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Chapter 5

Results

5.1 Installing Click Admin

Click Admin comes packaged with deployment scripts in the form of Ansible playbooks

[107]. The first step to installing Click Admin is to configure it. Ansible expects to find

a ‘vars.yaml‘ file in the ‘deployment/secrets/‘ directory with database credentials

and other private keys.

Listing 5.1: deployment/secrets/vars.yaml

---

# Database credentials

db_name: clickadmin

db_user: clickadminuser

db_pass: clickadminpass

# Used for signing cookies - should be set to something random

secret_key: 0980423 lkjfe093042kjhkg

# Used for salting passwords - should be set to something random

security_password_salt: 93802 lkksmlvkenf089232n

Certain settings in ‘deployment/vars.yaml‘ should also be changed. At the very

least, the list of default administrators should be changed and/or added to.

Listing 5.2: deployment/vars.yaml
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# Site administrators - accounts will be created for each

admins:

- admin@clickadmin.com

After configuring Click Admin, run Ansible to install it. This will create an adminis-

trator account for each user listed, each whose password is password by default. Log on

using this password and immediately change it on the Change Password page, found

in the drop-down menu.

5.2 Creating an Experiment

After logging on as an administrator, head over to the Create Experiment page, found

in the Admin Section of the site. Enter an experiment title and (optionally) a descrip-

tion, as seen in Figure 5.1. Submit the form to create the experiment.

Title Is email a priority?

Description This experiment will aim to determine if email is a priority to our users.

Figure 5.1: Create experiment page.
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After creating the experiment, head over to the Create Survey page. Select the ex-

periment it belongs to in the drop-down list, enter a survey question and (optionally)

a description, as seen in Figure 5.2. Submit the form to create the survey.

Experiment Is email a priority?

Question Would you be willing to rate limit your email traffic?

Description Selecting yes will result in your emails being rate limited to 300 kB/s.

Figure 5.2: Create survey page.

After creating the survey, head over to the Create Survey Option page. Select the

survey it belongs to in the drop-down list and enter a response. Surveys must have at

least two options, so click Save and Add to create the first survey option and repeat

the steps to create another, as seen in Figure 5.3.

Survey Would you be willing to rate limit your email traffic?

Response (Option 1) yes

Response (Option 2) no

After creating the survey, head over to the Create Configuration page. Select the

experiment it belongs to in the drop-down list, select the duration it should run for
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(a) Option 1

(b) Option 2

Figure 5.3: Create survey option page.
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in the drop-down list, and enter the content of the configuration, as seen in Figure

5.4.

Experiment Is email a priority?

Duration a day

Content Refer to Listing 5.3.

Figure 5.4: Create configuration page.

Listing 5.3: Configuration Template (Jinja2)

1 {% set ports = [110, 995, 143, 993, 25, 465, 587, 2525] %}

2 input :: FromDevice(eth0);

3 output :: ToDevice(eth0);

4 sched :: PrioSched;

5 bw :: BandwidthShaper (300000);

6

7 ip :: IPClassifier(

8 (

9 {% for user in option_1.consenting_users %}

10 host {{ user.ip_address }} {{ ’’ if loop.last else ’or ’

}}
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11 {% endfor %}

12 )

13 and

14 (

15 {% for port in ports %}

16 port {{ port }} {{ ’’ if loop.last else ’or ’ }}

17 {% endfor %}

18 ),

19 -

20 );

21

22 input -> ip[0] -> Queue -> bw -> [0] sched;

23 input -> ip[1] -> Queue -> [1] sched;

24 sched -> output;

5.3 Scheduling an Experiment

After creating the experiment with all of it’s surveys and configurations, the last step

is scheduling a time for everything to run. As per the requirements, users are not made

aware of experiments until they are scheduled. To do so, find the experiment in the

List Experiments page and click edit to go to the Edit Experiment page. Enter the

start time of the experiment, as seen in Figure 5.5, and submit the form to schedule

the experiment.

Once the experiment is scheduled, users will be able to view the details of the experiment

and answer any and all survey questions, as seen in Figure 5.6. As mentioned, a users

response to a survey question may alter the rendered configuration. As it was written,

our configuration will ensure that all users who responded yes to the question ”Would

you be willing to rate limit your email traffic?” will have all of their email packets

(packets sent to/from standard email ports) rate limited to 300 kB/s, as seen in Listing

5.4.
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Figure 5.5: The edit experiment page has the same format as the create experiment
page. However, a start time can only be set in this context.

Listing 5.4: Rendered Configuration

1 input :: FromDevice(eth0);

2 output :: ToDevice(eth0);

3 sched :: PrioSched;

4 bw :: BandwidthShaper (300000);

5

6 ip :: IPClassifier(

7 (

8

9 host 33.33.33.1

10

11 )

12 and

13 (

14

15 port 110 or

16

17 port 995 or
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(a) Description

(b) Surveys

(c) Configurations

Figure 5.6: View experiment page. Users can view experiment details and answer
survey questions.



46

18

19 port 143 or

20

21 port 993 or

22

23 port 25 or

24

25 port 465 or

26

27 port 587 or

28

29 port 2525

30

31 ),

32 -

33 );

34

35 input -> ip[0] -> Queue -> bw -> [0] sched;

36 input -> ip[1] -> Queue -> [1] sched;

37 sched -> output;

5.4 Running an Experiment

Once an experiment is scheduled, it will run all on it’s own (assuming no errors are

found). Our celery server runs a function every hour to check any upcoming experiments

for errors. If any errors are found, a warning email is sent to each administrator to

notify them. It’s up to the administrator to address each and every error before the

experiment runs. Our celery server also runs a function to check for any users who

have yet to respond to the survey questions and reminds them to do so. If no errors

are found, the experiment will start on schedule and each configuration will run for it’s

specified duration, one after the other. If the system is running on a gateway machine,
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as is assumed, everyone on the network will be subjected to the configuration of the

router.
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Chapter 6

Conclusion and Future Work

Click Admin has the potential to be a valuable tool for network administrators. Al-

though its intended use is for performing research into determining usage patterns in

different scenarios, the extensibility of Click Admin should lead to some interesting use

cases. One of the things Click Admin would greatly benefit from is more testing. As

mentioned, only system testing was done. However, unit tests would provide much

more code coverage, and should uncover any hidden bugs in the code. It would also

help in testing different edge cases. There is an extension in Flask used to assist with

writing and running tests called Flask-Testing [110].

An interesting feature that Click Admin could greatly benefit from is real-time analysis

and feedback — allowing users to view how they and others are using the network,

in real-time. This would provide instant feedback to users which would allow them to

make instant changes and optimize their use of the network. For instance, they may

choose not to use data intensive applications during peak hours.

Another interesting feature that Click Admin could benefit from is the ability to in-

form/remind network users of Click Admin’s presence. As per the requirements, users

must explicitly register to the system in order to participate and answer survey ques-

tions. However, everyone on the network is subjected to the configuration of the router.

It would make sense for experiments to be advertised to all users on the network peri-

odically.
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